
M A N N I N G

Ryan Bigg
Yehuda Katz
Steve Klabnik
Rebecca Skinner

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Praise for
Rails 3 in Action

Takes you on an excellent Rails 3 adventure!
—Anthony J. Topper, Penn State Harrisburg

Conversational and current. A wellspring of information.
—Jason Rogers, Dell Inc.

An essential roadmap for the newest features of Rails 3.
—Greg Vaughn, Improving Enterprises

Essential, effective Rails techniques and habits for the modern Rubyist.
—Thomas Athanas, Athanas Empire, Inc.

A holistic book for a holistic framework.
—Josh Cronemeyer, ThoughtWorks Studios

The API chapter was an absolute lifesaver, and if I hadn’t read it I wouldn’t have
been able to write my application that I have now deployed.

—Leo Cassarani

I think I’ve learned more about Rails in the first five chapters than I did in all the other
resources I’ve tried ... combined!

—J.K. Wood

The writing in the book is natural and relaxed, and it takes us through the process of
developing an application. In doing so, it references and shows us how to use specific
non-base Rails gems that really help in achieving our goals.

—Mario Alberto Chávez Cárdenas

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Rails 4 in Action

RYAN BIGG
YEHUDA KATZ

STEVE KLABNIK
REBECCA SKINNER

M A N N I N G
Shelter Island

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Susan Conant
20 Baldwin Road Technical editor: Steven Jenkins
PO Box 761 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Doug Warren
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617291098
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

v

brief contents
1 ■ Ruby on Rails, the framework 1

2 ■ Testing saves your bacon 25

3 ■ Developing a real Rails application 39

4 ■ Oh, CRUD! 84

5 ■ Nested resources 124

6 ■ Authentication 148

7 ■ Basic access control 170

8 ■ Fine-grained access control 215

9 ■ File uploading 283

10 ■ Tracking state 325

11 ■ Tagging 382

12 ■ Sending email 420

13 ■ Deployment 448

14 ■ Designing an API 468

15 ■ Rack-based applications 496

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

vii

contents
preface xv
acknowledgments xvii
about this book xx

1 Ruby on Rails, the framework 1
1.1 Ruby on Rails overview 2

Benefits 2 ■ Ruby gems 3 ■ Common terms 4 ■ Rails in
the wild 5

1.2 Developing your first application 6
Installing Rails 6 ■ Generating an application 6 ■ Starting the
application 7 ■ Scaffolding 8 ■ Migrations 9 ■ Viewing and
creating purchases 11 ■ Validations 14 ■ Routing 17
Updating 18 ■ Deleting 21

1.3 Summary 23

2 Testing saves your bacon 25
2.1 Using TDD and BDD to save your bacon 26

2.2 Test-driven development basics 27
Writing your first test 27 ■ Saving bacon 29

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

2.3 Behavior-driven development basics 31
Introducing RSpec 31 ■ Writing your first spec 32 ■ Running
the spec 33 ■ Much more bacon 34 ■ Expiring bacon 35

2.4 Summary 38

3 Developing a real Rails application 39
3.1 First steps 41

The application story 41 ■ Laying the foundations 41

3.2 Version control 42
Getting started with GitHub 43 ■ Configuring your Git client 44

3.3 Application configuration 46
The Gemfile and generators 47 ■ Database configuration 50

3.4 Beginning your first feature 51
Creating projects 52 ■ Defining a controller action 55
RESTful routing 57 ■ Committing changes 74 ■ Setting a
page title 74 ■ Validations 77

3.5 Summary 83

4 Oh, CRUD! 84
4.1 Viewing projects 85

Introducing Factory Girl 85 ■ Adding a link to a project 87

4.2 Editing projects 88
The edit action 88 ■ The update action 92

4.3 Deleting projects 94

4.4 What happens when things can’t be found 97
Visualizing the error 98 ■ Handling the
ActiveRecord::RecordNotFound exception 99

4.5 Styling the application 102
Installing Bootstrap 103 ■ Improving the page’s header 104
Improving the show view 106 ■ Semantic styling 107 ■ Using Simple
Form 113 ■ Adding a navigation bar 117 ■ Responsive styling 120

4.6 Summary 123

5 Nested resources 124
5.1 Creating tickets 124

Nested routing helpers 126 ■ Creating a tickets controller 127
Demystifying the new action 128 ■ Defining a has_many
association 129 ■ Creating tickets in a project 131 ■ Finding
tickets scoped by project 133 ■ Ticket validations 135

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

5.2 Viewing tickets 136
Listing tickets 138 ■ Culling tickets 139

5.3 Editing tickets 141
The ticket-editing spec 141 ■ Adding the edit action 144
Adding the update action 144

5.4 Deleting tickets 145
5.5 Summary 147

6 Authentication 148
6.1 Using Devise 149
6.2 Adding sign-up 152
6.3 Adding sign-in and sign-out 154

Adding sign-in 154 ■ Adding sign-out 157 ■ Styling the
Devise views 159

6.4 Linking tickets to users 161
Fixing the failing four features 167

6.5 Summary 168

7 Basic access control 170
7.1 Turning users into admins 171

Adding the admin field to the users table 172 ■ Creating the first
admin user 173

7.2 Controller namespacing 174
Generating a namespaced controller 174 ■ Testing a namespaced
controller 177 ■ Moving functionality into the admin namespace 180

7.3 Hiding links 187
Hiding the “New Project” link 187 ■ Hiding the delete link 189

7.4 Namespace-based CRUD 191
The index action 193 ■ The new action 195 ■ The create action 196
Creating admin users 197 ■ Editing users 199 ■ The edit and update
actions 203 ■ Archiving users 205 ■ Ensuring that you can’t archive
yourself 210 ■ Preventing archived users from signing in 211

7.5 Summary 214

8 Fine-grained access control 215
8.1 Project-viewing permission 216

Assigning Roles in specs 217 ■ Creating the Role model 219 ■ Setting
up Pundit 220 ■ Testing the ProjectPolicy 223 ■ Fixing what you
broke 227 ■ Handling authorization errors 230 ■ One more thing 232

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

8.2 Project-updating permission 236
Testing the ProjectPolicy again 236 ■ Applying the
authorization 238 ■ Hiding the “Edit Project” link 240

8.3 Ticket-viewing permission 242
Refactoring policy specs 243 ■ Testing the TicketPolicy 246
Refactoring policies 249

8.4 Ticket-creation permission 250
Testing the TicketPolicy … again 250 ■ Applying the
authorization 252

8.5 Ticket-updating permission 256
Testing the TicketPolicy … turbocharged 256 ■ Implementing
controller authorization 258 ■ Hiding the “Edit Ticket”
link 259

8.6 Ticket-destroying permission 262
Testing the TicketPolicy … for the final time 262 ■ Implementing
controller authorization 264

8.7 Ensuring authorization for all actions 266

8.8 Assigning roles to users 269
Planning the permission screen with a feature spec 270 ■ The roles
screen 271 ■ Building a list of projects in a select box 271
Processing the submitted role data 278 ■ Saving roles of new
users 280

8.9 Summary 282

9 File uploading 283
9.1 Attaching a file 284

A feature featuring files 285 ■ Enter, stage right:
CarrierWave 286 ■ Using CarrierWave 287 ■ Persisting
uploads when redisplaying a form 290

9.2 Attaching many files 293
Testing multiple-file upload 293 ■ Implementing multiple-file
upload 294 ■ Using nested attributes 298

9.3 Serving files through a controller 302
Testing existing functionality 303 ■ Protecting attachments 304
Showing your attachments 306 ■ Public attachments 307
Privatizing attachments 308

9.4 Using JavaScript 310
JavaScript testing 310 ■ Cleaning the database 312 ■ Introducing
jQuery 314 ■ Adding more files with JavaScript 316

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi

9.5 Responding to an asynchronous request 317
Appending new content to the form 320 ■ Sending parameters for
an asynchronous request 322

9.6 Summary 324

10 Tracking state 325
10.1 Leaving a comment 326

The comment form 328 ■ The comments controller 332

10.2 Changing a ticket’s state 342
Creating the State model 343 ■ Selecting states 345 ■ Setting a default
state for a comment 352 ■ Seeding your app with states 352

10.3 Tracking changes 353
Ch-ch-changes 353 ■ Another c-c-callback 355 ■ Displaying
changes 356 ■ Styling states 358

10.4 Managing states 361
Adding additional states 361 ■ Defining a default state 367
Applying the default state 371 ■ Setting a default state in seed states 373

10.5 Locking down states 373
Hiding a select box 373 ■ Defining the change_state permission 375
Hacking a form 376 ■ Ignoring a parameter 378

10.6 Summary 381

11 Tagging 382
11.1 Creating tags 384

The tag-creation feature 384 ■ Showing tags 386 ■ Defining the tags
association 387 ■ The Tag model 387 ■ Displaying a ticket’s tags 388

11.2 Adding more tags 391
Adding tags through a comment 392

11.3 Tag restriction 396
Testing tag restriction 396 ■ Tags are allowed, for some 401

11.4 Deleting a tag 402
Testing tag deletion 403 ■ Adding a link to delete the tag 404
Removing a tag from the page 408

11.5 Finding tags 409
Testing search 409 ■ Searching by tags 412 ■ Searching by
state 416 ■ Search, but without the search 417

11.6 Summary 419

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii

12 Sending email 420
12.1 Sending ticket notifications 421

Automatically watching a ticket 421 ■ Using service classes 423
Defining the watchers association 427 ■ Introducing Action
Mailer 429 ■ An Action Mailer template 432 ■ Testing with
mailer specs 434

12.2 Subscribing to updates 437
Testing comment subscription 437 ■ Automatically adding the
commenter to the watchers list 439 ■ Unsubscribing from ticket
notifications 440

12.3 Summary 446

13 Deployment 448
13.1 What is deployment? 449

13.2 Simple deployment with Heroku 450
Signing up 450 ■ Provisioning an app 450

13.3 Twelve-factor apps 452
Configuration 452 ■ Processes 453 ■ Combining Heroku
and S3 454

13.4 Deploying Ticketee 457
Fixing deployment issues 458 ■ Fixing CarrierWave file
uploads 460 ■ Deploying is hard 462

13.5 Continuous deployment with Travis CI 462
Configuring Travis 462 ■ Deployment hooks 463

13.6 Sending emails 465

13.7 Summary 467

14 Designing an API 468
14.1 An overview of APIs 469

A practical example 470

14.2 Using ActiveModel::Serializers 471
Getting your hands dirty 473

14.3 API authentication and authorization 476
The API namespace 477 ■ A small tangent on inflections 481
Getting back to your API 483

14.4 It’s not a party without … HTTParty 486

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii

14.5 Handling errors 487
Authenticating with a blank token 488 ■ Permission denied 489
Validation errors 491

14.6 A small refactoring 494

14.7 Summary 495

15 Rack-based applications 496
15.1 Building Rack applications 497

A basic Rack application 498 ■ Let’s increase the heartbeat 499
You’re not done yet 501

15.2 Building bigger Rack applications 502
You’re breaking up 503 ■ Running a combined Rack
application 505

15.3 Mounting a Rack application with Rails 506
Mounting Heartbeat 507 ■ Introducing Sinatra 508 ■ The
API, by Sinatra 509 ■ Basic error-checking 515

15.4 Middleware 517
Middleware in Rails 518 ■ Crafting middleware 519
Using middleware 520

15.5 Summary 521

appendix A Installation guide 523
appendix B Why Rails? 535

index 541

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

xv

preface
I came to be an author on this book back in April 2010, and then spent about a year
and a half writing it from scratch while working full-time. The first edition, Rails 3 in
Action, was published in September of 2011. It’s now 2015 and the revised edition is
finally here, this time focusing on Rails 4.2 instead of Rails 3.1.

 During this time, many changes have come to pass in the Ruby and Rails commu-
nity, with almost 40 new versions of Rails since 3.1. The way we whitelist data attributes
received from the outside world has moved from the models to the controllers. The
popularity of Cucumber (a staple in the first edition) has faded, and it has been
replaced by RSpec and Capybara. Validation syntax has morphed. The find_by_*
finders have been deprecated. And so much more.

 By the time this book goes to print, Rails 5 will be due for release. Rails changes much
faster than other frameworks, and with good reason—the community around it is
actively evolving the best ways to write web applications. Other frameworks (or even lan-
guages, cough Java), evolve much more slowly. My thoughts about publishing this book,
even though Rails 5 is coming soon, are these: It’s worthwhile to know Rails 4 and to have
a good grasp of how applications are built. This book is a good indication of where the
community is in terms of getting started with Rails at this particular point in time.

 Days (here and there) and nights (mostly) have gone into updating this book. Not
one page has gone without review. It’s our utmost pleasure to bring you a book that is
up to date after such a long wait. Never did I think it would take this long between
publications, but that’s how things played out. “Good feels” is an apt expression to
explain what it’s like to finally have this book done.

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExvi

 So here’s the book you’ve all been waiting for. Use it well. Capture the knowledge
within its pages. Know this: This book has been used by many people to jump-start
their careers in Rails, and you could be next. Skimming through these pages won’t get
you there, but reading it thoroughly and applying the lessons in it just might.
Good luck.

 RYAN BIGG

Licensed to Mark Watson <nordickan@gmail.com>

xvii

acknowledgments
This book has been a long time coming, so I would like to say thanks to you, the
reader, for waiting as long as you have for this revised edition.

 I’d like to thank Steve Klabnik for taking over as an author after I left the project.
He got the book a long way toward being compatible with Rails 4, and without his
efforts this would have taken even longer to do. Thanks to my other coauthor,
Rebecca Skinner, for joining the project and helping tremendously with updating the
book. Rebecca rewrote at least three chapters and has pored over the others for many
hours to make this book as good as it can be.

 Along with Rebecca, special mention goes to Justin Lane and Ivan Polchenko, who
put in an excellent effort on reviewing this book. They showed great dedication by
providing feedback nearly every day on IRC or by email.

 We’d also like to thank the other reviewers who volunteered to help out with the
book: Andrew Grimm, Andrew Hoffman, Andy Henson, Ben Woodall, Bredan
Murtagh, Cory Simmons, Dana Jones, D. Deryl Downey, Eduardo Bautista, Jimmy
Beaudoin, Harry Moreno, Paulo Toro, Sushruth Sivaramakrishnan, Johnneylee Jack
Rollins, Tamara Temple, David Workman, and Yaw Boakye. These reviewers span the
globe: America, Australia, India, the UK, and Ghana. To be able to collaborate with
such a diverse group of people is fantastic.

 The creators of the tools that we use to publish books also deserve a mention: The
wonderful people at GitHub, for providing a service that lets people worldwide
collaborate with ease on projects such as these. Stuart Rackham, the creator of
AsciiDoc, for proving that there’s a better way to write books than in Microsoft Word,

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxviii

XML, or Markdown. Dan Allen, for writing Asciidoctor, which we used to compile the
HTML and PDF versions of the book that we shared with our reviewers.

 Thanks to everyone at Manning, from my development editor Susan Conant to
technical editor Steven Jenkins to technical proofreader Doug Warren to everyone on
the production team to the marketing folks—and to many more who worked behind
the scenes.

 Also thanks to the following peer reviewers who read the manuscript at various
stages of its development: Alex Perucchini, Michele Bursi, Damien White, Eddie
Welker, Gavin Whyte, Greg Helton, Jared Hirsch, Justin Wiley, Lee Allen, Mike
Gehard, Nathan Bean, Paul Hollyer, Robert O’Connor, Steve Robertson, William E.
Wheeler, and William Ko. Your comments and insights made this a better book!

 Finally, I thank my wife, Sharon, for putting up with all the time that I’ve spent on
this book, obsessing about this book, and so on. Thanks for being as wonderful as you
are, my love.

 RYAN BIGG

I can say with confidence that this book, much like Rails 3 in Action, would not exist
without the hard, tireless work of Ryan Bigg. It was Ryan’s idea to focus both books
around real-world testing from the ground up, and it makes them the best books for
Rails practitioners that teach Rails the way professional Rails developers do it.

 Ever since Merb was merged with Rails, I have had the benefit of not insignificant
support from friends and family, who helped keep me on course in the long process
that eventually delivered Rails 3.0, and then went beyond. I want to especially call out
Aaron Patterson, José Valim, Santiago Pastorino, and Xavier Noria, who stepped up
and brought life back to a community that was starting to show signs of age. And Carl
Lerche, who helped me keep focus on doing things right, even when it was tempting
not to.

 Finally, I would be remiss if I didn’t thank my wife, Leah, who has been there for
me through the amazing trajectory of my development career, through good times
and bad. Without her, I would have given up long ago.

 YEHUDA KATZ

I should know better than to give estimates.
 When I first started to work on this book, I thought updating it would take me

three months. Oh, how foolish I was! In the end, I worked hard for about eighteen, I
think. I don’t want to look back at that calendar!

 After this book chewed me up and spit me out, Ryan and Rebecca came on and
took it over the finish line. I’m deeply indebted to them for helping pull me out of the
quicksand.

Licensed to Mark Watson <nordickan@gmail.com>

https://plus.google.com/u/0/103836301731541833543?prsrc=4%22 %5Ct %22_blank

ACKNOWLEDGMENTS xix

 I’d like to thank everyone who gave me support during that time. My partners,
friends, Twitter followers, those who gave me feedback and encouragement, and
everyone who bought an advance copy, even though I kept repeating “It’s almost
done, I swear.” Writing a book is a family affair, and I’m lucky enough to have a large,
geographically distributed family.

 STEVE KLABNIK

Wow, we’ve reached the end of this journey. This has been an amazing experience,
from start to end.

 I would like to thank all of you, the readers, who have entrusted us with teaching
them about this awesome, awesome framework. While it’s a little warty in parts, I truly
believe it’s a masterpiece of a framework that’s easy to extend, easy to customize, and
easy to write powerful web applications in. You won’t regret taking the time to learn the
framework, and I sincerely hope you won’t regret spending the time to read this book.

 I’d like to thank Ryan Bigg for giving me the opportunity to contribute to this
book. Initially I was only here to support him and do a bit of technical proofreading;
he encouraged me to help out more, change the parts I didn’t like, make the book
better, and he supported me throughout the entire process.

 Thanks also to everyone at Manning who worked with me during development,
review, and production, especially Susan Conant, Katie Tennant, Kevin Sullivan, Janet
Vail, and Mary Piergies.

 But most importantly, thanks to the man who encourages me to follow my dreams,
and aim to accomplish things I never thought possible but always wanted to do. Thuc,
this is for you.

 Well, it’s for the boys too. But mostly for you.
 REBECCA SKINNER

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

xx

about this book
Ruby on Rails is a leading web application framework built on top of the fantastic
Ruby programming language. Both the language and the framework place a strong
emphasis on conforming to the principle of least surprise and getting out of the way
of the developers using it.

 Ruby on Rails has been growing at a rapid pace, with large internet companies
such as Yellow Pages and Groupon using it for their core functionality. The latest
release of Rails, version 4.2, includes a set of changes that improves the already bril-
liant framework constructed over the past 11 years. The fantastic community around
the framework has been growing at a similar pace.

 This book is designed to take you through developing a full-featured Rails applica-
tion from step one, showing you exactly how professionals in the real world are devel-
oping applications right now.

Who should read this book

This book is primarily for those who are looking to work with the Ruby on Rails frame-
work and who have some prior experience with Ruby, although that’s not entirely nec-
essary. The chapters become more advanced as you go along, and they provide a
smooth learning curve to teach you how Rails applications are built.

 If you’re looking for a book that teaches you the same practices that are used in
the real world, then this is the book you’re looking for.

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxi

What’s new in the revised edition

Wow, 11 years of Rails. That’s a long time in software!
 There have been a lot changes in the Ruby and Rails community over this time.

There have been almost 40 new versions of Rails since 3.1—when the last edition of
this book was published—and a lot has changed in that time. The way we whitelist
data attributes received from the outside world has moved from the models to the
controllers (attr_accessible versus strong parameters). The popularity of Cucum-
ber (a staple in the first edition) has faded, and it has been replaced by RSpec and
Capybara. Validation syntax has morphed. The find_by_* finders have been depre-
cated. And so much more.

 You can find out what’s changed since the first edition by reading all the release notes
from 3.2 (http://guides.rubyonrails.org/3_2_release_notes.html), 4.0 (http://guides
.rubyonrails.org/4_0_release_notes.html), 4.1 (http://guides.rubyonrails.org/4_1_release
_notes.html), and 4.2 (http://guides.rubyonrails.org/4_2_release_notes.html).

 Creating a revised edition of a Rails book is not just a matter of fixing up typos,
images, and other things. It almost requires an entire rewrite of the whole thing. In
fact, we rewrote chapters 6, 7, 8, and most of 9 for this book. Other chapters received
less extensive touchups. Everything has been pored over and vetted by authors and
volunteer reviewers.

 We have spent hundreds of hours updating this book, all just for you. We hope you
like it.

Roadmap

Chapter 1 introduces the Ruby on Rails framework and shows how you can develop
the beginnings of an application.

 Chapter 2 shows off test-driven development and behavior-driven development,
two core concepts that you’ll use throughout the remainder of this book and that can
be applied instantly to any Ruby and Rails code you may write in the future. By testing
the code you write, you can be assured that it’s always working.

 Chapters 3 and 4 discuss the application you’ll develop in this book (Ticketee—a
project-management app for issue-tracking tickets) and delve into the core concepts
of a Rails application. They also look at developing the first core features of the Ticke-
tee application.

 Chapter 5 introduces nested resources, building on top of the features developed
in the previous two chapters.

 Chapter 6 introduces authentication and uses the Devise gem to implement fea-
tures such as requiring users to sign in to the application before they can perform cer-
tain tasks.

 Chapter 7 builds on the work in chapter 6 by adding new areas of the application
that are accessible only to users with a certain flag set in the database. You’ll also use
namespaces for the first time.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/3_2_release_notes.html
http://guides.rubyonrails.org/4_0_release_notes.html
http://guides.rubyonrails.org/4_0_release_notes.html
http://guides.rubyonrails.org/4_1_release_notes.html
http://guides.rubyonrails.org/4_1_release_notes.html
http://guides.rubyonrails.org/4_2_release_notes.html

ABOUT THIS BOOKxxii

 Chapter 8 builds on the basic authorization created in chapter 7, fleshing it out
into something neater and more fine-grained.

 In chapter 9 you’ll learn about file uploading using the CarrierWave gem. You’ll
also learn about testing parts of your application that use JavaScript, and about
CoffeeScript, a neater language that compiles down to JavaScript.

 Chapter 10 builds not one but two new features for the application, adding the abil-
ity to comment on a ticket as well as track the ticket’s lifecycle through varying states.
You’ll also use the lessons you learned in chapter 8 about fine-grained access control.

 In chapter 11 you’ll add a feature that lets users assign tags to tickets so they can be
easily grouped. You’ll also add a feature to allow users to search for tickets matching a
certain state, tag, or both.

 Chapter 12 begins our foray into dealing with email in a Rails application. You’ll
see how Rails makes it easy to send email using a part of its framework called
ActionMailer.

 Chapter 13 involves deploying the application to Heroku, a well-established host-
ing provider that offers a free service. This chapter also introduces a CI service called
Travis CI, which will run the tests for the application and deploy the application to
Heroku if all the tests are passing.

 Chapter 14 covers designing parts of an API for Ticketee so that other applications
can interact with the application that you’ve built.

 Chapter 15 shows how to use Rack-based applications to serve requests without
having to use Rails at all, and also how to combine these applications within your Rails
applications.

Code conventions and downloads

Code conventions in the book follow the style of other Manning books in the In Action
series. All code in listings and in text appears in a monospaced font like this to dif-
ferentiate it from ordinary text. In some cases, the original source code has been
reformatted to fit on the pages. In general, the original code was written with page-
width limitations in mind, but sometimes you may find a slight formatting difference
between the code in the book and that provided in the source download. In a few rare
cases, where long lines could not be reformatted without changing their meaning, the
book listings contain line-continuation markers that look like this ➥. Code annota-
tions accompany many of the listings, highlighting important concepts. In many cases,
numbered bullets link to explanations that follow in the text.

 Source code for all the working examples in this book is available for download
from the publisher’s website at www.manning.com/rails-4-in-action.

Author Online

The purchase of Rails 4 in Action includes free access to a private forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and other users. To access and subscribe to the

Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/rails-4-in-action

ABOUT THIS BOOK xxiii

forum, point your browser to www.manning.com/rails-4-in-action, and click the Author
Online link. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration

The figure on the cover of Rails 4 in Action is captioned “A Soldier.” The illustration is
taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compen-
dium of regional and military dress customs published in France. Each illustration is
finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

1

Ruby on Rails,
 the framework

Welcome aboard! It’s great to have you with us on this journey through the world of
Ruby on Rails. Ruby on Rails is known as a powerful web framework that helps
developers rapidly build modern web applications. In particular, it provides lots of
niceties to help you in your quest to develop a full-featured, real-world application,
and be happy doing it. Great developers are happy developers.

 If you’re wondering who uses Rails, there are plenty of companies that do: Twit-
ter, Hulu, and Urban Dictionary, just to name a few. This chapter will teach you
how to build a very small and simple application, right after we go through a brief
description of what Ruby on Rails actually is. Within the first couple of chapters,
you’ll have the solid foundations for an application, and you’ll build on those
throughout the rest of the book.

This chapter covers
■ Introducing Ruby on Rails
■ Benefits of Rails
■ Developing an example Rails application

Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER 1 Ruby on Rails, the framework

1.1 Ruby on Rails overview
Ruby on Rails is a framework built on the Ruby language—hence the name Ruby on
Rails. The Ruby language was created back in 1993 by 松本行弘 (Yukihiro “Matz” Mat-
sumoto) of Japan and was released to the general public in 1995. Since then, it has
earned both a reputation and an enthusiastic following for its clean design, elegant
syntax, and wide selection of tools available in the standard library and via a package
management system called RubyGems. It also has a worldwide community and many
active contributors continuously improving the language and the ecosystem around it.
We’re not going to go into great depth about the Ruby language in this book though,
because we’d rather talk about Ruby on Rails.

RUBY LANGUAGE For a full treatment of the Ruby language, we highly recom-
mend The Well-Grounded Rubyist by David A. Black (Manning, 2014).

The foundation for Ruby on Rails was created during 2004 when David Heinemeier
Hansson was developing an application called Basecamp. For his next project, the
foundational code used for Basecamp was abstracted out into what we know today as
Ruby on Rails, released under the MIT License (http://en.wikipedia.org/wiki/
MIT_License).

 Since then, Ruby on Rails has quickly progressed to become one of the leading
web development frameworks. This is in no small part due to the large community
surrounding it, contributing everything from documentation to bug fixes to new fea-
tures for the framework.

 This book is written for version 4.2 of the framework, which is the latest version of
Rails. If you’ve used Rails 3.2, you’ll find that much feels the same, but Rails has
learned some new tricks as well.

RAILS VERSION DIFFERENCES The upgrade guides and release notes provide a
great overview of the new features, bug fixes, and other changes in each
major and minor version of Rails. They can be found under “Release Notes”
on the RailsGuides page: http://guides.rubyonrails.org/.

1.1.1 Benefits

Ruby on Rails allows for the rapid development of applications by using a concept
known as convention over configuration. A new Ruby on Rails application is created by run-
ning the application generator, which creates a standard directory structure and the files
that act as a base for every Ruby on Rails application. These files and directories provide
categorization for pieces of your code, such as the app/models directory for containing
files that interact with the database and the app/assets directory for assets such as
stylesheets, JavaScript files, and images. Because all of this is already there, you won’t be
spending your time configuring the way your application is laid out. It’s done for you.

 How rapidly can you develop a Ruby on Rails application? Take the annual Rails
Rumble event. This event brings together small teams of one to four developers
around the world to develop Ruby on Rails1 applications in a 48-hour period. Using

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/MIT_License
http://guides.rubyonrails.org/

3Ruby on Rails overview

Rails, these teams deliver amazing web applications in just two days.2 Another great
example of rapid development of a Rails application is the 20-minute blog screencast
recorded by Yehuda Katz (http://vimeo.com/10732081). This screencast takes you
from having nothing at all to having a basic blogging and commenting system.

 Once learned, Ruby on Rails affords you a level of productivity unheard of in other
web frameworks, because every Ruby on Rails application starts out the same way. The
similarity between the applications is so close that the paradigm shift between differ-
ent Rails applications isn’t tremendous. If and when you jump between Rails applica-
tions, you don’t have to relearn how it all connects—it’s mostly the same. The Rails
ecosystem may seem daunting at first, but Rails conventions allow even the new to
seem familiar very quickly, smoothing the learning curve substantially.

1.1.2 Ruby gems

The core features of Rails are split up into many different libraries, such as Active
Record, Active Support, Action Mailer, and Action Pack. These are called Ruby gems, or gems
for short. These gems provide a wide range of methods and classes that help you
develop your applications. They eliminate the need for you to perform boring, repeti-
tive tasks—such as coding how your application hooks into your database—and let
you get right down to writing valuable code for your business.

GEM VERSIONS The libraries that make up Rails share the same version num-
ber as Rails, which means that when you’re using Rails 4.2, you’re using the 4.2
version of the sub-gems. This is helpful to know when you upgrade Rails,
because the version number of the installed gems should be the same as the
version number of Rails.

Ever wished for a built-in way of writing automated tests for your web application?
Ruby on Rails has you covered with MiniTest, which is part of Ruby’s standard library.
It’s incredibly easy to write automated test code for your application, as you’ll see
throughout this book. Testing your code saves your bacon in the long term, and that’s
a fantastic thing. We’ll touch on MiniTest in the next chapter before moving on to
RSpec, which is the testing framework preferred over MiniTest by the majority of the
community, and is a little easier on the eyes, too.

 In addition to testing frameworks, the Ruby community has produced many
high-quality gems for use in your day-to-day development with Ruby on Rails.
Some of these libraries add functionality to Ruby on Rails; others provide ways to
turn alternative markup languages such as Markdown (see the redcarpet gem
at https://rubygems.org/gems/redcarpet) and Textile (see the RedCloth gem at
https://rubygems.org/gems/RedCloth) into HTML. Usually, if you can think of it,
there’s a gem out there that will help you do it.

1 And now other Ruby-based web frameworks, such as Sinatra.
2 To see an example of what’s come out of previous Rails Rumbles, take a look at the alumni archive: http://

railsrumble.com/entries/winners.

Licensed to Mark Watson <nordickan@gmail.com>

http://railsrumble.com/entries/winners
http://railsrumble.com/entries/winners
http://vimeo.com/10732081
https://rubygems.org/gems/redcarpet
https://rubygems.org/gems/RedCloth

4 CHAPTER 1 Ruby on Rails, the framework

 Noticing a common pattern yet? Probably. As you can see, Ruby on Rails (and the
great community surrounding it) provides code that performs the trivial application
tasks for you, from setting up the foundations of your application to handling the
delivery of email. The time you save with all of these libraries is immense! And
because the code is open source, you don’t have to go to a specific vendor to get sup-
port. Anyone who knows Ruby will help you if you’re stuck. Just ask.

1.1.3 Common terms

You’ll hear a few common Ruby on Rails terms quite often. This section explains what
they mean and how they relate to a Rails application.

MVC

The model-view-controller (MVC) paradigm isn’t unique to Ruby on Rails, but it provides
much of the core foundation for a Ruby on Rails application. This paradigm is
designed to keep the logically different parts of the application separate while provid-
ing a way for data to flow between them.

 In applications that don’t use MVC, the directory structure and how the different
parts connect to each other are commonly left up to the original developer. Generally,
this is a bad idea because different people have different opinions about where things
should go. In Rails, a specific directory structure encourages developers to conform to
the same layout, putting all the major parts of the application inside an app directory.

 This app directory has three main subdirectories: models, controllers, and views:

■ Models contain the domain logic of your application. This logic dictates how the
records in your database are retrieved, validated, or manipulated. In Rails appli-
cations, models define the code that interacts with the database’s tables to
retrieve and set information in them. Domain logic also includes things such as
validations or particular actions to be performed on the data.

■ Controllers interact with the models to gather information to send to the view.
They’re the layer between the user and the database. They call methods on the
model classes, which can return single objects representing rows in the data-
base or collections (arrays) of these objects. Controllers then make these
objects available to the view through instance variables. Controllers are also
used for permission checking, such as ensuring that only users who have special
permission to perform certain actions can perform those actions, and users
without that permission can’t.

■ Views display the information gathered by the controller, by referencing the
instance variables set there, in a developer-friendly manner. In Ruby on Rails,
this display is done by default with a templating language known as Embedded
Ruby (ERB). ERB allows you to embed Ruby into any kind of file you wish. This
template is then preprocessed on the server side into the output that’s shown to
the user.

Licensed to Mark Watson <nordickan@gmail.com>

5Ruby on Rails overview

The assets, helpers, and mailers directories aren’t part of the MVC paradigm, but
they’re also important parts of Rails:

■ The assets directory is for the static assets of the application, such as JavaScript
files, images, and Cascading Style Sheets (CSS), for making the application look
pretty. We’ll look more closely at this in chapters 3 and 4.

■ The helpers directory is a place to put Ruby code (specifically, modules) that pro-
vide helper methods for just the views. These helper methods can help with
complex formatting that would otherwise be messy in the view or is used in
more than one place.

■ Finally, the mailers directory is a home for the classes of your application that
deal with sending email. In previous versions of Rails, these classes were
grouped with models, but they have since been given their own home. We’ll
look at them in chapter 12.

REST

MVC in Rails is aided by Representational State Transfer (REST; see http://
en.wikipedia.org/wiki/Representational_state_transfer for more information). REST
is the convention for routing in Rails. When something adheres to this convention,
it’s said to be RESTful. Routing in Rails refers to how requests are routed within the
application—how URLs map to the controller actions that should process them.
You’ll benefit greatly by adhering to these conventions, because Rails provides a lot
of functionality around RESTful routing, such as determining where a form can
submit data.

1.1.4 Rails in the wild

One of the best-known sites that runs Ruby on Rails is GitHub. GitHub is a hosting ser-
vice for Git repositories. The site was launched in February 2008 and is now the lead-
ing Git web-hosting site. GitHub’s massive growth was in part due to the Ruby on Rails
community quickly adopting it as their de facto repository hosting site. Now GitHub is
home to over a million repositories for just about every programming language on the
planet. It’s not exclusive to programming languages, either; if it can go in a Git repos-
itory, it can go on GitHub. As a matter of fact, this book and its source code are kept
on GitHub!

 You don’t have to build huge applications with Rails, either. There’s a Rails applica-
tion that was built for the specific purpose of allowing people to review the previous
edition of this book, and it was just over 2,000 lines of code. This application allowed
reviewers during the writing of the book to view the book’s chapters and leave notes
on each element, leading to a better book overall.

 Now that you know what other people have accomplished with Ruby on Rails, it’s
time to dive into creating your own application.

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.allitebooks.org

6 CHAPTER 1 Ruby on Rails, the framework

1.2 Developing your first application
We covered the theory behind Rails and showed how quickly and easily you can
develop an application. Now it’s your turn to get an application going. This will be a
simple application that can be used to track items that have been purchased: it will
track the name and the price for each item.

 First you’ll learn how to install Rails and use the scaffold generator that comes with it.

1.2.1 Installing Rails

To get started, you must have these three things installed:

■ Ruby
■ RubyGems
■ Rails

If you’re on a UNIX-based system (Linux or Mac), we recommend that you use ruby-
install (http://github.com/postmodern/ruby-install) to install Ruby and RubyGems.
For Windows, we recommend the RubyInstaller application (http://rubyinstaller.org).
There’s a complete installation guide for Ruby and Rails on Mac OS X, Linux, and Win-
dows in appendix A.

 Before proceeding, let’s check that you have everything. Type these commands,
and check out the responses:

$ ruby -v
ruby 2.2.1p85 (2015-02-26 revision 49769) [x86_64-linux]
$ gem -v
2.4.6
$ rails -v
Rails 4.2.0

If you see something that looks close to this, you’re good to go! You might see
[x86_64-darwin14] instead of [x86_64-linux], or a slightly different patch (p num-
ber), but that’s okay. These particular values are the ones we’re using right now and
we’ve tested everything in the book against them; as long as you have Ruby 2.1 or later,
Rails 4.2 or later, and RubyGems 2.2 or later, everything should be fine.

 If you don’t get these answers, or you get some sort of error message, please be
sure to complete this setup before you try to move on; you can’t just ignore errors with
this process. Certain gems (and Rails itself) only support particular versions of Ruby,
so if you don’t get this right, things won’t work.

1.2.2 Generating an application

Now that Rails is installed, to generate an application, you run the rails command
and pass it the new argument and the name of the application you want to generate:
things_i_bought. When you run this command, it creates a new directory called
things_i_bought, which is where all your application’s code will go.

Licensed to Mark Watson <nordickan@gmail.com>

http://github.com/postmodern/ruby-install
http://rubyinstaller.org

7Developing your first application

The application you’ll generate will be able to record purchases you’ve made. You can
generate it using this command:

$ rails new things_i_bought

The output from this command may seem a bit overwhelming at first, but rest assured,
it’s for your own good. All the directories and files generated provide the building
blocks for your application, and you’ll get to know each of them as we progress. For
now, you’ll learn by doing, which is the best way. Let’s get rolling.

1.2.3 Starting the application

To get the server running, you must first change into the newly created application’s
directory and then start the application server:

$ cd things_i_bought
$ rails server

The rails server command (or rails s, for short) starts a web server on your local
address on port 3000 using a Ruby standard library web server known as WEBrick. It will
say “starting in development on http://localhost:3000”, which indicates that the server
will be available on port 3000 on the loopback network interface of this machine. To
connect to this server, go to http://localhost:3000 in your favorite browser. You’ll see
the Welcome Aboard page, which is famous in Rails (see figure 1.1).

 On the right side of the Welcome Aboard page are four links to more documenta-
tion for Rails and Ruby. The first link takes you to the official Rails Guides page, which
will give you great guidance that complements the information in this book. The sec-
ond link takes you to the Rails API, where you can look up the documentation for
classes and methods in Ruby. The final two links take you to documentation about
Ruby itself.

Don’t use reserved words for application naming
You can call your application almost anything you wish, but it can’t be given a name
that’s a reserved word in Ruby or Rails. For example, you wouldn’t call your applica-
tion rails, because the application class would be called Rails, and that would clash
with the Rails constant within the framework. Names like test are also forbidden.

When you use an invalid application name, you’ll see an error like one of these:

$ rails new rails
Invalid application name rails, constant Rails is already in use.
Please choose another application name.

$ rails new test
Invalid application name test. Please give a name which does not match
one of the reserved rails words.

Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Ruby on Rails, the framework

If you click the About Your Application’s Environment link, you’ll find your Ruby,
RubyGems, Ruby on Rails, and Rack versions and other environmental data. One of
the things to note here is that the output for Environment is “development.” Rails
provides three environments for running your application: development, test, and pro-
duction. How your application functions can depend on the environment in which it’s
running. For example, in the development environment, classes aren’t cached, so if
you make a change to a class when running an application in development mode, you
don’t need to restart the server. The same change in the production environment
would require a restart.

1.2.4 Scaffolding

To get started with this Rails application, you can generate a scaffold. Scaffolds in Rails
provide a lot of basic functionality and are generally used as temporary structures for
getting started, rather than for full-scale development. Generate a scaffold by running
this command:

$ rails generate scaffold purchase name:string cost:decimal

When you used the rails command earlier, it generated an entire Rails application. You
can use this command within an application to generate a specific part of the application

Figure 1.1 Welcome aboard!

Licensed to Mark Watson <nordickan@gmail.com>

9Developing your first application

by passing the generate argument to the rails command, followed by what it is you want
to generate. You can also use rails g as a shortcut for rails generate.

 The scaffold command generates a model, a controller, views, and tests based on
the name passed after scaffold in this command. These are the three important
parts needed for your purchase tracking. The model provides a way to interact with a
database; the controller interacts with the model to retrieve and format its informa-
tion and defines different actions to be performed on this data; and the views are ren-
dered by the controller and display the information collected within them.

 Everything after the name for the scaffold defines the fields for the database table
and the attributes for the objects of this scaffold. Here you tell Rails that the table for
your purchase scaffold will contain name and cost fields, which are a string and a dec-
imal, respectively.3 To create this table, the scaffold generator generates what’s known
as a migration. Let’s look at what migrations are.

1.2.5 Migrations

Migrations are used in Rails as a form of version control for the database, providing a
way to implement incremental changes to the database schema. They’re usually cre-
ated along with a model or by running the migration generator. Each migration is
timestamped right down to the second, which provides you (and anybody else devel-
oping the application with you) an accurate timeline of your database. When two
developers are working on separate features of an application and both generate a
new migration, this timestamp will stop them from clashing.

 Let’s open the only file in db/migrate now and see what it does. Its contents are
shown in the following listing.

class CreatePurchases < ActiveRecord::Migration
def change
create_table :purchases do |t|

t.string :name
t.decimal :cost

t.timestamps null: false
end

end
end

Migrations are Ruby classes that inherit from ActiveRecord::Migration. Inside the
class, one method is defined: the change method.

 Inside the change method, you use database-agnostic commands to create a table.
When this migration is run forward, it will create a table called purchases with a name

3 Alternatively, you can store the amount in cents as an integer and then do the conversion back to a full dollar
amount. For this example, we’re using decimal because it’s easier to not have to define the conversion. It’s
worth noting that you shouldn’t use a float to store monetary amounts, because it can lead to incorrect round-
ing errors.

Listing 1.1 db/migrate/[date]_create_purchases.rb

Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 Ruby on Rails, the framework

column that’s a string, a cost column that’s a decimal, and two timestamp fields.
These timestamp fields are called created_at and updated_at, and are automatically
set to the current time when a record is created or updated, respectively. This feature
is built into Active Record. If there are fields present with these names (or created_on
and updated_on), they’ll be automatically updated when necessary.

 When the migration is reverted, Rails will know how to undo it because it’s a simple
table creation. The opposite of creating a table is to drop that table from the database.
If the migration was more complex than this, you’d need to split it into two methods—
one called up and one called down—that would tell Rails what to do in both cases. Rails
is usually smart enough to figure out what you want to do, but sometimes it’s not clear
and you’ll need to be explicit. You’ll see examples of this in later chapters.

RUNNING THE MIGRATION

To run the migration, type this command into the console:

$ bundle exec rake db:migrate

Because this is your first time running migrations in your Rails application, and
because you’re using a SQLite3 database, Rails first creates the database in a new file at
db/development.sqlite3 and then creates the purchases table inside that. When you
run bundle exec rake db:migrate, it doesn’t just run the change method from the lat-
est migration, but runs any migration that hasn’t yet been run, allowing you to run
multiple migrations sequentially.

 Your application is, by default, already set up to talk to this new database, so you
don’t need to change anything. If you ever wanted to roll back this migration, you’d
use bundle exec rake db:rollback, which rolls back the latest migration by running
the down method of the migration (or reverses the steps taken in the change method,
if possible).

ROLLING BACK MULTIPLE MIGRATIONS If you want to roll back more than one
migration, use the bundle exec rake db:rollback STEP=3 command, which
rolls back the three most recent migrations.

Rails keeps track of the last migration that was run by storing it using this line in the
db/schema.rb file:

ActiveRecord::Schema.define(version: [timestamp]) do

This version should match the prefix of the migration you just created, where [time-
stamp] in this example is an actual timestamp formatted like YYYYmmddHHMMSS. Rails
uses this value to know what migration it’s up to. The remaining content of this file
shows the combined state of all the migrations to this point. This file can be used to
restore the last known state of your database if you run the bundle exec rake
db:schema:load command.

 You now have a database set up with a purchases table in it. Let’s look at how you
can add rows to it through your application.

Licensed to Mark Watson <nordickan@gmail.com>

11Developing your first application

1.2.6 Viewing and creating purchases

Ensure that your Rails server is still running, or start a
new one by running rails s or rails server again. Start
your browser now, and go to http://localhost:3000/
purchases. You’ll see the scaffolded screen for pur-
chases, as shown in figure 1.2.

 No purchases are listed yet, so you can add a new
purchase by clicking New Purchase.

 In figure 1.3, you’ll see two inputs for the fields you
generated.

 This page is the result of rendering the new action
in the PurchasesController controller. What you see
on the page comes from the view located at app/views/
purchases/new.html.erb, and it looks like the following
listing.

<h1>New Purchase</h1>

<%= render 'form' %>

<%= link_to 'Back', purchases_path %>

This is an ERB file, which allows you to mix HTML and Ruby code to generate dynamic
pages. The <%= beginning of an ERB tag indicates that the result of the code inside the
tag will be output to the page. If you want the code to be evaluated but not output,
you use the <% tag, like this:

<% some_variable = "foo" %>

If you were to use <%= some_variable = "foo" %> here, the some_variable variable
would be set and the value output to the screen. When you use <%, the Ruby code is
evaluated but not output.

 The render method, when passed a string, as in this example, renders a partial. A
partial is a separate template file that you can include in other templates to repeat
similar code. We’ll take a closer look at these in chapter 4.

 The link_to method generates a link with the text of the first argument ("Back")
and with an href attribute specified by the second argument (purchases_path),
which is a routing helper that turns into the string /purchases. How this works will be
explained a little later when we look at how Rails handles routing.

THE FIRST HALF OF THE FORM PARTIAL

The form partial is at app/views/purchases/_form.html.erb, and the first half of it
looks like the following listing.

Listing 1.2 app/views/purchases/new.html.erb

Figure 1.2 Purchases

Figure 1.3 A new purchase

Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Ruby on Rails, the framework

<%= form_for(@purchase) do |f| %>
<% if @purchase.errors.any? %>
<div id="error_explanation">

<h2><%= pluralize(@purchase.errors.count, "error") %> prohibited

 ➥ this purchase from being saved:</h2>

<% @purchase.errors.full_messages.each do |message| %>

<%= message %>
<% end %>

</div>
<% end %>

...

This half is responsible for defining the form by using the form_for helper. The
form_for method is passed one argument—an instance variable called @purchase—
and with @purchase it generates a form. This variable comes from the new action of
PurchasesController, which is shown next.

def new
@purchase = Purchase.new

end

The first line in this action sets up a new @purchase variable by calling the new method
on the Purchase model. This initializes a new instance of the Purchase class, but
doesn’t create a new record in the database. The @purchase variable is then automati-
cally passed through to the view by Rails.

 So far, all this functionality is provided by Rails. You’ve coded nothing yourself.
With the scaffold generator, you get an awful lot for free.

 Going back to the app/views/purchases/_form.html.erb partial, the block for the
form_for is defined between its do and the <% end %> at the end of the file. Inside this
block, you check the @purchase object for any errors by using the @purchase
.errors.any? method. These errors will come from the model if the object doesn’t
pass the validation requirements set in the model. If any errors exist, they’re rendered
by the content inside this if statement. Validation is a concept covered shortly.

THE SECOND HALF OF THE FORM PARTIAL

The second half of this partial looks like the following listing.

...
<div class="field">
<%= f.label :name %>

<%= f.text_field :name %>

</div>

Listing 1.3 The first half of app/views/purchases/_form.html.erb

Listing 1.4 The new action of PurchasesController

Listing 1.5 The second half of app/views/purchases/_form.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

13Developing your first application

<div class="field">
<%= f.label :cost %>

<%= f.text_field :cost %>

</div>
<div class="actions">
<%= f.submit %>

</div>
<% end %>

Here, the f object from the form_for block is used to define labels and fields for your
form. At the end of this partial, the submit method pro-
vides a dynamic Submit button.

 Let’s fill in this form now and click the Submit but-
ton. You should see something similar to figure 1.4. This
is the result of your posting: a successful creation of a
Purchase. Let’s see how it got there.

 The Submit button posts the data from the form to
the create action, which looks like this.

def create
@purchase = Purchase.new(purchase_params)

respond_to do |format|
if @purchase.save

format.html { redirect_to @purchase, notice: 'Purchase was successfully
created.' }
format.json { render :show, status: :created, location: @purchase }

else
format.html { render :new }
format.json { render json: @purchase.errors, status:

 ➥ :unprocessable_entity }
end

end
end

Here, you use the same Purchase.new method you first saw in the new action. But this
time you pass it an argument of purchase_params, which is actually another method.
That method calls params (short for parameters), which is a method that returns the
parameters sent from your form in a Hash-like object. We’ll talk more about why you
need this little dance later (in chapter 3); this is a feature called strong parameters.
When you pass this params hash into new, Rails sets the attributes (the Rails word for
fields) to the values from the form.

 Inside respond_to is an if statement that calls @purchase.save. This method vali-
dates the record; and if it’s valid, the method saves the record to the database and
returns true.

Listing 1.6 The create action of PurchasesController

Figure 1.4 Your first purchase

Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 Ruby on Rails, the framework

 If the return value is true, the action responds by redirecting to the new @pur-
chase object using the redirect_to method, which takes either a path or an object
that it turns into a path (as seen in listing 1.6). The redirect_to method inspects the
@purchase object and determines that the path required is purchase_path because
it’s an instance of the Purchase model. This path takes you to the show action for this
controller. The :notice option passed to redirect_to sets up a flash message, which is
a message that can be displayed on the next request. This is the green text at the top
of figure 1.4.

 You’ve seen what happens when the purchase is valid, but what happens when it’s
invalid? Well, it uses the render method to show the new template again. We should
note here that this doesn’t call the new action again, it only renders the template.

REDIRECTING VS. RENDERING To call the new action again, you’d call
redirect_to new_purchase_path, but that wouldn’t persist the state of the
@purchase object to this new request without some seriously bad hackery. By
re-rendering the template, you can display information about the object if the
object is invalid.

You can make the creation of the @purchase object fail by adding a validation. Let’s do
that now.

1.2.7 Validations

You can add validations to your model to ensure that the data conforms to certain
rules, or that data for a certain field must be present, or that a number you enter must
be greater than a certain other number. You’ll write your first code for this application
and implement both of these things now.

 Open your Purchase model, and change the entire file to what’s shown in the fol-
lowing listing.

class Purchase < ActiveRecord::Base
validates :name, presence: true
validates :cost, numericality: { greater_than: 0 }

end

You use the validates method to define a validation that does what it says on the box:
validates that the field is present. The other validation option, :numericality, vali-
dates that the cost attribute is a number and then, with the :greater_than option,
validates that it’s greater than 0.

 Let’s test these validations by going back to http://localhost:3000/purchases,
clicking New Purchase, and clicking Create Purchase. You should see the errors shown
in figure 1.5.

Listing 1.7 app/models/purchase.rb

Licensed to Mark Watson <nordickan@gmail.com>

15Developing your first application

Great! Here you’re told that name can’t be blank and that the value you entered for cost
isn’t a number. Let’s see what happens if you enter foo for the Name field and -100 for
the Cost field, and click Create Purchase. You should get a different error for the Cost
field now, as shown in figure 1.6.

 Good to see! Both of your validations are working. When you change Cost to 100
and click Create Purchase, the value should be considered valid by the validations and
take you to the show action. Let’s look at what this particular action does now.

Figure 1.5 Cost must be greater than 0

Figure 1.6 A single purchase

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 Ruby on Rails, the framework

SHOWING OFF

The show action displays the content, as shown in fig-
ure 1.7.

 The number at the end of the URL, when we’re view-
ing the show action of a project, is the unique numerical
ID for this purchase. But what does it mean? Let’s look
at the view for this show action.

<p id="notice"><%= notice %></p>

<p>
Name:
<%= @purchase.name %>

</p>

<p>
Cost:
<%= @purchase.cost %>

</p>

<%= link_to 'Edit', edit_purchase_path(@purchase) %> |
<%= link_to 'Back', purchases_path %>

On the first line is the notice method, which displays the notice set on the
redirect_to from the create action. After that, field values are displayed in p tags by
calling them as methods on your @purchase object. This object is defined in the show
action of PurchasesController, as shown in the following listing.

def show
end

Or is it? It turns out that it’s not actually defined here. A before_action is defined.

class PurchasesController < ApplicationController

before_action :set_purchase, only: [:show, :edit, :update, :destroy]

...

Use callbacks to share common setup or constraints between actions.
def set_purchase
@purchase = Purchase.find(params[:id])

end

...
end

Listing 1.8 app/views/purchases/show.html.erb

Listing 1.9 The show action of PurchasesController

Listing 1.10 The set_purchase before_action in PurchasesController

Figure 1.7 A single purchase

Licensed to Mark Watson <nordickan@gmail.com>

17Developing your first application

This code will be executed before every action given: hence the name before_action.
The find method of the Purchase class is used to find the record with the ID of
params[:id] and instantiate a new Purchase object from it, with params[:id] being
the number on the end of the URL.

 Going back to the view (listing 1.8, app/views/purchases/show.html.erb), at the
end of this file is link_to, which generates a link using the first argument as the text
value, and the second argument as the href for that URL. The second argument for
link_to is a method: edit_purchase_path. This method is provided by a method call
in config/routes.rb, which we’ll look at next.

1.2.8 Routing

The config/routes.rb file of every Rails application is where the application routes are
defined in succinct Ruby syntax. The methods used in this file define the pathways
from requests to controllers. If you look in your config/routes.rb file, ignoring the
commented-out lines for now, you’ll see what’s shown in the following listing.

Rails.application.routes.draw do
resources :purchases

end

Inside the block for the draw method is the resources method. Collections of similar
objects in Rails are referred to as resources. This method defines the routes and routing
helpers (such as the edit_purchase_path method) to your purchases resources.
Look at table 1.1 for a list of the helpers and their corresponding routes. You can see
similar output in your terminal if you run the rake routes command inside your
things_i_bought directory.

In this table, :id can be substituted for the ID of a record. Each routing helper has an
alternative version that will give you the full URL to the resource. Use the _url extension
rather than _path, and you’ll get a fully qualified URL such as http://localhost:3000/
purchases for purchases_url.

 Two of the routes in this table will act differently depending on how they’re
requested.

Listing 1.11 config/routes.rb

Table 1.1 Routing helpers and their routes

Helper Route

purchases_path /purchases

new_purchase_path /purchases/new

edit_purchase_path /purchases/:id/edit

purchase_path /purchases/:id

Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 1 Ruby on Rails, the framework

 The first route, /purchases, takes you to the index action of PurchasesController
if you do a GET request. GET requests are the standard type of requests for web brows-
ers, and this is the first request you did to this application. If you send a POST request
to this route, it will go to the create action of the controller. This is the case when you
submit the form from the new view.

 The second route that will act differently is /purchases/:id. If you do a GET request
to this route, it will take you to the show action. If you do a PATCH request, it will take
you to the update action. Or you can do a DELETE request, which will take you to the
destroy action.

 Let’s go to http://localhost:3000/purchases/new now and look at the source of
the page. The beginning tag for your form should look like this.

<form accept-charset="UTF-8" action="/purchases"
class="new_purchase" id="new_purchase" method="post">

The two attributes to note here are action and method. The action attribute dictates
the URL to where this form goes, and method tells the form what kind of HTTP request
to make.

 How was this tag rendered in the first place? Well, as you saw before, the app/
views/purchases/new.html.erb template uses the form partial from app/views/pur-
chases/_form.html.erb, which contains this as the first line:

<%= form_for(@purchase) do |f| %>

This one simple line generates that form tag. When we look at the edit action shortly,
you’ll see that the output of this tag is different, and you’ll learn why.

 The other route that responds differently is /purchases/:id, which acts in one of
three ways. You already saw the first way: it’s the show action to which you’re redi-
rected (via a GET request) after you create a purchase. The second of the three ways is
when you update a record, which we’ll look at now.

1.2.9 Updating

Let’s change the cost of the foo purchase now. Perhaps it only cost 10. To change it,
go back to http://localhost:3000/purchases and
click the “Edit” link next to the foo record. You
should see a page that looks similar to the new
page, as shown in figure 1.8.

 This page looks similar because it reuses
the app/views/purchases/_form.html.erb par-
tial that was also used in the template for the
new action. Such is the power of partials in
Rails: you can use the same code for two differ-
ent requests to your application.

Listing 1.12 HTML source of app/views/purchases/new.html.erb

Figure 1.8 Editing a purchase

Licensed to Mark Watson <nordickan@gmail.com>

19Developing your first application

 The template for this action is shown in the following listing.

<h1>Editing Purchase</h1>

<%= render 'form' %>

<%= link_to 'Show', @purchase %> |
<%= link_to 'Back', purchases_path %>

For this action, you’re working with a preexisting object rather than a new object,
which you used in the new action. This preexisting object is found by the edit action
in PurchasesController, as shown here.

def edit
end

Oops: it’s not here! The code to find the @purchase object is identical to what you saw
earlier in the show action: it’s set in before_action, which runs before the show, edit,
update, and destroy actions.

 Back in the view for a moment, at the bottom of it you can see two uses of link_to.
The first creates a “Show” link, linking to the @purchase object, which is set up in the
edit action of your controller. Clicking this link would take you to
purchase_path(@purchase) or /purchases/:id. Rails will figure out where the link
needs to go according to the class of the object given. Using this syntax, it will attempt
to call the purchase_path method because the object has a class of Purchase, and it
will pass the object along to that call, generating the URL.

NOTE This syntax is exceptionally handy if you have an object and aren’t sure
of its type but still want to generate a link for it. For example, if you had a dif-
ferent kind of object called Order, and it was used instead, it would use
order_path rather than purchase_path.

The second use of link_to in this view generates a “Back” link, which uses the routing
helper purchases_path. It can’t use an object here because it doesn’t make sense to.
Calling purchases_path is the easy way to go back to the index action.

 Let’s try filling in this form—for example, by
changing the cost from 100 to 10 and clicking
Update Purchase. You’ll now see the show page but
with a different message, as shown in figure 1.9.

 Clicking Update Purchase brought you back to
the show page. How did that happen? Click the
Back button on your browser, and view the source
of this page, specifically the form tag and the tags
directly underneath, shown in the following listing.

Listing 1.13 app/views/purchases/edit.html.erb

Listing 1.14 The edit action of PurchasesController

Figure 1.9 Viewing an updated pur-
chase

Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 1 Ruby on Rails, the framework

...
<form accept-charset="UTF-8" action="/purchases/2" class="edit_purchase"

id="edit_purchase_2" method="post">
<input name="utf8" type="hidden" value="✓" />
<input name="_method" type="hidden" value="patch" />

...

The action of this form points at /purchases/2, which is the route to the show action
in PurchasesController. You should also note two other things. The method attribute
of this form is a post, but there’s also the input tag underneath.

 The input tag passes through the _method parameter with the value set to patch.
Rails catches this parameter and turns the request from a POST into a PATCH. This is
the second (of three) ways /purchases/:id responds according to the method. By
making a PATCH request to this route, you’re taken to the update action in Purchases-
Controller. Let’s look at this next.

def update
respond_to do |format|
if @purchase.update(purchase_params)

format.html { redirect_to @purchase, notice: 'Purchase was successfully
updated.' }
format.json { render :show, status: :ok, location: @purchase }

else
format.html { render :edit }
format.json { render json: @purchase.errors, status:

 ➥ :unprocessable_entity }
end

end
end

Just as in the show and edit actions, the @purchase object is first fetched by the call to
before_action :set_purchase. The parameters from the form are sent through in
the same fashion as they were in the create action, coming through as
purchase_params. Rather than instantiating a new object by using the new class
method, you use update on the existing @purchase object. This does what it says:
updates the attributes. What it doesn’t say, though, is that it validates the attributes
and, if the attributes are valid, saves the record and returns true. If they aren’t valid, it
returns false.

THE PATCH METHOD The PATCH HTTP method is implemented by Rails by
affixing a _method parameter on the form with the value of PATCH, because
the HTML specification doesn’t allow the PATCH method for form elements. It
only allows GET and POST, as stated here: http://www.w3.org/TR/html401/
interact/forms.html#adef-method.

Listing 1.15 Rendered HTML for app/views/purchases/edit.html.erb

Listing 1.16 The update action of PurchasesController

Licensed to Mark Watson <nordickan@gmail.com>

http://www.w3.org/TR/html401/interact/forms.html#adef-method
http://www.w3.org/TR/html401/interact/forms.html#adef-method

21Developing your first application

When update returns true, you’re redirected back to the show action for this particu-
lar purchase by using redirect_to. If the update call returns false, you’re shown the
edit action’s template again, just as back in the create action where you were shown
the new template again. This works in the same fashion and displays errors if you enter
something wrong.

 Let’s try editing a purchase, setting Name to blank, and then clicking Update Pur-
chase. It should error exactly like the create method did, as shown in figure 1.10.

 As you can see in this example, the validations you defined in your Purchase
model take effect automatically for both the creation and updating of records.

 What would happen if, rather than updating a purchase, you wanted to delete it?
That’s built into the scaffold, too.

1.2.10 Deleting

In Rails, delete is given a much more forceful name: destroy. This is another sensible
name, because to destroy a record is to “put an
end to the existence of.”4 Once this record’s
gone, it’s gone, baby, gone.

 You can destroy a record by going to
http://localhost:3000/purchases and clicking
the “Destroy” link shown in figure 1.11 and
then clicking OK in the confirmation box that
pops up.

4 As defined by the Mac OS X Dictionary application.

Figure 1.10 Update fails!

Figure 1.11 Destroy!

Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 1 Ruby on Rails, the framework

 When that record’s destroyed, you’re taken
back to the Listing Purchases page. You’ll see
that the record no longer exists. You should now
have only one record, as shown in figure 1.12.

 How does all this work? Let’s look at the
index template in the following listing to under-
stand, specifically the part that’s used to list the
purchases.

<% @purchases.each do |purchase| %>
<tr>
<td><%= purchase.name %></td>
<td><%= purchase.cost %></td>
<td><%= link_to 'Show', purchase %></td>
<td><%= link_to 'Edit', edit_purchase_path(purchase) %></td>
<td><%= link_to 'Destroy', purchase, method: :delete, data:

{ confirm: 'Are you sure?' } %></td>
</tr>

<% end %>

In this template, @purchases is a collection of all the objects from the Purchase
model, and each is used to iterate over each, setting purchase as the variable used in
this block.

 The methods name and cost are the same methods used in app/views/purchases/
show.html.erb to display the values for the fields. After these, you see the three uses of
link_to.

 The first link_to passes in the purchase object, which links to the show action of
PurchasesController by using a route such as /purchases/:id, where :id is the ID for
this purchase object.

 The second link_to links to the edit action using edit_purchase_path and
passes the purchase object as the argument to this method. This routing helper deter-
mines that the path is /purchases/:id/edit.

 The third link_to links seemingly to the purchase object exactly like the first, but
it doesn’t go there. The :method option on the end of this route specifies the method
:delete, which is the third and final way the /purchases/:id route can be used. If you
specify :delete as the method of this link_to, Rails interprets this request as a
DELETE request and takes you to the destroy action in the PurchasesController. This
action is shown in the following listing.

def destroy
@purchase.destroy
respond_to do |format|

Listing 1.17 app/views/purchases/index.html.erb

Listing 1.18 The destroy action of PurchasesController

Figure 1.12 Last record standing

Licensed to Mark Watson <nordickan@gmail.com>

23Summary

format.html { redirect_to purchases_url, notice: 'Purchase was

 ➥ successfully destroyed.' }
format.json { head :no_content }

end
end

This action destroys the record loaded by before_action :set_purchase by calling
destroy on it, which permanently deletes the record. Then it uses redirect_to to
take you to purchases_url, which is the route helper defined to take you to http://
localhost:3000/purchases. Note that this action uses the purchases_url method
rather than purchases_path, which generates a full URL back to the purchases listing.

 That wraps up our application run-through!

1.3 Summary
In this chapter, you learned what Rails is and how to get an application started with it:
the absolute bare, bare, bare essentials of a Rails application. But look how fast you got
going! It took only a few simple commands and an entire two lines of your own code
to create the bones of a Rails application. From this basic skeleton, you can keep add-
ing bits and pieces to develop your application, and all the while you get things for
free from Rails. You don’t have to code the logic of what happens when Rails receives
a request or specify what query to execute on your database to insert a record—Rails
does it for you.

 You also saw that some big-name players—such as Twitter and GitHub—use Ruby
on Rails. This clearly answers the question “Is Rails ready?” Yes, it very much is. A wide
range of companies have built successful websites on the Rails framework, and many
more will do so in the future. Rails also has been around for a decade, and shows no
signs of slowing down any time soon.

 Still wondering if Ruby on Rails is right for you? Ask around. You’ll hear a lot of
people singing its praises. The Ruby on Rails community is passionate not only about
Rails but also about community building. Events, conferences, user group meetings,
and even camps are held around the world for Rails. Attend these, and discuss Ruby
on Rails with the people who know about it. If you can’t attend these events, you can
explore the IRC channel on Freenode #rubyonrails and the mailing list rubyonrails-talk
on Google Groups, not to mention Stack Overflow and a multitude of other areas on
the internet where you can find experienced people and discuss what they think of
Rails. Don’t let this book be your only source of knowledge. There’s a whole world out
there, and no book could cover it all!

 The best way to answer the question “What is Rails?” is to experience it for yourself.
This book and your own exploration can eventually make you a Ruby on Rails expert.

 When you added validations to your application earlier, you manually tested that
they were working. This may seem like a good idea for now, but when the application
grows beyond a couple of pages, it becomes cumbersome to manually test it. Wouldn’t
it be nice to have some automated way of testing your applications? Something to
ensure that all the individual parts always work? Something to provide the peace of

Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 1 Ruby on Rails, the framework

mind that you crave when you develop anything? You want to be sure that your appli-
cation is continuously working with the least effort possible, right?

 Well, Ruby on Rails does that too. Several testing frameworks are available for Ruby
and Ruby on Rails, and in chapter 2 we’ll look at the two major ones: MiniTest and
RSpec.

Licensed to Mark Watson <nordickan@gmail.com>

25

Testing saves your bacon

Chapter 1 presented an extremely basic layout of a Rails application and an exam-
ple of using the scaffold generator. One question remains, though: how do you
make your Rails applications maintainable?

ABOUT THE SCAFFOLD GENERATOR We won’t use the scaffold generator for the
rest of the book because people tend to use it as a crutch, and it generates extra-
neous code. There’s a thread on the rubyonrails-core mailing list where people
have discussed the scaffold generator’s downsides: http://mng.bz/g33u.

The answer is that you write automated tests for the application as you develop it,
and you write these all the time. By writing automated tests for your application,
you can quickly ensure that your application is working as intended. If you don’t
write tests, your alternative is to check the entire application manually every time
you make a change, which is time consuming and error prone. Automated testing
saves you a ton of time in the long run and leads to fewer bugs. Humans make mis-
takes; programs (if coded correctly) don’t. We’ll do it correctly from step one.1

This chapter covers
■ Introducing testing approaches
■ Test-driven development with MiniTest
■ Behavior-driven development with RSpec

1 Unlike certain other books.

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://mng.bz/g33u
http://www.allitebooks.org

26 CHAPTER 2 Testing saves your bacon

 In the Ruby world, a huge emphasis is placed on testing, specifically on test-driven
development (TDD) and behavior-driven development (BDD). This chapter covers two testing
tools—MiniTest and RSpec—in a basic fashion so you can quickly learn their formats.

 By learning good testing techniques now, you’ll have a solid way to make sure noth-
ing is broken when you start to write your first real Rails application. If you don’t write
tests, there’ll be no automatic way of telling what might be going wrong in your code.

 A cryptic yet true answer to the question “Why should I test?” is “Because you’re
human.” Humans—the large majority of this book’s audience—make mistakes. It’s one
of our favorite ways to learn. Because humans make mistakes, having a tool to inform
us when we make one is helpful, isn’t it? Automated testing provides a quick safety net
to inform developers when they make mistakes. And by they, of course, we mean you. We
want you to make as few mistakes as possible. We want you to save your bacon!

2.1 Using TDD and BDD to save your bacon
In addition to catching errors, TDD and BDD give you time to think through your deci-
sions before you write any code. By first writing a test for the implementation, you are
(or, at least, you should be) thinking through the implementation: the code you’ll
write after the test and how you’ll make the test pass. If you find the test difficult to
write, then perhaps the implementation could be improved. Unfortunately, there’s no
clear way to quantify the difficulty of writing a test and working through it, other than
to consult with other people who are familiar with the process.

 Once the test is implemented, you should go about writing some code that your
test can pass. If you find yourself working backward—rewriting your test to fit a buggy
implementation—it’s generally best to rethink the test and scrap the implementation.
Test first, code later.

 TDD is a methodology consisting of writing a failing test case first (usually using a
testing tool such as MiniTest), then writing the code to make the test pass, and finally
refactoring the code to make it neater and tidier. This process is commonly called red-
green-refactor. The reasons for developing code this way are twofold. First, it makes you
consider how the code should be running before it’s used by anybody. Second, it gives
you an automated test you can run as often as you like to ensure that your code is still
working as you intended. This book uses the MiniTest tool for TDD.

 BDD is a methodology based on TDD. You write an automated test to check the
interaction between the different parts of the codebase rather than to test that each
part works independently. Two tools used for BDD when building Rails applications
are RSpec and Cucumber. This book relies heavily on RSpec and forgoes Cucumber.

CUCUMBER VS. OTHER TOOLS Cucumber was used in earlier editions of this
book, but the community has drifted away from using it, as there are other
tools (like Capybara, mentioned later) that provide a very similar way to test,
but in a much neater, pure-Ruby syntax.

Let’s begin by looking at TDD and MiniTest.

Licensed to Mark Watson <nordickan@gmail.com>

27Test-driven development basics

2.2 Test-driven development basics
Automated testing is much, much easier than manual testing. Have you ever gone
through a website and manually filled in a form with specific values to make sure it
conforms to your expectations? Wouldn’t it be faster and easier to have the computer
do this work? Yes, it would, and that’s the beauty of automated testing: you won’t
spend your time manually testing your code, because you’ll have written test code to
do that for you.

 On the off chance that you break something, the tests are there to tell you the what,
when, how, and why of the breakage. Although tests can never be 100% guaranteed,
your chances of getting this information without first having written tests are 0%. Noth-
ing is worse than finding out through an early morning phone call from an angry cus-
tomer that something is broken. Tests help prevent such scenarios by giving you and
your client peace of mind. If the tests aren’t broken, chances are high (although not
guaranteed) that the implementation isn’t either.

 Sooner or later, it’s likely that something in your application will break when a user
attempts to perform an action you didn’t consider in your tests. With a base of tests,
you can easily duplicate the scenario in which the user encountered the breakage,
generate your own failed test, and use this information to fix the bug. This commonly
used practice is called regression testing.

 It’s valuable to have a solid base of tests in the application so you can spend time
developing new features properly, rather than fixing the old ones you didn’t do quite
right. An application without tests is most likely broken in one way or another.

2.2.1 Writing your first test

The first testing library for Ruby was Test::Unit, which was written by Nathaniel Talbott
back in 2000 and is now part of the Ruby standard library. The documentation for this
library gives a fantastic overview of its purpose, as summarized by the man himself:

The general idea behind unit testing is that you write a test method that makes certain
assertions about your code, working against a test fixture. A bunch of these test methods
are bundled up into a test suite and can be run any time the developer wants. The
results of a run are gathered in a test result and displayed to the user through some UI.

—Nathaniel Talbott

The UI Talbott references could be a terminal, a web page, or even a light.2

 In Rails 4, Test::Unit has been superseded by MiniTest, which is a library of a simi-
lar style but with a more modern heritage. MiniTest is also part of the Ruby standard
library.

 A common practice you’ll hopefully have experienced by now in the Ruby world is
to let the libraries do a lot of the hard work for you. Sure, you could write a file yourself
that loads one of your other files and runs a method and makes sure it works, but why

2 Such as the one GitHub has made: http://github.com/blog/653-our-new-build-status-indicator.

Licensed to Mark Watson <nordickan@gmail.com>

http://github.com/blog/653-our-new-build-status-indicator

28 CHAPTER 2 Testing saves your bacon

do that when MiniTest already provides that functionality for such little cost? Never
reinvent the wheel when somebody’s done it for you.

 Now you’ll write a test, and you’ll write the code for it later. Welcome to TDD.

TRYING OUT MINITEST

To try out MiniTest, first create a new directory called chapter_2, and in that directory
make a file called example_test.rb. It’s good practice to suffix your filenames with _test
so it’s obvious from the filename that it’s a test file. In this file, you’ll define the most
basic test possible, as shown in the following listing.

require "minitest/autorun"

class ExampleTest < Minitest::Test
def test_truth
assert true

end
end

To make this a MiniTest test, you begin by requiring minitest/autorun, which is part
of Ruby’s standard library. This provides the Minitest::Test class inherited from on
the next line. Inheriting from this class provides the functionality to run any method
defined in this class whose name begins with test.

 To run this file, you run ruby example_test.rb in the terminal, from inside the
chapter_2 directory. When this code completes, you’ll see some output, the most rele-
vant being the last three lines:

.

Finished in 0.001245s, 803.2129 runs/s, 803.2129 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

The first line is a singular period. This is MiniTest’s way of indicating that it ran a test
and the test passed. If the test had failed, it would show up as an F; if it had errored, an
E. The second and third lines provide statistics on what happened—specifically that
there was one test and one assertion, and that nothing failed, there were no errors,
and nothing was skipped. Great success!

 The assert method in your test makes an assertion that the argument passed to it
evaluates to true. This test passes given anything that’s not nil or false. When this
method fails, it fails the test and raises an exception. Go ahead and try putting 1 there
instead of true. It still works:

Finished tests in 0.001071s, 933.7068 tests/s, 933.7068 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

In the following listing, you remove the test_ from the beginning of your method
and define it as a truth method.

Listing 2.1 chapter_2/example_test.rb

Licensed to Mark Watson <nordickan@gmail.com>

29Test-driven development basics

def truth
assert true

end

When you run the test again with ruby example_test.rb, MiniTest tells you there
were no tests specified:

0 runs, 0 assertions, 0 failures, 0 errors, 0 skips

See, no tests! Remember to always prefix MiniTest methods with test!

2.2.2 Saving bacon

Let’s make this a little more complex by creating a bacon_test.rb file in the same
folder and writing the test shown next.

require "minitest/autorun"

class BaconTest < Minitest::Test
def test_saved
assert Bacon.saved?

end
end

Of course, you want to ensure that your bacon (both the metaphorical and the crispy
kinds) is always saved, and this is how you do it. If you now run the code to run this
file, ruby bacon_test.rb, you’ll get an error:

1) Error:
BaconTest#test_saved:
NameError: uninitialized constant BaconTest::Bacon

bacon_test.rb:5:in `test_saved'

Your test is looking for a constant called Bacon when you call Bacon.saved?, and it
can’t find it because you haven’t yet defined the constant.

 For this test, the constant you want to define is a Bacon class, and you can define
this class before or after the test. Note that in Ruby you usually must define constants
and variables before you use them, but in MiniTest tests, the code is only run when
MiniTest finishes evaluating it, which means you can define the Bacon class after the
test. In the next listing, you follow the more conventional method of defining the class
above the test.

require "minitest/autorun"

class Bacon
end

Listing 2.2 chapter_2/example_test.rb, alternate truth test

Listing 2.3 chapter_2/bacon_test.rb

Listing 2.4 chapter_2/bacon_test.rb, now with Bacon class

Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Testing saves your bacon

class BaconTest < Minitest::Test
def test_saved
assert Bacon.saved?

end
end

Upon rerunning the test, you get a different error:

1) Error:
BaconTest#test_saved:
NoMethodError: undefined method `saved?' for Bacon:Class

bacon_test.rb:8:in `test_saved'

Progress! It recognizes there’s now a Bacon class. But there’s no saved? method for
this class, so you must define one.

class Bacon
def self.saved?
true

end
end

One more run of ruby bacon_test.rb, and you can see that the test is now passing:

.

Finished tests in 0.000596s, 1677.8523 tests/s, 1677.8523 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Your bacon is indeed saved! Now any time you want to check whether it’s saved, you
can run this file. If somebody else comes along and changes that true value to a
false, the test will fail:

F

Finished in 0.001037s, 964.3825 runs/s, 964.3825 assertions/s.

1) Failure:
BaconTest#test_saved [bacon_test.rb:11]:
Failed assertion, no message given.

MiniTest reports “Failed assertion, no message given” when an assertion fails. You
should probably make that error message clearer! To do so, you can specify an addi-
tional argument to the assert method in your test, like this:

def test_saved
assert Bacon.saved?, "Our bacon was not saved :("

end

Now when you run the test, you get a clearer error message:

Listing 2.5 Bacon class in chapter_2/bacon_test.rb

Licensed to Mark Watson <nordickan@gmail.com>

31Behavior-driven development basics

1) Failure:
BaconTest#test_saved [bacon_test.rb:11]:
Our bacon was not saved :(

And that, our friend, is the basics of TDD using MiniTest. Although we won’t use this
method in the book, it’s handy to know about, because it establishes the basis for TDD
in Ruby, in case you wish to use it in the future. MiniTest is also the default testing
framework for Rails, so you may see it around in your travels.

 From this point on, we’ll focus on pure RSpec, which you’ll use to develop your
next Rails application.

2.3 Behavior-driven development basics
BDD is similar to TDD, but the tests for BDD are written in an easier-to-understand lan-
guage so that developers and clients alike can clearly understand what’s being tested.
The tool you’ll use for all BDD examples in this book is RSpec.

 RSpec tests are written in a Ruby domain-specific language (DSL), like this:

RSpec.describe Bacon do
it "is edible" do
expect(Bacon).to be_edible

end
end

The benefits of writing tests like this are that clients can understand precisely what the
test is testing and then use these steps in acceptance testing; a developer can read what
the feature should do and then implement it; and finally, the test can be run as an auto-
mated test. With tests written in a DSL, you have the three important elements of your
business (the clients, the developers, and the code) all operating in the same language.

ACCEPTANCE TESTING Acceptance testing is a process whereby people follow a
set of instructions to ensure that a feature is performing as intended.

RSpec is an extension of the methods already provided by MiniTest. You can even
use MiniTest methods in RSpec tests if you wish. But we’ll use the simpler, easier-to-
understand syntax that RSpec provides.

2.3.1 Introducing RSpec

RSpec is a BDD tool written by Steven R. Baker and now maintained by Myron Marston
and Andy Lindeman as a cleaner alternative to MiniTest. With RSpec, you write code
known as specs that contain examples, which are synonymous with the tests you know
from MiniTest. In this example, you’ll define the Bacon constant and then define the
edible? method on it.

 Let’s jump right in and install RSpec. The latest version of the gem (at writing)
is 3.2.0, and you can install it by running gem install rspec -v 3.2.0. You should
see something like the following output:

Fetching: diff-lcs-1.2.5.gem (100%)
Successfully installed diff-lcs-1.2.5
Fetching: rspec-support-3.2.2.gem (100%)

Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Testing saves your bacon

Successfully installed rspec-support-3.2.2
Fetching: rspec-mocks-3.2.1.gem (100%)
Successfully installed rspec-mocks-3.2.1
Fetching: rspec-expectations-3.2.0.gem (100%)
Successfully installed rspec-expectations-3.2.0
Fetching: rspec-core-3.2.2.gem (100%)
Successfully installed rspec-core-3.2.2
Fetching: rspec-3.2.0.gem (100%)
Successfully installed rspec-3.2.0
6 gems installed

You can see that the final line says the rspec gem is installed, with the version number
specified after the name.

2.3.2 Writing your first spec

When the gem is installed, you can create a new directory called bacon for your tests
anywhere you like; in that directory, create another directory called spec. If you’re run-
ning a UNIX-based operating system such as Linux or Mac OS X, you can run the com-
mand mkdir -p bacon/spec to create these two directories. This code will generate a
bacon directory, if it doesn’t already exist, and then generate a spec directory inside it.

 In the spec directory, create a file called bacon_spec.rb. This is the file you’ll use to
test your currently nonexistent Bacon class. Put the code from the following listing in
spec/bacon_spec.rb.

RSpec.describe Bacon do
it "is edible" do
expect(Bacon.edible?).to be(true)

end
end

You use RSpec.describe to describe the behavior of the (currently undefined) Bacon
class and write an example for it, declaring that Bacon is edible. The describe block
contains tests (examples) that describe the behavior of bacon. In this example, when-
ever you call edible? on Bacon, the result should be true. expect and to serve a pur-
pose similar to that of assert, which is to assert that the object passed to expect
matches the arguments passed to to. If the outcome isn’t what you say it should be,
then RSpec raises an error and goes no further with that spec.

THERE’S MORE THAN ONE WAY TO WRITE A SPEC

An alternative way to write the spec would be like in the following listing.

RSpec.describe Bacon do
it "is edible" do
expect(Bacon).to be_edible

end
end

Listing 2.6 bacon/spec/bacon_spec.rb

Listing 2.7 An alternate way to check if Bacon is edible

Licensed to Mark Watson <nordickan@gmail.com>

33Behavior-driven development basics

RSpec will internally translate the be_edible method call into edible?, and call that
on Bacon. If the overall result of the Bacon.edible? statement is truthy (anything
other than nil or false), then the spec will pass. But for now, we’ll stick with the first
version—it’s a little less magical, and it’s easier to see what’s going on.

2.3.3 Running the spec

To run the spec, you run rspec spec in a terminal inside your bacon directory. You
specify the spec directory as the main argument to the rspec executable so RSpec will
run all the tests in that directory. This code can also take files as its arguments if you
want to run tests only from those files.

 When you run this spec, you’ll get an uninitialized constant Bacon (NameError)
error, because you haven’t yet defined your Bacon constant. To define it, create another
directory in your Bacon project folder called lib, and in this directory, create a file called
bacon.rb. This is the file where you define the Bacon constant, a class.

class Bacon
end

You can now require this file in spec/bacon_spec.rb by placing the following line at
the top of the file:

require "bacon"

When you run your spec again, because you told it to load bacon, RSpec will have
added the lib directory to Ruby’s load path on the same level as the spec directory, so
it will find lib/bacon.rb for your require. By requiring the lib/bacon.rb file, you
ensure that the Bacon constant is defined. The next time you run the spec, you’ll get
an undefined method for your new constant:

1) Bacon is edible
Failure/Error: expect(Bacon.new.edible?).to be(true)
NoMethodError:
undefined method `edible?' for #<Bacon:0x007f2530184988>

./spec/bacon_spec.rb:5:in `block (2 levels) in <top (required)>'

This means you need to define the edible? method on your Bacon class. Reopen lib/
bacon.rb, and add this method definition to the class:

def self.edible?
true

end

Now the entire file looks like the following listing.

class Bacon
def self.edible?

Listing 2.8 bacon/lib/bacon.rb

Listing 2.9 bacon/lib/bacon.rb

Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Testing saves your bacon

true
end

end

By defining the method as self.edible?, you define it for the class. If you didn’t pre-
fix the method with self., it would define the method for an instance of the class
rather than for the class itself.

 Running rspec spec now outputs a period, which indicates the test has passed.
That’s the first test—done.

2.3.4 Much more bacon

For the next test, you want to create many instances of the Bacon class and have the
edible? method defined on them. To do this, open lib/bacon.rb and change the
edible? class method to an instance method by removing the self. from before the
method, as shown next.

class Bacon
def edible?
true

end
end

When you run rspec spec again, you’ll get the familiar error:

1) Bacon is edible
Failure/Error: expect(Bacon.edible?).to be(true)
NoMethodError:
undefined method `edible?' for Bacon:Class

./spec/bacon_spec.rb:5:in `block (2 levels) in <top (required)>'

Oops! You broke a test! You should be changing the spec to suit your new ideas before
changing the code! Let’s reverse the changes made in lib/bacon.rb.

class Bacon
def self.edible?
true

end
end

When you run rspec spec again, it passes. Now let’s change the spec first.

RSpec.describe Bacon do
it "is edible" do
expect(Bacon.new.edible?).to be(true)

end
end

Listing 2.10 bacon/lib/bacon.rb

Listing 2.11 bacon/lib/bacon.rb

Listing 2.12 bacon/spec/bacon_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

35Behavior-driven development basics

In this code, you instantiate a new object of the class rather than use the Bacon class.
When you run rspec spec, it breaks once again:

NoMethodError:
undefined method `edible?' for #<Bacon:0x101deff38>

If you remove the self. from the edible? method, your test will now pass:

.

Finished in 0.00167 seconds
1 example, 0 failures

2.3.5 Expiring bacon

You can go about breaking your test once more by adding functionality: an expired!
method, which will make your bacon inedible. This method sets an instance variable
on the Bacon object called @expired to true, and you can use it in your edible?
method to check the bacon’s status.

 First you must test that this expired! method will do what you think it should do.
Create another example in spec/bacon_spec.rb so that the whole file looks like the
following listing.

require "bacon"

RSpec.describe Bacon do
it "is edible" do
expect(Bacon.new.edible?).to be(true)

end

it "can expire" do
bacon = Bacon.new
bacon.expired!
expect(bacon).to_not be_edible

end
end

This uses the second format of the assertion—RSpec again translates be_edible to
edible? and calls bacon.edible?. But this time it’s expected to return something
falsey (either nil or false), due to the negative to_not (instead of to).

 If you run rspec again, your first spec still passes, but your second one fails because
you have yet to define your expired! method. Let’s do that now in lib/bacon.rb.

class Bacon
def edible?
true

end

Listing 2.13 bacon/spec/bacon_spec.rb

Listing 2.14 bacon/lib/bacon.rb

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2 Testing saves your bacon

def expired!
self.expired = true

end
end

By running rspec spec again, you get an undefined method error:

1) Bacon can expire
Failure/Error: bacon.expired!
NoMethodError:
undefined method `expired=' for #<Bacon:0x007ff116460c58>

./lib/bacon.rb:7:in `expired!'

This method is called by this line in the previous listing:

self.expired = true

To define this method, you can use the attr_accessor method provided by Ruby, as
shown in listing 2.15; the attr prefix of the method means attribute. If you pass a
Symbol (or collection of symbols) to this method, it defines methods for setting
(expired=) and retrieving the attribute’s expired values, referred to as a setter and a
getter, respectively. It also defines an instance variable called @expired on every object
of this class to store the value that was specified by the expired= method calls.

THE SELF. METHOD PREFIX In Ruby you can call methods without the self.
prefix. In this case, though, when calling the expired= method, you need to
specify the prefix or the interpreter will think that you’re defining a local vari-
able called expired, rather than calling the method. For setter methods, you
should always use the prefix.

class Bacon
attr_accessor :expired
...

end

With this in place, if you run rspec spec again, your example fails on the line follow-
ing your previous failure:

1) Bacon can expire
Failure/Error: expect(bacon).to_not be_edible
expected `#<Bacon:0x007f0fa5f56cc8 @expired=true>.edible?` to
return false, got true

./spec/bacon_spec.rb:11:in `block (2 levels) in <top (required)>'

Even though this sets the expired attribute on the Bacon object, you’ve still hard-
coded true in your edible? method. Now change the method to use the attribute
method, as in the following listing.

Listing 2.15 attr_accessor method for Bacon in bacon/lib/bacon.rb

Licensed to Mark Watson <nordickan@gmail.com>

37Behavior-driven development basics

def edible?
!expired

end

When you run rspec spec again, both your specs will pass:

..

Finished in 0.00191 seconds
2 examples, 0 failures

Let’s go back into lib/bacon.rb and remove the self. from the expired! method,
just to see what happens:

def expired!
expired = true

end

If you run rspec spec again, you’ll see that your second spec is now broken:

1) Bacon can expire
Failure/Error: expect(bacon).to_not be_edible
expected `#<Bacon:0x007fbc555d0930>.edible?` to return false,
got true

./spec/bacon_spec.rb:11:in `block (2 levels) in <top (required)>'

You can see that your Bacon instance (#<Bacon:0x007fbc555d0930>) no longer has an
@expired attribute set to true, like you had in the previous failure, because you’re not
calling the expired= method anymore.

 Tests save you from making mistakes such as this. If you write the test first and then
write the code to make the test pass, you have a solid base and can refactor the code to
be clearer or smaller, and finally you can ensure that it’s still working with the test you
wrote in the first place. If the test still passes, then you’re probably doing it right.

 If you change this method back now,

def expired!
self.expired = true

end

and then run your specs using rspec spec, you’ll see that they once again pass:

..

2 examples, 0 failures

Everything’s normal and working, which is great!
 That ends our little foray into RSpec for now. You’ll use it again later when you

develop your application. If you’d like to know more about RSpec, Noel Rappin’s Rails 4
Test Prescriptions (https://pragprog.com/book/nrtest2/rails-4-test-prescriptions) is rec-
ommended reading.

Listing 2.16 Bacon#edible? method

Licensed to Mark Watson <nordickan@gmail.com>

https://pragprog.com/book/nrtest2/rails-4-test-prescriptions

38 CHAPTER 2 Testing saves your bacon

2.4 Summary
This chapter demonstrated how to apply TDD and BDD principles to test some rudi-
mentary code. You can (and should!) apply these principles to all the code you write,
because testing the code ensures that it’s maintainable from now into the future. You
don’t have to use the gems shown in this chapter to test your Rails application; they’re
just preferred by a large portion of the community.

 You’ll apply what you learned in this chapter to build a Rails application from
scratch in upcoming chapters. You’ll use RSpec and another tool called Capybara to
build out acceptance tests that will describe the behavior of your application. Then
you’ll implement the behavior of the application to make these tests pass, and you’ll
know you’re doing it right when the tests are all green.

 Let’s get into it!

Licensed to Mark Watson <nordickan@gmail.com>

39

Developing
 a real Rails application

This chapter will get you started on building a Ruby on Rails application from
scratch using the techniques covered in the previous chapter, plus a couple of new
ones. With the techniques you learned in chapter 2, you can write features describ-
ing the behavior of the specific actions in your application and then implement the
code you need to get the features passing.

 For the remainder of the book, this application will be the main focus. We’ll
guide you through it in an agile-like fashion. Agile focuses largely on iterative devel-
opment: developing one feature at a time from start to finish, and then refining the
feature until it’s viewed as complete before moving on to the next one.

This chapter covers
■ Using a Git client and GitHub for Version control
■ Setting up and configuring a Rails application
■ Writing our first application feature
■ Creating a Project model
■ Creating an interface for saving new projects

Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 3 Developing a real Rails application

AGILE You can find more information about agile on Wikipedia: http://
en.wikipedia.org/wiki/Agile_software_development.

For this example application, your imaginary client, who has limitless time and budget
(unlike clients in the real world), wants you to develop a ticket-tracking application to
track the company’s numerous projects. You’ll develop this application using the
methodologies outlined in chapter 2: you’ll work iteratively, delivering small working
pieces of the software to the client and then gathering the client’s feedback to
improve the application as necessary. If no improvement is needed, you can move on
to the next prioritized chunk of work.

 The first couple of features you’ll develop for this application will lay down the foun-
dation for the application, enabling people to create projects and tickets. Later, in chap-
ters 6 through 8, you’ll implement authentication and authorization so that people can
sign in to the application and only have access to certain projects. Other chapters cover
things like adding comments to tickets, notifying users by email, and file uploading.

 BDD and RSpec (the testing framework you saw in the previous chapter) are used
all the way through the development process. They provide the client with a stable
application, and when (not if) a bug crops up, you have a nice test base you can use to
determine what’s broken. Then you can fix the bug so it doesn’t happen again, a pro-
cess called regression testing (mentioned in chapter 2).

 As you work with your client to build the features of the application using this BDD
technique, the client may ask why all this prework is necessary. This can be a tricky
question to answer. Explain that writing the tests before the code and then imple-
menting the code to make the tests pass creates a safety net to ensure that the code is
always working. (Note that tests will make your code more maintainable, but they
won’t make your code bug-proof.)

 The tests also give you a clearer picture of what your client really wants. Having it all
written down in code gives you a solid reference of point if clients say they suggested
something different. Story-driven development is BDD with an emphasis on things a user
can do with the system.

 By using story-driven development, you know what clients want, clients know you
know what they want, you have something you can run automated tests with to ensure
that all the pieces are working, and, finally, if something does break, you have the test
suite in place to catch it. It’s a win-win-win situation.

 Some of the concepts covered in this chapter were explained in chapter 1. But
rather than using scaffolding, as you did previously, you’ll write this application from
the ground up using the BDD process and other generators provided by Rails. The
scaffold generator is great for prototyping, but it’s less than ideal for delivering sim-
ple, well-tested code that works precisely the way you want it to work. The code pro-
vided by the scaffold generator often may differ from the code you want. In this case,
you can turn to Rails for lightweight alternatives to the scaffold code options, and
you’ll likely end up with cleaner, better code.

 First, you need to set up your application!

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development

41First steps

3.1 First steps
Chapter 1 explained how to quickly start a Rails application. This chapter explains a
couple of additional processes that improve the flow of your application development.
One process uses BDD to create the features of the application; the other process uses
version control. Both will make your life easier.

3.1.1 The application story

Your client may have a good idea of the application they want you to develop. How
can you transform the idea that’s in your client’s brain into beautifully formed code?
First, you sit down with your client and talk through the parts of the application. In
the programming business, we call these parts user stories, and you’ll use RSpec and
Capybara to develop them.

WHAT IS CAPYBARA? Capybara is a testing tool that allows you to simulate the
steps of a user of your application. You can tell it to visit pages, fill in fields,
click buttons (and links), and assert that pages have certain content. And
there’s a lot more that it can do, which you’ll see throughout this book. It’s
used quite extensively throughout.

Start with the most basic story, and ask your client how they want it to behave. Then
sketch out a basic flow of how the feature would work by building an acceptance test
using RSpec and Capybara. If this feature was a login form, the test for it would look
something like this:

RSpec.feature "Users can log in to the site" do
scenario "as a user with a valid account" do
visit "/login"
fill_in "Email", with: "user@ticketee.com"
fill_in "Password", with: "password"
click_button "Login"
expect(page).to have_content("You have been successfully logged in.")

end
end

The form of this test is simple enough that even people who don’t understand Ruby
should be able to understand the flow of it. With the function and form laid out, you
have a pretty good idea of what the client wants.

3.1.2 Laying the foundations

To start building the application you’ll develop throughout this book, run the good
old rails command, preferably outside the directory of the previous application.
Call this app Ticketee, the Australian slang for a person who validates tickets on trains
in an attempt to catch fare evaders. It also has to do with this project being a ticket-
tracking application, and a Rails application, at that.1 To generate this application,
run this command:

$ rails new ticketee

1 Hey, at least we thought it was funny!

Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 3 Developing a real Rails application

Presto! It’s done. From this bare-bones application, you’ll build an application that
does the following:

■ Tracks tickets (of course) and groups them into projects
■ Provides a way to restrict users to certain projects
■ Allows users to upload files to tickets
■ Lets users tag tickets so they’re easy to find
■ Provides an API on which users can base development of their own applications

You can’t do all this with a command as simple as rails new [application_name], but
you can do it step by step and test it along the way so you develop a stable and worth-
while application.

 Throughout the development of the application, we advise you to use a version-
control system. The next section covers that topic using Git. You’re welcome to use a
different version-control system, but this book uses Git exclusively.

3.2 Version control
It’s wise during development to use version-control software to provide checkpoints in
your code. When the code is working, you can make a commit; and if anything goes
wrong later in development, you can revert back to that known-working commit.
Additionally, you can create branches for experimental features and work on those
independent of the main codebase, without damaging working code.

 This book doesn’t go into detail on how to use a version-control system, but it does
recommend using Git. Git is a distributed version-control system that’s easy to use and
extremely powerful. If you wish to learn about Git, we recommend reading Pro Git, a
free online book by Scott Chacon and Ben Straub (Apress, 2014, http://git-scm.com/
book/en/v2).

 Git is used by most developers in the Rails community and by tools such as Bun-
dler, discussed shortly. Learning Git along with Rails is advantageous when you come
across a gem or plug-in that you have to install using Git. Because most of the Rails
community uses Git, you can find a lot of information about how to use it with Rails
(even in this book!), should you ever get stuck.

 If you don’t have Git already installed, GitHub’s help site offers installation guides
for Mac, Linux, and Windows at https://help.github.com/articles/set-up-git.

Help!
If you want to see what else you can do with this new command (hint: there’s a lot!),
you can use the --help option:

$ rails new --help

The --help option shows you the options you can pass to the new command to mod-
ify the output of your application.

Licensed to Mark Watson <nordickan@gmail.com>

http://git-scm.com/book/en/v2
http://git-scm.com/book/en/v2
https://help.github.com/articles/set-up-git

43Version control

 The precompiled installer should work well for Macs, and the package-distributed
versions (via apt, yum, emerge, and so on) work well for Linux machines. For Win-
dows, the GitHub for Windows program does just fine.

3.2.1 Getting started with GitHub

For an online place to put your Git repository, we recommend GitHub (http://
github.com), which offers free accounts. If you set up an account now, you can upload
your code to GitHub as you progress, ensuring that you won’t lose it if anything hap-
pens to your computer.

BITBUCKET Bitbucket (http://bitbucket.org) is a popular alternative to
GitHub, and it also allows you to have free private repositories.

To get started with GitHub, you first need to
generate a secure shell (SSH) key, which is
used to authenticate you with GitHub when
you do a git push to GitHub’s servers.2 After
you sign up at GitHub, click the Settings link
(see figure 3.1) in the menu at the top, select
SSH Keys, and then click Add SSH Key (see fig-
ure 3.2). You can then copy your public key’s
content (usually found at ~/.ssh/id_rsa.pub)
into the key field.

 Now that you’re set up with GitHub, click New Repository on the dashboard (see
figure 3.3) to begin creating a new repository. Enter the Project Name as Ticketee,
and click Create Repository to create the repository on GitHub.

 Now you’re on your project’s page. It has some basic instructions on how to set up
your code in your new repository, but first you need to configure Git on your own

2 You can find a guide for this process at https://help.github.com/articles/generating-ssh-keys.

Figure 3.2 Adding an SSH key

Figure 3.1 Visiting account settings

Licensed to Mark Watson <nordickan@gmail.com>

http://github.com
http://github.com
http://bitbucket.org
https://help.github.com/articles/generating-ssh-keys

44 CHAPTER 3 Developing a real Rails application

machine. Git needs to know a bit about you for identification purposes—so you can
properly be credited (or blamed) for any code that you write.

3.2.2 Configuring your Git client

Run the commands from listing 3.1 in your terminal or command prompt to tell Git
about yourself, replacing Your Name with your real name and you@example.com with
your email address. The email address you provide should be the same as the one you
used to sign up to GitHub, so that when you push your code to GitHub, it will also be
linked to your account.

$ git config --global user.name "Your Name"
$ git config --global user.email you@example.com

You already have a ticketee directory, created when you generated your Rails app, and
you’re probably already in it. If not, you should be. To make this directory a Git repos-
itory, run this easy command:

$ git init

Your ticketee directory now contains a .git directory, which is your Git repository. It’s
all kept in one neat little package.

 To add all the files for your application to this repository’s staging area, run this
command:

$ git add .

The staging area for the repository is the location where all the changes for the next
commit are kept. A commit can be considered a checkpoint for your code. If you
make a change, you must stage that change before you can create a commit for it.

 To create a commit with a message, run the following command:

$ git commit -m "Generate the Rails 4 application"

This command generates quite a bit of output, but the most important lines are the
first two:

[master (root-commit) d825bbc] Generate the Rails 4 application
57 files changed, 984 insertions(+)

Listing 3.1 Configuring your identity in Git

Figure 3.3 Creating a new repository

Licensed to Mark Watson <nordickan@gmail.com>

45Version control

d825bbc is the short commit ID, a unique identifier for the commit, so it changes with
each commit you make. (The number of files and insertions may also be different.) In
Git, commits are tracked against branches, and the default branch for a Git repository
is the master branch, which you just committed to.

 The second line lists the number of files changed, insertions (new lines added),
and deletions. If you modify a line, it’s counted as both an insertion and a deletion,
because, according to Git, you’ve removed the line and replaced it with the modified
version.

 To view a list of commits for the current branch, type git log. You should see out-
put similar to the following listing.

commit d825bbc23854cc256d5829a06516ceb19d148131
Author: Your Name <you@example.com>
Date: [date stamp]

Generate the Rails 4 application

The hash after the word commit is the long commit ID; it’s the longer version of the pre-
vious short commit ID. A commit can be referenced by either the long or the short
commit ID in Git, providing no two commits begin with the same short ID.3 With that
commit in your repository, you have something to push to GitHub, which you can do
by running the following commands, making sure you substitute your GitHub user-
name for [your username]:

$ git remote add origin git@github.com:[your username]/ticketee.git
$ git push origin master -u

The first command tells Git that you have a remote server called origin for this reposi-
tory. To access it, you use the git@github.com:[your username]/ticketee.git path,
which connects via SSH to the repository you created on GitHub. The second com-
mand pushes the named branch to that remote server, and the -u option tells Git to
always pull from this remote server for this branch unless told differently.

 The output from this command is similar to the following.

Counting objects: 73, done.
Compressing objects: 100% (58/58), done.
Writing objects: 100% (73/73), 86.50 KiB, done.
Total 73 (delta 2), reused 0 (delta 0)
To git@github.com:rubysherpas/r4ia_examples.git
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

Listing 3.2 Viewing the commit log

3 The chances of this happening are 1 in 268,435,456.

Listing 3.3 git push output

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 3 Developing a real Rails application

The second-to-last line in this output indicates that your push to GitHub succeeded,
because it shows that a new branch called master was created on GitHub.

 As we go through the book, we’ll also git push just like you. You can compare
your code to ours by checking out our repository on GitHub: https://github.com/
rubysherpas/r4ia_examples.

 To roll back the code to a given point in time, check out git log:

commit d1e9b6f398748d3ca8583727c1f86496465ba298
Author: Rebecca Skinner <[email redacted]>
Date: Sat Apr 4 00:00:33 2015 +0800

Protect state_id from users who do not have permission
to change it

commit ceb67d45cfcddbb8439da7b126802e6a48b1b9ea
Author: Rebecca Skinner <[email redacted]>
Date: Fri Apr 3 23:27:20 2015 +0800

Only admins and managers can change states of a ticket

commit ef5ec0f15e7add662852d6634de50648373f6116
Author: Rebecca Skinner <[email redacted]>
Date: Fri Apr 3 23:01:48 2015 +0800

Auto-assign the default state to newly-created tickets

Each of these lines represents a commit, and the commits will line up with when we
tell you to commit in the book. You can also check out the commit list on GitHub, if
you find that easier: https://github.com/rubysherpas/r4ia_examples/commits.

 Once you’ve found the commit with the right message, make note of the long com-
mit ID associated with it. Use this value with git checkout to roll the code back in
time:

$ git checkout 23729a

You only need to know enough of the hash for it to be unique: six characters is usually
enough. When you’re done poking around, go forward in time to the most recent
commit with git checkout again:

$ git checkout master

This is a tiny, tiny taste of the power of Git. Time travel at will! You just have to learn
the commands.

 Next, you must set up your application to use RSpec.

3.3 Application configuration
Even though Rails passionately promotes the convention over configuration line, some
parts of the application will need configuration. It’s impossible to avoid all configura-
tion. The main parts are gem dependency configuration, database settings, and styl-
ing. Let’s look at these parts now.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/rubysherpas/r4ia_examples
https://github.com/rubysherpas/r4ia_examples
https://github.com/rubysherpas/r4ia_examples/commits

47Application configuration

3.3.1 The Gemfile and generators

The Gemfile is used for tracking which gems are used in your application. Gem is the
Ruby word for a library of code, all packaged up to be included into your app—Rails is
a gem, and it in turn depends on many other gems.

 Bundler is a gem, and Bundler is also responsible for everything to do with the
Gemfile. It’s Bundler’s job to ensure that all the gems listed inside the Gemfile are
installed when your application is initialized. The following listing shows how it looks
inside.

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '4.2.1'
Use sqlite3 as the database for Active Record
gem 'sqlite3'
Use SCSS for stylesheets
gem 'sass-rails', '~> 5.0'
Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'
Use CoffeeScript for .coffee assets and views
gem 'coffee-rails', '~> 4.1.0'
See https://github.com/sstephenson/execjs#readme for more supported...
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'
Turbolinks makes following links in your web application faster...
gem 'turbolinks'
Build JSON APIs with ease. Read more: https://github.com/rails/jbu...
gem 'jbuilder', '~> 2.0'
bundle exec rake doc:rails generates the API under doc/api.
gem 'sdoc', '~> 0.4.0', group: :doc

Use ActiveModel has_secure_password
gem 'bcrypt', '~> 3.1.7'

Use Unicorn as the app server
gem 'unicorn'

Use Capistrano for deployment
gem 'capistrano-rails', group: :development

group :development, :test do
Call 'byebug' anywhere in the code to stop execution and get a...
gem 'byebug'

Access an IRB console on exception pages or by using <%= console...
gem 'web-console', '~> 2.0'

Spring speeds up development by keeping your application running in the

Listing 3.4 Default Gemfile in a new Rails app

Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 3 Developing a real Rails application

background. Read more: https://github.com/rails/spring
gem 'spring'

end

In this file, Rails sets a source to be https://rubygems.org (the canonical repository
for Ruby gems). All gems you specify for your application are gathered from the
source. Next, it tells Bundler it requires version 4.2.1 of the rails gem. Bundler
inspects the dependencies of the requested gem, as well as all gem dependencies of
those dependencies (and so on), and then does what it needs to do to make them all
available to your application.

 This file also requires the sqlite3 gem, which is used for interacting with SQLite3
databases, the default when working with Rails. If you were to use another database
system, you’d need to take out this line and replace it with the relevant gem, such as
mysql2 for MySQL or pg for PostgreSQL.

 Groups in the Gemfile are used to define gems that should be loaded in specific
scenarios. When using Bundler with Rails, you can specify a gem group for each Rails
environment, and by doing so, you specify which gems should be required by that envi-
ronment. A default Rails application has three standard environments: development,
test, and production.

This automatic requiring of gems in the Rails environment groups is done by the fol-
lowing line in config/application.rb:

Bundler.require(*Rails.groups)

The Rails.groups line provides two groups for Bundler to require: default and
development. The latter will change depending on the environment that you’re run-
ning. This code will tell Bundler to load only the gems in the default group (which is

Rails application environments
The development environment is used for your local application, such as when you’re
playing with it in the browser on your local machine. In development mode, page and
class caching are turned off, so requests may take a little longer than they do in pro-
duction mode. (Don’t worry—this is only the case for larger applications.) Things like
more detailed error messages are also turned on, for easier debugging.

The test environment is used when you run the automated test suite for the applica-
tion. This environment is kept separate from the development environment so your
tests start with a clean database to ensure predictability, and so you can include ex-
tra gems specifically to aid in testing.

The production environment is used when you finally deploy your application out into
the world for others to use. This mode is designed for speed, and any changes you
make to your application’s classes aren’t effective until the server is restarted.

Licensed to Mark Watson <nordickan@gmail.com>

https://rubygems.org

49Application configuration

all gems not in any specific group), as well as any gems in a group that has the same
name as the environment.

GETTING STARTED WITH BDD

Chapter 2 focused on behavior-driven development (BDD), and, as was more than
hinted at, you’ll use it to develop this application. To get started, you need to alter the
Gemfile to ensure that you have the correct gem for RSpec for your application.

 To add the rspec-rails gem, add this line to the bottom of the :development,
:test group in your Gemfile:

gem "rspec-rails", "~> 3.2.1"

This group in your Gemfile lists all the gems that will be loaded in the development
and test environments of your application. These gems won’t be available in a produc-
tion environment. You add rspec-rails to this group because you’re going to need a
generator from it to be available in development. Additionally, when you run a gener-
ator for a controller or model, it’ll use RSpec, rather than the default Test::Unit, to
generate the tests for that class.

 You’ve specified a version number with ~> 3.2.1,4 which tells RubyGems you
want rspec-rails 3.2.1 or higher, but less than rspec-rails 3.3. This means when RSpec
releases 3.2.2 and you go to install your gems, RubyGems will install the latest ver-
sion it can find, rather than only 3.2.1.

 Next, you’ll need to add Capybara to the Gemfile, in a new group specifically for
the test environment. You don’t put Capybara in the same group as the rspec-rails gem
because it doesn’t offer any generators that you need, so you only need this gem
loaded in the test environment.

group :test do
gem "capybara", "~> 2.4"

end

Capybara is a browser simulator in Ruby that’s used for integration testing, which you’ll
be doing shortly. This kind of testing ensures that when a link is clicked in your appli-
cation, it goes to the correct page; or that when you fill in a form and click Submit, an
onscreen message tells you that the form’s operation was successful.

 Capybara also supports real browser testing. If you tell RSpec that your test is a
JavaScript test, it will open a new Firefox window and run the test there—you’ll be able
to see your tests as they occur, and your application will behave exactly the same as it
does when you view it yourself. You’ll use this extensively when we start writing
JavaScript in chapter 9.

 To install these gems on your system, run bundle update at the root of your appli-
cation. This command tells Bundler to ignore your Gemfile.lock file and use your
Gemfile to install all the gems specified in it. Bundler then updates Gemfile.lock with
the list of gems that were installed, as well as their versions. The next time bundle is

4 The ~> operator is called the approximate version constraint.

Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 3 Developing a real Rails application

run, the gems will be read from the Gemfile.lock file, rather than the Gemfile. You
should commit this file to your repository so that when other people work on your
project and run bundle install, they’ll get exactly the same versions that you have.

 With the necessary gems for the application installed, you can run the
rspec:install generator, a generator provided by RSpec to set your Rails application
up for testing:

$ rails g rspec:install

REMINDER Remember, rails g is a shortcut for running rails generate!

You can also remove the automatically generated test application in the root folder
of your application—you won’t be using it.

 With this generated code in place, you should make a commit so you have another
base to roll back to if anything goes wrong:

$ git add .
$ git commit -m "Set up gem dependencies and run RSpec generator"
$ git push

3.3.2 Database configuration

By default, Rails uses a database system called SQLite3, which stores each environ-
ment’s database in separate files in the db directory. SQLite3 is the default database
system because it’s the easiest to set up. Out of the box, Rails also supports the MySQL
and PostgreSQL databases, and gems are available that can provide functionality for
connecting to other database systems such as Oracle.

 If you want to change which database your application connects to, you can open
config/database.yml (whose development configuration is shown in the following list-
ing) and alter the settings to the new database system.

development:
adapter: sqlite3
database: db/development.sqlite3
pool: 5
timeout: 5000

For example, if you want to use PostgreSQL, change the settings to match those in the
following listing. It’s common convention, but not mandatory, to call the environ-
ment’s database [app_name]_[environment].

development:
adapter: postgresql
database: ticketee_development
username: root
password: t0ps3cr3t

Listing 3.5 config/database.yml, SQLite3 example

Listing 3.6 config/database.yml, PostgreSQL example

Licensed to Mark Watson <nordickan@gmail.com>

51Beginning your first feature

You’re welcome to change the database if you wish. Rails will go about its business. But
it’s good practice to develop and deploy on the same database system to avoid strange
behavior between two different systems. Systems such as PostgreSQL perform faster
than SQLite, so switching to it may increase your application’s performance. Be mind-
ful, however, that switching database systems doesn’t automatically move your existing
data over for you.

 It’s generally wise to use different names for the different database environments:
if you use the same database in development and test modes, the database would be
emptied of all data when the tests were run, eliminating anything you might have set
up in development mode. You should never work on the live production database
directly unless you’re absolutely sure of what you’re doing, and even then extreme
care should be taken.

 Finally, if you’re using MySQL, it’s wise to set the encoding to utf-8 for the data-
base, using the following setup in the config/database.yml file.

development:
adapter: mysql2
database: ticketee_development
username: root
password: t0ps3cr3t
encoding: utf8

This way, the database is set up automatically to work with UTF-8, eliminating any
potential encoding issues that may be encountered otherwise.

 That’s database configuration in a nutshell. For this book and for the Ticketee
application, we’ll use the default of SQLite3, but it’s good to know about the alterna-
tives and how to configure them.

3.4 Beginning your first feature
You now have version control for your application, and you’re hosting it on GitHub.
It’s time to write your first Capybara-based test, which isn’t nearly as daunting as it
sounds. We’ll explore things such as models and RESTful routing while you do it. It’ll
be simple, promise!

 The CRUD (create, read, update, delete) acronym is something you’ll see all the
time in the Rails world. It represents the creation, reading, updating, and deleting of
something, but it doesn’t say what that something is.

 In the Rails world, CRUD is usually referred to when talking about resources. Resources
are the representation of the information throughout your application—the things that
your application is designed to manage. The following section goes through the
beginnings of generating a CRUD interface for a project resource by applying the BDD
practices you learned in chapter 2 to the application you just bootstrapped. What comes
next is a sampler of how to apply these practices when developing a Rails application.

Listing 3.7 config/database.yml, MySQL example

Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 Developing a real Rails application

Throughout the remainder of the book, you’ll continue to apply these practices to
ensure that you have a stable and maintainable application.

 Let’s get into it!

3.4.1 Creating projects

The first story for your application is the creation (the C in
CRUD). You’ll create a resource representing projects in your
application by first writing a test for the process by which a user
will create projects, then creating a controller and model, and
then creating a route. Then you’ll add a validation to ensure that
no project can be created without a name. When you’re done
with this feature, you’ll have a form that looks like figure 3.4.

 First, create a new directory at spec/features—all of the
specs covering your features will go there. Then, in a file called
spec/features/creating_projects_spec.rb, you’ll put the test
that will make sure this feature works correctly when it’s fully
implemented. The test code is shown in the following listing.

require "rails_helper"

RSpec.feature "Users can create new projects" do
scenario "with valid attributes" do
visit "/"

click_link "New Project"

fill_in "Name", with: "Sublime Text 3"
fill_in "Description", with: "A text editor for everyone"
click_button "Create Project"

expect(page).to have_content "Project has been created."
end

end

To run this test, run bundle exec rspec from inside your ticketee folder. This com-
mand will run all of your specs and display the first failure of your application’s first
test:

1) Users can create new projects with valid attributes
Failure/Error: visit "/"
ActionController::RoutingError:
No route matches [GET] "/"

THE SCHEMA.RB FILE Before the test failure, you’ll also get a warning that
your schema.rb file doesn’t exist yet. This schema.rb file represents Rails’
knowledge about the application’s database. You haven’t created a database
yet, so it’s safe to ignore this warning for now. It will get resolved when you
create your first database table shortly.

Listing 3.8 spec/features/creating_projects_spec.rb

Figure 3.4 Form
to create projects

Licensed to Mark Watson <nordickan@gmail.com>

53Beginning your first feature

It falls on the application’s router to figure out where the request should go. Typically,
the request would be routed to an action in a controller, but at the moment there are
no routes at all for the application. With no routes, the Rails router can’t find the
route for "/" and so gives you the error shown.

 You have to tell Rails what to do with a request for "/". You can do this easily in
config/routes.rb. At the moment, this file has the following content (comments
removed).

Rails.application.routes.draw do
end

The comments are good for a read if you’re interested in the other routing syntax, but
they’re not necessary at the moment. (We’ve removed them from the code displayed
here, but you can keep them if you like.) To define a root route, you use the root
method like this in the block for the draw method:

Rails.application.routes.draw do
root "projects#index"

end

This defines a route for requests to "/" (the root route) to point at the index action of
the ProjectsController. This controller doesn’t exist yet, and so the test should prob-
ably complain about that if you got the route right. Run bundle exec rspec to find out:

1) Users can create new projects with valid attributes
Failure/Error: visit "/"
ActionController::RoutingError:
uninitialized constant ProjectsController

This error is happening because the route is pointing at a controller that doesn’t exist.
When the request is made, the router attempts to load the controller, and because it
can’t find it, you’ll get this error.

 To define this ProjectsController constant, you must generate a controller. The
controller is the first port of call for your routes (as you can see now!), and it’s respon-
sible for querying the model for information in an action and then doing something
with that information (such as rendering a template). (Lots of new terms are explained
later. Patience, grasshopper.) To generate the controller, run this command:

$ rails g controller projects

You may be wondering why we use a pluralized name for the controller. Well, the con-
troller is going to be dealing with a plural number of projects during its lifetime, so it
makes sense to name it like this. The models are singular because their names refer to
their types. Another way to put it: you’re a human, not a humans. But a controller that
dealt with multiple humans would be called HumansController.

 The controller generator produces output similar to that produced when you ran
rails new earlier, but this time it creates files just for the controller you’ve asked Rails

Listing 3.9 config/routes.rb

Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Developing a real Rails application

to generate. The most important of these is the controller itself, which is housed in app/
controllers/projects_controller.rb and defines the ProjectsController constant that
your test needs. This controller is where all the actions will live, just like app/controllers/
purchases_controller.rb back in chapter 1. Here’s what this command outputs:

create app/controllers/projects_controller.rb
invoke erb
create app/views/projects
invoke rspec
create spec/controllers/projects_controller_spec.rb
invoke helper
create app/helpers/projects_helper.rb
invoke rspec
create spec/helpers/projects_helper_spec.rb
invoke assets
invoke coffee
create app/assets/javascripts/projects.coffee
invoke scss
create app/assets/stylesheets/projects.scss

A few notes about the output:

■ app/views/projects contains the views relating to your actions (more on this
shortly).

■ invoke helper shows that the helper generator was called here, generating a
file at app/helpers/projects_helper.rb. This file defines a ProjectsHelper
module. Helpers generally contain custom methods to be used in your view to
help with the rendering of content, and they come as blank slates when they’re
first created.

■ invoke erb signifies that the Embedded Ruby (ERB) generator was invoked.
Actions to be generated for this controller have corresponding ERB views
located in app/views/projects. For instance, the index action’s default view is
located at app/views/projects/index.html.erb.

■ invoke rspec shows that the RSpec generator was also invoked during the gen-
eration. This means RSpec has generated a new file at spec/controllers/
projects_controller_spec.rb, which you can use to test your controller—but not
right now.5

■ Finally, the assets for the controller are generated. Two files are generated here:
app/assets/javascripts/projects.coffee and app/assets/stylesheets/projects.scss.
The first file should contain any JavaScript related to the controller, written as
CoffeeScript (http://coffeescript.org). The second file should contain any CSS
related to the controller, written using SCSS (http://sass-lang.com). In the
development environment, these files are automatically parsed into JavaScript
and CSS, respectively.

5 By generating RSpec tests rather than Test::Unit tests, a longstanding issue in Rails has been fixed. In previous
versions of Rails, even if you specified the RSpec gem, all the default generators still generated Test::Unit tests.
With Rails, the testing framework you use is just one of a large number of configurable things in your application.

Licensed to Mark Watson <nordickan@gmail.com>

http://coffeescript.org
http://sass-lang.com

55Beginning your first feature

You’ve just run the generator to generate a new ProjectsController class and all its
goodies. This should fix the “uninitialized constant” error message. If you run bundle
exec rspec again, it declares that the index action is missing:

1) Users can create new projects with valid attributes
Failure/Error: visit "/"
AbstractController::ActionNotFound:
The action 'index' could not be found for ProjectsController

3.4.2 Defining a controller action

To define the index action in your controller, you must define a method in the
ProjectsController class, just as you did when you generated your first application.

class ProjectsController < ApplicationController
def index
end

end

If you run bundle exec rspec again, this time Rails complains of a missing projects/
index template:

1) Users can create new projects with valid attributes
Failure/Error: visit "/"
ActionView::MissingTemplate:
Missing template projects/index, application/index with
{
:locale => [:en],
:formats => [:html],
:variants => [],
:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:
* ".../ticketee/app/views"

We’ve reformatted the error message to make it a little easier on the untrained eye. It
doesn’t look very helpful, but if you know how to put the pieces together, you can
determine that it’s trying to look for a template called projects/index or application/
index, but it’s not finding it. These templates are primarily kept at app/views, so it’s
fair to guess that it’s expecting something like app/views/projects/index.

 The extension of the file will be composed of two parts: the format followed by the
handler. The error output lists :html as an available format, which is good, because we
want to render an HTML page. But what’s a handler?

 A handler is a preprocessor for the template, or a templating language. There are a
number of handlers built in (as the error output lists), and many more can be added
by using extra gems, but the default for Rails views is :erb. Putting it all together, the
view that your index action will render belongs in app/views/projects/
index.html.erb.

Listing 3.10 app/controllers/projects_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Developing a real Rails application

You could also create a file at app/views/application/index.html.erb to provide the
view for the index action from the ProjectsController. This would work because
ProjectsController inherits from ApplicationController. If you had another con-
troller inherit from ProjectsController, you could put an action’s template at app/
views/application, app/views/projects, or app/views/that_controller, and Rails would
still pick up on it. This allows different controllers to share views in a simple fashion.
Creating a view at app/views/application/index.html.erb would make this view avail-
able for all controllers that inherit from ApplicationController, but that’s not what
we want to do in this case.

 To generate this view, create the app/views/projects/index.html.erb file and leave
it blank for now. You can run just the single spec for creating projects with bundle
exec rspec:

1) Users can create new projects with valid attributes
Failure/Error: click_link "New Project"
Capybara::ElementNotFound:
Unable to find link "New Project"

You’ve defined a homepage for your application by defining a root route, generating
a controller, putting an action in it, and creating a view for that action. Now Capybara
is successfully navigating to it and rendering it. That’s the first step in the first test
passing for your first application, and it’s a great first step!

 The second line in your spec is now failing, and it’s up to you to fix it. You need a link
on the root page of your application that reads “New Project.” That link should go in
the view of the controller that’s serving the root route request: app/views/projects/
index.html.erb. Open app/views/projects/index.html.erb and put the link in by using
the link_to method:

<%= link_to "New Project", new_project_path %>

This single line re-introduces two old concepts and a new one: ERB output tags, the
link_to method (both of which you saw in chapter 1), and the mysterious
new_project_path method.

 As a refresher, in ERB, when you use <%= (known as an ERB output tag), you’re tell-
ing ERB that whatever the output of this Ruby is, put it on the page. If you only want to

Rails view variants
We haven’t discussed the variants option in the output at all. View variants are a
relatively new feature within Rails, and they allow you to provide different views based
on certain criteria, such as what device a user is accessing the site through.

The Rails 4.1 release notes have the best information about variants, so if you’re in-
terested in what they can do, check them out here: http://guides.rubyonrails.org/
4_1_release_notes.html#action-pack-variants.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/4_1_release_notes.html#action-pack-variants

57Beginning your first feature

evaluate (and not output) Ruby, you use an ERB evaluation tag <%, which doesn’t out-
put content to the page but only evaluates it. Both of these tags end in %>.

 The link_to method in Rails generates an <a> tag with the text of the first argu-
ment and the href of the second argument. This method can also be used in block
format if you have a lot of text you want to link to:

<%= link_to new_project_path do %>
bunch
of
text

<% end %>

Where new_project_path comes from deserves its own section. It’s the very next one.

3.4.3 RESTful routing

The new_project_path method is as yet undefined. If you ran the test again, it would
complain of an “undefined local variable or method, ‘new_project_path’.” You can
define this method by defining a route to what’s known as a resource in Rails. Resources
are collections of objects that all belong in a common location, such as projects, users,
or tickets.

 You can add the projects resource in config/routes.rb by using the resources
method, putting it directly under the root method in this file.

Rails.application.routes.draw do
root "projects#index"

resources :projects
end

This is called a resource route, and it defines the routes to the seven RESTful actions in
your projects controller. When something is said to be RESTful, it means it conforms
to Rails’ interpretation of the Representational State Transfer (REST) architectural
style. (See Wikipedia for more information on REST: http://en.wikipedia.org/wiki/
Representational_state_transfer.)

 Rails can’t get you all the way there, but it can help. With Rails, this means the
related controller has seven potential actions:

These seven actions match up with just four request paths:

Listing 3.11 resources :projects line in config/routes.rb

■ index ■ edit

■ show ■ update

■ new ■ destroy

■ create

■ /projects ■ /projects/:id

■ /projects/new ■ /projects/:id/edit

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

58 CHAPTER 3 Developing a real Rails application

How can four be equal to seven? It can’t! Not in this world, anyway. Rails will deter-
mine what action to route to on the basis of the HTTP method of the requests to these
paths. Table 3.1 lists the routes, HTTP methods, and corresponding actions to make it
clearer.

The routes listed in the table are provided when you use resources :projects. This is
yet another great example of how Rails takes care of the configuration so you can take
care of the coding.

 To review the routes you’ve defined, you can run the bundle exec rake routes
command and get output similar to that in table 3.1:

Prefix Verb URI Pattern Controller#Action
root GET / projects#index

projects GET /projects(.:format) projects#index
POST /projects(.:format) projects#create

new_project GET /projects/new(.:format) projects#new
edit_project GET /projects/:id/edit(.:format) projects#edit

project GET /projects/:id(.:format) projects#show
PATCH /projects/:id(.:format) projects#update
PUT /projects/:id(.:format) projects#update
DELETE /projects/:id(.:format) projects#destroy

The words in the leftmost column of this output are the beginnings of the method
names you can use in your controllers or views to access them. If you want just the
path to a route, such as /projects, then use projects_path. If you want the full URL,
such as http://yoursite.com/projects, use projects_url. It’s best to use these helpers
rather than hardcoding the URLs; doing so makes your application consistent across
the board.

 For example, to generate the route to a single project, you’d use either
project_path or project_url:

project_path(@project)

Table 3.1 RESTful routing match-up

HTTP method Route Action

GET /projects index

POST /projects create

GET /projects/new new

GET /projects/:id show

PATCH/PUT /projects/:id update

DELETE /projects/:id destroy

GET /projects/:id/edit edit

Licensed to Mark Watson <nordickan@gmail.com>

59Beginning your first feature

This method takes one argument, shown in the URI pattern with the :id notation, and
generates the path according to this object. The four paths mentioned earlier match
up to the helpers in table 3.2.

Running bundle exec rspec now produces a complaint about a missing new action:

1) Users can create new projects with valid attributes
Failure/Error: click_link "New Project"
AbstractController::ActionNotFound:
The action 'new' could not be found for ProjectsController

As shown in the following listing, you define the new action in your controller by
defining a new method directly underneath the index method.

class ProjectsController < ApplicationController
def index
end

def new
end

end

Running bundle exec rspec now results in a complaint about a missing new template,
just as it did with the index action:

1) Users can create new projects with valid attributes
Failure/Error: click_link "New Project"
ActionView::MissingTemplate:
Missing template projects/new, application/new with
{
:locale => [:en],
:formats => [:html],
:variants => [],
:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:
* ".../ticketee/app/views"

Table 3.2 RESTful routing match-up for GET routes

URL Helper

GET /projects projects_path

GET /projects/new new_project_path

GET /projects/:id project_path

GET /projects/:id/edit edit_project_path

Listing 3.12 app/controllers/projects_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Developing a real Rails application

You can create the file at app/views/projects/new.html.erb to make this test go one
step further, although this is a temporary solution. You’ll come back to this file later to
add content to it.

 When you run the spec again, the line that should be failing is the one regarding
filling in the Name field. Find out if this is the case by running bundle exec rspec:

1) Users can create new projects with valid attributes
Failure/Error: fill_in "Name", with: "Sublime Text 3"
Capybara::ElementNotFound:
Unable to find field "Name"

Now Capybara is complaining about a missing Name field on the page it’s currently
on: the new page. You must add this field so that Capybara can fill it in. Before you do
that, however, fill out the new action in the ProjectsController as follows:

def new
@project = Project.new

end

When you fill out the view with the fields you need to create a new project, you’ll need
something to base the fields on—an instance of the class you want to create. This
Project constant will be a class located at app/models/project.rb, thereby making it a
model.

OF MODELS AND MIGRATIONS

A model is used to retrieve information from the database. Because models by default
inherit from Active Record, you don’t have to set up anything extra. Run the following
command to generate your first model:

$ rails g model project name description

This syntax is similar to the controller generator’s syntax, except that you specify that
you want a model, not a controller.

 When the generator runs, it generates not only the model file but also a migration
containing the code to create the table (containing the specified fields) for the
model. You can specify as many fields as you like after the model’s name. They default
to string type, so you don’t need to specify them. If you wanted to be explicit, you
could use a colon followed by the field type, like this:

$ rails g model project name:string description:string

A model provides a place for any business logic that your application performs—one
common bit of logic is the way your application interacts with a database. A model is
also the place where you define validations (seen later in this chapter), associations (dis-
cussed in chapter 5), and scopes (easy-to-use filters for database calls, discussed in chap-
ter 7), among other things. To perform any interaction with data in your database,
you go through a model.6

6 Although it’s possible to perform database operations without a model in Rails, 99% of the time you’ll want
to use a model.

Licensed to Mark Watson <nordickan@gmail.com>

61Beginning your first feature

 Migrations are effectively version control for the database. They’re defined as Ruby
classes, which allows them to apply to multiple database schemas without having to be
altered. All migrations have a change method in them when they’re first defined. For
example, the code shown in the following listing comes from the migration that was
just generated.

class CreateProjects < ActiveRecord::Migration
def change
create_table :projects do |t|

t.string :name
t.string :description

t.timestamps null: false
end

end
end

When you run the migration forward (using bundle exec rake db:migrate), it creates
the table in the database. When you roll the migration back (with bundle exec rake
db:rollback), it deletes (or drops) the table from the database.

 If you need to do something different on the up and down parts, you can use those
methods instead.

class CreateProjects < ActiveRecord::Migration
def up
create_table :projects do |t|

t.string :name
t.string :description

t.timestamps null: false
end

end

def down
drop_table :projects

end
end

Here, the up method would be called if you ran the migration forward, and the down
method would be run if you ran it backward.

 This syntax is especially helpful if the migration does something that has a reverse
function that isn’t clear, such as removing a column:7

Listing 3.13 db/migrate/[date]_create_projects.rb

Listing 3.14 Explicitly using up and down methods to define a migration

7 Rails actually does know how to reverse the removal of a column if you provide an extra field type argument
to remove_column; for example, remove_column :projects, :name, :string. We’ll leave this here for
demonstration purposes, though.

Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Developing a real Rails application

class CreateProjects < ActiveRecord::Migration
def up
remove_column :projects, :name

end

def down
add_column :projects, :name, :string

end
end

In this case, Active Record wouldn’t know what type of field to re-add this column as,
so you must tell it what to do in the case of this migration being rolled back.

 In the projects migration, the first line of the change method tells Active Record that
you want to create a table called projects. You call this method in the block format,
which returns an object that defines the table. To add fields to this table, you call meth-
ods on the block’s object (called t in this example and in all model migrations), the
name of which usually reflects the type of column it is; the first argument is the name
of that field. The timestamps method is special: it creates two fields, created_at and
updated_at, which are by default set to the current time in coordinated universal time
(UTC)8 by Rails when a record is created and updated, respectively.

 A migration doesn’t automatically run when you create it—you must run it yourself
using this command:

$ bundle exec rake db:migrate

This command migrates the database up to the latest migration, which for now is your
only migration. If you create a whole slew of migrations at once, then invoking bundle
exec rake db:migrate will migrate them in the order in which they were created. This
is the purpose of the timestamp in the migration filename—to keep the migrations in
chronological order.

8 Yes, coordinated universal time has an initialism of UTC. This is what happens when you name things by com-
mittee (http://en.wikipedia.org/wiki/Coordinated_Universal_Time#Etymology).

The end of rake db:test:prepare
In older versions of Rails (before 4.1), whenever you ran a migration in the develop-
ment environment with rake db:migrate, you also had to manually keep your test
database in sync with rake db:test:prepare. This led to much confusion. Your
tests could raise errors about missing database fields, but they were there—you’d
run migrations to create them but not run rake db:test:prepare to sync those
changes to the test database.

Now the two databases are kept in sync automatically, with this line in your spec/
rails_helper.rb file:

ActiveRecord::Migration.maintain_test_schema!

No more need to call rake db:test:prepare!

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Coordinated_Universal_Time#Etymology

63Beginning your first feature

With this model created and its related migration run, your test won’t get any further,
but you can start building out the form to create a new project.

FORM BUILDING

To add the fields for creating a new project to the new action’s view, you can put them
in a form, but not just any form: a form_for.

<h1>New Project</h1>
<%= form_for(@project) do |f| %>

<p>
<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>
<%= f.label :description %>

<%= f.text_field :description %>

</p>

<%= f.submit %>
<% end %>

So many new things!
 Starting at the top, the form_for method is Rails’ way of building forms for Active

Record objects. You pass it the @project object you defined in your controller as the
first argument, and with this, the helper does much more than simply place a form tag
on the page. form_for inspects the @project object and creates a form builder specif-
ically for that object. The two main things it inspects are whether it’s a new record and
what the class name is.

 What action attribute the form has (the URL the form submits its data to)
depends on whether or not the object is a new record. A record is classified as new
when it hasn’t been saved to the database. This check is performed internally to Rails
using the persisted? method, which returns true if the record is stored in the data-
base and false if it’s not.

 The class of the object also plays a pivotal role in where the form is sent—Rails
inspects this class and, from it, determines what the route should be. Because @project
is new and is an object of class Project, Rails determines that the submit URL is /proj-
ects and the method for the form is POST. Therefore, a request is sent to the create
action in ProjectsController.

 After that part of form_for is complete, you use the block syntax to receive an f
variable, which is a FormBuilder object. You can use this object to define your form’s
fields. The first element you define is a label. label tags directly relate to the input
fields on the page and serve two purposes. First, they give users a larger area to click,
rather than just the field, radio button, or check box. Second, you can reference the
label’s text in the test, and Capybara will know what field to fill in.

Listing 3.15 app/views/projects/new.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Developing a real Rails application

After the label, you add the text_field, which renders an <input> tag corresponding
to the label and the field. The output tag looks like this:

<input type="text" name="project[name]" id="project_name" />

Then you use the submit method to provide users with a Submit button for your form.
Because you call this method on the f object, Rails checks whether the record is new
and sets the text to read “Create Project” if the record is new or “Update Project” if it
isn’t. You’ll see this in use a little later when you build the edit action. For now, we’ll
focus on the new action!

 Run bundle exec rspec spec/features/creating_projects_spec.rb once more,
and you can see that your spec is one step closer to finishing—the field fill-in steps
have passed:

1) Users can create new projects with valid attributes
Failure/Error: click_button "Create Project"
AbstractController::ActionNotFound:
The action 'create' could not be found for ProjectsController

Capybara finds the label containing the Name text you ask for in your scenario, and fills
out the corresponding field with the value you specify. Capybara has a number of ways
to locate a field, such as by the name of the corresponding label, the id attribute of
the field, or the name attribute. The last two look like these:

fill_in "project_name", with: "Sublime Text 3"
or
fill_in "project[name]", with: "Sublime Text 3"

SHOULD YOU USE THE ID OR THE LABEL? Some argue that using the field’s ID or
name is a better approach, because these attributes don’t change as often as
labels may. But your tests should aim to be as human-readable as possible—
when you write them, you don’t want to be thinking of field IDs; you’re
describing the behavior at a higher level than that. To keep things simple,
you should continue using the label name.

Capybara does the same thing for the Description field and then clicks the button you
told it to click. The spec is now complaining about a missing action called create.
Let’s fix that.

Alternative label naming
By default, the label’s text value will be the “humanized” value of the field name; for
example, :name becomes “Name.” If you want to customize the text, you can pass
the label method a second argument:

<%= f.label :name, "Your name" %>

Licensed to Mark Watson <nordickan@gmail.com>

65Beginning your first feature

CREATING THE CREATE ACTION

To define this action, you define the create method underneath the new method in
the ProjectsController.

def create
@project = Project.new(project_params)

if @project.save
flash[:notice] = "Project has been created."
redirect_to @project

else
nothing, yet

end
end

The Project.new method takes one argument, which is a list of attributes that will be
assigned to this new Project object. For now, we’ll just call that list project_params.

 After you build your new @project instance, you call @project.save to save it to
the projects table in your database. Before that happens, though, Rails will run all
the data validations on the model, ensuring that it’s valid. At the moment, you have no
validations on the model, so it will save just fine.

 The flash method in your create action is a way of passing messages to the next
request, and it takes the form of a hash. These messages are stored in the session and
are cleared at the completion of the next request. Here you set the :notice key of the
flash hash to be “Project has been created” to inform the user what has happened.
This message is displayed later, as is required by the final step in your feature.

 The redirect_to method can take several different arguments—an object, or the
name of a route. If an object is given, Rails inspects it to determine what route it should
go to; in this case, it goes to project_path(@project) because the object has now been
saved to the database. This method generates a path in the form of /projects/:id, where
:id is the record’s id attribute assigned by your database system. The redirect_to
method tells the browser to begin making a new request to that path and sends back an
empty response body; the HTTP status code will be a “302 Redirect,” and the URL to
redirect to will match the URL of the currently nonexistent show action.

 If you run bundle exec rspec now, you’ll get an error about an undefined local
variable or method "project_params":

1) Users can create new projects with valid attributes
Failure/Error: click_button "Create Project"
NameError:
undefined local variable or method `project_params' for
#<ProjectsController:0x007fe704e31848>

Where does the data you want to make a new project from, come from? It comes from
the params provided to the controller, available to all Rails controller actions.

Listing 3.16 The create action of ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Developing a real Rails application

The params method returns the parameters passed to the action, such as those from
the form or query parameters from a URL, as a HashWithIndifferentAccess object.
This is different from a normal Hash object, because you can reference a String key
by using a matching Symbol, and vice versa.

 In this case, the params hash looks like this:

{
"utf8" => "?",
"authenticity_token" => "WRHnKqU...",
"project" => {
"name" => "Sublime Text 3",
"description" => "A text editor for everyone"

},
"commit" => "Create Project",
"controller" => "projects",
"action" => "create"

}

You can easily see what parameters your controller is receiving by looking at the server
logs in your terminal console. If you run your rails server, visit http://local-
host:3000/projects/new, and submit the data that your test is trying to submit, you’ll
see the following in the terminal:

Started POST "/projects" for 127.0.0.1 at [timestamp]
Processing by ProjectsController#create as HTML

Parameters: {"utf8"=>"?", "authenticity_token"=>"WRHnKqU...",
"project"=>{"name"=>"Sublime Text 3", "description"=>"A text editor
for everyone"}, "commit"=>"Create Project"}

The parameters are all listed right there.
 All the hashes nested inside the params hash are also HashWithIndifferentAccess

hashes. If you want to get the name key from the project hash here, you can use either
{ :name => "Sublime Text 3" }[:name], as in a normal Hash object, or { :name =>
"Sublime Text 3" }['name']; you may use either the String or the Symbol version—it
doesn’t matter.

Combining redirect_to and flash
You can combine flash and redirect_to by passing the flash as an option to the
redirect_to. If you want to pass a success message, use the notice flash key;
otherwise use the alert key.

To use either of these two keys, you can use this syntax:

redirect_to @project, notice: "Project has been created."
or
redirect_to @project, alert: "Project has not been created."

If you don’t wish to use either notice or alert, you must specify flash as a hash:

redirect_to @project, flash: { success: "Project has been created."}

Licensed to Mark Watson <nordickan@gmail.com>

67Beginning your first feature

The first key in the params hash, commit, comes from the submit button of the form,
which has the value "Create Project". This is accessible as params[:commit]. The
second key, action, is one of two parameters always available; the other is controller.
These represent exactly what their names imply: the controller and action of the
request, accessible as params[:controller] and params[:action], respectively. The
final key, project, is, as mentioned before, a HashWithIndifferentAccess. It con-
tains the fields from your form and is accessible via params[:project]. To access the
name key in the params[:project] object, use params[:project][:name], which calls
the [] method on params to get the value of the :project key and then, on the result-
ing hash, calls [] again, this time with the :name key to get the name of the project
passed in.

 params[:project] has all the data you need to pass to Project.new, but you can’t
just pass it directly in. If you try to substitute project_params with params[:project]
in your controller, and then run bundle exec rspec again, you’ll get the following
error:

Failure/Error: click_button "Create Project"
ActiveModel::ForbiddenAttributesError:

ActiveModel::ForbiddenAttributesError

STRONG PARAMETERS

Oooh, forbidden attributes. Sounds scary. But this is important: it’s one form of secu-
rity help that Rails gives you via a feature called strong parameters, new as of Rails 4.

 You don’t want to accept just any submitted parameters; you want to accept the
ones that you want and expect, and no more. That way, someone can’t mess around
with your application by doing things like tampering with the form and adding new
fields before submitting it.

The utf8 and authenticity_token params
There are two special parameters in the params hash: utf8 and authenticity
_token.

The utf8 parameter is a hack for older browsers (read: old versions of Internet Ex-
plorer) to force them into UTF-8 compatibility. You can safely ignore this one.

The authenticity_token parameter is used by Rails to validate that the request
is authentic. Rails generates this in the <meta> tag on the page (using <%=
csrf_meta_tags %> in app/views/layouts/application.html.erb) and also stores it
in the user’s session. Upon the submission of the form, it compares the value in
the form with the one in the session, and if they match the request is deemed au-
thentic. Using authenticity_token mitigates cross-site request forgery (CSRF) at-
tacks and so is a recommended best practice.

Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Developing a real Rails application

Change the ProjectsController code to add a new definition for the
project_params method:

def create
@project = Project.new(project_params)

if @project.save
flash[:notice] = "Project has been created."
redirect_to @project

else
nothing, yet

end
end

private

def project_params
params.require(:project).permit(:name, :description)

end

You now call the require method on your params, and you require that the :project
key exists. You also allow it to have :name and :description entries—any other fields
submitted will be discarded. Finally, you wrap up that logic into a method so you can
use it in other actions, and you make it private so you don’t expose it as some kind of
weird action! You’ll use this method in one other action in this controller later on—
the update action.

 With that done, run bundle exec rspec again, and you’ll get a new error:

1) Users can create new projects with valid attributes
Failure/Error: click_button "Create Project"
AbstractController::ActionNotFound:
The action 'show' could not be found for ProjectsController

Strong parameters vs. attr_accessible
Before Rails 4.0, Rails supported a feature called attr_accessible for protecting
your models from unexpected attributes. You may see this used in older Rails proj-
ects—it involves listing out every field in the model that should be mass-assignable
via user-submitted data.

The attr_accessible approach caused problems because different controllers
might want to make available different sets of parameters for the same model, de-
pending on the context. For instance, an admin area of the site may want to permit
different fields than the user-facing area of the site—admins might have more fields,
such as the ability to set the owner of a project.

The advantage of strong parameters is that the permitted parameters are now list-
ed on a controller level, rather than at the model level. This allows for a higher de-
gree of flexibility.

Licensed to Mark Watson <nordickan@gmail.com>

69Beginning your first feature

The test has made it through the create action, followed the redirect you issued, and
now it’s stuck on the next request—the page you redirected to, the show action.

 The show action is responsible for displaying a single record’s information. Retriev-
ing a record to display is done by default using the record’s ID. You know the URL for
this page will be something like /projects/1, but how do you get the 1 from that URL?
Well, when you use resource routing, as you’ve done already, the 1 part of this URL is
available as params[:id], just as params[:controller] and params[:action] are also
automatically made available by Rails. You can then use this params[:id] parameter
in your show action to find a specific Project object. In this case, the show action
should be showing the newly created project.

 Put the code from the following listing into app/controllers/projects_controller
.rb to set up the show action. Make sure it comes above the private declaration, or
you won’t be able to use it as an action!

def show
@project = Project.find(params[:id])

end

You pass the params[:id] object to Project.find. This gives you a single Project
object that relates to a record in the database, which has its id field set to whatever
params[:id] is. If Active Record can’t find a record matching that ID, it raises an
ActiveRecord::RecordNotFound exception.

 When you rerun bundle exec rspec spec/features/creating_projects _spec.rb,
you’ll get an error telling you that the show action’s template is missing:

1) Users can create new projects with valid attributes
Failure/Error: click_button "Create Project"
ActionView::MissingTemplate:
Missing template projects/show, application/show with
{
:locale => [:en],
:formats => [:html],
:variants => [],
:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:
* ".../ticketee/app/views"

You can create the file app/views/projects/show.html.erb, with the following content
for now, to display the project’s name and description:

<h1><%= @project.name %></h1>
<p><%= @project.description %></p>

It’s a pretty plain page for a project, but it’ll serve our purpose.

Listing 3.17 The show action of ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Developing a real Rails application

 When you run the test again with bundle exec rspec spec/features/creating
_projects_spec.rb, you’ll see this message:

1) Users can create new projects with valid attributes
Failure/Error: expect(page).to have_content "Project has been
created."

expected to find text "Project has been created." in "Sublime
Text 3 A text editor for everyone"

./spec/features/creating_projects_spec.rb:13:in ...

This error message shows that the “Project has been created” text isn’t being displayed
on the page. You must put it somewhere, but where?

THE APPLICATION LAYOUT

The best location for this text is in the application layout, located at app/views/
layouts/application.html.erb. This file provides the layout for all templates in your
application, so it’s a great spot to output a flash message—no matter what controller
you set it in, it will be rendered on the page.

 The application layout is quite the interesting file.

<!DOCTYPE html>
<html>
<head>

<title>Ticketee</title>
<%= stylesheet_link_tag 'application', media: 'all',
'data-turbolinks-track' => true %>

<%= javascript_include_tag 'application',
'data-turbolinks-track' => true %>

<%= csrf_meta_tags %>
</head>
<body>

<%= yield %>

</body>
</html>

The first line sets up the doctype to be HTML for the layout, and three new methods
are used: stylesheet_link_tag, javascript_include_tag, and csrf_meta_tags.

 stylesheet_link_tag is for including CSS stylesheets from the app/assets/
stylesheets directory. Using this tag results in the following output, where [digest]
represents an MD5 hash of the contents of the file:

<link rel="stylesheet" href="/assets/projects-[digest].css?body=1"
media="all" data-turbolinks-track="true" />
<link rel="stylesheet" href="/assets/application-[digest].css?body=1"
media="all" data-turbolinks-track="true" />

The /assets path is served by a gem called Sprockets. In this case, the tag specifies the
/assets/application-[digest].css path, and any route prefixed with /assets is served by

Listing 3.18 app/views/layouts/application.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

71Beginning your first feature

Sprockets. Sprockets provides a feature commonly referred to as the asset pipeline.
When files are requested through the asset pipeline, they’re preprocessed and then
served out to the browser.

ASSET PIPELINE GUIDE If you want to know about the ins and outs of the asset
pipeline, read the official Ruby on Rails guide: http://guides.rubyonrails.org/
asset_pipeline.html. It covers far more functionality than we’ll touch on in this
entire book!

There’s also a second tag for the projects-[digest].css file. In development mode, Rails
generates tags for all of your stylesheets and JavaScript separately, for ease of debug-
ging. If you were to run the application in production mode, you’d get something very
different:

<link data-turbolinks-track="true" href="/assets/application-[digest].css"
media="all" rel="stylesheet" />

This single stylesheet is all of your stylesheets, concatenated together and minified.
That way, your users will load up all of your styles on their first visit, and the styles will
be cached for the rest of their stay, increasing overall performance.

 When the /assets/application-[digest].css asset is requested, Sprockets looks for a
file named application.css in the asset paths for your application. The three asset
paths it searches by default are app/assets, lib/assets, and vendor/assets, in that order.
Some gems add extra paths to this list, so you’re able to use assets from within those
gems as well.

 If the file has any additional extensions on it, such as a file called applica-
tion.css.scss, Sprockets will look up a preprocessor for the .scss extension and run the
file through that before serving it as CSS. You can chain together any number of
extensions, and Sprockets will parse the file for each one, working right to left.

 The application.css file that’s searched for in this example lives at app/assets/
application.css.scss. This has an additional .scss extension on it, so it’ll be prepro-
cessed by the Sass preprocessor before being served as CSS by the
stylesheet_link_tag call in the application layout.

Using Sass or SCSS
For your CSS files, you can use the Sass or SCSS language to produce more powerful
stylesheets. Your application depends on the sass-rails gem, which itself depends
on sass, the gem for these stylesheets. We won’t go into detail here because the
Sass site covers most of that ground: http://sass-lang.com/.

Rails automatically generates stylesheets for each controller that uses Sass, as in-
dicated by the .scss extensions.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html
http://sass-lang.com/

72 CHAPTER 3 Developing a real Rails application

The javascript_include_tag is for including JavaScript files from the JavaScript
directories of the asset pipeline. When the application string is specified here, Rails
loads the app/assets/javascripts/application.js file, which looks like this:

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require_tree .

This file includes some Sprockets-specific code that includes the jquery.js and
jquery_ujs.js files, located in the jquery-rails gem. (The jquery-rails gem is listed in
your Gemfile as a dependency of your application.) It also includes the JavaScript file
for Turbolinks, which is a feature we’ll discuss later. It compiles these three files, plus
all the files in the app/assets/javascripts directory, with the //= require_tree . into
one superfile called application.js.

 In development mode, these JavaScript files all get included into your page sepa-
rately, just like stylesheets, for ease of debugging. In the output of your page, you’ll
have the following:

<script src="/assets/jquery-[digest].js?body=1"
data-turbolinks-track="true"></script>

<script src="/assets/jquery_ujs-[digest].js?body=1"
data-turbolinks-track="true"></script>

<script src="/assets/turbolinks-[digest].js?body=1"
data-turbolinks-track="true"></script>

<script src="/assets/projects-[digest].js?body=1"
data-turbolinks-track="true"></script>

<script src="/assets/application-[digest].js?body=1"
data-turbolinks-track="true"></script>

These files are also served through the Sprockets gem. As with your stylesheets, you
can use an alternative syntax called CoffeeScript (http://coffeescript.org), which pro-
vides a simpler JavaScript syntax that compiles into proper JavaScript. Just as with the
Sass stylesheets, Rails generates CoffeeScript files in app/assets/javascripts with the
extension .coffee, indicating to Sprockets that they’re to be parsed by a CoffeeScript
interpreter before serving. You’ll use CoffeeScript a little later, in chapter 9.

 (If this is all going a bit over your head for now, don’t worry. We’ll come back to it
later when we need to modify assets and add a design to the application.)

 csrf_meta_tags is for protecting your forms from CSRF (http://en.wikipedia.org/
wiki/CSRF) attacks. These types of attacks were mentioned a short while ago when we
looked at the parameters for the create action. The csrf_meta_tags helper creates
two meta tags, one called csrf-param and the other csrf-token. This unique token
works by setting a specific key on forms that is then sent back to the server. The server
checks this key, and if the key is valid, the form is deemed valid. If the key is invalid, an
ActionController::InvalidAuthenticityToken exception occurs and the user’s ses-
sion is reset as a precaution.

 Later in app/views/layouts/application.html.erb is this single line:

<%= yield %>

Licensed to Mark Watson <nordickan@gmail.com>

http://coffeescript.org
http://en.wikipedia.org/wiki/CSRF

73Beginning your first feature

This line indicates to the layout where the current action’s template is to be rendered.
Create a new line just before <%= yield %>, and place the following code there:

<% flash.each do |key, message| %>
<div><%= message %></div>

<% end %>

This code renders all the flash messages that are defined, regardless of their name
and the controller they come from. These lines will display the flash[:notice] that
you set up in the create action of the ProjectsController.

 Run bundle exec rspec again, and you’ll see that the test is now fully passing:

3 examples, 0 failures, 2 pending

Why do you have two pending tests? If you examine the output more closely, you’ll see
this:

.**

Pending: (Failures listed here are expected and do not affect your
suite's status)

1) ProjectsHelper add some examples to (or delete)
.../ticketee/spec/helpers/projects_helper_spec.rb
Not yet implemented
./spec/helpers/projects_helper_spec.rb:14

2) Project add some examples to (or delete)
.../ticketee/spec/models/project_spec.rb
Not yet implemented
./spec/models/project_spec.rb:4

Finished in 0.07268 seconds (files took 1.26 seconds to load)
3 examples, 0 failures, 2 pending

The key part is “or delete.” Let’s delete those two files, because you’re not using them
yet:

$ rm spec/models/project_spec.rb
$ rm spec/helpers/projects_helper_spec.rb

Afterward, run bundle exec rspec one more time:

.

Finished in 0.07521 seconds (files took 1.25 seconds to load)
1 example, 0 failures

Yippee! You’ve just written your first BDD test for this application! That’s all there is to it.
 If this process feels slow, that’s how it’s supposed to feel when you’re new to any-

thing. Remember when you were learning to drive a car? You didn’t drive like Michael
Schumacher as soon as you got behind the wheel. You learned by doing it slowly and
methodically. As you progressed, you were able to do it more quickly, as you can all
things with practice.

Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Developing a real Rails application

3.4.4 Committing changes

Now you’re at a point where all your specs are running (just the one, for now). Points
like this are great times to make a commit:

$ git add .
$ git commit -m "'Create a new project' feature complete."

You should commit often, because commits provide checkpoints you can revert back
to if anything goes wrong. If you’re going down a path where things aren’t working,
and you want to get back to the last commit, you can revert all your changes by using

$ git checkout .

USE GIT CHECKOUT . CAREFULLY! This command doesn’t prompt you to ask
whether you’re sure you want to take this action. You should be incredibly
sure that you want to destroy your changes. If you’re not sure and want to
keep your changes while reverting back to the previous revision, it’s best to
use the git stash command. This command stashes your unstaged changes
to allow you to work on a clean directory and lets you restore the changes
using git stash pop.

With the changes committed to your local repository, you can push them off to the
GitHub servers. If for some reason the code on your local machine goes missing, you
have GitHub as a backup.

 Run this command to push the code up to GitHub’s servers:

$ git push

Commit early. Commit often.

3.4.5 Setting a page title

Before you completely finish working with this story, there’s one more thing to point
out: the templates (such as show.html.erb) are rendered before the layout. You can use
this to your benefit by setting an instance variable such as @title in the show action’s

Committing with older Git versions
If you’re using a version of Git older than 2.0, running git add . when you want to
stage the deletion of files will raise an error. You’ll see something like the following:

warning: You ran 'git add' with neither '-A (--all)' or '--ignore-removal',
whose behaviour will change in Git 2.0 with respect to paths you removed.
Paths like '[filename]' that are
removed from your working tree are ignored with this version of Git.

If this happens, you can add the -A option to git add, which will stage all file chang-
es, including file deletions:

$ git add -A .

Licensed to Mark Watson <nordickan@gmail.com>

75Beginning your first feature

template; then you can reference it in your application’s layout to show a title for your
page at the top of the tab or window.

 To test that the page title is correctly implemented, add a little bit extra to your sce-
nario for it. At the bottom of the test in spec/features/creating_projects_spec.rb, add
the four lines shown in the following listing.

project = Project.find_by(name: "Sublime Text 3")
expect(page.current_url).to eq project_url(project)

title = "Sublime Text 3 - Projects - Ticketee"
expect(page).to have_title title

The first line here uses the find_by method to find a project by its name. This finds
the project that has just been created by the code directly above it. The second line
ensures that you’re on what should be the show action in the ProjectsController.
The third and fourth lines find the title element on the page by using Capybara’s
find method and check using have_title that this element contains the page title of
“Sublime Text 3 - Projects - Ticketee.”

 If you run bundle exec rspec spec/features/creating_projects_spec.rb now,
you’ll see this error:

1) Users can create new projects with valid attributes
Failure/Error: expect(page).to have_title title
expected "Ticketee" to include "Sublime Text 3 - Projects -
Ticketee"

This error is happening because the title element doesn’t contain all the right parts,
but this is fixable! Write this code into the top of app/views/projects/show.html.erb:

<% @title = "Sublime Text 3 - Projects - Ticketee" %>

This sets up a @title instance variable in the template. Because the template is ren-
dered before the layout, you’re able to then use this variable in the layout.

 But if a page doesn’t have a @title variable set, there should be a default title of
“Ticketee.” To set this up, enter the following code in app/views/layouts/applica-
tion.html.erb where the title tag currently is:

<title><%= @title || "Ticketee" %></title>

In Ruby, instance variables that aren’t set return nil as their value. If you try to access
an instance variable that returns a nil value, you can use || to return a different
value, as in this example.

 With this in place, the test should pass when you run bundle exec rspec:

1 example, 0 failures

Now that this test passes, you can change your code and have a solid base to ensure
that whatever you change works as you expect. To demonstrate this point, let’s change
the code in show to use a helper instead of setting a variable.

Listing 3.19 spec/features/creating_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 3 Developing a real Rails application

 Helpers are methods you can define in the files in app/helpers, and they’re made
available in your views. Helpers are for extracting the logic from the views; views should
just be about displaying information. Every controller that comes from the controller
generator has a corresponding helper, and another helper module exists for the entire
application: the ApplicationHelper module, which lives at app/helpers/
application_helper.rb.

 Open app/helpers/application_helper.rb and insert the code from the following
listing.

module ApplicationHelper
def title(*parts)
unless parts.empty?

content_for :title do
(parts << "Ticketee").join(" - ")

end
end

end
end

When you specify an argument in a method beginning with the splat operator (*), any
arguments passed from this point will be available in the method as an array. Here
that array can be referenced as parts. Inside the method, you check to see if parts is
empty? by using a keyword that’s the opposite of if: unless. If no arguments are
passed to the title method, parts will be empty and empty? will return true.

 If parts are specified for the title method, then you use the content_for method
to define a named block of content, giving it the name title. Inside this content
block, you join the parts together using a hyphen (-), meaning that this helper will
output something like "Sublime Text 3 - Projects - Ticketee".

 This helper method will build up a text string that you can use as the title of any
page, including the default value of "Ticketee", and all you need to do is call it from
the view with the right arguments—an array of the parts that will make up the title of
the page. Neat.

 Now you can replace the title line in app/views/projects/show.html.erb with this:

<% title(@project.name, "Projects") %>

Let’s replace the title tag line in app/views/layouts/application.html.erb with this
code:

<title>
<% if content_for?(:title) %>
<%= yield(:title) %>

<% else %>
Ticketee

<% end %>
</title>

Listing 3.20 app/helpers/application_helper.rb

Licensed to Mark Watson <nordickan@gmail.com>

77Beginning your first feature

This code uses a new method called content_for?, which checks that the specified
content block is defined. It’s defined only if content_for(:title) is called some-
where, such as in the template. If it is, you use yield and pass it the name of the con-
tent block, which causes the content for that block to be rendered. If it isn’t, then you
output the word Ticketee, and that becomes the title.

 When you run this test again with bundle exec rspec, it will still pass:

1 example, 0 failures

That’s a lot neater, isn’t it? Create a commit for that functionality and push your
changes:

$ git add .
$ git commit -m "Add title functionality for project show page"
$ git push

Next up, we’ll look at how you can stop users from entering invalid data into your
forms.

3.4.6 Validations

The next problem to solve is preventing users from leaving a required field blank. A
project with no name isn’t useful to anybody. Thankfully, Active Record provides vali-
dations for this purpose. Validations are run just before an object is saved to the data-
base, and if the validations fail, the object isn’t saved. Ideally, in this situation, you
want to tell the user what went wrong so they can fix it and attempt to create the proj-
ect again.

 With this in mind, you can add another test to ensure that this happens. Add it to
spec/features/creating_projects_spec.rb using the code from the following listing.

scenario "when providing invalid attributes" do
visit "/"

click_link "New Project"
click_button "Create Project"

expect(page).to have_content "Project has not been created."
expect(page).to have_content "Name can't be blank"

end

The first two lines are identical to the ones you placed in the other scenario. You
should eliminate this duplication by making your code DRY (Don’t Repeat Yourself!).
This is another term you’ll hear a lot in the Ruby world.9 It’s easy to extract common
code from where it’s being duplicated and move it into a method or module that you

Listing 3.21 spec/features/creating_projects_spec.rb

9 Some people like to use “DRY” like an adjective, and also refer to code that isn’t DRY as WET (which doesn’t
actually stand for anything). We think those people are a bit weird.

Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 3 Developing a real Rails application

can use instead of the duplication. One line of code is 100 times better than 100 lines
of duplicated code.

 To DRY up your code, define a before block before the first scenario. For RSpec,
before blocks are run before every test in the file. Change spec/features/
creating_projects_spec.rb to look like this.

require "rails_helper"

RSpec.feature "Users can create new projects" do
before do
visit "/"

click_link "New Project"
end

scenario "with valid attributes" do
fill_in "Name", with: "Sublime Text 3"
fill_in "Description", with: "A text editor for everyone"
click_button "Create Project"

expect(page).to have_content "Project has been created."

project = Project.find_by(name: "Sublime Text 3")
expect(page.current_url).to eq project_url(project)

title = "Sublime Text 3 - Projects - Ticketee"
expect(page).to have_title title

end

scenario "when providing invalid attributes" do
click_button "Create Project"

expect(page).to have_content "Project has not been created."
expect(page).to have_content "Name can't be blank"

end
end

There! That looks a lot better!
 Now when you run bundle exec rspec, it will fail because it can’t see the error mes-

sage that it’s expecting to see on the page:

1) Users can create new projects when providing invalid attributes
Failure/Error: expect(page).to have_content "Project has not been
created."
expected to find text "Project has not been created." in "Project
has been created."

ADDING VALIDATIONS

To get this test to do what you want it to do, you’ll need to add a validation. Valida-
tions are defined on the model and are run before the data is saved to the database.

Listing 3.22 spec/features/creating_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

79Beginning your first feature

 To define a validation to ensure that the name attribute is provided when a project is
created, open the app/models/project.rb file and make it look like the following listing.

class Project < ActiveRecord::Base
validates :name, presence: true

end

The validates method’s usage is the same as how you used it in chapter 1. It tells the
model that you want to validate the name field, and that you want to validate its pres-
ence. There are other kinds of validations as well; for example, the :uniqueness key,
when passed true as the value, validates the uniqueness of this field as well, ensuring
that only one record in the table has that specific value.

UNIQUENESS VALIDATION There are potential gotchas with the Active Record
uniqueness validation that may allow duplicate data to be saved to the data-
base. We’re intentionally ignoring them for now, but we’ll cover them, and
how to resolve the issues they raise, in section 6.1.

With the presence validation in place, you can experiment with the validation by
using the Rails console, which allows you to have all the classes and the environment
from your application loaded in a sandbox environment. You can launch the console
with this command,

$ rails console

or with its shorter alternative:

$ rails c

If you’re familiar with Ruby, you may realize that this is effectively IRB with some Rails
sugar on top. If you’re new to both, IRB stands for Interactive Ruby, and it provides an
environment for you to experiment with Ruby without having to create new files. The
console prompt looks like this:10

Loading development environment (Rails 4.2.1)
irb(main):001:0>

At this prompt, you can enter any valid Ruby, and it’ll be evaluated.
 For now, the purpose of opening this console is to test the newly appointed valida-

tion. To do this, try to create a new project record by calling the create method. The
create method is similar to the new method, but it attempts to create an object and
then a database record for it rather than just the object. You use it identically to the
new method:

irb(main):001:0> Project.create
=> #<Project id: nil, name: nil, description: nil, created_at: nil,

updated_at: nil>

Listing 3.23 app/models/project.rb

10 Alternatively, you may see something similar to ruby-2.2.1:001 >, which is fine.

Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 3 Developing a real Rails application

Here you get a new Project object with the name and description attributes set to
nil, as you should expect, because you didn’t specify it. The id attribute is nil too,
which indicates that this object isn’t persisted (saved) in the database.

 If you comment out or remove the validation from the Project class and type
reload! in your console, the changes you just made to the model are reloaded.
When the validation is removed, you have a slightly different outcome when you call
Project.create:

irb(main):001:0> Project.create
=> #<Project id: 1, name: nil, description: nil,

created_at: [timestamp], updated_at: [timestamp]>

Here, the name field is still expectedly nil, but the other three attributes have values.
Why? When you call create on the Project model, Rails builds a new Project object
with any attributes you pass it and checks to see if that object is valid.11 If it is, Rails sets
the created_at and updated_at attributes to the current time and then saves the
object to the database. After it’s saved, the id is returned from the database and set on
your object. This object is valid, according to Rails, because you removed the valida-
tion, so Rails goes through the entire process of saving.

 The create method has a bigger, meaner brother called create! (pronounced cre-
ate BANG!). Re-add or uncomment the validation from the model, and type reload! in
the console, and you’ll see what this mean variant does with this line:

irb(main):001:0> Project.create!
ActiveRecord::RecordInvalid: Validation failed: Name can't be blank

The create! method, instead of nonchalantly handing back a Project object regard-
less of any validations, raises an ActiveRecord::RecordInvalid exception if any of
the validations fail; it shows the exception followed by a large stack trace, which you
can safely ignore for now. You’re notified which validation failed.

 To stop it from failing, you must pass in a name attribute, and create! will happily
return a saved Project object:

irb(main):002:0> Project.create!(name: "Sublime Text 3")
=> #<Project id: 2, name: "Sublime Text 3", description: nil,

created_at: [timestamp], updated_at: [timestamp]>

That’s how to use create! to test your validations in the console.
 You’ve created some bad data in your database during this experimentation, so

you should clean that up before you continue:

irb(main):003:0> Project.delete_all
=> 2

Back in your ProjectsController, you use the method shown in the following listing
instead.

11 The first argument for this method is the attributes. If no argument is passed, then all attributes default to
their default values.

Licensed to Mark Watson <nordickan@gmail.com>

81Beginning your first feature

def create
@project = Project.new(project_params)

if @project.save
...

The save method doesn’t raise an exception if validations fail, as create! does;
instead it returns false. If the validations pass, save returns true.

 You can use this to your advantage to show the user an error message when save
returns false by using it in an if statement. Make the create action in the Projects-
Controller look like the following listing.

def create
@project = Project.new(project_params)

if @project.save
flash[:notice] = "Project has been created."
redirect_to @project

else
flash.now[:alert] = "Project has not been created."
render "new"

end
end

Listing 3.24 Part of the create action of ProjectsController

Listing 3.25 The new create action from ProjectsController

flash vs. flash.now
The controller action in listing 3.25 uses two different methods to access the array
of flash messages for your page—flash and flash.now. What’s the difference?

flash is the standard way of setting flash messages, and it will store the message
to display on the very next page load. You do this immediately before issuing redirects—
in this case you redirect immediately to the show page in the ProjectsController,
and that page is the next page load, meaning that the flash message displays on the
show view.

flash.now is an alternative way of setting flash messages, and it will store the mes-
sage to display on the current page load. In this case, you don’t redirect anywhere,
you simply render a view out from the same action, so you need to use flash.now
to make sure the user sees the error message when you render the new view.

There’s also a third method—flash.keep—but this is used very rarely. If you want
to keep an existing flash message around for another request, you can call
flash.keep in your controller, and the flash message will hang around for a little
while longer.

If you were to use flash instead of flash.now in this case, the user would see the
message twice—once on the current page and once on the next page.

Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 3 Developing a real Rails application

If the @project object has a name attribute—meaning it’s valid—save returns true
and executes everything between if and else. If it isn’t valid, then everything
between else and the following end is executed. In the else, you specify a different
key for the flash message because you’ll want to style alert messages differently from
notices later in the application’s lifecycle. When good things happen, the messages for
them will be colored with a green background; when bad things happen, red.

 When you run bundle exec rspec spec/features/creating_projects_spec.rb
now, the line in the spec that checks for the “Project has not been created” message
doesn’t fail, so it goes to the next line, which checks for the “Name can’t be blank”
message. You haven’t done anything to make this message appear on the page yet,
which is why the test is failing again:

1) Users can create new projects when providing invalid attributes
Failure/Error: expect(page).to have_content "Name can't be blank"
expected to find text "Name can't be blank" in "Project has not
been created. New Project Name Description"

The validation errors for the project aren’t being displayed on this page, which is caus-
ing the test to fail. To display validation errors in the view, you need to code some-
thing up yourself.

 When an object fails validation, Rails will populate the errors of the object with
any validation errors. You can test this back in your Rails console:

irb(main):001:0> project = Project.create
=> #<Project id: nil, name: nil, description: nil, created_at: nil,

updated_at: nil>
rb(main):002:0> project.errors
=> #<ActiveModel::Errors:0x007fd5938197f8 @base=#<Project id: nil,

name: nil, description: nil, created_at: nil, updated_at: nil>,
@messages={:name=>["can't be blank"]}>

ActiveModel::Errors provides some nice helper methods for working with validation
errors that you can use in your views to display the errors to the user. In the app/
views/projects/new.html.erb file, directly under the form_for line, on a new line,
insert the following into app/views/projects/new.html.erb to display the error mes-
sages in the form:

<% if @project.errors.any? %>
<div id="error_explanation">

<h2><%= pluralize(@project.errors.count, "error") %>
prohibited this project from being saved:</h2>

<% @project.errors.full_messages.each do |msg| %>
<%= msg %>

<% end %>

</div>
<% end %>

Licensed to Mark Watson <nordickan@gmail.com>

83Summary

Error messages for the object represented by your form, the @project object, will now
be displayed by each.

 When you run bundle exec rspec, you’ll now get this output:

2 examples, 0 failures

Commit and push, and then you’re done with this story!

$ git add .
$ git commit -m "Add validation to ensure names are specified when

creating projects"
$ git push

3.5 Summary
We first covered how to version-control an application, which is a critical part of the
application development cycle. Without proper version control, you’re liable to lose
valuable work or be unable to roll back to a known working stage. We used Git and
GitHub as examples, but you may use an alternative, such as SVN or Mercurial, if you
prefer. This book covers only Git, because covering everything would result in a multi-
volume series, which is difficult to transport.

 Next we covered the basic setup of a Rails application, which started with the rails
new command that initializes an application. Then we segued into setting up the Gem-
file to require certain gems for certain environments, such as RSpec in the test envi-
ronment. You learned about the beautiful Bundler gem in the process, and then you
ran the installers for these gems so your application was fully configured to use them.
For instance, after running rails g rspec:install, your application was set up to use
RSpec and so will generate RSpec specs rather than the default Test::Unit tests for your
models and controllers.

 Finally, you wrote the first story for your application, which involved generating a
controller and a model as well as getting an introduction to RESTful routing and vali-
dations. With this feature of your application covered by RSpec, you can be notified if
it’s broken by running bundle exec rspec. This command runs all the tests of the
application and lets you know if everything is working or if anything is broken. If
something is broken, the spec will fail, and then it’s up to you to fix it. Without this
automated testing, you’d have to do it all manually, and that isn’t any fun.

 Now that you’ve got a first feature under your belt, let’s get into writing the next one!

Licensed to Mark Watson <nordickan@gmail.com>

84

Oh, CRUD!

In chapter 3 you began writing stories for a CRUD (create, read, update, delete)
interface for your Project model. Here you’ll continue in that vein, beginning
with writing a story for the R part of CRUD: reading. We often refer to reading as
viewing in this and future chapters—we mean the same thing, but sometimes view-
ing is a better word.

 In the remainder of the chapter, you’ll round out the CRUD interface for projects,
providing your users with ways to edit, update, and delete projects too. Best of all,
you’ll do this using behavior-driven development (BDD) the whole way through, con-
tinuing your use of the RSpec and Capybara gems that you saw in the last chapter.
This chapter’s length is a testament to exactly how quickly you can get some CRUD
actions up and running on a resource with Ruby on Rails.

This chapter covers
■ Building read, update, and delete functionality

for projects
■ Creating test data with Factory Girl
■ Handling errors and rescuing exceptions
■ Working with Sass and the asset pipeline
■ Styling the application using Bootstrap
■ Simplifying form markup with Simple Form

Licensed to Mark Watson <nordickan@gmail.com>

85Viewing projects

 Also in this chapter, you’ll see a way to create test data extremely easily for your tests
using a gem called factory_girl, as well as a way to make standard controllers a lot neater.

4.1 Viewing projects
The show action generated for the story in chapter 3 was only half of the viewing part
of CRUD. The other part is the index action, which is responsible for showing a list of
all of the projects. From this list, you can navigate to the show action for a particular
project. The next story is about adding functionality that allows you to do that.

 Create a new file in the features directory called spec/features/
viewing_projects_spec.rb.

require "rails_helper"

RSpec.feature "Users can view projects" do
scenario "with the project details" do
project = FactoryGirl.create(:project, name: "Sublime Text 3")

visit "/"
click_link "Sublime Text 3"
expect(page.current_url).to eq project_url(project)

end
end

To run this single test, you can use bundle exec rspec spec/features/

viewing_projects_spec.rb. When you do, you’ll see the following failure:

1) Users can view projects with the project details
Failure/Error: project = FactoryGirl.create(:project,
name: "Sublime Text 3")
NameError:
uninitialized constant FactoryGirl

The FactoryGirl constant is defined by another gem: the factory_girl gem.

4.1.1 Introducing Factory Girl

The factory_girl gem, created by thoughtbot (http://thoughtbot.com), provides an
easy way to use factories to create new objects for your tests. Factories define a bunch of
default values for an object, allowing you to easily craft example objects you can use in
your tests.

 Before you can use this gem, you need to add it to the :test group in your Gem-
file. Now the entire group looks like this:

group :test do
gem "capybara", "~> 2.4"
gem "factory_girl_rails", "~> 4.5"

end

Listing 4.1 spec/features/viewing_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

http://thoughtbot.com

86 CHAPTER 4 Oh, CRUD!

To install the gem, run bundle. With the factory_girl_rails gem installed, the Factory-
Girl constant is now defined.

 Run bundle exec rspec spec/features/viewing_projects_spec.rb again, and
you’ll see a new error:

1) Users can view projects with the project details
Failure/Error: project = FactoryGirl.create(:project,
name: "Sublime Text 3")
ArgumentError:
Factory not registered: project

When using Factory Girl, you must create a factory for each model you wish to use the
gem with. If a factory isn’t registered with Factory Girl, you’ll get the previous error.

 To register/create a factory, create a new directory in the spec directory called fac-
tories, and then in that directory create a new file called project_factory.rb. Fill that file
with the content from the following listing.

FactoryGirl.define do
factory :project do
name "Example project"

end
end

When you define the factory in this file, you give it a name attribute so that every new
project generated by the factory via FactoryGirl.create :project will have the
name “Example project.” The name: "Sublime Text 3" part of this method call in
spec/features/viewing_projects_spec.rb changes the name for that instance to the
one passed in.

 You use factories here because you don’t need to be concerned about any other
attribute on the Project object. If you weren’t using factories, you’d just create the
project the way you would anywhere else, like in the console:

Project.create(name: "Sublime Text 3")

Although this code is about the same length as its FactoryGirl.create variant, it isn’t
future-proof. If you were to add another field to the projects table and add a valida-
tion (say, a presence one) for that field, you’d have to change all occurrences of the
create method in your tests to contain this new field. Over time, as your Project
model got more and more attributes, the actual information that you cared about—in
this case, the name—would get lost in all the unrelated data. In contrast, when you
use a factory, you just need to change it in one place—where the factory is defined. If
you cared about what that field was set to, you could modify it by passing it as one of
the key/value pairs in the Factory call.

 That’s a lot of theory—how about some practice? Let’s see what happens when you
run bundle exec rspec spec/features/viewing_projects_spec.rb again:

Listing 4.2 spec/factories/project_factory.rb

Licensed to Mark Watson <nordickan@gmail.com>

87Viewing projects

1) Users can view projects with the project details
Failure/Error: click_link "Sublime Text 3"
Capybara::ElementNotFound:
Unable to find link "Sublime Text 3"

A link appears to be missing. You’ll add that next.

4.1.2 Adding a link to a project

Capybara is expecting a link on the page with the words “Sublime Text 3” but can’t
find it. The page in question is the homepage, which is the index action from your
ProjectsController. Capybara can’t find it because you haven’t yet put it there,
which is what you’ll do now.

 Open app/views/projects/index.html.erb and change the contents to the following.

<h1>Projects</h1>

<%= link_to "New Project", new_project_path %>

<div id="projects">
<% @projects.each do |project| %>
<h2><%= link_to project.name, project %></h2>
<p><%= project.description %></p>

<% end %>
</div>

This code adds a heading and some details on each of the projects. If you run the spec
again, you’ll get this error, which isn’t helpful at first glance:

1) Users can view projects with the project details
Failure/Error: visit "/"
ActionView::Template::Error:
undefined method `each' for nil:NilClass

./app/views/projects/index.html.erb:6:in ...

This error points at line 6 of your app/views/projects/index.html.erb file, which
reads <% @projects.each do |project| %>. From this you can determine that the
error must have something to do with the @projects variable. This variable hasn’t yet
been defined, and as mentioned in chapter 3, instance variables in Ruby return nil
rather than raise an exception. So because @projects is nil, and there’s no each
method on nil, you get this error, undefined method 'each' for nil:NilClass.
Watch out for this in Ruby—as you can see here, it can sting you hard.

 You need to define this variable in the index action of your controller. Open
ProjectsController at app/controllers/projects_controller.rb, and change the
index method definition to look like this.

def index
@projects = Project.all

end

Listing 4.3 app/views/projects/index.html.erb

Listing 4.4 index action of ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Oh, CRUD!

By calling all on the Project model, you retrieve all the records from the database as
Project objects, and they’re available as an enumerable Array-like object.

 Now that you’ve put all the pieces in place, you can run the feature with bundle
exec rspec spec/features/viewing_projects_spec.rb, and it should pass:

1 example, 0 failures

The spec now passes. Is everything else still working, though? You can check by run-
ning bundle exec rspec. Rather than just running the one test, this code runs all the
tests in the spec directory. When you run the code, you should see this:

3 examples, 0 failures

All the specs are passing, meaning all the functionality you’ve written so far is working
as it should. Commit and push them to GitHub using these commands:

$ git add .
$ git commit -m "Add the ability to view a list of all projects"
$ git push

The reading part of this CRUD resource is done! You’ve got the index and show
actions for the ProjectsController behaving as they should. Now you can move on
to updating.

4.2 Editing projects
With the first two parts of CRUD (creating and reading) done, you’re ready for the
third part: updating. Updating is similar to creating and reading in that it has two
actions for each part (creation has new and create; reading has index and show). The
two actions for updating are edit and update.

 Let’s begin by writing a feature and creating the edit action.

4.2.1 The edit action

As with the form used for creating new projects, you want a form that allows users to
edit the information of a project that already exists. You first put an “Edit Project” link
on the show page that takes users to the edit action, where they can edit the project.
Put the code from the following listing into spec/features/editing_projects_spec.rb.

require "rails_helper"

RSpec.feature "Users can edit existing projects" do
scenario "with valid attributes" do
FactoryGirl.create(:project, name: "Sublime Text 3")

visit "/"
click_link "Sublime Text 3"
click_link "Edit Project"
fill_in "Name", with: "Sublime Text 4 beta"
click_button "Update Project"

Listing 4.5 spec/features/editing_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

89Editing projects

expect(page).to have_content "Project has been updated."
expect(page).to have_content "Sublime Text 4 beta"

end
end

If you remember, FactoryGirl#create builds you an entire object and lets you tweak
the defaults. In this case, you’re changing the name.

 Also, it’s common for tests to take this overall form: arrange, act, assert. (This is also
referred to as given, when, then, to describe the actions that take place in each section.)
That’s why the whitespace is there: it clearly splits the test. Your tests won’t always look
like this, but it’s good form.

 After writing this story, again use the rspec command to run just this one feature:
bundle exec rspec spec/features/editing_projects_spec.rb. The first couple of
lines for this scenario pass because of the work you’ve already done, but it fails on the
line that attempts to find the “Edit Project” link:

1) Users can edit existing projects with valid attributes
Failure/Error: click_link "Edit Project"
Capybara::ElementNotFound:
Unable to find link "Edit Project"

To add this link, open app/views/projects/show.html.erb and add the link under the
heading for the project name:

<%= link_to "Edit Project", edit_project_path(@project) %>

The edit_project_path method generates a link pointing to the edit action of the
ProjectsController. This method is provided to you because of the resources
:projects line in config/routes.rb.

 If you run bundle exec rspec spec/features/editing_projects_spec.rb again,
it now complains about the missing edit action:

1) Users can edit existing projects with valid attributes
Failure/Error: click_link "Edit Project"
AbstractController::ActionNotFound:
The action 'edit' could not be found for ProjectsController

Define this action in your ProjectsController, under the show action (but above the
private line), as in the following listing.

def edit
@project = Project.find(params[:id])

end

As you can see, this action works in a fashion identical to the show action, where the ID
for the resource is automatically passed as params[:id]. After we’ve finished building the
functionality in this controller, we’ll look at DRYing it up to remove the duplicated code.1

Listing 4.6 app/controllers/projects_controller.rb

1 As a reminder: DRY = Don’t Repeat Yourself!

Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Oh, CRUD!

 When you run the spec again, you’re told that the edit view is missing:

1) Users can edit existing projects with valid attributes
Failure/Error: click_link "Edit Project"
ActionView::MissingTemplate:
Missing template projects/edit, application/edit with
{
:locale => [:en],
:formats => [:html],
:variants => [],
:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:
* ".../ticketee/app/views"

It looks like you need to create this template. The edit action’s form is similar to the
form in the new action—if only there were a way to extract out just the form into its
own template. Well, in Rails, there is! You can extract out the form from app/views/
projects/new.html.erb into what’s called a partial. You saw partials briefly in chapter 1.

 A partial is a template that contains code that can be shared between other tem-
plates. To extract the form from the new template into a new partial, take the follow-
ing code out of app/views/projects/new.html.erb.

<%= form_for(@project) do |f| %>
<% if @project.errors.any? %>
<div id="error_explanation">
<h2><%= pluralize(@project.errors.count, "error") %>
prohibited this project from being saved:</h2>

<% @project.errors.full_messages.each do |msg| %>
<%= msg %>

<% end %>

</div>
<% end %>

<p>
<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>
<%= f.label :description %>

<%= f.text_field :description %>

</p>

<%= f.submit %>
<% end %>

Listing 4.7 app/views/projects/new.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

91Editing projects

This will leave the new template looking pretty bare, with just the heading.
 Then create a new file called app/views/projects/_form.html.erb and put the

code you just extracted from the new template into it. While moving it, you should also
change all instances of @project to project.

<%= form_for(project) do |f| %>
<% if project.errors.any? %>
<div id="error_explanation">
<h2><%= pluralize(project.errors.count, "error") %>
prohibited this project from being saved:</h2>

<% project.errors.full_messages.each do |msg| %>
<%= msg %>

<% end %>

</div>
<% end %>

<p>
<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>
<%= f.label :description %>

<%= f.text_field :description %>

</p>

<%= f.submit %>
<% end %>

FILE-NAMING CONVENTIONS FOR PARTIALS The filenames of partials must always
start with an underscore, which is why we’ve written _form instead of form.

Why do this variable renaming? Because to be reusable, partial views shouldn’t rely on
instance variables—they should be totally self-sufficient. When you render the partial
from your main view, you can pass in the data that the partial needs to render—in this
case, you’ll pass in the @project variable from the new template, which means it will
be accessible as a local variable from within the partial.

 To render the partial and pass in the @project instance, modify your new template
in app/views/projects/new.html.erb and add this line where the form previously was:

<%= render "form", project: @project %>

This will leave your new template very slim indeed.

<h1>New Project</h1>
<%= render "form", project: @project %>

Listing 4.8 app/views/projects/_form.html.erb

Listing 4.9 The complete new template

Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Oh, CRUD!

REFACTORING Extracting the form code and creating the partial is an
example of refactoring—changing the internals of the code without affecting
functionality. You can confirm that this refactoring hasn’t affected your
ability to create projects by running the test for it—bundle exec rspec spec/
features/creating_projects_spec.rb. It will still pass, so you can be very
confident that everything still works.

Now you need to create the edit action’s template. Create a new file at app/views/
projects/edit.html.erb with the following content.

<h1>Edit Project</h1>
<%= render "form", project: @project %>

When you pass a string to the render method, Rails looks up a partial in the same
directory as the current template matching the string, and renders that instead.

 Using the partial, the next line passes without any further intervention from you
when you run bundle exec rspec spec/features/editing_projects_spec.rb:

1) Users can edit existing projects with valid attributes
Failure/Error: click_button "Update Project"
AbstractController::ActionNotFound:
The action 'update' could not be found for ProjectsController

The test has filled in the Name field successfully; but it fails when Update Project is
clicked, because it can’t find the update action in the ProjectsController. To make
this work, you’ll need to create that update action.

4.2.2 The update action

As the following listing shows, you can now define update under the edit action in
your controller.

def update
@project = Project.find(params[:id])
@project.update(project_params)

flash[:notice] = "Project has been updated."
redirect_to @project

end

Notice the new method on @project here: update. It takes a hash of attributes identi-
cal to the ones passed to new or create, updates those specified attributes on the
object, and then saves them to the database if they’re valid. This method, like save,
returns true if the update is valid or false if it isn’t.

 Now that you’ve implemented the update action, let’s see how the test is going by
running bundle exec rspec spec/features/editing_projects_spec.rb:

1 example, 0 failures

Listing 4.10 app/views/projects/edit.html.erb

Listing 4.11 app/controllers/projects_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

93Editing projects

That was easy! But what happens if somebody fills in the Name field with a blank
value? The user should receive an error, just as in the create action, due to the valida-
tion in the Project model. You should write a test to verify this behavior.

 Move the first four steps from the first scenario in spec/features/
editing_projects_spec.rb into a before block, because when a user is editing a project,
the first four steps will always be the same: a project needs to exist, and then a user
goes to the homepage, finds a project, and clicks Edit Project. Change spec/features/
editing_projects_spec.rb so it looks like this.

require "rails_helper"

RSpec.feature "Users can edit existing projects" do
before do
FactoryGirl.create(:project, name: "Sublime Text 3")

visit "/"
click_link "Sublime Text 3"
click_link "Edit Project"

end

scenario "with valid attributes" do
fill_in "Name", with: "Sublime Text 4 beta"
click_button "Update Project"

expect(page).to have_content "Project has been updated."
expect(page).to have_content "Sublime Text 4 beta"

end
end

A before block can help set up state for multiple tests; the block runs before each test
executes. Sometimes, setting up is more than just creating objects; interacting with an
application is totally legitimate as part of the setup.

DEFINING BEHAVIOR FOR WHEN AN UPDATE FAILS

Now you can add a new scenario, as shown in the following listing, to test that the user
is shown an error message when the validations fail during the update action. Add this
new scenario directly under the one currently in this file.

scenario "when providing invalid attributes" do
fill_in "Name", with: ""
click_button "Update Project"

expect(page).to have_content "Project has not been updated."
end

Listing 4.12 After introducing a before block to simplify test setup

Listing 4.13 Specifying expected behavior when a project fails validation

Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Oh, CRUD!

When you run bundle exec rspec spec/features/editing_projects_spec.rb, fill-
ing in the Name field works, but when the form is submitted, the test doesn’t see the
“Project has not been updated” message:

1) Users can edit existing projects when providing invalid attributes
Failure/Error: expect(page).to have_content "Project has not been
updated."
expected to find text "Project has not been updated." in "Project
has been updated. Sublime Text 3 Edit Project"

The test can’t find the message on the page because you haven’t written any code to
test for what to do if the project being updated is now invalid. In your controller, use
the code in the following listing for the update action so that it shows the error mes-
sage if the update method returns false.

def update
@project = Project.find(params[:id])

if @project.update(project_params)
flash[:notice] = "Project has been updated."
redirect_to @project

else
flash.now[:alert] = "Project has not been updated."
render "edit"

end
end

Now you can see that the feature passes when you rerun bundle exec rspec spec/
features/editing_projects_spec.rb:

2 examples, 0 failures

Again, you should ensure that everything else is still working by running bundle exec
rspec. You should see this summary:

5 examples, 0 failures

Looks like a great spot to make a commit and push:

$ git add .
$ git commit -m "Projects can now be updated"
$ git push

The third part of CRUD, updating, is done now. The fourth and final part is deleting.

4.3 Deleting projects
We’ve reached the final stage of CRUD: deletion. This involves implementing the final
action of your controller: the destroy action, which allows you to delete projects.

 Of course, you’ll need a feature to get going: a “Delete Project” link on the show
page that, when clicked, prompts the user for confirmation that they really want to

Listing 4.14 The update action of ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

95Deleting projects

delete the project.2 Put the feature at spec/features/deleting_projects_spec.rb using
the code in the following listing.

require "rails_helper"

RSpec.feature "Users can delete projects" do
scenario "successfully" do
FactoryGirl.create(:project, name: "Sublime Text 3")

visit "/"
click_link "Sublime Text 3"
click_link "Delete Project"

expect(page).to have_content "Project has been deleted."
expect(page.current_url).to eq projects_url
expect(page).to have_no_content "Sublime Text 3"

end
end

When you run this test using bundle exec rspec spec/features/deleting_projects
_spec.rb, the first couple of lines pass because they’re just creating a project using
Factory Girl, visiting the homepage, and then clicking the link to go to the project
page. The fourth line in this scenario fails, however, with this message:

1) Users can delete projects successfully
Failure/Error: click_link "Delete Project"
Capybara::ElementNotFound:
Unable to find link "Delete Project"

To get this to work, you need to add a “Delete Project” link to the show action’s tem-
plate, app/views/projects/show.html.erb. Put it on the line after the “Edit Project”
link using this code:

<%= link_to "Delete Project",
project_path(@project),
method: :delete,
data: { confirm: "Are you sure you want to delete this project?" }

%>

Here you pass two new options to the link_to method—:method and :data. The
:method option tells Rails what HTTP method this link should be using, and here’s
where you specify the :delete method. In the previous chapter, the four HTTP meth-
ods were mentioned; the final one is DELETE. When you developed your first applica-
tion, chapter 1 explained why you use the DELETE method, but let’s review the reasons.

 If all actions are available by GET requests, then anybody can create a URL that
directly corresponds to the destroy action of your controller. If they send you the
link, and you click it, then it’s bye-bye precious data. Using DELETE, you protect an

2 The test won’t check for this prompt, due to the difficulty in testing JS confirmation boxes in tests.

Listing 4.15 spec/features/deleting_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Oh, CRUD!

important route for your controller by ensuring that a user has to follow the correct
link from your site to make the proper request to delete this resource.

 The :data option containing a :confirm key brings up a prompt, using JavaScript,
that asks users if they’re sure that’s what they want to do. If you launch a browser and
follow the steps in the feature to get to this “Delete Project” link, and then you click
the link, you’ll see the confirmation prompt. This prompt is exceptionally helpful for
preventing accidental deletions.

 Both this prompt and the DELETE request are created by jquery_ujs—part of the
jquery-rails gem, which is listed in your Gemfile.

Because Capybara doesn’t support JavaScript by default, the prompt is ignored. You
don’t have to tell Capybara to click OK in response to the prompt—there is no
prompt, because Rails has a built-in fallback for users without JavaScript enabled.

 When you run the spec again with bundle exec rspec spec/features/

deleting_projects_spec.rb, it complains of a missing destroy action:

1) Users can delete projects successfully
Failure/Error: click_link "Delete Project"
AbstractController::ActionNotFound:
The action 'destroy' could not be found for ProjectsController

This is the final action you need to implement in your controller; it goes under the
update action. The action is shown in the following listing.

def destroy
@project = Project.find(params[:id])
@project.destroy

flash[:notice] = "Project has been deleted."
redirect_to projects_path

end

Here you call the destroy method on the @project object that you get back from
your find call. No validations are run, so no conditional setup is needed. Once you
call destroy on that object, the relevant database record is gone for good; but the
Ruby object representation of this record still exists until the end of the request.

Listing 4.16 The destroy action from ProjectsController

Troubleshooting deletion
If you ever create delete functionality and clicking the link goes to the show action
instead of the destroy action, you might not be loading the jquery_ujs file correct-
ly. You should check your app/assets/javascripts/application.js file and make sure
it’s loading the file:

//= require jquery_ujs

Licensed to Mark Watson <nordickan@gmail.com>

97What happens when things can’t be found

 After the record has been deleted from the database, you set the flash[:notice]
to indicate to the user that their action was successful, and redirect back to the proj-
ect’s index page by using the projects_path routing helper in combination with
redirect_to.

 With this last action in place, your newest feature should pass when you run bundle
exec rspec spec/features/deleting_projects_spec.rb:

1 example, 0 failures

Let’s see if everything else is running with bundle exec rspec:

6 examples, 0 failures

Great! Commit that:

$ git add .
$ git commit -m "Projects can now be deleted"
$ git push

Done! Now you have full support for CRUD operations in your ProjectsController.
You’ve coded support for all of the cases you can think of, that you expect to see dur-
ing the day-to-day running of the web application, but what about the ones you don’t
expect? You can make a few small adjustments to your work so far, making for a nicer
experience when these edge cases occur. As an added bonus, you’ll refactor your con-
troller to get rid of some of the duplicated code, and make it simpler overall.

4.4 What happens when things can’t be found
People sometimes poke around an application looking for things that are no longer
there, or they muck about with the URL. As an example, launch your application’s
server by using rails server, and try to navigate to http://localhost:3000/projects/
not-here. You’ll see the exception shown in figure 4.1.

 This is Rails’ way of displaying exceptions in development mode. Under this error,
more information is displayed, such as the backtrace of the error. Rails will only do
this in the development environment because of the consider_all_requests_local

Figure 4.1 ActiveRecord::RecordNotFound exception

Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Oh, CRUD!

configuration setting in config/environments/development.rb. This file contains all
the custom settings for your development environment, and the consider_all
_requests_local setting is true by default. This means Rails will show the complete
exception information when it runs in the development environment.

 If you were running in the production environment, you’d see a different error
because consider_all_requests_local in config/environments/production.rb is set
to false.

 Let’s try to reproduce this production error now.

4.4.1 Visualizing the error

Stop any Rails server that’s currently running, and run these commands to start pre-
paring to run a new one in production mode:

$ bundle exec rake assets:precompile
$ bundle exec rake db:migrate RAILS_ENV=production

In order for the Rails production environment to work correctly, you must first com-
pile the assets for the project using the assets:precompile rake task. This goes
through all the assets of the application, compiles them into their CSS and JS counter-
parts, and then places these new files into public/assets so they can be served by the
web server that’s running Rails. This isn’t too relevant to what you’re doing now, but
it’s necessary so that you can see what the production environment will do.

 On the second line, you must specify the RAILS_ENV environment variable to tell
Rails that you want to run the migrations on your production database. By default in
Rails, the development and production databases are kept separate so you don’t make
the mistake of working with production data and deleting something you shouldn’t
when you’re working in the development environment. This problem is also typically
solved by placing the production version of the code on a different server from the
one you’re developing on—usually you’d have your production server out in the
cloud, serving your app to the world.

 In the production environment, the Rails server is configured to not serve static
assets (such as JavaScript and images) itself. Instead, it relies on the host web server to
serve the assets out of the public directory. In order for assets to be served correctly in
the production environment while running a rails server session, you need to go
into the config/environments/production.rb file and change this line,

config.serve_static_files = ENV['RAILS_SERVE_STATIC_FILES'].present?

to this:

config.serve_static_files = true

This tells Rails that you want to serve static assets from the public directory using Rails
itself.

 Next, start the server running in the production environment by using this command:

$ SECRET_KEY_BASE=`rake secret` rails s -e production

Licensed to Mark Watson <nordickan@gmail.com>

99What happens when things can’t be found

You pass the -e production option to the rails server command, which tells Rails to
boot the server using the production environment. The SECRET_KEY_BASE at the start
is used to provide an environment variable of the same name that’s used in config/
secrets.yml. This key is used to encrypt sessions in a production environment.

 Next, navigate to http://localhost:3000/projects/not-here. When you do this, you’ll
get the standard Rails 404 page (see figure 4.2), which, to your users, is unhelpful.

 It’s not the page that’s gone missing; rather, the resource you’re looking for isn’t
found. If users see this error, they’ll probably have to click the Back button and then
refresh the page. You could give users a much better experience by dealing with the
error message yourself and redirecting them back to the homepage.

 Before we move on, let’s undo the stuff you just did: it’s not a good idea to have Rails
serve assets in production, and it’s also not good to check compiled assets into source
control. Stop the server you just started, and to undo your code changes, do this:

$ git add .
$ git reset --hard

Yay for Git! This adds all of your changes to the repository index, including the pre-
compiled assets, and then resets that index to the last commit (effectively deleting all
of the changes you just added). Easy!

4.4.2 Handling the ActiveRecord::RecordNotFound exception

To handle the ActiveRecord::RecordNotFound exception, you can rescue it and,
rather than letting Rails render a 404 page, redirect the user to the index action with
an error message. To test that users are shown an error message rather than a “Page
does not exist” error, you’ll write an RSpec controller test instead of a feature test,
because viewing projects that aren’t there is something a user can do, but not some-
thing that should happen over the course of a normal browsing session. Plus, it’s easier.

 The file for this controller test, spec/controllers/projects_controller_spec.rb, was
automatically generated when you ran the controller generator, because you have the
rspec-rails gem in your Gemfile.3 Open this controller spec file. It should look like the
following listing.

3 The rspec-rails gem automatically generates the file using a Railtie, the code for which can be found at
http://mng.bz/7X4i.

Figure 4.2 “Page
does not exist” error

Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/7X4i

100 CHAPTER 4 Oh, CRUD!

require 'rails_helper'

RSpec.describe ProjectsController, type: :controller do

end

In this controller spec, you want to test that you’re redirected to the Projects page if
you attempt to access a resource that no longer exists. You also want to ensure that a
flash[:alert] is set.

 To do all this, put the following code in the RSpec.describe block:

it "handles a missing project correctly" do
get :show, id: "not-here"

expect(response).to redirect_to(projects_path)

message = "The project you were looking for could not be found."
expect(flash[:alert]).to eq message

end

The first line in this RSpec test—more commonly called an example—tells RSpec to
make a GET request to the show action of the ProjectsController. How does it know
which controller should receive the GET request? RSpec infers it from the class used
for the describe block.

 In the next line, you tell RSpec that you expect the response to take you back to the
projects_path through a redirect_to call. If it doesn’t, the test fails, and nothing
more in this test is executed: RSpec stops in its tracks.

 The final line tells RSpec that you expect flash[:alert] to contain a useful mes-
sage explaining the redirection to the index action.

 To run this spec, use the bundle exec rspec spec/controllers/

projects_controller_spec.rb command. When this runs, you’ll see this error:

1) ProjectsController handles a missing project correctly
Failure/Error: get :show, id: "not-here"
ActiveRecord::RecordNotFound:
Couldn't find Project with 'id'=not-here

This is the same failure you saw when you tried running the application using the
development environment with rails server. Now that you have a failing test, you
can fix it.

 Open the app/controllers/projects_controller.rb file, and put the code from the
following listing under the private line in the controller.

def set_project
@project = Project.find(params[:id])

rescue ActiveRecord::RecordNotFound

Listing 4.17 spec/controllers/projects_controller_spec.rb

Listing 4.18 set_project method in ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

101What happens when things can’t be found

flash[:alert] = "The project you were looking for could not be found."
redirect_to projects_path

end

Because it’s under the private line, the controller doesn’t respond to this method as
an action. To call this method before every action that looks up a project, use the
before_action method. Place this line directly under the class ProjectsController
definition:

before_action :set_project, only: [:show, :edit, :update, :destroy]

What does all this mean? Methods referenced by before_action are run before all
the actions in your controller, unless you specify either the :except or :only option.
Here you have the :only option, defining actions for which you want before_action
to run. The :except option is the opposite of the :only option, specifying the actions
for which you don’t want before_action to run. before_action calls the set_project
method before the specified actions, setting up the @project variable for you.
This means you can remove the following line from your show, edit, update, and
destroy actions:

@project = Project.find(params[:id])

This makes the show and edit actions empty. If you remove these actions from your
controller and run bundle exec rspec again, all the scenarios will still pass:

7 examples, 0 failures

Controller actions don’t need to exist in the controllers if there are templates corre-
sponding to those actions, which you have for these actions. For readability’s sake
though, it’s best to leave these in the controller so anyone who reads the code knows
that the controller can respond to these actions, so put the empty show and edit
actions back in. Future-you will thank you.

 Back to the spec now. If you run bundle exec rspec spec/controllers/
projects_controller_spec.rb once more, the test now passes:

1 example, 0 failures

Let’s check to see if everything else is still working by running bundle exec rspec. You
should see this:

7 examples, 0 failures

Red-green-refactor! With that out of the way, you can commit and push:

$ git add .
$ git commit -m "Redirect the users back to the projects page if they

try going to a project that does not exist"
$ git push

This completes the basic CRUD implementation for your Project resource. Now you
can create, read, update, and delete projects to your heart’s content.

Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 4 Oh, CRUD!

4.5 Styling the application
The application is currently looking a bit plain, as you can see
in figure 4.3.

 You can change this by using Bootstrap, which is a front-
end CSS and JavaScript framework that comes with a collec-
tion of styles that you can apply to your application.

BOOTSTRAP ALTERNATIVES Instead of Bootstrap, you could
use Zurb Foundation (http://foundation.zurb.com) or
any one of the other CSS frameworks out there. We recom-
mend Bootstrap out of preference.

As part of your application styling you’ll also add a gem called
Simple Form, which in conjunction with Bootstrap will turn the previous form into
what you see in figure 4.4.

 You’ll notice the asterisk next to the Name field here. This is because the Name field
is a required field, required because you have a validation on your Project model for the
presence of this field. Simple Form detects this and displays the field as a required field.

 Simple Form not only makes the form neater, but also makes the code for generat-
ing a form much simpler. You have now this:

<p>
<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>
<%= f.label :description %>

<%= f.text_field :description %>

</p>

Simple Form allows you to write this instead:

<%= f.input :name %>
<%= f.input :description %>

Figure 4.4 A neater form

Figure 4.3 A plain form

Licensed to Mark Watson <nordickan@gmail.com>

http://foundation.zurb.com

103Styling the application

Bootstrap also lends itself to more than just forms. You’ll use it in this section to style
the flash messages from your application, as well as add a navbar to the top of the
screen. Let’s get started!

4.5.1 Installing Bootstrap

The first thing you need to do is install the bootstrap-sass gem, which comes with Sass
versions of the Bootstrap assets. This gem is the recommended way to install Bootstrap
into a Rails application, because Rails includes the sass-rails gem in its Gemfile by
default.

 Install this gem now by adding the following line outside of any groups inside your
Gemfile:

gem "bootstrap-sass", "~> 3.3"

Next, you’ll need to run bundle to install the gem, and restart the Rails server if it’s
running already.

 To add Bootstrap’s styles to your application, you make your main application
stylesheet a Sass file by renaming app/assets/stylesheets/application.css to applica-
tion.css.scss, adding the .scss extension to the end of the filename. This extension tells
the asset pipeline that this file should be processed using the Sass preprocessor before
it’s presented as a CSS file. This preprocessing will parse the @import directives that
you’re about to use.

 Replace the entire contents of that application.css.scss file with the following listing.

@import "bootstrap-sprockets";
@import "bootstrap";

These two lines import all of Bootstrap’s CSS components.

LIMITING BOOTSTRAP IMPORTS The preceding import includes a lot of CSS and
probably includes pieces that you won’t ever use. If you’re concerned about
how much this includes, you can pick and choose @import lines from bootstrap-
sass (http://git.io/YgGoCw) to only include the parts you want.

With these assets now imported, you can
restart your server and go to http://local-
host:3000 to see some changes immediately
(see figure 4.5).

 The styling of your homepage has
changed to reflect Bootstrap’s default styling.
That was easy! It’s all flush against the left side
of the page, though. You can fix this by wrap-
ping all of the content in a container in app/
views/layouts/application.html.erb:

Listing 4.19 app/assets/stylesheets/application.css.scss, with Bootstrap imported

Figure 4.5 Projects page, Bootstrapified

Licensed to Mark Watson <nordickan@gmail.com>

http://git.io/YgGoCw

104 CHAPTER 4 Oh, CRUD!

<body>

<div class="container">
<% flash.each do |key, message| %>
<div><%= message %></div>

<% end %>

<%= yield %>
</div>

</body>

This element will shift the content away from the left
side of the page, as shown in figure 4.6.

4.5.2 Improving the page’s header

Next up, let’s make the header section of the page look a little bit nicer, starting with
the main heading. Bootstrap provides a nice page-header class you can use to give a
bit of style, so you can wrap that around the h1 in app/views/projects/index.html.erb:

<div class="page-header">
<h1>Projects</h1>

</div>

It adds some nice spacing around the important header, and an underline. So far so good.
 Now let’s look at the actions you can take on this page—the most obvious action is

to create a new project, so let’s make the “New Project” link stand out. You can also
make the button be part of the page header and put it on the right side to give the
page a bit of balance.

 In app/views/projects/index.html.erb, change the code from this,

<div class="page-header">
<h1>Projects</h1>

</div>

<%= link_to "New Project", new_project_path %>

to this:

<div class="page-header">
<h1>Projects</h1>

<ul class="actions">
<%= link_to "New Project", new_project_path,

class: "btn btn-success" %>

</div>

The relevant page actions are now part of the header, in a
list (some pages will have multiple actions to take, such as
edit and delete). Adding the two btn btn-success classes
to any HTML element will change its appearance into a but-
ton, as shown in figure 4.7.

Figure 4.6 Now with padding!

Figure 4.7 The new
New Project button

Licensed to Mark Watson <nordickan@gmail.com>

105Styling the application

 The btn-success turns it into a specific type of button.4 You can add a little more
flair to this button by adding an icon from the Font Awesome project (http://
fontawesome.github.io/Font-Awesome/), turning it into this:

 To get to that newest, best-looking version of the form, add
the font-awesome-rails gem to your Gemfile, underneath the bootstrap-sass gem:

gem "font-awesome-rails", "~> 4.3"

Just like the bootstrap-sass gem, the font-awesome-rails gem also comes with some assets.
The assets from the font-awesome-rails gem give you a whole range of icons, shown on
the Font Awesome icons page: http://fontawesome.github.io/Font-Awesome/icons/.

 To use these icons, you must first run bundle and restart the Rails server. Then you’ll
need to add another @import line to app/assets/stylesheets/application.css.scss, after
the ones that you have already.

@import "font-awesome";

To add the icon to the button, you can use the fa_icon helper as part of the link in
app/views/projects/index.html.erb, like this:

<%= link_to fa_icon("plus") + " New Project", new_project_path,
class: "btn btn-success" %>

It will now look like figure 4.8.
 As for positioning it where you want, you can do

so with a couple of lines of CSS, to be placed at the
bottom of your app/assets/stylesheets/application
.css.scss file:

.page-header {
position: relative;
padding-bottom: 0px;

&:first-child {
margin-top: 20px;

}

h1, h2, h3, h4, h5, h6 {
max-width: 55%;

}
}

ul.actions {
@extend .list-unstyled;
@extend .list-inline;
position: absolute;
bottom: -2px;

4 The other button types can be found here: http://getbootstrap.com/css/#buttons.

Listing 4.20 Adding font-awesome to your application.css.scss

Figure 4.8 The new new New
Project button

Licensed to Mark Watson <nordickan@gmail.com>

http://getbootstrap.com/css/#buttons
http://fontawesome.github.io/Font-Awesome/
http://fontawesome.github.io/Font-Awesome/
http://fontawesome.github.io/Font-Awesome/icons/

106 CHAPTER 4 Oh, CRUD!

right: 2px;
max-width: 45%;
text-align: right;

}

This does several things:

■ It reduces the spacing between the heading and the underline with padding-
bottom: 0px, and makes the header relatively positioned so you can move the list
of actions around in it at will.

■ It changes the top margin on the first .page-header on the page to 20 px.
■ It makes the list of actions absolutely positioned and declares that you want it to be

near the bottom right of the parent .page-header element.
■ It uses some of Bootstrap’s classes to remove the bullet points that normally

denote lists and make the list items sit side by side instead of below each other.
■ It sets maximum widths on the two elements in the .page-header div, to pre-

vent any possible overlap.

If that’s a lot to take in and it doesn’t
really make sense, that’s okay—this
isn’t meant to be a CSS tutorial. But
it will make your headers look nice,
as shown in figure 4.9.

 You can apply similar styling to the views for the new, edit, and show actions. The
new and edit views have no action menus, so their page headers can simply be
tweaked to add the .page-header wrapper element.

<div class="page-header">
<h1>New Project</h1>

</div>

<div class="page-header">
<h1>Edit Project</h1>

</div>

4.5.3 Improving the show view

The show view is a little more work, because it has
links of different types. One link edits; the other
deletes. The header section of the page currently
looks like figure 4.10.

Listing 4.21 The new header on app/views/projects/new.html.erb

Listing 4.22 The new header on app/views/projects/edit.html.erb

Figure 4.9 The final page header on the Projects index
view

Figure 4.10 The unstyled page header
on app/views/projects/show.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

107Styling the application

 Let’s change that header to look like this:

<div class="page-header">
<h1><%= @project.name %></h1>

<ul class="actions">
<%= link_to fa_icon("pencil") + " Edit Project",

edit_project_path(@project), class: "btn btn-primary" %>
<%= link_to fa_icon("trash") + " Delete Project",

project_path(@project),
method: :delete,
data: { confirm: "Are you sure you want to delete this project?" },
class: "btn btn-danger" %>

</div>

Like before, there’s a <div class="page-header"> around the header, and the links are
now in a list of action links. We’ve chosen different button styles for this page—btn-pri-

mary for editing and btn-danger for deleting. btn-danger links are bright red, indicat-
ing a dangerous action. There are also some appropriate icons for the links.

 These links will now be styled
nicely, as shown in figure 4.11.
That’s all looking better, but
you can do a lot better in the
code!

4.5.4 Semantic styling

As it stands at the moment, whenever you have a link in your application to create,
edit or delete an object, you’ll have to add all this markup around it with the fa_icon
and the class attribute. Rather than repeating all that markup, you can use semantic
styling. All the creation links will look the same way, all the editing links will look the
same way, and all the deletion links will look the same way; so why not style them all in
an easier fashion? Plus, if you decide later that all creation links should be styled dif-
ferently, you’ll only have to update the code in one place—in the stylesheet. Very DRY.

STYLING BUTTONS

To make your buttons semantic, you can go back to app/views/projects/
index.html.erb and change the “New Project” link to the following.

<%= link_to "New Project", new_project_path, class: "new" %>

The new class will contain all the stylings for any “New” link in your application,
including the icon.

Listing 4.23 Less presentational markup in the HTML

Figure 4.11 The improved show view

Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 4 Oh, CRUD!

 To make this new button look just like your old unsemantic button, you’ll need to
write some new Sass in application.css.scss.

a.new {
@extend .btn;
@extend .btn-success;

&:before {
font-family: "FontAwesome";
@extend .fa-plus;
padding-right: 0.5em;

}
}

This new code first adds the styles from Bootstrap’s btn and btn-success classes to
any a element with the new class, using the @extend directive from Sass. This directive
allows you to extend any element’s styling with any other element’s styles.

 Next, you use the &:before rule, which allows you to place content before the con-
tent within an element. In this case, you set the font-family to "FontAwesome" so that
it uses the icon font. Then you use @extend again to add the same plus icon that you
had earlier. The fa_icon helper method that we used previously in our view gener-
ated an i element with the class fa-plus—we can replicate the styles from that ele-
ment by extending that same fa-plus class here. The final line, padding-right, adds
padding to the right side of this element so that the icon and the “New Project” text
have space between them.

 If you look at the “New Project” link again, you’ll see it still has the
same styles.

 All of this has been accomplished with less styling in the view, and more in the CSS
file where it belongs. You can use these same techniques for the “Edit” and “Delete”
links inside of app/views/projects/show.html.erb, converting them to just this:

<ul class="actions">
<%= link_to "Edit Project", edit_project_path(@project),
class: "edit" %>

<%= link_to "Delete Project", project_path(@project),
method: :delete,
data: { confirm: "Are you sure you want to delete this project?" },
class: "delete" %>

Next, you can add styles for edit and delete classes to app/assets/stylesheets/
application.css.scss, in much the same way as you added styles for the new class:

a.edit {
@extend .btn;
@extend .btn-primary;

Listing 4.24 More presentational styling in the CSS, where it belongs

Licensed to Mark Watson <nordickan@gmail.com>

109Styling the application

&:before {
font-family: "FontAwesome";
@extend .fa-pencil;
padding-right: 0.5em;

}
}

a.delete {
@extend .btn;
@extend .btn-danger;

&:before {
font-family: "FontAwesome";
@extend .fa-trash;
padding-right: 0.5em;

}
}

If you go to your project’s page
once again, shown in figure 4.12,
you’ll see the “Edit Project” and
“Delete Project” links have
stayed the same.

 You’re not done, though. There’s a bit of duplication happening in this file, which
you can clean up to just the following.

a.new, a.edit, a.delete {
@extend .btn;

&:before {
font-family: "FontAwesome";
padding-right: 0.5em;

}
}

a.new {
@extend .btn-success;

&:before {
@extend .fa-plus;

}
}

a.edit {
@extend .btn-primary;

&:before {
@extend .fa-pencil;

}
}

Listing 4.25 Removing duplication from the new, edit, and delete styles

Figure 4.12 The refactored page looks unchanged

Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 4 Oh, CRUD!

a.delete {
@extend .btn-danger;

&:before {
@extend .fa-trash;

}
}

The links with new, edit, and delete classes will now be styled identically as buttons
that use Font Awesome. From there, each different class has its button type and icon
specified in different rules.

 Where else can you apply this semantic styling? Well, you could replace the <div
class="page-header"> tags with something more meaningful, like a <header> tag.
After all, if you want to use more than one of the page headers on a single page, it’s
not really a page header, is it?

 You can make those changes to your views that use <div class="page-header">, as
in listings 4.26 through 4.29.

<header>
<h1>Projects</h1>
...

</header>

<header>
<h1>New Project</h1>

</header>

<header>
<h1>Edit Project</h1>

</header>

<header>
<h1><%= @project.name %></h1>
...

</header>

Now you can style your new header tags by using the @extend directive again, this time
to extend the .page-header class you were using before. You can do this in your
stylesheet, replacing the old .page-header selector you were using.

Listing 4.26 app/views/projects/index.html.erb

Listing 4.27 app/views/projects/new.html.erb

Listing 4.28 app/views/projects/edit.html.erb

Listing 4.29 app/views/projects/show.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

111Styling the application

header {
@extend .page-header;
position: relative;
padding-bottom: 0px;

&:first-child {
margin-top: 20px;

}
}

If you refresh all your pages, they should look exactly the same as they did before—
you haven’t changed any styles with your header tag, you’ve just made them more
semantic.

 Back on the homepage, you can now tackle the overly large headings for the
names of projects. It’s easy to do with CSS. Because this CSS is specific to projects of
your site, you can put it in the stylesheet that was generated when you generated the
ProjectsController in app/assets/stylesheets/projects.scss.

#projects h2 {
font-size: 16px;
font-weight: bold;
margin: 20px 0px 0px;

}

You can then load this stylesheet into your application.css.scss with another @import
rule, below the rule that loads font-awesome.

@import "projects";

If you refresh your browser now, you can see that
the headings are a bit larger than the descrip-
tions of the projects, they’re bold, and they’re
nicely spaced (see figure 4.13).

STYLING FLASH MESSAGES

The next thing that you can style is the flash mes-
sages that appear. If you create another project
in the Ticketee application, you can see how
plain they are:

Listing 4.30 app/assets/stylesheets/application.css.scss

Listing 4.31 Specific styling for projects

Listing 4.32 Importing the projects.scss stylesheet

Figure 4.13 A projects listing that
doesn’t look ugly!

Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 4 Oh, CRUD!

To make flash messages stand out more, you can apply Bootstrap’s alert styling to them.
Open app/views/layouts/application.html.erb and change the code in listing 4.33 to
match that in listing 4.34.

<% flash.each do |key, message| %>
<div><%= message %></div>

<% end %>

<% flash.each do |key, message| %>
<div class="alert alert-<%= key %>">
<%= message %>

</div>
<% end %>

The alert class for each piece of the flash will make this object stand out more, and
the alert-<%= key %> will use another class called alert-notice or alert-alert to
color the flash message box a different color. If you look at Bootstrap’s documentation
for its alerts (http://getbootstrap.com/components/#alerts), you can see that alert-
notice and alert-alert aren’t available, as shown in figure 4.14.

 In the alerts figure, you can see two that look like the kind of thing you want: alert-
success and alert-danger. You can make your alert-notice and alert-alert classes

Listing 4.33 Unstyled flash message output

Listing 4.34 Styled flash message output

Figure 4.14 Bootstrap alerts

Licensed to Mark Watson <nordickan@gmail.com>

http://getbootstrap.com/components/#alerts

113Styling the application

use the stylings of these two other classes by adding the following code to app/assets/
stylesheets/application.css.scss:

.alert-notice {
@extend .alert-success;

}

.alert-alert {
@extend .alert-danger;

}

When an alert with the class attribute of alert-notice is displayed, it will be styled as
if it had a class attribute of alert-success. This is thanks to the @extend directive in
Sass, which you used earlier with the “New,” “Edit,” and “Delete” links. When you cre-
ate a project again, you should see a much nicer
styled flash message.

 That’s much nicer! Let’s see what it looks like
when you force a validation error by not entering
a name for a new project.

 That’s looking good too! That’s all for the
flash stylings. The next thing to do is restyle your
project form to take it from its appearance in fig-
ure 4.15 to what is shown in figure 4.16.

4.5.5 Using Simple Form

To change the form to its new styling, we’ll enlist the help of another gem called Simple
Form, which provides not only a shorter syntax for rendering forms, but also has Boot-
strap integration. Add this gem under the font-awesome-rails gem in your Gemfile:

gem "simple_form", "~> 3.1.0"

Run bundle to install the gem.

Figure 4.15 The current “New
Project” form

Figure 4.16 The restyled “New Project” form

Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 4 Oh, CRUD!

Next, run this command to set up the gem for the application:

$ rails g simple_form:install --bootstrap

This command will install the things that Simple Form needs, as well as two config
files—simple_form.rb and simple_form_bootstrap.rb. Files such as these in the config/
initializers directory are run when a Rails server boots. After installing this gem, restart
your server once again.

 To use Simple Form for your projects form, you’ll need to make a few changes.
First, change the first line in app/views/projects/_form.html.erb from this,

<%= form_for(project) do |f| %>

to this:

<%= simple_form_for(project) do |f| %>

This will tell the view to use the form builder from Simple Form rather than the one
that’s built into Rails.

 Next, you can simplify the code used for rendering the name and description
fields for the project form, turning it from this,

<p>
<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>
<%= f.label :description %>

<%= f.text_field :description %>

</p>

<%= f.submit %>

into this:

<%= f.input :name %>
<%= f.input :description %>

<%= f.button :submit, class: "btn-primary" %>

You don’t need to use the surrounding <p> tags any more, or even describe what types
of fields these are. The Simple Form gem takes care of all of that for you with the
input helper. It also generates a button for you, using its button helper, which oper-
ates similarly to the old f.submit method, but styles it using Bootstrap’s default styles.
You add the btn-primary class here to make the button blue.

WHY NOT USE SEMANTIC STYLING FOR THE BUTTON? We could use semantic styling
for the form’s Submit button and have it automatically take the btn-primary
class, because it’s simply a Submit button for a form. But some forms in the
application may do dangerous things, and we may want those buttons styled dif-
ferently. Therefore, we’ll explicitly style each button as we go along.

Licensed to Mark Watson <nordickan@gmail.com>

115Styling the application

If you refresh the form page now, you’ll see the form shown in figure 4.17.
 It’s looking good. But if you submit the form with some validation errors, you’ll get

a nasty shock (see figure 4.18).
 You now have two sets of error messages, one styled, and one not! You only put

one set of errors on the page—the top “1 error prohibited this project from being
saved” set. The second set of errors, next to the fields they relate to, are provided by
Simple Form. They’re easier for users to understand—if you had a long form and
you wanted to know which fields you have errors for, it might require scrolling up
and down. So you can just use the Simple Form errors, and delete the error mes-
sages you added.

Figure 4.17 The revised “New Project” form

Figure 4.18 The “New Project” form with validation errors

Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 4 Oh, CRUD!

Open up app/views/projects/_form.html.erb and delete the whole errors block so
that it looks like the following listing.

<%= simple_form_for(project) do |f| %>
<%= f.input :name %>
<%= f.input :description %>

<%= f.button :submit, class: 'btn-primary' %>
<% end %>

The code is much simpler than the original form partial you started off with, and the
unsightly double errors are now gone!

 This has an unfortunate side effect though, as you’ll see if you run the spec for cre-
ating projects, with bundle exec rspec spec/features/creating_projects_spec.rb:

1) Users can create new projects when providing invalid attributes
Failure/Error: expect(page).to have_content "Name can't be blank"
expected to find text "Name can't be blank" in "Project has not
been created. New Project * Name can't be blank Description"

Oops. You were checking for the presence of an error message that you just deleted,
and by default Simple Form displays shortened error messages, such as “can’t be
blank.” Luckily, it’s easy to configure Simple Form to use full error messages that
include the name of the field. Because you’re using Simple Form with Bootstrap, the
configuration you want is in config/initializers/simple_form_bootstrap.rb.

 The initializer file defines lots of wrappers—instructions to Simple Form on the
HTML to generate for given types of forms and form fields. You can nearly completely
customize the HTML output, including the error messages. The default wrapper that
Simple Form uses is called :vertical_form (as specified at the bottom of the config
file), so that’s the wrapper you need to modify.

 Inside the config.wrappers :vertical_form, tag: 'div', class: 'form-group'
block, you need to modify the line that references using the :error component,
shown in the following listing.

config.wrappers :vertical_form, tag: 'div', class: 'form-group',
error_class: 'has-error' do |b|

...
b.use :error, wrap_with: { tag: 'span', class: 'help-block' }
...

end

Simple Form also provides a :full_error component that will include the name of
the field in the error message, giving you friendlier messages like “Name can’t be
blank.” Change this line to use the :full_error component instead.

Listing 4.35 The new _form.html.erb partial, without duplicate error messages

Listing 4.36 Using the default error component of Simple Form and Bootstrap

Licensed to Mark Watson <nordickan@gmail.com>

117Styling the application

b.use :full_error, wrap_with: { tag: 'span', class: 'help-block' }

After changing the initializer file, restart your Rails server. Refresh the form, and the
error messages will now be in the correct format.

 This will also fix the broken spec—you can verify this by running bundle exec
rspec spec/features/creating_projects_spec.rb:

2 examples, 0 failures

Perfect.
 The fields on this form are quite long. In fact, they stretch all the way across the

page. This is unnecessary, so you can shorten them by applying a max-width to all
basic form elements in your application.css.scss file. The form now looks like what you
see in figure 4.19.

form {
max-width: 500px;

}

Great! Now all of the project pages in your application are looking good.

4.5.6 Adding a navigation bar

We’ll do one more thing and then wrap up here: add a navigation bar to the top of the
application’s layout. It will look like figure 4.20.

Listing 4.37 Using the :full_error component

Figure 4.19 The “New Project” form with shorter fields

Figure 4.20 Adding a navigation bar

Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 4 Oh, CRUD!

This is by far easier than the Bootstrap work that you’ve done so far; all you need to do
is add this content above the flash messages (above the <div class="container"> in
your application’s layout).

<nav class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">

<%= link_to "Ticketee", root_path, class: "navbar-brand" %>
<button type="button" class="navbar-toggle collapsed"

data-toggle="collapse" data-target="#collapse">
Toggle navigation

</button>
</div>

<div class="collapse navbar-collapse" id="collapse">
<ul class="nav navbar-nav">

<li class="<%= "active" if current_page?("/") %>">
<%= link_to "Home", root_path %>

</div>
</div>

</nav>

The navbar contains two different parts: a header and the navigation itself. The
header contains a link that shows the “Ticketee” text, and when that link is clicked it
will take the user back to the homepage. In the navigation, you add a “Home” link, in
case people don’t realize that clicking Ticketee will take them back to the root path. If
the user is currently at the / path, then an extra class called active is added to the li
for that link, turning it a different color.

 If you go to the application’s homepage, you’ll now see the navbar, as in figure 4.21.

Oops, you’ve got a fixed navbar that sits at the top of the page, but now it overlaps the
content that was previously sitting at the top of the page. You can fix that by adding
some padding to the top of the body, which will push all of the content down (but
won’t affect the navbar, because it’s absolutely positioned just like your action links are).

body {
padding-top: 70px;

}

Listing 4.38 app/views/layouts/application.html.erb

Listing 4.39 The bottom of app/assets/stylesheets/application.css.scss

Figure 4.21 Home-
page with navbar

Licensed to Mark Watson <nordickan@gmail.com>

119Styling the application

Now things are much better spaced, as you can see in figure 4.22.
 You’re also using the responsive navbar, meaning that it will display nicely on both large

and small screens. You can test this out by resizing your browser wider and smaller. When
the window gets below 768 px wide, the
navbar will automatically switch to its
“small” display (see figure 4.23).

 It looks good! But the button at the
top right, which is supposed to cause the
menu to expand, doesn’t work yet—it
uses JavaScript to show and hide the menu contents, and you haven’t included Boot-
strap’s JavaScript into your application yet.

 Like you included Bootstrap’s CSS into your application.css.scss file, you also need
to include its JavaScript. Open up app/assets/javascripts/application.js and check out
what it looks like. You haven’t modified it yet, so at the bottom it will have four impor-
tant lines.

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require_tree .

They look like JavaScript comments, but they’re actually instructions for Sprockets,
which powers the asset pipeline, to include the named files. You can add Bootstrap’s
JavaScript file in here with the following line placed before the require_tree . line:

//= require bootstrap-sprockets

Now when you refresh your browser
and click the little three-bar icon,5 the
menu should expand and contract,
like in figure 4.24.

 The is a little bare at the moment,
but you’ll fill it out in future chapters.

Listing 4.40 The important parts of the default application.js file

5 Or “hamburger icon,” as it’s often called.

Figure 4.22 Home-
page with navbar and
padding

Figure 4.23 The Ticketee header, optimized for
small screens

Figure 4.24 The optimized Ticketee header, now with
added navigation

Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 4 Oh, CRUD!

4.5.7 Responsive styling

You’ve fixed the top navigation bar to be fully responsive, but it would be great if your
whole app looked good on the go, whether on a mobile phone, tablet, or any other
device. Let’s look at implementing that now.

 First, you need to include a special meta tag in your document to ensure that
responsive styles get picked up by mobile devices. Without this tag, you’d see the same
layout as you do on a desktop, just very, very small to fit on the smaller screens.

 Add the following line of code just inside the <head> section of the page, in app/
views/layouts/application.html.erb:

<meta name="viewport" content="width=device-width, initial-scale=1">

THE META TAG Some background information on this meta tag can be found
on the Mozilla Developer Network (https://developer.mozilla.org/en/docs/
Mozilla/Mobile/Viewport_meta_tag).

For now, you don’t have to know exactly how it works, but you know that it does
work—your mobile browser won’t artificially pretend it has more pixels than it has, to
render larger layouts in smaller spaces.

 Now your pages will use properly responsive styles on mobile. What else can you
improve? You can use similar responsive styling for tweaking the header sections of
your pages.

 At the moment, if the text gets long and the window gets small, you’ll end up with
some very squashed text and a lot of
whitespace around the buttons (see fig-
ure 4.25). On such a small screen, the
buttons visually take precedence over the
heading. The heading should come first,
and then the actions below it, in a neater
fashion.

 You can do this by introducing media
queries for your styles. These involve
wrapping media method calls around
your styles, as in the following listing.

@media(max-width: 500px) {
p { color: red }

}

This sample rule states that if the width of the screen is less than 500 px, then all para-
graphs should be red. You could add this rule to your stylesheet, try resizing your
browser, and watch your text change colors on the fly. Cool, huh?

Listing 4.41 A media query example

Figure 4.25 I’m not a designer but ... I can make
this look better!

Licensed to Mark Watson <nordickan@gmail.com>

https://developer.mozilla.org/en/docs/Mozilla/Mobile/Viewport_meta_tag
https://developer.mozilla.org/en/docs/Mozilla/Mobile/Viewport_meta_tag

121Styling the application

 Bootstrap uses media queries internally for lots of things, like the navbar styles you
saw earlier. If the screen is larger, the links in the bar appear in a line; if its smaller,
they’re hidden, but then appear on their own line when revealed. You can do a similar
sort of thing using Bootstrap’s own defined styles.

 Bootstrap defines several screen sizes, as detailed in its CSS documentation:
http://getbootstrap.com/css/#responsive-utilities. Each of these sizes has two Sass
variables relating to the minimum and maximum screen widths the styles apply to;
for example, the sm small screen size has $screen-sm-min and $screen-sm-max defi-
nitions. You can use these variables in your own media queries so your rules line up
with Bootstrap’s styles.

 xs (extra-small) screens are the ones you want to change your styles for—this is the
typical phone size. On xs screens, you want to do a couple of things:

■ Undo the max-width setting for headings inside header blocks, since it’s far too
narrow.

■ Undo the max-width and position styles for ul.actions link blocks.

But instead of this approach, it would be better to change those styles so that they only
apply to styles that are bigger than xs. Is that possible? It sure is.

 Make a new stylesheet in your app/assets/stylesheets folder and call it respon-
sive.scss. This is where all your responsive styles will go. As you did earlier with proj-
ects.scss, you can include this new stylesheet in your main application.css.scss by using
the @import rule.

@import "bootstrap-sprockets";
@import "bootstrap";
@import "font-awesome";
@import "projects";
@import "responsive";

Inside this responsive.scss file, you can write a media query to target all browsers that
are wider than the xs screen size.

@media(min-width: $screen-sm-min) {
}

You can also move some of your existing styles into your new media query. In
particular, you can move the header { h1, h2, h3, h4, h5, h6 {} } rule and most of
the ul.actions styles. In the end, you should have the two blocks in the following two
listings.

Listing 4.42 After including the responsive.scss file

Listing 4.43 Targeting bigger-than-xs screen sizes

Licensed to Mark Watson <nordickan@gmail.com>

http://getbootstrap.com/css/#responsive-utilities

122 CHAPTER 4 Oh, CRUD!

header {
@extend .page-header;
position: relative;
padding-bottom: 0px;

&:first-child {
margin-top: 20px;

}
}

ul.actions {
@extend .list-unstyled;
@extend .list-inline;

}

@media(min-width: $screen-sm-min) {
header {
h1, h2, h3, h4, h5, h6 {

max-width: 55%;
}

}

ul.actions {
position: absolute;
bottom: -2px;
right: 2px;
max-width: 45%;
text-align: right;

}
}

Now let’s see what happens when you resize the browser, smaller and larger. When you
get to the xs screen size, when the top navigation changes styles, your main heading goes
to full width and the buttons slide to sit
underneath it. It’s not super-beautiful,
but it’s much more usable on smaller
screens, including on phones, as seen in
figure 4.26.

 Whew, that was a lot of styling work!
That completes all of the Bootstrap
additions for the time being. Through-
out the remainder of the book, we’ll
use features of Bootstrap as they’re
needed to improve the design of the
application, but you’ve got the basic
foundation in place.

Listing 4.44 In the main application.css.scss

Listing 4.45 In responsive.scss

Figure 4.26 A better-looking layout for small
screens

Licensed to Mark Watson <nordickan@gmail.com>

123Summary

 Commit and push your recent changes now:

$ git add .
$ git commit -m "Added Bootstrap for styling"
$ git push

4.6 Summary
This chapter continued developing the first part of your application using test-first
practices with RSpec and Capybara, building it one step at a time. Now you have an
application that’s truly maintainable. If you want to know if these specs are working
later in the project, you can run bundle exec rspec; if something is broken that
you’ve written a test for, you’ll know about it. Doesn’t that beat manual testing? Just
think of all the time you’ll save in the long run.

 You learned firsthand how rapidly you can develop the CRUD interface for a
resource in Rails. There are even faster ways to do it (such as by using scaffolding, dis-
cussed in chapter 1); but to absorb how this process works, it’s best to go through it
yourself, step by step, as you did in these last two chapters.

 So far, you’ve been developing your application using test-first techniques, and as
your application grows, it will become more evident how useful these techniques are.
The main thing they’ll provide is assurance that what you’ve coded so far still works
exactly as it did when you first wrote it. Without these tests, you may accidentally break
functionality and not know about it until a user—or worse, a client—reports it. It’s
best that you spend some time implementing tests for this functionality now so you
don’t spend even more time later apologizing for whatever’s broken and fixing it.

 With the basic projects functionality for creating and managing projects done,
you’re ready for the next step. Because you’re building a ticket-tracking application, it
makes sense to implement functionality that lets you track tickets, right? That’s pre-
cisely what you’ll do in the next chapter. We’ll also cover nested routing and associa-
tion methods for models. Let’s go!

Licensed to Mark Watson <nordickan@gmail.com>

124

Nested resources

The project resource CRUD was completed in chapter 4, so the next step is to set up
the ability to create tickets within the scope of a given project. This chapter
explores how to set up a nested resource in Rails, by defining routes for Ticket
resources and creating a CRUD interface for them, all scoped under the project
resource that you just created.

 In this chapter, you’ll see how easy it is to retrieve all ticket records for a specific
project and perform CRUD operations on them, mainly with the powerful associa-
tions interface that Rails provides through its Active Record component.

5.1 Creating tickets
To add the functionality to create tickets under projects, you’ll first develop the Capy-
bara features, and then implement the code required to make them pass. Nesting one
resource under another involves additional routing, working with associations in
Active Record, and using more calls to before_action. Let’s get into this.

This chapter covers
■ Nested routing helpers and named routes
■ Creating associations to link models together
■ Making tests more expressive using let and let!

Licensed to Mark Watson <nordickan@gmail.com>

125Creating tickets

To create tickets for your application, you need an idea of what you’re going to imple-
ment. You want to create tickets only for particular projects, so you need a “New
Ticket” link on a project’s show page. The link must lead to a form where a name and
a description for your ticket can be entered, and the form needs a button that submits
it to a create action in your controller. You also want to ensure that the data entered
is valid, as you did with the Project model. This new form will look like figure 5.1.

 Start by putting the code from the following listing in a new file.

require "rails_helper"

RSpec.feature "Users can create new tickets" do
before do
project = FactoryGirl.create(:project, name: "Internet Explorer")

visit project_path(project)
click_link "New Ticket"

end

scenario "with valid attributes" do
fill_in "Name", with: "Non-standards compliance"
fill_in "Description", with: "My pages are ugly!"
click_button "Create Ticket"

expect(page).to have_content "Ticket has been created."
end

scenario "when providing invalid attributes" do
click_button "Create Ticket"

expect(page).to have_content "Ticket has not been created."
expect(page).to have_content "Name can't be blank"
expect(page).to have_content "Description can't be blank"

end
end

Listing 5.1 spec/features/creating_tickets_spec.rb

Figure 5.1 Form for creat-
ing new tickets

Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 5 Nested resources

You’ve seen the before method before, in section 4.2, when you were setting up the
project data you needed for the “Users can edit existing projects” feature spec to run.
Here you do a similar thing—set up the project that your tickets will be attached to.
Your ticket objects need a parent project object to belong to (in this example system, a
ticket can’t exist outside of a project), so it makes sense to build one before every test.

 You want to make sure you test the basic functionality of creating a ticket. It’s pretty
straightforward: start on the project page, click the “New Ticket” link, fill in the attri-
butes, click the Submit button, and make sure it works!

 You should also test the failure case. Because you need to have a name and descrip-
tion, a failing case is easy: click the Create Ticket button prematurely, before filling
out all of the required information.

 When you run this new feature using the bundle exec rspec spec/features/
creating_tickets_spec.rb command, both of your tests will fail due to your before
block:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
Capybara::ElementNotFound:
Unable to find link "New Ticket"

and the second error is identical

You need to add the “New Ticket” link to the bottom of the app/views/projects/
show.html.erb template so that this line in the test will work. You can copy the format
you used for the projects index view, and build a header with the action link in it.

<header>
<h2>Tickets</h2>

<ul class="actions">
<%= link_to "New Ticket", new_project_ticket_path(@project),

class: "new" %>

</header>

This new_project_ticket_path named route is a _nested route_, created via nested
routing definitions. It’s like the standard routing helper—the similarities and differ-
ences between the two are explained in the next section.

5.1.1 Nested routing helpers

When defining the “New Ticket” link, you used a nested routing helper—
new_project_ticket_path—rather than a standard routing helper such as
new_ticket_path, because you want to create a new ticket for a given project. Both
helpers work in a similar fashion, except the nested routing helper always takes at
least one argument: the Project object that the ticket belongs to. This is the parent

Listing 5.2 A new section for tickets

Licensed to Mark Watson <nordickan@gmail.com>

127Creating tickets

resource that your ticket resource will be nested inside. The route to any ticket URL is
always scoped by /projects/:id in your application.

 This helper and its brethren are defined by changing this line in config/routes.rb,

resources :projects

to these lines:

resources :projects do
resources :tickets

end

This code tells the routing for Rails that you have a tickets resource nested inside the
projects resource. Effectively, any time you access a ticket resource, you access it
within the scope of a project. Just as the resources :projects method gave you help-
ers to use in controllers and views, this nested resource of tickets within projects gives
you the helpers shown in table 5.1. In the table’s left column are the routes that can be
accessed, and in the right are the routing helper methods you can use to access them.

The routes belonging to a specific Ticket instance will now take two parameters—the
project that the ticket belongs to, and the ticket itself—to generate URLs like http://
localhost:3000/projects/1/tickets/2/edit.

 As before, you can use the *_url or *_path alternatives to these helpers, such as
project_tickets_url, to get the full URL if you so desire.

 Let’s use these routing helper methods by first creating your TicketsController.

5.1.2 Creating a tickets controller

Because you defined this route in your routes.rb file, Capybara can now click the
“New Ticket” link in your feature and proceed before complaining about the miss-
ing TicketsController. If you rerun your spec with bundle exec rspec spec/
features/creating_tickets_spec.rb, it spits out an error followed by a stack trace:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
ActionController::RoutingError:
uninitialized constant TicketsController

and the second error is identical

Table 5.1 Nested RESTful routing match-up

Route Helper

/projects/:project_id/tickets project_tickets_path

/projects/:project_id/tickets/new new_project_ticket_path

/projects/:project_id/tickets/:id/edit edit_project_ticket_path

/projects/:project_id/tickets/:id project_ticket_path

Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 5 Nested resources

Some guides may have you generate the model before you generate the controller,
but the order in which you create them isn’t important. When writing tests, you follow
the bouncing ball, and if the test tells you it can’t find a controller, then the next thing
you do is generate the controller it’s looking for. Later, when you inevitably receive an
error that it can’t find the Ticket model, as you did for the Project model, you gen-
erate that too. This is often referred to as top-down design.1

 To generate this controller and fix the uninitialized constant error, use this
command:

$ rails g controller tickets

You may be able to preempt what’s going to happen next if you run the test— it’ll
complain of a missing new action that it’s trying to get to by clicking the “New Ticket”
link. Let’s just rerun the test to make sure:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
AbstractController::ActionNotFound:
The action 'new' could not be found for TicketsController

Your next step is to define the new action. Open app/controllers/tickets
_controller.rb, and add the new action inside the TicketsController definition.

def new
@ticket = @project.tickets.build

end

There’s a lot of magic in this one line. You’re referring to @project but you haven’t
defined it, you’re referring to a tickets method on a Project instance but you
haven’t defined one, and you’re calling a method named build on whatever tickets
returns. Whew! One step at a time.

5.1.3 Demystifying the new action

We’ll start with the @project instance variable. As you declared in your routes, the
tickets resource is nested under a projects resource, giving you URLs like those
listed in table 5.1.

 The placeholders in the URLs (:project_id and :id) are what you get as part of
your params when you request these URLs. When you request http://localhost:3000/
projects/1/tickets/2, your placeholders have the values of 1 and 2, so params will
include the following:

{ project_id: 1, id: 2 }

1 Top-down and bottom-up design are explained on this Wikipedia page: http://en.wikipedia.org/wiki/Top-
down_and_bottom-up_design.

Listing 5.3 The new action for TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

129Creating tickets

You can use the provided :project_id value to load up the right Project instance in
a before_action, like you did for certain actions in your ProjectsController. Unlike
the ProjectsController, though, this before_action will be run before every action,
because the project will always be present; and it will use params[:project_id],
instead of params[:id].

 Add the following line under the class definition in app/controllers/
tickets_controller.rb:

before_action :set_project

And now, under the new action, you can define this set_project method that will use
the params[:project_id] variable to load the @project variable:

private

def set_project
@project = Project.find(params[:project_id])

end

Now your @project variable is defined. What about a tickets method? Is that the next
thing you need to define? Rerun the test with bundle exec rspec spec/features/
creating_tickets_spec.rb to see:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
NoMethodError:
undefined method `tickets' for #<Project:0x007f26fa162628>

It’s the next thing you need to define. You’ll define tickets to be an association on your
Project model—a link between the two models, so you can call @project.tickets and
get an array of all of the Ticket instances that are part of the @project. Seems magical.
Let’s look at how it works.

5.1.4 Defining a has_many association

The tickets method on Project objects is defined by calling an association method
in the Project class called has_many, which you can use as follows in app/models/
project.rb:

class Project < ActiveRecord::Base
has_many :tickets

...

As mentioned before, this defines the tickets method you need, as well as the associ-
ation. With the has_many method called in the Project model, you can now get to all
the tickets for any given project by calling the tickets method on any Project object.

 Defining a has_many association in the model also gives you a whole slew of other
useful methods, such as the build method, which you’re currently calling in the new
action of TicketsController. The build method is equivalent to new for the Ticket

Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 5 Nested resources

class (which you’ll create in a moment), but it associates the new object instantly with
the @project object by setting a foreign key called project_id automatically.

BENEFITS OF HAS_MANY For a complete list of what you get with a simple call to
has_many, see the Active Record Associations guide: http://guides.rubyonrails
.org/association_basics.html#has-many-association-reference.

Upon rerunning bundle exec rspec spec/features/creating_tickets_spec.rb,
you’ll get this:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
NameError:
uninitialized constant Project::Ticket

You can determine from this output that the method is looking for the Ticket class,
but why? The tickets method on Project objects is defined by the has_many call in
the Project model. This method assumes that when you want to get the tickets, you
actually want instances of the Ticket model. This model is currently missing; hence,
the error.

 You can add this model now with the following command:

$ rails g model ticket name:string description:text project:references

The project:references part defines an integer column for the tickets table
called project_id. It also defines an index on this column so that lookups for the tick-
ets for a specific project will be faster. The new migration for this model looks like the
following listing.

class CreateTickets < ActiveRecord::Migration
def change
create_table :tickets do |t|

t.string :name
t.text :description
t.references :project, index: true, foreign_key: true

t.timestamps null: false
end

end
end

The project_id column represents the project to which this ticket links and is called
a foreign key. The purpose of this field is to store the primary key of the project the
ticket relates to. When you create a ticket on the project with the id field of 1, the
project_id field in the tickets table will also be set to 1.

 The foreign_key: true part of the command enforces database-level foreign key
restrictions for those platforms that support it, such as PostgreSQL. (You can read more
about the specifics of Rails foreign key support in the Ruby on Rails 4.2 release notes

Listing 5.4 db/migrate/[timestamp]_create_tickets.rb

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/association_basics.html#has-many-association-reference
http://guides.rubyonrails.org/association_basics.html#has-many-association-reference

131Creating tickets

at http://guides.rubyonrails.org/4_2_release_notes.html#foreign-key-support.) The
SQLite driver you’re using doesn’t support foreign keys like this, so you don’t get any
benefit from specifying them, but neither does it do any harm. We’ll look at using Post-
greSQL when we cover deployment in chapter 13.

 Run the migration with bundle exec rake db:migrate. The db:migrate task runs
the migrations and then dumps the structure of the database to a file called db/
schema.rb. This structure allows you to restore your database using the bundle exec
rake db:schema:load task if you wish, which is better than running all the migrations
on a large project again!

RESTORING WITH RAKE Large projects can have hundreds of migrations,
which may not run due to changes in the system over time. It’s best to use
bundle exec rake db:schema:load.

Now when you run bundle exec rspec spec/features/creating_tickets_spec.rb,
you’re told the new template is missing:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
ActionView::MissingTemplate:
Missing template tickets/new, application/new with
{
:locale => [:en],
:formats => [:html],
:variants => [],
:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:
* ".../ticketee/app/views"

You must create this missing template, tickets/new, in order to continue.

5.1.5 Creating tickets in a project

Create the file at app/views/tickets/new.html.erb, and put the following in it:

<header>
<h1>
New Ticket
<small><%= @project.name %></small>

</h1>
</header>

<%= render "form", project: @project, ticket: @ticket %>

We’re continuing the Bootstrap styles that we started using in the previous chapter,
and to make it easier for users, you display in the main heading the project that the
ticket is going to be for.

 Like you did for projects, this template will render a form partial (so you can reuse
it for the edit page when you get to it). The partial also goes in the app/views/tickets
folder. Create a new file called _form.html.erb, using the code in the following listing.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/4_2_release_notes.html#foreign-key-support

132 CHAPTER 5 Nested resources

<%= simple_form_for([project, ticket]) do |f| %>
<%= f.input :name %>
<%= f.input :description %>

<%= f.button :submit, class: "btn-primary" %>
<% end %>

Note that simple_form_for is passed an array of objects rather than

<%= simple_form_for ticket do |f| %>

This version of simple_form_for, with an array argument, indicates that you want
the form to post to a nested route. For the new action, this generates a route like
/projects/1/tickets, and for the edit action, it generates a route like /projects/1/
tickets/2. This type of routing is known as polymorphic routing.

POLYMORPHIC ROUTING A great description of polymorphic routing can be
found on blog, “The Life of a Radar,” at http://ryanbigg.com/2012/03/
polymorphic-routes.

When you run bundle exec rspec spec/features/creating_tickets_spec.rb again,
you’re told the create action is missing:

1) Users can create new tickets with valid attributes
Failure/Error: click_button "Create Ticket"
AbstractController::ActionNotFound:
The action 'create' could not be found for TicketsController

To define this action, put it directly under the new action in TicketsController but
before the private method. Also add the appropriate strong parameters helper
method right below private, as shown in the following listing.

def create
@ticket = @project.tickets.build(ticket_params)

if @ticket.save
flash[:notice] = "Ticket has been created."
redirect_to [@project, @ticket]

else
flash.now[:alert] = "Ticket has not been created."
render "new"

end
end

private

def ticket_params
params.require(:ticket).permit(:name, :description)

end

Listing 5.5 app/views/tickets/_form.html.erb

Listing 5.6 The create action from TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

http://ryanbigg.com/2012/03/polymorphic-routes
http://ryanbigg.com/2012/03/polymorphic-routes

133Creating tickets

In this action, you use redirect_to and specify an Array—the same array you used
in form_for earlier—containing a Project object and a Ticket object. Rails inspects
any array passed to helpers, such as redirect_to and link_to, and determines what
you mean from the values. For this particular case, Rails figures out that you want
this helper:

project_ticket_path(@project, @ticket)

Rails determines this helper because, at this stage, @project and @ticket are both
objects that exist in the database, and you can therefore route to them. The route gen-
erated would be /projects/1/tickets/2 or something similar. Back in the form_for,
@ticket was new, so the route happened to be /projects/1/tickets. You could have
been explicit and specifically used project_ticket_path in the action, but using an
array is less repetitive.

 When you run bundle exec rspec spec/features/creating_tickets_spec.rb,
both scenarios continue to report the same error:

1) Users can create new tickets with valid attributes
Failure/Error: click_button "Create Ticket"
AbstractController::ActionNotFound:
The action 'show' could not be found for TicketsController

Therefore, you must create a show action for the TicketsController. But when you
do so, you’ll need to find tickets only for the given project.

5.1.6 Finding tickets scoped by project

Currently, both of your scenarios are failing due to a missing action. The next logical
step is to define the show action for your controller, which will look up a given ticket
by ID. But, being quick to learn and spot trends, you can anticipate that you’ll also
need to find a ticket by ID for the edit, update, and destroy actions, and preempt
similar errors when it comes to building those actions. You can make this a
before_action, as you did in the ProjectsController with the set_project method.

 You define this finder under the set_project method in the TicketsController:

def set_ticket
@ticket = @project.tickets.find(params[:id])

end

find is yet another association method provided by Rails when you declared that your
Project model has_many :tickets. This code attempts to find tickets only within the
collection of tickets owned by the specified project.

 Put your new before_action at the top of your class, under the action to find the
project:

before_action :set_project
before_action :set_ticket, only: [:show, :edit, :update, :destroy]

The sequence here is important, because you want to find the @project before you go
looking for tickets for it.

Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 5 Nested resources

 Then you can create the action that your test is asking for, below the create
method (but above private) in your TicketsController.

def show
end

Again, it doesn’t need to have anything in it—you’ve already loaded all of the content
the action needs in your before_action calls. But it’s good to know it’s there.

 Then create the view template for this action at app/views/tickets/show.html.erb,
using this code:

<div id="ticket">
<header>
<h1><%= @project.name %></h1>

</header>

<header>
<h2><%= @ticket.name %></h2>

</header>

<%= simple_format(@ticket.description) %>
</div>

The new method, simple_format, converts the line breaks entered into the descrip-
tion field into HTML break tags (
) so that the description renders exactly how the
user intends it to.

LINE BREAKS IN RUBY Line breaks are represented as \n and \r\n in strings in
Ruby rather than as visible line breaks.

Based solely on the changes you’ve made so far, your first scenario should be passing.
Let’s check with a quick run of bundle exec rspec spec/features/creating_tickets
_spec.rb:

1) Users can create new tickets when providing invalid attributes
Failure/Error: expect(page).to have_content "Ticket has not been
created."
expected to find text "Ticket has not been created." in "Ticketee Toggle
navigation Home Ticket has been created. Internet Explorer"

...
2 examples, 1 failure

This means you’ve got the first scenario under control, and users of your application
can create tickets within a project. Next, you need to add validations to the Ticket
model to get the second scenario of the ticket-creation feature spec to pass.

Listing 5.7 show action in app/controllers/tickets_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

135Creating tickets

5.1.7 Ticket validations

The second scenario fails because the @ticket that it saves isn’t valid, at least accord-
ing to your tests in their current state:

expected to find text "Ticket has not been created." in "Ticketee ...

You need to ensure that when somebody enters a ticket into the application, the
title and description attributes are filled in. To do this, define the following valida-
tions in the Ticket model.

validates :name, presence: true
validates :description, presence: true

Now when you run bundle exec spec/features/creating_tickets_spec.rb, the
entire feature passes:

2 examples, 0 failures

Before we wrap up here, let’s add one more scenario to ensure that what is entered
into the Description field is longer than 10 characters. You want the descriptions to
be useful! Add this scenario to the spec/features/creating_tickets_spec.rb file:

scenario "with an invalid description" do
fill_in "Name", with: "Non-standards compliance"
fill_in "Description", with: "It sucks"
click_button "Create Ticket"

expect(page).to have_content "Ticket has not been created."
expect(page).to have_content "Description is too short"

end

Listing 5.8 app/models/ticket.rb

Validating two fields using one line
You could also validate the presence of both of these fields using a single line:

validates :name, :description, presence: true

But it’s easier to see the associations for a given field if they’re all in one place. If
you were to add, for example, an extra length validation to the description field, it
might look like this:

validates :name, :description, presence: true
validates :description, length: { maximum: 1000 }

And it would not be immediately obvious that both validations apply to one field (the
description field). As more and more fields get added (you might validate the pres-
ence of over a dozen fields!), the problem would get worse and worse as the details
get spread further and further apart.

Our preference is to have validations for different fields on individual lines. But you
don’t have to use two lines to do it; we can still be friends.

Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 5 Nested resources

To implement the code needed to make this scenario pass, add another option to the
end of the validation for the description in your Ticket model, like this:

validates :description, presence: true, length: { minimum: 10 }

By default, this will generate a message identical to the one you used in your test. You
can verify this with the console—if you run rails console and try to create a new
Ticket object by using create!, you can get the full text for your error:

irb(main):001:0> Ticket.create!
ActiveRecord::RecordInvalid: ... Description is too short
(minimum is 10 characters)

If you’re getting that error message on the console, that means it will appear like that
in the app too. Find out by running bundle exec rspec spec/features/

creating_tickets_spec.rb again:

3 examples, 0 failures

That one’s passing now. Excellent! You should ensure that the rest of the project still
works by running bundle exec rspec again. You’ll see this output:

12 examples, 0 failures, 2 pending

There are two pending specs here: one located in spec/helpers/tickets_helper_spec.rb
and the other in spec/models/ticket_spec.rb. These were automatically generated
when you ran the commands to generate your TicketsController and Ticket model,
but you don’t need them right now, so you can just delete these two files. When you’ve
done that, rerunning bundle exec rspec outputs a lovely green result:

10 examples, 0 failures

Great! Everything’s still working. Commit and push the changes!

$ git add .
$ git commit -m "Implement creating tickets for a project"
$ git push

This section covered how to create tickets and link them to a specific project through
the foreign key called project_id on records in the tickets table. The next section
shows how easily you can list tickets for individual projects.

5.2 Viewing tickets
Now that you have the ability to create tickets, you’ll use the show action of the
TicketsController to view them individually. When displaying a list of projects, you use
the index action of the ProjectsController. For tickets, however, you’ll list them as
part of showing the details of a project, on the show action of the ProjectsController.
This page currently isn’t being used for anything else in particular, but also it just makes
sense to see the project’s tickets when you view the project.

 To test it, put a new feature at spec/features/viewing_tickets_spec.rb using the
code from the following listing.

Licensed to Mark Watson <nordickan@gmail.com>

137Viewing tickets

require "rails_helper"

RSpec.feature "Users can view tickets" do
before do
sublime = FactoryGirl.create(:project, name: "Sublime Text 3")
FactoryGirl.create(:ticket, project: sublime,

name: "Make it shiny!",
description: "Gradients! Starbursts! Oh my!")

ie = FactoryGirl.create(:project, name: "Internet Explorer")
FactoryGirl.create(:ticket, project: ie,

name: "Standards compliance", description: "Isn't a joke.")

visit "/"
end

scenario "for a given project" do
click_link "Sublime Text 3"

expect(page).to have_content "Make it shiny!"
expect(page).to_not have_content "Standards compliance"

click_link "Make it shiny!"
within("#ticket h2") do

expect(page).to have_content "Make it shiny!"
end

expect(page).to have_content "Gradients! Starbursts! Oh my!"
end

end

Quite the long feature! It covers a couple of things—both viewing the list of tickets for
a project, and then viewing the details for a specific ticket. We’ll go through it piece by
piece in a moment.

ONE FEATURE, TWO FEATURES Purists would probably split this out into two
separate features, but the second feature would depend on the first—if you
can’t see a list of tickets (feature 1), it would be impossible to click the link
to see a ticket’s details (feature 2). So we’ve included them both as parts of
one feature.

First, let’s examine the within usage in the scenario. Rather than checking the entire
page for content, this step checks the specific element using CSS selectors. The #ticket
h2 selector finds all h2 elements within a div with the ID of ticket, and then you make
sure the content is visible within one of those elements.2 This content should appear in
the specified tag only when you’re on the ticket page, so this is a great way to make sure
you’re on the right page and that the page is displaying relevant information.

Listing 5.9 spec/features/viewing_tickets_spec.rb

2 We’ll revisit this in chapter 10—hardcoding CSS selectors in a test isn’t a great idea because you’re testing
what the user can see, and they don’t care about selectors and tags; they just care about content.

Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 5 Nested resources

 When you run this spec with bundle exec rspec spec/features/viewing_tickets
_spec.rb, you’ll see that it can’t find the ticket factory:

1) Users can view tickets for a given project
Failure/Error: FactoryGirl.create(:ticket, project: sublime,
ArgumentError:
Factory not registered: ticket

You need to create the ticket factory now. It should create an example ticket with a
valid name and description. To do this, create a new file called spec/factories/
ticket_factory.rb with the following content.

FactoryGirl.define do
factory :ticket do
name "Example ticket"
description "An example ticket, nothing more"

end
end

With the ticket factory defined, the before block of this spec should now run all the
way through when you run bundle exec rspec spec/features/viewing_tickets
_spec.rb. You’ll see this error:

1) Users can view tickets for a given project
Failure/Error: expect(page).to have_content "Make it shiny!"
expected to find text "Make it shiny!" in "Ticketee Toggle ..."

The spec is attempting to see the ticket’s name on the page. But it can’t see it at the
moment, because you’re not displaying a list of tickets on the project show template
yet.

5.2.1 Listing tickets

To display a ticket on the show template, you can iterate through the project’s tickets
by using the tickets method on a Project object, made available by the has_many
:tickets call in your model. Put this code at the bottom of app/views/projects/
show.html.erb.

<ul id="tickets">
<% @project.tickets.each do |ticket| %>

#<%= ticket.id %> -
<%= link_to ticket.name, [@project, ticket] %>

<% end %>

Listing 5.10 spec/factories/ticket_factory.rb

Listing 5.11 app/views/projects/show.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

139Viewing tickets

BE CAREFUL WHEN USING LINK_TO. If you use a @ticket variable in place of
the ticket variable as the second argument to link_to, it will be nil. You
haven’t initialized the @ticket variable, and uninitialized instance variables
are nil by default. If @ticket rather than the correct ticket is passed in, the
URL generated will be a projects URL, such as /projects/1, rather than the
correct /projects/1/tickets/2.

Here you iterate over the items in @project.tickets using the each method, which
does the iterating for you, assigning each item to a ticket variable used in the block.
The code in this block runs for every ticket.

 If you run bundle exec rspec spec/features/viewing_tickets_spec.rb, it
passes because the app now has the means to go to a specific ticket from the project’s
page:

1 example, 0 failures

Time to make sure everything else is still working by running bundle exec rspec. You
should see all green:

11 examples, 0 failures

Fantastic! Push!

$ git add .
$ git commit -m "Implement tickets display"
$ git push

You can now see tickets for a particular project, but what happens when a project is
deleted? The tickets for that project aren’t magically deleted. To implement this
behavior, you can pass options to the has_many association, which will delete the tick-
ets when a project is deleted.

5.2.2 Culling tickets

When a project is deleted, its tickets become useless: they’re inaccessible because of
how you defined their routes. Therefore, when you delete a project, you should also
delete the tickets for that project. You can do that by using the :dependent option on
the has_many association for tickets defined in your Project model.

 This option has five choices that all act slightly differently. The first one is the
:destroy value:

has_many :tickets, dependent: :destroy

If you put this in your Project model, any time you call destroy on a Project object,
Rails will iterate through the tickets for this project, and call destroy on each of them
in turn (as well as any other destroy-related callbacks on the project itself). In turn,
each ticket object will have any destroy-related callbacks called on it, and if it has any
has_many associations with the dependent: :destroy option set, then those objects
will be destroyed, and so on. The problem is that if you have a large number of tickets,
destroy is called on each one, which will be slow.

Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 5 Nested resources

 The solution is the second value for this option:

has_many :tickets, dependent: :delete_all

This deletes all the tickets using a SQL delete, like this:

DELETE FROM tickets WHERE project_id = :project_id

This operation is quick and is exceptionally useful if you have a large number of tick-
ets that don’t have callbacks or that have callbacks you don’t necessarily care about
when deleting a project. If you do have callbacks on Ticket for a destroy operation,
then you should use the first option, dependent: :destroy.

 Thirdly, if you want to disassociate tickets from a project and unset the project_id
field, you can use this option:

has_many :tickets, dependent: :nullify

When a project is deleted with this type of :dependent option defined, it will execute
a SQL query such as this:

UPDATE tickets SET project_id = NULL WHERE project_id = :project_id

Rather than deleting the tickets, this option keeps them around, but their project_id
fields are unset, leaving them orphaned, which isn’t suitable for this system.

 This option would be useful if you were building a task-tracking application, for
example, and instead of projects and tickets, you had users and tasks. If you deleted a
user, you might want to unassign rather than delete the tasks associated with that user,
in which case you’d use the dependent: :nullify option.

 Finally, there are two options that work similarly—:restrict_with_error and
:restrict_with_exception. Both options will prevent records from being deleted if
the association isn’t empty; for example, in your projects and tickets scenario, you
wouldn’t be able to delete projects if they had any tickets in them.

 If you were using :restrict_with_error, then calling @project.destroy on a
project with tickets would add a validation error to the @project instance, as well as
return false. Using :restrict_with_exception in this case would raise an exception
that your application would have to manually catch and handle, or else the user would
receive an HTTP response of 500—Internal Server Error.

 An example of where this could be useful is in a billing scenario; it wouldn’t be
good for business if users were able to cancel/delete their own accounts in your sys-
tem if they had associated bills that still required payment.

 In the projects and tickets scenario, though, you’d use dependent: :destroy if you
had callbacks to run on tickets when they’re destroyed, or dependent: :delete_all if
you had no callbacks on tickets. To ensure that all tickets are deleted on a project
when the project is deleted, change the has_many association in your Project model
to the following.

has_many :tickets, dependent: :delete_all

Listing 5.12 app/models/project.rb

Licensed to Mark Watson <nordickan@gmail.com>

141Editing tickets

With this new :dependent option in the Project model, all tickets for the project will
be deleted when the project is deleted.

 You aren’t writing any tests for this behavior because it’s simple and you’d basically
be testing that you changed one tiny option. This is more of an internal implementa-
tion detail than it is customer-facing, and you’re writing feature tests right now, not
model tests.

 Let’s check that you didn’t break existing tests by running bundle exec rspec:

11 examples, 0 failures

Good! Commit:

$ git add .
$ git commit -m "Cull tickets when project gets destroyed"
$ git push

Next, let’s look at how to edit the tickets in your application.

5.3 Editing tickets
You want users to be able to edit tickets—that’s the updating part of this CRUD
interface for tickets. This section covers creating the edit and update actions for the
TicketsController. This functionality follows a thread similar to the project-editing
feature, where you follow an “Edit” link in the show template, change a field, and then
click an Update button and expect to see two things: a message indicating that the
ticket was updated successfully, and the modified data for that ticket.

 As always, we’ll start with a test that covers the functionality you wish you had and
will soon be building.

5.3.1 The ticket-editing spec

Just as you made a spec for creating a ticket, you need one for editing and updating
existing tickets. Specs for testing update functionality are always a little more complex
than specs for testing create functionality, because you need to have an existing object
that’s built properly before the test, and then you can change it during the test.

 With that in mind, you can write this feature using the code in the following list-
ing. Put the code in a file at spec/features/editing_tickets_spec.rb.

require "rails_helper"

RSpec.feature "Users can edit existing tickets" do
let(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket, project: project) }

before do
visit project_ticket_path(project, ticket)
click_link "Edit Ticket"

end

Listing 5.13 spec/features/editing_tickets_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 5 Nested resources

scenario "with valid attributes" do
fill_in "Name", with: "Make it really shiny!"
click_button "Update Ticket"

expect(page).to have_content "Ticket has been updated."

within("#ticket h2") do
expect(page).to have_content "Make it really shiny!"
expect(page).not_to have_content ticket.name

end
end

scenario "with invalid attributes" do
fill_in "Name", with: ""
click_button "Update Ticket"

expect(page).to have_content "Ticket has not been updated."
end

end

At the top of this feature, you use a new RSpec method called let. In fact, you use it
twice. It defines a new method with the same name as the symbol passed in, and that
new method then evaluates (and caches) the content of the block whenever that
method is called. It’s also lazy-loaded—the block won’t be evaluated until the first time
you call the method denoted by the symbol (project or ticket, in this case).

 It also has a bigger brother, called let! (with a bang!). let! isn’t lazy-loaded—
when you define a method with let!, it will be evaluated immediately, before your
tests start running.

 For a concrete example, suppose you had a test that looked like the following.

RSpec.describe "A sample test" do
let!(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket) }

it "lazily loads `let` methods" do
puts Project.count
puts Ticket.count

puts ticket.name
puts Ticket.count

end
end

If you were to run it, what do you think it might output? If you guessed the following,
you get a gold star!

■ Project.count outputs 1 (because project is already evaluated).
■ Ticket.count outputs 0 (ticket has not been evaluated yet).

Listing 5.14 Testing let and let!

Licensed to Mark Watson <nordickan@gmail.com>

143Editing tickets

■ ticket.name outputs Example ticket (from your factory).
■ Ticket.count outputs 1 (ticket has now been evaluated and exists in the

database).

In this case, it makes no difference if you use let or let!. The first thing you do in the
before block is instantiate both project and ticket by visiting the ticket’s show page.
If, however, you were visiting the homepage and then navigating to the ticket’s page, it
wouldn’t work—the ticket would never be created.

 After you visit the ticket’s show page, you click the “Edit” link, make some changes,
and verify that those changes get persisted. You’re also testing the failure case—what
happens if you can’t update a ticket for some reason. It looks pretty similar to the update
case, but rather than try to factor out all the commonalities, you repeat yourself. Some
duplication in tests is OK; if it makes the test easier to follow, it’s worth a little repetition.

 When you run this feature using bundle exec rspec spec/features/editing
_tickets_spec.rb, the first three lines in the before run fine, but the fourth fails:

1) Users can edit existing tickets with valid attributes
Failure/Error: click_link "Edit Ticket"
Capybara::ElementNotFound:
Unable to find link "Edit Ticket"

To fix this, add the “Edit Ticket” link to the show template of the TicketsController,
because that’s the page you’ve visited in the feature. It sounds like an action link for
the ticket, so you can add a list of action links into the header that specifies the ticket’s
name:

<header>
<h2><%= @ticket.name %></h2>

<ul class="actions">
<%= link_to "Edit Ticket", [:edit, @project, @ticket],

class: "edit" %>

</header>

Here’s yet another use of the Array argument passed to the link_to method, but
rather than passing only Active Record objects, you pass a Symbol first. Rails, yet again,
works out from the Array what route you wish to follow. Rails interprets this array to
mean the edit_project_ticket_path method, which is called like this:

edit_project_ticket_path(@project, @ticket)

Now that you have an “Edit Ticket” link, you need to add the edit action to the
TicketsController, because that will be the next thing to error when you run
bundle exec rspec spec/features/editing_tickets_spec.rb:

1) Users can edit existing tickets with valid attributes
Failure/Error: click_link "Edit Ticket"
AbstractController::ActionNotFound:
The action 'edit' could not be found for TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 5 Nested resources

5.3.2 Adding the edit action

The next logical step is to define the edit action in your TicketsController. Like the
edit action in ProjectsController, technically it doesn’t need to exist because it will
be empty—all it needs to do is load the @project and @ticket variables, which are
already done via set_project and set_ticket. But it’s good practice to define it, so
add it in under the show action in TicketsController, but before the private call.

def edit
end

The next logical step is to create the view for this action. Put it at app/views/tickets/
edit.html.erb, and fill it with this content:

<header>
<h1>
Edit Ticket
<small><%= @project.name %></small>

</h1>
</header>

<%= render "form", project: @project, ticket: @ticket %>

Here you reuse the form partial you created for the new action, which is handy. The
form_for knows which action to go to.

 If you run the feature spec again with bundle exec rspec spec/features/
editing_tickets_spec.rb, you’re told the update action is missing:

1) Users can edit existing tickets with valid attributes
Failure/Error: click_button "Update Ticket"
AbstractController::ActionNotFound:
The action 'update' could not be found for TicketsController

5.3.3 Adding the update action

You should now define the update action in your TicketsController.

def update
if @ticket.update(ticket_params)
flash[:notice] = "Ticket has been updated."
redirect_to [@project, @ticket]

else
flash.now[:alert] = "Ticket has not been updated."
render "edit"

end
end

Listing 5.15 app/controllers/tickets_controller.rb

Listing 5.16 The update action of TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

145Deleting tickets

Remember that in this action you don’t have to find the @ticket or @project objects
because a before_action does it for the show, edit, update, and destroy actions.

 With this single action implemented, both scenarios in the ticket-editing feature
will now pass when you run bundle exec rspec spec/features/editing_tickets
_spec.rb:

2 examples, 0 failures

Check to see if everything works with a quick run of bundle exec rspec:

13 examples, 0 failures

Great! Commit and push that:

$ git add .
$ git commit -m "Tickets can now be edited"
$ git push

In this section, you implemented edit and update for the TicketsController by
using the scoped finders and some familiar methods, such as update. You’ve got one
more part to go: deletion.

5.4 Deleting tickets
We now reach the final story for this nested resource: deleting tickets. As with some of
the other actions in this chapter, this story doesn’t differ from what you used in the
ProjectsController, except you’ll change the name project to ticket for your variables
and flash[:notice]. It’s good to have the reinforcement of the techniques previ-
ously used: practice makes perfect.

 Use the code from the next listing to write a new feature in spec/features/
deleting_tickets_spec.rb.

require "rails_helper"

RSpec.feature "Users can delete tickets" do
let(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket, project: project) }

before do
visit project_ticket_path(project, ticket)

end

scenario "successfully" do
click_link "Delete Ticket"

expect(page).to have_content "Ticket has been deleted."
expect(page.current_url).to eq project_url(project)

end
end

Listing 5.17 spec/features/deleting_tickets_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 5 Nested resources

When you run this spec using bundle exec rspec spec/features/deleting_tickets
_spec.rb, it will fail because you don’t yet have a “Delete Ticket” link on the show tem-
plate for tickets:

1) Users can delete tickets successfully
Failure/Error: click_link "Delete Ticket"
Capybara::ElementNotFound:
Unable to find link "Delete Ticket"

You can add the “Delete Ticket” link to the list of actions on app/views/tickets/
show.html.erb, right after the “Edit Ticket” link:

<%= link_to "Delete Ticket", [@project, @ticket], method: :delete,
data: { confirm: "Are you sure you want to delete this ticket?"},
class: "delete" %>

The method: :delete is specified again, turning the request into one headed for the
destroy action in the controller. Without this :method option, you’d be off to the
show action because the link_to method defaults to the GET method.

 Upon running bundle exec rspec spec/features/deleting_tickets_spec.rb
again, you’re told a destroy action is missing:

1) Users can delete tickets successfully
Failure/Error: click_link "Delete Ticket"
AbstractController::ActionNotFound:
The action 'destroy' could not be found for TicketsController

The next step must be to define this action, right? Open app/controllers/
tickets_controller.rb, and define it directly under the update action.

def destroy
@ticket.destroy
flash[:notice] = "Ticket has been deleted."

redirect_to @project
end

After you delete the ticket, you redirect the user back to the show page for the project
the ticket belonged to. With that done, your feature should now pass when you run
bundle exec rspec spec/features/deleting_tickets_spec.rb again:

1 example, 0 failures

Yet again, check to see that everything is still going as well as it should be by using bundle
exec rspec. You haven’t changed much, so it’s likely that things are still working. You
should see this output:

14 examples, 0 failures

Commit and push!

Listing 5.18 The destroy action from TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

147Summary

$ git add .
$ git commit -m "Implement deleting tickets feature"
$ git push

You’ve now created another CRUD interface, this time for the tickets resource,
which is only accessible within the scope of a project. This means you must request it
using a URL such as /projects/1/tickets/2 rather than /tickets/2.

5.5 Summary
In this chapter, you generated another controller, the TicketsController, which
allows you to create records for your Ticket model that will end up in your tickets
table. The difference between this controller and the ProjectsController is that the
TicketsController is accessible only within the scope of an existing project because
you used nested routing.

 In this controller, you scoped the finds for the Ticket model by using the tickets
association method provided by the association helper method has_many call in your
Project model. has_many also provides the build method, which you used to begin
creating new Ticket records that are scoped to a project.

 In the next chapter, you’ll learn how to let users sign up and sign in to your appli-
cation. You’ll also implement a basic authorization for actions such as creating a project.

Licensed to Mark Watson <nordickan@gmail.com>

148

Authentication

You’ve created two resources for your Ticketee application: projects and tickets.
Now you’ll add authentication to let users sign in to your application. With this fea-
ture, you can track which tickets were created by which users. A little later, you’ll
use these user records to allow and deny access to certain parts of the application.
To round out the chapter, you’ll create another CRUD interface, this time for the
users resource, but with a twist.

 The general idea behind having users for this application is that some users are
in charge of creating projects (project owners), and others use whatever the proj-
ects provide. If they find something wrong with a project or wish to suggest an
improvement, filing a ticket is a great way to inform the project owner about their
request. To round out the chapter, we’ll link tickets to the users who created them.
This way, anyone viewing a ticket can know exactly who created it, rather than it just
being yet another ticket in the application.

This chapter covers
■ Adding authentication to an application
■ Using the Devise gem
■ More associations, linking tickets to users

Licensed to Mark Watson <nordickan@gmail.com>

149Using Devise

 In this chapter, you’ll add authentication to your application using a gem called
Devise (https://github.com/plataformatec/devise/). Devise is maintained by Plata-
formatec (http://plataformatec.com.br/), a web development company run by some
prominent Rails developers. Devise has been proven time and time again to be a capa-
ble gem for authentication, so that’s what we’ll use here. Most of the functionality for
this chapter comes from within Devise itself.

6.1 Using Devise
Devise is a gem that provides the authentication features that nearly every Rails appli-
cation needs, such as user registration, sign-in, password reset emails, and confirma-
tion emails. We’ll cover the first two of those in this chapter.

 When a user signs up with Devise, their credentials are stored securely in a data-
base using industry-standard cryptography. If you were to build authentication your-
self, the cryptography methods you’d choose might not be as strong. Devise saves you
from having to worry about these things.

 You can install the Devise gem now by adding this line to your Gemfile.

gem "devise", "~> 3.4.1"

Then run bundle to install it.
 Next, run the generator, which will install Devise:

$ rails g devise:install

This generator will create an initializer at config/initializers/devise.rb, which contains
the configuration for Devise. As you saw earlier with the Simple Form gem, files in
config/initializers are run during the process of booting a Rails application and are
used to set up anything that’s necessary for the application to run. In this case,
Devise’s configuration sets the scene for using Devise later in your application.

 The devise:install generator gets your application ready for Devise by setting
up some default configuration, but it’s the devise generator that does the hard work
of adding the major pieces. Run this command now:

$ rails g devise user

This generator generates a User model, which you’ll use to keep track of users within
the application. Along with this comes a migration to generate a users table, so you
can now run the following command to apply this new migration to your database:

$ bundle exec rake db:migrate

The following model contains configuration specific to Devise.

Listing 6.1 Adding Devise to the application Gemfile

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/plataformatec/devise/
http://plataformatec.com.br/

150 CHAPTER 6 Authentication

class User < ActiveRecord::Base
Include default devise modules. Others available are:
:confirmable, :lockable, :timeoutable and :omniauthable
devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable
end

The devise method in this model sets up the model to use the specified Devise modules.
By default, Devise provides the following modules and features with this default config:

■ database_authenticatable—Allows the user to sign in to your app using cre-
dentials stored in the database, such as an email address and password.

■ registerable—Allows users to register or sign up with your application.
■ recoverable—Allows a user who forgets their password to reset it via email.
■ rememberable—Remembers a user’s session in your application. This means

users won’t have to sign in every time they restart their browser.
■ trackable—Tracks information such as last sign-in time and IP for each user.
■ validatable—Validates the user’s email address and password length. By

default, passwords are expected to be between 8 and 128 characters. This
setting can be changed in config/initializers/devise.rb by altering the
config.password_length value.

As you can see from this list, Devise offers quite a lot! It has even more, as listed in the
comment above the devise method:

■ confirmable—Requires a user to confirm their email address by clicking a link
in a confirmation email before they can sign in.

■ lockable—Provides extra security by automatically locking accounts after a
given number of failed sign-in attempts.

■ timeoutable—Provides extra security by automatically logging out users who
haven’t been active for a given amount of time.

■ omniauthable—Adds support for OmniAuth (https://github.com/intridea/
omniauth), which will allow users to authenticate with your app via an external
service, such as Facebook or Twitter.

We won’t be using any of these advanced modules, but it’s good to know they’re there,
and that they’re built in and well supported.

Listing 6.2 app/models/user.rb

Beware race conditions with a uniqueness validator
One of the validations that Devise’s validatable module adds is a uniqueness rule
for email addresses, so two people can’t sign up with the same email address, or an
existing user can’t change their email address to be the same as another user’s. The
code for that validation looks like this:

validates_uniqueness_of :email, allow_blank: true, if: :email_changed?

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/intridea/omniauth
https://github.com/intridea/omniauth

151Using Devise

The devise generator also adds a line to config/routes.rb:

devise_for :users

This one little line generates a bunch of routes for your application, which you can see
when you run bundle exec rake routes (controller column omitted for brevity):

Prefix Verb URI Pattern
new_user_session GET /users/sign_in(.:format)

user_session POST /users/sign_in(.:format)
destroy_user_session DELETE /users/sign_out(.:format)

user_password POST /users/password(.:format)
new_user_password GET /users/password/new(.:format)

edit_user_password GET /users/password/edit(.:format)
PATCH /users/password(.:format)
PUT /users/password(.:format)

cancel_user_registration GET /users/cancel(.:format)
user_registration POST /users(.:format)

new_user_registration GET /users/sign_up(.:format)
edit_user_registration GET /users/edit(.:format)

PATCH /users(.:format)
PUT /users(.:format)
DELETE /users(.:format)

These routes are all for controllers within Devise. Devise is not only a gem, but also a
Rails engine.1 This means that it contains its own set of controllers and views, which
exist outside of the application. This keeps your application’s code separate from
Devise, giving you less code to manage overall.

 With Devise installed and configured, you can now go about adding the ability for
users to sign up in your application with Devise.

1 For more information about engines, read the official Engines Guide: http://guides.rubyonrails.org/
engines.html.

This uniqueness validator works by checking to see whether any records matching
the validation criteria exist in the database already. In our case, the validator checks
if there are any User records with the same email address as this user. If no such
records exist, the validation passes.

A problem arises if two connections to the database both make this check at almost
exactly the same time. Both connections will claim that no such records exist, so
each will pass validation and allow the record to be saved, resulting in non-unique
records.

A way to prevent this is to use a database uniqueness index so that the database,
not Rails, does the uniqueness validation. For information on how to do this, consult
your database’s manual.

Although this problem doesn’t happen often, it can happen, especially on larger and
more popular sites, so it’s something to watch out for.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/engines.html
http://guides.rubyonrails.org/engines.html

152 CHAPTER 6 Authentication

6.2 Adding sign-up
Users will be able to sign up in your application by click-
ing a link in Ticketee’s navigation bar labeled “Sign
up.” When they click that link, they’ll see the page in
figure 6.1.

 From here, they’ll be able to enter their email
address and password and sign up with the application.
From then on, they can come back to the application,
sign in, and use the application to their heart’s content.

 To make sure that this feature works, you’ll write a
test for it in spec/features/signing_up_spec.rb, using
the code in the following listing.

require "rails_helper"

RSpec.feature "Users can sign up" do
scenario "when providing valid details" do
visit "/"
click_link "Sign up"
fill_in "Email", with: "test@example.com"
fill_in "user_password", with: "password"
fill_in "Password confirmation", with: "password"
click_button "Sign up"
expect(page).to have_content("You have signed up successfully.")

end
end

While this might seem silly—after all, Devise provides all of this functionality, and Devise
already has its own tests—this can prevent very silly mistakes, such as changing the view
and accidentally introducing a bug that prevents people from signing up.2 Besides, the
test is very straightforward—it just walks through the process we just described. It nav-
igates to the homepage, clicks a “Sign up” link, and then proceeds to sign up.

Listing 6.3 spec/features/signing_up_spec.rb

2 You may scoff, but we’ve seen this happen, in front of paying clients. They were not amused.

Password vs. user_password
You might wonder why we’re using user_password here to select the Password field,
rather than simply “Password.”

To start with, there are two fields with the label “Password” on the page: Password
and Password Confirmation. Capybara has a setting called exact, which will specify
what to do in this situation—by default, exact defaults to a value of :smart, which
means it looks for an exact string match first, and uses that field if it exists. This will
work for now, as you have a field specifically labeled “Password.”

Figure 6.1 The “Sign up” form

Licensed to Mark Watson <nordickan@gmail.com>

153Adding sign-up

Now when you run your test with bundle exec rspec spec/features/signing_up
_spec.rb, you’ll see this error:

1) Users can sign up when providing valid details
Failure/Error: click_link "Sign up"
Capybara::ElementNotFound:
Unable to find link "Sign up"

This one is easy enough to fix. You’re just missing a link to “Sign up” in your applica-
tion. You can add this to the navigation bar in app/views/layouts/application
.html.erb, underneath the “Home” link you already have there:

<li class="<%= "active" if current_page?("/users/sign_up") %>">
<%= link_to "Sign up", new_user_registration_path %>

The new_user_registration_path helper is provided by Devise, and you can see it
and its brethren by running bundle exec rake routes. You’re not just pulling these
out of the air here!

 With that link in place, your test should run a little further:

1 example, 0 failures

Oh, that’s surprising! It all passed. The only thing that you needed to do was add the
sign-up link. Devise provides you with the rest.

 Run all of your tests now to ensure that you haven’t broken anything. Run bundle
exec rspec to see this:

16 examples, 0 failures, 1 pending

You have one pending spec at spec/models/user_spec.rb, which came from the
devise generator. Remove this and rerun bundle exec rspec:

15 examples, 0 failures

But later on, you’ll be tweaking and customizing views to fit the theme on your site,
which will unfortunately change the label so it’s no longer an exact match. Simple
Form prefixes required fields with an asterisk (*) to indicate that status to the user,
and this will unfortunately confuse Capybara.

If you left it as fill_in "Password", with: "password", then later on you’d get an
error like the following:

1) Users can sign up when providing valid details
Failure/Error: fill_in "Password", with: "password"
Capybara::Ambiguous:
Ambiguous match, found 2 elements matching field "Password"

Luckily, Capybara also lets you select fields by either the HTML id or name attributes.
In this case, user_password is the generated ID of the field, so you can use it to
select the field to fill it in.

Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Authentication

That’s better! With that all done, make a commit:

$ git add .
$ git commit -m "Added Devise + sign up feature"
$ git push

Now that users can sign up in your application, the next thing that you need is the
ability for them to sign in.

6.3 Adding sign-in and sign-out
Devise allowed you to easily add a sign-up feature to your application. Now let’s see
about adding a way for users to sign in and out of the application.

6.3.1 Adding sign-in

To add sign-in, first you need to add a feature spec at spec/features/signing_in
_spec.rb using the code from the following listing.

require "rails_helper"

RSpec.feature "Users can sign in" do
let!(:user) { FactoryGirl.create(:user) }

scenario "with valid credentials" do
visit "/"
click_link "Sign in"
fill_in "Email", with: user.email
fill_in "Password", with: "password"
click_button "Log in"

expect(page).to have_content "Signed in successfully."
expect(page).to have_content "Signed in as #{user.email}"

end
end

If this test looks very similar to the sign-up feature, that’s because it is! The two flows are
very similar. In this test, the difference is that you’re creating a user using a FactoryGirl
factory, and then signing in as that user.

 When you run the test with bundle exec rspec spec/features/signing_in
_spec.rb, you’ll see that the user factory is missing:

1) Users can sign in with valid credentials
Failure/Error: let!(:user) { FactoryGirl.create(:user) }
ArgumentError:
Factory not registered: user

You can create this new factory file at spec/factories/user_factory.rb.

Listing 6.4 spec/features/signing_in_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

155Adding sign-in and sign-out

FactoryGirl.define do
factory :user do
sequence(:email) { |n| "test#{n}@example.com" }
password "password"

end
end

This factory can be used to create new users in your tests. The sequence method will
generate sequential email addresses for your users, such as test1@example.com and
test2@example.com. You do this so that each user has a unique email address, and
that will keep Devise’s unique email validation happy.

 When you run your test again, you’ll see that it can’t find the “Sign in” link:

1) Users can sign in with valid credentials
Failure/Error: click_link "Sign in"
Capybara::ElementNotFound:
Unable to find link "Sign in"

Add the following code underneath the “Sign up” link in app/views/layouts/
application.html.erb.

<li class="<%= "active" if current_page?("/users/sign_in") %>">
<%= link_to "Sign in", new_user_session_path %>

The new_user_session_path is another routing helper provided by Devise, this time
to a SessionsController.

 When you run your test again, it will go all the way up to the last step:

1) Users can sign in with valid credentials
Failure/Error: expect(page).to have_content "Signed in as
#{user.email}"
expected to find text "Signed in as test1@example.com" in "Ticketee
Toggle navigation Home Sign up Sign in Signed in successfully..."

This final line of the feature, seen in the error message, is checking that a message on
the page indicates to the user which email address they’ve used to sign in. This can be
useful in situations where a computer may be shared.

 You’ll put this line in app/views/layouts/application.html.erb, but you don’t want
it to show all the time. Conversely, it’s not useful for the sign-in or sign-up links to
appear when the user has already signed in. You can hide those links when the user is
signed in, and replace them with the “Signed in as...” message.

 You can do that by changing the content in app/views/layouts/application
.html.erb shown in listing 6.7 to what’s shown in listing 6.8.

Listing 6.5 spec/factories/user_factory.rb

Listing 6.6 app/views/layouts/application.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 6 Authentication

<li class="<%= "active" if current_page?("/users/sign_up") %>">
<%= link_to "Sign up", new_user_registration_path %>

<li class="<%= "active" if current_page?("/users/sign_in") %>">

<%= link_to "Sign in", new_user_session_path %>

<% unless user_signed_in? %>
<li class="<%= "active" if current_page?("/users/sign_up") %>">
<%= link_to "Sign up", new_user_registration_path %>

<li class="<%= "active" if current_page?("/users/sign_in") %>">
<%= link_to "Sign in", new_user_session_path %>

<% end %>

Then immediately after the ul.nav.navbar-nav tag that those li tags are contained
within, add the following code.

<% if user_signed_in? %>
<div class="navbar-right">
<p class="navbar-text">

Signed in as <%= current_user.email %>
</p>

</div>
<% end %>

These new pieces of code use two new methods: user_signed_in? and current_user.
Both methods are provided by Devise, and both methods do exactly as they say. The
user_signed_in? method returns true if the user is signed in; otherwise it returns
false. The current_user method will return either a User instance that represents
the current user, or nil if the user isn’t signed in. With these two methods, you can
hide the “Sign up” and “Sign in” links and you can show the “Signed in as…” message
on the right side of the navbar when the user is signed in.

 The navbar will now look like figure 6.2 when a user is signed in.
 Run your test again with bundle exec rspec spec/features/signing_in_spec.rb.

This time it will pass:

1 example, 0 failures

Listing 6.7 Showing the “Sign up” and “Sign in” links to all users

Listing 6.8 Showing the “Sign up” and “Sign in” links to only non-signed-in users

Listing 6.9 Showing the currently signed-in user’s email address

Figure 6.2 “Signed in as…” message in the navbar

Licensed to Mark Watson <nordickan@gmail.com>

157Adding sign-in and sign-out

Excellent! The sign-in part of this section is done. Now let’s add the sign-out part of
this task.

6.3.2 Adding sign-out

Before you write any code to build this sign-out functionality, you need to write a test
using the code from the following listing.

require "rails_helper"

RSpec.feature "Signed-in users can sign out" do
let!(:user) { FactoryGirl.create(:user) }

before do
login_as(user)

end

scenario do
visit "/"
click_link "Sign out"
expect(page).to have_content "Signed out successfully."

end
end

This test is a fairly simple one that reuses a bit of code from the sign-in feature, but with
a subtle twist. There’s now a login_as call in the before block. This login_as method
doesn’t come from Devise, but rather a gem Devise uses called Warden. Warden pro-
vides the user session management, whereas Devise provides the pretty face for it all.
The login_as method will log in a user without having to walk through the whole sign-
in process—visit the sign-in page, fill in a username and password, and so on.

 When you’re done with this feature,
you’ll have a “Sign out” link in your appli-
cation that looks like figure 6.3.

 The login_as method isn’t defined for
your tests yet, though, as you’ll see if you try
to run this test with bin/rspec spec/features/signing_out_spec.rb:

1) Signed-in users can sign out
Failure/Error: login_as(user)
NoMethodError:
undefined method `login_as' for #<RSpec::ExampleGroups::SignedIn...

This method isn’t included automatically by Warden, so you’ll need to manually
include the module that defines it. You can do this in spec/rails_helper.rb, the file
that defines all of the configuration for your Rails tests, by putting the following code
at the bottom of the RSpec.configure block.

Listing 6.10 spec/features/signing_out_spec.rb

Figure 6.3 The “Sign out” link

Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 6 Authentication

config.include Warden::Test::Helpers, type: :feature
config.after(type: :feature) { Warden.test_reset! }

The include method will include the specified module into your tests, and the type
option passed to it will make it so that this module is only included in tests that reside
in spec/features. You also need to tell Warden to reset itself after each test, which is
done with the second line.

 With those lines now in place, when you run your test it will complain that it can’t
find the “Sign out” link:

1) Signed-in users can sign out
Failure/Error: click_link "Sign out"
Capybara::ElementNotFound:
Unable to find link "Sign out"

You can add this link next to the “Signed in as…” message in app/views/layouts/
application.html.erb.

<% if user_signed_in? %>
<div class="navbar-right">
<p class="navbar-text">

Signed in as <%= current_user.email %>
</p>
<ul class="nav navbar-nav">

<%= link_to "Sign out", destroy_user_session_path,
method: :delete %>

</div>
<% end %>

When you run the test again with bundle exec rspec spec/features/signing_out
_spec.rb, you can see that Devise has—for the third time in a row—taken care of the
hard work. All you needed to provide was the link, and now your test passes:

1 example, 0 failures

That’s great to see. Run all of your tests now with bundle exec rspec and see if they’re
all working:

17 examples, 0 failures

Yes, good! They are all indeed working. Commit this:

$ git add .
$ git commit -m "Add sign in and sign out"
$ git push

In this section, you’ve implemented sign-in and sign-out for your application to com-
plement the sign-up feature that you added earlier in the chapter. You now have a

Listing 6.11 Configuring Warden for use in feature specs

Listing 6.12 Adding the “Sign out” link after the “Signed in as...” text

Licensed to Mark Watson <nordickan@gmail.com>

159Adding sign-in and sign-out

taste of what Devise can do for you. Go and play around with the application now. Try
signing up, signing in, and signing out.

 You may notice during these experiments that the sign-up and sign-in forms aren’t
styled as neatly as the project and ticket forms (see figures 6.4 and 6.5).

 This is because Devise provides basic views that don’t use Bootstrap styling. Your
next task will be to fix up these views.

6.3.3 Styling the Devise views

Devise is an engine, and this means that its controllers and views live inside the gem,
rather than inside your application. In order to customize these views, you’ll need to
copy them into your application. Devise provides a method for you to do this by way of
its devise:views generator. Run this in your application now:

$ rails g devise:views

This command copies over all of Devise’s
views to your application’s app/views direc-
tory, inside another directory called app/
views/devise. If you navigate to the sign-up
page now, you’ll be pleasantly surprised to
see that this page has already been styled
using Bootstrap (see figure 6.6).

 There are only a couple of small
changes to make:

■ Add the header wrapper tag to
make the heading consistent.

■ Remove the block error messages.
■ Make the “Sign up” button blue to

match the styling for the rest of
the application.

Figure 6.5 The unstyled “Log in” formFigure 6.4 The unstyled “Sign up” form

Figure 6.6 The automatically styled “Sign up” form

Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 6 Authentication

The view for this page is located at app/views/devise/registrations/new.html.erb, so
open it and have a look. You can replace the old heading in this view (listing 6.13)
with a new one that matches the style of your application (listing 6.14).

<h2>Sign up</h2>

<header>
<h1>Sign Up</h1>

</header>

You can remove the following line.

<%= f.error_notification %>

And you can add the btn btn-primary Bootstrap classes to the button.

<div class="form-actions">
<%= f.button :submit, "Sign up", class: "btn btn-primary" %>

</div>

Now this button will be the standard blue color that you’ve been using for Submit but-
tons across the application.

 You’ll also need to make these same changes to the view for the sign-in page, which
is in app/views/devise/sessions/new.html.erb. While you’re here, it would be nice to
change the words “Log in” to “Sign in” as well, to keep it consistent with the link you
put in the top navigation.

<header>
<h1>Sign In</h1>

</header>

<div class="form-actions">
<%= f.button :submit, "Sign in", class: "btn btn-primary" %>

</div>

And that’s it.

Listing 6.13 The old Devise-generated heading

Listing 6.14 The new Bootstrap-styled heading

Listing 6.15 The old-style block errors—yuck

Listing 6.16 A shiny blue Submit button

Listing 6.17 The new heading on the sign-in page

Listing 6.18 The new submit button on the sign-in page

Licensed to Mark Watson <nordickan@gmail.com>

161Linking tickets to users

 Run your tests with bundle exec rspec to make sure you haven’t broken anything ...

Failures:

1) Users can sign in with valid credentials
Failure/Error: click_button "Log in"
Capybara::ElementNotFound:

Unable to find button "Log in"

...
17 examples, 1 failure

And you have. Your sign-in test is looking for a button named “Log in,” and you
renamed it “Sign in.” It’s a quick fix—you just need to update the test to use the right
value for the button. Inside spec/features/signing_in_spec.rb, update the step that
clicks the sign-in button so that it’s looking for the right text.

...
click_button "Sign in"
...

We’ve renamed the button because the action users are taking is “signing in,” since
they click the “Sign in” link in the navbar to do so. The button’s name should
match.

 If you rerun your specs with bundle exec rspec after making this change, you’ll see
that everything is now passing again:

17 examples, 0 failures

Now the design for your “Sign up” and “Sign in” forms is more consistent with the rest
of the application. Make a commit for this change:

$ git add .
$ git commit -m "Styled sign up and sign in forms"
$ git push

You can go through and similarly style the other views that Devise provides, if you feel
like it. We won’t go through that whole process in order to keep this section short.

 Now that you have users in your application, let’s put them to use.

6.4 Linking tickets to users
Currently, when a user creates a ticket in the application, there’s no way to tell after
the fact which user created that ticket. As the last part of this chapter, let’s fix up this
little problem with your application.

 When you’re done, a ticket will clearly indicate who created it, as shown in fig-
ure 6.7.

Listing 6.19 Part of spec/features/signing_in_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 6 Authentication

Rather than creating a new feature, you’ll add to a previous feature: spec/features/
creating_tickets_spec.rb. In the very first scenario for that feature, you’ll add a few
lines to assert that you can see that the current user is the author of the ticket.

scenario "with valid attributes" do
fill_in "Name", with: "Non-standards compliance"
fill_in "Description", with: "My pages are ugly!"
click_button "Create Ticket"

expect(page).to have_content "Ticket has been created."
within("#ticket") do
expect(page).to have_content "Author: #{user.email}"

end
end

The user variable that you use in this new code doesn’t exist yet, so you can add a let
at the top of this feature. You’ll also need to sign in as this user using the login_as
helper from Warden, which you can do by adding the following code to the top of the
before block in this feature.

RSpec.feature "Users can create new tickets" do
let(:user) { FactoryGirl.create(:user) }

before do
login_as(user)
...

Now your new code is set up and ready to go. Give it a whirl by running bundle exec
rspec spec/features/creating_tickets_spec.rb. The first thing you’ll notice is
that the content you expect to be present on the page isn’t there:

Listing 6.20 Verifying that you display which user created a ticket

Listing 6.21 Defining the user that will author the new ticket, and signing them in

Figure 6.7 Ticket authorship in full view

Licensed to Mark Watson <nordickan@gmail.com>

163Linking tickets to users

1) Users can create new tickets with valid attributes
Failure/Error: expect(page).to have_content "Author: #{user.email}"
expected to find text "Author: test1@example.com" in "Internet
Explorer Non-standards compliance Edit Ticket Delete Ticket My ..."

To fix this error, add the code in the following listing to the code within app/views/
tickets/show.html.erb, underneath the header with the ticket title.

<table id="attributes">
<tr>
<th>Author:</th>
<td><%= @ticket.author.email %></td>

</tr>
<tr>
<th>Created:</th>
<td><%= time_ago_in_words(@ticket.created_at) %> ago</td>

</tr>
</table>

The Ticket object is likely to have many attributes added to it over the course of the
book, so we’re leaving room for expansion by creating a table that you can add extra
rows to.

 With this code, you call an author method on the @ticket object. The author
method will return the user who created the ticket, and email will show you the email
address for that user.

THE TIME_AGO_IN_WORDS VIEW HELPER You’re using a view helper called
time_ago_in_words here. It will present the timestamp for when the ticket was cre-
ated in a nice readable format, such as “about 3 minutes” or “about 2 hours.” Just
a little nicety. You can find time_ago_in_words at http://api.rubyonrails.org/
classes/ActionView/Helpers/DateHelper.html#method-i-time_ago_in_words.

The author association isn’t defined on your Ticket model yet, but you can add that
with a single line of code after the belongs_to :project line in app/models/ticket.rb:

class Ticket < ActiveRecord::Base
belongs_to :project
belongs_to :author, class_name: "User"

...

Here you define a new association called author on your Ticket instances. By default,
the association name of :author assumes that your class is named Author, but because
you don’t have a model called Author and the model is instead called User, you need
to tell the association that. You do that with the class_name option.

 With a new belongs_to association comes the need to add a new field to your
tickets table to track the IDs of the authors of your tickets. You can do that now by
running this command:

$ rails g migration add_author_to_tickets author:references

Listing 6.22 Displaying attributes in app/views/tickets/show.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html#method-i-time_ago_in_words
http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html#method-i-time_ago_in_words

164 CHAPTER 6 Authentication

This migration will add the author_id to your tickets table by using the following
code.

class AddAuthorToTickets < ActiveRecord::Migration
def change
add_reference :tickets, :author, index: true, foreign_key: true

end
end

There’s just one small change you have to make to this code before you can run it.
Rails assumes that you want to add a foreign key constraint to your association, which
you do—but you don’t want it the way it will behave out of the box.

 You need to remove the foreign_key: true part of the add_reference line and add
a foreign key constraint separately, so your migration should look like the following.

class AddAuthorToTickets < ActiveRecord::Migration
def change
add_reference :tickets, :author, index: true
add_foreign_key :tickets, :users, column: :author_id

end
end

Why do you need to do this? Because Rails’ automatic inference will try to apply a for-
eign key on your tickets table, pointing to an authors table—and you don’t have a
ticket table. The author will be a User, living in the users table, so you need to spe-
cifically tell Rails that the foreign key should point to the users table instead (but still
use the author_id field to do so.)

FOREIGN KEY SUPPORT ACROSS DIFFERENT DATABASE ADAPTERS If you left the
line about foreign keys as it was, it would still work in this scenario, as long as
you’re using SQLite. Rails doesn’t support foreign keys natively in SQLite, only
in PostgreSQL and MySQL, so this would work just fine. It just wouldn’t do
anything. You would, however, run into big problems down the road when it
comes to using alternative database systems, as you will in chapter 13 when we
look at using PostgreSQL on Heroku. So it’s best to fix it up now to prevent
problems later on.

You can now run the migration to add the author_id field to the tickets table:

$ bundle exec rake db:migrate

With that element now within app/views/tickets/show.html.erb, you can see if your
feature has gotten any further by running it again with bundle exec rspec spec/
features/creating_tickets_spec.rb:

Listing 6.23 db/migrate/[timestamp]_add_author_to_tickets.rb

Listing 6.24 After fixing the foreign key that Rails generated

Licensed to Mark Watson <nordickan@gmail.com>

165Linking tickets to users

1) Users can create new tickets with valid attributes
Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
undefined method `email' for nil:NilClass
./app/views/tickets/show.html.erb:21:in ...

This error is happening on the line that you just added to app/views/tickets/
show.html.erb that references @ticket.author.email, and it’s happening because
you’re not yet linking users to the tickets that they create. In order to remedy this,
you’ll need to do the actual linking, and the best place for that linking is in the con-
troller action where tickets are created: the create action of TicketsController.

 After you build a ticket in this action, you need to also set the ticket’s author. You can
do this by adding the author assignment to the create action for TicketsController.

def create
@ticket = @project.tickets.build(ticket_params)
@ticket.author = current_user

if @ticket.save
...

By associating an author with the @ticket object here, directly before the save, you link
the current_user to the ticket. Once the ticket has been saved, that Ticket instance and
that User instance will be tied together forever in a ticket-author relationship.

SETTING TICKET AUTHORS SECURELY A naive, but unfortunately common, way
to associate tickets to users would be to create a hidden field for author_id in
the “New Ticket” form and populate it with the current user’s ID. This is a big
security hole—a malicious user could simply edit the HTML and change the
user ID to be something else, thus creating tickets on another user’s behalf.
Manually setting the author in the controller is much safer—there’s no way
for the user to fake this data if they’re logged in. They can only assign tickets
to themselves.

Check now if your test gets any further by running it again
with bundle exec rspec spec/features/creating

_tickets_spec.rb. It should pass:

3 examples, 0 failures

Great! You’re showing a ticket’s author on the ticket
page itself.

 You can now add a couple of quick styles to app/
assets/stylesheets/application .css.scss to make it look a
bit prettier. It currently looks like figure 6.8.

Listing 6.25 Setting the current user as the ticket’s author

Figure 6.8 An unstyled version
of the ticket attributes dis-
play

Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 6 Authentication

You can make it a little better by adding the following set of styles to your stylesheet
specifically for tickets, located in app/assets/stylesheets/tickets.scss. This was gener-
ated when you generated a controller for your tickets, back in chapter 5.

#attributes {
@extend .table;
@extend .table-condensed;
width: 65%;

th {
width: 35%;

}

tr:first-child {
td, th {
border-top: 0px;
}

}

td, th {
line-height: 24px !important;

}
}

You extend Bootstrap’s table styles again and tweak some of the margins and line
heights for spacing reasons. You’ll have to include this stylesheet into your application
.css.scss with the following import line.

...
@import "projects";
@import "tickets";
@import "responsive";
...

Your attributes table now looks a lot bet-
ter, as you can see in figure 6.9.

 Now run all your tests with bundle exec
rspec and confirm that you haven’t broken
anything:

17 examples, 4 failures

Failed examples:

rspec ./spec/features/deleting_tickets_spec.rb:11
rspec ./spec/features/editing_tickets_spec.rb:12
rspec ./spec/features/editing_tickets_spec.rb:24
rspec ./spec/features/viewing_tickets_spec.rb:17

Listing 6.26 app/assets/stylesheets/tickets.scss

Listing 6.27 Importing tickets.scss

Figure 6.9 A styled version of the ticket
attributes display

Licensed to Mark Watson <nordickan@gmail.com>

167Linking tickets to users

Oops, it appears you’ve broken some of your features! Fortunately, they all fail for the
same reason:

1) Users can delete tickets successfully
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `email' for nil:NilClass

./app/views/tickets/show.html.erb:21:in ...

They’re all failing because the tickets created by Factory Girl in the features don’t link
to an author. When the app/views/tickets/show.html.erb page attempts to show the
author’s email address, it can’t find the author, so it raises this error.

 Let’s see about fixing up those features, one at a time.

6.4.1 Fixing the failing four features

The first of these is the deleting-tickets feature. The issue here is that the ticket cre-
ated in this feature isn’t linked to any particular author. You can fix that up by chang-
ing the series of the let blocks at the top of spec/features/deleting_tickets_spec.rb to
the following.

let(:author) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) do

FactoryGirl.create(:ticket, project: project, author: author)
end

You create an author and assign the ticket to the user. When you run this test with
bundle exec rspec spec/features/deleting_tickets_spec.rb, it will now pass:

1 example, 0 failures

Now apply the same fix to the remaining tests. The next batch is in spec/features/
editing_tickets_spec.rb, and both scenarios from this file are currently failing. Again,
you can fix this up by using the same let blocks as before.

let(:author) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) do

FactoryGirl.create(:ticket, project: project, author: author)
end

When you run this feature file with bundle exec spec/features/

editing_tickets_spec.rb, it will now pass:

2 examples, 0 failures

Listing 6.28 Assigning test tickets to an author for deleting tickets

Listing 6.29 Assigning test tickets to an author for editing tickets

Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 6 Authentication

The final feature file that you need to fix up is spec/features/viewing_tickets_spec.rb.
This one’s a little more complicated. In this file, you need to change the before block
to create a user, and link that user to the tickets, which you can do with the following
code.

before do
author = FactoryGirl.create(:user)

sublime = FactoryGirl.create(:project, name: "Sublime Text 3")
FactoryGirl.create(:ticket, project: sublime,
author: author, name: "Make it shiny!",
description: "Gradients! Starbursts! Oh my!")

ie = FactoryGirl.create(:project, name: "Internet Explorer")
FactoryGirl.create(:ticket, project: ie, author: author,
name: "Standards compliance", description: "Isn't a joke.")

visit "/"
end

In this new version of the before block, you create a user and then link that user to
both tickets that are created. When you run bundle exec rspec spec/features/
viewing_tickets_spec.rb, you can see that your changes have fixed this feature also:

1 example, 0 failures

That should be the last of your features to fix. You can confirm that by running bundle
exec rspec again. This time you’ll see all of your tests are passing:

17 examples, 0 failures

Excellent. Go ahead and make a commit for all this now:

$ git add .
$ git commit -m "Link tickets and users upon ticket creation"
$ git push

That wraps up the last section of this chapter.

6.5 Summary
This chapter covered how to set up authentication so that users can sign up and sign
in to your application to accomplish certain tasks. You learned about a very popular
gem used to handle authentication, Devise, and you also verified the functionality it
provides by writing Capybara features to go with it.

 Then came linking tickets to users, so you can track which user created which
ticket. You did this by using the setter method provided by the belongs_to method’s
presence on the Ticket class.

 We encourage you to start up the application with rails server, visit http://local-
host:3000, and play around to get an idea of how it’s looking right now. The application

Listing 6.30 Assigning test tickets to an author for viewing tickets

Licensed to Mark Watson <nordickan@gmail.com>

169Summary

is taking shape and currently offers a lot of functionality for the minimal work you’ve
put into it so far.

 In the next chapter, we’ll look at restricting certain actions to only users who are
signed in or who have a special attribute set on them.

Licensed to Mark Watson <nordickan@gmail.com>

170

Basic access control

As your application now stands, anybody, whether they’re signed in or not, can create
new projects. In this chapter, you’ll restrict access to certain actions in the Projects-
Controller, allowing only a certain subset of users—users with one particular attri-
bute that’s set in one particular way—to access the actions.

 You’ll track which users are administrators by putting a Boolean field called
admin in the users table. This is the most basic form of user authorization, not to be
confused with authentication, which you implemented in chapter 6. Authentication
is the process users go through to confirm their identity, whereas authorization is the
process used by the system to determine which users should have access to certain
things. (More simply, authentication is “Who are you?” and authorization is “Now
that I know who you are, what are you allowed to do?”)

 You’ll see how you can organize code into namespaces so that you can easily
restrict access to all subcontrollers to only admin users. If you didn’t do this, you’d
need to restrict access on a per-controller basis, which is prone to errors—it’s easy

This chapter covers
■ Authorizing administrative users
■ Organizing code in namespaces
■ Seeding the database with sample data
■ Adding an admin-only interface to edit user records

Licensed to Mark Watson <nordickan@gmail.com>

171Turning users into admins

to miss one and accidentally leave a part of your app wide open for the world to use
and abuse.

 Some people may suggest using gems such as rails_admin or activeadmin for this type
of feature. Although these gems can provide you with an easier way of creating admin
interfaces, they obfuscate the underlying code that’s required to get this type of feature
to work, and can often be very hard to customize. It’s for these reasons we recommend
staying away from these gems, and learning to build your own admin interface.

7.1 Turning users into admins
To start the process of restricting the creation of projects to admins, you need to add
an admin attribute to User objects. Only users who have this admin attribute set to
true will be able to create projects. You can start enforcing this first via your existing
tests—you have a feature spec for creating projects, and you can make sure the user
creating the projects is an admin.

 Alter the existing before in spec/features/creating_projects_spec.rb and insert a
line to log in as an admin user at the beginning of the before block.

before do
login_as(FactoryGirl.create(:user, :admin))
...

This line uses the user factory you defined in chapter 6, and adds what’s known as a Fac-
tory Girl trait. Traits can describe a certain type of a model, or they can group together
similar and related attributes under a meaningful name. In this example, any user with
this admin trait will be able to perform special actions within your application.

FACTORY GIRL TRAITS For the details on traits, see the Factory Girl documen-
tation: https://github.com/thoughtbot/factory_girl/blob/master/GETTING
_STARTED.md#traits.

To add this trait to your user factory, all you need to do is call the trait method
inside the factory, as in the following listing.

FactoryGirl.define do
factory :user do
sequence(:email) { |n| "test#{n}@example.com" }
password "password"

trait :admin do
admin true

end
end

end

Listing 7.1 Logging in as an admin before creating a project

Listing 7.2 Defining an admin trait

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md#traits

172 CHAPTER 7 Basic access control

A trait can add or modify any attributes set in the factory it’s defined in. This new addi-
tion to your code means that any user created with FactoryGirl.create(:user,
:admin) will have their admin attribute set to true.

 When you run bundle exec rspec spec/features/creating_projects_spec.rb,
you’ll see that no admin= method is defined for a User object:

1) Users can create new projects with valid attributes
Failure/Error: login_as(FactoryGirl.create(:user, :admin))
NoMethodError:
undefined method `admin=' for #<User:0x007f4138da7688>

Therefore, the next logical step is to define a field in the database so the attribute-setter
method is available.

7.1.1 Adding the admin field to the users table

You can generate a migration to add the admin field by running this command:

$ rails g migration add_admin_to_users admin:boolean

Rails does a pretty good job of inferring what you want the migration to do, just from
the name you specified. From add_admin_to_users it presumes you want to add a
field named admin to the table called users, which is exactly what you want. The extra
admin:boolean tells Rails that the admin field should be a Boolean field.

 But you’ll want to modify this migration so that when users are created, the admin
field is set to false rather than defaulting to nil. Even though nil is “falsey” in Ruby,
it’s clearer to make it explicitly false. nil means users have no admin information,
but they do: they’re not an admin. It’s better to be explicit about things.

To change the default, open the freshly generated migration (which will be in db/
migrate/<timestamp>_add_admin_to_users.rb) and change this line,

add_column :users, :admin, :boolean

to this:

add_column :users, :admin, :boolean, default: false

Falsey and truthy in Ruby
In Ruby, nil and false are both considered to be “falsey” and won’t pass a condi-
tional test, such as puts "foo" if false. Everything else is considered “truthy,” in-
cluding things like 0, [], "", and {}. This can confuse people coming from other
languages!

Changing the default value from nil to false makes even more sense if you consider
it from a database SQL perspective. We traditionally treat nil in Ruby (meaning no
value) as equivalent to null in SQL, but null in SQL means an unknown value. In
this case, null in the database isn’t an appropriate default value because you’ll al-
ways know whether or not the user is an admin.

Licensed to Mark Watson <nordickan@gmail.com>

173Turning users into admins

When you pass in the :default option, the admin field defaults to false, ensuring
that users aren’t accidentally created as admins.

YOU CAN ROLL BACK CHANGES IF YOU WISH If you jumped the gun and ran
bundle exec rake db:migrate before modifying the migration, the admin
field will default to null, which is no good. It may seem like you’re screwed at
this point, but you’re not. Run bundle exec rake db:rollback to undo this
latest migration so that you can modify it and get back on track. Once the
modification is done correctly, don’t forget to run bundle exec rake
db:migrate again!

Run bundle exec rake db:migrate so that the migration adds the admin field to the
users table in both the development and test databases. When you run bundle exec
rspec spec/features/creating_projects_spec.rb now, it will run fully:

2 examples, 0 failures

Great! With the new admin trait on the user factory defined, you can use it to test
restricting the acts of creating, updating, and destroying projects to only those users
who are admins.

7.1.2 Creating the first admin user

Now that you have the ability to distinguish normal users from admin users, it would
be great if you actually had an admin user to use your development app. You’ve got
one in your tests, but not one in the development environment.

 Data like this—data that you really need to have created in your database before
the application can be used—is called seed data. Rails has a defined place to put your
seed data—in db/seeds.rb.

 Open db/seeds.rb. It’s empty at the moment, but contains instructions for how it
can be used. You can put commands to create the relevant data in the file, and then
run it with bundle exec rake db:seed.

 You can put the code needed to create a new admin user at the bottom of the file
shown next.

unless User.exists?(email: "admin@ticketee.com")
User.create!(email: "admin@ticketee.com", password: "password", admin: true

)
end

While you’re here, you can also add some other sample data to play with when you use
the application.

unless User.exists?(email: "viewer@ticketee.com")
User.create!(email: "viewer@ticketee.com", password: "password")

end

Listing 7.3 Seeding Ticketee with an admin user

Listing 7.4 Seeding Ticketee with a non-admin user and some sample projects

Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Basic access control

["Sublime Text 3", "Internet Explorer"].each do |name|
unless Project.exists?(name: name)
Project.create!(name: name, description: "A sample project about #{name}"
)

end
end

Run the following command to load the seeds into your application:

$ bundle exec rake db:seed

Now you have an admin user that can sign in to Ticketee, and can see and test all of
the admin functionality you’ll build from here on out.

 Before you do that, it’s time to commit everything:

$ git add .
$ git commit -m "Added admin flag to User model, and seeded the first

 ➥ admin user"
$ git push

7.2 Controller namespacing
It’s all well and good having an admin flag on a user record, but at the moment it
doesn’t actually do anything. We’ll fix that now.

 You already have some functionality that you want only admins to be able to
access—the ability to create and delete projects—and later on you’ll build more. An
easy way to restrict access to all of this functionality at once is to move it into its own
controller namespace.

 You’ve already seen an example of namespaces for controllers, though you might
not realize it—your ApplicationController (in app/controllers/application
_controller.rb) that was created when you generated the initial Rails app inherits from
ActionController::Base. In this case, ActionController is the namespace, and
Base is the name of the class inside the namespace.

 You can define your own namespace, which we’ll imaginatively call Admin in this
example. Inside this namespace, you can define all of the controllers you like, and
they’ll all inherit from a base controller also inside the namespace. And inside that
base controller, you can implement a before_action that will run before every action
and check if the user is an admin—if they’re not, you can simply turn them away.

7.2.1 Generating a namespaced controller

The first thing you’ll need is the base controller in the new namespace that all of the
other admin controllers will inherit from. You can generate it by running this command:

$ rails g controller admin/application index

When you use the / separator between parts of the controller, Rails knows that you
want a namespace. In this case, it will generate a namespaced controller called Admin:
:ApplicationController at app/controllers/admin/application_controller.rb. The

Licensed to Mark Watson <nordickan@gmail.com>

175Controller namespacing

views for this controller are at app/views/admin/application, and the spec is at spec/
controllers/admin/application_controller_spec.rb. Because you passed in the word
index at the end, this controller will contain an index action, and there will also be a
view at app/views/admin/application/index.html.erb for this action, as well as a
route defined in config/routes.rb, like this:

namespace :admin do
get 'application/index'

end

NAMING APPLICATIONCONTROLLER Why use the name Admin::Application-
Controller over something that might be more explicit, like Admin::Base-
Controller? The main controller of your app, in the root namespace, is called
ApplicationController, so it makes sense that any other main controllers in
namespaces should also be called ApplicationController.

What URLs and named routes does this generate? You can run bundle exec rake
routes and see (controller column omitted for brevity):

Prefix Verb URI Pattern
admin_application_index GET /admin/application/index(.:format)

The namespace block in your routing has directly translated to a folder name in the
generated URL structure, which is nice. The application/index part is ugly, though—
it would make more sense for your action to be the root route of the namespace, like
you defined projects#index to be the root route of the root namespace.

 Replace the entire namespace block in config/routes.rb with the following.

namespace :admin do
root "application#index"

end

And now bundle exec rake routes gives you some nicer URLs:

Prefix Verb URI Pattern Controller#Action
admin_root GET /admin(.:format) admin/application#index

This root admin page is the first page your admins will see in the admin area, so you
may as well make it a bit pretty. Open the generated view for it, app/views/admin/
application/index.html.erb, and replace its contents with the following.

<div class="row" id="admin">
<div class="col-md-9">
<header>

<h1>Admin Lounge</h1>
</header>

Listing 7.5 Defining a root route for the admin namespace

Listing 7.6 Default content for the admin homepage

Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Basic access control

<p>Welcome to Ticketee's Admin Lounge. Please enjoy your stay.</p>
</div>

<div class="col-md-3">
<h2>Admin Links</h2>
<ul class="nav nav-stacked">

Links will go here. Soon.

</div>
</div>

You’ve used a few more of Bootstrap’s styles here, for adding a grid layout (so you can
have a sidebar defining admin links). The only styles you need to add are for the h2 in
the sidebar, so it doesn’t look large and overwhelming.

 When you generated Admin::ApplicationController, you also got a new empty
stylesheet in app/assets/stylesheets/admin/application.scss. You can add your styles
for the h2 there.

#admin .col-md-3 h2 {
font-size: 13px;
letter-spacing: 1px;
text-transform: uppercase;
font-weight: bold;
color: #959595;
padding-left: 15px;

}

You’ll also need to import this stylesheet into your main application.css.scss file.

...
@import "tickets";
@import "admin/application";
@import "responsive";
...

Once you’ve done that, you can refresh the admin homepage and see a page that
looks like figure 7.1.

 But anyone can access this page at the moment. You don’t even need to be logged
in. The next step is to make sure this page is only accessible to admin users, and you’ll
do that with a before_action that checks not only whether a user is signed in, but also
whether the user is an admin. We’ll start (as always) with a test.

Listing 7.7 app/assets/stylesheets/admin/application.scss

Listing 7.8 app/assets/stylesheets/application.css.scss

Figure 7.1 The styled admin page

Licensed to Mark Watson <nordickan@gmail.com>

177Controller namespacing

7.2.2 Testing a namespaced controller

A controller spec is much better suited to testing this functionality than the feature
specs we’ve been using heavily up to this point. Feature specs are great for defining
and testing a series of actions that a user can perform in your application, but control-
ler specs are much better for quickly testing singular points, such as whether a user
can go to a specific action in a controller. You used this same reasoning back in chap-
ter 4 to test what happens when a user attempts to go to a project that doesn’t exist.

 Open spec/controllers/admin/application_controller_spec.rb, and write the fol-
lowing example to ensure that non-signed-in and non-admin users can’t access the
index action. You can replace the current contents of the file.

require "rails_helper"

RSpec.describe Admin::ApplicationController, type: :controller do
let(:user) { FactoryGirl.create(:user) }

before do
allow(controller).to receive(:current_user).and_return(user)

end

context "non-admin users" do
it "are not able to access the index action" do

get :index

expect(response).to redirect_to "/"
expect(flash[:alert]).to eq "You must be an admin to do that."

end
end

end

Here you set up a user by using the user factory, and then you use not one but two
new methods. The controller method returns the instance of the controller that will
be used during this test. The allow method allows you to fake method responses on
that object. In this case, you’re stubbing the current_user method. If you were to call
current_user in the controller, you wouldn’t actually call the current_user method
defined in the controller; the test would intercept the call and simply return user
instead. By doing this, you don’t have to actually sign in as the user at all. The control-
ler will think that the user has already signed in.

 There are a couple of good reasons to do this. Primarily, the whole authentication
process is not what you’re testing in this test; you’re testing what happens when an
already-signed-in user accesses a specific controller action. If there’s a bug in the sign-
in process, every test that requires a signed-in user shouldn’t fail—only ones that spe-
cifically test the sign-in process. This helps reduce false failures—tests that fail, even
though the logic they’re testing works perfectly. As a bonus side effect, your tests will
be faster. You’re not repeating the sign-in process over and over again, maybe hun-
dreds of times for the entire test suite.

Listing 7.9 spec/controllers/admin/application_controller_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Basic access control

With this test, you’re testing that when a non-admin user makes a GET request to the
index action of the Admin::ApplicationController, the response redirects them to
the root path of the application and also sets a flash[:alert] message to “You must
be an admin to do that.”1

 When you run this test using bundle exec rspec spec/controllers/admin/
application_controller_spec.rb, it fails like this:

1) Admin::ApplicationController non-admin users are not able to access
the index action
Failure/Error: expect(response).to redirect_to "/"
Expected response to be a <redirect>, but was <200>

This error message tells you that although you expected to be redirected, the
response was actually 200, indicating a successful response. This isn’t what you want;
you want a redirect! Now let’s get it to pass.

 The first step is to define a new method to be used as the before_action admin
check on the Admin::ApplicationController. This method will check whether a user
is an admin, and, if not, will set the “You must be an admin to do that” message and
redirect the user back to the root path.

 Define this new method in app/controllers/admin/application_controller.rb by
placing the code from the following listing at the end of the class.

class Admin::ApplicationController < ApplicationController
...

private

1 There are exceptions to every rule. Interactions with external services, such as logging in via Facebook, should
always have their responses stubbed out. Imagine if your test suite was actually visiting Facebook every time
you ran a test. It would be so slow!

Listing 7.10 app/controllers/admin/application_controller.rb

Stubbing in feature tests
You can’t stub like this in feature tests because you don’t have direct access to the
controller instances that you’re using. If you did, then you wouldn’t use Warden’s own
login_as helper to sign in. You also couldn’t use login_as in a controller spec, be-
cause Warden’s proxy object isn’t available in controller tests at all. This is because
the Warden middleware doesn’t come into play at all during controller tests; the tests
hit the controllers themselves without going through the layers of middleware.

Ideally, you should be doing very little stubbing in feature tests—they’re designed to
test your entire app, and how all the pieces fit together, like they do when your user
is viewing them in a browser.1 This is why you don’t stub out authentication in feature
tests, but you can stub it out here in a controller test.

Licensed to Mark Watson <nordickan@gmail.com>

179Controller namespacing

def authorize_admin!
authenticate_user!

unless current_user.admin?
redirect_to root_path, alert: "You must be an admin to do that."

end
end

end

This method uses the authenticate_user! method provided by Devise to ensure that
the user is signed in. If the user isn’t signed in, they will be redirected to the sign-in
page. If you didn’t use this method here, you’d get an error when you call admin? on
current_user, because the current_user method would return nil.

 To call the authorize_admin! method, call before_action at the top of your
Admin::ApplicationController:

class Admin::ApplicationController < ApplicationController
before_action :authorize_admin!
...

With that in place, you can rerun the spec. When you do, you’ll see this error:

1) Admin::ApplicationController non-admin users are not able to access
the index action
Failure/Error: get :index
NoMethodError:
undefined method `authenticate!' for nil:NilClass

.../lib/devise/controllers/helpers.rb:112:in `authenticate_user!'
.../admin/application_controller.rb:10:in `authorize_admin!'

Your application isn’t too happy with the authenticate_user! call that you have
inside the authorize_admin! method inside the controller. It’s complaining that it
can’t find an authenticate! method on nil. This is happening because
authenticate_user! attempts to call this method on a thing called the Warden proxy
object, which isn’t available in controller tests.

 To work around this problem, you can stub out the authenticate_user! method
to do nothing in your controller spec. Do this by using the allow method once more
in the before block at the top of your test:

RSpec.describe Admin::ApplicationController, type: :controller do
let(:user) { FactoryGirl.create(:user) }

before do
allow(controller).to receive(:authenticate_user!)
allow(controller).to receive(:current_user).and_return(user)

end
...

When using allow in this fashion (without an and_return call), the authenticate
_user! method is stubbed to return nil, and the real authenticate_user! method
doesn’t get called. You put this at the top of this test because the show action test at the
bottom of this file will also need this.

Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 7 Basic access control

 Ultimately, that all means that you should now have worked around the error that
you saw in the last test. Run the test again and see what happens:

1 example, 0 failures

Excellent! You have a controller that’s only accessible by admin users of your applica-
tion. With that done, you can ensure that everything is working as expected by run-
ning bundle exec rspec:

20 examples, 0 failures, 2 pending

Everything is still passing, but there are two pending tests:

./spec/helpers/admin/application_helper_spec.rb:14
./spec/views/admin/application/index.html.erb_spec.rb:4

These two tests were added when you ran rails g controller admin/controller.
The first is a simple helper test, and the second is a view spec, which can be used to
ensure that rendering a particular view works as intended.2 You don’t need these two
tests, so you can delete both files. When you rerun bundle exec rspec, you should see
this output:

18 examples, 0 failures

You can commit this now:

$ git add .
$ git commit -m "Add admin namespace with application controller"
$ git push

7.2.3 Moving functionality into the admin namespace

Now that you have a working admin namespace that only admin users can access, you
can start moving functionality into it. Normal users shouldn’t have the ability to create
and delete projects—only admins should—so that functionality sounds like a good
candidate for moving. You have tests that cover that functionality, so if you acciden-
tally break it in the process of moving it, you’ll know it straight away.

 To start with, those tests (spec/features/creating_projects_spec.rb and spec/
features/deleting_projects_spec.rb) should be moved into spec/features/admin, to
reflect where the functionality will be placed. Rerun them, and they will still pass:

$ bundle exec rspec spec/features/admin
...

3 examples, 0 failures

You can make another ProjectsController inside the Admin namespace, which is
where the moved controller actions will go. You can generate another namespaced
controller for the projects resource.

$ rails g controller admin/projects

2 Read more about view spec testing at https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/
view-spec.

Licensed to Mark Watson <nordickan@gmail.com>

https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec
https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec

181Controller namespacing

The only change that you’ll need to make to this generated controller is to change
what it inherits from—a default controller inherits from ApplicationController, but
you want your admin controllers to inherit from Admin::ApplicationController.
Inside the new controller, app/controllers/admin/projects_controller.rb, change the
first line from this,

class Admin::ProjectsController < ApplicationController

to this:

class Admin::ProjectsController < Admin::ApplicationController

The actions that you’ll move to this new controller are the new, create, and destroy
actions of the existing ProjectsController. You can cut and paste those actions from
the old controller to the new one, so that your ProjectsController looks like the fol-
lowing listing.

class ProjectsController < ApplicationController
before_action :set_project, only: [:show, :edit, :update, :destroy]

def index
@projects = Project.all

end

def show
end

def edit
end

def update
if @project.update(project_params)

flash[:notice] = "Project has been updated."
redirect_to @project

else
flash.now[:alert] = "Project has not been updated."
render "edit"

end
end

private

def set_project
@project = Project.find(params[:id])

rescue ActiveRecord::RecordNotFound
flash[:alert] = "The project you were looking for could not be found."
redirect_to projects_path

end

def project_params
params.require(:project).permit(:name, :description)

end
end

Listing 7.11 The new ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Basic access control

The Admin::ProjectsController will look like the next listing.

class Admin::ProjectsController < Admin::ApplicationController
def new
@project = Project.new

end

def create
@project = Project.new(project_params)

if @project.save
flash[:notice] = "Project has been created."
redirect_to @project

else
flash.now[:alert] = "Project has not been created."
render "new"

end
end

def destroy
@project.destroy

flash[:notice] = "Project has been deleted."
redirect_to projects_path

end
end

The project_params method will have to be duplicated into the Admin::Projects-
Controller, since it’s used in both the create action of the Admin::ProjectsCon-
troller as well as in the update action of the ProjectsController. You also need to
load the @project variable in the destroy action of the Admin::ProjectsController,
because you no longer have the before_action that sets the @project variable. You
can also remove :destroy from the list of actions the before_action does run, in the
ProjectsController.

class Admin::ProjectsController < Admin::ApplicationController
def new
@project = Project.new

end

def create
@project = Project.new(project_params)

if @project.save
flash[:notice] = "Project has been created."
redirect_to @project

else
flash.now[:alert] = "Project has not been created."

Listing 7.12 The new Admin::ProjectsController

Listing 7.13 The final Admin::ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

183Controller namespacing

render "new"
end

end

def destroy
@project = Project.find(params[:id])
@project.destroy

flash[:notice] = "Project has been deleted."
redirect_to projects_path

end

private

def project_params
params.require(:project).permit(:name, :description)

end
end

What else do you need to do? You still need the views that these actions were render-
ing! Do the following:

■ Move the new view in app/views/projects/new.html.erb to app/views/admin/
projects/new.html.erb so that the new action you moved can still use it.

■ The new view uses the _form partial back in the app/views/projects folder. For
now you can duplicate this _form partial into the app/views/admin/projects
folder.

You can rerun the admin specs with bundle exec rspec spec/features/admin now to
see what has been broken:

FFF

Failures:

1) Users can create new projects with valid attributes
Failure/Error: click_link "New Project"
AbstractController::ActionNotFound:

The action 'new' could not be found for ProjectsController

2) Users can create new projects when providing invalid attributes
Failure/Error: click_link "New Project"
AbstractController::ActionNotFound:

The action 'new' could not be found for ProjectsController

3) Users can delete projects successfully
Failure/Error: click_link "Delete Project"
AbstractController::ActionNotFound:

The action 'destroy' could not be found for ProjectsController

3 examples, 3 failures

You haven’t updated the links in your views—the “New Project” and “Delete Project”
links are still pointing at routes that reference actions that no longer exist.

Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 7 Basic access control

 You’ll need to update your routes to point to the new actions, and you can also
remove the routes for the old actions, to keep things tidy. Your old routes for projects
looked like the following listing.

resources :projects do
resources :tickets

end

This defines the seven default RESTful routes for a projects resource: index, new,
create, show, edit, update, and destroy. If you want to remove some of those
(because you’ve removed the actions), you can use the only option when defining the
routes.

resources :projects, only: [:index, :show, :edit, :update] do
resources :tickets

end

THE ONLY OPTION only works as a whitelist, listing the routes that should be
generated. There’s also a blacklist version, called except, to list the routes
that should not be generated. See the Rails Routing from the Outside In guide:
http://guides.rubyonrails.org/routing.html#restricting-the-routes-created.

You can add the new routes inside the admin namespace, as shown in the following
listing.

namespace :admin do
root "application#index"

resources :projects, only: [:new, :create, :destroy]
end

This generates the following named routes:

Prefix Verb URI Pattern Controller#Action
admin_root GET /admin(.:format) admin/

application#index
admin_projects POST /admin/projects(.:format) admin/projects#create

new_admin_project GET /admin/projects/new(.:format) admin/projects#new
admin_project DELETE /admin/projects/:id(.:format) admin/
projects#destroy

Now you can edit the links to “New Project” and “Delete Project” in the index and
show views, to point to the new named routes.

Listing 7.14 Non-admin route definition for projects

Listing 7.15 Non-admin route definition for projects

Listing 7.16 Admin route definition for projects

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/routing.html#restricting-the-routes-created

185Controller namespacing

<%= link_to "New Project", new_admin_project_path, class: "new" %>

<%= link_to "Delete Project",
admin_project_path(@project),
method: :delete,
data: { confirm: "Are you sure you want to delete this project?" },
class: "delete" %>

Even though the “Delete Project” link is only accessible to admins in your application,
it will still show up for non-admins. This is a problem you’ll fix a little later in this
chapter.

 Rerunning the project-creating spec with bundle exec rspec spec/features/
admin/creating_projects_spec.rb gives you a different error:

1) Users can create new projects with valid attributes
Failure/Error: click_button "Create Project"
ActionController::RoutingError:
No route matches [POST] "/projects"

The test is trying to click the button on the form to create a project, but the route that
the form is submitting to no longer exists. This is because you just copied the old form
partial—you should edit that form to submit to the new create action in the admin
namespace instead. Open the admin project form in app/views/admin/projects/
_form.html.erb, and modify the first line as in the next listing.

<%= simple_form_for([:admin, project]) do |f| %>

For this simple_form_for, you use the array form you saw earlier with [@project,
@ticket], but this time you pass in a symbol rather than a model object. Rails inter-
prets the symbol literally, generating a route such as admin_users_path rather than
users_path, which would be generated if you used simple_form_for @user instead.
You can also use this array syntax with the link_to (shown earlier) and redirect_to
helpers. Any symbol passed anywhere in the array for any of these methods is inter-
preted literally. The same goes for strings.

 Now your spec for creating a project will pass:

2 examples, 0 failures

THE PROJECT-DELETION FEATURE

What about deleting projects? If you run bundle exec rspec spec/features/admin/
deleting_projects_spec.rb, you’ll get the following error:

Listing 7.17 The new link to create a project in app/views/projects/index.html.erb

Listing 7.18 The new link to delete a project in app/views/projects/show.html.erb

Listing 7.19 The start of the updated _form.html.erb partial

Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 7 Basic access control

1) Users can delete projects successfully
Failure/Error: expect(page).to have_content "Project has been deleted."
expected to find text "Project has been deleted." in "Ticketee
Toggle navigation Home Sign up Sign in You need to sign in or sign
up before continuing. Sign In Email Password Remember me Sign up..."

The test isn’t logging in as an admin user (or as any user), before attempting to delete
a project—that’s why the text on the page includes “You need to sign in or sign up
before continuing.” You can sign in as an admin the same way you did in the creating
projects spec, in the before block, putting it directly before the scenario block in
spec/features/admin/deleting_projects_spec.rb.

RSpec.feature "Users can delete projects" do
before do
login_as(FactoryGirl.create(:user, :admin))

end

...

Now the project-deletion spec will pass as well:

1 example, 0 failures

As always, run bundle exec rspec to make sure that nothing else is broken:

19 examples, 0 failures, 1 pending

Everything is passing, but you have another pending spec, coming from autogene-
rated code:

./spec/helpers/admin/projects_helper_spec.rb:14

You can delete this file because you’re not using it at all. Then rerun the specs to verify
that everything is all green:

18 examples, 0 failures

Great! You’ve moved this admin-only functionality into the admin namespace, which
restricts it so that non-admin users can’t access it. It’s a good time to stop and commit
your changes:

$ git add .
$ git commit -m "Only admins can create or delete projects"
$ git push

You’ve restricted the controller actions by putting them into the namespace, but the
links to perform these actions, such as “New Project” and “Delete Project,” are still vis-
ible to users. You should hide (or protect) these links from users who aren’t admins,
because it’s useless to show actions to people who can’t perform them. Let’s look at
how to do that.

Listing 7.20 spec/features/admin/deleting_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

187Hiding links

7.3 Hiding links
In this section, you’ll learn how to hide certain links such as “New Project” and
“Delete Project” from users who have no authorization to perform those actions in
your application.

 If these links were available for users to follow, they’d be told “You must be an admin
to do that,” thanks to the before_action that you set up in Admin::Application-
Controller. This happens because these links link to Admin::ProjectsController,
which inherits from Admin::ApplicationController.

 It’s pointless to display these links to people who shouldn’t be able to click them,
so let’s look at hiding them.

7.3.1 Hiding the “New Project” link

To begin, open a new file called spec/features/hidden_links_spec.rb. In this file,
you’ll write scenarios to ensure that the right links are shown to the right people.

 Let’s start with the code for checking that the “New Project” link is hidden from
regular users who are either signed out or signed in, and that it is shown to admins.

require "rails_helper"

RSpec.feature "Users can only see the appropriate links" do
let(:user) { FactoryGirl.create(:user) }
let(:admin) { FactoryGirl.create(:user, :admin) }

context "anonymous users" do
scenario "cannot see the New Project link" do

visit "/"
expect(page).not_to have_link "New Project"

end
end

context "regular users" do
before { login_as(user) }

scenario "cannot see the New Project link" do
visit "/"
expect(page).not_to have_link "New Project"

end
end

context "admin users" do
before { login_as(admin) }

scenario "can see the New Project link" do
visit "/"
expect(page).to have_link "New Project"

end
end

end

Listing 7.21 spec/features/hidden_links_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 7 Basic access control

In this spec, you first define two let blocks: one for user and one for admin. These
create a non-admin user and an admin user, respectively, when they’re called.

 You have three context blocks—one for each permutation of the scenario. In the
first, you act as an anonymous user and check that there is indeed no “New Project”
link on the page. In the second, you act as a regular user and again check that there’s
no “New Project” link on the page. In the third, however, you sign in as an admin, and
when that happens, the “New Project” link should appear on the page.

 When you run this feature using bundle exec rspec spec/features/

hidden_links_spec.rb, you’ll get some expected failure messages:

1) Users can only see the appropriate links anonymous users cannot see
the New Project link
Failure/Error: expect(page).not_to have_link "New Project"
expected not to find link "New Project", found 1 match: "New
Project"

./spec/features/hidden_links_spec.rb:10:in `block (3 levels) in...

2) Users can only see the appropriate links regular users cannot see
the New Project link
Failure/Error: expect(page).not_to have_link "New Project"
expected not to find link "New Project", found 1 match: "New
Project"

./spec/features/hidden_links_spec.rb:19:in `block (3 levels) in...

The first two scenarios from your new feature fail, of course, because you’ve done
nothing yet to hide the link they’re checking for.

 Open app/views/projects/index.html.erb, and change the “New Project” link to
the following to start the process of hiding it.

<% admins_only do %>
<ul class="actions">

<%= link_to "New Project", new_admin_project_path, class: "new" %>

<% end %>

The admins_only method won’t magically be there, so you’ll need to define it. The
method needs to take a block. If current_user is an admin, the method should run
the code in the block; if they’re not, it should show nothing.

 You’ll want this helper to be available everywhere in your application’s views, so the
best place to define it is in ApplicationHelper. If you wanted it to be available only to
a specific controller’s views, you’d place it in the helper that shares the name with the
controller.

 To define the admins_only helper, open app/helpers/application_helper.rb and
define the method in the module using the following code.

Listing 7.22 Only showing the “New Project” link to admins

Licensed to Mark Watson <nordickan@gmail.com>

189Hiding links

def admins_only(&block)
block.call if current_user.try(:admin?)

end

The admins_only method takes a block (as promised), which is the code between
the admins_only do and end in your view. To run this code in the block, you call
block.call, which only runs it if current_user.try(:admin?) returns true. This
try method tries a method on an object; if the object is nil (as it would be if no
user is currently logged in), try gives up and returns nil, rather than raising a
NoMethodError exception.

 When you run this feature using bundle exec rspec spec/features/

hidden_links_spec.rb, it passes because the links are being hidden and shown as
required:

3 examples, 0 failures

Now that the “New Project” link hides if the user isn’t an admin, let’s do the same
thing for the “Delete Project” link.

7.3.2 Hiding the delete link

You need to add this admins_only helper to the “Delete Project” links on the project’s
show view, to hide this link from people who shouldn’t see it. (Later on you’ll hide the
“Edit Project” link too, but a little differently.) Before you do this, though, you should
add further scenarios to spec/features/hidden_links_spec.rb to cover the change to
the “Delete Project” link.

 In order to test that the link works, you need to create a project during these tests.
To do so, define a let block with the two for users and admins in this file, as follows.

RSpec.feature "Users can only see the appropriate links" do
let(:project) { FactoryGirl.create(:project) }
...

Now you can use this project method to define scenarios in the anonymous users
context block, to ensure that anonymous users can’t see the “Delete Project” link. Use
the code from the following listing.

context "anonymous users" do
...
scenario "cannot see the Delete Project link" do
visit project_path(project)
expect(page).not_to have_link "Delete Project"

end
end

Listing 7.23 app/helpers/application_helper.rb

Listing 7.24 spec/features/hidden_links_spec.rb, when creating a project to test against

Listing 7.25 spec/features/hidden_links_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 7 Basic access control

Next, copy the scenario into the “regular users” context block.

context "regular users" do
...
scenario "cannot see the Delete Project link" do
visit project_path(project)
expect(page).not_to have_link "Delete Project"

end
end

Finally, ensure that admin users can see the link by placing the code from this listing
in the "admin users"context.

context "admin users" do
...

scenario "can see the Delete Project link" do
visit project_path(project)
expect(page).to have_link "Delete Project"

end
end

With these latest changes, you should now have three new scenarios in the hidden-
links feature:

■ One checks the links for anonymous users
■ One checks for regular users
■ One checks for admins

Run this feature now with bundle exec rspec spec/features/hidden_links_spec.rb
to see the new failures:

1) Users can only see the appropriate links anonymous users cannot see
the Delete Project link
Failure/Error: expect(page).not_to have_link "Delete Project"
expected not to find link "Delete Project", found 1 match: "Delete
Project"

./spec/features/hidden_links_spec.rb:16:in `block (3 levels) in...

2) Users can only see the appropriate links regular users cannot see the
Delete Project link
Failure/Error: expect(page).not_to have_link "Delete Project"
expected not to find link "Delete Project", found 1 match: "Delete
Project"

./spec/features/hidden_links_spec.rb:30:in `block (3 levels) in...

Again, you haven’t done anything to hide the link, so the two tests that expect the link
not to be there are failing. To make these tests pass, change the link in app/views/

Listing 7.26 spec/features/hidden_links_spec.rb

Listing 7.27 spec/features/hidden_links_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

191Namespace-based CRUD

projects/show.html.erb and wrap it in the admins_only helper, as shown in the follow-
ing listing.

<ul class="actions">
<%= link_to "Edit Project", edit_project_path(@project),
class: "edit" %>

<% admins_only do %>
<%= link_to "Delete Project", admin_project_path(@project),

method: :delete,
data: { confirm: "Are you sure you want to delete this project?" },
class: "delete" %>

<% end %>

You keep the “Edit Project” link public (for now), but you hide the “Delete Project”
link so it’s only visible to admins.

 A great way to check if your code is working as intended is to run the test using bun-
dle exec rspec spec/features/hidden_links_spec.rb. When you do, you should see
this:

6 examples, 0 failures

That was a little too easy, but that’s Rails.
 This is a great point to ensure that everything is still working by running all the

tests with bundle exec rspec. According to the following output, everything’s in work-
ing order:

24 examples, 0 failures

Commit and push that:

$ git add .
$ git commit -m "Only admins can see the links to create and

delete projects"
$ git push

In this section, you defined a namespace and ensured that only users with the admin
attribute set to true were able to access actions inside it. This is a great example of
authorization.

 Now that you have the namespace set up, you can start building new functionality
inside it. You only have one admin user, which you created in your seed data—it would
be nice if your admin user had an interface for creating new users, or for making
existing users into admins as well.

7.4 Namespace-based CRUD
Now that only admins can access the admin namespace, you can create the CRUD
actions for Admin::UsersController too, as you did for the TicketsController and
ProjectsController controllers. This will allow admin users to create new users in
the application, without them needing to sign up first.

Listing 7.28 app/views/projects/show.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 7 Basic access control

 The first part of creating CRUD actions is creating a resource, so it would be a great
idea to start with that. Begin by creating a new feature in a new file called spec/
features/admin/creating_users_spec.rb. Use the code from the following listing for
this new feature.

require "rails_helper"

RSpec.feature "Admins can create new users" do
let(:admin) { FactoryGirl.create(:user, :admin) }

before do
login_as(admin)
visit "/"
click_link "Admin"
click_link "Users"
click_link "New User"

end

scenario "with valid credentials" do
fill_in "Email", with: "newbie@example.com"
fill_in "Password", with: "password"
click_button "Create User"
expect(page).to have_content "User has been created."

end
end

When you run this feature using bundle exec rspec spec/features/admin/

creating_users_spec.rb, the first couple of lines in the before block pass, but it fails
due to a missing “Admin” link:

1) Admins can create new users with valid credentials
Failure/Error: click_link "Admin"
Capybara::ElementNotFound:
Unable to find link "Admin"

This is a link that you’ll have in the top navigation, linking to your admin area. You
need this link for the feature to pass, but you want to show it only for admins. You can
use the admins_only helper you defined earlier and put the link in app/views/
layouts/application.html.erb, after the “Home” link.

<ul class="nav navbar-nav">
<li class="<%= "active" if current_page?("/") %>">
<%= link_to "Home", root_path %>

<% admins_only do %>

<%= link_to "Admin", admin_root_path %>

Listing 7.29 spec/features/admin/creating_users_spec.rb

Listing 7.30 The new “Admin” link in the top navigation

Licensed to Mark Watson <nordickan@gmail.com>

193Namespace-based CRUD

<% end %>
<% unless user_signed_in? %>
...

This way, the link will only be shown to users who are admins.
 Now when you run the feature again using bundle exec rspec spec/features/

admin/creating_users_spec.rb, you should get a little bit further:

1) Admins can create new users with valid credentials
Failure/Error: click_link "Users"
Capybara::ElementNotFound:
Unable to find link "Users"

The admin homepage you created earlier doesn’t have a link to “Users.” It sounds like
a good candidate for the Admin Links menu that you have on the page!

 Edit the app/views/admin/application/index.html.erb view and add a link to
“Users” in the Admin Links menu.

<h2>Admin Links</h2>
<ul class="nav nav-stacked">

<%= link_to "Users", admin_users_path %>

What exactly did you just link to?

7.4.1 The index action

You don’t yet have an index page for users, and it would make sense to have the link to
create a new user in the header section on a users page, like you did for projects and
tickets.

 So let’s create a UsersController in the Admin namespace, and use it for the rest of
this section. Run the following command to generate a new Admin::UsersController,
with an index action prepopulated:

$ rails g controller admin/users index

This generates some odd output:

$ rails g controller admin/users index
create app/controllers/admin/users_controller.rb
route namespace :admin do

get 'users/index'
end

invoke erb
...

It generated another admin namespace in your config/routes.rb file, with get
'users/index' inside it. But you already have an admin namespace, and you’ll want
to put a users resource in it so you can add the rest of the CRUD actions.

Listing 7.31 Adding a link to manage users in the Admin Links menu

Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 7 Basic access control

 Replace the two namespace :admin declarations in config/routes.rb with the
following.

namespace :admin do
root "application#index"

resources :projects, only: [:new, :create, :destroy]
resources :users

end

You’ll also have to tweak the controller that got generated, to make sure it extends from
the Admin::ApplicationController you created earlier. Open app/controllers/
admin/users_controller.rb and replace the first line with the following code.

class Admin::UsersController < Admin::ApplicationController

Now, because the generator also generated a skeleton view, your test will get a bit
further:

1) Admins can create new users with valid credentials
Failure/Error: click_link "New User"
Capybara::ElementNotFound:
Unable to find link "New User"

LISTING USERS

What content should be in the admin user index? A list of all the users in the system
might be a great start. Edit the Admin::UsersController again, and load a list of
users to display, in the index action.

class Admin::UsersController < Admin::ApplicationController
def index
@users = User.order(:email)

end
end

Next, you need to rewrite the template for this action, which lives at app/views/
admin/users/index.html.erb, so it contains the “New User” link and lists all the users
loaded by the controller. Use the code in the following listing.

<header>
<h1>Users</h1>

<ul class="actions">

Listing 7.32 Creating a single admin namespace from the generated routes

Listing 7.33 app/controllers/admin/users_controller.rb

Listing 7.34 Looking up users to render in the index action

Listing 7.35 app/views/admin/users/index.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

195Namespace-based CRUD

<%= link_to "New User", new_admin_user_path, class: "new" %>

</header>

<% @users.each do |user| %>
<%= link_to user.email, [:admin, user] %>

<% end %>

In this example, when you specify a Symbol as an element in the route for the
link_to, Rails uses that element as a literal part of the route generation, making it use
admin_user_path rather than user_path. You saw this in chapter 5 when you used it
with [:edit, project, ticket], but it bears repeating here.

 When you run bundle exec rspec spec/features/admin/

creating_users_spec.rb again, you’re told the new action is missing:

1) Admins can create new users with valid credentials
Failure/Error: click_link "New User"
AbstractController::ActionNotFound:
The action 'new' could not be found for Admin::UsersController

Great! This means that the test is able to navigate to the admin area, then to the index
page for UsersController, and then it’s able to click the “New User” link. We’re get-
ting through this feature pretty quickly.

7.4.2 The new action

Add the new action to Admin::UsersController now by using the following code.

def new
@user = User.new

end

And create the view for this action at app/views/admin/users/new.html.erb:

<header>
<h1>New User</h1>

</header>

<%= render "form", user: @user %>

Next, you need to create the form partial that’s used in the new template, which you
can do by using the following code. It must contain the email and password fields,
which are the bare essentials for creating a user.

Listing 7.36 The new action in Admin::UsersController

Listing 7.37 The new view for Admin::UsersController

Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 7 Basic access control

<%= simple_form_for [:admin, user] do |f| %>
<%= f.input :email %>
<%= f.input :password %>

<%= f.button :submit, class: "btn btn-primary" %>
<% end %>

For this simple_form_for, you use the array form you saw earlier with [project,
ticket], but this time you pass in a symbol rather than a model object. Rails inter-
prets the symbol literally, generating a route such as admin_users_path rather than
users_path, which would be generated if you used simple_form_for user instead.
You can also use this array syntax with link_to (shown earlier) and redirect_to help-
ers. Any symbol passed anywhere in the array for any of these methods is interpreted
literally. The same goes for strings.

 When you run the feature again with bundle exec rspec spec/features/admin/
creating_users_spec.rb, you’re told there’s no action called create:

1) Admins can create new users with valid credentials
Failure/Error: click_button "Create User"
AbstractController::ActionNotFound:
The action 'create' could not be found for Admin::UsersController

7.4.3 The create action

You can create that action now by using the following code.

def create
@user = User.new(user_params)

if @user.save
flash[:notice] = "User has been created."
redirect_to admin_users_path

else
flash.now[:alert] = "User has not been created."
render "new"

end
end

private
def user_params
params.require(:user).permit(:email, :password)

end

You’ve used this same pattern in a few controllers, so it should be old hat by now.
 You now have an “Admin” link in the top navigation menu that an admin can click,

which takes them to the index action in Admin::ApplicationController. On the
template rendered for this action (app/views/admin/application/index.html.erb) is
a “Users” link that goes to the index action in Admin::UsersController. On the

Listing 7.38 app/views/admin/users/_form.html.erb

Listing 7.39 The create action of Admin::UsersController

Licensed to Mark Watson <nordickan@gmail.com>

197Namespace-based CRUD

template for this action is a “New User” link that presents the user with a form to
create a user. When the user fills in this form and clicks the Create User button, it goes
to the create action in Admin::UsersController.

 With all these steps implemented, your feature should now pass. Find out with a
final run of bundle exec rspec spec/features/admin/creating_users_spec.rb:

1 examples, 0 failures

Great! Run bundle exec rspec to make sure everything’s still working:

28 examples, 1 failure, 2 pending

What have you broken this time??
 It turns out it isn’t anything that you’ve broken—again it’s autogenerated tests that

you don’t even want, located in three files:

■ spec/helpers/admin/users_helper_spec.rb
■ spec/views/admin/users/index.html.erb_spec.rb
■ spec/controllers/admin/users_controller_spec.rb

You can delete all three of those files. Run bundle exec rspec again just to make sure:

25 examples, 0 failures

This is another great middle point for a commit, so do that now:

$ git add .
$ git commit -m "Add the ability to create users

through the admin backend"
$ git push

Although this functionality allows you to create new users through the admin back
end, it doesn’t let you create admin users. That’s up next.

7.4.4 Creating admin users

To create admin users, you can add a check box on the form you use to create a new
user. When this check box is selected and the User record is saved, that user will be an
admin.

 To get started, add another scenario to spec/features/admin/
creating_users_spec.rb using the code in the following listing.

scenario "when the new user is an admin" do
fill_in "Email", with: "admin@example.com"
fill_in "Password", with: "password"
check "Is an admin?"
click_button "Create User"
expect(page).to have_content "User has been created."
expect(page).to have_content "admin@example.com (Admin)"

end

Listing 7.40 Testing that you can create admins via our admin interface

Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 7 Basic access control

When you run bundle exec rspec spec/features/admin/creating_users_spec.rb,
it fails when it attempts to select the “Is an admin?” check box:

1) Admins can create new users when the new user is an admin
Failure/Error: check "Is an admin?"
Capybara::ElementNotFound:
Unable to find checkbox "Is an admin?"

You need to add this check box to the form for creating users, which you can do by
adding the following code to the simple_form_for block in app/views/admin/users/
_form.html.erb.

...
<%= f.input :password %>
<%= f.input :admin, label: "Is an admin?" %>
...

Simple Form is smart enough to know that it should generate a check box, because
the admin field is a Boolean field in the database. Awesome!

 Because you’ve added a new field to this form, you’ll need to add it to the list of
permitted parameters in Admin::UsersController by changing the user_params
method to the following.

def user_params
params.require(:user).permit(:email, :password, :admin)

end

With this check box in place, when you rerun bin/rspec spec/features/admin/
creating_users_spec.rb, it can’t find “admin@example.com (Admin)” on the page:

1) Admins can create new users when the new user is an admin
Failure/Error: expect(page).to have_content "admin@example.com
(Admin)"
expected to find text "admin@example.com (Admin)" in "Ticketee
Toggle navigation Home Admin Signed in as test2@example.com Sign
out User has been created. Users New User admin@example.com..."

The problem is that only the user’s email address is displayed; no text appears to indi-
cate that the person is an admin. To get this text to appear, change the display of the
user in app/views/admin/users/index.html.erb from this,

<%= link_to user.email, [:admin, user] %>

to this:

<%= link_to user, [:admin, user] %>

Listing 7.41 Adding a form field for setting the admin attribute

Listing 7.42 Permitting the admin attribute in Admin::UsersController

Licensed to Mark Watson <nordickan@gmail.com>

199Namespace-based CRUD

By not calling any methods on the user object and attempting to write it out of the
view, you cause Ruby to call to_s on this method, which by default outputs something
similar to the following listing (which isn’t human-friendly).

#<User:0xb6fd6054>

You can override the to_s method on the User model to provide the string containing
the email and admin status of the user by putting the following code in the class defi-
nition in app/models/user.rb, underneath the devise call.

def to_s
"#{email} (#{admin? ? "Admin" : "User"})"

end

The to_s method will now output something like “user@example.com (User)” if the
user isn’t an admin, or “admin@example.com (Admin)” if the user is an admin. With
the admin field set and an indication displayed on the page regarding whether the user
is an admin, the feature should pass when you run bundle exec rspec spec/features/
admin/creating_users_spec.rb:

2 examples, 0 failures

Again, run bundle exec rspec to make sure everything works:

26 examples, 0 failures

This is another great time to commit. Push it:

$ git add .
$ git commit -m "Add the ability to create admin

users through the admin backend"
$ git push

Now you can create normal and admin users through the back end. In the future, you
may need to modify an existing user’s details or delete a user, so we’ll examine the
updating and deleting parts of CRUD next.

7.4.5 Editing users

This section focuses on adding updating capabilities for Admin::UsersController. As
usual, you start by writing a feature to cover this functionality. Place the file at spec/
features/admin/editing_users_spec.rb, and fill it with the content from the following
listing.

Listing 7.43 Default to_s output on an Active Record model

Listing 7.44 Overriding to_s on an ActiveRecord model

Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 7 Basic access control

require "rails_helper"

RSpec.feature "Admins can change a user's details" do
let(:admin_user) { FactoryGirl.create(:user, :admin) }
let(:user) { FactoryGirl.create(:user) }

before do
login_as(admin_user)
visit admin_user_path(user)
click_link "Edit User"

end

scenario "with valid details" do
fill_in "Email", with: "newguy@example.com"
click_button "Update User"

expect(page).to have_content "User has been updated."
expect(page).to have_content "newguy@example.com"
expect(page).to_not have_content user.email

end

scenario "when toggling a user's admin ability" do
check "Is an admin?"
click_button "Update User"

expect(page).to have_content "User has been updated."
expect(page).to have_content "#{user.email} (Admin)"

end
end

When you run the feature with bundle exec rspec spec/features/admin/editing
_users_spec.rb, you’ll see both of the scenarios fail this way:

1) Admins can change a user's details with valid details
Failure/Error: visit admin_user_path(user)
AbstractController::ActionNotFound:
The action 'show' could not be found for Admin::UsersController

This failure is at the very start of the test, when visiting a user’s details page in the
admin area. You’ve got a link to the show action of Admin::UsersController, but the
action isn’t defined. Define the show action in Admin::UsersController, directly
under the index action.

ORDERING CRUD COMPONENTS Grouping the different parts of CRUD is con-
ventionally done in this order: index, show, new, create, edit, update, destroy.
It’s not a hard-and-fast rule, but consistency makes controllers easier to read
and follow.

The show action can just be a blank action.

def show
end

Listing 7.45 spec/features/admin/editing_users_spec.rb

Listing 7.46 Adding the show action to Admin::UsersController

Licensed to Mark Watson <nordickan@gmail.com>

201Namespace-based CRUD

The show action template requires a @user variable, so you should create a set_user
method that you can call as a before_action in Admin::UsersController. This is just
like the set_project and set_ticket methods defined in ProjectsController and
TicketsController, respectively. Define this new set_user method under all the
other methods already in the controller, because it will be a private method:

def set_user
@user = User.find(params[:id])

end

You then need to call this method using a before_action, which should run before
the show, edit, update, and destroy actions. Put this call to before_action at the top
of your class definition for Admin::UsersController.

class Admin::UsersController < Admin::ApplicationController
before_action :set_user, only: [:show, :edit, :update, :destroy]
...

With the set_user and show methods in place in the controller, what’s the next step?
Find out by running bundle exec rspec spec/features/admin/editing_users
_spec.rb again. You’ll see this error:

1) Admins can change a user's details with valid details
Failure/Error: visit admin_user_path(user)
ActionView::MissingTemplate:
Missing template admin/users/show, admin/application/show,
application/show with
{
:locale => [:en],
:formats => [:html],
:variants => [],
:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:
* ".../ticketee/app/views"
* ".../devise-3.4.1/app/views"

Listing 7.47 Defining the before_action in Admin::UsersController

Template inheritance
When you get a MissingTemplate error from an action inside a namespaced control-
ler, such as when you render the show action of Admin::UsersController, three
different templates are listed: admin/users/show, admin/application/show, and ap-
plication/show. Rails is attempting to look for these three templates in exactly that
order, but it can’t find any of them.

Why this happens was explained earlier, but it’s good to review it. The reason is that
Admin::UsersController inherits from Admin::ApplicationController and
therefore inherits the templates in app/views/admin/application as well.

Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 7 Basic access control

You can write the template for the show action to make this step pass. This file goes at
app/views/admin/users/show.html.erb and should use the following code.

<header>
<h1><%= @user %></h1>

<ul class="actions">

<%= link_to "Edit User", [:edit, :admin, @user], class: "edit" %>

</header>

The <h1> at the top of this view will display the “user@example.com (User)” or
“user@example.com (Admin)” text, and the “Edit User” link will allow you to navigate
to the action where you can edit this user’s details. This is a pretty boring view for now,
but later on you might want to add details to it, like the list of projects a user belongs
to, or their activity history on the site, or something like that.

 When you run bundle exec rspec spec/features/admin/

editing_users_spec.rb now, the line that visits the user’s details page passes, and
you’re on to the next step:

1) Admins can change a user's details with valid details
Failure/Error: click_link "Edit User"
AbstractController::ActionNotFound:
The action 'edit' could not be found for Admin::UsersController

Good; you’re progressing nicely. You created the show action for Admin::Users-
Controller, which displays information about a user to a signed-in admin user. Now
you need to create the edit action so admin users can edit a user’s details.

Listing 7.48 app/views/admin/users/show.html.erb

(continued)
Admin ::ApplicationController inherits from ApplicationController, and so
by inheritance both Admin::ApplicationController and Admin::Users-
Controller also have the templates from the (imaginary) app/views/application di-
rectory.

An example of where this might be useful is if you’re rendering different partials de-
pending on the namespace; for example, if you had something like the following in
app/views/layout/application.html.erb:

render "sidebar"

This could render different partials. In the base root namespace, it could render app/
views/sidebar.html.erb, but in the admin namespace you could override that partial
by creating a file named app/views/admin/sidebar.html.erb. This lets you have dif-
ferent context-aware content, without changing your code.

Licensed to Mark Watson <nordickan@gmail.com>

203Namespace-based CRUD

7.4.6 The edit and update actions

Add the edit action directly under the create action in your controller. It should be
another blank method like show.

def edit
end

With this action defined and the @user variable used in its view already set by the
before_action, you can now create the template for this action at app/views/admin/
users/edit.html.erb. This template renders the same form partial as the new template:

<header>
<h1>Edit User</h1>

</header>

<%= render "form", user: @user %>

OK, you’ve dealt with the current failure for the feature. Find out what’s next with
another run of bundle exec rspec spec/features/admin/editing_users_spec.rb.
You should be told the update action doesn’t exist:

1) Admins can change a user's details with valid details
Failure/Error: click_button "Update User"
AbstractController::ActionNotFound:
The action 'update' could not be found for Admin::UsersController

Indeed it doesn’t, so let’s create it. Add the update action to Admin::Users-
Controller, as shown in the following listing. You don’t need to set up the @user vari-
able here because the set_userbefore_action does it for you.

def update
if @user.update(user_params)
flash[:notice] = "User has been updated."
redirect_to admin_users_path

else
flash.now[:alert] = "User has not been updated."
render "edit"

end
end

Looks like a standard update action. Rerun the test and see what happens now:

1) Admins can change a user's details with valid details
Failure/Error: expect(page).to have_content "User has been updated."
expected to find text "User has been updated." in "Ticketee Toggle
navigation Home Admin Signed in as test1@example.com Sign out User
has not been updated. Edit User Email PasswordPassword can't be
blank Is an admin?"

Listing 7.49 Defining an edit action in Admin::UsersController

Listing 7.50 Defining an update action in Admin::UsersController

Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 7 Basic access control

You expected the user to be updated, but it wasn’t. Why not? The error message shows
the actual content on the page, which gives you the answer (although it’s a little hid-
den)—the user’s password can’t be blank.

 The application has naively tried to take the data you submitted, which included
an empty password field, and update the user with those details, which is triggering
your validations that require a user to have a password. But why is the password blank?
Because you don’t store user passwords directly in the database—you only store
hashed versions of them.

HASHING PASSWORDS For an explanation of why password hashing is so impor-
tant, see “Why passwords should be hashed” on the IT Security Community Blog:
http://security.blogoverflow.com/2011/11/why-passwords-should-be-hashed/.

In this case, if you submit a blank password, it should mean “don’t change the user’s
current password.” So you can remove the field if it’s blank, before you update the
user. Above the if @user.update(user_params) line, insert this code:

if params[:user][:password].blank?
params[:user].delete(:password)

end

Now the entire action looks like the following listing.

def update
if params[:user][:password].blank?
params[:user].delete(:password)

end

if @user.update(user_params)
flash[:notice] = "User has been updated."
redirect_to admin_users_path

else
flash.now[:alert] = "User has not been updated."
render "edit"

end
end

When you run bundle exec rspec spec/features/admin/editing_users_spec.rb
again, all the scenarios should pass:

2 examples, 0 failures

In this section, you added two more actions to Admin::UsersController: edit and
update. Admin users can now update users’ details as they please.

 As always, run bundle exec rspec to make sure you didn’t break anything. Just one
quick run will show this:

28 examples, 0 failures

Listing 7.51 app/controllers/admin/users_controller.rb, with blank password removal

Licensed to Mark Watson <nordickan@gmail.com>

http://security.blogoverflow.com/2011/11/why-passwords-should-be-hashed/

205Namespace-based CRUD

Done! Make a commit for this new feature:

$ git add .
$ git commit -m "Add ability for admins to edit and update users"
$ git push

With the updating done, there’s only one more part to go for your admin CRUD inter-
face: deleting users.

7.4.7 Archiving users

There comes a time in an application’s life when you need to remove users from your
app. Maybe they asked for their account to be closed. Maybe they were being pesky
and you wanted to kick them out. Or maybe you have another reason to remove them.
Whatever the case, having the functionality to remove users is helpful.

 But in Ticketee, users have a trail of activity behind them—they can create tickets
on projects. In the future, they’ll also be able to take other actions in the system that
you’ll want to keep for posterity. Deleting users isn’t the right action to take, but you
can archive them instead so you can still see everything they’ve done, but they can take
no further part in the system. They can’t even sign in anymore.

 Keeping with the theme so far, you’ll first write a feature for archiving users (using
the following listing) and put it at spec/features/admin/archiving_users_spec.rb.

require "rails_helper"

RSpec.feature "An admin can archive users" do
let(:admin_user) { FactoryGirl.create(:user, :admin) }
let(:user) { FactoryGirl.create(:user) }

before do
login_as(admin_user)

end

scenario "successfully" do
visit admin_user_path(user)
click_link "Archive User"

expect(page).to have_content "User has been archived"
expect(page).not_to have_content user.email

end
end

When you run this feature using bundle exec rspec spec/features/admin/

archiving_users_spec.rb, you’ll get right up to the first line in the scenario with no
issue. Then it complains:

1) An admin can archive users successfully
Failure/Error: click_link "Archive User"
Capybara::ElementNotFound:
Unable to find link "Archive User"

Listing 7.52 spec/features/admin/archiving_users_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 7 Basic access control

Of course, you need the “Archive User” link. Add it to app/views/admin/users/
show.html.erb right under the “Edit User” link.

<%= link_to "Archive User", [:archive, :admin, @user], method: :patch,
data: { confirm: "Are you sure you want to archive this user?"},
class: "delete" %>

This is the first time you stray away from Rails’ default RESTful resources and the seven
default routes. Archiving doesn’t fit in with the list of index, show, new, create, edit,
update, or destroy, so you’ll need to make a new route for it, called archive. This is
why you needed to specify the symbol archive in the URL for the link—[:archive,

:admin, @user]. It’s another example of the polymorphic routing that you saw earlier
in section 5.1.5.

 The HTTP method you’ll use for the link is patch, the same HTTP method that the
update action uses. You are, in effect, updating a user—but it’s a very specific kind of
update.

 When you rerun the spec, you’ll get a different error:

1) An admin can archive users successfully
Failure/Error: visit admin_user_path(user)
ActionView::Template::Error:
undefined method `archive_admin_user_path' for ...

You can define this method as a member route on your users resource. A member
route provides the routing helpers and, more importantly, the route itself to a custom
controller action for a single instance of a resource.

Listing 7.53 Adding an “Archive User” link to app/views/admin/users/show.html.erb

Member routes vs. collection routes
When you’re looking at defining custom routes outside the normal seven RESTful
routes, you’ll come across these terms: member routes and collection routes. The
difference can often be confusing for people learning Rails—which type do you use,
and when?

Collection routes are typically used when you want to perform an action on a group of
model instances. index is an example of a collection route—other examples might
be search, or autocomplete, or export. These routes will generate URLs like
/projects/search or /projects/export.

Member routes are typically used when you want to perform an action on a single
model instance. edit, update, and destroy are all examples of member routes—
they first find an instance of a model, and then take some action on it. Other exam-
ples might be archive, or approve, or preview. These routes will generate URLs
like /projects/1/archive or /projects/3/approve.

Licensed to Mark Watson <nordickan@gmail.com>

207Namespace-based CRUD

To define the new member route, change the resources :users line in the admin
namespace inside config/routes.rb to the following.

namespace :admin do
...
resources :users do
member do

patch :archive
end

end
end

Inside the member block here, you specify that each user resource has a new action
called archive that can be accessed through a PATCH request. As stated previously, by
defining the route in this fashion, you also get the archive_admin_user_path helper,
which is what you’ve used in app/views/admin/users/show.html.erb.

 You need to add the archive action next, directly under the update action in
Admin::UsersController.

def archive
@user.archive

flash[:notice] = "User has been archived."
redirect_to admin_users_path

end

You don’t need to think about what it means to actually archive a user yet—you just
want to call the archive method on the user and be done with it. You’ll also need to
modify the call to before_action in your Admin::UsersController to add this new
archive action to the list of actions it will run before. If you don’t do this, the @user
variable won’t be instantiated correctly.

class Admin::UsersController < Admin::ApplicationController
before_action :set_user, only: [:show, :edit, :update, :archive]

...

When you run bundle exec rspec spec/features/admin/deleting_users_spec.rb,
the error you get now is different:

1) An admin can archive users successfully
Failure/Error: click_link "Archive User"
NoMethodError:
undefined method `archive' for #<User:0x007f8b2fbec8c0>

Listing 7.54 Defining the archive member route for a User resource

Listing 7.55 Defining an archive action in Admin::UsersController

Listing 7.56 Running set_user before the archive action

Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 7 Basic access control

What does it mean to actually archive a user? You could have a simple Boolean field on
your User model called archived that you could set to true if the user is archived or
false if not. Alternatively, you could keep with the chronological tracking of events—
you record and display when tickets are created, so perhaps you should record when
users are archived.

 In keeping with Rails’ convention for naming timestamp fields, let’s add a new
field called archived_at to the User model that will store a timestamp indicating
when a user was archived. Run the following command in your terminal:

$ rails g migration add_archived_at_to_users archived_at:timestamp

Again, Rails is smart enough to infer what you want to do and will generate a migra-
tion that looks like the following listing.

class AddArchivedAtToUsers < ActiveRecord::Migration
def change
add_column :users, :archived_at, :timestamp

end
end

You don’t need to modify this migration. It’s good to run as is. Run it with bundle
exec rake db:migrate.

 Now you can look at filling in the missing method in your model. Remember, your
last test failure was about a missing archive method on the User model. To mark a
user as archived, what you need to do is set the archived_at timestamp on the user,
and then save it. You can do that by adding the following method to the User model
located in app/models/user.rb.

class User < ActiveRecord::Base
...

def archive
self.update(archived_at: Time.now)

end
end

Archiving is a very specific form of updating a user, so you can use the same update
method, which will update the attributes and then save the changes.

 When you rerun your archiving spec with bundle exec spec features/admin/
archiving_users_spec.rb, it’s nearly complete:

1) An admin can archive users successfully
Failure/Error: expect(page).not_to have_content user.email
expected not to find text "test2@example.com" in "Ticketee Toggle
navigation Home Admin Signed in as test1@example.com Sign out User
has been archived. Users New User test1@example.com (Admin)
test2@example.com (User)"

Listing 7.57 db/migrate/[timestamp]_add_archived_at_to_users.rb

Listing 7.58 Archiving a user

Licensed to Mark Watson <nordickan@gmail.com>

209Namespace-based CRUD

You’ve archived the user, but they still appear in the list of users—you’re not doing
anything in your index action to hide archived users. Your index action in
Admin::UsersController just looks like the following.

class Admin::UsersController < Admin::ApplicationController
...
def index
@users = User.order(:email)

end
...

You can use a feature called scoping to limit the list of users that you show. Scopes are
methods that you can define on your Active Record models, very similar to class
methods—methods you call on the class itself, not an instance of the class. order in
listing 7.59. is an example of a class method.

 Inside the User model, you can define a scope to find only users that aren’t
archived. Define it between the devise and to_s methods.

class User < ActiveRecord::Base
...
scope :excluding_archived, lambda { where(archived_at: nil) }
...

Users that don’t have an archived_at date must, by definition, be not archived. You
can then alter the index action of your controller, to call this scope as in the following
listing.

class Admin::UsersController < Admin::ApplicationController
...
def index
@users = User.excluding_archived.order(:email)

end
...

The reason you write these scopes in your model is because the controller isn’t
responsible for knowing things like what defines an archived user—only the User
model cares about the difference between archived and not archived.

 You can write scopes for all kinds of things. For example, you could write scopes to
find all users who have created more than one ticket, or to find users who have cre-
ated tickets for a specific project. The scope you’ve written here is a very simple scope,
as a demonstration.

Listing 7.59 Loading all users in the index action of Admin::UsersController

Listing 7.60 app/models/user.rb

Listing 7.61 Using the excluding_archived scope in the index action

Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 7 Basic access control

 Now when you run your archiving spec with bundle exec rspec spec/features/
admin/archiving_users_spec.rb, it will pass happily:

1 example, 0 failures

There’s one small problem with this feature, though: it doesn’t stop you from
archiving yourself!

7.4.8 Ensuring that you can’t archive yourself

To make it impossible to archive yourself, you can add another scenario to spec/
features/admin/archiving_users_spec.rb, as shown in the following listing.

scenario "but cannot archive themselves" do
visit admin_user_path(admin_user)
click_link "Archive User"

expect(page).to have_content "You cannot archive yourself!"
end

When you run this feature with bundle exec rspec spec/features/admin/

archiving_users_spec.rb, the first two lines of the scenario pass, but the third one
fails—as you might expect, because you haven’t added the message. Change the
archive action in Admin::UsersController as follows.

def archive
if @user == current_user
flash[:alert] = "You cannot archive yourself!"

else
@user.archive
flash[:notice] = "User has been archived."

end

redirect_to admin_users_path
end

Now, before the archive method does anything, it checks to see if the user attempting
deletion is the current user, and, if so, stops the process with the message “You cannot
archive yourself!”

 When you run bundle exec rspec spec/features/admin/archiving_users
_spec.rb this time, the scenario passes:

2 examples, 0 failures

Great! Having implemented the ability to delete users, you’ve completed the CRUD
for Admin::UsersController and for the entire users resource. Make sure you
haven’t broken anything by running bundle exec rspec. You should see this output:

30 examples, 0 failures

Listing 7.62 A test to ensure that users can’t archive themselves

Listing 7.63 Updating the archive action to prevent archiving yourself

Licensed to Mark Watson <nordickan@gmail.com>

211Namespace-based CRUD

Fantastic! Commit and push that:

$ git add .
$ git commit -m "Add feature for archiving users, including protection

against self-archiving"
$ git push

7.4.9 Preventing archived users from signing in

There’s just one last feature you need to build as part of archiving users, and we
alluded to it earlier—archived users should no longer be able to sign in to Ticketee.

 To verify that this is the case, you can add another scenario to the sign-in feature
you created in chapter 6, in spec/features/signing_in_spec.rb.

RSpec.feature "Users can sign in" do
...

scenario "unless they are archived" do
user.archive

visit "/"
click_link "Sign in"
fill_in "Email", with: user.email
fill_in "Password", with: "password"
click_button "Sign in"

expect(page).to have_content "Your account has been archived."
end

end

This looks very similar to the previous scenario for successful sign-in, except you call
user.archive before filling in the “Sign in” form. When an archived user tries to sign
in, you should show them a nice “Your account has been archived” message.

 If you run this feature with bundle exec rspec spec/features/signing_in
_spec.rb, your new scenario will fail:

1) Users can sign in unless they are archived
Failure/Error: expect(page).to have_content "Your account has been
archived."
expected to find text "Your account has been archived." in
"Ticketee Toggle navigation Home Signed in as test2@example.com
Sign out Signed in successfully. Projects"

This is expected—you haven’t yet configured your app to not allow archived users to
sign in.

 Devise determines if a user can sign in to your app with a method called
active_for_authentication?. Each of the Devise strategies we listed in chapter 6
(lockable, confirmable, and so on) can add conditions to determine whether or not
a user is able to sign in—for example, the lockable strategy will overwrite this

Listing 7.64 Testing that archived users can’t sign in

Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 7 Basic access control

active_for_authentication? method to return false if the user’s record is locked.
If the method returns false, then the user is not allowed to sign in.

 You can write your own active_for_authentication? method in your User
model to disallow authentication if a user is archived. You can do that with the follow-
ing method, defined at the bottom of your User model.

class User < ActiveRecord::Base
...
def active_for_authentication?
super && archived_at.nil?

end
end

The call to super in this method will allow all of the other checks to take place, to
make sure the user’s account is unlocked, and confirmed, and so on. If you left that
out, you’d stop archived users from signing in, but you’d also allow locked users or
unconfirmed users to sign in, as long as they weren’t archived. Not good.

 This looks like it’s been way too easy, but that’s the power of leveraging well-written
gems. If you rerun your sign-in spec, you’ll see the following:

1) Users can sign in unless they are archived
Failure/Error: expect(page).to have_content "Your account has been
archived."
expected to find text "Your account has been archived." in
"Ticketee Toggle navigation Home Sign up Sign in Your account is
not activated yet. Sign In Email Password Remember me Sign up..."

You’ve stopped the user from signing in! But you’re not showing the right message
back to the user, as to why their sign-in failed.

 To do this, you can overwrite another method provided by Devise, called
inactive_message. This method will get called by Devise when
active_for_authentication? returns false, and it should return the translation key
of the message that should be displayed to the user.

 We haven’t looked at translations and internationalization (i18n) yet in Rails, but
the framework has a great system built in to allow your apps to be fully multilingual,
and Devise has complete support for it. Define the inactive_message method below
active_for_authentication? in your User model to look like the following.

def inactive_message
archived_at.nil? ? super : :archived

end

If the user isn’t archived (archived_at is nil), then there was some other reason
why they couldn’t log in, so you call super again. If the user’s account is locked, or

Listing 7.65 Determining which users are allowed to sign in to Ticketee

Listing 7.66 Defining the message that gets displayed back to the user

Licensed to Mark Watson <nordickan@gmail.com>

213Namespace-based CRUD

unconfirmed, this allows those strategies to supply the correct message to let the
user know why they couldn’t log in.

 But if archived_at isn’t nil, you return this :archived symbol. What does this
symbol mean? If you rerun your specs after defining this method, you’ll see what it
does:

1) Users can sign in unless they are archived
Failure/Error: expect(page).to have_content "Your account has been
archived."
expected to find text "Your account has been archived." in
"Ticketee Toggle navigation Home Sign up Sign in
translation missing: en.devise.failure.user.archived ..."

It uses the symbol to look up a translation, which you haven’t defined. Devise provides
a lot of its own translations, generated when you ran rails g devise:install—these
translations are located in config/locales/devise.en.yml. If you look inside that file,
you’ll see a tree structure of YAML data.

en:
devise:
confirmations:

confirmed: "Your email address has been successfully confirmed."
...

The keys on each level of the tree are added together to define the final translation
key—the key shown in the preceding listing would be en.devise.confirmations
.confirmed. Knowing this, you can define your missing en.devise.failure

.user.archived key. There’s already a section below confirmations in the file called
failure, so inside that you can define new levels for user and archived, as in the fol-
lowing listing.

en:
devise:
confirmations:

...
failure:

...
user:

archived: "Your account has been archived."
mailer:

...

Once you’ve defined this custom translation, you can rerun your spec with bundle
exec rspec spec/features/signing_in_spec.rb:

2 examples, 0 failures

Listing 7.67 The start of config/locals/devise.en.yml

Listing 7.68 Defining a custom translation

Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 7 Basic access control

Fantastic! You’ve customized some of Devise’s functionality to prevent archived users
from signing in to Ticketee, and you’ve backed it up with tests. You’ve also learned a
little bit about how i18n works in Rails.

 Run bundle exec rspec to make sure your changes haven’t broken anything else:

31 examples, 0 failures

Now commit and push these changes:

$ git add .
$ git commit -m "Archived users cannot sign in to the app"
$ git push

With this final commit, you’ve created your admin section. It provides a great CRUD
interface for users in this system so that admins can modify their details when necessary.

7.5 Summary
In this chapter, you dove into basic access control and added a field called admin to
the users table. You used this admin field to allow and restrict access to a namespaced
controller, as well as to show and hide links.

 Then you wrote the CRUD interface for the users resource under the admin
namespace, including archiving users and then forbidding those archived users from
signing in. This interface is used in the next chapter to expand on the authorization
you’ve implemented so far: restricting users, whether admin users or not, to certain
actions on certain projects. You rounded out the chapter by not allowing users to
delete themselves.

 The next chapter focuses on enhancing the basic permission system you’ve imple-
mented so far, introducing a gem called Pundit. With this permission system, you’ll
have more fine-grained control over what users of your application can and can’t do
to projects and tickets.

Licensed to Mark Watson <nordickan@gmail.com>

215

Fine-grained access control

At the end of chapter 7, you learned a basic form of authorization based on a Bool-
ean field called admin on the users table. If this field is set to true, the user is an
admin user, and can therefore access the create/destroy functions of the Project
resource, as well as an admin namespace where they can perform CRUD on the
User resource.

 In this chapter, you’ll expand on authorization options by implementing a
broader authorization system using a Role model. The records for this model’s
table define the roles that specified users will have on specific projects in your
system. Each record tracks a user who has a specific role, the project to which
the role applies, and the type of role granted. You’ll create three types of roles in
your system:

This chapter covers
■ Implementing authorization using the Pundit gem
■ Writing a custom RSpec matcher
■ Enforcing authorization for future-proofing your code
■ Building a completely custom form for managing a

user’s roles

Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 8 Fine-grained access control

■ Viewer—For people who will be able to read everything on the project but not
edit anything.

■ Editor—For people who will be able to read everything and also create and
update tickets on the project.

■ Manager—For people who will be able to read everything, manage tickets, and
also administrate some facets of the project itself, including editing the proj-
ect’s details. They won’t be able to delete the project, though—that’s reserved
for admins of the site.

These Role objects will then be used to determine exactly what actions a user can take
on an object like a project or a ticket. You’ll also build the authorization system so that
it will be easy to extend later on, if you need to add more roles.

 The authorization implemented in this chapter is whitelist authorization. Under
whitelist authorization, all users are denied access to everything by default, and you
must specify what the user is allowed to do. The opposite is blacklist authorization,
under which all users are allowed access to everything by default, and you must block
what they may not access. There are many reasons to prefer whitelist authorization,
such as these:

■ You may have many projects and want to assign a user to only one of them. It’s
easier to add a user to one project than to remove them from every project
except the one you want.

■ If you add a new project, everyone will by default have access to it. To be safe,
you’ll need to remove everyone except the people you want to have access to it.

A good way to think about whitelist authorization is as the kind of list a security guard
would have at an event. If you’re not on the list, you don’t get in. In comparison, a
blacklist would be if the security guard had a list of people who weren’t allowed in.

 This chapter guides you through restricting access to the CRUD operations of
ProjectsController and TicketsController one by one, starting with reading and
then moving on to creating, updating, and deleting. Any time a user wants to perform
one of these actions, you’ll check if they have any roles that give them permission to
do so (meaning whether or not they’re on the whitelist). During this process, you’ll
become familiar with another gem called Pundit, which provides methods for your
controllers and views that will help you check the current user’s ability to perform a
specific action.

 You’ll write extensive tests to cover both the enforcement of permission checking
and the permissions granted by the roles themselves. Once you’re finished with
restricting the actions in your controller, you’ll generate functionality in the back end
to allow administrators of the application to assign roles to users.

8.1 Project-viewing permission
A time comes in every ticket-tracking application’s life when it’s necessary to restrict
which users can see which projects. For example, you could be operating in a

Licensed to Mark Watson <nordickan@gmail.com>

217Project-viewing permission

consultancy where some people are working on one application and others are
working on another. You want the admins of the application to be able to customize
permissions, controlling which projects each user can see.

 In this section, you’ll begin building the broad authorization system by first creat-
ing a model called Role that tracks which users have which roles for which projects. As
usual, you’ll start with a test that tests exactly what you want to happen, even if you
don’t know exactly how it’s going to work yet. You’ll update one of your existing fea-
tures to make sure only users who have permission to read a project are able to do so.

8.1.1 Assigning Roles in specs

You’ll be working with your spec/features/viewing_projects_spec.rb feature here.
You’ll update this spec to accommodate a user signing in and also add the viewer role.
Update the code in this file to what’s shown in the following listing.

require "rails_helper"

RSpec.feature "Users can view projects" do
let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project, name: "Sublime Text 3") }

before do
login_as(user)
assign_role!(user, :viewer, project)

end

scenario "with the project details" do
visit "/"
click_link "Sublime Text 3"
expect(page.current_url).to eq project_url(project)

end
end

You’ve effectively rewritten a large portion of this feature, which is common practice
when implementing such large changes. The assign_role! method will create a new
Role record and will be responsible for giving the specified user a role on the speci-
fied project. This method is currently undefined, so when you run bundle exec rspec
spec/features/viewing_projects_spec.rb, it complains about that:

1) Users can view projects with the project details
Failure/Error: assign_role!(user, :viewer, project)
NoMethodError:
undefined method `assign_role!' for #<RSpec::ExampleGroups::...

Common helper methods that will be reused across specs typically belong in a spec/
support folder, which doesn’t yet exist in your application, so you can create it now.
Create a new file at spec/support/authorization_helpers.rb, and put the following
content in it.

Listing 8.1 spec/features/viewing_projects_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 8 Fine-grained access control

module AuthorizationHelpers
def assign_role!(user, role, project)
Role.where(user: user, project: project).delete_all
Role.create!(user: user, role: role, project: project)

end
end

RSpec.configure do |c|
c.include AuthorizationHelpers

end

The assign_role! method creates a new instance of a Role model to link together
the user, a name of a role, and a project. (You’ll define what actual permissions this
named role will give the user starting in section 8.1.3, when you meet the Pundit
gem.) Once you’ve defined your module of methods, you need to tell RSpec to make
it available to your specs with the RSpec.configure block.

 Lastly, you need to tell RSpec to actually include files in the spec/support folder.
Prior to RSpec 3.0 this was done automatically, but it does have some overhead—
larger projects can have many helper files that will be loaded for every running of a
test, including tests that don’t need any of the support methods. Inside spec/
rails_helper.rb, you’ll find a section like the following.

The following line is provided for convenience purposes. It has the
downside of increasing the boot-up time by auto-requiring all files in
the support directory. Alternatively, in the individual `*_spec.rb`
files, manually require only the support files necessary.
#
Dir[Rails.root.join("spec/support/**/*.rb")].each { |f| require f }

You’ve read and accepted the terms and condit… er, rather, the downsides of using
such a helper line, but you want to use it anyway. Uncomment the Dir[] line by
removing the leading #.

Listing 8.2 spec/support/authorization_helpers.rb

Listing 8.3 spec/rails_helper.rb

The alternative to spec/support
If you don’t want to enable this functionality, you could do what the comment suggests
and edit your projects-viewing spec to start with the following:

require "rails_helper"
require "support/authorization_helpers"

RSpec.feature "Users can view projects" do
...

The downside of this approach is that you’d have to include every support file in every
test you want to use them in. Your spec files become longer, and updates become
very tedious. Enabling the global support loading is quicker and easier.

Licensed to Mark Watson <nordickan@gmail.com>

219Project-viewing permission

With the assign_role! method defined, rerunning this spec with bundle exec rspec
spec/features/viewing_projects_spec.rb results in a complaint about the missing
Role class:

1) Users can view projects with the project details
Failure/Error: assign_role!(user, :viewer, project)
NameError:
uninitialized constant AuthorizationHelpers::Role

We’ll address this in the next section.

8.1.2 Creating the Role model

The last failure in the previous section indicated that you need to create a new Role
model to track which users have which kind of role on a project. This model needs
three things: a reference to a user to track the association with the user, a role field to
track what kind of role the user has, and a reference to a project to track which proj-
ect the role applies to.

 Create the Role model by generating it using the following command:

$ rails g model role user:references role:string project:references

This generates a migration that looks like the following code.

class CreateRoles < ActiveRecord::Migration
def change
create_table :roles do |t|

t.references :user, index: true, foreign_key: true
t.string :role
t.references :project, index: true, foreign_key: true

t.timestamps null: false
end

end
end

But what does this actually mean?
 The user:references is a shortcut for doing several things:

■ Adding a user_id integer field to the roles table
■ Adding an index to the roles table on the user_id field (seen in the migration

as index: true)
■ Adding a foreign key between the user_id field on the roles table and the id

field on the roles table (seen in the migration as foreign_key: true)
■ Adding a belongs_to :user association to the generated Role model

If you didn’t want to use this shortcut, you could have made the association manually
by doing the following:

Listing 8.4 db/migrate/<timestamp>_create_roles.rb

Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 8 Fine-grained access control

■ Specifying user_id:integer when generating the migration
■ Adding the index in the migration with add_index :roles, :user_id
■ Adding the foreign key in the migration with add_foreign_key :roles, :users
■ Editing the generated Role model and adding the required association

But using the functionality that Rails provides is so much easier. It is extra magic,
though, so it’s good to know what this references method does under the hood.

 The generated Role model ends up looking like the following listing.

class Role < ActiveRecord::Base
belongs_to :user
belongs_to :project

end

Not bad for a single command in your terminal.
 With this model and its related migration, you can run bundle exec rake

db:migrate to set up the development and test databases. When you run your feature
again with bundle exec rspec spec/features/viewing_projects_spec.rb, you
might get a bit of a surprise:

1 example, 0 failures

But there’s a catch. The feature will pass with or without the new assign_role! step,
because, at the moment, the roles we assign to users in specs have no bearing on what
projects a user can actually see. Enter Pundit.

8.1.3 Setting up Pundit

Pundit is a gem that helps define what permissions users have on resources and
actions through what are known as policies. Policies are checked on a resource-by-
resource basis. Pundit is maintained by Jonas Nicklas (of Capybara fame) and his
coworkers at Elabs.

 We’ll use the Pundit gem to do a couple of things:

■ Translate roles into permissions (for example, :viewer of Project A means that
the user can access the show action of the ProjectsController for Project A)

■ Enforce those permissions by automatically checking if a user has permissions
for the current action, and if not, redirecting them

To install Pundit, first add this line to your Gemfile:

gem "pundit", "~> 0.3.0"

Then run bundle to install the Pundit gem.
 Next, you’ll need to set up Pundit, which can be done by running this command:

$ rails g pundit:install

Listing 8.5 app/models/role.rb

Licensed to Mark Watson <nordickan@gmail.com>

221Project-viewing permission

This will create an ApplicationPolicy class, which will be the base class for all poli-
cies throughout the application. You’ll create a specific policy class to define permis-
sions for each of the classes in your system, and they’ll all inherit basic rules from this
ApplicationPolicy class.

ADDING PUNDIT’S SPEC HELPERS

Next, add Pundit’s helpers to your tests, which will be useful when you test the policy
classes you’ll create. Add the second line in the following listing to load Pundit’s test
helpers into your specs in spec/rails_helper.rb, below the line that indicates that this
is where your require should go.

Add additional requires below this line. Rails is not loaded until this point!
require "pundit/rspec"

The final piece of setup is in app/controllers/application_controller.rb, and it
involves including the Pundit module in your application. You can do this by adding
the following line right underneath the class definition in that file.

class ApplicationController < ActionController::Base
include Pundit
...

Including the Pundit module will include Pundit’s helper methods in your controller,
and one of those is the authorize method.

 You can use that method in the show action of your ProjectsController, after
loading the @project instance. Update the show action of the ProjectsController.

def show
authorize @project, :show?

end

This uses Pundit to make sure that the current user is allowed to show the current proj-
ect. If they are, the view will render as normal. If they aren’t, then a Pundit::Not-
AuthorizedError exception will be raised, which you can rescue and handle however
you want. More on that soon.

 Now that you’ve installed Pundit and have attempted to use it, you can try rerun-
ning bundle exec rspec spec/features/viewing_projects_spec.rb:

1) Users can view projects with the project details
Failure/Error: click_link "Sublime Text 3"
Pundit::NotDefinedError:
unable to find policy ProjectPolicy for #<Project:0x007fea5995b230>

...
./app/controllers/projects_controller.rb:9:in `show'

Listing 8.6 spec/rails_helper.rb, after loading Pundit’s test helpers

Listing 8.7 Including Pundit in the ApplicationController

Listing 8.8 The new show action of ProjectsController, Punditified

Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 8 Fine-grained access control

You’ve called authorize with an instance of a Project, so Pundit has determined that
it should use a ProjectPolicy class to check permissions for it. (If you had tried to
authorize a Ticket instance, it would look for a TicketPolicy class instead. This is
another example of convention over configuration.)

 You haven’t yet defined the ProjectPolicy class, but Pundit comes with a Rails gener-
ator to do it for you. You can easily generate a ProjectPolicy with the following command.

$ rails g pundit:policy project

Take a look at this new file, which has been created at app/policies/project_policy.rb.

class ProjectPolicy < ApplicationPolicy
class Scope < Scope
def resolve

scope
end

end
end

This file defines the ProjectPolicy class, and a Scope class inside of that. The Scope
class can be used to filter out resources, depending on what permissions people have.
For example, you could limit which objects are returned to display in an index action.

 With your new policy class defined, what happens when you run your test?

1 examples, 0 failures

Seems like magic. You didn’t actually do anything, but your test passes. How?
 When you ran the Rails generator for Pundit, it generated a default Application-

Policy class that your ProjectPolicy inherits from. Calling authorize @project,
:show? will do a few things:

■ Initialize a new ProjectPolicy instance with the current user and the record in
question; in this case, your @project variable.

■ Call the show? method on the policy.
■ If a truthy value (something other than nil or false) is returned from the show?

action, it will continue as normal (the user is allowed to access the action).
■ If a falsey value (nil or false) is returned, it will raise a Pundit::NotAuthorized-

Error. By default, this will show the big red error screen that you’ve probably seen
a lot of in development, looking like figure 8.1.

Listing 8.9 Generating a ProjectPolicy class

Listing 8.10 app/policies/project_policy.rb

Figure 8.1 The unhandled Pundit::NotAuthorizedError exception, as
seen in a development environment

Licensed to Mark Watson <nordickan@gmail.com>

223Project-viewing permission

The show? method is where you can write custom logic to determine who can access
the show action of your controller. By default, the ApplicationPolicy states that if the
project exists in the database, then permission is granted.

def show?
scope.where(:id => record.id).exists?

end

You can overwrite that method in the ProjectPolicy class to state that anyone who
has an assigned role on the project should be able to read the project. All of your roles
will have read permission, but only some will have write permission. But before that,
you need to write some tests!

8.1.4 Testing the ProjectPolicy

The Pundit policy generator also generates some specs, located in spec/policies/
project_policy_spec.rb. That file is pretty empty at the moment, but you can fill up the
permissions :show? block with examples.

permissions :show? do
let(:user) { FactoryGirl.create :user }
let(:project) { FactoryGirl.create :project }

it "blocks anonymous users" do
expect(subject).not_to permit(nil, project)

end

it "allows viewers of the project" do
assign_role!(user, :viewer, project)
expect(subject).to permit(user, project)

end

it "allows editors of the project" do
assign_role!(user, :editor, project)
expect(subject).to permit(user, project)

end

it "allows managers of the project" do
assign_role!(user, :manager, project)
expect(subject).to permit(user, project)

end

it "allows administrators" do
admin = FactoryGirl.create :user, :admin
expect(subject).to permit(admin, project)

end

it "doesn't allow users assigned to other projects" do

Listing 8.11 Part of the default ApplicationPolicy

Listing 8.12 Testing the show? permission on ProjectPolicy

Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 8 Fine-grained access control

other_project = FactoryGirl.create :project
assign_role!(user, :manager, other_project)
expect(subject).not_to permit(user, project)

end
end

The preceding examples are very explicit—for each of the role types in your system,
and some extra edge case scenarios, you assign the right role and then check whether
the user is permitted to perform the action defined by the permission block, in this
case show?. Permissions are something you really don’t want to get wrong, and they
deserve to be tested thoroughly.

 Before you run the specs, there’s just one last thing you need to do—change the
line at the top of the file from require "spec_helper" to require "rails_helper", to
set up Rails. This way, Rails will be loaded, Factory Girl will be loaded, and then Rails
can autoload the ProjectPolicy class correctly.

Once you’ve done that, you can run the spec with bundle exec rspec spec/policies/
project_policy_spec.rb. You’ll get a bunch of pending specs, and two failures:

1) ProjectPolicy show? blocks anonymous users
Failure/Error: expect(subject).not_to permit(nil, project)
Expected ProjectPolicy not to grant show? on
#<Project:0x007f4fa8eddbc8> but it did

./spec/policies/project_policy_spec.rb:22:in ...

2) ProjectPolicy show? doesn't allow users assigned to other projects
Failure/Error: expect(subject).not_to permit(user, project)
Expected ProjectPolicy not to grant show? on
#<Project:0x007f4faae95a88> but it did

./spec/policies/project_policy_spec.rb:48:in ...

USING EXISTS? TO CHECK USER ROLES

As expected, your policy is giving everyone access, even though it shouldn’t be. Now
you can define a new show? method in ProjectPolicy to allow anyone that has any

The subject syntax
You’ll also notice that we’ve introduced new syntax in the tests: subject. The sub-
ject method is used to denote the main purpose of the test—the method you want
to test.

The autogenerated spec file defines subject at the very top of the spec with a
block, and sets it to be the described class itself: ProjectPolicy. If you were test-
ing a specific method on the ProjectPolicy class, you might set the subject with
subject { ProjectPolicy.my_awesome_method(and_its_argument) }, inside
the describe block for that method.

It’s a great way to make your tests more DRY: defining an unchanging method call in
one place, and then simply referring to it when you need it.

Licensed to Mark Watson <nordickan@gmail.com>

225Project-viewing permission

role on the project. This should be defined just underneath the end of the Scope class
inside your ProjectPolicy.

class ProjectPolicy < ApplicationPolicy
class Scope < Scope
def resolve

scope
end

end

def show?
record.roles.exists?(user_id: user)

end
end

This is where you get to the meaty part of this whole thing. This code calls the exists?
method on record.roles, which will be an association that returns all the users’ roles
on this project. (This association doesn’t exist yet; you’ll set it up in just a moment.)
The exists? method is from Active Record, and it checks to see if any matching
records exist in the collection. If they do, the method will return true.

 In this example, you check if there are any roles on the project for the currently
logged-in user. If there are records to the affirmative, then the user will be permitted
to show the project. Otherwise, they’ll get an error.

 Now running the ProjectPolicy spec gives many errors, all the same:

1) ProjectPolicy show? blocks anonymous users
Failure/Error: expect(subject).not_to permit(nil, project)
NoMethodError:
undefined method `roles' for #<Project:0x007fa12c854510>

...
./app/policies/project_policy.rb:9:in `show?'

Your Role model has an association to projects and users, but the Project model
has no association with roles. You can fill in the missing has_many association in
app/models/project.rb.

class Project < ActiveRecord::Base
...
has_many :roles, dependent: :delete_all

end

Again, you specify delete_all on the association. When a project is deleted, all of the
associated roles should be deleted—they’re meaningless without it.

 Now running the specs gives you only one error:

1) ProjectPolicy show? allows administrators
Failure/Error: expect(subject).to permit(admin, project)
Expected ProjectPolicy to grant show? on
#<Project:0x007f8557ddcd48> but it didn't

Listing 8.13 Part of ProjectPolicy, with the new show? method added

Listing 8.14 app/models/project.rb

Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 8 Fine-grained access control

The site administrators don’t have a specific role on the project, but they should be
able to do everything. You can modify the show? method in ProjectPolicy to allow
administrators as well:

def show?
user.try(:admin?) || record.roles.exists?(user_id: user)

end

try is a clever little method, and it works as an extra layer of defense against unex-
pected nil objects. In this scenario, if user is nil, and you call user.admin?, you’ll get
a nasty NoMethodError because nil has no admin? method. try will protect you
against this—if user is nil, it won’t even try to call admin? on it; it will just return nil.

Now running bundle exec rspec spec/policies/project_policy_spec.rb is mostly
happy:1

10 examples, 0 failures, 4 pending

The four pending specs are for other blocks in the spec—scope, create?, update?,
and destroy?. For now you’re not using those permissions blocks, so you can delete
them.

 Rerun the specs to verify that everything is now all green:

6 examples, 0 failures

The actual feature that covers viewing projects (spec/features/viewing_projects
_spec.rb) still passes:

1 example, 0 failures

Fantastic! Now that you’ve implemented that little chunk of functionality and every-
thing seems to be going smoothly, you can make sure the entire application is going
the same way by running bundle exec rspec:

1 See http://en.wikipedia.org/wiki/Code_smell.

try in real-world apps
try can be seen as a code smell.1 If you don’t know whether or not your user variable
has a nil value, it doesn’t look like you have confidence in your code. But in this case,
you know exactly when you have nil and exactly when you don’t—if no user is current-
ly logged in, then user will be nil.

If this book were much longer and you were building a real-world production app, you
could look at implementing a “guest” user record that would always return false to
the question of admin?. But we’ll leave that for you to explore. (Hint: this is called the
Null Object Pattern.)

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Code_smell

227Project-viewing permission

Failed examples:

rspec ./spec/features/creating_tickets_spec.rb:14
rspec ./spec/features/creating_tickets_spec.rb:25
rspec ./spec/features/creating_tickets_spec.rb:33
rspec ./spec/features/deleting_tickets_spec.rb:14
rspec ./spec/features/editing_projects_spec.rb:12
rspec ./spec/features/editing_projects_spec.rb:20
rspec ./spec/features/hidden_links_spec.rb:14
rspec ./spec/features/hidden_links_spec.rb:28
rspec ./spec/features/viewing_tickets_spec.rb:19

Oh dear—you broke just about every other feature! These features are all broken
because they involve visiting a project’s page, and you’ve just restricted who can access
that show action. Let’s fix them, from the top, one at a time.

8.1.5 Fixing what you broke

Currently, you have a whole bundle of features that are failing. When this happens, it
may look like everything’s broken (and maybe some things are on fire), but the reality
isn’t as bad as it seems. The best way to fix a mess like this is to break it into smaller
chunks and tackle it one chunk at a time.

 The output from bundle exec rspec provided a list of the broken features: they’re
your chunks. Let’s go through them and fix them, starting with the ticket-creation
feature.

FIXING TICKET CREATION

When you run bundle exec rspec spec/features/creating_tickets_spec.rb, all of
the tests fail because they can’t get to the project page:

1) Users can create new tickets with valid attributes
Failure/Error: visit project_path(project)
Pundit::NotAuthorizedError:
not allowed to show? this #<Project:0x007f17919b4fd8>

To fix this issue, you should assign the user in the test to the project, with a role that
has permission to view the project. Alter the beginning of the before block in spec/
features/creating_tickets_spec.rb so that the role is given to the user. After the line to
create a project, use assign_role! to define a new Role record for this user.

before do
login_as(user)
project = FactoryGirl.create(:project, name: "Internet Explorer")
assign_role!(user, :viewer, project)

visit project_path(project)
click_link "New Ticket"

end

Listing 8.15 After assigning the user as a viewer of the project

Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 8 Fine-grained access control

You’re just giving them the lowest possible permissions to make this spec pass for now.
 All the pieces are now in place for this feature to work. When you run it again with

bundle exec rspec spec/features/creating_tickets_spec.rb, all the scenarios
should pass:

3 examples, 0 failures

One down, several to go. The next failing feature is ticket deletion.

FIXING TICKET DELETION AND TICKET VIEWING

This feature fails for the same reason as the ticket-creation feature: the user doesn’t
have access to view the project and then delete a ticket. You can fix this now by
putting the following lines at the top of the before block in spec/features/
deleting_tickets_spec.rb.

before do
login_as(author)
assign_role!(author, :viewer, project)
visit project_ticket_path(project, ticket)

end

That’s a little too easy! When you run bundle exec rspec spec/features/

deleting_tickets_spec.rb, this feature passes once again:

1 example, 0 failures

Great! Next up is ticket viewing, which you fix in a way similar to the previous features.
Inside the spec/features/viewing_tickets_spec.rb file, the before block currently
looks like the following listing.

before do
author = FactoryGirl.create(:user)

sublime = FactoryGirl.create(:project, name: "Sublime Text 3")
FactoryGirl.create(:ticket, project: sublime,
author: author, name: "Make it shiny!",
description: "Gradients! Starbursts! Oh my!")

ie = FactoryGirl.create(:project, name: "Internet Explorer")
FactoryGirl.create(:ticket, project: ie, author: author,
name: "Standards compliance", description: "Isn't a joke.")

visit "/"
end

You need to assign the author to the two projects you’ve created in the block, both
sublime and ie, and you also need to make the author sign in before they try to visit
the ticket page.

Listing 8.16 After assigning the ticket author as a viewer on the project

Listing 8.17 The before block, before making changes

Licensed to Mark Watson <nordickan@gmail.com>

229Project-viewing permission

 Adjust the before block so that it now looks like the following.

before do
author = FactoryGirl.create(:user)

sublime = FactoryGirl.create(:project, name: "Sublime Text 3")
assign_role!(author, :viewer, sublime)
FactoryGirl.create(:ticket, project: sublime,
author: author, name: "Make it shiny!",
description: "Gradients! Starbursts! Oh my!")

ie = FactoryGirl.create(:project, name: "Internet Explorer")
assign_role!(author, :viewer, ie)
FactoryGirl.create(:ticket, project: ie, author: author,
name: "Standards compliance", description: "Isn't a joke.")

login_as(author)
visit "/"

end

That should be enough to make the feature pass. Running bundle exec rspec spec/
features/viewing_tickets_spec.rb will verify:

1 example, 0 failures

FIXING PROJECT EDITING AND HIDDEN LINKS

Next up is project editing, which needs the same kind of treatment in the before
block inside spec/features/editing_projects_spec.rb:

RSpec.feature "Users can edit existing projects" do
let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project, name: "Sublime Text 3") }

before do
login_as(user)
assign_role!(user, :viewer, project)
...

Last is the hidden-links spec, which needs two changes:

■ You have a test verifying that an anonymous user can’t visit the project page and
see the “Delete Project” link. Now anonymous users can’t even visit the project
page, so this test can be safely deleted.

■ You have a test verifying that regular users can’t see the “Delete Project” link.
You originally wrote “regular users” to mean “non-administrator users,” so they
could have any other role in the system—you’ll now make them viewers of the
project, and update the context to reflect this change. Now it should look like
the following listing.

Listing 8.18 The before block, after making changes

Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 8 Fine-grained access control

context "non-admin users (project viewers)" do
before do
login_as(user)
assign_role!(user, :viewer, project)

end

...

Now that spec file should pass, too. Double-check with bundle exec spec/features/
hidden_links_spec.rb:

5 examples, 0 failures

That was fast! All of the failing features are fixed. Well, so you hope. You’ve indepen-
dently verified them, but run bundle exec rspec to make sure nothing else is broken:

37 examples, 0 failures, 1 pending

There’s one pending spec from spec/models/role_spec.rb. You can delete this file
now, and then when you rerun bundle exec rspec, you’ll see this output:

36 examples, 0 failures

Great! Everything’s working again! You can commit that:

$ git add .
$ git commit -m "Make projects only visible to users with

permission to see them"
$ git push

8.1.6 Handling authorization errors

But what happens if the user doesn’t have permission to read a project? Nasty red error
screens are no fun in development, and users in production would get an unhelpful
page (see figure 8.2), much like the 404 page you saw earlier in section 4.4.1.

 You can do much better than that. In the same way that you rescued the exception
that Rails throws when records aren’t found, you can rescue the exception that Pundit
throws when the user doesn’t have permission to do something, and redirect them
back to a safe place.

 You’ll start with a controller test, just like you tested the 404 error handling. Inside
spec/controllers/projects_controller_spec.rb, you can add a new scenario to cover

Listing 8.19 Clarifying “regular user” to mean a viewer of the project

Figure 8.2 What your users would see if they got an authorization error

Licensed to Mark Watson <nordickan@gmail.com>

231Project-viewing permission

the case where a user is attempting to view a project they don’t have permission
to view.

RSpec.describe ProjectsController, type: :controller do
...

it "handles permission errors by redirecting to a safe place" do
allow(controller).to receive(:current_user)

project = FactoryGirl.create(:project)
get :show, id: project

expect(response).to redirect_to(root_path)
message = "You aren't allowed to do that."
expect(flash[:alert]).to eq message

end
end

It’s a simple test and very similar to the scenario above it. You don’t even log in, you
just create a project and then try to view it. A safe course of action would be to redirect
them to the homepage, displaying an appropriate message. You do have an extra
safeguard in there to stub out the current_user method on the controller—
otherwise you’d get Devise errors, similar to those you saw when testing your
Admin::ApplicationController.

 When you run this spec with bundle exec rspec spec/controllers/

projects_controller_spec.rb, you’ll get the expected error message:

1) ProjectsController handles permission errors by redirecting to a safe
place
Failure/Error: get :show, id: project
Pundit::NotAuthorizedError:
not allowed to show? this #<Project:0x007fc191e224d0>

Now how to implement it?
 You can implement it with a global rescue_from in your base Application-

Controller that all your controllers inherit from. It will rescue the exception you
specify, no matter where it happens in your application. This is different from the
rescue you specified in ProjectsController earlier—that was protecting a single call
to Project.find, whereas this will protect the entire application.

 Inside app/controllers/application_controller.rb, add the following code right at
the end of the class definition.

class ApplicationController < ActionController::Base
...

rescue_from Pundit::NotAuthorizedError, with: :not_authorized

Listing 8.20 Testing what happens when a user views a project they don’t have access to

Listing 8.21 Part of ApplicationController

Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 8 Fine-grained access control

private

def not_authorized
redirect_to root_path, alert: "You aren't allowed to do that."

end
end

Now whenever a Pundit::NotAuthorizedError is raised anywhere in your app, the
:not_authorized symbol you provided means the not_authorized method should be
run, which does appropriate things. You redirect back to the homepage and display a
nice message.

 And your tests in spec/controllers/projects_controller_spec.rb will pass:

2 examples, 0 failures

There are two final notes on this rescue_from functionality:

■ It covers the entire application, but you only wrote one test for a single action in
a child controller. If you were being very thorough, you could write a test for a
dummy controller that extends ApplicationController to be sure that the
functionality was defined in the top-level ApplicationController and would
therefore cover the entire application. We’ll leave that for you to explore on
your own.

■ It can make some things harder to test in the future. If any of your tests fail in
the future due to permission errors, you won’t get the same “not allowed to
<action> on <object>” error that you did earlier, because you’re rescuing and
recovering from it. Instead, the errors will be harder to diagnose—they might
result in missing content on the page, or not being on the right page—but with
practice (and our hand to guide you) you’ll learn to spot these errors. And of
course, testing the policies is a must as well.

While these may seem like big downsides for developers, the better user interface for
users is worth the trade-off. No one likes ugly error pages, and if you’re running a
public-facing website, you’ll get sick of users reporting them—we like to minimize
them where we can.

 You can commit this new functionality:

$ git add .
$ git commit -m "Handle authorization errors gracefully"
$ git push

8.1.7 One more thing

You’ve protected the show action of the ProjectsController from unauthorized
access, but the links to all projects are still visible to all users in the index action. This
is definitely something you should look at fixing.

Licensed to Mark Watson <nordickan@gmail.com>

233Project-viewing permission

 You can add another scenario to an existing feature to make sure that when you
fix this behavior, it stays fixed. You can use the feature in spec/features/viewing
_projects_spec.rb.

 To test that certain links are hidden on the index action, add a new scenario under
the existing one that looks like the following listing.

RSpec.feature "Users can view projects" do
...

scenario "unless they do not have permission" do
FactoryGirl.create(:project, name: "Hidden")
visit "/"
expect(page).not_to have_content "Hidden"

end
end

This feature will now ensure that users who don’t have permission to view the new
“Hidden” project will no longer see a link to it. When you run this feature using
bundle exec rspec spec/features/viewing_projects_spec.rb, it fails as expected:

1) Users can view projects unless they do not have permission
Failure/Error: expect(page).not_to have_content "Hidden"
expected not to find text "Hidden" in "Ticketee Toggle navigation
Home Signed in as test2@example.com Sign out Projects Sublime
Text 3 Hidden"

./spec/features/viewing_projects_spec.rb:21:in ...

To fix it, you need to modify the index action of app/controllers/
projects_controller.rb. To filter the list of projects loaded, you could manually write a
scope in your Project model like you did (in the previous chapter) in the User model
to filter out archived users, or you could use Pundit again—it provides a policy
_scope method to scope objects based on permissions.

class ProjectsController < ApplicationController
...

def index
@projects = policy_scope(Project)

end

Pundit will then call the resolve method in the Scope class of your ProjectPolicy. At
the moment this is pretty basic, looking like the following listing.

Listing 8.22 Testing that only viewable projects are listed on the index page

Listing 8.23 The new index action in ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 8 Fine-grained access control

class Scope < Scope
def resolve
scope

end
end

Here, scope is the argument you passed to policy_scope, which in this case is just
Project.

 Just as you tested the show? method of the ProjectPolicy, you can test the scope
as well, by adding the following code above the permissions :show? block in spec/
policies/project_policy_spec.rb.

context "policy_scope" do
subject { Pundit.policy_scope(user, Project) }

let!(:project) { FactoryGirl.create :project }
let(:user) { FactoryGirl.create :user }

it "is empty for anonymous users" do
expect(Pundit.policy_scope(nil, Project)).to be_empty

end

it "includes projects a user is allowed to view" do
assign_role!(user, :viewer, project)
expect(subject).to include(project)

end

it "doesn't include projects a user is not allowed to view" do
expect(subject).to be_empty

end

it "returns all projects for admins" do
user.admin = true
expect(subject).to include(project)

end
end

These are similar to the show? specs—you test every possible combination for the type
of user being logged in and permission. Admins should see all projects listed, because
they can see everything; anonymous users don’t have permission to see anything; and
other users can see different data depending on their assigned roles. You’ve defined a
new subject for your context of specs—the policy_scope method you want to test.
And you don’t have access to the controller helpers in your specs, so you have to man-
ually specify Pundit.policy_scope instead.

 Naturally, all of your new specs will now fail when you run them with bundle exec
rspec spec/policies/project_policy_spec.rb:

Listing 8.24 The resolve method of ProjectPolicy

Listing 8.25 spec/policies/project_policy_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

235Project-viewing permission

1) ProjectPolicy policy_scope is empty for anonymous users
Failure/Error: expect(Pundit.policy_scope(nil, Project)).to be_empty
expected Project to respond to `empty?`

./spec/policies/project_policy_spec.rb:16:in ...

2) ProjectPolicy policy_scope includes projects a user is allowed to
view
Failure/Error: expect(subject).to include(project)
TypeError:
wrong argument type Project (expected Module)

./spec/policies/project_policy_spec.rb:21:in ...

...

This is because Project is being returned from your scope, instead of a list of projects.
You can make these specs pass by rewriting the resolve method in your Project-
Policy::Scope class.

class ProjectPolicy < ApplicationPolicy
def resolve
return scope.none if user.nil?
return scope.all if user.admin?

scope.joins(:roles).where(roles: {user_id: user})
end

...

You deal with the two edge case scenarios first: no user, and an admin user. If there’s
no user signed in, then user will be nil—in this case you can return scope.none.
Remember that scope is the argument to policy_scope, in this case the Project
model. none is a convenience method provided by Active Record to automatically
return no records, no matter what other conditions may be added later—it sounds
like a perfect fit for your scenario.

 Admin users can see everything, so you return scope.all; as the name implies, this
will return all records.

 The last line is the meat of the method and may be a little confusing. The joins
method joins the roles table using a SQL INNER JOIN, allowing you to perform que-
ries using columns from the roles table as well as the base projects table. You do
that with the where method, specifying a hash that contains the roles key, which
points to another hash containing the fields you want to search on and their expected
values. This scope then returns all the Project objects containing a related record in
the roles table that has the user ID equal to that of the passed-in user, which is your
signed-in user. All of your roles have read access to projects, so if there are any roles
joining the user and the project, then the project is readable by the user.

 With these couple of short lines, the specs for ProjectPolicy will now pass:

10 examples, 0 failures

Listing 8.26 The new resolve method

Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 8 Fine-grained access control

What about your original spec/features/viewing_projects_spec.rb?

2 example, 0 failures

What about the entire test suite?

42 examples, 0 failures

Success! Commit your changes:

$ git add .
$ git commit -m "Don't list projects that a user doesn't have

permission to see"
$ git push

Now unauthorized users can’t see any evidence of projects, either via the index or
show actions, but there’s nothing stopping a crafty user from editing projects. You
haven’t placed any authorization restrictions on the edit and update actions, so a
user could go straight to the form if they knew (or guessed) the URL, and still edit any-
thing they wished. We’ll look at fixing this next.

8.2 Project-updating permission
As discussed at the beginning of the chapter, you have three roles in your system—
viewers, editors, and managers. Only one of those roles should be allowed to edit the
details of the project itself—the managers. You should restrict access to the edit and
update actions of the ProjectsController to allow managers of the project to access
them, but not editors, viewers, or users who aren’t logged in.

 You’ll start with writing tests for your new permissions, in spec/policies/
project_policy_spec.rb.

8.2.1 Testing the ProjectPolicy again

For now you’ll test in a very naive way, by copying and pasting all of the existing tests
and code you wrote for the show? action, and then you’ll do some refactoring—the
code will be nearly identical, and a lot of the permission stuff you’ll do in the future
will be very similar as well.

 To test the update? permission, insert the following code in a block below the
permissions :show? do block.

permissions :update? do
let(:user) { FactoryGirl.create :user }
let(:project) { FactoryGirl.create :project }

it "blocks anonymous users" do
expect(subject).not_to permit(nil, project)

end

it "doesn't allow viewers of the project" do

Listing 8.27 Specs for testing whether a user can edit a project

Licensed to Mark Watson <nordickan@gmail.com>

237Project-updating permission

assign_role!(user, :viewer, project)
expect(subject).not_to permit(user, project)

end

it "doesn't allows editors of the project" do
assign_role!(user, :editor, project)
expect(subject).not_to permit(user, project)

end

it "allows managers of the project" do
assign_role!(user, :manager, project)
expect(subject).to permit(user, project)

end

it "allows administrators" do
admin = FactoryGirl.create :user, :admin
expect(subject).to permit(admin, project)

end

it "doesn't allow users assigned to other projects" do
other_project = FactoryGirl.create :project
assign_role!(user, :manager, other_project)
expect(subject).not_to permit(user, project)

end
end

The only differences between these specs and the show? specs are that you’ve flipped
a few of the expect(subject).to to expect(subject).not_to.

 Not surprisingly, if you run the specs with bundle exec rspec spec/policies/
project_policy_spec.rb, you’ll get a few failures:

1) ProjectPolicy update? allows managers of the project
Failure/Error: expect(subject).to permit(user, project)
Expected ProjectPolicy to grant update? on
#<Project:0x007f2c45b270c8> but it didn't

./spec/policies/project_policy_spec.rb:89:in ...

2) ProjectPolicy update? allows administrators
Failure/Error: expect(subject).to permit(admin, project)
Expected ProjectPolicy to grant update? on
#<Project:0x007f2c490922f8> but it didn't

./spec/policies/project_policy_spec.rb:94:in ...

Why does this happen? Well, according to ApplicationPolicy, all users are blocked
from updating records by default; see the following listing.

class ApplicationPolicy
...

def update?
false

end

Listing 8.28 The default update? method in ApplicationPolicy

Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 8 Fine-grained access control

Like with show?, you can overwrite this method by defining an update? method in
ProjectPolicy. The contents will be very similar to show?, only differing in making
sure that the role filter also only selects Role records with the role name “manager.”

class ProjectPolicy < ApplicationPolicy
...

def update?
user.try(:admin?) || record.roles.exists?(user_id: user,

role: 'manager')
end

If the user is an admin or they’re a manager for this specific project, they’ll be autho-
rized to update it.

 Now you can rerun your ProjectPolicy specs with bundle exec rspec spec/
policies/project_policy_spec.rb:

16 examples, 0 failures

8.2.2 Applying the authorization

Now that you have specs to make sure that only managers can edit projects, you can
apply that authorization in your ProjectsController, using the authorize method
just like you did for the show action. Edit the edit and update actions to use the
update? permission you just wrote.

class ProjectsController < ApplicationController
...

def edit
authorize @project, :update?

end

def update
authorize @project, :update?
if @project.update(project_params)

flash[:notice] = "Project has been updated."
redirect_to @project

else
flash.now[:alert] = "Project has not been updated."
render "edit"

end
end

Now you’re cooking. But this might have broken something in the rest of your tests—
likely the features you wrote that make sure users can edit projects. If you run bundle
exec rspec now, you’ll get a couple of failures:

Listing 8.29 The new update? method in ProjectPolicy

Listing 8.30 The edit and update actions of ProjectsController

Licensed to Mark Watson <nordickan@gmail.com>

239Project-updating permission

1) Users can edit existing projects with valid attributes
Failure/Error: fill_in "Name", with: "Sublime Text 4 beta"
Capybara::ElementNotFound:
Unable to find field "Name"

2) Users can edit existing projects when providing invalid attributes
Failure/Error: fill_in "Name", with: ""
Capybara::ElementNotFound:
Unable to find field "Name"

It’s exactly as expected. The start of spec/features/editing_projects_spec.rb looks like
the following.

require "rails_helper"

RSpec.feature "Users can edit existing projects" do
let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project, name: "Sublime Text 3") }

before do
login_as(user)
assign_role!(user, :viewer, project)
...

In your test, you’re logging in as a viewer of the project, but you’ve just written code to
make sure that only managers can edit projects. Update the line that assigns the role to
assign the manager role instead of the viewer role.

before do
login_as(user)
assign_role!(user, :manager, project)
...

Let’s also rename the test in the top-level RSpec.feature description—it’s not
“_Users_ can edit existing projects,” but rather “_Project managers_ can edit existing
projects.”

 Now if you rerun bundle exec rspec, all of the tests will pass again:

48 examples, 0 failures

This looks like a good time to commit your changes:

$ git add .
$ git commit -m "Only admins and managers of a project can edit

the project's details"
$ git push

Listing 8.31 The start of spec/features/editing_projects_spec.rb

Listing 8.32 Assigning the manager role

Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 8 Fine-grained access control

8.2.3 Hiding the “Edit Project” link

Like you did in chapter 7, you should also be hiding the “Edit Project” link from those
users who don’t have permission to update the project. If you don’t, any user who has
permission to view the project could click the link, and they’d just get a “You aren’t
allowed to do that” message. Not very friendly.

 Add another two scenarios to spec/features/hidden_links_spec.rb to cover this.

context "non-admin users (project viewers)" do
...

scenario "cannot see the Edit Project link" do
visit project_path(project)
expect(page).not_to have_link "Edit Project"

end
end

context "admin users" do
...

scenario "can see the Edit Project link" do
visit project_path(project)
expect(page).to have_link "Edit Project"

end
end

The viewers of a project don’t have permission to see the link, so it shouldn’t appear
when they visit the project page. The admins do have permission, so they should see
the link.

 When you run bundle exec rspec spec/features/hidden_links_spec.rb, one of
the two new specs you wrote should fail:

1) Users can only see the appropriate links non-admin users (project
viewers) cannot see the Edit Project link
Failure/Error: expect(page).not_to have_link "Edit Project"
expected not to find link "Edit Project", found 1 match:
"Edit Project"

./spec/features/hidden_links_spec.rb:28:in ...

This makes sense, because you haven’t yet hidden the link for anyone.
 Pundit also provides a helper for your views, to show or hide specific content if the

user is or isn’t authorized to do something. It’s appropriately called policy and can be
used as in the next listing.

<% if policy(@project).update? %>
<p>This displays if the user has the "update" permission
on the @project.</p>

Listing 8.33 New scenarios in spec/features/hidden_links_spec.rb

Listing 8.34 An example of using Pundit’s policy helper in views

Licensed to Mark Watson <nordickan@gmail.com>

241Project-updating permission

<% else %>
<p>This displays if the user doesn't have the "update" permission on
the @project. No soup for you!</p>

<% end %>

You can use this helper in your app/views/projects/show.html.erb, around the action
link in the top header.

<ul class="actions">
<% if policy(@project).update? %>
<%= link_to "Edit Project", edit_project_path(@project),

class: "edit" %>
<% end %>
...

Now bundle exec rspec spec/features/hidden_links_spec.rb will be a lot happier:

7 examples, 0 failures

And nothing else should fail when you run bundle exec rspec:

50 examples, 0 failures

You’re accomplishing a lot of functionality with very little code! Commit these
changes as well:

$ git add .
$ git commit -m "Only show the 'Edit Project' button if the user

can update the project"
$ git push

Everything in the ProjectsController is now protected by Pundit’s authorization
helpers—the index action by policy_scope, and the show, edit, and update actions
by authorize.

 For the seven default CRUD actions for a Rails model, you’ve implemented the fol-
lowing authorizations:

■ Anyone can view the index action, but they will only see projects they are a
member of.

■ Only admins can see the new and create actions.
■ Only members of a project can see the show action.
■ Only admins, or managers of a project, can see the edit and update actions.
■ Only admins can see the destroy action.

So far so good. But you haven’t yet looked at TicketsController. This is a problem,
because users can still create, view, and delete tickets for a project, even if they don’t
have access to the project itself. We’ll look at addressing these problems next.

Listing 8.35 Only display Edit Project button if the user is authorized

Licensed to Mark Watson <nordickan@gmail.com>

242 CHAPTER 8 Fine-grained access control

8.3 Ticket-viewing permission
If you had a project that had a lot of tickets in it, the URLs would start looking fairly
predictable. They might look like this:

■ /projects/1/tickets/2
■ /projects/1/tickets/4
■ /projects/1/tickets/5

And so on. A user could start constructing other URLs in the same format, such as
/projects/2/tickets/7. If that corresponds to a valid ticket, they’d be able to view the
details of it, even if they don’t belong to the project. This sounds like a Bad Thing.

 The way your role structure is designed (with viewers, editors, and managers),
viewing tickets will have the same permissions as viewing projects—anyone who
belongs to the project (with any role) should be able to see the details of any ticket in
the project.

 You already have a spec that covers viewing the details of a ticket—spec/features/
viewing_tickets_spec.rb. If you run it now, it should pass happily:

1 example, 0 failures

This will be your litmus test—what you run to make sure you haven’t broken anything
while adding authorizations.

 Open the TicketsController in app/controllers/tickets_controller.rb, and mod-
ify the show action to add an authorization check using authorize.

class TicketsController < ApplicationController
...

def show
authorize @ticket, :show?

end

...
end

You already have @ticket loaded due to before_action :set_ticket, so this should
just work. But run bundle exec rspec spec/features/viewing_tickets_spec.rb
again, and you’ll see it’s already broken:

1) Users can view tickets for a given project
Failure/Error: click_link "Make it shiny!"
Pundit::NotDefinedError:
unable to find policy TicketPolicy for #<Ticket:0x007f13e0d92bc8>

...
./app/controllers/tickets_controller.rb:23:in `show'

Listing 8.36 The show action of TicketsController, now with added authorization

Licensed to Mark Watson <nordickan@gmail.com>

243Ticket-viewing permission

Because you’re now doing authorization against a Ticket object, instead of a Project
object, you need a TicketPolicy class. Run the Rails generator provided by Pundit
again to generate a new policy:

$ rails g pundit:policy ticket

Now you have a TicketPolicy class, defined in app/policies/ticket_policy.rb, and the
ticket-viewing spec is happy again:

1 example, 0 failures

You can now start writing specs in spec/policies/ticket_policy_spec.rb to ensure that
only the right people can view ticket details.

8.3.1 Refactoring policy specs

Since the show? specs for your TicketPolicy will be exactly the same as the show? specs
for your ProjectPolicy, it might be tempting to just copy and paste them and keep on
going. But this will be the second time you’ve copied and pasted them—you did the
same for the update? permissions block in ProjectPolicy. Duplicating code once is
okay, but if you’re doing it multiple times, it might be time for some refactoring.

 One way of solving all of this duplication is to write a custom RSpec matcher. This will
make the code easier to read, and also rearrange the way the tests are laid out. At the
moment, you go through each permission type (such as update?) and for each type
check each role (such as viewer)—the code to create a role is repeated for each per-
mission type. If instead you created the roles first, then ran the permission checks, the
code might be a lot shorter.

 In the quest to always stay DRY, we’ll introduce a new flavor of the it RSpec syn-
tax, affectionately called the “one-liner should syntax.” More on this follows, so for
now, replace both the permissions :show? and permissions :update? blocks in
spec/policies/project_policy_spec.rb with the following code.

context "permissions" do
subject { ProjectPolicy.new(user, project) }

let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }

context "for anonymous users" do
let(:user) { nil }

it { should_not permit_action :show }
it { should_not permit_action :update }

end

context "for viewers of the project" do
before { assign_role!(user, :viewer, project) }

Listing 8.37 A shorter and more concise way of writing policy specs

Licensed to Mark Watson <nordickan@gmail.com>

244 CHAPTER 8 Fine-grained access control

it { should permit_action :show }
it { should_not permit_action :update }

end

context "for editors of the project" do
before { assign_role!(user, :editor, project) }

it { should permit_action :show }
it { should_not permit_action :update }

end

context "for managers of the project" do
before { assign_role!(user, :manager, project) }

it { should permit_action :show }
it { should permit_action :update }

end

context "for managers of other projects" do
before do

assign_role!(user, :manager, FactoryGirl.create(:project))
end

it { should_not permit_action :show }
it { should_not permit_action :update }

end

context "for administrators" do
let(:user) { FactoryGirl.create :user, :admin }

it { should permit_action :show }
it { should permit_action :update }

end
end

This is 20 lines shorter than the code you replaced, but what does it do?
 You have a new context block for each type of user (anonymous, viewer, admin,

and so on), and in each block you set up the user with the right role before running
your specs. Then you introduce your custom permit_action RSpec method—which
isn’t defined yet, so all of the specs will fail.

 it { should permit_action :show } is a shortcut for writing something like the fol-
lowing code.

it "should permit the show action" do
expect(subject).to permit_action :show

end

That, as you can agree, is nowhere near as pretty. It can also be written like the
following.

it { is_expected.to permit_action :show }

Listing 8.38 The long form of the one-liner should syntax

Listing 8.39 The non-should version of the one-liner syntax

Licensed to Mark Watson <nordickan@gmail.com>

245Ticket-viewing permission

Which of the two one-liner syntaxes you choose is up to you—we personally find the
should form more aesthetically pleasing, so that’s what we’ll go with.

 Now that you’ve dealt with the different syntaxes, how do you define
permit_action? You can do it with a custom RSpec matcher—this includes the check
that you should perform and some error messages for both the positive and negative
cases. Create a new file called spec/support/pundit_matcher.rb, and put the follow-
ing code in it.

RSpec::Matchers.define :permit_action do |action|
match do |policy|
policy.public_send("#{action}?")

end

failure_message do |policy|
"#{policy.class} does not allow #{policy.user || "nil"} to " +

"perform :#{action}? on #{policy.record}."
end

failure_message_when_negated do |policy|
"#{policy.class} does not forbid #{policy.user || "nil"} from " +

"performing :#{action}? on #{policy.record}."
end

end

You can chain this permit_action method after should, should_not, expect().to, or
expect().to_not because it’s been defined as a matcher. The action argument is
what you pass in when you call the method—such as :show in it { should permit
_action :show }—and the policy argument is the subject of the test itself, in this case
the ProjectPolicy instance.

 The public_send("#{action}?") method might look a little bit odd—it’s part of
Ruby’s metaprogramming magic. public_send (and its more dangerous brother,
send) allow you to pass in a method name as a string, and then that method will be
called. This is great here, because you have the name of the permission you want to
check already stored in the action variable.

 In this case, a line like it { should permit_action :update } will call policy
.public_send("update?"), which translates to policy.update?. That might look
familiar—it’s very similar to how you called authorization methods in your view, and
they returned true or false depending on whether or not the action could be per-
formed. You leverage that here—if the method returns true, the matcher succeeds,
and the test passes if the assertion was positive (that is, should instead of should_not.)

 This might be a lot to take in, but that’s okay. If you’re interested in further read-
ing on custom RSpec matchers, the official documentation is a great resource: www
.relishapp.com/rspec/rspec-expectations/v/3-2/docs/custom-matchers/define-matcher.

Listing 8.40 spec/support/pundit_matcher.rb

Licensed to Mark Watson <nordickan@gmail.com>

www.relishapp.com/rspec/rspec-expectations/v/3-2/docs/custom-matchers/define-matcher
www.relishapp.com/rspec/rspec-expectations/v/3-2/docs/custom-matchers/define-matcher

246 CHAPTER 8 Fine-grained access control

 With this matcher defined, you can now run your ProjectPolicy spec file with
bundle exec rspec spec/policies/project_policy_spec.rb. If you’ve done every-
thing correctly, you should get the following:

16 examples, 0 failures

Happy dance time!
 This shorter style of specs is also much easier to extend. If you had to authorize

another action, such as destroy?, instead of copying the entire long permissions
block, you could just define an extra it { should permit_action :destroy } line for
each role in your system. And if you added a new role such as client, you’d only have
to add one new context block and check each permission inside it.

8.3.2 Testing the TicketPolicy

You can adopt your new testing style when you write your new TicketPolicy specs.
Open spec/policies/ticket_policy_spec.rb and replace the contents of the file with
the following listing.

require "rails_helper"

RSpec.describe TicketPolicy do
context "permissions" do
subject { TicketPolicy.new(user, ticket) }

let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket, project: project) }

context "for anonymous users" do
let(:user) { nil }

it { should_not permit_action :show }
end

context "for viewers of the project" do
before { assign_role!(user, :viewer, project) }

it { should permit_action :show }
end

context "for editors of the project" do
before { assign_role!(user, :editor, project) }

it { should permit_action :show }
end

context "for managers of the project" do

Listing 8.41 spec/policies/ticket_policy_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

247Ticket-viewing permission

before { assign_role!(user, :manager, project) }

it { should permit_action :show }
end

context "for managers of other projects" do
before do

assign_role!(user, :manager, FactoryGirl.create(:project))
end

it { should_not permit_action :show }
end

context "for administrators" do
let(:user) { FactoryGirl.create :user, :admin }

it { should permit_action :show }
end

end
end

DON’T FORGET! Don’t forget to make sure that require 'spec_helper' at the
top is changed to require "rails_helper"! If you don’t do this, the test
won’t be able to find the TicketPolicy class.

It looks long, but it’s fundamentally similar to the ProjectPolicy permission specs
you just refactored. In each context block, you create a different type of user, and
then check whether or not the show action is permitted for each. In this case, you
don’t permit anonymous users or users that only belong to other projects, but you
allow anyone that belongs to the project that the ticket belongs to, to view it.

 When you run this spec with bundle exec rspec spec/policies/ticket_policy
_spec.rb, you’ll get a couple of failures:

1) TicketPolicy permissions for anonymous users should not permit action
:show
Failure/Error: it { should_not permit_action :show }
TicketPolicy does not forbid nil from performing :show? on
#<Ticket:0x007fbf69644030>.

2) TicketPolicy permissions for managers of other projects should not
permit action :show
Failure/Error: it { should_not permit_action :show }
TicketPolicy does not forbid test4@example.com (User) from
performing :show? on #<Ticket:0x007fbf6b5d3a40>.

This is because, by default, show is permitted as long as the ticket exists in the data-
base. You saw the same thing when you wrote custom rules for ProjectPolicy.

 You can fix those two failures by adding the following custom show? method to the
TicketPolicy class in app/policies/ticket_policy.rb.

Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 8 Fine-grained access control

class TicketPolicy < ApplicationPolicy
...

def show?
user.try(:admin?) || record.project.roles.exists?(user_id: user)

end

With this code, you check that a user is authorized to see a ticket by checking if that
user has any role for the project that the ticket belongs to. If a user is a viewer or a
manager or an admin, they should be able to access a ticket.

 Now, running bundle exec rspec spec/policies/ticket_policy_spec.rb will be
all green:

6 examples, 0 failures

Make sure you haven’t broken anything by running the entire test suite:

1) Users can edit existing tickets with valid attributes
Failure/Error: click_link "Edit Ticket"
Capybara::ElementNotFound:
Unable to find link "Edit Ticket"

...
./spec/features/editing_tickets_spec.rb:12:in ...

2) Users can edit existing tickets with invalid attributes
Failure/Error: click_link "Edit Ticket"
Capybara::ElementNotFound:
Unable to find link "Edit Ticket"

...
./spec/features/editing_tickets_spec.rb:12:in ...

56 examples, 2 failures

You’ve changed the rules on who can view tickets—you no longer allow anonymous
users to view them. But in your ticket-editing spec, you’re not signing in before you try
to view the ticket page, and hence the test fails.

 You need to update that spec to assign a valid role to a user, and then log that user
in. Open spec/features/editing_tickets_spec.rb, and update the beginning of the
before block in much the same way that you fixed your other specs earlier.

RSpec.feature "Users can edit existing tickets" do
...

before do
assign_role!(author, :viewer, project)
login_as(author)
...

Listing 8.42 app/policies/ticket_policy.rb

Listing 8.43 spec/features/editing_tickets_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

249Ticket-viewing permission

Now that the signed-in user is a member of the project, viewing the ticket should be
successful. Rerun that spec with bundle exec rspec spec/features/editing_tickets
_spec.rb to verify:

2 examples, 0 failures

And also rerun bundle exec rspec to make sure everything is all green:

56 examples, 0 failures

Great! Check in your changes and push:

$ git add .
$ git commit -m "Only members of a project can view tickets in it"
$ git push

8.3.3 Refactoring policies

Some of the code in your policies is starting to get a bit repetitive—the constant
checks like record.roles.where(user_id: user, role: "manager") and record
.project.roles.where(user_id: user). Wouldn’t it be great if you could write
things like record.has_manager?(user) or record.project.has_member?(user)?
You can do that by writing some nice helper methods on your Project model.

 This is another example of that red-green-refactor style of workflow you saw earlier
in chapters 2 and 4. It’s a great workflow, as it enables you to tidy up your codebase
while working on a stable base of tests.

 To add your new helper methods, open app/models/project.rb and add the fol-
lowing at the bottom of the class.

class Project < ActiveRecord::Base
...

def has_member?(user)
roles.exists?(user_id: user)

end

[:manager, :editor, :viewer].each do |role|
define_method "has_#{role}?" do |user|

roles.exists?(user_id: user, role: role)
end

end

This is a little bit of Ruby metaprogramming magic. Instead of manually defining
has_manager?, has_editor?, and has_viewer?—which would all have identical code,
just with a different role name—you dynamically create methods in a loop using
define_method. define_method takes the name of the method to define as the first
argument, the arguments to the method as the block arguments (|user|), and the
content of the method as the content of the block. These methods work identically to
those you’d write normally, just with less code.

Listing 8.44 Metaprogramming magic to add more-expressive method names

Licensed to Mark Watson <nordickan@gmail.com>

250 CHAPTER 8 Fine-grained access control

 Now you can edit your ProjectPolicy and TicketPolicy classes to substitute in
the new methods you just defined.

class ProjectPolicy < ApplicationPolicy
...

def show?
user.try(:admin?) || record.has_member?(user)

end

def update?
user.try(:admin?) || record.has_manager?(user)

end
end

class TicketPolicy < ApplicationPolicy
...

def show?
user.try(:admin?) || record.project.has_member?(user)

end
end

All of your specs will still pass when you run bundle exec rspec:

56 examples, 0 failures

This is an example of a tiny refactoring that can make your code so much nicer to
read. And later on, if your definition of what it means for a user to be a member of a
project changes, you don’t have to change all your policies. You only need to change
your code in one place—in the has_member? method.

 Let’s move on!

8.4 Ticket-creation permission
We’re moving through each of the actions in your controllers, applying valid authori-
zation to them one by one. Next, you also need to lock down the new and create
actions of TicketsController, so people can’t just go to /projects/2/tickets/new and
create tickets, even if they don’t have access to the project. You should look at fixing
that now.

8.4.1 Testing the TicketPolicy … again

In your system, viewers of a project won’t have the access necessary to create tickets
for the project, but editors and managers will. And, of course, admins can do
anything they like. You can expand the specs you wrote earlier in spec/policies/

Listing 8.45 Updated version of ProjectPolicy with has_*? helpers

Listing 8.46 Updated version of TicketPolicy with has_*? helpers

Licensed to Mark Watson <nordickan@gmail.com>

251Ticket-creation permission

ticket_policy_spec.rb to add these new requirements. Add the new specs to the exist-
ing context blocks.

context "for anonymous users" do
...
it { should_not permit_action :create }

end

context "for viewers of the project" do
...
it { should_not permit_action :create }

end

context "for editors of the project" do
...
it { should permit_action :create }

end

context "for managers of the project" do
...
it { should permit_action :create }

end

context "for managers of other projects" do
...
it { should_not permit_action :create }

end

context "for administrators" do
...
it { should permit_action :create }

end

See how much easier adding new permissions is, with this new spec format?
 When you run these specs with bundle exec rspec spec/policies/ticket_policy

_spec.rb, you’ll get a few expected failures:

1) TicketPolicy permissions for editors of the project should permit
action :create
Failure/Error: it { should permit_action :create }
TicketPolicy does not allow test4@example.com (User) to perform
:create? on #<Ticket:0x007f70d64b2848>.

./spec/policies/ticket_policy_spec.rb:29:in ...

2) TicketPolicy permissions for managers of the project should permit
action :create
Failure/Error: it { should permit_action :create }
TicketPolicy does not allow test6@example.com (User) to perform
:create? on #<Ticket:0x007f70d8924438>.

./spec/policies/ticket_policy_spec.rb:36:in ...

3) TicketPolicy permissions for administrators should permit action

Listing 8.47 The new create? permission specs for TicketPolicy

Licensed to Mark Watson <nordickan@gmail.com>

252 CHAPTER 8 Fine-grained access control

:create
Failure/Error: it { should permit_action :create }
TicketPolicy does not allow test10@example.com (Admin) to perform
:create? on #<Ticket:0x007f70d54b3aa0>.

./spec/policies/ticket_policy_spec.rb:52:in ...

This is the same as you saw earlier with ApplicationPolicy—by default, create? is for-
bidden to all. You can fix this by adding a new create? method to your TicketPolicy
that encapsulates the logic you want.

class TicketPolicy < ApplicationPolicy
...

def create?
user.try(:admin?) || record.project.has_manager?(user) ||

record.project.has_editor?(user)
end

end

That should make all of your TicketPolicy specs pass. Check with bundle exec rspec
spec/policies/ticket_policy_spec.rb:

12 examples, 0 failures

Now that you know the policy works the way you want, you can look at using it in your
TicketsController. If this is starting to get very quick and formulaic, it’s because
you’ve done all the heavy lifting to get an authorization scheme in place, and now
you’re just making sure the rest of your code uses it!

8.4.2 Applying the authorization

Open app/controllers/tickets_controller.rb, and you can add your new authorization
steps to the new and create actions.

class TicketsController < ApplicationController
...

def new
@ticket = @project.tickets.build
authorize @ticket, :create?

end

def create
@ticket = @project.tickets.build(ticket_params)
@ticket.author = current_user
authorize @ticket, :create?

if @ticket.save
...

Listing 8.48 Defining who can create tickets

Listing 8.49 new and create actions in TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

253Ticket-creation permission

AUTHORIZE BEFORE SAVING Remember, you need to perform your authoriza-
tion checks before you save any data to the database, meaning before you call
@ticket.save or @ticket.create. If you don’t, the object will be persisted,
even if the authorization check then fails!

You should expect some of your existing specs to fail now, because you aren’t making
sure your users in your specs have the right permissions again. Running bundle exec
rspec will confirm this:

1) Users can create new tickets with valid attributes
Failure/Error: fill_in "Name", with: "Non-standards compliance"
Capybara::ElementNotFound:
Unable to find field "Name"

...
./spec/features/creating_tickets_spec.rb:16:in ...

2) Users can create new tickets when providing invalid attributes
Failure/Error: click_button "Create Ticket"
Capybara::ElementNotFound:
Unable to find button "Create Ticket"

...
./spec/features/creating_tickets_spec.rb:27:in ...

3) Users can create new tickets with an invalid description
Failure/Error: fill_in "Name", with: "Non-standards compliance"
Capybara::ElementNotFound:
Unable to find field "Name"

...
./spec/features/creating_tickets_spec.rb:35:in ...

It isn’t immediately obvious from the test failures what the problem is. We mentioned
earlier that handling permission errors by redirecting users to a safe place may make
broken tests harder to debug; this is a great example of that. It’s only because you’ve
been doing lots of the same steps here that you might immediately know what the
problem is; otherwise you might have to debug the contents of the page in the spec,
which would lead to debugging the controller and seeing that it gets caught on the
authorization step. Debugging is a tricky process—luckily there are books2 and gems3

out there to teach you how to do it effectively.
 Now that you know you have a permissions problem, open spec/features/creating

_tickets_spec.rb and see what permissions you’ve assigned to your user in the spec.

before do
...
assign_role!(user, :viewer, project)
...

end

2 Such as Debugging Ruby by Ryan Bigg (http://leanpub.com/debuggingruby).
3 Such as Pry (https://github.com/pry/pry).

Listing 8.50 The offending permission

Licensed to Mark Watson <nordickan@gmail.com>

http://leanpub.com/debuggingruby
https://github.com/pry/pry

254 CHAPTER 8 Fine-grained access control

Given you just wrote all this code to make sure that regular viewers can’t create tickets,
you should change the user’s role in the spec, to a role that can create tickets.

before do
...
assign_role!(user, :editor, project)
...

end

Now all of your specs will be back to passing again, if you check with bundle exec rspec:

62 examples, 0 failures

Check in the changes you just made:

$ git add .
$ git commit -m "Only editors, managers and admins can create tickets"
$ git push

There’s just one thing left to do before this ticket-creation authorization feature can
be considered to be complete—hiding the link to create a new ticket.

HIDING THE “NEW TICKET” LINK

Only some of your users viewing a project’s details will have permission to create a new
ticket, so you should hide the “New Ticket” link for those users.

 You can do this the same way you hid the “Edit Project” link, and it’s even in the
same view. But you’ll start with tests again, adding some more specs to the hidden-
links feature.

 Open spec/features/hidden_links_spec.rb and add some more scenarios for the
“New Ticket” link:

RSpec.feature "Users can only see the appropriate links" do
...
context "non-admin users (project viewers)" do
...

scenario "cannot see the New Ticket link" do
visit project_path(project)
expect(page).not_to have_link "New Ticket"

end
end

context "admin users" do
...

scenario "can see the New Ticket link" do
visit project_path(project)
expect(page).to have_link "New Ticket"

end
end
...

end

Listing 8.51 Making it all better!

Licensed to Mark Watson <nordickan@gmail.com>

255Ticket-creation permission

The first spec will fail when you run bundle exec rspec spec/features/hidden_links
_spec.rb because all users viewing the page can see the “New Ticket” link:

1) Users can only see the appropriate links non-admin users (project
viewers) cannot see the New Ticket link
Failure/Error: expect(page).not_to have_link "New Ticket"
expected not to find link "New Ticket", found 1 match: "New Ticket"

./spec/features/hidden_links_spec.rb:38:in ...

Now you can use Pundit’s policy helper to hide the link when it needs to be hidden.
Open app/views/projects/show.html.erb, which is where the “New Ticket” link lives.

<header>
<h2>Tickets</h2>

<ul class="actions">
<%= link_to "New Ticket", new_project_ticket_path(@project),

class: "new" %>

</header>

You can wrap the policy method around the list item that displays the “New Ticket”
link, to only show the link if the user has permission to create the ticket.

<header>
<h2>Tickets</h2>

<ul class="actions">
<% if policy(Ticket.new(project: @project)).create? %>

<%= link_to "New Ticket", new_project_ticket_path(@project),
class: "new" %>

<% end %>

</header>

This is a little different than the last time you used policy. Because you want to only
show the link if the user can create a ticket on the current project, you have to build a
new (unsaved) ticket on the current project to check against. So you instantiate a new
ticket manually with Ticket.new(project: @project) and pass it to the policy
method. If the user can create? it, then you display the link.

SPECIAL SYNTAX? WHY? Why use Ticket.new(project: @project) here
instead of @project.tickets.new? If you were to use the latter, Rails would
add the ticket you built into the list of tickets you get when you call @project
.tickets. Further down the page, you iterate over @project.tickets and
display links to each of them. You don’t want the new ticket you’ve just built
to appear in that list!

Listing 8.52 Tickets header on the projects show view

Listing 8.53 Tickets header projects viewing with added policy checking

Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 8 Fine-grained access control

If you rerun your hidden_links_spec.rb specs with bundle exec rspec spec/features/
hidden_links_spec.rb, the tests are now passing:

8 examples, 0 failures

This one’s a wrap! Commit your changes. It’s starting to take shape.

$ git add .
$ git commit -m "Hide the New Ticket link when the user can't create

tickets on the project"
$ git push

8.5 Ticket-updating permission
Implementing the permissions for updating tickets will follow a series of steps very
similar to implementing them for creating tickets:

1 Write tests for the update? method on TicketPolicy.
2 Implement authorization in your TicketsController.
3 Fix any failing features due to the new permissions.
4 Hide the “Edit Ticket” link in your view.

There’s just one catch—in your app, editors only have a low-level write access to
projects, so they should only be able to edit tickets if they created them. Managers
and admins have a high-level write access, so they should be able to edit any ticket
on the project.

 Let’s start with the writing of specs.

8.5.1 Testing the TicketPolicy … turbocharged

Based on the preceding description of your requirements, you can add a new set of
specs to your TicketPolicy spec in spec/policies/ticket_policy_spec.rb.

RSpec.describe TicketPolicy do
context "permissions" do
...
context "for anonymous users" do

...
it { should_not permit_action :update }

end

context "for viewers of the project" do
...
it { should_not permit_action :update }

end

context "for editors of the project" do
...
it { should_not permit_action :update }

Listing 8.54 Defining update permissions in TicketPolicy

Licensed to Mark Watson <nordickan@gmail.com>

257Ticket-updating permission

context "when the editor created the ticket" do
before { ticket.author = user }

it { should permit_action :update }
end

end

context "for managers of the project" do
...
it { should permit_action :update }

end

context "for managers of other projects" do
...
it { should_not permit_action :update }

end

context "for administrators" do
...
it { should permit_action :update }

end
end

end

The catch we mentioned has been added as nested context, within the editors con-
text. In the outer block, the user is just a normal editor on the project; in the inner
block, they’re also the owner of the ticket.

 When you run the spec with bundle exec rspec spec/policies/ticket_policy
_spec.rb, you’ll get a few expected failures:

1) TicketPolicy permissions for editors of the project when the editor
created the ticket should permit action :update
Failure/Error: it { should permit_action :update }
TicketPolicy does not allow test7@example.com (User) to perform
:update? on #<Ticket:0x007f5146022d28>.

./spec/policies/ticket_policy_spec.rb:37:in ...

2) TicketPolicy permissions for managers of the project should permit
action :update
Failure/Error: it { should permit_action :update }
TicketPolicy does not allow test10@example.com (User) to perform
:update? on #<Ticket:0x007f51445d1a00>.

./spec/policies/ticket_policy_spec.rb:46:in ...

3) TicketPolicy permissions for administrators should permit action
:update
Failure/Error: it { should permit_action :update }
TicketPolicy does not allow test16@example.com (Admin) to perform
:update? on #<Ticket:0x007f514433dd48>.

./spec/policies/ticket_policy_spec.rb:64:in ...

Fixing this should be old hat now. Open your TicketPolicy class in app/policies/
ticket_policy.rb, and define a new update? method. It looks like the following listing.

Licensed to Mark Watson <nordickan@gmail.com>

258 CHAPTER 8 Fine-grained access control

class TicketPolicy < ApplicationPolicy
...

def update?
user.try(:admin?) || record.project.has_manager?(user) ||

(record.project.has_editor?(user) && record.author == user)
end

end

It’s a little bit cumbersome, but it neatly includes all of your requirements, all joined
together with logical ORs, meaning any of these conditions can be true for the user to
be granted access:

■ The user is an admin.
■ The user is a manager of the project.
■ The user is an editor of the project, and the user is also the author of the ticket.

Rerunning with bundle exec rspec spec/policies/ticket_policy_spec.rb, your
specs will be all green:

19 examples, 0 failures

The next step is implementing the authorization in your controller.

8.5.2 Implementing controller authorization

By themselves, the rules you’ve defined in your TicketPolicy class don’t mean any-
thing unless you actually enforce them. So open your TicketsController class in
app/controllers/tickets_controller.rb and add the necessary authorize calls to both
the edit and update actions.

class TicketsController < ApplicationController
...

def edit
authorize @ticket, :update?

end

def update
authorize @ticket, :update?

if @ticket.update(ticket_params)
...

It’s important to call authorize before any of the methods that change data. This is
really important—check out the following code example.

if @ticket.update(ticket_params) && authorize(@ticket, :update?)

Listing 8.55 The new update? method in TicketPolicy

Listing 8.56 TicketsController with added authorization in edit and update

Listing 8.57 Don’t do this. Ever.

Licensed to Mark Watson <nordickan@gmail.com>

259Ticket-updating permission

If you were to do something like that and the authorization check failed, the ticket
would still be updated anyway, because the update method is called first! Bad idea. Big
security hole. Make sure you always authorize as early as possible, to limit the chance
of making mistakes.

 Now that you have that in place, you need to fix the feature specs you just broke,
which weren’t expecting this authorization check. Running bundle exec rspec gives
just two failures:

1) Users can edit existing tickets with valid attributes
Failure/Error: fill_in "Name", with: "Make it really shiny!"
Capybara::ElementNotFound:
Unable to find field "Name"

...
./spec/features/editing_tickets_spec.rb:19:in ...

2) Users can edit existing tickets with invalid attributes
Failure/Error: fill_in "Name", with: ""
Capybara::ElementNotFound:
Unable to find field "Name"

...
./spec/features/editing_tickets_spec.rb:31:in ...

The tests can no longer find the fields on the ticket-editing form, because they aren’t
on the expected page. They’re not on the ticket-editing page—they’ve been redi-
rected back to the homepage because “You don’t have permission to do that.”

 Open spec/features/editing_tickets_spec.rb, and make sure the user in the spec
has a role that will allow them to edit the tickets.

RSpec.feature "Users can edit existing tickets" do
...

before do
assign_role!(author, :editor, project)
login_as(author)
...

And presto! All of the specs pass again:

71 examples, 0 failures

That was pretty simple! You’re really getting the hang of this!

8.5.3 Hiding the “Edit Ticket” link

Lastly, you shouldn’t be teasing users with the “Edit Ticket” link if they can’t do any-
thing with it. That’s just mean.

 You need to write some tests to make sure the link is hidden and shown when
appropriate in spec/features/hidden_links_spec.rb.

Listing 8.58 The new “editor” role in editing_tickets_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

260 CHAPTER 8 Fine-grained access control

Open spec/features/hidden_links_spec.rb and add some new scenarios for testing
the presence of the “Edit Ticket” link.

RSpec.feature "Users can only see the appropriate links" do
...
let(:ticket) do
FactoryGirl.create(:ticket, project: project, author: user)

end

context "non-admin users (project viewers)" do
...

scenario "cannot see the Edit Ticket link" do
visit project_ticket_path(project, ticket)
expect(page).not_to have_link "Edit Ticket"

end
end

Listing 8.59 Testing the presence or absence of the “Edit Ticket” link

Just how exhaustive should your specs be, anyway?
You might have wondered why the tests in hidden_links_spec.rb are very simplistic—
they don’t cover all the scenarios in which the link is shown and hidden. Should you
be writing tests to ensure that editors don’t see the link, but editors that created the
ticket do see it?

The short answer is no. You’ve already tested the logic of who can edit tickets and
who can’t in your TicketPolicy spec. Repeating the testing of all of the nuances of
that logic here would be code duplication and massive wastage. If you changed the
logic of who could update a project, you’d have to update it here as well, even though
this is just looking for content on a given page.

You also test for these links in your feature specs, like the ticket-creation and ticket-
editing features. With these features, you’re asserting that people who are authorized
to perform these actions can find these links and click on them.

Your hidden-links feature test is really only a smoke test—a really quick way of making
sure that the link is sometimes shown and sometimes hidden. You test that it shows
in one scenario and doesn’t show in another.

If you really wanted to make sure that you only display the link if the user is allowed
to update the ticket, a better fit would be a view test. We don’t cover view testing in
this book, but the idea is that you write two specs that manually render the ticket’s
show.html.erb view, which holds the “Edit Ticket” link. In one spec, policy(@ticket)
.update? would be stubbed out to return true, and you’d verify that the link is shown.
In the other, policy(@ticket).update? would be stubbed out to return false, and
you’d verify that the link is not shown.

More on view specs can be found in the Rails documentation: www.relishapp.com/
rspec/rspec-rails/v/3-2/docs/view-specs/view-spec.

Licensed to Mark Watson <nordickan@gmail.com>

www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec
www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec

261Ticket-updating permission

context "admin users" do
...

scenario "can see the Edit Ticket link" do
visit project_ticket_path(project, ticket)
expect(page).to have_link "Edit Ticket"

end
end

end

You’ve had to create and assign a new ticket to the project, with a valid user (or the
ticket’s show view will explode due to a missing email). Then you test that normal
users can’t see the link and admin users do.

 When you run the spec with bundle exec rspec spec/features/hidden_links
_spec.rb, you get one failure because all users can still see the link:

1) Users can only see the appropriate links non-admin users (project
viewers) cannot see the Edit Ticket link
Failure/Error: expect(page).not_to have_link "Edit Ticket"
expected not to find link "Edit Ticket", found 1 match: "Edit
Ticket"

./spec/features/hidden_links_spec.rb:46:in ...

Now you can open the view and add the code to conditionally display the link.
 Open app/views/tickets/show.html.erb and find the code for the link. It looks like

the following listing.

<ul class="actions">
<%= link_to "Edit Ticket", [:edit, @project, @ticket],
class: "edit" %>

<%= link_to "Delete Ticket", [@project, @ticket], method: :delete,
data: { confirm: "Are you sure you want to delete this ticket?"},
class: "delete" %>

Like before, you can wrap the list item and the link in a call to policy. You include the
list item as well, so that if the permissions check fails, you don’t render an empty list
item—that might wreck the styling on the page.

<ul class="actions">
<% if policy(@ticket).update? %>
<%= link_to "Edit Ticket", [:edit, @project, @ticket],

class: "edit" %>
<% end %>
<%= link_to "Delete Ticket", [@project, @ticket], method: :delete,
data: { confirm: "Are you sure you want to delete this ticket?"},
class: "delete" %>

Listing 8.60 Action links for the ticket, in app/views/tickets/show.html.erb

Listing 8.61 Action links for the ticket, with added policy checking

Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 8 Fine-grained access control

Now your hidden_links_spec.rb tests will pass:

11 examples, 0 failures

Will all of the specs pass? You betcha.

73 examples, 0 failures

Commit and push the changes you’ve made:

$ git add .
$ git commit -m "Added permissions for editing tickets"
$ git push

Now you only have one more set of permission checking to go.

8.6 Ticket-destroying permission
We’ll try to push through this section a bit more quickly, because the more interesting
stuff is coming up in the next section. In Ticketee, editors won’t have the ability to
destroy tickets—only managers and admins will. Later, you’ll add the ability for tickets
to have a status, so editors will be able to mark tickets as closed, but not destroy them
entirely. That’s a super-special thing to do.

 You’ll start, as always, with writing some policy specs to codify those requirements.

8.6.1 Testing the TicketPolicy … for the final time

Open spec/policies/ticket_policy_spec.rb, and add some more scenarios for the new
destroy? permission you’ll be implementing. It might look like the following listing.

RSpec.describe TicketPolicy do
context "permissions" do
...
context "for anonymous users" do

...
it { should_not permit_action :destroy }

end

context "for viewers of the project" do
...
it { should_not permit_action :destroy }

end

context "for editors of the project" do
...
it { should_not permit_action :destroy }
...

end

context "for managers of the project" do
...

Listing 8.62 New destroy specs in the TicketPolicy spec

Licensed to Mark Watson <nordickan@gmail.com>

263Ticket-destroying permission

it { should permit_action :destroy }
end

context "for managers of other projects" do
...
it { should_not permit_action :destroy }

end

context "for administrators" do
...
it { should permit_action :destroy }

end
end

end

When you run the specs with bundle exec rspec spec/policies/ticket_policy
_spec.rb, you get the expected failures, because no one is allowed to destroy tickets at
present:

1) TicketPolicy permissions for managers of the project should permit
action :destroy
Failure/Error: it { should permit_action :destroy }
TicketPolicy does not allow test13@example.com (User) to perform
:destroy? on #<Ticket:0x007f1c10f60a80>.

./spec/policies/ticket_policy_spec.rb:50:in ...

2) TicketPolicy permissions for administrators should permit action
:destroy
Failure/Error: it { should permit_action :destroy }
TicketPolicy does not allow test21@example.com (Admin) to perform
:destroy? on #<Ticket:0x007f1c111613e8>.

./spec/policies/ticket_policy_spec.rb:70:in ...

You can fix this by defining a new destroy? method in your TicketPolicy class, over-
writing the default one in ApplicationPolicy. Open app/policies/ticket_policy.rb
and add the destroy? method definition.

class TicketPolicy < ApplicationPolicy
...

def destroy?
user.try(:admin?) || record.project.has_manager?(user)

end
end

Admins can destroy tickets, and so can managers of the project. Easy as pie.
 Rerun bundle exec rspec spec/policies/ticket_policy_spec.rb, and they will

all now pass:

25 examples, 0 failures

Listing 8.63 The new destroy? method in TicketPolicy

Licensed to Mark Watson <nordickan@gmail.com>

264 CHAPTER 8 Fine-grained access control

8.6.2 Implementing controller authorization

Now you can make sure your TicketsController uses the permission rules you just
implemented and tested. Open app/controllers/tickets_controller.rb and add the
requisite authorize check to the destroy action.

class TicketsController < ApplicationController
...

def destroy
authorize @ticket, :destroy?

@ticket.destroy
...

Again, you need to call the authorize method here before @ticket.destroy; otherwise
the ticket will be destroyed even if the user isn’t authorized to do that!

 Did adding that new authorization step break any of your existing specs? Running
bundle exec rspec will show you that it did because your spec user is only a viewer of
the project, not a manager:

1) Users can delete tickets successfully
Failure/Error: expect(page).to have_content "Ticket has been
deleted."
expected to find text "Ticket has been deleted." in "Ticketee
Toggle navigation Home Signed in as test17@example.com Sign out
You aren't allowed to do that. Projects Example project"

./spec/features/deleting_tickets_spec.rb:19:in ...

You can change that by changing the role assigned to the user in spec/features/
deleting_tickets_spec.rb.

RSpec.feature "Users can delete tickets" do
...

before do
login_as(author)
assign_role!(author, :manager, project)
...

Now all of your specs pass!

79 examples, 0 failures

HIDING THE “DELETE TICKET” LINK

Finally, you need to hide the “Delete Ticket” link from users who can see the ticket
page but aren’t allowed to destroy the ticket.

Listing 8.64 Authorization checking in the destroy action

Listing 8.65 The new and improved user role

Licensed to Mark Watson <nordickan@gmail.com>

265Ticket-destroying permission

 Start by adding some trusty specs in spec/features/hidden_links_spec.rb to make
sure that some users don’t see the link, and some users do.

RSpec.feature "Users can only see the appropriate links" do
context "non-admin users (project viewers)" do
...

scenario "cannot see the Delete Ticket link" do
visit project_ticket_path(project, ticket)
expect(page).not_to have_link "Delete Ticket"

end
end

context "admin users" do
...

scenario "can see the Delete Ticket link" do
visit project_ticket_path(project, ticket)
expect(page).to have_link "Delete Ticket"

end
end

end

When you run these specs with bundle exec rspec spec/features/hidden_links
_spec.rb, you get just one failure:

1) Users can only see the appropriate links non-admin users (project
viewers) cannot see the Delete Ticket link
Failure/Error: expect(page).not_to have_link "Delete Ticket"
expected not to find link "Delete Ticket", found 1 match: "Delete
Ticket"

./spec/features/hidden_links_spec.rb:51:in ...

All users can see the link, even if they shouldn’t. Now you can hide it.
 Open the ticket’s show view, in app/views/tickets/show.html.erb, and check out

the ticket header.

<ul class="actions">
<% if policy(@ticket).update? %>
<%= link_to "Edit Ticket", [:edit, @project, @ticket],

class: "edit" %>
<% end %>
<%= link_to "Delete Ticket", [@project, @ticket], method: :delete,
data: { confirm: "Are you sure you want to delete this ticket?"},
class: "delete" %>

You were just here in the previous section, adding authorization around the “Edit
Ticket” link. You can repeat the process for the “Delete Ticket” link.

Listing 8.66 Hiding the “Delete Ticket” link under specific conditions

Listing 8.67 Actions on a ticket in app/views/tickets/show.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

266 CHAPTER 8 Fine-grained access control

<ul class="actions">
<% if policy(@ticket).update? %>
<%= link_to "Edit Ticket", [:edit, @project, @ticket],

class: "edit" %>
<% end %>
<% if policy(@ticket).destroy? %>
<%= link_to "Delete Ticket", [@project, @ticket],

method: :delete,
data: { confirm: "Are you sure you want to delete this ticket?" },
class: "delete" %>

<% end %>

Now all of your hidden_links_spec.rb specs will pass again:

13 examples, 0 failures

Double-check to make sure nothing else has broken by running the entire test suite
with bundle exec rspec:

81 examples, 0 failures

Great! Commit and push this final authorization check:

$ git add .
$ git commit -m "Only managers and admins can delete tickets"
$ git push

8.7 Ensuring authorization for all actions
You’ve manually fixed all of your existing controller actions to add authorization
checking to them using Pundit’s magical helpers. But what’s to stop you from simply
adding a new controller at some point down the track, and forgetting to authorize it?
You’re potentially leaving yourself open for some big problems, if future-you isn’t as
conscientious as current-you.

 You can add a little bit more checking, to force your actions to call authorize.
Pundit provides more controller helpers, called verify_authorized and
verify_policy_scoped, that are designed to be run as after_action methods in your
controllers. If verify_authorized is set as an after_action, and the action doesn’t
call authorize, you’ll get a nasty surprise, as shown in figure 8.3. This is a good fail-
safe, to protect you against future mistakes and carelessness.

 You can add these after_action calls to your ApplicationController, to ensure
that all actions in your entire app are protected.

class ApplicationController < ActionController::Base
include Pundit

after_action :verify_authorized, except: [:index]
after_action :verify_policy_scoped, only: [:index]

...

Listing 8.68 Actions on a ticket, now with extra authorization

Listing 8.69 Require authorization on all of the things!

Licensed to Mark Watson <nordickan@gmail.com>

267Ensuring authorization for all actions

verify_authorized will ensure that authorize is called in a controller action, and
verify_policy_scoped will ensure that policy_scope is called, which you did way back
when you filtered projects to be displayed on the index action of ProjectController.

 So far so good. Now, after you add that, have you actually remembered to call
authorize and policy_scope everywhere you needed to? Running your test suite with
bundle exec rspec will tell you if you have:

81 examples, 13 failures

Failed examples:

rspec ./spec/features/admin/archiving_users_spec.rb:11
rspec ./spec/features/admin/archiving_users_spec.rb:19
rspec ./spec/features/admin/creating_projects_spec.rb:12
rspec ./spec/features/admin/creating_projects_spec.rb:26
rspec ./spec/features/admin/creating_users_spec.rb:14
rspec ./spec/features/admin/creating_users_spec.rb:21
rspec ./spec/features/admin/deleting_projects_spec.rb:8
rspec ./spec/features/admin/editing_users_spec.rb:13
rspec ./spec/features/admin/editing_users_spec.rb:22
rspec ./spec/features/signing_in_spec.rb:6
rspec ./spec/features/signing_in_spec.rb:17
rspec ./spec/features/signing_out_spec.rb:10
rspec ./spec/features/signing_up_spec.rb:4

That’s … a lot of errors. Where did you go wrong?
 Well, you’ve made two mistakes:

■ You haven’t called authorize in any actions in your admin area, within the
admin namespace. You have a global before_action defined in that namespace
that will reject all non-admins, but that isn’t an authorize call. That’s why all of
the features in the admin folder are failing.

■ You aren’t calling authorize in any of the controllers that Devise provides.
That’s why your authentication-related specs are failing.

Figure 8.3 What will happen if future-you forgets to authorize a controller action

Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 8 Fine-grained access control

You really don’t need to call authorize in those places, so you can safely skip doing so.
But how do you skip an after_action?

 Rails provides a skip_after_action method that you can use inside
Admin::ApplicationController to skip the after_action methods you called in
ApplicationController. You can use it in app/controllers/admin/application
_controller.rb as shown in the following listing.

class Admin::ApplicationController < ApplicationController
skip_after_action :verify_authorized, :verify_policy_scoped
...

Running bundle exec rspec will show you that this has cleared up all of the errors in
admin-related specs:

81 examples, 4 failures

Failed examples:

rspec ./spec/features/signing_in_spec.rb:6
rspec ./spec/features/signing_in_spec.rb:17
rspec ./spec/features/signing_out_spec.rb:10
rspec ./spec/features/signing_up_spec.rb:4

You can skip the after_action in all Devise controllers by only applying the
after_action in non-Devise controllers. You can use the devise_controller? helper
method that Devise provides to achieve that. Edit the after_action calls that you just
added to ApplicationController to add this new condition.

class ApplicationController < ActionController::Base
include Pundit

after_action :verify_authorized, except: [:index],
unless: :devise_controller?

after_action :verify_policy_scoped, only: [:index],
unless: :devise_controller?

...

Doing this will clear up all of your specs. Run them again with bundle exec rspec:

81 examples, 0 failures

Not sure that this is working as intended? Try commenting out one of the authorize
lines in a controller, such as the show action in ProjectsController, and running
your specs with bundle exec rspec:4

Listing 8.70 Skipping an after_action in Admin::ApplicationController

Listing 8.71 Skipping the after_action for Devise controllers

4 You can use the # character to mark everything after it on that line of code as a comment.

Licensed to Mark Watson <nordickan@gmail.com>

269Assigning roles to users

1) ProjectsController handles permission errors by redirecting to a safe
place
Failure/Error: get :show, id: project
Pundit::AuthorizationNotPerformedError:
Pundit::AuthorizationNotPerformedError

(and 16 more just like it)

Yep, it’s working. Undo the change you just made to ProjectsController, and make
sure all of your specs are passing again:

81 examples, 0 failures

You’ve just done some great future-proofing against other people’s (or your own) silli-
ness. Now if anyone creates a controller outside the admin namespace that isn’t a
Devise controller, and that doesn’t perform proper authorization checks, they’ll get
big red error messages and angry explosions. Pat on the back.

 Commit all of your changes, and push:

$ git add .
$ git commit -m "Verify that we use authorization in all controllers"
$ git push

You’re done with adding authorization! You’ve got a solid system in place, so that all
of your users and visitors to the site can only access the things you want them to. It’ll
be easy to extend, when you add new controllers, or new roles, or new business logic
that determines what each role can do. It’s grand!

 But you’re missing one tiny thing—the ability to give users these roles, so that they
can use the site properly. We’ll look at that next. It’ll be fun. We promise.

8.8 Assigning roles to users
In chapter 7 you added an admin field to your User model and then set it through the
admin back end by checking or unchecking a check box. You’ll do something similar
for roles for users on projects. When you’re finished, you’ll have a permissions section
when you edit a user in the admin area—it’ll list all of the projects in the system, and
allow you to set a role for the user on each project. It’ll look something like figure 8.4
when it’s all said and done.

Figure 8.4 The permissions screen you’re striving to implement

Licensed to Mark Watson <nordickan@gmail.com>

270 CHAPTER 8 Fine-grained access control

8.8.1 Planning the permission screen with a feature spec

In this section, you’ll implement the foundations for assigning roles through the admin
back end. You might not be too clear yet on how it will work internally, but you have a
good idea of what it should look like, based on figure 8.4. Using that, you can write a fea-
ture spec that describes how an admin will be able to assign new roles to users.

 Create a new spec at spec/features/admin/managing_roles_spec.rb, and begin
with the code from the following listing.

require "rails_helper"

RSpec.feature "Admins can manage a user's roles" do
let(:admin) { FactoryGirl.create(:user, :admin) }
let(:user) { FactoryGirl.create(:user) }

let!(:ie) { FactoryGirl.create(:project, name: "Internet Explorer") }
let!(:st3) { FactoryGirl.create(:project, name: "Sublime Text 3") }

before do
login_as(admin)

end

scenario "when assigning roles to an existing user" do
visit admin_user_path(user)
click_link "Edit User"

select "Viewer", from: "Internet Explorer"
select "Manager", from: "Sublime Text 3"

click_button "Update User"
expect(page).to have_content "User has been updated"

click_link user.email
expect(page).to have_content "Internet Explorer: Viewer"
expect(page).to have_content "Sublime Text 3: Manager"

end
end

This scenario has two users: an admin user and a normal user. You sign in as the
admin user, edit the user’s details in the admin area, and assign some roles to the nor-
mal user on two projects that you also set up earlier.

 Then you click the Update button and ensure that the roles you just set are dis-
played on the page. You don’t need to go as far as testing that a normal user can now
log in and use their roles successfully—that’s duplicating logic you tested earlier.

 When you run bundle exec rspec spec/features/admin/managing_roles

_spec.rb, it fails when it tries to select roles:

1) Admins can manage a user's roles when assigning roles to an
existing user

Listing 8.72 spec/features/admin/managing_roles_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

271Assigning roles to users

Failure/Error: select "Viewer", from: "Internet Explorer"
Capybara::ElementNotFound:
Unable to find select box "Internet Explorer"

That makes sense, as you haven’t done anything on the user management form to dis-
play available projects and roles for them. We’ll look at fixing that now.

8.8.2 The roles screen

You’ll build on the existing admin user form, which is located in app/views/admin/
users/_form.html.erb. Open it, and above the Submit button, add a section for man-
aging roles.

<%= simple_form_for [:admin, user] do |f| %>
...

<header>
<h2>Roles</h2>

</header>

<!-- what will go here...? -->

<%= f.button :submit, class: "btn btn-primary" %>
<% end %>

Now you just need to work out what will go in the “what will go here...?” section. If this
were a normal form, you’d likely iterate over an association, such as @user.roles, and
display some form fields for each role that the user has. But this will be slightly differ-
ent—you’ll want to display a list of all the projects in the system and a select box with
all of the available roles that a user can take on the project. Some of the select boxes
might already have values if the user already has a role on the project, but the rest
should start off blank.

8.8.3 Building a list of projects in a select box

You can start filling in some of the blanks in your form.

<%= simple_form_for [:admin, user] do |f| %>
...

<header>
<h2>Roles</h2>

</header>

<table class="roles">
<% projects.each do |project| %>

<tr>
<th><%= label_tag dom_id(project), project.name %></th>

Listing 8.73 The roles section of the user edit form

Listing 8.74 Now with a list of projects

Licensed to Mark Watson <nordickan@gmail.com>

272 CHAPTER 8 Fine-grained access control

<td>
<%= select_tag dom_id(project), options_for_select(roles,

user.role_on(project)), name: "roles[#{project.id}]",
include_blank: true %>

</td>
</tr>

<% end %>
</table>

<%= f.button :submit, class: "btn btn-primary" %>
<% end %>

Looks a bit intimidating—it’s some of the most complex view logic you’ve seen so far.
You load up a list of projects in projects, and then iterate over them, building up
rows in a table. In each of the rows, you create an HTML label element using Rails’
label_tag view helper, and you use dom_id to generate a name for the label. dom_id
will generate something like project_2 for the project record with ID 2. This way, you
can guarantee that all of your names are unique.

 Then you use Rails’ select_tag helper to build a select box, which will eventually
be populated with a list of all the roles in the system. The role_on method also
doesn’t exist yet, but wouldn’t it be nice if it returned the role name that the user has
on the project? You’ll write it to do just that, and then use that value to determine
which option in the select box should be selected.

 It looks like some nifty code, but it doesn’t do what you want just yet. If you start up
a Rails server and visit the admin user edit page in your browser (a novel concept that
we haven’t done in a while!), you’ll see the error in figure 8.5. You haven’t defined a
list of projects to display on the form.

ADMIN LOGIN CREDENTIALS If you’ve forgotten the default admin login cre-
dentials, check db/seeds.rb.

Figure 8.5 You want to iterate over the projects, but you haven’t yet loaded them.

Licensed to Mark Watson <nordickan@gmail.com>

273Assigning roles to users

DEFINING PROJECTS TO BE DISPLAYED ON THE FORM

You can set up the list of projects to be displayed on the form by defining the
@projects variable in your Admin::UsersController and then passing that variable
into your form partial. Open up the controller, in app/controllers/admin/users
_controller.rb, and add the following code.

class Admin::UsersController < Admin::ApplicationController
before_action :set_projects, only: [:new, :create, :edit, :update]

...

private

def set_projects
@projects = Project.order(:name)

end

...

Why do it in a before_action? Because this User management form is used in multi-
ple places: when creating a new user (new action), when re-rendering the form if cre-
ating a user fails (create action), when editing a user (edit action), and when re-
rendering the form if editing a user fails (update action). You’ll need the same data
loaded for all four of those actions to render the view successfully, and instead of
repeating the same code four times, you can just put it in a before_action to define it
once. So far so good.

 You can then edit the new and edit templates in app/views/admin/users/
new.html.erb and app/views/admin/users/edit.html.erb to pass that @projects vari-
able into your form partial for use. Those two renderings of the form partial should
now look like the following.

<%= render "form", user: @user, projects: @projects %>

If you refresh the page now, you’ll get a different error:

ActionView::Template::Error (undefined local variable or method `roles'
for #<#<Class:0x007ff501b56a78>:0x007ff501b55e98>):

12: <tr>
13: <th><%= label_tag dom_id(project), project.name %></th>
14: <td>
15: <%= select_tag dom_id(project), options_for_select(roles,
16: user.role_on(project)), name: "roles[#{project.id}]",
17: include_blank: true %>
18: </td>

app/views/admin/users/_form.html.erb:15:in ...

Listing 8.75 Loading role-related data in Admin::UsersController

Listing 8.76 Adding the list of projects to the admin user form partial

Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 8 Fine-grained access control

You haven’t yet defined the roles variable or method. What should it be? Rails
expects it to be a hash, with the keys matching the display value, and the values match-
ing the value that will be submitted to the server if that option is selected; something
like the following:

{ 'Manager' => 'manager', 'Editor' => 'editor', 'Viewer' => 'viewer' }

You can define a view helper method to give you this data. You’ve written a few view
helpers before, for things like page titles and outputting certain HTML for admins
only—now you’ll write one to generate a list of roles.

 Open app/helpers/admin/application_helper.rb, and add a new method defini-
tion for roles inside the module.

module Admin::ApplicationHelper
def roles
{

'Manager' => 'manager',
'Editor' => 'editor',
'Viewer' => 'viewer'

}
end

end

You can do a bit better, though. What if you add new roles? Plus, the display names
just look like the name of the role, with a capital letter. What about this instead?

module Admin::ApplicationHelper
def roles
hash = {}
%w(manager editor viewer).each do |role|

hash[role.titleize] = role
end
hash

end
end

Now you only list the names of the roles once, using Ruby’s special %w() notation,
which is a shortcut for generating an array of strings. Then you build up a hash in the
right format by calling Rails’ titleize helper5 on each role name. But you’re still list-
ing out role names manually, when that information really belongs somewhere else—
like in the Role model.

 You can move that to a method in app/models/role.rb:

Listing 8.77 A naive roles definition in Admin::ApplicationHelper

Listing 8.78 An improved roles definition

5 See http://api.rubyonrails.org/classes/ActiveSupport/Inflector.html#method-i-titleize.

Licensed to Mark Watson <nordickan@gmail.com>

http://api.rubyonrails.org/classes/ActiveSupport/Inflector.html#method-i-titleize

275Assigning roles to users

class Role < ActiveRecord::Base
...

def self.available_roles
%w(manager editor viewer)

end
end

And now you can call that method in your view helper.

module Admin::ApplicationHelper
def roles
hash = {}

Role.available_roles.each do |role|
hash[role.titleize] = role

end

hash
end

end

What error do you get when refreshing your user-edit form now?

ActionView::Template::Error (undefined method `role_on' for
#<User:0x007ff501cfb338>):

13: <th><%= label_tag dom_id(project), project.name %></th>
14: <td>
15: <%= select_tag dom_id(project), options_for_select(roles,
16: user.role_on(project)), name: "roles[#{project.id}]",
17: include_blank: true %>
18: </td>
19: </tr>

app/views/admin/users/_form.html.erb:16:in ...

The nifty helper you were going to write to get the name of the role a user has in a
project still needs to be defined. It’s looking for the role_on method on an instance
of the User model, so open app/models/user.rb and define the new method at the
bottom.

class User < ActiveRecord::Base
has_many :roles

...

def role_on(project)
roles.find_by(project_id: project).try(:name)

end
end

Listing 8.79 The final version of roles

Listing 8.80 An easy way of getting a user’s role on a project

Licensed to Mark Watson <nordickan@gmail.com>

276 CHAPTER 8 Fine-grained access control

You’ve added a missing association between the User and Role models, so
@user.roles will now give you a list of all of the user’s roles across various projects.
One of the methods this association provides is find_by—you can find the right Role
record that belongs to both the user and project in question.

 If the user isn’t a member of the project, the find_by(project_id: project) will
return nil, so again you use try to prevent errors caused by calling name on nil. If the
user is a member of the project, you’ll get a Role record from find_by, and then you can
call name on it to get a string like “manager” or “editor.”

 Now, if you refresh your admin-user form, you
might see something a bit amazing. As you can see in
figure 8.6, it looks like … an unstyled version of your
finished product.

 Next you can put some nice Bootstrap styling in
there.

ADDING BOOTSTRAP STYLING

Because you’re not using Simple Form to generate the
form, you don’t get any of the Bootstrap styles applied for free. You’ll need to mix
them manually into the HTML structure you’ve created. Plus, you can make the table a
bit cleaner.

 Because this code is specific to the users part of the admin area, add the following
code to the bottom of app/assets/stylesheets/admin/users.scss.

.roles {
@extend .table;
@extend .form-horizontal;

tr:first-child {
td, th {

border-top: 0px;
}

}

label {
@extend .control-label;

}

select {
@extend .form-control;

}
}

Then, like all your other custom Sass files, you’ll need to include it into your main
application.css.scss file. Open up app/assets/stylesheets/application.css.scss and add
an import line for the admin/users.scss file:

Listing 8.81 Styles for the roles table

Figure 8.6 The unstyled permis-
sions screen

Licensed to Mark Watson <nordickan@gmail.com>

277Assigning roles to users

...
@import "admin/application";
@import "admin/users";
@import "responsive";
...

Refresh the edit form, and now you’ll see something really amazing (figure 8.7)!

It looks really good! You display a list of all the projects in your system, with a select
box to select a role for the user on the project.

 Have you really finished with this task already? Run bundle exec rspec spec/
features/admin/managing_roles_spec.rb to see:

1) Admins can manage a user's roles when assigning roles to an existing
user
Failure/Error: expect(page).to have_content "Internet Explorer:
Viewer"
expected to find text "Internet Explorer: Viewer" in "Ticketee
Toggle navigation Home Admin Signed in as test1@example.com Sign
out test2@example.com (User) Edit User Archive User"

Not yet, unfortunately. There’s nothing role-related on the user details page in the
admin area. If you fix that, will you really be finished with the task?

DISPLAYING A USER’S ROLES

Open the show view, in app/views/admin/users/show.html.erb. Add a section for dis-
playing a user’s roles at the bottom of the page, as follows.

<header>
<h2>Roles</h2>

</header>

<% if @user.roles.any? %>

<% @user.roles.each do |role| %>

<%= role.project.name %>: <%= role.role.titleize %>
<% end %>

Listing 8.82 The roles section in app/views/admin/users/show.html.erb

Figure 8.7 The styled permissions screen

Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 8 Fine-grained access control

<% else %>
<p>This user has no roles.</p>

<% end %>

You list the project names with the role name, and if the user doesn’t have any roles,
you print that out nicely. Great!

 Rerun the test and see if it worked:

1) Admins can manage a user's roles when assigning roles to an existing
user
Failure/Error: expect(page).to have_content "Internet Explorer:
Viewer"
expected to find text "Internet Explorer: Viewer" in "Ticketee
Toggle navigation Home Admin Signed in as test1@example.com Sign
out test2@example.com (User) Edit User Archive User Roles
This user has no roles."

Of course it wasn’t going to be that simple. The user doesn’t have any roles—you
haven’t yet written any code to save the roles you assign in the form. You’ll have to fix
that next.

8.8.4 Processing the submitted role data

This is a normal user-edit form, so when it gets submitted, it submits to the update
action of Admin::UsersController. You’ll need to add some code to that action to
process all of the extra role data that you’re submitting.

 What exactly is the format of the data you’re submitting? If you visit the admin user
page in your browser and submit some roles for the user, you’ll see something like the
following in your server logs, in your terminal (formatting added to make it easier to
read):

Started PATCH "/admin/users/2" for 127.0.0.1 at 2015-03-30 18:14:42 +0800
Processing by Admin::UsersController#update as HTML

Parameters:
{
"utf8" => "?",
"authenticity_token" => "9lj9dM...",
"user" =>
{

"email" => "admin@ticketee.com",
"password" => "[FILTERED]",
"admin" => "1"

},
"roles" =>
{

"2" => "editor",
"1" => "manager"

},
"commit" => "Update User",
"id" => "2"

}

Licensed to Mark Watson <nordickan@gmail.com>

279Assigning roles to users

Inside the params hash, you have a nested user hash—that’s what you’re currently
using to update the user’s details. But you also have a roles hash—this has the IDs of
the projects as keys, and the roles you want to assign as values. You can pull out this
data in the update action, and update the user’s Role records from those.

 Open Admin::UsersController and edit the code of the update action with the
following.

def update
if params[:user][:password].blank?
params[:user].delete(:password)

end

User.transaction do
@user.roles.clear
role_data = params.fetch(:roles, [])
role_data.each do |project_id, role_name|

if role_name.present?
@user.roles.build(project_id: project_id, role: role_name)

end
end

if @user.update(user_params)
flash[:notice] = "User has been updated."
redirect_to admin_users_path

else
flash.now[:alert] = "User has not been updated."
render "edit"
raise ActiveRecord::Rollback

end
end

end

The start of the method is the same, but after that you introduce a database transac-
tion with User.transaction. You wrap this block around both the code that deals
with updating a user’s roles—it deletes all of their existing roles and then makes new
ones based on the data you submitted—and the code that updates their basic details
as before.

 The beauty of a database transaction is that either all of the database operations in
the transaction block will take place, or none of them will. In this case, if you’ve
changed all the roles, but then you can’t update the user because you submitted
invalid details (such as if there’s a missing email address), the roles shouldn’t be
changed either. In that scenario, you raise an ActiveRecord::Rollback exception,
which will revert, or roll back, all of the changes you made to the roles.

 At the end of the transaction block, if it hasn’t been rolled back, it will be commit-
ted, or saved, to the database. Perfect.

Listing 8.83 The new update action

Licensed to Mark Watson <nordickan@gmail.com>

280 CHAPTER 8 Fine-grained access control

 With this done, everything should work exactly as you expect: you’re saving the
roles that you assign when you edit a user. Rerun bundle exec rspec spec/features/
admin/managing_roles_spec.rb and see if it now passes:

1 example, 0 failures

Excellent! Do all of the specs still pass? Check with bundle exec rspec:

82 examples, 0 failures

Great! Commit your changes:

$ git add .
$ git commit -m "Admins can edit project roles of existing users"
$ git push

8.8.5 Saving roles of new users

But what about new users? This roles section will appear on the new-user form too, but
you haven’t written any code to save roles that you assign when you create a new user.
You can add a spec for that to managing_roles_spec.rb, and see if it passes.

scenario "when assigning roles to a new user" do
visit new_admin_user_path

fill_in "Email", with: "newuser@ticketee.com"
fill_in "Password", with: "password"

select "Editor", from: "Internet Explorer"
click_button "Create User"

click_link "newuser@ticketee.com"
expect(page).to have_content "Internet Explorer: Editor"
expect(page).not_to have_content "Sublime Text 3"

end

If you run that spec with bundle exec rspec spec/features/admin/managing_roles
_spec.rb, you’ll find that it doesn’t pass:

1) Admins can manage a user's roles when assigning roles to a new user
Failure/Error: expect(page).to have_content "Internet Explorer:
Editor"
expected to find text "Internet Explorer: Editor" in "Ticketee
Toggle navigation Home Admin Signed in as test3@example.com Sign
out newuser@ticketee.com (User) Edit User Archive User Roles
This user has no roles."

Nope, no assigned roles. You’ll need to include the logic for creating roles to the cre-
ate action of Admin::UsersController, but it can be simpler than in the update
action—you don’t need to worry about transactions, or anything like that. You can just
build the roles for the user, and then save them all in one hit.

Listing 8.84 Another scenario, for assigning roles when creating a new user

Licensed to Mark Watson <nordickan@gmail.com>

281Assigning roles to users

class Admin::UsersController < Admin::ApplicationController
...

def create
@user = User.new(user_params)
build_roles_for(@user)
if @user.save

...

Because part of the code for the create action is going to be exactly the same as in
the update, you should pull it out into a shared method, which we’ve called build
_roles_for.

 You can use that same build_roles_for method in the update action.

class Admin::UsersController < Admin::ApplicationController
...

def update
if params[:user][:password].blank?

params[:user].delete(:password)
end

User.transaction do
@user.roles.clear
build_roles_for(@user)

if @user.update(user_params)
...

Then you can build the build_roles_for method at the bottom of the controller,
underneath the set_projects method, with the code you just removed from the
update action.

def build_roles_for(user)
role_data = params.fetch(:roles, [])
role_data.each do |project_id, role_name|
if role_name.present?

user.roles.build(project_id: project_id, role: role_name)
end

end
end

Now does your managing_roles_spec.rb pass?

2 examples, 0 failures

Listing 8.85 The new create action in Admin::UsersController

Listing 8.86 The new update action, with common code extracted

Listing 8.87 The new build_roles_for method

Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 8 Fine-grained access control

Run bundle exec rspec to make sure nothing else is broken:

83 examples, 0 failures

Fantastic! You can commit your fixes so that admins can now create new users and
assign roles to them at the same time:

$ git add .
$ git commit -m "Roles can also be assigned when admins create new users"
$ git push

Now there’s a way for admin users of your application to assign roles to all kinds of
users, so that they’re able to view projects as well as create, edit, and update tickets for
those projects. While implementing this, you’ve learned how you can update multiple
records at the same time.

8.9 Summary
This chapter covered implementing authorization for your application and setting up
a permissions-based system for both ProjectsController and TicketsController.

 You started with a Role model, which defined named roles for a user on any spe-
cific project.

 Then you used the Pundit gem to translate those named roles into actual permis-
sions—a user with a role of viewer on a project has read-only access to the entire proj-
ect. You used Pundit in your controllers to ensure that users were allowed to access the
actions they accessed, as well as only showing links in views if the user had permission
to carry out the task that the link performed.

 You also implemented a way for admins to change a user’s roles through the admin
back end of the system by displaying a list of all projects, and the available roles for
each project. You tweaked the existing create and update actions in your
Admin::UsersController to also update multiple roles, and you learned a little bit
about using transactions as well.

 In chapter 9, you’ll learn how to attach files to tickets. File uploading is an essential
part of any ticket-tracking application, because files can provide that additional piece
of context required for a ticket, such as a screenshot, a patch, or any type of file. You’ll
also learn some CoffeeScript to make it easy to upload any number of files, and some
strategies for testing JavaScript.

Licensed to Mark Watson <nordickan@gmail.com>

283

File uploading

In chapter 8, you learned how to restrict access to specific actions in your applica-
tion, such as viewing projects and creating tickets, by defining a Role model that
keeps track of which users have which roles on which projects. Ticketee’s getting
pretty useful now. This chapter focuses on file uploading, the next logical step in a
ticket-tracking application.

 Sometimes, when people file a ticket on an application such as Ticketee, they
want to attach a file to provide more information for that ticket, because words
alone can only describe so much. For example, a ticket description saying “This
button should move up a bit” could be better explained with a picture showing
where the button is now and where it should be. Users may want to attach any kind

This chapter covers
■ Attaching files to Active Record models using

the CarrierWave gem
■ Securing file uploads by serving them via a

controller
■ An introduction to writing JavaScript using

CoffeeScript
■ Listening and responding to Rails’ JavaScript

events

Licensed to Mark Watson <nordickan@gmail.com>

284 CHAPTER 9 File uploading

of file: a picture, a crash log, a text file, you name it. Currently, Ticketee has no way to
attach files to the ticket; people would have to upload them elsewhere and then
include a link with their ticket description.

 By providing Ticketee with the functionality to attach files to the ticket, you give
the project owners a useful context that will help them more easily understand what
the ticket creator means. Luckily, a gem called CarrierWave allows you to implement
this feature easily.

 Once you’re familiar with CarrierWave, you’ll change your application to accept
multiple files attached to the same ticket using a JavaScript library called jQuery
(which comes with Rails by default, through the jquery-rails gem) and some custom
JavaScript code of your own. Because you’ll use JavaScript, you’ll have to alter the way
you test parts of your application. To test JavaScript functionality, you’ll use Web-
Driver, which is a framework built for automatic control of web browsers. WebDriver is
especially handy because you can follow the same steps you use for standard Capybara
tests, and Capybara will take care of driving the browser. By running the tests in the
browser, you ensure that the JavaScript on the page will be executed, and then you
can run the tests on the results. Pretty handy!

WEBDRIVER There’s a great post explaining WebDriver on the Google Open
Source blog: http://mng.bz/2Y3k.

Finally, you’ll see how you can restrict access to the files contained in your applica-
tion’s projects so that confidential information isn’t shared with people who don’t
have access to a particular project.

 File uploading is also useful in other types of applications. Suppose you wrote a
Rails application for a book. You could upload the chapters to this application, and
then people could provide notes on those chapters. Another example is a photo
gallery application that allows you to upload images of your favorite cars for people
to vote on. File uploading has many different uses and is a cornerstone of many
Rails applications.

9.1 Attaching a file
The first step in enabling users to upload files is to let them attach files when they
begin creating a ticket. As explained before, files attached to tickets can provide use-
ful context about what feature a user is requesting or can point out a specific bug. A
picture is worth a thousand words, as they say. It doesn’t have to be an image; it can be
any type of file. This kind of context is key to solving tickets.

 To provide this functionality, you must add a file-upload box to the new ticket
page, which allows users to select a file to upload. When the form is submitted, the file
is submitted along with it. You’ll use the CarrierWave gem to store the file in your
application’s directory.

Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/2Y3k

285Attaching a file

9.1.1 A feature featuring files

You first need to write a scenario to make sure the functionality works. This scenario
will show you how to deal with file uploads when creating a ticket. Users should be
able to create a ticket, and then select a file and upload it. Then they should be able to
see this file, along with the other ticket details, on the ticket’s page. They may choose
to click the filename, which would download the file.

 You can test all this by adding a scenario at the bottom of spec/features/
creating_tickets_spec.rb that creates a ticket with an attachment, as shown in the fol-
lowing listing.

BLINK, BLINK, BLINK This attachment references the blink tag. Note that
although the blink tag was once a part of HTML, you should never use it. The
same goes for the marquee tag. We reference them in our text files to add
some light humor to the scenario, not because documentation for these tags
is a good idea.

RSpec.feature "Users can create new tickets" do
...

scenario "with an attachment" do
fill_in "Name", with: "Add documentation for blink tag"
fill_in "Description", with: "The blink tag has a speed attribute"
attach_file "File", "spec/fixtures/speed.txt"
click_button "Create Ticket"

expect(page).to have_content "Ticket has been created."

within("#ticket .attachment") do
expect(page).to have_content "speed.txt"

end
end

end

This feature introduces a new concept: the attach_file method of this scenario,
which attaches the file found at the specified path to the specified field. The path
here is deliberately set in the spec/fixtures directory because you may use this file for
functional tests later. This directory would usually be used for test fixtures, but at the
moment you don’t have any.1 Create the spec/fixtures/speed.txt file, and fill it with
some random filler text like this:

The blink tag can blink faster if you use the speed="hyper" attribute.

Listing 9.1 spec/features/creating_tickets_spec.rb

1 Nor will you ever, because factories replace them in your application.

Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 9 File uploading

Try running this feature using bundle exec rspec spec/features/creating_tickets
_spec.rb and see how far you get. It fails on the attach_file line because the File
field isn’t available yet:

1) Users can create new tickets with an attachment
Failure/Error: attach_file "File", "spec/fixtures/speed.txt"
Capybara::ElementNotFound:
Unable to find file field "File"

Add the File field to the ticket form partial directly under the <%= f.input
:description %> field, using the code in the following listing.

<%= f.input :attachment, as: :file, label: "File" %>

You call this field attachment internally, but the user will see “File.” We’ve used attach-
ment rather than file for naming because there’s already a File class in Ruby. Attachment
is a good alternative, and it describes well what you’re doing—adding attachments to
a ticket.

 If you run bundle exec rspec spec/features/creating_tickets_spec.rb again,
it fails with this error:

1) Users can create new tickets with an attachment
Failure/Error: within("#ticket .attachment") do
Capybara::ElementNotFound:
Unable to find css "#ticket .attachment"

Wow, it looks like you’re nearly the whole way there already! You’ve uploaded a file,
submitted the form, and you’re just missing the display of the file on the ticket page!
Well… not so fast. You’re uploading a file, that’s true, but you’re not yet saving it with
the ticket file or processing it in any way, so there’s not anything yet to display on the
ticket page. You’ll fix that now, using CarrierWave.

9.1.2 Enter, stage right: CarrierWave

Uploading files is something many web applications need to allow, which makes this
functionality perfect to put into a gem. The current best-of-breed gem in this area is
CarrierWave. CarrierWave makes uploading files easy. When you need more advanced
features, such as processing uploaded files or storing them in something like Amazon
S3 rather than on your web server, CarrierWave is there to help you, too.

 To install CarrierWave, you need to add a line to the Gemfile to tell Bundler that
you want to use this gem. Put this under the line specifying the Pundit gem, separated
by a line because it’s a different type of gem (Pundit has to do with users, and Carrier-
Wave has to do with files).

gem "carrierwave", "~> 0.10.0"

Listing 9.2 app/views/tickets/_form.html.erb

Listing 9.3 Adding CarrierWave to your Gemfile

Licensed to Mark Watson <nordickan@gmail.com>

287Attaching a file

Next, run bundle to install this gem.
 With CarrierWave installed, you can work on defining the attachment attribute

that your model wants. It’s not really an attribute; the error message is misleading in
that respect. All it needs is a setter method (attachment=), and it would be happy. But
you need this method to do more than set an attribute on this object; you need it to
accept the uploaded file and store it locally.

 CarrierWave lets you define this fairly easily with its mount_uploader method. This
method goes in the Ticket model, it defines the setter method you need, and it gives
your application the ability to accept and process this file. Add it to your Ticket
model with the mount_uploader line in the next listing.

class Ticket < ActiveRecord::Base
...
mount_uploader :attachment, AttachmentUploader

end

This attachment= method is defined, but you’re not done yet.

9.1.3 Using CarrierWave

You’ve told your Ticket model to mount an uploader. Now you just need an actual
uploader.

 CarrierWave wraps all of the functionality for uploading files into classes called
uploaders. You can generate one with a generator provided by CarrierWave.

$ rails g uploader Attachment

This will generate a new file in app/uploaders/attachment_uploader.rb.
 To connect the uploader to your Ticket model, you also need to add an attach-

ment field to the model, so you need a new migration to add the new field. Generate
the new migration with the following line:

$ rails g migration add_attachment_to_tickets attachment:string

HOW CARRIERWAVE RECORDS FILES IN YOUR DATABASE CarrierWave only
requires a string field in the database to use with an uploader—it saves the
filename of the file in the field. Internally, it has a few methods to generate a
full path and URL from that filename—these methods are completely custom-
izable for each uploader.

To run the migration and add the new column to your development environment’s
database, run bundle exec rake db:migrate.

Listing 9.4 Adding a file uploader to your Ticket model

Listing 9.5 Generating an AttachmentUploader

Licensed to Mark Watson <nordickan@gmail.com>

288 CHAPTER 9 File uploading

 You have one last thing to do: update your controller to allow you to pass in the
uploaded attachment when creating or editing a ticket. Change the ticket_params
method in app/controllers/tickets_controller.rb to look like this:

class TicketsController < ApplicationController
...
def ticket_params
params.require(:ticket).permit(:name, :description, :attachment)

end
...

end

Everything should be hooked up correctly now for your file uploading to work. But if
you rerun your spec, you’ll still get the same error:

1) Users can create new tickets with an attachment
Failure/Error: within("#ticket .attachment") do
Capybara::ElementNotFound:
Unable to find css "#ticket .attachment"

But now you have the correct data structures in place, so you can look at actually
resolving the error.

 You can see that the scenario failed because Capybara can’t find the text in this ele-
ment on the show view of TicketsController; neither text nor element exists. So let’s
add some output in the view, to show the details of any file that’s been uploaded to the
ticket. Spice it up by adding the file size there, too, as shown in the following listing.

<%= simple_format(@ticket.description) %>

<% if @ticket.attachment.present? %>
<h4>Attachment</h4>
<div class="attachment">
<p>

<%= link_to File.basename(@ticket.attachment.url),
@ticket.attachment.url %>

(<%= number_to_human_size(@ticket.attachment.size) %>)
</p>

</div>
<% end %>

You use the url method from the ticket’s attachment here, with link_to to provide
the user with a link to download the file.2 In this case, the URL for this file would be
something like http://localhost:3000/uploads/ticket/attachment/1/file.txt.

 You’ve only defined the attachment field as a string, but CarrierWave has turned
that string into an entire object you can call methods on, simply by mounting an
uploader to the field. Magic!

Listing 9.6 app/views/tickets/show.html.erb

2 Some browsers open certain files as pages rather than downloading them. Modern browsers do so for .txt files
and the like.

Licensed to Mark Watson <nordickan@gmail.com>

289Attaching a file

 Where is the route for these uploaded files defined? Well, it’s not defined any-
where—it’s not a route. It’s a directory in the public folder of your application, where
CarrierWave saves your files by default.

 Requests to files from the public directory are handled by the server rather than by
Rails, and anybody who enters the URL in their browser can access them. This is bad
because the files in a project should be visible only to authorized users. You’ll handle
that problem later in the chapter.

 Under the filename, you display the size of the file, which is stored in the database
as the number of bytes. To convert it to a human-readable output, (such as “71 Bytes,”
which will be displayed for your file), you use the number_to_human_size view helper.

 With the uploaded file’s information now being output in app/views/tickets/
show.html.erb, this feature passes when you run bundle exec rspec spec/features/
creating_tickets_spec.rb:

4 examples, 0 failures

Awesome! Your files are being uploaded and taken care of by CarrierWave, which
stores them at public/uploads. Let’s see if your changes have brought destruction or
salvation by running bundle exec rspec:

84 examples, 0 failures

Sweet salvation! Commit this but don’t push it yet:

$ git add .
$ git commit -m "Add the ability to attach a file to a ticket"

Have a look at the commit output. It contains this line:

create mode 100644 public/uploads/ticket/attachment/1/speed.txt

This line is a leftover file from your test, and it shouldn’t be committed to the reposi-
tory because you could be testing using files much larger than this. You can tell Git to
ignore the entire public/uploads directory by adding it to the .gitignore file. Open
that file, and add the line in the following listing to the bottom.

public/uploads

This file tells Git which files you don’t want versioned. The entire file should look like
the following (minus all the comments).

/.bundle
/db/*.sqlite3
/db/*.sqlite3-journal
/log/*
!/log/.keep
/tmp
public/uploads

Listing 9.7 Don’t commit uploaded files into your repository!

Listing 9.8 .gitignore after adding public/uploads

Licensed to Mark Watson <nordickan@gmail.com>

290 CHAPTER 9 File uploading

By default, the .bundle directory (for Bundler’s configuration), the SQLite3 databases,
the logs for the application, and any files in tmp are ignored. With public/uploads
added, this directory is now ignored by Git too.

 You should also remove this directory from your latest commit, and thankfully Git
provides a way to do so by using the three following commands.

$ git add .gitignore
$ git rm -r public/uploads/ticket/attachment/
$ git commit --amend --reuse-message HEAD

The first command will add the updates you made to your .gitignore file to your repos-
itory’s staging area. The second command will remove any accidentally committed
files from your filesystem, and also tell Git to remove them from the repository. The
final command will amend your latest commit with your newly staged changes, and it
will be as if your first commit with this message never existed. The --reuse-message
HEAD option uses the commit message of your latest commit.

 You can push this change now:

$ git push

Great! Now you can attach a file to a ticket. There’s a tiny issue, though, that will pop
up in the following scenario:

1 A user visits the “Create Ticket” form.
2 They upload a file to the ticket.
3 They submit the form with invalid details, such as a missing title.

The form will be rerendered with the validation error, as you expect, but the uploaded
file is now gone. If you then submit the form with valid details, the ticket is created,
but with no attached file. We’ll fix that minor issue next.

9.1.4 Persisting uploads when redisplaying a form

If you submit the new-ticket form but get validation errors, the form should remember
that you uploaded a file and repopulate it on the form. This is easy to do with Carrier-
Wave—it requires adding another field to the ticket form, called a cache field.

 You should cover this functionality with a test, so that you know when you’ve got it
working. Inside spec/features/creating_tickets_spec.rb, add another scenario with
the following content:

scenario "persisting file uploads across form displays" do
attach_file "File", "spec/fixtures/speed.txt"
click_button "Create Ticket"

fill_in "Name", with: "Add documentation for blink tag"
fill_in "Description", with: "The blink tag has a speed attribute"
click_button "Create Ticket"

Listing 9.9 Redoing your last commit without the uploaded attachment files

Licensed to Mark Watson <nordickan@gmail.com>

291Attaching a file

within("#ticket .attachment") do
expect(page).to have_content "speed.txt"

end
end

This nicely encapsulates the steps to re-create the problem. If you run this new spec
with bundle exec rspec spec/features/creating_tickets_spec.rb, your new sce-
nario will fail:

1) Users can create new tickets persisting file uploads across form
displays
Failure/Error: within("#ticket .attachment") do
Capybara::ElementNotFound:
Unable to find css "#ticket .attachment"

The attachment section only gets displayed when you have an attachment to display,
so the file upload isn’t being saved properly when the form is rerendering.

 You can add a cache field to the ticket form in app/views/tickets/_form.html.erb
after the attachment file field, as in the following listing.

<%= simple_form_for([project, ticket]) do |f| %>
...
<%= f.input :attachment, as: :file, label: "File" %>
<%= f.input :attachment_cache %>
...

CarrierWave will cache any uploaded file into this secondary field when rerendering
the form. When rendering with data on an invalid form, it looks like figure 9.1.

Listing 9.10 The attachment cache field, which will cache file uploads

Figure 9.1 New Ticket
screen with asset cache

Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 9 File uploading

But you don’t need to see it rendering; you just want it to work seamlessly in the back-
ground. You can turn the attachment_cache field into a hidden field, which will hide
it from view. You can do this with the :as option to the input.

<%= simple_form_for([project, ticket]) do |f| %>
...
<%= f.input :attachment, as: :file, label: "File" %>
<%= f.input :attachment_cache, as: :hidden %>
...

Refresh the page, and the attachment cache field is now hidden. But will your test
pass? Check with bundle exec rspec spec/features/creating_tickets_spec.rb:

1) Users can create new tickets persisting file uploads across form
displays
Failure/Error: within("#ticket .attachment") do
Capybara::ElementNotFound:
Unable to find css "#ticket .attachment"

Your new spec still isn’t passing! Why not?
 You missed one important step with your attachment_cache field when adding the

attachment field—you didn’t permit it in your TicketsController. The field is get-
ting submitted correctly, but then you’re discarding it before you pass the data to the
Ticket model.

 You can fix this by updating the definition of ticket_params in TicketsController,
adding the attachment_cache field to the list of permitted parameters.

class TicketsController < ApplicationController
...
def ticket_params
params.require(:ticket).permit(:name, :description, :attachment,

:attachment_cache)
end
...

Now if you rerun your test, it should pass successfully:

5 examples, 0 failures

Success. Commit and push your changes:

$ git add .
$ git commit -m "File uploads are persisted across form re-displays"
$ git push

There’s still some work to do, though. What would happen if somebody wanted to add
more than one file to a ticket? Let’s look at how to do that next.

Listing 9.11 Making the attachment cache field hidden

Listing 9.12 Permitting the attachment_cache field in TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

293Attaching many files

9.2 Attaching many files
You have an interface for attaching a single file to a ticket, but no way for a user to
attach more than one. Let’s imagine your pretend client asked you to boost the num-
ber of file-input fields on this page from one to three.

 If you’re going to add these three file-input fields to your view, you need more
fields in your database to handle them. You could define a new field for each file-
upload field, but a much better way to handle this is to add another model.

 Creating another model gives you the advantage of being able to scale it to not just
three file-input fields, but more if you ever need them. You’ll call
this model Attachment, after the name you gave to mount
_uploader in the Ticket model. When you’re done with this fea-
ture, you’ll see three file-upload fields, as shown in figure 9.2.

 You can create new instances of this model through the
ticket form by using nested attributes. Nested attributes have
been a feature of Rails since version 2.3, and they allow the
attributes of any kind of association to be passed from the cre-
ation or update of a particular resource. In this case, you’ll pass
nested attributes for a collection of new Attachment objects
while creating a new Ticket model. The best part is that the
code to do all this remains the same in the controller.

9.2.1 Testing multiple-file upload

Let’s take the scenario for creating a ticket with an attachment from spec/features/
creating_tickets_spec.rb, and update it by adding two file-upload fields. You can also
update the name of the scenario, so the entire scenario looks like the following listing.

scenario "with multiple attachments" do
fill_in "Name", with: "Add documentation for blink tag"
fill_in "Description", with: "The blink tag has a speed attribute"

attach_file "File #1", Rails.root.join("spec/fixtures/speed.txt")
attach_file "File #2", Rails.root.join("spec/fixtures/spin.txt")
attach_file "File #3", Rails.root.join("spec/fixtures/gradient.txt")

click_button "Create Ticket"

expect(page).to have_content "Ticket has been created."

within("#ticket .attachments") do
expect(page).to have_content "speed.txt"
expect(page).to have_content "spin.txt"
expect(page).to have_content "gradient.txt"

end
end

Listing 9.13 File attachment scenario, spec/features/creating_tickets_spec.rb

Figure 9.2 File-upload
input fields

Licensed to Mark Watson <nordickan@gmail.com>

294 CHAPTER 9 File uploading

In this scenario, you attach three files to your ticket and assert that you see them
within the attachments element, which was previously called #ticket .attachment
but now has the pluralized name of #ticket .attachments.

 This version also introduces Rails.root, which is a handy shortcut used to refer to
the root directory of your Rails application. The .join will append the text in paren-
theses—in this case, the directory and file path.

 Now run this single scenario using bundle exec rspec spec/features/

creating_tickets_spec.rb. It should fail on the first attach_file step, because you
renamed the label of this field:

1) Users can create new tickets with multiple attachments
Failure/Error: attach_file "File #1",
Rails.root.join("spec/fixtures/speed.txt")
Capybara::ElementNotFound:
Unable to find file field "File #1"

9.2.2 Implementing multiple-file upload

To get this step to pass, you can change the label on the field in app/views/tickets/
_form.html.erb to “File #1.”

<%= simple_form_for([project, ticket]) do |f| %>
...
<%= f.input :attachment, as: :file, label: "File #1" %>
...

While you’re changing things, you may as well update app/views/tickets/
show.html.erb to reflect what you plan to do with your attachments. Instead of a ticket
having a single attachment accessible via @ticket.attachment, it will have multiple
attachments accessible via @ticket.attachments. You can then iterate over the attach-
ments and print out the details of each.

 Replace the attachment display in app/views/tickets/show.html.erb with the fol-
lowing code.

<% if @ticket.attachments.any? %>
<h4>Attachments</h4>
<div class="attachments">
<% @ticket.attachments.each do |attachment| %>

<p>
<%= link_to File.basename(attachment.file.url),

attachment.file.url %>
(<%= number_to_human_size(attachment.file.size) %>)

</p>
<% end %>

</div>
<% end %>

Listing 9.14 Renaming the attachment field to make the test proceed

Listing 9.15 Displaying all the attachments of a ticket, not just one

Licensed to Mark Watson <nordickan@gmail.com>

295Attaching many files

When you call any?, it calls the ActiveRecord::Base association method, which
checks whether there are any attachments on a ticket and returns true if there are.
Although attachments isn’t yet defined, you can probably guess what you’re about
to do.

 All these changes combined will help to get your scenario closer to passing, which
is a great thing. It won’t look like it, though, when you run the entire feature again.
Run bundle exec rspec spec/features/creating_tickets_spec.rb and several of
the scenarios will now fail:

1) Users can create new tickets with valid attributes
Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
undefined method `attachments' for #<Ticket:0x007fd709871af8>

...
./app/views/tickets/show.html.erb:36:in ...

2) Users can create new tickets with multiple attachments
Failure/Error: attach_file "File #2", Rails.root.join...
Capybara::FileNotFound:
cannot attach file, .../spec/fixtures/spin.txt does not exist
...
./spec/features/creating_tickets_spec.rb:48:in ...

3) Users can create new tickets persisting file uploads across form
displays
Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
undefined method `attachments' for #<Ticket:0x007fd70a0db180>

...
./app/views/tickets/show.html.erb:36:in ...

For now we’ll just worry about the multiple-attachments scenario—the rest will fall
into place. You can run just one scenario from a file by adding a line number to the
end of the command—the multiple-attachments scenario covers lines 43-60 in spec/
features/creating_tickets_spec.rb, so you could run just the one scenario with the fol-
lowing command:

$ bundle exec rspec spec/features/creating_tickets_spec.rb:43

Now you’ll just get the one failure to deal with, which is a bit less overwhelming. It’s
failing because you’re now trying to attach three different files to three different file
fields, but you have only one file, named speed.txt.

 You can fix the error by creating the other files that the spec is asking for—spin.txt
and gradient.txt—within the same spec/fixtures folder. Populate them with some
goofy content, for the fun of it, as well.

Spinning blink tags have a 200% higher click rate!

Listing 9.16 spec/fixtures/spin.txt

Licensed to Mark Watson <nordickan@gmail.com>

296 CHAPTER 9 File uploading

Everything looks better with a gradient!

This is random filler meant only to provide some easily distinguishable text if you ever
need to reference it.

 On the next run of bundle exec rspec spec/features/creating_tickets
_spec.rb:43, the error is now replaced with a new one:

1) Users can create new tickets with multiple attachments
Failure/Error: attach_file "File #2", Rails.root.join...
Capybara::ElementNotFound:
Unable to find file field "File #2"

You could just add another field to the form.

<%= f.input :attachment_2, as: :file, label: "File #2" %>

But that’s a messy way of going about it. The best way to handle this problem is to have
some code automatically present a number of fields—say, three—on the page to the
user, with an option to add more if they like. This is possible by using a has_many asso-
ciation for attachments on the Ticket class, and by using nested attributes with Rails’
fields_for helper.

 This helper defines as many fields as you’d like for an association’s records.
Remove the two lines from app/views/tickets/_form.html.erb that only allow one file
upload (shown in listing 9.19) and replace them with the code in listing 9.20.

<%= f.input :attachment, as: :file, label: "File #1" %>
<%= f.input :attachment_cache, as: :hidden %>

<h3>Attachments</h3>
<%= f.simple_fields_for :attachments do |ff| %>

<%= ff.input :file, as: :file, label: "File ##{ff.index + 1}" %>
<%= ff.input :file_cache, as: :hidden %>

<% end %>

You use fields_for (and its Simple Form equivalent, simple_fields_for) much in
the same way you use form_for. You call simple_fields_for on the f block variable
from form_for, which tells it you want to define a set of nested fields within the origi-
nal form. The argument to simple_fields_for—:attachments—tells Rails the name
of the association that should be used for the nested fields. The fields within the
simple_fields_for block will render once for each element in the association.

Listing 9.17 spec/fixtures/gradient.txt

Listing 9.18 One way you could achieve it ...

Listing 9.19 app/views/tickets/_form.html.erb, showing one attachment field

Listing 9.20 app/views/tickets/_form.html.erb, with dynamic attachments fields

Licensed to Mark Watson <nordickan@gmail.com>

297Attaching many files

 When the parent form is submitted, the attributes for each of the attachment
instances will be nested inside the parent ticket hash—you’d expect to have some-
thing like the following.

ticket: {
name: "Test Ticket",
description: "Test Ticket's Description",
attachments_attributes: [
0: { file: ..., file_cache: ... }
1: { file: ..., file_cache: ... }
...

When you run this scenario again with bundle exec rspec spec/features/

creating_tickets_spec.rb:43, you get a bit of an unusual error, from earlier in the
spec.

1) Users can create new tickets with multiple attachments
Failure/Error: click_link "New Ticket"
ActionView::Template::Error:
undefined method `+' for nil:NilClass

./app/views/tickets/_form.html.erb:7:in ...

The spec can’t render the new-ticket form at all! It’s complaining about undefined
method '+' for nil:NilClass, and the only place you’re now calling + is when you
call ff.index + 1. Why is ff.index nil? What is it supposed to be?

 From the bottom of the documentation of fields_for,3 ff.index should be the
index of each object in the array of attachments—the first attachment in the array
should give 1, the second attachment should be 2, and so on.

 There’s one special case, however, which is what you’ve hit. In order for
fields_for to work correctly, you need to first configure your parent model—the
Ticket model—to accept the nested attributes for attachments that you’ll be submit-
ting. Before you can do that, you need to define the attachments association in your
Ticket model. Defining this association will also stop the other scenarios that are cur-
rently failing in the ticket-creation feature from complaining about the missing
attachments method.

 If this attachments association is defined on the Ticket model and you’ve
declared that your model accepts nested attributes for the association, fields_for
iterates through the output from this method and renders the fields from fields_for
for each element. This means a file field will be rendered for every Attachment object
in the @ticket.attachments collection.

 You can define this attachments method by defining a has_many association in
your Ticket model.

Listing 9.21 The format of the data submitted from the Ticket form

3 See http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html#method-i-fields_for.

Licensed to Mark Watson <nordickan@gmail.com>

http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html#method-i-fields_for

298 CHAPTER 9 File uploading

class Ticket < ActiveRecord::Base
belongs_to :project
belongs_to :author, class_name: "User"
has_many :attachments, dependent: :destroy
...

You add dependent: :destroy to the association as well, so that if the ticket gets
deleted, all of its uploaded files get deleted as well.

 Under this has_many, you also define that a Ticket model needs to accept nested
attributes for attachments by using accepts_nested_attributes_for.

class Ticket < ActiveRecord::Base
...
accepts_nested_attributes_for :attachments, reject_if: :all_blank
...

This little helper tells your model to accept attachment attributes along with ticket
attributes whenever you call methods like new, build, and update. It will also change
how fields_for performs in your form, making it reference the attachments associa-
tion, and calling the parameters that get generated in the form attachments
_attributes rather than attachments.

 The reject_if: :all_blank option/value pair means that if blank values (such as
when the user hasn’t uploaded a file into the field) are submitted, the data should be
ignored. Each file field on the page will be submitted, whether or not the user has
uploaded a file into it—and if you’re going to display three file fields by default, and
the user only uploads one file, then you should ignore the other two fields.

 When you run your scenario again with bundle exec rspec spec/features/
creating_tickets_spec.rb:43, you’ll see that Rails is basically demanding that there
be an Attachments class. So needy!

1) Users can create new tickets with multiple attachments
Failure/Error: click_link "New Ticket"
ActionView::Template::Error:
uninitialized constant Ticket::Attachment

You’d best get onto that then!

9.2.3 Using nested attributes

Your Attachment model4 will have two things—the attachment itself in a string field
like you added to the Ticket model before, and a reference to the ticket object that
the attachment has been added to. To generate this new Attachment model in your
application, run the model generator:

$ rails g model attachment file:string ticket:references

Listing 9.22 Adding a new association for attachments

Listing 9.23 Forms for tickets will now also accept attributes for attachments

4 Remember that you can’t use File for a name because it’s the name of an existing class in Ruby.

Licensed to Mark Watson <nordickan@gmail.com>

299Attaching many files

This will generate a migration for your new Attachment model, with the two fields
you’ve specified.

 There’s one other migration you can generate—because you have a whole sepa-
rate model for attachments now, you can remove the attachment field you previously
added to your Ticket model. You can use the migration generator to automatically
do this, like so:

$ rails g migration remove_attachment_from_tickets attachment:string

This will generate a migration that looks like the following.

class RemoveAttachmentFromTickets < ActiveRecord::Migration
def change
remove_column :tickets, :attachment, :string

end
end

Now that you have both of your migrations, run them with bundle exec rake
db:migrate.

 When you run the feature spec again with bundle exec rspec spec/features/
creating_tickets_spec.rb:43, your “File #1” field is now missing:

1) Users can create new tickets with multiple attachments
Failure/Error: attach_file "File #1", Rails.root.join...
Capybara::ElementNotFound:
Unable to find file field "File #1"

You’ve gone backward! Or so it seems.
 As mentioned earlier, fields_for detects that the attachments method is defined

on your Ticket object, and then iterates through each object in this collection, ren-
dering the fields in fields_for for each object. When the collection in

Listing 9.24 db/migrate/[timestamp]_remove_attachment_from_tickets.rb

Making migrations revertible
This might look a little odd—why do you need to know the type of column when you’re
deleting it? Strictly speaking, you don’t—remove_column :tickets, :attachment
would work just fine when removing the column, but a migration written with the col-
umn type can be easily reverted, which is the opposite of running a migration.

Rails automatically knows how to revert lots of common tasks—for example, the op-
posite of create_table would be drop_table to delete the table from the database.
In this case, the opposite of remove_column would be add_column, but in order to
add a column to the database, Rails needs to know what type the column is, so you
tell Rails that the attachment column was of string type.

Now the migration can be run both ways—up and down—and the column can easily
be both removed and added again.

Licensed to Mark Watson <nordickan@gmail.com>

300 CHAPTER 9 File uploading

@ticket.attachments is empty, the fields_for block won’t print anything at all—
hence no “File #1” field.

 To get this action to render three file-input fields, you must initialize three new
Attachment objects, associated to the Ticket object the form uses. You can do this as
part of the new action in TicketsController.

class TicketsController < ApplicationController
...
def new
@ticket = @project.tickets.build
authorize @ticket, :create?
3.times { @ticket.attachments.build }

end
...

The final line of this action calls @ticket.attachments.build three times, which cre-
ates the three Attachment objects you need for fields_for. Doing this means that
@ticket.attachments will have three new attachments in it, and the fields_for block
will display those three objects as three empty file-upload fields, just like you want.

 When you run your scenario again, the three fields are available, but the scenario
now fails due to an unknown field called file_cache:

) Users can create new tickets with multiple attachments
Failure/Error: click_link "New Ticket"
ActionView::Template::Error:
undefined method `file_cache' for #<Attachment:0x007f85152eafd0>

file_cache is a method provided by the CarrierWave uploader that you generated
earlier and attached to the Ticket model to assist with file uploading. Now you’ve
moved the file uploading to the Attachment model, so you should move the
mount_uploader line too, from the Ticket model to the Attachment model.

class Ticket < ActiveRecord::Base
...
mount_uploader :attachment, AttachmentUploader
...

class Attachment < ActiveRecord::Base
...
mount_uploader :file, AttachmentUploader

end

Once the line has been moved, running the spec again will give a different error:

Listing 9.25 Adding some attachments to render on the form

Listing 9.26 Move this uploader line from the Ticket model...

Listing 9.27 ...to the Attachment model where it belongs!

Licensed to Mark Watson <nordickan@gmail.com>

301Attaching many files

1) Users can create new tickets with multiple attachments
Failure/Error: within("#ticket .attachments") do
Capybara::ElementNotFound:
Unable to find css "#ticket .attachments"

Remember this from earlier, when you added the first attachment file to the form? It
means you need to modify your ticket_params method, in your TicketsController,
to permit the nested attributes you’re now submitting from the form. Here’s the
revised ticket_params method inside app/controllers/tickets_controller.rb:

class TicketsController < ApplicationController
...

def ticket_params
params.require(:ticket).permit(:name, :description,

attachments_attributes: [:file, :file_cache])
end
...

Tricky! :attachment becomes :attachments_attributes, and you also need to say
that attachments_attributes is an array, and that each element of the array contains
inner file and file_cache fields. This mirrors the structure of your models: a
Ticket has_many attachments, and each Attachment has an uploaded file, named
file. Whew!

 This should be all that’s required to get the multiple-asset uploading working. Find
out by running bundle exec rspec spec/features/creating_tickets_spec.rb:

1) Users can create new tickets persisting file uploads across form
displays
Failure/Error: attach_file "File", "spec/fixtures/speed.txt"
Capybara::Ambiguous:
Ambiguous match, found 3 elements matching file field "File"

Your second test, to make sure that the file upload is persisted across form redisplays,
is now broken—you don’t have a “File” field anymore, you have a “File #1” field.

 That’s a quick fix to make—inside spec/features/creating_tickets_spec.rb, update
the “persisting file uploads across form displays” scenario to start off with the following:

RSpec.feature "Users can create new tickets" do
...

scenario "persisting file uploads across form displays" do
attach_file "File #1", "spec/fixtures/speed.txt"

...

The end of the spec will have to be updated as well—from this,

within("#ticket .attachment") do

Listing 9.28 Permitting file-related attributes for the nested Attachment model

Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 9 File uploading

to this:

within("#ticket .attachments") do

Now when you rerun the specs in spec/features/creating_tickets_spec.rb, you should
see this output:

5 examples, 0 failures

You can rerun all of your specs with bundle exec rspec to make sure nothing else is
broken:

86 examples, 0 failures, 1 pending

Nothing’s broken, but there’s one pending spec that lives in spec/models/
attachment_spec.rb. Delete this file now. If you rerun bundle exec rspec, you should
see no more pending specs:

85 examples, 0 failures

Awesome—commit and push this:

$ git add .
$ git commit -m "Users can now upload 3 files at a time when creating a

ticket"
$ git push

In this section, you set up the form that creates new Ticket objects to also upload files
and create associated Attachment objects, by using nested attributes. This process was
made possible by moving the responsibility of handling file uploads out of the Ticket
model and into the associated Attachment model. The accepts_nested_attributes
call in the Ticket model, as well as the simple_fields_for call in app/views/tickets/
_form.html.erb, also played vital roles in getting this to work.

 You’re done with nested attributes! Earlier we mentioned that the files uploaded
to your application are publicly available for anybody to access because these files are
uploaded to the public directory. Any file in the public directory is served up automat-
ically by any web server, bypassing all the authentication and authorization in your
Rails application. This is a bad thing. What if one of the projects in your application
has files that should be accessed only by authorized users?

9.3 Serving files through a controller
You can solve the issue of unauthorized file access by serving the uploaded files through
a controller for your application. Using authorization similar to what you used previ-
ously in ProjectsController and TicketsController, this controller will check that
the user attempting to access a file has permission to do so before serving the file.

 You’re not adding any new functionality for a user to see here; you’re just chang-
ing how some existing functionality (a user viewing uploaded files) works. Regardless,
you should write a feature spec to cover it, with some extra checking in there to make
sure it’s working via your new controller.

Licensed to Mark Watson <nordickan@gmail.com>

303Serving files through a controller

9.3.1 Testing existing functionality

Create a new file in spec/features/viewing_attachments_spec.rb, and fill it with the
following content.

require "rails_helper"

RSpec.feature "Users can view a ticket's attached files" do
let(:user) { FactoryGirl.create :user }
let(:project) { FactoryGirl.create :project }
let(:ticket) { FactoryGirl.create :ticket, project: project,
author: user }

let!(:attachment) { FactoryGirl.create :attachment, ticket: ticket,
file_to_attach: "spec/fixtures/speed.txt" }

before do
assign_role!(user, :viewer, project)
login_as(user)

end

scenario "successfully" do
visit project_ticket_path(project, ticket)
click_link "speed.txt"

expect(current_path).to eq attachment_path(attachment)
expect(page).to have_content "The blink tag can blink faster"

end
end

In this setup, you create a project, a ticket for the project, and an attachment for the
ticket; then you test that when you click to view the attachment, you can actually see
the content of the attachment. You use known files—the speed.txt file you created in a
previous section—so you can match directly on the content of the file.

 If you run this spec with bundle exec rspec spec/features/viewing_attachments
_spec.rb, you’ll get an error early on:

1) Users can view a ticket's attached files successfully
Failure/Error: let!(:attachment) { FactoryGirl.create :attachment,
ticket: ticket,
ArgumentError:
Factory not registered: attachment

You can fix this by defining a new Factory Girl factory for your Attachment model in
spec/factories/attachment_factory.rb. You can define it like the following.

FactoryGirl.define do
factory :attachment do
transient do

Listing 9.29 spec/features/viewing_attachments_spec.rb

Listing 9.30 Defining an attachment factory

Licensed to Mark Watson <nordickan@gmail.com>

304 CHAPTER 9 File uploading

file_to_attach "spec/fixtures/speed.txt"
end

file { File.open file_to_attach }
end

end

You’re making the factory a little more complex, so you can make the test a little sim-
pler. To create a new Attachment object, you need to open and read the file you want
to upload to it—but you don’t want to have to write that in every test you build an
attachment in. So you use a transient attribute5 for the file—your Attachment model
doesn’t actually have a file_to_attach attribute, but you can use the file_to
_attach attribute you pass to the factory to generate the file attribute that you do
have on the model.

 Once the factory is defined, rerunning the spec will give a different error:

1) Users can view a ticket's attached files successfully
Failure/Error: expect(current_path).to eq attachment_path(attachment)
NoMethodError:
undefined method `attachment_path' for ...

Because you’ll be using a controller to serve the files, it makes sense that your control-
ler will have an associated named route—we’ve called it attachment_path.

 Now you can move into building your controller with its associated permission
checking.

9.3.2 Protecting attachments

Like you did earlier when starting to build the authorization system, you’ll start with
your policy and its permissions. Generate a new Pundit policy for protecting your
Attachment model:

$ rails g pundit:policy attachment

This will generate a new policy file in app/policies/attachment_policy.rb and a tem-
plate spec file in spec/policies/attachment_policy_spec.rb.

 Who should have permission to view an attachment? A reasonable assumption
might be to allow anyone who has permission to view the ticket that the attachment
belongs to.

 You can write some tests for that in your spec/policies/attachment_policy_spec.rb
file, copying the same format you used for the TicketPolicy and ProjectPolicy specs.

require "rails_helper"

RSpec.describe AttachmentPolicy do
context "permissions" do

5 See the Factory Girl documentation: https://github.com/thoughtbot/factory_girl/blob/master/
GETTING_STARTED.md#transient-attributes.

Listing 9.31 Specs for the new AttachmentPolicy class

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md#transient-attributes
https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md#transient-attributes

305Serving files through a controller

subject { AttachmentPolicy.new(user, attachment) }

let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket, project: project) }
let(:attachment) { FactoryGirl.create(:attachment, ticket: ticket) }

context "for anonymous users" do
let(:user) { nil }
it { should_not permit_action :show }

end

context "for viewers of the project" do
before { assign_role!(user, :viewer, project) }
it { should permit_action :show }

end

context "for editors of the project" do
before { assign_role!(user, :editor, project) }
it { should permit_action :show }

end

context "for managers of the project" do
before { assign_role!(user, :manager, project) }
it { should permit_action :show }

end

context "for managers of other projects" do
before do

assign_role!(user, :manager, FactoryGirl.create(:project))
end
it { should_not permit_action :show }

context "for administrators" do
let(:user) { FactoryGirl.create :user, :admin }
it { should permit_action :show }

end
end

end

The format should look familiar to you—you create an attachment object with Factory
Girl, and then cycle through all of the different types of roles that a user can have on
the attachment’s project, testing if they are allowed to show the attachment in question.

 When you run your new specs with bundle exec rspec spec/policies/
attachment_policy_spec.rb, you’ll get a couple of failures:

1) AttachmentPolicy permissions for anonymous users should not permit
action :show
Failure/Error: it { should_not permit_action :show }
AttachmentPolicy does not forbid nil from performing :show? on
#<Attachment:0x007fa6ca838858>.

./spec/policies/attachment_policy_spec.rb:14:in ...

2) AttachmentPolicy permissions for managers of other projects should

Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 9 File uploading

not permit action :show
Failure/Error: it { should_not permit_action :show }
AttachmentPolicy does not forbid test4@example.com (User) from
performing :show? on #<Attachment:0x007fa6c956fbe0>.

./spec/policies/attachment_policy_spec.rb:36:in ...

By default, the policy allows everyone to show the attachment—even the people that it
shouldn’t allow. You can fix this by defining a new show? method in the Attachment-
Policy class in app/policies/attachment_policy.rb to say that only admins and people
who can view the project can view the attachment.

class AttachmentPolicy < ApplicationPolicy
...
def show?
user.try(:admin?) || record.ticket.project.has_member?(user)

end
end

When you rerun bundle exec rspec spec/policies/attachment_policy_spec.rb,
everything will pass:

6 examples, 0 failures

To protect the attachments with this new policy, you need to configure CarrierWave to
not store them in the public directory. Instead, you’ll store them outside the public
directory and create a new controller that will perform the authorization checking.
Once the authorization checks are satisfied, then the controller can serve the attach-
ment to the browser. We’ll look at doing that now.

9.3.3 Showing your attachments

You can start by generating a new controller to show the attachments to the users—
we’ll be very imaginative and call it AttachmentsController. It should only have one
action—show—so you can generate it with the following command:

$ rails g controller attachments

This will generate a new empty controller in app/controllers/attachments
_controller.rb. Inside it, you can define a new show action, look up the correct Attach-
ment record, and then use send_file to send the attachment’s file to the browser.

class AttachmentsController < ApplicationController
def show
attachment = Attachment.find(params[:id])
authorize attachment, :show?
send_file attachment.file.path, disposition: :inline

end
end

Listing 9.32 A new show? method defining who can view an attachment

Listing 9.33 app/controllers/attachments_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

307Serving files through a controller

The send_file method sends a file as the response from the action rather than ren-
dering a template or redirecting. The first argument for send_file is the path to the
file you’re sending.6 The next argument is an options hash—you’ll only use one
option, the disposition option. This is used to tell the browser whether to download
the file or display it directly—the default value (attachment) will download it, so you
need to change it to inline to display it instead.

 To route requests to this controller, define a route in your config/routes.rb file,
which you can do with the following resources line.

Rails.application.routes.draw do
...
resources :attachments, only: [:show]

end

CUSTOMIZING WHICH ROUTES ARE GENERATED WITH RESOURCES You use only:
[:show] because you only have the one show action in your controller, so you
only need the one route instead of the full set of seven RESTful routes.

Great! You’ve begun to serve the files from AttachmentsController only to people
who have access to the attachment’s relative projects. Defining the route for the
attachments resource will also generate the named attachment_path route, so your
original test will get a little further.

 You can rerun it to see what you need to do next, with bundle exec rspec spec/
features/viewing_attachments_spec.rb:

1) Users can view a ticket's attached files successfully
Failure/Error: expect(current_path).to eq attachment_path(attachment)

expected: "/attachments/1"
got: "/uploads/attachment/file/1/speed.txt"

The link to an attachment in the view is still using the old route in public, and not the
new route you defined. Also, all of the attachments are still located in public/uploads,
so requests to them will be served by the web server, bypassing your controller. These
files need to move.

9.3.4 Public attachments

People can still get to your files as long as they have the link provided to them,
because the files are stored in the public folder.

 Let’s see how this is possible by starting up the server using rails server, signing
in, and creating a ticket. Upload the spec/fixtures/spin.txt file as the only file
attached to this ticket. You should see a ticket like the one in figure 9.3.

6 See the Rails documentation for send_file: http://api.rubyonrails.org/classes/ActionController/
DataStreaming.html#method-i-send_file.

Listing 9.34 Defining the routes to serve attachments with

Licensed to Mark Watson <nordickan@gmail.com>

http://api.rubyonrails.org/classes/ActionController/DataStreaming.html#method-i-send_file
http://api.rubyonrails.org/classes/ActionController/DataStreaming.html#method-i-send_file

308 CHAPTER 9 File uploading

Hover over the spin.txt link on this page and you’ll see a link like this:

http://localhost:3000/uploads/attachment/file/1/spin.txt

As you saw earlier in this chapter, this link isn’t a route to a controller in your applica-
tion but to a file in the public directory. Any file in the public directory is accessible to
the public. Sensible naming schemes rock!

 If you copy the link to this file, sign out, and then paste the link into your browser
window, you can still access it. These files need to be protected, and you can do that by
moving them out of the public directory and into another directory at the root of your
application called uploads. Create this directory now.

9.3.5 Privatizing attachments

You can make the uploaded files private by storing them in the uploads folder, outside
of the public folder. You don’t have to move them there manually; you can tell Carrier-
Wave to put them there by default. There are a couple of ways you can do this.

 If you want to configure a single uploader to store its files outside of the public
folder, you can do this by changing the store_dir method in the uploader. In the
AttachmentUploader example, you could change it to look like the following listing.

class AttachmentUploader < CarrierWave::Uploader::Base
...
def store_dir
Rails.root.join "uploads/#{model.class.to_s.underscore}/" + \

"#{mounted_as}/#{model.id}"
end
...

Alternatively, if you want to configure CarrierWave to store all files for all uploaders
outside of the public folder, you can change the value of CarrierWave.root, which
defaults to the public folder. You can do this by creating a new initializer file in
config/initializers—files in this folder are run when you start up your server with
rails server.

Listing 9.35 Changing where the AttachmentUploader will store its files

Figure 9.3 A ticket with spin!

Licensed to Mark Watson <nordickan@gmail.com>

309Serving files through a controller

CarrierWave.configure do |config|
config.root = Rails.root

end

For this example, you can take the second approach, to secure all uploads in your app
by default.

 After creating the new initializer file, you’ll need to stop and start your rails
server, to make sure the new configuration is picked up by the server. Try creating
another ticket and attaching the spec/fixtures/spin.txt file. This time, when you use
the link to access the file, you’re told there’s no route. This is shown in figure 9.4.

The URL generated for this file is incorrect because you were linking to it wrong.
You’re relying on CarrierWave to generate a URL with attachment.file.url, but you
want to use the new attachment_path route. Modify app/views/tickets/show.html.erb
to use attachment_path.

<% @ticket.attachments.each do |attachment| %>
<p>
<%= link_to File.basename(attachment.file.url),

attachment_path(attachment) %>
(<%= number_to_human_size(attachment.file.size) %>)

</p>
<% end %>

Now, if you refresh the browser, you should be able to see the spin.txt file you
uploaded to your ticket. Success!

 Run your tests now to see if they all pass, with bundle exec rspec:

93 examples, 0 failures, 1 pending

You have one pending test in spec/helpers/attachments_helper_spec.rb that was gen-
erated when you generated the controller, which you don’t want, so you can just
delete it. Once you do that, rerun your specs with bundle exec rspec:

92 examples, 0 failures

Great! With all of your specs passing, the files are being served through the
AttachmentsController controller correctly. You’re done with implementing the
functionality to protect attachments from unauthorized access, so you should commit.

 One last thing before you do commit all of this work: earlier, you set .gitignore to
deal with uploads in the public directory, but you’ve moved them! Go ahead and take

Listing 9.36 A new initializer in config/initializers/carrierwave.rb

Listing 9.37 Using attachment_path to link to your new AttachmentsController

Figure 9.4 No route!

Licensed to Mark Watson <nordickan@gmail.com>

310 CHAPTER 9 File uploading

the public/ part off of that final line in .gitignore, so it just says uploads. Cool.
Commit and push your changes:

$ git add .
$ git commit -m "Uploaded attachments are now served through the

AttachmentsController for extra security"
$ git push

By serving these files through AttachmentsController, you can provide a level of con-
trol over who can see them and who can’t by allowing only those who have access to
the attachment’s project to have access to the attachment.

 Inevitably, somebody’s going to want to attach more than three files to a ticket, and
then what? Well, you could add more fields until people stop asking for them, or you
could be lazy and code a solution to save time. This solution entails putting an “Add
another file” link under the final file field in your form that, when clicked, adds
another file field. Users should be able to continue to do this ad infinitum. How do
you implement this?

 You use JavaScript. That’s how.

9.4 Using JavaScript
You started this chapter with only one file field, and then you moved to three after you
realized users might want to upload more than one file to your application. Although
having three fields suits the purposes of many users, others may wish to upload yet
more files.

 You could keep adding file fields until all the users are satisfied, or you could be
sensible about it and switch back to using one field and, directly under it, providing a
link that, when clicked, adds another file field. Using this solution, you can also clean
up your UI a bit by removing extra file fields but allowing users to attach as many files
as they like. This is where JavaScript comes in.

 When you introduce JavaScript into your application, you have to run any scenarios
that rely on it through another piece of software called WebDriver. WebDriver is a
browser driver that was installed when the Capybara gem was installed, so you don’t have
to do anything to set it up. Capybara without WebDriver won’t run JavaScript because
Capybara doesn’t support JavaScript by itself. By running these JavaScript-reliant sce-
narios through WebDriver, you ensure that the JavaScript will be executed.

 One of the great things about this WebDriver and Capybara partnership is that you
can use the same old, familiar Capybara steps to test JavaScript behavior.

9.4.1 JavaScript testing

Capybara provides an easy way to trigger WebDriver testing. You tag a scenario (or fea-
ture) with the js: true option, and it launches a new web browser window and tests
your code by using the same steps as standard Capybara testing, but in a browser. Isn’t
that neat?

 Let’s replace the multiple-attachments scenario in spec/features/creating_tickets
_spec.rb with the one in the following listing, to cover what you want to build next.

Licensed to Mark Watson <nordickan@gmail.com>

311Using JavaScript

RSpec.feature "Users can create new tickets" do
...
scenario "with multiple attachments", js: true do
fill_in "Name", with: "Add documentation for blink tag"
fill_in "Description", with: "Blink tag's speed attribute"

attach_file "File #1", Rails.root.join("spec/fixtures/speed.txt")
click_link "Add another file"

attach_file "File #2", Rails.root.join("spec/fixtures/spin.txt")
click_button "Create Ticket"

expect(page).to have_content "Ticket has been created."

within("#ticket .attachments") do
expect(page).to have_content "speed.txt"
expect(page).to have_content "spin.txt"

end
end
...

The js: true option at the top of this scenario tells Capybara that the scenario should
use JavaScript, so it should be run in a browser using WebDriver. Also in this scenario,
you’ve filled in only one file field because, as stated before, you’re going to reduce the
number of initial file fields to one. After filling in this field, you click an “Add another
file” link that triggers a JavaScript event, which renders the second file field that you
can then fill in. The rest of this scenario remains the same, ensuring that the ticket is
created and that you can see the files in the element with the class attachments.

 If you run this scenario with bundle exec rspec spec/features/

creating_tickets_spec.rb, you’ll see that the test can’t even get started:

1) Users can create new tickets with multiple attachments
Failure/Error: visit project_path(project)
LoadError:
Capybara's selenium driver is unable to load `selenium-webdriver`,
please install the gem and add `gem 'selenium-webdriver'` to your
Gemfile if you are using bundler.

The default WebDriver that Capybara uses is called Selenium, and it’s located in the
selenium-webdriver gem.

 This is easy enough to fix—add the selenium-webdrive line in the following list-
ing to the section of your Gemfile dealing with test gems.

group :test do
gem "capybara", "~> 2.4"
gem "factory_girl_rails", "~> 4.5"
gem "selenium-webdriver", "~> 2.45"

end

Listing 9.38 spec/features/creating_tickets_spec.rb

Listing 9.39 Adding selenium-webdriver to your Gemfile

Licensed to Mark Watson <nordickan@gmail.com>

312 CHAPTER 9 File uploading

Now run bundle to get the selenium-webdriver gem installed. Once that’s done, run
the tests again with bundle exec rspec spec/features/creating_tickets_spec.rb.

 Don’t be startled when a new empty browser window pops up on your screen—
that’s the window being controlled by Selenium. But the window won’t do anything,
and you’ll get an error for your specs:

1) Users can create new tickets with multiple attachments
Failure/Error: Unable to find matching line from backtrace
ActiveRecord::StatementInvalid:
SQLite3::BusyException: database is locked: UPDATE "users" SET ...

That’s strange. Why isn’t this scenario working, but the others still are? The only thing
that changed was the addition of the js: true option to the end of the scenario.

 Well, that’s exactly the problem. When you pass this option to a scenario, it runs
the test using a real browser, and the real browser is running in a different process
than the one that’s running the tests in your terminal.

9.4.2 Cleaning the database

By itself, this isn’t a big problem. But in combination with the following line in the
spec/rails_helper.rb configuration, a perfect storm is created:

config.use_transactional_fixtures = true

This line tells RSpec to run all of its tests in individual database transactions. This
means a new database transaction is begun at the same time as a test, and then a ROLL-
BACK command is issued to revert the database back to a clean state. This is why you
can always test using the same database without having to clean out the data after the
test run.

 Due to this transaction, the data created by the test set up in spec/features/creating
_tickets_spec.rb will exist purely in this transaction. It’s never committed to the data-
base. When the other thread is spawned for the JavaScript testing and it tries to access
the same database, it gets stalled due to the open transaction, and it times out.

 There are multiple solutions to this problem (aren’t there always!):

■ You can disable transactions for JavaScript tests, and use data truncation instead.
Rather than running each test in a transaction block that’s then rolled back at
the end of the test, data truncation involves an automatic wipe of the database
at the end of each test. To achieve this, you can use a gem called
database_cleaner (https://github.com/DatabaseCleaner/database_cleaner).

■ You can patch Active Record to allow multiple threads to share the same data-
base connection. This was a solution proposed by José Valim, of the Rails core
team, back in 2010.7 It means you can still use transactions for your tests, so you
have to change very little of your code.

7 Bragged about on Twitter—https://twitter.com/josevalim/status/18195382848—and then backed up with
code—https://gist.github.com/josevalim/470808.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/DatabaseCleaner/database_cleaner
https://twitter.com/josevalim/status/18195382848
https://gist.github.com/josevalim/470808

313Using JavaScript

Each approach has pros and cons—DatabaseCleaner will slow down your tests dramat-
ically, whereas sharing a connection can cause odd, nondeterministic problems if your
code is sufficiently complex with threads. We’ll opt for the more stable approach, with
DatabaseCleaner, but it’s good to know what other options are out there.

 The database_cleaner gem can be installed into your application by adding this
line in the test group of your Gemfile:

gem "database_cleaner", "~> 1.4"

Run bundle to install this gem now.
 To configure the gem, create a new file at spec/support/database_cleaning.rb and

put the following content into it.

RSpec.configure do |config|
config.before(:suite) do
DatabaseCleaner.strategy = :deletion
DatabaseCleaner.clean_with(:deletion)

end

config.before(:each) do
DatabaseCleaner.start

end

config.after(:each) do
DatabaseCleaner.clean

end
end

You also need to change the use_transactional_fixtures line in spec/rails_helper.rb
to set this option to false.

config.use_transactional_fixtures = false

With these changes, the database will be truncated after every test run. It’s signifi-
cantly slower than using database transactions, but it will allow data to be shared
between your tests and your Selenium thread safely and securely. If you wanted to get
fancy, you could configure different strategies for different types of tests—you only
need to use truncation for feature specs that are tagged with js: true, and you could
use transaction for everything else. If you get too annoyed with the speed of your
specs, look at doing that for a bit of homework.

 When you run bundle exec rspec spec/features/creating_tickets_spec.rb
now, the spec fails because the “Add another file” link doesn’t yet exist:

1) Users can create new tickets with multiple attachments
Failure/Error: click_link "Add another file"
Capybara::ElementNotFound:
Unable to find link "Add another file"

Listing 9.40 Configuring DatabaseCleaner for test awesomeness

Listing 9.41 Disabling database transactions for tests

Licensed to Mark Watson <nordickan@gmail.com>

314 CHAPTER 9 File uploading

Before you fix it, however, you can make the form render only a single attachment
field again. You can do this by changing the 3.times { @ticket.attachments.build }
line in the new action in TicketsController to be just @ticket.attachments.build.

class TicketsController < ApplicationController
...
def new
...
3.times { @ticket.attachments.build }

By building only one asset to begin with, you show users that they may upload a file. By
providing the link to “Add another file,” you show them that they may upload more
than one if they please. This is the best UI solution because you’re not presenting the
user with fields they can’t use.

 It’s time to make the “Add another file” link exist and do something useful!

9.4.3 Introducing jQuery

The “Add another file” link, when clicked, will trigger an asynchronous call back to
the server, which will return the HTML for another file field to be added to the page.
Every time this link is clicked, another file field will be added.

 For the “Add another file” link to perform the request when it’s clicked, you can
use the JavaScript framework called jQuery. This is already in use in your application;
your application’s Gemfile references the jquery-rails gem, which provides the correct
jQuery files. It’s the task of your app/assets/javascripts/application.js file to include
the two jQuery files Rails needs, which it does by using these two lines:

//= require jquery
//= require jquery_ujs

If you were to remove these two lines from application.js, or if you were to remove the
line that includes application.js in the application layout, things such as confirmation
boxes on delete requests and asynchronous links would stop working. So please don’t

Listing 9.42 Rendering three attachment fields on the new-ticket form

What is jquery_ujs?
The jquery_ujs asset here includes some Rails-specific code for unobtrusive
JavaScript in your application. This provides many helpful features that you’ve already
used, like confirmation dialog boxes that appear when you click a Delete link in your
application.

Derek Prior from Thoughtbot did a great write-up on the features of the jquery_ujs file:
“A Tour of Rails’ jQuery UJS” (http://robots.thoughtbot.com/a-tour-of-rails-jquery-ujs).
We recommend having a read.

Licensed to Mark Watson <nordickan@gmail.com>

http://robots.thoughtbot.com/a-tour-of-rails-jquery-ujs

315Using JavaScript

remove these lines! The following line in app/views/layouts/application.html.erb are
what loads your application.js

<%= javascript_include_tag 'application', 'data-turbolinks-track' =>
true %>

It generates HTML like this:

<script src="/assets/jquery-[digest].js?body=1"
data-turbolinks-track="true"></script>

<script src="/assets/jquery_ujs-[digest].js?body=1"
data-turbolinks-track="true"></script>

... many more files ...
<script src="/assets/application-[digest].js?body=1"

data-turbolinks-track="true"></script>

The /assets path here is handled by the Sprockets gem, which comes standard with
Rails. When this route is requested, the Sprockets gem takes care of serving it. It
begins by reading the app/assets/javascripts/application.js file, which by default spec-
ifies the following things:

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require_tree .

Yours will look a little different, because you’ve also required bootstrap-sprockets.
 Lines in the file prefixed with //= are directives that tell Sprockets what to do. The

first two directives require the jquery and jquery_ujs files from the jquery-rails gem. The
jquery file is the jQuery framework itself, and jquery-ujs contains Rails-provided unob-
trusive JavaScript helpers. As an example, jquery-ujs provides the confirmation box that
pops up when you define a :confirm attribute on a link_to helper.

DON’T REMOVE JQUERY_UJS! You’ve been warned twice already, but here we go
again: be mindful of accidentally removing the jquery_ujs file—it catches a lot
of people out. You’ll know, because your confirmation boxes will disappear
and your delete links won’t work in your views either.

The call to require_tree . tells Sprockets to recursively include all JavaScript files for
the current directory and those underneath it. This just leaves you with the //=
require turbolinks line, which we’ll address next.

TO TURBOLINK OR NOT TO TURBOLINK?

By default, Rails 4 ships with a gem called Turbolinks. Turbolinks attempts to speed up
your site by overriding the links in your application with JavaScript. Although this is a
great thing for mostly server-side sites, it’s our opinion that as soon as you start writing
some JavaScript, it causes more problems than it’s worth.

 Fortunately, removing Turbolinks is quite trivial—just follow these three steps:

Listing 9.43 Loading JavaScript into the application.html.erb layout file

Licensed to Mark Watson <nordickan@gmail.com>

316 CHAPTER 9 File uploading

1 Remove the gem 'turbolinks' line from your Gemfile, and then run bundle
update to update your Gemfile.lock, so it’s truly gone.

2 Remove the //= require turbolinks line from app/assets/javascripts/
application.js.

3 Change the stylesheet and JavaScript loading lines near the top of app/views/
layouts/application.html.erb. Afterward, they should look like this:

<%= stylesheet_link_tag 'application', media: 'all' %>
<%= javascript_include_tag 'application' %>

That was pretty painless, huh? Now your setup is done, so let’s define the “Add
another file” link.

9.4.4 Adding more files with JavaScript

You must add the “Add another file” link to your tickets form at app/views/tickets/
_form.html.erb. Put it under the end for simple_fields_for, so it’s displayed below
existing file fields:

<h3>Attachments</h3>
...
<p>

<%= link_to "Add another file", new_attachment_path, remote: true,
id: "add_file" %>

</p>

Here you use the link_to method to define a link, and you pass it the remote: true
option, which tells Rails that you want to generate a link that uses JavaScript to make a
background request, called an asynchronous request, to the server. More precisely, the
request uses the JavaScript provided by the jquery-ujs.js file that comes with the jquery-
rails gem. You’ve also given the link an HTML ID—this is so you can easily find it from
JavaScript later.

 Eventually, you’ll want this link to return some HTML for the new-form field that
you can then insert into the right part of the page. But at the moment there’s no clear
place to insert it. If you wrap all of the file fields into a new div element, it will be eas-
ier to do—you can just say “insert it at the end of this div.”

<div id="attachments">
<h3>Attachments</h3>
<% index = 0 %>
<%= f.simple_fields_for :attachments, child_index: index do |ff| %>
<%= ff.input :file, as: :file, label: "File ##{index += 1}" %>
<%= ff.input :file_cache, as: :hidden %>

<% end %>
</div>

This code also changes ff.index to be just index, a variable you define specially
before you start looping over the attachments, and set it as the child_index for

Listing 9.44 app/views/tickets/_form.html.erb with an added wrapper div

Licensed to Mark Watson <nordickan@gmail.com>

317Responding to an asynchronous request

simple_fields_for. This will manually set the index of each of the child attachment
objects. If you were to initially set index to 3, then your assets would be submitted with
indexes 3, 4, 5, like in the next listing.

ticket: {
name: "Test Ticket",
description: "Test Ticket's Description",
attachments_attributes: [
3: { file: ..., file_cache: ... }
4: { file: ..., file_cache: ... }
5: { file: ..., file_cache: ... }
...

You’ll use this to manually set the index shortly, when you generate new fields for the form.
 Now when you rerun your spec with bundle exec rspec spec/features/creating

_tickets_spec.rb, all of the scenarios in the feature will fail for the same reason:

1) Users can create new tickets with valid attributes
Failure/Error: click_link "New Ticket"
ActionView::Template::Error:
undefined local variable or method `new_attachment_path' for ...

The “Add another file” link uses the new_attachment_path route, but the route
doesn’t yet exist. It should point to the new action of the AttachmentsController, so
you can edit the routes you wrote in the previous section to add the new action.

Rails.application.routes.draw do
...
resources :attachments, only: [:show, :new]

end

This action isn’t defined at the moment, so the feature still won’t work. Therefore, the
next step is to define the action you need.

9.5 Responding to an asynchronous request
The job of the new action in AttachmentsController is to render a single file field for
the ticket form, so users can upload another file. This action needs to render the
fields for an attachment, which you already do in app/views/tickets/_form.html.erb
by using the following lines.

<%= f.simple_fields_for :attachments, child_index: index do |ff| %>
<%= ff.input :file, as: :file, label: "File ##{index += 1}" %>
<%= ff.input :file_cache, as: :hidden %>

<% end %>

Listing 9.45 Changing the index value changes the data submitted

Listing 9.46 config/routes.rb with the added new route

Listing 9.47 Rendering out file fields for all of the ticket’s attachments

Licensed to Mark Watson <nordickan@gmail.com>

318 CHAPTER 9 File uploading

You can reuse this code for the new action in the AttachmentsController. The first
step in doing that is to move that code into a new partial file, located at app/views/
attachments/_form.html.erb.

 Back in app/views/tickets/_form.html.erb, you can then replace the lines, and the
index definition above them, with a call to the partial so that it looks like this:

<div id="attachments">
<h3>Attachments</h3>
<%= render partial: "attachments/form", locals: { f: f, index: 0 } %>

</div>

When you pass the locals option to render, you can set local variables that can be used
in the partial. Local variables in views are usable only in the views or partials in which
they’re defined, unless you pass them through by using locals. You pass through the
starting number of your file field and the form builder object for your ticket form.

 Now you can start building the new action of AttachmentsController, which will
be rendered when you click the “Add another file” link. Start by defining an empty
new action in the controller:

class AttachmentsController < ApplicationController
...

def new
end

end

This will render the view in app/views/attachments/new.html.erb by default. You can
call the form partial you just created from this view in nearly the same way that you
called it in the tickets/_form partial—you’ve just removed the “attachments” prefix
because it’s not needed here.

<%= render partial: "form", locals: { f: f, index: 0 } %>

Now when you rerun the feature with bundle exec rspec spec/features/

creating_tickets_spec.rb, you’ll get a new error:

1) Users can create new tickets with multiple attachments
Failure/Error: Unable to find matching line from backtrace
ActionView::Template::Error:
undefined local variable or method `f' for #<#<Class:...

./app/views/attachments/new.html.erb:1:in ...

Of course, you haven’t defined the f variable in your new view. You can do this by
wrapping some more form setup around the partial call in app/views/attachments/
new.html.erb:

<%= fields_for @ticket do |f| %>
<%= render partial: "form", locals: { f: f, index: 0 } %>

<% end %>

Listing 9.48 app/views/attachments/new.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

319Responding to an asynchronous request

This will define the f variable, but it should raise alarm bells in your head, because
you haven’t defined @ticket yet. Rerunning the spec will verify that this is a problem:

1) Users can create new tickets with multiple attachments
Failure/Error: Unable to find matching line from backtrace
ActionView::Template::Error:
undefined method `model_name' for nil:NilClass

...
./app/views/attachments/new.html.erb:1:in ...

So @ticket is set to nil. You can define @ticket in the new action of Attachments-
Controller to be a new ticket, and then build an attachment for the ticket so that the
form renders a form field, as you did in the new action of the TicketsController.

class AttachmentsController < ApplicationController
...
def new
@ticket = Ticket.new
@ticket.attachments.build
render layout: false

end
end

Here you add the layout option because you don’t want to render the layout of the
page when making this request—the navigation and header and anything else on the
page. You just want to render the new view with none of the wrappers around it. And
because the Ticket object for your form is only a new record, it isn’t important pre-
cisely what object it is; all new Ticket objects are the same until they’re saved to the
database and given a unique identifier.

 If you run the ticket-creation feature now using bundle exec rspec spec/features/
creating_tickets_spec.rb, you’ll see this error come up:

1) Users can create new tickets with multiple attachments
Failure/Error: Unable to find matching line from backtrace
Pundit::AuthorizationNotPerformedError:
Pundit::AuthorizationNotPerformedError

How should you authorize this action? You don’t have any kind of identifying informa-
tion about the ticket, or the project, so you can’t make sure that the user has access to
the project. Should you just skip authorization? Are any kittens going to be harmed if
some user accidentally gets access to this action and sees a couple of empty form
fields? No, not really. So let’s skip authorization for this action by adding a skip_after
_action at the top of the controller.

class AttachmentsController < ApplicationController
skip_after_action :verify_authorized, only: [:new]

...

Listing 9.49 The new action of AttachmentsController

Listing 9.50 Skipping authorization for the new action—it won’t hurt anyone

Licensed to Mark Watson <nordickan@gmail.com>

320 CHAPTER 9 File uploading

When you rerun bundle exec rspec spec/features/creating_tickets_spec.rb,
you now see that it’s unable to see the second file field on this page:

1) Users can create new tickets with multiple attachments
Failure/Error: attach_file "File #2", Rails.root.join...
Capybara::ElementNotFound:
Unable to find file field "File #2"

Clicking the link to “Add another file” is working without raising any errors, but it’s
not actually adding the new form fields to the page. You need to fix this by writing
some code to handle the response.

9.5.1 Appending new content to the form

You’ve configured your “Add another file” link to perform a JavaScript request for the
HTML, by providing the remote: true option. This request is performed by the
jquery-ujs helper, and it provides a lot of events that you can hook into with your own
JavaScript. For example, you can intercept the request before it’s made by listening
for the ajax:before event, or deal with any error that gets raised by the request by lis-
tening for the ajax:error event.

 Let’s look at some CoffeeScript, which you can use to start listening for these spe-
cial events.

LEARNING COFFEESCRIPT

CoffeeScript is, in the words of its website, “a little language that compiles into
JavaScript.” It’s written in a simple syntax, like this:

square = (x) -> x * x

This code compiles into the following JavaScript code:

var square;
square = function(x) {

return x * x;
};

In the CoffeeScript version, you define a variable called square. Because this isn’t yet
initialized, it’s set up using var square; in the JavaScript output. You assign a function
to this variable, specifying the arguments using parentheses (x) and then specifying
the code of the function after ->. The code in the function in this case is converted
into literal JavaScript, making this function take an argument, multiply it by itself, and
return the result.

 Although this is a pretty basic example of CoffeeScript, it shows off the language’s
power. What you’d write with four lines of JavaScript requires just one line of
extremely easy-to-understand CoffeeScript.

 Each time you generate a controller using Rails, a new file called app/assets/
javascripts/[controller_name].coffee is created (as long as you have the coffee-rails
gem in your Gemfile). This file is created so you have a location to put CoffeeScript
code that’s specific to views for the relevant controller. This is helpful in your situation,

Licensed to Mark Watson <nordickan@gmail.com>

321Responding to an asynchronous request

because you’re going to use CoffeeScript to handle the response from the “Add
another file” link.

 Open app/assets/javascripts/tickets.coffee, and let’s build up the function line by
line so you can understand what you’re doing. Put this line first:

$ ->

It seems like a random amalgamation of characters, but this line is helpful. It calls the
jQuery $ function8 and passes it a function as an argument. This line runs the func-
tion only when the page has fully loaded.9 You need this because otherwise the
JavaScript would be executed before the link you’re going to reference is loaded.

 Now add a second line:

$ ->
$("#add_file").on "ajax:success", (event, data) ->

This line uses jQuery’s $ function to select an element on the page with the ID of
add_file, which just happens to correspond to your “Add another file” link. It will lis-
ten to this link, waiting for it to raise the ajax:success event. When the link raises the
event, then the anonymous method defined with the -> at the end of the line will be
called with the response from the request in the data parameter.

 If this were to be written in plain JavaScript, it would look like this:

$(document).ready(function() {
$("#add_file").on("ajax:success", function(event, data) {
});

});

The CoffeeScript version is a lot less noisy, and much easier to read.
 Now add a third line:

$ ->
$("#add_file").on "ajax:success", (event, data) ->
$("#attachments").append data

Here you take the data that gets returned from the request,
and you use jQuery’s append method to append it to the ele-
ment with the ID attachments. You used that ID earlier, on
the section of the form that wrapped up all of the file fields.

 Figure 9.5 shows what happens in the browser when you visit
the new-ticket form and click the “Add another file” link a cou-
ple of times. You’re actually getting the form fields appended
on the page!

 All that, with just three lines of CoffeeScript. It’s a powerful
little language. But it’s not perfect—you might have noticed
that all of your new fields say “File #1,” instead of using the next

8 Aliased from the jQuery function: http://api.jquery.com/jquery/.
9 For the meaning of loaded, see the documentation of the .ready() method: http://api.jquery.com/ready.

Figure 9.5 New form
fields

Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com/jquery/
http://api.jquery.com/ready

322 CHAPTER 9 File uploading

number. You can fix that by intercepting the request before it’s made, and adding the
number that should be shown for the new field.

9.5.2 Sending parameters for an asynchronous request

In your AttachmentsController new view, you’re still just saying that index should
always be 0 when you pass index: 0 to the _form partial.

 Instead of hardcoding 0 in the new view, you can change it to be a variable that
you’ll assign from the controller.

<%= render partial: "form", locals: { f: f, index: @index } %>

By default, @index will be nil. In the new action of AttachmentsController, set
@index to be read from the params that you’ll pass in when you make the request:

class AttachmentsController < ApplicationController
...
def new
@index = params[:index].to_i
...

You’ve converted params[:index] to an integer, because all params are strings by
default. Now you just need to submit an index variable when you make the request to
the new action.

 What should the variable be? It should be the number of file fields currently on
the page. If you have two fields, and you submit index as 2, then you increment it by 1
and you’ll get back “File #3” for the new third field.

 You can take advantage of another feature of jquery-ujs—if you set the params data
attribute on the link being submitted remotely, then that data will automatically be
submitted with the JavaScript request when you click the link.

 You can default this data attribute to the number of attachments associated with the
ticket, and then increment it every time the link is clicked. In the app/views/tickets/
_form.html.erb view, setting it to 0 can be done like the following.

<%= link_to "Add another file", new_attachment_path, remote: true,
id: "add_file", data: { params: {index: ticket.attachments.size} } %>

This will generate an HTML link on a new-ticket form that looks like the following:

<a id="add_file" data-params="{"index":1}" data-remote="true"
href="/attachments/new">Add another file

The hash of {index: 1} has been encoded and placed inside the data-params attri-
bute. If you now click the link with that data attribute set, it will submit the index
value of 1 to the controller:

Listing 9.51 Without hardcoding the index to be 0

Listing 9.52 Setting the params data attribute in the ticket form

Licensed to Mark Watson <nordickan@gmail.com>

323Responding to an asynchronous request

Started GET "/attachments/new?index=1" for ::1 at [timestamp]
Processing by AttachmentsController#new as JS

Parameters: {"index"=>"1"}
...

Now you just need to update it when the link is clicked. You can add a fourth line to
the CoffeeScript you wrote earlier, to make it look like this:

$ ->
$("#add_file").on "ajax:success", (event, data) ->
$("#attachments").append data
$(this).data "params", { index: $("#attachments div.file").length }

This will set the index part of the params attribute to the number of #attachment
div.file elements on the page, which is the number of file fields. Every time you
click, a new field is added, the length will increase, and the data attribute will be
updated and incremented.

 That’s all there is to it! When your server receives a request at /assets/application.js,
the request is handled by the Sprockets gem. The Sprockets gem then combines jquery,
jquery_ujs, and app/assets/javascripts/tickets.coffee into one JavaScript file, parsing
the CoffeeScript into the following JavaScript:

(function() {
$(function() {
return $("#add_file").on("ajax:success", function(event, data) {

$("#attachments").append(data);
return $(this).data("params", {

index: $("#attachments div.file").length
});

});
});

}).call(this);

This JavaScript is a little more verbose than the CoffeeScript, and it’s another great
demonstration of how CoffeeScript allows you to write more with less. For more infor-
mation about and usage examples of CoffeeScript, see the CoffeeScript site: http://
coffeescript.org.

 Now if you refresh this page and attempt to upload two files, you should see that
it works. Does your scenario agree? Find out by running bundle exec rspec spec/
features/creating_tickets_spec.rb:

5 examples, 0 failures

Yup, all working! You’ve switched the ticket form back to providing only one file field,
but you’ve provided a link called “Add another file” that adds another file field on the
page every time it’s clicked. You originally implemented this link using the :remote
option for link_to, and you added some CoffeeScript magic to work with jquery-ujs
to submit an index data attribute. A couple of other small changes, and you got it all
working neatly again!

Licensed to Mark Watson <nordickan@gmail.com>

http://coffeescript.org
http://coffeescript.org

324 CHAPTER 9 File uploading

 This is a great time to see how the application is faring before committing. Run the
tests with bundle exec rspec. You should see the following:

92 examples, 0 failures

Awesome! Commit it:

$ git add .
$ git commit -m "Provide an 'Add another file' link that uses JavaScript

so that users can upload more than one file"
$ git push

This section showed how you can use JavaScript and CoffeeScript to provide the user
with another file field on the page using some basic helpers. JavaScript is a powerful
language and is a mainstay of web development that has gained a lot of traction in
recent years, thanks to libraries such as the two you saw here, jQuery and CoffeeScript,
as well as larger frameworks such as Ember.js and AngularJS.

 By using JavaScript, you can provide some great functionality to your users. The
best part? Just as you can test your Rails code, you can make sure JavaScript is working
by writing tests that use WebDriver.

9.6 Summary
This chapter covered two flavors of file uploading: single-file and multiple-file. You
first saw how to upload a single file by using the CarrierWave gem to handle the file
when it arrives in your application.

 After you conquered single-file uploading, you tackled multiple-file uploading.
You offloaded the file handling to another model called Attachment, which kept a
record of each file you uploaded. You passed the files from your form by using nested
attributes, which allowed you to create Attachment objects related to the ticket being
created through the form.

 After multiple-file uploading, you learned how to restrict which files are served
through your application by serving them through a controller. By using a controller,
you could use Pundit’s authorize helper to determine whether the currently signed-
in user has access to the requested attachment’s project. If so, you give the user the
requested attachment using the send_file controller method. If not, you deny all
knowledge of the attachment ever having existed.

 Finally, you used a JavaScript library called jQuery, in combination with a simpler
way of writing JavaScript called CoffeeScript, to provide users with an “Add another
file” link that they can click every time they want to add another file to the form.
jQuery does more than simple asynchronous requests, though, and if you’re inter-
ested, the documentation is definitely worth exploring (http://api.jquery.com).

 In the next chapter, you’ll look at giving tickets a concept of state, which enables
users to see which tickets need to be worked on and which are closed. Tickets will also
have a default state so they can be easily identified when they’re created.

Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com

325

Tracking state

In a ticket-tracking application such as Ticketee, tickets aren’t there to provide
information about specific problems or suggestions; rather, they’re there to pro-
vide the workflow for them.

 The general workflow of a ticket starts when a user files the ticket; the ticket will
be classified as a “New” ticket. When the developers of the project look at this ticket
and decide to work on it, they’ll switch the state on the ticket to “open,” and once
they’re done they’ll mark it as “resolved.” If a ticket needs more information,
they’ll add another state, such as “needs more info.” A ticket could also be a dupli-
cate of another ticket, or it could be something that the developers determine isn’t
worth working on. In cases such as these, the ticket may be marked as “duplicate”
or “invalid.”

This chapter covers
■ Adding state to tickets and comments
■ Using Active Record callbacks to trigger state

changes
■ Recording and displaying state transitions
■ Securing specific model attributes elements

against unauthorized modification

Licensed to Mark Watson <nordickan@gmail.com>

326 CHAPTER 10 Tracking state

 The point is that tickets have a workflow, and that workflow revolves around state
changes. In this chapter, you’ll allow the admin users to add states, but not to delete
them. If an admin were to delete a state that was used, you’d have no record of that
state ever existing. It’s best that states not be deleted once they’ve been created and
used on a ticket.

 Alternatively, states you want to delete could be moved into an “archived” state so
they couldn’t be assigned to new tickets but still would be visible on older tickets.

 To track the states, you’ll let users leave a comment. Users will be able to leave a
text comment about the ticket and may also elect to change the state of the ticket by
selecting another state from a drop-down list. But not all users will be able to leave a
comment and change the state—you’ll protect both creating a comment and chang-
ing the state from unauthorized access. By the time you’re done with all of this, the
users of your application will have the ability to add comments to tickets. Some users,
depending on their permissions, will be able to change the state of a ticket through
the comment interface.

 You’ll begin by creating the interface through which a user will create a comment,
and then you’ll build the ability for the user to change the state of a ticket. Let’s get
into it.

10.1 Leaving a comment
The first step is to add the ability to leave a comment. Once you’ve done so, you’ll
have a simple form that looks like figure 10.1.

To get started, you need to write a Capybara feature that goes through the process of
creating a comment. When you’re done with this feature, you’ll have a comment form
at the bottom of the show view for the TicketsController, which you’ll then use as a
base for adding a State select box later on.

 Put this feature in a new file at spec/features/creating_comments_spec.rb and
make it look like the following listing.

require "rails_helper"

RSpec.feature "Users can comment on tickets" do
let(:user) { FactoryGirl.create(:user) }

Listing 10.1 spec/features/creating_comments_spec.rb

Figure 10.1 The “New
Comment” form

Licensed to Mark Watson <nordickan@gmail.com>

327Leaving a comment

let(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket,
project: project, author: user) }

before do
login_as(user)
assign_role!(user, :manager, project)

end

scenario "with valid attributes" do
visit project_ticket_path(project, ticket)
fill_in "Text", with: "Added a comment!"
click_button "Create Comment"

expect(page).to have_content "Comment has been created."
within("#comments") do

expect(page).to have_content "Added a comment!"
end

end

scenario "with invalid attributes" do
visit project_ticket_path(project, ticket)
click_button "Create Comment"

expect(page).to have_content "Comment has not been created."
end

end

Here you jump straight to the ticket’s details page, fill in the comment box with some
text, and create your comment. The visiting of the ticket is inside the scenarios rather
than in the before block, because you’ll use this same feature for permission-checking
later on.

 Try running this feature now by running bundle exec rspec spec/features/
creating_comments_spec.rb. You’ll see this output:

1) Users can comment on tickets with valid attributes
Failure/Error: fill_in "Text", with: "Added a comment!"
Capybara::ElementNotFound:
Unable to find field "Text"

...
./spec/features/creating_comments_spec.rb:17:in ...

2) Users can comment on tickets with invalid attributes
Failure/Error: click_button "Create Comment"
Capybara::ElementNotFound:
Unable to find button "Create Comment"

...
./spec/features/creating_comments_spec.rb:27:in ...

The failing specs mean that you’ve got work to do! Start with the first scenario, the
“happy” path. The label the spec is looking for is going to belong to the comment box
underneath your ticket’s information. Neither the label nor the field are there, and
that’s what the scenario requires, so now’s a great time to add them.

Licensed to Mark Watson <nordickan@gmail.com>

328 CHAPTER 10 Tracking state

10.1.1 The comment form

Let’s begin to build the comment form for the application. This comment form will
initially consist of a single text field into which the user can insert their comment.

 Add a single line to the bottom of app/views/tickets/show.html.erb to render a
comment form partial:

<div id="ticket">
...

</div>

<%= render "comments/form", ticket: @ticket, comment: @comment %>

This line renders the partial from app/views/comments/_form.html.erb, which you
can now create and fill with the content in the following listing.

<header>
<h3>New Comment</h3>

</header>

<%= simple_form_for [ticket, comment] do |f| %>
<%= f.input :text %>
<%= f.submit class: "btn btn-primary" %>

<% end %>

This is pretty much the standard simple_form_for, except you use the Array argu-
ment syntax again, which will generate a nested route.

 You need to do four things before this form will work:

1 Define the @comment variable in the show action of your TicketsController.
This will reference a new Comment instance and give this simple_form_for
something to work with.

2 Create the Comment model and associate it with your Ticket model. This is so
you can create new comment records from the form and associate them with
the right ticket.

3 Define the nested resource in your routes, so that the simple_form_for can
make a POST request to the correct URL—one similar to /tickets/1/comments.
The simple_form_for will generate the URL by combining the classes of the
objects in the array; without this it’ll give you an undefined method of
ticket_comments_path.

4 Generate the CommentsController and the create action along with it, so that
your form has somewhere to go when a user submits it.

Let’s look at each of these in turn. First, you need to set up your TicketsController
to use the Comment model for creating new comments. But to do this, you need to first
build a new Comment object using the comments association on your @ticket object.

Listing 10.2 app/views/comments/_form.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

329Leaving a comment

THE COMMENT MODEL

The first step to getting this comment-creation feature working is to define a
@comment variable for the form in the show action of your TicketsController. Open
up app/controllers/tickets_controller.rb and add the line to define the @comment
instance.

class TicketsController < ApplicationController
...
def show
authorize @ticket, :show?
@comment = @ticket.comments.build

end
...

This action will use the build method on the comments association for your @ticket
object (which is set up by before_action :set_ticket) to create a new Comment
object for the view’s form_for.

 Next, you need to generate the Comment model, so that you can define the comments
association on your Ticket model. This model will need to have an attribute called text
for the text from the form, a foreign key to link it to a ticket, and another foreign key
to link it to a user record so you know who wrote the comment. You can generate this
model using the following command:

$ rails g model comment text:text ticket:references author:references

This will generate a migration that looks like the following listing.

class CreateComments < ActiveRecord::Migration
def change
create_table :comments do |t|

t.text :text
t.references :ticket, index: true, foreign_key: true
t.references :author, index: true, foreign_key: true

t.timestamps null: false
end

end
end

There’s just one tiny change you need to make to this file before you can run it, and
it’s the same change you made to the migration for adding authors to tickets. By
default, using foreign_key: true on t.references :author will mean that it tries to
make a link to an authors table, which you don’t have—an author is actually a user. So
you need to remove the foreign_key: true from that line, and manually add another
foreign key below. It should look like the following.

Listing 10.3 app/controllers/tickets_controller.rb

Listing 10.4 db/migrate/[timestamp]_create_comments.rb

Licensed to Mark Watson <nordickan@gmail.com>

330 CHAPTER 10 Tracking state

class CreateComments < ActiveRecord::Migration
def change
create_table :comments do |t|

t.text :text
t.references :ticket, index: true, foreign_key: true
t.references :author, index: true

t.timestamps null: false
end

add_foreign_key :comments, :users, column: :author_id
end

end

Once that change is made, you can run the migration for this model on your develop-
ment database by running this familiar command:

$ bundle exec rake db:migrate

With that done, your next step is to add the comments association to the Ticket model.
Add this line to app/models/ticket.rb, below the has_many :attachments line.

class Ticket < ActiveRecord::Base
...
has_many :comments, dependent: :destroy
...

You don’t need to add any associations to the Comment model—the model generator did
that automatically when you said that ticket and author were references. But you should
add a validation for the text field, to make sure the user actually enters some text for
the comment. You can do this by adding a validation to app/models/comment.rb. It
should now look like the following listing.

class Comment < ActiveRecord::Base
belongs_to :ticket
belongs_to :author

validates :text, presence: true
end

This will help your second scenario pass, because it requires that an error message be
displayed when you don’t enter any text.

 When you run your feature with bundle exec rspec spec/features/

creating_comments_spec.rb at this midpoint, both specs will fail for the same rea-
son—the simple_form_for can’t find the routing helper it’s trying to use:

Listing 10.5 db/migrate/[timestamp]_create_comments.rb, with fixed foreign keys

Listing 10.6 Defining the comments association for tickets

Listing 10.7 The complete Comment model

Licensed to Mark Watson <nordickan@gmail.com>

331Leaving a comment

1) Users can comment on tickets with valid attributes
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `ticket_comments_path' for ...

2) Users can comment on tickets with invalid attributes
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `ticket_comments_path' for ...

This is because you don’t have a nested route for comments inside your tickets
resource yet. To define one, you’ll need to add it to config/routes.rb. Currently in
your config/routes.rb you’ve got the tickets resource nested inside the projects
resource with these lines:

resources :projects, only: [:index, :show, :edit, :update] do
resources :tickets

end

This generates helpers such as project_tickets_path. But for your form, it’s not
important what comment the project is being created for; you only care about the
ticket, so you can use ticket_comments_path instead.

 This means you’ll need to define a separate non-nested resource for your tickets, and
then a nested resource under that for your comments, as shown in the following listing.

resources :projects, only: [:index, :show, :edit, :update] do
resources :tickets

end

resources :tickets, only: [] do
resources :comments, only: [:create]

end

Defining the new tickets resource with only: [] is a little bit odd, but it works for
this scenario. You don’t actually want to generate any non-nested ticket routes, like
/tickets/2. You’re only using this route in conjunction with the nested comments to
generate URLs like /tickets/2/comments.

 The last three lines in the listing are the lines that define ticket_comments_path,
which will make your form work. In general, it’s a good idea to only go one level deep
with the nesting of your resources. It’s very rare that you’ll need two levels of scoping
information—one will usually do just fine.

 With a route now defined, that error in your spec will be resolved. If you rerun
your specs with bundle exec rspec spec/features/creating_comments_spec.rb,
you’ll get a different error:

1) Users can comment on tickets with valid attributes
Failure/Error: click_button "Create Comment"
ActionController::RoutingError:
uninitialized constant CommentsController

Listing 10.8 config/routes.rb, now with nested comments resources

Licensed to Mark Watson <nordickan@gmail.com>

332 CHAPTER 10 Tracking state

Creating a CommentsController will be your next step.

10.1.2 The comments controller

The comments form you created is submitting a POST request to the create action of
CommentsController, so now you need to make it. You can do this by running the fol-
lowing command:

$ rails g controller comments

A create action in this controller will provide the receiving end for the comment
form, so you can add this now. You’ll need to define a before_action in this control-
ler as well, to load the Ticket object you’ll be creating a comment for. Update your
controller to what’s shown in the following listing.

class CommentsController < ApplicationController
before_action :set_ticket

def create
@comment = @ticket.comments.build(comment_params)
@comment.author = current_user
authorize @comment, :create?

if @comment.save
flash[:notice] = "Comment has been created."
redirect_to [@ticket.project, @ticket]

else
flash.now[:alert] = "Comment has not been created."
@project = @ticket.project
render "tickets/show"

end
end

private

def set_ticket
@ticket = Ticket.find(params[:ticket_id])

end

def comment_params
params.require(:comment).permit(:text)

end
end

Most of this controller should look familiar by now. It’s long, but there are no new
concepts in it.

 In the create action, first note the comment_params. You only allow the :text key
to make it through, and neither of the two associations: the author nor the ticket. This
is because the author should always be the current_user, and you can get the ID of
the ticket from the URL, rather than trust some sort of input from the user.

Listing 10.9 app/controllers/comments_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

333Leaving a comment

 Next, note that if the @comment saves successfully, you redirect back to the ticket’s
page by passing an Array argument to redirect_to, which compiles the path from
the arguments passed in. This is like what form_for does to a nested route such as /
projects/1/tickets/2.

 But if your @comment.save returns false, you’ll actually render the tickets/show
view again, which belongs to an entirely different controller. That’s okay, you’re
allowed to do that, but note that you’re just rendering the specified view, not running
the entire action, so you’ll need to set up all the right variables that the view needs to
render. That’s why you define @project to be the ticket’s project—you don’t need it in
this action, but tickets/show needs it to render correctly.

 Now when you rerun your spec with bundle exec rspec spec/features/
creating_comments_spec.rb, the failure message has mutated again:

1) Users can comment on tickets with valid attributes
Failure/Error: click_button "Create Comment"
NameError:
uninitialized constant Comment::Author

You defined that your comment’s association to a user is called author, but the class for
your author isn’t Author, it’s User. You can fix this by specifying the class_name option
on the author association in the Comment model. Open up app/models/comment.rb
and add the right class_name option:

class Comment < ActiveRecord::Base
...
belongs_to :author, class_name: "User"
...

If you have a sharp memory, you might remember that you also had to do this when
you added an author reference to the Ticket model. Your associations don’t have to
strictly map to your class names, and in some cases they can’t. What if, for example,
you had some approval process for comments, and you wanted to record who had
approved a comment for publishing on the website. That would be a second refer-
ence from the Comment model to the User model—and they couldn’t both be called
:user! Using domain language is much more appropriate. In this hypothetical sce-
nario, you could have both an author and an approver association, both mapping to
the User model.

 Great. What’s failing next? Run your spec with bundle exec rspec spec/features/
creating_comments_spec.rb again and see:

1) Users can comment on tickets with valid attributes
Failure/Error: click_button "Create Comment"
Pundit::NotDefinedError:
unable to find policy CommentPolicy for #<Comment:0x007ff740362880>

Ah, that pesky authorization has tripped you up. You’ll need to get used to authoriz-
ing every action by default and setting up the required policies as you create new mod-
els. You’re authorizing a new Comment model, so Pundit has inferred that you need a
new CommentPolicy class. You’ll create that next.

Licensed to Mark Watson <nordickan@gmail.com>

334 CHAPTER 10 Tracking state

AUTHORIZING THE COMMENTS CONTROLLER

The permissions for creating comments on tickets in Ticketee will be identical to
those for creating a ticket on a project, so we’ll go through this section quickly.

 You can create the CommentPolicy class with the following command:

$ rails g pundit:policy comment

You now need to write a set of specs in the generated spec/policies/comment_policy
_spec.rb file, very similar to those you wrote earlier in ticket_policy_spec.rb.

require "rails_helper"

RSpec.describe CommentPolicy do
context "permissions" do
subject { CommentPolicy.new(user, comment) }

let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) { FactoryGirl.create(:ticket, project: project) }
let(:comment) { FactoryGirl.create(:comment, ticket: ticket) }

context "for anonymous users" do
let(:user) { nil }
it { should_not permit_action :create }

end

context "for viewers of the project" do
before { assign_role!(user, :viewer, project) }
it { should_not permit_action :create }

end

context "for editors of the project" do
before { assign_role!(user, :editor, project) }
it { should permit_action :create }

end

context "for managers of the project" do
before { assign_role!(user, :manager, project) }
it { should permit_action :create }

end

context "for managers of other projects" do
before do

assign_role!(user, :manager, FactoryGirl.create(:project))
end
it { should_not permit_action :create }

end

context "for administrators" do
let(:user) { FactoryGirl.create :user, :admin }
it { should permit_action :create }

end
end

end

Listing 10.10 spec/policies/comment_policy_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

335Leaving a comment

To get these specs running, you’ll need to define a Comment factory. You can do so with
the code from the following listing, in spec/factories/comment_factory.rb.

FactoryGirl.define do
factory :comment do
text { "A comment describing some changes that should be made

to this ticket." }
end

end

Now when you run the new policy specs with bundle exec rspec spec/policies/
comment_policy_spec.rb, you’ll get several failures:

1) CommentPolicy permissions for editors of the project should permit
action :create
Failure/Error: it { should permit_action :create }
CommentPolicy does not allow test2@example.com (User) to perform
:create? on #<Comment:0x007fc4e14e5d10>.

./spec/policies/comment_policy_spec.rb:24:in ...

2) CommentPolicy permissions for managers of the project should permit
action :create
Failure/Error: it { should permit_action :create }
CommentPolicy does not allow test3@example.com (User) to perform
:create? on #<Comment:0x007fc4dc36ab48>.

./spec/policies/comment_policy_spec.rb:29:in ...

3) CommentPolicy permissions for administrators should permit action
:create
Failure/Error: it { should permit_action :create }
CommentPolicy does not allow test5@example.com (Admin) to perform
:create? on #<Comment:0x007fc4e2a3a828>.

./spec/policies/comment_policy_spec.rb:41:in ...

Like before, creating new objects is denied to all users by default, so you need to man-
ually add rules to allow the users who can create tickets through. You can be a little bit
clever about it, however, because the rules for comments will be identical to those for
tickets.

 You can change your CommentPolicy class to inherit from your TicketPolicy class,
as in the following listing.

class CommentPolicy < TicketPolicy
end

No rules? It can just inherit everything from the parent TicketPolicy? Surely it can’t
be that easy…

Listing 10.11 A new shiny Comment factory

Listing 10.12 The much shorter CommentPolicy class

Licensed to Mark Watson <nordickan@gmail.com>

336 CHAPTER 10 Tracking state

1) CommentPolicy permissions for anonymous users should not permit
action :create
Failure/Error: it { should_not permit_action :create }
NoMethodError:
undefined method `project' for #<Comment:0x007fc68ed46b40>

...

Unfortunately it’s not that easy. The create? method in TicketPolicy looks like the
following listing.

class TicketPolicy < ApplicationPolicy
...
def create?
user.try(:admin?) || record.project.has_manager?(user) ||

record.project.has_editor?(user)
end

record is now going to be the Comment instance you pass to the policy. You don’t have
any link between the Comment and Project models yet, so calling record.project is
raising an error. The Ticket model does have a link to the Project model though.
Can you use that instead?

 You can add a link (of sorts) to the Comment model by delegating any calls to
project to the comment’s ticket. Do this by adding the following to app/models/
comment.rb.

class Comment < ActiveRecord::Base
...
delegate :project, to: :ticket

end

This is kind of like a Comment instance saying “if you call project on me, I’m just
going to pass the message on to my ticket, and call ticket.project instead.” That’s
all you need to make this work, amazingly! You can verify it with bundle exec rspec
spec/policies/comment_policy_spec.rb:

6 examples, 0 failures

Now that your CommentPolicy specs are passing and you’re satisfied that you’re cor-
rectly authorizing the create action of your CommentsController, you can return to
the previously failing comment-creation spec. Run that again with bundle exec rspec
spec/features/creating_comments_spec.rb and see what failures shake out:

1) Users can comment on tickets with valid attributes
Failure/Error: within("#comments") do
Capybara::ElementNotFound:
Unable to find css "#comments"

Listing 10.13 The existing create? method in TicketPolicy

Listing 10.14 The power of delegation

Licensed to Mark Watson <nordickan@gmail.com>

337Leaving a comment

You’re making a lot of progress! You’re now able to create a comment in your applica-
tion, and the “Comment has been created” text displays on the page too. All that’s left
to do is to show the comment itself.

 You made the executive decision to display previous comments on the ticket inside
an HTML element with the id of comments, but you haven’t added that element to the
show template yet.

 Add this element to the app/views/tickets/show.html.erb template by adding the
following code above the spot where you render the comment form partial.

<header>
<h3>Comments</h3>

</header>

<div id="comments">
<% if @ticket.comments.persisted.any? %>
<%= render @ticket.comments.persisted %>

<% else %>
<p>There are no comments for this ticket.</p>

<% end %>
</div>

<%= render "comments/form", ticket: @ticket, comment: @comment %>

Here you create the element that the scenario requires: one with an id attribute of
comments.

 You also use a new method here, called persisted, on your relation of comments.
You need to do this because you’ve added an unpersisted (not saved in the database)
comment to the list when you did @ticket.comments.new, to render with the com-
ment form. You don’t want to display that new comment in your list of all the posted
comments, so you’ll filter it out.

Listing 10.15 app/views/tickets/show.html.erb

Shouldn’t we just use delegation and inheritance all the time?
Inheritance works really well here because the permission rules for comments and
tickets are identical. If the rules for either model were to change significantly, it would
be better to change the CommentPolicy to extend from ApplicationPolicy in-
stead, and define new separate rules inside CommentPolicy.

We’ve also very deliberately left the tests as uncomplicated as possible, while mak-
ing the code a bit smarter. You can get away with this because you’ve got the tests
to verify the behavior of your code, but if you accidentally introduce a bug into the
tests by being too clever, you don’t have any more safety nets to catch it.

Your tests should also be a little dumb, and not know the inner workings of the class
they’re testing. All they care about is input and output.

Licensed to Mark Watson <nordickan@gmail.com>

338 CHAPTER 10 Tracking state

 To do this, you can define a new scope in the Comment model. We first looked at
scopes in chapter 7 when we looked at filtering out archived users, and you can write
another here to filter out unpersisted comments.

 Inside the Comment model in app/models/comment.rb, add the following scope.

class Comment < ActiveRecord::Base
...
scope :persisted, lambda { where.not(id: nil) }
...

It’s another very simple scope that simply selects all comments where the id field is
not nil. Any persisted object will have a numerical ID, so this filters out non-persisted
ones. Easy.

 You also check if there are no comments by using the any? method from Active
Record and displaying an appropriate no-comments message if this is the case. This
will do a light query, similar to the following, to check if there are any comments:

SELECT 1 AS one FROM "comments" WHERE "comments"."ticket_id" = 1 LIMIT 1

If there are any records in the comments table with a ticket_id of 1, this just returns
the number 1 to Active Record. It also limits the result set to 1, which will stop looking
after it finds the first comment on the ticket, resulting in a super-fast query. (You also
used any? back in chapter 9, when you checked if a ticket had any attachments.)

 You could use empty? here instead, but that would load the comments association
in its entirety and then check to see if the array was empty. If there were a lot of com-
ments, this approach would be slow. By using any?, you stop this potential perfor-
mance issue from cropping up.

 Inside this div, if there are comments, you call render and pass it the argument of
@ticket.comments.persisted.

 The use of render in this form will cause Rails to render a partial for every single
element in this collection and to try to locate the partial using the first object’s class
name.

 Objects in this particular collection are of the Comment class, so the partial Rails will
try to find will be at app/views/comments/_comment.html.erb. This file doesn’t exist
yet, but you can create it and fill it with the content from the following listing.

<blockquote class="comment">
<%= simple_format(comment.text) %>
<footer>
<%= time_ago_in_words(comment.created_at) %> ago
by <cite><%= comment.author %></cite>

</footer>
</blockquote>

Listing 10.16 Defining a persisted scope

Listing 10.17 app/views/comments/_comment.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

339Leaving a comment

The class method from this tag is used
to style your comments so that they’ll
look like figure 10.2.

 Whoa, the text in those comments is
a little big! You can tweak the size of the
font with the following style. Place it in
app/assets/stylesheets/tickets.scss:

blockquote.comment p {
font-size: 14px;

}

The new comment style is shown in fig-
ure 10.3. Much better.

 With the code in place not only to cre-
ate comments but also to display them,
your feature should pass when you run it
with bundle exec rspec spec/features/
creating_comments_spec.rb:

2 examples, 0 failures

With this form added to the ticket’s page, users are now able to leave comments on
tickets. You’ve done some authorization in your CommentsController too—viewers of
a project can’t leave comments, but editors and managers can.

 However, you haven’t done anything to hide the “New Comment” form on the ticket
page. Viewers of a project will still be able to see the form, fill it out, and submit it—and
then they’ll be told that they’re not allowed to do that. It’s not a great user experience.
You should hide the form if the user doesn’t have permission to submit a comment.

 You should start by adding some tests to make sure that the form is hidden under
some circumstances. In the past you’ve done this by adding new scenarios to your
hidden-links scenario—you can do that again here.

 Open spec/features/hidden_links_spec.rb, and add some more scenarios for the
“New Comment” form:

RSpec.feature "Users can only see the appropriate links" do
...

context "non-admin users (project viewers)" do
...

scenario "cannot see the New Comment form" do
visit project_ticket_path(project, ticket)
expect(page).not_to have_heading "New Comment"

end
end

context "admin users" do
...

Figure 10.2 A comment, in its natural habitat

Figure 10.3 After we’ve fixed the size of the
text. The comment text is now the same size as
the author line below it.

Licensed to Mark Watson <nordickan@gmail.com>

340 CHAPTER 10 Tracking state

scenario "can see the New Comment form" do
visit project_ticket_path(project, ticket)
expect(page).to have_heading "New Comment"

end
end

If you run these specs now with bundle exec rspec spec/features/hidden_links
_spec.rb, you’ll get some failures, but they don’t fail for the reasons you might
expect:

1) Users can only see the appropriate links non-admin users (project
viewers) cannot see the New Comment form
Failure/Error: expect(page).not_to have_heading "New Comment"
expected #<Capybara::Session:0x007fa10e49c918> to respond to
`has_heading?`

./spec/features/hidden_links_spec.rb:56:in ...

2) Users can only see the appropriate links admin users can see the New
Comment form
Failure/Error: expect(page).to have_heading "New Comment"
expected #<Capybara::Session:0x007fa10e49c918> to respond to
`has_heading?`

./spec/features/hidden_links_spec.rb:95:in ...

You’ve used a method called have_heading in your spec, but that method doesn’t
exist. In the past you’ve used methods like have_content that haven’t existed either,
so what’s going on? This is a little bit of RSpec magic—internally it will make this trans-
lation:

You write this...
expect(page).to have_heading("New Comment")

and RSpec converts it to this!
expect(page.has_heading?("New Comment")).to be_true

The have_heading assertion gets converted into the has_heading? question. The
same thing happens with have_content—it gets converted to has_content?, which is
a method defined in Capybara.1 You can define your own methods like this—in this
case, a has_heading? method that will test what you want to test.

 This will be another support method that you can use in multiple specs, and as
such you should define it in a new file inside the spec/support folder. Call it
capybara_matchers.rb.

module CapybaraMatchers
def has_heading?(text)
has_css?("h1, h2, h3, h4, h5, h6", text: text)

1 www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Matchers#has_text%3F-
instance_method

Listing 10.18 spec/support/capybara_matchers.rb

Licensed to Mark Watson <nordickan@gmail.com>

www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Matchers#has_text%3F-instance_method
www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Matchers#has_text%3F-instance_method

341Leaving a comment

end
end

Capybara::Session.include(CapybaraMatchers)

You’ve defined a custom has_heading? method, and then included it in Capybara’s
Capybara::Session module so that you can use it on any page references, which are
instances of Capybara::Session.

Now when you run bundle exec rspec, you get just one failure:

1) Users can only see the appropriate links non-admin users (project
viewers) cannot see the New Comment form
Failure/Error: expect(page).not_to have_heading "New Comment"
expected #has_heading?("New Comment") to return false, got true

./spec/features/hidden_links_spec.rb:56:in ...

And now you can make it pass!
 As you’ve done in the past, you can use Pundit’s policy view helper to hide the

form from users who shouldn’t see it. You can wrap the comment form partial in app/
views/tickets/show.html.erb in this helper like so:

<% if policy(@comment).create? %>
<%= render "comments/form", ticket: @ticket, comment: @comment %>

<% end %>

Now if you were to log in as a viewer of a project, you’d be able to see all of the exist-
ing comments, but not leave a new one. That’s good to see. Your tests will verify this—
running bundle exec rspec will give you this output:

104 examples, 0 failures, 2 pending

Alternate methods of implementing has_heading
The has_heading method we define here could also be written as another custom
RSpec matcher, like the following:

RSpec::Matchers.define :have_heading do |text|
match do |page|
page.has_css?("h1, h2, h3, h4, h5, h6", text: text)

end

failure_message do
"Expected page to have heading '#{text}'"

end

failure_message_when_negated do |policy|
"Expected page not to have heading '#{text}'"

end
end

We think adding the method directly to Capybara::Session is more idiomatic, as it
more closely matches how Capybara’s other matchers are implemented. You can
also use both has_heading? and have_heading and get the same result.

Licensed to Mark Watson <nordickan@gmail.com>

342 CHAPTER 10 Tracking state

The two pending tests in this output are from spec/helpers/comments_helper
_spec.rb and spec/models/comment_spec.rb. You can delete those two files, as they
don’t contain any useful tests.

 If you rerun bundle exec rspec, you’ll see this:

102 examples, 0 failures

Good stuff! Now commit and push this:

$ git add .
$ git commit -m "Authorized users can now leave comments on tickets"
$ git push

This feature of your application is useful because it provides a way for users of a proj-
ect to have a discussion about a ticket and keep track of it. Next up, you’ll add a way to
provide additional context to this ticket by changing states.

10.2 Changing a ticket’s state
States help standardize the way a ticket’s
progress is tracked. By glancing at the state
of a ticket, a user can determine if that
ticket needs more work or if it’s complete,
as shown in figure 10.4.

 To allow users to change a ticket’s state,
you’ll add a select box on the comment
form, from which a state can be selected.
These states will be stored in another table
called states, and they’ll be accessed
through a State model.

 Later on, you’ll give some users the ability to add states for the select box, and
make one of them the default. First, though, you need to create the select box so that
states can be selected.

 As usual, you’ll start creating a comment that changes a ticket’s state by writing
another scenario. This scenario will go at the bottom of spec/features/
creating_comments_spec.rb, and it’s shown in the following listing.

RSpec.feature "Users can comment on tickets" do
...
scenario "when changing a ticket's state" do
visit project_ticket_path(project, ticket)
fill_in "Text", with: "This is a real issue"
select "Open", from: "State"
click_button "Create Comment"

expect(page).to have_content "Comment has been created."
within("#ticket .state") do

Listing 10.19 Testing that users can change the state of a comment

Figure 10.4 A ticket’s state

Licensed to Mark Watson <nordickan@gmail.com>

343Changing a ticket’s state

expect(page).to have_content "Open"
end

end
end

In this scenario, you go through the process of creating a comment, much like in the
previous scenario in this file, but this time you select a state. This is the first part of the
scenario, and you can expect it to fail because you don’t have a State select box yet.

 After the comment is created, you should see the state appearing in the #ticket
.state area. This is the second part of the scenario that will fail.

 When you run this scenario with bundle exec rspec spec/features/creating
_comments_spec.rb, it will fail like this:

1) Users can comment on tickets when changing a ticket's state
Failure/Error: select "Open", from: "State"
Capybara::ElementNotFound:
Unable to find select box "State"

As you can see from this output, the line that attempts to select “Open” from “State”
can’t find the select box because you haven’t added it yet. With this select box, users of
your application should be able to change the ticket’s state by selecting a value from it,
entering some comment text, and clicking the Create Comment button. Before you
do all that, however, you need to create the State model and its related table, which is
used to store the states.

10.2.1 Creating the State model

Right now you need to add a select box.
When you’re done, you should have one
that looks like figure 10.5.

 The states in the select box will be pop-
ulated from the database, because you
want users to eventually be able to create their own states. For now, you’ll define this
State model to have a name field as well as a color2 field, which will define the colors
of the label for each state.

 Create this State model and its associated migration by running this command:

$ rails g model state name:string color:string

But don’t run the migration just yet!
 Before running the migration you just created, you’ll need to define a way for

states to link to comments and to tickets, but there are a few things worth mentioning
beforehand. For comments you’ll want to track that a comment has changed the
ticket’s state, and for tickets you’ll want to track the current state of the ticket. You’ll
use references on the Ticket and Comment models for this, and, as a bonus, you can

2 This is not our preferred way of spelling “colour,” but we’re trying to please our audience.

Figure 10.5 The State select box

Licensed to Mark Watson <nordickan@gmail.com>

344 CHAPTER 10 Tracking state

add these fields to the migration. You can also remove the timestamps call from
within create_table, as it’s not important when states were created or updated.

 When you’re done, the whole migration should look like the following listing.

class CreateStates < ActiveRecord::Migration
def change
create_table :states do |t|

t.string :name
t.string :color

end

add_reference :tickets, :state, index: true, foreign_key: true
add_reference :comments, :state, foreign_key: true

end
end

In this migration, you use the index: true option on the reference to add a database
index on the tickets table’s state_id field. By adding an index on this field, you can
speed up queries that search for tickets that have a particular value in this field.

 The downsides of indexing are that it will result in slower writes and use more disk
space, but the benefits far outweigh these. It’s always important to have indexes on
non-primary-key fields that you do lookups on because of the great read-speed
increase.3 Applications generally read from the database more often than write to it.

 Run this migration now by running this command:

$ bundle exec rake db:migrate

There you have it! The State model is up and running. You can now associate this
class with the Comment class by adding the following line to the top of the Comment
model’s definition:

class Comment < ActiveRecord::Base
belongs_to :state
...

The state method provided by this
belongs_to will be used shortly to display
the state on the ticket page, as shown in
figure 10.6.

 Before doing that, however, you’ll
need to add the select box for the state to
the comment form.

Listing 10.20 db/migrate/[date]_create_states.rb

3 The primary key, in this case, is the id field, which is automatically created for each model by create_table.
Primary key fields are, by default, indexed.

Figure 10.6 How we’ll display the current state
on a ticket’s page

Licensed to Mark Watson <nordickan@gmail.com>

345Changing a ticket’s state

10.2.2 Selecting states

In your comment form partial, you can add the select box underneath the text box.

<%= simple_form_for [ticket, comment] do |f| %>
<%= f.input :text %>
<%= f.association :state %>
<%= f.submit class: "btn btn-primary" %>

<% end %>

What … that’s it? Yes, that’s really all you need to do. Simple Form is very, very clever—
if you tell your form that :state is an association like this, it will inspect your model to
learn that the state field is a reference to the State class, and it will create a select box
on your form, prepopulated with all of the states from the states table. Wow.

For a ticket that has its state set to “New,” the select box generated by f.association
:state could look like this:

<select class="select optional form-control" name="comment[state_id]"
id="comment_state_id">
<option value="1" selected="selected">New</option>
<option value="2">Open</option>
<option value="3">Closed</option>

</select>

The first option tag in the select tag has an additional attribute: selected. When
this attribute is set, that option will be the one selected as the default for the select.

 Which option tag gets the selected attribute is determined by the :selected
option for f.association. The value for this option is the corresponding value
attribute for the option tag. By default, Simple Form will use the state_id value of
the comment object, because you’re in a form for a comment. For example, if this
comment object had a state_id of 2, and the state with the ID 2 had the name
“Rejected,” then “Rejected” would automatically be selected in the state select box
for the comment. Nifty!

Listing 10.21 app/views/comments/_form.html.erb with added State select box

Using normal Rails form helpers instead
If you were using the normal Rails form helpers instead of Simple Form, the code
would be significantly more complicated here. You’d have to manually load a list of
State instances in your controller to display on the form, and your form code would
look something like the following:

<%= f.label :state_id %>
<%= f.select :state_id, @states.map { |s| [s.name, s.id] } %>

Simple Form really does make your forms so much simpler, and it’s a gem we love
using!

Licensed to Mark Watson <nordickan@gmail.com>

346 CHAPTER 10 Tracking state

 With the select box in place, you’re almost at the point where this scenario will pass.
You can see how far you’ve gotten by running bundle exec rspec spec/features/
creating_comments_spec.rb:

1) Users can comment on tickets when changing a ticket's state
Failure/Error: select "Open", from: "State"
Capybara::ElementNotFound:
Unable to find option "Open"

The state field is rendering correctly, but it’s empty—there’s no “Open” option to
select. You don’t have any states in the database, so you have to add one.

 To do this, add a line in your state-changing scenario to create a new State object:

RSpec.feature "Users can comment on tickets" do
...

scenario "when changing a ticket's state" do
FactoryGirl.create(:state, name: "Open")
...

For this to work, you’ll need to define a state factory. Do that in a new file called
spec/factories/state_factory.rb using the content from the following listing.

FactoryGirl.define do
factory :state do
name "A state"

end
end

Now that the state factory is defined, when you rerun bundle exec rspec spec/
features/creating_comments_spec.rb, the final scenario will fail with this error:

1) Users can comment on tickets when changing a ticket's state
Failure/Error: within("#ticket .state") do
Capybara::ElementNotFound:
Unable to find css "#ticket .state"

This output means it’s looking for any element with the id attribute of ticket that
contains any type of element with the class of state, but it can’t find it. This should
be easy to fix; you just need to display the state you’re saving on the page.

 Rather than putting the state inside the show view of TicketsController, let’s try
putting it in a partial. This will allow you to reuse this code to display a state wherever
you need it in the future. Additionally, you can apply a dynamic class around the state
so you can style it later.

 Create the new partial at app/views/states/_state.html.erb and fill it with the fol-
lowing content.

Listing 10.22 spec/factories/state_factory.rb

Licensed to Mark Watson <nordickan@gmail.com>

347Changing a ticket’s state

<span class="state state-<%= state.name.parameterize %>">
<%= state -%>

To style the element, you need a valid CSS class name, which you can get by using the
parameterize method. If, for example, you had a state called “Drop bears strike with-
out warning!” and you used parameterize on it, all the spaces and characters that
aren’t valid in URLs would be stripped, leaving you with “drop-bears-strike-without-
warning,” which is a perfectly valid CSS class name. You’ll use this generated class
name later on to style the state using the color attribute of the state.

 You’ll now render this partial as part of the table displaying a ticket’s attributes.
Add another row at the bottom of the table in app/views/tickets/show.html.erb,
using the following line.

<table id="attributes">
...

<% if @ticket.state.present? %>
<tr>

<th>State:</th>
<td><%= render @ticket.state %></td>

</tr>
<% end %>

</table>

You use the short form of rendering a partial here again, and you conditionally ren-
der it if the ticket has a state. If you didn’t have the if around the state, and the
state was nil, this would raise an exception—the partial would try to call nil.name
.parameterize when generating a class name for the state.

 Now that you have the name of the state on the page, rerun the spec. Have you
missed anything?

1) Users can comment on tickets with valid attributes
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `state' for #<Ticket:0x007fa9c1dc6cd0>

All three of the specs are failing! Huh? Didn’t you add a state association to the
Ticket model? You added the right state_id field to the tickets table of the data-
base when you created the states table…but you didn’t add the state association to
the Ticket model.

 Only comments have a state at the moment, not tickets. So you’ll need to add the
association between Ticket and State in your Ticket model. This method should go
directly below the belongs_to :author line in app/models/ticket.rb.

Listing 10.23 Defining what a state looks like

Listing 10.24 Displaying the current state of a ticket

Licensed to Mark Watson <nordickan@gmail.com>

348 CHAPTER 10 Tracking state

class Ticket < ActiveRecord::Base
...
belongs_to :state
...

If you run the feature again with bundle exec rspec spec/features/creating
_comments_spec.rb, it will still fail. Aww.

1) Users can comment on tickets when changing a ticket's state
Failure/Error: within("#ticket .state") do
Capybara::ElementNotFound:
Unable to find css "#ticket .state"

All these failures are tiring, but at least you’re running out of things that can go wrong
as you fix them one at a time. The #ticket .state element still isn’t displaying on the
ticket’s show view, which only happens if @ticket.state isn’t present, meaning it’s nil.

 In your controller you’re creating a new Comment object, and you may think you’re
saving the state you select, inside it. But in the view, you’re displaying the state of
the ticket object, not the comment you just created! How can you get the state saved
on the ticket instance as well?

 You can do this with a callback, defined as part of your Comment model, to set the
ticket’s status when a user changes it through the comment form.

 A callback is a method that’s automatically called either before or after a certain
event occurs. You’ve seen and used controller callbacks before, when you wrote the
before_action and after_action methods. For models, there are before and after
callbacks defined for the following events (where * represents either before or
after):

■ Validating (*_validation)
■ Creating (*_create)
■ Updating (*_update)
■ Saving (*_save)
■ Destroying (*_destroy)

You can trigger a specific piece of code or method to run before or after any of these
events.

 If you define a callback that occurs after a comment is created, you can then copy
the state from the comment to the ticket itself. You can use the after_create method
in your Comment model to do this.

class Comment < ActiveRecord::Base
...
after_create :set_ticket_state

end

Listing 10.25 A ticket has a state too!

Listing 10.26 app/models/comment.rb

Licensed to Mark Watson <nordickan@gmail.com>

349Changing a ticket’s state

The symbol passed to the after_create method in listing 10.26 is the name of the
method this callback will call. You can define this method at the bottom of your Comment
model using the code from the following listing.

class Comment < ActiveRecord::Base
...
after_create :set_ticket_state

private

def set_ticket_state
ticket.state = state
ticket.save!

end
end

With this callback and the associated method now in place, the ticket’s state will be set
to the comment’s state after the comment is created. Great! But when you run your
feature again with bundle exec rspec spec/features/creating_comments_spec.rb,
it still fails:

1) Users can comment on tickets when changing a ticket's state
Failure/Error: within("#ticket .state") do
Capybara::ElementNotFound:
Unable to find css "#ticket .state"

Wait, the same error? Even though you’re displaying the ticket state on the page (if
the ticket has one), you’re not seeing it displayed? So the ticket doesn’t have a state…
what did you miss? This shouldn’t be difficult to figure out, but you’re probably sitting
there thinking someone somewhere has made a terrible mistake.

 The subtle bug is one that’s caught us a couple of times in the past—you added a
state field to your form, but you forgot to add it to the list of parameters you’re per-
mitting and whitelisting in your controller. That’s really annoying. Luckily, Rails lets
you configure how you want your app to respond when you have unpermitted param-
eters. By default, you’ll get a little message in your log files like the following:

...
Started POST "/tickets/1/comments" for ::1 at [timestamp]
Processing by CommentsController#create as HTML

Parameters: {"utf8"=>"?", "authenticity_token"=>"VEsOog...",
"comment"=>{"text"=>"This is a test", "state_id"=>"2"}...
Ticket Load (0.1ms) SELECT "tickets".* FROM "tickets" WHERE ...

Unpermitted parameter: state_id
User Load (0.4ms) SELECT "users".* FROM "users" WHERE "users"....
(0.1ms) begin transaction

SQL (0.4ms) INSERT INTO "comments" ("text", "ticket_id", "author_...
...

Listing 10.27 app/models/comment.rb with the callback fully defined

Licensed to Mark Watson <nordickan@gmail.com>

350 CHAPTER 10 Tracking state

It’s really easy to miss, even if you’re looking for it. You can make it much, much more
obvious by changing a configuration option for your test environment. Open the envi-
ronment file that controls your test environment, in config/environments/test.rb,
and add the following line at the bottom of the block.

Rails.application.configure do
...

config.action_controller.action_on_unpermitted_parameters = :raise
end

Rails will now throw a big nasty exception if you pass unpermitted params to your
params.permit method, which you’re doing right now. You can see what this looks like
by rerunning the comment-creation spec, with bundle exec rspec spec/features/
creating_comments_spec.rb:

1) Users can comment on tickets with valid attributes
Failure/Error: click_button "Create Comment"
ActionController::UnpermittedParameters:
found unpermitted parameter: state_id

Ka-booooom!
 This sounds like a good setting to leave on in test mode, so leave that setting in your

test.rb. Now you know what you need to do—permit the state_id parameter. Inside
your CommentsController in app/controllers/comments_controller.rb, permit the
state_id parameter in your comment_params method so it looks like the following.

class CommentsController < ApplicationController
...
def comment_params
params.require(:comment).permit(:text, :state_id)

end
end

That will clear up that unpermitted parameter error. It might clear up more errors
too. Rerun the spec and see:

1) Users can comment on tickets when changing a ticket's state
Failure/Error: expect(page).to have_content "Open"
expected to find text "Open" in "#<State:0x007feddd3b3670>"

You now show something that looks like it might be a state with a lot of added junk. By
default, objects in Ruby have a to_s method that will output the ugly, inspected ver-
sion of this object. By overriding this method in the model to call the name method,
you can get it to display the state’s name rather than its object output. You did this ear-
lier on the User class as well.

Listing 10.28 Configuring the behavior on unpermitted params

Listing 10.29 Now with bonus state_id

Licensed to Mark Watson <nordickan@gmail.com>

351Changing a ticket’s state

 Open your State model in app/models/state.rb and define a new to_s model
that looks like this:

class State < ActiveRecord::Base
...
def to_s
name

end
end

Great! This should mean that the last scenario in your comment-creation feature will
pass. Run it with bundle exec rspec spec/features/creating_comments_spec.rb
and find out:

3 examples, 0 failures

It’s passing! This is a good time to ensure that everything’s working by running bundle
exec rspec:

104 examples, 0 failures, 1 pending

The one pending spec that’s cramping your style is located in spec/models/
state_spec.rb. You can delete this file, as it doesn’t contain any useful specs.

 When you rerun bundle exec rspec, you’ll see it’s now lovely and green:

103 examples, 0 failures

Excellent, everything’s fixed. Commit these changes now:

$ git add .
$ git commit -m "Tickets can have a state assigned when comments are

created"
$ git push

You can now change a ticket’s state by adding a new comment with a state, but then if
you load the comment form again, the state form will be a little misleading, as you can
see in figure 10.7.

Figure 10.7 The state
field has been reset!

Licensed to Mark Watson <nordickan@gmail.com>

352 CHAPTER 10 Tracking state

You’ve marked the ticket as “Closed,” but if you add a new comment just by typing
some text and submitting it, then the state will be reset to “New”! It would be great if
the default value of the state field were the current state of the ticket, to prevent acci-
dental changing of state. We’ll look at fixing that next.

10.2.3 Setting a default state for a comment

At the moment, you’re not specifying which state should be set as the default value of
the select box. You only have the following code in your comment form:

<%= f.association :state %>

Simple Form will automagically set the selected value of the state box to be whatever
the state_id property of the comment is. By default, the state_id of a comment is
nil, which you can verify by instantiating a new Comment instance in a Rails console.

irb(main):001:0> Comment.new
=> #<Comment id: nil, text: nil, ticket_id: nil, author_id: nil,

created_at: nil, updated_at: nil, state_id: nil>

You can fix this by setting the state_id of the newly built Comment object when you
build it in the show action of TicketsController. Open the controller in app/
controllers/tickets_controller.rb, and change the show action to set the state_id.

def show
authorize @ticket, :show?
@comment = @ticket.comments.build(state_id: @ticket.state_id)

end

This will change the default value that gets selected in the “New Comment” form to be
whatever the current state of the @ticket is. Great!

 You’ve now got the ticket status updating along with the comment status. It’s time
to add some seed states to the application, so you can see this functionality working in
your browsers.

10.2.4 Seeding your app with states

Seeds can be added to db/seeds.rb. Add some to the bottom of the file like so:

unless State.exists?
State.create(name: "New", color: "#0066CC")
State.create(name: "Open", color: "#008000")
State.create(name: "Closed", color: "#990000")
State.create(name: "Awesome", color: "#663399")

end

Listing 10.30 Testing out code in rails console

Listing 10.31 Setting the state_id of the comment on the “New Comment” form

Licensed to Mark Watson <nordickan@gmail.com>

353Tracking changes

This will load four states into your system—“New,” “Open,” “Closed,” and “Awesome.”4

Load these seed states into your database by running the following:

$ bundle exec rake db:seed

Now when you load up your Ticketee application in your browser, you’ll be able to set
states on your comments, making working with the next section a lot easier.

 Now that you have statuses in the system, it would be handy to know what the time-
line of status changes looks like. You can display this on the comment by showing a lit-
tle indication of whether the state has changed during that comment. Let’s work on
adding this little tidbit of information to the comments right now.

10.3 Tracking changes
When a person posts a comment that changes the
state of a ticket, you’d like this information to be
displayed on the page next to the comment, as
shown in figure 10.8.

 By visually tracking this state change, along with the text of the comment, you can
provide context as to why the state was changed. At the moment, you only track the
state of the comment and don’t even display it alongside the comment’s text; you only
use it to update the ticket’s status.

10.3.1 Ch-ch-changes

What you’ll need now is some way of making sure that, when changing a ticket’s state
by way of a comment, a record of that change appears in the comments area. A sce-
nario would fit this bill, and luckily you wrote one that fits almost perfectly. This would
be the final scenario (“Changing a ticket’s state”) in spec/features/creating
_comments_spec.rb.

 To check for the state-change text in your “When changing a ticket’s state” sce-
nario, you can add these lines to the bottom of the scenario:

scenario "when changing a ticket's state" do
...
within("#comments") do
expect(page).to have_content "state changed to Open"

end
end

If the ticket was assigned the “New” state, this text would say “state changed from New
to Open,” but because your tickets don’t have default states assigned to them yet, the
previous state for the first comment will be nil. We wouldn’t want to display the text
“state changed from nil to Open,” so we’ll shortcut it to just “state changed to Open.”

4 The hexadecimal color #663399 is also known as “rebeccapurple,” in memory of Rebecca Meyer, beloved
daughter of CSS guru Eric Meyer.

Figure 10.8 State transitions

Licensed to Mark Watson <nordickan@gmail.com>

354 CHAPTER 10 Tracking state

When you run this scenario using bundle exec rspec spec/features/

creating_comments_spec.rb, it will fail:

1) Users can comment on tickets when changing a ticket's state
Failure/Error: expect(page).to have_content "state changed to Open"
expected to find text "state changed to Open" in "This is a real
issue less than a minute ago by test3@example.com (User)"

Good. You’ve got a way to test the state message that should appear when a comment
changes the state of the ticket. Now you’d like to track the state that the ticket had
before the comment, as well as the state of the comment itself.

 To track this extra attribute, you’ll need to create another field on your comments
table, called previous_state_id. Before you save a comment, you’ll update this field
to the current state of the ticket. You can then
use this field to show a state transition on a com-
ment, as pictured in figure 10.9.

 With this little bit of information, users can
see which comments changed the ticket’s state. This can be helpful for determining
what steps the ticket has gone through.

 You can create a new migration to add the previous_state_id field to your
comments table by running the following command:

$ rails g migration add_previous_state_to_comments \
previous_state:references

Rails is pretty smart here and would typically use the name of the migration to infer
that you want to add a column called previous_state to a table called comments. You
only have to tell it what the type of this field is, and you do that by passing
previous_state:references to the migration—now Rails knows that it will be adding
a foreign key, so it expands previous_state to add a field called previous_state_id.

 If you open this migration now, you’ll see that it defines a change method that calls
the add_reference method inside it. You can see the entire migration in the following
listing.

class AddPreviousStateToComments < ActiveRecord::Migration
def change
add_reference :comments, :previous_state, index: true,

foreign_key: true
end

end

Like you did with your migration to create comments, you’ll need to fix the usage of
foreign_key: true. You don’t have a previous_states table; a previous state is just an
instance of a state. So update the migration to match the following listing.

Listing 10.32 db/migrate/[timestamp]_add_previous_state_to_comments.rb

Figure 10.9 A state transition

Licensed to Mark Watson <nordickan@gmail.com>

355Tracking changes

class AddPreviousStateToComments < ActiveRecord::Migration
def change
add_reference :comments, :previous_state, index: true
add_foreign_key :comments, :states, column: :previous_state_id

end
end

Now you can run the migration by running bundle exec rake db:migrate.
 To use the previous_state_id field properly, you’re going to need to add another

callback to save it.

10.3.2 Another c-c-callback

To set the previous_state_id field before a comment is created, you’ll use a
before_create callback on the Comment model. A before_create callback is trig-
gered—as the name suggests—before a record is created, but after the validations
have been run. This means that this callback will only be triggered for valid objects
that are about to be saved to the database for the first time. This sounds like the right
time to set the previous state of the ticket to your new comment.

 Put this new callback on a line directly above the after_create inside the Comment
model, because it makes sense to group all your callbacks together and in the order
that they’re called:

class Comment < ActiveRecord::Base
...
before_create :set_previous_state
after_create :set_ticket_state
...

Call the set_previous_state method for this callback, which you’ll define at the bot-
tom of your Comment model, just before the set_ticket_state method, like this:

class Comment < ActiveRecord::Base
...
private

def set_previous_state
self.previous_state = ticket.state

end
...

The previous_state= method you call here isn’t yet defined. You can define this
method by declaring that a Comment object belongs_to a previous_state, which is a
State object. Put this line with the belongs_to in your Comment model:

class Comment < ActiveRecord::Base
belongs_to :previous_state, class_name: "State"
...

Listing 10.33 After fixing the foreign key reference

Licensed to Mark Watson <nordickan@gmail.com>

356 CHAPTER 10 Tracking state

Again you have to specify the class that the previous_state field refers to—by default
Rails would try to use a PreviousState class, due to the name, but you don’t have one
of those—the previous state of a comment is just a normal State.

 With this belongs_to defined, you get the previous_state= method for free, so
your callback should work alright. There’s one way to make sure of this, and that’s to
attempt to display these transitions between states in your view, so that your feature
will potentially pass. You’ll now work on displaying these transitions.

10.3.3 Displaying changes

When you display a comment that changes a ticket’s state, you want to display this
state transition along with the comment. To get this text to show up, start by adding
the following lines to app/views/comments/_comment.html.erb underneath the
blockquote tag.

<p>
<i class="fa fa-gear"></i> state changed from
<%= render comment.previous_state %> to <%= render comment.state %>

</p>

You’ve used the idea of calling render on an object before, knowing that Rails will
look up a partial based on the class of the object. You pass a State object here, in both
comment.previous_state and comment.state, so Rails will load the app/views/state/
_state.html.erb partial you defined earlier.

 There are a couple of hiccups with this though, and a few things you could do bet-
ter. What happens if this is the first comment, and the previous_state is nil? This
won’t work. You’ll be calling render nil, which will blow up with an error:

ActionView::Template::Error ('nil' is not an ActiveModel-compatible
object. It must implement :to_partial_path.):

8:
9: <p>
10: <i class="fa fa-gear"></i> state changed from
11: <%= render comment.previous_state %> to <%= render comment...
12: </p>

app/views/comments/_comment.html.erb:11:in ...

You can add another conditional to your view, to only display the previous state if it exists.

<p>
<i class="fa fa-gear"></i> state changed
<% if comment.previous_state.present? %>
from <%= render comment.previous_state %>

<% end %>
to <%= render comment.state %>

</p>

Listing 10.34 First version of displaying a comment transition

Listing 10.35 Second version of displaying a comment transition

Licensed to Mark Watson <nordickan@gmail.com>

357Tracking changes

This is almost correct, but there’s a slight prob-
lem. Your callback will set the previous_state
regardless of what the current state is, and you
could end up with something like figure 10.10.

 To stop this from happening, you can wrap the whole lot in an if statement.

<% if comment.previous_state != comment.state %>
<p>
<i class="fa fa-gear"></i> state changed
<% if comment.previous_state.present? %>

from <%= render comment.previous_state %>
<% end %>
to <%= render comment.state %>

</p>
<% end %>

Now this text will only show up when the previous state isn’t the same as the current
state.

 You can go one step further and move this code into a helper. You can tell that this
code belongs in a helper because it has more ERB tags than actual HTML code. Views
are more for displaying information; deciding how it should be output should be left
to the helpers and controllers. Move this code into the app/helpers/tickets_helper.rb
file, because this partial is displayed from the show view of the TicketsController.
You’ll have to rewrite it from HTML and ERB to Ruby, but it will be worth it.

 The entire TicketsHelper should now look like the following listing.

module TicketsHelper
def state_transition_for(comment)
if comment.previous_state != comment.state

content_tag(:p) do
value = "<i class='fa fa-gear'></i> state changed"
if comment.previous_state.present?

value += " from #{render comment.previous_state}"
end
value += " to #{render comment.state}"
value.html_safe

end
end

end
end

It’s a little bit longer than the HTML+ERB version of the code, but it’s easier to read—
no <% %> <% %> <% %> obscuring the meaning of the code. It works identically to the pre-
vious version—it checks if the states have changed, and builds up and returns an HTML
string that will conditionally include a record of the previous state as well, if present.

Listing 10.36 Third version of displaying a comment transition

Listing 10.37 app/helpers/tickets_helper.rb

Figure 10.10 State transition from it-
self to itself

Licensed to Mark Watson <nordickan@gmail.com>

358 CHAPTER 10 Tracking state

THE NEW CONTENT_TAG There’s also a new content_tag in this code.
content_tag is a view helper that wraps the content in the block in the tag
specified. In this case, you’ve passed :p, which will wrap the block’s return
value in a paragraph (<p></p>) tag.

You can now replace the whole if statement in app/views/comments/
_comment.html.erb with a single call to your new helper method.

<blockquote class="comment">
...
</blockquote>

<%= state_transition_for(comment) %>

Much neater!
 Next, you can check to see if this is working by running your scenario with bundle

exec rspec spec/features/creating_comments_spec.rb. It will pass:

3 examples, 0 failures

Excellent! You’ve got your application showing users what state a comment has
switched the ticket to. This is a good time to check that you haven’t broken anything.
When you run bundle exec rspec, you should see that everything is A-OK:

103 examples, 0 failures

You have state transitions showing in your application, which is great to see. Commit
and push this to GitHub:

$ git add .
$ git commit -m "Display a comment's state transition"
$ git push

Looking good, right? Wrong. Time to add some styles to your states.

10.3.4 Styling states

Ticketee’s state styles could use a little work—at the
moment you can’t distinguish one state from
another. Look at figure 10.11 and gaze upon their
ugliness. You could distinguish them by using the colors you’ve specified in the attributes.

 Earlier, you wrapped the state name in a special span that will allow you to style these
elements based on the class. For the “New” state, the HTML for the span looks like this:

New

You can use the state class to add generic styles that will apply to all states, and the
state-new class to apply the colors from that specific State record to this element. To
do so, you’ll need to dynamically define some CSS that will apply the colors.

Listing 10.38 Using the state_transition_for helper you defined

Figure 10.11 Ugly, ugly states

Licensed to Mark Watson <nordickan@gmail.com>

359Tracking changes

 The states in your system can change at any time in the future, so you can’t just put
styles in app/assets/stylesheets/application.css for them. To get around this, you can
do two things:

■ Add generic styles for the state class in app/assets/stylesheets/tickets.scss
■ Add specific styles for your individual states in a <style> block in your applica-

tion layout, so you can use the styles for states in every page

The first step is easy—adding styles for the base state class. You’ll base them on Boot-
strap’s label styles, so you can write some CSS that _extends_ those label styles, and
then tweaks them to make them a little bigger and add some extra padding. Place the
following styles at the bottom of app/assets/stylesheets/tickets.scss.

.state {
@extend .label;
font-size: 12px;
padding: 0.3em 0.6em;

}

Listing 10.39 Basic styles for your displayed states

Wait ... styles in your HTML?!
“But wait,” we hear you crying, “why can’t I just make a new stylesheet like
states.css.erb, load the states in it, and generate a stylesheet like that? Dirtying up
the application layout is soooo ugly!”

Well, it is ugly, you’re right, but without a lot of Sprockets hackery, you don’t really
have a choice. You could create a stylesheet called something like states.css.erb,
and fill it with the following code:

<% State.all.each do |state| %>
.state-<%= state.name.parameterize %> {
background-color: <%= state.color %>;

}
<% end %>

If you included this file into your application.css.scss, it would work great…in devel-
opment. You could even change the State instances in your database, or add new
ones, and the stylesheet would be updated with the updated State styles.

But when it comes to deployment, you’ll be using Sprockets to compile stylesheets
just once, at deploy time, so any changes you made to states after deployment would
not be reflected on your site. That would be awful!

Although putting styles in your HTML is ugly, for now it’s a necessary evil. We’ll talk
more about precompilation of stylesheets and other assets when we cover deploy-
ment in chapter 13.

Licensed to Mark Watson <nordickan@gmail.com>

360 CHAPTER 10 Tracking state

The second step is a bit trickier—you’ll have to iterate over your styles in your layout
file in app/views/layouts/application.html.erb, and print out some CSS to apply to
your individual styles. Add them at the bottom of the <head> tag, as follows:

...
<%= javascript_include_tag 'application' %>
<%= csrf_meta_tags %>
<style>
<% State.all.each do |state| %>

.state-<%= state.name.parameterize %> {
background-color: <%= state.color %>;

}
<% end %>

</style>
</head>

With these few lines of code, your states should
now be styled. If you visit a ticket page that has com-
ments that have changed the state, you should see
the state styled, as shown in figure 10.12.

 While you’re in the business of prettying things up, you can also add the state of
your ticket to the listing on app/views/projects/show.html.erb so that users can easily
glance at the list of tickets and see a state next to each of them. Add this to the right of
the ticket name, so that the li element is as follows.

#<%= ticket.id %> -
<%= link_to ticket.name, [@project, ticket] %>
<%= render ticket.state if ticket.state %>

You can also add an extra margin to stop the ticket states pressing right up against
each other, in app/assets/stylesheets/tickets.scss.

#tickets li {
padding-bottom: 10px;

}

See figure 10.13. That’s looking a lot
better!

 You’ve completed all that you need
to do to let users change the state of a
ticket. They can select a state from the
State select box on the comment form,
and when they create a comment, that

Listing 10.40 Displaying the state of tickets on the project page

Listing 10.41 Separating out the ticket listing

Figure 10.12 States, now with 100%
more style

Figure 10.13 Tickets and their states at a glance

Licensed to Mark Watson <nordickan@gmail.com>

361Managing states

ticket will be updated to the new state. Right after the comment’s text on the ticket
page, the state transition is shown and (ideally) the comment’s text will provide con-
text for that change.

 Commit this before you go any further:

$ git add .
$ git commit -m "Prettify states."
$ git push

Why did you add states in the first place? Because they provide a great way of standard-
izing the lifecycle of a ticket. When a ticket is assigned a “New” state, it means that the
ticket is up for grabs. The next phase of a ticket’s life is the “Open” state, which means
that the ticket is being looked into or cared for by somebody. When the ticket is fixed,
it should be marked as “Closed,” perhaps with some information in the related com-
ment about where the fix is located.

 If you want to add more states than these three, you can’t at the moment. But that
would be a useful feature. Tickets could be marked as “Closed” for a few different rea-
sons: one could be “Yes, this is now fixed” and another could be “No, I don’t believe this
is a problem.” A third type could be “I couldn’t reproduce the problem described.”

 It would be great if you could add more states to the application without having to
add them to the state list in db/seeds.rb, wouldn’t it? Well, that’s easy enough. You can
create an interface for the admin users of your application to allow them to add addi-
tional states.

10.4 Managing states
Currently your application has only four states: “New,” “Open,” “Closed,” and “Awe-
some.” If you wanted to add more, you’d have to go into the console and add them
there. Admins of this application should be able to add more states through the appli-
cation itself, without using the console. They should also be able to rename states and
delete them, but only if they don’t have any tickets assigned to them. Finally, the
admins should also be able to set a default state for the application, because no ticket
should be without a state.

 In this section, you’ll start out by writing a feature to create new states, which will
involve creating a new controller called Admin::StatesController. This controller
will provide the admins of your application with the basic CRUD functionality for
states, as well as the ability to mark a state as the default, which all new tickets will then
be associated with.

 We won’t look at adding an edit, update, or destroy action to this controller
because we’ve covered that previously. You can add them yourself if you’d like some
practice.

10.4.1 Adding additional states

You currently have the four default states that come from the db/seeds.rb file in your
application. If the admin users of your application wish to add more, they can’t—not

Licensed to Mark Watson <nordickan@gmail.com>

362 CHAPTER 10 Tracking state

until you’ve created the Admin::StatesController controller and the new and create
actions inside it. These will allow admin users to create additional states, which then can
be assigned to a ticket.

 But before you write any real code, you need to write a feature that describes the
process of creating a state. Put it in a new file called spec/features/admin/
creating_states_spec.rb.

require "rails_helper"

RSpec.feature "Admins can create new states for tickets" do
before do
login_as(FactoryGirl.create(:user, :admin))

end

scenario "with valid details" do
visit admin_root_path
click_link "States"
click_link "New State"

fill_in "Name", with: "Won't Fix"
fill_in "Color", with: "orange"
click_button "Create State"

expect(page).to have_content "State has been created."
end

end

Here you sign in as an admin user and go through the motions of creating a new state.
If you run this new feature using the command bundle exec rspec spec/features/
admin/creating_states_spec.rb, it will fail because it can’t find the “States” link:

1) Admins can create new states for tickets with valid details
Failure/Error: click_link "States"
Capybara::ElementNotFound:
Unable to find link "States"

The “States” link should take you to the index action of the Admin::StatesController,
but it doesn’t. That’s because this link is missing from the admin homepage, located at
app/views/admin/application/index.html.erb. You can add this link now in the Admin
Links list at the bottom of the file.

<div class="col-md-3">
<h2>Admin Links</h2>
<ul class="nav nav-stacked">
<%= link_to "Users", admin_users_path %>
<%= link_to "States", admin_states_path %>

</div>

Listing 10.42 spec/features/admin/creating_states_spec.rb

Listing 10.43 Admin links with the “States” link added

Licensed to Mark Watson <nordickan@gmail.com>

363Managing states

The admin_states_path method won’t be defined yet, but you can fix this by adding
another resources line inside the admin namespace in config/routes.rb, as follows.

namespace :admin do
...
resources :states, only: [:index, :new, :create]

end

DON’T GO CREATING UNUSED URLS! Remember, it’s good practice to only
define the routes you’ll be using. You’re only dealing with listing states and
creating new ones, so you only need the index, new, and create actions.

With this line inside the admin namespace, the admin_states_path method (and its sib-
lings) will be defined. Run the feature again with bundle exec rspec spec/features/
admin/creating_states_spec.rb to see what you have to do next:

1) Admins can create new states for tickets with valid details
Failure/Error: click_link "States"
ActionController::RoutingError:
uninitialized constant Admin::StatesController

Ah, that’s right! You need to generate your controller. You can do this by running the
controller generator:

$ rails g controller admin/states

This will generate an empty Admin::StatesController in app/controllers/admin/
states_controller.rb—enough to make that error go away. When you run the feature
again, you’ll be told that you’re missing the index action from this controller:

1) Admins can create new states for tickets with valid details
Failure/Error: click_link "States"
AbstractController::ActionNotFound:
The action 'index' could not be found for Admin::StatesController

Add this action to the app/controllers/admin/states_controller.rb file now, and make
this controller inherit from Admin::ApplicationController. You know you’ll be list-
ing out all of the currently available states in the system in the view for this action, so
you may as well load them up now. After you’re done, the whole controller class will
appear as shown in the following listing.

class Admin::StatesController < Admin::ApplicationController
def index
@states = State.all

end
end

Listing 10.44 config/routes.rb

Listing 10.45 app/controllers/admin/states_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

364 CHAPTER 10 Tracking state

Next on the menu is defining the view for this action in a brand-new file to be located
at app/views/admin/states/index.html.erb. This view must contain the “New State”
link your feature will go looking for, and it should also include a list of states so that
anyone looking at the page knows which states already exist. The code to do all this is
shown in the following listing.

<header>
<h1>States</h1>

<ul class="actions">
<%= link_to "New State", new_admin_state_path, class: "new" %>

</header>

<ul id="states">
<% @states.each do |state| %>
<%= render "states/state", state: state %>

<% end %>

This is the same format you’ve used for all of your previous views—the header section
at the top, with the “New State” link, and a list of all the existing states. You’re reusing
the state partial that you used to display the states with col-
ors on the ticket page—but you have to tell Rails manually
which partial to use, because now you’re in the admin
namespace (so Rails will only look for the partial in the
app/views/admin folder).

 You can also add a little bit of CSS to make the states
stand out from each other—at the moment they look like
figure 10.14, which isn’t very easy to read (or otherwise aes-
thetically pleasing).

 To separate them a little bit, you can modify the selector
at the bottom of app/assets/stylesheets/application.css.scss
to add this new states list:

#tickets li, #states li {
padding-bottom: 10px;

}

Now you’ll have a pretty list of states displaying in your admin area. Nice.
 With this view now written, your feature will progress a little further but whinge

about the new action when you run bundle exec rspec spec/features/admin/
creating_states_spec.rb:

1) Admins can create new states for tickets with valid details
Failure/Error: click_link "New State"
AbstractController::ActionNotFound:
The action 'new' could not be found for Admin::StatesController

Listing 10.46 app/views/admin/states/index.html.erb

Figure 10.14 Smushed-up
states

Licensed to Mark Watson <nordickan@gmail.com>

365Managing states

You should add the new action to Admin::StatesController if you want to continue
any further. It should be defined as follows inside that controller:

class Admin::StatesController < Admin::ApplicationController
...
def new
@state = State.new

end
end

You now need to create the view for this action at app/views/admin/states/
new.html.erb and fill it in with the following content:

<header>
<h1>New State</h1>

</header>

<%= render "form", state: @state %>

You use a form partial here again, because it’s a best practice and also in case you ever
want to use it for an edit action.

 You can put the form that will be used to create new states in a new file for your
partial, at app/views/admin/states/_form.html.erb. This form is pretty simple—it
only needs a couple of text fields for the name and color, and a Submit button to sub-
mit the form.

<%= simple_form_for [:admin, state] do |f| %>
<%= f.input :name %>
<%= f.input :color %>

<%= f.submit class: 'btn btn-primary' %>
<% end %>

Because the state variable rendered in the form is a new instance of the State
model, the submit method will display a Submit button with the text “Create State.”
That’s just what your feature needs.

 With this form partial done, your feature should run a little further. You can check
this now by running bundle exec rspec spec/features/admin/creating_states
_spec.rb:

1) Admins can create new states for tickets with valid details
Failure/Error: click_button "Create State"
AbstractController::ActionNotFound:
The action 'create' could not be found for Admin::StatesController

Right. You’ll need to create the create action too, which you’ll define inside
Admin::StatesController.

Listing 10.47 app/views/admin/states/_form.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

366 CHAPTER 10 Tracking state

class Admin::StatesController < Admin::ApplicationController
...
def create
@state = State.new(state_params)
if @state.save

flash[:notice] = "State has been created."
redirect_to admin_states_path

else
flash.now[:alert] = "State has not been created."
render "new"

end
end

private

def state_params
params.require(:state).permit(:name, :color)

end
end

There’s nothing here that you haven’t seen many times over by now. With the create
action defined in your Admin::StatesController, you can now run bundle exec
rspec spec/features/admin/creating_states_spec.rb and have it pass:

1 example, 0 failures

Very good! By implementing a feature that lets the admin users of your site create
states, you’ve provided a base on which you can build the other state-related features.

 You shouldn’t have broken anything by making these changes, but it won’t hurt to
run bundle exec rspec to make sure. You should see the following:

105 examples, 0 failures, 1 pending

There’s one pending spec inside spec/helpers/admin/states_helper_spec.rb. You can
delete this file now. When you rerun bundle exec rspec, there should be this great
green output:

104 examples, 0 failures

Celebrate with a glass of ice-cold refreshing Diet Coke,5 and commit these changes
now:

$ git add .
$ git commit -m "Admins can create new states for tickets"
$ git push

With this base defined, you can move on to more exciting things than CRUD, such as
defining a default state for your tickets. You’ll do a lot of CRUD-building in Rails apps,
so hopefully it’s becoming very natural to you by now.

Listing 10.48 The create action in Admin::StatesController

5 Or your preferred beverage of choice.

Licensed to Mark Watson <nordickan@gmail.com>

367Managing states

10.4.2 Defining a default state

Adding a default state for the tickets in your application will provide a sensible way of
grouping tickets that haven’t yet been actioned in the system, making it easier for
them to be found. The easiest way to track which state is the default is to add a Bool-
ean column called default to your states table; the column will be set to true if the
state is the default, and false if not.

 To get started, you need to write a feature that covers changing the default status.
At the end of this feature, you’ll end up with the default field in the states table,
and then you can move on to making the tickets default to this state.

 Create a new feature called spec/features/admin/managing_states_spec.rb and
fill it with the content from the following listing.

require "rails_helper"

RSpec.feature "Admins can manage states" do
let!(:state) { FactoryGirl.create :state, name: "New" }

before do
login_as(FactoryGirl.create(:user, :admin))
visit admin_states_path

end

scenario "and mark a state as default" do
within list_item("New") do

click_link "Make Default"
end

expect(page).to have_content "'New' is now the default state."
end

end

In this scenario, you’ve got one new method call, which you’ll need to define for this
feature to run. This new list_item method will need to return a selector for the list
item with the specified content.

 This method is assisting the Capybara test in its job and will be reusable across
many tests, so you should define it in a new file called spec/support/capybara
_finders.rb. Define it using the code from the following listing.

module CapybaraFinders
def list_item(content)
find("ul:not(.actions) li", text: content)

end
end

RSpec.configure do |c|
c.include CapybaraFinders, type: :feature

end

Listing 10.49 spec/features/admin/managing_states_spec.rb

Listing 10.50 spec/support/capybara_finders.rb

Licensed to Mark Watson <nordickan@gmail.com>

368 CHAPTER 10 Tracking state

This method simply takes some text, finds a list item on the page (that isn’t an action
link) with the specified content, and then returns it. Capybara will then use that ele-
ment as the basis for all actions inside the block. It’s great to write these little helper
methods that make your tests more readable, and it’s so easy to do!

 Now that this method is defined, see what the test says when it’s run using bundle
exec rspec spec/features/admin/managing_states_spec.rb:

1) Admins can manage states and mark a state as default
Failure/Error: click_link "Make Default"
Capybara::ElementNotFound:
Unable to find link "Make Default"

The feature is failing now because it’s found the right list item on the page, but there’s
no “Make Default” link in it. You can fix that now—open the app/views/admin/
states/index.html.erb view and add a new “Make Default” link for each list item.

<% @states.each do |state| %>

<%= render "states/state", state: state %>
<% if state.default? %>
(Default)

<% else %>
<%= link_to "Make Default", make_default_admin_state_path(state) %>

<% end %>

<% end %>

In this view, you have the states being displayed with a “(Default)” label next to them if
they’re indeed the default state. If the state isn’t the default, there’s an option there to
make it the default with the “Make Default” link.

 When you run your feature again with bundle exec rspec spec/features/admin/
managing_states_spec.rb, you’ll find out that you haven’t yet defined the default?
method on your State instances:

1) Admins can manage states and mark a state as default
Failure/Error: visit admin_states_path
ActionView::Template::Error:
undefined method `default?' for #<State id: 9, name: "New"...

We said earlier that you’d do this with a Boolean field on the State model—you need
to set that up now. Generate a migration to create the new field with the following
code:

$ rails g migration add_default_to_states default:boolean

Don’t run this migration just yet. With the default column being a Boolean field, it’s
going to need to know what its default value should be: either true or false. Edit the
migration and define that the default value of the default attribute should be false.

Listing 10.51 Now with added “Make Default” links

Licensed to Mark Watson <nordickan@gmail.com>

369Managing states

class AddDefaultToStates < ActiveRecord::Migration
def change
add_column :states, :default, :boolean, default: false

end
end

With this small change, every State object that’s created will have the default attribute
set to false by default. Now run the migration using bundle exec rake db:migrate.

 Having a field named default will generate getter and setter methods, called
default and default=, on your model for you. But Rails will also create a conve-
nience method called default? for you, because the field is a Boolean. Your test will
get a little further now that this method is defined, so run it again with bundle exec
rspec spec/features/admin/managing_states_spec.rb:

1) Admins can manage states and mark a state as default
Failure/Error: visit admin_states_path
ActionView::Template::Error:
undefined method `make_default_admin_state_path' for #<#< Class:...

You don’t yet have this method defined. It should take you to a new make_default
action in Admin::StatesController, much like edit_admin_state_path takes you to
the edit action.

 To define the new member route, change the resources :states line in the admin
namespace inside config/routes.rb to the following.

Rails.application.routes.draw do
namespace :admin do
...
resources :states, only: [:index, :new, :create] do

member do
get :make_default

end
end
...

With this member route now defined, your feature will complain that it’s missing the
make_default action when you rerun it with bundle exec rspec spec/features/
admin/managing_states_spec.rb:

1) Admins can manage states and mark a state as default
Failure/Error: click_link "Make Default"
AbstractController::ActionNotFound:
The action 'make_default' could not be found for
Admin::StatesController

The make_default action will be responsible for making the state you’ve selected the
new default state, as well as for setting the old default state to not be the default any-
more. You can define this action inside app/controllers/admin/states_controller.rb.

Listing 10.52 db/migrate/[timestamp]_add_default_to_states.rb

Listing 10.53 Adding a new non-resourceful make_default route

Licensed to Mark Watson <nordickan@gmail.com>

370 CHAPTER 10 Tracking state

class Admin::StatesController < Admin::ApplicationController
...
def make_default
@state = State.find(params[:id])
@state.make_default!

flash[:notice] = "'#{@state.name}' is now the default state."
redirect_to admin_states_path

end
...

end

Rather than putting the logic that changes the selected state to the new default inside
the controller, you should place it in the model. To trigger a state to become the new
default state, you’ll call the make_default! method on it. It’s a best practice to put
code that performs functionality like this inside the model, so that it can be in any
place that uses an instance of this model.

 This make_default! method can be defined in the State model.

class State < ActiveRecord::Base
def make_default!
State.update_all(default: false)
update!(default: true)

end
...

There are two parts to this method—first you call update_all to make sure that all
states in the system have their default value set to false (there should be only one,
but it never hurts to make sure); and then you update the current state instance to
have a default value of true.

 When you run your feature again with bundle exec rspec spec/features/admin/
managing_states_spec.rb, you’ll get a happy ending to this feature:

1 example, 0 failures

Great to see! Make sure you haven’t broken anything else in your specs by running
bundle exec rspec:

105 examples, 0 failures

Now that you know you haven’t broken anything, you can commit and push your
changes:

$ git add .
$ git commit -m "Admins can now set a default state for tickets"
$ git push

Listing 10.54 The make_default action in Admin::StatesController

Listing 10.55 app/models/state.rb

Licensed to Mark Watson <nordickan@gmail.com>

371Managing states

You now have a concept of having a default state, but at the moment you’re not actu-
ally using the default state for anything. It would be great if your app automatically
assigned this new state to newly created tickets—we’ll look at implementing that next.

10.4.3 Applying the default state

When a ticket is created now, the state of that ticket will be nil—you’re not assigning
a state anywhere. A state will only be assigned when a comment is created, which isn’t
great. You have a method of setting a default state in our system now—that state
should be automatically assigned to newly created tickets. Because this should be auto-
matic functionality every time anyone creates a ticket, you can implement it with
another callback, this time in your Ticket model.

 You can start by modifying your existing ticket-creation spec to make sure the
default state gets assigned. Add a new definition of a default state to the top of the
spec, as follows.

require "rails_helper"

RSpec.feature "Users can create new tickets" do
let!(:state) { FactoryGirl.create :state, name: "New", default: true }
...

You can verify that the state is assigned to the ticket after you create it:

...
scenario "with valid attributes" do

...
expect(page).to have_content "Ticket has been created."
expect(page).to have_content "State: New"
...

If you run this spec now with bundle exec rspec spec/features/creating_tickets
_spec.rb, it will fail:

1) Users can create new tickets with valid attributes
Failure/Error: expect(page).to have_content "State: New"
expected to find text "State: New" in "Ticketee Toggle navigation..

The state isn’t getting assigned correctly. Now you can implement the functionality
and know that it works, as long as your tests pass.

 You can start by implementing a new callback at the bottom of your Ticket model,
to be run before a ticket is created.

class Ticket < ActiveRecord::Base
...
before_create :assign_default_state

Listing 10.56 spec/features/creating_tickets_spec.rb

Listing 10.57 A new before_create callback in app/models/ticket.rb

Licensed to Mark Watson <nordickan@gmail.com>

372 CHAPTER 10 Tracking state

private

def assign_default_state
self.state ||= State.default

end
end

Is it really that simple? Well, no. If you run the specs again, you’ll see that you haven’t
defined the State.default method anywhere:

1) Users can create new tickets with valid attributes
Failure/Error: click_button "Create Ticket"
NoMethodError:
undefined method `default' for State(id: integer, name: string,
color: string, default: boolean):Class

default needs to be a new class method on the State model in order to return the
state with the field default set to true. You could have done this query directly in the
callback, but that would be exposing the internals of the State model to the Ticket
model. The Ticket model doesn’t care that the default value of a State is decided by
a Boolean value—it just cares that it can ask the State model what the default state is,
and then use it.

 You can define this new default method at the top of the State model.

class State < ActiveRecord::Base
def self.default
find_by(default: true)

end

...

Is it really that simple? Well…yes. Run your spec with bundle exec rspec spec/
features/creating_tickets_spec.rb again to make sure:

5 examples, 0 failures

Perfect! You’re creating a new ticket, and the state that you designated as the default
state is automatically being assigned to the ticket. Make sure you haven’t broken any-
thing else by running bundle exec rspec:

105 examples, 0 failures

Awesome. Commit and push your new changes:

$ git add .
$ git commit -m "Auto-assign the default state to newly-created tickets"
$ git push

Listing 10.58 Looking up the default state in a class method

Licensed to Mark Watson <nordickan@gmail.com>

373Locking down states

10.4.4 Setting a default state in seed states

There’s just one last thing that you need to do with default states—you need to set one
of the states you’ve defined in your seeds as the default state.

 In db/seeds.rb you earlier defined four states:

unless State.exists?
State.create(name: "New", color: "#0066CC")
State.create(name: "Open", color: "#008000")
State.create(name: "Closed", color: "#990000")
State.create(name: "Awesome", color: "#663399")

end

Logically, “New” should be the default state for all newly created tickets, so you can
update that line to also set that state as the default.

State.create(name: "New", color: "#0066CC", default: true)

Easy, done! Now if you were to re-create your database from scratch, you’d have a cor-
rectly set default state, and all tickets you created from then on would have their state
set correctly.

 You’re now very close to being done with states. So far you’ve added the functional-
ity for users to change the state through the comment form and to display the state
transition on a comment, and (just recently) you added the ability for admins to cre-
ate new states and toggle which state is the default.

 At the moment, though, any user is able to change the state of a ticket, which isn’t
a good thing. You’d like some users to have the ability to leave a comment but not to
change the state, so let’s look at creating this feature. This is the final feature you’ll
implement for states.

10.5 Locking down states
Locking down the ability of users to change states is going to take a little more than
hiding the State select box from the form; you also need to tell the application to
ignore the state_id parameter if the user doesn’t have permission to change the
state. You’ll implement this one piece at a time, beginning with ensuring that the
State select box is hidden from those who should be unable to change the state.

10.5.1 Hiding a select box

Earlier on in the chapter, you saw how you can hide the entire form from certain users
by using the Pundit-provided policy view helper. You can also use this helper to hide
parts of the form, like the state field, from users without permission to change the
state. But first, you need to write a spec to ensure that the state box is always hidden
from these users.

Listing 10.59 Marking one of the seed states as the default state

Licensed to Mark Watson <nordickan@gmail.com>

374 CHAPTER 10 Tracking state

 You can add this particular scenario to the bottom of the spec/features/
creating_comments_spec.rb file, because its operation is based on creating a com-
ment. The scenario to ensure that you don’t see this state field is short and simple:

RSpec.feature "Users can comment on tickets" do
...
scenario "but cannot change the state without permission" do
assign_role!(user, :editor, project)
visit project_ticket_path(project, ticket)

expect(page).not_to have_select "State"
end

end

In the requirements for Ticketee, you’ve decided that editors of a project should be
able to leave comments but not change a ticket’s state; only managers of a project
(and admins) can change the state. The scenario is pretty simple—you change the
user’s role on the project to be editor instead of manager and ensure that when the
user views the form, there’s no State select box present.

 When you run this scenario by running bundle exec rspec spec/features/
creating_comments_spec.rb, you’ll see it fail like this:

1) Users can comment on tickets but cannot change the state without permission
Failure/Error: expect(page).not_to have_select "State"
expected not to find select box "State", found 1 match: ""

./spec/features/creating_comments_spec.rb:54:in

This test is correctly failing because the element is found on the page when it
shouldn’t be. Now it’s time to make this test pass.

 To do this, you can use the policy method to check that the user has permission
to change states on this ticket. If the user doesn’t have this permission, you hide the
state field. With this change, your State select box code in app/views/comments/
_form.html.erb will look like the following listing.

<% if policy(ticket).change_state? %>
<%= f.association :state %>

<% end %>

Unfortunately, this little change will make all of the scenarios in your comment-creation
scenario fail:

1) Users can comment on tickets with valid attributes
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `change_state?' for #<TicketPolicy:...

You’ve created a new permission here, the change_state permission, but you haven’t
defined that permission in your TicketPolicy class, so Rails doesn’t know what to do
with it. We’ll address that now.

Listing 10.60 Only show the State select box if the user is allowed to change the state

Licensed to Mark Watson <nordickan@gmail.com>

375Locking down states

10.5.2 Defining the change_state permission

Before you look at implementing the permission in your TicketPolicy class, add
some specs for it. You know which roles should be allowed to change state (manager
and admin) and which roles shouldn’t (viewer and editor), so add those tests to your
TicketPolicy specs in spec/policies/ticket_policy_spec.rb.

context "for anonymous users" do
...
it { should_not permit_action :change_state }

end

context "for viewers of the project" do
...
it { should_not permit_action :change_state }

end

context "for editors of the project" do
...
it { should_not permit_action :change_state }
...

end

context "for managers of the project" do
...
it { should permit_action :change_state }

end

context "for managers of other projects" do
...
it { should_not permit_action :change_state }

end

context "for administrators" do
...
it { should permit_action :change_state }

end

If you run these new specs with bundle exec rspec spec/policies/

ticket_policy_spec.rb, you expect all of them to fail, and they all do:

31 examples, 6 failures

Now you can look at implementing the permission in your TicketPolicy class.
 Open up the class in app/policies/ticket_policy.rb, and look at the methods that

are already defined. You want to allow admins and managers to change the states,
which matches the rule defined in destroy?. You can define a change_state?
method that just calls the destroy? method.

Listing 10.61 Adding specs for the new change_state permission

Licensed to Mark Watson <nordickan@gmail.com>

376 CHAPTER 10 Tracking state

class TicketPolicy < ApplicationPolicy
...
def change_state?
destroy?

end
end

This looks a little odd, but don’t worry. It’s not going to start destroying your tickets
when you’re just trying to change the state of them. It’s just saying, “If the user can
destroy tickets, then they’re allowed to change the ticket state as well.”

 Now if you rerun your TicketPolicy specs with bundle exec rspec spec/
policies/ticket_policy_spec.rb, all will be happy and green:

31 examples, 0 failures

That will resolve the error you saw in the comment-creation spec. Rerun that spec now
with bundle exec rspec spec/features/creating_comments_spec.rb and see what
shakes out:

4 examples, 0 failures

Good! All the scenarios in this feature should now be passing, and all your existing
specs should still be passing too. Make sure by running bundle exec rspec:

112 examples, 0 failures

Commit and push these changes now:

$ git add .
$ git commit -m "Only admins and managers can change states of a ticket"
$ git push

The final piece of the states puzzle is to stop the state parameter from being set in
your CommentsController if a user passes it through and doesn’t have permission to
set states. First, you’ll investigate how a user can fake this request. Then you’ll write a
controller spec that duplicates this and ensures that the state isn’t set.

10.5.3 Hacking a form

Even if your state field is hidden from view, users are still able to submit a form con-
taining this parameter, and your application will accept it. Let’s see this in practice.

 The first things you need to do are create a user and give them read access to a
project, which you can do by starting rails console (or rails c) and running these
commands:

user = User.create!(email: "hacker@ticketee.com", password: "password")
user.roles.create(project: Project.first, role: :editor)

This will create a new user with the email address hacker@ticketee.com, and give them
editor access to the first project in the system, which should be the Sublime Text 3 proj-
ect. (Remember, editors can create tickets and comments, but not change the state of

Listing 10.62 Reusing permissions in TicketPolicy

Licensed to Mark Watson <nordickan@gmail.com>

377Locking down states

tickets.) Quit the console by typing exit, and then start up the application with rails
server. Now you can sign in with this new account, using the password password. Once
you’re in, you should see the page shown in figure 10.15.

 Go into this project and pick any ticket in the list, or create your own. It doesn’t
matter—you just need a ticket. When you’re on the ticket page, save this page by
going to your browser menu and selecting File > Save or File > Save Page As, and save
this file in a memorable location. You’ll be editing this saved file and adding in a State
select box of your own.

 Open the saved file in a text editor, and look for the following line.

<input name="commit" value="Create Comment" class="btn btn-primary"
type="submit">

This is the Submit button for the form to create a new comment. You can add the
state field just above it by adding this code to the page, assuming you know—or can
at least guess—the IDs of the states.

<select id="comment_state_id" name="comment[state_id]">
<option value="1" selected="selected">New</option>
<option value="2">Open</option>
<option value="3">Closed</option>
<option value="4">Awesome</option>

</select>

Save this page in your editor, and then open it up in a browser. You’ll now be able to
choose a state from the select box—it won’t look as pretty as the select box that’s actu-
ally on the site, but it will be perfectly functional.

Listing 10.63 The end of the form you’re going to hack

Listing 10.64 The HTML you can use to hack the form

Figure 10.15 What the user sees

Licensed to Mark Watson <nordickan@gmail.com>

378 CHAPTER 10 Tracking state

 The action of the form tag on this page goes to http://localhost:3000/tickets/
[id]/comments (where [id] is the ID of the ticket you’re viewing). Even though
you’re looking at an HTML file saved on your computer, the form will still submit to
your actual Ticketee app. This URL will take you to the create action inside
CommentsController, which will—you guessed it—create a comment.

BROWSER DIFFERENCES Only Chrome will save the fully qualified URL as the
action of the form tag—Firefox and Safari will save the URL without the host-
name (for example, /tickets/2/comments). If you want to replicate this trick
in Firefox or Safari, you’ll also need to modify the form tag to add the http://
localhost:3000/ part.

Open this saved page in a browser now,
fill in some text for the comment, and
select a value for the state. When you
submit this form, it will create a com-
ment and set the state. You should see
your comment showing the state tran-
sition, as shown in figure 10.16.

 Obviously, hiding the state field
isn’t a foolproof way to protect it. A
better way to protect this attribute
would be to delete it from the param-
eters before it gets to the method that
creates a new comment.

10.5.4 Ignoring a parameter

If you removed the state_id key
from the comment parameters before
they’re passed to the build method
in the create action for CommentsController, this problem wouldn’t happen. Hack-
ers could try to tamper with the form and submit the data, and you’d just silently
delete it before creating the comment.

 You can write a controller test to ensure that this security loophole is forever closed
in your app. To do so, open spec/controllers/comments_controller_spec.rb and set up
a project, ticket, state, and user for the spec you’re about to write by putting the code
from the following listing inside the RSpec.describe CommentsController block.

RSpec.describe CommentsController, type: :controller do
let(:user) { FactoryGirl.create(:user) }
let(:project) { Project.create!(name: "Ticketee") }
let(:state) { State.create!(name: "Hacked") }

Listing 10.65 spec/controllers/comments_controller_spec.rb

Figure 10.16 Hacked state transition

Licensed to Mark Watson <nordickan@gmail.com>

379Locking down states

let(:ticket) do
project.tickets.create(name: "State transitions",

description: "Can't be hacked.", author: user)
end

The state you create will be the one you’ll attempt to transition to in your spec, with
the ticket’s default state being not set, and therefore nil. The user you set up will be
the user you use to sign in and change the state with. You need to set the user attribute
separately from the other ticket attributes because it’s protected from being mass-
assigned. This user has no permissions at the moment, so it won’t be able to change
the states.

 Your spec needs to make sure that a change doesn’t take place when a user who
doesn’t have permission to change the status of a ticket for that ticket’s project sub-
mits a state_id parameter. Put the code in the following listing directly underneath
the setup you just wrote.

context "a user without permission to set state" do
before :each do
assign_role!(user, :editor, project)
sign_in user

end

it "cannot transition a state by passing through state_id" do
post :create, { comment: { text: "Did I hack it??",

state_id: state.id },
ticket_id: ticket.id }

ticket.reload
expect(ticket.state).to be_nil

end
end

To get access to the sign_in method, a helper provided by Devise, you’ll need to
include Devise’s test helpers in your RSpec configuration. To do this, open your spec
configuration in spec/rails_helper.rb, and add the following line at the bottom of
your RSpec.configure block:

RSpec.configure do |config|
...
config.include Devise::TestHelpers, type: :controller

end

Inside the example, you use the post method to make a POST request to the create
action inside CommentsController, passing in the specified parameters. It’s this
state_id parameter that should be ignored in the action.

 After the post method, you use a new method: reload. When you call reload on
an Active Record object, it will fetch a fresh copy of the record from the database. You
use this because the create action will load a fresh copy of the Ticket object from the
database and update it, which won’t affect the instance you’ve created in the test.

Listing 10.66 spec/controllers/comments_controller_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

380 CHAPTER 10 Tracking state

 The final line here asserts that the ticket.state should be nil. When you run
this spec by running bundle exec rspec spec/controllers/comments_controller
_spec.rb, this final line will be the one to fail:

1) CommentsController a user without permission to set state cannot
transition a state by passing through state_id
Failure/Error: expect(ticket.state).to be_nil
expected: nil

got: #<State id: 42, name: "Hacked", color: nil...

The ticket.state is returning a State object because the user has been able to post
it through in the parameter hash. With a failing spec now in place, you can stop this
state parameter from going unchecked. To ignore this parameter, you can remove it
from the params hash if the user doesn’t have permission to change states.

 At the top of the create action, inside of CommentsController, put the following lines:

class CommentsController < ApplicationController
...
def create
whitelisted_params = comment_params

unless policy(@ticket).change_state?
whitelisted_params.delete(:state_id)

end

@comment = @ticket.comments.build(whitelisted_params)
...

You call comment_params first now, to do all of the whitelisting of your params before
you start modifying them. It makes sense to ensure that the params are there
before you try to change them; otherwise you might be trying to delete
params[:comment][:state_id], when params[:comment] doesn’t even exist!

 If the user doesn’t have permission to change the state on the ticket, then you sim-
ply delete that parameter, thereby preventing the user from being able to change the
state. If you rerun your controller spec using bundle exec rspec spec/controllers/
comments_controller_spec.rb, you’ll see that it now passes:

1 example, 0 failures

Great! Now nobody without permission will be able to download the ticket page, make
modifications to it to add a state field, and then change the state.

 You’re done with this feature now, so it’s time to make sure you didn’t break any-
thing with your changes by running bundle exec rspec. You should see that every-
thing is squeaky clean:

113 examples, 0 failures

Great! Commit and push this to GitHub:

$ git add .
$ git commit -m "Protect state_id from users who do

not have permission to change it"
$ git push

Licensed to Mark Watson <nordickan@gmail.com>

381Summary

The CommentsController will now reject the state_id parameter if the user doesn’t
have permission to set it, thereby protecting the form from anybody hacking it to add
a state_id field when they shouldn’t.

 The feature of protecting the state_id field from changes was the final piece of
the state features puzzle. You’ve now learned how to stop a user from changing not
only a particular record when they don’t have permission to, but also a specific field
on a record.

10.6 Summary
We began this chapter by writing the basis for the work later on in the chapter: com-
ments. By letting users posts comments on a ticket, you can let them add further infor-
mation to it and tell a story about it.

 With the comment base laid down, you implemented the ability for users to
change a ticket’s state when they post a comment. You tracked the state of the ticket
before the comment was saved and the state
assigned to the comment so you could show tran-
sitions (as shown in figure 10.17).

 You finished up by limiting the ability to
change states to only those who have permission to do so, much like how you previ-
ously limited the ability to read projects and create tickets in previous chapters. While
doing this, you saw how easy it was for somebody to download the source of your form
and alter it to do their bidding, and then how to protect against that.

 In chapter 11, you’ll add tags to your tickets. Tags are words or short phrases that
provide categorization for tickets, making them easier for users to manage. Addition-
ally, you’ll implement a search interface that will allow users to find tickets with a
given tag or state.

Figure 10.17 Replay: state transitions

Licensed to Mark Watson <nordickan@gmail.com>

382

Tagging

In chapter 10 you saw how to give your tickets states (such as “New” or “Open”) so
that their progress can be indicated. In this chapter, you’ll see how to give your tick-
ets tags. Tags are useful for grouping similar tickets together, whether by Agile iter-
ations, feature sets, or any other method of grouping. Without tags, you could
crudely group tickets together by setting a ticket’s title to something such as “Tag
- [name].” This method, however, is messy and difficult to sort through. Having a
group of tickets with the same tag will make them much easier to find.

 To manage tags, you’ll set up a Tag model, which will have a has_and
_belongs_to_many association to the Ticket model. You’ll set up a join table for this
association, which is a table that contains foreign key fields for each side of the asso-
ciation. A join table’s sole purpose is to join together the two tables whose keys it

This chapter covers
■ Creating a has_and_belongs_to_many

relationship between tickets and tags
■ Restricting access to tag creation and tag

editing
■ Adding search functionality for tickets with a

given tag or state

Licensed to Mark Watson <nordickan@gmail.com>

383

has—in this case, the tickets and tags tables. As you move forward in developing
this association, note that for all intents and purposes, has_and_belongs _to_many
works like a two-way has_many.

 You’ll also create two ways to add tags to a ticket. On the new-ticket page, a text
field beneath the form’s description field will allow users to add multiple tags by using
a comma to separate different tags, as shown in figure 11.1.

 Additional tags can be added on a comment, with a text field providing the inter-
face to add new tags. When a ticket is created, you’ll show these tags underneath the
tag description, as shown in figure 11.2.

 When a user clicks on a tag, they’ll be taken to a page where they can see all tickets
with that particular tag. The actions of adding and removing a tag will both need to be
added to your permission-checking.

 Finally, you’ll implement a way to search for tickets that match a state, a tag, or
both, by using a gem called Searcher. The query will look like tag:iteration_1
state:Open.

 That’s all there is to this chapter! You’ll add tags to Ticketee, which will allow you
to easily group and sort tickets. Let’s dig into the first feature: adding tags to a new
ticket.

Figure 11.1 The tag box

Figure 11.2 Tags for a ticket

Licensed to Mark Watson <nordickan@gmail.com>

384 CHAPTER 11 Tagging

11.1 Creating tags
Tags are useful for making similar tickets easy to find and manage. In this section,
you’ll create the interface for adding tags to a new ticket by adding a new field to the
new-ticket page and defining a has_and_belongs_to_many association between the
Ticket model and the not-yet-existing Tag model.

11.1.1 The tag-creation feature

First you’ll add a text field beneath the description field on the new-ticket page for
tags, like you saw in figure 11.1.

 The words you enter into this field will become the tags for this ticket, and you
should see them on the ticket page. To do this, add a scenario that creates a new ticket
with tags at the bottom of spec/features/creating_tickets_spec.rb, as shown in the fol-
lowing listing.

RSpec.feature "Users can create new tickets" do
...
scenario "with associated tags" do
fill_in "Name", with: "Non-standards compliance"
fill_in "Description", with: "My pages are ugly!"
fill_in "Tags", with: "browser visual"
click_button "Create Ticket"

expect(page).to have_content "Ticket has been created."
within("#ticket #tags") do

expect(page).to have_content "browser"
expect(page).to have_content "visual"

end
end

end

SMALL LIMITATION ON OUR IMPLEMENTATION For this app, tags can only be a
single word, so a list of tags should be space-separated.

When you run the new spec using bundle exec rspec spec/features/creating
_tickets_spec.rb, it will fail, declaring that it can’t find the Tags field. Good! It’s not
there yet:

1) Users can create new tickets with associated tags
Failure/Error: fill_in "Tags", with: "browser visual"
Capybara::ElementNotFound:
Unable to find field "Tags"

You’ll take the data from this field, process each word into a new Tag object, and then
link the tags to the ticket when the ticket is created. You’ll use a text_field tag to ren-
der the Tags field this way, but unlike the text_fields that you’ve used previously,
this one won’t be tied to a database field.

Listing 11.1 spec/features/creating_tickets_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

385Creating tags

 To define this field, put the following code underneath the description field in
app/views/tickets/_form.html.erb:

<%= simple_form_for([project, ticket]) do |f| %>
...
<%= f.input :description %>
<%= f.input :tag_names, label: "Tags" %>
...

When you rerun this scenario with bundle exec rspec spec/features/creating
_tickets_spec.rb:76, it no longer complains about the missing Tags field, telling
you instead that it can’t find the tag_names method on Ticket objects:

1) Users can create new tickets with associated tags
Failure/Error: click_link "New Ticket"
ActionView::Template::Error:
undefined method `tag_names' for #<Ticket:0x007ff02b1e4268>

...
./app/views/tickets/_form.html.erb:4:in ...

As mentioned previously, the tag_names attribute won’t be tied to a database field, but
instead will be a virtual attribute. A virtual attribute works just like a real attribute,
except that it’s not persisted to the database along with the normal attributes. Instead,
it’s constructed from other data within the model.

 To define this virtual attribute in your Ticket model, put this line underneath the
has_many :comments line in app/models/ticket.rb:

class Ticket < ActiveRecord::Base
...
attr_accessor :tag_names
...

The attr_accessor call defines virtual attributes in classes for Ruby, so you can also use
this feature in your Rails applications. The method will define setter and getter methods
for the attribute name you specify, performing the equivalent of the following code.

def tag_names
@tag_names

end

def tag_names=(names)
@tag_names = names

end

The attr_accessor now will define the tag_names method that’s sought after by the
scenario. To make sure of this and to see what you need to do next, rerun the scenario
with bundle exec rspec spec/features/creating_tickets_spec.rb:

1) Users can create new tickets with associated tags
Failure/Error: click_button "Create Ticket"
ActionController::UnpermittedParameters:
found unpermitted parameter: tag_names

Listing 11.2 What you get by defining attr_accessor :tag_names

Licensed to Mark Watson <nordickan@gmail.com>

386 CHAPTER 11 Tagging

You need to add the tag_names field to the list of permitted parameters in your controller!
Do so by opening your TicketsController in app/controllers/tickets_controller.rb,
and adding the tag_names parameter inside the ticket_params method.

class TicketsController < ApplicationController
...
def ticket_params
params.require(:ticket).permit(:name, :description, :tag_names,

attachments_attributes: [:file, :file_cache])
end
...

That error will now be resolved, so rerun the specs to see what issue appears next:

1) Users can create new tickets with associated tags
Failure/Error: within("#ticket #tags") do
Capybara::ElementNotFound:
Unable to find css "#ticket #tags"

You now need to define this #tags element inside the #ticket element on the ticket’s
page, so that this part of the scenario will pass. This element will contain the tags for
your ticket, which your scenario will assert are actually visible.

11.1.2 Showing tags

You can add this new #tags element, with its id attribute set to tags, to app/views/
tickets/show.html.erb by adding these couple of simple lines as part of the table dis-
playing properties of a ticket.

<table id="attributes">
...
<% if @ticket.tags.any? %>
<tr id="tags">

<th>Tags:</th>
<td><%= render @ticket.tags %></td>

</tr>
<% end %>

</table>

This creates the #ticket #tags element that your feature is looking for, and it will
render the soon-to-be-created app/views/tags/_tag.html.erb partial for every element
in the also-soon-to-be-created tags association on the @ticket object.

 So which of these two do you create next? If you run your scenario again, you’ll see
that it can’t find the tags method for a Ticket object:

1) Users can create new tickets with associated tags
Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
undefined method `tags' for #<Ticket:0x007fb2b7f40f58>

Listing 11.3 Now with permitted tag_names

Listing 11.4 Displaying a ticket’s tags

Licensed to Mark Watson <nordickan@gmail.com>

387Creating tags

You’ll define this tags method with a has_and_belongs_to_many association between
Ticket objects and Tag objects. This method will be responsible for returning a collec-
tion of all the tags associated with the given ticket, much like a has_many would. The
difference is that this method works in the opposite direction as well, allowing you to
find out what tickets have a specific tag.

11.1.3 Defining the tags association

You can define the has_and_belongs_to_many association on the Ticket model by
placing this has_and_belongs_to_many line after the has_many definitions inside your
Ticket model:

class Ticket < ActiveRecord::Base
...
has_many :comments, dependent: :destroy
has_and_belongs_to_many :tags, uniq: true
...

This association will rely on a join table that doesn’t yet exist, called tags_tickets. By
default, Rails will assume that the name of this join table is the combination, in alpha-
betical order, of the two tables you want to join. This table contains only two fields—
one called ticket_id and one called tag_id—which are both foreign keys for tags
and tickets. The join table will easily facilitate the union of these two tables, as it will
have one record for each tag that links to a ticket, and vice versa.

UNIQUE BUGS You’re also passing the uniq: true option to your association,
meaning that only unique tags will be retrieved for each ticket. You could list
the “bug” tag twice when creating a ticket, like “bug bug,” and two records
would be created in the join table, but when you ask for a ticket’s tags, you’d
only get one “bug” tag back.

When you rerun your scenario, you’ll be told that there’s no constant called Tag yet:

1) Users can create new tickets with associated tags
Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
uninitialized constant Ticket::Tag

In other words, there’s no Tag model yet. You’ll need to define this now if you want to
go any further.

11.1.4 The Tag model

Your Tag model will have a single field called name, which should be unique. To gener-
ate this model and its related migration, run the rails command like this:

$ rails g model tag name:string --timestamps false

You don’t want to track when tags were created or updated, so you pass the time-
stamps option to this migration with the value of false. This will skip adding the
t.timestamps null: false line inside your migration.

Licensed to Mark Watson <nordickan@gmail.com>

388 CHAPTER 11 Tagging

 Before you run that migration, generate another one for the join table for tags and
tickets. The Rails migration generator can do this for you with the following command:

$ rails g migration create_join_table_tags_tickets tag ticket

The actual name you give the migration is irrelevant; it just has to have the words “join
table” in it, like the preceding line does. You’ve specified the two models that should
be joined together in this join table, and it will generate a migration with the follow-
ing contents.

class CreateJoinTableTagsTickets < ActiveRecord::Migration
def change
create_join_table :tags, :tickets do |t|

t.index [:tag_id, :ticket_id]
t.index [:ticket_id, :tag_id]

end
end

end

Uncomment the two commented-out lines, so that the two indexes will be created on
the table. This will speed up lookups going both ways—looking up tags for a ticket,
and looking up tickets for a tag. You can now run the two migrations:

$ bundle exec rake db:migrate

This will create the tags and tags_tickets tables specified in your two migrations.
 When you run this scenario again with bundle exec rspec spec/features/

creating_tickets_spec.rb:76, it’s now satisfied that the tags method is defined,
and it has gone back to claiming it can’t find the #ticket #tags element on the page:

1) Users can create new tickets with associated tags
Failure/Error: within("#ticket #tags") do
Capybara::ElementNotFound:
Unable to find css "#ticket #tags"

This failure is because you haven’t done anything to associate the text from the Tags
field to the ticket you’ve created. This means that there are no tags to display, so this
element isn’t being displayed. The setter you defined with attr_accessor is being
called, you’re storing the tag names in an instance variable called @tag_names, but
you’re not saving those tag names to the database. You need to parse the content from
this field into new Tag objects, and then associate them with the ticket you’re creating,
which you’ll do right now.

11.1.5 Displaying a ticket’s tags

You’ll now take the names of the tags that are passed in to the tag_names attribute for
Ticket objects, and turn them into objects of the Tag class. You’ll do this by overwrit-
ing the tag_names= method provided by the attr_accessor, and use it to look up and
add tags to the ticket.

Listing 11.5 db/migrate/[timestamp]_create_join_table_tags_tickets.rb

Licensed to Mark Watson <nordickan@gmail.com>

389Creating tags

 To make this happen, go into your Ticket model and put these lines inside the
class definition, just before the private line.

class Ticket < ActiveRecord::Base
...
def tag_names=(names)
@tag_names = names
names.split.each do |name|

self.tags << Tag.find_or_initialize_by(name: name)
end

end

private
...

When you assign a string of tag names like “browser visual,” the tag_names= method
will split the string on spaces in the string, and find or build new Tag instances with
each of the names you specified. This will reuse tags that already exist in the database,
and initialize new ones that don’t. Then when the ticket gets saved, all of the associ-
ated tags will be saved and all of the correct associations made.

 You also leave the default @tag_names = names behavior that was in the autogene-
rated tag_names method before you overwrote it—you need that behavior when it
comes to populating data back onto the “New Ticket” form in case of an invalid form
submission.

 The method you’ve just written will create the tags that you’re displaying on the
app/views/tickets/show.html.erb view by using the render method:

<%= render @ticket.tags %>

When you run this scenario again by running bundle exec rspec spec/features/
creating_tickets_spec.rb:76, you’ll see this render is now failing with an error:

1) Users can create new tickets with associated tags
Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
Missing partial tags/_tag with {:locale=>[:en], :formats=>...

This error happens now because @ticket.tags contains some tickets, and the render
call attempts to render them. That’s just like back in chapter 10 when you used this
line:

<%= render @ticket.state %>

Rails will render a partial for the given objects based on the class name of the objects.
In the case of @ticket.state, that class was State, so the app/views/states/_state par-
tial was used.

 When you iterate over a collection of objects, as you do with @ticket.tags, Rails
will pick the first object from that collection and then render a partial for each of the

Listing 11.6 app/models/ticket.rb

Licensed to Mark Watson <nordickan@gmail.com>

390 CHAPTER 11 Tagging

objects based on the class of that first element. This partial will live in app/views/tags/
_tag.html.erb, because the class for the first object is Tag.

 The next step is to write the tag partial that your feature has complained about.
Put the following code in a new file called app/views/tags/_tag.html.erb.

<div class="tag">
<%= link_to "".html_safe, "#", class: "remove",
title: "remove" %>

<%= tag.name %>
</div>

By wrapping the tag name in a div element with the class of tag, you can easily add
some styles to it. You know the tags will also need a link in the future, from the
requirements stated earlier (being able to remove a tag from a ticket), so you include
a dummy link for now, with an href of #.

 You can also add some styles for the new tags. You’ll leverage some Bootstrap styles
by adding the following code to app/assets/stylesheets/tickets.scss.

.tag {
@extend .state;
@extend .label-info;
margin-right: 10px;

a {
color: white;

&.remove {
font-family: "FontAwesome";
@extend .fa-close;
margin-right: 0.5em;
text-decoration: none;

}
}

}

Defining this partial will stop the missing-template error from happening. When you
run your scenario again with bundle exec rspec spec/features/creating_tickets
_spec.rb, it should now pass:

7 examples, 0 failures

Great! This scenario is now complete. When a user creates a ticket, they can assign
tags to that ticket, and those tags will display along with the ticket’s information on the
show action for TicketsController. The tag display was shown earlier in figure 11.2
and is shown again in figure 11.3.

Listing 11.7 Adding an HTML representation of a tag

Listing 11.8 Adding a CSS representation of a tag

Licensed to Mark Watson <nordickan@gmail.com>

391Adding more tags

You can now commit this change, but before you do, ensure that you haven’t broken
anything by running bundle exec rspec:

115 examples, 0 failures, 1 pending

Good to see that nothing’s blown up this time. There’s one pending spec located in
spec/models/tag_spec.rb, and because there’s nothing else in that file, it’s safe to
delete it. Go ahead and do that now. After you’re done, a rerun of bundle exec rspec
will produce this lovely green output:

114 examples, 0 failures

Yay! Commit your changes:

$ git add .
$ git commit -m "Users can tag tickets upon creation"
$ git push

Now that users can add a tag to a ticket when they create that ticket, you should also
let them add tags to a ticket when they create a comment. When a ticket is being dis-
cussed, new information may arise that will require another tag to be added to the
ticket to group it into a different set. A perfect way to let your users do this would be to
let them add the tag when they comment.

11.2 Adding more tags
The tags for a ticket can change throughout the ticket’s life; new tags can be added
and old ones can be deleted. Let’s look at how you can add more tags to a ticket
through the comment form after the ticket has been created. Underneath the com-
ment form on a ticket’s page, you’ll add the same Tags field that you previously used
to add tags to your ticket on the new-ticket page.

 We’ll implement this function one scenario at a time. When you’re done, you’ll
end up with the pretty picture in figure 11.4.

Figure 11.3 Look Ma, a tag!

Licensed to Mark Watson <nordickan@gmail.com>

392 CHAPTER 11 Tagging

11.2.1 Adding tags through a comment

To test that users can add tags when they create a comment, you need to add a new
scenario to the spec/features/creating_comments_spec.rb feature.

RSpec.feature "Users can comment on tickets" do
...
scenario "when adding a new tag to a ticket" do
visit project_ticket_path(project, ticket)
expect(page).not_to have_content "bug"

fill_in "Text", with: "Adding the bug tag"
fill_in "Tags", with: "bug"
click_button "Create Comment"

expect(page).to have_content "Comment has been created."
within("#ticket #tags") do

expect(page).to have_content "bug"
end

end
end

First, you ensure that you don’t see this tag on the page, to check that you don’t have
a false positive. Next, you fill in the text for the comment so it’s valid, add the word
“bug” to the Tags field, and click the Create Comment button. Finally, you ensure that
the comment has been created and that the “bug” tag you entered into the comment
form now appears in #ticket #tags.

 When you run this scenario using bundle exec rspec spec/features/creating
_comments_spec.rb, it will fail because there’s no Tags field as part of the comments
form yet:

1) Users can comment on tickets when adding a new tag to a ticket
Failure/Error: fill_in "Tags", with: "bug"
Capybara::ElementNotFound:
Unable to find field "Tags"

You can reuse the code you put in the ticket form for entering tags, in case you want to
add some magic around it later.1 To do that, you can move the line rendering the Tags
field from the ticket form, and place it in a partial that you can reuse.

Listing 11.9 spec/features/creating_comments_spec.rb

1 It would be cool if you had some kind of autocomplete for tag names. Just putting that out there.

Figure 11.4 Comment form with tags

Licensed to Mark Watson <nordickan@gmail.com>

393Adding more tags

 Take the line that renders the Tags field and place it in a new partial, app/views/
tags/_form.html.erb.

<%= f.input :tag_names, label: "Tags" %>

Then you can replace the Tags field with this form partial in your ticket form.

<%= simple_form_for([project, ticket]) do |f| %>
...
<%= render "tags/form", f: f %>
...

This new line will render your new app/views/tags/_form.html.erb partial, passing in
the form-building object, f, so that it’s also available in that partial.

 In order to make the failing step in your scenario now pass, you’ll reuse this same
line after the policy block in app/views/comments/_form.html.erb.

<%= simple_form_for([ticket, comment]) do |f| %>
...
<%= render "tags/form", f: f %>
...

When rendering the tags/form partial here, you’ll pass in the form builder object for
a Comment object, not a Ticket. Not that the partial will mind; all it really needs is
some kind of object that has a tag_names method on it, and it’s quite content.

 When you rerun the scenario with bundle exec rspec spec/features/creating
_comments_spec.rb, all of the scenarios in the feature will now fail:

1) Users can comment on tickets with valid attributes
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `tag_names' for #<Comment:0x007fdff9ae93a0>

When defining the tag fields inside the form for a Ticket, you came across this same
problem. The problem back then happened because there was no attribute—real or
virtual—defined for Ticket objects. The problem you face now is almost exactly the
same, but this time it’s for the Comment model.

 Open app/models/comment.rb and make a call to attr_accessor to define a vir-
tual attribute for tag_names:

class Comment < ActiveRecord::Base
...
attr_accessor :tag_names
...

Listing 11.10 Your new tag/form partial

Listing 11.11 app/views/tickets/_form.html.erb

Listing 11.12 Adding tags to app/views/comments/_form.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

394 CHAPTER 11 Tagging

This new attr_accessor call in your Comment model will define the tag_names
method that the scenario is looking for. To see what you need to do next, rerun the
scenario. You’ll see this:

1) Users can comment on tickets with valid attributes
Failure/Error: click_button "Create Comment"
ActionController::UnpermittedParameters:
found unpermitted parameter: tag_names

You need to add the tag_names parameter to the whitelist of permitted parameters
in your CommentsController. Open the controller in app/controllers/comments
_controller.rb, and add the parameter to the comment_params method:

class CommentsController < ApplicationController
...
def comment_params
params.require(:comment).permit(:text, :state_id, :tag_names)

end
end

The next failure you’ll get if you rerun your specs shows that you’re getting closer to
making this functionality work:

1) Users can comment on tickets when adding a new tag to a ticket
Failure/Error: within("#ticket #tags") do
Capybara::ElementNotFound:
Unable to find css "#ticket #tags"

The scenario is not seeing the #ticket #tags element because the tags are not being
assigned correctly. The code that should associate a tag with a ticket isn’t in the Comment
model—it’s inside the Ticket model.

 To fix this, you can use another after_create callback inside the Comment model
to add all of the tags supplied in the comment to its parent ticket.

ORDER OF OPERATIONS MATTERS! We’d love to just overwrite the tag_names=
setter, like you did inside the Ticket model, and add the tags to the com-
ment’s ticket inside it, but in this case the ticket association isn’t yet set when
you assign the tag names. It’s a little bit difficult to add tags to a ticket that
doesn’t exist!

You can define the after_create callback with your other callbacks in the Comment
model like so:

class Comment < ActiveRecord::Base
...
after_create :set_ticket_state
after_create :associate_tags_with_ticket
...

Licensed to Mark Watson <nordickan@gmail.com>

395Adding more tags

AFTER_CREATE VS. BEFORE_CREATE You want to use an after_create here
so that the tags aren’t associated prematurely with a ticket, which they would
be if you used a before_create. When you add things to an association with
methods like ticket.tags << tag, you don’t have to save anything for that
association to be created; it happens on the spot. So if the comment isn’t valid
and doesn’t get saved, the tags would still be added—oops!

For this callback to work, you’ll need to define the associate_tags_with_ticket
method, too. Define this method at the bottom of the Comment model, like this:

class Comment < ActiveRecord::Base
...
def associate_tags_with_ticket
if tag_names

tag_names.split.each do |name|
ticket.tags << Tag.find_or_create_by(name: name)

end
end

end
end

It’s very similar to what you wrote in the Ticket model—you split the provided list of
tags, and add a new tag to the association for each name. You don’t need to save the
ticket after you do this—as stated earlier, adding a tag to the association with << will
save the link automatically.

 This should mean that now a comment’s tags are associated with the ticket. Find
out by running bundle exec rspec spec/features/creating_comments_spec.rb:

5 examples, 0 failures

Boom, that’s passing! Good stuff. Now for the cleanup. Make sure you haven’t broken
anything else by running bundle exec rspec:

115 examples, 0 failures

With all the specs passing, it’s commit time!

$ git add .
$ git commit -m "Users can add tags when adding a comment"
$ git push

In this section, you’ve created a way for your users to add more tags to a ticket when they
add a comment, which allows your users to easily organize tickets into relevant groups
after the tickets’ creation. You now need to restrict this power to users with permission
to manage tags. You don’t want all users to create tags willy-nilly, since it’s likely you’d
end up with an overabundance of tags. For example, see the tags on the Rails Light-
house account, at the bottom right of this page: https://rails.lighthouseapp.com/
projects/8994-ruby-on-rails/overview. Too many tags makes it hard to identify which
tags are useful and which are not. People with permission to tag things will know that
with great power comes great responsibility.

Licensed to Mark Watson <nordickan@gmail.com>

https://rails.lighthouseapp.com/projects/8994-ruby-on-rails/overview
https://rails.lighthouseapp.com/projects/8994-ruby-on-rails/overview

396 CHAPTER 11 Tagging

11.3 Tag restriction
Using the roles system you built in chapter 8, you can easily integrate authorizations
for managing tags for a ticket. In Ticketee, if a user is a manager or admin of a proj-
ect, they’re able to add and (later on) remove tags, much like they were allowed to
change the state of a ticket in chapter 10.

11.3.1 Testing tag restriction

When a user without authorization attempts to submit a ticket or comment, the appli-
cation shouldn’t tag the ticket with the tags they’ve specified. You’ll add this restric-
tion to the CommentsController, but first you need to write a controller spec to cover
this behavior.

 Put the code from the following listing at the bottom of the block for RSpec
.describe CommentsController, inside spec/controllers/comments_controller_spec.rb.

RSpec.describe CommentsController, type: :controller do
...
context "a user without permission to tag a ticket" do
before do

assign_role!(user, :editor, project)
sign_in user

end

it "cannot tag a ticket when creating a comment" do
post :create, { comment: { text: "Tag!",

tag_names: "one two" },
ticket_id: ticket.id }

ticket.reload
expect(ticket.tags).to be_empty

end
end

end

If you run this spec now with bundle exec rspec spec/controllers/comments
_controller_spec.rb, it will produce this error:

1) CommentsController a user without permission to tag a ticket cannot
tag a ticket when creating a comment
Failure/Error: expect(ticket.tags).to be_empty
expected `#<ActiveRecord::Associations::CollectionProxy [#<Tag id:
15, name: "one">, #<Tag id: 16, name: "two">]>.empty?` to return
true, got false

Good! A failing test is a good start to a new feature. To make this test pass, you should
check that the user has the authorization to post tags in CommentsController. To
remove the tag_names parameter from the comment’s parameters if the user is
unable to tag, you should do just what you did with the state parameter if the user

Listing 11.13 spec/controllers/comments_controller_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

397Tag restriction

wasn’t able to change the state: just put these lines at the top of the create action,
underneath the first unless statement.

class CommentsController < ApplicationController
...
def create
...
unless policy(@ticket).tag?

whitelisted_params.delete(:tag_names)
end
...

The create action now has a lot of logic at the top of the method to sanitize the
parameters. It’s getting quite crowded in there! To make it easier to follow, move the
two unless statements checking for permissions out into a new private method for
this class, like this:

class CommentsController < ApplicationController
...
def sanitized_parameters
whitelisted_params = comment_params

unless policy(@ticket).change_state?
whitelisted_params.delete(:state_id)

end

unless policy(@ticket).tag?
whitelisted_params.delete(:tag_names)

end

whitelisted_params
end

end

Now, rather than having two conditional statements at the top of the create action,
you can call the sanitized_parameters method, so that the create action is a little
neater:

class CommentsController < ApplicationController
...
def create
@comment = @ticket.comments.build(sanitized_parameters)
@comment.author = current_user
...

If you wanted to add an update action to this controller later on, this action could also
use the sanitized_parameters method. In fact, you should use the sanitized
_parameters method.

Listing 11.14 Sanitizing parameters passed into the controller

Licensed to Mark Watson <nordickan@gmail.com>

398 CHAPTER 11 Tagging

 When you rerun the spec with bundle exec rspec spec/features/comments
_controller_spec.rb, both specs will fail because they can’t find the tag? method
for TicketPolicy:

1) CommentsController a user without permission to set state cannot
transition a state by passing through state_id
Failure/Error: post :create, { comment: { text: "Did I hack it??",
NoMethodError:
undefined method `tag?' for #<TicketPolicy:0x007fd65b4c0890>

Define this method in app/policies/ticket_policy.rb after the change_state? method.
Like you did in chapter 10 for the change_state permission, you can write some specs
for the new permission in app/policies/ticket_policy_spec.rb, using the same rules as
you did for change_state.

RSpec.describe TicketPolicy do
context "permissions" do
...
context "for anonymous users" do

...
it { should_not permit_action :tag }

end

context "for viewers of the project" do
...
it { should_not permit_action :tag }

end

context "for editors of the project" do
...
it { should_not permit_action :tag }

end

context "for managers of the project" do
...
it { should permit_action :tag }

end

context "for managers of other projects" do
...
it { should_not permit_action :tag }

end

context "for administrators" do
...
it { should permit_action :tag }

end
end

end

Listing 11.15 Specs for the new-ticket tag permission

Licensed to Mark Watson <nordickan@gmail.com>

399Tag restriction

You can then implement the tag? permission the same way you implemented the
change_state? permission—by reusing the same rule as you did for the destroy?
permission. Open app/policies/ticket_policy.rb and define a new tag? permission
as follows.

class TicketPolicy < ApplicationPolicy
...
def tag?
destroy?

end
end

In your test, the user is only an editor and therefore shouldn’t be able to tag tickets by
posting a comment. Run the policy specs you just wrote and make sure your logic is
sound, with bundle exec rspec spec/policies/ticket_policy_spec.rb:

37 examples, 0 failures

Perfect. Everything should now be in place to make sure your controller specs pass. Ver-
ify this with bundle exec rspec spec/controllers/comments_controller_spec.rb:

2 examples, 0 failures

Good! You have something in place to block users from tagging tickets when they cre-
ate a comment. Verify that nothing else has been broken by running bundle exec
rspec:

122 examples, 0 failures

Great! Now you’re only missing the blocking code for tagging a ticket when it’s being
created. You can create a spec test for this too, this time in spec/controllers/
tickets_controller_spec.rb.

require "rails_helper"

RSpec.describe TicketsController, type: :controller do
let(:project) { FactoryGirl.create(:project) }
let(:user) { FactoryGirl.create(:user) }

before :each do
assign_role!(user, :editor, project)
sign_in user

end

it "can create tickets, but not tag them" do
post :create, ticket: { name: "New ticket!",

Listing 11.16 Reusing policy definitions in TicketPolicy

Listing 11.17 Testing that unauthorized users can’t add tags when creating tickets

Licensed to Mark Watson <nordickan@gmail.com>

400 CHAPTER 11 Tagging

description: "Brand spankin' new",
tag_names: "these are tags" },

project_id: project.id
expect(Ticket.last.tags).to be_empty

end
end

In this spec, you create a project and a user that has an editor role on that project.
You sign in as that user using the Devise test helper, sign_in, and then you attempt to
create a ticket with tags. The tag_names parameter should be ignored by your control-
ler, but if you run this spec with bundle exec rspec spec/controllers/tickets
_controller_spec.rb, you’ll see that the controller is not ignoring that parameter:

1) TicketsController can create tickets, but not tag them
Failure/Error: expect(Ticket.last.tags).to be_empty
expected `#<ActiveRecord::Associations::CollectionProxy [#<Tag
id: 21, name: "these">, #<Tag id: 22, name: "are">, #<Tag id: 23,
name: "tags">]>.empty?` to return true, got false

Because there’s no restriction on tagging a ticket through the create action, there are
tags for the ticket that was just created, and your example fails.

 For your create action in the TicketsController action, you can do exactly what
you did in the create action of the CommentsController action: sanitize the parame-
ters before they’re passed to where the object is created. To do this, make the begin-
ning of the create action inside TicketsController look like this:

class TicketsController < ApplicationController
...

def create
@ticket = @project.tickets.new

whitelisted_params = ticket_params
unless policy(@ticket).tag?

whitelisted_params.delete(:tag_names)
end

@ticket.attributes = whitelisted_params
@ticket.author = current_user
...

This is a little more convoluted than the code in the CommentsController. First you
need to build a new ticket to run your policy checks on. Then you can run your sani-
tizing checks, modifying the parameters if necessary. Then you can assign all of the
sanitized attributes in one fell swoop.

 When you rerun your spec with bundle exec rspec spec/controllers/

tickets_controller_spec.rb, it will pass:

1 example, 0 failures

Licensed to Mark Watson <nordickan@gmail.com>

401Tag restriction

Great, now you’re protecting both of the ways a ticket can be tagged. You can also
make the interface a little bit nicer, and not show the Tags field if the user doesn’t
have permission to add tags when creating a comment.

 Open app/views/comments/_form.html.erb and wrap a conditional around the
rendering of the tag form. You only want to show it if the current user can tag the
ticket, like so:

<%= simple_form_for [ticket, comment] do |f| %>
...
<% if policy(ticket).tag? %>
<%= render "tags/form", f: f %>

<% end %>
...

Because of this new restriction, the scenario that you created earlier to test that users
can add tags when creating a comment will now be broken!

11.3.2 Tags are allowed, for some

When you run bundle exec rspec, you’ll see one failing scenario:

Failures:

1) Users can create new tickets with associated tags
Failure/Error: within("#ticket #tags") do
Capybara::ElementNotFound:

Unable to find css "#ticket #tags"
...
./spec/features/creating_tickets_spec.rb:83:in ...

...

Failed examples:

rspec ./spec/features/creating_tickets_spec.rb:76

It looks like tags are not being assigned any more. How come? This might be happen-
ing if the logged-in user in this spec isn’t authorized to do that. What role does the
user have?

 Look at the top of the creating_tickets_spec.rb, specifically at the before block:

RSpec.feature "Users can create new tickets" do
...

before do
login_as(user)
project = FactoryGirl.create(:project, name: "Internet Explorer")
assign_role!(user, :editor, project)
...

Licensed to Mark Watson <nordickan@gmail.com>

402 CHAPTER 11 Tagging

In this code you’re assigning the role of editor. Are editors allowed to tag tickets?
Your TicketPolicy determines this:

class TicketPolicy < ApplicationPolicy
...

def destroy?
user.try(:admin?) || record.project.has_manager?(user)

end

...

def tag?
destroy?

end
end

The answer is no; editors are not allowed to tag tickets. To fix this test, you can change
the role you assign at the top of this test to manager:

RSpec.feature "Users can create new tickets" do
...

before do
login_as(user)
project = FactoryGirl.create(:project, name: "Internet Explorer")
assign_role!(user, :manager, project)
...

Run all your tests again to make sure this is now fixed:

123 examples, 0 failures

In this section, you’ve restricted the ability to add tags to a ticket—whether through
the new-ticket or comment forms—to only users who have the permission to tag a
ticket. For the time being, you’ve defined this as admins or managers, but that may
change over time. You’ve done this to restrict the flow of tags. Generally speaking, the
people with the ability to tag should know to create only useful tags, so that the useful-
ness of the tags is not diluted.

 You can now commit and push this:

$ git add .
$ git commit -m "Restrict tagging to only authorized users"
$ git push

In the next section, you’ll use this same permission to determine which users are able
to remove tags from tickets.

11.4 Deleting a tag
The ability to remove a tag from a ticket is helpful because a tag may become irrele-
vant over time. Say you tagged a ticket as “v0.1” for your project, but that milestone is
complete and the ticket isn’t, so it needs to be moved to “v0.2.” You need a way to

Licensed to Mark Watson <nordickan@gmail.com>

403Deleting a tag

delete the old tag. With the ability to delete tags, you have some assurance that people
will clean up tags when they need to.

 To let users delete a tag, you added a placeholder cross (X) to the left of each of
your tags, as shown in figure 11.5.

 When this cross is clicked, the tag will disappear through the magic of JavaScript.
Rather than making a request to the action to delete the tag and then redirecting
back to the ticket page, the JavaScript will remove the tag’s element from the page and
make an asynchronous behind-the-scenes request to the controller action to delete
the tag.

11.4.1 Testing tag deletion

As usual, you’ll start by writing a feature to verify what should happen when you delete
a tag from a ticket. Create a new file at spec/features/deleting_tags_spec.rb and put
the following code in it.

require "rails_helper"

RSpec.feature "Users can delete unwanted tags from a ticket" do
let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) do
FactoryGirl.create(:ticket, project: project,

tag_names: "ThisTagMustDie", author: user)
end

before do
login_as(user)
assign_role!(user, :manager, project)
visit project_ticket_path(project, ticket)

end

Listing 11.18 spec/features/deleting_tags_spec.rb

Figure 11.5 X marks the spot

Licensed to Mark Watson <nordickan@gmail.com>

404 CHAPTER 11 Tagging

scenario "successfully", js: true do
within tag("ThisTagMustDie") do

click_link "remove"
end
expect(page).to_not have_content "ThisTagMustDie"

end
end

In this feature, you create a new user and sign in as that user. Then you create a new
project and give the user the role of manager on it, which means the user can modify the
tags of any of the project’s tickets. A ticket has already been created with the tag
“ThisTagMustDie,” and the final couple of lines delete that tag and verify that it’s gone.

 When you run this feature using bundle exec rspec spec/features/deleting
_tags_spec.rb, you’ll get this error:

1) Users can delete unwanted tags from a ticket successfully
Failure/Error: within tag("ThisTagMustDie") do
NoMethodError:
undefined method `tag' for #<RSpec::ExampleGroups::...

Alright. Time to implement this bad boy.

11.4.2 Adding a link to delete the tag

You’ve used a method called tag in your spec, but the method doesn’t exist. This
method should be a finder—you call it to find an element on the page, which you can
then scope all of your future calls by. You want to use this method to find the particu-
lar HTML element for the tag in question; you can then click the X link to delete the
tag inside that element.

 You’ve written finders for Capybara before—inside the file spec/support/
capybara_finders.rb. There’s one there called list_item. Underneath the list_item
method, define another one to find tags.

module CapybaraFinders
...
def tag(content)
find("div.tag", text: content)

end
end

This will find the div element with the class of tag, which you defined earlier to dis-
play your tags nicely. You also filter the list of tags by only selecting the one with the
right text, which in this case is “ThisTagMustDie.”

 The “remove” link inside that tag needs to trigger an asynchronous request to an
action that will remove a tag from a ticket. The perfect name for an action like this, if
you were to put it in the TicketsController, would be remove_tag. But because it’s
acting on a tag, a better place for this action would be inside a new controller called
TagsController.

Listing 11.19 Adding another Capybara finder

Licensed to Mark Watson <nordickan@gmail.com>

405Deleting a tag

 Before you go and define this action, let’s make sure that only people who can tag
tickets can delete them by wrapping the “remove” link inside a policy check. Inside
app/views/tags/_tag.html.erb, you can use the familiar policy method to do this.

<div class="tag">
<% if policy(ticket).tag? %>
<%= link_to "".html_safe,

remove_ticket_tag_path(ticket, tag), method: :delete, remote: true,
class: "remove", title: "remove" %>

<% end %>
<%= tag.name %>

</div>

Here, you check that a user can tag the ticket—if they can’t tag, then you won’t show
the X link to remove the tag. This is to prevent everyone from removing tags as they
feel like it. Remember: with great power comes great responsibility.

 You’ve also filled out the contents of the link, so it’s no longer a dummy link to #.
You use the :remote option for the link_to to indicate to Rails that you want this link
to be an asynchronous request. This is similar to the “Add another file” link you pro-
vided in chapter 9, except this time you don’t need any JavaScript to determine any-
thing; you only need to make a request to a specific URL.

 For the :url option, you pass through the ticket object to remove_ticket
_tag_path so that your action knows which ticket to delete the tag from. Remember,
your primary concern right now is disassociating a tag and a ticket, not completely
deleting the tag.

 Because this is a destructive action, you use the :delete method. You’ve used this
previously to call destroy actions, but the :delete method is not exclusive to the
destroy action, so you can use it here as well.

 The final option, :title, lets you define the title for this link. You’ve set that to be
“remove,” and this is how Capybara will find the actual link to click it. Capybara sup-
ports following links by their internal text, or by their name, id, or title attributes.

 When you run your feature with bundle exec rspec spec/features/deleting
_tags_spec.rb, you’ll see that it fails with this error:

1) Users can delete unwanted tags from a ticket successfully
Failure/Error: Unable to find matching line from backtrace
ActionView::Template::Error:
undefined local variable or method `ticket' for ...

./app/views/tags/_tag.html.erb:2:in ...

Line 2 in your _tag.html.erb partial refers to the ticket variable, which doesn’t exist
within your partial. You need to have a reference to the ticket for the link, or you
won’t know what ticket to remove the tag from!

 In the parent app/views/tickets/show.html.erb view, you have a @ticket variable
that’s used to display the details of the current ticket—you should pass that variable

Listing 11.20 app/views/tags/_tag.html.erb

Licensed to Mark Watson <nordickan@gmail.com>

406 CHAPTER 11 Tagging

into the partial as a local variable so you can use it for permission checking, and when
generating the “remove” link.

 Inside app/views/tickets/show.html.erb, modify the line that renders the tags for a
ticket to also provide the @ticket variable to the partial.

<table id="attributes">
...
<% if @ticket.tags.any? %>
<tr id="tags">

<th>Tags:</th>
<td><%= render @ticket.tags, ticket: @ticket %></td>

</tr>
<% end %>

</table>

The @ticket variable will now be available inside the tag partial as the local variable
ticket. Now when you rerun your spec with bundle exec rspec spec/features/
deleting_tags_spec.rb, you’ll get a different error:

1) Users can delete unwanted tags from a ticket successfully
Failure/Error: Unable to find matching line from backtrace
ActionView::Template::Error:
undefined method `remove_ticket_tag_path' for ...

./app/views/tags/_tag.html.erb:4:in ...

This error is coming up because you haven’t defined the route to the remove action
yet. You can define this route in config/routes.rb inside the resources :tickets
block, morphing it into the following.

Rails.application.routes.draw do
...
resources :tickets, only: [] do
resources :comments, only: [:create]
resources :tags, only: [] do

member do
delete :remove

end
end

end
...

end

By nesting the tags resource inside the ticket’s resource, you’re given routing helpers
such as ticket_tag_path. With the member block inside that, you get the remove
_ticket_tag_path helper, too.

Listing 11.21 Part of app/views/tickets/show.html.erb, for displaying tags

Listing 11.22 Defining a route for removing tags from tickets

Licensed to Mark Watson <nordickan@gmail.com>

407Deleting a tag

 Now you’ll be able to render the page without error; the route you’ve provided will
be recognized by Rails and will generate a URL that looks something like /tickets/1/
tags/2/remove. Now when you rerun the test, you’ll get a different error:

1) Users can delete unwanted tags from a ticket successfully
Failure/Error: Unable to find matching line from backtrace
ActionController::RoutingError:
uninitialized constant TagsController

The spec is loading the ticket page correctly, finding the “remove” link, and clicking
it.

 Now you need a controller to process the actual removal of the tag from the ticket,
so generate a new controller called TagsController, as that’s what the error message
is looking for:

$ rails g controller tags

Now that you have a controller to define your action in, open app/controllers/tags
_controller.rb and define the remove action in it.

class TagsController < ApplicationController
def remove
@ticket = Ticket.find(params[:ticket_id])
@tag = Tag.find(params[:id])
authorize @ticket, :tag?

@ticket.tags.destroy(@tag)
head :ok

end
end

In this action, you find the ticket based on the ID passed through as
params[:ticket_id], and the tag based on the ID passed through as params[:id].
You can then use destroy, which is a method provided by the tags association, to
remove @tag from the list of tags in @ticket.tags.2 Finally, you can send the simple
header :ok, which will return a 200 OK status to your browser, signaling that everything
went according to plan.

 When you rerun your scenario with bundle exec rspec spec/features/

deleting_tags_spec.rb, it will successfully click the link, but the tag is still there:

1) Users can delete unwanted tags from a ticket successfully
Failure/Error: expect(page).to_not have_content "ThisTagMustDie"
expected not to find text "ThisTagMustDie" in "Ticketee Home ..."

Listing 11.23 Removing a tag from a ticket

2 For a full list of all the methods that the tags association offers, check out the Active Record Associations Rails
guide: http://guides.rubyonrails.org/association_basics.html#has-and-belongs-to-many-association-reference.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/association_basics.html#has-and-belongs-to-many-association-reference

408 CHAPTER 11 Tagging

Your tag is unassociated from the ticket but not removed from the page, so your fea-
ture is still failing. The request is made to delete the ticket, but there’s currently no
code that removes the tag from the page. Let’s add that code now.

11.4.3 Removing a tag from the page

You’re removing a tag’s association from a ticket, but you’re not yet showing people
that it has happened on the page. You’re making the request to remove the tag asyn-
chronously via JavaScript, so you can use JavaScript to hook into the lifecycle of that
request and perform certain actions depending on the response.

 You did this in chapter 9 when you added extra file upload fields to your “New
Ticket” form from a JavaScript request. This will be a lot simpler.

 You only want to remove the tag from the page if the request was a success, so you
can use the ajax:success callback like you did before. Because this functionality
relates to tags, you can add some code to app/assets/javascripts/tags.coffee:

$ ->
$(".tag .remove").on "ajax:success", ->
$(this).parent().fadeOut()

You target any “remove” links inside tags with the $(".tag .remove") selector, and then
on a successful response from that link, you use jQuery’s parent() and fadeOut() func-
tions to find the link’s parent .tag element, and fade it out of the page.3 Easy!

 When you run your feature using bundle exec rspec spec/features/deleting
_tags_spec.rb, you’ll see that it now passes:

1 example, 0 failures

Awesome! With this feature done, users with permission to tag tickets of a project will
now be able to remove tags, too. Before you commit this feature, run bundle exec
rspec to make sure everything is okay:

125 examples, 0 failures, 1 pending

That’s awesome too! There’s one pending spec inside spec/helpers/tags_helper
_spec.rb. You can delete this file now, and if you rerun bundle exec rspec, you’ll
see this:

124 examples, 0 failures

Commit and push this:

$ git add .
$ git commit -m "Add the ability for users to remove tags from tickets"
$ git push

Now that you can add and remove tags, what’s left to do? Find them! By implementing
a way to find tickets with a given tag, you make it easier for users to see only the tickets

3 See the jQuery API documentation for more info on the parent() (http://api.jquery.com/parent) and
fadeOut() (http://api.jquery.com/fadeOut/) functions.

Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com/parent
http://api.jquery.com/fadeOut/

409Finding tags

they want to see. As an added bonus, you’ll also implement a way for users to find tick-
ets for a given state, perhaps even at the same time as finding a tag.

 When you’re done with this next feature, you’ll add some more functionality that
will let users go to tickets for a tag by clicking on the tag name inside the ticket-show
page.

11.5 Finding tags
At the beginning of this chapter, there was mention of searching for tickets using a
query such as tag:iteration_1 state:open. This magical method would return all
the tickets associated with the “iteration_1” tag that have the state of Open. This helps
users scope down the list of tickets that appear on a project page so they can better
focus on them.

 There’s a gem developed specifically for this purpose, called Searcher, which you can
use. This gem is good for a lo-fi solution, but it shouldn’t be used in a high-search-volume
environment. For that, look into full-text-search support for your favorite database sys-
tem (or an external system, like Elasticsearch).

 The Searcher gem provides you with a search method on specific classes. It accepts
a query like the one mentioned and returns the records that match it.

11.5.1 Testing search

As usual, you should (and will) test that searching for tickets with a given tag works.
You’ll do this by writing a new feature called spec/features/searching_spec.rb and fill-
ing it with the content from the following listing.

require "rails_helper"

RSpec.feature "Users can search for tickets matching specific criteria" do
let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let!(:ticket_1) do
FactoryGirl.create(:ticket, name: "Create projects",

project: project, author: user, tag_names: "iteration_1")
end

let!(:ticket_2) do
FactoryGirl.create(:ticket, name: "Create users",

project: project, author: user, tag_names: "iteration_2")
end

before do
assign_role!(user, :manager, project)
login_as(user)
visit project_path(project)

end

scenario "searching by tag" do

Listing 11.24 spec/features/searching_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

410 CHAPTER 11 Tagging

fill_in "Search", with: "tag:iteration_1"
click_button "Search"
within("#tickets") do

expect(page).to have_link "Create projects"
expect(page).to_not have_link "Create users"

end
end

end

In the setup for this feature, you create two tickets and give them two separate tags:
“iteration_1” and “iteration_2.” When you look for tickets tagged with “iteration_1,”
you shouldn’t see tickets that don’t have this tag, such as the one that’s only tagged
“iteration_2.”

 Run this feature using bundle exec rspec spec/features/searching_spec.rb,
and it’ll complain because there’s no Search field on the page:

1) Users can search for tickets matching specific criteria searching by tag
Failure/Error: fill_in "Search", with: "tag:iteration_1"
Capybara::ElementNotFound:
Unable to find field "Search"

In your feature, the last thing you do before attempting to fill in this Search field is go
to the project page. This means that the Search field should be on that page, so that
your feature, and more importantly your users, can fill it out.

 Because you’re searching tickets, you can place the search form inside the header
section that lists out the tickets inside app/views/projects/show.html.erb.

<h2>Tickets</h2>

<ul class="actions">

<%= form_tag search_project_tickets_path(@project), method: :get,

class: "form-inline" do %>
<%= label_tag "search", "Search", class: "sr-only" %>
<%= text_field_tag "search", params[:search], class: "form-control" %>
<%= submit_tag "Search", class: "btn btn-default" %>

<% end %>

...

You should also add some responsive styles for your search form, so that it looks okay on
smaller screens. Inside app/assets/stylesheets/responsive.scss, add the following code.

@media(max-width: $screen-xs-max) {
input#search {
display: inline-block;
vertical-align: middle;
width: auto;

Listing 11.25 Adding a ticket search form to the project details page

Listing 11.26 Making sure your search form looks okay on small screens

Licensed to Mark Watson <nordickan@gmail.com>

411Finding tags

}
}

@media(max-width: $screen-sm-max) {
ul.actions .form-inline {
padding-bottom: 5px;

}
}

This will reuse the same search styles on smaller screens as larger ones, as well as put
in some padding when the width of the form causes the New Ticket button to wrap to
a second line.

 This will give you a nice search form like the one in figure 11.6. (It won’t look like
that yet, because you haven’t finished the feature. But it will when you’re done.)

You’ve used form_tag before; this method generates a form that’s not tied to any
particular object but still gives you the style of form wrapper that form_for does.
Inside the form_tag, you use the label_tag and text_field_tag helpers to define a
label and input field for the search terms, and you use submit_tag as a Submit but-
ton for the form. This example also uses a few of Bootstrap’s classes, like sr-only,
form-control, and btn btn-default, for a nice-looking form.

 The search_project_tickets_path method is undefined at the moment, as you’ll
see when you run bundle exec rspec spec/features/searching_spec.rb:

1) Users can search for tickets matching specific criteria searching by
tag
Failure/Error: visit project_path(project)
ActionView::Template::Error:
undefined method `search_project_tickets_path' for ...

Notice the pluralized “tickets” in this method. To define nonstandard RESTful actions,
you’ve previously used the member method inside of config/routes.rb. This has worked
fine because you’ve always acted on a single resource, such as wanting to remove a sin-
gle tag from a ticket. This time, however, you want to act on a collection of a resource—
the entire set of tags assigned to a ticket—so you need to use the collection method
in config/routes.rb.

 To define this method, change the following lines in config/routes.rb to what’s
shown in listing 11.27:

Rails.application.routes.draw do
...
resources :projects, only: [:index, :show, :edit, :update] do
resources :tickets

end
...

Figure 11.6 The search form

Licensed to Mark Watson <nordickan@gmail.com>

412 CHAPTER 11 Tagging

Rails.application.routes.draw do
...
resources :projects, only: [:index, :show, :edit, :update] do
resources :tickets do

collection do
get :search

end
end

end
...

The collection block here defines that there’s a search action that may act on a col-
lection of tickets. This search action will receive the parameters passed through from
the simple_form_for that you’ve set up.

 When you run your feature again by using bundle exec rspec spec/features/
searching_spec.rb, you’ll see that it reports that the search action is missing:

1) Users can search for tickets matching specific criteria searching by
tag
Failure/Error: click_button "Search"
AbstractController::ActionNotFound:
The action 'search' could not be found for TicketsController

Good! The job of this action is to find all the tickets that match the criteria passed in
from the form as params[:search].

11.5.2 Searching by tags

You want to be able to parse labels in a query such as “tag:iteration_1” and find the
records that match the query. Rather than working like Google, where you could
enter “iteration_1” and Google would “know” what you mean, you have to tell your
searching code what “iteration_1” means by prefixing it with “tag.”

 You’ll use the following query with the search method on a model, and it will
return only the records that match it.

Ticket.search("tag:iteration_1")

Your form submits to a new search action that it expects to find in your Tickets-
Controller. You can define that method in app/controllers/tickets_controller.rb
like so:

class TicketsController < ApplicationController
...
def search
authorize @project, :show?
if params[:search].present?

@tickets = @project.tickets.search(params[:search])
else

Listing 11.27 Adding our first collection route, for searching tickets

Listing 11.28 The syntax you want to end up with

Licensed to Mark Watson <nordickan@gmail.com>

413Finding tags

@tickets = @project.tickets
end

end
...

First, you need to authorize this action. If you don’t do this, anyone could search for
tickets in a project.

 Secondly, you assign all the tickets retrieved by the search method to the @tickets
variable, which you’d render in the search template if you didn’t already have a tem-
plate that was useful for rendering lists of tickets. That template is the one at app/
views/projects/show.html.erb, but to render it you’ll make one small modification.

 Currently this template renders all the tickets by using the following line.

...
<ul id="tickets">

<% @project.tickets.each do |ticket| %>
...

This line will iterate through each of the tickets in the project and do whatever is
inside the block for each of those tickets. If you were to render this template right now
with the search action, it would return all tickets for the project, rather than just the
ones returned by the search query. You can get around this by changing the line in the
template to read as follows.

...
<ul id="tickets">

<% @tickets.each do |ticket| %>
...

With this change, you break the show action of the ProjectsController, because the
@tickets variable is not defined there. You can see the error you’ll get by running
bundle exec rspec spec/features/viewing_tickets_spec.rb:

1) Users can view tickets for a given project
Failure/Error: click_link "Sublime Text 3"
ActionView::Template::Error:
undefined method `each' for nil:NilClass

This is a great thing about the tests you’ve written—you immediately know if you’ve
broken existing functionality.

 To fix this error, you can define a @tickets variable inside the show action of
ProjectsController, underneath the authorize call in that action:

class ProjectsController < ApplicationController
...
def show
authorize @project, :show?

Listing 11.29 Rendering all tickets on a project

Listing 11.30 Rendering a selected collection of tickets on a project

Licensed to Mark Watson <nordickan@gmail.com>

414 CHAPTER 11 Tagging

@tickets = @project.tickets
end
...

When you rerun bundle exec rspec spec/features/viewing_projects_spec.rb,
you’ll see that it now passes:

1 example, 0 failures

Great! With the insurance that you’re not going to break anything now, you can ren-
der that same app/views/projects/show.html.erb template in the search action of
TicketsController by putting the render line at the bottom of that action, so that
your controller action looks like this:

class TicketsController < ApplicationController
...
def search
authorize @project, :show?
if params[:search].present?

@tickets = @project.tickets.search(params[:search])
else

@tickets = @project.tickets
end
render "projects/show"

end
...

By rendering this template, you’ll show a page similar to ProjectsController#show,
but this time it will only have the tickets for the given tag.

 Now that you’re rendering properly, you can run the main searching spec, bundle
exec rspec spec/features/searching_spec.rb, again:

1) Users can search for tickets matching specific criteria searching by
tag
Failure/Error: click_button "Search"
NoMethodError:
undefined method `search' for #<Ticket::ActiveRecord_...

This error shows you that the test is getting to the search action of TicketsController
and it’s attempting to execute a search on the Ticket model using the search method.
All of this is great!

 Now that you have all the wiring set up, you just need to implement the actual
functionality inside your Ticket model. You’ll be using the Searcher gem to do this,
so first you need to install it. Add the Searcher gem to your Gemfile.

gem "searcher", github: "radar/searcher"

Listing 11.31 Adding Searcher to your Gemfile

Licensed to Mark Watson <nordickan@gmail.com>

415Finding tags

Rather than adding this as a normal gem to be sourced from RubyGems, the preced-
ing code sources the Searcher gem from GitHub.4 This syntax tells Bundler to clone
the radar/searcher repo from GitHub and to use that as the source of your gem. After
adding the gem to your Gemfile, run bundle to get the gem installed, and restart your
Rails server if it’s running.

 To add this search method to Ticket, you can use the searcher class method that
the Searcher gem provides, placing it underneath the before_create call in app/
models/ticket.rb:

class Ticket < ActiveRecord::Base
...
searcher do
label :tag, from: :tags, field: "name"

end
...

The searcher method takes a block in which you can specify the labels that you can
use for searching. The from option tells Searcher that you want to look in the tags
table, and the field option indicates that you want to pick the name field from that
table. This will allow you to use search queries like tags:TestTag, which will search
for tickets that are associated with a record in the tags table with the name field equal
to TestTag—exactly what you’re after.

 When you run your search feature using bundle exec rspec spec/features/
searching_spec.rb, it will now pass:

1 example, 0 failures

With this feature, users will be able to specify a search query, such as tag:iteration_1,
to return all tickets that have that particular tag.

 You prevented one breaking change by catching it as it was happening, but how
about the rest of the test suite? Find out by running bundle exec rspec. You should
see this result:

125 examples, 0 failures

Great! Commit this change now:

$ git add .
$ git commit -m "Add tag-based searching for tickets"
$ git push

Now that you have tag-based searching, why not spend a little bit of extra time letting
your users search by state as well? This way, they’ll be able to perform actions such as
finding all remaining “Open” tickets in the tag “iteration_1” by using a search term of
state:Open tag:iteration_1. It’s easy to implement.

4 The Searcher gem was written expressly for the purposes of this book, and as such isn’t bulletproof enough
for real-world apps. This is why we’re not making it available on RubyGems for the whole world to use.

Licensed to Mark Watson <nordickan@gmail.com>

416 CHAPTER 11 Tagging

11.5.3 Searching by state

Implementing searching for a state is incredibly easy now that you have the Searcher
gem set up and you have the search feature in place. As you did with searching for a
tag, you’ll test searching for a state in the search feature. But first, you need to set up
your tickets to have states.

 Change the code at the top of the feature in spec/features/searching_spec.rb so
that states are specified for each of the tickets, replacing the two let blocks for the
tickets with the code from the following listing.

RSpec.feature "Users can search for tickets matching specific criteria" do
...
let(:open) { State.create(name: "Open", default: true) }
let(:closed) { State.create(name: "Closed") }

let!(:ticket_1) do
FactoryGirl.create(:ticket, name: "Create projects",

project: project, author: user, tag_names: "iteration_1",
state: open)

end

let!(:ticket_2) do
FactoryGirl.create(:ticket, name: "Create users",

project: project, author: user, tag_names: "iteration_2",
state: closed)

end
...

When the two tickets in this feature are created, there will be two states associated with
these tickets. Your next task is to write a scenario that will search for all tickets with a
specific state. That scenario can be seen in the next listing.

RSpec.feature "Users can search for tickets matching specific criteria" do
...

scenario "searching by state" do
fill_in "Search", with: "state:Open"
click_button "Search"
within("#tickets") do

expect(page).to have_link "Create projects"
expect(page).to_not have_link "Create users"

end
end

end

This should show any ticket with the “Open” state and hide all other tickets.

Listing 11.32 Creating tickets with different states, for searching

Listing 11.33 Finding by state scenario, for the search feature

Licensed to Mark Watson <nordickan@gmail.com>

417Finding tags

 When you run this feature with bundle exec rspec spec/features/searching
_spec.rb, you’ll see that this is not the case. It can still see the “Create users” ticket.

1) Users can search for tickets matching specific criteria searching by
state
Failure/Error: expect(page).to_not have_link "Create users"
expected not to find link "Create users", found 1 match:
"Create users"

This test isn’t working because you haven’t enabled searching on states yet. You can fix
this very easily by changing the searcher code in app/models/ticket.rb:

class Ticket < ActiveRecord::Base
...
searcher do
label :tag, from: :tags, field: "name"
label :state, from: :state, field: "name"

end
...

If you rerun the searching spec with bundle exec rspec spec/features/searching
_spec.rb, you’ll get a nice surprise:

2 examples, 0 failures

That’s it for the search feature! In it, you’ve added the ability for users to find tickets
with a given tag and/or state. It should be mentioned that these queries can be
chained, so a user can enter a query such as tag:iteration_1 state:Open, and it will
find all tickets with the “iteration_1” tag and the “Open” state.

 As usual, commit your changes because you’re done with this feature. But also as
usual, check to make sure that everything is A-OK by running bundle exec rspec:

126 examples, 0 failures

Brilliant, you can commit:

$ git add .
$ git commit -m "Users may now search for tickets by state or tag"
$ git push

With searching in place and the ability to add and remove tags, you’re almost done
with this set of features.

11.5.4 Search, but without the search

The final feature for this chapter involves changing the tag name rendered in app/
views/tags/_tag.html.erb so that when a user clicks on it, they’re shown all tickets for
that specific tag.

 To test this functionality, you can add another scenario to the bottom of spec/
features/searching_spec.rb. This will test that when a user clicks on a ticket’s tag, they’re
only shown tickets for that tag. The new scenario looks pretty much identical to this:

Licensed to Mark Watson <nordickan@gmail.com>

418 CHAPTER 11 Tagging

RSpec.feature "Users can search for tickets matching specific criteria" do
...
scenario "when clicking on a tag" do
click_link "Create projects"
click_link "iteration_1"
within("#tickets") do

expect(page).to have_content "Create projects"
expect(page).to_not have_content "Create users"

end
end

end

When you run this last scenario using bundle exec rspec spec/features/searching
_spec.rb, you’re told that it can’t find the “iteration_1” link on the page:

1) Users can search for tickets matching specific criteria when clicking
on a tag
Failure/Error: click_link "iteration_1"
Capybara::ElementNotFound:
Unable to find link "iteration_1"

This scenario is successfully navigating to a ticket and then attempting to click a link
with the name of the tag, but it can’t find any matching links. It’s up to you to add this
functionality to your app.

 Where you display the names of tags in your application, you need to change them
into links that go to pages displaying all tickets for that particular tag. You’ve isolated
the code to display tags in one place—app/views/tags/_tag.html.erb—so that’s the
only place you need to change. Open the file, and change the output of the tag name
from what’s in listing 11.34 to what’s in listing 11.35.

<%= tag.name %>

<%= link_to tag.name, search_project_tickets_path(ticket.project,
search: "tag:#{tag.name}") %>

For this link_to, you use the search_project_tickets_path helper. It generates a
route to the search action in TicketsController for the current ticket’s project, but
then you do something different. After you specify which project to search with, using
ticket.project, you specify options. These options are passed in as additional
parameters to the route. Your search form passes through the params[:search] field,
and your link_to does the same thing.

 When you run bundle exec rspec spec/features/searching_spec.rb, this new
scenario will now pass:

3 examples, 0 failures

Listing 11.34 Displaying the tag name

Listing 11.35 Displaying the tag name with a link to a prefilled search for tickets

Licensed to Mark Watson <nordickan@gmail.com>

419Summary

This feature allows users to click a tag on a ticket’s page, which then displays all tickets
that have that tag.

 Make sure you didn’t break anything with this small change by running bundle
exec rspec. You should see this output:

127 examples, 0 failures

Great, nothing broke! Commit this change:

$ git add .
$ git commit -m "Users can now click a tag's name to go to a page

showing all tickets for it"
$ git push

Users are now able to search for tickets based on their state or tag, as well as go to a list
of all tickets for a given tag by clicking on the tag name that appears on the ticket’s
page. This is the final feature you needed to implement in order to have a good tag-
ging system for your application.

11.6 Summary
In this chapter, we covered how to use a has_and_belongs_to_many association to
define a link between tickets and tags. Tickets are able to have more than one tag, but
a tag is also able to have more than one ticket assigned to it, so you use this type of
association. A has_and_belongs_to_many could also be used to associate people and
the locations they’ve been to.5

 You first wrote the functionality for tagging a ticket when it was created, and you
continued by letting users tag a ticket through the comment form as well.

 Next, we looked at how to remove a tag from the page using jQuery’s parent()
and fadeOut() functions, with the help of Rails’ JavaScript callbacks. They allowed
you to execute JavaScript code when an AJAX request completes, and you used them
to remove the tag from the page.

 You saw how to use the Searcher gem to implement label-based searching for not
only tags, but states as well. Usually you’d implement some sort of help page that
would demonstrate to users how to use the search box, but you can implement that on
your own.

 Your final feature, based on the previous feature, allowed users to click a tag name
and view all the tickets for that tag, and it also showed how you can limit the scope of a
resource without using nested resources.

 In chapter 12, we’ll look at how you can send emails to your users using Action
Mailer. You’ll use these emails to notify users about new tickets in their project, state
transitions, and new comments.

5 Foursquare does this.

Licensed to Mark Watson <nordickan@gmail.com>

420

Sending email

In the previous chapter, you implemented tagging for your application, which
allows users to easily categorize and search for tickets. In this chapter, you’ll begin
to send emails to your users. When a user signs up to Ticketee, they use their email
address as a way for the system to uniquely identify them. Once you have a user’s
validated email address, you can send them updates about important events in the
system, such as a ticket being updated.

 Before you go about configuring your application to send emails into the real
world, you’ll add two more features to Ticketee. The first feature automatically sub-
scribes a user to a watchers list whenever that user creates a ticket. Every time this
ticket is updated by another user, the creator of the ticket should receive an email.
This is helpful, because it allows users to keep up to date with the tickets they’ve

This chapter covers
■ Sending and testing emails with Action Mailer

and Email Spec
■ Using a service class to combine updating

tickets and sending notifications
■ Adding the ability to subscribe to and

unsubscribe from notifications

Licensed to Mark Watson <nordickan@gmail.com>

421Sending ticket notifications

created. The second feature will allow users to add themselves to or remove them-
selves from the watchers list for a given ticket.

 With these features in place, all users who are watching a ticket will be notified via
email that a comment has been posted to that ticket, what the comment was, and
about any state change that took place. If a user posts a comment to a ticket and
they’re not watching it, they’ll automatically be added to its watchers list and receive
notifications whenever anybody posts a comment on the ticket. They can unsubscribe
later by visiting the ticket page and removing themselves from the watchers list. Email
is a tried-and-true solution for receiving notifications of events such as this.

 The first thing you’ll do is set up a way for users to receive notifications when a
comment is posted to a ticket they’ve created. Let’s dive into creating the feature and
code for this functionality now.

12.1 Sending ticket notifications
You want to provide users with the ability to watch a ticket. When watching a ticket, a
user will be notified by email whenever a new comment is posted to the ticket. The
email will contain the name of the user who updated the ticket, the comment text,
and a URL to the ticket.

 To test all this, you’ll use the Email Spec gem (https://github.com/bmabey/
email-spec/). This gem provides very useful RSpec helpers that allow you to easily ver-
ify that an email was sent during a test, and you’ll take full advantage of the features
that this gem provides in the feature that you’ll write next.

12.1.1 Automatically watching a ticket

This feature will test that when a user creates a ticket, they’re automatically added to
the watchers list for that ticket. Whenever someone else updates this ticket, the user
who created it (and later, anybody else watching the ticket) will receive an email noti-
fication.

 Create a new file at spec/features/ticket_notifications_spec.rb, and fill it with the
content from the following listing.

require "rails_helper"

RSpec.feature "Users can receive notifications about ticket updates" do
let(:alice) { FactoryGirl.create(:user, email: "alice@example.com") }
let(:bob) { FactoryGirl.create(:user, email: "bob@example.com") }
let(:project) { FactoryGirl.create(:project) }
let(:ticket) do
FactoryGirl.create(:ticket, project: project, author: alice)

end

before do
assign_role!(alice, :manager, project)

Listing 12.1 spec/features/ticket_notifications_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/bmabey/email-spec/
https://github.com/bmabey/email-spec/

422 CHAPTER 12 Sending email

assign_role!(bob, :manager, project)

login_as(bob)
visit project_ticket_path(project, ticket)

end

scenario "ticket authors automatically receive notifications" do
fill_in "Text", with: "Is it out yet?"
click_button "Create Comment"

email = find_email!(alice.email)
expected_subject = "[ticketee] #{project.name} - #{ticket.name}"
expect(email.subject).to eq expected_subject

click_first_link_in_email(email)
expect(current_path).to eq project_ticket_path(project, ticket)

end
end

In this feature, you set up two users: Alice and Bob. When the feature signs in to Tick-
etee as Bob, and leaves a comment on the ticket that Alice has created, then Alice
should receive an email.

 The find_email! method here is from the Email Spec gem, and it will open the
most recent email sent to the specified email address (or raise an exception if it can’t
find one). The next couple of lines in the scenario will check that email to see if it
contains the correct subject, including the project and ticket names. The final trick in
the scenario is to click the first link in the email (using click_first_link_in_email,
surprise!), and then validate that the link goes to the ticket page for the correct ticket.

 Speaking of Email Spec, you’ll need to install it. Add an email_spec line to the
test section of your Gemfile.

group :test do
...
gem "email_spec", "~> 1.6.0"

end

And run bundle to install it.
 You’ll also need a tiny amount of configuration to include Email Spec’s methods

into your tests. Add this code to spec/support/email_spec.rb:

require "email_spec"

RSpec.configure do |config|
config.include EmailSpec::Helpers
config.include EmailSpec::Matchers

end

Listing 12.2 Adding Email Spec to your Gemfile

Licensed to Mark Watson <nordickan@gmail.com>

423Sending ticket notifications

Without this, you couldn’t use Email Spec and its helpers (such as find_email!) in
your specs. This code also includes some RSpec matchers that we’ll look at using later
when you actually want to test your emails.

 When you run the ticket-notifications feature using bundle exec rspec spec/
features/ticket_notifications_spec.rb, you’ll see that Alice isn’t yet receiving an
email:

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: email = find_email!(alice.email)
EmailSpec::CouldNotFindEmailError:
Could not find email in the mailbox for alice@example.com.
Found the following emails:

[]

When Bob updates the ticket, Alice doesn’t receive an email yet. That’s why you wrote
the feature—so you can test the behavior that you’re about to create!

YOU’RE NOT REALLY SENDING EMAILS

Before we carry on, we need to let you in on a little something: All of the emails you’re
about to create won’t be sent to addresses in the real world, so you don’t have to worry
about using real email addresses in your tests. How is this? Well, there’s a setting inside
config/environments/test.rb that goes like this:

config.action_mailer.delivery_method = :test

This setting tells Action Mailer to intercept any emails that you try to send, and store
them in the ActionMailer::Base.deliveries array.1 You’ll then read the emails out
of this array using the helpers provided by Email Spec.

 But for now, let’s get Ticketee to send Alice an email. For this, you’ll use what’s
known as a service class.

12.1.2 Using service classes

A service class provides a simple interface to a piece of business logic, and it’s typically
used to group together related actions and behavior that should always occur
together. If this sounds generic, that’s because it is—Rails doesn’t have any specific
support for service classes. For some extra reading on service classes (sometimes also
called service objects), we recommend the following articles:

■ “Service objects in Rails will help you design clean and maintainable code.
Here’s how.” (https://netguru.co/blog/service-objects-in-rails-will-help)

■ “7 Patterns to Refactor Fat ActiveRecord Models” (http://blog.codeclimate.com/
blog/2012/10/17/7-ways-to-decompose-fat-activerecord-models/)

1 The default setting for delivery_method is SMTP. This will direct Action Mailer to connect to an SMTP
server running on localhost—that is, the machine Rails is running on.

Licensed to Mark Watson <nordickan@gmail.com>

http://blog.codeclimate.com/blog/2012/10/17/7-ways-to-decompose-fat-activerecord-models/
http://blog.codeclimate.com/blog/2012/10/17/7-ways-to-decompose-fat-activerecord-models/
https://netguru.co/blog/service-objects-in-rails-will-help

424 CHAPTER 12 Sending email

The second of these articles is more generic, and it covers a lot more than just service
objects.

 You’ll use a service class to create a comment and then send out notifications to all
of the watchers of the ticket.

Why not just use callbacks in the model, or send the notifications from the
CommentsController?
This is a bit of a tricky subject. It would be very easy to say to yourself, “I want to
send out some email every time I create a comment, so I can write an after_create
callback in the Comment model to do this, right?”

It would be easy to do that, and it would work, but it would also be a bad idea for a
couple of reasons:

■ It violates the single-responsibility principle, and introduces tighter coupling. A
Comment object in this system has one purpose—managing the data that it
holds, the content, the state, and so on. Introducing a callback that adds behav-
ior unrelated to this purpose couples this model with the other objects you’d be
referencing, such as the mailer. If you change something in the mailer, your
model (which is just supposed to be saving data) could completely break in
weird and wonderful ways.

■ It slows down your tests, and a lot of other things too. This is more a side-effect of
the first downside. Think of all of the possible times you might want to create a
comment, but not send out these notification emails—when experimenting in
the Rails console or when calling factories in tests, for example. Think of all the
tests you’ve written that create comments—they would now have the added
overhead of creating and trying to send emails that you really don’t care about.
There’s only one time you really want to send them—when a comment is created
through the Ticketee web interface.

Okay, so why not do this in the controller?

■ Controllers are notoriously difficult to test. In an ideal world, you’d want to test
this interaction—that when you save a comment in the web app, all these
emails get triggered—and you’d want to test it easily. Controller testing isn’t
straightforward and typically requires a lot of fiddly mocking and stubbing
because a controller touches all of the different parts of the Rails stack, from
the request to the response—that’s its job.

■ The logic isn’t reusable if it’s locked away in a controller. Later on down the road
you might want to use this notification logic elsewhere, such as if you write a
Rake task that automatically closes tickets that haven’t had any activity in a long
time. You’d want to notify the watchers that the ticket was closed in this sce-
nario too, meaning you’d have to duplicate all of the logic from the controller. If
you encapsulate it in a service object, you can reuse it in your Rake task, or any-
where else you specifically decide you want to save and send notifications.

Licensed to Mark Watson <nordickan@gmail.com>

425Sending ticket notifications

Now that you’ve decided that service objects are a good idea, how do you build them,
and where do you put them? There’s no predefined place to store them in a Rails
application, but a services directory sounds like a logical place to put them. Make a
new directory, app/services, and add a new file, app/services/comment_creator.rb:

class CommentCreator
attr_reader :comment

def self.build(scope, current_user, comment_params)
comment = scope.build(comment_params)
comment.author = current_user

new(comment)
end

def initialize(comment)
@comment = comment

end

def save
if @comment.save

notify_watchers
end

end

def notify_watchers
(@comment.ticket.watchers - [@comment.author]).each do |user|

CommentNotifier.created(@comment, user).deliver_now
end

end
end

This class is a simple PORO (plain old Ruby object) that wraps a Comment instance and
lets you add a little bit of logic around save and build methods. Your main entry
point to it is via the build method—you can call it with the association you want to
build on, the author you’re assigning to the comment, and the parameters you’re
building the comment with.

 The save method in the CommentCreator not only saves the comment it builds, but
it’s also tasked with notifying the watchers of the ticket, but not the user who posted
the comment.

 The CommentNotifier referenced inside save is something you’ll create in the
next section. The created method for CommentNotifier will build an email for each
of the users watching this ticket, and deliver_now will send it out immediately.

Why is the delivery method called deliver_now?
The deliver_now method used to be called deliver in all versions of Rails before
version 4.2. So why the change? It changed because Rails 4.2 introduced a compo-
nent called ActiveJob.

Licensed to Mark Watson <nordickan@gmail.com>

426 CHAPTER 12 Sending email

You can use this new CommentCreator service in the create action of Comments-
Controller by changing that action.

class CommentsController < ApplicationController
...

def create
@creator = CommentCreator.build(@ticket.comments, current_user,

sanitized_parameters)
authorize @creator.comment, :create?

if @creator.save
flash[:notice] = "Comment has been created."
redirect_to [@ticket.project, @ticket]

else
flash.now[:alert] = "Comment has not been created."
@project = @ticket.project
@comment = @creator.comment
render "tickets/show"

end
end

...

You can see that the creation logic in the controller has been replaced with the new
service class and its build method. It also unwraps the comment from the service class
in the error case; you need to have the actual comment to display on the comment
form, not the service class.

 When you run bundle exec rspec spec/features/ticket_notifications_spec.rb,
you’re told this:

Listing 12.3 Replacing comment creation with the CommentCreator service class

(continued)
ActiveJob serves as a proxy between Rails and job-queuing gems like Sidekiq (http:
//sidekiq.org/), Resque (https://github.com/resque/resque), and delayed_job
(https://github.com/collectiveidea/delayed_job). These gems are designed to per-
form tasks outside of the request cycle, like sending emails. Imagine if your service
class was going to send dozens or hundreds of emails when you created a com-
ment—that’s not something you want to happen while you’re sitting and waiting to
see if your comment was successfully posted.

If you wanted to queue up your email to send through one of these systems, you’d
use the deliver_later method. This method would queue up the job in whatever
system you had configured with ActiveJob, and then the email would be delivered
when the workers for that system got around to it. But you don’t have one of those
systems, and so for now you’ll use deliver_now.

Licensed to Mark Watson <nordickan@gmail.com>

http://sidekiq.org/
http://sidekiq.org/
https://github.com/resque/resque
https://github.com/collectiveidea/delayed_job

427Sending ticket notifications

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: click_button "Create Comment"
NoMethodError:
undefined method `watchers' for #<Ticket:0x007fd68c582720>

...
./app/services/comment_creator.rb:22:in `notify_watchers'

In this save method in your service class, you call the watchers method to get at the
watchers for this ticket. It fails because you haven’t defined this association yet, so let’s
go ahead and do that now.

12.1.3 Defining the watchers association

The watchers method should return a collection of users who are watching a ticket,
including (by default) the user who created the ticket in the first place. This means
that in your feature, Alice (the author) receives the email triggered by Bob’s
comment.

 Here you must do two things: first, define the watchers association, and second,
add the ticket owner to the watchers list when the ticket is created.

 You’ll use a has_and_belongs_to_many association to define the watchers collec-
tion, this time in your Ticket model. To define it, put this code inside the Ticket
model, along with the other has_and_belongs_to_many for tags.

class Ticket < ActiveRecord::Base
...
has_and_belongs_to_many :watchers, join_table: "ticket_watchers",
class_name: "User", uniq: true

...

Here you pass the :join_table option to specify a custom table name for your
has_and_belongs_to_many. If you didn’t do this, the table name would be inferred by
Rails to be tickets_users,2 which doesn’t really explain the purpose of this table as
much as ticket_watchers does. You pass another option too, :class_name, which
tells your model that the objects from this association are User objects. If you left this
option out, Active Record would infer that you wanted the Watcher class instead,
which doesn’t exist.

 You can create a migration that will create this table with this command:

$ rails g migration create_join_table_ticket_watchers tickets users

That will create a migration that looks like the following listing.

Listing 12.4 Adding an association between a ticket and its watchers

2 Rails generates the table name by putting the two joined table names together alphabetically, separated by an
underscore.

Licensed to Mark Watson <nordickan@gmail.com>

428 CHAPTER 12 Sending email

class CreateJoinTableTicketWatchers < ActiveRecord::Migration
def change
create_join_table :tickets, :users do |t|

t.index [:ticket_id, :user_id]
t.index [:user_id, :ticket_id]

end
end

end

This is exactly what you did to create the join table between tickets and tags in chap-
ter 11. You have just one minor change to make—Rails has picked up that you
wanted a join table from the phrase create_join_table in the migration name, but
it hasn’t picked up the name you wanted for the table. You can specify the table name
as an argument to the create_join_table method inside the migration as follows.

class CreateJoinTableTicketWatchers < ActiveRecord::Migration
def change
create_join_table :tickets, :users, table_name: :ticket_watchers

do |t|
...

Save the modified migration, and then run it using bundle exec rake db:migrate.
 That’s ticket watchers taken care of. But when you run bundle exec rspec spec/

features/ticket_notifications_spec.rb, you’ll see that the email still isn’t being sent:

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: email = find_email!(alice.email)
EmailSpec::CouldNotFindEmailError:
Could not find email in the mailbox for alice@example.com.
Found the following emails:

[]

You haven’t yet added the ticket author to the watchers list, so they’re still not getting
notified about updates. To fix this failure, you can add the author using an after
_create callback on your Ticket model, like this:

class Ticket < ActiveRecord::Base
...
after_create :author_watches_me
...

To define the author_watches_me method, put the following code at the bottom of
the Ticket class definition:

class Ticket < ActiveRecord::Base
...
private

Listing 12.5 db/migrate/[timestamp]_create_join_table_ticket_watchers.rb

Listing 12.6 Specifying the table name

Licensed to Mark Watson <nordickan@gmail.com>

429Sending ticket notifications

def author_watches_me
if author.present? && !self.watchers.include?(author)

self.watchers << author
end

end
...

This method will add the author of the ticket to the list of watchers for this ticket
whenever the after_create callbacks are triggered. This means that each Ticket
object will now have a list of users who are watching the ticket. Eventually it will be
able to act on that list to send out notifications when comments get posted.

 Now that you have some code to associate the author of the ticket as a watcher of
that ticket, let’s see what else needs doing. Running the test again will result in this
exception:

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: click_button "Create Comment"
NameError:
uninitialized constant CommentCreator::CommentNotifier

./app/services/comment_creator.rb:23:in ...

This time, your feature is failing because it can’t find the constant CommentNotifier,
which will be the class you use to send out the notifications of new activity to your
users. To create this class, you’ll use Action Mailer.

12.1.4 Introducing Action Mailer

You need to define the CommentNotifier mailer to send out ticket-update notifica-
tions using the CommentCreator service. You can generate this mailer by running the
mailer generator.

 A mailer is a class defined for sending out emails. To define your mailer, run this
command:

$ rails g mailer comment_notifier

When you run this command, you’ll see the following output:

create app/mailers/comment_notifier.rb
create app/mailers/application_mailer.rb
invoke erb
create app/views/comment_notifier
create app/views/layouts/mailer.text.erb
create app/views/layouts/mailer.html.erb
invoke rspec
create spec/mailers/comment_notifier_spec.rb
create spec/mailers/previews/comment_notifier_preview.rb

The first thing the command generates is the CommentNotifier class itself, defining it
in a new file at app/mailers/comment_notifier.rb. This is done to keep the models
and mailers separate. In previous versions of Rails, mailers lived in the app/models

Licensed to Mark Watson <nordickan@gmail.com>

430 CHAPTER 12 Sending email

directory, which led to clutter. With mailers separated out into their own folder, the
codebase becomes easier to manage. Inside this class, you’ll define (as methods) the
different notifications that you’ll send out, beginning with the comment-created noti-
fication. We’ll get to that in just a minute.

 The next file is app/mailers/application_mailer.rb. This file defines the
ApplicationMailer class, which is what all mailers, such as CommentNotifier, inherit
from. In app/mailers/application_mailer.rb, you’ll see the following code.

class ApplicationMailer < ActionMailer::Base
default from: "from@example.com"
layout 'mailer'

end

ActionMailer::Base defines a lot of helpful methods that you can use to configure
and send your emails. The default method used here configures default options for
this mailer, and it will set the From address on all emails to be the one specified.
Change this to be your email address. The layout method determines what layout to
use for all the emails that come from your application.

 The next thing that’s generated is the app/views/comment_notifier directory,
which is used to store the templates for all emails belonging to the CommentNotifier.
Each method in the CommentNotifier class will correspond to a different type of
email sent out, and each type of email will have its templates in this directory.

 The final thing that’s generated is spec/mailers/comment_notifier_spec.rb, which
you won’t use right now because you’ve got your feature testing this notifier anyway.

 Now that you have the CommentNotifier class defined, what happens when you run
your feature? Run it using bundle exec rspec spec/features/ticket_notifications
_spec.rb and find out:

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: click_button "Create Comment"
NoMethodError:
undefined method `created' for CommentNotifier:Class

...
./app/services/comment_creator.rb:23:in ...

In the CommentNotifier class, you need to define the created method, which will
build an email to be sent out when a comment is created. This method needs to get
the email address for all the watchers of the comment’s ticket and send an email to
each of them. You can define the method like this:

class CommentNotifier < ApplicationMailer
def created(comment, user)
@comment = comment
@user = user

Listing 12.7 The default ApplicationMailer

Licensed to Mark Watson <nordickan@gmail.com>

431Sending ticket notifications

@ticket = comment.ticket
@project = @ticket.project

subject = "[ticketee] #{@project.name} - #{@ticket.name}"
mail(to: user.email, subject: subject)

end
end

This may look wrong because you define it as an instance method, even though the
error complains about a class method. Rest assured, this created method is truly the
method that Action Mailer is looking for.

 Action Mailer performs a little bit of magic for your benefit. The created method
doesn’t exist on the CommentNotifier class, but it does exist on the instances. So what
happens here is that the call to that method is caught by method_missing, which then
initializes a new instance of this class, and then, with some sleight of hand, it ends up
calling your created method.

Metaprogramming with method_missing
method_missing is one of those special sauces that make Ruby such a wonderful
programming language. It acts like a catch-all method in a class—if you call a method
that the class doesn’t know how to respond to, Ruby will first look for a
method_missing method to handle this unexpected method call. If method_missing
doesn’t exist, then the typical NoMethodError will be raised.

With method_missing, you can truly create dynamic classes that respond to a wide
variety of methods, based on things like database fields. Active Record uses
method_missing extensively to define getter and setter methods for each of the
fields in the model’s database table.

For a contrived example of method_missing in the flesh, you could define a class
like the following:

class StringLength
def method_missing(arg)
"'#{arg}' has #{arg.length} letters!"

end
end

You could then interact with your class like so:

> StringLength.new.a_word
=> "'a_word' has 6 letters!"
> StringLength.new.something_long
=> "'something_long' has 14 letters!"
> StringLength.new.does_it_respond_to_anything?
=> "'does_it_respond_to_anything?' has 28 letters!"

You probably won’t use method_missing extensively in your Rails apps, but it’s good
to know it exists, and what kinds of dynamic interfaces it can create.

Licensed to Mark Watson <nordickan@gmail.com>

432 CHAPTER 12 Sending email

When the created method is called in your CommentNotifier, it will attempt to ren-
der a plain-text template for the email, which should be found at app/views/
comment_notifier/created.text.erb. (You’ll define this template after you’ve got the
method working.)

 Mailers work like controller actions in that all instance variables are accessible to
the rendered template, but local variables are not. You need to assign a set of variables
as instance variables so you can use them in the content of the email. After assigning
the variables, you can then use the mail method to generate a new email, passing the
to and subject keys, which define where the email goes to as well as the subject for
the email.

 When you run bundle exec rspec spec/features/ticket_notifications

_spec.rb, you’ll see that the user now receives an email and therefore is able to open
it, but the link you’re looking for isn’t there, which brings up this error:

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: click_button "Create Comment"
ActionView::MissingTemplate:
Missing template comment_notifier/created with "mailer". Searched
in:

* "comment_notifier"

Methods defined within an Action Mailer class need to have a corresponding template
that defines the content of the email, much like actions in controllers have templates.

 Let’s define a template for the CommentNotifier#created mailer method now.

12.1.5 An Action Mailer template

Templates for Action Mailer classes go in app/views because they serve a purpose
identical to the controller views: they display a final, dynamic result to users.

 Once you have this template in place, the plain-text email a user receives will look
like figure 12.1. As you can see, you’ll need to mention who updated the ticket and
what they updated it with, and you’ll also need to provide a link to the ticket.

 You can define a text template for your created method at app/views/comment
_notifier/created.text.erb as follows.

<%= project_ticket_url(@project, @ticket) %>

Listing 12.8 app/views/comment_notifier/created.text.erb

Figure 12.1 Your first email

Licensed to Mark Watson <nordickan@gmail.com>

433Sending ticket notifications

Wait, text.erb? Yes! This is the template for the plain-text version of the email, after all.
Remember, the format of a view in Rails is the first part of the file extension, with the
latter part being the actual file type. Because you send a text-only email, you use the
text format here.

 This template is a little barren at the moment, but it’s all that’s required to get this
feature working. You’ll flesh it out in a little while.

 When you run the test again, you’ll see this error:

1) Users can receive notifications about ticket updates ticket authors
automatically receive notifications
Failure/Error: click_button "Create Comment"
ActionView::Template::Error:
Missing host to link to! Please provide the :host parameter, set
default_url_options[:host], or set :only_path to true

...
./app/views/comment_notifier/created.text.erb:1:in ...

This is the line that you just added! This line is causing an error because the view
wants to know the hostname to use to construct the full URL for a ticket, but you
haven’t told the app what that hostname is. In the controller context, the view knows
which URL to use because it has a request to base this information on. Mailers don’t
have access to anything to do with the request, and this means that your mailer won’t
have that information.

 You can fix this now by putting the following line in config/environments/test.rb,
inside the Rails.application.configure block:

Rails.application.configure do
...
config.action_mailer.default_url_options = {
host: "ticketee.dev"

}
...

The ticketee.dev domain is a made-up domain that you’ll use for testing purposes.
You’ll want to set something in config/environments/production.rb too, but you’ll do
that in the next chapter when we look at a production deployment of the application.

 When you run your tests again, they’ll pass:

1 example, 0 failures

You’ve done quite a lot to get this simple little feature to pass.
 In the beginning, you created a service class called CommentCreator. This service

class wraps up all the logic around creating comments and notifying watchers of the
ticket whenever that comment is saved.

 That notification is done by the CommentNotifier class. CommentNotifier is an
Action Mailer class that’s responsible for sending out emails to the users of your appli-
cation. In this file you defined the created method, which is responsible for collect-
ing all the information to present to the mailer template, just like how an action in a
controller collects all the information for a view.

Licensed to Mark Watson <nordickan@gmail.com>

434 CHAPTER 12 Sending email

 You wouldn’t know what notifications to send out if it weren’t for the watchers
association that you added to the Ticket model. This association currently tracks only
the user who created the ticket, but eventually you’ll change it so that anyone who
comments on the ticket will automatically become a watcher too.

 Finally, you defined the template for the created email at app/views/
comment_notifier/created.text.erb and included the link that you click to complete
the final step of your scenario. You also had to tell Action Mailer what host to use for
its URL building.

 This scenario completes the first steps of sending email notifications to your users.
You should now run all your tests to make sure you didn’t break anything, by running
bundle exec rspec:

129 examples, 0 failures, 1 pending

Great to see everything still passing! The one pending spec is located in spec/mailers/
comment_notifier_spec.rb, but rather than deleting that file, keep it and just delete the
pending spec in it. You’re going to use that file in the next section.

 If you delete just the spec and rerun bundle exec rspec, you’ll see this:

128 examples, 0 failures

You’ve added email ticket notifications to your application, so you should now make a
commit saying just that and push it:

$ git add .
$ git commit -m "Added basic email ticket notifications"
$ git push

Now that you’ve got your application sending plain-text emails, you should flesh out
the emails a bit more, giving them some content that tells the user why they’re receiv-
ing the email, rather than having them contain only a link. To test that, you’ll use the
mailer spec that was generated along with the mailer.

12.1.6 Testing with mailer specs

Now you’re going to get down into the nitty-gritty of exactly how your mailer works,
with mailer specs. Mailer specs are generally contained within the files that are gener-
ated along with the mailer, and they test details about the mail that’s sent out by those
mailers, such as the body content.

 In this section, you’ll learn how to write a mailer spec—you’ll write one that checks
that the email contains specific content.

 The spec that you’ll write will make sure that when a user receives the email, it
contains a phrase like “[user] has just updated the [ticket name] for [project name],”
and the content for the comment. You may already be familiar with these types of
emails from services such as Facebook. To test this, you’ll first need to create a proj-
ect, and then a ticket for that project that belongs to a user. The test itself will create
a comment and then check the email that’s just been sent to ensure that it’s got the
correct content.

Licensed to Mark Watson <nordickan@gmail.com>

435Sending ticket notifications

 Write the content from the following listing into spec/mailers/comment_notifier
_spec.rb.

require "rails_helper"

RSpec.describe CommentNotifier, type: :mailer do
describe "created" do
let(:project) { FactoryGirl.create(:project) }
let(:ticket_owner) { FactoryGirl.create(:user) }
let(:ticket) do

FactoryGirl.create(:ticket,
project: project, author: ticket_owner)

end

let(:commenter) { FactoryGirl.create(:user) }
let(:comment) do

Comment.new(ticket: ticket, author: commenter,
text: "Test comment")

end

let(:email) do
CommentNotifier.created(comment, ticket_owner)

end

it "sends out an email notification about a new comment" do
expect(email.to).to include ticket_owner.email
title = "#{ticket.name} for #{project.name} has been updated."
expect(email.body.to_s).to include title
expect(email.body.to_s).to include "#{commenter.email} wrote:"
expect(email.body.to_s).to include comment.text

end
end

end

At the beginning of this test, a whole bunch of things are set up. First, the test needs a
project and a ticket. That part’s easy. The ticket needs to have an author associated
with it so that there’s someone to be notified when the comment notification goes
out. Next, there needs to be a comment so that the mailer can act on something. The
comment needs to have some text so that you can validate that it shows up in the
email that’s sent out.

 Inside the test itself, you create a new mail message by calling the created method
and passing it the comment and ticket_owner objects. The ticket owner is passed here
because that’s the user that needs to be notified by this email. For the test, you assert
that the to address for the email contains the ticket owner’s email, that the body con-
tains a message saying that a ticket has been updated, and that the body also contains
the comment’s text.

 When you run this test with bundle exec rspec spec/mailers/comment_notifier
_spec.rb, you’ll see that the email body doesn’t contain that specialized message:

Listing 12.9 spec/mailers/comment_notifier_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

436 CHAPTER 12 Sending email

1) CommentNotifier created sends out an email notification about a new
comment
Failure/Error: expect(email.body.to_s).to include title
expected "http://ticketee.dev/projects/257/tickets/169\n\n" to
include "Example ticket for Example project has been updated."
Diff:
@@ -1,2 +1,2 @@
-Example ticket for Example project has been updated.
+http://ticketee.dev/projects/257/tickets/169

./spec/mailers/comment_notifier_spec.rb:25:in ...

This failure is happening because you haven’t yet put the correct message inside the
email; all it contains is a link. To put that message in the email and make it look a
whole lot nicer, replace the link inside app/views/comment_notifier/created.text.erb
with this:

Hello!

<%= @ticket.name %> for <%= @project.name %> has been updated.

<%= @comment.author.email %> wrote:

<%= @comment.text %>

You can view this ticket online by going to:
<%= project_ticket_url(@project, @ticket) %>

When you rerun bundle exec rspec spec/mailers/comment_notifier_spec.rb,
you’ll see that this spec is now passing because the email contains the text that you’re
looking for:

1 example, 0 failures

Now that you’ve spruced up the text template for the email, users will receive relevant
information about the comment notification, rather than just a link.

 With that feature passing, this is a good spot for a commit. But first, run your tests
with bundle exec rspec:

129 examples, 0 failures

All passing—excellent. Commit and push:

$ git add .
$ git commit -m "Give more details about the ticket in email body"
$ git push

In this section, you’ve learned how to generate a mailer and create a mailer method
for it, and now you’re going to look at how you can let people subscribe to these
emails. You’re currently only subscribing the ticket’s author to the list of watchers asso-
ciated with this ticket, but other people may also wish to be notified of ticket updates.
You can do this in two separate ways: through a Watch button, and through automatic
subscription when a user leaves a comment on a ticket.

Licensed to Mark Watson <nordickan@gmail.com>

437Subscribing to updates

12.2 Subscribing to updates
You want to provide other users with two ways to stay informed of ticket updates. The
first approach will be very similar to the automatic subscription of the user who cre-
ates the ticket, but this time you’ll automatically subscribe users who comment on a
ticket. You’ll reuse the same code that you used in the previous section to achieve this,
but not in the way you might think.

 The second approach will involve adding a Watch button on the ticket page, which
will display either “Watch” or “Unwatch,” depending on whether or not the user is watch-
ing the ticket, as shown in figure 12.2.

 We’ll first look at implementing the
automatic subscription when a user posts
a comment to a ticket.

12.2.1 Testing comment subscription

The first feature you need to add will automatically subscribe users to a ticket when
they create a comment on it. This is useful because users will likely want to keep up to
date with tickets they’ve commented on. Later on, you’ll implement a way for these
users to opt out.

 To automatically subscribe a user to a ticket upon adding a comment, you’ll use
after_create, just as you did in the Ticket model for the author of that ticket. But
first you need to ensure that this works!

 You need to add another scenario to the ticket-notifications feature, but first let’s
consider the current flow with the help of a couple of diagrams. Consider figure 12.3.
Here, Alice creates a ticket, and she will be subscribed for notification of any com-
ments posted to it.

 Next, Bob comes along and leaves a comment on the ticket, which should now sub-
scribe Bob to these ticket updates (see figure 12.4). This is the feature that you’ll code
in a short while.

Creating new ticket

Ticketee

A ticket

Watchers

0 comments

Alice

A

B

Notified of B’s comment

A

B is added to ...

A ticket

Watchers

1 comment

Alice

Comments on ...

B

Bob

Ticketee

Figure 12.3 Alice creates a ticket Figure 12.4 Bob comments on the ticket

Figure 12.2 The Watch button

Licensed to Mark Watson <nordickan@gmail.com>

438 CHAPTER 12 Sending email

After Bob has commented on the ticket, Alice
receives a notification telling her that Bob has
left a comment. Now that Bob is subscribed to
the ticket, he should receive comment notifi-
cations every time somebody else—such as
Alice—comments on the ticket, as shown in
figure 12.5.

 If Alice posts a comment, she shouldn’t
receive a notification about that, even though
she’s on the watchers list; only Bob should.

 Now that you understand the scenario, you
can write it in Capybara form at the bottom of
the ticket-notifications feature. Add the
scenario from the following listing inside the
feature of spec/features/ticket_notifications
_spec.rb.

RSpec.feature "Users can receive notifications about ticket updates" do
...

scenario "comment authors are automatically subscribed to a ticket" do
fill_in "Text", with: "Is it out yet?"
click_button "Create Comment"
click_link "Sign out"

reset_mailer

login_as(alice)
visit project_ticket_path(project, ticket)
fill_in "Text", with: "Not yet - sorry!"
click_button "Create Comment"

expect(page).to have_content "Comment has been created."
expect(unread_emails_for(bob.email).count).to eq 1
expect(unread_emails_for(alice.email).count).to eq 0

end
end

In this scenario, you’re already logged in as Bob (courtesy of the before block in this
feature). With Bob, you create a comment on the ticket, and then sign out. Then you
clear the email queue—Alice should have received one email when Bob commented,
but you want to make sure she receives no more after this point. You then sign in as
Alice and create a comment, which should trigger an email send to Bob, but not to
Alice, because users shouldn’t receive notifications of their own actions!

Listing 12.10 Testing automatic comment subscription

Comments on ...

A

... the ticket

A ticket

Watchers

2 comments

Alice

Notified of
A’s comment

B

Bob

Ticketee

Figure 12.5 Alice comments on the ticket

Licensed to Mark Watson <nordickan@gmail.com>

439Subscribing to updates

 On the final lines for this scenario, you check the number of unread emails for
each user—Bob should have one from Alice’s comment, and Alice should have none
because she shouldn’t be notified about her own comment.

 When you run this scenario using bundle exec rspec spec/features/ticket
_notifications_spec.rb, you’ll see that Bob never receives an email from that final
comment left by Alice:

1) Users can receive notifications about ticket updates comment authors
are automatically subscribed to a ticket
Failure/Error: expect(unread_emails_for(bob.email).count).to eq 1

expected: 1
got: 0

(compared using ==)

This is failing on the step that checks if Bob has an email. You can therefore deter-
mine that Bob isn’t subscribed to receive comment update notifications, as he should
have been when he posted a comment. You need to add any commenter to the watch-
ers list when they post a comment, so that they’re notified of ticket updates.

12.2.2 Automatically adding the commenter to the watchers list

To keep comment authors up to date with tickets, you’ll automatically add them to the
watchers list for that ticket when they post a comment. You currently do this when
users create a new ticket, so you can apply the same logic to adding them to the list
when they create a comment.

 You can define another after_create callback in the Comment model by using this
line:

class Comment < ActiveRecord::Base
...
after_create :author_watches_ticket
...

Next, you need to define the method that this callback calls, which you can do by plac-
ing the following code at the bottom of your Comment model:

class Comment < ActiveRecord::Base
...
def author_watches_ticket
if author.present? && !ticket.watchers.include?(author)

ticket.watchers << author
end

end
end

By using << on the watchers association, you can add the creator of this comment to
the watchers for this ticket. This should mean that when a comment is posted to this
ticket, any user who has posted a comment previously, not only the ticket creator, will
receive an email.

Licensed to Mark Watson <nordickan@gmail.com>

440 CHAPTER 12 Sending email

 Now that a comment’s owner is automatically added to a ticket’s watchers list, that
should be enough to get the new scenario to pass. Find out by rerunning bundle exec
rspec spec/features/ticket_notifications_spec.rb.

2 examples, 0 failures

Perfect! Now users who comment on tickets are added to the watchers list automati-
cally, and the user who posts the comment isn’t notified if they are already on that list.

 Did you break anything by implementing this change? Have a look-see by running
bundle exec rspec:

130 examples, 0 failures

Every test that you have thrown at this application is still passing, which is a great thing
to see. Commit this change:

$ git add .
$ git commit -m "Automatically subscribe users to a ticket when they

comment on it"
$ git push

You now have automatic subscriptions for ticket notifications when a user creates a
ticket or posts a comment to one, but currently there’s no way to switch notifications
off. To implement this, you’ll add an Unwatch button that, when clicked, will remove
the user from the list of watchers for that ticket.

12.2.3 Unsubscribing from ticket notifications

You need to add a button to
the ticket page to unsubscribe
users from future ticket noti-
fications. When you’re done
here, the ticket page will look
like figure 12.6.

 Along with implementing the ability to turn off notifications by clicking this but-
ton, you’ll also add a way for users to turn on notifications, using what will effectively
be the same button with a different label. This button will toggle users’ watching sta-
tus, which will allow them to subscribe to ticket notifications without creating their
own ticket or posting a comment.

 You’ll implement the on/off functionality simultaneously by writing a feature in a
new file at spec/features/watching_tickets_spec.rb. Start with the code from the fol-
lowing listing.

require "rails_helper"

RSpec.feature "Users can watch and unwatch tickets" do
let(:user) { FactoryGirl.create(:user) }

Listing 12.11 Ticket-watching feature setup

Figure 12.6 The Unwatch button

Licensed to Mark Watson <nordickan@gmail.com>

441Subscribing to updates

let(:project) { FactoryGirl.create(:project) }
let(:ticket) do
FactoryGirl.create(:ticket, project: project, author: user)

end

before do
assign_role!(user, "viewer", project)
login_as(user)
visit project_ticket_path(project, ticket)

end
end

In this example, you create a single user, a project, and a ticket. Because this user cre-
ated the ticket, they’re automatically subscribed to watching this ticket, so they should
see the Unwatch button on the ticket page. You can test this by putting the scenario in
the following listing underneath the before in this feature.

RSpec.feature "Users can watch and unwatch tickets" do
...
scenario "successfully" do
within("#watchers") do

expect(page).to have_content user.email
end

click_link "Unwatch"
expect(page).to have_content "You are no longer watching this " +

"ticket."

within("#watchers") do
expect(page).to_not have_content user.email

end
end

end

In this scenario, you check that a user is automatically subscribed to the ticket by
asserting that their email address is visible in the #watchers element on the page.
When that user clicks the Unwatch button, they’ll be told that they’re no longer
watching the ticket, and their email will no longer be visible inside #watchers.

 To begin to watch a ticket again, all the user has to do is click the Watch button,
which you can also test by adding the following code to this scenario:

scenario "successfully" do
...
click_link "Watch"
expect(page).to have_content "You are now watching this ticket."

within("#watchers") do
expect(page).to have_content user.email

end
end

Listing 12.12 Ticket-watch toggling

Licensed to Mark Watson <nordickan@gmail.com>

442 CHAPTER 12 Sending email

See? That’s how you’ll test
the watching/not-watching
function simultaneously!
You don’t need to post a
comment and test that a user is truly watching this ticket; you can instead check to see
if a user’s name appears in a list of all the watchers on the ticket page, which will look
like figure 12.7.

 As usual, you’ll see what you need to code to get your feature on the road to pass-
ing by running bundle exec rspec spec/features/watching_tickets_spec.rb.
You’ll see that it’s actually the watchers list, indicated by Capybara telling you that it
can’t find that element:

1) Users can watch and unwatch tickets successfully
Failure/Error: within("#watchers") do
Capybara::ElementNotFound:
Unable to find css "#watchers"

You need to add this new element with ID watchers. You can add it to app/views/
tickets/show.html.erb at the bottom of the attributes table by using the code in the
following listing.

<table id="attributes">
...

<tr id="watchers">
<th>Watchers:</th>
<td>

<%= @ticket.watchers.map(&:email).to_sentence %>
</td>

</tr>
</table>

You add another row to the table with the id attribute set to watchers, which is the
element that your scenario looks for. In this row, you collect all the watchers’ emails
using map, and then you use to_sentence on that array. What this will do is turn the
array of user’s emails into a proper sentence, such as “alice@example.com,
bob@example.com and corey@example.com.”

 When you have this element and you run your feature again with bundle exec
rspec spec/features/watching_tickets_spec.rb, you’ll see that your feature gets
one step closer to passing by locating the user’s email in the #watchers element. But
now it can’t find the Unwatch button:

1) Users can watch and unwatch tickets successfully
Failure/Error: click_link "Unwatch"
Capybara::ElementNotFound:
Unable to find link "Unwatch"

Listing 12.13 app/views/tickets/show.html.erb

Figure 12.7 Who’s watching

Licensed to Mark Watson <nordickan@gmail.com>

443Subscribing to updates

This button will toggle the current user’s watching status for this ticket, and the text
and appearance will differ depending on whether the user is or isn’t currently watch-
ing this ticket. In both cases, however, the button will go to the same action. Because
so much of the code will be duplicated for both buttons, you can add the buttons to
the view by using a helper method, changing the first few lines of the element to this:

<tr id="watchers">
<th>Watchers:</th>
<td>
<%= toggle_watching_button(@ticket) %>

...

This toggle_watching_button helper will only appear in views for the Tickets-
Controller, so you should put the method definition in app/helpers/tickets
_helper.rb inside the TicketsHelper module. Use the code from the following listing
to define the method.

module TicketsHelper
...
def toggle_watching_button(ticket)
text = if ticket.watchers.include?(current_user)

"Unwatch"
else

"Watch"
end
link_to text, watch_project_ticket_path(ticket.project, ticket),

class: text.parameterize, method: :post
end

end

On the last line of the helper, you use link_to to create an HTML link, but you specify
that the method of the link is :post. This tells Rails to create a POST request when the
link is clicked, rather than the standard GET request.

 Inside the link_to, you use a new route helper that you haven’t defined yet. When
you run bundle exec rspec spec/features/watching_tickets_spec.rb, it will com-
plain that this method is undefined when it tries to render the app/views/tickets/
show.html.erb page:

1) Users can watch and unwatch tickets successfully
Failure/Error: visit project_ticket_path(project, ticket)
ActionView::Template::Error:
undefined method `watch_project_ticket_path' for #<#<Class:...

./app/helpers/tickets_helper.rb:21:in `toggle_watching_button'

This route helper points to a specific action on a project’s ticket. You can define it in
config/routes.rb inside the resources :tickets block, which itself is nested inside
the resources :projects block.

Listing 12.14 toggle_watching_button inside TicketsHelper

Licensed to Mark Watson <nordickan@gmail.com>

444 CHAPTER 12 Sending email

Rails.application.routes.draw do
...
resources :projects, only: [:index, :show, :edit, :update] do
resources :tickets do

collection do
get :search

end

member do
post :watch

end
end

end
...

The purpose of link_to is to toggle the watch status of a single ticket, so you want to
define a member route for your ticket resource. You put it inside the tickets resource,
nested under the projects resource, because for your watch action you’ll want to
confirm that the person has permission to view this project. You define the route to
the watch action with post, because button_to generates a form by default, and a
form’s HTTP method will default to POST.

 When you run your feature again using bundle exec rspec spec/features/
watching_tickets_spec.rb, it will complain now because there’s no watch action for
your button to go to:

1) Users can watch and unwatch tickets successfully
Failure/Error: click_link "Unwatch"
AbstractController::ActionNotFound:
The action 'watch' could not be found for TicketsController

You’re almost done! Defining this watch action is almost the last thing you have to do.
This action will add the user who visits it to a specific ticket’s watchers list if they aren’t
already watching it, or remove them if they are. To define this action, open app/
controllers/tickets_controller.rb, and under the search action insert the code in the
following listing.

class TicketsController < ApplicationController
...
def watch
authorize @ticket, :show?
if @ticket.watchers.exists?(current_user.id)

@ticket.watchers.destroy(current_user)
flash[:notice] = "You are no longer watching this ticket."

else
@ticket.watchers << current_user
flash[:notice] = "You are now watching this ticket."

end

Listing 12.15 Adding watch route to config/routes.rb

Listing 12.16 watch action inside TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

445Subscribing to updates

redirect_to project_ticket_path(@ticket.project, @ticket)
end
...

The first thing you need to notice is that you don’t define the @ticket variable before
you use it on the first line of this method. That’s because you can add this action to
the list of actions that the before_action :set_ticket runs on by changing the call
in your controller:

class TicketsController < ApplicationController
...
before_action :set_ticket, only: [:show, :edit, :update, :destroy,
:watch]

...

At the top of this action you need to check that the user is authorized to view this
ticket. You don’t want users being able to watch tickets that they’re not permitted to
view! If you didn’t have this authorize! call in place, it wouldn’t matter anyway, as
Pundit would throw its Pundit::AuthorizationNotPerformedError exception.

 In this action, you use exists?, which will check if the given user is in the list of
watchers. If they are, you’ll use watchers.destroy to remove the watcher from the
list. If they aren’t on the watchers list, you’ll use watchers << to add them to the list of
watchers.

 The watch action now defines the behavior for a user to start and stop watching a
ticket by clicking the button above the watchers list. When you run bundle exec rspec
spec/features/watching_tickets_spec.rb, it will pass:

1 example, 0 failures

Great! Now you have a way for users to
toggle their watch status on any given
ticket. But when you load up a ticket’s
page in your browser, as shown in fig-
ure 12.8, it could be a bit prettier.

 Let’s spend a little bit of time making the button prettier, so it fits in with all of
your other buttons and styles.

 Because these styles will only be used on the ticket page, you should put them in
app/assets/stylesheets/ticket.scss. Open that file, and add the following code at the
bottom.

.watch, .unwatch {
@extend .btn;
@extend .btn-xs;
font-weight: bold;

&:before {

Listing 12.17 Styling the Watch and Unwatch buttons

Figure 12.8 An unstyled Watch button

Licensed to Mark Watson <nordickan@gmail.com>

446 CHAPTER 12 Sending email

font-family: "FontAwesome";
padding-right: 0.5em;

}
}

.watch {
@extend .btn-success;

&:before {
@extend .fa-eye;

}
}

.unwatch {
@extend .btn-danger;

&:before {
@extend .fa-eye-slash;

}
}

This code styles the Watch/Unwatch button with Bootstrap’s btn and btn-xs styles, so
that they look the same as the tags and states displayed in the attributes table. You
also give the two buttons different styles and colors—the Watch button is green and
has an icon of an eye, and the Unwatch button is red with a crossed-out eye.

 When you refresh the page now,
the buttons will be nicely styled, as
shown in figure 12.9.

 Excellent! Make sure that everything else is still working by running bundle exec
rspec. You should see the following output:

131 examples, 0 failures

Everything is still A-OK, which is good to see. Commit this change:

$ git add .
$ git commit -m "Add button so users can toggle watching on a ticket"
$ git push

You’ve now got a way for a user to start or stop watching a ticket. When watching a
ticket, a user will receive an email when a comment is posted to the ticket.

 You’re doing great in theoretically testing email, but you haven’t yet configured
your application to send emails out to the real world. You’ll see how to do that in the
next chapter, when you deploy the application to a production environment.

12.3 Summary
In this chapter, you learned how to send out your own kind of emails. You also added
two ways that users can subscribe to a ticket.

Figure 12.9 Much better!

Licensed to Mark Watson <nordickan@gmail.com>

447Summary

 The first way was an automatic subscription that occurred when a user created a
ticket. Every time a comment was posted to a ticket, the owner of the ticket was noti-
fied through a simple email message.

 The second way was to allow users to click a button to subscribe to or unsubscribe
from a ticket. This allowed all users, and not just those who created the ticket, to
choose to receive emails when a comment is posted on the ticket. This way, all users
can stay up to date on tickets they’re interested in.

 The next chapter involves deploying the application to a production environment
and will build on some of the things you built in this chapter. You’ll even be sending
real emails!

Licensed to Mark Watson <nordickan@gmail.com>

448

Deployment

Developing applications is fun, but using them is more fun. Nobody can use your
application until you deploy it to the public internet somewhere. In this chapter,
we’ll get you started on learning how to deploy Rails, and we’ll talk about how to
deploy your app when your tests are green.

 Deployment is a big topic, enough for dedicated books on the subject alone.1

This book can’t possibly explain everything there is to know about deployment, so
please think of this as an introduction.

This chapter covers
■ Setting up Heroku for deployment
■ The twelve-factor methodology for building and

serving web applications
■ Setting up Travis CI for continuous integration

and automatic deployment
■ Setting up Mailgun for sending emails in

production

1 Books such as Deploying Rails by Tom Copeland and Anthony Burns (http://mng.bz/QwSU), or Reliably
Deploying Rails Applications by Ben Dixon (https://leanpub.com/deploying_rails_applications).

Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/QwSU
https://leanpub.com/deploying_rails_applications

449What is deployment?

 One of the difficult things about deployment is that the process often relies on the
details of how you’ve built your application. That means different projects have
slightly different deployment processes. This book will show you what’s needed to
deploy Ticketee, but more complicated applications may have additional needs that
we won’t cover here.

 A wealth of tooling exists to assist you with getting your application into produc-
tion. This chapter will build up your understanding of deployment slowly, so that you
can understand all the parts. Although it’s true that deploying Rails involves a bit
more than FTP-ing a few files to a remote server,2 you’ll have to confront these details
eventually, no matter what your framework.

 At the end of the chapter, you’ll make your application send real-world emails
using the features that you built in the last chapter, with a service called Mailgun.

13.1 What is deployment?
We saw a tweet the other day that said, “Broke production for the first time at my new
job today.” Someone else responded, “Now you truly work there. Congrats.” Anyone
who’s worked as a web developer for a while knows that feeling. Sometimes develop-
ment is just the beginning for your application. No code is ever truly perfect, even if it
does have tests.

 Deployment is the act of placing your application on the public web. There’s an
entire process involved in getting your application off your laptop and onto a server
somewhere: setting up a server, transferring the code over, handling credentials and
connections to other servers, and so on. But there are dedicated Platform as a Service
(PaaS) options such as Heroku (http://heroku.com) that remove a lot of this pain.

 You can also think of deployment as moving your application into a different envi-
ronment. Remember your config/environments directory? It has files for three differ-
ent environments: development, test, and production. You use the development
environment when you’re playing with your application using rails server. You use
the test environment every time you run your tests with bundle exec rspec. But you
haven’t used the production environment yet. That’s what this chapter is about.

 Deploying to Heroku is as simple as git push heroku master. This pushes
your code to Heroku rather than GitHub, and Heroku runs a series of steps in order
to get your application ready for production. The production environment is
special, because it’s the only one that other people can use.3 Your development
and test environments aren’t shared; they’re for your eyes only. Also, they are
generally used on your local machine, whereas production environments are used
on a server somewhere else. Production environments are often configured for

2 Like in other Pretty Highly Prominent languages.
3 Some projects will also have a staging environment, for demonstrating new features to clients before they go

into production. A staging environment is also usable by other people, but usually by a limited audience, not
the general public. Staging should also have an identical configuration to production.

Licensed to Mark Watson <nordickan@gmail.com>

http://heroku.com

450 CHAPTER 13 Deployment

maximum speed, whereas development and test environments are configured for
maximum convenience.

 With that in mind, let’s go ahead and get Ticketee out there for everyone to try.

13.2 Simple deployment with Heroku
Heroku is a company that specializes in handling all the details of deployment for you.
How convenient! Heroku started off specializing in hosting Rails applications, and it
eventually added support for many other languages and frameworks. Heroku still pays
extra attention to Ruby, though; the company even pays Matz4 and two other mem-
bers of the Ruby core team to work on Ruby itself.

 There is a catch, of course: that convenience comes at a cost. Heroku is more expen-
sive than other hosting options. But for small apps, it has a service tier that is 100% free.
That’s what you’ll use here. It’s not a lot, but it’s enough to get you going with your first
few deployments.

13.2.1 Signing up

You need two things to get set up with Heroku: an account and the Heroku Toolbelt.
Luckily, they’re both easy to acquire. Getting an account with Heroku is this easy: go
to https://www.heroku.com/, click the big Sign Up button, enter your name and
email address, click Create Free Account, and then follow the instructions in the
email you’re sent. Once you’re finished with that, it’s time to get the Toolbelt.

 Heroku distributes a bunch of command-line tools that you can use to interact
with your Heroku account. These tools are called the Toolbelt. To get a copy, go to
https://toolbelt.heroku.com/ and follow the instructions. Pretty easy, eh?

 You need to do one last bit of setup: link together the Toolbelt and your account.
There’s an easy command-line way to do this:

$ heroku login

The heroku login command will ask you for the email and password you used to create
the account on the website. It will then try to find your SSH keys. SSH stands for Secure
Shell, and it’s a program you’ll use to log in to remote servers. If you haven’t used SSH
before, you won’t have any keys, and heroku login will ask you if you want to generate
some new ones. If it asks you this, click Yes. It will then upload the public half of your
key to your Heroku account, allowing you to use the Toolbelt to the fullest extent.

13.2.2 Provisioning an app

The first part of any deployment process is called provisioning. Provisioning is the
process of requesting some kind of resource from a provider of that resource. In this
case, you want to provision a new application on Heroku. Doing so creates all the
internal accounting needed to give you access, and then you can deploy your code to
that application.

4 Remember, Yukihiro “Matz” Matsumoto is the creator of Ruby!

Licensed to Mark Watson <nordickan@gmail.com>

https://www.heroku.com/
https://toolbelt.heroku.com/

451Simple deployment with Heroku

 The Heroku Toolbelt gives you a simple way to provision a new application:

$ heroku apps:create

After running this command, you’ll see some output that looks like this:

$ heroku apps:create
Creating stark-chamber-2017... done, stack is cedar-14
https://stark-chamber-2017.herokuapp.com/ |

https://git.heroku.com/stark-chamber-2017.git
Git remote heroku added

The names will be a bit different, because they’re random. Every Heroku application
must have a unique name, so heroku apps:create generates a random one for you. In
this example, the app was christened stark-chamber-2017.

 The next line gives you two different URLs: one HTTP and one Git. The HTTP URL
is a link that you can open in a web browser to view your application. When you open
that URL, you’ll see the page in figure 13.1.

OPENING YOUR HEROKU APP If at any point you want to open your Heroku
app, just run heroku open in the Ticketee application directory. This will auto-
matically open your app in a browser for you.

The Git URL is a link to a Git repository that represents your application on Heroku.
When you set up your local repository to push to GitHub, you set GitHub up as a
remote branch of the repository (often just shortened to _remote_), named origin.
Creating the Heroku app will automatically add another remote to your repository,
named heroku. You can see this by running git remote -v:

$ git remote -v
heroku git@heroku.com:stark-chamber-2017.git (fetch)
heroku git@heroku.com:stark-chamber-2017.git (push)
origin git@github.com:rubysherpas/r4ia_examples.git (fetch)
origin git@github.com:rubysherpas/r4ia_examples.git (push)

Of course, you’ll see your GitHub username and the random name Heroku gener-
ated, not the ones shown here.

 Anyway, that’s it for provisioning! If you visit your Heroku dashboard, you can see
that you now have a new app: https://dashboard.heroku.com/apps. Next, we’re
going to dive a bit deeper into this app concept and you’ll see how to best design your
application for production.

Figure 13.1 The default generated Heroku app

Licensed to Mark Watson <nordickan@gmail.com>

https://dashboard.heroku.com/apps

452 CHAPTER 13 Deployment

13.3 Twelve-factor apps
There are many, many ways to build web applications. The number of options is over-
whelming. After you deploy a few applications, you’ll probably develop some opinions
about how an application can best be designed for ease of use.

 Designed your app for production? Yep, the design decisions that you make in
development can also affect production. For example, if you allow file uploads, your
production setup must be able to accept the files, save them somewhere, and serve
them back to users. If you add a job queue that requires Redis—as you would by using
the Resque or Sidekiq gems—your deployment strategy has to take Redis into account
as well. In each case you can make good choices or bad choices. Good choices will
make deployment a breeze. Bad choices will make it difficult, complex, and scary.

 Cloud providers like Heroku offer a particular set of guidelines for building
applications. These choices are based on lessons learned while scaling hundreds of
Rails applications. Even if you don’t use a provider like Heroku, the guidelines are
still useful.

 These suggestions can be boiled down to just 12 points, explained in The Twelve-
Factor App (http://12factor.net/). The entire document is worth reading, because it
makes a bunch of great points about deploying applications. We won’t go over all 12
points here; the website does a good job of explaining itself. But we will go over a cou-
ple of them and show how they affect writing a Rails application.

13.3.1 Configuration

Part III of the twelve-factor app is about configuration. The rule is this: “The twelve-
factor app stores config in environment variables.” Config doesn’t mean everything in
your config directory; it means everything that varies between different deployments
of an application.

 How does this affect your Rails application? In the last chapter you added some
code for sending out emails. If this code contained your email credentials, then any-
one with access to the code would know the credentials. It’s a much safer idea to store
these credentials on a protected production server. This is an application of the
twelve-factor configuration principle.

 The config section in the twelve-factor document also has a good rule of thumb for
testing this rule about storing config in environment variables: “A litmus test for
whether an app has all config correctly factored out of the code is whether the code-
base could be made open source at any moment, without compromising any creden-
tials.” This is a great way to think about this problem, because it shows the strength of
making this choice outside of a deployment context, too—if someone were to leak
your source code, would your data still be safe? If a new employee joins your team, do
they need the keys to the production data store on their first day? Ideally, secrets
should be as secret as possible, not saved in a place that everyone has access to.

Licensed to Mark Watson <nordickan@gmail.com>

http://12factor.net/

453Twelve-factor apps

13.3.2 Processes

Part VI, Processes, states this: “Twelve-factor processes are stateless and share-nothing.”
Huh?

 Imagine that you had two servers, each running a copy of your application. If these
servers had their own copy of the database locally, they’d have state and so would not
be stateless. Also, they’d need to keep their data in sync, so you’d have to pass new
data back and forth to keep everything consistent. Those are bad choices. If, instead,
each of your servers saved no state of its own and wrote all of its state to a separate
database server, you wouldn’t need to share any data between copies of your applica-
tion, and there would be no consistency complexity. You could change from 2 servers
to 200 servers, and your application wouldn’t care. You could make your database
server grow with your data, yet keep your app servers lean and mean.

 Heroku enforces this statelessness aspect, so your application needs to be designed
to accommodate it. The first place this crops up in application design is often file
uploads. Remember back in chapter 9, when you used CarrierWave? You saved those
files locally. If you deployed two copies of your application, some files would be on
one server, and other files would be on another server. You’re back to shared, stateful
servers. That’s why CarrierWave provides an option to configure your application to
use another backing store, such as Amazon S3 (Simple Storage Service).

 The first thing you’ll need is an Amazon S3 account. You can get one here: http://
mng.bz/aj7W.

IT’S FREE, BUT... You’ll need a credit card to sign up to Amazon S3. You won’t
be charged anything for the first year of service. If you don’t want to sign up
with a credit card, you can still continue with this chapter. The only issue will
be that file uploads won’t persist between deploys for the Ticketee application.

After that, you need four bits of information: your access key, your secret key, your bucket
name, and your region. You can get all of these credentials from your AWS dashboard.
To create an access key, sign in to your Amazon AWS account, click your name, and
then click Security Credentials. On this page, expand the Access Keys section and cre-
ate a new access key. You’ll be prompted to download the credentials. Do that, and
your access key and secret key will be in that file.

CORRECT AS OF TIME OF WRITING! These instructions are based on Amazon’s
S3 setup procedure at the time of writing. If the setup design has since
changed, please consult Amazon’s own documentation on how to set up your
S3 account.

Now for the S3 bucket. An S3 bucket is where Ticketee’s uploaded files will
be stored. To create the bucket, go to the S3 Management console (https://
console.aws.amazon.com/s3/home) and click Create Bucket; then give your bucket
a name like “ticketee” so that you know what it’s for. You can select whichever region

Licensed to Mark Watson <nordickan@gmail.com>

http://mng.bz/aj7W
http://mng.bz/aj7W
https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home

454 CHAPTER 13 Deployment

you like, but typically you’d select a region close to your users so that the files will be
served faster for them.

 Once you’ve created the bucket, getting the AWS name of the region you selected
is a little tricky. One way to do it on the S3 dashboard is to select your bucket, click
Properties, and expand Static Website Hosting. The region you want is the part of the
endpoint in “s3-website-[region_name].amazonaws.com”; for example, us-east-1 or
ap-southeast-2.

13.3.3 Combining Heroku and S3

Now that you have your S3 credentials and a bucket set up, you can use the Heroku
Toolbelt command to configure those credentials in your environment:

$ heroku config:add S3_KEY=your_s3_access_key S3_SECRET=your_s3_secret \
S3_BUCKET=your_s3_bucket S3_REGION=your_s3_region

heroku config:add makes new environment variables inside your Heroku application
and sets them to some value. This is the “store config in the environment” part of the
config rule.

MANAGING CONFIGURATION VARIABLES You can also manage these config vars
from the Heroku dashboard. If you select your app in the list of Personal
Apps and click Settings > Reveal Config Vars > Edit, you can edit the existing
config vars or add any new ones.

Now you need to configure CarrierWave to use these variables when uploading your
files. Open config/initializers/carrierwave.rb and change the configuration to match
the following listing.

CarrierWave.configure do |config|
config.root = Rails.root

if Rails.env.production?
config.storage = :fog
config.fog_credentials = {

provider: "AWS",
aws_access_key_id: ENV["S3_KEY"],
aws_secret_access_key: ENV["S3_SECRET"],
region: ENV["S3_REGION"]

}
config.fog_directory = ENV["S3_BUCKET"]

else
config.storage = :file

end
end

Easy. This code tells CarrierWave that if the application is running in production, go
ahead and get the credentials out of the environment and upload to S3 by way of the

Listing 13.1 Using Amazon S3 in the production environment

Licensed to Mark Watson <nordickan@gmail.com>

455Twelve-factor apps

Fog gem. The Fog gem is built for talking to cloud services, including AWS’s S3 and
many others.

 You need to add Fog to your Gemfile so that you can upload to S3:

gem "fog", "~> 1.29.0"

As usual, you need to bundle to update your bundle.
 You also need to change your AttachmentUploader. In app/uploaders/

attachment_uploader.rb, there are some lines that look like this:

class AttachmentUploader < CarrierWave::Uploader::Base
...
Choose what kind of storage to use for this uploader:
storage :file
storage :fog
...

Remove all three lines. You now have a global configuration setting for which kind of
storage to use, so you don’t want to override it in the uploader itself.

 Once you’ve made these changes, go ahead and commit:

$ git add .
$ git commit -m "Configuring CarrierWave for 12factor"

That’s it! CarrierWave will now work with Heroku.
 You have another thing that needs to be configured, though: your database.

SQLite, the database you’ve been using, stores your data into a file on disk. That’s
excellent for development, but it won’t cut it in production. You can’t have that
shared state between servers. So rather than use SQLite, you’ll use PostgreSQL for your
production data store. Heroku comes with excellent PostgreSQL support.

 Setting up PostgreSQL locally can be a pain, though. Wouldn’t it be nice if you
could use SQLite locally, but PostgreSQL on Heroku? If you guessed that that was a
leading question, you’d be correct. All you need to do is configure your gems.

 Find this line in your Gemfile,

Use sqlite3 as the database for Active Record
gem "sqlite3"

and change it to this:

gem "sqlite3", group: [:development, :test]
gem "pg", group: :production

USING DIFFERENT DATABASES IN DIFFERENT ENVIRONMENTS CONSIDERED HARMFUL On
any kind of serious production application, we highly recommend taking the
time to set up PostgreSQL, along with the pg gem, in all environments. If you use
different databases in the different environments, you may have a case where the
code works locally but not on production, which can be disastrous. We’ve only
configured this way for the sake of brevity.

Licensed to Mark Watson <nordickan@gmail.com>

456 CHAPTER 13 Deployment

We’re not going to have you install the pg gem in the development environment for a
couple of reasons:

■ To install the pg gem locally, you need to have PostgreSQL installed—or at least
its development header files. On Linux it’s easy to install just the headers; on
other operating systems, not so much.

■ You’re not going to be using PostgreSQL anyway!

To install only the gems you’ll use in development (and test), you can tweak the bun-
dle command slightly:

$ bundle install --without=production

You only have to do this once; future bundle commands will remember this prefer-
ence. At the end of the output from running bundle, you’ll see the following:

Bundle complete! 26 Gemfile dependencies, 113 gems now installed.
Gems in the group production were not installed.
Use `bundle show [gemname]` to see where a bundled gem is installed.

It’s that easy! Commit these changes:

$ git add .
$ git commit -m "Add Postgres for our production data store"
$ git push

Now you’ve got PostgreSQL configured for your production database. You have one
more thing to configure with regard to statelessness: assets.

 A stateless app delegates things to a backing store as needed. Your application’s
assets—that is, its graphics and CSS and JavaScript files—are state. But they’re not
mutable state, in that you only mutate them when you make a new deploy.

 The second thing about assets is that they don’t require any application logic to
serve; you want to give everyone access to them. By default, Rails assumes that all assets
are public and therefore can be stored in an external, fast store, like Amazon S3. But if
you remember, back in chapter 9 you added some application logic to hide images
that users didn’t upload themselves. You want your Heroku application to serve these
assets, so you can protect them. It’ll be slower, but your users value their privacy.

 Another thing that is stateful is application logs. If two servers were each writing
their own logs, they’d need to send them to each other to keep the logs in sync. By
putting logs to standard output rather than to a file, external tools can send the logs
along to an external logging service, which can aggregate logs from all of your servers.

 Fixing this is pretty simple. Heroku provides a gem for Rails called rails_12factor
that changes Rails’ configuration settings to do both of these things. Installing it is
easy; just add this line to your Gemfile:

gem "rails_12factor", group: :production

Then run bundle install. Your app will serve up assets and log to the correct place.
Nice and easy!

Licensed to Mark Watson <nordickan@gmail.com>

457Deploying Ticketee

 Once you’ve made these changes, go ahead and commit:

$ git add .
$ git commit -m "Adding rails_12factor gem for logging and static

assets"
$ git push

Your Rails app is finally twelve-factor compliant. That wasn’t too bad! As we said before,
make sure you check out all 12 points—they can teach you a lot about how things work
under the hood. But enough talk; let’s get your application into production.

13.4 Deploying Ticketee
After all that fuss with getting your application ready, you may be sweating bullets
when thinking about finally deploying it. With all that setup, the final process must be
hard, right? Don’t worry, we’ll get through this together.

 We’ll start with the first step: sending your code up to Heroku. You can do this with
the new heroku Git remote that heroku create added for you:

$ git push heroku master

When you do this, you’ll see a bunch of output, though it may take a minute or two to
get going. It looks something like this:

Counting objects: 1256, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (883/883), done.
Writing objects: 100% (1256/1256), 144.56 KiB | 0 bytes/s, done.
Total 1256 (delta 773), reused 527 (delta 315)
Compressing source files... done.
Building source:

-----> Ruby app detected
-----> Compiling Ruby/Rails
-----> Using Ruby version: ruby-2.0.0
-----> Installing dependencies using 1.7.12

Running: bundle install --without development:test --path ...
Fetching gem metadata from https://rubygems.org/........
Fetching git://github.com/radar/searcher.git
Installing CFPropertyList 2.3.1
Installing i18n 0.7.0
Installing rake 10.4.2
Installing minitest 5.5.1

....

It goes on and on and on … and eventually you should see it succeed. It’ll give you a
couple of warnings though—let’s look at resolving those first.

 As part of the output, you’ll see some text like the following:

WARNING:
You have not declared a Ruby version in your Gemfile.
To set your Ruby version add this line to your Gemfile:
ruby '2.0.0'
See https://devcenter.heroku.com/articles/ruby-versions for

Licensed to Mark Watson <nordickan@gmail.com>

458 CHAPTER 13 Deployment

more information.

WARNING:
No Procfile detected, using the default web server (webrick)
https://devcenter.heroku.com/articles/ruby-default-web-server

These are both issues you can and should fix; you’re not even using Ruby 2.0.0 in
development!

13.4.1 Fixing deployment issues

You’ve successfully completed the first step of deployment to Heroku, but you
received some warnings you can easily fix. Open up your Gemfile, and right at the top
you can specify the version of Ruby you’re using.

source 'https://rubygems.org'
ruby "2.2.1"

...

The second issue is a little trickier—you haven’t specified a web server to use. In devel-
opment you’ve just been using rails server, which uses WEBrick by default. This isn’t
recommended for a production environment, so you’re getting this error.

 Follow the link in the warning, and read all about the pitfalls of using WEBrick in
development. Okay, WEBrick bad. Puma good. Let’s look at setting up your app with
Puma.

 You can start by adding Puma to your Gemfile for use in the production environ-
ment only.

gem "puma", group: :production

Then bundle as always, to get the gem installed.
 You don’t need to do a lot of configuration for Puma, but you do need to create a

new file called Procfile in the root of your Rails application. You can put the following
configuration in it.

web: bundle exec puma -t 5:5 -p ${PORT:-3000}
-e ${RACK_ENV:-development}

We’ve spread the code over two lines here, but in your Procfile it should only be a sin-
gle line.

 Commit these changes, and try deploying again:

Listing 13.2 Specifying the version of Ruby in your Gemfile

Listing 13.3 Using puma in production

Listing 13.4 Defining a new Procfile

Licensed to Mark Watson <nordickan@gmail.com>

459Deploying Ticketee

$ git add .
$ git commit -m "Configure Ruby version and Puma for Heroku"
$ git push
$ git push heroku master

You’ll see the same type of long Heroku output as before, with one small difference:

...
-----> Ruby app detected
-----> Compiling Ruby/Rails
-----> Using Ruby version: ruby-2.2.1
-----> Installing dependencies using 1.7.12

Ruby version change detected. Clearing bundler cache.
Old: ruby 2.0.0p643 (2015-02-25 revision 49749) [x86_64-linux]
New: ruby 2.2.1p85 (2015-02-26 revision 49769) [x86_64-linux]

...

It’s picked up your Ruby version change. Excellent! It’s also read the Procfile you
created:

-----> Discovering process types
Procfile declares types -> web
Default types for Ruby -> console, rake, worker

And both of the warnings have gone! This is very good news.
 Open the URL it gives you in your browser; it should look something like http://

stark-chamber-2017.herokuapp.com/. Congratulations! Your application is now up
and running. Check on it by running heroku open. You’ll see something like fig-
ure 13.2. Oh dear! Your first production issue. What do you do in this case?

 To start with, you can consult the Heroku logs. The logs are the first place that you
should go looking whenever anything goes wrong in your application. Open them now
with heroku logs. You’ll get a lot of output that looks similar to what you see when you
run rails server in your own terminal. Looking through them, you’ll see this part:

...
[timestamp] app[web.1]: Started GET "/" for [IP address] at [timestamp]
[timestamp] app[web.1]: Rendered projects/index.html.erb within

layouts/application (1.0ms)
[timestamp] app[web.1]:
[timestamp] app[web.1]: ActionView::Template::Error (PG::UndefinedTable:

ERROR: relation "states" does not exist
[timestamp] app[web.1]: LINE 1: SELECT "states".* FROM "states"
...

Figure 13.2 If things are going well, you should never see this message. Things aren’t going well.

Licensed to Mark Watson <nordickan@gmail.com>

http://stark-chamber-2017.herokuapp.com/
http://stark-chamber-2017.herokuapp.com/

460 CHAPTER 13 Deployment

This tells you that the states relation doesn’t exist. In PostgreSQL, tables are called
relations, so that would indicate that the states table is the thing that doesn’t exist.

 How would this come to be? It would seem that you’ve forgotten to run your
migrations on your production environment! To run the migrations on Heroku, you
can run this command:

$ heroku run rake db:migrate

When that’s complete, refresh your appli-
cation again. This time you’ll see it run-
ning properly, as in figure 13.3.

 In order to sign in to the application, you
can use the admin credentials. Well, at least
you could do that if that user existed in your
production database. To get that user
created on Heroku, you can run another
Rake command:

$ heroku run rake db:seed

As you might have guessed by now, you can prefix your normal rake commands with
heroku run to run them in your Heroku application. This command will create the
users, projects, and states from the db/seeds.rb file of your application, which is just
perfect for testing your application. Take a break and play around with it. You’ve
come a long way.

13.4.2 Fixing CarrierWave file uploads

You might find, through your tinkering around with the system, that file uploads don’t
quite work in your production application. You can upload a file successfully, but then
clicking the link to view it gives you that same old “We’re sorry, something went
wrong” error message. Not cool.

 What’s gone wrong? Check again with heroku logs.

[timestamp] app[web.1]: Started GET "/attachments/1" for [IP] at ...
[timestamp] app[web.1]: User Load (3.1ms) SELECT "users".* FROM ...
[timestamp] app[web.1]: Parameters: {"id"=>"1"}
[timestamp] app[web.1]: Processing by AttachmentsController#show as HTML
[timestamp] app[web.1]: Sent file uploads/attachment/file/1/cool.jpeg
[timestamp] app[web.1]: ActionController::MissingFile (Cannot read file

uploads/attachment/file/1/cool.jpeg):
[timestamp] app[web.1]: Completed 500 Internal Server Error in 24ms

That makes sense, because that path isn’t where you’re uploading files now—you’re
using Fog and uploading them to S3. You need to tell your app to send the file via its
URL when you have a file at a remote URL, and via its path when you don’t.

Listing 13.5 The latest error message

Figure 13.3 Ticketee, running on Heroku!

Licensed to Mark Watson <nordickan@gmail.com>

461Deploying Ticketee

 You can do this by tweaking your AttachmentsController to add the logic we just
mentioned. Instead of blindly calling send_file attachment.file.path, you can do
the following.

class AttachmentsController < ApplicationController
....
def show
...
send_file file_to_send(attachment), disposition: :inline

end
...

private

def file_to_send(attachment)
if URI.parse(attachment.file.url).scheme

filename = "/tmp/#{attachment.attributes["file"]}"
File.open(filename, "wb+") do |tf|

tf.write open(attachment.file.url).read
end
filename

else
attachment.file.path

end
end

end

This uses URI.parse5 to parse the URL that the file has—your files in development will
have a generic URI, without a scheme (for example, http or https), whereas your files
on S3 will have a scheme of https. You can use this to determine what kind of action
you take.

 If it’s a generic file, you can do what you were doing before—just use send_file
directly with the file path. But you need some fiddly code in there to deal with remote
files—you read the contents of the file into an identically named tempfile stored on the
Heroku server, and then you use send_file to send that temporary file to the browser.
It’s a little hacky, but it will get you going.

 Commit this change:

$ git add .
$ git commit -m "Files are served correctly from S3 in production"
$ git push

Now you can redeploy your code to Heroku:

$ git push heroku master

When that’s done, verify that your file uploads can now be downloaded again. Success!

Listing 13.6 app/controllers/attachments_controller.rb

5 See the URI documentation for more info: http://ruby-doc.org/stdlib-2.2.1/libdoc/uri/rdoc/
URI.html#method-c-parse.

Licensed to Mark Watson <nordickan@gmail.com>

http://ruby-doc.org/stdlib-2.2.1/libdoc/uri/rdoc/URI.html#method-c-parse
http://ruby-doc.org/stdlib-2.2.1/libdoc/uri/rdoc/URI.html#method-c-parse

462 CHAPTER 13 Deployment

13.4.3 Deploying is hard

Deploying is a new step in your process. You run your tests, commit, push to GitHub,
and then push to Heroku.

$ bundle exec rspec
$ git add .
$ git commit -m "Some message"
$ git push origin
$ git push heroku

Isn’t that kind of annoying? Six steps. Wouldn’t it be nicer if you could just do this,

$ git add .
$ git commit -m "Some message"
$ git push origin

and then some magical thing would handle running your tests and pushing to Her-
oku? You can do this with a technique called continuous deployment. You’ll do that
with one of our favorite services: Travis CI. Read on!

13.5 Continuous deployment with Travis CI
Before we get into the details of Travis CI, let’s talk about what continuous deployment
means. In a nutshell, continuous deployment means that every time you commit code,
it ends up going into production. If that sounds a little extreme, that’s because it is.
Many people prefer to have a discrete time when they deploy. But if you limit your
deployments to only doing them by hand, it’s easy to not automate them as much,
because you’re already doing the work anyway. Furthermore, once you have fully auto-
matic deployments, you can do all kinds of neat things. Continuous deployment can
be a useful strategy, given the right developer mentality.

 Travis CI’s claim to fame isn’t deployment—it’s testing. Travis CI is a service that,
like Heroku, came out of the Ruby community and then grew to support a host of
other languages and platforms. Here’s the idea behind it: Every time you push to
GitHub, Travis runs your tests. If your tests fail, Travis will notify you via email. It’s that
simple. It’s impossible to forget to run your tests, because it’s automatic. If you’re
building a library, Travis can also automatically run your tests against multiple versions
of Ruby, including JRuby and Rubinius. Furthermore, Travis watches your pull
requests and can tell you if a given pull request still passes all the tests after it’s been
merged. Travis is a powerful tool in any developer’s arsenal. And like many services,
it’s free for open source projects.

13.5.1 Configuring Travis

Configuring Travis for your Rails app is pretty simple: just add a .travis.yml file to the
root of your Ticketee project, and put this in it:

Listing 13.7 Sample deployment process

Licensed to Mark Watson <nordickan@gmail.com>

463Continuous deployment with Travis CI

language: ruby
rvm: 2.2.1
script: bundle exec rspec
before_install:

- export DISPLAY=:99.0
- sh -e /etc/init.d/xvfb start

This tells Travis that you have a Ruby project, that you wish to use Ruby version 2.2.1 (rvm
stands for Ruby Version Manager, which is the tool Travis uses to switch Ruby versions), and
that you run your tests via bundle exec rspec. The last chunk is the before_install bit.
Because you’re using Selenium to test some JavaScript, you need to use xvfb, the X vir-
tual frame buffer. This will let your browser operate in headless mode.

 Commit this to your repository:

$ git add .
$ git commit -m "Adding support for Travis"

Don’t push it to GitHub just yet. You need an account on the Travis site first.
 Go to https://travis-ci.org/ and click “Sign In with GitHub” at the upper right.

That’s right, Travis works with your GitHub account. Once you’ve signed in, choose an
account from the submenu under your name at the upper right, and you should see
all of your GitHub repositories listed. Find your Ticketee repository, and click the
slider so it says “On.” Then you’re ready to push:

$ git push origin

That’s it! Check out your project on Travis. It will take a few minutes, but if you wait a
while, you’ll see a build happen and then pass. You’ll get a nice green circle for your
effort. That wasn’t so bad!

 A lot of the power of Travis comes from its ability to do things if your build passes
or fails. One example is that when your build fails, Travis can email your entire team
to let you know that something is wrong. Another example is that when your build
passes, Travis can deploy the application to Heroku. Let’s explore that now.

13.5.2 Deployment hooks

Travis can run any arbitrary script after a build passes or fails. One of the first things
that people did when Travis was released was to write scripts that deploy things some-
where. This idea was popular enough that Travis eventually added full deployment
support as an option.

 Here’s how it works. You take your Heroku API key, encrypt it, and give it to Travis.
Then, after a successful build, Travis pushes to Heroku for you. If your tests fail, Travis
won’t push your code. It’s so simple!

 To do this, you first need your Heroku API key. You can find this on your account
page, https://dashboard.heroku.com/account. Click Show API Key, enter your pass-
word, and copy the key onto your clipboard. It should look like a long string of letters
and numbers, like 825dff5749744ffbac3cfb6815c703e7. Now, run this command
from your terminal:

$ gem install travis

Licensed to Mark Watson <nordickan@gmail.com>

https://travis-ci.org/
https://dashboard.heroku.com/account

464 CHAPTER 13 Deployment

Like the Heroku Toolbelt, Travis includes a tool that you can use to interact with your
application. Unlike the Toolbelt, Travis’s tool is distributed via RubyGems. Because
your application doesn’t rely on the gem, you don’t need to put it in your Gemfile;
using gem install is enough.

 Once the travis gem is installed, you need to authenticate with it. Travis authenti-
cates via GitHub, so if you want to log in the normal way, you need to provide your
GitHub username and password to the following command:

$ travis login

If you don’t feel comfortable doing this, you can instead generate a GitHub personal
access token, and use that to authenticate with Travis. To do this, visit the Settings
menu in GitHub, and under Applications you can generate a new personal access
token. The only permission you need to give it is public_repo, so you can uncheck
the rest of the boxes. Make sure to copy the token after it’s created—it’s another long
string of letters and numbers. Then you can log in with this token:

$ travis login --github-token=your_token_here
Successfully logged in as [your-username]!

Once you’re logged in successfully, you can configure Travis for your Ticketee app:

$ travis setup heroku

travis setup asks you two questions. They default to Yes, and you should answer Yes.
You’ll see some output that looks like this:

$ travis setup heroku
Shell completion not installed. Would you like to install it now? |y| y
Detected repository as [you]/ticketee, is this correct? |yes| y
Deploy only from [you]/ticketee? |yes| yes
Encrypt API key? |yes| yes

That’s it. Check out your .travis.yml, because it has been changed. Ours now looks like
this:

language: ruby
rvm: 2.2.1
script: rspec
before_install:
- export DISPLAY=:99.0
- sh -e /etc/init.d/xvfb start
deploy:

provider: heroku
api_key:
secure: ...

app: r4ia-ticketee
on:
repo: rubysherpas/r4ia_examples

There’s some new stuff there. These settings say, “Deploy rubysherpas/r4ia_examples
to Heroku. The app name is r4ia-ticketee, and the API key is encrypted. Here it is.”
This is all the information Travis needs to deploy your code.

Licensed to Mark Watson <nordickan@gmail.com>

465Sending emails

 Commit this new config file:

$ git add .
$ git commit -m "Adding deploy support to Travis"
$ git push origin

If you check out the build on Travis, you should see your tests pass and then the
deployment. Congratulations: you are now continuously deploying! Don’t ever worry
about deploying manually again; let other computers handle that for you. Simply
push to GitHub, and your users will have your new features in a few minutes.

 With this all up and running, why use anything else? Well, although Travis and
Heroku are free for open source projects, Heroku can get pricey for bigger applica-
tions. Plus, even though twelve-factor apps are a good idea, you might find the rules a
bit too constraining and want to build an application in a totally custom manner. To
do so, you’ll need to use your own custom server and deployment tooling. That’s a
topic for another book entirely.

13.6 Sending emails
The final thing that you need to do for your application in this chapter is to configure
it to send out emails in the real world. You have the mailer code, and now what you
need to do is add the email configuration. To get there, you’ll use Heroku’s addons
feature to add a service called Mailgun to your application.

 Mailgun is a service that lets users send emails either via traditional means (an
SMTP server) or via HTTP. It also provides many other features, none of which you’re
going to use right now. You’re more than welcome to experiment with those features
after you’re done this chapter.

 Mailgun also provides a free plan on Heroku Addons, called Starter. To set up
Mailgun with your Heroku account, all you need to do is run this command in the
terminal:

$ heroku addons:add mailgun:starter

When that completes successfully, you’ll see a message like this:

Adding mailgun:starter on stark-chamber-2017... done, v17 (free)
Use `heroku addons:docs mailgun` to view documentation.

The documentation is good, but there’s no need to read it since we’ll cover the impor-
tant parts right here, right now. When you link Mailgun to Heroku, a Mailgun account
is automatically set up for you, and its credentials are made available through environ-
ment variables in your application. If you run heroku config you can see them:

MAILGUN_API_KEY: [redacted]
MAILGUN_SMTP_LOGIN: [redacted]
MAILGUN_SMTP_PASSWORD: [redacted]
MAILGUN_SMTP_PORT: 587
MAILGUN_SMTP_SERVER: smtp.mailgun.org

Licensed to Mark Watson <nordickan@gmail.com>

466 CHAPTER 13 Deployment

You can use most of these environment variables to send emails through Mailgun by
putting this code in config/environments/production.rb. Remember to specify your
own application hostname as the host variable!

Rails.application.configure do
...
ActionMailer::Base.delivery_method = :smtp

host = "yourapp.herokuapp.com"

ActionMailer::Base.smtp_settings = {
port: ENV['MAILGUN_SMTP_PORT'],
address: ENV['MAILGUN_SMTP_SERVER'],
user_name: ENV['MAILGUN_SMTP_LOGIN'],
password: ENV['MAILGUN_SMTP_PASSWORD'],
domain: host,
authentication: :plain,

}

config.action_mailer.default_url_options = {
host: host

}
...

With this configuration, you tell Action Mailer that you want to deliver emails with
SMTP, and that the settings for SMTP are going to use the MAILGUN_* environment vari-
ables, which are only available on Heroku for port, server, login, and password. The
host variable should be the root URL of your application on Heroku. The
default_url_options bit at the end will tell Action Mailer what URL to use when it
decides it wants to create a link.

 Push this configuration up now:

$ git add .
$ git commit -m "Add Mailgun configuration"
$ git push

Go over to Travis and wait for the build to complete. It will take a couple of minutes to
run, but it’s worth it for all it’s doing.

 To test this feature, you can do the following on your production Heroku applica-
tion:

1 Create a new account on Ticketee with a real email address.
2 Sign out from that user.
3 Sign in as admin@ticketee.com and grant your email address “Manager” per-

missions on a project.
4 Sign out from admin@ticketee.com, and sign in again with your real email

address.
5 Create a ticket on that project as your real email address.
6 Sign out, and then sign back in as admin@ticketee.com.
7 Leave a comment on the ticket that you created.

Licensed to Mark Watson <nordickan@gmail.com>

467Summary

After doing this little dance, you should see an email arrive in your inbox from Ticke-
tee. That’s pretty great!

13.7 Summary
In this short chapter, we’ve shown how you can deploy Ticketee to Heroku by using
either git push or Travis CI. The Travis path is better because it ensures that all your
tests are passing beforehand and then does the pushing for you.

 In the next chapter, we’ll look at how you can create an API—a simple way to share
part of Ticketee with other applications.

Licensed to Mark Watson <nordickan@gmail.com>

468

Designing an API

It’s becoming more and more apparent that if you have an application of any sig-
nificance, you’re going to need an application programming interface, or API. Some
applications are only an API. ProgrammableWeb (www.programmableweb.com/),
a blog that keeps track of the API space, has a directory of APIs, and at the time of
writing, there are 13,628 being tracked. By the time you read this, there could be
over 15,000 listed. That’s a lot of APIs!

 In this chapter, we’ll compare a few different ways to build APIs, and then you’ll
build one. Let’s get going.

14.1 An overview of APIs
For a very long time, it’s been considered good practice in computer science to give
your programs a deliberate structure. By “a very long time,” we mean an eternity in

This chapter covers
■ Creating JSON responses using

ActiveModel::Serializers
■ Creating an API namespace
■ Request testing and using HTTParty for

manually interacting with your API
■ Responding appropriately to common API errors

Licensed to Mark Watson <nordickan@gmail.com>

www.programmableweb.com/

469An overview of APIs

computer years: since March 1968. Edsger Dijkstra wrote a paper for that month’s edi-
tion of Communications of the ACM, titled “Go To Statement Considered Harmful,” in
which he, in his well-known style, declares that using structured programming is the
only proper way to write good software. Since then, a great deal of computer science
work has been predicated around the proper way to actually structure programs. One
example is the MVC pattern that you’ve been applying throughout this book.

 As the web became popular, it changed the structure of programs a bit. Before net-
working was prevalent, programs ran mostly on one computer. But when you build a
web application, you’re building a distributed system: part of the application runs on
a server, and part of it runs in the client’s browser. A common way to scale up a web
application is to have an application server running your Rails code, as well as a data-
base server running your database. Two servers plus a client browser is another sort of
distributed system.

 We bring this up because the simple way to think of an API is “We share some stuff
about our application with you.” But it’s important to acknowledge that an API is more
than that—APIs also allow others to build applications that use your component. This
means that you’re not only building a distributed system; you’re building a system that
you don’t entirely control. That brings up a whole ton of issues that mostly involve
coordinating development with an completely separate group of software developers.

 This is a book about Rails, not a book about APIs. We won’t get into all of the
things that you should do to build a perfect API; we just want to get you started build-
ing them in Rails. But before we talk about the API project you’ll build in this chapter,
let’s spend a moment talking about API formats.

 The core idea of an API is that you expose part of your application to the world,
and allow others to use that part in their own applications. There are two main ways to
do this: you can expose your data, or you can expose your workflow. Once you’ve cho-
sen which way you want to share your information with others, you then have to
choose some kind of format. We call these formats MIME types. Some MIME types are
better for data, and some are better for workflow.

 Rails has historically supported the expose-your-data methodology well. This is
generally called a RESTful API. The expose-your-workflow style is called a hypermedia or
web API. This style is newer and a bit less well-known, so we won’t discuss it further in
this book, though we will hint at it from time to time.

 Within the expose-your-data tradition, Rails originally shipped with one of the orig-
inal best-practice API MIME types: XML. Later, a MIME type called JSON grew quite pop-
ular, so Rails supported it as well. Nowadays, most people prefer JSON—due to its
simplicity compared with XML—so we won’t talk about XML-based APIs in this chapter.

 That’s enough theory for now. Let’s look at how a RESTful API might be imple-
mented in Rails.

Licensed to Mark Watson <nordickan@gmail.com>

470 CHAPTER 14 Designing an API

14.1.1 A practical example

Consider a simple ProjectsController that finds a particular Project model and dis-
plays it. You’ve written code like this as far back as chapter 3 and all the way through
the book so far, and it looked like this:

class ProjectsController < ApplicationController
def show
authorize @project, :show?
@tickets = @project.tickets

end
end

This then loads up app/views/projects/show.html.erb. Let’s explicitly add support for
returning HTML, rather than implicitly relying on it:

class ProjectsController < ApplicationController
def show
authorize @project, :show?
@tickets = @project.tickets
respond_to do |format|

format.html
end

end
end

This respond_to block shows all of the MIME types that the show action can return. In
this case, you just have HTML. You can add a JSON format too:

class ProjectsController < ApplicationController
def show
authorize @project, :show?
@tickets = @project.tickets
respond_to do |format|

format.html
format.json

end
end

end

Now if you were to load up http://localhost:3000/projects/1.json, or make a request
with a program like curl to http://localhost:3000/projects/1 with a Content-Type
header set to application/json (which is JSON’s full MIME type name), Rails would
attempt to render app/views/posts/show.json.erb, instead of show.html.erb. An
example of a curl request would be as follows:

curl http://localhost:3000/projects/1.json
or
curl -H "Content-Type=application/json" http://localhost:3000/projects/1

CURL curl is a program that lets you send HTTP requests, and it’s available on
most operating systems. If you don’t have it already, install it with your operat-
ing system’s package manager, or download it from http://curl.haxx.se/
download.html.

Licensed to Mark Watson <nordickan@gmail.com>

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html

471Using ActiveModel::Serializers

Both of these curl examples do the same thing. By putting .json on the end of the
URL, you request the resource in the format of JSON. By specifying the Content-Type
header, you tell the server you expect to get back JSON. Rails supports either of these
approaches for ease-of-use reasons.

 If you switch over to not using the .json format, it will render the HTML view
instead.

 Easy! You can see how the format.html leads to show.html.erb and format.json
leads to show.json.erb. The power of conventions!

 But Rails also knows how to serialize your models, turning their data into JSON and
XML. The serialization approach looks like this:

class ProjectsController < ApplicationController
def show
authorize @project, :show?
@tickets = @project.tickets
respond_to do |format|

format.html
format.json { render json: @project }
format.xml { render xml: @project }

end
end

end

Now you don’t load up a view. render :json and render :xml are two special calls to
render that end up calling special methods on your model: .to_json and .to_xml,
respectively. The controller then sets the proper headers to make sure that the client
knows it’s getting JSON or XML, and then sends the converted model data.

 There are a number of formats more specialized than just plain XML or JSON.
You’ll be using one soon called JSON-API, which builds on top of JSON and is specifi-
cally great for APIs. You should also check out the many other approaches and the var-
ious gems that help you implement them with Rails. Here are some names to get you
started: HAL, Collection+JSON, Siren, JSON-LD, and OData. Choosing a well-known
format can help you reuse tooling that others have written, whereas if you go totally
custom with your JSON, you’ll have to write it all yourself.

 Let’s not build a totally custom solution. As with most tasks you need to accomplish
in Rails, there’s a gem for that: ActiveModel::Serializers.

14.2 Using ActiveModel::Serializers
To help turn your model objects into JSON, you can use a gem called Active-
Model::Serializers, or AMS for short. We’ve already told you that Rails knows how to
serialize models via to_json, so you might wonder why you need a gem.

 Rails only provides you with the most basic of serialization options. As soon as your
application becomes more complicated than “show me all of the data,” the default
implementation of to_json just isn’t enough. For example, let’s say that you have a
simple model called Post you want to turn into JSON:

Licensed to Mark Watson <nordickan@gmail.com>

472 CHAPTER 14 Designing an API

def show
@post = Post.find(params[:id])
render json: @post

end

=> {"id": 1, "title": "Rails is Omakase", "body": "..."}

And suppose you don’t just want the data from your model, you want to add some
metadata. You need to include a root element to scope the data with:

def show
@post = Post.find(params[:id])
ActiveRecord::Base.include_root_in_json = true
render json: @post

end

=> {"post": {"id": 1, "title": "Rails is Omakase", "body": "..."}}

That’s not very intuitive. And if you want to do that only for some models, you’ll have
to remember to turn the setting on and off for each one.

 What if you want to show only the post title, and nothing else? Maybe based on a
parameter that’s passed in?

def show
@post = Post.find(params[:id])
ActiveRecord::Base.include_root_in_json = true

if params[:summary]
render json: @post.to_json(only: [:title])

else
render json: @post

end

ensure
ActiveRecord::Base.include_root_in_json = false

end

Yes, if you want to pass options to to_json, you must do it yourself. You can see how
complex this is getting, and we haven’t even introduced other common scenarios, like
including a certain set of attributes if the current_user is an administrator or a regu-
lar user. You’ll need something more powerful.

 Enter AMS. With it, you define a serializer class, and it controls all of the serializa-
tion options. For each of the previous scenarios, the action code stays the same:

def show
@post = Post.find(params[:id])

render json: @post
end

In addition, you have a serializer, which would be stored at app/serializers/
post_serializer.rb and would look like this:

class PostSerializer < ActiveModel::Serializer
attributes :id, :title, :body

end

Licensed to Mark Watson <nordickan@gmail.com>

473Using ActiveModel::Serializers

This has the root style set by default. If you wanted to remove it for just this serializer,
you’d do this:

class PostSerializer < ActiveModel::Serializer
attributes :id, :title, :body

self.root = false
end

And none of the other serializers would be affected.
 This is the best approach for many reasons. First of all, it places all of the logic

about how to serialize your model in one place, rather than dumping it in the control-
ler or forcing you to write a model method (which mixes presentational requirements
in with your business logic). Serializers are easy to test because they’re plain old Ruby
objects, nothing fancy. You can have a few different serializers for one model, which is
nice if you have various serialization scenarios. And finally, serializers operate on one
of Rails’ core principles: convention over configuration.

 By following AMS’s defaults, you’ll get nice behavior out of the box, and it’ll be sim-
ilar to other projects that use AMS out of the box as well. This means reusability,
because standard tooling can be used to understand the AMS format. With all of these
advantages, why is AMS not the default?

 Originally, AMS was committed to core Rails, but then it was reverted by Rails’ cre-
ator, David Heinemeier Hansson. David prefers to use his own library, JBuilder, which
uses the Builder pattern to create JSON, rather than rely on convention over configura-
tion. JBuilder is included by default with Rails 4. But just like you used RSpec over
MiniTest and you turned Turbolinks off, the Rails defaults are not the only way to do
things. We believe that AMS is the best option due to its convention-over-configuration
approach, and luckily, you install different gems and build applications the way you
want to.

 With that said, let’s serialize some models.

14.2.1 Getting your hands dirty

As with any Rails gem, you first need to add AMS to your Gemfile.

gem "active_model_serializers", "~> 0.9.3"

You should also undo the changes you made to your ProjectsController in this
chapter, when you added the respond_to block (if you did). When you’re done, it
should look just like it did before.

class ProjectsController < ApplicationController
...
def show

Listing 14.1 Adding AMS to your Gemfile

Listing 14.2 Back to the old ProjectsController show action

Licensed to Mark Watson <nordickan@gmail.com>

474 CHAPTER 14 Designing an API

authorize @project, :show?
@tickets = @project.tickets

end
...

end

Next, you need to actually install AMS. Once everything is set up, commit that to Git as
well:

$ bundle
$ git add .
$ git commit -m "Adding ActiveModel::Serializers"

Now you can generate a serializer for your Ticket model. Try this command:

$ rails g serializer ticket

You’ll see some output that shows it created app/serializers/ticket_serializer.rb. Let’s
examine that:

class TicketSerializer < ActiveModel::Serializer
attributes :id

end

This looks mostly like the PostSerializer sample you saw earlier. Excellent!
 Now that you have a serializer, you need to make sure your controller is using it.

Open your app/controllers/tickets_controller.rb and change the show action to look
like this:

class TicketsController < ApplicationController
...
def show
authorize @ticket, :show?
@comment = @ticket.comments.build(state_id: @ticket.state_id)

respond_to do |format|
format.html
format.json { render json: @ticket }

end
end
...

This uses the respond_to block we discussed earlier. In the case of an HTML request,
this action will do the same thing it did before, which is render the app/views/tickets/
show.html.erb view. In the case of JSON, the action will render some JSON instead.

 Now that your controller is set up, you can test it in your browser. Start your server,

$ rails server

and visit a ticket’s page. Go to the URL bar of your browser, add .json to the end, and
then hit Enter. Our URL was http://localhost:3000/projects/1/tickets/1.json, but you
may have a different project or ticket number. The JSON should look like the
following.

Licensed to Mark Watson <nordickan@gmail.com>

475Using ActiveModel::Serializers

{
"ticket": {
"id": 1

}
}

There you have it. Just one ticket with an ID.
 Why just the ID? Well, that’s what you put in your serializer. Go ahead and change

app/serializers/ticket_serializer.rb to add more attributes:

class TicketSerializer < ActiveModel::Serializer
attributes :id, :name, :description, :project_id, :created_at,
:updated_at, :author_id, :state_id

end

If you refresh the JSON in your browser, you’ll see the new attributes:

{
"ticket": {
"id": 1,
"name": "Round and round and round it goes",
"description": "Where it stops nobody knows",
"project_id": 1,
"created_at": "[timestamp]",
"updated_at": "[timestamp]",
"author_id": 1,
"state_id": 1

}
}

See how that state_id is 1? That’s because states are an association. You just have the
ID here. You can change your serializer to include the state information inline, instead
of listing the state_id attribute:

class TicketSerializer < ActiveModel::Serializer
attributes :id, :name, :description, :project_id, :created_at,
:updated_at, :author_id

has_one :state
end

Refresh it, and the JSON will look like this:

{
"ticket": {
"id": 1,
"title": "Round and round and round it goes",
"description": "Where it stops nobody knows",
"project_id": 1,
"created_at": "[timestamp]",
"updated_at": "[timestamp]",
"author_id": 1,
"state": {

"id": 1,

Listing 14.3 A Ticket instance, rendered with the TicketSerializer

Licensed to Mark Watson <nordickan@gmail.com>

476 CHAPTER 14 Designing an API

"name": "New",
"color": "#0066CC",
"default": true

}
}

}

HAS_ONE ASSOCIATION The actual state association in the Ticket model is a
belongs_to association, but here you use has_one instead. As the AMS docu-
mentation explains, serializers are only concerned with multiplicity, and not
ownership, so both belongs_to and has_one are simplified to just has_one.

The has_one method in serializers will include a JSON representation of the object
passed in. To get that JSON representation, ActiveModel::Serializers will go looking for
a serializer with that class’s name. In this case, that would be StateSerializer. If that
serializer existed, it would be used to generate the JSON for this has_one output for
the serializer. It doesn’t exist, though; instead to_json is called on the object and all
the fields from the object are made available as JSON.

 That’s all you need to know about the basics. You now have a very small, very sim-
ple API. You allow users to see details about a ticket. If you’d like, you could also add
serializers for comments, projects, and users. For now, though, we’ll talk about
another part of building APIs: authentication and authorization.

14.3 API authentication and authorization
As you learned earlier, you can simulate a real-life request to an API using curl, a
program that lets you send HTTP requests. Open http://localhost:3000/projects/1/
tickets/1.json with curl, using the -i flag:

$ curl -i http://localhost:3000/projects/1/tickets/1.json
HTTP/1.1 302 Found
X-Frame-Options: SAMEORIGIN
X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff
Location: http://localhost:3000/
Content-Type: text/html; charset=utf-8
Cache-Control: no-cache
X-Request-Id: 7300a07b-5fa5-4df6-8cfb-2cc7f12d4b91
X-Runtime: 0.007952
Server: WEBrick/1.3.1 (Ruby/2.2.1/2015-02-26)
Date: [timestamp]
Content-Length: 88
Connection: Keep-Alive
Set-Cookie: _ticketee_session=MGZEZ...; path=/; HttpOnly

<html><body>You are being redirected
.</body></html>

CURL’S -i FLAG When you use the -i flag, you’re asking curl to include
extra information about the request in its output.

Licensed to Mark Watson <nordickan@gmail.com>

477API authentication and authorization

You can see here that you got a 302 Found response and then some HTML saying
you’ve been … redirected? What gives? You might have expected a 200 OK and some
JSON.

 This happened because you’re not authenticated, and you only want people who
have permission to see the tickets. The curl command has no knowledge of what’s
happening in the browser, so the request made by curl to the server is treated as
though it was made by an anonymous source.

 Making requests to the API requires some way of authenticating, and the way we’ll
discuss in this section is token-based authentication. With token-based authentication,
you pass a token through in the request, and then the application checks if the token
belongs to any user. If so, the application works out that the request must be coming
from that user, so that user is then authenticated for that request.

 You need to be careful, however. If you keep putting code in your Tickets-
Controller to serve as an API, you run the risk of making that controller too complex;
it would be serving both HTML and JSON. There will be some code in the controller
specifically for the HTML response, and some code specifically for the JSON response,
and it can end up as a big tangled mess.

 Take the show action from TicketsController in its current incarnation as an
example:

class TicketsController < ApplicationController
...
def show
authorize @ticket, :show?
@comment = @ticket.comments.build(state_id: @ticket.state_id)

respond_to do |format|
format.html
format.json { render json: @ticket }

end
end
...

The JSON response of this action doesn’t need the @comment variable at all, since that’s
only needed for rendering the “New Comment” form in the HTML response. It only
needs the @ticket variable, which is set up by the before_action called set_ticket.
Rather than chucking everything in the one controller and calling it done, you should
take the time to separate the JSON and HTML parts of your application. You can do
this by introducing an API namespace.

14.3.1 The API namespace

Just as you added an admin namespace back in chapter 7, you’ll add an API namespace
here. This namespace will be used to separate the code that generates API responses
from the code that generates HTML responses.

 Before you go generating any new controllers, you should first write a new test to
make sure that this feature will work as intended. In your test, you’ll want to ensure that

Licensed to Mark Watson <nordickan@gmail.com>

478 CHAPTER 14 Designing an API

users can authenticate using a token when making a request to the API. To validate that
the request is going through okay, you could assert that the response status is 200, but
you can go another step further and validate the structure of the JSON as well. The API
that you’ll test is the new-tickets API.

 Write this new test in spec/requests/api/tickets_spec.rb.

require "rails_helper"

RSpec.describe "Tickets API" do
let(:user) { FactoryGirl.create(:user) }
let(:project) { FactoryGirl.create(:project) }
let(:state) { FactoryGirl.create(:state, name: "Open") }
let(:ticket) do
FactoryGirl.create(:ticket, project: project, state: state)

end

before do
assign_role!(user, :manager, project)
user.generate_api_key

end

context "as an authenticated user" do
let(:headers) do

{ "HTTP_AUTHORIZATION" => "Token token=#{user.api_key}" }
end

it "retrieves a ticket's information" do
get api_project_ticket_path(project, ticket, format: :json),

{}, headers
expect(response.status).to eq 200

json = TicketSerializer.new(ticket).to_json
expect(response.body).to eq json

end
end

end

We’ve put the test under spec/requests because you’re going to test a request for your API.1

You could also put the test in spec/controllers/api/tickets_controller_spec.rb, but you’re
testing the rendered response as well, which is out of the domain of a controller test.

CONTROLLER TESTS VS. REQUEST TESTS You can test rendered responses in
controller tests (by using render_views and testing response.body), but this
isn’t good practice—“unit” tests should test one type of thing only, and that
would be testing controllers and views. Request tests are higher-level tests that
can test the entire stack, but from a code perspective, not from an interface
perspective like feature tests.

Listing 14.4 spec/requests/api/tickets_spec.rb

1 RSpec request specs are documented here: https://www.relishapp.com/rspec/rspec-rails/docs/request-specs/
request-spec.

Licensed to Mark Watson <nordickan@gmail.com>

https://www.relishapp.com/rspec/rspec-rails/docs/request-specs/request-spec
https://www.relishapp.com/rspec/rspec-rails/docs/request-specs/request-spec

479API authentication and authorization

The test is at spec/requests/api because you may, in the future, have request specs
that test other parts of your application, and not necessarily just the API.

 In the test, you set up a project and link a ticket to it. You also set up a user and
call a new method on that user called generate_api_key. This method will do what
it says: generate an API key for the user. In the setup of the test, you set up an
HTTP_AUTHORIZATION header to pass in to the request. This header is in a very spe-
cific format, and you’ll see why when you implement the controller code to make
this test pass.

 In the body of the test, you make a get request to api_project_ticket_path with
a format of JSON and the headers hash that you defined earlier. When the request runs,
you’ll expect to see a successful response and you’ll also expect to see the ticket JSON
that you saw earlier. Rather than writing out exactly what you expect it to be here, the
test cheats a little and uses the TicketSerializer class to generate a serialized version.

When you run the test now with bundle exec rspec spec/requests/api/tickets
_spec.rb, you’ll see this error:

1) Tickets API as an authenticated user retrieves a ticket's information
Failure/Error: user.generate_api_key
NoMethodError:
undefined method `generate_api_key' for #<User:0x007f9ca15ad580>

Ah, the generate_api_key method is missing! You can define this method now in
your User model:

class User < ActiveRecord::Base
...
def generate_api_key
self.update_column(:api_key, SecureRandom.hex(16))

end
...

Testing JSON
If you cared about the precise structure of this JSON, you’d probably write it all out
by hand, like this:

expect(response.body).to eq(JSON.dump({
"ticket" => {
"id" => ticket.id,
"title" => ticket.title
....

}
}))

Doing it this way is useful in cases when you need to know that your API endpoints
are returning exactly the correct structure. In this simple test, you don’t care so much.
In a large application, you might care a lot, and you might start writing specs specif-
ically for your serializers to test all of the output cases.

Licensed to Mark Watson <nordickan@gmail.com>

480 CHAPTER 14 Designing an API

This method will generate a new API key for your users by using the SecureRandom
class from Ruby’s standard library. The update_column method used here will update
just one column on your object in the database. The update_column method is typi-
cally used in cases where you want to update a column and you don’t care about vali-
dations—it’s perfect for this case.

 The api_key field is what you’ll use in your tests to authenticate your users. That
field doesn’t exist in your database right now, so you can add it by creating and run-
ning a migration. Create the migration with this command:

$ rails g migration add_api_key_to_users api_key:string:index

The migration will look like this:

class AddApiKeyToUsers < ActiveRecord::Migration
def change
add_column :users, :api_key, :string
add_index :users, :api_key

end
end

As you can see, the extra index part of the generator command will add a database
index to the api_key field. This is a good idea because you’ll use that field to look up
users, so it should be optimized for that.

 Run the migration with bundle exec rake db:migrate. When you rerun your test,
it should be satisfied that the generate_api_key method on User objects is now pres-
ent. The test will now error like this:

1) Tickets API as an authenticated user retrieves a ticket's information
Failure/Error: get api_project_ticket_path(project, ticket, format...
NoMethodError:
undefined method 'api_project_ticket_path' for #<RSpec::...

You don’t currently have a route defined for this path helper, which should route to a
TicketsController within your very-soon-to-be-created API namespace. You can
create all of this now in your config/routes.rb file, directly underneath the admin
namespace.

Rails.application.routes.draw do
...
namespace :api do
resources :projects, only: [] do

resources :tickets
end

end
...

An alternative way of solving the problem would be to use a scope instead of a nested
resource, as follows.

Listing 14.5 Defining an api namespace

Licensed to Mark Watson <nordickan@gmail.com>

481API authentication and authorization

namespace :api do
scope path: "/projects/:project_id", as: "project" do
resources :tickets

end
end

The scope routing method is used here to create a path that you can nest your
tickets resources under. You don’t currently have a projects resource in your API,
so this is a good workaround. But if you were to add some project-related routes later,
you’d have to refactor and remove the scope, instead of just adding some action
names to the only option.

 The as option used in the scope adds the very important “project” part to the
route helpers to make them api_project_tickets_path and the like. Without this,
the routing helpers for the tickets resource in the API namespace would just be
api_tickets_path. That would be no good for when you eventually do have a projects
resource, as the routing helpers will change.

 You now have the routes, and more importantly the routing helpers that your test
requires. Run your tests again and see what happens next;

1) Tickets API as an authenticated user retrieves a ticket's information
Failure/Error: get api_project_ticket_path(project, ticket, format...
ActionController::RoutingError:
uninitialized constant Api

Your code is looking for the constant Api, but it can’t find it. This is happening
because the routes are working and attempting to route to a TicketsController that
exists within an Api module. The module name itself is a problem; it looks like a bad
spelling of happy and not the proper form of API.

 This isn’t a hard problem to fix, because you only need to define an inflection rule
for your application.

14.3.2 A small tangent on inflections

Inflections are Rails’ way of knowing how to pluralize or singularize words. You can also
define uncountable words, and Rails is smart enough already to know that you can’t
pluralize words like news and sheep. It also has some rules about irregulars, like where
person becomes people when it’s pluralized. The final thing that inflections can do in
Rails is define acronyms, and that’s what you’ll use right now to change Api to API in
your application.

 Custom inflection rules for a Rails application are defined within config/initializers/
inflections.rb, and currently that file looks like this:

Be sure to restart your server when you modify this file.

Add new inflection rules using the following format. Inflections
are locale specific, and you may define rules for as many different
locales as you wish. All of these examples are active by default:

Listing 14.6 Defining a scope instead of a projects resource

Licensed to Mark Watson <nordickan@gmail.com>

482 CHAPTER 14 Designing an API

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, '\1en'
inflect.singular /^(ox)en/i, '\1'
inflect.irregular 'person', 'people'
inflect.uncountable %w(fish sheep)
end

These inflection rules are supported but not enabled by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym 'RESTful'
end

The ActiveSupport::Inflector.inflections method takes a two-letter locale code.
This is so you can define inflections for different languages. For instance, in German
the word for a child is kind but its plural form is kinder. In English, it’s child and children.

 At the very bottom of this file is an English acronym inflection that defines RESTful,
which is indeed an acronym. You can define a similar acronym inflection rule for API,
so that your module is called API and not the bad-spelling-of-happy Api.

 Replace the final block in that file with the following.

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym "API"

end

When you run the test again, you’ll see the correct constant:

1) Tickets API as an authenticated user retrieves a ticket's information
Failure/Error: get api_project_ticket_path(project, ticket, format...
ActionController::RoutingError:
uninitialized constant API

There’s one small drawback of making this inflection change—it means that every-
where you’ve previously referenced Api as a constant, you now need to reference API
instead, or it won’t work anymore.

 You haven’t done this anywhere, but the generators you’ve used have done it in
one place—in the migration you created to add the api_key field to your User model.
It starts with the following line:

class AddApiKeyToUsers < ActiveRecord::Migration

You need to update that line. Open the file db/migrate/[timestamp]_add_api_key
_to_users.rb, and alter that line to reference API instead:

class AddAPIKeyToUsers < ActiveRecord::Migration

Now if you ever need to run this migration again (as you will when you deploy this
code to production), it will run without error.

 And now you can continue on your journey to making this test pass.

Listing 14.7 config/initializers/inflections.rb

Licensed to Mark Watson <nordickan@gmail.com>

483API authentication and authorization

14.3.3 Getting back to your API

You can now define the API::TicketsController that your routes are crying out for
by running this command:

$ rails g controller api/tickets

This command will generate that new controller that your test needs. Now see what
happens when you run the test again:

1) Tickets API as an authenticated user retrieves a ticket's information
Failure/Error: get api_project_ticket_path(project, ticket, format...
AbstractController::ActionNotFound:
The action 'show' could not be found for API::TicketsController

It looks very much like you’ll need to now define the show action of this controller.

class API::TicketsController < ApplicationController
before_action :set_project

def show
@ticket = @project.tickets.find(params[:id])
authorize @ticket, :show?
render json: @ticket

end

private

def set_project
@project = Project.find(params[:project_id])

end
end

This is a stripped-down variant of what you had in TicketsController. There’s no
need to load the @states or @comment instance variables here because your response
simply doesn’t need them.

 When you run the test again, you’ll see this happening:

1) Tickets API as an authenticated user retrieves a ticket's information
Failure/Error: expect(response.status).to eq 200

expected: 200
got: 302

(compared using ==)

You’re being redirected, but where to? If you look in log/test.log, you can see where:

Started GET "/api/projects/5/tickets/5.json" for [IP] at [timestamp]
Processing by API::TicketsController#show as JSON

Parameters: {"project_id"=>"5", "id"=>"5"}
Project Load (0.1ms) SELECT "projects".* FROM "projects" WHERE ...
Ticket Load (0.1ms) SELECT "tickets".* FROM "tickets" WHERE ...

Listing 14.8 app/controllers/api/tickets_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

484 CHAPTER 14 Designing an API

Project Load (0.1ms) SELECT "projects".* FROM "projects" WHERE ...
Role Exists (0.2ms) SELECT 1 AS one FROM "roles" WHERE ...

Redirected to http://www.example.com/
Completed 302 Found in 24ms (ActiveRecord: 0.5ms)

Your specs use http://www.example.com as the base path of your application, so
you’re being redirected back to the root path of your application, but why is that? This
is probably happening in a controller, but because there’s no code to redirect you in
API::TicketsController, it must be happening farther up the chain. Farther up the
chain is ApplicationController, which has these lines in it:

class ApplicationController < ActionController::Base
...
rescue_from Pundit::NotAuthorizedError, with: :not_authorized

....

def not_authorized
redirect_to root_path, alert: "You aren't allowed to do that."

end
end

This is a likely culprit. Pundit works by requesting current_user in your controllers,
and using that to determine if the user making the request has authorization to per-
form the actions in your controllers. Because you’re not accessing the API through a
normal request, which would have a session, current_user is always going to be nil.
To fix this, you can define a current_user method in API::TicketsController,
which uses different logic for finding the user, in two parts.

 The first part is a before_action callback that authenticates a user based on the
token from the HTTP_AUTHORIZATION header:

class API::TicketsController < ApplicationController
before_action :authenticate_user

...

private

def authenticate_user
authenticate_with_http_token do |token|

@current_user = User.find_by(api_key: token)
end

end

DON’T FORGET TO KEEP THINGS DRY! If you were building a larger API, you’d
repeat this method a lot, so it would make sense to extract it out into a com-
mon API::ApplicationController and have all of your API controllers
extend from that controller instead of ApplicationController. You did a
similar thing when you wanted to add a common authorization check for all
of the controller actions in your admin namespace.

Licensed to Mark Watson <nordickan@gmail.com>

485API authentication and authorization

The authenticate_with_http_token method comes from Rails and is used to
authenticate users based on the HTTP_AUTHORIZATION token.

 The second part defines the current_user method that Pundit is looking for.
Because the method should just return the @current_user instance variable you’ve
created, you can add this with an attr_reader at the top of your controller.

class API::TicketsController < ApplicationController
attr_reader :current_user

...

Run your test one more time:

1 example, 0 failures

Hooray! It has passed. You’ve now got an API for tickets.
 Now that this API exists, you don’t need the respond_to block in the show action of

your normal TicketsController, so you can remove these lines.

respond_to do |format|
format.html
format.json { render json: @ticket }

end

Now run all your tests with bundle exec rspec. This is what you’ll see:

133 examples, 0 failures, 1 pending

The one pending test is located at spec/helpers/api/tickets_helper_spec.rb, and you
can delete this file because you’re not using it at all. Now your tests will be all green:

132 examples, 0 failures

Commit this change:

$ git add .
$ git commit -m "Added basic Tickets API"

So far in this chapter, you’ve seen two ways of building an API. The first demonstrated
that you can use respond_to in a controller’s actions in order to respond differently
depending on the request. That made things difficult, because sometimes in control-
ler actions you can have code that only needs to run for a particular format. You
ended up moving the code that handles the JSON requests for your application out to
an API namespace.

 The benefits of doing this are that you don’t have unnecessary code being run in
the actions, and the controller code is more single-purpose than it would otherwise
be. You could also very easily rewrite the API component in some other language—as

Listing 14.9 Defining the current_user method that Pundit needs

Listing 14.10 Cleaning up in app/controllers/tickets_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

486 CHAPTER 14 Designing an API

some developers choose to do these days, mainly for reasons of speed. If the code was
all combined in the same controller, it would be harder to separate out the parts.

 The next step would be to implement other actions of this API. As an example, you
could allow users to create new tickets for a project and allow them to update tickets.
You could also build an entirely new set of API endpoints for projects, and one for
users that only admins could touch. That’s an exercise best left for you, the reader.
Consider it your homework for this section.

 Now we’ll move on to one way of using this API: the HTTParty gem.

14.4 It’s not a party without … HTTParty
You’ve seen how to build an API and test it, but you haven’t yet seen how to connect to
it from outside of your application. That’s what we’ll look at now, using the HTTParty
gem.

 The HTTParty gem can be used to make HTTP requests, and it provides a neat API
for doing so:

HTTParty.get("http://example.com/api/resource.json")

This code will return an HTTParty::Response object, which has a method called
parsed_response; this is where the magic for HTTParty happens. HTTParty will
inspect the response and see if it has a content type of application/json. If it does,
HTTParty will parse the JSON into a hash using JSON.parse. You can then work with
the hash object however you please, and you don’t have to go around parsing JSON
responses yourself.

 You can now write some code to interact with your API using HTTParty. Rather
than writing this code in your application, you’ll put it in a new directory at the same
path as the ticketee app with the extremely imaginative name of ticketee_api. Inside
this directory, you’ll create a file called tickets.rb, and in that file you’ll put some code
that will be used to pull down a ticket’s info from the API.

require "httparty"

token = "YOUR_TOKEN_GOES_HERE"
url = "http://localhost:3000/api/projects/1/tickets/1.json"

response = HTTParty.get(url,
headers: {
"Authorization" => "Token token=#{token}"

}
)

puts response.parsed_response

This code requires the HTTParty gem and then defines two variables that will be used
in the request: a token and a URL. To make a GET request, you just need to call

Listing 14.11 ticketee_api/tickets.rb

Licensed to Mark Watson <nordickan@gmail.com>

487Handling errors

HTTParty.get and pass in the URL and the Authorization header. This will make a
request just like the API requests you were making earlier, but it will use data from
your development database rather than the test database.

 You’ll need to install the httparty gem from the terminal:

$ gem install httparty

In the previous code, you’ve got YOUR_TOKEN_GOES_HERE where you should have a real
token. In order to get that token, you’ll need to run the generate_api_key method
on one of your User objects. You can do that in the rails console:

$ rails console
Loading development environment (Rails 4.2.1)
irb(main):001:0> user = User.find_by(email: "admin@ticketee.com")
=> #<User id: 1, email: "admin@ticketee.com",
irb(main):002:0> user.generate_api_key
=> true
irb(main):003:0> user.api_key
=> [an alphanumeric string here]

The string returned by the final method is your API key. Replace YOUR_TOKEN_GOES
_HERE in tickets.rb with that string.

 You’ve now got all the parts to make this file work, and the only thing left to do is
to run it. First, launch a Rails server (if you don’t already have one running):

$ rails server

Now, to run tickets.rb, open a new terminal window and run this command inside the
ticketee_api directory:

$ ruby tickets.rb

You should see a response like this:

{"ticket"=>{"id"=>1, ...}

This means that your code for accessing the API is now working!
 HTTParty has other methods, like post, put, and delete. Again, we’ll leave it to

you to learn how to build the remainder of the tickets API and then connect it with
HTTParty. Or, if you have a lot of JavaScript skills, you could build a JavaScript web
app in something like AngularJS or Ember.js, and use AJAX to load data from the API
for rendering.

 Go on, give it a try!

14.5 Handling errors
Not every request to your API is going to end in happiness. Sometimes, other people
and their programs might try to make a request to it using an invalid API token, or
they might send data through that doesn’t satisfy the validations defined in the model.
In either case, you need to return messages to the people or programs that indicate
that something has gone wrong and that they need to fix it.

Licensed to Mark Watson <nordickan@gmail.com>

488 CHAPTER 14 Designing an API

 Let’s first take a look at how you can return an error message when the API is
accessed with an invalid token. After that, we’ll look at how you can return error mes-
sages from your API when the data passed to it doesn’t pass muster.

14.5.1 Authenticating with a blank token

When an invalid or even blank token is passed to your API, it should respond in a way that’s
useful to the thing doing the requesting. Currently, it responds, but not in a nice way.

 You can see what it does by running your usual curl command and not passing it
an API key:

curl http://localhost:3000/api/projects/1/tickets/1.json

The response you’ll get back from this is (in a slightly edited format) as follows:

<html>
<body>
You are being redirected

</body>
</html>

Hmmm. That isn’t so helpful. What’s happening here is that Pundit is detecting that
you aren’t authorized to access that particular project, so it’s raising a Pundit::
NotAuthorizedError and that’s being rescued in ApplicationController and
redirecting. Just as you saw earlier in this chapter.

 What should be happening instead is that the request should respond with a 401
Unauthorized HTTP status code, as well as a bit of JSON that tells the user that they’re
unauthorized. You can add a test for this now to the bottom of spec/requests/api/
tickets_spec.rb:

RSpec.describe "Tickets API" do
...
context "as an unauthenticated user" do
it "responds with a 401" do

get api_project_ticket_path(project, ticket, format: "json")
expect(response.status).to eq 401
error = { "error" => "Unauthorized" }
expect(JSON.parse(response.body)).to eq error

end
end

end

You’re not authenticating as anybody in this particular spec, so when you make the
request, you expect your API to return a status of 401 with a JSON error message. It’s
currently doing neither of those, as you saw when you ran curl and as you’ll see now if
you run this test with bundle exec rspec spec/requests/api/tickets_spec.rb:

1) Tickets API as an unauthenticated user responds with a 401
Failure/Error: expect(response.status).to eq 401

expected: 401
got: 302

(compared using ==)

Licensed to Mark Watson <nordickan@gmail.com>

489Handling errors

To fix this, you’ll need to handle the case in API::TicketsController where
authenticate_with_http_token doesn’t even try to find your user, or it attempts to
find your user but there are no users matching the token passed in. In either of those
cases, the @current_user variable inside the block will either not be set or will be set
to nil, which is the default value of instance variables anyway.

 This makes it easy for you to check if that authentication has failed. If it has, then
@current_user will be nil. When it’s nil, you should return the unauthorized status.
You can make your controller do this now by changing authenticate_user in
API::TicketsController to this:

class API::TicketsController < ApplicationController
...
def authenticate_user
authenticate_with_http_token do |token|

@current_user = User.find_by(api_key: token)
end

if @current_user.nil?
render json: { error: "Unauthorized" }, status: 401
return

end
end
...

When you call render with a blank return here, the filter chain will halt and the
actions of the controller will not be run. The response will instead be a JSON hash con-
taining an error key with a short message, and an HTTP status of 401 will be set on
the request.

 Run that test again. It should pass this time:

2 examples, 0 failures

Excellent! Now your API will return a useful error message to users who authenticate
with an invalid or blank token.

 For our next trick, we’ll take a look at what you can do if a user doesn’t have the
right permissions to perform an action on a resource of your system.

14.5.2 Permission denied

When a user doesn’t have permission to access a project on your application, you’ll
want to show them a very similar error as in the previous section. Rather than return-
ing a 401 HTTP status code, you’ll return a 403. A 403 response indicates that the
request was forbidden.

 Add a test for this to spec/requests/api/tickets_spec.rb inside the "as an authen-
ticated user" block:

RSpec.describe "Tickets API" do
...
context "as an authenticated user" do
...

Licensed to Mark Watson <nordickan@gmail.com>

490 CHAPTER 14 Designing an API

context "without permission to view the project" do
before do

user.roles.delete_all
end

it "responds with a 403" do
get api_project_ticket_path(project, ticket, format: "json"),

{}, headers
expect(response.status).to eq 403
error = { "error" => "Unauthorized" }
expect(JSON.parse(response.body)).to eq error

end
end

end
...

In the before block for this context, you delete the user’s roles using .delete_all.
This is a bit messy because it’s running some code to create the user’s role and then
running some other code to delete it, which makes the initial action pointless. You
could move the role assignment so it’s used exclusively within a new context block that
assigns the role. We’ll do that after you get this test passing.

 In the body of the test, you make a request in the same way as the one above it: you
want to access a project’s ticket and you’re authenticating. But this time you expect to
see a 403 HTTP status returned, with an error shown in the JSON.

 When you run this test with bundle exec rspec spec/requests/api/tickets
_spec.rb, this is what you’ll see happening:

1) Tickets API as an authenticated user without permission to view the
project responds with a 403
Failure/Error: expect(response.status).to eq 403

expected: 403
got: 302

(compared using ==)

You see a redirection happen again, and you know that this is being caused by the
not_authorized method that’s defined in ApplicationController. That particular
method is called when the Pundit::NotAuthorized exception is raised. All of that is
exactly what you want to happen, except for the redirect. In your API, it should be
returning a 403 status code instead.

 To override this behavior, you can simply redefine the not_authorized method in
API::TicketsController.

class API::TicketsController < ApplicationController
...
def not_authorized
render json: { error: "Unauthorized" }, status: 403

end
end

Listing 14.12 Overwriting the not_authorized method

Licensed to Mark Watson <nordickan@gmail.com>

491Handling errors

This method employs a flow similar to the end of your authenticate_user request,
where you render JSON and then return a status. In the not_authorized method, you
don’t need to have a return because you’re not halting the request flow. The
not_authorized is the end of the line.

 With this tiny change to your controller, your test will now pass:

3 examples, 0 failures

Great! When Pundit::NotAuthorized exceptions are raised within actions of this con-
troller, rather than redirecting to the root_path, your controller will now respond
properly with an HTTP status of 403 and JSON data informing the user that they’re
making an unauthorized request.

 Let’s now take a look at how you can handle a different kind of error in your API:
validation errors.

14.5.3 Validation errors

When users submit invalid data to your API, you want it to return an error similar to
the case where they attempt to use an invalid token. In the case of invalid data, you’ll
return a 422 Unprocessable Entity HTTP status code and a JSON hash like the
following:

{ errors: ["Title can't be blank", "Description can't be blank"] }

Before you return any errors, you should first make sure that your API actually allows
people to create tickets. To make sure your API allows that, you can write a short test
for it in spec/requests/api/tickets_spec.rb, directly underneath the “retrieves a
ticket’s information” test:

RSpec.describe "Tickets API" do
...
context "as an authenticated user" do
...
it "can create a ticket" do

params = {
format: "json",
ticket: {

name: "Test Ticket",
description: "Just testing things out."

}
}

post api_project_tickets_path(project, params), {}, headers
expect(response.status).to eq 201

json = TicketSerializer.new(Ticket.last).to_json
expect(response.body).to eq json

end
...

In this test, you set up some parameters that will be passed to the create action in
your controller, you put these parameters into a URL, and then you send a POST

Licensed to Mark Watson <nordickan@gmail.com>

492 CHAPTER 14 Designing an API

request to your controller. The full URL would look something like /api/projects/
:project_id/tickets. From the response, you’re expecting a 201 status code, and you’re
expecting to see the ticket that you just created.

 Run this spec now with bundle exec rspec spec/features/api/tickets_spec.rb
and see how far along it gets:

1) Tickets API as an authenticated user can create a ticket
Failure/Error: post api_project_tickets_path(project, params), {},
headers
AbstractController::ActionNotFound:
The action 'create' could not be found for API::TicketsController

It’s not getting very far at all. The create action is missing from API::Tickets-
Controller, and your test is whining about not having it, so it’s best to go and create it
now. Add it to the controller defined in app/controllers/api/tickets_controller.rb.

class API::TicketsController < ApplicationController
...
def create
@ticket = @project.tickets.build(ticket_params)
authorize @ticket, :create?
if @ticket.save

render json: @ticket, status: 201
end

end
...

In this create action, you build a new ticket, authorize the user to create tickets within
a project, and then save the ticket. Once the ticket is saved, you respond with it in
JSON form—thanks to your TicketSerializer class—and an HTTP status of 201 Cre-
ated, indicating that the action has proceeded successfully and that a resource has
been created by the request.

 You need to define ticket_params here too. You’ll only allow a name and a
description to be sent through in the API requests, just to keep things simple for now:

class API::TicketsController < ApplicationController
...
private

def ticket_params
params.require(:ticket).permit(:name, :description)

end
...

When you run your test again, all the pieces will be in place:

4 examples, 0 failures

Now that you’ve created the create action, it’s time to handle the case where invalid
data is submitted. First, add a new test underneath the one you just wrote:

Listing 14.13 Adding a create action to API::TicketsController

Licensed to Mark Watson <nordickan@gmail.com>

493Handling errors

RSpec.describe "Tickets API" do
...
context "as an authenticated user" do
...
it "cannot create a ticket with invalid data" do

params = {
format: "json",
ticket: {

name: "", description: ""
} }

post api_project_tickets_path(project, params), {}, headers

expect(response.status).to eq 422
json = {

"errors" => [
"Name can't be blank",
"Description can't be blank",
"Description is too short (minimum is 10 characters)"

]
}
expect(JSON.parse(response.body)).to eq json

end
...

With this test, you send through a blank title and a blank description. According to
the rest of the test, when you do this you’ll see a 422 response come back from your
API and some errors reported in JSON.

 When you run these tests again, they fail like this:

1) Tickets API as an authenticated user cannot create a ticket with
invalid data
Failure/Error: post api_project_tickets_path(project, params), {}...
ActionView::MissingTemplate:
Missing template api/tickets/create, ...

This happens because the request is falling through the action and out the other side.
The if statement inside the request returns false, so the code inside of that doesn’t
get run at all.

 To stop the request in its tracks and return the things you want your API to return,
you need an else to go with that if:

class API::TicketsController < ApplicationController
...
def create
@ticket = @project.tickets.build(ticket_params)
authorize @ticket, :create?
if @ticket.save

render json: @ticket, status: 201
else

render json: { errors: @ticket.errors.full_messages }, status: 422
end

end
...

Licensed to Mark Watson <nordickan@gmail.com>

494 CHAPTER 14 Designing an API

The full_messages method called on errors here will return a list of error messages,
just as your test expects. When you run that test again, you’ll see it’s now passing:

5 examples, 0 failures

You now have a create action in your API that allows users to create tickets within
projects, and as an additional bonus it scolds them about invalid data.

 You’re almost done here. You’ve done the red and green parts of your develop-
ment, and now it’s time for the fun part: the refactoring.

14.6 A small refactoring
When you build out the rest of your API, you’ll build controllers that use the same
helpers that your TicketsController uses. The current_user, authenticate_user,
and not_authorized methods can be used in other parts of your API too, so having
them in API::TicketsController probably isn’t the best way to do things.

 Instead, you should move them to a class that all of your API controllers can inherit
from. You can call this class API::ApplicationController and define it in app/
controllers/api/application_controller.rb.

class API::ApplicationController < ApplicationController
attr_reader :current_user
before_action :authenticate_user

private

def authenticate_user
authenticate_with_http_token do |token|

@current_user = User.find_by(api_key: token)
end

if @current_user.nil?
render json: { error: "Unauthorized" }, status: 401
return

end
end

def not_authorized
render json: { error: "Unauthorized" }, status: 403

end
end

Then you can switch your API::TicketsController over to inherit from this controller:

class API::TicketsController < API::ApplicationController

You can remove the authenticate_user, current_user, not_authorized, and
before_action :authenticate_user methods from API::TicketsController, too.

Listing 14.14 app/controllers/api/application_controller.rb

Licensed to Mark Watson <nordickan@gmail.com>

495Summary

 Did you break anything with these changes? Find out by running your tests using
bundle exec rspec spec/requests/api:

5 examples, 0 failures

Nope! That’s great. Double-check that none of the specs are broken by running the
entire suite with bundle exec rspec:

136 examples, 0 failures

Perfect! Make a commit and push to wrap up your work here:

$ git add .
$ git commit -m "Fleshed out tickets API with creating tickets and responses

for error conditions"
$ git push

14.7 Summary
There are whole books about how to design APIs, and, in fact, multiple books about
multiple ways to build APIs. There are a lot of ways you can go from here, but this is
enough to get you started.

 First, you learned how to do API-first development. If you know you want to have
an API, building it from the start can help you do it right. It’s not too hard to build
one after the fact in Rails, but just as TDD revolutionized the way you write code to
make it easy to test, API-first development can change the way you build APIs.

 Next, you found out about ActiveModel::Serializers and how convention over con-
figuration can make it easy to generate JSON. ActiveModel::Serializers follows the
same pattern that makes Rails so productive. All you need to do is make a serializer
object, and let ActiveModel::Serializers build some excellent JSON.

 Then you went down a path of adding a JSON response to TicketsController
using a respond_to block, but you quickly discovered that this led to messy code in
the controller action. Separating it out into a controller that serves HTML and another
controller that serves JSON allowed you to keep each controller slim, but with the cost
of some duplication.

 Finally, you wrote a small piece of code to interact with the API that you built in this
chapter. We are completely serious about our homework suggestions, by the way. You
really should try building out the API some more, allowing projects to be managed by
admins and allowing tickets to be created, updated, and deleted as well as read. Then
refactor it. We can almost guarantee that you’ll learn something during the process.

 In the next chapter, the final chapter of the book, we’ll showcase the foundational
web server interface of Rails, called Rack, and explain how it’s used to connect not just
the different parts of Rails, but also other frameworks written in Ruby.

Licensed to Mark Watson <nordickan@gmail.com>

496

Rack-based applications

So far, this book has primarily focused on how to work with pieces of the Rails
framework. In this chapter, we’ll look at something lower-level than that: the Rack
web server interface.

 Rack is the underlying web server framework that powers the request/response
cycle found in Rails, but it isn’t a part of Rails itself. It’s completely separate, with
Rails requiring the parts of Rack it needs. When your application runs, it’s run
through a web server. When your web server receives a request, it will pass it off to
Rack, as shown in figure 15.1.

 Rack then determines where to route this request, and in this case it’s chosen to
route to a specific application stack. The request passes through a series of pieces
called middleware (covered in the final section of this chapter) before arriving at the
application itself. The application will then generate a response and pass it back up

This chapter covers
■ Learning how HTTP requests work under the

hood with Rack
■ Mounting Rack applications inside a Rails

application
■ Introduction to the Sinatra web framework
■ Intercepting requests with custom middleware

Licensed to Mark Watson <nordickan@gmail.com>

497Building Rack applications

through the stack to Rack, and then Rack will pass it back to
the server, which will finally pass it back to the browser. All
of this happens in lightning-quick fashion.

 Separating Rack from Rails not only reduces bloat in the
framework, but also provides a common interface that
other frameworks can use. When you standardize the
request/response cycle, applications that are built on top of
Rack can interact with one another and with all web servers
in a common format.

 In this chapter, you’ll see how you can do this by making
your Rails application work with applications built using
Rack, but not Rails. You’ll build some Rack applications in
this chapter that aren’t Rails applications, but will work just
as seamlessly. You’ll learn how Rack provides the request/
response cycle underneath Rails and other Ruby frame-
works, and learn how to build your own small, lightweight,
Rack-based applications.

 With these lightweight applications crafted, you’ll then
create one more application that will re-implement the tick-
ets API functionality you created in the last chapter using
another Rack-based web framework called Sinatra. You’ll
mount this Sinatra application inside your Rails application
using methods that Rails provides. This will provide an
example of how you can interact with classes from your Rails application from within a
mounted Rack application.

 Finally, we’ll look at middleware within both the Rack and Rails stacks, and you’ll
learn how to use it to your advantage to manipulate requests coming into your
application.

 All Rack-based applications work the same way. You request a URL from the appli-
cation, and it sends back a response. But what goes on between that request and the
response is the most interesting part. Let’s create a light Rack application now so that
you can understand the basics.

15.1 Building Rack applications
Rack standardizes the way an application receives requests across all the Ruby frame-
works. With this standardization, you know that any application purporting to be a
Rack application will have a standard way for you to send requests to it, and a standard
way of receiving responses.

 You’ll build a basic Rack application so that you can learn about the underlying
architecture for requests and responses found in Rails and other Ruby frameworks.
With this knowledge, you’ll be able to build lightweight Rack applications that you can
hook into your Rails stack, or even Rack middleware.

Figure 15.1 Application
request through the stack

Licensed to Mark Watson <nordickan@gmail.com>

498 CHAPTER 15 Rack-based applications

 When you’re content with the first application, you’ll create another and then
make them work together as one big application. First things first, though.

15.1.1 A basic Rack application

To build a basic Rack application, you only need to have an object in Ruby that
responds to the call method. That call method needs to take one argument (the
request) and also needs to return a three-element Array object. This array represents
the response that will be given back to Rack, and it looks something like this:

[200, {"Content-Type" => "text/plain"}, ["Hello World"]]

The first element in this response array is the status code for your response. In this
example, it’s 200, which represents a successful response.

 The second element in this array is a Hash containing the headers that will be sent
back. These headers are used by the browser to determine how to deal with the response.
In this case, the response will be rendered as is to the page because the Content-Type
header is text/plain, indicating normal text with no formatting applied. Usually your
Rack application would set this to text/html to indicate an HTML response.

 The third element represents the response body, the content of the page. In a
Rails application, this would be the complete HTML of the page to be rendered by the
browser. Rack then compiles everything into a single HTTP response, which is sent
back to where the request came from.

 Let’s see this in action. You’ll create a light Rack application that responds with
“OK” whenever it receives a request. This kind of application is often used to check
whether a server is still up and responding to HTTP calls.

 To get started, create a new file inside your Ticketee application’s root folder
called lib/heartbeat.ru (you’re checking the “heartbeat” of the server), and fill it with
this content:

run lambda { |env| [200, {"Content-Type" => "text/plain"}, ["OK"]] }

The .ru extension for this file represents a Rack configuration file, also known as a
Rackup file. In it, you call the run method, which needs an object that responds to
call. When Rack receives a request for this application, it calls the call method on
the object passed to run, which then generates and returns a response back to the
server. The object in this case is a lambda (or Proc) object, which automatically
responds to call.

 When the call method is called on this lambda, the code responds with the three-
element array, completely ignoring the env object that is passed through. Inside this
array, you have the three elements Rack needs: the HTTP status, the headers for the
response, and the body to return.

 To see your lib/heartbeat.ru in action, you can launch a Rack server by using the
following command:

$ rackup lib/heartbeat.ru

Licensed to Mark Watson <nordickan@gmail.com>

499Building Rack applications

This is now running a server on 9292 (the standard port for Rack) using the Thin
HTTP server, as indicated by the server output you’ll see:

>> Thin web server (v1.5.1 codename Straight Razor)
>> Maximum connections set to 1024
>> Listening on localhost:9292, CTRL+C to stop

You can now go to your browser and open http://localhost:9292 to make a request to
this application. You’ll get back “OK,” and that’s good. You can also make a request to
any path at the http://localhost:9292 “application,” such as http://localhost:9292/
status, and it will respond in the same way.

 What you’ve done here is write one of the simplest Rack applications possible. This
application receives a response to any path using any method, and it always responds
with “OK.” This application will respond very quickly because it hasn’t loaded any-
thing, but at the cost of being a one-trick pony.

15.1.2 Let’s increase the heartbeat

You can make this little application respond differently in a number of ways. The easi-
est (and most fun!) would be to program it to change its response depending on the
path it’s given, like a Rails application does with its routes.

 To do this, you can use the env object that we’ve been ignoring this whole time.
First up, let’s see what this env object gives you by changing your little script to do this:

require "yaml"

run lambda { |env| [200,
{"Content-Type" => "text/plain"},
[env.to_yaml]]

}

You already have a Rackup file
Your Rails application has one of these .ru files, called config.ru, which is used by
Rack-based servers to run your application. You can see this in action by running the
rackup config.ru command, which will start up your application using the config.ru
file’s configuration.

If you look in this file in the root folder of your application, you’ll see these lines:

This file is used by Rack-based servers to start the application.

require ::File.expand_path('../config/environment', __FILE__)
run Rails.application

The first line requires the config/environment.rb of the application, which is respon-
sible for setting up the environment of the application. Then it uses the run method—
just as you are—except it passes Ticketee::Application, which responds to
call. Cool stuff!

Licensed to Mark Watson <nordickan@gmail.com>

500 CHAPTER 15 Rack-based applications

The to_yaml method provided by the YAML standard library file will transform your
env object (spoiler: it’s a Hash) into human-readable YAML output (like that found in
config/database.yml in a Rails application).

 To apply this new change, you can’t refresh the page like you would in a Rails
application; you have to stop the server and start it again. You can press Ctrl-C to stop
it and rerun rackup lib/heartbeat.ru. This time when you go to your server, you’ll
see output that includes content like this:

GATEWAY_INTERFACE: CGI/1.1
PATH_INFO: /
QUERY_STRING: ""
REMOTE_ADDR: 127.0.0.1
REQUEST_METHOD: GET
REQUEST_URI: http://localhost:9292/
...

This output is the YAML-ized version of the env hash, which comes from Rack itself.
Rack parses the incoming request and provides this env hash so that you can deter-
mine how you’d like to respond to the request. You can alter the behavior of the
request using any one of the keys in this hash,1 but in this case you’ll keep it simple
and use the PATH_INFO key.

 A lambda is great for one-liners, but now your Rack application is going to become
more complex, so you’ve probably outgrown the usefulness of a lambda. You don’t
have to use a lambda, though; you only need to pass run to an object that has a call
method that responds with that three-element array. Your new code will be a couple of
lines long, so it’s probably best to define it as a method (called call) on an object,
and what better object to define it on than a class?

 A class object will allow you to define other methods and can be used to abstract
chunks of the call method as well. For good measure, call this class Application and
put it inside a module called Heartbeat, replacing the content of lib/heartbeat.ru.

module Heartbeat
class Application
def self.call(env)

[200, {"Content-Type" => "text/plain"}, ["Classy!"]]
end

end
end

run Heartbeat::Application

Here you define Heartbeat::Application to have a call method, which once again
returns a plain-text string for any request. On the final line, you call run and pass

1 Yes, even the HTTP_USER_AGENT key to send users of a certain browser used for exploring the internet
elsewhere.

Listing 15.1 A classy Rack application

Licensed to Mark Watson <nordickan@gmail.com>

501Building Rack applications

in Heartbeat::Application, which will work like your first example because
Heartbeat::Application has a call method defined on it.

 If this looks familiar, it’s because there’s a similar-looking line in your application’s
config.ru file, which you saw earlier.

run Ticketee::Application

Your Rails application is actually a Rack-based application! Of course, there’s a little
bit more that goes on behind the scenes in your Rails application than in your Rack
application at the moment, but the two are used identically. They both respond in
nearly identical ways with the three-element response array. Your Rack application is
nearly the simplest form you can have. If you restart it and make a request to it, you’ll
see it output “Classy!”

15.1.3 You’re not done yet

You can now change your Heartbeat application to respond differently to different
request paths by referencing the PATH_INFO key within env. Replace the code inside
your call method with the following.

module Heartbeat
class Application
def self.call(env)

default_headers = {"Content-Type" => "text/plain"}

if env["PATH_INFO"] =~ /200/
body = "Success!"
status = 200

else
body = "Failure!"
status = 500

end

[status, default_headers, ["#{env["PATH_INFO"]} == #{body}"]]
end

end
end

The env["PATH_INFO"] here returns the path that has been requested, and this is the
same part of env that Rails’ own router uses to determine the path requested. If you
make a request like http://localhost:9292/books to your Rack application, this vari-
able will return “/books.” In this new call code, you compare this string to a regular
expression using the =~ operator, and if it contains 200, you’ll return “Success” in the
body, along with an HTTP status of 200. For everything else, it’s “Failure” with an HTTP
status of 500.

Listing 15.2 Part of config.ru

Listing 15.3 Experimenting with different paths

Licensed to Mark Watson <nordickan@gmail.com>

502 CHAPTER 15 Rack-based applications

 Restart the server once again, and make a new request to http://localhost:9292.
You’ll see this output:

/ == Failure!

This is because for any request to this server that doesn’t have 200 in it, you return this
failure message. If you make a request to http://localhost:9292/200 or even http://
localhost:9292/the/200/page, you’ll see the success message instead:

/the/200/page == Success!

Also, if you look in the console, you’ll see a single line for each request that’s been
served:

127.0.0.1 - - [[timestamp]] "GET / HTTP/1.1" 500 - 0.0004
127.0.0.1 - - [[timestamp]] "GET /200 HTTP/1.1" 200 - 0.0004
127.0.0.1 - - [[timestamp]] "GET /the/200/page HTTP/1.1" 200 - 0.0004

This output shows

■ The IP address where the request came from
■ The local time when the request happened
■ The request itself
■ The HTTP status contained within the response
■ How long the page took to run

What you’ve done here is implement a basic router for your Rack application. If the
route for a request contains “200,” then you give back a successful response. Other-
wise, you give back a 500 status, indicating an error. Rails implements a much more
complex routing system than this, extracting the complexity away and leaving you
with methods such as root and resources that you use in config/routes.rb. But the
underlying theory is the same.

 You’ve learned the basics of how a Rack application works and how your Rails
application is a bigger version of the little application you’ve written. But there’s
much more to Rack than providing this abstraction for the underlying request/
response cycle. For example, you can build more-complex apps with logic for one part
of the application in one class and additional logic in another.

 One other feature of Rack is that it allows you to build applications by combining
smaller applications into a larger one. Let’s see how you can do this.

15.2 Building bigger Rack applications
Your basic Rack application quickly outgrew the lambda shell you placed it in, so you
moved its logic into a class and added some more. With the class, you’re able to define
a call method that then returns the response that Rack needs. The class allows you to
cleanly write a more complex Rack application than a lambda would.

 What happens if you outgrow a class? Well, you can abstract the function of your
application into multiple classes and build a Rack application using those classes. The

Licensed to Mark Watson <nordickan@gmail.com>

503Building bigger Rack applications

structure is not unlike the controller structure you have in a Rails application, because
it will have separate classes that are responsible for different things.

 In this new multiclass Rack application, you’ll have two classes that perform sepa-
rate tasks but still run on the same instance of the server. The first class will be your
Heartbeat::Application class, and the second will provide two forms, each with one
button: one for success and one for failure. These forms will then submit to the
actions provided within the Heartbeat::Application class, demonstrating how you
can get your classes to talk to each other.

15.2.1 You’re breaking up

Now that your Rack application is getting more complex, you’ll break it out into three
files. The first file will be the Heartbeat::Application class, the second will be a new
class called Heartbeat::TestApplication, and the third will be the Rackup file that
will be responsible for combining these two classes into one glorious application.

 You can begin by dividing your application and the Rackup file into two sep-
arate files. Remove the old lib/heartbeat.ru file you just created, and in a new lib/
heartbeat directory, add the code shown in the following listing to lib/heartbeat/
application.rb. This is the same Heartbeat::Application class you had previously in
lib/heartbeat.ru.

module Heartbeat
class Application
def self.call(env)

default_headers = {"Content-Type" => "text/plain"}

if env["PATH_INFO"] =~ /200/
body = "Success!"
status = 200

else
body = "Failure!"
status = 500

end

[status, default_headers, ["#{env["PATH_INFO"]} == #{body}"]]
end

end
end

Next, in lib/heartbeat/config.ru, add the code shown in the next listing.

heartbeat_root = File.expand_path(File.dirname(__FILE__))
require heartbeat_root + "/application"

run Heartbeat::Application

Listing 15.4 lib/heartbeat/application.rb

Listing 15.5 lib/heartbeat/config.ru

Licensed to Mark Watson <nordickan@gmail.com>

504 CHAPTER 15 Rack-based applications

This new lib/heartbeat/config.ru file sets up a heartbeat_root variable so that you
can require files relative to the root of the heartbeat directory without having to spec-
ify direct paths to them.

 You could also use Ruby’s require_relative. At the moment, this file still contains
the run line from the old heartbeat.ru, but you’ll change this shortly.

 Before that change though, you need to add your second application class, Heart-
beat::TestApplication, to a new file at lib/heartbeat/test_application.rb, using the
content shown in the following listing.

module Heartbeat
class TestApplication
def self.call(env)

default_headers = {"Content-Type" => "text/html"}
body = %Q{

<!doctype html>
<html>

<head>
<title>Success or FAILURE?!</title>

</head>
<body>

<h1>Success or FAILURE?!</h1>
<form action="/test/200">

<input type="submit" value="Success!">
</form>

<form action="/test/500">
<input type="submit" value="Failure!">

</form>
</body>

</html>
}

[200, default_headers, [body]]
end

end
end

This file follows the same style as the file that defines Heartbeat::Application, but in
this class the body returned as part of the Rack response consists of two forms, each
with their own submit button. The first form goes to /test/200, which should give you
the response of “Success!,” and the second goes to /test/500, which should give you a
“Failure!” response because the path doesn’t include the number 200.

 You may have noticed that you’ve nested the paths to the Heartbeat responses
underneath a path called test. This is because when you build your combined class
application, you’ll make your Heartbeat::Application sit under the /test route. This
is so that when you click the Submit button on those two forms from Heartbeat::
TestApplication, the request will be sent to Heartbeat::Application. When do you
do this? Right now!

Listing 15.6 lib/heartbeat/test_application.rb

Licensed to Mark Watson <nordickan@gmail.com>

505Building bigger Rack applications

15.2.2 Running a combined Rack application

You’re now going to change the lib/heartbeat/config.ru file to create a Rack applica-
tion that combines both of your Rack application classes. For this, you’ll use the
Rack::Builder class’s app method, which lets you build Rack applications from differ-
ent parts. The result will effectively work much like how the routing and controllers
work within Rails.

 Fill lib/heartbeat/config.ru with the content shown in the following listing.

heartbeat_root = File.expand_path(File.dirname(__FILE__))
require heartbeat_root + "/application"
require heartbeat_root + "/test_application"

app = Rack::Builder.app do
map "/test" do
run Heartbeat::Application

end

map "/" do
run Heartbeat::TestApplication

end
end

run app

Rather than call run Heartbeat::Application here, you compile a multifaceted Rack
application using Rack::Builder.app. The run method you’ve been using all this
time is actually defined inside the Rack::Builder class. A *.ru file is usually evaluated
within the instance of a Rack::Builder object by the code the rackup command uses,
so you can use the run method without having to call Rack::Builder.new before it, or
wrapping your .ru code in a Rack::Builder.app block.

 This time, you’re being implicit and building a new Rack::Builder instance using
Rack::Builder.app. Inside this instance, you’ll declare two routes using the map
method. Within a block given to each of your map calls, you’re calling the run method
again, passing it one of your two application classes.

 When a request comes into this application beginning with the path /test, it will
be served by the Heartbeat::Application class. All other requests will be served by
the Heartbeat::TestApplication class. This is not unlike the way requests in your
Rails application beginning with /tickets are routed to the TicketsController, and
others beginning with /projects go to the ProjectsController. In fact, the similari-
ties are astounding.

 Stop any other rackup servers you have running, and start this application and see
what it can do by running this command:

$ rackup lib/heartbeat/config.ru

Listing 15.7 Combining two Rack applications

Licensed to Mark Watson <nordickan@gmail.com>

506 CHAPTER 15 Rack-based applications

Now remember, to make requests to the Heartbeat::Application class, you must
prefix them with /test; otherwise they’ll be served by Heartbeat::TestApplication.
Keeping that in mind, try making a request to http://localhost:9292/test/200. You’ll
see something unusual: the path displayed on the page isn’t /test/200 as you might
expect, but rather it’s /200. The env["PATH_INFO"] key doesn’t need to contain the
path where your application is mounted, because that’s not important for routing
requests within the application itself.

 If you make a request to another path
not beginning with the /test prefix (such
as http://localhost:9292/foo/bar), you’ll
see the two buttons in forms provided by
Heartbeat::TestApplication, as shown
in figure 15.2.

 When you click on the Success! button,
you send a request to the /test/200 path, which will be served by the Heart-
beat::Application class and will respond with a body that says “/200 == Success!”
When you click the Back button in your browser and then the Failure! button, you see
“/500 == Failure!”

 This is the basic foundation for Rack applications, and it provides a lightweight dem-
onstration of how routing in very basic Rack applications works. When you began, you
were able to write run Heartbeat::Application to run a single class as your Rack appli-
cation, but as it’s grown more complex, you’ve split different pieces of the functionality
out into different classes. To combine these classes into one super-application, you used
the Rack::Builder.app method.

 Now you should have a basic understanding of how you can build Rack applica-
tions that offer a lightweight way of creating dynamic responses. How does all of this
apply to Rails? Well, in Rails you’re able to mount a Rack application so that it can
serve requests on a path (like you did with Rack::Builder), rather than having the
request go through the entire Rails stack.

15.3 Mounting a Rack application with Rails
Sometimes, you’ll want to serve requests in a lightning-fast fashion. Rails is great for
serving super-dynamic requests quickly, but occasionally you’ll want to forgo the heavi-
ness of the Rails controller stack and have a piece of code that receives a request and
responds quickly.

 Previously, your Rack application did just that. But you might need access to parts
of your Rails application, like your models, inside the Rack application. To achieve
this, you can mount the Rack app _inside_ the Rails application, to get all the perfor-
mance of the Rack application while still leveraging the parts of Rails you want. To test
this out, you’ll re-implement your tickets API as a Rack application, and mount it
inside your main Ticketee app.

 Let’s do this.

Figure 15.2 Success or FAILURE?!

Licensed to Mark Watson <nordickan@gmail.com>

507Mounting a Rack application with Rails

 This new API will be version 2 of your API (things move fast in this app!). It will be
accessible at /api/v2/projects/:project_id/tickets/:id. As with your original API, it will
require a token parameter to be passed through to your application. If the token
matches a user, and that user has access to the requested project, you can send back
the details of the ticket in JSON format. This is the same way that v1 of your API, which
you built in the last chapter, worked.

 But you’ll add some new functionality: If the token sent through doesn’t match a
user, you’ll send back a helpful error message explaining that. If the project requested
isn’t accessible by the authenticated user, you’ll deny all knowledge of its existence by
sending back a 404 response.

 Before you get into any of that, though, you should probably look at how mount-
ing works within Rails by using one of your basic applications first.

15.3.1 Mounting Heartbeat

Mounting a Rack application involves defining a route in your Rails application that
basically says, “I want to put this application at this path.” Back when you were creating
a pure Rack application, you did this in the lib/heartbeat/config.ru file like this:

map "/test" do
run Heartbeat::Application

end

Rails has a better place than that for routes: config/routes.rb. This location provides
you with some lovely helpers for mounting your Rack applications.

 In your Rails application, to do the same thing as you did in your Rack application,
you’d need to first require the application by placing this line at the top of config/
routes.rb:

require "heartbeat/application"

Rails.application.routes.draw do
...

Then inside the routes block of config/routes.rb, put this line:

Rails.application.routes.draw do
mount Heartbeat::Application, at: "/heartbeat"
...

Once you’ve made these changes to your config/routes.rb file, stop any Rails servers
you have running, and boot up a new one:

$ rails s

You should now be able to go to http://localhost:3000/heartbeat/200 and see the
friendly “/200 == Success!” message. This means that your Heartbeat::Application
is responding as you’d like it to, nestled within the confines of your Rails application.

 Rails has been told to forward requests that go to /heartbeat to this Rack applica-
tion, and it has done so diligently. Rather than initializing a new instance of a controller

Licensed to Mark Watson <nordickan@gmail.com>

508 CHAPTER 15 Rack-based applications

(which is what normally happens in a standard Rails request), a Rack class is much
lighter and is perfect for serving high-intensity requests that don’t require views, like
the response from your Heartbeat::Application and the responses from your API.

 It’s time to commit your changes:

$ git add .
$ git commit -m "Mounted the Heartbeat Rack application inside Ticketee"
$ git push

Even though there isn’t a lot to see, you’ve learned a lot so far in your experiments
with Rack.

 Now that you’ve learned how to mount your Heartbeat::Application, it’s time to
build a slightly more complex Rack application that will serve JSON API requests for
tickets. To make sure everything works, you’ll also write tests to cover the functionality,
using helpers called Rack::Test::Methods.

 Rather than writing this application as a standard Rack app, let’s mix things up a
bit and use another Ruby web framework called Sinatra, which uses the Rack architec-
ture underneath, just like Rails.

15.3.2 Introducing Sinatra

Sinatra is an exceptionally lightweight Ruby web framework that’s perfect for building
small applications, such as those that serve an API. Like Rails, it’s built on top of Rack,
so you’ll have no worries about using them together. You’ll use it here to create ver-
sion 2 of your API.

 Building your app this way not only demonstrates the power of Sinatra, but also
shows that there’s more than one way to skin this particular cat.2

 To install the sinatra gem, run this command:

$ gem install sinatra

You can make a small Sinatra script now by creating a file called sin.rb.

require "sinatra"

get "/" do
"Hello World"

end

This is the most basic Sinatra application that you can write. On the first line, you
require the sinatra file, which gives you some methods you can use to define your
application, such as the get method you use on the next line. This get method is used
to define a root route for your application, which returns the string “Hello World” for
GET requests to “/.”

2 Although why anybody would skin a cat these days is unknown to the authors.

Listing 15.8 A sample basic Sinatra application

Licensed to Mark Watson <nordickan@gmail.com>

509Mounting a Rack application with Rails

 You could also make it into a class, which is what you’ll need to do for it to be
mountable in your application.

require "sinatra"

class Tickets < Sinatra::Base
get "/" do
"Hello World"

end
end

By making it a class, you’ll be able to mount it in your application using the mount
method in config/routes.rb and specifying the class name. Once you mount this Sina-
tra application inside your Rails application, it will have access to all the classes from
your Rails application, such as your models, which is precisely what you’re going to
need for this new version of your API. You won’t use this code example right now, but
it’s handy to know that you can do this.

 To use Sinatra with your application, you need to add it to the Gemfile with the fol-
lowing line.

gem "sinatra"

Then run bundle, just to make sure a compatible version of Sinatra is installed.
 You can go ahead now and start building this API using Sinatra.3

15.3.3 The API, by Sinatra

Create a new file at spec/requests/api/v2/tickets_spec.rb to test your experimental
new API. In this file, you want to set up a project that has at least one ticket, as well as a
user that you can use to make requests to your API. After that, you want to make a
request to /api/v2/tickets and check that you get back a proper response of tickets.

 With this in mind, write a spec that looks like the code shown in the following listing.

require "rails_helper"

describe API::V2::Tickets do
let(:project) { FactoryGirl.create(:project) }
let(:user) { FactoryGirl.create(:user) }
let(:ticket) { FactoryGirl.create(:ticket, project: project) }
let(:url) { "/api/v2/projects/#{project.id}/tickets/#{ticket.id}" }

Listing 15.9 A sample basic Sinatra application … in a class!

Listing 15.10 Adding sinatra to your Gemfile

3 You can learn more about Sinatra at https://github.com/sinatra/sinatra/ and at http://sinatrarb.com/
intro.

Listing 15.11 spec/requests/api/v2/tickets_spec.rb

Licensed to Mark Watson <nordickan@gmail.com>

http://sinatrarb.com/intro
http://sinatrarb.com/intro
https://github.com/sinatra/sinatra/

510 CHAPTER 15 Rack-based applications

let(:headers) do
{ "HTTP_AUTHORIZATION" => "Token token=#{user.api_key}" }

end

before do
assign_role!(user, :manager, project)
user.generate_api_key

end

context "successful requests" do
it "can view a ticket's details" do

get url, {}, headers

expect(response.status).to eq 200
json = TicketSerializer.new(ticket).to_json
expect(response.body).to eq json

end
end

end

This test looks remarkably like the one in spec/requests/tickets_spec.rb, except this
time you’re only testing for JSON responses, and you’ve changed the URL that you’re
requesting to api/v2/projects/:project_id/tickets/:id.

 When you run this spec with bundle exec rspec spec/requests/api/v2/
tickets_spec.rb, you’ll see that it gives you this error:

.../ticketee/spec/requests/api/v2/tickets_spec.rb:3:in `<top
(required)>': uninitialized constant API::V2 (NameError)

This is because you haven’t yet defined the module for the API::V2 namespace. Cre-
ate a new file at app/controllers/api/v2/tickets.rb that defines this module.

require "sinatra"

module API
module V2
class Tickets < Sinatra::Base

before do
headers "Content-Type" => "text/json"

end

get "/:id" do
[]

end
end

end
end

Within this file, you define the API::V2::Tickets class that’s described at the top of
your spec, which will now make your spec run. This class inherits from Sinatra::Base,

Listing 15.12 app/controllers/api/v2/tickets.rb

Licensed to Mark Watson <nordickan@gmail.com>

511Mounting a Rack application with Rails

so you’ll get the helpful methods that Sinatra provides, such as the before and get meth-
ods that you use here.

 The get method takes a parameter, as indicated by :id. This will be available inside
the block as params[:id], just like parameters are available inside a Rails controller.

 You’ve already seen what get can do, but before is new. This method is similar to
before_action in Rails, and it’ll execute the block before each request. In this block,
you set the headers for the request using Sinatra’s headers method, so that consumers
of your API can correctly identify that the response will be valid JSON.

 Why put this code inside app/controllers? Well, even though this “controller” is
most definitely not a controller in the common Rails sense, it’s still a class that’s going
to be handling requests and acting like a controller, so app/controllers is a perfectly
good place for it.

 Rerun the spec, and this time you’ll see a new error:

1) API::V2::Tickets successful requests can view a ticket's details
Failure/Error: get url, {}, headers
ActionController::RoutingError:
No route matches [GET] "/api/v2/projects/1/tickets/3"

This is a better start. Now your test is running and failing as it should, because you
haven’t defined the route for it yet. Your test is expecting to be able to do a GET
request to /api/v2/projects/1/tickets/3, but it can’t.

 This route can be interpreted as /api/v2/projects/1/tickets, and you can use the
api namespace already in config/routes.rb to act as a home for this route. Put the fol-
lowing code for v2 of your API inside this namespace now.

Rails.application.routes.draw do
...
namespace :api do
namespace :v2 do

mount API::V2::Tickets, at: "/projects/:project_id/tickets"
end

resources :projects, only: [] do
resources :tickets

end
end
...

When you place this mount call inside the namespaces, the Rack application will be
mounted at /api/v2/projects/:project_id/tickets rather than the /tickets URI
that would result if you didn’t have it nested.

 Additionally, you’ve specified a dynamic parameter in the form of :project_id
inside the at option for the mount call, which means you’ll be able to access the
requested project ID from inside your Rack application using a method very similar to
the way you’d usually access parameters in a controller.

Listing 15.13 config/routes.rb

Licensed to Mark Watson <nordickan@gmail.com>

512 CHAPTER 15 Rack-based applications

 If you attempt to run your spec again, it will bomb out with another new error:

1) API::V2::Tickets successful requests can view a ticket's details
Failure/Error: expect(response.body).to eq json

expected: "{\"ticket\":{\"id\":1...
got: ""

(compared using ==)

This means that requests are able to get to your Rack app, and that the response
you’ve declared is being served successfully. Now you need to fill this response with
meaningful data.

 To do this, you need to find the project that’s being referenced in the URL by using
the parameters passed through, finding it with the params method. Unfortunately,
Sinatra doesn’t load the parameters from your Rails application; it creates its own
params hash based on the request data, so params[:project_id] is not going to be set.

 Luckily, you can still get to the project ID through one of the keys in the environ-
ment hash, which is accessible through the env method in your Sinatra actions. When
you built your pure Rack applications earlier, you saw this env method in action, when
you tested env["PATH_INFO"] for success or failure. This time it will have a little more
to it, because it’s gone through the Rails request stack.

 You can add some debugging code to your Sinatra action to see what options you
have. Change the get action in tickets.rb to this:

get "/:id" do
pp env.keys
[]

end

When you rerun your test, you’ll see a nice list of all the available keys output at the
top, with one of the keys being action_dispatch.request.path_parameters. This
key stores the parameters discovered by Rails routing, and your project_id parame-
ter should fall neatly into this category.

 Find out by changing the pp env.keys line in your root route to pp env["action
_dispatch.request.path_parameters"] and then rerunning your test. You should
see something like this:

{:project_id=>"3"}

Okay, so you can access two parameter hashes—one from Sinatra and one from Rails—
but you’ll need to merge them if you’re going to do anything useful with them.

 You can merge them into a super params method by redefining the params
method as a private method in your app. Underneath the get method definition in
your API::V2::Tickets class, you can put this:

...
private

def params
hash = env["action_dispatch.request.path_parameters"].merge!(super)
HashWithIndifferentAccess.new(hash)

end
end

Licensed to Mark Watson <nordickan@gmail.com>

513Mounting a Rack application with Rails

By calling the super method here, you’ll reference the params method in the super-
class, Sinatra::Base. You want to access the keys in this hash using either symbols
or strings as you can do in your Rails application, so you create a new HashWith-
IndifferentAccess object, which is returned by this method. You’ll remember
HashWithIndifferentAccess from way back in chapter 3.

 Now switch your route back to calling pp params instead of pp env["action_dispatch
.request.path_parameters"]. When you run your test again, you should see that you
finally have access to the project’s ID.

{"project_id"=>"3", "splat"=>[], "captures"=>["4"], "id"=>"4"}

The extra splat and captures arguments come from Sinatra and can safely be
ignored for now.

 With these params, you’ll be able to load the project and then the correct ticket for
it. You’ll also need to authorize access to this ticket.

 You can do this in parts. First, you can add the set_project method as something
to be called before every action in this controller. This is very similar to how you had
before_action :set_project in your TicketsController:

class Tickets < Sinatra::Base
before do
headers "Content-Type" => "text/json"
set_project

end

...

You can then define the set_project method underneath the private keyword:

module API
module V2
class Tickets < Sinatra::Base
...
private

def set_project
@project = Project.find(params[:project_id])

end
...

So far so good. Now you need to find the user based on their API key. To do this, you
can add a set_user method call to the before block, too:

class Tickets < Sinatra::Base
before do
headers "Content-Type" => "text/json"
set_user
set_project

end
...

Then add the set_user method underneath the set_project method. This is just
like a before_action :authenticate_user! call:

Licensed to Mark Watson <nordickan@gmail.com>

514 CHAPTER 15 Rack-based applications

module API
module V2
class Tickets < Sinatra::Base
...
private

def set_user
if env["HTTP_AUTHORIZATION"].present?

auth_token = /Token token=(.*)/.match(env["HTTP_AUTHORIZATION"])[1]
User.find_by!(api_key: auth_token)

end
end
...

It looks similar to the authenticate_user method you defined in version 1 of your
API, except you have to do a bit of manual management of the env["HTTP
_AUTHORIZATION"] value. You’re able to reference the models from your Rails applica-
tion inside your Sinatra application, and there’s nothing special you have to configure
to allow this.

 You don’t need to be too concerned with what happens if an invalid
params[:project_id] or user token is passed through at the moment; you’ll fix those
up after you’ve got this first test passing.

 With the project now found, you should be able to display a ticket’s information in
JSON form. Change your Sinatra route to return the JSON-ified ticket:

module API
module V2
class Tickets < Sinatra::Base

...
get "/:id" do

ticket = @project.tickets.find(params[:id])
TicketSerializer.new(ticket).to_json

end
...

Now this route will respond with a ticket’s information, which is all that’s required to
have your test pass. Check if this is the case by running bundle exec rspec spec/api/
v2/tickets_spec.rb:

1 example, 0 failures

Great, this spec is now passing, which means that your Rack application is now serving
a base for version 2 of your API. By making this a Rack application, you can serve
requests in a more lightweight fashion than you could within Rails.

 But you don’t have basic error-checking in place yet for situations such as when an
invalid token is provided (one that doesn’t match a valid user record), or if a user
accesses a project that they’re not authorized to see. Before we move on, let’s quickly
add tests for these two issues.

Licensed to Mark Watson <nordickan@gmail.com>

515Mounting a Rack application with Rails

15.3.4 Basic error-checking

To add the error-checking, open spec/requests/api/v2/tickets_spec.rb and add some
tests inside the describe block in a new context block.

describe API::V2::Tickets do
...
context "unsuccessful requests" do
it "doesn't allow requests that don't pass through an API key" do

get url
expect(response.status).to eq 401
expect(response.body).to include "Unauthenticated"

end

it "doesn't allow requests that pass an invalid API key" do
get url, {}, { "HTTP_AUTHORIZATION" => "Token token=notavalidkey" }
expect(response.status).to eql 401
expect(response.body).to include "Unauthenticated"

end

it "doesn't allow access to a ticket that the user doesn't have

 ➥ permission to read"
project.roles.delete_all
get url, {}, headers
expect(response.status).to eq 404

end
end

end

In the first test, you make a request without passing through a token, which should
result in a 401 unauthorized status and a message telling you that the user is not
authenticated. The second test is similar, except in this case you try authenticating
with the token provided, but it’s not valid. In the final test, you use the delete_all
association method to remove all permissions for the user and then attempt to request
tickets in a project that the user no longer has access to. This should result in a 404
response, which means your API will deny all knowledge of that project and its tickets.

 To make your first test pass, you’ll need to check that your set_user method actu-
ally returns a valid user; otherwise you’ll return a 401 unauthorized response. The
best place to do this would be inside the set_user method itself, turning it into this:

module API
module V2
class Tickets < Sinatra::Base

...
def set_user

if env["HTTP_AUTHORIZATION"].present?
if auth_token = /Token token=(.*)/.match(env["HTTP_AUTHORIZATION"])

@user = User.find_by(api_key: auth_token[1])
return @user if @user.present?

end

Listing 15.14 Adding API request specs for error handling

Licensed to Mark Watson <nordickan@gmail.com>

516 CHAPTER 15 Rack-based applications

end

unauthenticated!
end
...

You can quickly add the unauthenticated! method underneath it:

...
def unauthenticated!

halt 401, {error: "Unauthenticated"}.to_json
end
...

If a user isn’t found in this case, you’ll call the unauthenticated! method, which calls
Sinatra’s halt method. The halt method here will stop a request dead in its tracks. In
this case, it will return a 401 status code with the body being the string specified.

 When you run your tests again with bundle exec rspec spec/requests/api/v2/
tickets_spec.rb, the first three should be passing, with the last one still failing:

1) API::V2::Tickets unsuccessful requests don't allow access to a ticket
 ➥ that the user doesn't have permission to read
Failure/Error: expect(response.status).to eq 404

expected: 404
got: 200

(compared using ==)

Now if a missing or invalid token is passed, you’re behaving responsibly and returning
a useful error message in JSON format. This error tells the API client that the token
used is invalid and returns a 401 unauthorized status.

 Finally, you’ll need to send a 404 response if the user isn’t allowed to read the
ticket they’ve requested. To do this, you can add an authorization check inside your
get method:

module API
module V2
class Tickets < Sinatra::Base

...
get "/:id" do

ticket = @project.tickets.find(params[:id])
unless TicketPolicy.new(@user, ticket).show?

halt 404, "The ticket you were looking for could not be found."
end
TicketSerializer.new(ticket).to_json

end
...

Here, you call out directly to TicketPolicy, creating a new instance, and then call the
show? method on that. This is similar to the code that gets run when you call autho-
rize in a proper Rails controller.

Licensed to Mark Watson <nordickan@gmail.com>

517Middleware

 When you run your tests for a final time with bundle exec rspec spec/requests/
api/v2/tickets_spec.rb, they should all pass:

4 examples, 0 failures

Awesome! This should give you a clear idea of how you could implement an API simi-
lar to the one you created back in the last chapter by using the lightweight framework
of Sinatra. All of this is possible because Rails provides an easy way to mount Rack-
based applications inside your Rails applications. You could go further with this API,
but that’s another exercise for you to undertake if you wish.

 Make sure you haven’t broken anything else in your app while you’ve been work-
ing on your Sinatra API by running bundle exec rspec:

140 examples, 0 failures

Perfect! Commit these changes.

$ git add .
$ git commit -m "Added V2 of our Tickets API using Rack and Sinatra"

So far in this chapter, you’ve learned how you can use Rack
applications to serve as endpoints of requests, but you can also
create pieces of code that hook into the middle of the request
cycle, called middleware. Rails has a few of these already, and
you saw the effects of one of them when you were able to access
the env["action_dispatch.request.path_parameters"] key
inside your Sinatra application. Without the middleware of the
Rails stack, this parameter would be unavailable. In the next
section, we’ll look at middleware examples in the real world,
including some found in the Rails stack, as well as at how you
can build and use your own.

15.4 Middleware
When a request comes into a Rack application, it doesn’t go
straight to a single place that serves the request. Instead, it goes
through a series of pieces known as middleware, which may pro-
cess the request before it gets to the end of the stack (your
application) or may modify it and pass it onward, as shown in
figure 15.3.

 You can run bundle exec rake middleware within your Rails
application’s directory to see the list of middleware currently in
use by your Rails application.

Figure 15.3 Full re-
quest stack, redux

Licensed to Mark Watson <nordickan@gmail.com>

518 CHAPTER 15 Rack-based applications

use Rack::Sendfile
use ActionDispatch::Static
use Rack::Lock
...
use Rack::ETag
use Warden::Manager
run Ticketee::Application.routes

Each of these middleware pieces performs its own individual function. For instance, the
second piece of middleware, ActionDispatch::Static, intercepts requests for static
files such as images, JavaScript files, or style sheets found in public and serves them imme-
diately, without the request to them falling through to the rest of the stack. It’s important
to note that this middleware is only active in the development environment, since in pro-
duction your web server (such as Nginx) is better suited for serving static assets.

 Let’s look at how ActionDispatch::Static works.

15.4.1 Middleware in Rails

In the case of the ActionDispatch::Static middleware, a response is returned if it
finds a file to serve, and the request stops there. If no such file is found, then the
request is modified and allowed to continue down the chain of middleware until it
hits Ticketee::Application.routes, which will serve the request using the routes
and code in your application. The process of ActionDispatch::Static can be seen in
figure 15.4.

Listing 15.15 An abbreviated list of middleware used by Ticketee

Figure 15.4 ActionDispatch::Static request

Licensed to Mark Watson <nordickan@gmail.com>

519Middleware

When a request is made to /images/rails.png, the middleware checks to see if the public/
images/rails.png file exists. If it does, it’s returned as the response to this request.

 This middleware will also check for cached pages. If you make a request to /projects,
Rails (by default) will first check to see if a public/projects.html file exists before send-
ing the request to the rest of the stack.

 In this request, the ActionDispatch::Static middleware first checks for the pres-
ence of public/projects.html, which would be there if you had cached the page.
Because it’s not there, the request goes through the rest of the middleware stack.

 In order to see how middleware works in Rails, it’s easy to craft your own. Let’s do
this now.

15.4.2 Crafting middleware

Soon you’ll have your own piece of middleware that you can put into the middleware
stack of a Rails or Rack application. This middleware will allow the request to run all
the way down the chain to the application and then will modify the body, replacing
specific letters in link text with other letters that you specify.

 Create a new file for your middleware at lib/link_ jumbler.rb and fill it with the
content in the following listing.

require "nokogiri"

class LinkJumbler
def initialize(app, letters)
@app = app
@letters = letters

end

def call(env)
status, headers, response = @app.call(env)
if headers['Content-Type'].include?("text/html")

body = Nokogiri::HTML(response.body)
body.css("a").each do |a|

@letters.each do |find, replace|
a.content = a.content.gsub(find.to_s, replace.to_s)

end
end

else
body = response.body

end

[status, headers, Rack::Response.new(body.to_s)]
end

end

In this file you define the LinkJumbler class, which contains an initialize and a call
method. The initialize method sets the stage, setting up the @app and @letters
variables you’ll use in your call method.

Listing 15.16 lib/link_jumbler.rb

Licensed to Mark Watson <nordickan@gmail.com>

520 CHAPTER 15 Rack-based applications

 In the call method, you make a call down the middleware stack in order to set up
your status, headers, and body values. You can do this because the @app.call(env)
call will always return a three-element array. Each element of this array will be
assigned to its respective variable.

 In a Rails application’s middleware stack, the third element isn’t an array but
rather an instance of ActionDispatch::Response. To get to the good part of this
response, you can use the body method, like you do on the second line of your call
method.

 With this body, you use the Nokogiri::HTML method (provided by the require
"nokogiri" line at the top of this file) to parse the body returned by the application
into a Nokogiri::HTML::Document object. This will allow you to parse the page more
easily than if you used regular expressions. With this object, you call the css method
and pass it the "a" argument, which finds all a tags in the response body. You then
iterate through each of these tags and go through all of your letters from @letters,
using the keys of the hash as the find argument and the values as the replace argu-
ment. You then set the content of each of the a tags to be the substituted result.

 Finally, you return a three-element array using your new body, resulting in links
being jumbled.

 To see this middleware in action, you’ll need to add it to the middleware stack in
your application. To do that, put these two lines inside the Ticketee::Application
class definition in config/application.rb:

require "link_jumbler"
config.middleware.use LinkJumbler, { "e" => "a" }

15.4.3 Using middleware

The config.middleware.use method will add your middleware to the end of the mid-
dleware stack, making it the last piece of middleware to be processed before a request
hits your application.

CONFIG.MIDDLEWARE METHODS For more methods for config.middleware,
look at the “Configuring Middleware” section of the official Configuring Rails
Applications guide: http://guides.rubyonrails.org/configuring.html#configuring-
middleware.

Any additional arguments passed to the use method will be passed as arguments to
the initialize method for this middleware, so this hash you’ve passed will be the
letters argument in your middleware. This means your LinkJumbler middleware
will replace the letter e with a anytime it finds it in an a tag.

 To see this middleware in action, fire up a server by running rails s in a termi-
nal. When you go to http://localhost:3000, you should notice that something’s
changed, as shown in figure 15.5. As you can see, your links have had their e’s
replaced with a’s, and any other occurrences, such as in the user’s email address, has
been left untouched.

Licensed to Mark Watson <nordickan@gmail.com>

http://guides.rubyonrails.org/configuring.html#configuring-middleware
http://guides.rubyonrails.org/configuring.html#configuring-middleware

521Summary

This is one example of how you can use middleware to affect the outcome of a request
within Rails; you could have modified anything or even sent a response back from the
middleware itself. The opportunities are endless. This time, though, you’ve made a
piece of middleware that finds all the a tags and jumbles up the letters based on what
you tell it.

15.5 Summary
You’ve now seen a lot of what Rack, one of the core components of the Rails stack, can
offer you. In the beginning of this chapter, you built a small Rack application that
responded with “OK.” You then fleshed out this application to respond differently
based on the provided request. Then you built another Rack application that called
this first Rack application, running both of these within the same instance by using
the Rack::Builder class.

 You saw how you could use these applications within the Rails stack by first mount-
ing your initial Rack application and then branching out into something a little more
complex, with a Sinatra-based application serving what could possibly be the begin-
nings of version 2 of Ticketee’s API.

 Finally, you saw a piece of standard Rails middleware: ActionDispatch::Static.
You learned how it works so that you could use that knowledge to build your own mid-
dleware—a neat little piece that jumbles up the text on the link based on the options
passed to it.

 Congratulations! You’ve made it to the very end, and there was no monster at the
end of the book. Well done!

 We hope you’ve enjoyed your tour through the foundations of Rails. You’ve built
and thoroughly tested a fully functional web application and deployed it to the inter-
net for the world to see.

 What should you do next? Build some more apps! It’s one thing to follow a guide,
carefully crafted to explain all of the concepts as you go along, but it’s quite another
to build something of your own. You could build a web forum, or a question-and-
answer site, or your own miniversion of Twitter or Facebook. Or you could add some
more features to Ticketee—other ideas that we wanted to cover (but ran out of
space!) are things like these:

■ The ability to log in using Twitter or Facebook, using OmniAuth
■ Sending emails via background jobs, using Active Job

Figure 15.5 What’s a Tickataa?!

Licensed to Mark Watson <nordickan@gmail.com>

522 CHAPTER 15 Rack-based applications

■ Pagination and sorting of tickets, on the project details page
■ The ability to set a due date on tickets and display a calendar interface for due

dates
■ Autocompleting existing tags, when adding tags to a ticket
■ Setting and displaying avatars for users, integrating with an external service like

Gravatar
■ Deleting uploaded files on a ticket

And this is just a short list—the possibilities are endless!
 If you’re after more to read, we can recommend the following books to you, to

expand both your Ruby and Rails horizons:

■ Practicing Rails by Justin Weiss
■ Rails 4 Test Prescriptions by Noel Rappin
■ Practical Object-Oriented Design in Ruby by Sandi Metz
■ Confident Ruby by Avdi Grimm

But above all else, have fun, and good luck!

Licensed to Mark Watson <nordickan@gmail.com>

523

appendix A
Installation guide

Before you can get started building Rails applications, you need to spend some
time setting up your development environment. This means installing Ruby, and
Rails, on your operating system of choice.

 There are various tools you can use to do so, and there’s no “best” or “perfect”
solution. This guide covers the installation of our two preferred tools—ruby-install
for installing different versions of Ruby from source, and chruby for switching your
installed versions of Ruby easily. Then we’ll look at using those tools to install Ruby
and Rails, and then spin up a new working Rails app.

Windows
It’s a bit tedious to set up Ruby and Rails on Windows. Windows doesn’t have a
package manager built in, and it doesn’t have support for some native gems. But
Ruby development is still possible, and for the purposes of this book, it’s perfectly
fine to use Windows.

TESTED WITH ... This section has been verified with Windows 8.1, Ruby 2.1.6,
and Rails 4.2.1.

We’ll install Ruby via RubyInstaller, and then install DevKit, which enables you to
build many of the C/C++ extensions available.

RUBY VERSIONS Although RubyInstaller has a version that includes
Ruby 2.2.2, many of the basic gems such as sqlite haven’t been updated to
be compatible with this newer version of Ruby under Windows. All of the
code samples in this book will work just fine with Ruby 2.1, so if you’re on
a Windows machine, stick to using Ruby 2.1.

Licensed to Mark Watson <nordickan@gmail.com>

524 APPENDIX A Installation guide

RubyInstaller

To start with, we’ll show you how to install Ruby using RubyInstaller. Visit the Ruby-
Installer website at http://rubyinstaller.org/downloads and grab the latest version for
your operating system—we’re using the Ruby 2.1.6 version.

 Follow the instructions in RubyInstaller, making sure to tick the check box that
says “Add Ruby executables to your path” on the final step before completing the
installation process.

 After installation, open the command prompt (which you can do by right-clicking
on the Windows icon in the bottom-left corner, and clicking Command Prompt) and
run ruby -v. You should see something like this:

ruby 2.1.6p336 (2015-04-13 revision 50298) [i386-mingw32]

Next, you need to install the Windows DevKit for Ruby.

DevKit

The DevKit (or Development Kit) is a toolkit that makes it easy to build and use
native C/C++ extensions for Ruby on Windows. That might not mean much to you,
but just know that you need it to install a lot of gems correctly, including some of
Rails’ dependencies.

 DevKit is also accessible from the RubyInstaller downloads page, so visit http://
rubyinstaller.org/downloads and download the latest version labeled “For use with
Ruby 2.0 and 2.1.” If you downloaded the x64 version of RubyInstaller, make sure you
also grab the x64 version of DevKit. We’re using the 32-bit version in this example.

 When the file has downloaded, open it and extract it to C:\DevKit. After the extraction
is complete, go back to your command prompt—you’ll get familiar with it over the course
of this book! Run the following commands, and you should see the following output:

$ cd C:\DevKit
$ ruby dk.rb init
[INFO] found RubyInstaller v2.1.6 at C:/Ruby21

Initialization complete! Please review and modify the auto-generated
'config.yml' file to ensure it contains the root directories to all
of the installed Rubies you want enhanced by the DevKit.

$ ruby dk.rb install
[INFO] Updating convenience notice gem override for 'C:/Ruby21'
[INFO] Installing 'C:/Ruby21/lib/ruby/site_ruby/devkit.rb'

Great, Ruby is all set up!

Rails

Now you have a working Ruby. What about Rails?
 Ruby comes with its own package manager called RubyGems, and this is what you

can use to install Rails. Gems are just little bundled-up packages of Ruby code, and
Rails is a gem. You can install Rails with this command:

$ gem install rails -v 4.2.1

Licensed to Mark Watson <nordickan@gmail.com>

http://rubyinstaller.org/downloads
http://rubyinstaller.org/downloads
http://rubyinstaller.org/downloads

525Windows

This will install the specified version of Rails, 4.2.1, and all of its dependencies. It’ll
take a while as it figures out the dependencies, installs the gems, and then parses and
installs documentation. (You can skip the documentation install by running the com-
mand with--no-document; for example, gem install rails --no-document. But you
might want it one day!)

IF INSTALLING RAILS DOESN’T WORK FOR YOU You may have issues with the gem
install rails command. If so, take a look at the “SSL upgrades on ruby-
gems.org and RubyInstaller versions” discussion (https://gist.github.com/
luislavena/f064211759ee0f806c88) to learn how to fix them, and rungem
install rails again.

When it’s done, verify the installation by running rails -v—it should tell you that it’s
using 4.2.1. Hooray!

STARTING A NEW RAILS APP

There are a couple more things you need to do before starting an app. These are
minor gotchas that exist simply because Rails gives you a lot of choice in what libraries
you use with your app.

 One of those choices is which database library you’ll use. By default, when generating
an app, Rails will try to configure the app to use SQLite, a simple file-based database sys-
tem. This is a decent choice for learning and will work out of the box on Windows.

 But once you get going with the application, you may wish to switch to using a dif-
ferent database system, such as MySQL or PostgreSQL. These won’t work out of the
box on Windows—you’ll need to fetch and install the database systems yourself.

 If you want to use MySQL, you need to visit the MySQL website at http://mysql.com
and go to the Downloads page. There, under MySQL Community Edition, you can
click through and download the MySQL Community Server.

 If you want to use PostgreSQL, you need to visit http://postgresql.org and down-
load the Windows binary package from the Downloads page.

 You also need to decide on which JavaScript runtime you want to use in your Rails
application. Why do you need a JavaScript runtime to write Ruby apps? Well, way back
when, in Rails 3.1, the Rails core team introduced a new feature called the asset pipe-
line. The asset pipeline, also known as “that blasted Sprockets thing,” is a way to make
your style sheets, JavaScript files, and other assets much more efficient. It includes
support for preprocessors like CoffeeScript and Sass, automatic concatenation and
minification of files, appending of file digests to filenames to prevent misbehaving
browsers from caching things they shouldn’t, and much, much more. To get the full
power of the asset pipeline, you need a JavaScript runtime.

 You can visit the ExecJS readme (https://github.com/sstephenson/execjs#execjs)
to see a list of available runtimes. The most common is Node.js, which you can down-
load from http://nodejs.org. We’re using version 0.12.1. Once you’ve downloaded
and installed it, you’ll need to restart your computer to get your computer to pick up
that it’s installed.

Licensed to Mark Watson <nordickan@gmail.com>

http://mysql.com
http://postgresql.org
http://nodejs.org
https://gist.github.com/luislavena/f064211759ee0f806c88
https://gist.github.com/luislavena/f064211759ee0f806c88
https://github.com/sstephenson/execjs#execjs

526 APPENDIX A Installation guide

 Once all that setup is done, starting a new Rails app is trivial. Simply enter this in
your terminal:

$ rails new my_awesome_app

This will create a new app using SQLite in the my_awesome_app directory of your cur-
rent folder.

 Once that’s complete, you can start the Rails server:

$ cd my_awesome_app
$ rails server

Once WEBrick, the built-in Ruby web server, tells you it has loaded on port 3000, you
can open up a browser and visit http://localhost:3000.

 Welcome aboard! You’re riding Ruby on Rails!

Mac OS X
OS X is the second-easiest of the three operating systems to install Ruby on. The rea-
son it’s in second place is that it doesn’t come with a package manager like most fla-
vors of Linux do. Instead, you must elect to install a tool called Homebrew to manage
these packages.

TESTED WITH ... This section has been verified with Mac OS X 10.10 but will
probably work on earlier versions of OS X 10.x.

Homebrew

To start with, you’ll install Homebrew (get it at Homebrew), which bills itself as “The
missing package manager for OS X.” The features that Homebrew provides, along
with its ease of use, have helped it quickly gain status as the tool for managing packages
on OS X.

 Follow the installation instructions at the bottom of http://brew.sh to install
Homebrew. The instructions say to run this command in Terminal:

$ ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

Go ahead and do that now.
 This command will pull down the Homebrew installation script and run it using

the version of Ruby that comes standard with every modern OS X install. Follow the
prompts and allow the Xcode tools to install. Once the Xcode tools are installed, press
any key in the Terminal to finish setting up Homebrew.

ruby-install

The Ruby install that comes with OS X isn’t as recent as it could be. In addition to this,
the permissions for the default Ruby install aren’t set up in a good way on the

Licensed to Mark Watson <nordickan@gmail.com>

http://brew.sh

527Mac OS X

machine, and this Ruby version requires root access to install its gems. Therefore,
we’re going to use ruby-install to install a new version of Ruby.

 You can see the version number of your system’s default Ruby install, also known as
the _system Ruby_, by running ruby -v. You’ll see something like this:

ruby 2.0.0.p481 (2014-05-08 revision 45883) [universal.x86_64-darwin14]

The latest version of Ruby—at this time of writing—is Ruby 2.2.2, and that’s what
you’ll install. ruby-install will download the Ruby source and associated dependen-
cies, and compile it all neatly for you to use.

 Ruby-install is open source on GitHub and can be found here: https://
github.com/postmodern/ruby-install. The installation instructions (https://github
.com/postmodern/ruby-install#install) say to use wget, but OS X doesn’t have that
installed by default. You can use Homebrew to install wget with this command:

$ brew install wget

With wget installed, you can run the installation instructions for ruby-install:

$ wget -O ruby-install-0.5.0.tar.gz https://github.com/

postmodern/ruby-install/archive/v0.5.0.tar.gz
$ tar -xzvf ruby-install-0.5.0.tar.gz
$ cd ruby-install-0.5.0/
$ sudo make install

You need to enter your password for sudo for that last step.
 Once these installation steps have been completed, you can go up a directory and

remove the ruby-install directory:

$ cd ..
$ rm -r ruby-install-*

With ruby-install installed, you can install Ruby 2.2.2 by running this command:

$ ruby-install ruby 2.2.2

With Ruby installed, you can now install and use chruby.

Chruby

Chruby is a simple shell tool used to manage your Ruby installations. Its main purpose
is to switch between different versions of Ruby installed on your system and to handle
all of the shell mess for you, so that running ruby will always run the correct interpreter.
It can also be used to switch automatically to the Ruby version that you have just installed.

 First, you need to install chruby:

$ wget -O chruby-0.3.9.tar.gz https://github.com/

postmodern/chruby/archive/v0.3.9.tar.gz
$ tar -xzvf chruby-0.3.9.tar.gz
$ cd chruby-0.3.9/
$ sudo make install

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/postmodern/ruby-install
https://github.com/postmodern/ruby-install
https://github.com/postmodern/ruby-install#install
https://github.com/postmodern/ruby-install#install

528 APPENDIX A Installation guide

After that’s done, you can safely delete this directory just like you did with ruby-install:

$ cd ..
$ rm -r chruby-*

Next, you can add chruby to your ~/.bash_profile file so that its features are loaded
when you start a new terminal session. Open ~/.bash_profile in an editor and add
these lines to that file:

source /usr/local/share/chruby/chruby.sh
source /usr/local/share/chruby/auto.sh

The auto.sh file will check the current directory for a .ruby-version file. If it exists,
chruby will attempt to switch to that version of Ruby.

 Create a ~/.ruby-version file now and specify that 2.2.2 is your default version of
Ruby to use:

ruby-2.2.2

To have this configuration take effect, you need to open a new terminal window.
Inside that new window, run ruby -v, and you should see the following:

ruby 2.2.2p95 (2015-04-13 revision 50295) [x86_64-darwin14]

Great! This means that Ruby has been set up correctly. Your next step is to set up Rails
itself.

Rails

So now you have a working Ruby. What about Rails?
 Ruby comes with its own package manager called RubyGems, and you can use it to

install Rails. Gems are just little bundled-up packages of Ruby code, and Rails is a gem.
 You can install Rails with this command:

$ gem install rails -v 4.2.1

This will install the specified version of Rails, 4.2.1, and all of its dependencies. It’ll
take a while as it figures out the dependencies, installs the gems, and then parses and
installs documentation. (You can skip the documentation install by running the com-
mand with--no-document; for example, gem install rails --no-document. But hey,
you might want it one day.)

STARTING A NEW RAILS APP

Starting a new Rails application on OS X is easier than in the other two operating sys-
tems this book covers. The SQLite 3 libraries that are used for the application’s data-
base come with OS X. A JavaScript runtime (used for compiling JavaScript files) also
comes with OS X. (On Linux, for example, you might have to set both of these up.)

 Starting a new application is as easy as running rails new and providing the appli-
cation’s name.

 Once you get going with the application, you may wish to switch to using a differ-
ent database system, such as MySQL or PostgreSQL. The gems for these are called

Licensed to Mark Watson <nordickan@gmail.com>

529Linux

mysql2 and pg respectively, and neither gem installs cleanly on the installation setup
that you have so far.

 If you run gem install mysql2, you’ll see a big error that starts with this:

Fetching: mysql2-0.3.17.gem (100%)
Building native extensions. This could take a while...
ERROR: Error installing mysql2:

ERROR: Failed to build gem native extension.

/Users/<your username>/.rubies/ruby-2.2.2/bin/ruby extconf.rb
checking for ruby/thread.h... yes
....

Similarly, if you try to run gem install pg, you’ll see this:

Fetching: pg-0.17.1.gem (100%)
Building native extensions. This could take a while...
ERROR: Error installing pg:

ERROR: Failed to build gem native extension.

/Users/<your username>/.rubies/ruby-2.2.2/bin/ruby extconf.rb
checking for pg_config... no
....

The gems are failing to install because they require libraries provided by their respec-
tive database systems. In order to develop for either of these database systems, you will
first need to install them, which will install the libraries that these gems need. We rec-
ommend installing the database systems through Homebrew. You can choose to install
one or the other, or both. You can always install the other at a later time if you need it.

 To install MySQL, run this:

$ brew install mysql

To install PostgreSQL, run this:

$ brew install postgresql

Now when you try to install these gems with gem install mysql2 and gem install pg,
they will be installed without issue.

 This appendix doesn’t cover how to switch between the different database systems,
but the book does. So go get cracking on setting up that Rails application!

Linux
Linux is perhaps the easiest of the three operating systems to get Ruby running on,
but Rails is a little more difficult. All Linux flavors come with decent package manage-
ment built in, so getting the necessary prerequisites is easy, safe, and guaranteed not
to mess with software already installed on your system.

TESTED WITH ... This section has been verified with both Ubuntu 14.10 and
Fedora 21, and presumes that your desktop is fully up to date, with all updates
installed. There are no other installation prerequisites.

Licensed to Mark Watson <nordickan@gmail.com>

530 APPENDIX A Installation guide

ruby-install

The first Linux tool we’re going to look at is ruby-install.

WHAT IS IT?
Ruby-install is a tool used to download the Ruby source and associated dependencies
and then compile it all neatly for you to use.

WHY DO WE USE IT?
Through a quirk of fate (or a disgruntled Debian package maintainer), the versions of
Ruby available in the Ubuntu software repositories aren’t quite up to scratch. Cur-
rently they contain different packages for Ruby 1.9.3p484 (called any of ruby,
ruby1.9.3, and ruby1.9.1), Ruby 2.0.0p484 (named ruby2.0), and no Ruby 2.1.
Although both 1.9.3 and 2.0 can be installed on your system, you can’t have multiple
patch-level versions of Ruby 2.0 (for example), or beta versions (such as 2.2.0-
preview1), or older versions (such as 1.8.7). Ruby-install lets you install all of those
things, as well as any other known version of Ruby, released or not.

 Ruby-install is also easy to use! It just takes one line in your terminal to install any
version of Ruby currently available. And keeping it separate from chruby means that
you can update ruby-install only when necessary, to pull in new features or bug fixes,
and doing so will have no other side effects (unlike some other all-in-one tools).

WHERE IS IT?
You can get ruby-install here: https://github.com/postmodern/ruby-install.

INSTALLATION

The latest version of ruby-install is 0.5.0, and you can install it like so:

Download the zipped source for ruby-install
$ wget -O ruby-install-0.5.0.tar.gz \

https://github.com/postmodern/ruby-install/archive/v0.5.0.tar.gz

Unzip the source
$ tar -xzvf ruby-install-0.5.0.tar.gz

Go into the directory we just unzipped
$ cd ruby-install-0.5.0/

Install the software
$ sudo make install

For Fedora
A basic Fedora install is a lot more bare-boned than Ubuntu, and as such, some really
basic packages must be installed before you can install anything else. Installing Rails
(actually, Nokogiri, a dependency of Rails) will require the patch library to be installed,
so you’ll need to install that first:

$ sudo yum install -y patch

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/postmodern/ruby-install

531Linux

And clean up afterwards
$ cd ..
$ rm -r ruby-install-0.5.0/

Once it’s installed, you can get a list of available stable rubies to install using the com-
mand ruby-install. It’s not a complete list of all available rubies—just the currently
known stable versions—but you can install any version just by specifying its name.

 You can install a ruby by using ruby-install <ruby type> <ruby version>; for
example,

Install the following named ruby
$ ruby-install ruby 2.2.1

Ruby-install knows where to get the source code for Ruby 2.2.1, and also what depen-
dencies are needed to compile it. It might ask for your sudo password, because it will
use your package manager (apt-get or yum) to verify the dependencies, and then
fetch and install any missing ones. For a brand new Fedora install, that’s over 20 miss-
ing packages!

 Once it’s done all of that, it will start compiling Ruby, and you’ll see lots and lots of
random output as it checks a lot of things and then compiles all of the necessary files.
There doesn’t appear to be a built-in way to silence this output, but you can let it do its
thing—go get a can of Diet Coke or something; it will take a few minutes.

 When it’s done, you’ll see a nice happy message:

>>> Successfully installed ruby 2.2.1 into /home/<your username>/
.rubies/ruby-2.2.1

You now have a ruby installed. How do you use it? The folder it installed to isn’t part of
your path, so calling ruby will have no effect. Enter chruby.

Chruby

Now that you have Ruby installed, how do you use it? Enter chruby.

WHAT IS IT?
Chruby is a simple shell tool used to manage your Ruby installations. Its main purpose
is to switch between different versions of Ruby installed on your system and handle all
of the shell mess for you, so that running ruby will always run the correct interpreter.

 It’s by the same author as ruby-install, so the two tools work very well together.

WHY DO WE USE IT?
There are tools already built into Linux to do things like this, such as update-
alternatives, but they’re not as convenient to use. They also don’t have features like
automatic Ruby switching when you change directories in your terminal, which is one
of our favorite features.

WHERE IS IT?
You can get chruby here: https://github.com/postmodern/chruby.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/postmodern/chruby

532 APPENDIX A Installation guide

INSTALLATION

The latest version of chruby is 0.3.9, and you can install it like so:

Download the zipped source for chruby
$ wget -O chruby-0.3.9.tar.gz \

https://github.com/postmodern/chruby/archive/v0.3.9.tar.gz

Unzip the source
$ tar -xzvf chruby-0.3.9.tar.gz

Go into the directory we just unzipped
$ cd chruby-0.3.9/

Install the software
$ sudo make install

Once it’s installed, you can configure it.

Add this to your ~/.bashrc file or ~/.zshrc file
source /usr/local/share/chruby/chruby.sh

Add this as well if you want to use chruby's switching behaviour,
ie. so you can change Rubies automatically when changing into certain
directories
source /usr/local/share/chruby/auto.sh

You can now set the Ruby you installed earlier as our default Ruby, like so:

Add this to your ~/.bashrc or ~/.zshrc file like before, after the
lines that load chruby
chruby 2.2.1

To get it working, you’ll need to restart your terminal (closing it and re-opening it is
easiest). If you run chruby, you should now see ruby-2.2.1 listed with a star next to it,
meaning it’s the currently active ruby. Running ruby -v will also confirm that you’re
using 2.2.1.

 If you have multiple rubies listed, you can switch between them using chruby <ruby>;
for example, chruby 2.1.0. For now you likely just have the one, and that’s just fine.

Rails

Now you have a working Ruby. What about Rails?
 Ruby comes with its own package manager called RubyGems, and you can use it to

install Rails. Gems are just little bundled-up packages of Ruby code, and Rails is a gem.
You can install Rails with this command:

$ gem install rails -v 4.2.1

This will install the specified version of Rails, 4.2.1, and all of its dependencies. It’ll take
a while as it figures out the dependencies, installs the gems, and then parses and installs
documentation. (You can skip the documentation install by running the command
with--no-document; for example, gem install rails --no-document. But hey, you
might want it one day.)

Licensed to Mark Watson <nordickan@gmail.com>

533Linux

 When it’s done, verify the installation by running rails -v—it should tell you that
it’s using 4.2.1. Hooray!

STARTING A NEW RAILS APP

There are a couple more things you need to do before starting an app. These are
minor gotchas that exist because Rails gives you a lot of choice in what libraries you
use with your app.

 One of those choices is which database library you’ll use. By default, when generat-
ing an app, Rails will try to configure the app to use SQLite, a simple file-based data-
base system. This is a decent choice, but it requires that you already have both the
sqlite package and its corresponding development headers installed.

 If you don’t have the headers installed when you generate a new app, you’ll get a
big error that includes the following:

Gem::Installer::ExtensionBuildError: ERROR: Failed to build gem native extens
ion.

/home/<your username>/.rubies/ruby-2.2.1/bin/ruby extconf.rb
checking for sqlite3.h... no
sqlite3.h is missing. Try 'port install sqlite3 +universal',
'yum install sqlite-devel' or 'apt-get install sqlite3-dev'
and check your shared library search path (the
location where your sqlite3 shared library is located).
*** extconf.rb failed ***
Could not create Makefile due to some reason, probably lack of necessary
libraries and/or headers. Check the mkmf.log file for more details. You may
need configuration options.

If you were generating a new app using an alternative database library such as MySQL
or PostgreSQL (using -d mysql or -d postgresql), you’d get a similar error, but for a
different header file.

 The fix for this is to make sure you have the relevant development headers
installed for the database library you want to use, before creating your Rails app:

To use sqlite in Ubuntu
$ sudo apt-get install libsqlite3-dev

To use PostgreSQL in Ubuntu
$ sudo apt-get install libpq-dev

To use MySQL in Ubuntu
$ sudo apt-get install libmysqlclient-dev

To use sqlite in Fedora
$ sudo yum install -y sqlite-devel

To use PostgreSQL in Fedora
$ sudo yum install -y postgresql-devel

To use MariaDB (a drop-in replacement for MySQL) in Fedora
$ sudo yum install -y mariadb-devel

Licensed to Mark Watson <nordickan@gmail.com>

534 APPENDIX A Installation guide

Once you have the relevant package installed, you can rerun the rails new command,
overwriting files where necessary.

 You also need to decide on which JavaScript runtime you want to use in your Rails
application. Why do you need a JavaScript runtime to write Ruby apps? Well, way back
when, in Rails 3.1, the Rails core team introduced a new feature called the asset pipe-
line. The asset pipeline, also known as “that blasted Sprockets thing,” is a way to make
your style sheets, JavaScript files, and other assets much more efficient. It includes
support for preprocessors like CoffeeScript and Sass, automatic concatenation and
minification of files, appending of file digests to filenames to prevent misbehaving
browsers from caching things they shouldn’t, and much, much more. To get the full
power of the asset pipeline, you need a JavaScript runtime.

 You can visit the ExecJS readme (https://github.com/sstephenson/execjs#execjs)
to see a list of available runtimes. One of the two most common is nodejs, which is
installable from your package manager:

To install nodejs in Ubuntu
$ sudo apt-get install nodejs

To install nodejs in Fedora
$ sudo yum install -y nodejs

The other is therubyracer, which is installable as a gem. To get that installed for your
app, open the Gemfile in the root of your application, and uncomment the line
(remove the # in front of the text) gem 'therubyracer'. Once you’ve done that, you
can run bundle install to get the gem installed.

 Pick one of the two runtimes and install it. When you have it installed, your rails
server should start without argument. Once WEBrick, the built-in Ruby web server,
tells you it has loaded on port 3000, you can open up a browser and visit http://local-
host:3000.

 Welcome aboard! You’re riding Ruby on Rails!

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/sstephenson/execjs#execjs

535

appendix B
Why Rails?

Two common questions from newcomers to the Ruby on Rails community are “Why
Ruby?” and “Why Rails?” This appendix answers these questions with several key
points about why people should be using Ruby on Rails over other frameworks, cov-
ering such things as the culture and community standards.

 Ruby is an exceptionally powerful language that can be used for anything
from short scripts to full-featured web applications, such as those built with Ruby
on Rails. Its clean syntax and focus on making programmers happy are two of the
many advantages that have generated a large community of users. There are
hobbyists who use it just for the sake of it, and hardcore programmers who swear
by it.

 Ruby and—by extension—Rails should not be used as “golden hammers.” Not
all problems can be solved by Ruby or Rails, but the chance of running into one of
those problems is extremely low. People who have used other languages before
coming to Ruby suggest that “Ruby just makes more sense.”1

 The speed at which you can develop applications using Ruby on Rails is demon-
strably faster than with other languages. An application that takes four months to
build in Java could be done in three weeks in Rails, for example. This has been
proven again and again. Rails even claims on http://rubyonrails.org that “Ruby on
Rails is optimized for programmer happiness and sustainable productivity.”

 The Ruby and Rails communities have a consistent focus on self-improve-
ment. Over the last couple of years, we’ve seen developments such as the improve-
ments from Rails 2 to Rails 3 to Rails 4, Ruby 2, the asset pipeline, and more. All
of these have vastly improved the ease of development that is intrinsic to Ruby.
Other developments have focused on other areas, such as RSpec and Capybara,

1 Quote attributed to Sam Shaw from RailsConf 2011.

Licensed to Mark Watson <nordickan@gmail.com>

http://rubyonrails.org

536 APPENDIX B Why Rails?

featured prominently in this book.2 Through consistent improvements, things are
becoming easier for Ruby developers every year.

 Along the same vein of self-improvement is an almost zealous focus on testing—on
code that tests other code. While this may seem silly to begin with, it helps us make
fewer silly mistakes and provides the groundwork for testing the fixes for any bugs that
come up in a system. Ruby, just like every other language, is no good at preventing
buggy code. Such errors are a human trait that is unavoidable.

 The shift away from SVN to the wonderful world of distributed version control was
also a major milestone, with GitHub (a Rails application!) being created in early 2008.
Services such as GitHub have made it easier than ever for Ruby developers to collabo-
rate on code across cultures. As an example, you only need to look at the commits on
the Rails project to see the wide gamut of authors.

 Don’t just take it from us. Here’s a direct quote from somebody who had only been
using Rails for a few days:

When I am programming with Ruby I think I’m making magic.
 —New person

While Ruby isn’t quite the magic of fairy tales, you’ll find young and old, experienced
and not-so-experienced people all claiming that it’s a brilliant language to work with. As
Yukihiro Matsumoto (the creator of the language) says, Ruby is designed to make pro-
grammers happy. Along the same lines, the Rails claim to be “optimized for programmer
happiness and sustainable productivity” is not smoke and mirrors, either. You can be
extremely happy and productive while using Rails, compared with other frameworks.

 Let’s dive a little deeper into the reasons why Rails (the framework) and Ruby (the
language) are so great.

Reason #1: The sense of community
The Rails community is like none other on the planet. There is a large sense of togeth-
erness in the community, with people freely sharing ideas and code through services
such as GitHub and RubyGems (see reason #2). An example of this is the vibrant com-
munity on the Freenode IRC network (irc.freenode.net), where the main #rubyonrails
channel is primarily used for asking questions about Rails. Anybody can come into the
channel and ask a question and receive a response promptly from one of the other
people who visit the channel. There’s no central support authority; it’s a group of vol-
unteers who offer their time to help strangers with problems, without asking for
money or expecting anything else in return.

 There’s also a large support community around Stack Overflow (http://stackover-
flow.com) and other locations such as the Ruby on Rails Talk mailing list (http://groups
.google.com/group/rubyonrails-talk) and Rails Forum (https://railsforum.com/).
There’s also the RailsBridge (http://railsbridge.org) organization, which aims to
bridge the gap between newbies and experienced developers.

2 A quick nod to the aruba gem (http://github.com/aslakhellesoy/aruba), which is used extensively to test
RSpec and Cucumber’s CLI (command-line interfaces), but can also be used to test other CLIs.

Licensed to Mark Watson <nordickan@gmail.com>

http://github.com/aslakhellesoy/aruba
http://stackoverflow.com
http://stackoverflow.com
http://groups.google.com/group/rubyonrails-talk
http://groups.google.com/group/rubyonrails-talk
https://railsforum.com/
http://railsbridge.org

537Reason #3: RubyGems

 All of these different areas of the internet share a common goal: being nice to the
people who are asking for help. One mantra in the Ruby community is “Matz is nice
always, so we are nice,” often abbreviated to “MINASWAN.” People in the Ruby and
Rails communities are incredibly nice to everyone.

 Another example of the excellent community around Ruby on Rails is the num-
ber of conferences and gatherings held worldwide. The smallest of them are the inti-
mate hack sessions where people work together on applications and share ideas in a
room. Slightly bigger and more organized than those are the events such as Rails
Camps (http://railscamps.org), which have about 150 people attending and run
from Friday to Monday, with interesting talks given on Saturdays and Sundays. The
largest, however, is RailsConf (http://railsconf.com/), which has about 2,000 peo-
ple in attendance.

 There are hundreds of thousands, if not millions of people using Ruby on Rails
today, building great web applications with it and building the best web framework
community on the planet.

Reason #2: The speed and ease of development
The speed with which you can develop a Ruby on Rails application is definitely one of
the main reasons that people gravitate toward (and stick with) the framework.

 One documented case involves a team that had developed an application using a
Java-based framework, which took four months. When that application became difficult
to maintain, alternative languages and frameworks were sought, with Ruby and Ruby on
Rails fitting the bill adequately. The team re-implemented all the features of the original
Java-based application within three weeks, with less code that was more beautiful.

 Ruby on Rails follows a paradigm known as “convention over configuration.” This
paradigm has been adopted not only by Rails, but also by other modern web frame-
works. Rails is designed in such a way that it takes care of the normal configuration
that you might have to do in other frameworks, leaving you to get down to coding real
features for your application.

 One example of convention over configuration is the mapping between classes
designed to interact with the database and the tables related to these classes. If the
class is called Project, then it can be assumed by Rails (and the people coding the
application) that the related table is going to be called projects. If that table name
isn’t desired for some reason, the name can be configured using a setting in the class.

Reason #3: RubyGems
This third point is more about a general boon to the Ruby community, but RubyGems
plays a key role in developing Rails applications.

 As we stated before, the culture of the Rails community is one of self-improvement.
There are people who are consistently thinking of new ways to make other people’s
lives better. One of these ways is the RubyGems system, which allows people to share
libraries in a common format. By installing a gem, a user is able to use its code along

Licensed to Mark Watson <nordickan@gmail.com>

http://railscamps.org
http://railsconf.com/

538 APPENDIX B Why Rails?

with their own code. For example, there’s the json gem, which is used for parsing
JSON data, the nokogiri gem for parsing XML, and of course the Rails suite of gems.

 Previously, gems were hosted on a system known as RubyForge, which was unstable
at times. In July 2009, Nick Quaranto, a prominent Rubyist, created the RubyGems
site we know today: http://rubygems.org. This is now the primary nexus for hosting
and downloading gems for the Ruby community, with RubyForge now playing second
fiddle. The site Nick created provides an easy way for people to host gems that other
people can use, freely. Isn’t that just awesome?

 Working with gems on a project used to be tough. To identify what gems a project
used, they had to be listed somewhere, and there were often times when the tools
used to install these gems caused problems, either installing the wrong gems or simply
refusing to work at all. Then along came Bundler. The Bundler gem provides a stan-
dardized way across all Ruby projects for managing gem dependencies. It’s a gem that
manages the gems projects use. You can list the gems you want your project to use in a
special file known as the Gemfile. Bundler then interprets (when bundle install is
run) the special syntax in this file to figure out what gems (and dependencies) need
to be installed, and it then goes about doing it. Bundler solves the gem dependency
hell previously witnessed in Ruby and Rails in a simple fashion.

 Similarly, having different Ruby versions running on the same machine used to be
difficult and involved a lot of hacking around. Then another prominent Rubyist,
Wayne E. Seguin, created a gem called RVM (Ruby Version Manager), which allows for
simplistic management of the different versions. Later, other such versioning manag-
ers were built, such as rbenv, rbfu, and chruby (which we use in this book).

 All in all, RubyGems and its ecosystem are very well thought out and sustainable.
RubyGems provides an accessible way for people to share their code freely, and it
serves as one of the foundations of the Ruby language. All of this work has been done
by the exceedingly great community, which is made up of many different kinds of peo-
ple, perhaps one day even including you.

Reason #4: The emphasis on testing
Within the Ruby and Rails communities, there’s a huge focus on writing great, main-
tainable code. To help with this process, there’s also a strong focus on test-driven
development, and on the mantra “red-green-refactor.” This mantra describes the pro-
cess of test-driven development: we write tests that fail (usually indicated by the color
red); we write the code that makes those tests pass (indicated by green); and then we
clean up (refactor) the code in order to make it easier for people to know what it’s
doing. We cover this process in chapter 2.

 Because Ruby is interpreted rather than compiled like other languages, you can’t
rely on compilers to pick up errors in your code. Instead, you write tests that describe
functionality before it’s implemented. Those tests will fail initially, but when you write
that functionality, those tests will pass. In some situations (such as tests written using
the Cucumber gem), these tests can be read by people who requested a feature, and

Licensed to Mark Watson <nordickan@gmail.com>

http://rubygems.org

539Reason #4: The emphasis on testing

they can be used as a set of instructions explaining exactly how this feature works. This
is a great way to verify that the feature is precisely what was requested.

 As you write tests for the application, you provide a safety net for when things go
wrong. This collection of tests is referred to as a test suite. When you develop a new fea-
ture, you have the tests you wrote before the feature to prove that it’s still working as you
originally thought it should. If you want to make sure that the code is working at some
point in the future, you have the test suite to fall back on.

 If something does go wrong and it’s not tested, you’ve got that base to build upon.
You can write a test for an unanticipated situation—a process known as regression test-
ing—and always have that test in the future to ensure that the problem doesn’t crop
up again.

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

541

index

Symbols

_ (underscore) 91
* (asterisk) 76, 102
//= directives prefix 315
<% %> tags 11, 56
<< association 395
~> approximate version

constraint operator 49
$ function 321

A

absolute positioning 106, 118
acceptance testing 31
accepts_nested_attributes_for

helper 298
access control

admins
adding admin field to users

table 172–173
creating admin user

173–174
overview 171–172

API
API namespace 477–481,

483–486
authenticating with invalid

token 488–489
permission denied

error 489–491
token-based

authentication
476–486

for comment form 334–342

CRUD based on namespaces
archiving users 205–210
create action 196–197
creating admin users

197–199
editing users 199–205
index action 193–194
listing users 194–195
new action 195–196
overview 191–193
preventing archived users

from signing in
211–214

preventing archiving
oneself 210–211

ensuring authorization for all
actions 266–269

handling authorization
errors 230–232

hiding links
delete link 189–191
new project link 187–189
overview 187

namespaced controllers
creating 174–176
moving functionality

into 180–186
overview 174
testing 177–180

project-update permission
hiding edit project

link 240–241
implementing

authorization 238–239
testing 236–238

project-viewing permission
assigning viewer role in

specs 217–219
checking user roles with

exists? method
224–227

creating Role model
219–220

creating tickets 227–228
deleting tickets 228–229
editing projects 229–230
Pundit gem 220–223
testing 223–224
testing for authorization of

displayed links
232–236

viewing tickets 228–229
for tags 396–402
ticket-creation permission

hiding “New Ticket”
link 254–256

implementing
authorization 252–254

testing 250–252
ticket-destroying permission

hiding “Delete Ticket”
link 264–266

implementing
authorization 264

testing 262–263
ticket-updating permission

hiding “Edit Ticket”
link 259–262

implementing
authorization 258–259

testing 256–258

Licensed to Mark Watson <nordickan@gmail.com>

INDEX542

access control (continued)
ticket-viewing permission

custom RSpec
matcher 243–246

metaprogramming magic
in 249–250

testing 246–249
ticket policy overview

242–250
user roles page

Bootstrap styling 276–277
building list of projects in

select box 271–276
displaying user roles

277–278
feature spec 270–271
processing submitted role

data 278–280
roles screen 271
saving roles of new

users 280–282
action attribute 18, 63
Action Mailer

overview 429–432
templates for 432–434
:test option 423

ActionDispatch::Static
middleware 518–519

Active Record 132–133, 225
active_for_authentication?

method 211
ActiveJob component 426
ActiveModel::Serializers

generating serializer for
Ticket model 473–476

overview 471–473
admins

adding admin field to users
table 172–173

creating admin user 173–174
CRUD based on namespaces

archiving users 205–210
create action 196–197
creating admin users

197–199
editing users 199–205
index action 193–194
listing users 194–195
new action 195–196
overview 191–193
preventing archived users

from signing in
211–214

preventing archiving
oneself 210–211

hiding links
delete link 189–191
new project link 187–189
overview 187

moving functionality into
admin namespace 180–186

overview 171–172
after_action method 268
after_create method 348, 355,

394–395
after_destroy method 348
after_save method 348
after_update method 348
after_validation method 348
Agile development 39
AJAX 408
allow method 179
Amazon S3 (Simple Storage

Service) 454–457
APIs (application programming

interfaces)
ActiveModel::Serializers

generating serializer for
Ticket model 473–476

overview 471–473
authentication

API namespace 477–481,
483–486

token-based 476–486
error handling

authenticating with invalid
token 488–489

permission denied 489–491
validation errors 491–494

example of 470–471
HTTParty gem 486–487
moving common helpers to

ApplicationController
494–495

overview 468–469
Sinatra

API using 509–514
error handling with

515–517
overview 508–509

append method 321
application programming

interfaces. See APIs
application/json type 470
applications

committing changes 74
configuration

BDD 49–50
database 50–51
Gemfile 47–49

creating 6–7, 41–42
deleting from database 21–23
DRY code 77–78
ERB files 11
forms

form_for helper 11–12
submitting 12–14

helpers 76–77
migrations 9–10
naming 7
routing 17–18
scaffolding 8–9
setting page title 74–75
starting 7–8
styling

Bootstrap 103–104
buttons 104–106
links 106–107
navigation bar 117–119
page header style 104–106
responsive 120–123
Simple Form gem 102–103,

113–117
styling, semantic

for buttons 107–111
for flash messages 111–113
overview 107

twelve-factor apps
configuration 452
defined 452
processes 453–454

updating database 18–21
user stories

application layout 70–73
building form 63–64
controller create action

65–67
defining controller 55–57
overview 41
resource creation 52–55
RESTful routing 57–60
routing of migrations

61–63
routing of models 60
strong parameters 67–70
validations 78–83

validations
overview 14–15
show action 16–17

version control
configuring Git client

44–46
overview 42–43
using GitHub 43–44

archiving users 205–210

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 543

arrange, act, assert form 89
aruba gem 536
assertions 28, 30, 340
asset pipeline 71
assets directory 5, 315
association methods 129
associations

belongs_to association
163, 219, 476

has_and_belongs_to_many
association 387, 427

has_many association
129–131, 296, 298

has_one association 476
asynchronous requests

appending content to
form 320–322

overview 317–320
purpose of 408
sending parameters for

322–324
attaching files

many files
creating spec for 293–294
implementing feature

294–298
nested attributes 298–302
overview 293

serving files through control-
ler
permissions for

attachments 304–306
private attachments

308–310
public attachments

307–308
showing attachments

306–307
testing existing

functionality 303–304
single file

CarrierWave gem 286–287
creating spec for 285–286
implementing feature

287–290
overview 284
persisting uploads when

redisplaying form
290–292

using JavaScript
attaching more files

316–317
disabling database transac-

tions for tests 312–314
jQuery 314–315

overview 310
testing 310–312
Turbolinks gem 315–316

attr_accessible feature 68
attr_accessor method 36, 385
attributes, virtual 385
authenticate_user! method 179
authenticate_with_http_token

method 485
authentication

API
API namespace 477–481,

483–486
authenticating with invalid

token 488–489
permission denied

error 489–491
token-based 476–486

defined 170
Devise gem

overview 149–151
styling views for 159–161

linking tickets to users
161–168

sign-in 154–157
sign-out 157–159
sign-up page 152–154

authenticity_token
parameter 67

authorization
for comment form 334–342
defined 170
ensuring for all actions

266–269
handling errors 230–232
saving to database and

253, 258
for tags 396–402
whitelist vs. blacklist 216

Authorization header 486

B

Basecamp 2
BDD (behavior-driven

development)
advantages of 26
configuration 49–50
overview 31
RSpec 31–32
running specs 33–34
test example 34–37
using Factory Girl gem 85–87
writing specs 32–33

before method 511

&:before rule 108
before_action method

101, 201, 266
before_create method

348, 355, 395
before_destroy method 348
before_save method 348
before_update method 348
before_validation method 348
behavior-driven development.

See BDD
belongs_to association

163, 219, 476
Bitbucket 43
blacklist authorization 216
blink tag 285
Bootstrap 103–104, 121,

176, 446
browser testing 49
btn class 104
btn-success class 105
buckets, S3 453
builder pattern 473
Bundler 47, 538
button_to method 444
buttons

semantic styling for 107–111
styling 104–106

C

C/C++ extensions 524
cache 290–291
call method 498, 500
callbacks

defined 348
when to avoid 424

Capybara 41, 49, 310, 340
CarrierWave gem

configuring upload
folder 308

fixing file uploads for
deployment 460–461

overview 286–287
Cascading Style Sheets. See CSS
character encoding 51
check boxes 198
Chrome 378
chruby installation

Linux 531–532
Mac OS X 527–528

class_name option 163, 333, 427
classes

abstracting Rack applications
into

Licensed to Mark Watson <nordickan@gmail.com>

INDEX544

classes (continued)
overview 502–504
running application

505–506
inheritance 335

code
smell 226
writing better 26

CoffeeScript 54, 72, 320–322
collection method 411
collection routes 206
Collection+JSON 471
comment form

authorization for 334–342
controller for 332–333
model for 329–332
overview 326–328
security for

change_state
permission 375–376

hacking forms 376–378
hiding select box 373–374
ignoring parameters

378–381
comments 391–395
committing changes 74
community 536–537
compiling assets 98
config.middleware methods 520
configuration

BDD 49–50
database 50–51
Gemfile 47–49
twelve-factor apps and 452

confirmable module 150
consider_all_requests_local

setting 97
console 79
content_for method 76
content_tag helper 358
Content-Type header 470, 498
context blocks 188
continuous deployment

configuration 462–463
deployment hooks 463–465
overview 462

controllers
avoiding notifications sent

from 424
for comment form 332–333
consistent order of CRUD

actions 200
create action in 65–67
creating 55–57
destroy action 94, 96

directory for 4
edit action 88–92
handling uploaded files

permissions for
attachments 304–306

private attachments
308–310

public attachments
307–308

showing attachments
306–307

testing existing
functionality 303–304

namespace
creating 174–176
moving functionality

into 180–186
overview 174
testing 177–180

namespace, CRUD based on
archiving users 205–210
create action 196–197
creating admin users

197–199
editing users 199–205
index action 193–194
listing users 194–195
new action 195–196
overview 191–193
preventing archived users

from signing in
211–214

preventing archiving
oneself 210–211

update action
failure to update

behavior 93–94
implementing 92–93

convention over
configuration 2, 46, 537

Coordinated Universal Time. See
UTC

coupling, tight 424
create_table method 61–62
create! method 80
created_at attribute 80
cross-site request forgery. See

CSRF
CRUD (create, read, update,

delete)
based on namespaces

archiving users 205–210
create action 196–197
creating admin users

197–199

editing users 199–205
index action 193–194
listing users 194–195
new action 195–196
overview 191–193
preventing archived users

from signing in
211–214

preventing archiving
oneself 210–211

consistent order of actions in
controllers 200

creating tickets
adding section for 124–126
controller for 127–128
finding tickets scoped by

project 133–134
has_many associations

129–131
nested routing

helpers 126–127
overview 131–133
URL placeholders 128–129
validations 135–136

defined 51
deleting projects 94–97
deleting tickets

for deleted projects
139–141

individual tickets 145–147
editing projects

edit action 88–92
update action 92–93
update failure behavior

93–94
editing tickets

creating spec for 141–143
edit action 144
update action 144–145

exception handling
handling RecordNotFound

exception 99–101
serving static error

page 98–99
viewing all projects 85, 87–88
viewing tickets

listing all 138–139
overview 136–138

CSRF (cross-site request
forgery) 72

csrf_meta_tags method 72
CSS (Cascading Style Sheets)

5, 98
Cucumber 26

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 545

curl
defined 470
-i flag 476

custom RSpec matchers 245

D

:data option 95–96
data truncation 312
data-params attribute 322–323
Database Cleaner gem 312–313
database_authenticatable

module 150
databases

configuration 50–51
controllers and 4
indexing 344, 388
join tables 382
rolling back changes 173
transactions 279
using different for develop-

ment and production 455
debugging 253
default attribute 368, 430
delayed_job gem 426
delegation 336
DELETE method 58
:delete option 405
deliver_later method 426
deliver_now method 425–426
delivery_method setting 423
:dependent option 141
deployment

continuous deployment with
Travis CI
configuration 462–463
deployment hooks 463–465
overview 462

Heroku
correcting warnings

458–460
fixing CarrierWave file

uploads 460–461
overview 450
process overview 462
provisioning apps 450–451
signing up 450
using Git 457–458
using S3 with 454–457

overview 449–450
sending emails using

Mailgun 465–467
twelve-factor apps

configuration 452
defined 452
processes 453–454

describe block 32
destroy action 94, 96, 146
development environment

48, 72
Devise gem

overview 149–151
sign_in helper 400
sign_in method 379
styling views for 159–161

DevKit 524
disposition option 307
domain logic 4
DRY (Don’t Repeat

Yourself!) 77–78
DSL (domain-specific

language) 31

E

edit action 88–92
editor role 216
Elasticsearch 409
email

sending ticket notifications
Action Mailer

overview 429–432
Action Mailer

templates 432–434
automatically watching

tickets 421–423
defining watchers

association 427–429
testing 423, 434–436
using service classes

423–427
sending using Mailgun

465–467
subscribing to update

notifications
automatically adding

commenter as
watcher 439–440

testing 437–439
unsubscribing 440–446

Email Spec gem 421
engines 151, 159
environments 48
ERB (Embedded Ruby) 4, 11
error handling

API
authenticating with invalid

token 488–489
permission denied 489–491
validation errors 491–494

authorization errors 230–232

handling RecordNotFound
exception 99–101

helper methods for 82–83
serving static error page

98–99
using Sinatra 515–517

errors object 494
:except option 101, 184
ExecJS 525, 534
exists? method 225
@extend directive 108, 110

F

fa_icon helper 105
Facebook 150
Factory Girl gem

overview 85–87
traits 171

fadeOut() function 408
falsey values 35, 172
Fedora 530
fields_for helper 296–297
fields, database 9
file_cache field 300
find method 133
find_by method 75, 276
find_email! method 422
Firefox 378
flash messages

defined 14
flash vs. flash.now 81
passing flash to redirect_to 66
rendering all 73
semantic styling for 111–113

Fog gem 454
Font Awesome project 105
foreign key support 130, 164
form_for method 411
form_tag helper 411
forms

creating user story for 63–64
form_for helper 11–12, 63
hacking 376–378
Simple Form gem

Boolean values in 198
Bootstrap and 276
overview 102–103, 113–117
simple_fields_for

helper 296
submitting 12–14

:full_error component 116
full_messages method 494

Licensed to Mark Watson <nordickan@gmail.com>

INDEX546

G

g command 50
Gemfile 47–49, 414, 458
gems

defined 47
overview 3–4

GET method 53
get method 369, 511
Git

checkout command 74
commit command 44, 290
configuring client 44–46
deploying to Heroku

using 457–458
push command 45
remote add command 45
stash command 74

GitHub
Ruby on Rails usage 5, 536
setting up for application

43–44
global support loading 218

H

hacking forms 376–378
halt method 516
handlers 55
has_and_belongs_to_many

association 382, 387, 427
has_content? method 340
has_many association 129–131,

296, 298, 330
has_one association 476
hashing passwords 204
<header> tag 110
--help option 42
helpers 5, 76–77
Heroku

checking logs 460
continuous deployment with

Travis CI
configuration 462–463
deployment hooks 463–465
overview 462

correcting warnings 458–460
fixing CarrierWave file

uploads 460–461
overview 450
process overview 462
provisioning apps 450–451
signing up 450
using Git 457–458
using S3 with 454–457

Homebrew 526
HTTP (Hypertext Transfer

Protocol)
PATCH method 20
RESTful routing 58

HTTP_AUTHORIZATION
token 485

HTTParty gem 486–487
Hulu 1
hypermedia 469

I

i18n (internationalization) 212
@import directive 103, 105
inactive_message method 212
include method 158
index action 55, 85
index option 344, 388
inflection 481–482
inheritance 337

for classes 335
for templates 201–202

initialize method 520
initializers 149
installation

chruby
on Linux 531–532
on Mac OS X 527–528

DevKit 524
Homebrew 526
Rails

on Linux 532–533
on Mac OS X 528
on Windows 524–525

RSpec 31
Ruby on Rails 6
ruby-install

on Linux 530–531
on Mac OS X 526–527

RubyInstaller 524
integration testing 49
internationalization. See i18n
IRC channel 536
it syntax 243

J

JavaScript
runtime for 525, 534
uploading files using

attaching more files
316–317

disabling database transac-
tions for tests 312–314

jQuery 314–315
overview 310
testing 310–312
Turbolinks gem 315–316

JavaScript Object Notation. See
JSON

javascript_include_tag
method 72

JBuilder library 473
join tables 382
:join_table option 427
joins method 235
jQuery 314–315
jquery_ujs file 96, 314
js:true option 310
JSON (JavaScript Object

Notation) 469
JSON-API format 471
JSON-LD format 471

L

label method 64
label_tag helper 272, 411
layout method 430
layout option 319
lazy-loading 142
let blocks 416
let method 142, 188
Lighthouse 395
line breaks 134
link_to method

caution when using 139
:method option 95, 443
overview 11, 19, 57
:remote option 316, 405

links
hiding

delete link 189–191
new project link 187–189
overview 187

styling 106–107
Linux

chruby installation 531–532
installing Rails 6, 532–533
overview 529–530
ruby-install 530–531
starting new Rails app

533–534
list_item method 367, 404
lockable module 150
login_as method 157, 162
logs, Heroku 460

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 547

M

Mac OS X
chruby installation 527–528
Homebrew 526
installing Rails 6, 528
ruby-install 526–527
starting new Rails app

528–529
mailers directory 5
Mailgun 465–467
manager role 216
Markdown 3
marquee tag 285
master branch 45
media queries 120
member routes 206
meta tags 120
metaprogramming

249–250, 431
method attribute 18
method option 95, 443
method_missing method 431
middleware

ActionDispatch::Static
middleware 518–519

creating 519–520
overview 517–518
using 520–521

migrations
overview 9–10
rolling back changes 173
routing for 61–63
running 10

MIME types 469
MiniTest

overview 28–29
test example 29–31
writing tests 27–29

model-view-controller. See MVC
models

for comment form 329–332
directory for 4
importance of 60
routing for 60
for tags 387–388
when to avoid using

callbacks 424
mount method 509
MVC (model-view-

controller) 4–5
MySQL 50, 164, 525, 528–529

N

namespaces
controller

creating namespaced
controller 174–176

moving functionality into
admin
namespace 180–186

overview 174
testing namespaced

controller 177–180
CRUD based on

archiving users 205–210
create action 196–197
creating admin users

197–199
editing users 199–205
index action 193–194
listing users 194–195
new action 195–196
overview 191–193
preventing archived users

from signing in
211–214

preventing archiving
oneself 210–211

root 175
navigation bar 117–119
nested resources

creating tickets
adding section for 124–126
controller for 127–128
finding tickets scoped by

project 133–134
has_many associations

129–131
nested routing

helpers 126–127
overview 131–133
URL placeholders 128–129
validations 135–136

deleting tickets
for deleted projects

139–141
individual tickets 145–147

editing tickets
creating spec for 141–143
edit action 144
update action 144–145

viewing tickets
listing all 138–139
overview 136–138

new command 42
nil value 75, 172

Node.js 525, 534
not_authorized method 232
notifications

emailing for ticket updates
Action Mailer

overview 429–432
Action Mailer

templates 432–434
automatically watching

tickets 421–423
defining watchers

association 427–429
testing 423, 434–436
using service classes

423–427
subscribing to

automatically adding
commenter as
watcher 439–440

testing 437–439
unsubscribing 440–446

:nullify option 140
number_to_human_size

helper 289

O

OData 471
OmniAuth 150
:only option 101, 184
origin repository 45
overriding methods 199

P

PaaS (Platform as a Service) 449
page-header class 104
parameterize method 347
params data attribute 322–323
params method 66, 512
parent() function 408
parsed_response method 486
partials

defined 90
template inheritance and 202

password hashing 204
PATCH method 20, 58, 207
PATH_INFO key 501
pg gem 455
placeholders, URL 128–129
plain old Ruby object. See PORO
Platform as a Service. See PaaS
policies, Pundit 220
policy view helper 341, 373
polymorphic routing 132

Licensed to Mark Watson <nordickan@gmail.com>

INDEX548

PORO (plain old Ruby
object) 425

:post option 443
PostgreSQL 50, 164, 455, 525,

528–529
presence validation 79
primary key 344
production environment

48, 98, 449
ProgrammableWeb 468
provisioning apps 450
Pry gem 253
Puma 458
Pundit gem

overview 220–221
policy view helper 341, 373
spec helpers 221–223

PUT method 58

R

race conditions 150–151
Rack applications

abstracting into classes
overview 502–504
running application

505–506
middleware

ActionDispatch::Static
middleware 518–519

creating 519–520
overview 517–518
using 520–521

mounting with Rails
API using Sinatra 509–514
error handling 515–517
overview 506–508
Sinatra overview 508–509

overview 496–498
responding to different

requests 499–502
simple example 498–499

Rackup files 498–499
Rails

advantages of
community 536–537
emphasis on testing

538–539
overview 2–3, 535–536
RubyGems 537–538
speed of development 537

gems 3–4
GitHub example 5
history of 2
inflection 481–482

installation
Linux 532–533
Mac OS X 528
Windows 524–525

terminology 4–5
Rails Camps 537
rails command 6, 8, 41
Rails Lighthouse 395
Rails Rumble event 2
rails_12factor gem 456
RAILS_ENV environment

variable 98
RailsBridge 536
RailsConf 537
Rake middleware 62, 517
ready method 321
RecordNotFound

exception 99–101
recoverable module 150
red-green-refactor process

26, 538
redirect_to method 65–66, 133
refactoring 92
registerable module 150
regression testing 27, 40, 539
relative positioning 106
rememberable module 150
remote option 316, 405
render method 11, 92
Representational State Transfer.

See REST
request tests 478
require method 68
require_relative 504
require_tree method 315
resolve method 233
resource routes 57
resources

creating tickets
adding section for 124–126
controller for 127–128
finding tickets scoped by

project 133–134
has_many associations

129–131
nested routing

helpers 126–127
overview 131–133
URL placeholders 128–129
validations 135–136

defined 17, 51
deleting tickets

for deleted projects
139–141

individual tickets 145–147

editing tickets
creating spec for 141–143
edit action 144
update action 144–145

viewing tickets
listing all 138–139
overview 136–138

respond_to 470
responsive styling 119–123
Resque gem 426
REST (Representational State

Transfer)
RESTful apps 469
routing

of migrations 61–63
of models 60
overview 57–60

terminology explained 5
:restrict_with_error option 140
:restrict_with_exception

option 140
role_on method 272, 275
roles, user

Bootstrap styling 276–277
building list of projects in

select box 271–276
displaying user roles 277–278
feature spec 270–271
processing submitted role

data 278–280
roles screen 271
saving roles of new users

280–282
rolling back changes 173
root namespace 175
root route 53
routes.rb file 17
routing

member routes vs. collection
routes 206

migrations 61–63
models 60
nested routing helpers

126–127
overview 17–18, 57–60
polymorphic 132
root route 53

RSpec
custom matcher 243–246
let method 142
overview 31–32
request specifications 478
running specs 33–34
test example 34–37
writing specs 32–33

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 549

Ruby
emphasis on testing 538–539
overview 535–536
RubyGems 537–538

Ruby Version Manager. See RVM
ruby-install tool

Linux 530–531
Mac OS X 526–527

RubyInstaller tool 524
RVM (Ruby Version

Manager) 463, 538

S

Safari 378
sanitized_parameters

method 397
SASS (Syntactically Awesome

Stylesheets) 71
scaffold generator 8–9, 25, 40
scoping, defined 209
SCSS 54, 71
Searcher gem 409, 414
searching

displaying all tickets with
tag 417–419

overview 409
by state 416–417
by tags 412–415
testing 409–412

SECRET_KEY_BASE option 99
secure shell. See SSH
security

change_state permission
375–376

hacking forms 376–378
hiding select box 373–374
ignoring parameters 378–381

seed data 173
select_tag helper 272
Selenium 311, 313
self. prefix 36
semantic styling

for buttons 107–111
for flash messages 111–113
overview 107

send_file method 307
sequence method 155
serialization

generating serializer for
Ticket model 473–476

overview 471–473
server command 7
service classes 423–427
serving static resources 98–99

set_project method 101
show action 16–17, 69
Sidekiq gem 426
sign_in helper 379, 400
Simple Form gem

advantages of 345
automatically selected

values 352
Boolean values in 198
Bootstrap and 276
overview 102–103, 113–117
simple_fields_for helper 296

Simple Mail Transfer Protocol.
See SMTP

Simple Storage Service.
See Amazon S3

Sinatra
API using 509–514
error handling with 515–517
overview 508–509

single-responsibility
principle 424

Siren 471
skip_after_action method 268
SMTP (Simple Mail Transfer

Protocol) 465
spec helpers, Pundit 221–223
specs

concise way for writing policy
specs 243–246

let method 142
running 33–34
test example 34–37
view 180
writing 32–33

Sprockets gem 70, 72, 119,
315, 525

SQLite3 10, 50, 164
SSH (secure shell) 43
Stack Overflow 536
staging area 44
staging environment 449
state

adding states 361–366
changing 342–343, 345–352
comment form

authorization for 334–342
controller for 332–333
model for 329–332
overview 326–328

defining default 367–371
searching by 416–417
security for

change_state
permission 375–376

hacking forms 376–378
hiding select box 373–374
ignoring parameters

378–381
seeding 352–353, 373
setting default 352, 371–372
State model 343–344
tracking changes

before_create
callback 355–356

displaying changes
356–358

overview 353
recording changes 353–355
styling states 358–361

statelessness 453
static resources 98–99
store_dir method 308
story-driven development 40
strong parameters 13, 67–70
stubbing 177–178
stylesheet_link_tag method 70
styling

Bootstrap 103–104
buttons 104–106
Devise gem views 159–161
links 106–107
navigation bar 117–119
page header style 104–106
responsive 120–123
semantic

for buttons 107–111
for flash messages 111–113
overview 107

Simple Form gem 102–103,
113–117

subject method 224
submit method 64
submit_tag helper 411
super method 513
support loading 218
SVN (Subversion) 536
Syntactically Awesome

Stylesheets. See SASS

T

tags
adding through

comments 391–395
creating 384–386
deleting

adding link for 404–408
overview 402–403

Licensed to Mark Watson <nordickan@gmail.com>

INDEX550

tags (continued)
removing tag from

page 408–409
testing 403–404

displaying 386–391
has_and_belongs_to_many

association 387
model for 387–388
restricting use of 396–402
searching

displaying all tickets with
tag 417–419

overview 409
by state 416–417
by tags 412–415
testing 409–412

TDD (test-driven development)
advantages of 26
MiniTest 28–29
overview 27
test example 29–31
writing tests 27–29

templates
inheritance for 201–202
partials 90
setting page title 74–75

test environment 48
test fixtures 27
:test option 423
test-driven development. See

TDD
Test::Unit 27
testing

BDD
advantages of 26
overview 31
RSpec 31–32
running specs 33–34
test example 34–37
writing specs 32–33

browser 49
controllers 424
emphasis on 538–539
Factory Girl gem 85
importance of 25–26
namespaced controller

177–180
stubbing 178
subject method 224
TDD

advantages of 26
MiniTest 28–29
overview 27
test example 29–31
writing tests 27–29

views 260

text_field_tag helper 411
text/html type 498
Textile 3
time_ago_in_words helper 163
timeoutable module 150
timestamps 61–62, 387
:title option 405
title, page 74–75
titleize helper 274
to_a method 350
to_json method 471–472
to_s method 199
to_yaml method 500
token-based

authentication 476–486
Toolbelt 450
top-down design 128
trackable module 150
tracking changes

before_create callback
355–356

displaying changes 356–358
overview 353
recording changes 353–355
styling states 358–361

traits, Factory Girl 171
transactions, database 279
transient attributes 304
Travis CI

configuration 462–463
deployment hooks 463–465
overview 462

troubleshooting
delete functionality 96
link_to method 139

truthy values 172
try method 189, 226
Turbolinks gem 315–316
twelve-factor apps

configuration 452
defined 452
processes 453–454

Twitter 1, 150

U

unauthenticated! method 516
Uniform Resource Locators. See

URLs
uniqueness validation 79, 387
update action

failure to update
behavior 93–94

implementing 92–93
update_column method 480

updated_at attribute 80
uploading files

asynchronous requests
appending content to

form 320–322
overview 317–320
sending parameters

for 322–324
attaching many files

creating spec for 293–294
implementing feature

294–298
nested attributes 298–302
overview 293

attaching single file
CarrierWave gem 286–287
creating spec for 285–286
implementing feature

287–290
overview 284
persisting uploads when

redisplaying form
290–292

fixing uploads for
deployment 460–461

serving files through control-
ler
permissions for

attachments 304–306
private attachments

308–310
public attachments

307–308
showing attachments

306–307
testing existing

functionality 303–304
using JavaScript

attaching more files
316–317

disabling database transac-
tions for tests 312–314

jQuery 314–315
overview 310
testing 310–312
Turbolinks gem 315–316

Urban Dictionary 1
url method 288
:url option 405
URLs (Uniform Resource

Locators) 128–129
use method 520
use_transactional_fixtures

option 313

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 551

user stories 41
user_password id 152–153
users

Devise gem
overview 149–151
styling views for 159–161

linking tickets to 161–168
preventing archived users

from signing in 211–214
roles page

Bootstrap styling 276–277
building list of projects in

select box 271–276
displaying user roles

277–278
feature spec 270–271
processing submitted role

data 278–280
roles screen 271
saving roles of new

users 280–282
sign-in 154–157
sign-out 157–159
sign-up page 152–154

UTC (Coordinated Universal
Time) 62

UTF-8 encoding 51
utf8 parameter 67

V

validatable module 150–151
validates method 14
validations

best practices 135
for creating tickets 135–136
creating user story for 78–83
overview 14–15
show action 16–17

variants option 56
verify_authorized helper

266–267
verify_policy_scoped

helper 266–267
version control

committing changes 74
configuring Git client 44–46
overview 42–43
using GitHub 43–44

view helpers 163, 274
view specs 180
view tests 260
viewer role 216
viewport meta tag 120
views directory 4
virtual attributes 385

W

%w() notation 274
Warden gem 157, 162
web API 469
WebDriver 284, 310–311
WEBrick 7, 458
whitelist authorization 216
whitespace 89
Windows

DevKit 524
installing Rails 6, 524–525
overview 523
RubyInstaller 524
starting new Rails app

525–526
within method 137
wrappers 116

X

Xcode 526

Y

YAML library 500

Z

Zurb Foundation 102

Licensed to Mark Watson <nordickan@gmail.com>

Bigg ● Katz ● Klabnik ● Skinner

R
ails is a full-stack, open source web framework powered
by Ruby. Now in version 4, Rails is mature and powerful,
and to use it effectively you need more than a few Google

searches. You’ll fi nd no substitute for the guru’s-eye-view of
design, testing, deployment, and other real-world concerns
that this book provides.

Rails 4 in Action is a hands-on guide to the subject. In this
fully revised new edition, you’ll master Rails 4 by developing
a ticket-tracking application that includes RESTful routing,
authentication and authorization, fi le uploads, email, and
more. Learn to design your own APIs and successfully deploy
a production-quality application. You’ll see test-driven
development and behavior-driven development in action
throughout the book, just like in a top Rails shop.

What’s Inside
● Creating your own APIs
● Using RSpec and Capybara
● Emphasis on test-fi rst development
● Fully updated for Rails 4

For readers of this book, a background in Ruby is helpful but
not required. No Rails experience is assumed.

Ryan Bigg, Yehuda Katz, Steve Klabnik, and Rebecca Skinner
are contributors to Rails and active members of the Rails
community.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/rails-4-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Rails 4 IN ACTION

WEB DEVELOPMENT/RUBY

M A N N I N G

“There’s no better source
for Rails 4. This book blows

away the competition.”
—Damien White, Visoft, Inc.

“A gentle yet thorough
 guide to Rails 4.”—William Wheeler

ProData Computer Services

“Very clear, with excellent
examples. A must-read

for everyone in the
Rails world.”

—Michele Bursi, Nokia

“Well-written, intuitive,
 and easy to understand.”

—Lee Allen
SecuritySession.com

SEE INSERT

	Rails 4 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	What’s new in the revised edition
	Roadmap
	Code conventions and downloads
	Author Online
	About the cover illustration

	Chapter 1: Ruby on Rails, the framework
	1.1 Ruby on Rails overview
	1.1.1 Benefits
	1.1.2 Ruby gems
	1.1.3 Common terms
	1.1.4 Rails in the wild

	1.2 Developing your first application
	1.2.1 Installing Rails
	1.2.2 Generating an application
	1.2.3 Starting the application
	1.2.4 Scaffolding
	1.2.5 Migrations
	1.2.6 Viewing and creating purchases
	1.2.7 Validations
	1.2.8 Routing
	1.2.9 Updating
	1.2.10 Deleting

	1.3 Summary

	Chapter 2: Testing saves your bacon
	2.1 Using TDD and BDD to save your bacon
	2.2 Test-driven development basics
	2.2.1 Writing your first test
	2.2.2 Saving bacon

	2.3 Behavior-driven development basics
	2.3.1 Introducing RSpec
	2.3.2 Writing your first spec
	2.3.3 Running the spec
	2.3.4 Much more bacon
	2.3.5 Expiring bacon

	2.4 Summary

	Chapter 3: Developing a real Rails application
	3.1 First steps
	3.1.1 The application story
	3.1.2 Laying the foundations

	3.2 Version control
	3.2.1 Getting started with GitHub
	3.2.2 Configuring your Git client

	3.3 Application configuration
	3.3.1 The Gemfile and generators
	3.3.2 Database configuration

	3.4 Beginning your first feature
	3.4.1 Creating projects
	3.4.2 Defining a controller action
	3.4.3 RESTful routing
	3.4.4 Committing changes
	3.4.5 Setting a page title
	3.4.6 Validations

	3.5 Summary

	Chapter 4: Oh, CRUD!
	4.1 Viewing projects
	4.1.1 Introducing Factory Girl
	4.1.2 Adding a link to a project

	4.2 Editing projects
	4.2.1 The edit action
	4.2.2 The update action

	4.3 Deleting projects
	4.4 What happens when things can’t be found
	4.4.1 Visualizing the error
	4.4.2 Handling the ActiveRecord::RecordNotFound exception

	4.5 Styling the application
	4.5.1 Installing Bootstrap
	4.5.2 Improving the page’s header
	4.5.3 Improving the show view
	4.5.4 Semantic styling
	4.5.5 Using Simple Form
	4.5.6 Adding a navigation bar
	4.5.7 Responsive styling

	4.6 Summary

	Chapter 5: Nested resources
	5.1 Creating tickets
	5.1.1 Nested routing helpers
	5.1.2 Creating a tickets controller
	5.1.3 Demystifying the new action
	5.1.4 Defining a has_many association
	5.1.5 Creating tickets in a project
	5.1.6 Finding tickets scoped by project
	5.1.7 Ticket validations

	5.2 Viewing tickets
	5.2.1 Listing tickets
	5.2.2 Culling tickets

	5.3 Editing tickets
	5.3.1 The ticket-editing spec
	5.3.2 Adding the edit action
	5.3.3 Adding the update action

	5.4 Deleting tickets
	5.5 Summary

	Chapter 6: Authentication
	6.1 Using Devise
	6.2 Adding sign-up
	6.3 Adding sign-in and sign-out
	6.3.1 Adding sign-in
	6.3.2 Adding sign-out
	6.3.3 Styling the Devise views

	6.4 Linking tickets to users
	6.4.1 Fixing the failing four features

	6.5 Summary

	Chapter 7: Basic access control
	7.1 Turning users into admins
	7.1.1 Adding the admin field to the users table
	7.1.2 Creating the first admin user

	7.2 Controller namespacing
	7.2.1 Generating a namespaced controller
	7.2.2 Testing a namespaced controller
	7.2.3 Moving functionality into the admin namespace

	7.3 Hiding links
	7.3.1 Hiding the “New Project” link
	7.3.2 Hiding the delete link

	7.4 Namespace-based CRUD
	7.4.1 The index action
	7.4.2 The new action
	7.4.3 The create action
	7.4.4 Creating admin users
	7.4.5 Editing users
	7.4.6 The edit and update actions
	7.4.7 Archiving users
	7.4.8 Ensuring that you can’t archive yourself
	7.4.9 Preventing archived users from signing in

	7.5 Summary

	Chapter 8: Fine-grained access control
	8.1 Project-viewing permission
	8.1.1 Assigning Roles in specs
	8.1.2 Creating the Role model
	8.1.3 Setting up Pundit
	8.1.4 Testing the ProjectPolicy
	8.1.5 Fixing what you broke
	8.1.6 Handling authorization errors
	8.1.7 One more thing

	8.2 Project-updating permission
	8.2.1 Testing the ProjectPolicy again
	8.2.2 Applying the authorization
	8.2.3 Hiding the “Edit Project” link

	8.3 Ticket-viewing permission
	8.3.1 Refactoring policy specs
	8.3.2 Testing the TicketPolicy
	8.3.3 Refactoring policies

	8.4 Ticket-creation permission
	8.4.1 Testing the TicketPolicy … again
	8.4.2 Applying the authorization

	8.5 Ticket-updating permission
	8.5.1 Testing the TicketPolicy … turbocharged
	8.5.2 Implementing controller authorization
	8.5.3 Hiding the “Edit Ticket” link

	8.6 Ticket-destroying permission
	8.6.1 Testing the TicketPolicy … for the final time
	8.6.2 Implementing controller authorization

	8.7 Ensuring authorization for all actions
	8.8 Assigning roles to users
	8.8.1 Planning the permission screen with a feature spec
	8.8.2 The roles screen
	8.8.3 Building a list of projects in a select box
	8.8.4 Processing the submitted role data
	8.8.5 Saving roles of new users

	8.9 Summary

	Chapter 9: File uploading
	9.1 Attaching a file
	9.1.1 A feature featuring files
	9.1.2 Enter, stage right: CarrierWave
	9.1.3 Using CarrierWave
	9.1.4 Persisting uploads when redisplaying a form

	9.2 Attaching many files
	9.2.1 Testing multiple-file upload
	9.2.2 Implementing multiple-file upload
	9.2.3 Using nested attributes

	9.3 Serving files through a controller
	9.3.1 Testing existing functionality
	9.3.2 Protecting attachments
	9.3.3 Showing your attachments
	9.3.4 Public attachments
	9.3.5 Privatizing attachments

	9.4 Using JavaScript
	9.4.1 JavaScript testing
	9.4.2 Cleaning the database
	9.4.3 Introducing jQuery
	9.4.4 Adding more files with JavaScript

	9.5 Responding to an asynchronous request
	9.5.1 Appending new content to the form
	9.5.2 Sending parameters for an asynchronous request

	9.6 Summary

	Chapter 10: Tracking state
	10.1 Leaving a comment
	10.1.1 The comment form
	10.1.2 The comments controller

	10.2 Changing a ticket’s state
	10.2.1 Creating the State model
	10.2.2 Selecting states
	10.2.3 Setting a default state for a comment
	10.2.4 Seeding your app with states

	10.3 Tracking changes
	10.3.1 Ch-ch-changes
	10.3.2 Another c-c-callback
	10.3.3 Displaying changes
	10.3.4 Styling states

	10.4 Managing states
	10.4.1 Adding additional states
	10.4.2 Defining a default state
	10.4.3 Applying the default state
	10.4.4 Setting a default state in seed states

	10.5 Locking down states
	10.5.1 Hiding a select box
	10.5.2 Defining the change_state permission
	10.5.3 Hacking a form
	10.5.4 Ignoring a parameter

	10.6 Summary

	Chapter 11: Tagging
	11.1 Creating tags
	11.1.1 The tag-creation feature
	11.1.2 Showing tags
	11.1.3 Defining the tags association
	11.1.4 The Tag model
	11.1.5 Displaying a ticket’s tags

	11.2 Adding more tags
	11.2.1 Adding tags through a comment

	11.3 Tag restriction
	11.3.1 Testing tag restriction
	11.3.2 Tags are allowed, for some

	11.4 Deleting a tag
	11.4.1 Testing tag deletion
	11.4.2 Adding a link to delete the tag

	11.4.3 Removing a tag from the page
	11.5 Finding tags
	11.5.1 Testing search
	11.5.2 Searching by tags
	11.5.3 Searching by state
	11.5.4 Search, but without the search

	11.6 Summary

	Chapter 12: Sending email
	12.1 Sending ticket notifications
	12.1.1 Automatically watching a ticket
	12.1.2 Using service classes
	12.1.3 Defining the watchers association
	12.1.4 Introducing Action Mailer
	12.1.5 An Action Mailer template
	12.1.6 Testing with mailer specs

	12.2 Subscribing to updates
	12.2.1 Testing comment subscription
	12.2.2 Automatically adding the commenter to the watchers list
	12.2.3 Unsubscribing from ticket notifications

	12.3 Summary

	Chapter 13: Deployment
	13.1 What is deployment?
	13.2 Simple deployment with Heroku
	13.2.1 Signing up
	13.2.2 Provisioning an app

	13.3 Twelve-factor apps
	13.3.1 Configuration
	13.3.2 Processes
	13.3.3 Combining Heroku and S3

	13.4 Deploying Ticketee
	13.4.1 Fixing deployment issues
	13.4.2 Fixing CarrierWave file uploads
	13.4.3 Deploying is hard

	13.5 Continuous deployment with Travis CI
	13.5.1 Configuring Travis
	13.5.2 Deployment hooks

	13.6 Sending emails
	13.7 Summary

	Chapter 14: Designing an API
	14.1 An overview of APIs
	14.1.1 A practical example

	14.2 Using ActiveModel::Serializers
	14.2.1 Getting your hands dirty

	14.3 API authentication and authorization
	14.3.1 The API namespace
	14.3.2 A small tangent on inflections
	14.3.3 Getting back to your API

	14.4 It’s not a party without … HTTParty
	14.5 Handling errors
	14.5.1 Authenticating with a blank token
	14.5.2 Permission denied
	14.5.3 Validation errors

	14.6 A small refactoring
	14.7 Summary

	Chapter 15: Rack-based applications
	15.1 Building Rack applications
	15.1.1 A basic Rack application
	15.1.2 Let’s increase the heartbeat
	15.1.3 You’re not done yet

	15.2 Building bigger Rack applications
	15.2.1 You’re breaking up
	15.2.2 Running a combined Rack application

	15.3 Mounting a Rack application with Rails
	15.3.1 Mounting Heartbeat
	15.3.2 Introducing Sinatra
	15.3.3 The API, by Sinatra
	15.3.4 Basic error-checking

	15.4 Middleware
	15.4.1 Middleware in Rails
	15.4.2 Crafting middleware
	15.4.3 Using middleware

	15.5 Summary

	appendix A: Installation guide
	Windows
	RubyInstaller
	DevKit
	Rails
	Mac OS X
	Homebrew
	ruby-install
	Chruby
	Rails
	Linux
	ruby-install
	Chruby
	Rails

	appendix B: Why Rails?
	Reason #1: The sense of community
	Reason #2: The speed and ease of development
	Reason #3: RubyGems
	Reason #4: The emphasis on testing

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

