
www.allitebooks.com

http://www.allitebooks.org

Redis Essentials

Harness the power of Redis to integrate and
manage your projects efficiently

Maxwell Dayvson Da Silva
Hugo Lopes Tavares

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Redis Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1030915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-245-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Maxwell Dayvson Da Silva

Hugo Lopes Tavares

Reviewers
Gustavo Franco

Chad Lung

Stephen McDonald

Yi Wang

Commissioning Editor
Sarah Crofton

Acquisition Editor
Harsha Bharwani

Content Development Editor
Kirti Patil

Technical Editor
Menza Mathew

Copy Editor
Vikrant Phadkay

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

Cover Image
Renata Pereira Rocha Moreira

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Maxwell Dayvson Da Silva, a self-taught programmer, is the director of
technology at The New York Times.

Born in Recife, Brazil, he is a video specialist and is most interested in bringing
technology to a global audience. His work has ranged from developing and delivering
highly scalable products to innovating and implementing large-scale video solutions.
Prior to joining the Times, he worked for Globo, Brazil's leading media network, and
Terra, a global digital media company.

Additionally, he has spoken at conferences such as Campus Party, FISL, SET Broadcast
and Cable, Streaming Media East, and Streaming Media West. Maxwell has also
devoted time to speaking at several Brazilian universities, including UFGRS, IFRS,
UDESC, and FEEVALE-RS.

He is a contributor to and creator of some open source projects. You can find them
at https://github.com/dayvson. Outside of his professional work, Maxwell
regularly combines his passion for art and science to create games and interactive
art installations. His son, Arthur, inspires him to seek opportunities to bring science
into the lives of young people, both in New York and abroad.

Although Redis Essentials is Maxwell's first book, he has done technical reviewing for
two others, Extending Bootstrap and Learning JavaScript Data Structures and Algorithms.
You can contact him on LinkedIn at http://www.linkedin.com/in/dayvson.

www.allitebooks.com

https://github.com/dayvson
http://www.linkedin.com/in/dayvson
http://www.allitebooks.org

Hugo Lopes Tavares is a software developer from Brazil who currently works
as a platform engineer at Yipit, a technology company focused on data aggregation
and analysis. Prior to his work in the United States, Hugo worked on live streaming
video development for Globo.com, the Internet branch of Grupo Globo, which is the
largest media conglomerate in Latin America.

Having been involved in open source software, he has made a significant impact in
this field. He was a main contributor to pip (the Python package installer), wrote
improvements to CPython and the Python standard library, coauthored Splinter
(a web-testing tool), and contributed to many well-known projects. Some of his
contributions can be found at https://github.com/hltbra.

Additionally, Hugo worked at NSI (Information Systems Research Group), carrying
out research and development on agile methods and software quality for the Brazilian
government. Within his research, he created some testing tools, the most famous of
which are Should-DSL and PyCukes, which are mentioned in Python Testing Cookbook,
Packt Publishing (Should-DSL has its own section in it).

When Hugo is not doing anything related to technology, he is involved in strength
training as an amateur powerlifter.

You can contact him on LinkedIn at https://www.linkedin.com/in/hltbra.

www.allitebooks.com

https://github.com/hltbra
https://www.linkedin.com/in/hltbra
http://www.allitebooks.org

Acknowledgments

I would like to express my gratitude for my amazing and supportive partner in crime
and life, Karalyn Lathrop (a.k.a. KC). She was incredibly supportive and helpful in
the making of this book in so many ways that I cannot describe how thankful I am
for her.

I am incredibly grateful to my son, Arthur, for being so amazingly sweet and funny.
Also, thanks to him for making my life so much better, even with the long distance
that keeps us far way.

There are many people I'm thankful to for the making of this book: my mom,
Mauriceia, for all the love that she has given me! My aunt, Maristela, for all the
support and advice; the sweetest grandmothers, Alderita and Fran Kozina; and
Juliane, for being a supermom and taking care of our son when I am far way.

I give thanks to Nina Feinberg. Her help in this project was fundamental in improving
the quality of the writing and consistency of this book.

Also, I would like to give special acknowledgements to the many friends and
colleagues who helped me during this journey. Each one of you made a significant
contribution to this project, and I am so thankful: Lincoln Clarete, Cristian Taveras,
Deep Kapadia, Flavio Ribeiro, Jose Muanis, Kentaro Kaji, Michael Sarullo, Manu
Menezes, Gustavo Franco, and Renata Tavares.

Finally, I give my huge thanks to Hugo Tavares for sharing this crazy experience
with me. I'm honoured that he accepted my invite. Writing this book was challenging,
exciting, and rewarding in so many ways. I had a lot of fun and learned a lot during
the process. It's been an honour and privilege working with you.

– Maxwell Dayvson Da Silva

www.allitebooks.com

http://www.allitebooks.org

I would like to thank my wife, Renata, for all her support and for designing a beautiful
cover for this book. This project would not have succeeded without her support.
Thanks, my love!

I also thank my parents, Paulo and Maria das Graças, for always loving me, supporting
my education and all my decisions, and giving me good advice on life.

I am very thankful to Karalyn Lathrop and Nina Feinberg, who reviewed this book,
and the technical reviewers. They improved this book's quality a lot.

I also thank Maxwell Dayvson for inviting me to join him to write this great book.
It has been an amazing experience, and I learned a lot by working with him.
Thanks, my friend! I am very proud of both of us.

– Hugo Lopes Tavares

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gustavo Franco is a tech lead manager for site reliability engineering at Google.
He has worked on cloud platforms, social media, and several other services. He has
also been a Debian developer for more than 10 years. His career spans over 13 years
of DevOps-related work, including a FIFA World Cup online broadcast, migrating
several Google internal systems to Goobuntu, the Google Compute Engine launch,
and more.

Chad Lung is a cloud engineer in the EMC Rubicon cloud services group. Currently,
he is an active OpenStack contributor and has over 18 years of industry experience in
various roles.

Originally born in Canada, he moved to the United States in 1997 and began his
software engineering career with full force. He has worked with various technologies
and for large cloud-based companies, such as Rackspace and EMC.

Chad has three sons and lives with his wife in San Antonio, Texas, USA.

Stephen McDonald is a software engineer from Sydney, Australia. He currently
works for Google. He is also the creator of various Redis-related open source projects,
such as the hot-redis client library for Python, and CurioDB, a distributed-by-default
clone of Redis that has been built with Scala and Akka. You can visit http://jupo.org
for more information about him.

www.allitebooks.com

http://jupo.org
http://www.allitebooks.org

Yi Wang is currently a lead software engineer at Trendalytics, a fashion tech
start-up. He is responsible for specifying, designing, and implementing data
collection, visualization, and analysis pipelines on cloud platforms. He has
over 8 years of data analytics and visualization experience at enterprises and
start-ups such as Opera Solutions (big data), Maxifier (advertising technology),
Sapient Global Markets, and Microsoft Research Asia. He holds a master's degree
in computer science from Columbia University and a master's degree in physics
from Peking University, with a mixed academic background in math, chemistry,
and biology.

I must thank my wife, Jingjing, and my kids, Aria and Alan, for all
the support.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started (The Baby Steps) 1

Installation 2
Installing from source 2

Hello Redis (command-line interface examples) 3
Installing Node.js 5
JavaScript syntax quick reference guide 6
Hello World with Node.js and Redis 8
Redis data types 9

Strings 9
String examples with redis-cli 10
Building a voting system with Strings using Node.js 12

Lists 15
List examples with redis-cli 15
Implementing a generic Queue System 16

Hashes 21
Using Hashes with redis-cli 22
A voting system with Hashes and Node.js 23

Summary 26
Chapter 2: Advanced Data Types (Earning a Black Belt) 27

Sets 27
Set examples with redis-cli 28
Building a deal tracking system 30

Sorted Sets 33
Sorted Set examples with redis-cli 34
Building a leaderboard system for an online game 36

Bitmaps 41
Bitmap examples with redis-cli 43

Table of Contents

[ii]

Building web analytics 44
HyperLogLogs 47

Counting unique users – HyperLogLog versus Set 48
HyperLogLog examples with redis-cli 49
Counting and retrieving unique website visits 50

Summary 53
Chapter 3: Time Series (A Collection of Observations) 55

Building the foundation 56
Optimizing with Hashes 64
Adding uniqueness with Sorted Sets and HyperLogLog 70
Summary 76

Chapter 4: Commands (Where the Wild Things Are) 77
Pub/Sub 77
Transactions 81
Pipelines 84
Scripting 86

Lua syntax basics 87
Redis meets Lua 88

Miscellaneous commands 92
INFO 92
DBSIZE 92
DEBUG SEGFAULT 93
MONITOR 93
CLIENT LIST and CLIENT SET NAME 94
CLIENT KILL 94
FLUSHALL 95
RANDOMKEY 95
EXPIRE and EXPIREAT 95
TTL and PTTL 95
PERSIST 96
SETEX 96
DEL 97
EXISTS 97
PING 97
MIGRATE 97
SELECT 98
AUTH 98
SCRIPT KILL 98
SHUTDOWN 99
OBJECT ENCODING 99

Table of Contents

[iii]

Data type optimizations 99
String 100
List 101
Set 101
Hash 102
Sorted Set 102
Measuring memory usage 103

Summary 105
Chapter 5: Clients for Your Favorite Language (Become a
Redis Polyglot) 107

PHP 108
The basic commands in PHP 108
The blocking commands in PHP 109
Pipelines in PHP 110
Transactions in PHP 111
Scripting in PHP 112

Python 113
The basic commands in Python 113
The blocking commands in Python 114
Pipelines in Python 115
Transactions in Python 115
Scripting in Python 116

Ruby 118
The basic commands in Ruby 118
The blocking commands in Ruby 119
Pipelines in Ruby 119
Transactions in Ruby 120
Scripting in Ruby 120

Summary 121
Chapter 6: Common Pitfalls (Avoiding Traps) 123

The wrong data type for the job 123
The Set approach 124
The Bitmap approach 125

Multiple Redis databases 126
Keys without a namespace 127
Using Swap 127
Not planning and configuring the memory properly 128
An inappropriate persistence strategy 129
Summary 130

Table of Contents

[iv]

Chapter 7: Security Techniques (Guard Your Data) 131
The basic security 131

Obfuscating critical commands 132
Networking security 134

Protecting Redis with firewall rules 134
Running Redis on the loopback network interface 136
Running Redis in a Virtual Private Cloud 137

Encrypting client-to-server communication 137
Running stunnel on both the server and the client 138
Running stunnel on the server and using a Redis client that
supports SSL 139

Summary 140
Chapter 8: Scaling Redis (Beyond a Single Instance) 141

Persistence 141
RDB (Redis Database) 142
AOF (Append-only File) 144
RDB versus AOF 146

Replication 146
Partitioning 148

Range partitioning 149
Hash partitioning 152
Presharding 154
Consistent hashing 156
Tagging 160
Data store versus cache 161
Implementations of Redis partitioning 162

Automatic sharding with twemproxy 162
Other architectures that use twemproxy 167

Summary 168
Chapter 9: Redis Cluster and Redis Sentinel
(Collective Intelligence) 169

The CAP theorem 170
Redis Sentinel 171

The basic Sentinel configuration 173
Connecting to Sentinel 174
Network partition (split-brain) 174

Redis Cluster 176
Hash slots 178
Hash tags 178
Creating a basic cluster 179

Table of Contents

[v]

Finding nodes and redirects 180
Configuration 181
Different Redis Cluster architectures 183
Cluster administration 185

Creating a cluster 185
Adding slaves/replicas 188
Scaling reads using slave nodes 190
Adding nodes 190
Removing nodes 194
Redis Cluster administration using the redis-trib tool 194

Summary 196
Index 197

[vii]

Preface
Redis is the most popular in-memory key-value data store. It is very lightweight and its
data types give it an edge over other competitors. If you need an in-memory database
or a high-performance cache system that is simple to use and highly scalable, Redis is
what you should use.

This book is a fast-paced guide that teaches you the fundamentals of data types,
explains how to manage data through commands, and shares experiences from
big players in the industry.

What this book covers
Chapter 1, Getting Started (The Baby Steps), shows you how to install Redis and
how to use redis-cli, the default Redis command-line interface. It also shows
you how to install Node.js and goes through a quick JavaScript syntax reference.
The String, List, and Hash data types are covered in detail, along with examples
of redis-cli and Node.js.

Chapter 2, Advanced Data Types (Earning a Black Belt), is a continuation of the
previous chapter. It presents the Set, Sorted Set, Bitmap, and HyperLogLog data
types. All the examples here are implemented with redis-cli and Node.js.

Chapter 3, Time Series (A Collection of Observations), uses all of the knowledge of
data types from the previous chapters to build a time series library in Node.js. The
examples are incremental; the library is initially implemented using the String data
type, and then the solution is improved and optimized by using the Hash data type.
Uniqueness support is added to the String and Hash implementations by using the
Sorted Set and HyperLogLog data types, respectively.

Preface

[viii]

Chapter 4, Commands (Where the Wild Things Are), introduces Pub/Sub, transactions, and
pipelines. It also introduces the scripting mechanism, which uses the Lua programming
language to extend Redis. A quick Lua syntax reference is also presented. A great
variety of Redis commands are presented in this chapter, including the administration
commands and data type commands that were not covered in the previous chapters.
This chapter also shows you how to change Redis's configuration to optimize different
data types for memory or performance.

Chapter 5, Clients for Your Favorite Language (Become a Redis Polyglot), shows how to
use Redis with PHP, Python, and Ruby. This chapter highlights the features that
vary more frequently with clients in different languages: blocking commands,
transactions, pipelines, and scripting.

Chapter 6, Common Pitfalls (Avoiding Traps), illustrates some common mistakes
when using Redis in a production environment and related stories from real-world
companies. The pitfalls in this chapter include using the wrong data type for a given
problem, using too much swap space, and using inefficient backup strategies.

Chapter 7, Security Techniques (Guard Your Data), shows how to set up basic security
with Redis, disable and obfuscate commands, protect Redis with firewall rules, and
use client-to-server SSL encryption with stunnel.

Chapter 8, Scaling Redis (Beyond a Single Instance), introduces RDB and AOF
persistence, replication via Redis slaves, and different methods of partitioning
data across different hosts. This chapter also shows how to use twemproxy to
distribute Redis data across different instances transparently.

Chapter 9, Redis Cluster and Redis Sentinel (Collective Intelligence), demonstrates the
differences between Redis Cluster and Redis Sentinel, their goals, and how they
fit into the CAP theorem. It also shows how to set up both Sentinel and Cluster,
their configurations, and what happens in different failure scenarios. Redis Cluster
is covered in more detail, since it is more complex and has different tools for
managing a cluster of instances. Cluster administration is explained via native
Redis commands and the redis-trib tool.

What you need for this book
The examples in this book assume that you have a computer with GNU/Linux or
Mac OS X. We also assume that the following are installed:

• Node.js 0.12.4
• NPM
• Redis 3.X

Preface

[ix]

The following requirements are optional when using other Redis clients:

• Python 2.7
• pip
• Ruby 1.9+
• RubyGems
• PHP 5.5+
• Composer

Who this book is for
This book is intended for those with or without previous experience who want
to learn about Redis. Using examples of real-world applications, this book shows
problems solved by companies who have been using Redis for years.

Providing a foundation for an understanding of the capabilities of Redis, this book
will teach you how to extend and scale Redis in real-life situations.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

A block of code is set as follows:

var redis = require("redis"); // 1
var client = redis.createClient(); // 2

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

var redis = require("redis"); // 1
var client = redis.createClient(); // 2
console.log("Redis Essentials"); // 3

Please note that all the code snippets in this book will have inline comments
with numbers. After the code is presented, it will be explained by referencing
those numbers.

Each command line starts with a dollar sign ($):

$ redis-server

www.allitebooks.com

http://www.allitebooks.org

Preface

[x]

The following conventions are used in this book for redis-cli:

• Commands are written in bold uppercase letters (SET).
• Keys are written in italicized lowercase letters (GET mykey).
• Values are written without any text formatting (SET mykey "my value").

$ redis-cli

127.0.0.1:6379> SET mykey "my value"

In this book, all filenames, function names, and variable names are written in italics.
Examples:

• Create a file called my-filename.js.
• Execute the function myFunctionName.
• Create a variable called myVariableName.

All data types will be shown with the first letter capitalized (for example, Strings,
Lists, Bitmaps, Sets, Sorted Sets, and HyperLogLogs) so that we can distinguish
between a Redis data type and another existing term.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let's know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

All the code files from this book can be downloaded from GitHub as well:
https://github.com/redis-essentials/book.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/redis-essentials/book
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started
(The Baby Steps)

Redis is a NoSQL (Not only SQL) advanced key-value data store. It is also referred to
as a data structure server because of its powerful data types, such as Strings, Hashes,
Lists, Sets, Sorted Sets, Bitmaps, and HyperLogLogs. By default, Redis saves all data
in the memory, therefore read and write operations are very fast. It can also cause data
to persist in the disk. Data persistence in Redis can be achieved by creating a binary
snapshot of the stored data or a human-readable file with a sequence of all executed
commands over time. These are respectively known as snapshotting and journaling.

Additionally, Redis includes configurable key expiration, transactions, and
publish/subscribe features. It also provides Lua scripting to extend Redis to
create new commands. Combined, these features transform Redis into the Swiss
Army knife of data type storage.

Redis stands for REmote DIctionary Server. It was written in C by Salvatore
Sanfilippo in 2006 and currently has many contributors. There are Redis clients
available for over 30 programming languages. The open source project can be
found at https://github.com/antirez/redis. The official Redis documentation
is also a really good resource of knowledge and can be found at http://redis.io.

Redis is a well-established open source project and has been used in production for
years by big companies, including Twitter, GitHub, Tumblr, Pinterest, Instagram,
Hulu, Flickr, and The New York Times.

This chapter is going to show you how to install Redis, introduce the command-line
interface, introduce a Node.js client for Redis, and then present three data types in
detail: Strings, Lists, and Hashes.

https://github.com/antirez/redis
http://redis.io

Getting Started (The Baby Steps)

[2]

Redis data types are a very extensive subject. There is enough information to write a
book that just describes how they work. We will present the most relevant and useful
commands for each data type along with real-life use cases in the first two chapters.
Chapter 2, Advanced Data Types (Earning a Black Belt), is going to cover other data
types: Sets, Sorted Sets, Bitmaps, and HyperLogLogs. After this chapter and the next
have explained all data types, Chapter 3, Time Series (A Collection of Observations), will
present a time series implementation that uses multiple data types.

Please note that all data types will be shown with the first letter
capitalized (for example, Strings, Lists, Bitmaps, Sets, Sorted Sets,
and HyperLogLogs) so that we can distinguish between a Redis
data type and other existing terms.

Installation
At the time of writing this book, the stable version of Redis was 3.0. All examples
presented in this book will work with this version, but it is very likely that newer
versions of Redis are going to work as well. Redis is very strict in terms of backward
compatibility, so it provides API stability between minor versions. We recommend
that you install the latest version of Redis to get the recent bug fixes and performance
improvements. Most of the content in this book will remain useful even if you work
with a more recent version.

Officially, Redis can be compiled and used on Linux, OS X, OpenBSD, NetBSD,
and FreeBSD.

Redis is not officially supported on Windows. However, the Microsoft Open Tech
group develops and maintains a Windows port targeting Win64 architecture, which
can be found at https://github.com/MSOpenTech/redis. We are not going to
cover Windows installation or guarantee that the examples presented in this book
will work on Windows.

Installing from source
The first thing we need to do is open a terminal and run the following commands to
download and install Redis. The following commands can be executed in any *nix
operating system (Ubuntu, CentOS, Debian, OS X, and so on). Some build tools are
required to build Redis from source (for example, gcc, make, and so on). On Ubuntu
and Debian, these tools can be installed by the package build-essentials.

https://github.com/MSOpenTech/redis

Chapter 1

[3]

On OS X, you will need Xcode and Command Line Tools Package installed. After the
required build tools are installed, open a terminal window and execute the following
commands:

$ curl -O http://download.redis.io/releases/redis-3.0.2.tar.gz
$ tar xzvf redis-3.0.2.tar.gz
$ cd redis-3.0.2
$ sudo make install

Every time you see a dollar sign ($) at the beginning of a code block, it means we are
executing the command in a terminal window.

Another way to install Redis is by using package managers,
such as yum, apt, or brew. Make sure your package manager
has Redis 3.0 or later available.

Hello Redis (command-line interface
examples)
Redis comes with several executables. In this section, we are going to focus on
redis-server and redis-cli.

redis-server is the actual Redis data store. It can be started in standalone mode or in
cluster mode. For now, we are only going to use the single-instance mode and later
(in Chapter 9, Redis Cluster and Redis Sentinel (Collective Intelligence)) we will cover
cluster mode.

redis-cli is a command-line interface that can perform any Redis command (it is a
Redis client). It makes learning to execute commands in Redis more intuitive.

This chapter is also going to introduce a Node.js client, and later (in Chapter 5, Clients
for Your Favorite Language (Become a Redis Polyglot)) we will see how to use Redis with
PHP, Python, and Ruby clients.

By default, Redis binds to port 6379, runs in standalone mode, and can be started
with this line:

$ redis-server

Since no configuration was specified in this example, Redis will use default
configurations.

Getting Started (The Baby Steps)

[4]

It will output its PID (process ID) and the port that the clients should connect to,
which is 6379 by default.

Important note:
The following conventions will be used in this book for redis-cli:

• Commands are written in bold, uppercase letters (SET).
• Keys are written in italicized, lowercase letters (GET mykey).
• Values are written without any text formatting (SET mykey

"my value").

The next snippet shows how to connect to the Redis server using redis-cli.
Once connected, we use the SET command to create a key with a string value
and then the GET command to read the key value:

$ redis-cli
127.0.0.1:6379> SET philosopher "socrates"
OK
127.0.0.1:6379> GET philosopher
"socrates"
127.0.0.1:6379>

Chapter 1

[5]

The HELP command is useful for learning about command syntax. It displays the
command parameters with a summary and examples. See the following example:

$ redis-cli
127.0.0.1:6379> HELP SET

 SET key value [EX seconds] [PX milliseconds] [NX|XX]
 summary: Set the string value of a key
 since: 1.0.0
 group: string

The KEYS command is also useful, as it returns all stored keys that match a pattern
(it is a glob-style pattern, like the Unix shell glob pattern). In the following code, all
stored key names that start with the letter "p" are returned:

$ redis-cli
127.0.0.1:6379> KEYS p*
1) "philosopher"

The redis-cli is a great tool for debugging and testing commands, but making real
examples and applications using redis-cli is impractical. This book is going to use the
JavaScript language and Node.js to support examples and explanations. We chose
JavaScript because of its current popularity. The Node.js website (https://nodejs.
org) provides binaries for Mac OS X, Windows, and Linux, which makes installation
of Node.js really simple. Keep in mind that this is not a JavaScript book; we are going
to use basic features of the language in our examples. If you do not know how to
code in JavaScript, do not worry. A quick syntax reference is presented, and it should
be enough to understand all the examples in this book.

You can reproduce all the samples presented here in your favorite
language. Redis will produce the same results regardless of the
programming language.

Installing Node.js
Download and install Node.js from its website using the available binary packages.
At the time of writing this book, the latest version of Node.js was 0.12.4. All examples
are guaranteed to work with this version.

Node.js comes with a package manager called Node Package Manager (NPM),
which is responsible for managing and installing all Node.js dependencies and
libraries. Think of it as pip for Python or cpan for Perl.

https://nodejs.org
https://nodejs.org

Getting Started (The Baby Steps)

[6]

We recommend that you create a folder called redis-essentials to save all the files and
libraries necessary for running the examples. We also recommend that you create
one folder for each chapter of this book for organization purposes.

All Node.js examples in this book require the library redis, which can be installed
with NPM:

$ cd redis-essentials
$ npm install redis

NPM will create a folder called node_modules. This is where the redis client is installed.

JavaScript syntax quick reference guide
If you know the basics of JavaScript, you can skip this section. Here is a quick
overview of JavaScript:

• Use the keyword var to define a variable:
var myAge = 31;

• Use // for inline comments and /* */ for multiline comments:
// this is an inline comment
/* this
is a
multi-line
comment
*/

• Conditional statements:
if (myAge > 29) {
 console.log("I am not in my twenties anymore!");
} else {
 console.log("I am still in my twenties!");
}

• Defining a function:
function nameOfMyFunction(argument1, argument2) {
 console.log(argument1, argument2);
}

• Executing a function:
nameOfMyFunction("First Value", "Second Value");

Chapter 1

[7]

• A function can also behave as a class and have methods, properties,
and instances. Properties are accessed through the keyword this:
function Car(maxSpeed) {
 this.maxSpeed = maxSpeed;
 this.currentSpeed = 0;
}

• The standard way to create a prototyped method for a function in JavaScript
is by using the property prototype:
Car.prototype.brake = function() {
 if (this.currentSpeed > 0) {
 this.currentSpeed -= 5;
 }
};

Car.prototype.accelerate = function() {
 if (this.currentSpeed < this.maxSpeed) {
 this.currentSpeed += 5;
 }
};

• To create an instance of a class in JavaScript, use the keyword new:
var car = new Car(100);
car.accelerate();
car.accelerate();
car.brake();

• Arrays and objects:
var myArray = [];
var myObject = {};

• Callbacks in JavaScript:
var friends = ["Karalyn", "Patrik", "Bernardo"];
friends.forEach(function (name, index) {
 console.log(index + 1, name); // 1 Karalyn, 2 Patrik, 3 Bernardo
});

A callback in this example is an anonymous function that is passed to another function
as a parameter, so it is called (or executed) inside the other function. As you can
see in the preceding example, the forEach array method expects a callback function.
It executes the provided callback once for each element in the array. It is very common
to find asynchronous functions/methods that expect callbacks in JavaScript.

www.allitebooks.com

http://www.allitebooks.org

Getting Started (The Baby Steps)

[8]

If you want to know more about JavaScript syntax and features, we recommend the
Mozilla Developer Network website at https://developer.mozilla.org/en-US/
docs/Web/JavaScript.

Hello World with Node.js and Redis
This section shows the basics of creating a JavaScript program using Redis. It is
important to understand this foundation since the upcoming examples use the
same principles.

In this book, all filenames, function names, and variable names
are italicized. Some sentences follow this convention:

• Create a file called my-filename.js.
• Execute the function myFunctionName.
• Create a variable called myVariableName.

Create a file called hello.js with the following code:

var redis = require("redis"); // 1
var client = redis.createClient(); // 2
client.set("my_key", "Hello World using Node.js and Redis"); // 3
client.get("my_key", redis.print); // 4
client.quit(); // 5

Please note that all the code snippets in this book will have inline
comments with numbers. After the code is presented, it will be
explained by referencing those numbers.

1. Require the redis library in Node.js. This is equivalent to import in
Go, Python, or Java.

2. Create the Redis client object.
3. Execute the Redis command SET to save a String in a key called my_key.
4. Execute the Redis command GET to get the value stored in my_key,

and then output it.
5. Close the connection with the Redis server.

Lines 1, 2, and 5 of this example will be used in the majority of the
examples that use Node.js.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

Chapter 1

[9]

Run hello.js with the node command (node is the Node.js interpreter):

$ node hello.js
Reply: Hello World using Node.js and Redis

Redis data types
After you have understood how Redis data types work, you will be able to design
better applications and make better use of the available resources. It will also help
you decide whether Redis is the right solution for your problem. The main reason
for Redis to have many data types is very simple: one size does not fit all, and
different problems require different solutions.

Although you do not need to use all the data types, it is important to understand
how they work so that you can choose the right ones. By the end of this book, you
will have a full understanding of these data types and know how to improve the
performance of your applications using Redis.

Strings
Strings are the most versatile data types in Redis because they have many commands
and multiple purposes. A String can behave as an integer, float, text string, or bitmap
based on its value and the commands used. It can store any kind of data: text (XML,
JSON, HTML, or raw text), integers, floats, or binary data (videos, images, or audio
files). A String value cannot exceed 512 MB of text or binary data.

The following are some use cases for Strings:

• Cache mechanisms: It is possible to cache text or binary data in Redis,
which could be anything from HTML pages and API responses to images
and videos. A simple cache system can be implemented with the commands
SET, GET, MSET, and MGET.

• Cache with automatic expiration: Strings combined with automatic key
expiration can make a robust cache system using the commands SETEX,
EXPIRE, and EXPIREAT. This is very useful when database queries take a
long time to run and can be cached for a given period of time. Consequently,
this avoids running those queries too frequently and can give a performance
boost to applications.

Getting Started (The Baby Steps)

[10]

• Counting: A counter can easily be implemented with Strings and the
commands INCR and INCRBY. Good examples of counters are page views,
video views, and likes. Strings also provide other counting commands, such
as DECR, DECRBY, and INCRFLOATBY.

String examples with redis-cli
The MSET command sets the values of multiple keys at once. The arguments are
key-value pairs separated by spaces.

The MGET command retrieves the values of multiple key names at once, and the
key names are separated by spaces.

The following is a combined example for the preceding commands:

$ redis-cli

127.0.0.1:6379> MSET first "First Key value" second "Second Key value"
OK

127.0.0.1:6379> MGET first second
1) "First Key value"

2) "Second Key value"

The EXPIRE command adds an expiration time (in seconds) to a given key. After that
time, the key is automatically deleted. It returns 1 if the expiration is set successfully
and 0 if the key does not exist or cannot be set.

The TTL (Time To Live) command returns one of the following:

• A positive integer: This is the amount of seconds a given key
has left to live

• -2: If the key is expired or does not exist
• -1: If the key exists but has no expiration time set

$ redis-cli
127.0.0.1:6379> SET current_chapter "Chapter 1"
OK
127.0.0.1:6379> EXPIRE current_chapter 10
(integer) 1
127.0.0.1:6379> GET current_chapter
"Chapter 1"
127.0.0.1:6379> TTL current_chapter
(integer) 3
127.0.0.1:6379> TTL current_chapter

Chapter 1

[11]

(integer) -2
127.0.0.1:6379> GET current_chapter
(nil)
127.0.0.1:6379>

The commands INCR and INCRBY have very similar functionality. INCR increments
a key by 1 and returns the incremented value, whereas INCRBY increments a key
by the given integer and returns the incremented value. DECR and DECRBY are the
opposites of INCR and INCRBY. The only difference is that DECR and DECRBY
decrements a key.

The command INCRBYFLOAT increments a key by a given float number and returns
the new value. INCRBY, DECRBY, and INCRBYFLOAT accept either a positive or a
negative number:

$ redis-cli
127.0.0.1:6379> SET counter 100
OK
127.0.0.1:6379> INCR counter
(integer) 101
127.0.0.1:6379> INCRBY counter 5
(integer) 106
127.0.0.1:6379> DECR counter
(integer) 105
127.0.0.1:6379> DECRBY counter 100
(integer) 5
127.0.0.1:6379> GET counter
"5"
127.0.0.1:6379> INCRBYFLOAT counter 2.4
"7.4"

The preceding commands shown are atomic, which means that they increment/
decrement and return the new value as a single operation. It is not possible for two
different clients to execute the same command at the same time and get the same
result—no race conditions happen with those commands.

For example, if the counter key is 1 and two different clients (A and B) increment
their counters at the same time with INCR, client A will receive the value 2 and
client B will receive 3.

Redis is single threaded, which means that it always executes one
command at a time. Sometimes, commands are mentioned as atomic,
which means that a race condition will never happen when multiple
clients try to perform operations on the same key at the same time.

Getting Started (The Baby Steps)

[12]

Building a voting system with Strings using Node.js
This section builds a set of Node.js functions used to upvote and downvote articles.
The idea is that there is a set of articles, and users can define their popularity by
voting up or down.

Now let's save a small collection of articles in Redis using redis-cli. We will only
add three article headlines to make the example easier to understand. In a real-world
situation, you would use a Redis client for your programming language (rather than
redis-cli), and the articles would be retrieved from a database:

$ redis-cli
127.0.0.1:6379> SET article:12345:headline "Google Wants to Turn Your Clothes
Into a Computer"
OK
127.0.0.1:6379> SET article:10001:headline "For Millennials, the End of the TV
Viewing Party"
OK
127.0.0.1:6379> SET article:60056:headline "Alicia Vikander, Who Portrayed
Denmark's Queen, Is Screen Royalty"
OK

To complete this example, we will need two keys in Redis for each article.
We have already defined our first key to store the headline of each article.
Observe this key name structure: article:<id>:headline. The second key name will
have a similar structure: article:<id>:votes. This nomenclature is important in order
to create abstractions. The IDs may be passed around, and even if the key format
changes, the application logic will remain the same. Also, it is easy to extend the
application if other metadata (URL, summary, and so on) needs to be stored.

Our code will have three functions: the first increments the number of votes in an
article by 1, the second decrements the number of votes in an article by 1, and the
third displays the article headline and the number of votes. All three functions
(upVote, downVote, and showResults) require the article ID as the argument. Perform
the following set of steps:

Create a file called articles-popularity.js in the chapter 1 folder where all of the code
from this section should be saved:

var redis = require("redis"); // 1
var client = redis.createClient(); // 2

function upVote(id) { // 3
 var key = "article:" + id + ":votes"; // 4
 client.incr(key); // 5
}

Chapter 1

[13]

1. Require the redis library in Node.js. This is equivalent to import in
other languages.

2. Create a Redis client instance.
3. Create an upVote function that has the article ID as the argument.
4. Define your key name using the article:<id>:votes structure.
5. Use the INCR command to increment the number of votes by 1.

The function downVote is basically the same as upVote. The only difference is that it
uses the command DECR instead of INCR:

function downVote(id) { // 1
 var key = "article:" + id + ":votes"; // 2
 client.decr(key); // 3
}

1. Create a function downVote that has the article ID as the argument.
2. Define your key name using the structure article:<id>:votes (just as we did in

the upVote function).
3. Use the DECR command to decrement the number of votes by 1.

The function showResults shows the article headline and the number of votes that an
article has:

function showResults(id) {
 var headlineKey = "article:" + id + ":headline";
 var voteKey = "article:" + id + ":votes";
 client.mget([headlineKey, voteKey], function(err, replies) { // 1
 console.log('The article "' + replies[0] + '" has', replies[1],
 'votes'); // 2
 });
}

1. Use the MGET command to pass an array of keys and a callback function.
For every key that does not hold a String value or does not exist, the value
null is returned.
In the anonymous function, the argument replies has two values: index 0,
which has the headline, and index 1, which has the number of votes.

2. Display a message with the article headline and number of votes.

Getting Started (The Baby Steps)

[14]

Note:
The Node.js client that we are using is strictly asynchronous. All Redis
commands have an optional callback function for handling errors and
replies from the Redis server.
In the previous MGET example, the only way to handle the key values
is by passing a callback to client.mget().
Please make sure you fully understand the idea of callbacks mentioned
before. This is necessary in order to understand other examples using
Node.js.

It is time to call our functions upVote, downVote, and showResults. Add the following
to articles-popularity.js too:

upVote(12345); // article:12345 has 1 vote
upVote(12345); // article:12345 has 2 votes
upVote(12345); // article:12345 has 3 votes
upVote(10001); // article:10001 has 1 vote
upVote(10001); // article:10001 has 2 votes
downVote(10001); // article:10001 has 1 vote
upVote(60056); // article:60056 has 1 vote

showResults(12345);
showResults(10001);
showResults(60056);

client.quit();

Then execute it using the following command line:

$ node articles-popularity.js
The article "Google Wants to Turn Your Clothes Into a Computer" has 3
votes
The article "For Millennials, the End of the TV Viewing Party" has 1
votes
The article "Alicia Vikander, Who Portrayed Denmark's Queen, Is Screen
Royalty" has 1 votes

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[15]

Lists
Lists are a very flexible data type in Redis because they can act like a simple
collection, stack, or queue. Many event systems use Redis's Lists as their queue
because Lists' operations ensure that concurrent systems will not overlap popping
items from a queue—List commands are atomic. There are blocking commands in
Redis's Lists, which means that when a client executes a blocking command in an
empty List, the client will wait for a new item to be added to the List. Redis's Lists
are linked lists, therefore insertions and deletions from the beginning or the end
of a List run in O(1), constant time.

The task of accessing an element in a List runs in O(N), linear time, but accessing
the first or last element always runs in constant time.

A List can be encoded and memory optimized if it has less elements than the
list-max-ziplist-entries configuration and if each element is smaller than the
configuration list-max-ziplist-value (in bytes). Chapter 4, Commands (Where the
Wild Things Are) provides more details on these configurations.

The maximum number of elements a List can hold is 232-1, which means there can
be more than 4 billion elements per List.

Some real-world use cases of Lists are as follows:

• Event queue: Lists are used in many tools, including Resque, Celery,
and Logstash

• Storing most recent user posts: Twitter does this by storing the latest tweets
of a user in a List

In this section, we will show you some List commands using the redis-cli, and then
present a generic task queue system in Node.js.

List examples with redis-cli
Since Lists in Redis are linked lists, there are commands used to insert data into the
head and tail of a List. The command LPUSH inserts data at the beginning of a List
(left push), and the command RPUSH inserts data at the end of a List (right push):

$ redis-cli
127.0.0.1:6379> LPUSH books "Clean Code"
(integer) 1
127.0.0.1:6379> RPUSH books "Code Complete"
(integer) 2
127.0.0.1:6379> LPUSH books "Peopleware"
(integer) 3

Getting Started (The Baby Steps)

[16]

The command LLEN returns the length of a List. The command LINDEX returns
the element in a given index (indices are zero-based). Elements in a List are always
accessed from left to right, which means that index 0 is the first element, index 1
is the second element, and so on. It is possible to use negative indices to access the
tail of the List, in which -1 is the last element, -2 is penultimate element, and so on.
LINDEX does not modify a List:

$ redis-cli
127.0.0.1:6379> LLEN books
(integer) 3
127.0.0.1:6379> LINDEX books 1
"Clean Code"

The command LRANGE returns an array with all elements from a given index range,
including the elements in both the start and end indices. As we mentioned previously,
indices are zero-based and can be positive or negative. See the following example:

$ redis-cli
127.0.0.1:6379> LRANGE books 0 1
1) "Peopleware"
2) "Clean Code"
127.0.0.1:6379> LRANGE books 0 -1
1) "Peopleware"
2) "Clean Code"
3) "Code Complete"

The command LPOP removes and returns the first element of a List. The command
RPOP removes and returns the last element of a List. Unlike LINDEX, both LPOP
and RPOP modify the List:

$ redis-cli
127.0.0.1:6379> LPOP books
"Peopleware"
127.0.0.1:6379> RPOP books
"Code Complete"
127.0.0.1:6379> LRANGE books 0 -1
1) "Clean Code"

Implementing a generic Queue System
The following implementation is going to use JavaScript prototypes, and it is going
to be similar to a class-based solution seen in many programming languages.

Chapter 1

[17]

Create a file called queue.js in the chapter 1 folder with the following code:

function Queue(queueName, redisClient) { // 1
 this.queueName = queueName; // 2
 this.redisClient = redisClient; // 3
 this.queueKey = 'queues:' + queueName; // 4
 // zero means no timeout
 this.timeout = 0; // 5
}

1. Create a function called Queue, which receives a queue name and the Redis
client object as parameters.

2. Save queueName as a property.
3. Save redisClient as a property.
4. Set the property queueKey to the proper Redis key name, based on the

function parameter.
5. Set the property timeout to zero, which means that when List commands are

executed, they will have no timeout.

We need to implement three methods to perform queue operations: size, push, and pop.

The first method we are going to create is size:

Queue.prototype.size = function(callback) { // 1
 this.redisClient.llen(this.queueKey, callback); // 2
};

1. Create the Queue method size, which expects a callback as an argument.
2. Execute LLEN on the queue key name and pass the callback as an argument.

This is necessary because the Redis client is asynchronous.

The implementation of the push method is as follows:

Queue.prototype.push = function(data) { // 1
 this.redisClient.lpush(this.queueKey, data); // 2
};

1. Create the Queue method push that expects one argument. This argument can
be anything that can be represented as a string.

2. Execute LPUSH by passing the queue key name and the data argument.

www.allitebooks.com

http://www.allitebooks.org

Getting Started (The Baby Steps)

[18]

As this is a generic queue system and Redis lists only store bytes, we assume that all
of the data that is sent to the queue can be transformed into a JavaScript string. If you
want to make it more generic, you can use JSON serialization and store the serialized
string. The previous example used LPUSH because we were implementing a queue,
and by definition, items are inserted at the front of the queue and removed from the
end of the queue. A helpful way to remember this is FIFO (First In, First Out)—we
went from left to right.

The implementation of the pop method is as follows:

Queue.prototype.pop = function(callback) { // 1
 this.redisClient.brpop(this.queueKey, this.timeout, callback); // 2
};

1. Create the Queue method pop, which expects a callback as an argument.
2. Execute BRPOP, passing the queue key name, the queue timeout property,

and the callback as arguments.

As we mentioned earlier, elements are inserted at the front of the queue and
removed from the end of the queue, which is why BRPOP was used (if RPUSH
was used, then BLPOP would be necessary).

The command BRPOP removes the last element of a Redis List. If the List is empty,
it waits until there is something to remove. BRPOP is a blocking version of RPOP.
However, RPOP is not ideal. If the List is empty, we would need to implement some
kind of polling by ourselves to make sure that items are handled as soon as they are
added to the queue. It is better to take advantage of BRPOP and not worry about
empty lists.

A concrete producer/consumer implementation is shown next. Different log
messages are pushed into the "logs" queue by the producer and then popped
by the consumer in another terminal window.

The complete Queue code, saved as queue.js, is as follows:

function Queue(queueName, redisClient) {
 this.queueName = queueName;
 this.redisClient = redisClient;
 this.queueKey = 'queues:' + queueName;
 // zero means no timeout
 this.timeout = 0;
}

Queue.prototype.size = function(callback) {
 this.redisClient.llen(this.queueKey, callback);
};

Chapter 1

[19]

Queue.prototype.push = function(data) {
 this.redisClient.lpush(this.queueKey, data);
};

Queue.prototype.pop = function(callback) {
 this.redisClient.brpop(this.queueKey, this.timeout, callback);
};

exports.Queue = Queue; // 1

1. This is required to expose Queue to different modules. This explicit export is
specific to Node.js, and it is necessary in order to run require("./queue").

Create a file called producer-worker.js in the chapter 1 folder, which is going to add log
events to a queue named "logs", and save the following:

var redis = require("redis");
var client = redis.createClient();
var queue = require("./queue"); // 1
var logsQueue = new queue.Queue("logs", client); // 2
var MAX = 5;
for (var i = 0 ; i < MAX ; i++) { // 3
 logsQueue.push("Hello world #" + i); // 4
}
console.log("Created " + MAX + " logs"); // 5
client.quit();

1. Require the module queue, which we've already created and saved as queue.js.
2. Create an instance of the function Queue defined in the queue.js file.
3. Create a loop that runs five times.
4. Push some logs into the logs queue.
5. Print the number of logs created.

Execute the producer file to push logs into the queue:

$ node producer-worker.js
Created 5 logs

Save the following code in a file called consumer-worker.js:

var redis = require("redis");
var client = redis.createClient();
var queue = require("./queue"); // 1
var logsQueue = new queue.Queue("logs", client); // 2

Getting Started (The Baby Steps)

[20]

function logMessages() { // 3
 logsQueue.pop(function(err, replies) { // 4
 var queueName = replies[0];
 var message = replies[1];
 console.log("[consumer] Got log: " + message); // 5

 logsQueue.size(function(err, size) { // 6
 console.log(size + " logs left");
 });

 logMessages(); // 7
 });
}

logMessages(); // 8

1. Require the queue module (this is the queue.js file).
2. Create a Queue instance named logs and pass the Redis client to it.
3. Create the function logMessages.
4. Retrieve an element from the queue instance using the pop method. If the List

is empty, this function waits until a new element is added. The timeout is
zero and it uses a blocking command, BRPOP, internally.

5. Display a message retrieved from the queue.
6. Display the queue size after popping a message from the queue.
7. Call the function (recursively) to repeat the process over and over again.

This function runs forever.
8. Call logMessages to initialize the queue consumption.

This queue system is completed. Now run the file consumer-worker.js and watch
the elements being popped in the same order in which they were added by
producer-worker.js:

$ node consumer-worker.js
[consumer] Got log: Hello world #0
4 logs left
[consumer] Got log: Hello world #1
3 logs left
[consumer] Got log: Hello world #2
2 logs left
[consumer] Got log: Hello world #3
1 logs left
[consumer] Got log: Hello world #4
0 logs left

Chapter 1

[21]

This file will run indefinitely. More messages can be added to the queue by executing
producer-worker.js again in a different terminal, and the consumer will continue reading
from the queue as soon as new items are added.

The example shown in this section is not reliable enough to deploy to production.
If anything goes wrong with the callbacks that pop from the queue, items may be
popped but not properly handled. There is no such thing as a retry or any way to
track failures.

A good way of solving the reliability problem is to use an additional queue. Each
element that is popped from the queue goes to this additional queue. You must
remove the item from this extra queue only if everything has worked correctly.
You can monitor this extra queue for stuck elements in order to retry them or
create failure alerts. The command RPOPLPUSH is very suitable for this situation,
because it does a RPOP in a queue, then does a LPUSH in a different queue, and
finally returns the element, all in a single step—it is an atomic command.

Hashes
Hashes are a great data structure for storing objects because you can map fields to
values. They are optimized to use memory efficiently and look for data very fast.
In a Hash, both the field name and the value are Strings. Therefore, a Hash is a
mapping of a String to a String.

Previously, in the String example, we used two separate keys to represent an article
headline and its votes (article:<id>:headline and article:<id>:votes). It is more semantic
to use a Hash in that case because the two fields belong to the same object (that is,
the article).

Another big advantage of Hashes is that they are memory-optimized. The optimization
is based on the hash-max-ziplist-entries and hash-max-ziplist-value configurations.
Chapter 4, Commands (Where the Wild Things Are), provides more details on these
configurations.

Internally, a Hash can be a ziplist or a hash table. A ziplist is a dually linked list
designed to be memory efficient. In a ziplist, integers are stored as real integers
rather than a sequence of characters. Although a ziplist has memory optimizations,
lookups are not performed in constant time. On the other hand, a hash table has
constant-time lookup but is not memory-optimized.

Getting Started (The Baby Steps)

[22]

Instagram had to back-reference 300 million media IDs to user IDs,
and they decided to benchmark a Redis prototype using Strings
and Hashes. The String solution used one key per media ID and
around 21 GB of memory. The Hash solution used around 5 GB with
some configuration tweaks. The details can be found at http://
instagram-engineering.tumblr.com/post/12202313862/
storing-hundreds-of-millions-of-simple-key-value.

This section is going to show the most used Hash commands using redis-cli, and
then present an application that stores movie metadata in Node.js (similar to the
http://www.imdb.com website).

Using Hashes with redis-cli
The command HSET sets a value to a field of a given key. The syntax is HSET key
field value.

The command HMSET sets multiple field values to a key, separated by spaces.
Both HSET and HMSET create a field if it does not exist, or overwrite its value
if it already exists.

The command HINCRBY increments a field by a given integer. Both HINCRBY
and HINCRBYFLOAT are similar to INCRBY and INCRBYFLOAT (not presented
in the following code):

$ redis-cli
127.0.0.1:6379> HSET movie "title" "The Godfather"
(integer) 1
127.0.0.1:6379> HMSET movie "year" 1972 "rating" 9.2 "watchers" 10000000
OK
127.0.0.1:6379> HINCRBY movie "watchers" 3
(integer) 10000003

The command HGET retrieves a field from a Hash. The command HMGET retrieves
multiple fields at once:

127.0.0.1:6379> HGET movie "title"
"The Godfather"
127.0.0.1:6379> HMGET movie "title" "watchers"
1) "The Godfather"
2) "10000003"

The command HDEL deletes a field from a Hash:

127.0.0.1:6379> HDEL movie "watchers"
(integer) 1

http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value
http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value
http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value
http://www.imdb.com

Chapter 1

[23]

The command HGETALL returns an array of all field/value pairs in a Hash:

127.0.0.1:6379> HGETALL movie
1) "title"
2) "The Godfather"
3) "year"
4) "1972"
5) "rating"
6) "9.2"
127.0.0.1:6379>

It is possible to retrieve only the field names or field values of a Hash with the
commands HKEYS and HVALS respectively.

In the next section, we are going to use Hashes to implement a voting system
similar to the one presented with Strings.

A voting system with Hashes and Node.js
This section creates a set of functions to save a link and then upvote and
downvote it. This is a very simplified version of something that a website
like http://www.reddit.com does.

Create a file called hash-voting-system.js in the chapter 1 folder, where all of the
code from this section should be saved:

var redis = require("redis"); // 1
var client = redis.createClient(); // 2

function saveLink(id, author, title, link) { // 3
 client.hmset("link:" + id, "author", author, "title", title, "link",
link, "score", 0); // 4
}

1. Require the module redis.
2. Create a Redis client instance.
3. Create a function saveLink that has id, author, title, and link as arguments.
4. Use HMSET to create a Hash with all fields.

The upVote and downVote functions use the same command (HINCRBY). The only
difference is that downVote passes a negative number:

function upVote(id) { // 1
 client.hincrby("link:" + id, "score", 1); // 2
}

http://www.reddit.com

Getting Started (The Baby Steps)

[24]

function downVote(id) { // 3
 client.hincrby("link:" + id, "score", -1); // 4
}

1. Create an upVote function, which has the link ID as the argument.
2. Use the command HINCRBY to increment the field score value.
3. Create a downVote function, which has its link ID as the argument.
4. Use the HINCRBY command to decrement the field score value. There is no

HDECRBY command in Hash. The only way to decrement a Hash field is by
using HINCRBY and a negative number.

The function showDetails shows all the fields in a Hash, based on the link ID:

function showDetails(id) { // 1
 client.hgetall("link:" + id, function(err, replies) { // 2
 console.log("Title:", replies['title']); // 3
 console.log("Author:", replies['author']); // 3
 console.log("Link:", replies['link']); // 3
 console.log("Score:", replies['score']); // 3
 console.log("--------------------------");
 });
}

1. Create a function showDetails that has link ID as the argument.
2. Use the HGETALL command to retrieve all the fields of a Hash.
3. Display all the fields: title, author, link, and score.

Use the previously defined functions to save two links, upvote and downvote them,
and then display their details:

saveLink(123, "dayvson", "Maxwell Dayvson's Github page", "https://
github.com/dayvson");
upVote(123);
upVote(123);
saveLink(456, "hltbra", "Hugo Tavares's Github page", "https://github.
com/hltbra");
upVote(456);
upVote(456);
downVote(456);

Chapter 1

[25]

showDetails(123);
showDetails(456);

client.quit();

Then execute hash-voting-system.js:

$ node hash-voting-system.js
Title: Maxwell Dayvson's Github page
Author: dayvson
Link: https://github.com/dayvson
Score: 2

Title: Hugo Tavares's Github page
Author: hltbra
Link: https://github.com/hltbra
Score: 1

The command HGETALL may be a problem if a Hash has many fields
and uses a lot of memory. It may slow down Redis because it needs to
transfer all of that data through the network. A good alternative in such
a scenario is the command HSCAN.
HSCAN does not return all the fields at once. It returns a cursor and the
Hash fields with their values in chunks. HSCAN needs to be executed
until the returned cursor is 0 in order to retrieve all the fields in a Hash:

$ redis-cli
127.0.0.1:6379> HMSET example "field1" "value1"
"field2" "value2" "field3" "value3"
OK
127.0.0.1:6379> HSCAN example 0
1) "0"
2) 1) "field2"
 2) "value2"
 3) "field1"
 4) "value1"
 5) "field3"
 6) "value3"

Getting Started (The Baby Steps)

[26]

Summary
This chapter began with information about Redis's history and some of its design
decisions. We explained how to install Redis and demonstrated that the redis-cli
tool can be a very powerful tool for debugging and learning Redis.

Some examples in this book that require a programming language are implemented
in Node.js. Therefore, a quick reference to JavaScript's syntax and Node.js installation
were shown.

Redis data types is an extensive subject, and it has been split into two chapters.
This chapter explained how Strings, Lists, and Hashes work. The next chapter will
cover Sets, Sorted Sets, Bitmaps, and HyperLogLogs and give practical examples.

[27]

Advanced Data Types
(Earning a Black Belt)

This chapter introduces the Set, Sorted Set, Bitmap, and HyperLogLog data types. It is a
continuation from the previous chapter, and it also introduces new commands through
redis-cli and Node.js, along with some details of the internals of each data type.

Sets
A Set in Redis is an unordered collection of distinct Strings—it's not possible to add
repeated elements to a Set. Internally, a Set is implemented as a hash table, which
is the reason that some operations are optimized: member addition, removal, and
lookup run in O(1), constant time.

The Set memory footprint will be reduced if all the members are integers, and the
total number of elements can be as high as the value of the set-max-intset-entries
configuration. Chapter 4, Commands (Where the Wild Things Are), provides more
details about this configuration.

The maximum number of elements that a Set can hold is 232-1, which means that
there can be more than 4 billion elements per Set.

Some use cases for Sets are:

• Data filtering: For example, filtering all flights that depart from a given
city and arrive in another

• Data grouping: Grouping all users who viewed similar products (for
example, recommendations on Amazon.com)

• Membership checking: Checking whether a user is on a blacklist

www.allitebooks.com

http://www.allitebooks.org

Advanced Data Types (Earning a Black Belt)

[28]

Recommended reading:
Read Redis Set Intersection - Using Sets to Filter Data at
http://robots.thoughtbot.com/redis-set-
intersection-using-sets-to-filter-data.

Set examples with redis-cli
In this section, we are going to use the redis-cli command to explain the most useful
Set commands. All examples are based on a music application in which each user has
a Set of favorite artists.

In these examples, we will add and remove some favorite artists from a user's account,
find the favorite artists that two users have in common, and discover artists based on
another user's preferences.

The command SADD is responsible for adding one or many members to a Set. SADD
ignores members that already exist in a Set and returns the number of added members:

$ redis-cli

127.0.0.1:6379> SADD user:max:favorite_artists "Arcade Fire" "Arctic Monkeys"
"Belle & Sebastian" "Lenine"

(integer) 4

127.0.0.1:6379> SADD user:hugo:favorite_artists "Daft Punk" "The Kooks" "Arctic
Monkeys"

(integer) 3

The command SINTER expects one or many Sets and returns an array with the
members that belong to every Set. In this example, SINTER returns only the favorite
artists that both Max and Hugo have on their lists:

127.0.0.1:6379> SINTER user:max:favorite_artists user:hugo:favorite_artists
1) "Arctic Monkeys"

The command SDIFF expects one or many Sets. It returns an array with all members
of the first Set that do not exist in the Sets that follow it. In this command, the key
name order matters. Any key that does not exist is considered to be an empty Set.

There are two ways of using the command SDIFF.

The first example returns the names of artists from user:max:favorite_artists that are
not present in user:hugo:favorite_artists:

127.0.0.1:6379> SDIFF user:max:favorite_artists user:hugo:favorite_artists

http://robots.thoughtbot.com/redis-set-intersection-using-sets-to-filter-data
http://robots.thoughtbot.com/redis-set-intersection-using-sets-to-filter-data

Chapter 2

[29]

1) "Belle & Sebastian"

2) "Arcade Fire"

3) "Lenine"

The second example returns the names of artists from user:hugo:favorite_artists that
are not present in user:max:favorite_artists:

127.0.0.1:6379> SDIFF user:hugo:favorite_artists user:max:favorite_artists
1) "Daft Punk"

2) "The Kooks"

The SUNION command expects one or many Sets. It returns an array with all
members of all Sets. The result has no repeated members.

In this example, SUNION returns the names of all artists in both users' Sets of
favorite artists:

127.0.0.1:6379> SUNION user:max:favorite_artists user:hugo:favorite_artists
1) "Lenine"

2) "Daft Punk"

3) "Belle & Sebastian"

4) "Arctic Monkeys"

5) "Arcade Fire"

6) "The Kooks"

The command SRANDMEMBER returns random members from a Set. Because Sets
are unordered, it is not possible to retrieve elements from a given position:

127.0.0.1:6379> SRANDMEMBER user:max:favorite_artists
"Arcade Fire"

127.0.0.1:6379> SRANDMEMBER user:max:favorite_artists
"Lenine"

The command SISMEMBER checks whether a member exists in a Set. It returns 1
if the member exists and 0 if it does not.

The command SREM removes and returns members from a Set. The command
SCARD returns the number of members in a Set (also known as cardinality):

127.0.0.1:6379> SISMEMBER user:max:favorite_artists "Arctic Monkeys"
(integer) 1

127.0.0.1:6379> SREM user:max:favorite_artists "Arctic Monkeys"
(integer) 1

Advanced Data Types (Earning a Black Belt)

[30]

127.0.0.1:6379> SISMEMBER user:max:favorite_artists "Arctic Monkeys"
(integer) 0

127.0.0.1:6379> SCARD user:max:favorite_artists
(integer) 3

The command SMEMBERS returns an array with all members of a Set:

127.0.0.1:6379> SMEMBERS user:max:favorite_artists
1) "Belle & Sebastian"

2) "Arcade Fire"

3) "Lenine"

Building a deal tracking system
Yipit, Groupon, and LivingSocial are examples of websites that send daily e-mails
to users. These e-mails contain a Set of deals (coupons and discounts) that users
are interested in. The deals are based on the area in which they live, as well their
preferences.

This section will show how to create functions to mimic the features of these websites:

• Mark a deal as sent to a user
• Check whether a user received a group of deals
• Gather metrics from the sent deals

Every deal is a Redis Set containing all user IDs that have received that deal. In the
following examples, deals and users are referenced by IDs. Deal IDs are shown as
deal:123, and user IDs are shown as user:123.

Create a file named deal-metrics.js in the chapter 2 folder, where all of the code from
this section should be saved.

The function markDealAsSent adds a user to a deal Set. The deal needs to be marked
as sent; otherwise, there is no way to check whether it was already sent:

var redis = require("redis");
var client = redis.createClient();

function markDealAsSent(dealId, userId) { // 1
 client.sadd(dealId, userId); // 2
}

Chapter 2

[31]

1. Define the function markDealAsSent, which expects a deal ID and a user ID
as arguments.

2. Execute the command SADD to add a user ID to a deal Set.

The sendDealIfNotSent function checks whether a user ID belongs to a deal Set.
This function sends a deal to a user only if it was not already sent:

function sendDealIfNotSent(dealId, userId) { // 1
 client.sismember(dealId, userId, function(err, reply) { // 2
 if (reply) {
 console.log("Deal", dealId, "was already sent to
 user", userId); // 3
 } else {
 console.log("Sending", dealId, "to user", userId); // 4
 // code to send the deal to the user would go here… // 5
 markDealAsSent(dealId, userId); // 6
 }
 });
}

1. Define the sendDealIfNotSent function, which expects a deal ID and a user ID
as arguments.

2. Execute the SISMEMBER command to check whether a user ID exists in
the deal Set. If SISMEMBER returns 1 (which means that the user exists
in the deal Set), a message saying that deal was already sent to the user is
displayed.

3. If the deal was not sent, we display a message saying that deal was not sent
to the user.

4. Optionally, add some code to send an e-mail to the user.
5. Call the markDealAsSent function after sending the e-mail.

The function showUsersThatReceivedAllDeals displays all user IDs that exist in all
the deal Sets specified. This could be useful for partnership metrics; for instance, a
commercial partner might want a list of all users who received all of its deals in a
given week:

function showUsersThatReceivedAllDeals(dealIds) { // 1
 client.sinter(dealIds, function(err, reply) { // 2
 console.log(reply + " received all of the deals: " + dealIds); // 3
 });
}

Advanced Data Types (Earning a Black Belt)

[32]

1. Define the function showUsersThatReceivedAllDeals, which receives
an array of deal IDs.

2. Execute the command SINTER to find all users who received all the
specified deals.

3. Display the list of all users who received the specified list of deals.

The function showUsersThatReceivedAtLeastOneOfTheDeals displays all user IDs
that exist in any of the deal Sets specified. This could also be useful for partnership
metrics; for example, a partner would be interested in all users who received any of
its deals in a given week:

function showUsersThatReceivedAtLeastOneOfTheDeals(dealIds) { // 1
 client.sunion(dealIds, function(err, reply) { // 2
 console.log(reply + " received at least one of the deals: " +
 dealIds); // 3
 });
}

1. Define the function showUsersThatReceivedAtLeastOneOfTheDeals, which
requires an array of deal IDs.

2. Execute the command SUNION to find all users who received at least one
of the specified deals.

3. Display the list of users who received at least one of the specified deals.

The following code snippet is an example of how to use the functions defined
previously. Add the following code to deal-metrics.js too:

markDealAsSent('deal:1', 'user:1');
markDealAsSent('deal:1', 'user:2');
markDealAsSent('deal:2', 'user:1');
markDealAsSent('deal:2', 'user:3');

sendDealIfNotSent('deal:1', 'user:1');
sendDealIfNotSent('deal:1', 'user:2');
sendDealIfNotSent('deal:1', 'user:3');

showUsersThatReceivedAllDeals(["deal:1", "deal:2"]);
showUsersThatReceivedAtLeastOneOfTheDeals(["deal:1", "deal:2"]);

client.quit();

Chapter 2

[33]

Then execute the file and check the output, as follows:

$ node deal-metrics.js
Deal deal:1 was already sent to user user:1
Deal deal:1 was already sent to user user:2
Sending deal:1 to user user:3
user:1 received all of the deals: deal:1,deal:2
user:2,user:3,user:1 received at least one of the deals: deal:1,deal:2

Sorted Sets
A Sorted Set is very similar to a Set, but each element of a Sorted Set has an
associated score. In other words, a Sorted Set is a collection of nonrepeating Strings
sorted by score. It is possible to have elements with repeated scores. In this case, the
repeated elements are ordered lexicographically (in alphabetical order).

Sorted Set operations are fast, but not as fast as Set operations, because the scores
need to be compared. Adding, removing, and updating an item in a Sorted Set runs
in logarithmic time, O(log(N)), where N is the number of elements in a Sorted Set.
Internally, Sorted Sets are implemented as two separate data structures:

• A skip list with a hash table. A skip list is a data structure that allows fast
search within an ordered sequence of elements.

• A ziplist, based on the zset-max-ziplist-entries and zset-max-ziplist-value
configurations.

Chapter 4, Commands (Where the Wild Things Are), provides more
details about these configurations.

Sorted Sets could be used to:

• Build a real time waiting list for customer service
• Show a leaderboard of a massive online game that displays the top players,

users with similar scores, or the scores of your friends
• Build an autocomplete system using millions of words

Advanced Data Types (Earning a Black Belt)

[34]

Sorted Set examples with redis-cli
In this section, we are going to use redis-cli to explain some commands to work
with Sorted Sets. There are many other commands available for Sorted Sets, but the
commands presented here will help you understand those other commands.

The ZADD command adds one or many members to a Sorted Set. ZADD ignores
members that already exist in a Sorted Set. It returns the number of added members:

$ redis-cli
127.0.0.1:6379> ZADD leaders 100 "Alice"
(integer) 1
127.0.0.1:6379> ZADD leaders 100 "Zed"
(integer) 1
127.0.0.1:6379> ZADD leaders 102 "Hugo"
(integer) 1
127.0.0.1:6379> ZADD leaders 101 "Max"
(integer) 1

Elements are added to a Sorted Set with a score and a String value. There are two
ordering criteria: the element score and the element value. If a tie exists between
the element scores, the lexicographical order of the element values is used to break
the tie. In the preceding example, Alice and Zed have the same score. Therefore,
the lexicographical order is used to break the tie; Alice is ranked lower than Zed.

There is a family of commands that can fetch ranges in a Sorted Set: ZRANGE,
ZRANGEBYLEX, ZRANGEBYSCORE, ZREVRANGE, ZREVRANGEBYLEX,
and ZREVRANGEBYSCORE. But only ZRANGE and ZREVRANGE are presented
here. These two commands are almost the same. The only difference is in how their
results are sorted:

• ZRANGE returns elements from the lowest to the highest score, and it uses
ascending lexicographical order if a score tie exists

• ZREVRANGE returns elements from the highest to the lowest score, and it
uses descending lexicographical order if a score tie exists

Both of these commands expect a key name, a start index, and an end index.
The indices are zero-based and can be positive or negative values. The following
example shows how the ZREVRANGE command works:

127.0.0.1:6379> ZREVRANGE leaders 0 -1
1) "Hugo"
2) "Max"
3) "Zed"
4) "Alice"

Chapter 2

[35]

Also, it is possible to pass an optional parameter to return the elements with their
scores using the keyword WITHSCORES (the result is an array with pairs of value
and score):

127.0.0.1:6379> ZREVRANGE leaders 0 -1 WITHSCORES
1) "Hugo"
2) "102"
3) "Max"
4) "101"
5) "Zed"
6) "100"
7) "Alice"
8) "100"

The ZREM command removes a member from a Sorted Set:

127.0.0.1:6379> ZREM leaders "Hugo"
(integer) 1
127.0.0.1:6379> ZREVRANGE leaders 0 -1
1) "Max"
2) "Zed"
3) "Alice"

It is possible to retrieve a score or rank of a specific member in a Sorted Set using the
commands ZSCORE and ZRANK/ZREVRANK:

• ZSCORE: This returns the score of a member.
• ZRANK: This returns the member rank (or index) ordered from low to high.

The member with the lowest score has rank 0.
• ZREVRANK: This returns the member rank (or index) ordered from high to

low. The member with the highest score has rank 0.

127.0.0.1:6379> ZSCORE leaders "Max"
"101"
127.0.0.1:6379> ZRANK leaders "Max"
(integer) 2
127.0.0.1:6379> ZREVRANK leaders "Max"
(integer) 0

Advanced Data Types (Earning a Black Belt)

[36]

Building a leaderboard system for an
online game
In this section, we are going to build a leaderboard application that can be used in an
online game. This application has the following features:

• Add and remove users
• Display the details of a user
• Show the top x users
• Show the users who are directly ranked above and below a given user

The solution presented uses JavaScript prototypes as classes. The LeaderBoard
function acts as a class, and all the features presented are methods. It is possible
to create multiple leaderboards with this solution, and it is very easy to extend
and add more features.

Create a file named leaderboard.js in the chapter 2 folder, where all of the code from
this section should be saved, and add the following block of code to it:

var redis = require("redis");
var client = redis.createClient();

function LeaderBoard(key) { // 1
 this.key = key; // 2
}

1. Create a function called LeaderBoard, which receives a key name as
a parameter.

2. Save key as a property.

The implementation of method addUser is as follows:

LeaderBoard.prototype.addUser = function(username, score) { // 1
 client.zadd([this.key, score, username], function(err, replies) {// 2
 console.log("User", username,"added to the leaderboard!"); // 3
 });
};

1. Create the method addUser, which expects username and score as parameters.
2. Execute the command ZADD to insert a member into a Sorted Set.
3. Display a confirmation that a user was added to the leaderboard.

Chapter 2

[37]

The method removeUser is similar to addUser but uses ZREM instead of ZADD:

LeaderBoard.prototype.removeUser = function(username) { // 1
 client.zrem(this.key, username, function(err, replies) { // 2
 console.log("User", username, "removed successfully!"); // 3
 });
};

1. Create the method removeUser, which expects username as a parameter.
2. Execute the command ZREM to remove a member from a Sorted Set.
3. Display a confirmation that a user was deleted from the leaderboard.

The method getUserScoreAndRank displays a user's rank and score by executing the
commands ZSCORE and ZREVRANK:

LeaderBoard.prototype.getUserScoreAndRank = function(username) { // 1
 var leaderboardKey = this.key; // 2
 client.zscore(leaderboardKey, username, function(err, zscoreReply) {
// 3
 client.zrevrank(leaderboardKey, username, function(
 err, zrevrankReply) { // 4
 console.log("\nDetails of " + username + ":");
 console.log("Score:", zscoreReply + ", Rank: #" +
 (zrevrankReply + 1)); // 5
 });
 });
};

1. Create the method getUserScoreAndRank, which expects username as
a parameter.

2. Create a variable called leaderboardKey with the leaderboard key name.
3. Execute the command ZSCORE to obtain the score of a given user.
4. Execute the command ZREVRANK to obtain the rank of a given user

after the command ZSCORE is executed.
5. Display the user's score and rank.

The method showTopUsers is very straightforward because the command
ZREVRANGE returns a range of members ordered from highest to lowest score:

LeaderBoard.prototype.showTopUsers = function(quantity) { // 1
 client.zrevrange([this.key, 0, quantity - 1, "WITHSCORES"],
function(err,
 reply) { // 2
 console.log("\nTop", quantity, "users:");

www.allitebooks.com

http://www.allitebooks.org

Advanced Data Types (Earning a Black Belt)

[38]

 for (var i = 0, rank = 1 ; i < reply.length ; i += 2, rank++) {// 3
 console.log("#" + rank, "User: " + reply[i] + ", score:",
 reply[i + 1]);
 }
 });
};

1. Create the method showTopUsers, which expects the quantity of top players.
2. Execute ZREVRANGE to obtain the top players defined by the

variable quantity.
3. Iterate over the array of top players and display their ranks, usernames,

and scores. The increment of 2 (i += 2) is necessary because the returned
array is composed of pairs of username and score.

The method getUsersAroundUser is used to get a list of users who are ranked relative
to a given user in the leaderboard:

LeaderBoard.prototype.getUsersAroundUser = function(username,
quantity, callback) { // 1
 var leaderboardKey = this.key; // 2
 client.zrevrank(leaderboardKey, username, function(err,
zrevrankReply) { // 3

 var startOffset = Math.floor(zrevrankReply - (quantity / 2) + 1);
// 4
 if (startOffset < 0) { // 5
 startOffset = 0;
 }
 var endOffset = startOffset + quantity - 1; // 6

 client.zrevrange([leaderboardKey, startOffset, endOffset,
"WITHSCORES"],
 function(err, zrevrangeReply) { // 7
 var users = []; // 8
 for (var i = 0, rank = 1 ; i < zrevrangeReply.length ; i += 2,
 rank++) { // 9
 var user = {
 rank: startOffset + rank,
 score: zrevrangeReply[i + 1],
 username: zrevrangeReply[i],
 }; // 10
 users.push(user); // 11
 }
 callback(users); // 12

Chapter 2

[39]

 });
 });
};

1. Create the method getUsersAroundUser, which expects a username,
the number of users to return, and a callback to be executed with the
details of these users.

2. Save leaderboardkey as a local variable.
3. Executed ZREVRANK to obtain the user's rank (from highest to lowest).
4. Define the variable startOffset to get the index value of the first element of

the result.
5. Set the variable startOffset to zero if it is a negative value.
6. Define the variable endOffset to get the index value of the last element of

the result.
7. Execute the command ZREVRANGE to retrieve the names of all users

(and their scores) who are between startOffset and endOffset.
8. Create the variable users as an empty array.
9. Iterate over all users and their scores.
10. Assign user details to the variable user.
11. Add user details to the array users.
12. Execute the callback function with the array users.

The following code snippet is an example that shows how to use the previously
defined functions. Add the following code to leaderboard.js too:

var leaderBoard = new LeaderBoard("game-score");
leaderBoard.addUser("Arthur", 70);
leaderBoard.addUser("KC", 20);
leaderBoard.addUser("Maxwell", 10);
leaderBoard.addUser("Patrik", 30);
leaderBoard.addUser("Ana", 60);
leaderBoard.addUser("Felipe", 40);
leaderBoard.addUser("Renata", 50);
leaderBoard.addUser("Hugo", 80);
leaderBoard.removeUser("Arthur");

leaderBoard.getUserScoreAndRank("Maxwell");

leaderBoard.showTopUsers(3);

Advanced Data Types (Earning a Black Belt)

[40]

leaderBoard.getUsersAroundUser("Felipe", 5, function(users) { // 1
 console.log("\nUsers around Felipe:");
 users.forEach(function(user) {
 console.log("#" + user.rank, "User:", user.username + ", score:",
 user.score);
 });
 client.quit(); // 2
});

1. Execute the method getUsersAroundUser, passing Felipe as the username,
5 as the number of users to return, and a callback that displays the details
of the users who are ranked relative to Felipe.

2. Close the Redis connection after all the commands are executed.

In all other examples, the method quit() was not called inside of any
function/method, but in the previous example, it was necessary.
This is because there were nested callback functions, and the quit()
function does not wait for all nested callbacks to be handled.

Then execute the file and check the output:

$ node leaderboards.js
User Arthur added to the leaderboard!
User KC added to the leaderboard!
User Maxwell added to the leaderboard!
User Patrik added to the leaderboard!
User Ana added to the leaderboard!
User Felipe added to the leaderboard!
User Renata added to the leaderboard!
User Hugo added to the leaderboard!
User Arthur removed successfully!

Top 3 users:
#1 User: Hugo, score: 80
#2 User: Ana, score: 60
#3 User: Renata, score: 50

Details of Maxwell:
Score: 10, Rank: #7

Users around Felipe:
#2 User: Ana, score: 60
#3 User: Renata, score: 50

Chapter 2

[41]

#4 User: Felipe, score: 40
#5 User: Patrik, score: 30
#6 User: KC, score: 20

Sorted Sets are one of the richest data types in Redis. We covered the commands that
we believe are the most useful, but you can check out the online documentation to
learn more.

Bitmaps
A Bitmap is not a real data type in Redis. Under the hood, a Bitmap is a String.
We can also say that a Bitmap is a set of bit operations on a String. However, we
are going to consider them as data types because Redis provides commands to
manipulate Strings as Bitmaps. Bitmaps are also known as bit arrays or bitsets.

A Bitmap is a sequence of bits where each bit can store 0 or 1. You can think of a
Bitmap as an array of ones and zeroes. The Redis documentation refers to Bitmap
indices as offsets. The application domain dictates what each Bitmap index means.

Bitmaps are memory efficient, support fast data lookups, and can store up to 232 bits
(more than 4 billion bits).

See this example of a Bitmap with three bits turned on and two turned off:

A Bitmap with one Set on offsets 0, 3, and 4 and zero Set on offsets 1 and 2

In order to see how a Bitmap can be memory efficient, we are going to compare
a Bitmap to a Set. The comparison scenario is an application that needs to store all
user IDs that visited a website on a given day (the Bitmap offset represents a user
ID). We assume that our application has 5 million users in total, but only 2 million
users visited the website on that day, and that each user ID can be represented by
4 bytes (32 bits, which is the size of an integer in a 32-bit computer).

Advanced Data Types (Earning a Black Belt)

[42]

The following table compares how much memory a Bitmap and a Set implementation
would take to store 2 million user IDs. In this example, the Redis key is the date of
visits:

Redis key Data type Amount of
bits per user

Stored
users

Total memory

visits:2015-01-01 Bitmap 1 bit 5 million 1 * 5000000 bits
= 625kB

visits:2015-01-01 Set 32 bits 2 million 32 * 2000000 bits
= 8MB

The worst-case scenario for the Bitmap implementation is represented in the
preceding table. It had to allocate memory for the entire user base even though only
2 million users visited the page. This happens when the user with the highest ID
visits the page (user ID 5000000).

Even when it comes to allocating memory to users that did not visit the page, the
Bitmap implementation uses far less memory than the Set implementation.

However, Bitmaps are not always memory efficient. If we change the previous
example to consider only 100 visits instead of 2 million, assuming the worst
case-scenario again, the Bitmap implementation would not be memory-efficient,
as shown here:

Redis key Data type Amount of
bits per user

Stored
users

Total memory

visits:2015-01-01 Bitmap 1 bit 5 million 1 * 5000000 bits
= 625kB

visits:2015-01-01 Set 32 bits 100 32 * 100 bits =
3.125kB

Bitmaps are a great match for applications that involve real-time analytics, because
they can tell whether a user performed an action (that is, "Did user X perform
action Y today?") or how many times an event occurred (that is, "How many users
performed action Y this week?"):

• Did user 1 read Redis Essentials today?
• Did user 1 play Angry Birds this week?
• How many users read Redis Essentials last month?
• How many users played Angry Birds this year?

Chapter 2

[43]

Bitmap examples with redis-cli
The redis-cli examples show how to use Bitmap commands to store user IDs of users
who visited a web page on a given day. Each user is identified by an ID, which is a
sequential integer. Each Bitmap offset represents a user: user 1 is offset 1, user 30 is
offset 30, and so on.

The Bitmap approach presented here consists of giving a bit the value of 1 if a user
visited a page and 0 if they did not, like this:

The previous Bitmap is 10011, and it means that users 0, 3, and 4 visited the website—
because they are marked as 1—and the other users did not visit the website.

The SETBIT command is used to give a value to a Bitmap offset, and it accepts only
1 or 0. If the Bitmap does not exist, it creates it. In the following snippet, users 10 and
15 visited the website on 2015-01-01, and users 10 and 11 visited it on 2015-01-02:

127.0.0.1:6379> SETBIT visits:2015-01-01 10 1
(integer) 0

127.0.0.1:6379> SETBIT visits:2015-01-01 15 1
(integer) 0

127.0.0.1:6379> SETBIT visits:2015-01-02 10 1
(integer) 0

127.0.0.1:6379> SETBIT visits:2015-01-02 11 1
(integer) 0

The GETBIT command returns the value of a Bitmap offset. In the following example,
it checks whether user 10 visited the website on 2015-01-01, and then checks whether
user 15 visited the website on 2015-01-02:

127.0.0.1:6379> GETBIT visits:2015-01-01 10
(integer) 1

127.0.0.1:6379> GETBIT visits:2015-01-02 15
(integer) 0

Advanced Data Types (Earning a Black Belt)

[44]

The BITCOUNT command returns the number of bits marked as 1 in a Bitmap.
In this example, it returns the number of users who visited the website on the
specified dates:

127.0.0.1:6379> BITCOUNT visits:2015-01-01
(integer) 2

127.0.0.1:6379> BITCOUNT visits:2015-01-02
(integer) 2

The BITOP command requires a destination key, a bitwise operation, and a list
of keys to apply to that operation and store the result in the destination key. The
available bitwise operations are OR, AND, XOR, and NOT. The following example
uses BITOP OR to find out how many users visited the website on the specified
dates (2015-01-01 and 2015-01-02):

127.0.0.1:6379> BITOP OR total_users visits:2015-01-01 visits:2015-01-02
(integer) 2

127.0.0.1:6379> BITCOUNT total_users
(integer) 3

Building web analytics
This section creates a simple web analytics system to save and count daily user visits
to a website and then retrieve user IDs from the visits on a given date.

Create a file called metrics-bitmap.js in the chapter 2 folder, where all of the code from
this section should be saved.

The function storeDailyVisit uses the command SETBIT to save a given user ID of a
user who visited the website on a given date:

var redis = require("redis");
var client = redis.createClient({return_buffers: true}); // 1

function storeDailyVisit(date, userId) { // 2
 var key = 'visits:daily:' + date; // 3
 client.setbit(key, userId, 1, function(err, reply) { // 4
 console.log("User", userId, "visited on", date); // 5
 });
}

Chapter 2

[45]

1. Create a Redis client that uses Node.js buffers rather than JavaScript strings—
this line is different from the previous examples. It is simpler to manipulate
bytes with buffers than with JavaScript strings.

2. Create the function storeDailyVisit, which expects a date and a user ID.
The date should be in this format: YYYY-MM-DD (for example, 2015-01-01).

3. Create a variable called key with the format visits:daily:YYYY-MM-DD.
4. Execute the command SETBIT on the key that was newly created, using the

variable userId for the offset and 1 for the bit value. This means that userId
visited the website on that date.

5. Display a confirmation message.

The function countVisits uses the command BITCOUNT to count the number of
users who visited the website on a given date:

function countVisits(date) { // 1
 var key = 'visits:daily:' + date; // 2
 client.bitcount(key, function(err, reply) { // 3
 console.log(date, "had", reply, "visits."); // 4
 });
}

1. Create the function countVisits, which expects a date in the format
YYYY-MM-DD.

2. Create a variable called key with the format as visits:daily:YYYY-MM-DD.
3. Execute the command BITCOUNT on the newly created key .
4. Display the number of users who visited the website on a given date.

The function showUserIdsFromVisit displays the user IDs of all users who visited the
website on a given date. It uses the command GET to retrieve the Bitmap and then
iterates over each bit to find the IDs of the users who visited the website on the given
date. This feature is not easy to implement using redis-cli. This is because it requires
iterations and bitwise operations on every bit of the Bitmap:

function showUserIdsFromVisit(date) { // 1
 var key = 'visits:daily:' + date; // 2
 client.get(key, function(err, bitmapValue) { // 3
 var userIds = []; // 4
 var data = bitmapValue.toJSON().data; // 5

 data.forEach(function(byte, byteIndex) { // 6
 for (var bitIndex = 7 ; bitIndex >= 0 ; bitIndex--) { // 7
 var visited = byte >> bitIndex & 1; // 8

Advanced Data Types (Earning a Black Belt)

[46]

 if (visited === 1) { // 9
 var userId = byteIndex * 8 + (7 - bitIndex); // 10
 userIds.push(userId); // 11
 }
 }
 });
 console.log("Users " + userIds + " visited on " + date); // 12
 });
}

1. Create the function showUserIdsFromVisit, which expects a date in the
YYYY-MM-DD format as the argument.

2. Create a Redis key.
3. Execute the command GET to retrieve the Bitmap value. This returns

a Node.js Buffer, not a String (because of the return_buffers option passed
to redis.createClient).

4. Create an empty array and assigned it to the variable userIds. This variable
will store all the user IDs to be displayed.

5. Assign the Bitmap value to the variable data.
6. Iterate over the bytes of the Bitmap.
7. Iterate over each bit of a byte. Each byte has 8 bits, and the iteration is from

right to left, because this is how Redis stores the data in an x86 machine.
8. Shift a byte to the right to remove the bits that were already worked on.

Then we applied a bitmask of 1 and assigned the result to the variable
visited. In other words, this line checks whether the current bit is 1.

9. Check whether the user visited the page.
10. Recreate the user ID. This multiplies the current byte index by 8, subtracts

the current bit index from 7, and then adds the two results.

For instance, if the byte being worked on is the first, byteIndex is 0. If the bit
being worked on is also the first, bitIndex is 7. Therefore, the first bit of the
first byte is user 0 (0 * 8 + (7 - 7) = 0). The multiplication by 8 is necessary
because each byte stores at most eight users. The subtraction of 7 is to
identify the user from the eight different possibilities.
Another example would be user 10, which is in the second byte. The value
of byteIndex would be 1, and bitIndex would be 5 (1 * 8 + (7 - 5) = 8 + 2 = 10).

Chapter 2

[47]

11. This last snippet stores some visits, counts them, and then displays the IDs
of the users who visited the website on a given date:
storeDailyVisit('2015-01-01', '1');
storeDailyVisit('2015-01-01', '2');
storeDailyVisit('2015-01-01', '10');
storeDailyVisit('2015-01-01', '55');

countVisits('2015-01-01');
showUserIdsFromVisit('2015-01-01');

client.quit();

Then execute the metrics-bitmap.js file:

$ node metrics-bitmap.js
User 1 visited on 2015-01-01
User 2 visited on 2015-01-01
User 10 visited on 2015-01-01
User 500000 visited on 2015-01-01
2015-01-01 had 4 visits
Users 1,2,10,500000 visited on 2015-01-01

This example only stores visits once. Subsequent visits by the same
user on the same date are not counted. If you want to know the total
number of visits, you should use a String as a separate counter. Every
time a visit occurs, INCR should be executed on that counter.

All the examples shown in this section can be adapted to perform analytics in a
variety of contexts: analyzing users watching videos, playing songs, opening e-mails,
clicking on links, and so on.

HyperLogLogs
A HyperLogLog is not actually a real data type in Redis. Conceptually, a HyperLogLog
is an algorithm that uses randomization in order to provide a very good approximation
of the number of unique elements that exist in a Set. It is fascinating because it only
runs in O(1), constant time, and uses a very small amount of memory—up to 12 kB of
memory per key. Although technically a HyperLogLog is not a real data type, we are
going to consider it as one because Redis provides specific commands to manipulate
Strings in order to calculate the cardinality of a set using the HyperLogLog algorithm.

www.allitebooks.com

http://www.allitebooks.org

Advanced Data Types (Earning a Black Belt)

[48]

The HyperLogLog algorithm is probabilistic, which means that it does not ensure
100 percent accuracy. The Redis implementation of the HyperLogLog has a standard
error of 0.81 percent. In theory, there is no practical limit for the cardinality of the
sets that can be counted.

The HyperLogLog algorithm was described originally in the paper HyperLogLog:
The analysis of a near-optimal cardinality estimation algorithm by Philippe Flajolet,
Éric Fusy, Olivier Gandouet, and Frédéric Meunier.

HyperLogLogs were introduced in Redis 2.8.9. There are only three commands for
HyperLogLogs: PFADD, PFCOUNT, and PFMERGE.

The prefix PF is in honor of Philippe Flajolet, the author of
the algorithm. He passed away in March 2011.

Usually, to perform unique counting, you need an amount of memory proportional
to the number of items in the set that you are counting. HyperLogLogs solve these
kinds of problems with great performance, low computation cost, and a small
amount of memory. However, it is important to remember that HyperLogLogs are
not 100 percent accurate. Nonetheless, in some cases, 99.19 percent is good enough.

Here are a few examples of where HyperLogLogs can be used:

• Counting the number of unique users who visited a website
• Counting the number of distinct terms that were searched for on your

website on a specific date or time
• Counting the number of distinct hashtags that were used by a user
• Counting the number of distinct words that appear in a book

Counting unique users – HyperLogLog
versus Set
This section compares how much memory a HyperLogLog and a Set would need to
count the unique visits to a given website per hour.

Let's look at the following scenario: a website has an average of 100,000 unique visits
per hour. Each user who visits the page is identified by a UUID (universally unique
identifier), which is represented by a 32-byte string (for example, de305d54-75b4-
431b-adb2-eb6b9e546014).

Chapter 2

[49]

In order to store all unique visitors, a Redis key is created for every hour of a day. This
means that in a day, there are 24 keys, and in a month there are 720 keys (24 * 30).

A HyperLogLog uses up to 12 kB to store 100,000 unique visits (or any cardinality).
On the other hand, a Set uses 3.2 MB to store 100,000 UUIDs that are 32 bytes each.

The following table shows how much memory each data type would need to store
100,000 unique user visits in an hour, a day, and a month:

Data type Memory in an hour Memory in a day Memory in a month
HyperLogLog 12 kB 12 kB * 24 = 288 kB 288 kB * 30 = 8.4 MB
Set 32 bytes * 100000 =

3.2 MB
3.2 MB * 24 = 76.8 MB 76.8 MB * 30 = 2.25 GB

For this situation, a HyperLogLog is more suitable than a Set.

HyperLogLogs examples with redis-cli
The redis-cli examples show how you can use HyperLogLog commands to record
and count unique user visits to a website.

The command PFADD adds one or many strings to a HyperLogLog. PFADD returns
1 if the cardinality was changed and 0 if it remains the same:

$ redis-cli

127.0.0.1:6379> PFADD visits:2015-01-01 "carl" "max" "hugo" "arthur"
(integer) 1

127.0.0.1:6379> PFADD visits:2015-01-01 "max" "hugo"
(integer) 0

127.0.0.1:6379> PFADD visits:2015-01-02 "max" "kc" "hugo" "renata"
(integer) 1

The command PFCOUNT accepts one or many keys as arguments. When a single
argument is specified, it returns the approximate cardinality. When multiple keys are
specified, it returns the approximate cardinality of the union of all unique elements:

127.0.0.1:6379> PFCOUNT visits:2015-01-01
(integer) 4

127.0.0.1:6379> PFCOUNT visits:2015-01-02
(integer) 4

127.0.0.1:6379> PFCOUNT visits:2015-01-01 visits:2015-01-02
(integer) 6

Advanced Data Types (Earning a Black Belt)

[50]

The command PFMERGE requires a destination key and one or many HyperLogLog
keys as arguments. It merges all the specified HyperLogLogs and stores the result in
the destination key:

127.0.0.1:6379> PFMERGE visits:total visits:2015-01-01 visits:2015-01-02
OK

127.0.0.1:6379> PFCOUNT visits:total
(integer) 6

Counting and retrieving unique website visits
This section extends the previous redis-cli example using Node.js and adds an hour
as granularity. Later, it merges the 24 keys that represent each hour of a day into a
single key. A more feature-complete implementation version of this example will be
presented in Chapter 3, Time Series (A Collection of Observations).

Create a file called unique-visitors.js in the chapter 2 folder, where all of the code from
this section should be saved.

The function addVisit registers a unique visit. Add the following code to
unique-visitors.js:

var redis = require('redis');
var client = redis.createClient();

function addVisit(date, user) { // 1
 var key = 'visits:' + date; // 2
 client.pfadd(key, user); // 3
}

1. Create the function addVisit, which requires a date and a username.
The date can be in YYYY-MM-DD or YYYY-MM-DDTH format
(for example, 2015-01-01 or 2015-01-01T2).

2. Create a variable called key in the format we just described.
3. Execute the command PFADD to add the user to the HyperLogLog key.

The function count displays the number of unique visits on the specified dates:

function count(dates) { // 1
 var keys = []; // 2
 dates.forEach(function(date, index) { // 3

Chapter 2

[51]

 keys.push('visits:' + date);
 });

 client.pfcount(keys, function(err, reply) { // 4
 console.log('Dates', dates.join(', '), 'had', reply, 'visits');
 });
}

1. Create the function count, which requires an array of dates.
2. Create the variable keys and assigned an empty array to it.
3. Iterate over each date from the dates parameter, prepended visits: to it,

and then appended it to the variable keys.
4. Execute the command PFCOUNT and displayed the result.

The function aggregateDate merges the visits on a given date:

function aggregateDate(date) { // 1
 var keys = ['visits:' + date]; // 2
 for (var i = 0; i < 24; i++) { // 3
 keys.push('visits:' + date + 'T' + i); // 4
 }
 client.pfmerge(keys, function(err, reply) { // 5
 console.log('Aggregated date', date);
 });
}

1. Create the function aggregateDate, which requires a date as a parameter.
2. Create the variable keys and assign to it an array with the formatted date

(for example, visits:2015-01-01).
3. Loop through every hour of a day.
4. Append a formatted date to the variable keys (YYYY-MM-DDTH).
5. Execute the command PFMERGE to merge visits from all 24 hours of a day

and store them in the destination key (indicated by the variable date).

The following sample simulates 200 users visiting the page 1,000 times in a period
of 24 hours. It also counts the number of users who visited the page during the hour
2015-01-01T0:

var MAX_USERS = 200; // 1
var TOTAL_VISITS = 1000; // 2

for (var i = 0; i < TOTAL_VISITS; i++) { // 3

Advanced Data Types (Earning a Black Belt)

[52]

 var username = 'user_' + Math.floor(1 + Math.random() * MAX_USERS);
// 4
 var hour = Math.floor(Math.random() * 24); // 5
 addVisit('2015-01-01T' + hour, username); // 6
}

count(['2015-01-01T0']); // 7
count(['2015-01-01T5', '2015-01-01T6', '2015-01-01T7']); // 8

aggregateDate('2015-01-01'); // 9
count(['2015-01-01']); // 10

client.quit();

1. Define the variable MAX_USERS with a value of 200.
2. Define the variable TOTAL_VISITS with a value of 1000.
3. Iterate from 0 to TOTAL_VISITS.
4. Create a username randomly and assigned it to the variable username,

based on the variable MAX_USERS. The lowest username will be user_1
and the highest will be user_200.

5. Create an hour randomly and assigned it to the variable hour. The lowest
hour will be 0 and the highest will be 23.

6. Call the function addVisit, passing a formatted date and username (both
randomly generated). It is possible for addVisit to be called with the same
parameters several times. In this scenario, the HyperLogLog's cardinality
is not changed, since HyperLogLogs only take unique values into
consideration.

After the preceding code is saved in unique-visitors.js, execute the file to get the
following output:

$ node unique-visitors.js
Dates 2015-01-01T0 had 41 visits
Dates 2015-01-01T5, 2015-01-01T6, 2015-01-01T7 had 97 visits
Aggregated date 2015-01-01
Dates 2015-01-01 had 203 visits

This simulation uses random data, so it is likely that the output will be
slightly different.

Chapter 2

[53]

Summary
This chapter presented advanced data types: Sets, Sorted Sets, Bitmaps, and
HyperLogLogs. These were presented along with real use cases and examples
using redis-cli and Node.js.

The next chapter is going to explain how to build a feature-complete Time Series
system with Redis in Node.js using Strings, Hashes, and HyperLogLogs. It will support
querying multiple granularities, data consolidation, and automatic data expiration.

[55]

Time Series (A Collection
of Observations)

A time series is an ordered sequence of values (data points) made over a time
interval. Time series are used in statistics, social networks, and communications
engineering. Actually, they can be adopted in any domain that needs temporal
measurements. They can be used to predict future stock market changes, real estate
trends, environmental conditions, and more.

Examples of time series are:

• Usage of specific words or terms in a newspaper over time
• Minimum wage year-by-year
• Daily changes in stock prices
• Product purchases month-by-month
• Climate changes

Many time series systems face challenges with storage, since a dataset can grow too
large very quickly. When storing events every second, at least 86,400 data points
are created every day, and storing so many data points over a long period of time is
challenging, especially for in-memory data stores, such as Redis.

Another aspect of a time series is that as time goes by, the smallest granularities lose
their values. For instance, if events are recorded for a full month, usually analysis is
done by hours or days, but rarely by seconds. There would be too many data points
to be analyzed, so it would not provide much value.

Time Series (A Collection of Observations)

[56]

The New York Times created an interesting tool called Chronicle that graphs the use
of words and phrases in its newspaper issues since 1851. The following screenshot
represents the percentage of articles that contained the word "war." We recommend
that you check out the tool at http://chronicle.nytlabs.com.

In the previous graph, we can see that the term "war" was present in about
30 percent of the articles in The New York Times in 1942 (during World War II).
Thus, it is possible to identify a period of war by reading the graph.

Chronicle only displays results on a yearly basis, which means that it is not possible
to see the percentage of words used per month or day. It is a good tool for historical
analysis, but it does not provide insights into monthly or daily word trends.

In this chapter, a library in Node.js will be created to exemplify how to implement a
time series in Redis using the String, Hash, Sorted Set, and HyperLogLog data types.
This library records events per second, minute, hour, and day. It also provides query
functions to retrieve the data over time.

Time Series is a very extensive subject and there are a lot of published papers and
books about it, so the examples shown here are not going to cover all sorts of problems;
they are meant to be simple and easy to understand.

Building the foundation
In this section, we will demonstrate how to create a simple time series library using
Redis Strings. This library will be able to save an event that happened at a given
timestamp with a method called insert. It will also provide a method called fetch to
fetch values within a range of timestamps.

http://chronicle.nytlabs.com

Chapter 3

[57]

Later on, we will make this library memory-efficient using Hashes instead of Strings,
and also add a feature to store and search for unique events in a given timestamp
range using Sorted Sets and HyperLogLogs.

The solution supports multiple granularities: day, hour, minute, and second. Every
time an event happens in the system, an increment is stored for that specific time in
multiple granularities.

For instance, if an event happens on date 01/01/2015 at 00:00:00 (represented by
the timestamp 1420070400), the following Redis keys will be incremented (one key
per granularity):

• events:1sec:1420070400
• events:1min:1420070400
• events:1hour:1420070400
• events:1day:1420070400

All events are grouped by granularities, which means that an event that happened
at 02:04:01 will be saved with an event that happened at 02:04:02—both happened at
the same minute. The same grouping rules apply to the hour and day granularities.

This solution is very good for storing event counts that are near real-time, such as:

• Page views
• Video views
• Number of clicks
• Number of purchased items

Create a file called timeseries-string.js in the chapter 3 folder (where all of the code
from this section should be saved):

function TimeSeries(client, namespace) { // 1
 this.namespace = namespace; // 2
 this.client = client; // 3
 this.units = { // 4
 second: 1,
 minute: 60,
 hour: 60 * 60,
 day: 24 * 60 * 60
 };

 this.granularities = { // 5

Time Series (A Collection of Observations)

[58]

 '1sec' : { name: '1sec', ttl: this.units.hour * 2,
 duration: this.units.second },// 6
 '1min' : { name: '1min', ttl: this.units.day * 7,
 duration: this.units.minute },// 7
 '1hour': { name: '1hour', ttl: this.units.day * 60 ,
 duration: this.units.hour },// 8
 '1day' : { name: '1day', ttl: null, duration: this.units.day } // 9
 };
};

1. Create the function TimeSeries, which requires a Redis client and a namespace
as the parameters.

2. Save namespace as a property.
3. Save client as a property, which should be a Redis client object.
4. Create the property units with granularity names and their equivalents

in seconds (for example, an hour has 3,600 seconds, which means
60 minutes x 60 seconds).

5. Create the property granularities, which has the granularity names as
keys. Each granularity is an object with a name, a Time to Live (TTL),
and a duration. For instance, the granularity 1sec has a TTL of 2 hours,
and its duration is 1 second. The null TTL present on 1day means that
this granularity never expires.

The method insert registers an event that happened at a given timestamp in
multiple granularities:

TimeSeries.prototype.insert = function(timestampInSeconds) { // 1
 for (var granularityName in this.granularities) { // 2
 var granularity = this.granularities[granularityName]; // 3
 var key = this._getKeyName(granularity, timestampInSeconds); // 4
 this.client.incr(key); // 5
 if (granularity.ttl !== null) { // 6
 this.client.expire(key, granularity.ttl); // 7
 }
 }
};

1. Create the method insert, which receives a timestamp as an argument.
2. Iterate over all granularities.
3. Assign the current granularity to the variable granularity.

Chapter 3

[59]

4. Call the private method _getKeyName, which returns a key name in the format
"namespace:granularity:timestamp" (for example, "pageviews:1sec:1000").

5. Execute the INCR command, passing the variable key.
6. Verify that the current granularity is not null.
7. Execute the command EXPIRE, passing the variable key and the current

granularity TTL. This command deletes a Redis key automatically after a
given number of seconds.

The private method _getKeyName returns a key name, based on the granularity and
the timestamp:

TimeSeries.prototype._getKeyName = function(granularity,
timestampInSeconds) { // 1
 var roundedTimestamp = this._getRoundedTimestamp(timestampInSeconds,
granularity.duration); // 2
 return [this.namespace, granularity.name, roundedTimestamp].
join(':'); // 3
};

1. Create the method _getKeyName, which receives a granularity object and
a timestamp. It is a convention in JavaScript to use an underscore at the
beginning of private method names.

2. Execute the method _getRoundedTimestamp. It returns a normalized timestamp
by granularity duration. This new timestamp will be used to create the key
name. For instance, all insertions that happen in the first minute of an hour
are stored in a key like "namespace:1min:0", all inserts from the second minute
are stored in "namespace:1min:60", and so on.

The private method _getRoundedTimestamp returns a normalized timestamp, based
on a value. For instance, if the precision variable is 60, any timestamp between 0 and
60 will result in 0, any timestamp between 60 and 120 will result in 60, and so on:

TimeSeries.prototype._getRoundedTimestamp =
function(timestampInSeconds, precision) { // 1
 return Math.floor(timestampInSeconds/precision) * precision; // 2
};

1. Create the method _getRoundedTimestamp, which receives a timestamp in
seconds and a precision value.

2. Return a normalized timestamp based on the precision.

Time Series (A Collection of Observations)

[60]

The method fetch executes a callback by passing an array of data points, based on a
given granularity and a range of timestamps:

TimeSeries.prototype.fetch = function(granularityName, beginTimestamp,
endTimestamp, onComplete) { // 1
 var granularity = this.granularities[granularityName]; // 2
 var begin = this._getRoundedTimestamp(beginTimestamp, granularity.
duration); // 3
 var end = this._getRoundedTimestamp(endTimestamp, granularity.
duration); // 4
 var keys = []; // 5

 for (var timestamp = begin; timestamp <= end; timestamp +=
granularity.duration) { // 6
 var key = this._getKeyName(granularity, timestamp); // 7
 keys.push(key); // 8
 }

 this.client.mget(keys, function(err, replies) { // 9
 var results = []; // 10
 for (var i = 0 ; i < replies.length ; i++) { // 11
 var timestamp = beginTimestamp + i * granularity.duration; // 12
 var value = parseInt(replies[i], 10) || 0; // 13
 results.push({timestamp: timestamp , value: value}); // 14
 }
 onComplete(granularityName, results); // 15
 });
};

exports.TimeSeries = TimeSeries; // 16

1. Create the method fetch, which receives a granularity name, a beginning
timestamp, an end timestamp, and a callback.

2. Assign the current granularity to the variable granularity.
3. Assign the normalized variable beginTimestamp to the variable begin, based on

the current granularity duration.
4. Assign the normalized variable endTimestamp to the variable end, based on

the current granularity duration.
5. Create the variable keys and assign an empty array to it.
6. Iterate over all the timestamps in the specified range. Each iteration step is to

be incremented by the duration of the granularity.

Chapter 3

[61]

7. Call the private method _getKeyName in order to find the key name of the
current timestamp.

8. Add the variable key to the variable keys.
9. Execute the command MGET, passing all timestamp key names as well

as a callback.
10. Create the variable results and assign an empty array to it.
11. Iterate over all MGET replies.
12. Calculate a timestamp for each reply based on the beginTimestamp variable.
13. Convert a reply value to an integer value. If this is not possible, fall back

to zero.
14. Add an object composed of timestamp and value to the array results.
15. Execute the callback onComplete, passing the variables granularityName

and results.
16. Make the function available as a module in Node.js. This is necessary in

order to run require("./timeseries-string").

The implementation of timeseries-string is complete. Create a file called
using-timeseries.js, which will illustrate how to use the libraries timeseries-string
(previously implemented) and timeseries-hash (to be implemented). Both of these
libraries have the same API. Therefore, using-timeseries.js decides what library
to use via a command-line argument. This file inserts data points for a TimeSeries
instance called item1Purchases using hardcoded timestamps, and then it fetches
values from different granularities. Before inserting data into Redis, using-timeseries
removes all existing keys to ensure idempotency. The output will be the same with
either timeseries-string or timeseries-hash:

var redis = require("redis");
var client = redis.createClient();

if (process.argv.length < 3) { // 1
 console.log("ERROR: You need to specify a data type!");
 console.log("$ node using-timeseries.js [string|hash]");
 process.exit(1);
}
var dataType = process.argv[2]; // 2

client.flushall(); // 3

var timeseries = require("./timeseries-" + dataType); // 4

Time Series (A Collection of Observations)

[62]

var item1Purchases = new timeseries.TimeSeries(client,
"purchases:item1"); // 5
var beginTimestamp = 0; // 6

item1Purchases.insert(beginTimestamp); // 7
item1Purchases.insert(beginTimestamp + 1); // 8
item1Purchases.insert(beginTimestamp + 1); // 9
item1Purchases.insert(beginTimestamp + 3); // 10
item1Purchases.insert(beginTimestamp + 61); // 11

function displayResults(granularityName, results) { // 12
 console.log("Results from " + granularityName + ":");
 console.log("Timestamp \t| Value");
 console.log("--------------- | ------");
 for (var i = 0 ; i < results.length; i++) {
 console.log('\t' + results[i].timestamp + '\t| ' +
 results[i].value);
 }
 console.log();
}

item1Purchases.fetch("1sec", beginTimestamp, beginTimestamp + 4,
 displayResults); // 13

item1Purchases.fetch("1min", beginTimestamp, beginTimestamp + 120,
 displayResults); // 14

client.quit();

1. Check whether there are at least three arguments from the command line.
2. Assign the third argument from the command line to the variable dataType.

The variable process.argv contains all the command-line arguments: the first
argument is the Node.js binary path, the second is the filename, and the third
is the data type name.

3. Execute the Redis command FLUSHALL, which removes all of the data from
Redis. Use this command with caution, because this action cannot be undone.

4. Require the time series module based on the data type passed in the
command line.

5. Create a TimeSeries object, passing the Redis client and the "purchases:item1"
namespace as arguments.

Chapter 3

[63]

6. Create the variable beginTimestamp and assign the timestamp 0 to it.
This timestamp value was chosen to make it easier to read the output.
Usually, a timestamp that represents the current time or a specific time
in seconds is more useful. For instance, Date.now() / 1000 returns the
current time in seconds.

7. Execute the function insert, passing beginTimestamp.
8. Then execute the function insert, passing a timestamp that is 1 second after

beginTimestamp.
9. Execute the function insert with the same argument as before.
10. Next, execute the function insert, passing a timestamp that is 3 seconds after

beginTimestamp.
11. Execute the function insert, passing a timestamp that is 61 seconds after

beginTimestamp. All calls before this line were in the same minute, but this
one is in the next minute.

12. Create the function displayResults to display the output of a fetch call.
13. Execute the function fetch to retrieve an interval of 5 seconds in the 1sec

granularity, starting from beginTimestamp.
14. Execute the function fetch to retrieve an interval of 3 minutes in the 1min

granularity, starting from beginTimestamp.

Then execute the file using the following command:

$ node using-timeseries.js string
Results from 1sec:
Timestamp	Value
 0 | 1
 1 | 2
 2 | 0
 3 | 1
 4 | 0

Results from 1min:
Timestamp	Value
 0 | 4
 60 | 1
 120 | 0

Time Series (A Collection of Observations)

[64]

This example can easily be adapted to be a stock market time
series. The method insert will need the stock price as an additional
parameter, and instead of using INCRBY, the method insert can
use SET. The method fetch remains the same.
An example would be like this:

var stockTimeSeries = new timeseries.TimeSeries(
 client, "GOOGL");

var timestamp = (new Date(2014, 1, 28)) / 1000;

stockTimeSeries.insert(timestamp, 608.43);

Optimizing with Hashes
The previous time series implementation uses one Redis key for each second, minute,
hour, and day. In a scenario where an event is inserted every second, there will be
87,865 keys in Redis in a full day (assuming a day starts at 00:00:00):

• 86,400 keys for the 1sec granularity (60 * 60 * 24).
• 1,440 keys for the 1min granularity (60 * 24).
• 24 keys for the 1hour granularity (24 * 1).
• 1 key for the 1day granularity.

This is an enormous number of keys per day, and this number grows linearly
over time. A large number of keys is not very good for debugging, and each key
has a memory cost that comes with it. In a benchmark test that we did—in which
we inserted one event per second for 24 hours (86,400 events)—Redis allocated
about 11 MB.

We can optimize this solution by using Hashes instead of Strings. Small Hashes
are encoded in a different data structure, called a ziplist. This structure is memory-
optimized. There are two conditions for a Hash to be encoded as a ziplist and both
have to be respected:

• It must have fewer fields than the threshold Set in the configuration hash-
max-ziplist-entries. The default value for hash-max-ziplist-entries is 512.

• No field value can be bigger than hash-max-ziplist-value. The default value
for hash-max-ziplist-value is 64 bytes.

If any of these conditions are not met, a Hash will be converted from a ziplist to a
hash table. Refer to Chapter 1, Getting Started (The Baby Steps), for more information
about Hashes.

Chapter 3

[65]

The solution that we are going to present next uses about 800 KB under the same
benchmark test as before.

The benchmark used can be found at https://gist.github.com/
hltbra/2fbf5310aabbecee68c5.

The String implementation creates at least one Redis key every time an event is
inserted (unless the key was already created).

For example, an event that occurs at timestamp 0 may create the following keys:

• namespace:1sec:0
• namespace:1min:0
• namespace:1hour:0
• namespace:1day:0

If another event occurs at timestamp 1, only one more key is created
(namespace:1sec:1), because it belongs to the same minute, hour, and
day as timestamp 0.

In order to use Hashes and save memory space, the next solution will group
multiple keys into a single Hash.

In a scenario where there is only the 1sec granularity and there are data points
across six different timestamps, the String solution will create the following keys:

https://gist.github.com/hltbra/2fbf5310aabbecee68c5
https://gist.github.com/hltbra/2fbf5310aabbecee68c5

Time Series (A Collection of Observations)

[66]

In order to illustrate how to optimize the previous scenario using a Hash, groups of
three keys are used:

The Hash implementation has the same method signatures as the String
implementation. Most of the code will be the same, so we will only explain
the modified lines (the changes are in bold).

Save the following code in a file called timeseries-hash.js:

function TimeSeries(client, namespace) {
 this.namespace = namespace;
 this.client = client;
 this.units = {
 second: 1,
 minute: 60,
 hour: 60 * 60,
 day: 24 * 60 * 60
 };

 this.granularities = { // 1
 '1sec' : { name: '1sec', ttl: this.units.hour * 2,
 duration: 1, quantity: this.units.minute * 5 },
 '1min' : { name: '1min', ttl: this.units.day * 7,
 duration: this.units.minute, quantity: this.units.hour * 8 },
 '1hour': { name: '1hour', ttl: this.units.day * 60 ,
 duration: this.units.hour, quantity: this.units.day * 10 },
 '1day' : { name: '1day', ttl: null, duration: this.units.day,
 quantity: this.units.day * 30 },
 };
};

1. The field quantity was added to each granularity. It is used to determine the
Hash distribution:

 ° 1sec granularity: Stores a maximum of 300 timestamps of 1 second
each (5 minutes of data points)

Chapter 3

[67]

 ° 1min granularity: Stores a maximum of 480 timestamps of 1 minute
each (8 hours of data points)

 ° 1hour granularity: Stores a maximum of 240 timestamps of 1 hour
each (10 days of data points)

 ° 1day granularity: Stores a maximum of 30 timestamps of 1 day each
(30 days of data points)

The numbers were chosen based on the default Redis configuration (hash-max-
ziplist-entries is 512), so any number smaller than 512 makes this solution more
memory-efficient than the String solution. You can try new values and see how this
affects memory usage with the command INFO. More information about the INFO
command can be found in Chapter 4, Commands (Where the Wild Things Are).

The new method insert follows:

TimeSeries.prototype.insert = function(timestampInSeconds) {
 for (var granularityName in this.granularities) {
 var granularity = this.granularities[granularityName];
 var key = this._getKeyName(granularity, timestampInSeconds);
 var fieldName = this._getRoundedTimestamp(timestampInSeconds,
 granularity.duration); // 1
 this.client.hincrby(key, fieldName, 1); // 2
 if (granularity.ttl !== null) {
 this.client.expire(key, granularity.ttl);
 }
 }
};

1. Create a variable fieldName and assign to it the proper field name, based on
the granularity duration.

2. Execute the command HINCRBY to increment a Hash field by 1.

The new private method _getKeyName was changed but the private method
_getRoundedTimestamp remained the same:

TimeSeries.prototype._getKeyName = function(granularity,
timestampInSeconds) {
 var roundedTimestamp = this._getRoundedTimestamp(
 timestampInSeconds, granularity.quantity); // 1
 return [this.namespace, granularity.name,
 roundedTimestamp].join(':');
};

Time Series (A Collection of Observations)

[68]

TimeSeries.prototype._getRoundedTimestamp = function(
 timestampInSeconds, precision) {
 return Math.floor(timestampInSeconds/precision) * precision;
};

1. Create a timestamp that is normalized based on the granularity quantity.
For instance, if timestampInSeconds is 2 and granularity.quantity is 3,
roundedTimestamp will be 0. Here are more examples that follow the
same rule:

 ° roundedTimestamp 0 groups timestamps 0, 1, and 2
 ° roundedTimestamp 3 groups timestamps 3, 4, and 5
 ° roundedTimestamp 6 groups timestamps 6, 7, and 8

The new method fetch follows:

TimeSeries.prototype.fetch = function(granularityName, beginTimestamp,
endTimestamp, onComplete) {
 var granularity = this.granularities[granularityName];
 var begin = this._getRoundedTimestamp(beginTimestamp,
 granularity.duration);
 var end = this._getRoundedTimestamp(endTimestamp,
 granularity.duration);
 var fields = []; // 1
 var multi = this.client.multi(); // 2

 for (var timestamp = begin; timestamp <= end; timestamp +=
 granularity.duration) {
 var key = this._getKeyName(granularity, timestamp);
 var fieldName = this._getRoundedTimestamp(timestamp,
 granularity.duration); // 3
 multi.hget(key, fieldName); // 4
 }

 multi.exec(function(err, replies) { // 5
 var results = [];
 for (var i = 0 ; i < replies.length ; i++) {
 var timestamp = beginTimestamp + i * granularity.duration;
 var value = parseInt(replies[i], 10) || 0;
 results.push({timestamp: timestamp , value: value});
 }

Chapter 3

[69]

 onComplete(granularityName, results);
 });
};

exports.TimeSeries = TimeSeries;

1. Create the variable fields and assign an empty array to it.
2. Create the variable multi and assign to it a Multi object that shares the same

interface as this.client. With multi, commands are queued up until multi.exec()
is executed.

3. Create the variable fieldName and assign the proper field name to it based on
the granularity duration.

4. Execute the command HGET to retrieve the field value of a Hash.
5. Execute the function multi.exec, which executes all the queued commands in

a transaction. This is used to avoid chaining of callbacks because of multiple
calls to HGET. More details about MULTI/EXEC and transactions can be
found in Chapter 4, Commands (Where the Wild Things Are).

With this, we have completed the Hash implementation of TimeSeries, keeping the
API and behavior the same as before.

Then execute using-timeseries.js, passing hash as an argument:

$ node using-timeseries.js hash
Results from 1sec:
Timestamp	Value
 0 | 1
 1 | 2
 2 | 0
 3 | 1
 4 | 0

Results from 1min:
Timestamp	Value
 0 | 4
 60 | 1
 120 | 0

Time Series (A Collection of Observations)

[70]

Adding uniqueness with Sorted Sets and
HyperLogLog
This section presents two different Time Series implementations that support unique
insertions (for example, unique visitors or concurrent video plays), which are very
similar to the previous solutions.

The first implementation uses Sorted Sets, and it is based on the previous Hash
implementation. The second implementation uses HyperLogLog, and it is based
on the previous String implementation. Since these new implementations are very
similar to previous ones, only the lines highlighted in bold are explained.

Each solution has pros and cons:

• The Sorted Set solution works well and is 100% accurate
• The HyperLogLog solution uses less memory than the Sorted Set solution,

but it is only 99.19% accurate

The proper solution should be chosen based on how much data needs to be stored
and how accurate it needs to be.

Create a file called timeseries-sorted-set.js, copy the content of timeseries-hash.js, and
change the following:

function TimeSeries(client, namespace) {
 this.namespace = namespace;
 this.client = client;
 this.units = {
 second: 1,
 minute: 60,
 hour: 60 * 60,
 day: 24 * 60 * 60
 };

 this.granularities = { // 1
 '1sec' : { name: '1sec', ttl: this.units.hour * 2,
 duration: 1, quantity: this.units.minute * 2 },
 '1min' : { name: '1min', ttl: this.units.day * 7,
 duration: this.units.minute, quantity: this.units.hour * 2 },
 '1hour': { name: '1hour', ttl: this.units.day * 60 ,
 duration: this.units.hour, quantity: this.units.day * 5 },
 '1day' : { name: '1day', ttl: null, duration: this.units.day,
 quantity: this.units.day * 30 },
 };
};

Chapter 3

[71]

1. The field quantity was changed based on the Sorted Set configuration zset-
max-ziplist-entries, which defaults to 128. Chapter 4, Commands (Where the
Wild Things Are) has more details on this. The key distribution is as follows:

 ° 1sec granularity: Stores a maximum of 120 timestamps of 1 second
each (2 minutes of data points)

 ° 1min granularity: Stores a maximum of 120 timestamps of 1 minute
each (2 hours of data points)

 ° 1hour granularity: Stores a maximum of 120 timestamps of 1 hour
each (5 days of data points)

 ° 1day granularity: Stores a maximum of 30 timestamps of 1 day each
(30 days of data points)

The modified insert method is as follows:

TimeSeries.prototype.insert = function(timestampInSeconds, thing){ // 1
 for (var granularityName in this.granularities) {
 var granularity = this.granularities[granularityName];
 var key = this._getKeyName(granularity, timestampInSeconds);
 var timestampScore = this._getRoundedTimestamp(timestampInSeconds,
granularity.duration); // 2
 var member = timestampScore + ":" + thing; // 3
 this.client.zadd(key, timestampScore, member); // 4
 if (granularity.ttl !== null) {
 this.client.expire(key, granularity.ttl);
 }
 }
};

1. Modify the insert method to get an additional parameter, called thing. This
parameter is the unique value to be stored (for example, user ID, username,
or e-mail).

2. Rename fieldName to timestampScore to better represent the data type.
3. Create the variable member to be the unique value of the Sorted Set. Since

Sorted Sets have unique elements, the value of timestampScore is prepended
to the value of thing to avoid conflicts.

4. Execute the command ZADD, which adds the value of the variable member
with the score timestampScore to the Sorted Set.

Time Series (A Collection of Observations)

[72]

The modified fetch method is as follows:

TimeSeries.prototype.fetch = function(granularityName, beginTimestamp,
endTimestamp, onComplete) {
 var granularity = this.granularities[granularityName];
 var begin = this._getRoundedTimestamp(beginTimestamp, granularity.
duration);
 var end = this._getRoundedTimestamp(endTimestamp, granularity.
duration);
 var fields = [];
 var multi = this.client.multi();

 for (var timestamp = begin; timestamp <= end; timestamp +=
granularity.duration) {
 var key = this._getKeyName(granularity, timestamp);
 multi.zcount(key, timestamp, timestamp); // 1
 }

 multi.exec(function(err, replies) {
 var results = [];
 for (var i = 0 ; i < replies.length ; i++) {
 var timestamp = beginTimestamp + i * granularity.duration;
 var value = parseInt(replies[i], 10) || 0;
 results.push({timestamp: timestamp , value: value});
 }
 onComplete(granularityName, results);
 });
};

1. Execute the command ZCOUNT, which returns the number of elements in
a Sorted Set in a given range of scores. It is used to retrieve the number of
elements in a given timestamp.

With this, we have completed the Sorted Set implementation of TimeSeries.

Create a file called using-timeseries-unique.js, which will be very similar to
using-timeseries.js. The main difference is the insert method call, which requires a
string as an additional parameter (in this case, usernames of people playing videos):

var redis = require("redis");
var client = redis.createClient();

Chapter 3

[73]

if (process.argv.length < 3) {
 console.log("ERROR: You need to specify a data type!");
 console.log("$ node using-timeseries.js [sorted-set|
 hyperloglog]");
 process.exit(1);
}
var dataType = process.argv[2];

client.flushall();

var timeseries = require("./timeseries-" + dataType);

var concurrentPlays = new timeseries.TimeSeries(client,
 "concurrentplays");
var beginTimestamp = 0;

concurrentPlays.insert(beginTimestamp, "user:max");
concurrentPlays.insert(beginTimestamp, "user:max");
concurrentPlays.insert(beginTimestamp + 1, "user:hugo");
concurrentPlays.insert(beginTimestamp + 1, "user:renata");
concurrentPlays.insert(beginTimestamp + 3, "user:hugo");
concurrentPlays.insert(beginTimestamp + 61, "user:kc");

function displayResults(granularityName, results) {
 console.log("Results from " + granularityName + ":");
 console.log("Timestamp \t| Value");
 console.log("--------------- | ------");
 for (var i = 0 ; i < results.length; i++) {
 console.log('\t' + results[i].timestamp + '\t| ' + results[i].
value);
 }
 console.log();
}

concurrentPlays.fetch("1sec", beginTimestamp, beginTimestamp + 4,
displayResults);

concurrentPlays.fetch("1min", beginTimestamp, beginTimestamp + 120,
displayResults);

client.quit();

Time Series (A Collection of Observations)

[74]

Then execute using-timeseries-unique.js, passing sorted-set as an argument:

$ node using-timeseries-unique.js sorted-set
Results from 1sec:
Timestamp	Value
 0 | 1
 1 | 2
 2 | 0
 3 | 1
 4 | 0

Results from 1min:
Timestamp	Value
 0 | 3
 60 | 1
 120 | 0

The previous output showed one user for the 0 timestamp in 1sec, although there were
two inserts for the same user in that timestamp.

It also showed three users for the 0 timestamp in the 1min granularity, although there
were five entries (two repeating entries).

The HyperLogLog implementation does not perform any key grouping; it uses one
key per timestamp. Compared to the String implementation, it changes the insert
method to use PFADD instead of INCRBY, and changes the fetch method to make
multiple calls to PFCOUNT instead of one call to MGET.

Create a file called timeseries-hyperloglog.js, and add the following code:

function TimeSeries(client, namespace) {
 this.namespace = namespace;
 this.client = client;
 this.units = {
 second: 1,
 minute: 60,
 hour: 60 * 60,
 day: 24 * 60 * 60
 };

 this.granularities = {
 '1sec' : { name: '1sec', ttl: this.units.hour * 2, duration: 1 },

Chapter 3

[75]

 '1min' : { name: '1min', ttl: this.units.day * 7,
 duration: this.units.minute },
 '1hour': { name: '1hour', ttl: this.units.day * 60 ,
 duration: this.units.hour },
 '1day' : { name: '1day', ttl: null, duration: this.units.day }
 };
};

TimeSeries.prototype.insert = function(timestampInSeconds, thing){ // 1
 for (var granularityName in this.granularities) {
 var granularity = this.granularities[granularityName];
 var key = this._getKeyName(granularity, timestampInSeconds);
 this.client.pfadd(key, thing); // 2
 if (granularity.ttl !== null) {
 this.client.expire(key, granularity.ttl);
 }
 }
};

TimeSeries.prototype._getKeyName = function(granularity,
 timestampInSeconds) {
 var roundedTimestamp = this._getRoundedTimestamp(
 timestampInSeconds, granularity.duration);
 return [this.namespace, granularity.name,
 roundedTimestamp].join(':');
};

TimeSeries.prototype._getRoundedTimestamp = function(
 timestampInSeconds, precision) {
 return Math.floor(timestampInSeconds / precision) * precision;
};

TimeSeries.prototype.fetch = function(granularityName,
 beginTimestamp, endTimestamp, onComplete) {
 var granularity = this.granularities[granularityName];
 var begin = this._getRoundedTimestamp(beginTimestamp,
 granularity.duration);
 var end = this._getRoundedTimestamp(endTimestamp,
 granularity.duration);
 var fields = [];
 var multi = this.client.multi();

 for (var timestamp = begin; timestamp <= end; timestamp +=
 granularity.duration) {

Time Series (A Collection of Observations)

[76]

 var key = this._getKeyName(granularity, timestamp);
 multi.pfcount(key); // 3
 }

 multi.exec(function(err, replies) {
 var results = [];
 for (var i = 0 ; i < replies.length ; i++) {
 var timestamp = beginTimestamp + i * granularity.duration;
 var value = parseInt(replies[i], 10) || 0;
 results.push({timestamp: timestamp, value: value});
 }
 onComplete(granularityName, results);
 });
};

exports.TimeSeries = TimeSeries;

1. Add the parameter thing to the method insert.
2. Execute the PFADD command to add the value of thing to the HyperLogLog.
3. Execute the command PFCOUNT to retrieve the number of elements in a

given timestamp.

Summary
This chapter started with an introduction to time series with some real-world examples,
and then presented different time series implementations in Node.js, using String,
Hash, Sorted Set, and HyperLogLog data types.

The next chapter will introduce other Redis features, such as transactions, pipelining,
Lua scripting, and administration commands, and then give more details on data
type optimization.

[77]

Commands (Where the
Wild Things Are)

This chapter gives an overview of many different Redis commands and features,
from techniques to reduce network latency to extending Redis with Lua scripting.

The previous chapters briefly mentioned how to optimize data types, and at the end
of this chapter, we will explain these optimizations further.

Pub/Sub
Pub/Sub stands for Publish-Subscribe, which is a pattern where messages are
not sent directly to specific receivers. Publishers send messages to channels, and
subscribers receive these messages if they are listening to a given channel.

Redis supports the Pub/Sub pattern and provides commands to publish messages
and subscribe to channels.

Here are some examples of Pub/Sub applications:

• News and weather dashboards
• Chat applications
• Push notifications, such as subway delay alerts
• Remote code execution, similar to what the SaltStack tool supports

The following examples implement a remote command execution system, where
a command is sent to a channel and the server that is subscribed to that channel
executes the command.

Commands (Where the Wild Things Are)

[78]

The command PUBLISH sends a message to the Redis channel, and it returns the
number of clients that received that message. A message gets lost if there are no
clients subscribed to the channel when it comes in.

Create a file called publisher.js in the chapter 4 folder and save the following code
into it:

var redis = require("redis");
var client = redis.createClient();

var channel = process.argv[2]; // 1
var command = process.argv[3]; // 2

client.publish(channel, command); // 3

client.quit();

1. Assign the third argument from the command line to the variable channel
(the first argument is node and the second is publisher.js).

2. Assign the fourth argument from the command line to the variable command.
3. Execute the command PUBLISH, passing the variables channel and command.

The command SUBSCRIBE subscribes a client to one or many channels. The command
UNSUBSCRIBE unsubscribes a client from one or many channels.

The commands PSUBSCRIBE and PUNSUBSCRIBE work the same way as the
SUBSCRIBE and UNSUBSCRIBE commands, but they accept glob-style patterns
as channel names.

Once a Redis client executes the command SUBSCRIBE
or PSUBSCRIBE, it enters the subscribe mode and stops
accepting commands, except for the commands SUBSCRIBE,
PSUBSCRIBE, UNSUBSCRIBE, and PUNSUBSCRIBE.

Create a file called subscriber.js in the chapter 4 folder and save the following:

var os = require("os"); // 1
var redis = require("redis");
var client = redis.createClient();

var COMMANDS = {}; // 2

COMMANDS.DATE = function() { // 3
 var now = new Date();

Chapter 4

[79]

 console.log("DATE " + now.toISOString());
};

COMMANDS.PING = function() { // 4
 console.log("PONG");
};

COMMANDS.HOSTNAME = function() { // 5
 console.log("HOSTNAME " + os.hostname());
};

client.on("message", function(channel, commandName) { // 6
 if (COMMANDS.hasOwnProperty(commandName)) { // 7
 var commandFunction = COMMANDS[commandName]; // 8
 commandFunction(); // 9
 } else { // 10
 console.log("Unknown command: " + commandName);
 }
});
client.subscribe("global", process.argv[2]); // 11

1. Require the Node.js module os.
2. Create the variable COMMANDS, which is a JavaScript object. All command

functions in this module will be added to this object. This object is intended
to act as a namespace.

3. Create the function DATE, which displays the current date.
4. Then create the function PING, which displays PONG.
5. Create the function HOSTNAME, which displays the server hostname.
6. Register a channel listener, which is a function that executes commands

based on the channel message.
7. Check whether the variable commandName is a valid command.
8. Create the variable commandFunction and assign the function to it.
9. Execute commandFunction.
10. Display an error message if the variable commandName contains a command

that is not available.
11. Execute the command SUBSCRIBE, passing "global", which is the channel

that all clients subscribe to, and a channel name from the command line.

Commands (Where the Wild Things Are)

[80]

Open three terminal windows and run the previous files, as shown the following
screenshot (from left to right and top to bottom):

• terminal-1: A subscriber that listens to the global channel and channel-1
• terminal-2: A subscriber that listens to the global channel and channel-2
• terminal-3: A publisher that publishes the message PING to the global

channel (both subscribers receive the message), the message DATE to
channel-1 (the first subscriber receives it), and the message HOSTNAME
to channel-2 (the second subscriber receives it)

The command PUBSUB introspects the state of the Redis Pub/Sub system. This
command accepts three subcommands: CHANNELS, NUMSUB, and NUMPAT.

The CHANNELS subcommand returns all active channels (channels with at least
one subscriber). This command accepts an optional parameter, which is a glob-style
pattern. If the pattern is specified, all channel names that match the pattern are
returned; if no pattern is specified, all channel names are returned. The command
syntax is as follows:

PUBSUB CHANNELS [pattern]

The NUMSUB subcommand returns the number of clients connected to channels
via the SUBSCRIBE command. This command accepts many channel names as
arguments. Its syntax is as follows:

PUBSUB NUMSUB [channel-1 … channel-N]

Chapter 4

[81]

The NUMPAT subcommand returns the number of clients connected to channels
via the PSUBSCRIBE command. This command does not accept channel patterns
as arguments. Its syntax is as follows:

PUBSUB NUMPAT

Redis contributor Pieter Noordhuis created a web chat
implementation in Ruby using Redis and Pub/Sub. It can be
found at https://gist.github.com/pietern/348262.

Transactions
A transaction in Redis is a sequence of commands executed in order and atomically.
The command MULTI marks the beginning of a transaction, and the command
EXEC marks its end. Any commands between the MULTI and EXEC commands
are serialized and executed as an atomic operation. Redis does not serve any other
client in the middle of a transaction.

All commands in a transaction are queued in the client and are only sent to the
server when the EXEC command is executed. It is possible to prevent a transaction
from being executed by using the DISCARD command instead of EXEC. Usually,
Redis clients prevent a transaction from being sent to Redis if it contains command
syntax errors.

Unlike in traditional SQL databases, transactions in Redis are not rolled back if they
produce failures. Redis executes the commands in order, and if any of them fail,
it proceeds to the next command. Another downside of Redis transactions is that it
is not possible to make any decisions inside the transaction, since all the commands
are queued.

For example, the following code simulates a bank transfer. Here, money is transferred
from a source account to a destination account inside a Redis transaction. If the source
account has enough funds, the transaction is executed. Otherwise, it is discarded.

Save the following code in a file called bank-transaction.js in the chapter 4 folder:

var redis = require("redis");
var client = redis.createClient();

function transfer(from, to, value, callback) { // 1
 client.get(from, function(err, balance) { // 2
 var multi = client.multi(); // 3
 multi.decrby(from, value); // 4
 multi.incrby(to, value); // 5

https://gist.github.com/pietern/348262

Commands (Where the Wild Things Are)

[82]

 if (balance >= value) { // 6
 multi.exec(function(err, reply) { // 7
 callback(null, reply[0]); // 8
 });
 } else {
 multi.discard(); // 9
 callback(new Error("Insufficient funds"), null); // 10
 }
 });
}

1. Create the function transfer, which receives an account ID from which to
withdraw money, another account ID from which to receive money, the
monetary value to transfer, and a callback function to call after the transfer.

2. Retrieve the current balance of the source account.
3. Create a Multi object, which represents the transaction. All commands sent

to it are queued and executed after the EXEC command is issued.
4. Enqueue the command DECRBY into the Multi object.
5. Then enqueue the command INCRBY into the Multi object.
6. Check whether the source account has sufficient funds.
7. Execute the EXEC command, which triggers sequential execution of the

queued transaction commands.
8. Execute the callback function and pass the value null as an error, and the

balance of the source account after the command DECRBY is executed.
9. Execute the DISCARD command to discard the transaction. No commands

from the transaction will be executed in Redis.
10. Execute the function callback and pass an error object if the source account

has insufficient funds.

The following code uses the previous example, transferring $40 from Max's account
to Hugo's account (both accounts had $100 before the transfer).

Append the following to the file bank-transaction.js:

client.mset("max:checkings", 100, "hugo:checkings", 100, function(err,
reply) { // 1
 console.log("Max checkings: 100");
 console.log("Hugo checkings: 100");
 transfer("max:checkings", "hugo:checkings", 40,
 function(err, balance) { // 2

Chapter 4

[83]

 if (err) {
 console.log(err);
 } else {
 console.log("Transferred 40 from Max to Hugo")
 console.log("Max balance:", balance);
 }
 client.quit();
 });
});

1. Set the initial balance of each account to $100.
2. Execute the function transfer to transfer $40 from max:checkings to

hugo:checkings.

Then execute the file using the following command:

$ node bank-transaction.js
Max checkings: 100
Hugo checkings: 100
Transferred 40 from Max to Hugo
Max balance: 60

It is possible to make the execution of a transaction conditional using the WATCH
command, which implements an optimistic lock on a group of keys. The WATCH
command marks keys as being watched so that EXEC executes the transaction only
if the keys being watched were not changed. Otherwise, it returns a null reply and
the operation needs to be repeated; this is the reason it is called an optimistic lock.
The command UNWATCH removes keys from the watch list.

The following code implements a zpop function, which removes the first element of
a Sorted Set and passes it to a callback function, using a transaction with WATCH.
A race condition could exist if the WATCH command is not used.

Create a file called watch-transaction.js in the chapter 4 folder with the following code:

var redis = require("redis");
var client = redis.createClient();

function zpop(key, callback) { // 1
 client.watch(key, function(watchErr, watchReply) { // 2
 client.zrange(key, 0, 0, function(zrangeErr, zrangeReply) { // 3
 var multi = client.multi(); // 4
 multi.zrem(key, zrangeReply); // 5
 multi.exec(function(transactionErr, transactionReply) { // 6
 if (transactionReply) {

Commands (Where the Wild Things Are)

[84]

 callback(zrangeReply[0]); // 7
 } else {
 zpop(key, callback); // 8
 }
 });
 });
 });
}
client.zadd("presidents", 1732, "George Washington");
client.zadd("presidents", 1809, "Abraham Lincoln");
client.zadd("presidents", 1858, "Theodore Roosevelt");

zpop("presidents", function(member) {
 console.log("The first president in the group is:", member);
 client.quit();
});

1. Create the function zpop, which receives a key and a callback function
as arguments.

2. Execute the WATCH command on the key passed as an argument.
3. Then execute the ZRANGE command to retrieve the first element of the

Sorted Set.
4. Create a multi object.
5. Enqueue the ZREM command in the transaction.
6. Execute the transaction.
7. Execute the callback function if the key being watched has not been changed.
8. Execute the function zpop with the same parameters as before if the key being

watched has not been changed.

Then execute the file using the following command:

$ node watch-transaction.js
The first president in the group is: George Washington

Pipelines
In Redis, a pipeline is a way to send multiple commands together to the Redis server
without waiting for individual replies. The replies are read all at once by the client.
The time taken for a Redis client to send a command and obtain a reply from the
Redis server is called Round Trip Time (RTT). When multiple commands are sent,
there are multiple RTTs.

Chapter 4

[85]

Pipelines can decrease the number of RTTs because commands are grouped, so a
pipeline with 10 commands will have only one RTT. This can improve the network's
performance significantly.

For instance, if the network link between a client and server has an RTT of 100 ms,
the maximum number of commands that can be sent per second is 10, no matter how
many commands can be handled by the Redis server. Usually, a Redis server can
handle hundreds of thousands of commands per second, and not using pipelines
may be a waste of resources.

When Redis is used without pipelines, each command needs to wait for a reply.
Assume the following:

var redis = require("redis");
var client = redis.createClient();

client.set("key1", "value1");
client.set("key2", "value2");
client.set("key3", "value3");

Three separate commands are sent to Redis, and each command waits for its reply.
The following diagram shows what happens when Redis is used without pipelines:

Redis commands sent in a pipeline must be independent. They run sequentially
in the server (the order is preserved), but they do not run as a transaction. Even
though pipelines are neither transactional nor atomic (this means that different
Redis commands may occur between the ones in the pipeline), they are still useful
because they can save a lot of network time, preventing the network from becoming
a bottleneck as it often does with heavy load applications.

Commands (Where the Wild Things Are)

[86]

By default, node_redis, the Node.js library we are using, sends commands in
pipelines and automatically chooses how many commands will go into each
pipeline. Therefore, you don't need to worry about this. However, other Redis
clients may not use pipelines by default; you will need to check out the client
documentation to see how to take advantage of pipelines. The PHP, Python,
and Ruby clients presented in Chapter 5, Clients for Your Favorite Language
(Become a Redis Polyglot), do not use pipelines by default.

This is what happens when commands are sent to Redis in a pipeline:

When sending many commands, it might be a good idea to use
multiple pipelines rather than one big pipeline.

Pipelines are not a new idea or an exclusive feature or command in Redis; they are
just a technique of sending a group of commands to a server at once.

Commands inside a transaction may not be sent as a pipeline by default. This will
depend on the Redis client you are using. For example, node_redis sends everything
automatically in pipelines (as we mentioned before), but different clients may require
additional configuration. It is a good idea to send transactions in a pipeline to avoid
an extra round trip.

Scripting
Redis 2.6 introduced the scripting feature, and the language that was chosen to
extend Redis was Lua. Before Redis 2.6, there was only one way to extend Redis—
changing its source code, which was written in C.

Lua was chosen because it is very small and simple, and its C API is very easy to
integrate with other libraries. Although it is lightweight, Lua is a very powerful
language (it is commonly used in game development).

Chapter 4

[87]

Lua scripts are atomically executed, which means that the Redis server is blocked
during script execution. Because of this, Redis has a default timeout of 5 seconds to
run any script, although this value can be changed through the configuration lua-
time-limit.

Redis will not automatically terminate a Lua script when it times out. Instead,
it will start to reply with a BUSY message to every command, stating that a script
is running. The only way to make the server return to normalcy is by aborting the
script execution with the command SCRIPT KILL or SHUTDOWN NOSAVE.

Ideally, scripts should be simple, have a single responsibility, and run fast.

The popular games Civilization V, Angry Birds, and World of
Warcraft use Lua as their scripting language.

Lua syntax basics
Lua is built around basic types such as booleans, numbers, strings, tables (the only
composite data type), and functions.

Let's see some basics of Lua's syntax:

• Comments:
-- this is a comment

• Global variable declaration:
x = 123

• Local variable declaration:
local y = 456

• Function definition:
function hello_world()
 return "Hello World"
end

• Iteration:
for i = 1, 10 do
 print(i)
end

Commands (Where the Wild Things Are)

[88]

• Conditionals:
if x == 123 then
 print("x is the magic number")
else
 print("I have no idea what x is")
end

• String concatenation:
print("Hello" .. " World")

• Using a table as an array — arrays in Lua start indexing at 1, not at 0
(as in most languages):
data_types = {1.0, 123, "redis", true, false, hello_world}
print(data_types[3]) -- the output is "redis"

• Using a table as a hash:
languages = {lua = 1993, javascript = 1995, python = 1991, ruby =
1995}
print("Lua was created in " .. languages["lua"])
print("JavaScript was created in " .. languages.javascript)

Redis meets Lua
A Redis client must send Lua scripts as strings to the Redis server. Therefore, this
section will have JavaScript strings that contain Lua code.

Redis can evaluate any valid Lua code, and a few libraries are available (for example,
bitop, cjson, math, and string). There are also two functions that execute Redis
commands: redis.call and redis.pcall. The function redis.call requires the command
name and all its parameters, and it returns the result of the executed command. If
there are errors, redis.call aborts the script. The function redis.pcall is similar to redis.
call, but in the event of an error, it returns the error as a Lua table and continues the
script execution. Every script can return a value through the keyword return, and if
there is no explicit return, the value nil is returned.

It is possible to pass Redis key names and parameters to a Lua script, and they will be
available inside the Lua script through the variables KEYS and ARGV, respectively.

Chapter 4

[89]

Both redis.call and redis.pcall automatically convert the result of
a Redis command to a Lua type, which means that if the Redis
command returns an integer, it will be converted into a Lua
number. The same thing happens to commands that return a
string or an array. Since every script will return a value, this
value will be converted from a Lua type to a Redis type.

There are two commands for running Lua scripts: EVAL and EVALSHA. The next
example will use EVAL, and its syntax is the following:

EVAL script numkeys key [key ...] arg [arg ...]

The parameters are as follows:

• script: The Lua script itself, as a string
• numkeys: The number of Redis keys being passed as parameters to the script
• key: The key name that will be available through the variable KEYS inside

the script
• arg: An additional argument that will be available through the variable

ARGV inside the script

The following code uses Lua to run the command GET and retrieve a key value.
Create a file called intro-lua.js in the chapter 4 folder with the following code:

var redis = require("redis");
var client = redis.createClient();

client.set("mykey", "myvalue"); // 1

var luaScript = 'return redis.call("GET", KEYS[1])'; // 2
client.eval(luaScript, 1, "mykey", function(err, reply) { // 3
 console.log(reply); // 4
 client.quit();
});

1. Execute the command SET to create a key called mykey.
2. Create the variable luaScript and assign the Lua code to it. This Lua code

uses the redis.call function to execute the Redis command GET, passing
a parameter. The KEYS variable is an array with all key names passed to
the script.

3. Execute the command EVAL to execute a Lua script.
4. Display the return of the Lua script execution.

Commands (Where the Wild Things Are)

[90]

Then execute it:

$ node intro-lua.js
myvalue

Avoid using hardcoded key names inside a Lua script; pass all
key names as parameters to the commands EVAL/EVALSHA.

Previously in this chapter, in the Transactions section, we presented an implementation
of a zpop function using WATCH/MULTI/EXEC. That implementation was based on
an optimistic lock, which meant that the entire operation had to be retried if a client
changed the Sorted Set before the MULTI/EXEC was executed.

The same zpop function can be implemented as a Lua script, and it will be simpler and
atomic, which means that retries will not be necessary. Redis will always guarantee
that there are no parallel changes to the Sorted Set during script execution.

Create a file called zpop-lua.js in the chapter 4 folder and save the following code
into it:

var redis = require("redis");
var client = redis.createClient();

client.zadd("presidents", 1732, "George Washington");
client.zadd("presidents", 1809, "Abraham Lincoln");
client.zadd("presidents", 1858, "Theodore Roosevelt");

var luaScript = [
 'local elements = redis.call("ZRANGE", KEYS[1], 0, 0)',
 'redis.call("ZREM", KEYS[1], elements[1])',
 'return elements[1]'
].join('\n'); // 1

client.eval(luaScript, 1, "presidents", function(err, reply){ // 2
 console.log("The first president in the group is:", reply);
 client.quit();
});

1. Create the variable luaScript and assign the Lua code to it. This Lua code uses
the redis.call function to execute the Redis command ZRANGE to retrieve
an array with only the first element in the Sorted Set. Then, it executes
the command ZREM to remove the first element of the Sorted Set, before
returning the removed element.

2. Execute the command EVAL to execute a Lua script.

Chapter 4

[91]

Then, execute the file using the following command:

$ node zpop-lua.js
The first president in the group is: George Washington

Many Redis users have replaced their transactional code in the
form of WATCH/MULTI/EXEC with Lua scripts.

It is possible to save network bandwidth usage by using the commands SCRIPT
LOAD and EVALSHA instead of EVAL when executing the same script multiple
times. The command SCRIPT LOAD caches a Lua script and returns an identifier
(which is the SHA1 hash of the script). The command EVALSHA executes a Lua
script based on an identifier returned by SCRIPT LOAD. With EVALSHA, only
a small identifier is transferred over the network, rather than a Lua code snippet:

var redis = require("redis");
var client = redis.createClient();

var luaScript = 'return "Lua script using EVALSHA"';
client.script("load", luaScript, function(err, reply) {
 var scriptId = reply;

 client.evalsha(scriptId, 0, function(err, reply) {
 console.log(reply);
 client.quit();
 })
});

Then execute the script:

$ node zpop-lua-evalsha.js
Lua script using EVALSHA

In order to make scripts play nicely with Redis replication, you should write scripts
that do not change Redis keys in non-deterministic ways (that is, do not use random
values). Well-written scripts behave the same way when they are re-executed with
the same data. Redis replication will be explained in Chapter 8, Scaling Redis (Beyond a
Single Instance).

Commands (Where the Wild Things Are)

[92]

Miscellaneous commands
This section covers the most important Redis commands that we have not
previously explained. These commands are very helpful in a variety of situations,
including obtaining a list of clients connected to the server, monitoring the health
of a Redis server, expiring keys, and migrating keys to a remote server. All the
examples in this section use redis-cli.

INFO
The INFO command returns all Redis server statistics, including information about
the Redis version, operating system, connected clients, memory usage, persistence,
replication, and keyspace. By default, the INFO command shows all available
sections: memory, persistence, CPU, command, cluster, clients, and replication.
You can also restrict the output by specifying the section name as a parameter:

127.0.0.1:6379> INFO memory

Memory

used_memory:354923856

used_memory_human:338.48M

used_memory_rss:468979712

used_memory_peak:423014496

used_memory_peak_human:403.42M

used_memory_lua:33792

mem_fragmentation_ratio:1.32

mem_allocator:libc

127.0.0.1:6379> INFO cpu

CPU

used_cpu_sys:3.71

used_cpu_user:40.36

used_cpu_sys_children:0.00

used_cpu_user_children:0.00

DBSIZE
The DBSIZE command returns the number of existing keys in a Redis server:

127.0.0.1:6379> DBSIZE
(integer) 50

Chapter 4

[93]

DEBUG SEGFAULT
The DEBUG SEGFAULT command crashes the Redis server process by performing
an invalid memory access. It can be quite interesting to simulate bugs during the
development of your application:

127.0.0.1:6379> DEBUG SEGFAULT

MONITOR
The command MONITOR shows all the commands processed by the Redis server in
real time. It can be helpful for seeing how busy a Redis server is:

127.0.0.1:6379> MONITOR

The following screenshot shows the MONITOR command output (left side) after
running the leaderboard.js example (right side):

While the MONITOR command is very helpful for debugging, it has a cost. In the
Redis documentation page for MONITOR, an unscientific benchmark test says that
MONITOR could reduce Redis's throughput by over 50%.

Commands (Where the Wild Things Are)

[94]

CLIENT LIST and CLIENT SET NAME
The CLIENT LIST command returns a list of all clients connected to the server, as
well as relevant information and statistics about the clients (for example, IP address,
name, and idle time).

The CLIENT SETNAME command changes a client name; it is only useful for
debugging purposes.

CLIENT KILL
The CLIENT KILL command terminates a client connection. It is possible to terminate
client connections by IP, port, ID, or type:

127.0.0.1:6379> CLIENT KILL ADDR 127.0.0.1:51167
(integer) 1
127.0.0.1:6379> CLIENT KILL ID 22
(integer) 1
127.0.0.1:6379> CLIENT KILL TYPE slave
(integer) 0

Chapter 4

[95]

FLUSHALL
The FLUSHALL command deletes all keys from Redis—this cannot be undone:

127.0.0.1:6379> FLUSHALL
OK

RANDOMKEY
The command RANDOMKEY returns a random existing key name. This may help
you get an overview of the available keys in Redis. The alternative would be to run
the KEYS command, but it analyzes all the existing keys in Redis. If the keyspace is
large, it may block the Redis server entirely during its execution:

127.0.0.1:6379> RANDOMKEY
"mykey"

EXPIRE and EXPIREAT
The command EXPIRE sets a timeout in seconds for a given key. The key will be
deleted after the specified amount of seconds. A negative timeout will delete the
key instantaneously (just like running the command DEL).

The command EXPIREAT sets a timeout for a given key based on a Unix timestamp.
A timestamp of the past will delete the key instantaneously.

These commands return 1 if the key timeout is set successfully or 0 if the key does
not exist:

127.0.0.1:6379> MSET key1 value1 key2 value2
OK
127.0.0.1:6379> EXPIRE key1 30
(integer) 1
127.0.0.1:6379> EXPIREAT key2 1435717600
(integer) 1

TTL and PTTL
The TTL command returns the remaining time to live (in seconds) of a key that has
an associated timeout. If the key does not have an associated TTL, it returns -1, and
if the key does not exist, it returns -2. The PTTL command does the same thing, but
the return value is in milliseconds rather than seconds:

127.0.0.1:6379> SET redis-essentials:authors "By Maxwell Dayvson da Silva, Hugo
Lopes Tavares" EX 30

Commands (Where the Wild Things Are)

[96]

OK
127.0.0.1:6379> TTL redis-essentials:authors
(integer) 18
127.0.0.1:6379> PTTL redis-essentials:authors
(integer) 13547

The SET command has optional parameters, and these were not
shown before. The complete command syntax is as follows:
SET key value [EX seconds|PX milliseconds] [NX|XX]
The parameters are explained as follows:

• EX: Set an expiration time in seconds
• PX: Set an expiration time in milliseconds
• NX: Only set the key if it does not exist
• XX: Only set the key if it already exists

PERSIST
The PERSIST command removes the existing timeout of a given key. Such a key will
never expire, unless a new timeout is set. It returns 1 if the timeout is removed or 0 if
the key does not have an associated timeout:

127.0.0.1:6379> SET mykey value
OK
127.0.0.1:6379> EXPIRE mykey 30
(integer) 1
127.0.0.1:6379> PERSIST mykey
(integer) 1
127.0.0.1:6379> TTL mykey
(integer) -1

SETEX
The SETEX command sets a value to a given key and also sets an expiration
atomically. It is a combination of the commands, SET and EXPIRE:

127.0.0.1:6379> SETEX mykey 30 value
OK
127.0.0.1:6379> GET mykey
"value"
127.0.0.1:6379> TTL mykey
(integer) 29

Chapter 4

[97]

DEL
The DEL command removes one or many keys from Redis and returns the number
of removed keys—this command cannot be undone:

127.0.0.1:6379> MSET key1 value1 key2 value2
OK
127.0.0.1:6379> DEL key1 key2
(integer) 2

EXISTS
The EXISTS command returns 1 if a certain key exists and 0 if it does not:

127.0.0.1:6379> SET mykey myvalue
OK
127.0.0.1:6379> EXISTS mykey
(integer) 1

PING
The PING command returns the string "PONG". It is useful for testing a server/client
connection and verifying that Redis is able to exchange data:

127.0.0.1:6379> PING
PONG

MIGRATE
The MIGRATE command moves a given key to a destination Redis server. This is
an atomic command, and during the key migration, both Redis servers are blocked.
If the key already exists in the destination, this command fails (unless the REPLACE
parameter is specified).

The command syntax is as follows:

MIGRATE host port key destination-db timeout [COPY] [REPLACE]

There are two optional parameters for the command MIGRATE, which can be used
separately or combined:

• COPY: Keep the key in the local Redis server and create a copy in the
destination Redis server

• REPLACE: Replace the existing key in the destination server

Commands (Where the Wild Things Are)

[98]

SELECT
Redis has a concept of multiple databases, each of which is identified by a number
from 0 to 15 (there are 16 databases by default). It is not recommended to use multiple
databases with Redis. A better approach would be to use multiple redis-server
processes rather than a single one, because multiple processes are able to use multiple
CPU cores and give better insights into bottlenecks.

The SELECT command changes the current database that the client is connected to.
The default database is 0:

127.0.0.1:6379> SELECT 7
OK
127.0.0.1:6379[7]>

AUTH
The AUTH command is used to authorize a client to connect to Redis. If authorization
is enabled on the Redis server, clients are allowed to run commands only after
executing the AUTH command with the right authorization key. More details on how
to configure authorization and other security techniques are presented in Chapter 7,
Security Techniques (Guard Your Data):

127.0.0.1:6379> GET mykey
(error) NOAUTH Authentication required.
127.0.0.1:6379> AUTH mysecret
OK
127.0.0.1:6379> GET mykey
"value"

SCRIPT KILL
The SCRIPT KILL command terminates the running Lua script if no write
operations have been performed by the script. If the script has performed any
write operations, the SCRIPT KILL command will not be able to terminate it;
in that case, the SHUTDOWN NOSAVE command must be executed.

There are three possible return values for this command:

• OK
• NOTBUSY No scripts in execution right now.
• UNKILLABLE Sorry the script already executed write commands against

the dataset. You can either wait the script termination or kill the server in
a hard way using the SHUTDOWN NOSAVE command.

Chapter 4

[99]

127.0.0.1:6379> SCRIPT KILL
OK

SHUTDOWN
The SHUTDOWN command stops all clients, causes data to persist if enabled,
and shuts down the Redis server.

This command accepts one of the following optional parameters:

• SAVE: Forces Redis to save all of the data to a file called dump.rdb,
even if persistence is not enabled

• NOSAVE: Prevents Redis from persisting data to the disk, even if
persistence is enabled

127.0.0.1:6379> SHUTDOWN SAVE
not connected>
127.0.0.1:6379> SHUTDOWN NOSAVE
not connected>

OBJECT ENCODING
The OBJECT ENCODING command returns the encoding used by a given key:

127.0.0.1:6379> HSET myhash field value
(integer) 1
127.0.0.1:6379> OBJECT ENCODING myhash
"ziplist"

Data type optimizations
In Redis, all data types can use different encodings to save memory or improve
performance. For instance, a String that has only digits (for example, 12345) uses
less memory than a string of letters (for example, abcde) because they use different
encodings. Data types will use different encodings based on thresholds defined in
the Redis server configuration.

The redis-cli will be used in this section to inspect the encodings
of each data type and to demonstrate how configurations can be
tweaked to optimize for memory.

Commands (Where the Wild Things Are)

[100]

When Redis is downloaded, it comes with a file called redis.conf. This file is well
documented and has all the Redis configuration directives, although some of them
are commented out. Usually, the default values in this file are sufficient for most
applications. The Redis configurations can also be specified via the command-
line option or the CONFIG command; the most common approach is to use a
configuration file.

For this section, we have decided to not use a Redis configuration file. The
configurations are passed via the command line for simplicity.

Start redis-server with low values for all configurations:

$ redis-server --hash-max-ziplist-entries 3 --hash-max-ziplist-value 5
--list-max-ziplist-entries 3 --list-max-ziplist-value 5 --set-max-intset-
entries 3 --zset-max-ziplist-entries 3 --zset-max-ziplist-value 5

The default redis.conf file is well documented, and we recommend
that you read it and discover new directive configurations.

String
The following are the available encoding for Strings:

• int: This is used when the string is represented by a 64-bit signed integer
• embstr: This is used for strings with fewer than 40 bytes
• raw: This is used for strings with more than 40 bytes

These encodings are not configurable. The following redis-cli examples show how
the different encodings are chosen:

127.0.0.1:6379> SET str1 12345
OK
127.0.0.1:6379> OBJECT ENCODING str1
"int"
127.0.0.1:6379> SET str2 "An embstr is small"
OK
127.0.0.1:6379> OBJECT ENCODING str2
"embstr"
127.0.0.1:6379> SET str3 "A raw encoded String is anything greater than 39
bytes"
OK
127.0.0.1:6379> OBJECT ENCODING str3
"raw"

Chapter 4

[101]

List
These are the available encodings for Lists:

• ziplist: This is used when the List size has fewer elements than the
configuration list-max-ziplist-entries and each List element has
fewer bytes than the configuration list-max-ziplist-value

• linkedlist: This is used when the previous limits are exceeded

127.0.0.1:6379> LPUSH list1 a b
(integer) 2
127.0.0.1:6379> OBJECT ENCODING list1
"ziplist"
127.0.0.1:6379> LPUSH list2 a b c d
(integer) 4
127.0.0.1:6379> OBJECT ENCODING list2
"linkedlist"
127.0.0.1:6379> LPUSH list3 "only one element"
(integer) 1
127.0.0.1:6379> OBJECT ENCODING list3
"linkedlist"

Set
The following are the available encodings for Sets:

• intset: This is used when all elements of a Set are integers and the Set
cardinality is smaller than the configuration set-max-intset-entries

• hashtable: This is used when any element of a Set is not an integer or
the Set cardinality exceeds the configuration set-max-intset-entries

127.0.0.1:6379> SADD set1 1 2
(integer) 2
127.0.0.1:6379> OBJECT ENCODING set1
"intset"
127.0.0.1:6379> SADD set2 1 2 3 4 5
(integer) 5
127.0.0.1:6379> OBJECT ENCODING set2
"hashtable"
127.0.0.1:6379> SADD set3 a
(integer) 1
127.0.0.1:6379> OBJECT ENCODING set3
"hashtable"

Commands (Where the Wild Things Are)

[102]

Hash
The following are the available encodings for Hashes:

• ziplist: Used when the number of fields in the Hash does not exceed the
configuration hash-max-ziplist-entries and each field name and value of
the Hash is less than the configuration hash-max-ziplist-value (in bytes).

• hashtable: Used when a Hash size or any of its values exceed the
configurations hash-max-ziplist-entries and hash-max-ziplist-value,
respectively:

127.0.0.1:6379> HMSET myhash1 a 1 b 2
OK
127.0.0.1:6379> OBJECT ENCODING myhash1
"ziplist"
127.0.0.1:6379> HMSET myhash2 a 1 b 2 c 3 d 4 e 5 f 6
OK
127.0.0.1:6379> OBJECT ENCODING myhash2
"hashtable"
127.0.0.1:6379> HMSET myhash3 a 1 b 2 c 3 d 4 e 5 f 6
OK
127.0.0.1:6379> OBJECT ENCODING myhash3
"hashtable"

Sorted Set
The following are the available encodings:

• ziplist: Used when a Sorted Set has fewer entries than the configuration
set-max-ziplist-entries and each of its values are smaller than zset-max-
ziplist-value (in bytes)

• skiplist and hashtable: These are used when the Sorted Set number of
entries or size of any of its values exceed the configurations set-max-ziplist-
entries and zset-max-ziplist-value

127.0.0.1:6379> ZADD zset1 1 a
(integer) 1
127.0.0.1:6379> OBJECT ENCODING zset1
"ziplist"
127.0.0.1:6379> ZADD zset2 1 abcdefghij

Chapter 4

[103]

(integer) 1
127.0.0.1:6379> OBJECT ENCODING zset2
"skiplist"
127.0.0.1:6379> ZADD zset3 1 a 2 b 3 c 4 d
(integer) 4
127.0.0.1:6379> OBJECT ENCODING zset3
"skiplist"

Measuring memory usage
Previously, redis-server was configured to use a ziplist for Hashes with a
maximum of three elements, in which each element was smaller than 5 bytes.
With that configuration, it was possible to check how much memory Redis
would use to store 500 field-value pairs:

The total used memory was approximately 68 kB (1,076,864 – 1,008,576 = 68,288 bytes).

Commands (Where the Wild Things Are)

[104]

If redis-server was started with its default configuration of 512 elements and 64 bytes
for hash-max-ziplist-entries and hash-max-ziplist-value, respectively, the same 500
field-value pairs would use less memory, as shown here:

The total used memory is approximately 16 kB (1,025,104 – 1,008,624 = 16,480 bytes).
The default configuration in this case was more than four times more memory-efficient.

Forcing a Hash to be a ziplist has a trade-off—the more elements a Hash has, the
slower the performance. A ziplist is a dually linked list designed to be memory-
efficient, and lookups are performed in linear time (O(n), where n is the number
of fields in a Hash). On the other hand, a hashtable's lookup runs in constant time
(O(1)), no matter how many elements exist.

If you have a large dataset and need to optimize for memory, tweak these
configurations until you find a good trade-off between memory and performance.
Chapter 1, Getting Started (The Baby Steps), mentioned that Instagram tweaked their
Hash configurations and found that 1,000 elements per Hash was a good trade-off
for them. You can learn more about the Instagram solution in the blog post at
http://instagram-engineering.tumblr.com/post/12202313862/storing-
hundreds-of-millions-of-simple-key-value.

http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value
http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value

Chapter 4

[105]

The same logic for tweaking configurations and trade-offs applies to all other data
type encodings presented previously.

Algorithms that run in linear time (O(n)) are not always bad. If the
input size is very small, they can run in near-constant time.

Summary
This chapter introduced the concepts behind Pub/Sub, transactions, and pipelines.
It also showed the basics of the Lua language syntax, along with explanations on
how to extend Redis with Lua.

A good variety of Redis commands was presented, such as commands that are used
to monitor and debug a Redis server.

This chapter also showed how to perform data type optimizations by tweaking the
redis-server configuration.

In the next chapter, we will introduce Redis clients for languages such as PHP,
Python, and Ruby.

[107]

Clients for Your
Favorite Language

(Become a Redis Polyglot)
So far in this book, we have used two Redis clients: redis-cli and node_redis.

Redis has client libraries for pretty much all the popular programming languages,
and this chapter covers other Redis client libraries for PHP, Python, and Ruby.

This chapter does not provide explanations about each languages' syntax. Its main
goal is to give you a better understanding of how clients in other languages work.
Unlike the Node.js client used in the previous chapters, the chosen clients for PHP,
Python, and Ruby are synchronous and do not require a callback function.

Most clients have a very straightforward interface to execute most of Redis
commands. As long as you know how to execute a command using redis-cli
or node_redis, there are high chances that you know how to use other clients
in your favorite language.

This chapter will show how to use blocking commands, transactions, pipelines,
and scripting. These commands are not as simple as most other commands, and
their implementation varies more frequently. The most basic commands will not
be covered in detail (for example, GET, SET, INCR, HSET, SADD, and ZADD).

Clients for Your Favorite Language (Become a Redis Polyglot)

[108]

PHP
This section shows how to use a client called Predis, which is the PHP Redis client
recommended by the community—although there are more than 10 open source
Redis clients for PHP. The PHP version used to run all examples is 5.4.

Predis can be installed in many ways, and we have decided to use PHP Composer.

Create a file called composer.json in the chapter 5 folder with the following content:

{
 "name": "redis/chapter5",
 "require": {
 "predis/predis": "~1.0"
 }
}

Then run Composer:

$ composer update

In this section, the PHP code has comments that represent the result of the previous
expression. It is recommended to run all of the code from this section in an interactive
PHP interpreter (PsySH is recommended: http://psysh.org/).

The basic commands in PHP
Predis is a full-feature client, and most of Redis's commands can be accessed through
a very simple interface. Each executed command returns a value synchronously.
Some basic commands are shown in the following lines, and after this, you should
be able to figure out how most of them work:

require 'vendor/autoload.php';
Predis\Autoloader::register();
$client = new Predis\Client(array('host' => '127.0.0.1',
'port' => 6379), array('prefix' =>'php:'));

$client->set("string:my_key", "Hello World");
$client->get("string:my_key");
"Hello World"
$client->incr("string:counter");
$client->mget(array("string:my_key", "string:counter"));
array('Hello World', '2')

http://psysh.org/

Chapter 5

[109]

$client->rpush("list:my_list", "item1", "item2");
$client->lpop("list:my_list");
'item1'

$client->hset("set:redis_book", "title", "Redis Essentials");
$client->hgetall("set:redis_book");
array('title' => 'Redis Essentials')

$client->sadd("set:users", "alice", "bob");
$client->smembers("set:users");
array('bob', 'alice')

$client->zadd("sorted_set:programmers", 1940, "Alan Kay");
$client->zadd("sorted_set:programmers", 1912, "Alan Turing");
$client->zrange("sorted_set:programmers", 0, -1, "withscores");
array('Alan Turing' => 1912, 'Alan Kay' => 1940)

The blocking commands in PHP
There are three List commands that are connection-blocking: BRPOP, BLPOP, and
BRPOPLPUSH. In the Node.js client that we presented, these commands expect a
callback, but in Predis, they don't expect callbacks. They return values, and no call
is deferred.

The BRPOP and BLPOP commands expect a list of keys and a timeout.
BRPOPLPUSH expects a source key, a destination key, and a timeout. The timeout
parameter in all the three commands is optional and defaults to zero. If the timeout
is zero, the call will hang until an item is found in any of the specified source keys.
These commands are called blocking commands because the Redis client is blocked
until there is at least one element in the List or until the timeout has been exceeded:

• BRPOP: This is the blocking version of RPOP. An element is popped from
the tail of the first List that is nonempty, with the given keys being checked
in the order in which they were given

• BLPOP: This is the blocking version of LPOP. An element is popped from
the head of the first List that is nonempty, with the given keys being checked
in the order in which they were given

• BRPOPLPUSH: An element is popped from the tail of the source key and
inserted at the head of the destination key

Clients for Your Favorite Language (Become a Redis Polyglot)

[110]

The preceding commands are shown in the following code:

require 'vendor/autoload.php';
Predis\Autoloader::register();
$client = new Predis\Client(array('host' => '127.0.0.1',
 'port' => 6379),
 array('prefix' => 'php:'));

$client->lpush('blocking:queue', 'first');
$client->lpush('blocking:queue', 'second');

$client->blpop(['blocking:queue'], 0);
array('php:blocking:queue', 'second')

$client->brpop(['blocking:queue'], 0);
array('php:blocking:queue', 'first')

$client->rpush('blocking:source', 'message');
$client->brpoplpush('blocking:source', 'blocking:destination', 0);
'message'

Pipelines in PHP
Predis provides two ways to work with pipelines:

• A client can return a pipeline instance with a fluent interface, providing the
ability to chain commands

• A client can execute a pipeline inside an anonymous function (this is very
similar to callbacks in Node.js, but in Predis, it is not asynchronous)

The following code shows how to use pipelines:

require 'vendor/autoload.php';
Predis\Autoloader::register();
$client = new Predis\Client(array('host' => '127.0.0.1',
 'port' => 6379),
 array('prefix' => 'php:'));

fluent interface
$client->pipeline()
 ->sadd("cards:suits", 'hearts')
 ->sadd("cards:suits", 'spades')
 ->sadd("cards:suits", 'diamonds')
 ->sadd("cards:suits", 'clubs')

Chapter 5

[111]

 ->smembers("cards:suits")
 ->execute();
array(1,1,1,1, array('diamonds', 'hearts', 'clubs', 'spades'))

anonymous function
$client->pipeline(function ($pipe) {
 $pipe->scard("cards:suits");
 $pipe->smembers("cards:suits");
});
array(4, array('diamonds', 'hearts', 'clubs', 'spades'))

The preceding code creates a pipeline, then adds some elements through SADD,
and then invokes SMEMBERS on that Set. The pipeline is sent to Redis when
pipeline.execute() is called, and the resultant value is an array with one value for
each operation called on that pipeline object.

The second pipeline is created using an anonymous function that has a pipeline
instance as the argument ($pipe), and this argument is used to execute the Redis
commands in an isolated context. Even though a function is passed in, the call is
still synchronous.

Transactions in PHP
Predis provides an abstraction for Redis transactions based on MULTI and EXEC
with an interface that is very similar to pipelines.

A client returns a transaction instance with a fluent interface, providing the ability
to chain commands:

require 'vendor/autoload.php';
Predis\Autoloader::register();
$client = new Predis\Client(array('host' => '127.0.0.1',
 'port' => 6379),
 array('prefix' => 'php:'));

$client->transaction()
 ->set('transaction:key',
 'A string in a transactional block')
 ->incr('transaction:counter')
 ->get('transaction:key')
 ->execute();
array("Predis\Response\Status => OK", 2,
 "A string in a transactional block")

Clients for Your Favorite Language (Become a Redis Polyglot)

[112]

Scripting in PHP
Predis has an interesting approach to scripting: it provides a higher level abstraction
to register commands and access them as if they were native Redis commands.

Internally, Predis uses the command EVALSHA, but EVAL is used as a fallback
if needed. It is necessary to create a PHP class that extends Predis\Command\
ScriptCommand and implements two methods: getKeysCount and getScript:

• getKeysCount: This returns the number of arguments that should be
considered as keys

• getScript: This returns the body of a Lua code

A class called MultiplyValue is defined in the following code, which is an abstraction
used to create a multiply command.

This command will obtain the value of a key, multiply it by the number specified as
the argument, and update the key with the new value:

require 'vendor/autoload.php';
Predis\Autoloader::register();
$client = new Predis\Client(array('host' => '127.0.0.1',
 'port' => 6379),
 array('prefix' => 'php:'));

class MultiplyValue extends Predis\Command\ScriptCommand {
 public function getKeysCount() {
 return 1;
 }

 public function getScript() {
 $lua = <<<LUASCRIPT
 local value = redis.call('GET', KEYS[1])
 value = tonumber(value)
 local newvalue = value * ARGV[1]
 redis.call('SET', KEYS[1], newvalue)
 return newvalue
 LUASCRIPT;
 return $lua;
 }
}

$client->getProfile()->defineCommand('multiply', 'MultiplyValue');
$client->set("mynumber", 4);
$client->multiply("mynumber", 2);
8

Chapter 5

[113]

The method defineCommand needs to be executed to register the new command,
multiply, in the Predis server profile. The command multiply receives two arguments:

• keyname: This is a string that represents an existing key. This key should be a
string with a number as its value so that the multiplication can be performed

• factor: This is the multiplication factor for the key value

We recommend that you check out the Predis repository and
documentation at https://github.com/nrk/predis, where you can
find many examples and a fully detailed explanation of its commands.

Python
There are many Redis client libraries for the Python language, and we are going
to present redis-py, the most mature Redis client implementation for Python.
The Python version used for all examples is 2.7.

Installing redis-py (it is recommended to install it in a virtualenv):

$ pip install redis

In this section, the Python code has comments that represent the result of the
previous expression. It is recommended to run all of the code from this section
in the interactive Python interpreter (python or ipython in the command line).

The basic commands in Python
Most Redis commands are accessed in redis-py through a very simple interface.
Each executed command returns a value synchronously. Some basic commands
are shown in the following code, and after this, you should be able to figure out
how most of them work:

import redis
client = redis.StrictRedis(host='localhost', port=6379)

client.set("string:my_key", "Hello World")
client.get("string:my_key")
"Hello World"
client.incr("string:counter")
client.mget(["string:my_key", "string:counter"])
['Hello World', '2']

client.rpush("list:my_list", "item1", "item2")
client.lpop("list:my_list")

https://github.com/nrk/predis

Clients for Your Favorite Language (Become a Redis Polyglot)

[114]

'item1'

client.hset("set:redis_book", "title", "Redis Essentials")
client.hgetall("set:redis_book")
{'title': 'Redis Essentials'}

client.sadd("set:users", "alice", "bob")
client.smembers("set:users")
set(['bob', 'alice'])

client.zadd("sorted_set:programmers", 1940, "Alan Kay")
client.zadd("sorted_set:programmers", 1912, "Alan Turing")
client.zrange("sorted_set:programmers", 0, -1, withscores=True)
[('Alan Turing', 1912.0), ('Alan Kay', 1940.0)]

As you can see, most of Redis's commands have a pretty straightforward interface,
they always return a value, and there are no callbacks involved.

The blocking commands in Python
There are three List commands that are connection-blocking: BRPOP, BLPOP,
and BRPOPLPUSH. In redis-py, these commands have the same behavior and
API as in the previous example in the PHP section:

import redis
client = redis.StrictRedis(host='localhost', port=6379)

client.lpush('blocking:queue', 'first')
client.lpush('blocking:queue', 'second')

client.blpop(['blocking:queue'], 0)
('blocking:queue', 'first')

client.brpop(['blocking:queue'], 0)
('blocking:queue', 'second')

client.rpush('blocking:source', 'message')
client.brpoplpush('blocking:source', 'blocking:destination', 0)
'message'

Chapter 5

[115]

Pipelines in Python
Pipelines can be created through a regular function call or a context manager.

By default, pipelines in redis-py are wrapped in a transaction—if a transaction is not
the desired behavior, the transaction parameter needs to be set to False:

import redis
client = redis.StrictRedis(host='localhost', port=6379)

pipeline = client.pipeline(transaction=False)
pipeline.sadd("cards:suit", "hearts")
pipeline.sadd("cards:suit", "spades")
pipeline.sadd("cards:suit", "diamonds")
pipeline.sadd("cards:suit", "clubs")
pipeline.smembers("cards:suit")
result = pipeline.execute()
[0, 0, 0, 0, set(['hearts', 'clubs', 'spades', 'diamonds'])]

with client.pipeline() as pipe:
 pipe.scard("cards:suit")
 result = pipe.execute()
 # [4]

The preceding code creates the first pipeline without being wrapped in a transaction
(it sets the transaction parameter to False), then adds some elements through the
command SADD, and then invokes SMEMBERS on that set. This pipeline is sent
to Redis when pipeline.execute() is executed, and the result value is an array with
one value for each operation called on that pipeline object.

The second pipeline is created as a context manager (using the with keyword), and its
interface is the same as the previous pipeline object. Because the command SCARD is
the only command sent to the pipeline, its value is retrieved through the first element
of pipeline.execute(). The transaction parameter has not been changed, and its default
value is True.

Transactions in Python
There is no exclusive interface for transactions in redis-py. Instead, it provides
transactional pipelines. The pipeline() method needs to be executed with the
transaction parameter set to True to create a transaction.

Clients for Your Favorite Language (Become a Redis Polyglot)

[116]

Although transactional pipelines can be used as a regular object, visually it makes
more sense to use them as context managers—the indentation helps in seeing what
will be executed as a transaction:

import redis
client = redis.StrictRedis(host='localhost', port=6379)

with client.pipeline(transaction=True) as transaction:
 transaction.set('transaction:key',
 'A string in a transactional block')
 transaction.incr('transaction:counter')
 transaction.get('transaction:key')
 result = transaction.execute()
 # [True, 2, 'A string in a transactional block']

Scripting in Python
Lua scripting in redis-py can be used through three different interfaces: eval(),
evalsha(), and a Script object created by register_script().

The following snippet shows how to use a Lua script to multiply a Redis key
by a number and save the result in the key.

The first interface shown is the eval() function, which receives the following
as arguments:

• The Lua script as a string
• The number of keys that are going to be passed
• The Redis keys that the script is going to use (the KEYS variable inside

the script)
• The values that the script is going to use (the ARGV variable inside the script)

The return value is the result of the Lua script evaluated:

import redis
client = redis.StrictRedis(host='localhost', port=6379)

lua_script = """
 local value = redis.call('GET', KEYS[1])
 value = tonumber(value)
 local newvalue = value * ARGV[1]
 redis.call('SET', KEYS[1], newvalue)
 return newvalue
""" # 1

Chapter 5

[117]

client.set('python:value', 30)
client.eval(lua_script, 1, "python:value", 3)
"90"

The second interface is the load_script() and evalsha() functions. The load_script()
function receives as an argument the Lua script (as a string) and returns its SHA
value (this is the same thing as running the Redis command LOAD SCRIPT).

The evalsha() function receives the following as arguments:

• The SHA value of a script
• The number of keys that are going to be passed into the script
• The Redis keys available inside the script (the KEYS variable inside the script)
• The values available in the script (the ARGV variable inside the script)

This function returns the result of the Lua script:

client.set('python:value', 30)
sha = client.script_load(lua_script)
client.evalsha(sha, 1, 'python:value', 3)
"90"

The last interface, register_script(), receives as an argument a Lua script as string and
it returns a Script instance. In the preceding example, the script was assigned to the
variable multiply.

The multiply object (a Script instance) is callable, and it receives as arguments the
values of KEYS and ARGV, which are going to be available inside the Lua script.
This interface is the recommended way of interacting with Lua scripts because it
transforms the script into a Python object that behaves like a regular Python function:

client.set('python:value', 30)
multiply = client.register_script(lua_script)
multiply(keys=['python:value'], args=[3])

"90"

The official documentation of redis-py can be found at https://redis-py.
readthedocs.org, and its GitHub repository is at https://github.com/
andymccurdy/redis-py.

https://redis-py.readthedocs.org
https://redis-py.readthedocs.org
https://github.com/andymccurdy/redis-py
https://github.com/andymccurdy/redis-py

Clients for Your Favorite Language (Become a Redis Polyglot)

[118]

Ruby
Redis has an official Ruby client, redis-rb, and this is the client used in this section.

Installing it:

$ gem install redis

In this section, the Ruby code has comments that represent the result of the previous
expression. It is recommended to run all of the code from this section in the interactive
Ruby interpreter (irb in the command line).

The basic commands in Ruby
The interface of redis-rb is very close to how you interact with Redis through redis-cli:

require 'redis'
@redis = Redis.new(:host => "127.0.0.1", :port => 6379)

@redis.set "string:my_key", "Hello World"
@redis.get "string:my_key"
=> "Hello World"
@redis.incr "string:counter"
@redis.mget ["string:my_key", "string:counter"]
=> ["Hello World", "1"]

@redis.rpush "list:my_list", ["item1", "item2"]
@redis.lpop "list:my_list"
=> "item1"

@redis.hset "set:redis_book", "title", "Redis Essentials"
@redis.hgetall "set:redis_book"
=> {"title"=>"Redis Essentials"}

@redis.sadd "set:users", ["alice", "bob"]
@redis.smembers "set:users"
=> ["bob", "alice"]

@redis.zadd "sorted_set:programmers", 1940, "Alan Kay"
@redis.zadd "sorted_set:programmers", 1912, "Alan Turing"
@redis.zrange "sorted_set:programmers", 0, -1, :withscores => true

=> [["Alan Turing", 1912.0], ["Alan Kay", 1940.0]]

Chapter 5

[119]

The blocking commands in Ruby
The behavior and API of the blocking commands in redis-rb are the same as in the
previous PHP and Python implementations:

require 'redis'
@redis = Redis.new(:host => "127.0.0.1", :port => 6379)

@redis.rpush 'blocking:queue', 'first'
@redis.rpush 'blocking:queue', 'second'

@redis.blpop ['blocking:queue'], 0
=> ["blocking:queue", "first"]

@redis.brpop ['blocking:queue'], 0
=> ["blocking:queue", "second"]

@redis.lpush 'blocking:source', 'message'
@redis.brpoplpush 'blocking:source', 'blocking:destination', 0
=> "message"

Pipelines in Ruby
In redis-rb, pipelines are created through the method Redis#pipelined, and it expects
a block to run the commands inside the pipeline:

require 'redis'
@redis = Redis.new(:host => "127.0.0.1", :port => 6379)

result = @redis.pipelined do
 @redis.sadd "cards:suits", "hearts"
 @redis.sadd "cards:suits", "spades"
 @redis.sadd "cards:suits", "diamonds"
 @redis.sadd "cards:suits", "clubs"
 @redis.smembers "cards:suits"
end
=> [false, false, false, false, ["diamonds", "spades", "clubs",
"hearts"]]

The Redis#pipelined block does not expect parameters, and all Redis commands
are called on the Redis client object (in the preceding case, it is @redis). The result
of the Redis#pipelined call is an array with a value for each command executed
inside the block.

Clients for Your Favorite Language (Become a Redis Polyglot)

[120]

All replies from individual commands that are executed in a pipeline can be accessed
through a Future object. When the pipeline has successfully completed, the value of
that Future object becomes available. Here is an example of this:

require 'redis'
@redis = Redis.new(:host => "127.0.0.1", :port => 6379)

@redis.pipelined do
 @redis.set "message", "hello world"
 @message = @redis.get "message"
end

@message.value
=> "hello world"

Transactions in Ruby
A transaction is created in redis-rb through the Redis#multi method, which expects
a block with a parameter, and all the commands to be executed in a transaction
are executed on that block parameter. Transactions in Redis are executed through
MULTI/EXEC, but in redis-rb, the EXEC command is not sent. It is implicitly called
after Redis#multi is called:

@redis.multi do |multi|
 multi.set "transaction:key", "A string in a transactional block"
 multi.incr "transaction:counter"
end

@redis.get "transaction:key"
=> "A string in a transactional block"

Scripting in Ruby
There are two ways of using scripts in redis-rb: Redis#eval and Redis#evalsha.
These have the same interface as their equivalent Redis commands: the former
expects a Lua script and immediately executes it; the latter executes a cached
Lua script identified by its SHA value.

The following snippet shows how to use both Redis#eval and Redis#evalsha through a
Lua script that multiplies a key by a number and modifies the key that has the result
as its value:

lua_script = <<EOS
 local value = redis.call('GET', KEYS[1])

Chapter 5

[121]

 value = tonumber(value)
 local newvalue = value * ARGV[1]
 redis.call('SET', KEYS[1], newvalue)
 return newvalue
EOS

@redis.set "script:my_value", 30
@redis.eval(lua_script, {
 :keys => ["script:my_value"],
 :argv => [3]
})
=> "90"

@redis.set "script:my_value", 30
multiply_script_sha = @redis.script :load, lua_script
@redis.evalsha(multiply_script_sha, {
 :keys => ["script:my_value"],
 :argv => [3]
})
=> "90"

The official Git repository of redis-rb is https://github.com/redis/redis-rb,
and it has a good set of examples and a brief documentation can be found in the
README.md file.

Summary
In this chapter, you learned how PHP, Ruby, and Python clients work. You also
learned how to execute basic commands, create scripts, and work with blocking
commands, pipelines, and transactions.

The next chapter is going to show you the common pitfalls when working with
Redis, such as using the wrong data type for a problem, using multiple databases,
using the swap space, and not planning the memory properly.

https://github.com/redis/redis-rb

[123]

Common Pitfalls
(Avoiding Traps)

In this chapter, we will describe some common pitfalls when using Redis, including
keys without a namespace, using an inappropriate data type to solve a problem, and
commands that should not be executed in production. Some of these examples are
based on previous experience at Yipit (www.yipit.com) as well as other companies.

The wrong data type for the job
When we learn about a new feature of a tool, we often unconsciously try to apply
it to our current set of problems. Many times, there is nothing wrong with this,
but that's not always the case with Redis.

At Yipit, we used to store all deals that were going to be sent to users in a Redis
Set. Although the solution worked, developers thought it was memory-inefficient
because the Yipit user base was large. To rectify this issue, some of the developers
thought that changing the Set implementation to a Bitmap implementation would
make the solution memory-efficient. In other contexts, Bitmaps performed so well
that developers thought they were the answer to everything—this turned out to
be untrue.

No benchmark tests were performed based on the wrong assumption that Bitmaps
would always be more memory-efficient than Sets.

The Bitmap implementation sounded logical and was deployed to production.
The DevOps engineers received alerts and noticed that the Redis memory was full.
The next sections describe the architecture and show how the memory problems
could have been prevented.

www.yipit.com

Common Pitfalls (Avoiding Traps)

[124]

We strongly recommend the use of benchmarks before
committing to a solution.

The Set approach
The Set implementation was very straightforward: each user was represented by
a Set, and each Set element was a deal to be sent. The deal IDs were sequential
numbers (1, 2, 3, 4, 5, and so on).

The following code is a benchmark of this implementation, using 100,000 Sets with
12 deal IDs each, and each user will receive the same 12 deals.

Create a file called benchmark-set.js in the chapter 6 folder with the following code:

var redis = require("redis");
var client = redis.createClient();
var MAX_USERS = 100000;
var MAX_DEALS = 12;
var MAX_DEAL_ID = 10000;

for (var i = 0 ; i < MAX_USERS ; i++) {
 var multi = client.multi();
 for (var j = 0 ; j < MAX_DEALS ; j++) {
 multi.sadd("set:user:" + i, MAX_DEAL_ID - j, 1);
 }
 multi.exec();
}

client.quit();

Remove all of the existing data from Redis, execute the benchmark, and then retrieve
the used memory (this may take a couple of minutes):

$ redis-cli FLUSHALL && node benchmark-set.js && redis-cli INFO memory
OK
Memory
used_memory:14860000
used_memory_human:14.17M
used_memory_rss:147779584
used_memory_peak:2542119984
used_memory_peak_human:2.37G

Chapter 6

[125]

used_memory_lua:35840
mem_fragmentation_ratio:9.94
mem_allocator:libc

The benchmark output may vary across computers, but it is enough to compare the
cost magnitudes of the Set and Bitmap implementations.

The Bitmap approach
In the Bitmap implementation, each user is identified by a Bitmap. Each Bitmap will
have the deals that are going to be sent by being marked as 1, and all other deals will
be marked as 0.

Unlike the Set implementation, the Bitmap cost is based on the highest deal ID
present. If the highest deal ID is 10, the Bitmap is going to cost 11 bits (the zero is
included); if the highest deal ID is 1,000,000, the Bitmap is going to cost 1,000,001 bits.

To refresh your knowledge of Bitmaps, reread chapter 2, Advanced Data Types
(Earning a Black Belt).

The following code is a benchmark of the Bitmap implementation, using 100,000
Bitmaps with 12 deals each, and each user will receive the same 12 deals. Bitmaps
with the highest 12 deal IDs are the worst scenario.

Create a file called benchmark-bitmap.js in the chapter 6 folder with the following code:

var redis = require("redis");
var client = redis.createClient();
var MAX_USERS = 100000;
var MAX_DEALS = 12;
var MAX_DEAL_ID = 10000;

for (var i = 0 ; i < MAX_USERS ; i++) {
 var multi = client.multi();
 for (var j = 0 ; j < MAX_DEALS ; j++) {
 multi.setbit("bitmap:user:" + i, MAX_DEAL_ID - j, 1);
 }
 multi.exec();
}

client.quit();

Common Pitfalls (Avoiding Traps)

[126]

Remove all of the existing data from Redis, execute the benchmark, and then retrieve
the used memory (this may take a couple of minutes):

$ redis-cli FLUSHALL && node benchmark-bitmap.js && redis-cli INFO memory
OK
Memory
used_memory:266060416
used_memory_human:253.73M
used_memory_rss:337969152
used_memory_peak:2542119984
used_memory_peak_human:2.37G
used_memory_lua:35840
mem_fragmentation_ratio:1.27
mem_allocator:libc

The Bitmap implementation used approximately 253 MB while the Set implementation
used approximately 14 MB. The Bitmap implementation (which was supposed to be
cheaper) costs 18 times more in the scenario described earlier.

Multiple Redis databases
Redis comes with support for multiple databases, which is very similar to the
concept in SQL databases. In SQL databases, such as MySQL, PostgreSQL, and
Oracle, you can define a name for your databases. However, Redis databases are
represented by numbers.

You learned in Chapter 4, Commands (Where the Wild Things Are), that we can switch
between databases using the command SELECT <dbid>. Although multiple databases
work fine, this has become a deprecated feature, so we do not recommend that you use
it in production.

It has been deprecated because it is, in general, better to launch multiple Redis
servers on the same machine rather than using multiple databases. Redis is single
threaded. Thus, a single Redis server with multiple databases only uses one CPU
core. On the other hand, if multiple Redis servers are used, it is possible to take
advantage of multiple CPU cores.

Multiple databases make administration of Redis harder and may complicate
performance and resource usage diagnosis. It would not be easy to figure out
which database is causing issues.

Some Redis clients do not even support multiple Redis databases, since it would
make it hard to create a thread-safe implementation.

Chapter 6

[127]

Keys without a namespace
It is good practice to use namespaces when defining your keys in Redis in order
to avoid key name collisions and to organize your keys based on your application
section or area.

In SQL databases, a namespace can be represented by the database name or the
database tables.

Also, in a SQL database, it is reasonable to assume that a database called music-online
has tables called album, song, and author.

Redis does not support namespacing. Usually, key name conventions are used
to mimic namespaces. A common way of adding namespaces to Redis keys is
by prepending a namespace (that is, namespace:key_name). Some Redis clients
support addition of a prefix to all Redis keys.

Here are a few examples of key names with namespaces:

• music-online:song:1
• music-online:song:2
• music-online:album:10001:metadata
• music-online:album:10001:songs
• music-online:author:123

Multiple databases are not an excuse not to use proper key
naming. Always use consistent namespaces.

Using Swap
There is a Linux kernel parameter called swappiness that controls when the
operating system will start using the swap space. This parameter can be set to
values between 0 and 100. A lower value tells the kernel to use the swap space
less frequently, and a higher value tells it to use the swap space more frequently.
The default value is 60.

Common Pitfalls (Avoiding Traps)

[128]

Here are some special cases of using swaps:

Value Strategy

vm.swappiness = 0 • Linux 3.5 and newer: Disables swap entirely
• Linux 3.4 and older: Swap only to avoid an

"out of memory" condition
vm.swappiness = 1 • Linux 3.5 and newer: Minimum amount of

swapping without disabling it entirely

vm.swappiness = 100 • Linux will swap aggressively

In a scenario where Redis needs to access from the swap space, the OS needs to move
the necessary pages back into the RAM. During this process, Redis is blocked until
the OS finishes its job.

We recommend that you use a swappiness of 0 when your data always fits into the
RAM and 1 when you are not sure.

To disable swap usage in Linux 3.5 and newer, execute the following as the root user:

sysctl -w vm.swappiness=0

To make the previous change permanent across reboots, change the file /etc/sysctl.conf
(as the root user) to include the following:

vm.swappiness=0

Not planning and configuring the
memory properly
The Redis server needs enough memory to perform backups if any strategy is
enabled. In the worst-case scenario, redis-server may double the used memory
during the backup.

During RDB snapshot creation and AOF rewriting, redis-server needs to duplicate
itself (it executes the fork() system call). Chapter 8, Scaling Redis (Beyond a Single Instance),
will introduce AOF and RDB, with details.

If the Redis instance is very busy during the fork() call, it is possible that the
copy-on-write strategy and overcommitting the memory is not enough. In this case,
the child process may need the same amount of memory (or an amount very close
to it) as the parent.

Chapter 6

[129]

Assuming that Linux is the operating system, set the overcommit memory
configuration to 1 to boost background saves. Add the following to the
/etc/sysctl.conf file:

vm.overcommit_memory=1

After saving /etc/sysctl.conf, reboot the server.

There is a configuration directive called maxmemory that limits the amount of
memory that Redis is allowed to use (in bytes). Change this configuration to the
appropriate value based on the available memory and application requirements.

Redis should not use more than 50 percent of the available memory when any backup
strategy is enabled. Make sure that you set up alarms for Redis memory usage.

An inappropriate persistence strategy
Once at Yipit, a Redis instance (read-intensive) was experiencing some slowdowns,
but nobody could understand why. At first, the DevOps team thought that the
application's code was making Redis slow, but after some investigation, they found
that the issue was due to a periodic backup strategy. Chapter 8, Scaling Redis (Beyond
a Single Instance), will cover persistence in depth.

When Redis starts the procedure to create an RDB snapshot or rewrite the AOF file,
it creates a child process (using the fork() system call), and the new process handles
the procedure.

During the fork() execution, the process is blocked and Redis will stop serving clients.
This is when the perceived latency by clients increases.

The Yipit problem was due to a long fork() time on AWS. The instance type family
used was M2, which is a family of ParaVirtual (PV) machines, as opposed to
Hardware-assisted Virtual Machines (HVM). It is known that the fork() system
call in a PV machine is slower than in an HVM machine. This is a great example
of low-level behavior that you cannot change and may find difficult to control.

Here are some ideas of what to do in such a case:

• Disable the transparent huge pages Linux kernel feature
(echo never > /sys/kernel/mm/transparent_hugepage/enabled)

• Use an HVM instance
• Use a persistence-only slave server, in which the slave does nothing

but cause the replicated data to persist

Common Pitfalls (Avoiding Traps)

[130]

• Make backups less frequent, if possible, and then check whether the problem
is mitigated

• Disable automatic persistence in Redis. Make the data persist manually when
Redis is not under heavy load (with a cron job or something similar)

• Disable persistence if the data can be recreated easily and quickly

Redislab has a detailed benchmark of fork time on AWS/Xen at
https://redislabs.com/blog/testing-fork-time-on-awsxen-infrastructure.

Summary
This chapter presented common Redis pitfalls such as using the wrong data type,
using multiple Redis databases, and not using namespaces for key names. It also told
you how to avoid them. Then it showed the pitfalls of the swap space, not planning
the memory properly, and using an inappropriate persistence strategy.

The next chapter will discuss some security techniques, such as authentication,
firewall configuration, and SSL encryption.

https://redislabs.com/blog/testing-fork-time-on-awsxen-infrastructure

[131]

Security Techniques
(Guard Your Data)

Redis was designed to be used in a trusted private network. It supports a very basic
security system to protect the connection between the client and server via a plain-
text password.

It is important to protect the Redis instances. An attack on an unprotected instance
could put your data into unauthorized hands. Also, the command FLUSHALL can
be used by an external attacker, which could cause you to lose all of your data.

We will explain some techniques of using the existing security mechanisms in Redis
as well as other approaches to improving security around Redis.

The basic security
When Redis was designed, the main goals were maximum performance and
simplicity, rather than maximum security. Although Redis implements a basic
security mechanism, which is based on plain-text passwords, Redis does not
implement Access Control List (ACL). Therefore, it is not possible to have users
with different permission levels.

The authentication feature can be enabled through the configuration requirepass.
Since Redis is superfast, requirepass could be dangerous as a malicious user could
potentially guess thousands of passwords in a second. Avoid this by choosing a
complex password of at least 64 characters.

After it is enabled, Redis will reject any commands from unauthenticated clients.

Security Techniques (Guard Your Data)

[132]

Copy the default redis.conf file to the chapter 7 folder, which is in the Redis source
code directory. Every time the Redis configuration file is changed, the redis-server
needs to be restarted; otherwise, the changes will not be applied.

Add the following to redis.conf:

requirepass a7f$f35eceb7e@3edd502D892f5885007869dd2f80434Fed5b4!fac00
57f51fM

Restart the redis-server by specifying redis.conf (repeat this step after every
configuration change):

$ redis-server /path/to/chapter7/redis.conf

The command AUTH authenticates a Redis client, as mentioned in Chapter 4,
Commands (Where the Wild Things Are):

$ redis-cli
127.0.0.1:6379> SET hello world
(error) NOAUTH Authentication required.
127.0.0.1:6379> AUTH a7f$f35eceb7e@3edd502D892f5885007869dd2f80434Fed5b4!
fac0057f51fM
OK
127.0.0.1:6379> SET hello world
OK

The redis-server will return an OK status if the password used in the command
AUTH matches the password in the redis.conf file. From that point onward,
the server will accept any commands from that client.

An error stating that the password is invalid will be returned if the password is wrong,
and the client will have to try again with a new password.

It is important to know that the AUTH command is similar to every other command
in Redis. It is sent unencrypted, which means that it is not protected against any
attacker who has enough access to the network to perform eavesdropping.

Obfuscating critical commands
Another interesting technique is obfuscating or disabling some critical commands,
such as FLUSHDB, FLUSHALL, CONFIG, KEYS, DEBUG, and SAVE. To disable
a command, you should set the new name to an empty string.

Some applications might still need some of these critical commands available in
production. In such cases, we recommend that you rename them to avoid accidental
calls from external clients. The new names should be hard to guess. The new
command names are still available but obfuscated.

Chapter 7

[133]

Renaming a command does not ensure security, because a malicious
attacker can still use brute force to find the command name.

It is good practice to create a configuration file called rename-commands.conf for
organization purposes. Use the directive include in redis.conf to include the rename-
commands.conf file.

Create a file called renamed-commands.conf in the chapter 7 folder with the
following code:

rename-command FLUSHDB e0cc96ad2eab73c2c347011806a76b73
rename-command FLUSHALL a31907b21c437f46808ea49322c91d23a
rename-command CONFIG ""
rename-command KEYS ""
rename-command DEBUG ""
rename-command SAVE ""

Let's look at each of these commands in detail:

• FLUSHDB/FLUSHALL: These commands are very critical. Since they
delete all of your data in Redis, you should disable/rename them.

• CONFIG: Ideally, you would disable/rename the command CONFIG in
production, because it gives access to all the options set in your redis.conf
file to the client.

• KEYS: This command will block Redis while it is executing, and since this
command runs in linear time over all existing keys, it is recommended that
you disable/rename it.

• DEBUG: This command can force a crash in the redis-server (DEBUG
SEGFAULT), and you should disable/rename it.

• SAVE: This command should be disabled in production since it will block
all other clients during the process of saving the data in a file. Also, we
recommend that you use BGSAVE instead.

Add the following to redis.conf and then restart the redis-server:

include /path/to/chapter7/rename-commands.conf

Redis returns an unknown command error when a disabled/renamed command is
executed with its original name:

$ redis-cli
127.0.0.1:6379> SAVE
(error) ERR unknown command 'SAVE'

Security Techniques (Guard Your Data)

[134]

127.0.0.1:6379> FLUSHALL
(error) ERR unknown command 'FLUSHALL'
127.0.0.1:6379> a31907b21c437f46808ea49322c91d23a
OK

Keep in mind that renaming commands that are transmitted
to slaves can cause problems.

Networking security
Redis is meant to run in a trusted network, but that is not always the case. Currently,
many Redis servers are deployed on public clouds, meaning security is a concern.

There are many ways to make Redis secure, such as the following:

• Use firewall rules to block access from unknown clients
• Run Redis on the loopback interface, rather than a publicly accessible

network interface
• Run Redis in a virtual private cloud instead of the public Internet
• Encrypt client-to-server communication

Protecting Redis with firewall rules
Firewall rules are a safe alternative to protect a Redis server, but it is required
to have a list of all the trusted Classless Inter-Domain Routing (CIDR) blocks
of the possible clients. In a Unix-like server, the iptables program can be used
to set up firewall rules.

The iptables program is a standard firewall created in 1998 by Rusty Russell. It is
included in most Linux distributions by default. Most of the explanation of iptables
is not applicable for Windows or Mac OS. However, because Redis will be running
on a Linux server most of the time, it is important to understand how iptables can
be used to improve the security around Redis. The iptables program should be
executed by the root user.

In summary, iptables defines the rules to govern the network traffic. The iptables
program performs packet filtering with network rules. The idea is as follows:
different tables have multiple chains, and a chain is a group of rules that a packet
is checked against sequentially. When a packet matches one of the existing rules in
iptables, it will execute the associated action. The default table is the "filter" table.

Chapter 7

[135]

There are three built-in chains for the filter table:

• INPUT: This chain handles all packets that are addressed to your server
• OUTPUT: This chain contains the rules for the traffic created by your server
• FORWARD: This chain allows you to configure your server to route requests

to other machines

In this section, some iptables snippets are presented. They will configure iptables to
accept or deny connections from some IPs.

Allow all IPs in the address space of 192.16.1 to connect to the server:

iptables -A INPUT -s 192.168.1.0/24 -j ACCEPT

Allow only the individual IP 10.10.48.34 to connect to the server:

iptables -A INPUT -s 10.10.48.34 -j ACCEPT

Set the default policy for all INPUT chains to drop all packets:

iptables -P INPUT DROP

Set the default policy for all FORWARD chains to drop all packets:

iptables -P FORWARD DROP

Modifications to the iptables rules are saved in memory, and they
live until the next reboot or until iptables is restarted. To cause the
modifications to persist, execute the program iptables-save.
iptables is a very powerful tool, and we recommend that you
learn more about it. The successor of iptables is called nftables,
and we also recommend that you read about it.

When Redis is running on the cloud, you may need to check your cloud provider's
documentation to learn how to set up firewall rules on your Redis server.

In a scenario where Amazon Web Services (AWS) is the cloud provider, check
their documentation on how to set up security groups, that is, how AWS configures
firewall rules for their instances.

Security Techniques (Guard Your Data)

[136]

With AWS, you can create firewall rules based on CIDR blocks and security group
IDs (all firewall configurations are saved in security groups) as shown in the
following screenshot:

It is more flexible to create firewall rules based on security
group IDs than on CIDR blocks.

Running Redis on the loopback network
interface
In a scenario where a web application and the redis-server are running on the
same machine, you should bind redis-server to the loopback interface (127.0.0.1).
This approach blocks external access to Redis, and the loopback interface is faster
than a physical network interface (the loopback interface is a virtual interface that
never changes its address).

You can bind redis-server to the loopback interface by changing redis.conf to have
the following:

bind 127.0.0.1

After making this change, restart the redis-server.

Chapter 7

[137]

Running Redis in a Virtual Private Cloud
Currently, a few public cloud providers offer Virtual Private Clouds (VPCs),
and VPCs can be very useful for managing Redis servers' security.

A VPC is a pool of on-demand resources that run on a public cloud. The resources
are virtually isolated from different users of the same public cloud.

For example, all machines can reach each other in a public cloud if no restrictive
firewall rules are defined, but in a VPC, this is not the case. Only machines on the
same VPC can reach each other.

VPCs may sound extremely complicated, but cloud providers make them simpler to
work with, and it is a great idea to run Redis on a VPC.

It is also a good idea to have firewall rules set up for a Redis server even if it is in a
VPC, because you can ensure that Redis is only accessed by trusted services.

Encrypting client-to-server
communication
By default, Redis does not support any encryption. Assuming that encryption
is desired in the client-server connection, extra tools are necessary. Encrypting
the Redis communication using SSL can prevent malicious attackers from
eavesdropping on the network, and ensure that only trusted clients that have
the SSL key can connect to Redis.

The tool we will use to encrypt Redis communication is called stunnel. It is an
SSL encryption wrapper between a local client and a local or remote server. Many
services that do not implement SSL encryption can take advantage of stunnel.

Redis can be combined with stunnel to encrypt all client-server communication.

The basic idea is that a connection will exist between a stunnel server and a client,
and that connection will be SSL-encrypted through a private SSL key.

There are two options for running Redis with stunnel:

• Run stunnel on both the server and client machines, using the same
private key:

 ° The stunnel in the server creates a tunnel to the redis-server

Security Techniques (Guard Your Data)

[138]

 ° The stunnel in the client creates a tunnel to the remote stunnel
(on the server machine). The Redis client should connect to the
local stunnel

• Run stunnel on the server, and a Redis client that supports SSL must be
used. This client will use the private key to encrypt the connection

The following examples require openssl and stunnel to be installed, and they also
require an SSL key.

Go to the chapter 7 folder and execute the following commands to create the required
SSL key:

$ openssl genrsa -out key.pem 4096
$ openssl req -new -x509 -key key.pem -out cert.pem -days 1826 -batch
$ cat key.pem cert.pem > private.pem
$ chmod 640 key.pem cert.pem private.pem

Running stunnel on both the server and
the client
For simplicity, this example will create two configurations that represent the client
and the server on the same machine. The server configuration will bind stunnel to
0.0.0.0 and port 6666, and the client configuration will bind stunnel to localhost and
port 5555.

In a real-world scenario, these configurations will live on separate machines.

This example will require three terminal windows. The first window will run
stunnel using the server configuration, the second will run the client configuration,
and the third will run the redis-cli.

Create the file stunnel-server.conf in the chapter 7 folder with the following content:

foreground = yes
cert = private.pem
[redis]
accept = 0.0.0.0:6666
connect = 127.0.0.1:6379

This file configures stunnel to create an encrypted tunnel between two different
network interfaces (0.0.0.0 and 127.0.0.1) using private.pem as the private key.

Start stunnel with the previous server configuration:

$ stunnel stunnel-server.conf

Chapter 7

[139]

On the client side, stunnel will run slightly differently. Create the file stunnel-client.
conf in the chapter 7 folder with the following content:

foreground = yes
cert = private.pem
client = yes
[redis]
accept = 127.0.0.1:5555
connect = 0.0.0.0:6666

In a different terminal, start another stunnel process with the previous
client configuration:

$ stunnel stunnel-client.conf

In another terminal, test the client-server connection with redis-cli by running
the PING command on the client (make sure that you see the PONG reply):

$ redis-cli -h 127.0.0.1 -p 5555
127.0.0.1:6379> PING
PONG

Running stunnel on the server and using
a Redis client that supports SSL
In this scenario, all the previous steps are required to set up the stunnel server
configuration, but the client configuration is not necessary. Use an SSL-capable
Redis client and pass the private key file to it. This approach is preferable because
it does not require any additional services or configurations—only the SSL key.

At the time of writing this book, the client node_redis does not
support SSL, but a pull request is open for this on GitHub at
https://github.com/mranney/node_redis/pull/527.

The next example uses the redis-py client, which supports SSL encryption. Create a
file called pythonssl.py in the chapter 7 folder with the following code:

import redis # 1
import ssl # 2

pool = redis.ConnectionPool(
 connection_class=redis.SSLConnection,
 host='0.0.0.0',
 port=6666,

https://github.com/mranney/node_redis/pull/527

Security Techniques (Guard Your Data)

[140]

 ssl_ca_certs='private.pem',
 ssl_cert_reqs=ssl.CERT_REQUIRED) # 3
r = redis.StrictRedis(connection_pool=pool) # 4

print(r.ping()) # 5

1. Import the redis client library.
2. Then import the ssl library.
3. Create an SSL connection pool to connect to port 6666, passing the same

private.pem file that was previously created and is being used by stunnel.
4. Create a Redis connection object passing the connection pool.
5. Execute the PING command and display True if it returned PONG.

Otherwise, display False.

Then execute it:

$ python pythonssl.py
True

Benjamin Cane has written a very good blog post on how to use
stunnel and Redis, which can be found at http://bencane.
com/2014/02/18/sending-redis-traffic-through-
an-ssl-tunnel-with-stunnel/.

Summary
This chapter presented how to set up basic authentication in Redis and how to
obfuscate and disable Redis commands. It also introduced networking techniques
to make sure that the Redis connection is safer (firewall, VPC, and SSL encryption).
The next chapter will introduce replication, persistence methods (RDB and AOF),
data partitioning, and the use of twemproxy to automatically shard data across
multiple instances.

http://bencane.com/2014/02/18/sending-redis-traffic-through-an-ssl-tunnel-with-stunnel/
http://bencane.com/2014/02/18/sending-redis-traffic-through-an-ssl-tunnel-with-stunnel/
http://bencane.com/2014/02/18/sending-redis-traffic-through-an-ssl-tunnel-with-stunnel/

[141]

Scaling Redis
(Beyond a Single Instance)

This chapter will show alternative ways to scale Redis horizontally (using multiple
instances rather than adding resources to a single instance) using concepts such as
persistence, replication, and partitioning. Understanding these concepts is crucial to
scale Redis beyond a single instance. By the end of this chapter, you should be able to
work with multiple Redis instances and understand the trade-offs of each approach.

Persistence
Since the beginning of this book, we have talked a lot about storing your data
in memory using Redis. Memory is transient. Therefore, if a Redis instance is
shut down, crashes, or needs to be rebooted, all of the stored data will be lost.
To solve this problem, Redis provides two mechanisms to deal with persistence:
Redis Database (RDB) and Append-only File (AOF). Both of these mechanisms
can be used separately or simultaneously in the same Redis instance.

The persistence approach used by Redis has generated a lot of discussion in
the community. On March 26, 2012, Salvatore Sanfilippo wrote a great blog post
demystifying persistence in Redis, since persistence was the most misunderstood
feature of Redis.

Recommended reading
Redis persistence demystified at http://oldblog.antirez.com/
post/redis-persistence-demystified.html.

In this section, we will cover the advantages and disadvantages of each approach as
well as how each can be enabled.

http://oldblog.antirez.com/post/redis-persistence-demystified.html
http://oldblog.antirez.com/post/redis-persistence-demystified.html

Scaling Redis (Beyond a Single Instance)

[142]

RDB (Redis Database)
A .rdb file is a binary that has a point in time representing the data stored in a Redis
instance. The RDB file format is optimized for fast reads and writes. To achieve the
necessary performance, the internal representation of a .rdb file on a disk is very
similar to Redis's in-memory representation.

Another interesting aspect of RDB is that it can use LZF compression to make
an RDB file very compact. LZF compression is a fast compression algorithm that
has a very small memory requirement during compression. Although it does
not have the best compression rates compared to other compression algorithms,
it works efficiently with Redis. Also, a single RDB file is sufficient to restore a
Redis instance completely.

RDB is great for backups and disaster recovery because it allows you to save an
RDB file every hour, day, week, or month, depending on your needs. This approach
allows you to easily use RDB files to restore any dataset at any given time.

The command SAVE creates an RDB immediately, but it should be avoided because
it blocks the Redis server during snapshot creation. The command BGSAVE
(background save) should be used instead; it has the same effect as SAVE, but it runs
in a child process so as not to block Redis.

In order to avoid performance degradation during a background save, the
redis-server process creates a child process (fork) to perform all the persistence
operations. So, the main process will never perform any disk I/O operations.
During this process, if the main redis-server is receiving writes, the child process
will need to copy the memory pages that were changed, and this may increase the
total used memory significantly (it uses copy-on-write). Additional information
about this can be found in Chapter 6, Common Pitfalls (Avoiding Traps).

The default Redis configuration file, which is in the Redis source code directory,
has enabled three snapshot rules to cause the data to persist on the disk through
the directive save, which performs background saves. This technique is called
snapshotting. Open the redis.conf file and search for the following three lines:

save 900 1
save 300 10
save 60 10000

Redis creates snapshots based on two conditions: if in X seconds, Y amount of write
operations have happened in your Redis instance, it will create a .rdb file. The RDB
filename is based on the directive dbfilename (this defaults to dump.rdb).

Chapter 8

[143]

The save directive's syntax is as follows:

save number_of_seconds number_of_changes

With this in mind, we can infer what those three lines will do:

1. Save a .rdb file on disk every 900 seconds (15 minutes) if at least one write
operation happens.

2. Save a .rdb file on disk every 300 seconds (5 minutes) if at least 10 write
operations happen.

3. Save a .rdb file on disk every 60 seconds (1 minute) if at least 10,000 write
operations happen.

Having multiple save directives provides a lot of flexibility in terms of how often
and when snapshots are saved.

With this being said, you can have as many save directives as needed in any
time interval. However, it is not recommended to use save directives less than
30 seconds apart from each other.

Snapshotting can be disabled, which means that nothing will be saved on the disk.
This is done by deleting or commenting all save directives in the redis.conf file and
then restarting the Redis server. It can also be disabled via a command-line option
or the command CONFIG SET.

RDB is not a 100% guaranteed data recovery approach, even if you save snapshots
every minute and with at least 100 changes. If the main Redis process stops for any
reason, be prepared to lose the latest writes in your database.

Another downside to RDB is that every time that you need to create a snapshot,
the Redis main process will execute a fork() to create a child process to cause the
data to persist on the disk. It can make your Redis instance stop serving clients for
milliseconds, sometimes even for a few seconds, depending on the hardware and
the size of the dataset. More details about this problem can be found in Chapter 6,
Common Pitfalls (Avoiding Traps).

These are the available directives in the Redis configuration for RDB:

• stop-writes-on-bgsave-error: The possible values for this are yes or no.
This option makes Redis stop accepting writes if the last background
save has failed. Redis starts accepting writes again after a background
save succeeds. The default value is yes

• rdbcompression: The possible values for this are yes or no. When this option
is set to yes, Redis uses LZF compression for the .rdb files. The default value
is yes

Scaling Redis (Beyond a Single Instance)

[144]

• rdbchecksum: The possible values for this are yes or no. When it is set to yes,
Redis saves a checksum at the end of the .rdb file and performs a checksum
before loading the .rdb file. Redis does not start if the RDB checksum does
not match with the one in the file. The default value is yes

• dbfilename: This option sets the .rdb filename. The default value is dump.rdb
• save: This option configures the snapshot frequency, based on the number of

seconds and changes. It can be specified multiple times. The default values
are save 3600 1, save 300 100, and save 60 10000

• dir: This specifies the directory location of the AOF and RDB files

AOF (Append-only File)
When AOF is enabled, every time Redis receives a command that changes the
dataset, it will append that command to the AOF (Append-only File). With this
being said, if you have AOF enabled and Redis is restarted, it will restore the data
by executing all commands listed in AOF, preserving the order, and rebuild the state
of the dataset. AOF is an alternative to RDB snapshotting. Until Redis 1.1, Redis only
supported the snapshotting strategy, which is not a fully durable approach. Redis 1.1
introduced AOF as a fully durable strategy.

AOF is a "human-readable" append-only log file. This means that there are no seeks
and corruption problems can be easily identified. You can even open this file in a text
editor and understand what is inside (which is impossible to do with an RDB file,
since it is binary). An interesting point to note about AOF is that even in the event
of the AOF being incomplete or corrupted for whatever reason, there is a tool called
redis-check-aof that checks and fixes AOF files easily.

However, this feature comes at the expense of performance and additional disk space.

The AOF can be optimized into a smaller version of itself automatically through a
couple of options, or manually through the command BGREWRITEAOF. In a crash
scenario during the rewrite, the original AOF is not changed.

These are the available directives in the Redis configuration for AOF:

• appendonly: This will enable or disable AOF. The options available are yes
and no. By default, AOF is disabled

• appendfilename: This specifies the AOF filename. This field is for a filename
only, not a file path. It is empty by default

Chapter 8

[145]

• appendfsync: Redis uses a background thread to perform fsync() in the main
process (fsync() is a system call that tells the OS to flush data to disk). Redis
allows you to configure the fsync policy in three possible ways:

 ° no: Do not execute fsync(); let the OS decide when to flush the data.
This is the fastest option

 ° always: Execute fsync() after every write. This is the slowest option,
but also the safest

 ° everysec: Execute fsync() once every second. This still provides good
write performance. This is the default value

• no-appendfsync-on-rewrite: The possible values are yes and no. If the
appendfsync policy is set to everysec or always and a background save or
AOF log rewrite is taking place, Redis may block due to a lot of disk I/O
(the fsync() syscall will be long). You should only enable this option if you
have latency problems. The default value is no

• auto-aof-rewrite-percentage: The valid values range from 0 to 100. Redis is
able to automatically rewrite the log file by implicitly executing the command
BGREWRITEAOF when the AOF size grows by the specified percentage.
The default value is 100

• auto-aof-rewrite-min-size: This is the minimum size for AOF to be rewritten.
This prevents AOF rewrites until the specified minimum size is reached,
even if the specified auto-aof-rewrite-percentage value is exceeded. The
default value is 67,108,864 bytes

• aof-load-truncated: The possible values are yes and no. In the event of a
crash, the AOF may get truncated, and this option specifies whether Redis
should load the truncated AOF on startup or exit with an error. When the
value is yes, Redis will load the truncated file and emit an error message.
When it is no, Redis will exit with an error and not load the truncated file

• dir: This specifies the directory location of the AOF and RDB files

Scaling Redis (Beyond a Single Instance)

[146]

RDB versus AOF
Restoring data from an RDB is faster than AOF when recovering a big dataset.
This is because an RDB does not need to re-execute every change made in the entire
database; it only needs to load the data that was previously stored. For instance,
imagine that you have a key called pageview and it starts with a value of 1. Suppose
that a day has passed and now the value of pageview is 100000 (since you had this
number of visits and the command INCR was executed for each visit). If you have to
restore your database using AOF, Redis will execute 100,000 INCR commands to get
the last value of the key. But when restoring using RDB, Redis will create a key with
a value of 100000 right away, which is much faster.

Although RDB and AOF are different strategies, they can be enabled at the same time.

Redis will load RDB or AOF on startup if any of the files exists. If both files exist, the
AOF takes precedence because of its durability guarantees.

The following are some considerations when using persistence in Redis:

• If your application does not need persistence, disable RDB and AOF
• If your application has tolerance to data loss, use RDB
• If your application requires fully durable persistence, use both RDB and AOF

Replication
Replication means that while you write to a Redis instance (usually referred to as the
master), it will ensure that one or more instances (usually referred to as the slaves)
become exact copies of the master.

Redis 2.8 introduced asynchronous replication, which makes slaves periodically
acknowledge the amount of data to be processed. As you would expect, a master
can have multiple slaves and slaves can also accept connections from other slaves.

There are three ways of making a Redis server instance a slave:

• Add the directive slaveof IP PORT to the configuration file and start a Redis
server using this configuration

• Use the redis-server command-line option --slaveof IP PORT
• Use the command SLAVEOF IP PORT

The following example starts three Redis instances: one master and two replicas.

Chapter 8

[147]

On the first terminal, start the master redis-server on port 5555:

$ redis-server --port 5555

On the second terminal, start the first slave on port 6666:

$ redis-server --port 6666 --slaveof 127.0.0.1 5555

On the third terminal, start the second slave on port 7777:

$ redis-server --port 7777 --slaveof 127.0.0.1 5555

At this point, there is a master with two replicas running.

On the fourth terminal, check whether the replication is working:

$ redis-cli -p 5555 SET testkey testvalue
OK
$ redis-cli -p 6666 GET testkey
"testvalue"
$ redis-cli -p 7777 GET testkey
"testvalue"

Replicas are widely used for scalability purposes so that all read operations are
handled by replicas and the master handles only write operations.

Data redundancy is another reason for having multiple replicas.

Persistence can be moved to the replicas so that the master does not perform disk
I/O operations. In this scenario, the master server needs to disable persistence,
and it should not restart automatically for any reason; otherwise, it will restart
with an empty dataset and replicate it to the replicas, making them delete all of
their stored data.

Note:
Replicas are read-only by default, but this can be changed by setting the
configuration slave-read-only to yes. This, however, is not recommended!

It is possible to improve data consistency guarantees by requiring a minimum
number of replicas connected to the master server. In this way, all write operations
are only executed in the master Redis server if the minimum number of replicas
are satisfied, along with their maximum replication lag (in seconds). However, this
feature is still weak because it does not guarantee that all replicas have accepted
the write operations; it only guarantees that there is a minimum number of replicas
connected to the master. The configurations use to set it up are min-slaves-to-write
and min-slaves-max-lag—they default to 0 and 10, respectively.

Scaling Redis (Beyond a Single Instance)

[148]

Replicas are very useful in a master failure scenario because they contain all of
the most recent data and can be promoted to master. Unfortunately, when Redis is
running in single-instance mode, there is no automatic failover to promote a slave to
master. All replicas and clients connected to the old master need to be reconfigured
with the new master. The automatic failover feature is the core of Redis Sentinel,
which is covered in Chapter 9, Redis Cluster and Redis Sentinel (Collective Intelligence).

The command SLAVEOF NO ONE converts a slave into a master instance, and it
should be used in a failover scenario.

The next example assumes there is a master on port 5555 and there are two slaves
on ports 6666 and 7777, respectively. If the master instance is offline (crashed or
maintenance window), it may be required that one of its replicas become a master.
In this situation, all connected replicas and clients need to be reconfigured.

The following snippet causes a crash in the master instance (port 5555), configures
one of the slaves to become a master, and reconfigures the second slave to replicate
the new master:

$ redis-cli -p 5555 DEBUG SEGFAULT
$ redis-cli -p 6666 SLAVEOF NO ONE
$ redis-cli -p 7777 SLAVEOF 127.0.0.1 6666

Check the new replication configuration is working:

$ redis-cli -p 6666 SET newkey newvalue
OK
$ redis-cli -p 7777 GET newkey
"newvalue"

In the previous scenario, all clients that were connected to 127.0.0.1:5555 need to be
reconfigured to connect to 127.0.0.1:6666.

Partitioning
Partitioning is a general term used to describe the act of breaking up data and
distributing it across different hosts. There are two types of partitioning: horizontal
partitioning and vertical partitioning. Partitioning is performed in a cluster of hosts
when better performance, maintainability, or availability is desired.

When Redis was initially designed, it had no intention to be a distributed data store;
thus, it cannot natively distribute its data among different instances. It was designed
to work well on a single server. Redis Cluster is designed to solve distributed problems
in Redis.

Chapter 8

[149]

Over time, Redis storage may grow to such an extent that a single server may not
be enough to store all of the data. The performance of reading from and writing to
a single server may also decline.

As we saw in the previous section, we can use replicas to optimize reads and remove
some bottlenecks from the master instance, but in many cases, this is not enough.
Different needs require different approaches, and here are some situations that we
did not provide information on how to handle yet:

• The total data to be stored is larger than the total memory available in a
Redis server

• The network bandwidth is not enough to handle all of the traffic

We will show some solutions to the problems listed in the preceding list using
the concept of partitioning. We also will show some client-level implementations
of partitioning (in single-instance mode, Redis does not support partitioning
or clustering), and later, we will see how it can be done with a proxy or a query
routing system. Redis Cluster will be explained in detail in Chapter 9, Redis Cluster
and Redis Sentinel (Collective Intelligence).

In the context of Redis, horizontal partitioning means distributing keys across
different Redis instances, while vertical partitioning means distributing key values
across different Redis instances. For example, if you have two Redis Sets stored in
Redis, horizontal partitioning would distribute each Set entirely to a different Redis
instance, while vertical partitioning would distribute the Set's values to different
instances. Each kind of partitioning has its purpose. Horizontal partitioning (also
known as sharding) is the most popular approach adopted with Redis, and it is
what we will present in the next section.

Range partitioning
Range partitioning is very simple; data is distributed based on a range of keys.
Assuming that the keys you want to partition are based on incremental IDs, you
can create numerical ranges to partition the data. For example, assuming that
you have a group of users identified by IDs (such as user:1, user:2, and so on up to
user:5000) you can split these IDs into ranges of thousands. Then you can send keys
that go from 1 to 1000 to a given instance, 1001 to 2000 to a different instance, 2001
to 3000 to another instance, and so on.

A different approach would be to partition the data based on the first letter of
each key, so you would send all keys that go from A to G to one instance, H to O
to another instance, and P to Z to a third instance. This logic would partition the
data into three ranges, and each range would be stored in a different host.

Scaling Redis (Beyond a Single Instance)

[150]

The whole idea of range partitioning is to create ranges of keys and distribute
them to different Redis instances. You can be creative in how you create the
range selection.

A downside to this type of partitioning is that the distributions will probably be
uneven—one range may be much larger than others. For example, if you decide to
distribute the keys based on their first letter but you do not have a good distribution
of key names (that is, most of your keys are in the same range or some ranges have
very few keys), you are going to end up with a very uneven distribution that does
not take full advantage of partitioning.

Another downside is that this does not accommodate changing the list of Redis hosts
easily, because if the number of Redis instances changes, the range distribution needs
to change accordingly. It is likely that adding or removing a host will invalidate a
good portion of data.

We are going to demonstrate how to implement range partitioning by distributing
keys based on the first character of the key name. You can use this implementation
as a reference and create your own range partitioning selection.

A basic implementation of partitioning, which we will extend later, is presented next.

Create a file partitioning.js in the chapter 8 folder with the following code:

function Partitioning(clients) { // 1
 this.clients = clients;
}

Partitioning.prototype = {
 _getClient: function(key) { // 2
 throw "Subclass should implement _getClient() method";
 },
 set: function(key, value) { // 3
 var client = this._getClient(key); // 4
 client.set.apply(client, arguments); // 5
 },
 get: function(key) { // 6
 var client = this._getClient(key);
 client.get.apply(client, arguments);
 }
};
module.exports = Partitioning; // 7

1. Create a function called Partitioning, which will be used later as a base class.
2. Define the method _getClient(), which all subclasses will overwrite.

Chapter 8

[151]

3. Define the method set(), which uses the proper client defined by the subclass.
4. Find the right Redis client based on the subclass implementation.
5. Call the method set() in the proper client, applying all the arguments that

were passed to set(), even if they were not present in the function signature.
6. This has the same logic as the set() method, but it is meant for GET. This is

how all other supported Redis commands will be implemented.
7. Export the function Partitioning to any other module that calls

require("partitioning").

The preceding implementation is very basic and does not implement all Redis
commands. It only implements SET and GET, but it is very easy to extend these
commands and add support to more commands. We will use the built-in utilities
of Node.js for inheritance to implement all the partitioning methods described in
this chapter.

Based on the preceding implementation, we are going to create RangePartitioning,
a subclass of Partitioning that must overwrite the _getClient() method:

var util = require("util"); // 1
var Partitioning = require("partitioning"); // 2

function RangePartitioning(clients) { // 3
 Partitioning.call(this, clients); // 4
}

util.inherits(RangePartitioning, Partitioning); // 5

RangePartitioning.prototype._getClient = function(key) { // 6
 var possibleValues = '0123456789abcdefghijklmnopqrstuvwxyz';// 7
 var rangeSize = possibleValues.length / this.clients.length;
// 8

 for (var i = 0, clientIndex = 0 ; i < possibleValues.length ;
 i += rangeSize, clientIndex++) { // 9
 var range = possibleValues.slice(i, i + rangeSize); // 10

 if (range.indexOf(key[0].toLowerCase()) != -1) { // 11
 return this.clients[clientIndex]; // 12
 }
 }
 // if key does not start with 0 to 9 neither A to Z,
 // fall back to always using the first client
 return this.clients[0]; // 13
};

Scaling Redis (Beyond a Single Instance)

[152]

1. Require the module util from the Node.js standard library.
2. Require the module we defined previously in order to use the Partitioning

base class.
3. Define the function RangePartitioning, which will receive the Redis clients.
4. Initialize the function via Partitioning. This is a superclass initialization.
5. Create the inheritance between RangePartitioning and Partitioning.
6. Overwrite the _getClient() method in order to define the range

partitioning algorithm.
7. The partitions created will be based on alphanumeric characters. All keys

that start with other characters are going to fall back to the first Redis client.
8. Define the range size based on the total count of alphanumeric characters

and the number of available Redis clients. This will create balanced ranges.
9. Iterate over all alphanumeric characters in order to find the proper client

based on a range.
10. Define the range of characters that the Redis key would belong to.
11. Check whether the Redis key starts with the current alphanumeric character.
12. If the previous check is true, it means that the range is correct and it returns

the proper Redis client.

Hash partitioning
Hash partitioning is a little more elaborate than range partitioning, and it does not
have the range partitioning method's downside of uneven data partitioning. Hash
partitioning is very well known, and everyone who manages Memcached at scale is
familiar with it.

Hash partitioning is very simple to implement. It consists of finding the instance to
send the commands by applying a hash function to the Redis key, dividing this hash
value by the number of Redis instances available, and using the remainder of that
division as the instance index.

A JavaScript snippet may exemplify this idea better than English:

var index = hashFunction(redisKey) % redisHosts.length;
var host = redisHosts[index];

The efficiency of this method varies with the hash function you choose. If your hash
function is good for your dataset, it will create even partitions. It is very common for
people to use MD5 and SHA1 as hash functions.

Chapter 8

[153]

It is recommended to have a prime number as the total number of Redis instances
with this partitioning method in order to minimize collisions. If the total number
of Redis instances is not a prime number, collisions are more likely to occur.

Create a file called hashpartitioning.js in the chapter 8 folder with the following code:

var util = require("util");
var crypto = require('crypto'); // 1
var Partitioning = require("partitioning");

function HashPartitioning(clients) {
 Partitioning.call(this, clients);
}

util.inherits(HashPartitioning, Partitioning);

HashPartitioning.prototype._getClient = function(key) { // 2
 var index = this._hashFunction(key) % this.clients.length;// 3
 return this.clients[index]; // 4
};

HashPartitioning.prototype._hashFunction = function(str) { // 5
 var hash = crypto.createHash('md5').update(str).digest('hex');
// 6
 return parseInt(hash, 16); // 7
};

1. Require the module crypto from the standard library.
2. Overwrite _getClient() to create the hash partitioning logic.
3. Call _hashFunction(), passing a Redis key, and use modulo to find the

right index in the array of clients.
4. Return the proper client to send the Redis commands.
5. Define the method _hashFunction(), which expects a string as the argument.
6. Calculate the MD5 hash of the passed-in string using the crypto library.

Then return its hexadecimal value.
7. Convert the MD5 hash from string to integer. MD5 is hexadecimal, so 16 is

the base in parseInt().

This partitioning method can result in cache misses if the number of instances
is changed. If the instance list stays the same size forever, this problem does not
occur, which is unlikely to happen because resource failure should be expected.

In a small test, using hash partitioning, 75 percent of our dataset
was invalidated by adding two more servers to the list.

Scaling Redis (Beyond a Single Instance)

[154]

Presharding
One way of dealing with the problem of adding/replacing nodes over time with
hash partitioning is to preshard the data. This means pre-partitioning the data to a
high extent so that the host list size never changes. The idea is to create more Redis
instances, reuse the existing servers, and launch more instances on different ports.
This works well because Redis is single threaded and does not use all the resources
available in the machine, so you can launch many Redis instances per server and
still be fine.

Then, with this new list of Redis instances, you would apply the same Hash
algorithm that we presented before, but now with far more elements in the Redis
client array. This method works because if you need to add more capacity to the
cluster, you can replace some Redis instances with more powerful ones, and the
client array size never changes.

Let's say we have three Redis servers that we want to use the presharding method
on. The client list would look like this:

var redisHosts = [
 'server1:6379',
 'server1:6380',
 'server1:6381',
 'server1:6382',
 'server1:6383',

 'server2:6379',
 'server2:6380',
 'server2:6381',
 'server2:6382',
 'server2:6383',

 'server3:6379',
 'server3:6380',
 'server3:6381',
 'server3:6382',
 'server3:6383',
];

Chapter 8

[155]

We chose to have only five instances per server as an example, but some people have
over 100 instances per server.

If we decide that server3 is not capable enough to handle the load, it can be replaced
by another server with more capacity, such as server4. The steps would be as follows:

1. Launch server4 with the same number of Redis instances as server3.
Make each new instance a replica of one of the instances of server3 to
avoid losing data.

2. After the synchronization is done in all the new instances, replace all
server3 instances with server4 instances in the Redis host list.

3. Stop all processes that connect to server3 instances. Promote server4
instances to master instances (the SLAVEOF NO ONE command).

4. Restart all processes that were previously stopped.
5. Shut down server3.

If you cannot afford to stop all processes at once, set the slaves to be writable
(CONFIG SET slave-read-only no), move all clients to the new instances,
and then promote a slave to master.

These ideas are also valid if you want to add more capacity to the cluster.
You can always replace a small portion of instances with more powerful instances.
The more the instances you have per server, the easier the scaling of the cluster.

The presharding method does not work so well in disaster scenarios. If a group of
servers is experiencing issues and the servers need to be replaced, the only way to
ensure that the cluster stays balanced is to replace those damaged servers with other
servers. By definition, the size of the cluster cannot vary. In a situation like this,
clients will try to connect to bad servers, and if new servers are not brought up very
quickly, it may have a major impact on the concerned projects. This is not an elastic
approach, and as everyone moves to a cloud environment, elasticity is always good
to have.

Another downside to this method is that you get significantly more instances to
manage and monitor, and unfortunately, there is no great set of tools for doing this.
There are other alternatives to this method, and one of them is consistent hashing,
which is widely used.

Scaling Redis (Beyond a Single Instance)

[156]

Consistent hashing
We explained how hash partitioning works before. Its main downside is that
adding or removing nodes from the list of servers may have a negative impact
on key distribution and creation. If Redis is used as a cache system with hash
partitioning, it becomes very hard to scale up because the size of the list of
Redis servers cannot change (otherwise, a lot of cache misses will happen).

Some researchers at MIT were trying to solve the problem with hash partitioning
and caching that we just described, and they came up with the concept of consistent
hashing. They wanted a different technique to route keys that would affect only a
small portion of data when the hash table was resized.

Consistent hashing, in our context, is a kind of hashing that remaps only a small
portion of the data to different servers when the list of Redis servers is changed
(only K/n keys are remapped, where K is the number of keys and n is the number
of servers).

For example, in a cluster with 100 keys and four servers, adding a fifth node would
remap only 25 keys on an average (100 divided by 4). Consistent hashing is also
known as a hash ring.

The technique consists of creating multiple points in a circle for each Redis key and
server. The appropriate server for a given key is the closest server to that key in the
circle (clockwise); this circle is also referred to as "ring." The points are created using
a hash function, such as MD5.

In order to understand the next examples, assume the following:

• Servers available: server-1, server-2, and server-3
• Key to be stored: testkey-1, testkey-2, testkey-3, and testkey-4
• Points per server: 1

Assume that there is a hash function that returns the following values for the servers:

hash("server-1") = 3
hash("server-2") = 7
hash("server-3") = 11

The same hash function returns the following values for the keys:

hash("testkey-1") = 3
hash("testkey-2") = 4
hash("testkey-3") = 8
hash("testkey-4") = 12

Chapter 8

[157]

The following diagram shows the circle with the previous hashes:

In this hypothetical example, the mapping is as follows:

• testkey-1 maps to server-1. They have to the same value of 3.
• testkey-2 maps to server-2. This is the next server available with a value

greater than or equal to 4, and the key distribution moves clockwise.
• testkey-3 maps to server-3. This is the next server available with a value

greater than or equal to 8, moving clockwise again.
• testkey-4 maps to server-1. There is no server with a hash greater than or

equal to 12. Thus, testkey-4 falls back to the first node in the ring.

The previous example shows how consistent hashing can be used to route Redis keys
to a cluster of Redis servers (the hash values are hypothetical and are meant only to
exemplify the concept).

In the real world, it is better to use multiple points for each server, because that way
it is easier to distribute keys and keep the ring balanced. Some libraries use as few as
three points per server, while others use as many as 500.

The following code implements this technique by creating
ConsistentHashingPartitioning as a subclass of Partitioning:

var util = require("util");
var crypto = require("crypto");
var Partitioning = require("partitioning");

Scaling Redis (Beyond a Single Instance)

[158]

function ConsistentHashingPartitioning(clients, vnodes) { // 1
 this._vnodes = vnodes || 256; // 2
 this._ring = {}; // 3
 this._setUpRing(clients); // 4
}

util.inherits(ConsistentHashingPartitioning, Partitioning); // 5

ConsistentHashingPartitioning.prototype._getClient = function(key) {
// 6
 var ringHashes = Object.keys(this._ring); // 7
 var keyHash = this._hashFunction(key); // 8
 ringHashes.sort(); // 9
 for (var i = 0 ; i < ringHashes.length ; i++) { // 10
 var ringHash = ringHashes[i]; // 11
 if (ringHash >= keyHash) { // 12
 return this._ring[ringHash]; // 13
 }
 }
 // fallback to the start of the ring
 return this._ring[ringHashes[0]]; // 14
};

ConsistentHashingPartitioning.prototype._hashFunction = function(str)
{ // 15
 return crypto.createHash('md5').update(str).digest('hex');
};

ConsistentHashingPartitioning.prototype._setUpRing =
 function(clients) { // 16
 for (var i = 0 ; i < clients.length; i++) {
 this.addClient(clients[i]);
 }
};

ConsistentHashingPartitioning.prototype.addClient =
 function(client) { // 17
 for (var i = 0 ; i < this._vnodes ; i++) { // 18
 var hash = this._hashFunction(client.address + ":" + i);
// 19
 this._ring[hash] = client; // 20
 }
};

Chapter 8

[159]

ConsistentHashingPartitioning.prototype.removeClient =
 function(client) { // 21
 for (var i = 0 ; i < this._vnodes ; i++) {
 var hash = this._hashFunction(client.address + ":" + i);
 delete this._ring[hash];
 }
};

1. Create ConsistentHashPartitioning, which should receive the List of clients
and the number of virtual nodes per client (the number of replicated points
in the ring).

2. Assign the number of passed-in virtual nodes that defaults to 256 if no value
is passed in.

3. Initialize the ring as an empty object. This ring object is going to be used as
a hash.

4. Set up the ring based on the clients passed in as parameters.
5. Make ConsistentHashPartitioning a subclass of Partitioning.
6. Overwrite the method _getClient().
7. Get all keys of the ring (the keys are the hash values assigned to each server).
8. Create a hash for the key passed as a parameter.
9. Sort the ring hashes. This will make comparison easier.
10. Iterate over the sorted ring hashes.
11. Assign ringHash to the appropriate index. This value is a hexadecimal string.
12. Compare the current ring hash with the key hash value; if the ring hash is

greater than or equal to the key hash, it means that this is the right server.
This logic is correct because ringHashes is sorted.

13. Return the Redis client in the ringHash position of the ring.
14. If all the values of the ring are not enough to find the key hash, fall back to

the first node in the ring.
15. Define _hashFunction() to return the MD5 of any string, in hexadecimal

form rather than in decimal form. The return value looks like
0e2332b21bb0e972520765a2c18ea281.

16. Define _setUpRing() to call addClient() for each of the client passed in the
ConsistentHashingPartitioning constructor.

17. Define addClient().
18. Iterate over the number of virtual nodes that should be created for each client.

Scaling Redis (Beyond a Single Instance)

[160]

19. For each server, create a hash value based on the string concatenation of the
client address, the colon, and the virtual node index.

20. Assign the current client to the ring using the hash created in the previous step.
21. Define removeClient() to be the opposite of addClient(). This method and

addClient() are useful for managing the client List without recreating objects.

Tagging
Tagging is a technique of ensuring that keys are stored on the same server. Choose a
convention for your key names and add a prefix or suffix. Then decide how to route
that key based on the added prefix or suffix. The convention in the Redis community
is to add a tag to a key name with the tag name inside curly braces (that is, key_
name:{tag}).

Commands such as SDIFF, SINTER, and SUNION require that all keys are stored in
the same Redis instance in order to work. One way of guaranteeing that the keys will
be stored in the same Redis instance is by using tagging.

Here are some examples that would hash to the same value:

• user:1{users}
• user:2{users}
• user:3{users}

The following code changes ConsistentHashingPartitioning to add tagging support:

ConsistentHashingPartitioning.prototype._hashFunction = function(str) {
 var stringToHash;
 // match string like "foo{bar}"
 var tagRegex = /.+\{(.+)\}/; // 1
 var regexValues = tagRegex.exec(str); // 2
 if (regexValues === null) { // 3
 stringToHash = str;
 } else { // 4
 stringToHash = regexValues[1];
 }
 return crypto.createHash('md5').update(stringToHash).digest('hex');
// 5
};

Chapter 8

[161]

1. Create a regular expression that matches a string with tags.
2. Apply the key name to the regular expression, and capture the tag name.
3. If the string does not match the tag regular expression, assign str to

stringToHash.
4. If the string matches the tag regular expression, assign the tag value to

stringToHash.
5. Return an MD5 based on the key name or tag, depending on the previous

if-else statement.

Data store versus cache
The partitioning ideas presented in this chapter are a great way of scaling Redis
and creating a cluster of servers. We recommend consistent hashing as the best
partition mechanism, because it gives us the ability to add and remove Redis
instances without remapping most of the keys.

When Redis is used as a data store, the keys must always map to the same Redis
instances and tagging should be used. Unfortunately, this means that the list of
Redis servers cannot change; otherwise, a key could have been able to map to a
different Redis instance. One way of solving this is to create copies of the data across
Redis instances so that every key is replicated to a number of instances, and the
system knows how to route queries (this is similar to how Riak stores data). This
approach does not work well in a lot of situations, but it does if memory size is not
a problem and high availability is desired. It is a lot of work to create that logic by
ourselves, and Redis Cluster is meant to solve this kind of problem. Chapter 9, Redis
Cluster and Redis Sentinel (Collective Intelligence), will present Redis Cluster in detail.

When Redis is used as a cache, we recommend consistent hashing to minimize cache
misses, but any other partitioning method works equally well.

In summary, when Redis is used as a cache, use consistent hashing. When it is
used as a data store, consider Redis Cluster or a solution that ensures that data is
replicated across nodes and that every instance (or a master instance) knows how
to route the query to the right instance.

Scaling Redis (Beyond a Single Instance)

[162]

Implementations of Redis partitioning
Partitioning can be implemented in different layers: client, proxy, or query router.

• The client layer is the application layer, such as what we implemented in the
previous examples.

• The proxy layer is an extra layer that proxies all Redis queries and performs
partitioning for applications. When a proxy is used, the client layer does not
even need to know that partitioning is taking place. An example of this layer
is the twemproxy program, which we are going to present in the next section.

• The query router layer is something that is invisible to the application.
However, it is not an external program; it is the data store itself. Any
command issued to any Redis instance will succeed with this layer, because
the Redis instance itself will make sure that the command is routed to the
appropriate instance in its cluster. Redis Cluster behaves like a query router.

When any form of partitioning is used, not all Redis commands are going to be
available; some commands do not make sense in a partitioned system. Commands
that inspect the Redis server will not work, because in such cases, a cluster of
instances is available instead of just one. Commands that take multiple keys as
parameters may not work either, because the keys may be distributed across
different hosts.

Automatic sharding with twemproxy
A few techniques of implementing partitioning in Redis were previously presented,
such as range partitioning, hash partitioning, presharding, and consistent hashing.
This section will introduce a production-ready tool called twemproxy (pronounced
"two-em-proxy"), which is also known as nutcracker. It was created by Twitter,
released in 2012, and licensed under Apache License Version 2.0.

twemproxy is a fast and lightweight proxy for Redis and memcached protocols that
implements sharding with support for multiple hashing modes, including consistent
hashing. It also enables pipelining of requests and responses, and maintains persistent
server connections to shard your data automatically across multiple servers. It works
on Linux, *BSD, and Smart OS (Solaris). twemproxy is a great tool, and it will help us
easily scale Redis horizontally. It has been used in production by companies such as
Pinterest, Tumblr, Twitter, Vine, Wikimedia, Digg, and Snapchat.

This section shows you how to compile, configure, and use twemproxy to connect to
three Redis instances, and distribute the writes and reads across those instances.

Chapter 8

[163]

We will run three different Redis instances to demonstrate how twemproxy works.
We decided to run them on different ports on the same computer, but nothing
prevents you from running them on different servers, such as EC2 instances.

In a new terminal window, run the following commands:

$ redis-server --port 6666 --daemonize yes
$ redis-server --port 7777 --daemonize yes
$ redis-server --port 8888 --daemonize yes

This will start three Redis servers in the background using ports 6666, 7777, and
8888 (if you have any processes running on any of these ports, you should use other
values). Open three new terminal windows. Go to each of them and run redis-cli to
connect to each Redis server:

$ redis-cli -p 6666
$ redis-cli -p 7777
$ redis-cli -p 8888

Execute the command MONITOR in each terminal window and keep them open
until the end of this section, as follows:

Everything is all set with our Redis server instances. The next steps require
downloading and compiling twemproxy. Visit https://github.com/twitter/
twemproxy, where you can find the documentation about twemproxy.

https://github.com/twitter/twemproxy
https://github.com/twitter/twemproxy

Scaling Redis (Beyond a Single Instance)

[164]

At the time of writing this book, the latest version of the twemproxy tarball was
nutcracker-0.4.1.tar.gz. Download the tarball from the documentation page on GitHub.

Now open a terminal window, navigate to the folder where you downloaded the
twemproxy tarball, and run the following commands:

$ tar -zxf nutcracker-0.4.1.tar.gz
$ cd nutcracker-0.4.1
$./configure
$ make

This will extract the nutcracker files, configure the project, and compile it. If everything
went well during the compilation process, you should be able to execute nutcracker,
which is inside the src folder:

$./src/nutcracker --help

As you can see in the following screenshot, the output should list all the available
options for configuring nutcracker:

We will not explain all the options available in the nutcracker command line, most
of which are self-explanatory and straightforward, but if you have questions, the
documentation is a great resource.

Chapter 8

[165]

twemproxy is compiled and ready to go, but we need to create a configuration file for
it. The file format used by twemproxy for configuration is YAML (a recursive acronym
for "YAML Ain't Markup Language"). This configuration file has information about
the Redis servers that twemproxy is going to manage, the hash mode and distribution
method that we are going to use, and so on.

Create a new file called twemproxy_redis.yml in the chapter 8 folder with the
following code:

my_cluster:
 listen: 127.0.0.1:22121
 hash: md5
 distribution: ketama
 auto_eject_hosts: true
 redis: true
 servers:
 - 127.0.0.1:6666:1 server1
 - 127.0.0.1:7777:1 server2
 - 127.0.0.1:8888:1 server3

The configuration is now explained line by line:

1. my_cluster: This is the name of our twemproxy pool configuration.
2. listen: These are the IP and port that a Redis client should connect to.

This is the bind address of the twemproxy cluster.
3. hash: This is the hash function that should be used. twemproxy supports

multiple hashing modes; check out the documentation for more details.
4. distribution: This is the distribution mode that should be used (ketama and

consistent hashing are the same thing).
5. redis: A boolean for defining whether the server pool will be using Redis

or Memcached.
6. servers: A list of Redis servers using the format IP:PORT:WEIGHT NAME.

There are many other options you can use, but to keep this example as simple as
possible, we will only cover the basic options.

Recommended reading:
Read https://github.com/twitter/twemproxy/blob/
master/notes/recommendation.md if you are deploying
nutcracker in production.

https://github.com/twitter/twemproxy/blob/master/notes/recommendation.md
https://github.com/twitter/twemproxy/blob/master/notes/recommendation.md

Scaling Redis (Beyond a Single Instance)

[166]

Run nutcracker using the following command:

$./src/nutcracker -c twemproxy_redis.yml

We will create a small JavaScript program that writes each letter of the alphabet
as a key in Redis to observe how twemproxy distributes the keys across our three
Redis instances.

Create a file called twemproxy.js in the chapter 8 folder with the following code:

var redis = require('redis');
var options = { // 1
 "no_ready_check": true,
};
var client = redis.createClient(22121, 'localhost', options); // 2
var alphabet = [
 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
]; // 3
alphabet.forEach(function(letter) { // 4
 client.set(letter, letter); // 5
});
client.quit(); // 6

1. Create an object with a property called no_ready_check to avoid the
node_redis client from calling the command INFO (this command is
not supported by twemproxy).

2. Create a Redis client and pass the twemproxy port and the variable options.
3. Create an array with all the letters of the alphabet that will be used as keys

and values to be stored in our Redis instances.
4. This creates a simple loop for obtaining each letter of our array.
5. Execute the command SET to store each letter as a key and a value in Redis.
6. Close the connection between your Redis client and twemproxy.

Execute the file twemproxy.js:

$ node twemproxy.js

Chapter 8

[167]

Go back to the other three terminal windows with MONITOR running so that you
can see how twemproxy distributes our keys across each Redis instance, as shown
in this screenshot:

As you can see, twemproxy has distributed keys across all existing nodes.

Other architectures that use twemproxy
The example that we created works well, but it makes twemproxy a single point of
failure. In the event of the twemproxy process dying, you will not be able to read or
write to any of your Redis server instances, even if they are working fine:

Scaling Redis (Beyond a Single Instance)

[168]

To solve this problem, we could use a different architecture. It has a load balancer in
front of a twemproxy cluster, and each twemproxy cluster is connected to all Redis
servers, as follows:

Another possible architecture has twemproxy running on the same server as your
application, since it is fast and lightweight.

Summary
This chapter introduced persistence, replication using a master and slaves, partitioning
methods, presharding, and consistent hashing. It also showed you how to compile
and configure twemproxy to enable sharding across multiple servers without having
to write any code. In the next chapter, we will explain how to use Redis Sentinel and
Redis Cluster.

[169]

Redis Cluster and
Redis Sentinel

(Collective Intelligence)
Redis was initially designed to be very lightweight and fast. Previously, the only
topology available for anyone using Redis was master/slave, in which the master
receives all the writes and replicates the changes to the slave (or slaves). This happens
without any sort of automatic failover or data sharding. This topology works well in
many scenarios, such as when:

• The master has enough memory to store all of the data that you need
• More slaves can be added to scale reads better or when network bandwidth

is a problem (the total read volume is higher than the hardware capability)
• It is acceptable to stop your application when maintenance is required on the

master machine
• Data redundancy through slaves is enough

But it does not work well in other scenarios, such as when:

• The dataset is bigger than the available memory in the master Redis instance
• A given application cannot be stopped when there are issues with the

master instance
• You need to distribute data among multiple nodes
• A single point of failure is not acceptable

Redis Cluster and Redis Sentinel (Collective Intelligence)

[170]

In 2011, Salvatore Sanfilippo started working on a project that would solve these
problems, but Redis was still underdeveloped. He decided to stop his work because
of requests from the community to support other features, such as persistence, better
data types, introspection, and replication. In 2011, he did not have a lot of knowledge
about distributed systems, and Redis Cluster was a complex project to create. It was
a great idea, but it required more experience than he had at that time. Solving all of
these problems was a difficult task, so he decided to tackle only automatic failover
and created a project called Redis Sentinel.

Redis Sentinel and Redis Cluster share a lot of characteristics, but each has its own
goal. Sentinel's goal is to provide reliable automatic failover in a master/slave
topology without sharding data. Cluster's goal is to distribute data across different
Redis instances and perform automatic failover if any problem happens to any
master instance.

Redis Sentinel became stable in Redis 2.8 in late 2013, and Redis Cluster became
stable in Redis 3.0 in early 2015.

The CAP theorem
Most distributed systems are generally analyzed using the CAP theorem, which
states that a distributed system cannot ensure all of the following:

• Consistency: A read operation is guaranteed to return the most recent write
• Availability: Any operation is guaranteed to receive a response saying

whether it has succeeded or failed
• Partition tolerance: The system continues to operate when a network

partition occurs

Since Redis Sentinel and Redis Cluster are distributed systems, it is fair to analyze
them using the CAP theorem. Network partitions are unavoidable in a distributed
system, so it should ensure either consistency or availability; that is, it should be
either CP or AP.

Theoretically, Redis Sentinel and Redis Cluster are neither consistent nor available
under network partitions. However, there are some configurations that can minimize
the consistency and availability problems.

Chapter 9

[171]

They cannot provide availability because there is a quorum that needs to agree on
a master election, and depending on the quorum's decision, part of the system may
become unavailable.

They cannot provide consistency under network partitions, for example, when two
or more partitions accept writes at the same time. When the network heals and the
partitions are joined, some of those writes will be lost (conflicts are not automatically
solved, nor are they exposed for clients).

Recommended reading:
Read the CAP FAQ at http://henryr.github.io/cap-faq/.

Redis Sentinel
When a master node experiences issues, one of its slave nodes needs to be
promoted to master, and all the other slaves need to be reconfigured to point to
the new master. Before Redis Sentinel, this failover process was done manually,
which was not very reliable.

Redis Sentinel is a distributed system designed to automatically promote a Redis
slave to master if the existing master fails. Sentinel does not distribute data across
nodes since the master node has all of the data and the slaves have a copy of the
data—Sentinel is not a distributed data store.

The most common architecture contains an installation of one Sentinel for each
Redis server. Sentinel is a separate process from the Redis server, and it listens
on its own port.

If a firewall is configured in your setup, it needs to allow Sentinel to
connect to all other Sentinels and Redis servers in the group.

http://henryr.github.io/cap-faq/

Redis Cluster and Redis Sentinel (Collective Intelligence)

[172]

If your architecture has one master and two replicas, you can use Sentinel in the
following way:

Without Sentinel With Sentinel

The major difference when using Redis Sentinel is that it implements a different
interface, which may require you to install a Redis client that supports Sentinel.

A client always connects to a Redis instance, but it needs to query a Sentinel to
find out what Redis instance it is going to connect to.

Chapter 9

[173]

When you download Redis, it comes with a configuration file for Sentinel, called
sentinel.conf. In the initial configuration, only the master nodes need to be listed.
All slaves are found when Sentinel starts and asks the masters where their slaves
are. The Sentinel configuration will be rewritten as soon as the Sentinel finds all
the available slaves, or when a failover occurs.

Communication between all Sentinels takes place through a Pub/Sub channel
called __sentinel__:hello in the Redis master.

The basic Sentinel configuration
A Redis Sentinel configuration will always monitor a master identified by an IP
and a port and have a name identification. This will be the name of your group
of sentinels. In the following example, the name is mymaster:

sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 30000
sentinel failover-timeout mymaster 180000
sentinel parallel-syncs mymaster 1

The preceding configuration monitors a Redis master with the name mymaster,
IP address 127.0.0.1, port 6379, and quorum 2. The quorum represents the fewest
number of sentinels that need to agree that the current master is down before
starting a new master election.

A Sentinel will only notify other Sentinels that its master is down after the master is
unreachable (unable to reply a PING) for a given number of milliseconds, specified
in the directive down-after-milliseconds.

The sentinel configuration is rewritten every time a new master is elected or a new
sentinel or slave joins the group of instances. The directive down-after-milliseconds
is also used to update the configuration with the current list of slaves and sentinels,
following the same rule explained in the previous paragraph.

Redis Cluster and Redis Sentinel (Collective Intelligence)

[174]

The main purpose of the directive failover-timeout is to avoid a failover to a
master that has experienced issues in a short period of time (which is specified
via the failover-timeout directive). For example, assume that there is a master, R1,
with three slaves, R2, R3, and R4. If the master experiences issues, the slaves need
to elect a new master. Assume that R2 becomes the new master and R1 returns to the
group as a slave. If R2 has issues and another new election must take place before
failover-timeout is exceeded, R1 will not be part of the possible nodes to be elected
as the master.

The last directive in the preceding configuration is parallel-syncs, which specifies the
number of slaves that can be reconfigured simultaneously to point to a new master.
During this process the slaves will be unavailable to clients. Use a low parallel-syncs
number to minimize the number of simultaneously unavailable slaves.

Connecting to Sentinel
Here is an example that shows how to connect to Redis Sentinel, from the official
Ruby Redis client:

SENTINELS = [
 {:host => "127.0.0.1", :port => 26380},
 {:host => "127.0.0.1", :port => 26381}
]
redis = Redis.new(:url => "redis://mymaster", :sentinels => SENTINELS,
:role => :master)

This code tries to connect to one of the sentinels in the SENTINELS array. The client
will try to connect to the first sentinel. If this sentinel is down, it tries to connect to
the next, and so on. The role parameter is responsible for defining whether the client
will connect to the master or to a random slave in a given group (the master's name
is specified in the url parameter). The available values for the role parameter are
:master and :slave.

Network partition (split-brain)
Redis Sentinel is not strongly consistent in a network partition scenario. Data may be
lost when a split-brain occurs. Kyle Kingsbury (also known as Aphyr on the Internet)
wrote some very detailed blog posts on Redis Sentinel and its lack of consistency.
The last post can be found at https://aphyr.com/posts/287-asynchronous-
replication-with-failover. Salvatore Sanfilippo (also known as Antirez) wrote a
reply to that blog post, which can be found at http://antirez.com/news/56.

https://aphyr.com/posts/287-asynchronous-replication-with-failover
https://aphyr.com/posts/287-asynchronous-replication-with-failover
http://antirez.com/news/56

Chapter 9

[175]

To demonstrate how Redis Sentinel will lose data when a split-brain occurs, assume
the following:

• There are three Redis instances: one master and two replicas. For each Redis
instance, there is a Redis Sentinel

• There is a client connected to the current master and writing to it

If a network partition occurs and separates the current master from all of its slaves,
and the slaves can still talk to each other, one of the slaves will be promoted to master.

Meanwhile, the client will continue to write to the isolated master.

If the network heals and all the servers are able to communicate to each other again,
the majority of sentinels will agree that the old master (the one that was isolated)
should become a slave of the new master (the slave that was promoted to master).
When this happens, all writes sent by the client are lost, because there is no data
synchronization in this process.

The architecture before split-brain is as follows:

Redis Cluster and Redis Sentinel (Collective Intelligence)

[176]

And the architecture after split-brain is as shown here:

Redis Sentinel solves the automatic failover problem of high availability, but it
does not solve the problem of distributing data across multiple Redis instances.
Redis Cluster solves both of these problems with a different approach, which we
will cover in the next sections.

Redis Cluster
Redis Cluster was designed to automatically shard data across different Redis
instances, providing some degree of availability during network partitions.
It is not strongly consistent under chaotic scenarios.

Unlike Sentinel, Redis Cluster only requires a single process to run. However, there are
two ports that Redis uses. The first is used to serve clients (low port), and the second
serves as a bus for node-to-node communication (high port). The high port is used to
exchange messages such as failure detection, failover, resharding, and so on.

The Redis Cluster bus uses a binary protocol to exchange messages between nodes.
The low port is specified in the configuration, and Redis assigns the high port by
adding 10,000 to the low port. For example, if a Redis server starts listening to port
6379 (low port) in cluster mode, it will internally assign port 16379 (high port) for
node-to-node communication. The Redis Cluster topology is a full mesh network. All
nodes are interconnected through Transmission Control Protocol (TCP) connections.

Chapter 9

[177]

Redis Cluster requires at least three masters, as shown in the following figure, to be
considered healthy. All data is sharded across the masters and replicated to the slaves:

It is recommended that you have at least one replica per master. Otherwise, if any
master node without at least one replica fails, the data will be lost:

Unlike Redis Sentinel, when a failover is happening in Redis Cluster, only the keys
in the slots assigned to the failed master are unavailable until a replica is promoted.
The data may be unavailable during a failover, because slave promotion is not
instantaneous.

When Redis is in cluster mode, its interface is slightly changed. This requires a smarter
client. When connecting to Redis through redis-cli, the -c parameter is required to
enable cluster mode. Otherwise, Redis will work in single-instance mode:

$ redis-cli -c -h localhost -p 6379

Redis Cluster and Redis Sentinel (Collective Intelligence)

[178]

Hash slots
The partitioning method used to shard data by Redis Cluster is similar to the hash
partitioning method described in Chapter 8, Scaling Redis (Beyond a Single Instance),
but the method is always applied on top of a fixed value. In Redis Cluster, that fixed
value is 16,384. Redis calls this method hash slot. Each master in a cluster owns a
portion of the 16,384 slots.

The hash slot is found by using the CRC-16 hash function to convert the key into
an integer, and then calculating modulo 16,384 of that integer. The following
pseudocode illustrates how a hash slot is calculated for a given key:

HASH_SLOT = CRC16(key) mod 16384

Take the following into consideration:

• A master without any slots assigned to it will not be able store data. A client
connected to this master will be redirected to another master for any query

• A master should have at least one slot. Otherwise, no keys will be routed to it
• The total number of slots allocated must be 16,384 across all masters
• There is no automatic redistribution of slots for masters. You need to

manually assign x number of slots to each master

Hash tags
Any multi-key operations require all keys to be stored in the same node, and hash
tags are the only way to ensure this in Redis Cluster. This is very similar to what
we presented with twemproxy. A hash tag is used to apply the hash function and
ensure that different key names end up in the same hash slot. If you need to store
information about a user, identified by an ID, you can change your key names to
be something similar to the following:

SADD {user123}:friends:usa "John" "Bob"
SADD {user123}:friends:brazil "Max" "Hugo"
SUNION {user123}:all_friends {user123}:friends:usa
{user123}:friends:brazil

In this way, all keys will be stored in the same slot, based on the hash tag user123
(delimited by curly braces).

Chapter 9

[179]

Creating a basic cluster
When Redis is downloaded, it comes with a create-cluster shell script inside the
utils/create-cluster directory. We are going to use this script to create a basic cluster
so as to get familiarized with some features and concepts that we will approach in
the next sections. We will cover more details on how to create and configure clusters
later in this chapter. Managing a cluster requires a lot of steps. To make this task
easier, Redis distributes a utility called redis-trib, which has a very straightforward
interface. Behind the scenes, redis-trib executes Redis commands on instances to
add nodes to a cluster, remove nodes from a cluster, distribute hash slots, check the
cluster health, and so on.

Use the create-cluster start command to initialize six Redis instances (assuming
that Redis was installed from source, as recommended in Chapter 1, Getting Started
(The Baby Steps)):

$ cd /path/to/redis-3.0.2/utils/create-cluster/
$./create-cluster start
Starting 30001
Starting 30002
Starting 30003
Starting 30004
Starting 30005
Starting 30006

After the instances are up and running, we are going to run the create command
to create a cluster with all the instances that we initialized in the previous step. The
create-cluster script creates a cluster with one replica for each master (three replicas
total). A prompt will ask you how you want the hash slot distribution. By default, it
distributes them evenly across all masters. You can reply yes to accept this default
configuration. The output should be similar to this (assuming that the redis gem was
installed, as recommended in Chapter 5, Clients for Your Favorite Language (Become a
Redis Polyglot)):

$./create-cluster create
... # output omitted
M: bfe5766a6c75729fba842add9fa05f9fddda128c 127.0.0.1:30001
 slots:0-5460 (5461 slots) master
M: 0d4ae9e8d6e3150920030774e3a3fa4584578cd3 127.0.0.1:30002
 slots:5461-10922 (5462 slots) master
M: da73d3f09aa544f154e48854a3cf8372822134e1 127.0.0.1:30003
 slots:10923-16383 (5461 slots) master
... # output omitted
[OK] All 16384 slots covered.

Redis Cluster and Redis Sentinel (Collective Intelligence)

[180]

Finding nodes and redirects
A client can connect to any node in a cluster and run queries, but that node may not
have the slots required to run a particular query. Thus, the client is responsible for
finding the node that has all keys used in that query. After that, it must redirect the
connection to the proper node to run the query.

Using the redis-cli utility, you can see redirects taking place (this example is based
on the cluster created with the create-cluster script in the previous section):

$ redis-cli -c -h localhost -p 30001
localhost:30001> SET hello world
OK
localhost:30001> SET foo bar
-> Redirected to slot [12182] located at 127.0.0.1:30003
OK
127.0.0.1:30003> GET foo
"bar"
127.0.0.1:30003> GET hello
-> Redirected to slot [866] located at 127.0.0.1:30001
"world"
127.0.0.1:30001>

As you can see, the client was initially connected to the Redis master running on port
30001. The SET command was executed to store the key hello. As we mentioned before,
a key is always routed to a slot using the CRC-16 hash function and the modulo of
16,384. In this case, no redirect was necessary since the client was connected to the
node that had the hash slot assigned to the key hello.

Then, another SET command was executed to store the key foo. This time, a redirect
was necessary because a different node had the hash slot necessary to store that key.

The GET commands have the same behavior; the client will be redirected to a
different node only if necessary.

See the slot distribution across all masters and the calculated hash slots:

127.0.0.1:30001 has slots from 0 to 5460
127.0.0.1:30002 has slots from 5461 to 10922
127.0.0.1:30003 has slots from 10923 to 16383

CRC16("hello") % 16834 = 866
CRC16("foo") % 16834 = 12182

Chapter 9

[181]

Configuration
In order to run Redis in cluster mode, you need to specify a new set of directives.
Otherwise, it will run as a single-instance server.

The following is an example of a Redis Cluster configuration:

cluster-enabled yes
cluster-config-file cluster.conf
cluster-node-timeout 2000
cluster-slave-validity-factor 10
cluster-migration-barrier 1
cluster-require-full-coverage yes

The directive cluster-enabled is used to determine whether Redis will run in
cluster mode or not. But by default, it is no. You need to change it to yes to
enable cluster mode.

Redis Cluster requires a configuration file path to store changes that happen to
the cluster. This file path should not be created or edited by humans. The directive
that sets this file path is cluster-config-file. Redis is responsible for creating this
file with all of the cluster information, such as all the nodes in a cluster, their state,
and persistence variables. This file is rewritten whenever there is any change in
the cluster.

The maximum amount of time for which a node can be unavailable without being
considered as failing is specified by the directive cluster-node-timeout (this value
is in milliseconds). If a node is not reachable for the specified amount of time by the
majority of master nodes, it will be considered as failing. If that node is a master, a
failover to one of its slaves will occur. If it is a slave, it will stop accepting queries.

Sometimes, network failures happen, and when they happen, it is always a good
idea to minimize problems. If network issues are happening and nodes cannot
communicate well, it is possible that the majority of nodes think that a given master is
down and so a failover procedure should start. If the network only had a hiccup, the
failover procedure might have been unnecessary. There is a configuration directive
that helps minimize these kinds of problems. The directive is cluster-slave-validity-
factor, and it expects a factor. By default, the factor is 10. If there is a network issue
and a master node cannot communicate well with other nodes for a certain amount
of time (cluster-node-timeout multiplied by cluster-slave-validity-factor), no slaves
will be promoted to replace that master. When the connection issues go away and the
master node is able to communicate well with others again, if it becomes unreachable
a failover will happen.

Redis Cluster and Redis Sentinel (Collective Intelligence)

[182]

When the factor is set to zero, no failovers will be prevented. If any network
connectivity issues occur and the factor is zero, a slave will always perform
the failover.

It is possible to specify the minimum number of slaves that must be connected
to a master through the directive cluster-migration-barrier, which has a default
value of 1. This directive is useful if you need to ensure a minimum number of
slaves per master. Otherwise, masters without slaves will borrow spare slaves
from other masters.

Take the following example: master A has A1 and A2 as slaves, master B has B1 as a
slave, master C has C1 as a slave, and the directive cluster-migration-barrier is set to
2. If master C fails and C1 gets promoted to master, master A will keep all of its slaves
(because the minimum is 2), and master C1 will have zero slaves. If you never want
to have masters borrowing slaves from other masters, set this configuration to a high
number. The value of 0 is discouraged, since it should be used for debugging only.

In Redis Cluster, all data is sharded among master nodes. If any master node fails and
there is no slave to fail over to, a portion of the data will be lost. When this happens,
you have two options:

• Make the entire cluster unavailable
• Make the cluster available, but such that all keys that would be routed to that

master node will result in an error

The directive that controls this behavior is cluster-require-full-coverage. By default, it
is yes. Full coverage means that all 16,384 hash slots are assigned to reachable masters.

If this directive is set to yes, all hash slots must be reachable. Otherwise, the entire
cluster will be unavailable. If it is set to no, the cluster will still be available, but queries
that route to hash slots assigned to any unreachable masters will result in errors.

Chapter 9

[183]

Redis Cluster with configuration cluster-require-full-coverage set to false

Different Redis Cluster architectures
As we said before, it is recommended that there be at least one slave per master:

Redis Cluster and Redis Sentinel (Collective Intelligence)

[184]

The problem with this architecture is that if, for any reason, a master fails, one slave
will be promoted to master but will not have any slaves. While the other nodes can
fail without causing issues, the master without slaves cannot fail—if it fails, the data
will be lost. The following diagram illustrates this scenario. Master C has failed,
so slave C1 is promoted to master. If C1 fails, the data will be lost (the cluster may
become unavailable if cluster-require-full-coverage is set to yes):

A better architecture would be to have multiple slaves for each master, but that may
not be very cost-effective. A safe and cost-effective option is to have spare slaves for
some masters in the cluster. In this way, if anything happens to a master with only
one slave, the slave is promoted to master. Then one of the spare slaves will become
a slave of the new master. In this diagram, master A has two slaves, and every other
master has one slave:

Chapter 9

[185]

If master C has issues and C1 is promoted to master, as shown in the following
diagram, then one of the extra slaves of master A will become a slave of C1
(assuming that cluster-migration-barrier is set to 1):

Cluster administration
In the previous sections, we set up a basic Redis Cluster using the create-cluster
script, explained cluster configuration, presented some essential knowledge about
hash slots and failover behaviors, and explained the different cluster architectures.
Next, we will show how to create and manage a cluster without any external tools,
using only the cluster commands that are existent in Redis.

Creating a cluster
In this section, a cluster with three masters will be created.

The first thing we are going to do is create three Redis instances in cluster mode
using the configuration directives presented in the previous section:

$ redis-server --port 5000 --cluster-enabled yes --cluster-config-file
nodes-5000.conf --cluster-node-timeout 2000 --cluster-slave-validity-
factor 10 --cluster-migration-barrier 1 --cluster-require-full-coverage
yes --dbfilename dump-5000.rdb --daemonize yes

$ redis-server --port 5001 --cluster-enabled yes --cluster-config-file
nodes-5001.conf --cluster-node-timeout 2000 --cluster-slave-validity-
factor 10 --cluster-migration-barrier 1 --cluster-require-full-coverage
yes --dbfilename dump-5001.rdb --daemonize yes

Redis Cluster and Redis Sentinel (Collective Intelligence)

[186]

$ redis-server --port 5002 --cluster-enabled yes --cluster-config-file
nodes-5002.conf --cluster-node-timeout 2000 --cluster-slave-validity-
factor 10 --cluster-migration-barrier 1 --cluster-require-full-coverage
yes --dbfilename dump-5002.rdb --daemonize yes

The cluster is not ready to run yet. We can check the cluster's health with the
CLUSTER INFO command:

$ redis-cli -c -p 5000
127.0.0.1:5000> CLUSTER INFO
cluster_state:fail
cluster_slots_assigned:0
cluster_slots_ok:0
cluster_slots_pfail:0
cluster_slots_fail:0
cluster_known_nodes:1
cluster_size:0
cluster_current_epoch:0
cluster_my_epoch:0
cluster_stats_messages_sent:0
cluster_stats_messages_received:0
127.0.0.1:5000> SET foo bar
(error) CLUSTERDOWN The cluster is down

The output of CLUSTER INFO tells us that the cluster only knows about one node
(the connected node), no slots are assigned to any of the nodes, and the cluster state
is fail.

When the cluster is in the fail state, it cannot process any queries, as we could see
when we tried to execute the SET command.

Next, the 16,384 hash slots are distributed evenly across the three instances.
The configuration cluster-require-full-coverage is set to yes, which means that the
cluster can process queries only if all hash slots are assigned to running instances:

$ redis-cli -c -p 5000 CLUSTER ADDSLOTS {0..5460}
$ redis-cli -c -p 5001 CLUSTER ADDSLOTS {5461..10922}
$ redis-cli -c -p 5002 CLUSTER ADDSLOTS {10923..16383}

The preceding shell lines use a range trick to expand the numbers. They take the
starting number and the ending number and expand them into separate numbers.
It is the same as passing 0, 1, 2, 3, 4, 5, and so on up to 5460 to the first line.

The CLUSTER ADDSLOTS command informs the node what slots it should own.
If a hash slot is already assigned, this command fails. It is possible to assign slots one
by one; it does not need to be a sequence of numbers.

Chapter 9

[187]

At this point, the hash slots are distributed evenly across the nodes, but the cluster is
not ready yet. The cluster nodes still do not know about each other.

In Redis Cluster, there is a concept called configuration epoch, which is a number that
represents the cluster state at a particular point in time.

This number is used when new events occur and the nodes need to agree on what is
going to happen next (such as failover or resharding of hash slots).

When a cluster is initially created, the configuration epoch is set to 0 for each master.
We can change this to help Redis start the cluster in a safe way. This is the only
time when the configuration epoch should be changed manually. Redis Cluster
automatically changes the configuration after it is up and running:

$ redis-cli -c -p 5000 CLUSTER SET-CONFIG-EPOCH 1
$ redis-cli -c -p 5001 CLUSTER SET-CONFIG-EPOCH 2
$ redis-cli -c -p 5002 CLUSTER SET-CONFIG-EPOCH 3

This example executes the command CLUSTER SET-CONFIG-EPOCH to manually
set an incremental epoch to each node, which is good practice when starting a new
cluster. In this example, there is no conflicting information. However, if there was
conflicting information (for example, if two different nodes claimed the same hash
slots), the largest epoch configuration would have priority.

Next, we are going to make all the nodes aware of each other. We will do this using
the command CLUSTER MEET:

$ redis-cli -c -p 5000 CLUSTER MEET 127.0.0.1 5001
$ redis-cli -c -p 5000 CLUSTER MEET 127.0.0.1 5002

It is not necessary to execute CLUSTER MEET on each node to notify it about the
existence of all the other nodes. When the first node meets the second, it means that
the second node also knows about the first, and they can exchange information about
other nodes that they know. When the first node meets the third node, all three
nodes will know about each other eventually, through the gossip protocol that Redis
Cluster implements.

Run the command CLUSTER INFO to see that the cluster is up and running:

$ redis-cli -c -p 5000
127.0.0.1:5000> CLUSTER INFO
cluster_state:ok
cluster_slots_assigned:16384
cluster_slots_ok:16384
cluster_slots_pfail:0
cluster_slots_fail:0

Redis Cluster and Redis Sentinel (Collective Intelligence)

[188]

cluster_known_nodes:3
cluster_size:3
cluster_current_epoch:3
cluster_my_epoch:1
cluster_stats_messages_sent:164
cluster_stats_messages_received:144
127.0.0.1:5000> SET hello world
OK

As you can see, CLUSTER INFO reports that the cluster state is ok, all 16,384 hash
slots are assigned, the current configuration epoch is 3, and the cluster knows about
three nodes.

Adding slaves/replicas
There are three master nodes but no slaves. Thus, no data is replicated anywhere.
This is not very safe. Data can be lost, and if any master has issues, the entire cluster
will be unavailable (cluster-require-full-coverage is set to yes).

A new slave/replica can be added to the cluster by:

• Creating a new Redis instance in cluster mode
• Introducing it to the current cluster using the command CLUSTER MEET
• Getting the node ID of the master that will be replicated using the command

CLUSTER NODES
• Executing the command CLUSTER REPLICATE to replicate a given node

Create a new Redis instance in cluster mode:

$ redis-server --port 5003 --cluster-enabled yes --cluster-config-file
nodes-5003.conf --cluster-node-timeout 2000 --cluster-slave-validity-
factor 10 --cluster-migration-barrier 1 --cluster-require-full-coverage
yes --dbfilename dump-5003.rdb --daemonize yes

Introduce it to the current cluster using the command CLUSTER MEET:

$ redis-cli -c -p 5003 CLUSTER MEET 127.0.0.1 5000

Get the node ID of the master that is going to be replicated by using the command
CLUSTER NODES:

$ redis-cli -c -p 5003 CLUSTER NODES
b5354de29d7ec02e64580658d3f59422cfeda916 127.0.0.1:5002 master - 0
1432276450590 3 connected 10923-16383

Chapter 9

[189]

08cbbb4c05ec977af9c4925834a71971bbea3477 127.0.0.1:5003 myself,master - 0
0 0 connected
68af8b5f533abae1888312a2fecd7cbe4ac77e0a 127.0.0.1:5001 master - 0
1432276449782 2 connected 5461-10922
f5940c6bcd6f06abb07f7d480b16630b6a597424 127.0.0.1:5000 master - 0
1432276449782 1 connected 0-5460

The command CLUSTER NODES outputs a list with all the nodes that belong to
the cluster, along with their properties. Every line follows this format: <node-id>
<ip:port> <flags> <master> <ping-sent> <pong-recv> <config-epoch> <link-state> <slots>.

For the sake of this example, we are not going to explain what each property means.
We strongly recommend that you check out the Redis documentation to obtain
more information.

Let's replicate the instance running on port 5000. The output shows that the node ID
for this instance is f5940c6bcd6f06abb07f7d480b16630b6a597424.

Since the node ID is generated randomly using /dev/urandom, all CLUSTER NODES
outputs in our examples are merely for demonstration.

Execute the command CLUSTER REPLICATE to replicate a given node:

$ redis-cli -c -p 5003 CLUSTER REPLICATE
f5940c6bcd6f06abb07f7d480b16630b6a597424

The replica is ready and CLUSTER NODES can confirm this:

$ redis-cli -c -p 5003 CLUSTER NODES
b5354de29d7ec02e64580658d3f59422cfeda916 127.0.0.1:5002 master - 0
1432276452608 3 connected 10923-16383
08cbbb4c05ec977af9c4925834a71971bbea3477 127.0.0.1:5003 myself,slave
f5940c6bcd6f06abb07f7d480b16630b6a597424 0 0 0 connected
68af8b5f533abae1888312a2fecd7cbe4ac77e0a 127.0.0.1:5001 master - 0
1432276452608 2 connected 5461-10922
f5940c6bcd6f06abb07f7d480b16630b6a597424 127.0.0.1:5000 master - 0
1432276451800 1 connected 0-5460

The first output line is the slave information. It said myself,master previously, and
after CLUSTER REPLICATE, it became myself,slave.

Redis Cluster and Redis Sentinel (Collective Intelligence)

[190]

Scaling reads using slave nodes
In order to scale Redis Cluster reads, it is possible to connect to a slave and enter
read-only mode through the command READONLY. When a slave is in read-only
mode, it does not redirect the queries that it is capable of serving. It will only redirect
those queries that it is not able to serve. The only drawback of this mode is that it is
possible to read stale data.

It is possible to end read-only mode with the command READWRITE.

It may be a good idea to use read-only mode based on the needs of the application.
If read-only mode is not used, all queries will route to the master nodes. In this
scenario, the master nodes could become a bottleneck, while the slaves may be
idle most of the time.

Adding nodes
When a new node is added to a cluster, it is considered as a master with zero
hash slots. Any client that connects to such a node and executes any query will
be redirected to a different node. A master with zero slots cannot store any keys.
In this section, we are going to see how to perform a reshard operation in a cluster,
which means moving one or multiple hash slots from a source node to a destination
node and migrating all existing keys to those slots.

In order to add a new, fully functional node to the cluster, we need to perform the
following steps:

1. Create a new Redis instance in cluster mode.
2. Introduce the node to the cluster (CLUSTER MEET).
3. Find the node IDs of the new node and the destination node

(CLUSTER NODES).
4. Reshard the hash slots and move the existing keys (the CLUSTER

SETSLOT and MIGRATE commands).

Now, let's start performing the preceding steps:

1. Create a new Redis instance in cluster mode:
$ redis-server --port 6000 --cluster-enabled yes --cluster-
config-file nodes-6000.conf --cluster-node-timeout 2000 --cluster-
slave-validity-factor 10 --cluster-migration-barrier 1 --cluster-
require-full-coverage yes --dbfilename dump-6000.rdb --daemonize
yes

Chapter 9

[191]

2. Introduce the node to the cluster:
$ redis-cli -c -p 6000 CLUSTER MEET 127.0.0.1 5000

3. Find the node IDs of the new node and the destination node:
$ redis-cli -c -p 6000 CLUSTER NODES
f5940c6bcd6f06abb07f7d480b16630b6a597424 127.0.0.1:5000 master - 0
1432276457644 1 connected 0-5460
68af8b5f533abae1888312a2fecd7cbe4ac77e0a 127.0.0.1:5001 master - 0
1432276457141 2 connected 5461-10922
08cbbb4c05ec977af9c4925834a71971bbea3477 127.0.0.1:5003 slave
f5940c6bcd6f06abb07f7d480b16630b6a597424 0 1432276457644 1
connected
8fa297d6bce5420150b6df6d06cfd921566a0498 127.0.0.1:6000
myself,master - 0 0 0 connected
b5354de29d7ec02e64580658d3f59422cfeda916 127.0.0.1:5002 master - 0
1432276457041 3 connected 10923-16383

Before we perform the reshard operation, we are going to store a key to
populate a hash slot:
$ redis-cli -c -p 6000
127.0.0.1:6000> SET book "redis essentials"
-> Redirected to slot [1337] located at 127.0.0.1:5000

4. Reshard the hash slots and move the existing keys.
Redis Cluster only supports resharding of one hash slot at a time. If many
hash slots have to be resharded, the following procedure needs to be
executed once for each hash slot:

1. Import a hash slot from a source master node.
2. Export a hash slot to a destination master node.
3. Migrate all keys in that hash slot from the source to the destination,

if any.
4. Notify the nodes about the new owner of the hash slot.

The steps necessary to import and export a hash slot from one node
to another require the use of the CLUSTER SETSLOT command.
This command modifies the state of a hash slot. It is used to perform
sharding operations. There are four subcommands: IMPORTING,
MIGRATING, NODE, and STABLE. In order to move a hash slot
from one master to another, the receiving node has to change the
hash slot state to importing, the owner of the slot has to change the
state to migrating, and then every node in the cluster has to be notified
about the new location of that hash slot.

Redis Cluster and Redis Sentinel (Collective Intelligence)

[192]

Let's look at the commands in detail:
 ° CLUSTER SETSLOT <hash-slot> IMPORTING <source-id>:

This subcommand changes the hash slot state to importing. It must
be executed at the node that is going to receive the hash slot, and the
node ID of the current slot owner must be passed in.

 ° CLUSTER SETSLOT <hash-slot> MIGRATING <destination-id>:
This subcommand changes the hash slot state to migrating. It is the
opposite of the IMPORTING subcommand. It must be executed at
the node that owns the hash slot, and the node ID of the new slot
owner must be passed in.

 ° CLUSTER SETSLOT <hash-slot> NODE <owner-id>:
This subcommand associates a hash slot with a node. It must be
executed on the source and destination nodes. Executing it on all
master nodes is also recommended to avoid wrong redirects while
the propagation is taking place.
When this command is executed on the destination node, the
importing state is cleared and then the configuration epoch is updated.
When it is executed on the source node, the migrating state is cleared
as long as no keys exist in that slot. Otherwise, an error is thrown.

 ° CLUSTER SETSLOT <hash-slot> STABLE:
This subcommand clears any state of a hash slot (importing or
migrating). It is useful when a rollback in a resharding operation
is needed.

See this demonstration of how to reshard hash slot 1337, which contains our
key book from the source master node running on port 5000 to the destination
node running on port 6000:
$ redis-cli -c -p 6000 CLUSTER SETSLOT 1337 IMPORTING
f5940c6bcd6f06abb07f7d480b16630b6a597424
$ redis-cli -c -p 5000 CLUSTER SETSLOT 1337 MIGRATING
8fa297d6bce5420150b6df6d06cfd921566a0498

The next step moves all the keys in slot 1337 to the node running on port
6000. We'll also look at some commands that can be used along with this
command line:

Chapter 9

[193]

 ° CLUSTER COUNTKEYSINSLOT <slot> returns the number of keys
in a given slot.

 ° CLUSTER GETKEYSINSLOT <slot> <amount> returns an array
with key names that belong to a slot based on the amount specified.

 ° MIGRATE <host> <port> <key> <db> <timeout> moves a key to a
different Redis instance.

The following commands move all keys in slot 1337 to the node running on
port 6000:
$ redis-cli -c -p 5000
127.0.0.1:5000> CLUSTER COUNTKEYSINSLOT 1337
(integer) 1
127.0.0.1:5000> CLUSTER GETKEYSINSLOT 1337 1
1) "book"
127.0.0.1:5000> MIGRATE 127.0.0.1 6000 book 0 2000
OK

Finally, all the nodes are notified about the new owner of the hash slot:
$ redis-cli -c -p 5000 CLUSTER SETSLOT 1337 NODE
8fa297d6bce5420150b6df6d06cfd921566a0498
$ redis-cli -c -p 5001 CLUSTER SETSLOT 1337 NODE
8fa297d6bce5420150b6df6d06cfd921566a0498
$ redis-cli -c -p 5002 CLUSTER SETSLOT 1337 NODE
8fa297d6bce5420150b6df6d06cfd921566a0498
$ redis-cli -c -p 6000 CLUSTER SETSLOT 1337 NODE
8fa297d6bce5420150b6df6d06cfd921566a0498

The new assignment can be checked with CLUSTER NODES:
$ redis-cli -c -p 6000 CLUSTER NODES
f5940c6bcd6f06abb07f7d480b16630b6a597424 127.0.0.1:5000 master - 0
1432276457644 1 connected 0-1336 1338-5460
68af8b5f533abae1888312a2fecd7cbe4ac77e0a 127.0.0.1:5001 master - 0
1432276457141 2 connected 5461-10922
08cbbb4c05ec977af9c4925834a71971bbea3477 127.0.0.1:5003 slave
f5940c6bcd6f06abb07f7d480b16630b6a597424 0 1432276457644 1
connected
8fa297d6bce5420150b6df6d06cfd921566a0498 127.0.0.1:6000
myself,master - 0 0 4 connected 1337
b5354de29d7ec02e64580658d3f59422cfeda916 127.0.0.1:5002 master - 0
1432276457041 3 connected 10923-16383

Redis Cluster and Redis Sentinel (Collective Intelligence)

[194]

Removing nodes
Removing a node requires resharding of all of its hash slots to other nodes,
as explained in the previous section. Then, all the nodes need to remove this
node from their known list of nodes.

Removing a node from the cluster after all of its hash slots are redistributed is
just a matter of running CLUSTER FORGET <node-id> on all nodes.

The command CLUSTER FORGET <node-id> needs to be executed in all master
nodes (except the one being removed) in 60 seconds or less. As soon as CLUSTER
FORGET is executed, it adds the node to a ban list. This ban list exists to avoid
re-addition of the node to the cluster when nodes exchange messages. The expiration
time for the ban list is 60 seconds.

Redis Cluster administration using the redis-trib tool
At this point, you should be able to create clusters, reshard data, and add and
remove master nodes or replicas. This section will explain how to use redis-trib,
a tool that Redis distributes to facilitate cluster administration.

As of now, there are no great tools for managing Redis Cluster. Although
redis-trib is the official cluster management tool, it is still very immature.
We believe that different tools will emerge soon.

The script redis-trib is a Ruby script that uses most of the commands that we
explained in the previous sections, but its interface is much simpler to use.

The redis-trib interface is very straightforward. It has a few commands:

$ cd redis-3.0.2
$./src/redis-trib.rb
Usage: redis-trib <command> <options> <arguments ...>

 create host1:port1 ... hostN:portN
 --replicas <arg>
 check host:port
 fix host:port
 reshard host:port
 --from <arg>
 --to <arg>
 --slots <arg>
 --yes
 add-node new_host:new_port existing_host:existing_port
 --slave

Chapter 9

[195]

 --master-id <arg>
 del-node host:port node_id
 set-timeout host:port milliseconds
 call host:port command arg arg .. arg
 import host:port
 --from <arg>
 help (show this help)

For check, fix, reshard, del-node, and set-timeout, you can specify the host and port
of any working node in the cluster.

The redis-trib tool will be used to create a cluster with three master nodes and one
slave for each master. After that, a new master is added to the cluster, and 10 slots
are resharded from the master running on port 5000 to the new master. Finally,
a slave is added to the cluster. The end result is shown in this architecture:

The following snippet creates eight Redis instances in cluster mode, but they are not
part of a cluster yet:

$ for port in 5000 5001 5002 5003 5004 5005 5006 5007; do
 redis-server --port ${port} --cluster-enabled yes --cluster-config-file
nodes-${port}.conf --cluster-node-timeout 2000 --cluster-slave-validity-
factor 10 --cluster-migration-barrier 1 --cluster-require-full-coverage
yes --dbfilename dump-${port}.rdb --daemonize yes
done

Create a cluster with three master nodes and one replica for each (evenly distributing
the hash slots):

$./src/redis-trib.rb create --replicas 1 127.0.0.1:5000 127.0.0.1:5001
127.0.0.1:5002 127.0.0.1:5003 127.0.0.1:5004 127.0.0.1:5005

Redis Cluster and Redis Sentinel (Collective Intelligence)

[196]

Add a new master node to the cluster:

$./src/redis-trib.rb add-node 127.0.0.1:5006 127.0.0.1:5000

Reshard 10 slots from one node to another node (run CLUSTER NODES to find
the node IDs of the masters on ports 5000 and 5006):

$./src/redis-trib.rb reshard --from SOURCE-NODE-ID --to DESTINATION-
NODE-ID --slots 10 --yes 127.0.0.1:5000

Add a new slave to the cluster. The redis-trib tool will automatically choose the
master with the least number of slaves:

$./src/redis-trib.rb add-node --slave 127.0.0.1:5007 127.0.0.1:5000

As you can see, managing a cluster with redis-trib is much easier than just using
Redis commands. We presented the most important commands in redis-trib,
but there are other commands available that you should try.

Summary
This chapter explained in detail the background of Redis Sentinel and how it works.
Its goal is very simple; it is meant to provide automatic failover in a group of Redis
master/slave instances, and it does not distribute data among different hosts.

Redis Cluster, on the other hand, has broader goals. It was created to make Redis a
distributed data store with automatic failover and data sharding.

Different architectures were presented, along with good practices, and then cluster
administration via Redis commands was shown. Lastly, redis-trib, a tool that makes
Redis Cluster administration easier, was introduced.

The Redis website is a great source of information. It has very detailed information
on all the commands available, along with many examples and specifications about
Redis Cluster.

We hope you have enjoyed reading this book and learning more about the history
and capabilities of Redis. We hope this book will help you the next time you have
a big problem to solve using a fast key-value data store.

[197]

Index
A
Access Control List (ACL) 131
Amazon Web Services (AWS) 135
Antirez 174
Aphyr 174
Append-only File (AOF) 141, 144
AUTH authenticates 132
AUTH command 98, 132
automatic sharding

twemproxy, using 162-167

B
basic security

about 131, 132
critical commands, obfuscating 132, 133

benchmark
URL 65

Bitmaps
about 41, 42
BITCOUNT command 44
BITOP command 44
GETBIT command 43
SETBIT command 43
using, with redis-cli 43, 44

blocking commands, Predis
BLPOP 109
BRPOP 109
BRPOPLPUSH 109

built-in chains, filter table
FORWARD 135
INPUT 135
OUTPUT 135

C
CAP theorem

about 170
Availability 170
Consistency 170
FAQ, URL 171
Partition tolerance 170

Classless Inter-Domain Routing (CIDR) 134
client-to-server communication

encrypting 137
stunnel, running on server and client 138
stunnel, running on server with Redis

client 139, 140
cluster-config-file 181
cluster-migration-barrier 182, 185
cluster-node-timeout 181
cluster-require-full-coverage 188
cluster-slave-validity-factor 181
command-line interface examples 3-5
commands

AUTH command 98
BGREWRITEAOF command 144
BGSAVE command 133
CLIENT KILL command 94
CLIENT LIST command 94
CLIENT SET NAME command 94
CONFIG command 100, 133
CONFIG SET command 143
CLUSTER ADDSLOTS command 186
CLUSTER INFO command 188
CLUSTER MEET command 187, 188
CLUSTER NODES command 188, 189
CLUSTER REPLICATE command 188

[198]

DBSIZE command 92
DEBUG command 133
DEBUG SEGFAULT command 93
DECRBY command 82
DEL command 97
DISCARD command 81, 82
EVAL command 89
EVALSHA command 89
EXEC command 81
EXISTS command 97
EXPIREAT command 95
EXPIRE command 95
FLUSHALL command 95
FLUSHDB command 133
GET command 89
HINCRBY command 67
INFO command 92
KEYS command 132, 133
MGET command 10, 61
MIGRATE command 97
MONITOR command 93
MSET command 10
MULTI command 81
MULTI/EXEC command
OBJECT ENCODING command 99
PERSIST command 96
PONG command 79
PING command 97
PTTL command 95
PUBLISH command 78
PUNSUBSCRIBE command 78
RANDOMKEY command 95
READONLY command 190
READWRITE command 190
SAVE command 133
SCRIPT KILL command 98
SCRIPT LOAD command 91
SELECT command 98
SETBIT command 44
SET command 89
SETEX command 96
SHUTDOWN command 99
SLAVEOF NO ONE command 148
SUBSCRIBE command 78-80
TTL command 95

UNSUBSCRIBE command 78
UNWATCH command 83
WATCH command 83
WATCH/MULTI/EXEC command 90
ZADD command 71

configuration epoch 187
create-cluster script 179, 185
create-cluster start command 179

D
data type, optimizations

about 99, 100
Hash 102
List 101
Set 101
Sorted Set 102
String 100

dbfilename 142
directives, AOF

aof-load-truncated 145
appendfilename 144
appendfsync 145
appendonly 144
auto-aof-rewrite-min-size 145
auto-aof-rewrite-percentage 145
dir 145
no-appendfsync-on-rewrite 145

directives, RDB
dbfilename 144
dir 144
rdbchecksum 144
rdbcompression 143
save 144
stop-writes-on-bgsave-error 143

down-after-milliseconds 173

E
EVAL command 89
EVALSHA command 89
EXEC command 81
EXISTS command 97
EXPIREAT command 95
EXPIRE command 59, 95

[199]

F
failover-timeout 174
fetch method 74

G
GET command 89

H
Hardware-assisted Virtual Machines

(HVM) 129
Hashes

about 21
encodings 102
hashtable 102
optimizing with 64-69
URL 22
using, with redis-cli 22
voting system 23, 24
ziplist 102

hash-max-ziplist-entries 64, 104
hash-max-ziplist-value 64, 104
Hello Redis 3-5
Hello World

Node.js, using 8
Redis, using 8

HyperLogLog
about 47
examples, using with redis-cli 49, 50
PFADD command 48, 49
PFCOUNT command 48, 49
PFMERGE command 48-50
unique users, counting 48
used, for adding uniqueness 70-76
versus, Sets 48, 49

I
INCRBY command 64, 82
INCR command 59, 146
INFO command 92, 166
insert method 74
installation

Node.js 5
Redis 2

Redis, from source 2
iptables 134, 135

J
JavaScript

syntax quick references 6, 7

K
keys

with namespace 127
without namespace 127

L
Leaderboard system

building, for online game 36-41
Lists

about 15
encodings 101
examples, with redis-cli 15, 16
Generic Queue System,

implementing 16-20
linkedlist 101
use cases 15
ziplist 101

LPOP 109
Lua

syntax basics 87, 88
lua-time-limit 87

M
maxmemory 129
memory usage

measuring 103, 104
Mozilla Developer Network

URL 8

N
namespace:key_name 127
networking security

about 134
Redis, protecting with firewall

rules 134-136

[200]

Redis, running in Virtual Private
Cloud (VPS) 137

Redis, running on loopback network
interface 136

ways 134
nftables 135
Node.js

installing 5, 6
URL 5
used, for building voting system

with Strings 12-14
used, for creating Hello World 8
voting system 23, 24

Node Package Manager (NPM) 5
node_redis

about 107
URL 139

nodes, Redis Cluster
adding 190-193
removing 194

nutcracker 162, 165

O
OBJECT ENCODING command 99
openssl 138

P
parallel-syncs 174
ParaVirtual (PV) 129
partitioning

about 148, 149
consistent hashing 156-160
data store, versus cache 161
Hash partitioning 152, 153
implementations 162
presharding 154, 155
range partitioning 149-152
tagging 160, 161

persistence
about 141
AOF 144, 145
RDB 142-144
RDB, versus AOF 146
strategy 129
URL 141

pipelines 84-86
pitfalls

inappropriate persistence strategy 129
keys, without namespace 127
memory, no configuration 128
memory, no planning 128
multiple databases 126
swap, using 127
wrong data type, for job 123

pop method 20
Predis

about 108
basic commands 108
blocking commands 109
defineCommand method 113
EVAL command 112
EVALSHA command 112
getKeysCount method 112
getScript method 112
multiply command 113
pipeline() method 115
pipelines, working with 110, 111
scripting 112
transactions 111
URL 113
using 108

PsySH
URL 108

Publish-Subscribe (Pub/Sub)
about 77
examples 77
URL 81

R
RDB

about 141, 142
versus AOF 146

Reddit
URL 23

Redis
about 1, 169, 170
and Lua 88--91
data types 9
installation 2
installation, from source 2, 3
multiple databases 126

[201]

protecting, with firewall rules 134-136
running, in Virtual Private Cloud

(VPCs) 137
running, on loopback network

interface 136
scaling 141
URL 1, 2
used, for creating Hello World 8

redis-check-aof tool 144
redis-cli

about 3-5, 107, 138
Hashes, using with 22, 23
interface utility 99
List examples, using with 15, 16
String examples, using with 10, 11
using, with Bitmap examples 43, 44
using, with HyperLogLog examples 49, 50
using, with Sets 28-30
using, with Sorted Sets 34, 35

Redis Cluster
about 176, 177
administration 185
architecture 183, 184
basic cluster, creating 179
configuration 181-183
hash slots 178
hash tags 178
nodes, finding 180
redirects, finding 180

Redis Cluster, administration
cluster, creating 185-187
nodes, adding 190-193
nodes, removing 194
reads scaling, slave nodes used 190
redis-trib tool used 194-196
slaves/replicas, adding 188, 189

redis.conf file 133
Redis Database. See RDB
Redislab

AWS/Xen, URL 130
redis-py

about 113
basic commands 113, 114
blocking commands 114
installing 113
LOAD SCRIPT command 117

pipelines, creating 115
SCARD command 115
scripting 116, 117
transactions 116
URL 117

redis-rb
about 118
basic commands 118
blocking commands 119
pipelines, creating 119, 120
Redis#pipelined method 119
scripting 120
transactions 120
transactions, executing through EXEC 120
URL 121

Redis, scaling
automatic sharding, with twemproxy 162
partitioning 148
persistence approach 141
replication 146-148

Redis Sentinel
about 171-173
configuration 173
connecting to 174
network partition (split-brain) 174-176

redis-server
about 3-5, 128-136
restarting 132

Redis Strings
used, for creating time series library 56-63

redis-trib
about 179
used, for Redis Cluster

administration 194-196
REmote DIctionary Server. See Redis
requirepass 131
Round Trip Time (RTT) 84
RPOP 109

S
scripting 86, 87
sendDealIfNotSent function 31
Sets

about 27
deal tracking system, building 30-32
encodings 101

[202]

examples, using with redis-cli 28-30
hashtable 101
intset 101
SADD command 28
SDIFF command 28
SINTER command 28
SISMEMBER command 29
SMEMBERS command 30
SRANDMEMBE command 29
SUNION command 29
URL 28
use cases 27

Sorted Sets
about 33
encodings 102
examples, using with redis-cli 34, 35
implementing 33
Leaderboard system, building for online

game 36-41
skiplist and hashtable 102
used, for adding uniqueness 70-76
uses 33
ziplist 102
ZRANGE command 34
ZRANK command 35
ZREVRANGE command 34
ZREVRANK command 35
ZSCORE command 35

String
embstr 100
encodings 100
examples, with redis-cli 10, 11
int 100
raw 100
voting system, building with Node.js 12

stunnel
about 137-140
running, on server with Redis client 139
used, for running Redis 137, 138

swap
using 127, 128

T
time series

about 55, 56
examples 55

library, creating with Redis Strings 56-64
Time To Live (TTL) command 10, 95, 96
transactions

about 81-84
EXEC 111
MULTI 111

Transmission Control Protocol (TCP)
connections 176

twemproxy
about 162
URL 163-165
used, for automatic sharding 162-167
using, architectures 167, 168

U
unique website visits

counting 50-52
retrieving 50-52

use cases, Lists
event queue 15
most recent user posts, storing 15

use cases, Sets
data filtering 27
data grouping 27
membership checking 27

use cases, Strings
Cache mechanisms 9
Cache with automatic expiration 9
counting 10

V
Virtual Private Clouds (VPCs) 137
voting system

building, with Strings using Node.js 12-14

W
web analytics

building 44-47
wrong data type, for job

about 123
Bitmap approach 125, 126
Set approach 124

[203]

Y
Yipit

URL 123

Z
ZADD command 71
ZCOUNT command 72
ZRANGE command 84, 90
ZREM command 84, 90

Thank you for buying
Redis Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Databases with
Redis [Video]
ISBN: 978-1-78328-411-5 Duration: 03:13 hours

Acquire practical experience and skills in designing
databases using Redis

1. Harness the power of the Redis to build
storages as per your needs.

2. Execute Redis commands and discover ways
to perform them on the database.

3. Filled with practical examples close to real-life
tasks and situations.

Rapid Redis [Video]
ISBN: 978-1-78439-545-2 Duration: 00:49 hours

Get to grips with Redis; an open source, networked,
in-memory, key-value data store that will solve all
your storage needs

1. Understand the difference between
SQL and NoSQL databases.

2. Use Redis interactively through its
command-line interface (CLI).

3. Understand the basic data structures
of Redis and their usage.

Please check www.PacktPub.com for information on our titles

Building Scalable Apps with
Redis and Node.js
ISBN: 978-1-78398-448-0 Paperback: 316 pages

Develop customized, scalable web apps through the
integration of powerful Node.js frameworks

1. Design a simple application and turn it into the
next Instagram.

2. Integrate utilities such as Redis, Socket.io, and
Backbone to create Node.js web applications.

3. Learn to develop a complete web application
right from the frontend to the backend in a
streamlined manner.

Redis Applied Design Patterns
ISBN: 978-1-78328-671-3 Paperback: 100 pages

Use Redis' features to enhance your software
development through a wide range of practical
design patterns

1. Explore and understand the design patterns
of Redis through a wide array of practical
use cases.

2. Learn about different data structures and the
latest additions to Redis.

3. A practical guide packed with useful tips to
help you use patterns in your application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started (The Baby Steps)
	Installation
	Installing from source

	Hello Redis (command-line interface examples)
	Installing Node.js
	JavaScript syntax quick reference guide
	Hello World with Node.js and Redis
	Redis data types
	Strings
	String examples with redis-cli
	Building a voting system with Strings using Node.js

	Lists
	List examples with redis-cli
	Implementing a generic Queue System

	Hashes
	Using Hashes with redis-cli
	A voting system with Hashes and Node.js

	Summary

	Chapter 2: Advanced Data Types (Earning a Black Belt)
	Sets
	Set examples with redis-cli
	Building a deal tracking system

	Sorted Sets
	Sorted Set examples with redis-cli
	Building a leaderboard system for an
online game

	Bitmaps
	Bitmap examples with redis-cli

	Building web analytics
	HyperLogLogs
	Counting unique users – HyperLogLog
versus Set
	HyperLogLogs examples with redis-cli

	Counting and retrieving unique
website visits
	Summary

	Chapter 3: Time Series (A Collection of Observations)
	Building the foundation
	Optimizing with Hashes
	Adding uniqueness with Sorted Sets and HyperLogLog
	Summary

	Chapter 4: Commands (Where the Wild Things Are)
	Pub/Sub
	Transactions
	Pipelines
	Scripting
	Lua syntax basics

	Redis meets Lua
	Miscellaneous commands
	INFO
	DBSIZE
	DEBUG SEGFAULT
	MONITOR
	CLIENT LIST and CLIENT SET NAME
	CLIENT KILL
	FLUSHALL
	RANDOMKEY
	EXPIRE and EXPIREAT
	TTL and PTTL
	PERSIST
	SETEX
	DEL
	EXISTS
	PING
	MIGRATE
	SELECT
	AUTH
	SCRIPT KILL
	SHUTDOWN
	OBJECT ENCODING

	Data type optimizations
	String
	List
	Set
	Hash
	Sorted Set

	Measuring memory usage
	Summary

	Chapter 5: Clients for Your Favorite Language (Become a Redis Polyglot)
	PHP
	The basic commands in PHP
	The blocking commands in PHP
	Pipelines in PHP
	Transactions in PHP
	Scripting in PHP

	Python
	The basic commands in Python
	The blocking commands in Python
	Pipelines in Python
	Transactions in Python
	Scripting in Python

	Ruby
	The basic commands in Ruby
	The blocking commands in Ruby
	Pipelines in Ruby
	Transactions in Ruby
	Scripting in Ruby

	Summary

	Chapter 6: Common Pitfalls (Avoiding Traps)
	The wrong data type for the job
	The Set approach
	The Bitmap approach

	Multiple Redis databases
	Keys without a namespace
	Using Swap
	Not planning and configuring the memory properly
	An inappropriate persistence strategy
	Summary

	Chapter 7: Security Techniques (Guard Your Data)
	The basic security
	Obfuscating critical commands

	Networking security
	Protecting Redis with firewall rules
	Running Redis on the loopback network interface
	Running Redis in a Virtual Private Cloud

	Encrypting client-to-server communication
	Running stunnel on both the server and
the client
	Running stunnel on the server and using
a Redis client that supports SSL

	Summary

	Chapter 8: Scaling Redis (Beyond a Single Instance)
	Persistence
	RDB (Redis Database)
	AOF (Append-only File)
	RDB versus AOF

	Replication
	Partitioning
	Range partitioning
	Hash partitioning
	Presharding
	Consistent hashing
	Tagging
	Data store versus cache
	Implementations of Redis partitioning

	Automatic sharding with twemproxy
	Other architectures that use twemproxy

	Summary

	Chapter 9: Redis Cluster and Redis Sentinel (Collective Intelligence)
	The CAP theorem
	Redis Sentinel
	The basic Sentinel configuration
	Connecting to Sentinel
	Network partition (split-brain)

	Redis Cluster
	Hash slots
	Hash tags
	Creating a basic cluster
	Finding nodes and redirects
	Configuration
	Different Redis cluster architectures
	Cluster administration
	Creating a cluster
	Adding slaves/replicas
	Scaling reads using slave nodes
	Adding nodes
	Removing nodes
	Redis cluster administration using the redis-trib tool

	Summary

	Index

