
www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi LED Blueprints

Design, build, and test LED-based projects using
Raspberry Pi

Agus Kurniawan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi LED Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1210915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-575-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Agus Kurniawan

Reviewers
David Alcoba

Parul Sharma

Commissioning Editor
Neil Alexander

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Aparna Mitra

Technical Editor
Tejaswita Karvir

Copy Editor
Dipti Mankame

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Jason Monteiro

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Agus Kurniawan is a lecturer, IT consultant, and author. He has experience
in various software and hardware development projects, delivering materials
in training and workshops, and delivering technical writing for 14 years. He has
been awarded the Microsoft Most Valuable Professional (MVP) award for 11 years
in a row.

He is currently doing some research and teaching activities related to networking
and security systems at the Faculty of Computer Science, University of Indonesia,
and Samsung R&D Institute, Indonesia. Currently, he is pursuing a PhD
in computer science in Germany. He can be reached on his blog at
http://blog.aguskurniawan.net, and Twitter at @agusk2010.

First, I am thankful to the entire team at Packt, especially Vivek,
Aparna, Tejaswita, and the reviewers, for being so cooperative and
patient with me. They have been a great help, and their feedback and
hints have improved the manuscript considerably.

This book is dedicated to all open source makers, developers,
contributors, and enthusiasts from Raspberry Pi communities.

I would like to thank my wife, Ela Juitasari, my son, Thariq,
and daughter, Zahra, for their support and encouragement.

www.allitebooks.com

http://blog.aguskurniawan.net
http://www.allitebooks.org

About the Reviewers

David Alcoba, for many years, has been working as a software engineer, who likes
to play with electronics in his spare time. While he was responsible for designing and
building highly secure distributed applications for the industry, he also decided to
start gaining more and more knowledge of digital fabrication tools every day. Then,
he realized that he'd just discovered a world where all of his different interests could
be merged into a single project.

Based on this idea, he helped create Vailets Hacklab in 2014, a local community in
Barcelona that aims to hack the current educational system so that kids might be
come cocreators of their future through technology instead of being just consumers.

Following the spirit of this initiative, David decided to cofound Makerkids Barcelona, a
small start-up focused on providing professional services for schools and organizations
to engage kids into the new maker movement and follow the STEAM (science,
technology, engineering, art, and mathematics) educative principles.

Parul Sharma is a commissioning engineer. He has experience in project
erection and commissioning, robotics, and hardware hacking. He has a good
skill set of programming languages. He also works as a freelancer for developing
and mentoring projects for engineering students. He has expertise in LabVIEW,
SIMATIC, TIA, and Arduino.

I would like to thank my parents to guide me to be a good
human being.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with LED Programming through
Raspberry Pi GPIO 1

Setting up Raspberry Pi 1
Introducing Raspberry Pi GPIO 4
Blinking LEDs 7
Turning an LED on/off using a push button 11
Changing color through an RGB LED 14
Summary 20

Chapter 2: Make Your Own Countdown Timer 21
Introducing a 7-segment display 21
Introducing a shift register 28
Driving a 7-segment display using a shift register 34
Working with a 4-digit 7-segment display 38
Building a countdown timer 43
Summary 45

Chapter 3: Make Your Own Digital Clock Display 47
Introducing a 4-digit 7-segment display for a digital clock 47
Introducing an I2C OLED graphic display 49

Enabling I2C on Raspberry Pi 50
The I2C library for Python 53
Displaying numbers and characters 54

Building a digital clock using an I2C OLED graphic display 57
Summary 60

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: LED Dot Matrix 61
Introducing LED dot matrix display (8 x 8 LEDs) 61
Introducing an LED dot matrix driver 64

Enabling Raspberry Pi SPI 65
Deploying a matrix 7219 driver 66

Displaying a random number on the LED dot matrix display 68
Displaying a random character on the LED dot matrix display 70
Building a ball reflection game 72
Cascading LED dot matrix modules 75
Summary 78

Chapter 5: Building Your Own Traffic Light Controller 79
Introducing a traffic light controller 79
Designing a traffic light controller 81
Controlling AC/DC lamps using channel relay modules 82
Expanding Raspberry Pi GPIO 87
Building a traffic light controller 94
Cascading traffic light controllers 101
Summary 103

Chapter 6: Building Your Own Light Controller-based Bluetooth 105
Introducing Bluetooth 105
Working with Bluetooth using Raspberry Pi 106

Setting up a Bluetooth USB 108
Turning on/off Bluetooth 109
Enabling discoverable 110
Scanning for Bluetooth Devices 111

Introducing iBeacon 112
Bluetooth programming on Android 116
Building a remote light controller-based Bluetooth 120

Wiring 120
Building a program for Raspberry Pi 122
Building a Bluetooth app for Android 125
Testing 126

Summary 128

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 7: Making Your Own Controlled Lamps Through
Internet Network 129

Connecting the Raspberry Pi to a network 129
Connecting to a wired network 130
Connecting to a wireless network 132

Introducing Node.js 135
Controlling LEDs and lamps using Node.js 138
Building a simple web server using Node.js 143
Building RESTful using Node.js 143
Controlling LEDs through RESTful 145
Building a PhoneGap application for Android 148
Connecting PhoneGap Android to Raspberry Pi through RESTful 150
Summary 155

Index 157

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
An LED is a simple actuator device that displays lighting and can be controlled
easily using Raspberry Pi. This book will explain processes to control LEDs
using Raspberry Pi—from describing ideas to designing and implementing
several projects based on LEDs, such as 7-segment, 4-digit 7-segment, and dot
matrix displays. Samples of the project application are provided, such as a
countdown timer, a digital clock, a traffic light controller, a remote light
controller, and an LED-based Internet of Things, to get more practice with
the Raspberry Pi development.

Raspberry Pi LED Blueprints is an essential reference for practical solutions to build
the LED-based application. Beginning with step-by-step instructions for installation
and configuration, this book can either be read from cover to cover or treated as an
essential reference companion to your Raspberry Pi.

I hope that you will find this book useful and it will help you take your skills
to a higher level.

What this book covers
Chapter 1, Getting Started with LED Programming through Raspberry Pi GPIO, helps
you learn the basics of the Raspberry Pi GPIO and LED development so that you
can be sure that you have the basics required to develop LED programming through
Raspberry Pi GPIO.

Chapter 2, Make Your Own Countdown Timer, explains how to work with 7-segment
displays and build a countdown timer. The basics of 7-segment display
programming will be introduced. Furthermore, you will learn what shift register
is and how to use it to enhance the handling of several 7-segment display modules.

Preface

[vi]

Chapter 3, Make Your Own Digital Clock Display, explores how to build a digital
clock. A digital clock is a type of clock that displays the time digitally using 4-digit
7-segment display modules. Furthermore, you will learn how to work with an OLED
graphic display through an I2C interface and how to use it to build a digital clock.

Chapter 4, LED Dot Matrix, describes how to control an LED dot matrix with
Raspberry Pi. At the end of the chapter, you will cascade several LED dot matrix
modules and build a program to operate those modules.

Chapter 5, Building Your Own Traffic Light Controller, explains, in detail, how to
build a traffic light controller using Raspberry Pi, from designing to implementing.
Controlling AD/DC lamps using channel relay is introduced too.

Chapter 6, Building Your Own Light Controller-based Bluetooth, describes, in detail, how
to build a light controller-based Bluetooth in a Raspberry Pi board. You can control
the LEDs, lamps, or other devices from any device with a supporting Bluetooth
stack, such as Android.

Chapter 7, Making Your Own Controlled Lamps through Internet Network, helps you
make your own controlled lamps through the Internet network. You can control your
LEDs, lamps, or other devices from any device with a supporting Internet network
stack by utilizing RESTful. You will also learn how to build mobile application using
PhoneGap and control LEDs from your mobile applications.

What you need for this book
You should have a Raspberry Pi board and several electronics components to run the
projects in this book. You can configure and write programs to control LEDs using
the Raspberry Pi board and mobile devices.

Who this book is for
This book is for those who want to learn how to build Raspberry Pi projects by
utilizing LEDs, 7 segment, 4-digit 7-segment, and dot matrix modules. You will also
learn to implement those modules in real applications, including interfacing with
wireless modules and Android mobile apps. However, you don't need to have any
previous experience with the Raspberry Pi or Android platforms.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Draw a rectangle using canvas.rectangle()."

A block of code is set as follows:

{
 "name": "chapter7",
 "version": "0.0.1",
 "dependencies":{
 "rpi-gpio": "latest",
 "async": "latest"
 }
}

Any command-line input or output is written as follows:

$ npm install rpi-gpio

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"If successful, you should see spi_bcm2708 is loaded as shown."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with LED
Programming through

Raspberry Pi GPIO
In this chapter, you will learn the basics of Raspberry Pi GPIO and LED development
so that you can be sure that you have the basic required knowledge to develop LED
programming through Raspberry Pi GPIO.

The following topics will be the major takeaways from this chapter:

• Setting up Raspberry Pi
• Introducing Raspberry Pi GPIO
• Blinking LEDs
• Turning an LED on/off using a push button
• Changing color through an RGB LED

Setting up Raspberry Pi
Raspberry Pi is a low-cost, credit card-sized computer that you can use to develop a
general-purpose computer. There are several Raspberry Pi models that you can use
to develop what you want. For illustration, this book will use a Raspberry Pi 2 board.
Check https://www.raspberrypi.org/products/, which offers the Raspberry Pi 2
Model B board.

You can also see a video of the unboxing of Raspberry Pi 2 Model B from element14
on YouTube at https://www.youtube.com/watch?v=1iavT62K5q8.

https://www.raspberrypi.org/products/
https://www.youtube.com/watch?v=1iavT62K5q8

Getting Started with LED Programming through Raspberry Pi GPIO

[2]

To make Raspberry Pi work, we need an OS that acts as a bridge between the
hardware and the user. There are many OS options that you can use for Raspberry
Pi. This book uses Raspbian as an OS platform for Raspberry Pi. Raspbian OS is
an operating system based on Debian with a targeting ARM processor. You can
use another OS platform for Raspberry Pi from https://www.raspberrypi.org/
downloads/. To deploy Raspbian with Raspberry Pi 2 Model B, we need a microSD
card of at least 4 GB in size, but the recommended size is 8 GB. For testing purposes,
we will use Raspbian as an operating system platform for Raspberry Pi.

You can set up your Raspberry Pi with the Raspbian image by following the
instructions on this website, QUICK START GUIDE, https://www.raspberrypi.
org/help/quick-start-guide/.

https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/help/quick-start-guide/
https://www.raspberrypi.org/help/quick-start-guide/

Chapter 1

[3]

After having installed and deployed Raspbian, you can run the Raspbian desktop
GUI by typing the following command on the terminal:

startx

This command makes Raspbian load the GUI module from the OS libraries. You can
then see the Raspbian desktop GUI as follows:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with LED Programming through Raspberry Pi GPIO

[4]

Introducing Raspberry Pi GPIO
General-purpose input/output (GPIO) is a generic pin on Raspberry Pi, which can
be used to interact with external devices, such as sensor and actuator devices. You
can see the Raspberry Pi GPIO pinouts in the following figure (source: http://www.
element14.com/community/docs/DOC-73950/l/raspberry-pi-2-model-b-gpio-
40-pin-block-pinout):

To access Raspberry Pi GPIO, we can use several GPIO libraries. If you are working
with Python, Raspbian will have already installed the RPi.GPIO library to access
Raspberry Pi GPIO. You can read more about RPi.GPIO at https://pypi.python.
org/pypi/RPi.GPIO. You can verify the RPi.GPIO library from a Python terminal by
importing the RPi.GPIO module, as shown in the following screenshot:

http://www.element14.com/community/docs/DOC-73950/l/raspberry-pi-2-model-b-gpio-40-pin-block-pinout
http://www.element14.com/community/docs/DOC-73950/l/raspberry-pi-2-model-b-gpio-40-pin-block-pinout
http://www.element14.com/community/docs/DOC-73950/l/raspberry-pi-2-model-b-gpio-40-pin-block-pinout
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO

Chapter 1

[5]

If you don't find this library on Python runtime or get the error message
ImportError: No module named RPi.GPIO, you can install it by compiling from
the source code. For instance, we want to install RPi.GPIO 0.5.11, so type the
following commands:

wget https://pypi.python.org/packages/source/R/RPi.GPIO/RPi.GPIO-0.5.11.
tar.gz

tar -xvzf RPi.GPIO-0.5.11.tar.gz

cd RPi.GPIO-0.5.11/

sudo python setup.py install

To install and update through the apt command, your
Raspberry Pi must be connected to the Internet.

Another way to access Raspberry Pi GPIO is to use WiringPi. It is a library written
in C for Raspberry Pi to access GPIO pins. You can read information about WiringPi
from the official website http://wiringpi.com/.

To install WiringPi, you can type the following commands:

sudo apt-get update

sudo apt-get install git-core

git clone git://git.drogon.net/wiringPi

cd wiringPi

sudo ./build

Please make sure that your Pi network does not block the git protocol
for git://git.dragon.net/wiringPi. This code can be browsed on
https://git.drogon.net/?p=wiringPi;a=summary.

http://wiringpi.com/
https://git.drogon.net/?p=wiringPi;a=summary

Getting Started with LED Programming through Raspberry Pi GPIO

[6]

The next step is to install the WiringPi interface for Python, so you can access
Raspberry Pi GPIO from a Python program. Type the following commands:

sudo apt-get install python-dev python-setuptools

git clone https://github.com/Gadgetoid/WiringPi2-Python.git

cd WiringPi2-Python

sudo python setup.py install

When finished, you can verify it by showing a GPIO map from the Raspberry Pi
board using the GPIO tool:

gpio readall

If this is successful, you should see the GPIO map from the Raspberry Pi board on
the terminal:

Chapter 1

[7]

You can also see values in the wPi column, which will be used in the WiringPi
program as GPIO value parameters. I will show you how to use it in the WiringPi
library in the next section.

Blinking LEDs
In this section, we will build a simple app that interacts with Raspberry Pi GPIO.
We will use three LEDs, which are attached to the Raspberry Pi 2 board.
Furthermore, we will turn the LEDs on/off sequentially.

The following hardware components are needed:

• Raspberry Pi 2.(you can change this model)
• Three LEDs of any color
• Three resistors (330 Ω or 220 Ω)

The hardware wiring can be implemented as follows:

• LED 1 is connected to Pi GPIO18
• LED 2 is connected to Pi GPIO23
• LED 3 is connected to Pi GPIO24

Getting Started with LED Programming through Raspberry Pi GPIO

[8]

The following image shows the hardware connection for LED blinking:

Now you can write a program using WiringPi with Python. The following is the
complete Python code for blinking LEDs:

ch01_01.py file

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup()

define GPIO mode
GPIO18 = 1
GPIO23 = 4
GPIO24 = 5

Chapter 1

[9]

LOW = 0
HIGH = 1
OUTPUT = 1
wiringpi.pinMode(GPIO18, OUTPUT)
wiringpi.pinMode(GPIO23, OUTPUT)
wiringpi.pinMode(GPIO24, OUTPUT)

make all LEDs off
def clear_all():
 wiringpi.digitalWrite(GPIO18, LOW)
 wiringpi.digitalWrite(GPIO23, LOW)
 wiringpi.digitalWrite(GPIO24, LOW)

turn on LED sequentially
try:
 while 1:
 clear_all()
 print("turn on LED 1")
 wiringpi.digitalWrite(GPIO18, HIGH)
 time.sleep(2)
 clear_all()
 print("turn on LED 2")
 wiringpi.digitalWrite(GPIO23, HIGH)
 time.sleep(2)
 clear_all()
 print("turn on LED 3")
 wiringpi.digitalWrite(GPIO24, HIGH)
 time.sleep(2)

except KeyboardInterrupt:
 clear_all()

print("done")

Save this script in a file named Python ch01_01.py.

Moreover, you can run this file on the terminal. Type the following command:

sudo python ch01_01.py

Getting Started with LED Programming through Raspberry Pi GPIO

[10]

You should see three LEDs blinking sequentially. To stop the program, you can press
CTRL+C on the Pi terminal. The following is a sample of the program output:

Based on our wiring, we connect three LEDs to GPIO18, GPIO23, and GPIO24 from
the Raspberry Pi board. You can see these WiringPi GPIO values from the gpio
readall command and find GPIO18, GPIO23, and GPIO24 recognized as (the wPi
column) 1, 4, and 5, respectively.

First, we initialize WiringPi using wiringpi.wiringPiSetup(). Then, we define our
GPIO values and set their modes on Raspberry Pi as follows:

GPIO18 = 1
GPIO23 = 4
GPIO24 = 5
LOW = 0
HIGH = 1
OUTPUT = 1
wiringpi.pinMode(GPIO18, OUTPUT)
wiringpi.pinMode(GPIO23, OUTPUT)
wiringpi.pinMode(GPIO24, OUTPUT)

Each LED will be turned on using wiringpi.digitalWrite(). time.sleep(n)
is used to hold the program for n seconds. Let's set a delay time of two seconds
as follows:

clear_all()
print("turn on LED 1")
wiringpi.digitalWrite(GPIO18, HIGH)
time.sleep(2)

Chapter 1

[11]

The clear_all() function is designed to turn off all LEDs:

def clear_all():
 wiringpi.digitalWrite(GPIO18, LOW)
 wiringpi.digitalWrite(GPIO23, LOW)
 wiringpi.digitalWrite(GPIO24, LOW)

Turning an LED on/off using a push
button
In the previous section, we accessed Raspberry Pi GPIO to turn LEDs on/off by
program. Now we will learn how to turn an LED on/off using a push button,
which is used as a GPIO input from Raspberry Pi GPIO.

The following hardware components are needed:

• A Raspberry Pi 2 board
• An LED
• A push button (https://www.sparkfun.com/products/97)
• 1 KΩ resistor

You can see the push button connection in the following figure:

https://www.sparkfun.com/products/97

Getting Started with LED Programming through Raspberry Pi GPIO

[12]

Our hardware wiring is simple. You simply connect the LED to GPIO23 from
Raspberry Pi. The push button is connected to Raspberry Pi GPIO on GPIO24.
The complete hardware wiring can be seen in the following figure:

Furthermore, you can write a Python program to read the push button's state. If you
press the push button, the program will turn on the LED. Otherwise, it will turn off
the LED. This is our program scenario.

The following is the complete code for the Python program:

ch01_02.py file

import wiringpi2 as wiringpi

initialize
wiringpi.wiringPiSetup()

define GPIO mode
GPIO23 = 4
GPIO24 = 5
LOW = 0

Chapter 1

[13]

HIGH = 1
OUTPUT = 1
INPUT = 0
PULL_DOWN = 1
wiringpi.pinMode(GPIO23, OUTPUT) # LED
wiringpi.pinMode(GPIO24, INPUT) # push button
wiringpi.pullUpDnControl(GPIO24, PULL_DOWN) # pull down

make all LEDs off
def clear_all():
 wiringpi.digitalWrite(GPIO23, LOW)

try:
 clear_all()
 while 1:
 button_state = wiringpi.digitalRead(GPIO24)
 print button_state
 if button_state == 1:
 wiringpi.digitalWrite(GPIO23, HIGH)
 else:
 wiringpi.digitalWrite(GPIO23, LOW)

 wiringpi.delay(20)

except KeyboardInterrupt:
 clear_all()

print("done")

Save this code in a file named ch01_02.py.

Now you can run this program via the terminal:

$ sudo python ch01_02.py

After this, you can check by pressing the push button; you should see the LED
lighting up.

First, we define our Raspberry Pi GPIO's usage. We also declare our GPIO input to be
set as pull down. This means that if the push button is pressed, it will return value 1.

GPIO23 = 4
GPIO24 = 5
LOW = 0
HIGH = 1
OUTPUT = 1
INPUT = 0
PULL_DOWN = 1

www.allitebooks.com

http://www.allitebooks.org

Getting Started with LED Programming through Raspberry Pi GPIO

[14]

wiringpi.pinMode(GPIO23, OUTPUT) # LED
wiringpi.pinMode(GPIO24, INPUT) # push button
wiringpi.pullUpDnControl(GPIO24, PULL_DOWN) # pull down

We can read the push button's state using the digitalRead() function from
WiringPi as follows:

button_state = wiringpi.digitalRead(GPIO24)

If the push button is pressed, we turn on the LED; otherwise, we turn it off:

print button_state
if button_state == 1:
 wiringpi.digitalWrite(GPIO23, HIGH)
else:
 wiringpi.digitalWrite(GPIO23, LOW)

Changing color through an RGB LED
The last demo of basic LED programming is to work with an RGB LED. This LED
can emit monochromatic light, which could be one of the three primary colors—red,
green, and blue, known as RGB.

The RGB LED connection is shown in the following figure:

Chapter 1

[15]

In this section, we will build a simple program to display red, green, and blue colors
through the RGB LED.

The following hardware components are needed:

• A Raspberry Pi 2 board
• An RGB LED (https://www.sparkfun.com/products/9264).

Our hardware wiring can be implemented as follows:

• RGB LED pin 1 is connected to Raspberry Pi GPIO18
• RGB LED pin 2 is connected to Raspberry Pi VCC +3 V
• RGB LED pin 3 is connected to Raspberry Pi GPIO23
• RGB LED pin 4 is connected to Raspberry Pi GPIO24

The complete hardware wiring can be seen in the following figure:

https://www.sparkfun.com/products/9264

Getting Started with LED Programming through Raspberry Pi GPIO

[16]

Returning to the Raspberry Pi terminal, you could write a Python program to display
color through RGB LED. Let's create a file named ch01_03.py and write this script
as follows:

ch01_03.py file

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup()

define GPIO mode
GPIO18 = 1 # red
GPIO23 = 4 # green
GPIO24 = 5 # blue
LOW = 0
HIGH = 1
OUTPUT = 1
wiringpi.pinMode(GPIO18, OUTPUT)
wiringpi.pinMode(GPIO23, OUTPUT)
wiringpi.pinMode(GPIO24, OUTPUT)

make all LEDs off
def clear_all():
 wiringpi.digitalWrite(GPIO18, HIGH)
 wiringpi.digitalWrite(GPIO23, HIGH)
 wiringpi.digitalWrite(GPIO24, HIGH)

def display(red, green, blue):
 wiringpi.digitalWrite(GPIO18, red)
 wiringpi.digitalWrite(GPIO23, green)
 wiringpi.digitalWrite(GPIO24, blue)

try:
 while 1:
 clear_all()

Chapter 1

[17]

 print("red")
 display(0, 1, 1)
 time.sleep(2)
 clear_all()
 print("green")
 display(1, 0, 1)
 time.sleep(2)
 clear_all()
 print("blue")
 display(1, 1, 0)
 time.sleep(2)
 clear_all()
 print("white")
 display(0, 0, 0)
 time.sleep(2)
 clear_all()
 print("110")
 display(1, 1, 0)
 time.sleep(2)
 clear_all()
 print("101")
 display(1, 0, 1)
 time.sleep(2)
 clear_all()
 print("011")
 display(0, 1, 1)
 time.sleep(2)

except KeyboardInterrupt:
 clear_all()

print("done")

Save this script. You can run this file by typing the following command:

$ sudo python ch01_03.py

Getting Started with LED Programming through Raspberry Pi GPIO

[18]

Then, you should see that the RGB LED displays a certain color every second.
The program output can also write a message indicating which color is currently
on the RGB LED:

The RGB LED can display a color by combining three basic colors: red, green,
and blue. First, we initialize Raspberry Pi GPIO and define our GPIO usage:

initialize
wiringpi.wiringPiSetup()

define GPIO mode
GPIO18 = 1 # red
GPIO23 = 4 # green
GPIO24 = 5 # blue
LOW = 0
HIGH = 1
OUTPUT = 1
wiringpi.pinMode(GPIO18, OUTPUT)
wiringpi.pinMode(GPIO23, OUTPUT)
wiringpi.pinMode(GPIO24, OUTPUT)

Chapter 1

[19]

For instance, to set a red color, we should set LOW on the red pin and HIGH on both
green and blue pins. We define the display() function to display a certain color on
the RGB LED with the red, green, and blue values as parameters as follows:

def display(red, green, blue):
 wiringpi.digitalWrite(GPIO18, red)
 wiringpi.digitalWrite(GPIO23, green)
 wiringpi.digitalWrite(GPIO24, blue)

In the main program, we display a color via the display() function by passing red,
green, and blue values, as shown in the following code:

clear_all()
print("red")
display(0, 1, 1)
time.sleep(2)
clear_all()
print("green")
display(1, 0, 1)
time.sleep(2)
clear_all()
print("blue")
display(1, 1, 0)
time.sleep(2)
clear_all()
print("white")
display(0, 0, 0)
time.sleep(2)
clear_all()
print("110")
display(1, 1, 0)
time.sleep(2)
clear_all()
print("101")
display(1, 0, 1)
time.sleep(2)
clear_all()
print("011")
display(0, 1, 1)
time.sleep(2)

Getting Started with LED Programming through Raspberry Pi GPIO

[20]

Summary
Let's summarize what we have learned in this chapter. We connected three LEDs
to a Raspberry Pi board. After that, we made these LEDs blink. Then, we read the
Raspberry Pi GPIO input. Finally, we learned to display several colors through an
RGB LED.

In the next chapter, we will work with 7-segment display and a shift register to
manipulate several 7-segment display modules. We will also build a countdown
timer app by utilizing a 7-segment module.

[21]

Make Your Own
Countdown Timer

In this chapter, we will learn how to work with a 7-segment display. Then we will
build a countdown timer. The basics of 7-segment display programming will be
introduced. Furthermore, we will learn what a shift register is and how to use it to
enhance the handling of several 7-segment display modules.

From this chapter, you will learn the following topics:

• Introducing a 7-segment display
• Introducing a shift register
• Driving a 7-segment display using a shift register
• Working with the 4-digit 7-segment display
• Building a countdown timer

Introducing a 7-segment display
In general, a 7-segment display consists of seven LEDs, and an additional LED is
used for a dot (DP pin). This then allows us to display each of the 10 decimal digits
0 to 9 on the same 7-segment display.

Make Your Own Countdown Timer

[22]

There are two types of LED 7-segment displays, named common cathode (CC)
and common anode (CA). Each LED has two connecting pins: the anode and the
cathode. A sample LED datasheet can be found at http://www.kitronik.co.uk/
pdf/7_segment_display_datasheet.pdf.

We can show a number on the 7-segment display by combining LED lighting
through its pins. For instance, if we want to display the number 7, we should
turn on LEDs a, b, and c. To turn an LED on/off, we can use Raspberry Pi GPIO:

Furthermore, we are going to build a program to display the numbers 0 to 9 using
Python. The following is the hardware required:

• A Raspberry Pi 2 board
• A 7-segment display of the CC model (red, https://www.sparkfun.com/

products/8546, or blue, https://www.sparkfun.com/products/9191)
• A breadboard (refer to https://www.sparkfun.com/products/12002)
• Cables

http://www.kitronik.co.uk/pdf/7_segment_display_datasheet.pdf
http://www.kitronik.co.uk/pdf/7_segment_display_datasheet.pdf
https://www.sparkfun.com/products/8546
https://www.sparkfun.com/products/8546
https://www.sparkfun.com/products/9191
https://www.sparkfun.com/products/12002

Chapter 2

[23]

The hardware wiring can be implemented as follows:

• 7-segment display pin a—Raspberry Pi GPIO14
• 7-segment display pin b—Raspberry Pi GPIO15
• 7-segment display pin c—Raspberry Pi GPIO18
• 7-segment display pin DP—Raspberry Pi GPIO23
• 7-segment display pin d—Raspberry Pi GPIO24
• 7-segment display pin e—Raspberry Pi GPIO25
• 7-segment display pin f—Raspberry Pi GPIO8
• 7-segment display pin g—Raspberry Pi GPIO7
• 7-segment display common pin (common anode)—Raspberry Pi GND

Now we know the hardware wiring, we can write a program to display a number on
the 7-segment display using Python. Create a file named ch02_01.py. The following
is the complete code for the ch02_01.py file:

ch02_01.py file

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup()

www.allitebooks.com

http://www.allitebooks.org

Make Your Own Countdown Timer

[24]

define GPIO pins
pin_a = 15
pin_b = 16
pin_c = 1
pin_dip = 4
pin_d = 5
pin_e = 6
pin_f = 10
pin_g = 11

LOW = 0
HIGH = 1
OUTPUT = 1
define GPIO mode
wiringpi.pinMode(pin_a, OUTPUT)
wiringpi.pinMode(pin_b, OUTPUT)
wiringpi.pinMode(pin_c, OUTPUT)
wiringpi.pinMode(pin_dip, OUTPUT)
wiringpi.pinMode(pin_d, OUTPUT)
wiringpi.pinMode(pin_e, OUTPUT)
wiringpi.pinMode(pin_f, OUTPUT)
wiringpi.pinMode(pin_g, OUTPUT)

def showNumber(number, dip):
 if dip:
 wiringpi.digitalWrite(pin_dip, HIGH)
 else:
 wiringpi.digitalWrite(pin_dip, LOW)

 if number == 0:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, HIGH)
 wiringpi.digitalWrite(pin_f, HIGH)
 wiringpi.digitalWrite(pin_g, LOW)
 elif number == 1:
 wiringpi.digitalWrite(pin_a, LOW)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, LOW)
 wiringpi.digitalWrite(pin_e, LOW)

Chapter 2

[25]

 wiringpi.digitalWrite(pin_f, LOW)
 wiringpi.digitalWrite(pin_g, LOW)
 elif number == 2:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, LOW)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, HIGH)
 wiringpi.digitalWrite(pin_f, LOW)
 wiringpi.digitalWrite(pin_g, HIGH)
 elif number == 3:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, LOW)
 wiringpi.digitalWrite(pin_f, LOW)
 wiringpi.digitalWrite(pin_g, HIGH)
 elif number == 4:
 wiringpi.digitalWrite(pin_a, LOW)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, LOW)
 wiringpi.digitalWrite(pin_e, LOW)
 wiringpi.digitalWrite(pin_f, HIGH)
 wiringpi.digitalWrite(pin_g, HIGH)
 elif number == 5:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, LOW)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, LOW)
 wiringpi.digitalWrite(pin_f, HIGH)
 wiringpi.digitalWrite(pin_g, HIGH)
 elif number == 6:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, LOW)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, HIGH)
 wiringpi.digitalWrite(pin_f, HIGH)
 wiringpi.digitalWrite(pin_g, HIGH)
 elif number == 7:
 wiringpi.digitalWrite(pin_a, HIGH)

Make Your Own Countdown Timer

[26]

 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, LOW)
 wiringpi.digitalWrite(pin_e, LOW)
 wiringpi.digitalWrite(pin_f, LOW)
 wiringpi.digitalWrite(pin_g, LOW)
 elif number == 8:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, HIGH)
 wiringpi.digitalWrite(pin_f, HIGH)
 wiringpi.digitalWrite(pin_g, HIGH)
 elif number == 9:
 wiringpi.digitalWrite(pin_a, HIGH)
 wiringpi.digitalWrite(pin_b, HIGH)
 wiringpi.digitalWrite(pin_c, HIGH)
 wiringpi.digitalWrite(pin_d, HIGH)
 wiringpi.digitalWrite(pin_e, LOW)
 wiringpi.digitalWrite(pin_f, HIGH)
 wiringpi.digitalWrite(pin_g, HIGH)

def clear_all():
 wiringpi.digitalWrite(pin_a, LOW)
 wiringpi.digitalWrite(pin_b, LOW)
 wiringpi.digitalWrite(pin_c, LOW)
 wiringpi.digitalWrite(pin_d, LOW)
 wiringpi.digitalWrite(pin_e, LOW)
 wiringpi.digitalWrite(pin_f, LOW)
 wiringpi.digitalWrite(pin_g, LOW)
 wiringpi.digitalWrite(pin_dip, LOW)

try:
 while 1:
 print("display 0")
 showNumber(0, HIGH)
 time.sleep(2)

 print("display 1")
 showNumber(1, HIGH)

Chapter 2

[27]

 time.sleep(2)

 print("display 2")
 showNumber(2, HIGH)
 time.sleep(2)

 print("display 3")
 showNumber(3, HIGH)
 time.sleep(2)

 print("display 4")
 showNumber(4, HIGH)
 time.sleep(2)

 print("display 5")
 showNumber(5, HIGH)
 time.sleep(2)

 print("display 6")
 showNumber(6, HIGH)
 time.sleep(2)

 print("display 7")
 showNumber(7, HIGH)
 time.sleep(2)

 print("display 8")
 showNumber(8, HIGH)
 time.sleep(2)

 print("display 9")
 showNumber(9, HIGH)
 time.sleep(2)

 clear_all()

except KeyboardInterrupt:
 clear_all()

print("done")

Make Your Own Countdown Timer

[28]

This code can be explained as follows:

• First, we define the Raspberry Pi GPIO and set them as the output mode
• The DP pin from the 7-segment display is declared as a dip variable. It's used

to display a dot on the 7-segment display. If you set it HIGH, the dot on the
7-segment display will be visible

• Declare the showNumber() function to show a number on the 7-segment
display by combining lighting LEDs by passing the HIGH value to Raspberry
Pi GPIO. It uses the digitalWrite() function from the WiringPi library. The
showNumber() function also needs a dip value. If you pass the HIGH value,
the 7-segment module will show a dot, which is located at the bottom-right.
If you set it LOW, the 7-segment dot will not be shown.

• Declare clear_all() to turn off all LEDs on the 7-segment display. This is
done by passing a LOW value on all GPIO pins

• The program does a looping and displays a number from 0 to 9 by calling the
showNumber() function and passing dip with HIGH to show the 7-segment's dot

To run this program, you can type the following command on a terminal.

sudo python ch02_01.py

If this is successful, the 7-segment display shows a number from 0 to 9. You also see
a message on the terminal as follows:

Introducing a shift register
If our project needs to control 32 LEDs, we would normally require 32 pins of a
microcontroller (MCU). The problem is that every MCU has a limited number of
pins for GPIO. To address this issue, we can extend our MCU GPIO pins.

Chapter 2

[29]

One of the solutions to extend GPIO pins is to use a shift register. We can use
74HC595 to extend the GPIO output pins. If you want to extend the GPIO input pins,
you can use 74HC165. The schema of 74HC595 can be seen in the following figure:

The Q0 to Q7 pins are the parallel output from the chip. The DS pin is the serial data.
STCP is the latch pin, and SHCP is the clock pin.

In this section, you will see how to implement a shift register to extend Raspberry
Pi GPIO output pins using IC 74HC595 (Sparkfun, https://www.sparkfun.com/
products/733). We need eight LEDs for the demonstration. The program will turn
on only one LED at a time. It starts from LED 1 to 8. The hardware wiring is shown
in the following figure:

https://www.sparkfun.com/products/733
https://www.sparkfun.com/products/733

Make Your Own Countdown Timer

[30]

When the output enable (OE) input is high, the outputs are in the high-impedance
state. Otherwise, (OE) input is high. Data in the storage register appears at the output
whenever the output enable input (OE) is low. A low level on Master reset (MR)
only affects the shift registers. So in this scenario, we set +3.3 V on the MR pin.

The hardware wiring is as follows:

• 74HC595 Q0 to Q7 pins are connected to the LEDs
• The 74HC595 VCC pin is connected to Raspberry Pi VCC (+3.3 V)
• The 74HC595 GND pin is connected to Raspberry Pi GND
• The 74HC595 DS/Data pin is connected to Raspberry Pi GPIO25 (wPi 6)
• The 74HC595 OE pin is connected to Raspberry Pi GPIO GND
• The 74HC595 STCP/LATCH pin is connected to Raspberry Pi GPIO24 (wPi 5)
• The 74HC595 SHCP/Clock pin is connected to Raspberry Pi GPIO23 (wPi 4)
• The 74HC595 MR pin is connected to Raspberry Pi GPIO VCC +3.3 V

To write data into 74HC595, we perform the following steps based on the timing
diagram, as shown in the following figure, from the IC's datasheet (http://
www.nxp.com/documents/data_sheet/74HC_HCT595.pdf). In the program
implementation, we perform the following steps:

1. Set your data value on the DS/Data pin. It could be high or low.
2. Send a pulse (high to low) to the Clock pin. To implement a pulse, you can set

the high value on the SHCP/Clock pin and then set the low value.
3. If you work with 8-bit serial data, then follow steps 1 and 2 for each bit for

your 8-bit data.
4. When finished, you can store this serial data by sending a pulse (high to low)

to the STCP/LATCH pin.

http://www.nxp.com/documents/data_sheet/74HC_HCT595.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT595.pdf

Chapter 2

[31]

74HC595 can receive 8-bit serial data. So if you have more than 8-bit serial data,
follow steps 1 to 4 for each 8-bit serial data.

The next step is to write a program to implement the shift register using Python with
the WiringPi library. The code is ported from http://www.bristolwatch.com/
ele2/74HC595_cylon.htm, so it can work with WiringPi for Python:

Create a file named ch02_02.py and write the following complete code:

ch02_02.py file

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup() # WiPi mode

define shift reg pins
DATA = 6

http://www.bristolwatch.com/ele2/74HC595_cylon.htm
http://www.bristolwatch.com/ele2/74HC595_cylon.htm

Make Your Own Countdown Timer

[32]

LATCH = 5
CLK = 4

OUTPUT = 1
LOW = 0
HIGH = 1

wiringpi.pinMode(DATA, OUTPUT)
wiringpi.pinMode(LATCH, OUTPUT)
wiringpi.pinMode(CLK, OUTPUT)

initialization
print("Initialization...")
wiringpi.digitalWrite(LATCH, LOW)
wiringpi.digitalWrite(CLK, LOW)

def pulse_clock():
 wiringpi.digitalWrite(CLK, HIGH)
 wiringpi.digitalWrite(CLK, LOW)
 return

def serial_latch():
 wiringpi.digitalWrite(LATCH, HIGH)
 wiringpi.digitalWrite(LATCH, LOW)
 return

def ssr_write(value):
 for i in range(0, 8):
 val = value & 0x80
 if val == 0x80:
 wiringpi.digitalWrite(DATA, HIGH)
 else:
 wiringpi.digitalWrite(DATA, LOW)

 pulse_clock()
 value <<= 0x01 # shift left
 serial_latch()
 return

try:

Chapter 2

[33]

 while 1:
 digit = 1
 for i in range(0, 8):
 print(digit)
 ssr_write(digit)
 digit <<= 1
 time.sleep(0.5)

 for i in range(0, 8):
 digit >>= 1
 print(digit)
 ssr_write(digit)
 time.sleep(0.5)

except KeyboardInterrupt:
 ssr_write(0)

print("done")

Here is the code explanation:

• The program starts by defining DATA, LATCH, and CLK pins. It uses the WiPi
pin mode. You may change it using the GPIO BCM mode.

• Set DATA, LATCH, and CLK pins as the output mode.
• Initialize IC 74HC595 by sending the LOW value to the LATCH and CLK pins.
• Declare the pulse_clock() and serial_latch() functions.
• To write data into IC 74HC595, we declare the ssr_write() function.
• In the main program, the ssr_write() function writes data 1 and then shifts

the data left and right.

Shifting bits uses bitwise operators. << is left shifting and >> is right shifting. Please
refer to https://wiki.python.org/moin/BitwiseOperators and https://
wiki.python.org/moin/BitManipulation. For example, you have data on x =
0b00000001. x << = 1 gets output x = 0b00000010. If you have x = 0b00000010 and if
you set x >> = 1, you will get x = 0b00000001.

Now you can run this program by typing the following command on the terminal:

sudo python ch02_02.py

If it is successful, you should see that the lighting works from LED 1 to LED 8. Then,
it turns back. You can see this demonstration in my YouTube, https://youtu.be/
UDPBVbjU63s.

www.allitebooks.com

https://wiki.python.org/moin/BitwiseOperators
https://wiki.python.org/moin/BitManipulation
https://wiki.python.org/moin/BitManipulation
https://youtu.be/UDPBVbjU63s
https://youtu.be/UDPBVbjU63s
http://www.allitebooks.org

Make Your Own Countdown Timer

[34]

Driving a 7-segment display using a shift
register
We have already learned how to use a shift register using 74HC595. In this section,
we will try to use a shift register to drive a 7-segment display.

To drive a 7-segment display using a shift register, you can connect 74HC595 to the
7-segment module. The following is the hardware wiring:

• 74HC595 Q0 to Q6 pins to 7-segment a to b pins
• The 74HC595 Q7 pin to the 7-segment DP pin
• The 74HC595 VCC pin is connected to Raspberry Pi VCC +3.3 V
• The 74HC595 GND pin is connected to Raspberry Pi GND
• The 74HC595 DS/Data pin is connected to Raspberry Pi GPIO25 (wPi 6)
• The 74HC595 OE pin is connected to Raspberry Pi GPIO GND
• The 74HC595 STCP/LATCH pin is connected to Raspberry Pi GPIO24 (wPi 5)
• The 74HC595 SHCP/Clock pin is connected to Raspberry Pi GPIO23 (wPi 4)
• The 74HC595 MR pin is connected to Raspberry Pi GPIO VCC +3.3 V

Chapter 2

[35]

You can see that there are resistors on the wiring. These components are used to
prevent the higher current flow on you wiring so a resistor keeps your IC module
safe. You can ignore these components if you can guarantee the safe current flow
on the circuit.

The next step is to write a program. In this scenario, we are going to display the
numbers from 0 to 9. Create a file, named ch02_03.py, and write the following
complete code:

ch02_03.py file

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup() # WiPi mode

define shift reg pins
DATA = 6
LATCH = 5
CLK = 4

OUTPUT = 1
LOW = 0
HIGH = 1

segment 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
format: hgfedcba
for 7-segment common cathode. For common anode, change 1 to 0, 0 to
1.
segments = [0b00111111, 0b00000110, 0b01011011, 0b01001111,
 0b01100110, 0b01101101, 0b01111101, 0b00000111,
0b01111111, 0b01101111]

wiringpi.pinMode(DATA, OUTPUT)
wiringpi.pinMode(LATCH, OUTPUT)
wiringpi.pinMode(CLK, OUTPUT)

initialization
print("Initialization...")
wiringpi.digitalWrite(LATCH, LOW)

Make Your Own Countdown Timer

[36]

wiringpi.digitalWrite(CLK, LOW)

def pulse_clock():
 wiringpi.digitalWrite(CLK, HIGH)
 wiringpi.digitalWrite(CLK, LOW)
 return

def serial_latch():
 wiringpi.digitalWrite(LATCH, HIGH)
 wiringpi.digitalWrite(LATCH, LOW)
 return

def ssr_write(value):
 for i in range(0, 8):
 val = value & 0x80
 if val == 0x80:
 wiringpi.digitalWrite(DATA, HIGH)
 else:
 wiringpi.digitalWrite(DATA, LOW)

 pulse_clock()
 value <<= 0x01 # shift left
 serial_latch()
 return

try:
 digit = 0
 while 1:
 print(digit)
 ssr_write(segments[digit])
 time.sleep(0.5)
 digit += 1
 if digit > 9:
 digit = 0

Chapter 2

[37]

except KeyboardInterrupt:
 ssr_write(0)

print("done")

Basically, this program is the result of modified code from ch02_02.py. In this
scenario, we connect 74HC595 segment output pins to the 7-segment display.
Then, we construct a collection of numbers by combining lighting LEDs.
The format is hgfedcba.

segments = [0b00111111, 0b00000110, 0b01011011, 0b01001111,
 0b01100110, 0b01101101, 0b01111101, 0b00000111,
 0b01111111, 0b01101111]

The ssr_write() function is used to display data on the 7-segment display by
passing a value parameter. Value is byte data. To send one byte (8-bit data), we
do a looping and get one bit starting from the left. To implement this, we can use
the left shifting:

value <<= 0x01

The program will display the numbers from 0 to 9 by passing a value from a
collection of numbers:

 digit = 0
 while 1:
 print(digit)
 ssr_write(segments[digit])
 time.sleep(0.5)
 digit += 1
 if digit > 9:
 digit = 0

Save this file. Now you can run this program.

sudo python ch02_03.py

If it gets success, you should see a number on the 7-segment display module.
You can see this demo in my YouTube, http://youtu.be/NjBhyGoctwY.

http://youtu.be/NjBhyGoctwY

Make Your Own Countdown Timer

[38]

Working with a 4-digit 7-segment display
After learning how to use a shift register with a 7-segment display, we are going to
explore how to apply a shift register on a 4-digit 7-segment display. In general, a
4-digit 7-segment display consists of four 7-segment display modules. You can see
this module scheme in the following figure (source: http://www.g-nor.com/html/
GNQ-5643Ax-Bx.pdf):

You can see that four 7-segment display modules have been connected and shared
on a, b, c, d, f, g, and DP pins. To display the first digit on 7-segment, you can set
a value high on digit-1 (DIG 1). Otherwise, you can display the second digit on
7-segment by setting a value high on digit-2 (DIG 2). It means only one 7-segment
display is running. You can run all 7-segment displays by manipulating the delay
shown on this module.

For a sample illustration, you can see how to display a 4-digit number on this module.
To achieve this, we need two 74HC595 shift registers. These chips are formed as
cascading shift registers. By cascading two 74HC595 shift registers, we can control
16 bits using three pins. You can build this wiring with the following:

• The segment output (Q0, Q1, Q3, Q4, Q5, Q6, and Q7) pins of the first
74HC595 are connected to the segment pins of the 4-digit 7-segment module

• On the first 74HC595, you connect the Q7 (pin 9) to the DS pin (pin 14) from
the second 74HC595

• Connect the STCP pin (pin 12) from the first 74HC595 to the second one
• Connect the SHCP pin (pin 11) from the first 74HC595 to the second one
• Q0, Q1, Q2, and Q3 pins from the second 74HC595 are connected to digit-1,

digit-2, digit-3, and digit-4 pins from the 4-digit 7-segment module

http://www.g-nor.com/html/GNQ-5643Ax-Bx.pdf
http://www.g-nor.com/html/GNQ-5643Ax-Bx.pdf

Chapter 2

[39]

You can also use the 4-digit 7-segment display module with two 74HC595 shift
registers easily. For instance, you can get this module on eBay (http://www.ebay.
com/itm/291244187011) or Amazon (http://www.amazon.com/Digital-Display-
Module-Board-Arduino/dp/B00W9J08I4/). This module uses a 7-segment
common anode.

http://www.ebay.com/itm/291244187011
http://www.ebay.com/itm/291244187011
http://www.amazon.com/Digital-Display-Module-Board-Arduino/dp/B00W9J08I4/
http://www.amazon.com/Digital-Display-Module-Board-Arduino/dp/B00W9J08I4/

Make Your Own Countdown Timer

[40]

Connect the DS/Data, STCP/LATCH, and SHCP/Clock pins from the first 74HC595
to Raspberry Pi GPIO25 (wPi 6), GPIO24 (wPi 5), and GPIO23 (wPi 4).

After this, we write a program to display a 4-digit number. I have ported and
modified code from http://www.instructables.com/id/74HC595-digital-LED-
Display-Based-on-Arduino-Code-/, so the program can run on Raspberry Pi using
Python with the WiringPi library. Create a file, named ch02_04.py, and write the
following complete code:

ch02_04.py file

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup() # WiPi mode

define shift reg pins
DATA = 6
LATCH = 5
CLK = 4

OUTPUT = 1
LOW = 0
HIGH = 1

common anode digital tube 16 BCD code
LED_BCD = [0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90,
0x88, 0x83, 0xc6, 0xa1, 0x86, 0x8e]

wiringpi.pinMode(DATA, OUTPUT)
wiringpi.pinMode(LATCH, OUTPUT)
wiringpi.pinMode(CLK, OUTPUT)

initialization
print("Initialization...")
wiringpi.digitalWrite(LATCH, LOW)
wiringpi.digitalWrite(CLK, LOW)

def LED_display(LED_number, LED_display, LED_dp):
 hc_ledcode_temp = 0

http://www.instructables.com/id/74HC595-digital-LED-Display-Based-on-Arduino-Code-/
http://www.instructables.com/id/74HC595-digital-LED-Display-Based-on-Arduino-Code-/

Chapter 2

[41]

 if LED_display > 15:
 LED_display = 0

 hc_ledcode = LED_BCD[LED_display]
 for i in range(0, 8):
 hc_ledcode_temp <<= 1
 if hc_ledcode & 0x01:
 hc_ledcode_temp |= 0x01

 hc_ledcode >>= 1

 if LED_dp:
 hc_ledcode_temp &= 0xfe

 hc_disp = hc_ledcode_temp
 if LED_number == 0:
 hc_disp |= 0x8000
 elif LED_number == 1:
 hc_disp |= 0x4000
 elif LED_number == 2:
 hc_disp |= 0x2000
 elif LED_number == 3:
 hc_disp |= 0x1000

 write_74HC595_ShiftOUTPUT(hc_disp)

def write_74HC595_ShiftOUTPUT(data_a):

 wiringpi.digitalWrite(LATCH, LOW)
 wiringpi.digitalWrite(CLK, LOW)

 for i in range(0, 16):
 if data_a & 0x0001:
 wiringpi.digitalWrite(DATA, HIGH)
 else:
 wiringpi.digitalWrite(DATA, LOW)

 wiringpi.digitalWrite(CLK, HIGH)
 wiringpi.digitalWrite(CLK, LOW)
 data_a >>= 1

Make Your Own Countdown Timer

[42]

 wiringpi.digitalWrite(LATCH, HIGH)

print("Running...")
try:
 timer = 0
 digit = 0
 while 1:
 LED_display(0, digit, 0)
 time.sleep(0.01)
 LED_display(1, digit, 0)
 time.sleep(0.01)
 LED_display(2, digit, 0)
 time.sleep(0.01)
 LED_display(3, digit, 0)
 time.sleep(0.01)

 timer += 1
 if timer > 10:
 time.sleep(0.05)
 timer = 0
 digit += 1
 if digit > 9:
 digit = 0

except KeyboardInterrupt:
 write_74HC595_ShiftOUTPUT(0)

print("done")

Here is the code explanation:

• Declare the LED_BCD variable for a collection of Binary-Coded Decimal
(BCD) values, so you map 7-segment values to binary ones; for instance,
digit-1 can be constructed as 0x11000000. In this scenario, we just pass a
value 1, not 0x11000000 to display digit-1.

• Declare the LED_display (LED_number, LED_display, LED_dp) function
to display a number on a specific digit. This function is used to parse input
data. Then, call the write_74HC595() function to display it on the 7-segment
module. LED_number is a digit position. The value could be 0, 1, 2, or 4 for
4-digit 7-segments. LED_display is a digit number that will be displayed on
the 7-segment display. LED_dp will show whether there is a digit dot or not.

Chapter 2

[43]

• Declare the write_74HC595_ShiftOUTPUT() function to show a number on
the module. It starts by sending data into the DATA pin and then sends a
Clock signal. After 16 bits are sent to the DATA pin, we push this data into
the 74HC595 IC's storage by sending a LATCH signal.

• The program will display a number from 0 to 9 on all digit modules.
• Set a delay via time.sleep(), so it seems as though the 4-digit panels

appear together.

There are four digits on this module. So if we want four digits to be displayed
simultaneously, we do a trick by adding a delay. The following is my approach to
displaying a delay:

timer += 1
if timer > 10:
 time.sleep(0.05)
 timer = 0
 digit += 1
 if digit > 9:
 digit = 0

Save this file. Now you can run the program by typing the following command:

sudo python ch02_04.py

If this gets success, you should see a number on each digit module. You can also see
this demonstration in my YouTube, http://youtu.be/yvciVugNnS0.

Building a countdown timer
In the previous section, we already learned how to display four digits on a 7-segment
module and wrote the program for displaying a 4-digit number (ch02_04.py). In this
section, we continue to build a simple program for a countdown timer using a 4-digit
7-segment module and two 74HC595 shift registers.

Our scenario is to get a number input from the user, for instance, 30. After this,
the number is displayed on the module. Then, we decrease the number down to 0.

Let's copy the ch02_04.py file and then modify it as follows:

ch02_05.py
…
…
print("Running...")
number_s = raw_input("Enter a number (1-999): ")
number = int(number_s)

www.allitebooks.com

http://youtu.be/yvciVugNnS0
http://www.allitebooks.org

Make Your Own Countdown Timer

[44]

print("Countdown " + number_s)
try:
 timer = 0

 while 1:
 digit = number

 LED_display(0, digit % 10, 0)
 digit /= 10
 time.sleep(0.01)

 LED_display(1, digit % 10, 0)
 time.sleep(0.01)
 digit /= 10

 LED_display(2, digit % 10, 0)
 time.sleep(0.01)
 digit /= 10

 LED_display(3, digit, 0)
 time.sleep(0.01)

 timer += 1
 if timer > 10:
 time.sleep(0.05)
 timer = 0
 number -= 1
 if number < 0:
 write_74HC595_ShiftOUTPUT(0)
 break

except KeyboardInterrupt:
 write_74HC595_ShiftOUTPUT(0)
print("done")

Save this program in a file named ch02_05.py. You can run it by typing the
following command on the terminal.

sudo python ch02_05.py

Enter a number, for instance, 50. After this, you should see the number
decrementing. You can see this demonstration in my YouTube,
http://youtu.be/11FM1SsSn3Y.

http://youtu.be/11FM1SsSn3Y

Chapter 2

[45]

In general, this program works like the previous program, ch02_04.py. After
obtaining input data from a user, we display it on digit-1, digit-2, digit-3, and
digit-4. It uses a modulo operation. Please read it at https://docs.python.org/2/
reference/expressions.html#binary-arithmetic-operations. For instance, if
the input data is 2456, the program will do the following steps:

1. Digit-0 displays a unit with formula digit % 10, and the result is 6.
2. Digit-1 displays 5.
3. Digit-2 displays 4.
4. Digit-1 displays 2.
5. After displaying the number for a specific duration, the number is

decremented and returns to step 1.

Summary
Let's summarize what we have learned in this chapter. We connected a 7-segment
module to a Raspberry Pi board through eight GPIO pins. Then, we show a number
on the module. To minimize the GPIO pin usage, we implemented a shift register
using a 74HC595 IC, so we only need three GPIO pins. A shift register is also used to
drive a 4-digit 7-segment module by cascading two 74HC595 shift registers. At the
end of the section, we tried to build a simple program for a countdown timer.

In the next chapter, we will build a digital clock using several LED modules.
The chapter will introduce LED modules related to the digital clock stack.

https://docs.python.org/2/reference/expressions.html#binary-arithmetic-operations
https://docs.python.org/2/reference/expressions.html#binary-arithmetic-operations

[47]

Make Your Own
Digital Clock Display

We explore how to build a digital clock in this chapter. A digital clock is a type of
clock that displays the time digitally. In general, it uses four digits of which two
digits are used as the hour display and the rest are used as the minute display. First,
we use a 4-digit 7-segment display module. Then, we introduce an OLED graphic
display with an I2C interface and describe how to use it to build a digital clock.

You will learn the following topics in this chapter:

• Introducing a 4-digit 7-segment display for a digital clock
• Introducing an I2C OLED graphic display
• Building a digital clock using an I2C OLED graphic display

Introducing a 4-digit 7-segment display
for a digital clock
In Chapter 2, Make Your Own Countdown Timer, we learned how to use a 4-digit
7-segment display and build it as a countdown counter. Now we try to build a
digital clock using this module. The algorithm for displaying a digital clock is
easy, and is as follows:

• Initialize Raspberry Pi GPIO
• Perform a looping process

Make Your Own Digital Clock Display

[48]

• In the looping process, you do the following tasks:

 ° Read the current time
 ° Extract the minute value and then change the minute value on

the module
 ° Extract the hour value and then change the hour value on the module

Let's start to implement a digital clock using a 4-digit 7-segment display. We use
a 4-digit 7-segment display with two 74HC595 shift registers. We can obtain it on
eBay, http://www.ebay.com/itm/291244187011. We can also obtain it on Amazon,
http://www.amazon.com/Digital-Display-Module-Board-Arduino/dp/
B00W9J08I4/.

Connect the DS/Data, STCP/LATCH, and SHCP/Clock pins from the first 74HC595
to Raspberry Pi GPIO25 (wPi 6), GPIO24 (wPi 5), and GPIO23 (wPi 4).

Then, we modify the ch02_04.py file. We change the code in the main program.
Write the following code:

// ch03_01.py

print("Demo - digital clock")
print("Running....")
print("Press CTRL-C to exit....")
try:

 while 1:
 # get current time
 now = datetime.datetime.now()
 minute = now.minute
 hour = now.hour

 # display minute
 LED_display(0, minute % 10, 0)
 minute /= 10
 time.sleep(0.01)
 LED_display(1, minute, 0)
 time.sleep(0.01)

http://www.ebay.com/itm/291244187011
http://www.amazon.com/Digital-Display-Module-Board-Arduino/dp/B00W9J08I4/
http://www.amazon.com/Digital-Display-Module-Board-Arduino/dp/B00W9J08I4/

Chapter 3

[49]

 # display hour
 LED_display(2, hour % 10, 1)
 hour /= 10
 time.sleep(0.01)
 LED_display(3, hour, 0)
 time.sleep(0.01)

except KeyboardInterrupt:
 write_74HC595_ShiftOUTPUT(0)

print("done")

Save this code in a file named ch03_01.py.

Now you can run this file by typing the following command:

sudo python ch03_01.py

If it is successful, the module shows a digital clock. It changes on minute and hour
values. This demo can be seen on YouTube, http://youtu.be/oP_13g7asx8.

Introducing an I2C OLED graphic display
We can display a digital clock using an OLED graphic display module. OLED
stands for organic light-emitting diode. The OLED display is made up of organic
compounds that light up when fed electricity. If you have any experience with LED
backlighting and LCD display, an OLED display can be controlled pixel by pixel.
This sort of control just isn't possible with an LED and LCD.

http://youtu.be/oP_13g7asx8

Make Your Own Digital Clock Display

[50]

There are many models of OLED graphic display. You can review them at
https://www.adafruit.com/categories/98. In this section, we will learn to
build a digital clock using a Monochrome 0.96" 128 x 64 OLED graphic display.
You can buy it on https://www.adafruit.com/products/326 and you can also
get it on eBay at low cost. To access an OLED module, we use an I2C protocol on
Raspberry Pi:

The I2C OLED graphic display has the following pinouts: GND, 3V3, SCL, and SDA.
These pinouts match with your Raspberry Pi I2C.

The I2C (Inter-IC) bus is a bidirectional two-wire serial bus that provides a
communication link between integrated circuits (ICs). This OLED display module
uses I2C to control what we want to show. It is assumed that you will understand
about I2C protocols, but if you don't have experience with I2C, please read this
topic on the Sparkfun website, https://learn.sparkfun.com/tutorials/i2c.

Enabling I2C on Raspberry Pi
By default, Raspberry Pi disables the I2C port. Therefore, if we want to access the I2C
port, we must active it via raspi-config. Type the following command:

sudo raspi-config

https://www.adafruit.com/categories/98
https://www.adafruit.com/products/326
https://learn.sparkfun.com/tutorials/i2c

Chapter 3

[51]

You should get a raspi-config form. Select Advanced Options, as shown in the
following screenshot:

After selecting Advanced Options, you get a list of configuration menus. Please
select A7 I2C. Then, activate it by enabling this port. Click the Finish button
when done:

After finishing, Raspbian loads the I2C module automatically when starting up.
You can verify this by checking the /boot/config.txt file. You should see
dtparam=i2c_arm=on.

Make Your Own Digital Clock Display

[52]

Another approach to forcing our Raspian OS to load the I2C module into the kernel
is to open the /etc/modules file and add the following script:

i2c-bcm2708
i2c-dev

If you are running Raspian OS with a 3.18 kernel or higher, you need to update the
/boot/config.txt file. Edit it with sudo nano /boot/config.txt and add the
following text:

dtparam=i2c1=on
dtparam=i2c_arm=on

Chapter 3

[53]

When you have finished all these tasks, you should reboot your Raspberry Pi with
the following command:

sudo reboot

The I2C library for Python
In Chapter 1, Getting Started with LED Programming through Raspberry Pi GPIO,
we already used WiringPi for Python available at https://github.com/
Gadgetoid/WiringPi2-Python. This library provides an I2C module for
accessing the I2C protocol. It is assumed that you have already installed
https://github.com/Gadgetoid/WiringPi2-Python. You also need I2C
tools. Type the following commands:

sudo apt-get install python-smbus

sudo apt-get install i2c-tools

You're ready to develop a program-based I2C!

www.allitebooks.com

https://github.com/Gadgetoid/WiringPi2-Python
https://github.com/Gadgetoid/WiringPi2-Python
https://github.com/Gadgetoid/WiringPi2-Python
http://www.allitebooks.org

Make Your Own Digital Clock Display

[54]

Displaying numbers and characters
To illustrate how to use an I2C port, we use an OLED graphic display module.
Connect it to Raspberry Pi I2C. Read the I2C port location from the GPIO pins
from Chapter 1, Started with LED Programming through Raspberry Pi GPIO.

The following is the wiring for displaying numbers and characters on OLED
graphic display:

After all the components are connected, you can verify it by typing the
following command:

sudo i2cdetect –y 1

Chapter 3

[55]

If it is successful, you should see the OLED I2C address. By default, it has an I2C
address on 0 x 3C. To implement I2C on a 128 x 64 OLED graphic display, we can
use the lib_oled96 library, which is available at https://github.com/BLavery/
lib_oled96.

First, we download the lib_oled96.py file from https://github.com/BLavery/
lib_oled96. Type the following command:

wget
https://raw.githubusercontent.com/BLavery/lib_oled96/master/lib_oled96
.py

You also need a python-imaging library (PIL) on Raspbian. You can get it by typing
the following command on a terminal:

sudo apt-get install python-imaging

Furthermore, we write our program to display numbers and characters. Create a file,
named ch03_02.py. Write the following scripts:

ch03_02.py file

from lib_oled96 import ssd1306
from smbus import SMBus

i2cbus = SMBus(1)
oled = ssd1306(i2cbus)

put border around the screen:
oled.canvas.rectangle((0, 0, oled.width-1, oled.height-1), outline=1,
fill=0)

https://github.com/BLavery/lib_oled96
https://github.com/BLavery/lib_oled96
https://github.com/BLavery/lib_oled96
https://github.com/BLavery/lib_oled96

Make Your Own Digital Clock Display

[56]

Write two lines of text.
oled.canvas.text((15,15), 'Hello World, Pi!!', fill=1)
oled.canvas.text((30,30), '123456780%!&', fill=1)

now display that canvas out to the hardware
oled.display()

Here is the code explanation:

• Initialize I2C port using SMBus
• Draw a rectangle using canvas.rectangle()
• Show some text using canvas.text()

Then, you can execute it by typing the following command:

sudo python ch03_02.py

You should see Hello World, Pi!! and 123456780%!& on the OLED graphic display,
as shown in the following figure:

You can find this demo uploaded on YouTube, http://youtu.be/M6fIv5f45Z0.
You can see the demo output.

http://youtu.be/M6fIv5f45Z0

Chapter 3

[57]

Building a digital clock using an I2C
OLED graphic display
We have already learned how to use an I2C OLED graphic display. The next step
is to build a digital clock using this module. In this scenario, we show hours and
minutes on an OLED graphic display. If the minute or hour value changes from the
current time on Raspberry Pi, we update the values on the OLED graphic display.

In addition, we need a font file to display numbers on the OLED graphic display.
Download the FreeSans.ttf file using the following command:

wget
https://raw.githubusercontent.com/BLavery/lib_oled96/master/FreeSans.
ttf

To open a font file, we need the PIL library. Type the following command to install it:

sudo apt-get install python-imaging

Now we can write our program. Create a file, named ch03_03.py, and write the
following complete code:

ch03_03.py file

from lib_oled96 import ssd1306
from smbus import SMBus
from PIL import ImageFont
import datetime

i2cbus = SMBus(1)
oled = ssd1306(i2cbus)
draw = oled.canvas

font = ImageFont.load_default()
font = ImageFont.truetype('FreeSans.ttf', 48)
draw.rectangle((0, 0, oled.width-1, oled.height-1), outline=1, fill=0)
oled.display()

def show_clock(text):
 global oled
 global draw
 global font

Make Your Own Digital Clock Display

[58]

 draw.rectangle((5, 5, oled.width-5, oled.height-8), outline=0,
fill=0)
 draw.text((5, 5), text, font=font, fill=1)
 oled.display()

print("Demo - digital clock")
print("Running....")
print("Press CTRL-C to exit....")

try:
 counter = 0
 minute = -1
 bar = 2
 while 1:
 # get current time
 now = datetime.datetime.now()
 temp_min = now.minute
 hour = now.hour
 temp = now.second
 str = ""
 if temp_min!=minute:
 # change time
 minute = temp_min
 str = now.strftime("%H:%M")
 show_clock(str)

 counter += 1
 if counter > 10:
 draw.rectangle((1, oled.height-6, bar, oled.height-3),
outline=1, fill=0)
 oled.display()
 bar += 1
 counter = 0
 if bar > 127:
 draw.rectangle((1, oled.height-6, bar-2, oled.
height-3), outline=0, fill=0)
 oled.display()
 bar = 2

except KeyboardInterrupt:
 oled.onoff(0)
 oled.cls()

print("done")

Chapter 3

[59]

The code explanation is as follows:

• Initialize I2C port using SMBus
• Initialize the lib_oled96 library
• Load a font file using ImageFont.truetype()
• Define the show_clock() function to display text
• Read the current time
• Updating the minute or hour value if its value changes
• Draw a moving rectangle from left to right

Save this code. Then execute it on the terminal using the following command:

sudo python ch03_03.py

If successful, you should see a digital clock with the current time on the OLED
graphic display. A moving line also can be seen on the OLED display. A sample
output can be seen in the following figure:

This demonstartion is available on YouTube, http://youtu.be/0F1mgrArntk,
so you can see the demo output.

http://youtu.be/0F1mgrArntk

Make Your Own Digital Clock Display

[60]

Summary
We used the 4-digit 7-segment module to display a digital clock on a Raspberry Pi
board via a shift register. Furthermore, we studied an OLED graphic display module,
which can be accessed through an I2C port. The last topic is to use the OLED graphic
display to develop a digital clock.

In the next chapter, we will learn how to build several applications with an LED dot
matrix (8 x 8 LEDs). There are some project scenarios to illustrate how it works.

[61]

LED Dot Matrix
An LED dot matrix display is a two-dimensional LED pattern array, used to
represent characters, symbols, and images. This chapter will explore how to control
an LED dot matrix display from Raspberry Pi. At the end of the chapter, we will
cascade several LED dot matrix modules.

You will learn the following topics in this chapter:

• Introducing LED dot matrix display (8 x 8 LEDs)
• Displaying a random number in an LED dot matrix display
• Displaying a random character in an LED dot matrix display
• Building a ball reflection game
• Cascading LED dot matrix modules

Introducing LED dot matrix display
(8 x 8 LEDs)
In the previous chapter, you learned how to build a digital clock using 4-digit
7-segment and OLED display modules. In this chapter, we will learn how to work
with an LED dot matrix display and focus on 8 x 8 LEDs' model. These LEDs
can have monochrome color or RGB color. To simplify the problem, we will use
monochrome color on the LED dot matrix display module.

LED Dot Matrix

[62]

In an LED matrix display, multiple LEDs are connected together in row
and columns. This connection is established to reduce the number of pins
needed to manipulate them. For instance, the 8 x 8 LED dot matrix is shown
in the following figure:

In the preceding figure, if R3 is in 1 logic and C2 is in 0 logic, the LED on line 3
column 3 will be turned on. The characters will be displayed by fast scanning each
row and column. For illustration, if we need to display the character A, we can draw
the following figure on our dot matrix:

Chapter 4

[63]

An MCU, which wants to work with 8 x 8 LED dot matrix display module, needs
at least 16 GPIO pins. To reduce the number of pins, we need an LED dot matrix
display. You will be introduced to one of the LED dot matrix drivers, applied IC
MAX7219.

Some online electronics stores provide dot matrix display including a driver with
MAX7219. You can obtain this module at the following stores:

• Sparkfun, https://www.sparkfun.com/products/11861
• Banggood, http://www.banggood.com/MAX7219-Dot-Matrix-Module-

DIY-Kit-SCM-Control-Module-For-Arduino-p-72178.html

• Linksprite, http://store.linksprite.com/max7219-8x8-red-dot-led-
matrix-kit/

• eBay, http://www.ebay.com

For testing, we use an LED dot matrix module with a 7219 driver. You can buy this
module from eBay. The dot matrix display is connected to IC MAX7219 and has the
VCC, GND, DIN, CS, and CLK output pins.

For further information about IC MAX7219, you can read its datasheet at
http://datasheets.maximintegrated.com/en/ds/MAX7219-
MAX7221.pdf.

https://www.sparkfun.com/products/11861
http://www.banggood.com/MAX7219-Dot-Matrix-Module-DIY-Kit-SCM-Control-Module-For-Arduino-p-72178.html
http://www.banggood.com/MAX7219-Dot-Matrix-Module-DIY-Kit-SCM-Control-Module-For-Arduino-p-72178.html
http://store.linksprite.com/max7219-8x8-red-dot-led-matrix-kit/
http://store.linksprite.com/max7219-8x8-red-dot-led-matrix-kit/
http://www.ebay.com
http://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
http://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf

LED Dot Matrix

[64]

In general, we can attach this module through the Serial Peripheral Interface (SPI)
port. In SPI, only one side generates the clock signal (CLK or SCK), and usually called
the master, and the other side is called the slave. SPI has four lines: SCK, MOSI
(Master Out / Slave In), and MISO (Master In / Slave Out). I will explain in the next
section how to enable SPI on Raspberry Pi. The following is the testing module
for this:

Introducing an LED dot matrix driver
Richard Hull and his team have already built an LED dot matrix driver based on IC
MAX7219. You can download it from https://github.com/rm-hull/max7219. This
library also supports cascading several dot matrix display modules. This means that
we can cascade several LED dot matrix modules by connecting DOUT to DIN among
these modules. You will learn how to cascade LED dot matrix modules in the last
section of this chapter.

The library needs the SPI library to run the LED dot matrix display module. In the
next section, I'm going to explain how to activate SPI on a Raspberry Pi board.

https://github.com/rm-hull/max7219

Chapter 4

[65]

Enabling Raspberry Pi SPI
By default, Raspberry Pi disables the SPI port, so if we want to access the SPI port,
we must activate it via raspi-config. Type the following command:

sudo raspi-config

You should get a raspi-config form. Select Advanced Options. Then, you should
select A6 SPI, as shown in the following screenshot. Confirm to enable and load
SPI onto Raspberry Pi. The setup tool will ask for enabling to load the SPI module
automatically. Please click Yes to confirm:

After this, you will need to reboot your Raspberry Pi. Now you can verify whether
the SPI library has loaded or not. Please type the following command:

lsmod

LED Dot Matrix

[66]

If successful, you should see that spi_bcm2708 is loaded as shown here:

You can also check a list of SPI ports on Raspberry Pi. Just type the
following command:

ls /dev/spidev*

You should see a list of SPI ports on Raspberry Pi. For instance, you may see
/dev/spidev0.0 and /dev/spidev0.1.

The next step is to install the SPI library for Python, named spidev. It will be used in
our program. You can install it by typing the following commands:

sudo apt-get install python-dev python-pip

sudo pip install spidev

Your Raspberry is ready for SPI programming using Python.

Deploying a matrix 7219 driver
To install a matrix 7219 driver from https://github.com/rm-hull/max7219,
you can download it and then install it. Type the following commands on terminal:

git clone https://github.com/rm-hull/max7219

cd max7219

sudo python setup.py install

https://github.com/rm-hull/max7219

Chapter 4

[67]

We need to test this library using a 8 x 8 LED dot matrix display with the MAX7219
driver. The following is our wiring:

• The VCC module is connected to VCC +5 V Raspberry Pi
• The GND module is connected to GND +5 V Raspberry Pi
• The DIN module is connected to GPIO10 (MOSI) Raspberry Pi
• The CS module is connected to GPIO8 (SPI CE0) Raspberry Pi
• The CLK module is connected to GPIO11 (SPI CLK) Raspberry Pi

Our testing scenario is to display the character A on an 8 x 8 LED dot matrix display.
Create a Python file named ch04_01.py. Write the following:

ch04_01.py file

import max7219.led as led
import time

print("Running...")
print("Display character A")

device = led.matrix(cascaded=1)
device.letter(0, ord('A'))

raw_input("Press Enter to exit ")
device.command(led.constants.MAX7219_REG_SHUTDOWN,0x00)
time.sleep(0.01)

Here is the code explanation:

• Load the max7219.led library using the import syntax.
• Initialize the matrix object from the Max7219 library and set cascading as 1.

It's required if you are using one LED matrix module. If you want to
work with several LED matrix modules, you can read the last section of
this chapter.

• Display the character A using the letter (self, deviceId, asciiCode,
font=None, redraw=True) function. Since we have one LED dot matrix
module, we set deviceId = 0. We need asciiCode for input, and we can
use the ord() function to convert from a character to ASCII code.

Save this code and execute this file. Type the following command:

sudo python ch04_01.py

LED Dot Matrix

[68]

You should see the character A on the dot matrix module. A sample output can be
seen in the following figure:

You can also see it on YouTube at http://youtu.be/fP_weX2PVcg. On the terminal,
you should see the program output, as shown in the following figure:

Displaying a random number on the LED
dot matrix display
In this section, we will explore more practices using 8 x 8 LED dot matrix displays.
We will display a random number on the LED dot matrix module. A number will be
generated by a Python program via random object and then shown on the LED dot
matrix display.

Let's start to write the program. Create a file named ch04_02.py. Write the following
completed code:

ch04_02.py file

import max7219.led as led
import time

http://youtu.be/fP_weX2PVcg

Chapter 4

[69]

import random

device = led.matrix(cascaded=1)

print("Running...")
print("Press CTRL+C to exit ")
try:
 while 1:
 number = random.randint(0,9)
 print "display ", number
 device.letter(0, ord(str(number)))
 time.sleep(1)

except KeyboardInterrupt:
 device.command(led.constants.MAX7219_REG_SHUTDOWN,0x00)
 time.sleep(0.01)

print("done")

We can generate a random number by using random.randint() from random object.
We pass (0,9) so it generates value from 0 to 9. After this, we pass this random
number into the device.letter() function, which needs ASCII code parameters, so
we use the ord() function to convert by using input to ASCII code. Since the number
is number data type, we change it to string by using the str() function.

Save this program. Now you will can execute this program by typing the
following command:

sudo python ch04_02.py

If successful, you can see a random number on the 8 x 8 LED dot matrix display,
as shown in the following screenshot:

LED Dot Matrix

[70]

This demo can be seen on YouTube at ttp://youtu.be/ZDCighD1p3s. You should
also see the output from the program as follows:

Displaying a random character on the
LED dot matrix display
Using the scenario from the previous section, we can build a simple program to
display a random character on an 8 x 8 LED dot matrix module. We can use random.
choice(string.ascii_letters) to retrieve a random character in Python. After
this, the random value is passed to the MAX7219 library.

Let's start. Create a file named ch04_03.py. The following is completed code for
our scenario:

ch04_03.py file

import max7219.led as led
import time
import random
import string

device = led.matrix(cascaded=1)

ttp://youtu.be/ZDCighD1p3s

Chapter 4

[71]

print("Running...")
print("Press CTRL+C to exit ")
try:
 while 1:
 character = random.choice(string.ascii_letters)
 print "display ", character
 device.letter(0, ord(character))
 time.sleep(1)

except KeyboardInterrupt:
 device.command(led.constants.MAX7219_REG_SHUTDOWN,0x00)
 time.sleep(0.01)

print("done")

Save this code. Execute this program by typing the following command:

sudo python ch04_03.py

You should see a random character on the 8 x 8 LED dot matrix display, as shown in
the following screenshot:

LED Dot Matrix

[72]

This demo can be seen on YouTube at http://youtu.be/zjsVKtiP6ug.
On the terminal, you should also see the output from the program,
as shown in the following screenshot:

Building a ball reflection game
A dot matrix display module consists of LEDs. Each LED can act as a pixel and can
be used as a ball. In this section, we build a ball reflection game. If a ball hits a corner,
it will bounce back. The ball can move with a specific speed, which is extracted
as horizontal speed (vx) and vertical speed (vy). The following is the formula for
moving the ball:

pos_x = pos_x + (vx * direction)
pos_y = pos_y + (vy * direction)

This formula uses object moving-based vectors with speeds vx and vy direction is a
direction orientation. If the direction value is 1, the ball will move from left to right.
Otherwise, it will move from right to left.

http://youtu.be/zjsVKtiP6ug

Chapter 4

[73]

Let's start to build a program. Create a file named ch04_04.py. Write the following
completed code:

ch04_04.py file

import max7219.led as led
import time

device = led.matrix(cascaded=1)

you can change these initial data
pos_x = 4 # current position x
pos_y = 4 # current position y
last_x = pos_x # last position x
last_y = pos_y # last position y
vx = 1 # speed x
vy = 2 # speed y

def draw_ball():
 global pos_x
 global pos_y
 global last_x
 global last_y

 device.pixel(last_x, last_y, 0)
 last_x = pos_x
 last_y = pos_y
 device.pixel(pos_x, pos_y, 1)

def validate_position():
 global pos_x
 global pos_y

 if pos_x > 7:
 pos_x = 7
 if pos_y > 7:
 pos_y = 7
 if pos_x < 0:
 pos_x = 0
 if pos_y < 0:
 pos_y = 0

LED Dot Matrix

[74]

show ball first
device.pixel(pos_x,pos_y,1)
time.sleep(1)
direction = 1

print("Running...")
print("Press CTRL+C to exit ")
try:
 while 1:
 pos_x = pos_x + (vx * direction)
 pos_y = pos_y + (vy * direction)

 validate_position()
 draw_ball()

 # change direction
 if pos_x >= 7:
 direction = -1
 if pos_x <= 0:
 direction = 1

 time.sleep(1)

except KeyboardInterrupt:
 device.command(led.constants.MAX7219_REG_SHUTDOWN,0x00)
 time.sleep(0.01)

print("done")

Here is the explanation:

• First, define the initial position and speed
• Set the ball speed vx = 1 and vy = 2
• A ball moves by adding its position to the current position with vx and vy
• Define the draw_ball() function to draw a ball on the 8 x 8 dot matrix

display based on the current position of ball

Since the 8 x 8 LED dot matrix display has eight points, we should validate the pos_x
and pos_y values with the following validation:

 if pos_x >= 7:
 direction = -1
 if pos_x <= 0:
 direction = 1

Chapter 4

[75]

This code uses global variables. You can read another approach to use local variables
for pos_x, pos_y, last_x, and last_y. Please open the ch04_o4b.py file.

Save this code. Execute the program by typing the following command:

sudo python ch04_04.py

After you execute, you should see a reflecting ball on the 8 x 8 dot matrix display,
as shown in the following screenshot:

See the demo on YouTube at http://youtu.be/2MtZbJcP0Ec.

Cascading LED dot matrix modules
Sometimes you want to cascade several LED dot matrix display modules. If you have
LED dot matrix display with the MAX7219 driver, it provides DIN and DOUT pins.
These pins are used to cascade our LED dot matrix display.

For instance, we have two 8 x 8 LED dot matrix display modules. The first module
is attached to Raspberry Pi as usual. For the second module, connect DIN to DOUT
from the first module. The CS and CLK pins from the first module are connected to
the CS and CLK pins from the second module.

http://youtu.be/2MtZbJcP0Ec

LED Dot Matrix

[76]

Please note that if you cascade two 8 x 8 LED dot matrix display modules, the (0, 0)
position is located on the second LED dot matrix module. The following is the wiring
for two cascaded LED dot matrix modules:

• All LED dot matrix VCC pins are connected to +5 V Raspberry Pi
• All LED dot matrix GND pins are connected to GND Raspberry Pi
• The DOUT pin from the first LED dot matrix display is connected to the DIN

pin from the second LED dot matrix display
• The DIN pin from the first LED dot matrix display is connected to GPIO10

(MOSI) Raspberry Pi
• All LED dot matrix CS pins are connected to GPIO8 (SPI CE0) Raspberry Pi
• All LED dot matrix CLK pins are connected to GPIO11 (SPI CLK)

Raspberry Pi

For illustration, we build a working ball (a pixel on dot matrix) from (0, 0) to (15, 8).
As stated, the (0, 0) position is located on the second module, so we do a trick. We
build the x position mapping into an array, pos_x_list =[8,9,10,11,12,13,14,15
,0,1,2,3,4,5,6,7]. You can see that the position 0 is located on the second module
of the LED dot matrix display.

Let's build a program. Create a file named ch04_05.py. The following is the
completed code:

ch04_05.py file

import max7219.led as led
import time

device = led.matrix(cascaded=2)

pos_x_list =[8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7]
pos_x = 0
pos_y = 0
direction = 1
print("Running...")
print("Press CTRL+C to cancel ")
try:
 while 1:

Chapter 4

[77]

 print "x=", pos_x, " y=",pos_y
 device.pixel(pos_x_list[pos_x], pos_y, 1)
 time.sleep(0.2)

 # clear pixel
 device.pixel(pos_x_list[pos_x], pos_y, 0)
 pos_x = pos_x + direction
 if pos_x > 15:
 pos_y = pos_y + 1
 pos_x = 15
 direction = direction * (-1)

 if pos_x < 0:
 pos_y = pos_y + 1
 pos_x = 0
 direction = direction * (-1)

 # stop on right-bottom
 if pos_y > 7:
 break

except KeyboardInterrupt:
 device.command(led.constants.MAX7219_REG_SHUTDOWN,0x00)
 time.sleep(0.01)

print("done")

Here is the explanation:

• Set cascaded=2 to instantiat process for the matrix object.
• Define pos_x_list = [8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7] as the

pin mapping for two modules. For instance, if we move a ball to x = 0, our
mapping returns 8.

• Make the ball move by increasing or decreasing the x and y values. You can
change these values.

Save this code. Try to execute the program with the following command:

sudo python ch04_05.py

LED Dot Matrix

[78]

You should see the ball moving from left to right and back again on two 8 x 8 LED
dot matrix display modules, as shown in the following screenshot:

You can see this demo on YouTube at http://youtu.be/F8kDpTz5Wjw.

Summary
We have used an 8 x 8 LED dot matrix display module on Raspberry Pi. The module
uses IC MAX7219 as the driver to control the display of LEDs. We also built some
programs to get more practices to use the 8 x 8 LED dot matrix display module.

In the next chapter, you will learn to build a light traffic controller by using
Raspberry Pi. We will start with designing a light traffic controller and then
implementing it.

http://youtu.be/F8kDpTz5Wjw

[79]

Building Your Own Traffic
Light Controller

A traffic light controller is a signaling device positioned at road intersections and
used to control road traffic. In this chapter, we will build a traffic light controller
using Raspberry Pi.

You will learn the following topics in this chapter:

• Introducing a traffic light controller
• Designing a traffic light controller
• Controlling AC/DC lamps using channel relay modules
• Expanding Raspberry Pi GPIO
• Building a traffic light controller
• Cascading traffic light controllers

Introducing a traffic light controller
You can find traffic light controller devices at road intersections. They're used
to manage vehicle movement on the road. Every traffic light consists of three
lamps—red, yellow, and green. These colors have the following meaning:

• Red: Drivers must stop their vehicle
• Yellow: Drivers should prepare to start to drive or start to stop
• Green: Drivers must drive their vehicle

Building Your Own Traffic Light Controller

[80]

A sample traffic light can be seen in the following figure:

These traffic lights are usually placed at the corner of a road intersection, as shown in
the following diagram. You can see them on your left- or right-hand side. Sometimes,
they're shown over the top of your vehicle:

Chapter 5

[81]

In general, there can be two, three, four or n road intersections. We know that a
traffic light needs three lamps, so to implement n road intersections, you need at
least 3n lamps. You may need walking and do not work lamps. Some traffic road
intersections can be seen in the following figure:

In this chapter, I will show you how to build a traffic light controller with four road
intersections. In addition, I will share how to cascade our traffic light controller
for several road intersections.

Designing a traffic light controller
To design a traffic light controller, you should identify what kind of road intersection
model and connecting module among the lamps you want to build. For instance, if
you want to build a traffic light controller for a four-road intersection, you need 12
lamps. This model needs at least 12 pins on Raspberry Pi GPIO.

Building Your Own Traffic Light Controller

[82]

In the real implementation process, lamps in a traffic light controller use AC as
a power source, so you can't connect them to your Raspberry Pi board. It can be
addressed by using a channel relay. A sample of a channel relay form can be seen
in the following figure:

Some channel relay modules provide wireless links, such as radio, WiFi and XBee,
which can be used by Microcontrollers (MCUs) to control these modules, so you
don't need cables to connect lamps to MCU.

Controlling AC/DC lamps using channel
relay modules
A channel relay is a large mechanical switch. This switch is toggled on or off by
energizing a coil. Wiring between the I/O control and the relay output does not
connect with each other, so the MCU, which controls the I/O relay, is safe. For
further information about how to use a relay, read the article available at
http://www.circuitstoday.com/working-of-relays.

http://www.circuitstoday.com/working-of-relays

Chapter 5

[83]

You can buy a channel relay module from your local electronics or online stores.
The following are the online stores to get this stuff:

• Sainsmart, http://www.sainsmart.com/arduino/arduino-components/
relays.html

• Sparkfun, https://www.sparkfun.com/products/11042
• DFRobot, http://www.dfrobot.com/index.php?route=product/

product&product_id=992

• Amazon, http://www.amazon.com/
• SunFounder, http://www.sunfounder.com/
• LinkSprite, http://store.linksprite.com/

If you note a channel relay module, you should see some of the output pins,
such as COM, N/A, NO, and NC, on the relay module body. These pin names
stand for the following:

• COM(IN): This is an input positive wire from the appliance
• N/A: This indicates no connection
• NO: This is normally open, which means that when the relay is on

(a digital high 1 is received from an embedded board), the device is on
• NC: This is normally closed, which means that when the relay is off

(a digital low 0 is received from an embedded board), the device is on

You can connect the electrical device to the relay module either via NO and COM or
COM and NIC. The wiring is depicted in the following figure:

http://www.sainsmart.com/arduino/arduino-components/relays.html
http://www.sainsmart.com/arduino/arduino-components/relays.html
https://www.sparkfun.com/products/11042
http://www.amazon.com/
http://www.sunfounder.com/
http://store.linksprite.com/
www.dfrobot.com
http://www.dfrobot.com/index.php?route=product/product&product_id=992

Building Your Own Traffic Light Controller

[84]

For the demo purpose, we will use a channel relay with Raspberry Pi. The following
is our wiring for the demo:

• The relay input pin is connected to GPIO18 on a Raspberry Pi board
• The relay VCC pin is connected to VCC +5 V Raspberry Pi
• The relay GND pin is connected to GND Raspberry Pi
• The relay NC pin is connected to the −V lamp
• The relay COM pin is connected to the +V lamp

The following is the wiring of this demo:

Chapter 5

[85]

A sample of the wiring implementation is shown in following figure:

Now we start to write a program. Because we connect our lamp to the NC pin,
it means we can turn on the lamp by sending a high value to the channel relay
module. We will develop a simple app for blinking lamps.

In our program, we use the WiringPi library to access Raspberry Pi GPIO. Create a
file named ch05_01.py and write the following completed code:

ch05_01.py

import wiringpi2 as wiringpi
import time

initialize
wiringpi.wiringPiSetup()

define GPIO mode
GPIO18 = 1
LOW = 0

Building Your Own Traffic Light Controller

[86]

HIGH = 1
OUTPUT = 1
wiringpi.pinMode(GPIO18, OUTPUT)

turn on LED sequentially
try:
 while 1:
 print("turn on Lamp")
 wiringpi.digitalWrite(GPIO18, HIGH)
 time.sleep(2)
 print("turn off Lamp")
 wiringpi.digitalWrite(GPIO18, LOW)
 time.sleep(2)

except KeyboardInterrupt:
 wiringpi.digitalWrite(GPIO18, LOW)

print("done")

Here is the explanation:

• Initialize the WiringPi library by calling wiringPiSetup()
• Define GPIO18 as an output, which is used for a channel relay input
• Do a looping using the while syntax
• In the looping program, turn on the lamp by sending the high value via

digitalWrite()

• To turn off the lamp, send the low value to the relay module via
digitalWrite()

• Set the delay of about 2 seconds between turning on and turning off by
calling time.sleep(2); you may change the delay time to investigate
the program

Save this file. You can run this program by typing the following command:

sudo python ch05_01.py

Chapter 5

[87]

If successful, you should see the red light blinking on your circuit. You should see
the program output on the terminal too, as shown in following image:

Expanding Raspberry Pi GPIO
Let's consider that you want to build a five-road intersection model. This means that
you need at least 15 pins on Raspberry Pi GPIO. As you know, Raspberry Pi GPIO
has limited pins, so we need to expand Raspberry Pi GPIO.

There are many approaches to expand Raspberry Pi 2. In Chapter 2, Make Your Own
Countdown Timer, and Chapter 3, Make Your Own Digital Clock Display, we already
learned how to expand Raspberry Pi GPIO via the shift register method. Now, you
will see how to expand Raspberry Pi GPIO using another approach. Let's introduce
the IC MCP23017. It's a 16-bit input/output (I/O) port expander with interrupt
output and able to be cascaded for up to eight devices on one bus. The MCP23017
uses I2C for communication. Comparing with SPI, I2C uses a bus system with
bidirectional data on the SDA line. Otherwise, SPI is a point-to-point connection
with data in and data out on separate lines, MOSI and MISO. To communicate
devices through I2C, you need to specify a I2C address.

Building Your Own Traffic Light Controller

[88]

For further information about the IC MCP23017, you can read the datasheet document
at http://www.microchip.com/wwwproducts/Devices.aspx?product=MCP23017.
This chip is cheap, and you can get this stuff easily from your local electronics or online
store. A sample of the scheme of the IC MCP23017 can be seen in the following figure:

You can control I/O on the MCP23017 via I2C on Raspberry Pi. We already learned
how to work with I2C on Raspberry Pi in Chapter 3, Make Your Own Digital Clock
Display. To write a program based on I2C, we can use the python-smbus module.
We are going to use the same approach to access the IC MCP23017.

To understand the working of the IC MCP23017, we will build a simple program to
control three LEDs, which are connected to this chip.

http://www.microchip.com/wwwproducts/Devices.aspx?product=MCP23017

Chapter 5

[89]

The following hardware is needed:

• A Raspberry Pi board
• An IC MCP23017
• Three LEDs
• Cables

Based on the datasheet of the IC MCP23017, you can see this DIP model in the
following diagram:

Since the IC MCP23017 has 16-bit I/O pins, you can see the first 8-bit pins located on
GPA0 to GPA7 and the second 8-bit pins held by GPB0 to GPB7. In this demo, we use
only three pins on GPA0, GPA1, and GPA2.

To implement our wiring, you connect the parts as follows:

• SCL (pin 12) of the MCP23017 is connected to GPIO3 (SCL) Raspberry Pi
• SDA (pin 13) of the MCP23017 is connected to GPIO2 (SDA) Raspberry Pi
• VDD (pin 9) of the MCP23017 is connected to VCC +3.3 V Raspberry Pi
• VSS (pin 10) of the MCP23017 is connected to GND Raspberry Pi
• RESET (pin 18) of the MCP23017 is connected to VCC +3.3 V Raspberry Pi
• GPA0 (pin 21) of the MCP23017 is connected to LED 1
• GPA1 (pin 22) of the MCP23017 is connected to LED 2
• GPA2 (pin 23) of the MCP23017 is connected to LED 3
• A0 (pin 15), A1 (pin 16), and A2 (pin 17) are connected to VCC +3.3 V

Raspberry Pi

Building Your Own Traffic Light Controller

[90]

The wiring of this demo is shown in the following figure:

Chapter 5

[91]

A sample of my wiring implementation can be seen in the following figure:

After completing the wiring, you can plug the DC adapter into Raspberry Pi to
power up the board. To verify that our wiring is correct, you can use a i2cdetect
tool, a part of I2C tools. Please read Chapter 3, Make Your Own Digital Clock Display to
review Raspberry Pi I2C.

Type the following command:

sudo i2cdetect –y 1

Building Your Own Traffic Light Controller

[92]

This works for Raspberry Pi 2 and revision 2. You can check it by typing the
following command if you don't see anything:

sudo i2cdetect –y 0

Because A0, A1, and A2 pins of the IC MCP23017 are to be set to high, the chip will be
recognized on address 0x27. You should see a sample output in the following figure:

From the preceding figure, the IC MCP23017 was recognized on I2C bus 1, so you
pass the value 1 as the parameter on python-smbus.

Now you're ready to write a program. For testing, we will build a program for LED
sequential lights, which uses three LEDs. Based on the IC MCP23017 datasheet, we
can work with output port A with address 0x00 and port B with 0x01. To define the
output mode on pins, we set 0x14 into the register port.

Let's start writing the program. Create a file, named ch05_02.py, and write the
following complete code:

ch05_02.py

import smbus
import time

bus = smbus.SMBus(1) # Pi 2

MCP32017 = 0x27 # address (A0-A2).You can change it.
IODIRA = 0x00 # Pin A direction register
IODIRB = 0x01 # Pin B direction register
OUTPUT = 0x14 # Register for outputs

Chapter 5

[93]

all bits of IODIRA register to 0
bus.write_byte_data(MCP32017,IODIRA,0x00)

Set output all 7 output bits to 0
bus.write_byte_data(MCP32017,OUTPUT,0)

turn on LED sequentially
try:
 while 1:
 print("LED 1")
 bus.write_byte_data(MCP32017,OUTPUT,0b00000001)
 time.sleep(2)
 print("LED 2")
 bus.write_byte_data(MCP32017,OUTPUT,0b00000010)
 time.sleep(2)
 print("LED 3")
 bus.write_byte_data(MCP32017,OUTPUT,0b00000100)
 time.sleep(2)

except KeyboardInterrupt:
 bus.write_byte_data(MCP32017,OUTPUT,0)

print("done")

Here is the explanation:

• Initialize I2C via SMBus for I2C1. You can check I2C1 or I2C0 for your
device using the i2cdetect tool

• Set I/O port A of the IC MCP23017 to 0
• Set output of I/O port A to 0
• Turn on LED 1 by sending 0b00000001 to I/O port A using the

write_byte_data() function
• Turn on LED 2 by sending 0b00000010 to I/O port A using the

write_byte_data() function
• Turn on LED 3 by sending 0b00000100 to I/O port A using the

write_byte_data() function

Now you can execute this program. Type the following command:

sudo python ch05_02.py

Building Your Own Traffic Light Controller

[94]

You should see the LED sequential light. I have uploaded this running demo on
YouTube. You can see it at http://youtube/aXckEjPmEWA. The program displays
the output as shown in the following figure:

Building a traffic light controller
After having understood about a traffic light controller and learned how to use a
channel relay and how to expand Raspberry Pi GPIO, you are ready to build a traffic
light controller.

For testing, we will build a traffic light controller for four road intersections with the
following scenario:

• First, we set all intersections showing the red lamp
• To execute traffic light 1, we turn on the yellow lamp and then turn on the

green lamp
• After this, we turn on the red lamp on traffic light 1
• Repeat these steps for traffic lights 2, 3, and 4

The following hardware is needed:

• A Raspberry Pi board
• Twelve lamps with four red lamps, four yellow lamps, and four green lamps
• A 4 x 3-channel relay module
• An IC MCP23017
• Cables

http://youtube/aXckEjPmEWA

Chapter 5

[95]

In this case, you can ignore channel relay modules if you use a +3 V/+5 V LED, so
LEDs can be connected to the IC MCP23017 pins directly. To simplify this demo,
we use DC LEDs and don't need many-channel relay modules.

To implement our wiring, you connect all the parts as follows:

• SCL (pin 12) of the MCP23017 is connected to GPIO3 (SCL) Raspberry Pi
• SDA (pin 13) of the MCP23017 is connected to GPIO2 (SDA) Raspberry Pi
• VDD (pin 9) of the MCP23017 is connected to VCC +3.3 V Raspberry Pi
• VSS (pin 10) of the MCP23017 is connected to GND Raspberry Pi
• RESET (pin 18) of the MCP23017 is connected to VCC +3.3 V Raspberry Pi
• A0 (pin 15), A1 (pin 16), and A2 (pin 17) are connected to VCC +3.3 V

Raspberry Pi

Since we implement four intersections, we define the wiring of traffic lights
as follows:

• Intersection—1
 ° GPA0 (pin 21) of the MCP23017 is connected to the red LED
 ° GPA1 (pin 22) of the MCP23017 is connected to the yellow LED
 ° GPA2 (pin 23) of the MCP23017 is connected to the green LED

• Intersection—2
 ° GPA3 (pin 24) of the MCP23017 is connected to the red LED
 ° GPA4 (pin 25) of the MCP23017 is connected to the yellow LED
 ° GPA5 (pin 26) of the MCP23017 is connected to the green LED

• Intersection—3
 ° GPA6 (pin 27) of the MCP23017 is connected to the red LED
 ° GPA7 (pin 28) of the MCP23017 is connected to the yellow LED
 ° GPB0 (pin 1) of the MCP23017 is connected to the green LED

• Intersection—4

 ° GPB1 (pin 2) of the MCP23017 is connected to the red LED
 ° GPB2 (pin 3) of the MCP23017 is connected to the yellow LED
 ° GPB3 (pin 4) of the MCP23017 is connected to the green LED

Building Your Own Traffic Light Controller

[96]

You can see this wiring in the following figure:

Chapter 5

[97]

The following is the wiring implementation:

The next step is to build a program for a traffic light controller. The idea is similar as
the previous section.

Building Your Own Traffic Light Controller

[98]

To turn on/off a specific LED, we should send 16-bit data. The following is a table of
bit message for the IC MCP23017:

GPBx GPAx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xxx IR 4 IR 3 IR 2 IR 1
x x x x G Y R G Y R G Y R G Y R

Note the following:

• IR is intersection road
• R is red
• Y is yellow
• G is green

For example, we want to turn on all the red LEDs, so we can define the
following bits:

GPBx GPAx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xxx IR 4 IR 3 IR 2 IR 1
x x x x G Y R G Y R G Y R G Y R
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

For this table, we send 01001001 to GPA port from the IC MCP23017 and 00000010
to GPB port. Based on the IC MCP23017 datasheet, the address of port A and port B
are 0x14 and 0x15, respectively.

First, create a file named ch05_03.py, and write the complete code as follows:

ch05_03.py

import smbus
import time

bus = smbus.SMBus(1) # Pi 2

MCP32017 = 0x27 # address (A0-A2).You can change it.
IODIRA = 0x00 # Pin A direction register
IODIRB = 0x01 # Pin B direction register

Chapter 5

[99]

OUTPUTA = 0x14 # Register for output A
OUTPUTB = 0x15 # Register for output B

def turn_off_all():
 bus.write_byte_data(MCP32017,OUTPUTA,0)
 bus.write_byte_data(MCP32017,OUTPUTB,0)

def turn_on_red_all():
 bus.write_byte_data(MCP32017,OUTPUTA,0b01001001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000010)

def go_traffic(intersection):
 if intersection==1:
 print(">>>yellow")
 bus.write_byte_data(MCP32017,OUTPUTA,0b01001010)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000010)
 time.sleep(2)
 print(">>>green")
 bus.write_byte_data(MCP32017,OUTPUTA,0b01001100)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000010)
 time.sleep(3)

 if intersection==2:
 print(">>>yellow")
 bus.write_byte_data(MCP32017,OUTPUTA,0b01010001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000010)
 time.sleep(2)
 print(">>>green")
 bus.write_byte_data(MCP32017,OUTPUTA,0b01100001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000010)
 time.sleep(3)

 if intersection==3:
 print(">>>yellow")
 bus.write_byte_data(MCP32017,OUTPUTA,0b10001001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000010)
 time.sleep(2)
 print(">>>green")
 bus.write_byte_data(MCP32017,OUTPUTA,0b00001001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000011)
 time.sleep(3)

Building Your Own Traffic Light Controller

[100]

 if intersection==4:
 print(">>>yellow")
 bus.write_byte_data(MCP32017,OUTPUTA,0b01001001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00000100)
 time.sleep(2)
 print(">>>green")
 bus.write_byte_data(MCP32017,OUTPUTA,0b01001001)
 bus.write_byte_data(MCP32017,OUTPUTB,0b00001000)
 time.sleep(3)

all bits of registers to 0
bus.write_byte_data(MCP32017,IODIRA,0x00)
bus.write_byte_data(MCP32017,IODIRB,0x00)

turn_off_all()
turn_on_red_all()

try:
 while 1:
 print("road 1")
 go_traffic(1)
 turn_off_all()
 print("road 2")
 go_traffic(2)
 turn_off_all()
 print("road 3")
 go_traffic(3)
 turn_off_all()
 print("road 4")
 go_traffic(4)
 turn_off_all()

except KeyboardInterrupt:
 turn_off_all()

print("done")

Here is the explanation:

• Initialize I2C via SMBus for I2C1.
• Set I/O port A to 0.
• Set the output of I/O port A and B to 0 for initialization.

Chapter 5

[101]

• Define turn_off_all() to turn off all LEDs.
• Define turn_on_red_all() to turn on red LEDs.
• Define go_traffic() function to activate which traffic light runs.
• To turn on yellow and green LEDs, you can send 0b01001010 and

0b01001100. Please read the explanation given in the previous paragraph.
• Repeat the same steps for road intersections 2, 3, and 4.

If finished, you can run the program by typing the following command:

sudo python ch05_03.py

You should see the program output on the terminal. I have already uploaded
a running demo of this app. You can see it on YouTube, http://youtu.be/
jbKVAIwggUE.

Cascading traffic light controllers
You may want to control many traffic light controllers via one board, that is,
Raspberry Pi 2. It's possible. You just expand Raspberry Pi GPIO according to your
needs. In the previous section, we already learned how to expand Raspberry Pi GPIO
using the IC MCP23017. How to work with more than one IC MCP23017?

You can implement it with the following configuration:

• You can connect the SCL and SDA pins to the same pin for I2C
• Set the module address (A0, A1, and A2) with different address, for instance,

IC1 000 and IC2 111

http://youtu.be/jbKVAIwggUE
http://youtu.be/jbKVAIwggUE

Building Your Own Traffic Light Controller

[102]

Now, you can connect the lamps to the IC MCP23017 output pins as usual.
The following is a sample of the wiring implementation:

From the preceding figure, you can do construct the following wiring:

• All IC MCP23017 SDA pins are connected to Raspberry Pi SDA
• All IC MCP23017 SCL pins are connected to Raspberry Pi SCL
• All IC MCP23017 VCC pins are connected to Raspberry Pi +5 V
• All IC MCP23017 GND pins are connected to Raspberry Pi GND

Chapter 5

[103]

The following is the wiring implementation:

The next is to write a program. You can write a program using I2C as usual.
Make sure that each IC MCP23017 already sets its I2C address through A0, A1,
and A2 pins.

Summary
We already learned about a traffic light controller. The chapter introduced a road
intersection module at the start. A channel relay module is introduced in order to
work with AC or high-voltage lamps. We also learned how to expand our Raspberry Pi
GPIO. After this, we built a traffic light controller for four road intersections. In the last
section, we tried to cascade our traffic controller by connecting several IC MCP23017.

In the next chapter, we will learn to control sensor or actuator devices via Bluetooth
from a Raspberry Pi board.

[105]

Building Your Own Light
Controller-based Bluetooth

Bluetooth is a communication technology that enables devices to communicate
with others. In this chapter, we will build a light controller-based Bluetooth on a
Raspberry Pi board. We can control our LEDs, lamps, or other devices from any
device with a supporting Bluetooth stack.

You will learn the following topics in this chapter:

• Introducing Bluetooth
• Working with Bluetooth using Raspberry Pi
• Introducing iBeacon
• Bluetooth programming on Android
• Building a remote light controller-based Bluetooth

Introducing Bluetooth
Bluetooth is a communication technology that enables devices to communicate with
other devices. It's a part of wireless personal area network (WPAN) technology.
In real life, we can see that some electronic devices can be controlled via Bluetooth
network, for instance, listening to music using Bluetooth earphones, transferring a
file, and gathering sensing data.

Currently, the Bluetooth specification is managed by Bluetooth Special
Interest Group (SIG). They developed Bluetooth standards and specifications.
Bluetooth 4.3 was released in December 2014. Since Bluetooth 4.x released, this
standard is named as Bluetooth Low Energy (BLE). Sometimes, it's called
Bluetooth smart technology.

Building Your Own Light Controller-based Bluetooth

[106]

OS X, Linux, and Windows 8.x / 10, natively support BLE and mobile OS, including
iOS, Android, Windows phone, and BlackBerry. If your desktop OS doesn't support
BLE, you can install a BLE driver based on the hardware stack.

Not all Bluetooth devices support BLE. You can verify this from the device
information, such as device manager or system information. For instance, in OS X,
you should see it on system information, shown in Hardware - Bluetooth. It displays
Bluetooth Low Energy Supported: Yes:

Working with Bluetooth using
Raspberry Pi
Raspberry Pi doesn't come with a Bluetooth module in its board, so if you want
to work with Bluetooth stacks, you should attach a Bluetooth module. The easier
approach to attach a Bluetooth module into a Raspberry Pi board is to use Bluetooth
USBs. There are many Bluetooth USB devices.

Chapter 6

[107]

However, some Bluetooth USB devices are only compatible with Raspberry Pi.
The following is a list of the tested Bluetooth USBs:

• Bluetooth 4.0 USB Module (v2.1 Back-Compatible),
http://www.adafruit.com/products/1327

• JBtek, http://www.amazon.com/JBtek-Raspberry-Bluetooth-4-0-
adapter/dp/B00L08NCPQ/

• Black Bluetooth CSR 4.0, http://www.amazon.com/Black-Bluetooth-
Dongle-Adapter-Raspberry/dp/B010LOY438/

• Pluggable USB Bluetooth 4, http://www.amazon.com/Plugable-
Bluetooth-Adapter-Raspberry-Compatible/dp/B009ZIILLI/

• USB BLE Link, http://www.dfrobot.com/index.php?route=product/
product&product_id=1220

For further information about Bluetooth USBs for Raspberry Pi,
refer to http://elinux.org/RPi_USB_Bluetooth_adapters.

Some of these Bluetooth USBs are shown in the following image:

http://www.adafruit.com/products/1327
http://www.amazon.com/JBtek-Raspberry-Bluetooth-4-0-adapter/dp/B00L08NCPQ/
http://www.amazon.com/JBtek-Raspberry-Bluetooth-4-0-adapter/dp/B00L08NCPQ/
http://www.amazon.com/Black-Bluetooth-Dongle-Adapter-Raspberry/dp/B010LOY438/
http://www.amazon.com/Black-Bluetooth-Dongle-Adapter-Raspberry/dp/B010LOY438/
http://www.amazon.com/Plugable-Bluetooth-Adapter-Raspberry-Compatible/dp/B009ZIILLI/
http://www.amazon.com/Plugable-Bluetooth-Adapter-Raspberry-Compatible/dp/B009ZIILLI/
http://www.dfrobot.com/index.php?route=product/product&product_id=1220
http://www.dfrobot.com/index.php?route=product/product&product_id=1220
http://elinux.org/RPi_USB_Bluetooth_adapters

Building Your Own Light Controller-based Bluetooth

[108]

In addition, you can use a Bluetooth module that is attached to a Raspberry Pi board
via SPI, I2C, or UART. The following is a list of Bluetooth module samples:

• Bluetooth products from Tinysine, http://www.tinyosshop.com/index.
php?route=product/category&path=65_110

• A BLE link, http://www.dfrobot.com/index.php?route=product/
product&product_id=1073&search=ble&description=true#.
VbOyN3gkKfQ

• DFRobot Bluetooth v3, http://www.dfrobot.com/index.
php?route=product/product&product_id=360#.VbO67XgkKfQ

In the next section, we're going to set up and test Bluetooth USBs on the
Raspberry Pi board.

Setting up a Bluetooth USB
In this section, we try to set up our Bluetooth USB with Raspberry Pi. To work
with a Bluetooth stack, we need a Bluetooth library. We use the BlueZ library
(http://www.bluez.org). First, you need to install all the required libraries for
BlueZ. Type the following commands:

$ sudo apt-get update

$ sudo apt-get install libdbus-1-dev libdbus-glib-1-dev libglib2.0-dev
libical-dev libreadline-dev libudev-dev libusb-dev make

After that, you download the BlueZ library. For instance, we use BlueZ 5.32.
Then, download and extract it using the following commands:

$ wget https://www.kernel.org/pub/linux/bluetooth/bluez-5.32.tar.xz

$ tar xvf bluez-5.32.tar.xz

If finished, you can install the following library:

$ cd bluez-5.32

$./configure --disable-systemd

$ make

$ sudo make install

Now you can attach the Bluetooth USB to the Raspberry Pi board. Then, you can
verify it using lsusb:

$ lsusb

http://www.tinyosshop.com/index.php?route=product/category&path=65_110
http://www.tinyosshop.com/index.php?route=product/category&path=65_110
http://www.dfrobot.com/index.php?route=product/product&product_id=1073&search=ble&description=true#.VbOyN3gkKfQ
http://www.dfrobot.com/index.php?route=product/product&product_id=1073&search=ble&description=true#.VbOyN3gkKfQ
http://www.dfrobot.com/index.php?route=product/product&product_id=1073&search=ble&description=true#.VbOyN3gkKfQ
http://www.dfrobot.com/index.php?route=product/product&product_id=360#.VbO67XgkKfQ
http://www.dfrobot.com/index.php?route=product/product&product_id=360#.VbO67XgkKfQ
http://www.bluez.org

Chapter 6

[109]

You should get the Bluetooth USB with product ID information. For instance,
we will use Bluetooth 4.0 USB from CSR. It shows ID 0a12, so type this command
to get Bluetooth device information:

$ sudo lsusb -v -d 0a12:

The information obtained is as shown in the following screenshot:

Turning on/off Bluetooth
To check whether the Bluetooth USB is up or not, you can use the hciconfig
command. Type the following command:

$ hciconfig

You should see that the Bluetooth device information includes the address and
device state—UP or DOWN.

To turn on the Bluetooth USB, you can pass up a parameter on hciconfig.
For instance, the Bluetooth USB device is recognized as hci0:

$ sudo hciconfig hci0 up

Building Your Own Light Controller-based Bluetooth

[110]

In the following screenshot, you can see a sample output of executing command:

If you want to turn off your Bluetooth USB, you pass the down parameter on the
hciconfig tool:

$ sudo hciconfig hci0 down

In this state, the Bluetooth device doesn't receive or send any message.

Enabling discoverable
By default, our Bluetooth USB cannot be searched by other Bluetooth devices.
You can enable discoverable on the Bluetooth USB by passing the piscan parameter
on hciconfig as follows:

$ sudo hciconfig hci0 piscan

Chapter 6

[111]

When done, your Bluetooth USB can be detected on a Bluetooth app, for instance,
the Bluetooth from Raspberry Pi is detected by OS X as follows:

Scanning for Bluetooth Devices
You also can find other Bluetooth devices using hcitool by passing the scan
parameter. Type the following command:

$ hcitool scan

Building Your Own Light Controller-based Bluetooth

[112]

When done, you should see a list of Bluetooth devices that are running. It displays
Bluetooth address and name, as shown in the following screenshot:

Introducing iBeacon
iBeacon is a proprietary technology from Apple, which adds additional services to a
BLE stack. It usually provides location services on an iBeacon stack. An iBeacon stack
consists of universally unique identifier (UUID)—major and minor values. How to
implement iBeacon on Raspberry Pi? In the previous section, we already set up our
Bluetooth on Raspberry Pi.

Now we build iBeacon on the Bluetooth 4 (BLE) stack. Make sure that you have
already set up Bluetooth on Raspberry Pi. Please read this in the previous section.

After attaching the Bluetooth 4.0 USB to the Raspberry Pi board, turn on and
configure it. Type the following commands:

$ sudo hciconfig hci0 up

$ sudo hciconfig hci0 leadv 3

$ sudo hciconfig hci0 noscan

Chapter 6

[113]

We pass the leadv 3 parameters on hciconfig to disable the advertised
service connectable. The noscan parameter is used to disable our Bluetooth
device to do scanning.

The next step is to send an iBeacon packet. To transmit an iBeacon packet, you can
use hcitool using the following command:

sudo hcitool -i hci0 cmd 0x08 0x0008 package_flag vendor_info uuid major
minor power

For testing purpose, we use the following parameters:

• package_flag: 1E 02 01 1A 1A
• vendor_info: FF 4C 00 02 15
• major: 00 01
• minor: 00 00

To obtain a UUID, you can use Python to generate this UUID. Type the
following commands:

$ python

>>> import sys,uuid

>>> print(uuid.uuid4().hex)

Building Your Own Light Controller-based Bluetooth

[114]

When done, you should see that Python has generated a UUID, for instance,
9d79278addef413cadf6ee51ae5cf29d. It can be represented as 9D 79 27 8A DD
EF 41 3C AD F6 EE 51 AE 5C F2 9D.

Now, let's try to broadcast our iBeacon packet with the following command:

sudo hcitool -i hci0 cmd 0x08 0x0008 1E 02 01 1A 1A FF 4C 00 02 15 9D 79
27 8A DD EF 41 3C AD F6 EE 51 AE 5C F2 9D 00 00 01 00 C7 00

To read the iBeacon packet, you can use the iBeacon-based app on Android or iOS.
For instance, we will use the Bluetooth LE Scanner from the Android Play Store.
This tool can also provide the details of the iBeacon packet.

A sample output of BLE scanner tool is shown in following figure:

Chapter 6

[115]

To obtain the details of the Bluetooth device, you can tap the data to see the device
information. A sample of the detail information can be seen in the following figure:

Building Your Own Light Controller-based Bluetooth

[116]

Bluetooth programming on Android
An Android platform provides API to access Bluetooth. Not all Android-based
smartphones have BLE. There are many tools on Play Store to detect whether
Android's Bluetooth is BLE or not.

To work with Bluetooth on Android, we can use the android.bluetooth package
(http://developer.android.com/guide/topics/connectivity/bluetooth.
html).

For testing, we build an Android app that retrieves a list of paired Bluetooth devices
on an Android device. I use Intellij IDEA, https://www.jetbrains.com/idea, but
you can also use Android Studio, http://developer.android.com/sdk/index.
html. Download and install this tool.

Create a new project for Android named mybluetooth. First, modify the
AndroidManifest.xml file to enable Bluetooth features on the Android platform.
The following is the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="akur.mybluetooth"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="19"/>
 <uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE"/>
 <uses-permission
 android:name="android.permission.ACCESS_WIFI_STATE"/>
 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission
 android:name="android.permission.BLUETOOTH_ADMIN"/>
 <application android:label="@string/app_name"
 android:icon="@drawable/ic_launcher">
 <activity android:name="MyActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category
 android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://developer.android.com/guide/topics/connectivity/bluetooth.html
https://www.jetbrains.com/idea
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Chapter 6

[117]

We build an Android UI using TextView, which will render a list of paired Bluetooth
devices. Write this script on main.xml from the /res/layout project folder:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:id="@+id/tvBlueInfo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

Create a new class named BlueConnection to retrieve information from the
Bluetooth device. Write the following code into the BlueConnection.java file:

package akur.mybluetooth;

import android.bluetooth.BluetoothAdapter;

public class BlueConnection {
 private static boolean state = false;

 public static boolean getBlueTooth() {

 BluetoothAdapter bluetooth =
 BluetoothAdapter.getDefaultAdapter();
 if (!bluetooth.isEnabled()) {
 System.out.println("Bluetooth is Disable...");
 state = true;
 } else if (bluetooth.isEnabled()) {
 String address = bluetooth.getAddress();
 String name = bluetooth.getName();
 System.out.println(name + " : " + address);
 state = false;
 }
 return state;
 }
}

Building Your Own Light Controller-based Bluetooth

[118]

The last task is to modify our main program. Modify the MyActivity.java file and
write the following code:

package akur.mybluetooth;

import java.util.Set;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.content.Intent;
import android.widget.TextView;
import android.widget.Toast;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {
 private static final int REQUEST_ENABLE_BT = 12;
 private TextView view;
 private BluetoothAdapter adapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 view = (TextView) findViewById(R.id.tvBlueInfo);
 displayData();

 if (BlueConnection.getBlueTooth()) {
 Intent enableBtIntent = new Intent(
 BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);
 }
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 view.setText("");
 displayData();
 }

 private void displayData() {

 adapter = BluetoothAdapter.getDefaultAdapter();
 view.append("\nAdapter: " + adapter.toString() + "\n\nName: "
 + adapter.getName() + "\nAddress: " + adapter.getAddress());

Chapter 6

[119]

 if (adapter == null) {
 Toast.makeText(this, "Bluetooth NOT supported. Aborting.",
 Toast.LENGTH_LONG).show();
 }

 view.append("\n\nStarting discovery...");
 adapter.startDiscovery();
 view.append("\nDone with discovery...\n");

 view.append("\nDevices Paired:");
 Set<BluetoothDevice> devices = adapter.getBondedDevices();
 for (BluetoothDevice device : devices) {
 view.append("\nDevice: " + device.getName() + " Add: "
 + device.getAddress());
 }
 }
}

Save this project. Compile and build this project into the .apk file. Then, deploy
the .apk file into your Android device. I tested and deployed it into a Nexus 7
(generation 2) device.

Now, you can run this program. A sample program output is shown in the
following figure:

Building Your Own Light Controller-based Bluetooth

[120]

Building a remote light controller-based
Bluetooth
In Chapter 5, Building Your Own Traffic Light Controller, we already developed a traffic
light controller. However, we controlled the lamps/LEDs directly from an internal
app in Raspberry Pi. In this section, we will build an app that controls actuator or
sensor devices on Raspberry Pi remotely via Bluetooth.

For testing, we will use three LEDs as actuator devices, which are controlled
from the Android app via the Bluetooth module. We will use the HC-06 Bluetooth
serial device, and the price is cheap. This module uses a Universal Asynchronous
Receiver/Transmitter (UART) to send and receive a Bluetooth packet. You can get
this module from eBay, Amazon, or your local electronics store:

Wiring
To build our demo, we need the following hardware:

• A Raspberry Pi board
• An HC-06 Bluetooth serial
• Three LEDs
• Cables

Chapter 6

[121]

The following is the hardware wiring:

• The HC-06 TX is connected to Raspberry Pi RX
• The HC-06 RX is connected to Raspberry Pi TX
• The HC-06 GND is connected to Raspberry Pi GND
• The HC-06 VCC is connected to Raspberry Pi VCC +3.3 V
• LED 1 is connected to Raspberry Pi GPIO17
• LED 2 is connected to Raspberry Pi GPIO27
• LED 3 is connected to Raspberry Pi GPIO23
• All LED GND pins are connected to Raspberry Pi GND

These connections are also shown in the following image:

Building Your Own Light Controller-based Bluetooth

[122]

Building a program for Raspberry Pi
An HC-06 Bluetooth module works with UART, so our Raspberry Pi should be
configured to enable UART. By default, UART pins are used as a serial console.
Raspberry Pi uses it for debugging. We need to disable this feature to use UART
on Raspberry Pi GPIO.

Modify the /boot/cmdline.txt file:

$ sudo nano /boot/cmdline.txt

If you see console=ttyAMA0, 115200 in this file, please remove it:

A sample file output after modification can be seen in the following figure:

Chapter 6

[123]

When finished, you must reboot Raspberry Pi.

To build a Python program that uses UART, we can use the pyserial library,
https://pypi.python.org/pypi/pyserial. You can install it via pip or
easy_install:

$ pip install pyserial
$ easy_install -U pyserial

Now we can write the Python program. The following is our program algorithm:

• Initialize the serial port and GPIO
• Wait for an incoming message from UART
• If UART data = 1, the program will turn on LED 1
• If UART data = 2, the program will turn on LED 2
• If UART data = 3, the program will turn on LED 3
• If UART data = 4, the program will turn off LED 1
• If UART data = 5, the program will turn off LED 2
• If UART data = 6, the program will turn off LED 3

To implement this scenario, write the following complete code:

ch06_01.py

import wiringpi2 as wiringpi
import sys, serial
import time

initialize
print("initializing...")
wiringpi.wiringPiSetup()

define GPIO mode
GPIO17 = 0
GPIO27 = 2
GPIO23 = 4
LOW = 0
HIGH = 1
OUTPUT = 1
define serial port for bluetooth HC-06
port = '/dev/ttyAMA0'
baudrate = 9600

wiringpi.pinMode(GPIO17, OUTPUT) # LED 1
wiringpi.pinMode(GPIO27, OUTPUT) # LED 2
wiringpi.pinMode(GPIO23, OUTPUT) # LED 3

https://pypi.python.org/pypi/pyserial

Building Your Own Light Controller-based Bluetooth

[124]

def enum(**enums):
 return type('Enum', (), enums)

Status = enum(LED1ON='1', LED2ON='2', LED3ON='3',LED1OFF='4',
LED2OFF='5', LED3OFF='6')

make all LEDs off
def clear_all():
 wiringpi.digitalWrite(GPIO17, LOW)
 wiringpi.digitalWrite(GPIO27, LOW)
 wiringpi.digitalWrite(GPIO23, LOW)

print("opening serial port")
ser = serial.Serial(port, baudrate, timeout=0)
if ser.isOpen():
 ser.close()
ser.open()
print(ser.isOpen())
print("running now")
test write
ser.write('9')
try:
 clear_all()
 while 1:
 ret = ''
 #while ser.inWaiting() > 0:
 #ret = ser.read(1)
 ret = ser.readline()

 if ret != '':
 ret = ret.strip("\r\n")
 print "RCV: " + ret
 ser.write("OK")

 if(ret in Status.LED1ON):
 wiringpi.digitalWrite(GPIO17, HIGH)
 if(ret in Status.LED1OFF):
 wiringpi.digitalWrite(GPIO17, LOW)
 if(ret in Status.LED2ON):
 wiringpi.digitalWrite(GPIO27, HIGH)
 if(ret in Status.LED2OFF):
 wiringpi.digitalWrite(GPIO27, LOW)
 if(ret in Status.LED3ON):
 wiringpi.digitalWrite(GPIO23, HIGH)
 if(ret in Status.LED3OFF):
 wiringpi.digitalWrite(GPIO23, LOW)

 time.sleep(1)

except KeyboardInterrupt:

Chapter 6

[125]

 clear_all()
 ser.close()

print("done")

Save this code into a file named ch06_01.py.

Building a Bluetooth app for Android
In this case, we will use the existing Android app from the Play Store. You can use
the Bluetooth Terminal app, which is free:

Building Your Own Light Controller-based Bluetooth

[126]

After getting it installed, you can pair HC-06 Bluetooth to Android. By default,
the pair key of HC-06 Bluetooth is 1234.

Testing
The next step is to test our program, ch06_01.py. First, run the Python program on
Raspberry Pi:

$ sudo python ch06_01.py

After that, run Bluetooth Terminal. Select the paired Bluetooth for HC-06.
Don't forget to check Append newline (\r\n):

Now, you can try to send message 1, 2, or 3 to turn on LED 1, 2, or 3, respectively.
You can send message 4, 5, or 6 to turn off LED 1, 2, or 3, respectively.

Chapter 6

[127]

A sample hardware output is shown in the following figure:

The program also generated output data in the terminal. You can see it in the
following figure:

Building Your Own Light Controller-based Bluetooth

[128]

Summary
We already learned how to set up Bluetooth and iBeacon with Raspberry Pi.
Furthermore, communication between Raspberry Pi and Android was established
via Bluetooth. In the last section, we tried to build a remote light controller which
controls LEDs on Raspberry Pi via Bluetooth from Android.

In the next chapter, we will learn how to apply the Internet of things for Raspberry Pi
to control LEDs and lamps.

[129]

Making Your Own Controlled
Lamps Through Internet

Network
The Internet network connects devices together. Internet coverage is huge. In this
chapter, we make our own controlled lamps through Internet network. We can
control our LEDs, lamps, or other devices from any device with a supporting
Internet network stack.

You will learn the following topics in this chapter:

• Connecting the Raspberry Pi to a network
• Introducing Node.js
• Controlling LEDs and lamps using Node.js
• Building a simple web server using Node.js
• Building RESTful using Node.js
• Controlling LEDs through RESTful
• Building a PhoneGap application for Android
• Connecting PhoneGap Android to Raspberry Pi through RESTful

Connecting the Raspberry Pi to a network
We can obtain information, such as temperature and humidity at a particular
location, through the Internet. In daily lives, we use the Internet to surf via a
browser. In this section, we will try to connect Raspberry Pi to either a wired or
wireless network.

Making Your Own Controlled Lamps Through Internet Network

[130]

There are many benefits that we can obtain while connecting Raspberry Pi to a
network. We can retrieve sensor data or just control actuator devices on Raspberry Pi.

Connecting to a wired network
By default, Raspberry Pi, such as Raspberry Pi 2 model B and Raspberry Pi 1 model
B+, has installed Ethernet, so we can connect it to a network via a UTP cable. If a
UTP cable is connected to the Internet network, Raspberry Pi will be able to access
the Internet network.

Connect your Raspberry Pi to the network through a UTP cable. In your network,
make sure that there is a DHCP server because Raspberry Pi, by default, is
configured as a DHCP client. This means Raspberry Pi will acquire an IP address:

After getting connected to a network, you can verify the IP address of
Raspberry Pi. You can use the ifconfig command in a terminal to display
the Raspberry Pi IP address:

$ ifconfig

Chapter 7

[131]

Then, you should see the IP address of Raspberry Pi as follows:

If you want to change Raspberry Pi's IP address with a static IP address, you can
modify the /etc/network/interfaces file. Open this file, for instance, and use nano:

$ sudo nano /etc/network/interfaces

Change dhcp to a static value to configure the static IP address on Raspberry Pi.
For instance, you want to set the IP address 192.168.1.10 to Raspberry Pi. The
following is the complete script of the /etc/network/interfaces file:

iface eth0 inet static

address 192.168.1.10

netmask 255.255.255.0

gateway 192.168.1.1

Making Your Own Controlled Lamps Through Internet Network

[132]

Connecting to a wireless network
Raspberry Pi can be connected to a Wi-Fi network by attaching a Wi-Fi USB.
The official Wi-Fi USB can be obtained from https://www.raspberrypi.org/
products/usb-wifi-dongle/. You can also use another Wi-Fi USB from third-party
vendors at your local electronics stores. The following is a list of Wi-Fi USBs for
Raspberry Pi:

• The Wi-Fi USB module for Raspberry Pi,
http://www.adafruit.com/products/1012

• The miniature Wi-Fi USB module for Raspberry Pi,
http://www.adafruit.com/products/2638

Let's start by attaching the Wi-Fi USB into a Raspberry Pi board. We can use the
Wi-Fi USB from Belkin. This tool is recognized by the Raspbian OS:

We can connect to a hotspot via a GUI and a command line. If you're
working on a Raspbian desktop, you should see a Wi-Fi configuration tool in
Menu—Preferences. Open WiFi Configuration, so you can see this tool form,
as shown in the following figure:

https://www.raspberrypi.org/products/usb-wifi-dongle/
https://www.raspberrypi.org/products/usb-wifi-dongle/
http://www.adafruit.com/products/1012
http://www.adafruit.com/products/2638

Chapter 7

[133]

To select a hotspot, you click the Scan button. Then, there is a list of SSIDs. Select your
SSID and fill in the SSID key. Click the Scan button. Then, select the preferred SSID:

Making Your Own Controlled Lamps Through Internet Network

[134]

After getting connected, you should see the IP address of Raspberry Pi, for instance,
192.168.0.28. To verify the installed network, you can use a browser and navigate
to a particular URL:

We can set a specific SSID by modifying the /etc/network/interfaces file.
For instance, your Raspberry Pi connects to MySSID with key MySSIDKey.
Add the following scripts:

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
 wpa-scan-ssid 1
 wpa-ap-scan 1
 wpa-key-mgmt WPA-PSK
 wpa-proto RSN WPA
 wpa-pairwise CCMP TKIP
 wpa-group CCMP TKIP
 wpa-ssid "MySSID"
 wpa-psk "MySSIDKey"

iface default inet dhcp

Save and restart the network service. Type these commands:

$ sudo /etc/init.d/networking stop

$ sudo /etc/init.d/networking start

Chapter 7

[135]

You can also reboot Raspberry Pi if you obtain an error. Just type the following
command to restart Raspberry Pi:

$ sudo reboot

To verify your Internet network, you can do ping or open a browser that is navigated
to a specific URL:

Introducing Node.js
Node.js is used to build a network and a server-side application. We can also build
web applications using Node.js. In this section, I will introduce you to how to use
Node.js on Raspberry Pi. Then, use it to control sensor or actuator devices. The last
task is to show how to publish sensor or actuator to be controlled via a browser or a
mobile Android application. For further information about Node.js, you can visit the
official Node.js website at http://www.nodejs.org.

http://www.nodejs.org

Making Your Own Controlled Lamps Through Internet Network

[136]

To install Node.js runtime on Raspberry Pi, assuming that you use Raspbian OS,
you can type the following commands in the terminal:

$ sudo apt-get update

$ sudo apt-get install nodejs

To verify the Node.js program, you can type the following command:

$ nodejs -v

You can also install Node.js using Adafruit's Raspberry Pi package repository.
Type the following commands:

$ curl -sLS https://apt.adafruit.com/add | sudo bash

$ sudo apt-get install node

After the installation, you can type the following command to check a Node program:

$ node -v

Those methods take the older version of Node.js. You can install the latest version of
Node.js by compiling Node.js source code. The advantage of this approach is to get
the latest version of Node.js and minimize the library dependencies. I recommend
you do it this way. You don't need to do the first and second of the previous tasks to
install Node.js from source code. By default, GCC is already installed on Raspberry
Pi. If it is not installed, you can install it by typing the following commands:

$ sudo apt-get update

$ sudo apt-get install build-essential

Now you can download and extract the source code file using the
following commands:

$ wget http://nodejs.org/dist/node-latest.tar.gz

$ tar -xzf node-latest.tar.gz

You should see a folder node-vX.Y.Z where X.Y.Z is a Node.js version. For instance,
I have node-v0.12.7. Then, type the following commands to install Node.js from
the source code:

$ ls

$ cd node-v0.12.7

$./configure

$ make

$ sudo make install

Chapter 7

[137]

The compiling process takes a long time. After finishing the installation, you can
verify using the node –v command:

To test our Node.js program, you can write a simple Node.js app, Hello World.
Create a file named hello.js and write the following script:

// hello.js
console.log("Hello Node.js");

Save this file. Then, you can run this file using the node or nodejs command:

$ node hello.js

You should see the program output, which displays Hello Node.js:

Making Your Own Controlled Lamps Through Internet Network

[138]

Controlling LEDs and lamps using
Node.js
In some previous chapters, we learned how to control sensor or actuator devices
using Python. In this section, I will show you how to build a program using Node.
js to control simple actuator devices, such as LEDs. There are many Node.js libraries,
which are able to access Raspberry Pi GPIO. One of these libraries is rpi-gpio.
You can find it at https://www.npmjs.com/package/rpi-gpio.

You can install rpi-gpio using the npm command:

$ npm install rpi-gpio

Your Raspberry Pi must be connected to an Internet network because Pi needs to
download this module.

Another approach is that you can define your module dependencies on the
package.json file. Just write this script into a file named package.json:

{
 "name": "chapter7",
 "version": "0.0.1",
 "dependencies":{
 "rpi-gpio": "latest",
 "async": "latest"

 }
}

After that, you can install Node.js modules from the package.json file by typing the
following command:

$ npm install

https://www.npmjs.com/package/rpi-gpio

Chapter 7

[139]

To use the rpi-gpio library, we will try to build a simple program, blinking.
We need three LEDs, which are attached to Raspberry Pi GPIO. In this scenario,
we're going to turn on/off these LEDs. The following is the hardware wiring:

• LED 1 is connected to Raspberry Pi GPIO0 (physical 11, BCM=17)
• LED 2 is connected to Raspberry Pi GPIO2 (physical 13, BCM=27)
• LED 3 is connected to Raspberry Pi GPIO3 (physical 15, BCM=22)

You can see my wiring implementation, as shown in the following figure:

The rpi-gpio library defines the GPIO pin using BCM and Pi. By default, this
library uses Pi GPIO. You can see Raspberry Pi GPIO using gpio readall (please
read Chapter 1, Getting started with LED programming through Raspberry Pi GPIO).
Since Node.js runs asynchronously, we can use the async library to run Node.js
synchronously. Type the following command to install async:

$ npm install async

Making Your Own Controlled Lamps Through Internet Network

[140]

We need the async module because Node.js runs single threads and leverages
asynchronous calls. The async module can be used to make sure that our tasks run
sequentially; for instance, write data into GPIO after opening GPIO. You can read
further information about the async module at https://github.com/caolan/async.

Now, let's start to build our program. Create a file named blinking.js and write
the complete code as follows:

// blinking.js
var gpio = require('rpi-gpio');
var async = require('async');

async.parallel([
 function(callback) {
 gpio.setup(11, gpio.DIR_OUT, callback)
 },
 function(callback) {
 gpio.setup(13, gpio.DIR_OUT, callback)
 },
 function(callback) {
 gpio.setup(15, gpio.DIR_OUT, callback)
 }
], function(err, results) {
 console.log('Pins set up');
 write();
});

function write() {
 async.series([
 function(callback) {
 delayedWrite(11, true, callback);
 },
 function(callback) {
 delayedWrite(13, true, callback);
 },
 function(callback) {
 delayedWrite(15, true, callback);
 },
 function(callback) {
 delayedWrite(11, false, callback);
 },
 function(callback) {
 delayedWrite(13, false, callback);
 },

https://github.com/caolan/async

Chapter 7

[141]

 function(callback) {
 delayedWrite(15, false, callback);
 }
], function(err, results) {
 console.log('Writes complete, pause then unexport pins');
 setTimeout(function() {
 gpio.destroy(function() {
 console.log('Closed pins, now exit');
 });
 }, 500);
 });
}

function delayedWrite(pin, value, callback) {
 setTimeout(function() {
 gpio.write(pin, value, callback);
 }, 500);
}

Save this code.

The explanation is as follows:

• First, we define our pin mode using gpio.setup() as DIR_OUT for all LEDs.
• To turn on the LED, we call gpio.write() by passing true, and to turn it

off, we pass false.
• The delay process can be used to hold a specific task, for instance, hold

lighting LED for about 500 ms. To simulate delay() in our program, we can
use setTimeout() about 500 ms. The setTimeout() function has already
been available in JavaScript.

• gpio.destroy() is used to release all usage resources.

Since the program accesses hardware, you should use sudo while running the
program. Type the following command to run the program:

$ sudo node blinking.js

This program will turn on LED 1, 2, and 3. After this, the program will turn off all
LEDs sequentially. You can see the sample of lighting LED and the program output.

Making Your Own Controlled Lamps Through Internet Network

[142]

A sample output from a program can be seen in the following figure:

Three LEDs are lit sequentially. A sample output of lit LEDs can be seen in the
following figure:

Chapter 7

[143]

Building a simple web server using
Node.js
As I stated, Node.js can be used to build a web application. We can use the HTTP
library to build a simple web server. Let's try to write the following code:

var http = require('http');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello Node.js');
}).listen(8056);
console.log('Server running at port 8056');

Save this code into a file named mywebserver.js. The http.createServer()
function is used to create a web server with a specific port. In this case, I used
port 8056.

Now you can run this file. Type the following command:

$ node mywebserver.js

To test this program, open a browser and navigate to http://<ip_address_
raspberry_pi>:8056. You should see Hello Node.js in your browser as follows:

Building RESTful using Node.js
After creating a simple web server, we can build a simple RESTful. REST stands
for Representational State Transfer. It uses primitive HTTP operations to maintain
communication between the server and the client. In this section, I implement
RESTful using Express for Node.js. This library can cut your development time
to build a web application.

Making Your Own Controlled Lamps Through Internet Network

[144]

For further information about Express, please visit http://expressjs.com. We also
need body-parser to work with JSON data. JSON (JavaScript Object Notation) is a
lightweight data-interchange format and easy to read and write. The following is a
sample of JSON data:

{
 name: 'foo',
 email: 'foo@email.com',
 leve: 3
}

We are going to use JSON to exchange data between the server and the client.

To install Express and body-parser, you can use npm. Type the following commands:

$ npm install express

$ npm install body-parser

For testing, we build a simple RESTful app, which serves HTTP GET JSON. Create a
file named myrest.js and write the complete code as follows:

// myrest.js
var express = require('express');
var app = express();
var bodyParser = require('body-parser');
var port = 8099;

app.use(bodyParser.urlencoded({ extended: false }));
app.use(bodyParser.json());

app.get('/', function (req, res) {
 var data ={
 status:"ok",
 msg: "hello world"
 };
 res.json(data);
});

app.listen(port);
console.log('Server was started on ' + port);

This program will run on port 8099. To run the program, you can type the
following command:

$ node myrest.js

http://expressjs.com

Chapter 7

[145]

Then, open your browser and navigate to http://<ip_address_of_app>:8099/.
You should see the JSON data from the server:

Controlling LEDs through RESTful
After learning to build a RESTful app, we continue to control sensor or actuator
devices from RESTful. For instance, we want to turn on an LED by calling
http://<server>/led1. In this case, Express receives HTTP GET from client. If the
request is /led1, Express will turn on the LED for a certain time and then turn it off.

To implement this scenario, let's start to build a program. Create a file named
ledrest.js and write the following complete code:

// ledrest.js
var gpio = require('rpi-gpio');
var express = require('express');
var app = express();
var bodyParser = require('body-parser');
var port = 8099;

app.use(bodyParser.urlencoded({ extended: false }));
app.use(bodyParser.json());

gpio.setup(11, gpio.DIR_OUT);
gpio.setup(13, gpio.DIR_OUT);
gpio.setup(15, gpio.DIR_OUT);

function off1() {
 setTimeout(function() {
 gpio.write(11, 0);
 }, 2000);

Making Your Own Controlled Lamps Through Internet Network

[146]

}
function off2() {
 setTimeout(function() {
 gpio.write(13, 0);
 }, 2000);
}
function off3() {
 setTimeout(function() {
 gpio.write(15, 0);
 }, 2000);
}

function run_led1() {
 setTimeout(function() {
 console.log('led1 is on');
 gpio.write(11, 1, off1);

 }, 2000);
}
function run_led2() {
 setTimeout(function() {
 console.log('led2 is on');
 gpio.write(13, 1, off2);

 }, 2000);
}
function run_led3() {
 setTimeout(function() {
 console.log('led3 is on');
 gpio.write(15, 1, off3);

 }, 2000);
}

app.get('/led1', function (req, res) {
 run_led1();

 var data ={status:"ok",led:1};
 res.json(data);
});
app.get('/led2', function (req, res) {
 run_led2();

 var data ={status:"ok",led:2};

Chapter 7

[147]

 res.json(data);
});
app.get('/led3', function (req, res) {
 run_led3();

 var data ={status:"ok",led:3};
 res.json(data);
});

app.listen(port);
console.log('Server was started on ' + port);

We use the same hardware wiring from the previous section, which involved
three LEDs. The LEDs are connected to GPIO0, GPIO2, and GPIO3.

Save this file. Run the program by typing the following command:

$ sudo node ledrest.js

To test the program, open a browser. For instance, we want to turn on/off LED 1,
so you navigate the browser to http://<server>:port/led1 . After navigating to
http://<server>:port/led1, you should see LED 1 is lit and then it's off. Try to
test LED 2 and 3. A sample output for a lit LED and program output can be seen in
the following figure:

Making Your Own Controlled Lamps Through Internet Network

[148]

You should also see a response from the server on your browser. A sample output
from the browser can be seen in the following figure:

Building a PhoneGap application for
Android
In this section, we will build an Android application using PhoneGap.
This development is performed on your local computer.

PhoneGap is a tool to build a cross-platform mobile app using web technologies,
such as HTML5, JS, and Angular. This tool can cut down your mobile development
time. Once you have created the PhoneGap app, you can compile it to Android, iOS,
Windows Phone, and Blackberry. Please visit http://phonegap.com to get more
information about PhoneGap.

In this section, I only share how to build a PhoneGap app for an Android platform
target. The following are required libraries for PhoneGap:

• Java JDK, http://www.oracle.com/technetwork/java/javase/
downloads/index.html

• Android SDK, https://developer.android.com/sdk/index.html
• Ant, http://ant.apache.org
• Node.js, http://www.nodejs.org

You need to install an Android API, for instance, Android 4.0.x, Android Kitkat 4.4,
and Android simulator. These are used for development. Configuring an Android
simulator can be managed using AVD Android.

http://phonegap.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.android.com/sdk/index.html
http://ant.apache.org
http://www.nodejs.org

Chapter 7

[149]

Please configure your AVD Android to create an Android emulator, so you don't
need the real hardware to run an Android app. For testing, I used Android API 19
with Android 4.4.2:

You can install PhoneGap via Node.js. Type the following command:

$ sudo npm install -g phonegap

After it is installed, you can verify PhoneGap by checking its version:

$ phonegap -v

You should see the PhoneGap version.

Now, let's build the first PhoneGap Android app. To create PhoneGap, your computer
must be connected to the Internet network because it will download a project template.

Type the following commands:

$ phonegap create hello-android

$ cd hello-android

$ phonegap build android

$ phonegap run android --emulator

Making Your Own Controlled Lamps Through Internet Network

[150]

Boom! You should see the Android emulator as follows:

If you don't see your Android app on the emulator, you can run the following by
displaying the log message:

$ phonegap run android --emulator --verbose

The following is a list of recommendation you take to fix your problem:

• Add the icon.png file into the root folder of your project
• Change the minimum SDK version, for instance, 19, <preference

name="android-minSdkVersion" value="19" /> on the
config.xml file and <uses-sdk android:minSdkVersion="19"
android:targetSdkVersion="22" /> on the AndroidManifest.xml file

Connecting PhoneGap Android to
Raspberry Pi through RESTful
It's more convenient to control three LEDs from the Android app. It's fine if you use
a browser on Android and navigate to the RESTful server on Raspberry Pi. We call
our RESTful from the Android app. In this section, we will build a PhoneGap app
for the Android target and control the three LEDs. We use the previous program,
the ledrest.js file, as a RESTful server, which controls LEDs on Raspberry Pi.

Chapter 7

[151]

First, we create a PhoneGap project named leds-android:

$ phonegap create leds-android

$ cd /leds-android

$ phonegap build android --verbose

Try to run the program on the Android emulator for testing purposes:

$ phonegap run android --emulator --verbose

If the program runs well, we continue to modify our program. To communicate
between the PhoneGap Android and RESTful server, we use jQuery, the
https://jquery.com. Place jquery-*.*.*.min.js file into the <project_root>/
www/js folder. The next step is to modify the index.html and index.js files:

Making Your Own Controlled Lamps Through Internet Network

[152]

Basically, we add the jQuery file into index.html. Then, we add three buttons:
LED 1, LED 2, and LED 3. A click event on these buttons is implemented in the
index.js file. The following are the complete script for the index.html file:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="msapplication-tap-highlight" content="no" />
 <!-- WARNING: for iOS 7, remove the width=device-width and
height=device-height attributes. See https://issues.apache.org/jira/
browse/CB-4323 -->
 <meta name="viewport" content="user-scalable=no, initial-
scale=1, maximum-scale=1, minimum-scale=1, width=device-width,
height=device-height, target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <title>Hello World</title>
 </head>
 <body>
 <div class="app">
 <h1>PhoneGap</h1>
 <div>
 <input type="button" id="led1" value="LED 1">
 </div>
 <div>
 <input type="button" id="led2" value="LED 2">
 </div>
 <div>
 <input type="button" id="led3" value="LED 3">
 </div>
 </div>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/jquery-
 2.1.4.min.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript">
 app.initialize();
 </script>
 </body>
</html>

Chapter 7

[153]

Now modify the index.js file. In this file, we add a click event for three buttons.
To call RESTful from PhoneGap, we use $.ajax() from jQuery. Please change the IP
address of Raspberry Pi. The following is the complete scripts for the index.js file.

var app = {
 initialize: function() {
 this.bindEvents();
 },
 bindEvents: function() {
 document.addEventListener('deviceready', this.onDeviceReady,
false);
 },
 onDeviceReady: function() {
 app.receivedEvent('deviceready');
 },
 receivedEvent: function(id) {
 $("#led1").click(function(){
 $.ajax({
 url : 'http://192.168.0.22:8099/led1',
 type : 'GET',
 dataType : 'JSON',
 crossDomain: true,
 success : function(data) {
 alert(data.status);
 },
 error : function() {}
 });
 });
 $("#led2").click(function(){
 $.ajax({
 url : 'http://192.168.0.22:8099/led2',
 type : 'GET',
 dataType : 'JSON',
 crossDomain: true,
 success : function(data) {
 alert(data.status);
 },
 error : function() {}
 });
 });
 $("#led3").click(function(){
 $.ajax({
 url : 'http://192.168.0.22:8099/led3',
 type : 'GET',

Making Your Own Controlled Lamps Through Internet Network

[154]

 dataType : 'JSON',
 crossDomain: true,
 success : function(data) {
 alert(data.status);
 },
 error : function() {}
 });
 });
 }
};

Save all files.

You can build and run this program into the emulator:

$ phonegap build android --verbose

$ phonegap run android --emulator --verbose

After the program is loaded into the emulator, you should see three buttons. Click on
LED 1 to turn on LED 1 at a certain time. Test again by clicking on LED 2 and LED 3
too. You should get the ok response from the server:

Chapter 7

[155]

After your program is running, you can click on LED 1, 2, or 3 buttons to turn on the
LEDs. You should also see a notification dialog from the program, as shown in the
following figure:

Summary
We learned how to control a sensor or an actuator; for testing, we used LEDs, from
an Android app through RESTful. We built RESTful using Node.js and Express. For
more practices, you can build your own home automation, which can be controlled
from the Internet network.

By combining your experience from all the chapters, you can build applications by
utilizing a module based-LED on Raspberry Pi. We can control our program via
either a wired or wireless network, such as Wi-Fi and Bluetooth. This means that
you learned how to build an IoT application for Raspberry Pi.

[157]

Index
Symbols
4-digit 7-segment display

for digital clock 47-49
working with 38-43

7-segment display
about 21
driving, shift register used 34-37
program, building for displaying

numbers 0 to 9 22, 23, 28
types 22

A
AC/DC lamps

controlling, channel relay
modules used 82-86

Android
Bluetooth programming 116-119
PhoneGap application,

building for 148-150
android.bluetooth package

URL 116
Android Studio

URL 116
async module

URL 140

B
ball reflection game

building 72-74
Binary-Coded Decimal (BCD) value 42
Bluetooth

about 105, 106
Bluetooth devices, scanning for 111
Bluetooth USB, setting up 108

discoverable, enabling 110
turning on/off 109, 110
working with, Raspberry Pi used 106, 107

Bluetooth Low Energy (BLE) 105
Bluetooth module samples

BLE link 108
Bluetooth products, from Tinysine 108
DFRobot Bluetooth v3 108

Bluetooth programming,
on Android 116-119

Bluetooth smart technology 105
Bluetooth Special Interest Group (SIG) 105
Bluetooth USBs

Black Bluetooth CSR 4.0 107
Bluetooth 4.0 USB Module 107
JBtek 107
Pluggable USB Bluetooth 4 107
USB BLE Link 107

BlueZ library
URL 108

C
channel relay module

about 82
online stores 83
pins 83
reference 82
used, for controlling AC/DC lamps 83-86

countdown timer
building 43, 44

custom controlled lamps,
through Internet network

creating 129
Raspberry Pi, connecting

to network 129, 130

[158]

wired network, connecting to 130, 131
wireless network, connecting to 132-135

D
digital clock

4-digit 7-segment display 47-49
building, I2C OLED graphic

display used 57-59

E
Express

URL 144

G
General-purpose input/output (GPIO) 4

I
I2C (Inter-IC) bus 50
I2C OLED graphic display

about 49, 50
characters, displaying 54-56
I2C, enabling on Raspberry Pi 50-53
I2C library for Python 53
numbers, displaying 54-56
used, for building digital clock 57-59

iBeacon
about 112
building, on Bluetooth 4 (BLE)

stack 112-114
IC MAX7219

reference 63, 64
IC MCP23017

about 87
reference 88

integrated circuits (ICs) 50
Intellij IDEA

URL 116
Internet network 129

J
JSON (JavaScript Object Notation) 144

L
lamps

controlling, Node.js used 138-142
LED

controlling, Node.js used 138-142
controlling, through RESTful 145-148
turning on/off, through push button 11-14

LED blinking 7-10
LED dot matrix display

about 61-64
online electronics stores 63
random character, displaying 70-72
random number, displaying 68-70

LED dot matrix driver
about 64
matrix 7219 driver, deploying 66-68
Raspberry Pi SPI, enabling 65, 66

LED dot matrix modules
cascading 75-78

M
master 64
Master reset (MR) 30
matrix 7219 driver

deploying 66-68
reference 66

microcontroller (MCU) 28

N
Node.js

about 135
installing 136
program, testing 137
URL 135
used, for building RESTful 143, 144
used, for building simple web server 143
used, for controlling LEDs

and lamps 138-142

O
OLED (organic light-emitting diode) 49

[159]

P
PhoneGap

required libraries 148
URL 148

PhoneGap Android
connecting, to Raspberry Pi

through RESTful 150-155
PhoneGap application

building, for Android 148-150
pyserial library

reference 123

R
Raspberry Pi

about 1
download link 2
reference, for quick start guide 2

Raspberry Pi GPIO
about 4
accessing 4-6
expanding 87-93
references 4, 138

Raspberry Pi SPI
enabling 65, 66

remote light controller-based Bluetooth
Bluetooth app, building

for Android 125, 126
building 120
hardware wiring 121
program, building for

Raspberry Pi 122-125
testing 126, 127
wiring 120

RESTful
building, Node.js used 143, 144
LEDs, controlling through 145-148

RGB LED
color, changing through 14-19

RST (Representational State Transfer) 143

S
Serial Peripheral Interface (SPI) 64
shift register

about 28
used, for driving 7-segment display 34-37
using 29-33

simple web server
building, Node.js used 143

T
traffic light controller

about 79-81
building 94-100
cascading 101-103
designing 81, 82

types, 7-segment display
common anode (CA) 22
common cathode (CC) 22

U
Universal Asynchronous

Receiver/Transmitter (UART) 120
universally unique identifier (UUID) 112

W
Wi-Fi USB, for Raspberry Pi 132
wireless personal area

network (WPAN) 105
WiringPi

URL 5

Thank you for buying
Raspberry Pi LED Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Raspberry Pi Blueprints
ISBN: 978-1-78439-290-1 Paperback: 284 pages

Design and build your own hardware projects that
interact with the real world using the Raspberry Pi

1. Interact with a wide range of additional sensors
and devices via Raspberry Pi.

2. Create exciting, low-cost products ranging from
radios to home security and weather systems.

3. Full of simple, easy-to-understand
instructions to create projects that even
have professional-quality enclosures.

Raspberry Pi Super Cluster
ISBN: 978-1-78328-619-5 Paperback: 126 pages

Build your own parallel-computing cluster using
Raspberry Pi in the comfort of your home

1. Learn about parallel computing by building
your own system using Raspberry Pi.

2. Build a two-node parallel computing cluster.

3. Integrate Raspberry Pi with Hadoop to build
your own super cluster.

Please check www.PacktPub.com for information on our titles

Learning Raspberry Pi
ISBN: 978-1-78398-282-0 Paperback: 258 pages

Unlock your creative programming potential by
creating web technologies, image processing,
electronics- and robotics-based projects using the
Raspberry Pi

1. Learn how to create games, web, and desktop
applications using the best features of the
Raspberry Pi.

2. Discover the powerful development tools
that allow you to cross-compile your software
and build your own Linux distribution for
maximum performance.

3. Step-by-step tutorials show you how to quickly
develop real-world applications using the
Raspberry Pi.

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2 Paperback: 278 pages

Create amazing robotic projects on a
shoestring budget

1. Make your projects talk and understand speech
with Raspberry Pi.

2. Use standard webcam to make your projects
see and enhance vision capabilities.

3. Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online for
developing robotics projects.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with LED Programming through Raspberry Pi GPIO
	Setting up Raspberry Pi
	Introducing Raspberry Pi GPIO
	Blinking LEDs
	Turning an LED on/off using a push button
	Changing color through an RGB LED
	Summary

	Chapter 2: Make Your Own Countdown Timer
	Introducing a 7-segment display
	Introducing a shift register
	Driving a 7-segment display using a shift register
	Working with a 4-digit 7-segment display
	Building a countdown timer
	Summary

	Chapter 3: Make Your Own Digital Clock Display
	Introducing a 4-digit 7-segment display for a digital clock
	Introducing an I2C OLED graphic display
	Enabling I2C on Raspberry Pi
	The I2C library for Python
	Displaying numbers and characters

	Building a digital clock using an I2C OLED graphic display
	Summary

	Chapter 4: LED Dot Matrix�
	Introducing LED dot matrix display
(8 x 8 LEDs)
	Introducing an LED dot matrix driver
	Enabling Raspberry Pi SPI
	Deploying a matrix 7219 driver

	Displaying a random number on the LED dot matrix display
	Displaying a random character on the LED dot matrix display
	Building a ball reflection game
	Cascading LED dot matrix modules
	Summary

	Chapter 5: Building Your Own Traffic Light Controller
	Introducing a traffic light controller
	Designing a traffic light controller
	Controlling AC/DC lamps using channel relay modules
	Expanding Raspberry Pi GPIO
	Building a traffic light controller
	Cascading traffic light controllers
	Summary

	Chapter 6: Building Your Own Light Controller-based Bluetooth
	Introducing Bluetooth
	Working with Bluetooth using
Raspberry Pi
	Setting up a Bluetooth USB
	Turning on/off Bluetooth
	Enabling discoverable
	Scanning for Bluetooth Devices

	Introducing iBeacon
	Bluetooth programming on Android
	Building a remote light controller-based Bluetooth
	Wiring
	Building a program for Raspberry Pi
	Building a Bluetooth app for Android
	Testing

	Summary

	Chapter 7: Making Your Own Controlled Lamps Through Internet Network
	Connecting the Raspberry Pi to a network
	Connecting to a wired network
	Connecting to a wireless network

	Introducing Node.js
	Controlling LEDs and lamps using
Node.js
	Building a simple web server using
Node.js
	Building RESTful using Node.js
	Controlling LEDs through RESTful
	Building a PhoneGap application for Android
	Connecting PhoneGap Android to Raspberry Pi through RESTful
	Summary

	Index

