
Victor Castano · Igor Schagaev

Resilient
Computer
System
Design

www.allitebooks.com

http://www.allitebooks.org

Resilient Computer System Design

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Victor Castano • Igor Schagaev

Resilient Computer
System Design

www.allitebooks.com

http://www.allitebooks.org

Victor Castano
IT-ACS Ltd
Stevenage, UK

Igor Schagaev
IT-ACS Ltd and London Metropolitan
University

Stevenage, UK

ISBN 978-3-319-15068-0 ISBN 978-3-319-15069-7 (eBook)
DOI 10.1007/978-3-319-15069-7

Library of Congress Control Number: 2015931811

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.allitebooks.com

http://www.allitebooks.org

Preface

New areas of ICT applications require complete redesign of computer systems to

address challenges of extreme reliability, high performance and power efficiency.

Up to now there are no consistent concepts, theories and texts, enabling us to design

systems with mentioned requirements. Requirements themselves became processes

and evolve along life cycle of the systems and applications. All these force us to

start all over again, leaving past and sentimental values behind, making new

computer systems and software that match mentioned requirements and new

applications.

Our 35 years of experience consolidates: design of airborne computers and black

boxes; parallel computers for submarines, helicopters and satellites. Our intensive

research work in academies and higher education institutions included analysis of

performance, reliability and design of computer systems. Both regretfully have

proved at various levels that existing computer system and system software solu-

tions lack efficiency, rigorousness or balance in design. An absence of a consistent

book explaining how to analyse, design and develop new computer systems has

been surprisingly revealed. That is why we attempt to introduce—as a first draft—a

theory of resilient and evolving systems, as good as we see it today. We introduce

rigorous concepts of system design with reconfigurability used when necessary for

toleration of faults. Our concepts of redundancy have been theoretically justified

and analysed. Redundancy of system we discuss taking into account technological

aspects, including thermal barrier and reliability. We propose a new design of

system and system software and describe hardware prototypes—to demonstrate

feasibility of them. Simulations and trial runs are presented and explained as well.

This book at first was written for ourselves—for everyday work in safety-critical

systems design. As it is ICT market and research in this domain are greatly

segmented. Thus we had to create our own “meeting point” for all above-mentioned

“customers” and addressing new properties of computer systems.

To “start all over again” researchers, engineers, users and even politicians should

be ready to understand what future applications of ICT require, what kind of

v

www.allitebooks.com

http://www.allitebooks.org

drawback of technologies we are facing, what are the limitations and how to find the

most efficient structural solutions, accompanied by careful use of math methods.

This book is the first consistent work on our paradigm of evolving computers; it

includes methods of analysis and synthesis of ICT with new properties such as

evolving functioning, performance, reliability and energy-wise solutions. We also

discuss abilities of system to match changing requirements and internal faults of

hardware schemes, technological advances and drawbacks.

Initially this book did serve us an essential working material in terms of “all you

need to know to design and analyze new generation of computer systems”

addressing in non-mutually exclusive way reliability, fault tolerance, performance,

resilience and properties of electronics, introducing supportive models and key

hardware designs: processors, memories and interfaces. We were thinking about the

following market our new system that developed, accordingly proposed approach:

safety-critical, autonomous, real time, military, banking and wearable health care

systems. Presented hardware prototype demonstrates at the order of magnitude

higher efficiency in comparison with existing systems.

Who is our reader and why? Research community will get consistent area of

further theoretical developments; Industries of hardware and system software

designs, manufacturing and exploitation will get pathways to make performance,

reliability and energy-smart systems with consistency, enabling unification of

market of consumer electronics, safety-critical, embedded, autonomous and auton-

omous systems; Consumers will get much higher efficiency (and value for money)

from their systems (if, of course devices and systems will be designed according to

the principles proposed in the book).

This book provides also several personal benefits for the reader:

– Analysis of existing systems given in essence, showing how “classic” solutions

stand and work.

– Existing technological drawbacks are clarified and presented consistently, with

proposed solutions that “best fit the requirement” of new computer system.

– Description of a process of introduction of new properties as a framework

required from next generation of computer system enabling a reader to make

consistent analysis of—we stress—all possible system design solutions.

– Demonstrated and described prototype of evolving reconfigurable architecture

might be attractive for students as they through the book will discover that

computers might be designed much simpler, power efficient and at an order of

magnitude more reliable.

– A prototype of the system and simulator will help for future engineers of

embedded systems.

– Students and analysts will discover that the market dominance of the general

computing systems has been now limited by appeared embedded systems with

billions of units manufactured every year. Note that embedded systems appear in

contexts where continuous operation is of utmost importance and failure can be

profound.

vi Preface

www.allitebooks.com

http://www.allitebooks.org

– Any reader will be able to use trail simulator and start programming new

architecture.

Nowadays radiation is a serious threat to the reliable operation of safety-critical

systems. Fault avoidance techniques, such as radiation hardening, have been com-

monly used in space applications. However, hardened components are expensive,

lag behind commercial components in performance and do not provide 100 % fault

elimination. Without supportive structural solutions to provide fault tolerance,

hardware faults become system errors at the application or system level, which in

turn can result in catastrophic failures.

In this direction, we present known concepts of fault tolerance and dependability

and extend them by our own concept of resilience and generalisation of fault

tolerance. We propose to consider fault tolerance and resilience as processes,
instead of properties. We analyse the physics of radiation-induced faults, the

damage mechanisms of particles and the error as a consequence.

We propose new approach to hardware and system software design combining

efficiently reliability, performance and power consumption.

Finally, to demonstrate how new properties of the computer system will be

implemented, a new conceptual system element called a syndrome was introduced,
described and its application for performance, reliability and energy-smart opera-

tions of hardware explained. Implemented by hardware and supported by system

software syndrome serves as a core of a resilience of architecture enabling system

(through software and hardware) be adaptable to various and modifiable functional

requirements, different internal conditions and environmental impacts. We

implemented a software simulator and disassembler and introduced a testing

framework in combination with our evolving reconfigurable architecture assembler

and commercial hardware simulators.

Stevenage, UK Victor Castano

Igor Schagaev

Preface vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

1 Basic Concepts, Motivation and Structure 1

1.1 Motivation . 1

1.2 Scope and Contribution . 4

1.3 Structure . 5

2 Background Concepts and Resilience . 7

2.1 System Failure Life Cycle . 7

2.2 Attributes and Measures of Resilience 9

2.3 Reliability . 10

2.3.1 Performance and Reliability 10

2.3.2 Reliability and Unreliability Functions 13

2.3.3 Probability Density Function 14

2.3.4 Failure Rate Function . 15

2.3.5 Cumulative Hazard Function 16

2.3.6 Bathtub Curve of Failure Rates 16

2.3.7 Mean Time Between Failures (MTBF) 18

2.3.8 Mean Time to Failure (MTTF) 19

2.3.9 Reliability Prediction . 20

2.4 Safety . 24

2.5 Security . 25

2.5.1 Integrity . 25

2.5.2 Maintainability . 26

2.5.3 Availability . 29

2.6 Performability . 33

2.7 Resilience . 34

2.7.1 Requirements . 35

2.7.2 Effectiveness of Resilience . 35

2.8 Conclusion . 36

ix

www.allitebooks.com

http://www.allitebooks.org

3 Dealing with Faults: Redundancy . 39

3.1 Handling Faults: Design Strategies . 39

3.2 Fault Avoidance . 40

3.3 Fault Tolerance: Using Redundancy . 42

3.3.1 Redundancy Notation . 43

3.4 Structural Redundancy HW(S) . 44

3.4.1 Static Redundancy . 46

3.4.2 Dynamic Redundancy . 51

3.4.3 Hybrid Redundancy . 55

3.5 Information Redundancy . 59

3.5.1 Error Detection Codes: EDC 61

3.5.2 Error Correction Codes: ECC 62

3.6 Time Redundancy . 69

3.6.1 Concurrent Error Detection: Basics

of Time Redundancy . 69

3.6.2 Alternating Logic . 72

3.6.3 Recomputing with Shifted Operands (RESO) 73

3.6.4 Recomputing with Rotated Operands (RERO) 75

3.6.5 Recomputing with Swapped Operands (RESWO) . . . 76

3.6.6 Recomputing with Comparison (REDWC) 76

3.7 Comparison of Main Redundancy Schemes 76

3.8 Conclusion . 77

4 Impact of Radiation on Electronics . 79

4.1 Introduction . 79

4.2 Radiation and Its Effect on Electronics 80

4.3 Damage Mechanisms . 81

4.4 Radiation Macro-effects . 82

4.5 Single Event Effects (SEE) . 87

4.5.1 Physical Mechanisms Responsible for SEEs 87

4.5.2 System Level Response . 95

4.6 Conclusion . 111

5 FT Models . 113

5.1 Models . 113

5.2 Model of Fault . 117

5.3 Classification of Faults by Origin . 117

5.3.1 Level Response . 117

5.3.2 Cause of Faults . 121

5.3.3 Phase of Creation and Occurrence of Faults 122

5.3.4 Nature/Dimension . 122

5.3.5 System Boundaries . 123

5.3.6 Phenomenological Cause . 123

5.3.7 Capability/Objective/Intent . 123

x Contents

5.4 Classification of Faults by Manifestation 123

5.4.1 Response-Timeliness . 125

5.4.2 Consistency . 126

5.4.3 Maintainability: Detectability, Diagnosability

and Recoverability . 128

5.5 FT and System Modelling . 134

5.5.1 Trading P, R, E . 135

5.5.2 GAFT: Generalised Algorithm of Fault Tolerance . . . 136

5.5.3 GAFT: System Estates and Actions

to Implement Fault Tolerance 140

5.6 Conclusion . 142

6 Hardware Support of Resilience . 145

6.1 ERA Concept, System Design and Hardware Elements 145

6.2 ERA Hardware Configuration: ERRIC 147

6.2.1 Active Zone . 147

6.2.2 Passive Zone . 150

6.2.3 Interfacing Zone . 151

6.3 ERA Reconfigurability . 152

6.3.1 T-Logic for Memory Management 152

6.3.2 T-Logic for Configuration in ERA 155

6.4 Syndrome . 156

6.4.1 Syndrome Use . 156

6.4.2 Location Access and Way of Operation

of the Syndrome . 161

6.4.3 Syndrome: Passive Zone Configurations 163

6.5 Graceful Degradation . 165

6.5.1 Graceful Degradation: Markov Analysis 166

6.6 Implementation Constraints . 168

6.6.1 Graceful Degradation: Markov Analysis 169

6.6.2 Interfacing Zone: the Syndrome

as Memory Controller . 170

6.6.3 Access to the Syndrome . 172

6.7 Conclusions . 172

7 System Software Support . 173

7.1 System Software Support of Hardware Checking 173

7.2 System Software Support for Hardware Reconfiguration 176

7.3 System Software Monitor of Hardware Condition 178

7.4 Conclusion . 180

8 Implementation: Hardware Prototype, Comparisons,

Simulation and Testing . 183

8.1 Instruction Execution . 183

8.2 Instruction Set . 184

8.3 ERA Hardware Prototype . 188

Contents xi

8.4 Architectural Comparison . 189

8.5 ERA Testing and Debugging . 194

8.6 ERA’s Assembler . 194

8.7 ERA’s Simulator: Dissimera . 198

8.7.1 Architecture and Description 199

8.7.2 Dissimera Log Sample . 205

8.8 Conclusion . 205

9 Conclusions . 207

9.1 What We Have Done . 207

9.2 Next Steps . 210

10 Vision on Evolving System Future . 211

10.1 Fundamental Problem . 211

10.2 Known Solutions (What We Have . . .) 213

10.3 Attempts to Evolve . 214

10.4 Proposed Approach (What We Need

and Why We Need This) . 218

10.5 Supportive Models . 220

10.5.1 Control–Data–Predicate (CDP) Model 220

10.5.2 Graph Logic Model (GLM) 223

10.6 System Software for Evolving Systems 225

10.6.1 Active Language (AL) . 225

10.6.2 Active Reconfigurable Run-Time System 228

10.7 Evolving System: Hardware . 231

10.7.1 Basic Schemes . 231

10.8 Evolving System: Multi-element Configuration 233

10.9 Evolving System Approach vs. Berkley View 235

10.10 Evolving System: Conclusion . 237

References . 239

Index . 255

xii Contents

Abbreviations

ARQ Automatic repeat quest

ASIC Application-specific integrated circuit

ASW Application software

ATPG Test pattern generation tools

BCH Bose Chaudhuri hocquenghem

BEC Backward error correction

BICMOS Bipolar complementary metal oxide semiconductor

BIST Built in self-test

BPSG Boron phosphor silicate glass

CCD Charged couples device

CED Concurrent error detection

CM Corrective maintenance

CMF Common mode failure

CMOS Complementary metal oxide semiconductor

COTS Commercial off the shelf

CSP Cold standby spare

CUT Circuit under test

DDD Displacement damage dose

DEC/TED Double bit error correction and triple bit error detecting

DFT Design for testability

DMR Dual modular redundancy

DRAM Dynamic random access memory

DRE Detected recoverable error

DUE Detected unrecoverable error

DUT Device under test

DW Data word

ECC Error correcting codes

EDAC Error detection and correction codes

EDC Error detecting codes

EEPROM Electrically erasable programmable read only memory

xiii

EPI Epitaxial substrate doping

FCR Fault containment region

FEC Forward error correction

FIT Failures in time

FM Fault model

FPGA Field programmable gate array

FT Fault tolerance

FTS Fault tolerant system

GAFT Generalised algorithm of fault tolerance

GCR Galactic cosmic ray

GDS Gracefully degrading system

HARQ Hybrid automatic repeat request

HSP Hot standby spare

HW Hardware

ICV IDDQ checkable voter

IDDQ Quiescent power supply currents

IDE Integrated development environment

Iff If and only if

IR Information redundancy

LET Linear energy transfer

MBU Multiple bit upset

MCU Multiple cell upset

MOS Metal oxide semiconductor

MOSFET Metal oxide silicon field effect transistor

MSB Most significant bit

MTBF Mean time between failures

MTTD Mean time to detection

MTTF Mean time to failure

MTTR Mean time to repair/restore

NIEL Non-ionising energy loss

nMMOS n channel metal oxide semiconductor

NMR N-modular redundancy

ORA Output response analyser

PCSE Power cycle soft errors

PDF Probability density function

PI Primary input

PKA Primary knock-on atom

PM Preventive maintenance

pMOS p channel metal oxide semiconductor

PSF Pattern sensitive fault

REDWC Recomputing with comparison

RERO Recomputing with rotated operands

RESO Recomputing with shifted operands

RESWO REDWC recomputing with swapped operands

xiv Abbreviations

RF Register file

ROM Read only memory

RS Reed solomon

RT Real time

RTS Real time systems

SAF Stuck at fault

SBU Single bit upset

SDC Silent data corruption

SEBO Single event burnout

SEC DED Single error correction and double error detection

SEDR Single event dielectric rupture

SEE Single event effect

SEFI Single event functional interrupt

SEFLU Single event fuse latch upset

SEGR Single event gate rupture

SEHE Single event hard error

SEL Single event latch up

SEMU Single event multiple upset

SER Single event rate

SESB Single event snapback

SET Single event transient

SEU Single event upset

SOC System on a chip

SOI Silicon on insulator

SOS Silicon on sapphire

SPF Single point of failure

SR Structural redundancy

SRAM Static random access memory

SSW System software

SW Software

TBF Time between failures

TID Total ionising dose

TMR Triple modular redundancy

TMRV TMR system with non-perfect single voting

TR Time redundancy

TTF Time to failure

TTR Time to repair

UART Universal asynchronous receiver/transmitter

WSP Warm standby spares

Abbreviations xv

Introduction

This book is the first consistent work on development of our paradigm of evolving

computers; it includes methods of analysis and synthesis of evolving computer

systems capable to modify the properties regarding performance, reliability or

energy-wise functioning.

We also discuss abilities of system to match changing requirements and ability

to tolerate internal hardware faults, with supportive analysis of technological

advances and drawbacks.

Initially this book did serve us an essential working material in terms of “all you

need to know to design and analyse new generation of computer systems”

addressing in non-mutually exclusive way reliability, fault tolerance, performance

and resilience properties of hardware. We have introduced supportive models for

main hardware elements: processors, memories and interfaces.

We were thinking about the new architecture to fit the following market:

Safety-critical, autonomous, real time, military, banking terminal and wearable

health care systems.

Proposed approach was developed up to hardware prototype—special chapters that

describe it demonstrate at the order of magnitude higher efficiency in compar-

ison with existing systems.

Who are our segments of society that might benefit from reading our book and why?

Research community will get consistent description of the theoretical area for

further developments.

Industries of hardware and system software designs, manufacturing and exploita-

tion will get pathways to make performance, reliability and energy-smart sys-

tems with consistency, enabling unification of market of consumer electronics,

safety-critical, embedded, autonomous and autonomous systems.

ICT consumers will get much higher efficiency (and value for money) from their

systems (if, of course, devices and systems will be designed according to the

principles proposed in the book).

xvii

In turn, our book provides also several personal benefits for the reader in terms of:

– Analysis of existing systems given in essence, showing how “classic” solutions

stand and work.

– Existing technological drawbacks are clarified and presented consistently, with

proposed solutions that “best fit the requirement” of new computer system.

– Description of a process of introduction of new properties as a framework for

next generation of computer system enabling a reader to make consistent

analysis of—we stress—all possible system design solutions.

– Described prototype of evolving reconfigurable architecture might be attractive

for students and hardware design engineers as they through the book will

discover that computers might be designed much simpler, power efficient and

at an order of magnitude more reliable, especially where continuous operation is

of utmost importance and failure can be profound.

– Analysts who have discovered that the market dominance of the general com-

puting systems has been now limited by appearance in billions of embedded

systems will become aware how to merge these two market segments.

– Any reader will be able to use trail simulator and start programming for new

architecture.

Nowadays radiation is becoming a serious threat to the reliable operation of

safety-critical systems. Fault avoidance techniques, such as radiation hardening,

have been commonly used in space applications. However, hardened components

are expensive, lag behind commercial components in performance and do not

provide 100 % fault elimination. Without supportive structural solutions to provide

fault tolerance, hardware faults become system errors at the application or system

level, which in turn can result in catastrophic failures. In this direction, we, along

updated concepts of fault tolerance and dependability, introduce our own concept of

resilience. To some extent resilience is a generalisation of fault tolerance. We

propose to consider fault tolerance and resilience as processes, instead of static

properties. We analyse the physics of radiation-induced faults, the damage mech-

anisms of particles and the error process. We propose new approach to hardware

and system software design combining efficiently for reliability, performance and

power consumption.

Finally, to demonstrate how new properties of the computer system will be

implemented, we introduce a new conceptual system element called a syndrome.

We describe how syndrome can be applied to monitor performance, reliability and

energy-smart operations of hardware. Implemented by hardware and supported by

system software, syndrome serves as a core of a resilience of architecture. Using

syndrome enables the system (through software and hardware) to be adaptable to:

– various and modifiable functional requirements

– different internal conditions

– environmental impacts

xviii Introduction

We implemented a software simulator and disassembler and introduced a testing

framework to our evolving reconfigurable architecture inviting researchers and

engineers to put “hands on” new computer system with unique properties.

Stevenage, UK Victor Castano

Igor Schagaev

Introduction xix

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

Basic Concepts, Motivation and Structure

1.1 Motivation

Embedded systems are ubiquitous nowadays, built into homes, offices, bridges,

medical instruments, cars, airplanes and satellites and even into clothes. The market

size of such systems is already larger than the one for general-purpose computing.

The majority of embedded systems are real-time systems (RTSs) and mostly all

RTSs are embedded either into device or product.

For decades, embedded RTSs are being used in fields where their correct

operation is vital to ensure the safety and security of the public and the environ-

ment: from automotive systems and avionics to intensive health care and industrial

control as well as military operations and defence systems. These systems are

subject to time constraints and must guarantee a response within specified timing

bounds. The safety critical nature of RT embedded systems employed in those

fields demands the highest possible availability and reliability of system operation.

The technological achievements that have led to exponential growth of clock

frequency and memory size have boosted the technological development of micro-

processors. Manufacturers of advanced silicon electronics have been able to create

more complex designs by periodically scaling down the technology, increasing the

transistor density. This growth is supported by the progressive miniaturisation of

electronic components predicted by Moore, called by technological bureaucrats as

Moor’s law in 1965.

In real world, technological developments have been slowed down by physical

limitations: due to the reduction of size of electronic components to nanometer

scales and due to the increase in clock frequencies (ITRS 2011), supply voltages

have been reduced to keep power dissipation manageable while thermal noise

voltages have increased (Asanovic et al. 2006; Kish 2002).

For a long time, environmental impact, radiation effects have been a serious

concern in aviation, aerospace and special mission electronics. As the dimensions

and voltages of embedded systems now are reduced, their sensitivity to ionising

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_1

1

particles has considerably increased. Energising particles can produce a number of

faults at the hardware level, not only in contexts with harsh environmental

conditions such as outer space but also at sea level with regular conditions.

Components with lower power and noise margins are less reliable, and therefore,

recent systems are more prone to transient faults induced primarily by radiation

(Baumann 2002, 2005a, b; Seifert et al. 2002; Shivakumar et al. 2002). Transient

faults do not cause permanent damage in circuits but can affect system behaviour by

corrupting stored information or signal communication (Karnik and Hazucha 2004;

Mavis and Eaton 2002; JEDEC “JESD89-3A,” 2007).

It is worth to point out that typical stress experiments in laboratory-based

particle bombarding, present objective evidence of radiation induced malfunctions

and catastrophic failures during operation in real life environments. Radiation-

induced faults are frequent in space environments (Adams and Gelman 1984;

Adams et al. 1982; Binder et al. 1975; Blake and Mandel 1986; Waskiewicz

et al. 1986). The Saturn’s Cassini (Swift and Guertin 2000), Deep Space 1 (Caldwell

1998), Mars Odyssey (Eckert 2001) and Jupiter’s Galileo (Fieseler et al. 2002) are

examples of missions that presented malfunctions as a result of cosmic rays. The

satellites X-ray Timing Explorer (Barth et al. 2004), Gravity Probe B (Owens

et al. 2006), TOPEX/Poseidon (Swift and John 1997) and GRACE (Pritchard

et al. 2002) have also reported anomalies during operation.

Radiation induced faults are also present to a lesser extent in atmospheric

(Taber and Normand 1993) and terrestrial environments (Hauge et al. 1996;

Normand et al. 2010; Ziegler 1996).

As a result of this scenario there is an increasing need to deal with faults and their

consequences in the system. There are two classes of mechanisms to cope

with faults: fault avoidance and fault tolerance (FT) (Avizienis et al. 2004).

Fault avoidance means developing components/systems that are less likely to

present faults while fault tolerance techniques focus on the system’s ability

to tolerate the effects of these faults.

Fault tolerance is defined as the ability to provide uninterrupted service,
conforming to the desired levels of reliability even in the presence of faults
(Avizienis et al. 2004). Applications of modern electronic systems require much

more powerful mechanisms to mitigate the effect of these faults (Nicolaidis 2010).

Complete avoidance of faults in a system is practically impossible and hence a

balance of the two approaches is currently applied. With the objective of reducing

costs, attempts to apply fault tolerance (FT) to COTS computers did not bring any

substantial breakthrough in neither efficiency nor any other crucial property

required from safety critical systems (Antola et al. 1986).

The research community mainly focuses on (a) identifying all possible mecha-

nisms leading to accidents and (b) on providing pre-planned defence techniques

against them. However, too little attention to potential systems that can respond to

deviations from desirable states has been paid.

The research is driven by observations on resultant limitations from the evolu-

tion of computer architectures, which have been motivated by technological and

market choices as well as physical limitations. These observations refer to

2 1 Basic Concepts, Motivation and Structure

performance deceleration, increase in power consumption/dissipation, reliability

aspects, parallelization challenges, design complexities, and hardware and software

inefficiencies. A brief explanation for each follows:

Performance decrease: As transistor density and frequency increase to satisfy the

immediate market demands, unjustified complexity has been introduced in the

current computer architectures. In recent years, clock rates of standard micropro-

cessors have flattened and performance of processor cores has slowed down

(Asanovic et al. 2006); (Franzon et al. 2010).

Power consumption/dissipation: Growth of processor clock speed increases

power consumption and consequently power dissipation while die size remains

the same. Therefore, the power/density ratio will keep increasing to the point where

no practical technique can feasibly dissipate the generated heat.

Reliability: Performance, heat and power consumption are not the only concerns.

Reliability of intra-chip communication is also affected by physical constraints.

Transistor scaling shortens wire distances, thus improving performance, but it also

implies thinning of those wires.

As wires become narrower, they also become taller in order to reduce the

resistance per unit length. Media resistance limits the speed of electrons within.

Long wires within close distance vary dependent timing characteristics at best and

produce data corruption at worst. In short, thinner wires increase delays and harm

reliability. Furthermore, as explained earlier, the same radiation fluxes that in the

past had no effect on electronics are now able to induce faults that affect the logic

value of current transistors with lower critical charge.

For these reasons, it is commonly believed by the research community that the

classic Hardware/Software uniprocessor model has reached the power/perfor-

mance-wall (Asanovic et al. 2006; Franzon et al. 2010).

Parallelization: The microprocessor industry approach is based on using the

billions of transistors now available on a die to replicate the of-the-shelf core design

multiple times and increase the size of caches. Nevertheless, effective programming

of multi-core is not trivial and introduces multiple challenges (Geer 2007; Goth

2009; Pankratius et al. 2009). As an attempt to overcome the power wall, research

on computer science has reincarnated parallel computing. Parallel computing and

parallel programming are not new; they have been a mainstay in high-performance

since the early 1950s (Hill and Rajwar 2001).

Complexity: The semiconductor industry, driven by economic reasons and time-to-

market needs, has introduced unjustified complexity in microprocessor designs. An

efficient and logical design could have achieved better results in the long-term.

Instead, a brute force approach, increasing frequency and adding deeper pipelines

and cache levels has been followed (Sager et al. 2001).

Software and Hardware Inefficiency: In terms of software, modular program-

ming (Turski and Wasserman 1978; Wirth 1983) and later object oriented

1.1 Motivation 3

programming (Wirth 1988, 1992) were introduced to maximise performance and

effectiveness of the human agent in the programming process.

To maximise performance of HW/SSW/ASW several approaches of parallelism

using distributed, data-flow and cluster architectures were introduced in the late

1950s. The Flynn diagram (Flynn 1972) is still in use: SIMD (Single Instruction

Multiple Data), MIMD (Multiple Instruction Multiple Data) and MISD (Multiple

Instruction Single Data) are very well known architectures, each with their own

benefits and drawbacks. In the early 1980s the VLIW (Very Long InstructionWord)

(Fisher 1983) approach was also introduced. But since then, no significant new

architecture has been introduced.

The size of the market is in the order of billions of controllers produced every

year, which exemplifies the scale of dependency of human society on computer

technologies. To make the next step in the design of special systems for safety

critical applications we should analyse what is applicable from the well-developed

theory and design of fault tolerant systems since early 1970s, in particular their

reliability and resilience to electromagnetic impulses.

In turn, the success of future computer systems for safety critical applications

will depend on trading-off performance, reliability and power consumption.

The combination of these two statements forms a framework for this work. At

first, we should analyse the technological achievements of modern electronics in

terms of performance. Finally, we should find ways to improve the efficiency of

current embedded systems in terms of performance, reliability and power

consumption.

1.2 Scope and Contribution

This work relate to the reliability of embedded systems with regards to permanent

and transient hardware faults induced by radiation as the source of errors. Addi-

tionally, proposed methods techniques are also efficient to mitigate the effect of

faults induced by other means. Note that software faults as the source of errors are

out of the scope of our research. This section briefly explains our contributions.

The main goal of this research was to find efficient techniques and original

mechanisms for improving reliability, performance and energy use of real-time

systems in safety critical applications. Our special interest was in design, develop-

ment and analysis of a fault tolerant reconfigurable architecture capable to tolerate

radiation-induced faults. This is especially important as amount of induced faults is

growing and without special efforts system architecture will degrade pretty fast. We

believe and show it in a special chapter that such architecture will be further used as

a core element for reconfigurable computer systems with key requirements of

reliability, power awareness, performance and scalability.

We attempt to overcome known drawbacks of modern real-time systems. The

outcomes of our efforts can be summarised as follows:

4 1 Basic Concepts, Motivation and Structure

The traditional Reliability, Fault Tolerance and Dependability concepts and

definitions do not take into account the transient nature of some of the faults

induced by radiation. Therefore, a new concept of resilience has to be introduced

reflecting the changing environment and the different FT contexts.

We examined systematically the physical mechanisms that lead to faults induced

by radiation and the error process analysing and classifying the effects of radiation

impact on modern microprocessor technologies.

We introduced a new model that classifies faults. This model enables and eases

analysis of requirement during design process accounting serviceability and fault

coverage, making fault tolerant and resilient system designs much more efficient.

We introduced a combination of structural hardware elements as three seman-

tically different: active, passive and interfacing zones. In ensemble with system

software, these hardware elements have to be developed differently making system

resilience much more efficient and powerful. Combined hardware and system

software design process that leads down to silicon technologies enables improving

reliability and performance, as well as reducing power consumption making new

designs far better that known systems.

We designed and implemented a hardware prototype as a proof-of-concept with

core elements introduced in the previous statement.

Our hardware design work, development of simulation has benefited from

collaboration and can be considered as a joint international research to make

so-called Evolving Reconfigurable Architecture (ERA) with ETHZ Dr T. Kaegi,

Dr E. Zoueff, Prof L. Blaeser published in Schagaev et al. (2010) and further

developed in Schagaev et al. (2014).

We proposed a framework and testing scheme for the testing and debugging of

the hardware prototype. As part of the framework, we implemented an assembler

for the hardware prototype together with a disassembler and simulator tool.

1.3 Structure

We divide this work in ten chapters configured as follows:

Chapter 1: Introduction summarises the approach of fault tolerance and resilience,

describes our contribution to this domain of science and defines general structure of

further work.

Chapter 2: Resilience: presents elements of the theoretical framework for reliabil-

ity. We analyse the properties of classic dependability and we describe our own

view of the concept of resilience.

Chapter 3: Dealing with faults: redundancy: this chapter provides a complete

review of state-of-the-art techniques employed to deal with faults and explores

the different types of redundancy and fault tolerant techniques.

Chapter 4: Impact of radiation in electronics of embedded systems presents the

physical mechanisms of radiation as the primary phenomenon that causes faults in

1.3 Structure 5

http://dx.doi.org/10.1007/978-3-319-15069-7_1
http://dx.doi.org/10.1007/978-3-319-15069-7_2
http://dx.doi.org/10.1007/978-3-319-15069-7_3
http://dx.doi.org/10.1007/978-3-319-15069-7_4

current computing systems. We also analyse their effect on semiconductors at

element, circuit and system levels.

Chapter 5: Fault tolerance models introduces our own model of hardware faults.

We introduce generalised algorithm of fault tolerance (GAFT) and define the

different states and actions required to implement fault tolerance.

Chapter 6: Hardware support and System Software Support for Resilience details

the hardware and system software elements of a novel resilient architecture.

Proposed architecture enables to achieve and change various levels of performance,

reliability and energy consumption.

Chapter 7 describes software simulation aspects of hardware prototype, presents

shortly a comparison of proposed architecture with known systems, describes

benefit of simulation and use of simulator in the process of testing.

Chapter 8: Implementation: Hardware Prototype, Simulation and Testing: This
chapter focuses on the development and testing of the hardware prototype for

proposed hardware architecture. Details of the design and development of a soft-

ware simulator of the hardware architecture are also provided.

Chapter 9 summarises our work, describes next steps in research and development,

providing some hints of future of resilient systems theory, design and develop-

ments. Finally,

Chapter 10 presents our vision on Evolving Systems, fundamental constrains,

supportive models, prototypes, challenges. Existing approaches are briefly com-

pared with proposed evolving system concept.

6 1 Basic Concepts, Motivation and Structure

http://dx.doi.org/10.1007/978-3-319-15069-7_5
http://dx.doi.org/10.1007/978-3-319-15069-7_6
http://dx.doi.org/10.1007/978-3-319-15069-7_7
http://dx.doi.org/10.1007/978-3-319-15069-7_8
http://dx.doi.org/10.1007/978-3-319-15069-7_9
http://dx.doi.org/10.1007/978-3-319-15069-7_10

Chapter 2

Background Concepts and Resilience

2.1 System Failure Life Cycle

Correct service (Laprie 1995) also named proper service (Laprie and Avizienis

1986) is delivered by a system when the service implements the function as

specified. The fundamental threats to the correct service and to the resilience of

safety critical systems are faults, errors and failures that, in turn, can cause cata-

strophic failures. Among these four terms there is a cause–effect relationship.

A failure, service failure or system failure is an event that takes place when the

delivered service deviates from proper service. Hence, a service failure implies a

transition of the system from proper service to an improper service, not

implementing the functions as specified by the functional specification of the

system.

The downtime or period of delivery of improper service is also referred to as

service outage. The transition from improper service to proper service is called

service restoration, service recovery or repair.
Since a service is an organised sequence of the internal and external states of a

system, a service failure takes place when one or more of its external states deviate

(s) from the correct service state. These deviations are errors. An error is a part of
the system state that is liable to lead to a subsequent failure. The hypothesised or

adjudged cause of such error is a fault.

A fault is a weakness, blemish or shortcoming of a particular hardware compo-

nent or unit.

An error is the manifestation of a fault, a deviation from accuracy or correctness.

Finally, if the error leads to one of the system’s functions being performed incor-

rectly then a failure has occurred.
Figure 2.1 graphically describes the well-known life cycle of system failure

within a three universe model (Johnson 1989) adapted from the four universal

model originally developed by Avizienis (1982). In the first universe, the physical

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_2

7

one, faults are generated due to various sources. Faults can activate errors within the

second universe, the informational one.

Errors take place when some information units become incorrect. In turn, errors

could propagate the user universe and lead to a failure. It is in this final universe,

where the user can witness the effects of faults and errors in the form of failures.

One or more failures could potentially cause a catastrophic failure in the case of

safety critical systems.

The arrows between the entities in Fig. 2.1 correspond to latencies. Fault latency

(activation latency in Fig. 2.1) is the period of time between the occurrence of a

physical fault and the appearance of an error. Likewise, error latency is the length of

the propagation time that takes place between the activation of the error and the

manifestation of the failure.

The term fault and failure are sometimes unclear in reliability literature.

In this work, the term fault is sometimes equivalent to failure. For instance, a

system failure can be the same as a component fault; this with a growing density

of electronics components is a physically proven truth. Figure 2.2 shows the

fault–failure transition between a subsystem and a global system.

Physical universe

generation

source fault error failure catastrophic
failure

activation

PROPER SERVICE IMPROPER SERVICE

propagation causation

Informational universe User’s universe

Fig. 2.1 System failure life cycle within a three-universe model

Fig. 2.2 Fault–failure: Transition between different levels of a system

8 2 Background Concepts and Resilience

The fault–failure cycle can be applied at different levels of abstraction within a

system; consider a transistor as a subsystem that is part of a more global system

(e.g. memory cell): the occurrence of incorrect functionality of the transistor during

normal operation (e.g. the effects of ageing and stress) is a subsystem failure of such

component but may lead to, for instance, a logic fault (global system failure).
This logic fault will remain dormant unless it is activated, producing an error,

which is likely to propagate and create other errors. If the correct service of that

global system is affected, a global system failure occurs. The same subsystem–

system transition can take place between the memory cell, the memory circuit that

the cell is part of, the microprocessor system that can be part of a

multiprocessor, etc.

2.2 Attributes and Measures of Resilience

The word resilience from the Latin etymology resilire (to jump back, or to rebound)

is literally the tendency, ability, act or action of springing back, and thus the ability

of a body to recover its normal shape and size after being pushed or pulled out of

shape. That is, the ability to recover to normality after a disturbance, shock or

deviation from the intended state and go back to a pre-existing or acceptable or

desirable state.

The meaning of resilience is somewhat different between authors. The term

Resilient has been traditionally used as a synonym of fault tolerance (Laprie 2008).

Before we discuss fault tolerance as a concept and introduce resilience, several

other terms need to be defined.

One of them is Dependability, which is an integrative concept that encompasses

many other quantitative and qualitative attributes. Laprie (Laprie et al. 1992)

defines dependability as the “trustworthiness of a computer system such that

reliance can be justifiably placed on the service that it delivers”.

Dependability is the ability to deliver a service that can justifiably be trusted.

Laprie defines the service delivered by the system as its behaviour as it is percep-

tible by its users); a user is another system physical or human) which interacts with

the former. Such service is classified as “proper” or “correct” if it is delivered as

specified; otherwise it is considered as “improper” or “incorrect” (Laprie and

Avizienis 1986). Again, the “properness” or “correctness” of the system service

depends on the viewpoint of the user.

The terms related to dependability have been redefined over the years (Avizienis
et al. 2004). In order to make the discussion unambiguous, and avoid conflicts of

terminology due to different opinions of various authors, we merge and organise the

attributes or measures of dependability and adapt them to the field of safety-critical

applications. The attributes of dependability are reliability, safety, performability

and security. The latter encloses a subset of attributes including integrity, main-

tainability and availability.

2.2 Attributes and Measures of Resilience 9

2.3 Reliability

The reliability measure is most often used to characterise systems in which failures

are unacceptable, therefore including field of safety critical systems.

Figure 2.3 shows a non-repairable system with two possible states: a fully

functional start state (up) and a failed state (down), involving loss of functionality,

which can be reached after a transition due to failure.

There is no disagreement about the need for reliable systems but some vague

notion of reliability is not enough in safety-critical engineering. Reliability can be

defined as follows:

Reliability R(t) is the probability that a system or component will perform its
intended function (without failure) over the entire interval [0,t] under specified
environmental and operating conditions.

2.3.1 Performance and Reliability

2.3.1.1 Power-Reliability Wall

Since the invention of the integrated circuit in 1958 each generation of semicon-

ductor technology has exponentially decreased the transistor price and exponen-

tially increased the transistor density per chip (Hutcheson 2009).

This technological shrink has led to the impressive level of technology and

hardware element density relatively recently achieved (Nair 2002) with processor

frequencies reaching up to 4.7 GHz Power 6 Specs: IBM Power6 Microprocessor

and IBM System p 570, 2007. The higher number of transistors and the kilometres

of wire operating at higher frequencies requires up to several Watt/cm2 of energy

for on modern chips, leading the peak energy consumption well over 140 W. Most

of that energy becomes heat, rising operating temperatures.

Heat and power consumption are not the only concerns of modern electronics.

Reliability and performance of intra-chip communication are also affected by

physical constraints. Transistor scaling shortens wire distances, improving perfor-

mance, but it also implies thinning of those wires. The resistance and capacitance of

the media limit the speed at which electrons can flow. Thinner wires increase delays

and harm reliability (Shivakumar et al. 2002). For these reasons, the research

Fig. 2.3 A non-repairable

system with two states

10 2 Background Concepts and Resilience

www.allitebooks.com

http://www.allitebooks.org

community believes that the classic HW/SW single processor model has reached

the power-reliability wall (Asanovic et al. 2006).

Moreover, the cost of technologies used for the manufacturing is increasing

exponentially. Such cost is doubling every 4 years, which makes smaller

nanometer-scale technologies required; pursuing these efforts presents not only

technical but an economic challenge as well.

Evidence of this phenomenon is the chart shown in Fig. 2.4 that plots perfor-

mance gap between the processor and memory of the VAX 11/780 measured by the

SPECint benchmarks1). Subsequent to the mid-1980s, processor performance

growth averaged about 52 % per year. Since 2002, uniprocessor performance has

slowed down to about 20 % per year reaching the power-reliability wall in 2006. On

the other hand, memory has averaged a constant performance increase of 9 %.

Using so-called Moore’s law as a metric of progress has become misleading, as

improvements in transistor density no longer translate into performance and energy

efficiency. Starting around the 65 nm technologies, transistor scaling no longer

delivers the performance and energy gains that drove the semiconductor growth

during the past decades (Dreslinski et al. 2010).

The research community and the industry believe that parallelism is the answer

to overcome the performance wall; however, some debates take place about differ-

ent approaches of parallelism support and implementation. The industry has

attempted to react by escalating the number of processors introducing multi-core

architectures and parallelism.

Multiplying the number of big, complex and power demanding existing cores,

which are part of the problem, does not adequately provide or resolve any of our

Fig. 2.4 Growth of performance since the mid-1980s (Hennessy and Patterson 2006)

1 SPECint benchmarks are a set of benchmarks design to test the integer processing performance of

modern CPU http://www.spec.org/).

2.3 Reliability 11

http://www.spec.org/

performance problems, but add concerns for reliability and power consumption

(Asanovic et al. 2006). Replicating the essence of the problem will hardly add a

solution to it.

2.3.1.2 Reliability with Vicious Cycle

The semiconductor industry is driven by competition, economic conditions and

time-to-market. All this leads to an introduction of too much complexity in micro-

processor designs. Figure 2.5 shows our interpretation of the reliability problem in

current computing.

An efficient and logical design and redesign could have achieved better results in

the long term. Instead, the industry has employed a “brute force” approach, by

increasing hardware frequency, making larger and deeper pipelines and creating

extra cache memory levels. All this did provide a slight performance gain at a high

cost of chip floor plan, as shown by Asanovic et al. (2006).

Increased processor performance allows software companies to develop larger

and feature-richer software, which involves larger development teams. Conse-

quently, developers need higher-level languages and abstractions, which are less

efficient and generate slower programs. As a result, again, faster processors are

Fig. 2.5 The vicious cycle and the evolution of computing systems, 1950–2005

12 2 Background Concepts and Resilience

required, reinforcing the same vicious cycle (Fig. 2.5) and generating detrimental

results. Pursuing this, existing programs would run faster on the latest generation of

microprocessors, with performance gain at max 12 % with multiplied cost and

energy consumption of hardware.

Since 2005–2006, there is no evidence of any considerable increase in functional

hardware performance. Existing programs need to be redeveloped to take advan-

tage of new multi-core. Consequently, the vicious cycle does not apply straightfor-

ward anymore. The power wall has dramatically slowed down the evolution of

microprocessors in terms of performance and reliability.

Clearly, technological developments have not been supported by a logical

evolution. There is an increasing need for unified hardware and software technol-

ogies. Rigorously speaking a new computing paradigm is required with its

implementation through the whole cycle of hardware, software and application

design as well as development and prototyping.

2.3.2 Reliability and Unreliability Functions

Let us suppose a system with N identical components. We define S(t) as the number

of surviving components at time t and Q(t) as the number of failed components up

to time t. Therefore, Eq. (2.1) has a form:

S tð Þ þ Q tð Þ ¼ N ð2:1Þ
The reliability R(t) is the proportion of components that continue to perform

without failure after being used for a period of time t. That is the probability of

survival of the components, given by Eq. (2.2):

R tð Þ ¼ S tð Þ
N

ð2:2Þ

Unreliability, or Cumulative failure distribution function is generally referred to as

the probability of failure. More specifically, unreliability F(t) is the conditional
probability that the system begins to perform incorrectly during the interval [t0,+t],
given that the system was performing correctly at time t0 Eq. (2.3):

F tð Þ ¼ Q tð Þ
N

ð2:3Þ

Based on Eq. (2.1) reliability and probability of failure of components at time t:

R tð Þ þ F tð Þ ¼ 1 and

F tð Þ ¼ 1� R tð Þ ð2:4Þ

2.3 Reliability 13

In turn, Fig. 2.6 presents a graph of the reliability and probabilities of failure over

time with a constant failure rate. R(t) is a monotonically decreasing function that

has an initial value 1, whereas F(t), starting at 0, increases monotonically. The sum

of F(t) and R(t) at any given time is 1.

2.3.3 Probability Density Function

The derivative of F(t) is a probability distribution function (PDF) that defines the

probability of failures per unit time f(t) of a particular component that has been used

for a period of time t. Based on this definition, the probability density function is

described as Eq. (2.5):

f tð Þ ¼ dF tð Þ
dt

ð2:5Þ

Using Eq. (2.4):

f tð Þ ¼ d 1� R tð Þ½ �
dt

¼ � dR tð Þ
dt

ð2:6Þ

Thus, the probability of a failure during the time range [0,t] is Eq. (2.7):

Fig. 2.6 Reliability R(t) and Probability of failure F(t) functions over time t

14 2 Background Concepts and Resilience

F tð Þ ¼
ð t

0

f tð Þdt ð2:7Þ

Again, using Eq. (2.4) for Reliability over range [0, t] Eq. (2.8):

R tð Þ ¼ 1� F tð Þ ¼ 1�
ð t

0

f tð Þdt ¼
ð1
t

f tð Þdt ð2:8Þ

Schematically, Fig. 2.7 presents Reliability, Unreliability (left and right areas,

respectively) and PDF.

2.3.4 Failure Rate Function

The failure rate function λ(t) also known as momentary failure rate or hazard

function describes the number of failures per unit of time versus the number of

components still operating at a time surviving components Eq. (2.9):

λ tð Þ ¼ 1

S tð Þ
�dQ tð Þ

dt
ð2:9Þ

Using Eqs. (2.3) and (2.2), failure rate as a function of reliability and probability

density will have a form Eq. (2.10):

λ tð Þ ¼ 1

N R tð Þ
N dF tð Þ

dt

λ tð Þ ¼ 1

R tð Þ
dF tð Þ
dt

¼ f tð Þ
R tð Þ

ð2:10Þ

Fig. 2.7 Representation of reliability, unreliability and the probability density function

2.3 Reliability 15

The failure rate function is useful for analysis of reliability when semiconductor

components operate with long period, or life cycle of the device.

However, calculating the failure rate at a specific point of time within a short

period is impractical. Consequently, average failure rate, with longer time periods,

is preferred Eq. (2.11):

Average failure rate ¼ Total failures during a period

total operating time within a period
ð2:11Þ

The values of average failure rate can be expressed by % or ppm.2 However, FIT3 is

more widely used as a unit for reliability.

2.3.5 Cumulative Hazard Function

Using Eq. (2.4), failure rate as a function of reliability can be presented as:

λ tð Þ ¼ �1

R tð Þ
dR tð Þ
dt

ð2:12Þ

The limits of integration can be obtained as follows:

– At time t¼ 0, R(t)¼ 1

– At time t by definition the reliability is R(t)

Given the assumption of a constant failure rate λ of a component (typically in per

million hours or FIT):

λt ¼ �logR tð Þ
�λt ¼ �logR tð Þ ð2:14Þ
R tð Þ ¼ e�λt

2.3.6 Bathtub Curve of Failure Rates

In the world of technological requirements a reliability of a system is measured with

values either from 0 to 1 or in %. Thus, a system may have 97 % reliability over a

2-year mission, subject to a maximum vibration Vmax, a humidity range [Hmin,

Hmax] and a temperature range [15 �C, +30 �C].

2 ppm is the abbreviation of “parts per million”. One ppm means 1 faulty component out of

1,000,000 components. Hence, an average failure rate of 10 ppm means that there are 100 faulty

components out of 1,000,000, or 1 component out of 100,000.
3 FIT is a unit widely used to express failure rate. One FIT equals to one failure per billion (109)

hours (one failure in about 114,155 years), or 1 ppm/1,000 h.

16 2 Background Concepts and Resilience

Although the above definition is generally accepted, it is not really a complete

one as from the start of operation till the end of device life system reliability will

vary. Therefore, more factors need to be considered. For a correct service delivery

in a specific period, the system must be operating properly at the beginning of the

observation period.

The age of the system is one of the factors that should be taken into account. The

above definition does not differentiate between:

– A new system.

– A system that has been operational for a substantial amount of time and whose

faults have already been corrected.

– An old system with a long operational history and wear out issues.

Reliability distributions with decreasing, constant and increasing failure rate as a

function of time are illustrated in Figure 2.8 separating periods (a), (b) and (c),

respectively. The assumption made is that faults are independent and that the failure

rate (λ) is constant.
The system failure rate is dependent on the system’s lifetime constituting a

function with a bathtub shape and three distinctive areas or periods: an early failure

period (a), a normal operating period (b) and a wear out period (c). For failure rates

higher than the constant failure rate (λ), the chance of system failure becomes

higher.

For a new system (segment a) there is an early failure or infant period with a

decreasing but high failure rate due to latent manufacturing defects that escape the

Fig. 2.8 A bathtub curve of failure rates. During normal operation period the failure rate λ is

constant and faults are independent

2.3 Reliability 17

initial testing of the product. As the products get into operation, these defects

surface quickly when the devices are stressed.

Once the infant failures are eliminated, this high failure rate rapidly decreases to

an almost constant value during the normal + operating or grace period (segment b).

This long period represents the useful life of the system where failures occasionally

occur due to the sporadic breakdown of weak components. It is highly desirable that

this period of low failure rate and high reliability dominates the product’s lifetime.

During the wear out or breakdown period (segment c) the reverse situation takes

place. As the system gets older, the failure rate increases sharply due to age-related

wear out. Note that many devices that form part of the same system will initiate this

phase roughly at the same time. This could create an avalanche effect that could

critically decrease the overall reliability of the system.

After analysing the bathtub curve and the three periods of operation involved, it

is clear that the previous equations of reliability only suit the normal operating

period with a constant failure rate. This curve is used for reliability analysis of

hardware reliability reflecting processes of ageing and degradation.

At the same time similar reliability assumptions and models do not suit reliabil-

ity analysis of software, especially when versioning and upgrading of software take

place. The physics of hardware failure is discussed in Chap. 4, where properties of

silicon substrates and radioactive particles are taken into account.

2.3.7 Mean Time Between Failures (MTBF)

Instead of a monotonic function of time a system reliability can also be expressed as

a single numeric index. Mean time between failures (MTBF) is the average time

that the system will run between failures. This measure is convenient to compare

the reliability of different repairable systems. MTBF can be estimated by averaging

the time between failures, including any additional time required to repair the

system and place it back to a functional state.

Being f(t) the probability of failure per unit time, MTBF can be described by

Eq. (2.15):

MTBF ¼
ð1
0

t f tð Þdt ð2:15Þ

Using Eq. (2.6) then MTBF is Eq. (2.16):

MTBF ¼ �
ð1
0

t
dR tð Þ
dt

ð2:16Þ

18 2 Background Concepts and Resilience

http://dx.doi.org/10.1007/978-3-319-15069-7_4

Integrating the above equations by parts we obtain:

MTBF ¼ � tR tð Þ½ �10
ð1
0

R tð Þdt ð2:17Þ

For t¼ 0, R(t)¼ 0, hence t�R(t)¼ 0. As t increases from 0, R(t) decreases. As t
tends to1, t�R(t) tends to zero. Therefore, the first term of the previous equation

is zero. For any kind of failure distribution with a failure rate λ as a function of time,

the general expression for MTBF can be described by Eq. (2.18):

MTBF ¼
ð1
0

R tð Þdt ð2:18Þ

The higher the MTBF, the higher the reliability of the system or component.

Moreover, for failure distributions independent of time with a constant rate,

MTBF is given by Eq. (2.19):

MTBF ¼
ð1
0

e�λtdt ð2:19Þ

and

MTBF ¼ 1

λ
e�λtdt
� �1

0
¼ 1

λ
ð2:20Þ

Hence, MTBF of a system is reciprocal to its failure rate (given a constant failure

rate). MTBF will be expressed in hours if the constant rate is also expressed in

hours.

2.3.8 Mean Time to Failure (MTTF)

As described above, MTBF is a good measure of reliability for systems that can be

repaired. A similar single-parameter indicator of reliability for components that

cannot be repaired is the mean time to failure (MTTF). MTTF is the average time

until the first system’s failure.

Results of life testing can be used to calculate MTTF by testing a set of

N identical units until all of them have failed with the time to the first failure of

the individual units identified as t1, t2, t3, . . ., tn. It can be observed that MTTF is

given by Eq. (2.21):

MTTF ¼ 1

λ

Xn

i¼1
ti ð2:21Þ

2.3 Reliability 19

As before, the failure rate, if independent of time, can be calculated by Eq. (2.22):

λ ¼ 1

MTTF
ð2:22Þ

MTBF and MTTF are sometime used interchangeably. Although the numerical

difference is small in many cases, both measures represent different concepts.

MTTF is related to MTBF but does not include the repair time (MTTR or mean

time to repair/restore), nor does it include the detection time (MTTD or mean time

to detection) (Eq. (2.23)):

MTBF ¼ MTTF þMTTDþMTTR ð2:23Þ

MTTR is the average time required to repair a system, whereas MTTD is the

average time required to detect a failure. In most applications, MTTR and MTTD

are just a small fraction of the total MTTF. Therefore, the approximation that

MTBF and MTTF are almost equal is sometimes fair. MTTR and MTTD are

difficult to estimate and can be determined by injecting faults into a system,

measuring the time required to repair it. Both measures are further discussed in

the availability section.

2.3.9 Reliability Prediction

In the case of design of hardware systems, there are two different known theoretical

methods to meet the above mentioned reliability requirements and specifications:

• Fault avoidance: makes use of substantially higher reliability components and

substantially higher than expected lifetime. Birolini (2014) introduced a com-

prehensive theoretical approach based on the application of reliability engineer-

ing throughout the system to reach this goal.

• Fault tolerance: deliberately introduces redundancy in the system to achieve

continuous operation.

During the last 50 years there have been several attempts (Gnedenko et al. 1999;

Koren and Krishna 2007; Kovalenko et al. 1997; Birolini 2014) to connect probability

and reliability. A brief review of the application of probability theory for the analysis

of reliability of real objects and their features (fault tolerance) is presented below.

Reliability of systems can be estimated by partitioning those systems into more

elemental entities (e.g. subsystems or components). This partitioning enables to

assess the individual reliability of these individual entities. The entities can be

interconnected in serial, parallel or be considered as mixture of both. Therefore,

reliability models are needed to estimate the role and involvement of entities or

elements in the reliability of the system. Then we are able to analyse how a failure

of each component would affect the overall reliability of the system.

20 2 Background Concepts and Resilience

www.allitebooks.com

http://www.allitebooks.org

2.3.9.1 Serial Reliability

In this model, the entities are connected in series. When minimum design and costs

are specified in the design requirements of a system, a series system is the usual

choice for designers. For the system to be operational, all of the components or

subsystems should be operational and work correctly.

Serial systems are inherently unreliable since the failure in one of the elements

would cause a stoppage of the overall system. The reliability of a system without

redundancymay bedescribedwith a sequential reliability block diagram (seeFig. 2.9).

In this arrangement the system reliability is the product of its individual com-

ponent reliabilities, assuming they are organised in serial (cumulative) structure.

Note that for this structure, if the reliability of each component is Ri, the total

system reliability Rs is given by Eq. (2.24):

Rs tð Þ ¼
Yn

i¼1
Ri tð Þ ¼ exp �

X n

j¼1
λj

� �
t

� �
ð2:24Þ

And the failure rate of a serial system λs is given by Eq. (2.25):

λs ¼ λ1 þ λ2 þ λ3 þ . . . þ λn ð2:25Þ

Furthermore, the Mission Time Function MT(r) gives the time at which system

reliability falls below the given threshold level r. The relationship between reli-

ability R(t) and mission time MT(r) is given by the definitions:

Mission time function MT with threshold level r (Eq. (2.26)):

R MT rð Þ½ � ¼ r ð2:26Þ

Mission time function MT at given time t (Eq. (2.27)):

MT R tð Þ½ � ¼ t ð2:27Þ
If λ is constant then, using Eq. (2.14) then Mission time function with constant

failure rate (Eq. (2.28)):

t ¼ �ln rð Þ
λ

MT rð Þ ¼ �ln rð Þ
λ

ð2:28Þ

Fig. 2.9 Logic diagram of serial system reliability

2.3 Reliability 21

Respectively, for a non-redundant system with n components Mission time function

for non-redundant system with n component (Eq. (2.29)):

MT rð Þ ¼ �ln rð ÞXn

i¼1
λi

ð2:29Þ

The failure rate of a sequential independent element system is equal to the sum of

the failure rates of its elements. In the case of a constant failure rate across all

elements, the MTTF of the whole system (MTTFS) can be calculated as follows

(Eq. (2.30)):

MTTFS ¼ 1=λs ð2:30Þ

Note that this equation highlights the fact that the reliability of a system is directly

impacted (in practice often dominated but not solely determined) by the reliability

of its least reliable component.

2.3.9.2 Parallel Systems Reliability: Redundancy and Fault Tolerance

In the previous model, no redundancy was taken into account to calculate the

system reliability. A second approach to achieve a required level of reliability is

the deliberate introduction of extra components into the system. The sole purpose of

introducing this redundancy artificially is to increase reliability. However, there is a

price to pay for such improvement in the system’s reliability.

This approach assumes a deliberate introduction of redundancy in the system

and has been applied since the original work of Von Neumann (1956) and Pierce

(1965). Note that introducing redundancy involves some additional components

and complexity, and it is therefore imperative that the reliability benefit accruing

from the redundancy scheme must far exceed the decrease in reliability due to the

actual implementation of the redundancy mechanism itself.

The classic parallel generalisation of the redundancy model (Birolini 2014)

describes a system of n statistically identical elements in active redundancy,

where k element(s) is/are required to perform a function and the remaining n–k
are in reserve.

A function of the system is considered successful if during scheduled time

k element(s) of the system was/were available. As an example, in the case of a

1-out-of-3 system (Fig. 2.10), its function would be complete if at least one of the

elements was known to be working correctly. The second and third elements are

redundant and introduced only for reliability purposes when the first unit is known

to be faulty.

22 2 Background Concepts and Resilience

For the system of Fig. 2.10 the reliability function is as follows:

R tð Þ ¼ R1 tð Þ þ R2 tð Þ þ R3 tð Þ � R1 tð ÞR2 tð ÞR3 tð Þ ð2:31Þ

Assuming that the elements are identical, work or fail independently of each other

and have constant failure rate R1 tð Þ ¼ R2 tð Þ ¼ e�λt, then by substitution:

R tð Þ ¼ 3e�λt � e�3λt ð2:32Þ

And mean-time to failure (Eq. (2.33)):

MTTFs ¼ 3

λ
� 1

3

� �
λ ¼ 8

3λ
ð2:33Þ

Therefore, the apparent working time of the redundant system is increased. In the

general case where n redundant elements are introduced as spares to provide

successful completion of an element’s function with the same assumptions as

above, the overall system reliability is given by Eq. (2.34):

R tð Þ ¼ 1� 1� e�λt
� 	n ð2:34Þ

In the above equation n is the number of modules, e�λt is the reliability of the

original system and it is assumed that:

– There is a fault-free mechanism to detect and report failure of the active module.

– There is a fault-free switching mechanism to replace the active module in case of

detected failure.

– All modules have equal reliability.

Thus, there is no doubt that redundancy even for this classic case could improve

reliability of the system considerably. Note that the redundant components do not

necessarily need to be identical, but could also correspond to additional hardware

with different reliabilities used to detect and treat transient faults.

Fig. 2.10 Parallel

reliability

2.3 Reliability 23

2.3.9.3 Reliability for Mixed Serial and Parallel System

In practice, systems are usually made of a combination of serial and parallel

components. More complex math applies to the reliability of these mixed arrange-

ments. This type of arrangement is frequently used in systems where a specific part

is particularly prone to failure. Figure 2.11 depicts an example of M of N system,

whose elements may or may not have constant rates, and has a voter that counts for

the serial reliability element.

Assuming that only 1 out of N parallel components needs to operate, the

reliability of the parallel section of the system is defined by Eq. (2.35):

R tð Þ ¼ 1� 1� R1 tð Þð Þ 1� R2 tð Þð Þ 1� R3 tð Þð Þ½ � ð2:35Þ

The total reliability of the mixed serial/parallel system shown in Fig. 2.11 is

specified by Eq. (2.36):

R tð Þ ¼ R1�3 tð ÞR4 tð Þ ð2:36Þ

Therefore, a relatively reliable voter would dominate the reliability of a redundant

system.

2.4 Safety

In safety critical systems, safety describes the absence of catastrophic failures for

users and the environment when a failure takes place. A system that can be repaired

after failure presents a minimum of two states: functional and failed. Some other

systems are able to have extra states even under faulty conditions. An example of

such system, depicted in Fig. 2.12, has the possibility of transiting to a safe state, in

a manner that does not cause any harm.

Safety is a measure of the fail-safe capability of a system, and it is defined as the

probability that a system will either perform its function correctly or will

Fig. 2.11 Reliability of a

combination of serial/

parallel components with a

voter

24 2 Background Concepts and Resilience

discontinue its operation in a safe way. Quantitatively, safety is the probability that

the system will not fail in the interval [0,t] in such a manner as to cause unaccept-

able damage to other systems or compromise the safety of any people associated

with the system.

The safety function can be described by Eq. (2.37):

S tð Þ ¼ Pfunctional tð Þ þ Psafe-mode tð Þ ð2:37Þ

Safety is directly dependent on “risk”, as the probability of loss associated to a

particular failure. In turn, risk is a function of the probability of failures and their

severity on the system. A system can be unreliable, have low availability and yet be

safe. A system is safe if it functions correctly or if in case of failure it can remain in

a safe state.

2.5 Security

Security is the concurrent existence of three attributes: integrity, maintainability

and availability.

2.5.1 Integrity

The attribute of Integrity is inward-looking and is related to the capability of a

system to protect computational resources and data under severe circumstances.

Integrity can be defined as the absence of improper system state alterations. As

suggested by Storey (1996) two types of integrity can be defined:

– System integrity: the ability of a system to detect faults during operation and to

inform to a human operator.

– Data integrity: the ability of a system to prevent damage in data and possibly to

correct errors that occur as a consequence of faults.

Fig. 2.12 A basic fail-safe system with three states

2.5 Security 25

2.5.2 Maintainability

Qualitatively,maintainability is referred to as the ease and rapidity inwhich, following

a failure, a repairable system can be restored to a specified operational condition.

Quantitatively, maintainability is defined as the probability M(t) that a failed system

will restore to a normal operable state specified within a given time frame t.
The restoration process involves the location of the problem, the reparation

\recovery of the system bringing it back to a normal operational condition. Main-

tainability has two main components, serviceability and recoverability, that should

be carefully analysed in the implementation of self-repairing systems (Eq. (2.38)):

M tð Þ ¼ f S tð Þ, RC tð Þð Þ ð2:38Þ

Maintainability characteristics are determined by the system design of maintenance

procedures, such as preventive (PM) and corrective maintenance (CM) procedures

that respectively apply to the serviceability and recoverability components and

determine the length of repair times (Bodsberg and Hokstad 1995; Dhillon 2006).

PM is the set of activities performed on a system before the occurrence of failure

in order to prevent any degradation in its operating condition. PM aims to reduce

the probability of failure at predetermined intervals or along with prescribed

criteria. CM is the remedial set of activities performed on a system in order to

recover an item to its fully functional condition. CM is usually unplanned that

requires urgent attention.

Figure 2.13 shows PM and CM mechanisms on a three-state repairable system.

Note that not all maintenance leads to downtime of the three-state system. Whilst

running PM and remedial CM prevent and correct failures during normal operation,

shutdown PC and CM take place during non-functional states.

Figure 2.13 shows PM and CM mechanisms on a three-state repairable system.

Note that not all maintenance leads to downtime of the three> state system. Whilst

running PM and remedial CM prevent and correct failures during normal operation,

shutdown PC and CM take place during non-functional states.

Fig. 2.13 Preventive and corrective maintenance on a three-state repairable system

26 2 Background Concepts and Resilience

2.5.2.1 Recoverability

Once the problem has been identified and located by the testability mechanisms,

CM can be carried out to complete the necessary repairs. Consider a repairable

system with two states: a fully functional and a failed one (as in Fig. 2.3); however,

in this case the failed state can be abandoned after successful CM, transiting back to

a fully functional state (as in Fig. 2.14).

Recoverability RC(t) may be defined as the ease of restoring the service after

failure. It can be modeled as Eq. (2.39):

RC tð Þ ¼ 1� e�μt ð2:39Þ

where μ is the repair rate or average number of repairs that can be performed per

time unit, the key aspects of recoverability, MTTR and MTTD, are given by

Eq. (2.40):

MTTDþMTTR ¼ 1

μ
ð2:40Þ

Note that good testability would affect recoverability to a degree. MTTR is further

discussed below in the availability section.

2.5.2.2 Serviceability and Testability, T(t)

Testability T(t) is the ease in which servicing and inspections can be conducted in

order to identify the characteristics of a system; it is the ability to check certain

attributes within a system. Measures of testability allow the system to assess the

ease of performing tests. Ideally, in order to improve testability the tests can be

automated and implemented as an integral part of the system.

These techniques can be used for error detection and error correction within the

system. Since most of the time, testability is often used to determine the source of

the problem, one way to improve the maintainability of the system significantly is

the use of automatic diagnosis.

Testability relates to reliability since it allows detection and correction of errors that

would, otherwise become failures, thus improving the overall reliability of the system.

Testability is clearly connected with recoverability due to the importance of

minimising the time to locate and identify specific problems.

Fig. 2.14 A repairable

system with two states and

corrective maintenance

2.5 Security 27

Two properties/measures closely associated to testability, controllability and

observability (Franklin and Saluja 1995, p. 199; Goldstein 1979). Observability

relates to the probability of “observing”, via output measurements, the state of a

system.

Controllability instead is associated to the ease of forcing parts of the system into

desired states by using appropriate control signals. Design for testability techniques

(DFT) (Alanen and Ungar 2011; Karimi and Lombardi 2002; Landis 1989; Mathew

and Saab 1993), can be used in order to increase observability and controllability of

systems.

2.5.2.3 Coverage

Mathematically, fault coverage C is the conditional probability that, given de

existence of a fault in the operational system, the system is able to recover, and

continue information processing with no permanent loss of essential information

(Bouricius et al. 1969), i.e. Eq. (2.41):

C ¼ Pr system recovers

 system fails

� � ð2:41Þ

Fault coverage is a good measure of maintainability and, specifically of the

system’s ability to detect, locate, diagnose, contain and recover from the presence

of a fault. Several types of fault coverage can be distinguished, depending on

whether the designer is concerned with fault detection, diagnosis, containment or

recovery (Kaufman and Johnson 2001).

In Fig. 2.15, we extend the phases of fault handling by (Dugan and Trivedi

1989), showing the relationship among the steps of recovery and their coverage.

Fault detection coverage Cd measures the system’s ability to detect fault. Fault
diagnosis coverage4 4Cl is a measure of the system’s ability to locate and determine

the type of fault. Fault containment/isolation coverage Cc is a measure of the

Fig. 2.15 Four phases of fault handling and their coverage

4 Fault diagnosis involves both the location (fault location) and determination of the fault type

(fault determination).

28 2 Background Concepts and Resilience

system’s ability to contain faults within a predefined boundary (fault containment
region or FCR). For instance, fault that occurs in a subsystem can be detected,

located, and its effects can be prevented from propagating to other subsystems.

Finally, the general term “coverage” or “fault coverage” is often used to refer to
fault recovery coverage, which measures the system’s ability to recover from faults
and maintain correct operation. Recovery may involve modifying the structure to

remove the faulty component (reconfiguration) including graceful degradation.
The fault coverage C for the system is given by Eq. (2.42):

C ¼ Cd � Cl � Cc � Cr ð2:42Þ

Clearly, high fault recovery coverage requires high fault detection, diagnosis and

containment coverage.

2.5.3 Availability

A simple definition for availability of a repairable5 system is “Readiness for correct

service” (Avizienis et al. 2004). This measure is suitable for applications in which

continuous performance is not essential but where it would be costly to have long

downtimes. Availability is strongly dependent on how frequently the system

becomes non-operational (reliability) and how quickly it can be repaired (main-

tainability) (see Fig. 2.14).

As defined in the MTBF Eq. (2.23) the mean time between failures of a system

can be defined as a combination of MTTF, MTTR and MTTD. Figure 2.16 illus-

trates the variations of the state (functional-failed) of a repairable system. The time

of operation of such systems is discontinuous. From time 0 to time x1 the system is

continuously available and therefore has an internal availability of 1.

Fig. 2.16 Failure and repair cycle of a system

5 The concept of availability is applicable to repairable systems. Availability of a non-repairable

system would be the equivalent to reliability.

2.5 Security 29

After the first failure at time x1 internal availability keeps decreasing until the

detection and recovery mechanisms complete the repair at time r1, returning to the

original functional state. The system will fail again at time x2 after a certain time of

operation [r1�x2], get repaired at time r2, and this process will reiterate. Assuming

that Xi is an average of system failure and i an average of system repair, for i> 1

(Eq. (2.43)):

MTBF ¼
Xn

k¼1
Xi � X i� 1ð Þð Þ ð2:43Þ

The relation between time to failure, time between failures and time to repair is

displayed in Fig. 2.17 below.

There are various availability measures that can be classified differently

depending on the time interval preferred or the downtimes used.

2.5.3.1 Instantaneous or Point Availability, A(t)

Instantaneous or point availability A(t) is the probability that the system will be

operational at a random time t (Barlow and Proschan 1975). It describes the

on-demand probability of proper service. It is equivalent to reliability when there

is no repair.

While internal availability is based on an interval time, instantaneous availabil-

ity is based on a specific instant of time. At any given time t, the system will be

functional if one of the following conditions is met (Elsayed 1996):

– The system was functional from 0 to t (it never failed by time t). The probability
of this happening is R(t) (Eq. (2.14)).

Fig. 2.17 Relation between time to failure (TTF), time between failures (TBF) and time to

repair (TTR)

30 2 Background Concepts and Resilience

www.allitebooks.com

http://www.allitebooks.org

– The system has been functional since the last repair time ri (see Fig. 2.16) when
0< ri< t. This has a probability of functioning since last repair for 0< ri< t
(Eq. (2.44)):

ð t

0

R t� rið Þm rið Þdri ð2:44Þ

With m(ri) being the renewal density function of the system.

The instantaneous availability of the system is the summation of these two

probabilities (Eq. (2.45)):

A tð Þ ¼ R tð Þ þ
ð t

0

R t� rið Þm rið Þdr ð2:45Þ

2.5.3.2 Average Uptime Availability (or Mean Availability), A tð Þ

The average uptime availability or mean availability A tð Þ (Lie et al. 1977) is the

proportion of time during a time period [0� t] that the system is functional and is

given by Eq. (2.46):

A tð Þ ¼ 1

t

ð t

0

A rið Þdr ð2:46Þ

This type of measure is suitable to systems with periodical downtime for mainte-

nance/repairing.

2.5.3.3 Limiting or Steady-State Availability, A(1)

The limiting or steady state availability (Applebaum 1965) of the system A(1) is

the limit of the availability function as time t tends to infinity (Eq. (2.47)):

A 1ð Þ ¼ limt!1A tð Þ ð2:47Þ

2.5.3.4 Inherent Availability, AI

In its simplest form, availability A can be mathematically generalised as a function

of Up and Down time (Eq. (2.48)):

A ¼ Uptime

Uptimeþ Downtime
ð2:48Þ

During the design phase of a FT system, Inherent availability AI is a useful measure

(Valstar 1965). AI defines the availability of a system only in regard to effective

2.5 Security 31

functional time (uptime) and downtime due to corrective maintenance (CM). It can

be calculated using estimated parameters (MTTF, MTTD andMTTR) as Eq. (2.49):

AI ¼ MTTF

MTTFþMTTDþMTTR
¼ MTTF

MTBF
ð2:49Þ

Hence, if MTTF or MTBF are long compared to MTTR and MTTD, then the

system’s availability will be high. Likewise, if MTTR andMTTD are short, then the

system’s availability will also be high. As reliability decreases (e.g. low MTTF),

better recoverability will be needed (lower MTTR/MTTD) to achieve the same

availability.

2.5.3.5 Achieved Availability, AA

AI is a good parameter to measure systems under ideal conditions where downtime

due to preventive maintenance (PM) is overlooked. Achieved availability AA is

similar to inherent availability with the exception that downtimes due to PM tasks

are also included (Conlon et al. 1982). According to US department of defense the

achieved availability is defined by Eq. (2.50):

AA ¼ OT

OTþ TCMþ TPM
ð2:50Þ

Where OT is the total operating time, TCM is the total corrective maintenance time

and TPM is the total time spent during preventive maintenance actions.

2.5.3.6 Availability–Recoverability–Reliability Relationship

At first glance, it might seem that a highly available system would also have high

reliability. Nonetheless, this in not always the case, a system can be highly available

yet suffer from frequent periods of non-operation as long as the length of the

downtime is extremely short. Let us explore further the relationship between

availability and reliability.

Reliability represents the probability of systems and components to perform its

intended function for a desired period of time [0, t] under specified environmental

and operating conditions. However, reliability in itself does not take into account

any repair actions. Reliability does not reflect how long the recovery of a compo-

nent/system will be needed in order to take it back to a working condition.

Availability reflects not only how often a system fails but how often it can be

repaired (it accounts for repair actions). Thus, it is a function of reliability,

recoverability and testability (Eq. (2.51)).

32 2 Background Concepts and Resilience

A tð Þ ¼ f R tð Þ,M tð Þð Þ ð2:51Þ

Table 2.1 below presents the relationship between reliability, recoverability and

availability. As shown by the table, once again, high reliability does not necessary

implies high availability. Availability decreases as time to repair increases. Even an

unreliable system could present high availability if MTTR is low.

2.6 Performability

The all-or-none nature of operation implicit in classic reliability and availability

models does not measure in detail systems that can operate with different capability

levels (e.g. multiprocessor systems). Consequently, another key attribute of resil-

ience, performability and its measure, mean computation before failure (MCBF)

can be employed. MCBF is described as the expected amount of computation

available on the system before its first failure, given an initial state (Beaudry 1978).

In qualitative terms, performability is the ability of a system or component to

accomplish its designated functions within specified constraints such as speed,

accuracy or memory usage. It is the measure of the likelihood that some subset of

the functions of the system or component is performed correctly during a certain

time interval. Quantitatively, Performability P(L,t) has been defined as “the prob-

ability that the system’s performance will be at or above some level L at the instant

of time t” (Fortes and Raghavendra 1985).

After the occurrence of faults and errors, certain systems have the ability to

continue to perform correctly, however with a diminished level of performance.

This ability or feature is called Graceful degradation, or fail soft operation

(Gountanis and Viss 1966), and it is the ability of a system (gracefully degrading

system or GDS), upon failure of one or more of its component units, to continue the

processing of tasks at the expense of decreasing its performance level. The per-

formability of a GDS P(L,t) at time t depends on the amount of available resources

and their computational capability provided.

Note that performability differs from reliability in that reliability measures the

likelihood that all functions are performed properly, whereas performability mea-

sures the likelihood that some subset of the functions is performed properly.

Table 2.1 Reliability–

recoverability–availability

relationship

Reliability Recoverability Availability

Constant Constant Constant

Constant Decreases Decreases

Constant Increases Increases

Decreases Constant Decreases

Increases Constant Increases

2.6 Performability 33

2.7 Resilience

Historically, the term resilience has had multiple meanings in various fields. As a

property it has different connotations. In social psychology resilience is about

elasticity, spirit, resource and good mood. On the other hand, in material science

resilience involves not only elasticity but robustness.

In computer science it has been identified as a synonym for fault tolerance. In

this book we adopt to extend the concept of resilience for safety critical applica-

tions. First we start by selecting the material science connotations. Hence, our

definition of resilience includes both attributes: robustness and elasticity.

Figure 2.18 illustrates the different attributes and measures of resilience. The

term robustness involves the use of static techniques such the use of very reliable

materials or the use of rigid and pre-design approaches of fault tolerance. A robust

system can deliver correct service in conditions beyond the normal domain of

operation without fundamental changes to the original system.

This is more an aim than an objective. Total reliability to unforeseen faults other

than the normal domain of operation is not feasible.

On the other hand, we interpret elasticity as the ability to “spring back”

(or recover) without losing the intrinsic properties of the material (in our case a

system). Applied to resilience, we understand elasticity as the ability to evolve, to

successfully accommodate changes (evolvability). An evolvable system may per-

form changes to the system, decreasing its level of performance or reliability for a

specific time range (1) to compensate for faults or (2) during exceptional circum-

stances (graceful degradation).

More specifically, we consider that a resilient system must have the ability to be

adaptable, understanding adaptability as the ability to evolve while executing.

Therefore, adaptability is a subset of evolvability and requires the ability to

anticipate to changes prior to the occurrence of the resulting damage.

Fig. 2.18 Attributes and measures of resilience

34 2 Background Concepts and Resilience

Therefore, a resilient architecture must include different mechanisms to acquire

both attributes: (a) static pre-design fault tolerant techniques (robust) and

(b) dynamic techniques (elastic) that may be achieved with the ability to

reconfigure elements of the system (reconfiguration).

2.7.1 Requirements

The main aim required to implement a resilient architecture for safety critical

applications is the “ability to deliver correct service adapting to disturbance,

disruption and change within specified time constraints”.

The above aim can be subdivided into more specific objectives, as follows:

• Continuity of service (reliability).

• Readiness for usage (availability).

• Non-occurrence of catastrophic consequences (safety).

• Non-occurrence of incorrect system alterations (integrity).

• Ability to undergo corrective maintenance and recovery with maximum cover-

age of faults (testability and recoverability).

• Ability to perform in the presence of faults (performability).

• Ability to decrease the level of performance for a specific time range in order to

compensate for hardware faults (graceful degradation).

• Ability to regain operational status via reconfiguration in the presence of faults

(recoverability via reconfiguration).

• Ability to accommodate changes (evolvability).

• Ability to anticipate to changes (adaptability).

2.7.2 Effectiveness of Resilience

Being reliability R(t), security SC(t), integrity I(t), maintainability M(t), testability
T(t), recoverability RC(t), availability A(t), safety S(t), performability P(L,t),
robustness RB(t), evolvability E(t), adaptability AD(t) and reconfigurability

RC(t). Maintainability is a function of serviceability and repairability (Eq. (2.52)):

M tð Þ ¼ f T tð Þ, RP tð Þð Þ ð2:52Þ

Security is a function of integrity, availability and maintainability (Eq. (2.53)):

SC tð Þ ¼ f I tð Þ,A tð Þ, M T tð Þ, RP tð Þð Þð Þ ð2:53Þ

2.7 Resilience 35

Evolvability is a function of adaptability and reconfigurability (Eq. (2.54)):

E tð Þ ¼ f AD tð Þ, RC tð Þð Þ ð2:54Þ

Therefore, resilience RES(t) will be a function of all these attributes (Eq. (2.55)):

RES tð Þ ¼ f
reliability, integrity, testability, recoverability,

availability, safety, performability,

robustness, adaptability, reconfiguration

0
@

1
A ð2:55Þ

With all these attributes the following systems would benefit from the implemen-

tation of effective resilience:

– Safety-life critical: e.g. aircraft and nuclear reactor control, life support systems.

– Business critical.

– Reliability-critical: e.g. telephone switching-, traffic light control-, automotive

control (ABS, fuel injection) systems.

– Mission-critical and long life systems: e.g. manned and unmanned space-borne

satellites and other systems in inaccessible locations.

– High availability such as transaction processing and non-stop systems.

Resilience is not a simple and single concept, rather, it possesses different

components or key attributes. Taking into consideration all these attributes, our

definition of resilience is as follows:

A resilient system is a system that over a specified time interval, under specified environ-

mental and operating conditions, is ready to perform its intended function, guaranteeing the

absence of improper system alterations, having the ability to anticipate and accommodate

changes while executing, and the ability to conduct servicing and inspections so that in case

of failure quick restoration to a specified working condition must be achieved, or otherwise

discontinue of the operation in a safe way is provided.

2.8 Conclusion

This chapter explains the concept of resilience that encompasses important attri-

butes and measures that are used further. Such concepts have been introduced

before attempting to explain resilience itself.

Safety critical systems must provide correct service at all times by trying to

avoid the occurrence of any catastrophic failure. Different techniques can be

employed to increase reliability by avoiding/preventing hardware faults from

becoming errors that may lead to failures and catastrophic failures.

We introduce the concept of vicious cycle that explains the reasons behind the

performance and reliability problems that the microprocessor industry is currently

facing. The increase of transistor density, operating frequencies and architectural

complexity is drastically decreasing the reliability of newer systems. There is, there-

fore, a need for implementingmechanisms that can deal with the upcoming fault rates.

36 2 Background Concepts and Resilience

The essential background for classical reliability has been presented. The basic

definitions for reliability evaluation have been reviewed. It has been shown that for

constant failure rate, independent of time, the exponential distribution is the most

suitable for the reliability analysis of the useful time of systems. The age of a

system should be taken into account when analysing reliability. Three different

periods of system life with different reliability have been explained by introducing

the bathtub curve, which represents the effect that ageing and degradation have on

HW reliability.

We have briefly described an estimation of reliability for serial, parallel and

mixed systems. The failure rate of a serial system is equal to the sum of the failure

rates of its individual elements. Therefore, the more components a serial system

has, the higher the probability of system failure. The reliability of a system is often

dominated by the reliability of its least reliable component. Introducing deliberately

and carefully extra components into a system, overall reliability can be increased,

provided reliability benefit accruing from the redundancy scheme exceeds the

decrease in reliability due to the actual implementation of the redundancy mecha-

nisms itself.

We extend the classical definition of resilience and apply it to the field of safety

critical computing. Moreover, we quantify the key attributes that a resilient system

must have, exploring the relationships among these quantitative measures. The

attributes of safety and performability are explained. The concept of security is

described including attributes: integrity, availability, testability and recoverability.

The mathematical background and the basic definitions for system availability are

also introduced.

We show how the availability of FT systems can be estimated using different

methods and measures.

Finally, the pathways of design and development of resilient architecture for

safety critical applications are defined. Property-wise descriptions of resilient

systems are explained.

It is pointed out that a resilient system, over a specified time interval, under

specified environmental and operating conditions (performability), “must be ready”

(in terms of availability) to perform its intended function (with reliability),

guaranteeing the absence of improper system alterations (integrity).

A resilient system must have the ability to conduct servicing and inspections

(testability) so that in case of failure achieving quick restoration to a specified

working condition (maintainability) can be provided or it can discontinue its

operation in a safe way (safety). Furthermore, a resilient system must have the

ability to anticipate changes and evolve (evolvability) while executing (adaptabil-

ity), successfully accommodating changes by reconfiguring elements of the system

if necessary (reconfiguration).

2.8 Conclusion 37

Chapter 3

Dealing with Faults: Redundancy

3.1 Handling Faults: Design Strategies

In order to increase the reliability of safety-critical systems so that correct service

can be delivered within predefined “envelope of requirements”, we need to develop

methods and techniques enables us to prevent or reduce the appearance of faults

that could cause catastrophic failures. Depending on the phase of the development

cycle and the level of abstraction at which the faults are tackled, two different

design strategies can be adopted: fault avoidance and fault tolerance.
Fault avoidance strategies can be applied at device level during design time.

Typical in mainstream applications, in order to reduce the number of failures, this

approach focuses on preventing the occurrence of faults. Since a failure is the

consequence of an error propagating, and an error is the consequence of a fault,

eliminating faults would improve reliability. Examples of fault avoidance are:

silicon on insulator (SOI) and hardened memory cells. These techniques and

supportive technologies have drawbacks in terms of cost, speed of operation, chip

area and power consumption.

In turn, at execution or, often called “run-time”, fault tolerance should be

implemented. Fault and tolerance to it can be considered at different levels of

abstraction, fault tolerance strategies can be implemented at a system level or

element level.

Following the failure life cycle and its different phases already described in

Sect. 2.1, Fig. 3.1 adds the different mechanisms to deal with faults within the

fault generation, error activation and failure propagation phases. Additionally,

Fig. 3.1 serves as a summary of the chapter introducing the fault avoidance

and fault tolerance techniques and their phase of interaction within the failure

life cycle.

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_3

39

http://dx.doi.org/10.1007/978-3-319-15069-7_2#Sec1

Focusing on the source of faults, fault avoidance mechanisms attempt to prevent

faults from occurring in the first place. Once a fault has been generated it can be

prevented from activating an error using static fault tolerant techniques such as

masking. Alternately, errors can be detected and recovered using dynamic fault

tolerance techniques. Therefore, either we prevent the faults from taking place

(fault avoidance) or we deal with them using fault tolerance techniques.

3.2 Fault Avoidance

Nowadays, mainstream systems employ fault avoidance design strategies in order

to achieve their projected failure rates. Manufacturing companies perform assess-

ments of sources and weaknesses that could lead to potential failures. Based on the

assessments, preventive measures are taken to ensure that the overall reliability

target is not compromised.

Additionally, fault avoidance strategies may include technology and design

mitigation techniques that implicate modifications of conventional manufacturing

processes. These techniques involve the use of specific materials, the modification

of the doping profiles of devices and substrates and the optimisation of deposition

processes for insulators.

Technology mitigation techniques consist of IC process variations by either

improving the manufacturing process or by improving the materials used.

Improving materials: implicates the selection of specific materials with better

characteristics. For example:

– Boron has been used extensively as a p-type dopant in silicon and has also

been used in Boron Phosphorus Silicate Glass (BPSG) dielectric layers. For

BPSG-based semiconductor processes, BPSG can, in fact, be the predominant

source fault

fault masking

fault tolerance FT

static FT dynamic FT

fault detection
and recovery

error failure

generation activation propagation

fault avoidance

Fig. 3.1 Mechanisms to deal with faults within the fault-failure life cycle

40 3 Dealing with Faults: Redundancy

source of transient errors (Baumann 2001). The removal of B-10 Boron isotopes

in BPSG has been proven effective in the reduction of transient errors (Baumann

et al. 1995).

– Lead-free materials can reduce the effect of alpha particles (May 1979)

(extensive information on alpha particle effects is provided in Chap. 4).

– Implanting of elements such as Al, As, Fl, P and Si into oxides improves the

resilience to Total Ionising dose effects (TID) (Kato et al. 1989; Mrstik

et al. 2000; Nishioka et al. 1989).

Improving the manufacturing process is based on changing the charge collection
and charge sharing capabilities of the devices:

– Substrate + techniques, e.g. using epitaxial substrate doping (EPI layer charge

reduction)(Puchner et al. 2006), wells (single well, twin well and triple well

processes) (Pellish et al. 2006; Puchner et al. 2006; Roche and Gasiot 2005),

buried layers (Roche and Gasiot 2005) and dry thermal oxidation (Hughes and

Benedetto 2003)

– Non-capacitance techniques, e.g. increasing the node coupling capacitance

between storage nodes and memory, or using a DRAM capacitor on top of the

memory cell (Geppert 2004)

– Using alternative insulating substrates, e.g. the use of Silicon on Insulator (SOI)
or Silicon on Sapphire (SOS) (Schwank and Dodd 2003) would mitigate signif-

icantly the transient faults due to radiation (described in Chap. 4).

Whilst technology mitigation techniques are based at the process level, design
mitigation techniques operate at the layout level. An example of this type of

technique is the use of enclosed layout transistors. Furthermore, to prevent the effects

of radiation memory cells can be hardened with the use of contact and guard rings.

The effect of silicon failure mechanisms, such as radiation induced transient

faults and wear-out defects, is proportional to the clock speed, supply voltage,

temperature, etc. Therefore, to ensure system reliability safety margins are inserted

into clock speed, operating temperature and supply voltage margins. If the system

failure rates resulting from the use of fault avoidance strategies fall within the

specified reliability targets, the use of redundancy techniques is not justified.

However, this is not the case for safety-critical systems.

Despite all the testing, verification techniques and technology improvement,

hardware components will eventually fail. The fault avoidance approach will not be

panacea and will be insufficient if:

– Failure rate and MTTR are unacceptable or,

– The system is inaccessible for repair and maintenance actions

Therefore, fault avoidance techniques are only part of the solution for real time

safety critical domains. Complete removal of faults via fault avoidance is not

possible; above all, it has drawbacks in terms of cost of manufacturing the elements

required, speed of operation and increased chip area.

3.2 Fault Avoidance 41

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-319-15069-7_4
http://dx.doi.org/10.1007/978-3-319-15069-7_4
http://www.allitebooks.org

3.3 Fault Tolerance: Using Redundancy

The key ingredient of fault tolerance is redundancy. Redundancy is defined as the

addition of information, resources or time beyond what is needed for correct system

operation (Latchoumy et al. 2011). Fault tolerant techniques rely on redundancy

that may include a combination of additional elements of hardware and/or software

to detect and/or recover from faults. These components are called redundant since

they are not required in a perfect + system.1

Artificially built-in or protective redundancy is a system property that we define

as the incorporation of extra components (transistors at a low level) in the design of

a system so that its function is not impaired in the event of a failure. Redundancy

may arise by design (artificially built-in redundancy) or as a natural by-product of

design (natural redundancy). Natural redundancy is usually unexploited whilst

artificially built-in redundancy has been deliberately introduced. In this work,

when the term redundancy (or redundant) is used it is meant to have the artificial

connotation instead of the natural one.

When a system does not provide the minimum reliability required, extra redun-

dancy, not strictly necessary for the normal functioning of the system, can be added

in order to increase the probability of normal functioning. Notice that that the term

redundant does not mean identical functionality; it just denotes that it performs the

same task. In this sense, heterogeneous hardware performing the same work can

also provide redundancy.

Fault tolerance assumes actions such as fault detection, location of the faulty

component, recovery and, if necessary, reconfiguration of the system. Fault detec-

tion is the process of determining the presence of faults and the time of occurrence.

Fault location is to exactly locate the reason/origin of the fault. The system must be

dynamically restored as though it is “as good as new” in operational terms, except

for the fact that some of the redundancy has been used up and this may limit the

possibilities for future repairs.

Several attempts to classify redundancy have been made (Avizienis 1971; Carter

and Bouricius 1971; Schagaev 1989, 2001). This work follows the approach

proposed by (Schagaev 2001).

Figure 3.2 shows the different types of redundancy (at the top of the figure) and

the way it can be implemented (at the bottom of the figure). In general, three types

of redundancy exist: structural (S), involving multiplication of components,

information (I), involving multiplication of information/data and time redundancy

(T), involving multiplication of functions in time. These can be implemented in

hardware and software. We mostly focus on the hardware aspect of redundancy and

fault tolerance.

1 A perfect system is a system with a theoretical 100 % reliability. A perfect system is usually

assumed to model extra reliable systems.

42 3 Dealing with Faults: Redundancy

Redundancy comes with a cost. Information and structural redundancies require

additional hardware components, extra power and perhaps extra area and shielding.

Time redundancy requires faster processing to achieve the same performance,

which in turn requires extra hardware and power. Software redundancy involves

higher development and maintenance costs.

3.3.1 Redundancy Notation

Existing implementations of system redundancy use at least one of these three

redundancy types, usually more than one and can be implemented in hardware HW

(), software SW() or a combination of both (HW(), SW()). As an example, hardware

based information redundancy is abbreviated as HW(I). Additional quantifiers are
used together with the redundancy type to further specify the used redundancy as

shown below in Table 3.1:

Note that the current notation does not include the implementation level. HW

(2S) only indicates duplication, but not whether the whole system is duplicated or it

is just parts of that system, such as, for example, duplicated memory.

Tables 3.2 and 3.3 present some concrete examples of notation of hardware and

software based redundancy. Any type of redundancy (hardware and software) needs

additional structural redundancy for its implementation.

For instance, instruction repetition HW(nT) needs additional hardware registers
to store the internal state to be able to perform instruction rollback. We refer to this

as supportive redundancy and we define it as the redundancy needed for the

implementation of the main redundancy technique. For the sake of simplicity, we

usually omit this supportive redundancy.

Fig. 3.2 Redundancy types and their implementation

3.3 Fault Tolerance: Using Redundancy 43

In some cases an applied redundancy of several types can be used. An example

of this is the case of software based implementation of hardware checks (or tests)

that are performed during idle time of the system: SW(δS,δT).

3.4 Structural Redundancy HW(S)

Structural hardware redundancy involves multiple independent hardware compo-

nents and assumes execution of the same computation over such components at the

same time. When this redundancy type is applied for reliability purposes the errors

are exposed by checking/comparing the results of the independent executions.

Table 3.1 Redundancy classifiers

Quantifier Example Description

SW(I) No quantifier means general, not further specified redundancy. SW

(I) for instance just indicates general software information redundancy

δ SW(δI) Additional used software based redundancy

Number HW(2S) The number indicates duplication (2), triplication (3), etc. of a system

if used as a prefix for the redundancy type. The original system and the

copies are identical. n instead of a discreet number is used to mark

repetition until success in case of time redundancy

Indices HW

(S1, S2)
Indices are used to mark a duplicated system implementation/hardware

components

Table 3.2 Examples of notation of HW based redudancy

Redundancy type Description

HW(2S) Structural (material) redundancy of hardware such as duplicated memory

system

HW(S1, S2) A duplicated FT computer system with principally non identical parts

HW(δI) Redundant information bit, for example an additional parity bit per data

word in HW memory for error detection

HW(nT) Special HW to delay execution (like in a timing diagram) to avoid transient

faults

HW(δT) Special HW to delay execution to avoid transient faults

Table 3.3 Examples of notation of SW based redundancy

Redundancy type Description

SW(2S) Structural (material) redundancy of hardware such as duplicated

memory system

SW(S1, S2) A duplicated FT computer system with principally non identical parts

SW(δI) Redundant information bit, for example an additional parity bit

per data word in HW memory for error detection

44 3 Dealing with Faults: Redundancy

In terms of granularity, redundancy in general, and not only hardware redun-

dancy, can be applied at different abstraction levels of system description. From

bottom up we can distinguish between finer-grained: transistor level, gate or logic

level, and between coarser-grained designs: circuit level, function level, system

level, microcode level and chip level of abstraction. Therefore, redundant compo-

nents can be as simple as transistors or logic gates but also as complex as processors

or even larger entities: boards, clusters, network segments.

Figure 3.3 illustrates a taxonomy of the different hardware techniques based on

structural redundancy. Two different organisations of structural redundancy can be

distinguished:

Parallel redundancy with redundant components running concurrently and Standby
redundancy with a spare component being activated upon failure of an active

component.

Furthermore, these extra resources can be used passively (passive redundancy),
actively (active redundancy) or combined. In systems with active redundancy, all

redundant components are in operation, sharing the load with the normal compo-

nents. This implies that both, regular and redundant components, age together.

Passive components are not fully energised and start normal operation only when

normal components fail. Passive components can be further broken down into two

types: warm and cold standby.

Warm standby components remain partially energised until becoming active and

tend to deteriorate with time, hence, having lower failure rate than the regular

components. Cold standby components are kept in reserve and they only become

energised when put into use. These types of components have a zero failure rate,

meaning they do not fail when they are in standby mode.

Whilst passive components are switched off completely, standby components

are partially activated. Standby redundancy is usually applied when the start time of

the component is unacceptably long.

Fig. 3.3 Taxonomy of structural HW redundancy

3.4 Structural Redundancy HW(S) 45

3.4.1 Static Redundancy

Static redundancy, also called masking redundancy, implements error mitigation.

The term static relates to the fact that redundancy is built into the system structure.

Fault tolerant techniques based on this type of redundancy (static fault tolerance)
transparently remove errors on detection. The most common form of hardware

redundancy is Triple modular redundancy (TMR) (Von Neumann 1956) and its

generalisation N-modular redundancy (NMR). Note that Dual modular redundancy
(DMR) (DMR is further explained in Sect. 3.4.2.1) is not considered static redun-

dancy since the mismatch can take place but recovery is not possible.

3.4.1.1 Triple Modular Redundancy: HW(3S) +HW(δS)

A basic TMR system (two-out-of-three) is a fault tolerant form of NMR

that consists of three fully redundant and active components or modules working

in parallel with equivalent functionality (Johnson 1989; von Neumann 1956).

Figure 3.4 below presents an example of a TMR system with a voter.

The three components perform a process based on individual inputs whose

results are in turn processed by a voting system to produce a single output. The

voting is based on majority; if any of the three components has a fault, the other two

systems can mask the fault. It is assumed that two out of three modules must deliver

correct results. Therefore, TMR is capable of masking a single error. Generally, a

majority voting mechanism should:

• Guarantee a majority vote on the input data to the voter

• Determine the faulty block

In order to guarantee the majority vote, loosely synchronised systems require

synchronisation of the inputs to the voter.

A specific example of this technique is the Boeing TMR 777 primary flight

computer (Yen 1996), which has triple redundancy for all hardware including

computing system, communication paths, electrical and hydraulic power.

Fig. 3.4 Triple modular

redundancy (TMR)

with a voter

46 3 Dealing with Faults: Redundancy

3.4.1.2 Comparing the Reliability of Simplex and TMR

with Perfect Voter2 Systems

A simple TMR system such the one in Figure 3.5 includes three blocks, two of

which are required for the system to provide correct service. Given the reliability of

a single component or simplex system by Eq. (3.1):

Rsimplex ¼ e�λt ð3:1Þ

where λ is the failure rate for the single component; the MTTF of a simplex system

can be expressed as:

MTTFsimplex ¼
ð
e�λt ¼1

λ
ð3:2Þ

The reliability of a TMR system with a perfect voter is given by:

RTMR ¼ R3
m þ 3

2

� �
R2
m 1� Rmð Þ

RTMR ¼ e�3λt þ 3

2

� �
e�2λt 1� e�λt

� � ð3:3Þ

RTMR ¼ 3e�2λt

Fig. 3.5 Reliability of TMR vs. simplex system

2A perfect voter is a voter with a theoretical 100 % reliability. A perfect voter is usually assumed

to model extra reliable voters.

3.4 Structural Redundancy HW(S) 47

and, therefore:

MTTFTMR ¼ 3

2λ
� 2

3λ
¼ 5

6λ
ð3:4Þ

MTTFsimplex > MTTFTMR

Figure 3.5 shows how TMR has higher reliability than Simplex for short missions

(t< t0). Note that:

RTMR tð Þ � R tð Þ 0 � t � t0 ð3:5Þ
RTMR tð Þ � R tð Þ 0 � t � 1

Where:

t0 ¼ ln2

λ
� 0:7

λ

TMR is assumed to be useful in aircraft applications claiming 0.99999 reliability

over a 10-h period. Ravishankar and Iyer (2003) shows that TMR is not suitable for

long safety-critical missions (t> t0) because paradoxically, after the first failure, the
two remaining components compete to fail. Higher reliability can be achieved

extending TMR to N-Modular Redundancy. Therefore, a blind use of redundancy

can lead to seemingly paradoxical results. Further we show other serious drawbacks

of TMR schemes.

Reliability of TMR with Voting

The previous expression of reliability of TMR assumes that the voter is perfect, that

is to say that the voter is 100 % reliable.

The reliability of a generic TMR system with non-perfect single voting (TMRV)

and identical blocks is given by:

RTMRV ¼ RV R3
m � 3

2

� �
R3
m 1� Rmð Þ

� �
ð3:6Þ

Where Rv is the reliability of the voter mechanism and Rm is the reliability of the

block. In terms of reliability, the voter becomes the weak part of this configuration.

The voter is a single point of failure (SPF); if the voter fails then the complete

system will potentially fail. This can be tackled by the following different

alternatives:

48 3 Dealing with Faults: Redundancy

• By increasing the reliability of the voter using fault avoidance techniques

• By triplicating the voter and connecting the module outputs to all three voters

(Johnson 1989) so that individual voting failures can be corrected by the extra

voting process

• By implementing online self-testing for the voting circuitry (Cazeaux

et al. 2004; Metra et al. 1997)

• Using an IDDQ checkable voters (ICVs) (Bogliolo et al. 2000): under fault-free

conditions, ICVs work as traditional CMOS voters; however, they cause quies-
cent supply currents (IDDQs)3 in the presence of maskable stuck-at faults (see

Sect. 5.3.1). Faults can be detected using IDDQ testing, by monitoring IDDQs
(Williams et al. 1996)

A basic TMR system does not support common-mode failures (CMFs4) (Lala and
Harper 1994). CMFs are the result of failures affecting more than one component,

usually due to a common cause, which may be due to design-faults or operational

ones resulting from external (such radiation or electro-migration) or internal causes.

For instance, a radiation source causing multiple event upsets (Reed et al. 1997)

can potentially lead to the failure of more than one component in a TMR system.

3.4.1.3 N-Modular Redundancy: HW(nS) +HW(δS)

The generalised version of TMR is NMR where N stands for the number of

redundant modules. The main advantage of using N modules as opposed to only

three is that often more faults can be tolerated. For instance, a 5MR system contains

5 replicated modules including a majority voting arrangement. The voter allows the

system to deliver correct service in case of as many as two module faults.

Figure 3.6 depicts a generic N-modular redundant system with a voter. The

redundancy of this system can be defined as HW(nS) +HW(δS) using the previous

notation. NMR works similarly to TMR but this type of structure is able to detect

[(N�1)]/2 errors in different processing modules. Besides TMR, 5- and 7- modular

redundancies are the most common structures and are capable of detecting two and

three errors respectively.

M-out-of-N systems are a type of NMR. The reliability of a generic M-out-of-N
system assuming that it has a perfect voter andM out of Nmodules need to function

is expressed by:

3Quiescent current is the current consumed by a circuit when no load is present. Fault-free CMOS

devices have very quiescent currents when they are in a quiescent state. Faults that cause high

quiescent currents can be detected if the quiescent current is significantly higher that that of a fault-

free circuit (Williams et al. 1996).
4Multiple faults can be either independent (attributed to different causes) or related (attributed to a

common cause. Both can lead to similar errors (e.g. errors that cannot be distinguished by the

detection mechanisms being used) (Avizienis and Kelly 1984). The failures triggered by similar

errors are called CMF.

3.4 Structural Redundancy HW(S) 49

http://dx.doi.org/10.1007/978-3-319-15069-7_5#Sec4

RMN ¼
XN�M

i¼0

N
i

� �
RN�i
m 1� Rmð Þi ð3:7Þ

Note than NMR systems offer higher reliability than TMR but at a much higher

cost. Undoubtedly, for practical applications there must be some limit on the

amount of redundancy that can be employed.

TMR and NMR could be applied at different levels of abstraction triplicating

logic gates, single memory cells, memory modules or complete microprocessors.

Figure 3.7 displays how TMR can be applied at logic (a), circuit (b) and chip

level (c).

Fig. 3.6 N-modular redundancy with a voter: M-out-of-N system

Fig. 3.7 Redundancy applied at different levels of abstraction: (a) Three logic gates in a TMR at

the logic or gate level of abstraction; (b) Three memory modules in a TMR configuration at the

circuit abstraction level; (c) Three microprocessors in a TMR configuration at the chip level

50 3 Dealing with Faults: Redundancy

TMR and NMR are typically employed in aerospace applications where the cost

of failure is particularly high. However, the higher reliability of these systems

involves more than 200 % increase in redundancy. Such an example is the NASA
Space Shuttle on-board system, which is based on four computers with a majority

voter (Sklaroff 1976).

3.4.2 Dynamic Redundancy

To reduce the extensive space, energy and performance overheads of TMR and

NMR systems, numerous approaches have been developed. These approaches are

usually based in dynamic redundancy, which implements error handling. This type

of redundancy is similar to static redundancy with the main difference being the

voter logic is replaced with a switch that is controlled by an error detection block.

At least one of the modules is working as the main module, whereas the rest

of the modules or replicas can either be working in parallel (e.g. DMR with

comparison) or can be turned off and used as spares (stand-by redundancy).

To avoid failures, after a fault has been detected, the system must be

reconfigured. Detection, reconfiguration and recovery are required in order to

prevent error propagation. Some examples of this type of redundancy are: pair

and spare, duplex systems (DMR with comparison), backup sparing techniques etc.

3.4.2.1 Dual Modular Redundancy: HW(2S) +HW(δS)

By duplicating two components and adding a comparison structure, Dual modular

redundancy (DMR), or duplex, are common systems to detect errors (von Neumann

1956). DMR uses two fully redundant units working in parallel and has been widely

used in low level circuit implementations where a signal is duplicated as an input to

two redundant and independent logic gates and it is transparently checked for

errors.

Figure 3.8 depicts a DMR structure with a checker component. The checker

logic compares the output of block 1 and block 2.

Fig. 3.8 Dual modular redundant (DMR) structure

3.4 Structural Redundancy HW(S) 51

www.allitebooks.com

http://www.allitebooks.org

In the case of normal execution with no error, both blocks would produce the

same output and a result would be delivered. On the other hand, in case of a

mismatch between the two outputs of the blocks, the output of the checker would

produce an error signal and no result will be given.

Therefore, in its simplest version, as the checker logic is unable to identify the

incorrect unit, DMR through output comparison will only provide error detection

and will not provide error recovery capabilities on its own.

Additional mechanisms will be needed to provide error recovery so that if

one of the units experiences an error, the surviving/correct unit can continue

execution. Upon successful repair/recovery DMR is fully restored. The only

known solution for detecting faulty block in dual scheme was proposed in

(Schagaev 1986a, b).

Redundant Execution

A widespread and simple implementation of coarse-grained DMR is lock-stepping,

or lock-step execution (Buckle and Highleyman 2003; McEvoy 1981; Sherman

2003). Here, the processor pipeline is duplicated and the clock is shared, comparing

each instruction result before committing the results. This type of error detection is

considered to perform at the macro-level since it is applied at the microprocessor’s

scope.

Lock-stepping is widely used in a number of commercial processor designs and

can both detect and correct certain errors; e.g. IBM G5 (Slegel et al. 1999) and

Compaq Himalaya (Wood 1999). Redundant threads are executed in multiple

processors and every instruction result is compared. No instruction can be commit-

ted until its identical pair has also been completed and verified, hence involving

considerable overhead.

Stand-by Redundancy

Standby redundancy, standby replacement, or standby sparing, is a well-known

fault tolerant design technique used as a failover mechanism (Avizienis 1976). In

this case some units are online and operational and one or more backup units serve

as standby units.

Figures 3.9 and 3.10 present simple and multiple standby system configurations.

When a fault is detected in an online/active unit, a standby unit replaces the affected

unit by using the selector (Fig. 3.9) or by using the 3-to-1-switch (Fig. 3.10).

There are three common forms of standby redundancy: so-called hot, warm and

cold. The type of application plays a key role in selecting the type of standby spare

units. Figure 3.11 graphically describes the typical reconfiguration steps for hot,

cold and warm backup spares.

52 3 Dealing with Faults: Redundancy

When a spare unit is to be switched off, the selected spare is powered up and gets

ready to become active. The reconfiguration process whereby a standby spare unit

becomes operational is composed of:

• Switching on the power and the bus connections

• Powering up of the unit

• Running the Built-In-Self-Test5 (BIST): Extensive testing is usually done after

powering up to avoid replacing a faulty module with a faulty module before

starting normal operation, e.g. memory tests of a spare module

• Loading programs and data

• Initializing the software if needed

Fig. 3.9 Simple stand-by

sparing configuration

Fig. 3.10 Multiple

stand-by spares with

n-to-1 switch

Fig. 3.11 Typical reconfiguration steps for back-up sparing

5 Built-In-Self-Tests (BISTs) are one of the common methods of testing circuits. BIST is a DFT

technique that takes place on the same substrate as the device under test (DUT) within the system

allowing them to perform self-testing (Stroud 2002).

3.4 Structural Redundancy HW(S) 53

Hot standby spares (HSP) operate in synchrony with the operational units and are

ready to take over whenever a fault is detected. HSP units reduce the mean time to

recovery (MTTR), and therefore, their use is suitable for applications that require

short recovery time, that is, applications where the disruption of processing must be

minimised.

Cold standby spares (CSP) remain unpowered and thus do not operate or consume

any power until they need to replace an active unit. Since the restarting of the units

is required, the use of CSP is best suited to remote operations where power is hard

to come by, e.g. satellites and sensor systems. CSP units are also suitable for

applications where short lapses in operation are acceptable and state of data is not

critical. In addition, CSP are likely to have a lower failure rate than operational

modules. However, the start-up delay required to switch over to a spare module is

high since power up, BIST and initialization are needed. In particular, the time

necessary for BIST depends upon the fault coverage and the complexity of the unit/

module.

Warm standby spares (WSP) consist of a trade-off between the high power con-

sumption of CSP and the long recovery time of HSP. WSP units have time

dependent behaviour. Before and after replacing an operational unit, WSP present

different failure distributions.

The advantage of standby sparing for a system with n identical units is that a

certain level of fault tolerance can be provided with k< n spare modules.

3.4.2.2 Pair Spare

The pair and spare configurations are a combination of DMR with comparison and

extra spare techniques. Figure 3.12 depicts a pair and spare configuration where two

units are always online and compared to each other, with any of the n spares being

able to replace either of the operational units.

Fig. 3.12 Pair and spare configuration

54 3 Dealing with Faults: Redundancy

3.4.3 Hybrid Redundancy

By mixing fault masking, detection location and recovery, the advantages of static

and dynamic redundancy can be combined (Johnson 1989). Hybrid approaches use

Fault masking to prevent erroneous results from being processed and erroneous data

spread across the system. Fault detection, location and recovery are also employed

in hybrid techniques to improve fault tolerance by removing errors.

A general approach is to back up the replicated modules with spares, e.g. a TMR

configuration with a fault/disagreement detector, a voter and a reconfiguration unit

(see Fig. 3.13).

In such a system, the triplicated operational modules are backed up with an

additional pool of spares that can replace faulty modules (TMR with spares). The
system will work as a basic TMR configuration until the disagreement detector

determines that a faulty module exists.

One alternative approach towards fault detection is to feed the output of the

majority voter back to the faulty detection unit whose job is to compare the output

of the voter with the individual outputs of each operational module.

Any disagreement with a specific module’s output would indicate that the

module should be labelled as faulty and therefore replaced by a spare unit.

Fig. 3.13 Hybrid approach using TMR with spaces (Johnson 1989)

3.4 Structural Redundancy HW(S) 55

The reliability of the basic TMR system is retained as long as the pool of spares is

not exhausted. Note that voting only occurs among the operational modules in the

TMR core, masking faults and making sure that continuous correct service is

delivered.

Figure 3.14 presents a variation of NMR with spares is the triple-duplex

approach with combination of duplication with comparison and TMR. The use of

passive redundancy in the form of TMR allows potential faults to be masked and

continuous correct service to be provided for a maximum of two faulty modules.

The use of DMR with comparison allows faults to be detected and faulty modules to

be removed from the voting process and replaced by spares.

These options are simple but have by far higher overheads than traditional static

techniques. Besides, as seen in Section “Reliability of TMR with Voting” the

reliability of TMR depends mostly on reliability of applied voters.

Hence, if a fault takes place within a voter, an incorrect majority vote may be

given to the output and propagated throughout the system, thus compromising the

correctness of the system’s service. In order to avoid such unreliability, voters can

be designed to be capable of testing themselves online with regards to their own

internal faults (Cazeaux et al. 2004; Metra et al. 1997, p. 97).

“Overheads” of redundancy can be effectively used to eliminate malfunctions

for classic triple RAM and for relatively new RAM structures with less redundancy

(Schagaev and Buhanova 2001).

Fault tolerance of RAM structures can be implemented using already proposed

generalised algorithm of fault tolerance (GAFT) (Schagaev 1990) further extended

in (Schagaev 2008), (Kaegi and Schagaev 2013).

Fig. 3.14 A triple-duplex approach

56 3 Dealing with Faults: Redundancy

It is well-known that triplicated memory works successfully in terms of timing

of operation as fault of hardware manifested like error of information is compen-

sated (masked) in real time of operation and therefore can be invisible for real time

safety-critical applications. The only weakness of this scheme is enormous amount

of malfunctions that modern electronics suffer due to technological limitations and

frequencies used.

Amount of malfunctions in electronics of twenty-first century so far at order of

magnitude greater than permanent faults and voting with two malfunctioned

devices is no longer possible to ignore. In fact, “library” elements of CAD systems

that developed for reliable hardware designs guarantee spreading unreliability!

Thus, there is a need to increase TRAM tolerance to malfunctions.

To achieve this, the following solution is proposed. Any working instruction of

TRAM (Read, Write) should be accompanied by comparing the context of the same

address outputs for all three elements block 1-block 3 (Fig. 3.15).

When the contexts do not match the resulting data formed by standard voting

scheme as output signal of TRAM, has to be rewritten to the inputs of all elements,

using at the same address. This action takes place when the error is detected,

i.e. redundancy is used only when required, causing no delays during regular

operations.

Thus, malfunctions affecting the TRAM operation can be tolerated by using

existing hardware redundancy (3HW).

This can be considered as an extra form of hybrid redundancy scheme that

allows error detection and correction, thus improving the reliability of memory

(Fig. 3.15). Any reading and writing operation is followed by a content check of a

specific address in all three blocks.

Fig. 3.15 Transient fault tolerant TRAM (Schagaev and Buhanova 2001)

3.4 Structural Redundancy HW(S) 57

In case of a mismatch among these a majority voting takes place whose result is

then rewritten (via control unit) to the inputs of all elements using the same address.

Comments to Figure 3.15: 1, 2, 3 data signals from blocks 1–3 for Read/Write

Modes; 4—control signals for blocks 1–3; 5—Signal of control of Output Data

Buffer; 6, 7—Signals of control for multiplex to assign mode of operation; 8—

Signal of data and control for external buses.

Signals from blocks 1–3 go to voter and after multiplexing go to the output

buffer (OB). When malfunction is detected, the correct data will be rewritten to all

blocks 1–3—output data will be taken from OB and via lines 8, 4. Control unit

performs change of instruction (in fact, rewrite of correct data).

It is worth to consider further modifications of the proposed memory structure,

for instance to implement a graceful degradation strategy when permanent faults

occur. Working prototype of modernised TRAM was developed using Micron

SRAM 32 K by 8 in one DIP package in 1991–1993 and tested in 1994 and still

is in very heavy operations without any visible degradation.

Reliability gain for this kind of system can be estimated using Eq. (3.8) which

were developed for the Fig. 3.16.

dP1 tð Þ=dt ¼ � λ10 þ λ1С þ λCRð ÞP1 tð Þ þ μPR1 tð Þ;
dPR1 tð Þ=dt ¼ λ1СP1 tð Þ � λCR þ μð ÞPR1 tð Þ;
dP2 tð Þ=dt ¼ λ10P1 tð Þ � λ2P2 tð Þ;
dPF tð Þ=dt ¼ λCRP1 tð Þ þ λCRPR1 tð Þ þ λ2P2 tð Þ

ð3:8Þ

λo—rate of permanent faults, λc—rate of malfunction, λCR—rate of fault of control

and recovery hardware, λ10¼ 3λo; λ1С¼ 3λc; λ2¼ 2(λo + λc) + λCR; μ—rate of

recovery.

Figure 3.16 presents a diagram of reliability states for TRAM, assuming Markov

properties of process of fault appearance and handling. Model has two workable

states OK state—P1, workable state P2, as well as state of recovery after error Pr1
and Fatal state F.

P2 FP1

Pr1

λ1c μ

λ10 λ2

LCR

LCR
Fig. 3.16 Markov diagram

for modernised TRAM

58 3 Dealing with Faults: Redundancy

Without any claim on absolute correctness of these state diagram and equations

it is clear that sum of periods when system exist in states P1, P2 and Pr is much

higher than time of system presence only in the state P1. This justify efforts required

for toleration of malfunction.

Figure 3.17 below compares availability of classic (lower) and proposed tripli-

cate RAM. Time is measured in hours. As it is shown, the acceptable level of

availability for the device (0.9) period of operation can be easily increased up to

several orders.

Figure 3.17 presents reliability results calculated with the following values:

λc¼ 10�2 (1/h), λo¼ 10�4 (1/h) and λCR¼ 2� 10�9� (1/h), μ¼ 1 ms.

3.5 Information Redundancy

Information redundancy involves the addition of new information to existing

information i.e. using more bits than needed to ensure fault free functioning. The

most common form of information redundancy is coding (see Fig. 3.18). Coding

theory in hardware and software fault tolerance goes back a very long way and was

initially motivated by the need to mitigate errors in information transmission

(Shannon 1948).

Coding consists of adding check bits to the data allowing (1) the verification of

data correctness and/or (2) the correction of erroneous data. Therefore, with coding

an original piece of meaningful information, or d-bit data word, is encoded

obtaining a c-bit code word, where c> d (see Fig. 3.18). Because of these extra

bits not all 2c possible binary combinations are valid code words. Therefore, a code

should be selected so that any potential error would transform the codeword, after

decoding, into an invalid code word (non-codeword).

Fig. 3.17 Reliability of modernised TRAM

3.5 Information Redundancy 59

An important property of coding is separability. Two main approaches are

possible:

• Separable or systematic codes: the code word is formed by adding extra infor-

mation (check bits) to the original data. A separable code has separable fields for

data and check bits. Decoding this type of code is simple and consists of

selecting the data bits and disregarding the check bits.

• Non-separable or non-systematic codes: data and check bits are integrated

together requiring some extra processing and therefore incurring additional

delays and overheads.

Important parameters for codes are:

• The number of erroneous bits that can be detected

• The number of those that can be corrected

• The number of additional bits that are required

• The time needed to encode

• The decoding time

Information redundancy techniques make use of detection-based codes (EDC) or

correction based (ECC) codes. Figure 3.19 presents a taxonomy of coding

techniques.

Examples of some of these techniques include:

• Error detection and correction codes for cross-checking the contents of main

memory, register files and cache

• Cross-checking of run-time control flow using signatures

• Algorithm based checksums for cross-checking of the data values generated

In general, information redundancy involves some space and computational

overheads, thus requiring extra circuitry and is thus more commonly implemented

in memory structures instead of in processor data-paths.

Fig. 3.18 Coding-encoding process of a d-bit word into a c-bit word

60 3 Dealing with Faults: Redundancy

3.5.1 Error Detection Codes: EDC

Error detection codes have the ability to expose error(s) in a given data word based

on the encoding-decoding principles discussed in Sect. 3.5. In general, error-

detecting codes (EDC) present less overhead than error correcting codes (ECC)

since they do not have correction capabilities.

The simplest EDC are parity codes, which involve the addition of extra bits.

Figure 3.20 depicts a basic scheme of memory with parity checking.

Before storing a word in the memory block a parity generator computes the

parity bits from the bits of the input data word (DW). A parity bit is an extra bit

added to a group of source bits (DWs) in order to ensure that the outcome or coded

word has an even (in the case of even parity) or odd (in case of odd parity) number

of bits set to 1.

When a memory block is read, the parity checker compares the computed and

the stored parity bits, setting the error signal consequently. If both, computed and

Fig. 3.19 Taxonomy of information redundancy coding techniques

Fig. 3.20 Coding-encoding in memory block with parity checking

3.5 Information Redundancy 61

stored parity bits, match then the error signal would indicate a correct output;

otherwise the error signal would indicate that the retrieved DW is incorrect. Note

that for n bits of data there are 2n possible DWs. Adding one parity bit would allow

2n+1 possible DWs.

Among these possible DWs there are 2nþ1

2
possible DWs with an odd number

of 1 s and 2nþ1

2
possible DWs with an even number of 1 s. In the case of odd

parity, only the DWs with an odd number of 1 s are valid code words (CWs).

In the presence of single bit flip (error) an odd parity CW would change into an

even parity CW and therefore the parity checker will detect the error. Nonetheless,

it will not know which bit has been flipped. This simple configuration can be used to

detect single or any odd number of errors in the retrieved DW.

However, an even number of flipped bits would make the parity bit of the CW

appear to be correct although the data is incorrect. With single parity, double errors

and even number of errors would remain undetected. Thus, minimal information

redundancy—one bit enables single bit manifestation, but does not provide faulty

bit location within word of data or recover of erroneous bit.

3.5.2 Error Correction Codes: ECC

Codes more powerful than parity can be created by adding more check bits to the

original data. The size of the data to be protected will determine the number of

check bits needed. Using this basic principle, error correction codes have the ability

to detect errors and reconstruct the original error-free data. These can generally be

realised in three different manners (see Fig. 3.19):

• Backward Error Correction (BEC) sometimes referred to as Automatic repeat

request (ARQ): combines an error detection technique (error detection encoding

prior to transmission) with retransmission request of erroneous data. BEC

requires simpler decoding infrastructure than FEC but frequent retransmissions

would significantly compromise performance in high data rate transmissions.

• Forward Error Correction (FEC) or Channel Coding: With this approach, errors

are both detected and corrected at the receiver’s end. Thus, it involves error-

correcting encoding prior to transmission without retransmission of the original

information. FEC requires more complex decoding infrastructure than BEC but

it is suitable for high data rate applications.

• Hybrid automatic repeat request (HARQ): BEC and FEC are combined, e.g. a

scheme where minor errors are corrected without retransmission (FEC) and

major errors are corrected via retransmission (BEC).

An overview of popular FEC schemes employed in fault tolerant design of

embedded systems follows. Figure 3.21 shows a basic ECC memory scheme that

applies to any of the following codes including calculation, checking and

correcting logic.

62 3 Dealing with Faults: Redundancy

When data is written into the data row specified by the address signals, the ECC

encoding logic generates the parity checks (as specified by the code) and introduces

them into the ECC part of the memory.

When the DW is read from the memory the parity bits would allow missing data

to be reconstructed in the case of an error being detected.

3.5.2.1 SEC-DED6: Hamming and Hsiao: HW(δI)

The most common ECCs are based on Hamming (Hamming 1950) or Hsiao

(Hsiao 1970). These two separable code families introduce the concept of

overlapping parity by which every data bit has a part in adjusting the value of

Fig. 3.21 Basic ECC memory scheme including calculation, checking and correcting

6 SEC-DED: Single error correction and double error detection.

3.5 Information Redundancy 63

several parity bits. These codes can correct single bit errors in a given word, can

detect double bit errors, are relatively fast decoding and have moderate redundancy.

Hamming codes are a family of perfect codes7 that generalise the original Hamming

(7,4)-code (Hamming 1950). A minimum distance d means that it takes d bit

changes to move from one valid codeword to the other.

Extended Hamming code sometimes generalised as SEC-DED (single error

correction and double error detection), is an example of this type of code. In

SEC-DED, an extra parity bit is added achieving a distance of four instead of the

three (as in the original Hamming).

The extra parity bit allows the decoder to distinguish between two possible

situations:

• When at most one bit flip has occurred

• When two bit flips have taken place

In contrast with Hamming (7,4), SEC-DED provides single-bit-error correction

and simultaneous double-bit-error detection.

Compared to Hamming codes, Hsiao codes (Hsiao 1970) provide improvements

in speed, reliability and calculation cost as well as checking and correcting logic.

However, in situations that demand higher reliability requirements than those

provided by SEC-DED, more complex codes are required.

SEC-DED Limitations and Alternative Techniques

The main limitation of SEC-DED codes is that triple-bit errors may not only remain

undetected but it may also be mis-corrected as if they were single-bit-errors (Hsiao

1970). The probability of this type of mis-correction for 32bit data words is around

60 % or more.

Multiple errors are usually taking place in adjacent memory locations, therefore

increasing the chances of having multiple bit errors in a given word (Bentoutou and

Djaifri 2008; Boatella et al. 2009). These are called burst errors,8 errors that are
highly correlated.

If a specific memory cell has an error, it is likely that adjacent cells may also be

corrupted by the same event that triggered the error in the first place. Theses are

sometimes referred to as spatial multi-bit errors (Mukherjee et al. 2004). In

contrast, temporal multi-bit errors are errors that take place when two different

cells of the same word are affected by different events (Mukherjee et al. 2004).

An important risk for SEC-DED schemes is that if a specific memory word is not

accessed for a long period of time, the chance of accumulating errors increases

(temporal multi-bit errors). In 1983–1987 scheme of reading-rewriting of data from

7A Hamming code is perfect in the sense that it can achieve the highest possible rate for codes with

a given block length and minimum distance of three (Moon 2005)
8 Also called cluster of errors.

64 3 Dealing with Faults: Redundancy

memory was proposed by (Buhanova G, Schagaev I) excluding an accumulative

impact of malfunctions on memory context. Working prototype was developed in

1990–1991 (http://www.it-acs.co.uk/files/itacs_devices.pdf). English version of

proposed solution was presented at DSN in 2001 conference and published in

(Schagaev and Buhanova 2001).

Later this method was renamedmemory scrubbing (Mukherjee et al. 2004; Saleh

et al. 1990; Weaver et al. 2004), suggesting periodical read of each every memory

cell. This may be implemented by having a hardware controller that, during idle

periods, reads every memory location searching for errors and correcting any single

error found during the process, thus reducing the chance of detected (DRE9 and

DUE10) and undetected errors (e.g. SDC11).

Scrubbing does, however, require additional SW and/or HW overheads

depending on the implementation. In current architectures with high memory

bandwidths, HW scrubbing is preferred due to its lower timing overhead. In

combination with SEC, scrubbing is effective against single-bit and temporal

multi-bit errors but not against spatial multi-bit errors.

This problem of spatial multi-bit errors, was solved in 1989 and published in

(Bernstein et al. 1992, 1993). It was suggested that logical word of data might be

aggregated from keeping bits in separate physical memory elements. Prototype did

show exceptional reliability of proposed solution.

Later suggested memory interleaving (Haraszti 2000; Reviriego et al. 2010;

2007) was proposed to use in conjunction with ECC ensuring that cells that are

physically closely located belong to different logic words. That is, cells that belong

to the same logical word are physically apart.

Figure 3.22 illustrates an example of memory interleaving in a four 3-bit
memory word. This type of memory distributes logical data into a non-continuous

arrangement. More columns than the number of bits of a single word are added, and

the corresponding columns for each word are interleaved.

In this way, burst errors are distributed over a number of words each suffering

only one single bit error. Any 4-bit-upset affecting adjacent memory cells would

cause four single bit errors in separate words, which can be easily corrected by

SEC-DEC.
A shortcoming of interleaving is that high interleaving distances (ID) involve

more complex designs and thus higher area and latency overheads (Baeg et al. 2009;

9A DRE is a detected recoverable error, a benign type of error since recovery of the normal

operation by fault tolerant techniques is possible (Kadayif et al. 2010; Weaver et al. 2004).
10 A DUE is a detected unrecoverable error. DUE take place when fault tolerant techniques are

able to discover and/or report an error, from which recovery is not possible (Kadayif et al. 2010;

Weaver et al. 2004).
11 SDC stands for Silent data corruption. A SDC take place when an error is undetected and causes

data corruption (SDC). In this case, the corrupted data could go unnoticed making this type of error

benign, or could result in a visible error and/or catastrophic failure such as crashing a computer

system (Constantinescu et al. 2008; Kadayif et al. 2010; Weaver et al. 2004).

3.5 Information Redundancy 65

http://www.it-acs.co.uk/files/itacs_devices.pdf

Reviriego et al. 2010). Ideally the ID should be selected as the maximum expected

MCU size so that all upsets in a burst error would occur in different logical words.

3.5.2.2 Complex Codes

EDAC implementations based on Hamming codes are the easiest to implement but

only provide single error correction (Hentschke et al. 2002). There are alternatives

to SEC-DED like Bose–Chaudhuri–Hocquenghem (BCH) (Bose and Ray-

Chaudhuri 1960) and Reed–Solomon (RS) codes (Reed and Solomon 1960) based

on finite-field arithmetic that can correct multiple faults.

Table 3.4 shows a comparison of the main error correction techniques in

memories.

BCH codes are able to correct a given number of bits at any position, whereas RS
codes group the bits in blocks in order to correct them. RS based codes provide a

more robust error correction capability but uses a large amount of system

resources.12

The RS decoding process has several stages to get the location of the error and

correct it. Implementations of RS codes can be found in (Neuberger et al. 2005;

2003).

Although the RS algorithm can be simplified (Neuberger et al. 2003) the main

disadvantage of these two codes is having complex and iterative algorithms.

As with Hamming based SEC-DED, more complex codes can be implemented

based on RS and BCH algorithms. Some examples are SNC-DND13 (Chen and

Hsiao 1984) and DEC-TED14 codes (Lin and Costello 1983).

Table 3.5 is an overhead comparison of various EDAC schemes: Single parity

EDC, Hamming SEC-DED, SNC-DND and DEC-TED. Complex errors increase

Fig. 3.22 Memory interleaving of four 3-bit words with a 4 interleaving distance (ID)

12 DEC-TED implementations are expensive from both area-penalty and computational-

complexity points of view.
13 SNC-DND: single nibble error correcting, double nibble error detecting.
14 DEC-TED: double bit error correcting, triple bit error detecting.

66 3 Dealing with Faults: Redundancy

the overhead rapidly as correction capability is increased (Kim et al. 2007). Note

also that for any given technique, as the data size increases, the relative overhead of

a given scheme decreases (Table 3.5).

Note that the calculation of overheads is just the number of check bits divided by the

number of data bits and does not include the extra overheads (e.g. I/O and checkers).

In addition to the area penalty, as the correction capability increases, timing

overheads also increase. Results on 64 kb SRAM developed in 90 nm processes

show that the implementation of a DEC-TED encoder involves a latency penalty of

80–85 % as compared to SEC-DED (Naseer et al. 2006).

Schemes based on information redundancy can also be applied at different

levels. For instance, parity codes can be applied to registers, cache and internal

memory, whereas SEC-DED can be implemented in external memory, etc. As all

these are more complex codes than SEC-DED let alone single parity codes they

produce higher overheads as the correction capability increases (Kim et al. 2007).

Thus these codes are not suitable for areas of real-time systems that demand high

possessing performance.

Table 3.4 ECC-TMR comparison

Characteristic

Hamming

(SEC-DED) TMR RS (DEC-TED)

BCH

(DEC-TED)

Area Small over-

head to imple-

ment

Varies

depending on

the number of

bits (7–32 %)

Extra 200 % plus

the voting and

correcting logic

Number of voters is

proportional to the

number of units

Varies

depending on the

number of bits

(13–75 %)

Varies

depending on

the number of

bits (13–75 %)

Performance It can be

affected by the

coder–decoder

functions

Proportionally

dependent on

number of bits

to be corrected

High performance.

Voter is the only

source of delay,

hence almost con-

stant delay

Lower perfor-

mance than BCH
and much lower

compared to

Hamming and

TMR

Higher perfor-

mance than RS

but much lower

than Hamming

or TMR

Error

Correction

Limited capa-

bilities: it cor-

rects only one

single incor-

rect bit

per word.

Corrects up to n

errors in an n-bit

word as long as the

errors are located in

a distinct position/

unit.

Can handle mul-

tiple errors; Effi-

cient for

correlated errors

(e.g. burst)

Can handle

multiple errors;

Efficient for

uncorrelated

errors

(e.g. random

errors)

Implementation Binary based

Simple to

implement

Simple to

implement

Symbol based

Complex to

decode and

implement

Binary based

Complex but

simpler to

decode and

implement than

RS

3.5 Information Redundancy 67

T
a
b
le

3
.5

E
D
C
-E
C
C
st
o
ra
g
e
ar
ra
y
o
v
er
h
ea
d
s,
b
as
ed

o
n
S
la
y
m
an

(2
0
0
5
)

D
at
a
b
it
s

S
in
g
le

P
ar
it
y

S
E
C
-D

E
D

S
N
C
-D

N
D

D
E
C
-T
E
D

C
h
ec
k
b
it
s

O
v
er
h
ea
d
(%

)
C
h
ec
k
b
it
s

O
v
er
h
ea
d
(%

)
C
h
ec
k
b
it
s

O
v
er
h
ea
d
(%

)
C
h
ec
k
b
it
s

O
v
er
h
ea
d
(%

)

1
6

1
6

6
3
2

1
2

7
5

1
1

6
9

3
2

1
3

7
2
2

1
2

3
8

1
3

4
1

6
4

1
2

8
1
3

1
4

2
2

1
5

2
3

1
2
8

1
1

9
7

1
6

1
3

1
7

1
3

68 3 Dealing with Faults: Redundancy

3.6 Time Redundancy

Figure 3.23 presents a list of the most relevant techniques based on time redun-

dancy, which are described in Sects. 3.6.2, 3.6.3, 3.6.4, 3.6.5 and 3.6.6.

3.6.1 Concurrent Error Detection: Basics of Time
Redundancy

The main problem with the structural and information redundancy types reviewed

is the penalty imposed in the form of extra hardware. At the expense of using

additional time, FT techniques based on time redundancy (TR) aim to reduce the

amount of hardware required for the implementation.

Time redundancy techniques involve deliberate delay of execution and deliver-

ing the results or the re-execution of code using the same piece of hardware and

comparing the execution results to determine if a fault has occurred.

This approach was commonly used in the past and is effective in detecting errors

resulting from transient faults.

The latest development of use time redundancy for fault tolerance implemented

by system software was described in the monograph by Kaegi and Schagaev (2013).

Here we mostly concentrate on hardware support and implementation of time

redundancy for fault tolerance.

Figure 3.24 shows the basic transient fault detection mechanism based on

re-execution. With this technique two or more different computations are

performed at different times t0, t0 +Δt, and t0 + nΔt, given n> 1.

Fig. 3.23 Taxonomy of time redundancy techniques

3.6 Time Redundancy 69

The result of a given computation is stored in the corresponding register and then

compared to the results obtained from the previous computation(s). If the

re-execution is performed twice and a disagreement exists, then transient errors

can be detected.

This type of technique was used in the past, but on its own, and did not provide

protection against errors due to permanent faults. However, the executions can be

performed again to check if the discrepancy remains or not. This is useful in order to

distinguish between permanent and transient faults.

If after re-execution the fault disappears, it is assumed to be transient. The

hardware resource affected by a transient fault is still usable. On the other hand,

if after re-execution the problem persists, the fault is assumed to be permanent and

reconfiguration of the specific hardware resource is necessary.

Modern FT techniques based on time redundancy can detect permanent faults as

shown Fig. 3.25. In this case, during the first computation, the results obtained are

simply stored in a register. Then, prior to the next computation(s) a specific type of

encoding is performed on the operands. After the relevant computation(s) take

(s) place on the encoded operands, the results of all computations are then decoded

and compared.

Fig. 3.24 Transient fault detection mechanism based on redundant execution

Fig. 3.25 Transient and permanent fault detection mechanism based on redundant execution

70 3 Dealing with Faults: Redundancy

Given that x is the input data, E(x) is the data decoding, F(x) is the functional

computation, F(E(x)) is the functional computation of the decoding data and

D(E(f(x))) is the decoding of the encoded data after computation, and assuming

that the functional block is free of permanent faults and assuming that Eq. (3.9):

D E xð Þð Þ ¼ x 8x ð3:9Þ

Then, the following relation can be stated Eq. (3.10):

D F E xð Þð Þð Þ ¼ F xð Þ 8x ð3:10Þ

If the decoder and the encoding process are carefully selected so that a failure in

x would affect F(x) differently than it would affect F(E(x) then if Δt> 0 the

comparison mechanism would produce an error signal.

The main problem with time redundancy techniques is that if the system’s data is

corrupted by a transient or permanent fault, it will be difficult to repeat a given

computation. The critical part of these techniques is assuring that the data is correct

and identical before each one of the redundant computations takes place.

The leading concurrent error detection (CED) techniques based on time redun-

dancy are alternating logic, recomputing with shifted operands (RESO),
recomputing with rotated operands (RERO), recomputing with swapped operands
(RESWO) and recomputing with comparison (REDWC). All these techniques are

mentioned in Fig. 3.23. The main difference among them is the type of encoding

and decoding used.

3.6.1.1 Self-Duality

Self-duality is a property required for certain circuit’s functions in order to imple-

ment specific error detection techniques based on time redundancy. A function is

said to be self-dual if it satisfies the property:

f x1; x2; . . . ; x3ð Þ ¼ f� x1; x2; . . . ; x3ð Þ 8x ð3:11Þ

Where x1, x2, x3, . . ., xn is the set of inputs to the circuit, x1_, x2_,. . ., xn_ the set of
complemented inputs, f() the output and f_() the complemented output.

By letting C be a function that complements each bit of a given vector:

C x1; x2; . . . ; x3ð Þ ¼ x1; x2; . . . ; x3ð Þ 8x ð3:12Þ

It becomes clear that:

C�1 ¼ C
C�1 f c xð Þð Þð Þ ¼ f xð Þ ð3:13Þ

3.6 Time Redundancy 71

Resulting in:

C f xð Þð Þ ¼ f C xð Þð Þ ð3:14Þ

There are several problems that must be considered when designing a fault

tolerant technique using time redundancy. A function C that satisfies the previous

property must firstly be determined. Finding a Cmay not guarantee the desired level

of error detection since different circuit implementations based on different C can

have different coverage.

Complexity is also an important issue. In the case where the hardware required

to implement the coding and decoding functions based on C and C�1 is similar to

that of implementing f(x), then structural redundancy becomes the more effective

choice. In short, the aim of a cost-effective design should be finding a function

C that provides a good trade-off between high coverage and low complexity.

3.6.2 Alternating Logic

An example of encoding/decoding function is the complementation operation used

in alternating logic (Reynolds and Metze 1978) and successfully applied to per-

manent fault detection of data transmission and digital systems.

As Fig. 3.26 shows the data computed at time t0 is then complemented and

transmitted at time t0+Δt. In the case of a stuck line (either at 0 or at 1) the two

computations will generate data that are not complement of each other, and

therefore, the error signal will become enabled after comparison.

In this example the last communication line is stuck at 115, and therefore,

complement and data would both become 1, which is not an alternate output, and

Fig. 3.26 Time redundancy techniques based on alternative logic

15 A stuck-at fault is a particular fault model used to represent a manufacturing defect within an

integrated circuit. Depending on the effect of the fault, a suck-at fault can be stuck either at a

logical value of 0 (stuck-at 0) or 1 (stuck-at 1).

72 3 Dealing with Faults: Redundancy

therefore, a fault is detected. In order to implement error detection in this coding the

circuit function must have the property of self-duality otherwise extra input bits

would be required. For certain circuits 100 % area (hardware) overheads may be

required for certain error detection circuits in addition to time redundancy (Carter

and Schneider 1968; Johnson et al. 1988; Woodard and Metze 1978)

The key for fault detection is to determine that at least one input vector exists for

which the fault will not result in alternated outputs. Although any single stuck-at
fault can be detected by this technique, extra redundancy and hardware modifica-

tions are required to create self-dual functions from non-self-dual ones. Any non-

self-dual function of x variables can be converted into an x+ 1 variable function that

is self-dual and can thus be implemented with an alternating logic circuit.

3.6.3 Recomputing with Shifted Operands (RESO)

Recomputing with shifted operands is a logic level concurrent error detection

technique based on time redundancy developed by Patel and Fung (Patel and

Fung 1982). RESO can be applied to certain problems in which shifting the inputs

forms a complementing function that produces a known relationship in the outputs.

It has been originally used for arithmetic and logic units. The error detection

capability of RESO depends on the number of shift operations. The generalised

version is RESO-k and it refers to shifting by k bits.
Figure 3.27 shows a schematic of a concurrent error detection mechanism on an

ALU using RESO. The operands a and b undergo a normal ALU operation f(a, b)
during the first computation at time t0 and the result is stored in a register.

During the second computation at time t0+Δt, before entering the ALU the

operands are shifted left by k bits and the result of the ALU operation is right shifted

and finally compared to the ones previously stored in the register. In such opera-

tions, left and right shifting can also be denoted as E(x) and D(x) (or E1(x)).

Therefore, if the equivalent notation for the recomputation is E�1 f E a; bð Þð Þ½ � it

should be equal to the first computation f(a, b). If the results are identical the output
of the computation will be f(a, b).

However, if there is a discrepancy an error signal will be generated. When an

n-bit operand is shifted left by k-bit(s), its leftmost k bit(s) move out and the right

most k-bit(s) become zero. This may lead to an incorrect result of f(a, b)since k

essential bit(s) are removed whenever shifted left.

Aswith alternating logic, extra redundancy is needed as an (n+ k) shifters need to be
implemented. Furthermore, a bigger (n+ k) bits length ALU is needed, and therefore,

the recomputation takes (n+ k) bit operations rather than the original n-bit ones.
Furthermore, a totally self-checking equality checker is required for the com-

parison process and error signalling.

Additionally, parity codes can also be used to detect error in the shifter logic.

Note that the fault coverage capability of RESO depends on the number of shifts.

3.6 Time Redundancy 73

RESO-1 can detect all single bit-slice errors in an ALU for all bitwise operations,

including AND, OR, NOT, NOR and XOR. As k becomes larger, an increase of space

and time complexity is entailed which in turn increase the probability of error.

Consider an ALU with an n-bit shifter and a RERO-2 implementation and an

operand a equal to 11010. After the 11010 is being shifted left by two bits, it will

have the two MSBs shifted out, thus becoming 01000. As a consequence, the result
of the calculation f(a, b) will probably be incorrect.

If the shifter is replaced by an (n+ k)-bit shifter with k¼ 2 in this particular case

(RESO-2), then the operand a after the shifting operation will be equal to 1101000,
thus keeping the MSBs and ensuring the correct result f(a, b). Note that during the

first computation k-zero MSBs are added to each of the operands.

This is one way of detecting errors using RESO. Alternatively, as before, during

the first computation at time t0, the operands a and b undergo a normal ALU

operation f(a, b) but the results are now left-shifted before being stored in the

register. In the second computation at time t0+Δt, the operands are also left-shifted
by k bits, but in this new way, the results are directly compared with the ones in the

register (there is not right-shifting performed on the operands).

The penalty paid for implementing RESO is that every component must be

extended to accommodate the shifting. For instance, to implement RESO-1 on a

32bit ALU the main system and the shifters are required to be 33 bits, whereas the

storage registers and the equality checker must be 34 bits.

Fig. 3.27 ALU concurrent error detection using recomputing with shifted operands (RESO-k)

74 3 Dealing with Faults: Redundancy

3.6.4 Recomputing with Rotated Operands (RERO)

Recomputing with rotated operands (Li and Swartzlander 1992) is another technique

designed to overcome the limitations of RESO. RERO-k has similar time redun-

dancy characteristics to RESO but with different structural redundancy demands.

Figure 3.28 displays an ALU with RERO-k based concurrent error detection.

RESO-k requires an (n+ k)-bit rotator and an (n+ k)-bit ALU whilst RERO-k only

requires an (n+ k)-bit rotator and an (n + k)-bit ALU.
During the first computation, the (n+ k) bit rotators do not rotate the operands,

thus the input and output of the rotators is identical. Both operands undergo a

regular ALU operation whose result is stored in a register. During the second

computations, the first two rotators perform a k-bit(s) right-rotation of the input

operands before they enter the ALU. Next, the result is rotated left and compared to

the previous result from the first computation. If the results are identical the output

of the computation will be f(a, b).
However, if there is a discrepancy an error signal will be generated. With regards

to error coverage, a RERO-k implementation with an n-bit ALU can detect:

• (k mode n) consecutive errors for bit-wise logical operations.
• (k� 1) consecutive errors in a ripple carry adder for arithmetic operations.

Fig. 3.28 ALU concurrent error detection using recomputing with rotated operands

3.6 Time Redundancy 75

3.6.5 Recomputing with Swapped Operands (RESWO)

Recomputing with swapped operands (Hana and Johnson 1986) is an extension of

the RESO technique that tries to detect errors by alternating the position of the

operands. RESWO implementation is very intuitive but with limited applications

such as addition, multiplication and Boolean functions but not division or subtrac-

tion operations. The first computation at time t0 is performed on unmodified

operands. During recomputation, at time t0+Δt, the operands are first split into

two halves, upper and lower, then swapped before calculation and finally swapped

back after it. The logic for implementing RESWO has been shown to be less

complex and less expensive than in RESO, in particular when the complexity of

individual modules is high (Shedletsky 1978).

3.6.6 Recomputing with Comparison (REDWC)

Recomputing with comparison (Johnson et al. 1988) uses a combination of both

hardware and time redundancy. The operands a and b of an n-bit operation are split
into two halves and computed by two virtually divided devices (n/2-bit size) twice.
In a first time slot, the least significant n/2-bits (lower halves) of the operands and
their duplicates are carried out and then their results compared. Upon completion,

in a second time slot, the same operation is repeated for most significant n/2-bits
(the upper halves) of the operands. As long as the separate halves do not become

faulty in the same way and at the same time, REDWC can detect all single faults.

3.7 Comparison of Main Redundancy Schemes

In general, the addition of correction capabilities to the error detection mechanisms

involves extra area (hardware redundancy) and/or time overheads. Table 3.6

compares the capabilities, timing and area overheads of structural- and time-

based FT mechanisms.

TR techniques involve low area overheads at the cost of extra timing. Note that

some of these techniques, such as RESO, can provide correction capabilities by

performing more than two computations. In contrast, at the cost of area penalties,

SR techniques can provide detection and correction with very little timing

overheads.

Error detection codes, such as parity coding involve low complexity and low

overheads but have limited detection abilities and are not able to detect multi-bit

errors. Although information redundancy schemes can be feasible to correct

single and double errors in high-capacity memories (Paul et al. 2011), for n> 2,

n-bit correction circuitry demands considerable area, energy and timing overheads,

76 3 Dealing with Faults: Redundancy

especially in low capacity memories. For instance, in an 8-bit ECC scheme

integrated to a 64 kb SRAM the area overhead can be more than 80 % (Kim

et al. 2007).

Application of Hamming SEC-DED codes to 16 M-bit DRAM chips has a 10 %

access time penalty on a to 16 M-bit DRAM (Arimoto et al. 1990; Furutani

et al. 1989).

For an experimental 1M-bit DRAM cache, applying a SEC-DED code imposes

up to 15 % access time overhead (Asakura et al. 1990).

The area penalty is even greater in register files (RFs); experimental results for

SEC applied to a 64-bit 32-word RF using 90 nm standard cell ASIC technology

(Naseer et al. 2006) incurs a 22 % area penalty and a 129 % increase in read access

time. TMR applied to the same type of registers incurs a 204 % area penalty but

increases the read access time by only 17 %. Therefore, for sensitive ASIC appli-

cations that demand low-latency, TMR is more suitable.

3.8 Conclusion

• The use of fault avoidance techniques does not guarantee complete removal of

faults, having many drawbacks in terms of cost, speed of operation and chip

area. System testing and verification techniques can never be sufficient to

remove all potential faults and their causes.

Table 3.6 Comparison of structural-time based FT mechanisms

Scheme Structural redundancy Time redundancy

Detection (D)

and correction (C)

Time redundancy based

Alternating logic �0–100 % >100 % D

RESO �0–93 %% >100 % D

RESO �0–93 % >200 % DC

RERO �0–93 % >100 % D

RESWO �0–77 % 0–100 % D

REDWC �0–90 % 0–100 % D

Structural redundancy based

DWC >100 % �0–17 % D

TMR >202 % �0–17 % DC

TMR with triplicated voter >208 % �0–17 % DC

Information redundancy based

Single Parity 1–6 % �0–10 % D

SEC-DED 7–32 % 10–129 % DC

SNC-DND 13–75 % – DC

DEC-TED 13–69 % 22–200 % DC

3.8 Conclusion 77

• In turn, fault tolerant techniques are useful as long as they are applicable along

the whole operation cycle of our systems.

• Structural redundancy techniques, such as DWC for single error detection and

TMR for single error correction, are very popular. However, both techniques

entail high area and power overheads and may not be suitable in embedded

applications where power consumption is an important issue.

• CED techniques based on EDC, such as parity coding, involve lower area

overheads than structural redundancy techniques but have limited detection

abilities and cannot correct errors or efficiently detect multi-bit errors. ECC

and physical interleaving incur large area overheads for multi-bit errors. Iden-

tifying the time interval for scrubbing can be tricky.

• In terms of time redundancy, the aim of a cost-effective design should be finding

a function C that provides a good trade-off between high coverage and low

complexity. If the hardware required to implement the coding and decoding

functions is similar to that of implementing f(x), then structural redundancy

techniques are more effective. Time redundancy cannot be used in every appli-

cation due to the additional time required. For instance, certain long-life critical

systems used in space applications can tolerate additional time much easier than

additional space or power requirements, whereas real-time safety critical sys-

tems used in avionics cannot afford any additional performance penalty.

• Apart from time, extra hardware in the form of shifters, registers, comparators

and extra bits are needed in ALUs. Moreover, fault coverage is not provided for

shifters, rotators and comparators weakening our design, unless they are

implemented with self-checking capabilities. However, if time is available TR

techniques do offer an opportunity to minimise the additional hardware required.

• When it comes to implementing FT, the selection of particular types of redun-

dancy greatly depends upon the application. Therefore, to select a specific set of

redundancy techniques for implementation we should examine (a) the different

requirements of the specific application and (b) the techniques that are more

suitable for such requirements. Likewise, not only the type of redundancy

technique is important, but where and at which level it is applied; for instance,

applying TMR at the gate, register or circuit level would have a different fault

coverage, time, structural and power consumption trade-off.

78 3 Dealing with Faults: Redundancy

Chapter 4

Impact of Radiation on Electronics

4.1 Introduction

To develop efficient fault tolerant systems, designers need to be aware of the impact

of permanent and transient faults. Hardware faults are a major concern in silicon

based electronic components such as SRAM, DRAM, microprocessors and FPGA.

These devices have a well-documented history of faults mainly caused by high-

energy nuclear particles.

In the cases of safety-critical systems, aerospace and health monitoring systems,

maximum reliability can be achieved assuming susceptibility of those systems to

faults produced by various internal (e.g. interconnect coupling noise) and external

reasons (e.g. cosmic and solar radiation). The traditional reliability analyses of

these systems assume failure rates of permanent faults. A typical failure rate for

permanent faults due to hard reliability mechanisms such as gate oxide breakdown

or metal electro-migration is generally between 1 and 50 FITS.

So far, design and reliability engineers are discounting the effect of transient

faults. Moreover, advances in semiconductor technology have been gradually

increasing performance. Aggressive scaling of transistor sizes has driven these

remarkable improvements in computational performance.

However, the density of modern silicon chips makes them vulnerable to particles

of lower energy causing transient faults and, as a consequence, catastrophic failures

(Constantinescu 2003; Hazucha and Svensson 2000; Hazucha et al. 2003). Without

mitigation mechanisms the error rates due to these transient faults can easily exceed

50,000 FITS per chip.

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_4

79

4.2 Radiation and Its Effect on Electronics

The term “radiation” is commonly used to describe a process in which energy travels

through a medium, or space, ultimately to be absorbed by another body. Radiation

can generally be divided into ionising and non-ionising radiation depending on its

ability to ionise matter. Non-ionising radiation does not usually carry enough energy

to produce changes to electronic circuitry. Non-ionising radiation can move atoms in

amolecule around or cause them to vibrate but does not carry enough energy to ionise

atoms or molecules, and as such is not a concern. Non-ionising radiation comes in the

form of visible and infrared light, radio waves and microwaves and thermal.

Ionising radiation has enough energy to directly or indirectly remove electrons

from atoms or molecules, thus causing the formation of ions. It includes highly

energetic protons, alpha particles, heavy ions, galactic cosmic rays and others. Even

though neutrons are not ionising particles, their collision with nuclei produces

ionising radiation, and therefore, they are also included in this classification.

As manufacturing technologies evolve, the effects of ionising radiation are

becoming a primary concern. Semiconductor devices are sensitive to ionising

radiation in the space environment, high altitudes and sea levels. There are different

radiation damage mechanisms affecting electronics including atomic lattice dis-

placements and ionisation damage. Such mechanisms induce different types of

failures such Total Ionising Dose (TID), Single Event Effects (SEEs) and Displace-

ment Damage Dose (DDD).

Resulting particles from distinct radiation sources affect diverse electronic

technologies in a variety of ways. Due to the reduction in size of the transistors

and the reduction in critical charge of logic circuits, the natural resilience of

previous technologies to information corruption is decreasing (Baumann 2002,

2005a, b; Seifert et al. 2002; Shivakumar et al. 2002). Collision of energetic

particles with sensitive regions of the semiconductor can alter stored information,

potentially leading to logic errors.

Transient faults (Breuer 1973), the predominant faults in modern technologies,

can be caused by environmental conditions like temperature, pressure, humidity,

voltage, power supply, vibrations, fluctuations and electromagnetic interferences

due to crosstalk between long parallel lines in a die. However, ionising particles are

the major source of this type of fault.

Transient errors in electronic devices due to ionising radiation in the space

environment are well known (Adams and Gelman 1984; Adams et al. 1982; Binder

et al. 1975; Blake and Mandel 1986; Waskiewicz et al. 1986) as is the impact of

such radiation on application-specific electronics such as commercial (Dyer

et al. 1990; Johansson et al. 1998; Olsen et al. 1993) and military (Taber and

Normand 1993) avionics, nuclear exposed environments (Mahout et al. 2000;

Marshall 1963), medical instrumentation (Bradley and Normand 1998), and other

sea level domains (Hauge et al. 1996; Ziegler 1996).

Bird view, or taxonomy on short-term impact of radiation in silicon-based

electronics mostly covered in this chapter is presented on Fig. 4.1.

80 4 Impact of Radiation on Electronics

4.3 Damage Mechanisms

The two fundamental damage mechanisms (Claeys and Simoen 2002) to electronic

elements due to radiation are atomic lattice displacements and ionisation damages.

Atomic lattice displacement occurs when an energetic particle undergoes a

nuclear collision with one or more atoms of the electronic device, changing its

original position (see Fig. 4.2 above) and thus the analogue properties of the

semiconductor junctions, potentially worsening in the long term the properties of

the material and creating lasting damage.

In silicon, an impacted atom can become displaced if it is part of the crystalline

structure and the incident particle is capable of inducing a minimum energy

(displacement threshold energy) of around 20 eV (Miller et al. 1994).

Fig. 4.1 Taxonomy of radiation effects in silicon based electronics

Fig. 4.2 Atomic lattice displacement

4.3 Damage Mechanisms 81

The displaced atom is referred to as “primary knock-on atom” (PKA) and its new

non-lattice position is called “interstitial”, while its absence from its original lattice

position is named “vacancy”. Normally, the simplest configuration is a vacancy and

an adjacent interstitial generated as a result of a low energy particle hitting the

material, a combination referred to as “Frenkel pair”.

However, in most cases the displaced atom has enough energy to knock out a

neighbouring atom creating a more complex configuration called “cluster”, altering

the properties of the bulk semiconductor material. In silicon, vacancies and

clusters are of unstable nature and tend to be filled by near atoms leading to more

stable defects.

In general, this migration leads to the most typical process, called “defect

reordering” or “forward annealing” reducing the amount of damage and its effec-

tiveness. Yet, in some cases, depending on the time, temperature and nature of the

device, “reverse annealing” can take place, resulting in more efficient defects.

Ionisation damage is primarily induced by charged particles usually leading to

transient effects causing temporary variation of the functionality of the system.

Since no permanent damage is induced in the electronic circuit, this type of error is

called soft error. Ionisation damage may also lead to small degradation and

permanent errors, also called hard errors.

A key factor in the damage process is the critical charge, or Qcrit, which is the

smallest amount of charge that can cause a change of value in a cell. The effects

provoked by the above damage mechanisms can vary depending on the type or

combination of types of radiation, radiation flux, total dose, critical charge of the

device and manufacturing technology. These factors make modelling of faults

difficult and time consuming.

4.4 Radiation Macro-effects

Three major macro effect categories may be used to classify the resultant effects:

Total Ionising Dose (TID), Displacement Damage Dose (DDD) and Single Event

Effects (SEE). As far as the type of degradation that these macro effects have, TID

and DDD are considered as long term cumulative and SEE as short term. Table 4.1

summarises the characteristics of these radiation macro effects.

Total Ionising Dose is a measure of the cumulative effects of the prolonged

exposure to ionising radiation. In the context of silicon devices, it is also called

surface damage. MOS and bipolar electronic technologies are affected by TID and

once the material is damaged, it will not return to its original state (Felix et al. 2007).

In today’s devices, the formerly used bipolar transistors have been almost

completely replaced by theMOSFETs (Metal Oxide Silicon Field Effect Transistors).

The schematic of a typicalMOS transistor is shown in Fig. 4.3. Its basic architecture is

based on an N-(P-) doped silicon substrate and two highly P-(N-) doped contacts,

the source and the drain. The gate oxide covers the channels between the source and

the drain.

82 4 Impact of Radiation on Electronics

T
a
b
le

4
.1

C
h
ar
ac
te
ri
st
ic
s
o
f
ra
d
ia
ti
o
n
m
ac
ro
-e
ff
ec
ts

R
ad
ia
ti
o
n

ef
fe
ct

T
y
p
e
o
f

d
eg
ra
d
at
io
n

S
o
u
rc
e

D
am

ag
e

m
ec
h
an
is
m

M
ic
ro
ef
fe
ct
s

C
o
u
n
te
r
m
ea
su
re
s

m
it
ig
at
io
n
te
ch
n
iq
u
es

S
en
si
ti
v
e

te
ch
n
o
lo
g
ie
s

T
em

p
er
at
u
re

d
ep
en
d
en
cy

T
o
ta
l

io
n
is
in
g
d
o
se

(T
ID

)

L
o
n
g
-t
er
m

cu
m
u
la
ti
v
e

T
ra
p
p
ed

p
ro
to
n
s,

tr
ap
p
ed

el
ec
tr
o
n
s

an
d
so
la
r
ev
en
t

p
ro
to
n
s

Io
n
is
in
g

d
am

ag
e

S
m
al
l
en
er
g
y
tr
an
s-

fe
rs

d
ep
o
si
te
d
u
n
i-

fo
rm

ly
an
d
d
el
iv
er
ed

o
v
er

a
lo
n
g
ti
m
e

•
P
ar
ti
al

m
it
ig
a-

ti
o
n
:
A
d
d
it
io
n
al

sh
ie
ld
in
g
is
o
n
ly

ef
fe
ct
iv
e
in

p
ar
-

ti
cu
la
r
te
ch
n
o
lo
-

g
ie
s
an
d

en
v
ir
o
n
m
en
ts

R
o
b
u
st
el
ec
tr
o
n
ic

d
es
ig
n
.
H
ig
h

d
ri
v
e
cu
rr
en
ts
.

H
ig
h
n
o
is
e

im
m
u
n
it
y
,
la
rg
e

g
ai
n
m
ar
g
in
s,
et
c.

C
o
ld

re
d
u
n
d
an
cy

u
si
n
g
sp
ar
es
.
N
o
t

su
it
ab
le

fo
r
al
l

te
ch
n
o
lo
g
ie
s.

P
o
w
er

M
O
S
,

C
M
O
S
,
N
M
O
S
,

P
M
O
S
,
S
O
I,
S
O
S
,

B
ip
o
la
r,
B
iC
M
O
S

Y
es

D
is
p
la
ce
m
en
t

d
am

ag
e
d
o
se

(D
D
D
)—

B
u
lk

d
am

ag
e

L
o
n
g
-t
er
m

cu
m
u
la
ti
v
e

T
ra
p
p
ed

an
d
so
la
r

p
ro
to
n
s
an
d
n
eu
tr
o
n
s

A
to
m
ic

la
t-

ti
ce

d
is
p
la
ce
-

m
en
t
d
am

ag
e

A
cc
u
m
u
la
ti
o
n
o
f

sm
al
l
en
er
g
y
tr
an
s-

fe
rs

to
at
o
m
ic

n
u
cl
ei

(C
o
u
lo
m
b
,
n
u
cl
ea
r

in
te
ra
ct
io
n
s)

•
S
h
ie
ld
in
g
is
n
o
t

o
n
ly

in
ef
fe
ct
iv
e,

b
u
t
it
is
al
so

th
e

ro
o
t
o
f
th
e

p
ro
b
le
m

B
ip
o
la
r,
B
iC
M
O
S

N
o (c

o
n
ti
n
u
ed
)

4.4 Radiation Macro-effects 83

T
a
b
le

4
.1

(c
o
n
ti
n
u
ed
)

R
ad
ia
ti
o
n

ef
fe
ct

T
y
p
e
o
f

d
eg
ra
d
at
io
n

S
o
u
rc
e

D
am

ag
e

m
ec
h
an
is
m

M
ic
ro
ef
fe
ct
s

C
o
u
n
te
r
m
ea
su
re
s

m
it
ig
at
io
n
te
ch
n
iq
u
es

S
en
si
ti
v
e

te
ch
n
o
lo
g
ie
s

T
em

p
er
at
u
re

d
ep
en
d
en
cy

S
in
g
le

ev
en
t

ef
fe
ct
s
(S
E
E
)

S
h
o
rt
-t
er
m

G
C
R
s,
p
ar
ti
cl
es

fr
o
m

so
la
r
ev
en
ts
,
tr
ap
p
ed

p
ro
to
n
s,
an
d
se
co
n
d
-

ar
y
n
eu
tr
o
n
s

Io
n
is
in
g

d
am

ag
e

S
u
d
d
en

la
rg
e
en
er
g
y

tr
an
sf
er
s
at

th
e

w
ro
n
g
p
la
ce

an
d

ti
m
e

•
A
d
d
it
io
n
al

sh
ie
ld
in
g
is
N
O
T

ef
fe
ct
iv
e

•
E
n
su
re

sy
st
em

s

ar
e
n
o
t
se
n
si
ti
v
e

to
tr
an
si
en
t

ef
fe
ct
s

•
F
au
lt
to
le
ra
n
t

d
es
ig
n
te
ch
n
iq
u
es

•
E
rr
o
r
d
et
ec
ti
o
n

an
d
co
rr
ec
ti
o
n
fo
r

cr
it
ic
al

ci
rc
u
it
s

•
S
y
st
em

au
to
n
o
-

m
o
u
s
re
-b
o
o
t

P
o
w
er

M
O
S
,

C
M
O
S
,
N
M
O
S
,

P
M
O
S
,
B
ip
o
la
r,

S
O
I,
S
O
S
,

B
iC
M
O
S

Y
es

84 4 Impact of Radiation on Electronics

This thin silicon dioxide (SiO2) insulating layer is situated under the gate

electrode and can attract charge carriers into the channel region. If no voltage is

applied at the gate electrode, no current can flow between drain and source. By

regularly applying low voltages at the gate, the current between drain and source is

regularly switched on and off.

When a highly energetic particle strikes the semiconductor material, as shown in

Fig. 4.4, electron hole pairs are generated but disappear quickly due to the low

resistance of the gate and the substrate.

However, in the oxide, and due to their different mobility, electrons rapidly

move either to the gate or to the channel whereas the holes slowly bounce from site

Source electrode
Gate electrode

Gate (Metal)

N type
diffusion zone

N type
diffusion zone

Drain electrode

flow of electricity

Gate insulation film
(Oxide film)

p-type Si substrate

Fig. 4.3 Schematic of MOS transistors

Fig. 4.4 Schematic of the motion of electron holes in a silicon oxide

4.4 Radiation Macro-effects 85

to site until they become trapped1 by defects near the silicon oxide interface. Some

of these holes may be trapped for a long time resulting in a positive charge in the

oxide that can affect the characteristics of the transistor and generate shifts in its

operating threshold. These voltage shifts are the most common form of radiation

damage in MOS technology and can persist from hours to years.

TID effects can lead to degradation within the electrical circuit (threshold shifts),

decreased functionality, switching speed, device current, increased device leakage

(higher power consumption) and even functional failures. The primary sources of

TID are trapped protons and electrons, and solar protons (Barth et al. 2004).

Modern submicron electronics offer relative relief to these effects in the way of

natural radiation hardening (Pouponnot 2005; Velazco et al. 2007). Current gate

oxides are around 100 times thinner than the approximately 100 nm oxide layers

employed in the early 1990s. Modern gate oxides are around 1 nm thick, which

allow electrons to tunnel through the potential barrier at the silicon oxide interface,

neutralising the trapped holes. Since there is not enough trapped charge, transistor

threshold shifts cannot be generated.

Circuit level radiation hardening techniques, i.e. changes in the geometry of

transistors, have been used to mitigate TID effects but such techniques are expen-

sive. Furthermore, TID effects might be partially reduced with the use of shielding

material that absorbs most electrons and low energy protons. However, the amount

of shielding is inversely proportional to its effectiveness in stopping the protons

with higher energy (Dyer et al. 1996). TID is considered a severe problem (Claeys

and Simoen 2002) during the lifetime of satellites.

Displacement Damage Dose (DDD) or “Bulk” damage (Barth et al. 2004; Yu

et al. 2005), occurs when high energy particles dislodge or displace atoms from the

semiconductor lattice due to its long time exposure to non ionising energy loss

(NIEL). DDD results in a similar long-term cumulative degradation to that caused

by TID.

The damage mechanism is the result of collisions with atoms, which become

displaced from the lattice creating interstitials and vacancies. Consequently, DDD

is an effect of concern for all semiconductor bulk based devices such as bipolar

devices (BJT circuits and diodes), BiCMOS, electro optic sensors (CCDs, photo-

diodes, phototransistors), silicon detectors and solar cells, whereas CMOS is almost

insensitive to it.

DDD accumulation primarily occurs when the semiconductor material is

exposed to neutrons, trapped protons and solar protons over time. Likewise,

secondary radiation produced in shielding materials can cause DDD effects. The

overall effect of DDD in semiconductors is alteration in the minority carrier

lifetimes, which results in lower currents between the collector and the emitter

and therefore reduced transistor gain. An extended review of literature related to

this type of damage can be found on (Srour et al. 2003).

1 In MOS structures oxide traps are defects in the SiO2 layer, interface traps are defects at the

Si/SiO2 interface and border traps are defects near the interface (Fleetwood et al. 2008).

86 4 Impact of Radiation on Electronics

4.5 Single Event Effects (SEE)

The term Single Event (SE) is used to lay emphasis on the fact that the effect is

caused by an individual particle interacting with the material. In current semicon-

ductor technologies single event effects represent a much larger problem than the

combination of all long-term cumulative effects.

SEEs are induced by the strike of a single energetic particle (ion, proton,

electron, neutron, etc.) in sensitive regions of the material.

The particle travels through the semiconductor material leaving an ionised track

behind depositing sufficient energy to cause an effect on a localised area of the

electronic device. Both TID and SEE take place as a result of ionising radiation;

however, whilst the former is a long term effect that changes the electrical proper-

ties of the device, SEEs are the result of an instantaneous perturbation.

Neutron and alpha (α) particles are the most common sources of SEEs in

terrestrial environments whilst cosmic rays and heavy ions are most responsible

for space applications. SEEs affect many different types of electronic devices and

technologies resulting in data corruption, high current conditions and transient

disturbances. If not handled well, unwanted functional interruptions and cata-

strophic failures could take place.

4.5.1 Physical Mechanisms Responsible for SEEs

In the “technological shrink model” of sensitivity to upsets (Baumann 2002; Seifert

et al. 2002; Shivakumar et al. 2002) the detailed physical mechanisms responsible

for SEE are identified in four consecutive steps (Dodd and Massengill 2003; Wirth

et al. 2008) taking place before an SEE occurrence:

• Prior charge deposition by the incident particle striking the semiconductor,

• Transport of the released charge into the device,

• Charge collection by the different sensitive regions,

• Circuit response.

4.5.1.1 Charge Deposition

Ionising radiation can release charge in the semiconductor in different ways. SEEs

can occur through the impact of the incident particles themselves (e.g. direct

ionisation from galactic cosmic rays (GCRs) or solar particles). SEEs can also

occur as a result of secondary particles generated via inelastic or elastic nuclear

reactions (Howe et al. 2005; Reed et al. 2006; Warren et al. 2005) and Coulombic

(Rutherford or inelastic Coulomb) scattering (Wrobel et al. 2006) between the

incident particles and the stationary targets in the struck material (indirect

ionisation).

4.5 Single Event Effects (SEE) 87

An incident particle can experience a number of interactions before its kinetic

energy is expended. In every interaction the path of the particle can be altered and

can lose some of the kinetic energy. To measure the energy transferred to the

material the terms Linear Stopping Power and Linear Energy Transfer (LET) can be

used. Equation (4.1) describes the rate at which a particle loses energy while

moving through an absorber. The incremental energy (dE) may be expressed in

units of MeV, while the path length (dx) may be expressed in units of cm.

S Eð Þ ¼ � dE

dx
ð4:1Þ

From these interactions, two types of stopping power can be distinguished (ECSS

2007; Podgorsak 2009):

• Nuclear stopping power (also called radiation stopping power) resulting from

energy loss per unit path length due to inelastic Coulomb interactions between

the charge particle and the nuclei of the absorber. Only light particles, such as

electrons and positrons, experience significant energy loss via nuclear stopping

power. For heavier charged particles, such as protons and α particles, this type of

loss is insignificant.

• Electronic stopping power (also called ionisation or collision stopping power)

resulting from inelastic Coulomb interactions between the charge particle and

orbital electrons of the absorber. Electronic stopping power describes the energy

lost due to direct ionisation. Unlike nuclear stopping power, heavy and light

particles experience this type of interaction that results energy transfer from the

incident particle to the orbital electrons via excitation and ionisation (ECSS 2007).

The electronic, nuclear and total stopping energy of different particles are

presented Fig. 4.5 (for protons) and Fig. 4.6 (for electrons). Figure 4.5 shows that

at all energies the electronic stopping power of protons dominates and that the

nuclear stopping power is insignificant. Figure 4.6 shows that the nuclear stopping

power of electrons dominates at higher energies.

The total stopping power S(E)tot for a charged particle with Ek energy passing

through an absorber of atomic number Z is in general the sum of nuclear stopping

power and electronic stopping power as shown in Eq. (4.2) (Podgorsak 2009):

S Eð Þtot ¼ S Eð Þnuclear þ S Eð Þelectronic ð4:2Þ

Charge deposition is often characterised by mass stopping power, instead of Linear

stopping power. Mass stopping power is defined as the Linear Energy Transfer

(LET) (not equal to Linear Stopping Power, but approximated) and can be obtained

by dividing S(E) (expressed in MeV/cm) by the density of the material p (expressed
in mg/cm3). (Nearly independent of the density of the material, LET) (Eq. 4.3)

describes the linear rate of energy transfer to the material as the energetic particle

traverses the absorber.

88 4 Impact of Radiation on Electronics

Fig. 4.5 Electronic, nuclear and total stopping power of protons in silicon, computed with PSTAR

from NIST laboratory (Berger et al. 2005)

Fig. 4.6 Electronic, nuclear and total stopping power of protons in silicon, computed with

ESTAR from NIST laboratory (Berger et al. 2005)

4.5 Single Event Effects (SEE) 89

LET ¼ 1

p

dE

dx
ð4:3Þ

The LET of an incident ion and thus, the density of ionisation, typically increases

to a maximum immediately before the particle comes to rest. This peak, the Bragg

peak, occurs due to the increasing cross section as the particle loses energy.

Figure 4.7 shows a plot of the LET of the standard components of a 16 MeV/

nucleon cocktail as a function of depth in silicon.

The LET of a given ion is dependent on its energy and the target material, and

therefore is an important parameter to quantify the sensitivity of electronic devices.

Theoretical and experimental values of LET for most ions in different materials

have been published (Northcliffe and Schilling 1970). In addition, stopping power

for different particles can be calculated using the TRIM code (Ziegler et al. 2010),

and the ESRAR, ASTAR and PSTAR programs (Berger et al. 2005).

The LET can be converted into charge per unit length (fC/μm or pC/μm). This is

more suitable to situations that take into account the physical dimensions of the

device and the charge stored at the critical nodes. For example, in silicon based

technologies a particle with a LET of 97 MeV-cm2/mg corresponds to a charge

deposition of approx. 1 pC/μm.

In passing through a semiconductor material, high energetic particles (direct

ionisation Fig. 4.8a) can deposit energy in the absorber through a one step process

involving Coulomb interactions with the electrostatic field electrons in the target

atom (Podgorsak 2009).

The energy introduced allows bound electrons to leave their atoms, releasing

free electron hole pairs and converting their energy into charge (Fig. 4.8b).

Fig. 4.7 Bragg peaks: LET (MeV/cm2) of the standard components of a 16 MeV/nucleon cocktail

versus depth in silicon (μm) (McMahan et al. 2004)

90 4 Impact of Radiation on Electronics

The particle rests in the semiconductor material once almost all its energy is lost.

The energy lost due to direct ionisation can be referred as the electronic stoppingpower.

The total path length or total distance travelled is referred as particle’s range and

is highly dependent on the type of particle, its initial energy and the properties of the

semiconductor material.

At sea level, direct ionisation is the main charge deposition mechanism for

upsets caused by heavy ions and alpha particles, emitted due to the contaminants

in packaging materials. Traditionally, since protons and neutrons are lighter, the

charge released by them is not enough to produce upsets via direct ionisation.

As suggested in 1997 the technological shrink model would soon be affected by

direct ionisation of low energy particles (Duzellier et al. 1997). Recent experimen-

tal evidence (Heidel et al. 2008) of 65 nm SOI SRAM sensitivity to direct ionisation

from protons supported the latter suggestion with results that the low energy proton

for the 65 nm technology is different to those from previous generations.

However, the most significant upset rates due to light particles are caused via

indirect ionisation mechanisms. In fact, in today’s semiconductor technology, high-

energy neutrons derived from cosmic rays are the primary contributor to soft error rates

at sea level. In those mechanisms, the highly energetic particles (protons or neutrons)

do not directly interact with the material. The three indirect ionisationmechanisms are:

• Inelastic nuclear reactions that take place when the incident particle hits a target

nucleus causing fragmentation and ejection of secondary particles;

• Elastic nuclear reactions that take place when the incident particle transfers

some of its energy to a target nucleus that recoils (Fig. 4.8) with extra energy

transferred from the incident particle;

• Coulombic scattering, similar to elastic nuclear reactions, takes place when the

incident particle gets close to a target nucleus that recoils due to Coulomb force

with less momentum and smaller angle than with elastic nuclear reactions.

Fig. 4.8 Energetic particle strike and generation of electron hole pairs: (a) direct ionisation due to
heavy strike; (b) indirect ionisation due to proton strike

4.5 Single Event Effects (SEE) 91

Among these three mechanisms, inelastic nuclear reactions have the higher

probability of depositing larger amounts of charge, and hence are the most signif-

icant indirect mechanism in the formation of SEE. If an inelastic nuclear reaction

takes place, a collision with a target nucleus leads to the emission of reaction

products that can, in turn, deposit energy via direct ionisation.

Those resulting particles are much heavier than the incident particle, which

involves higher charge deposition that may result in a SEE. Since the incident

particles do not directly interact with the semiconductor material, the number of

counts or neutrons per cm2 is used to measure the effect rather than the LET.

4.5.1.2 Charge Transport and Collection

Subsequent to the charge deposition, the released carriers are transported and

collected by the semiconductor elementary structures. The transport of the charge

is based on three main mechanisms (Dodd 2005):

• Charge collection by drift: The charge can drift in regions with an electric field.

Reverse biased semiconductor p-n junctions are usually the most sensitive

regions. If the ionised track affects one of those junctions, the high electrical

field present in the region can collect the incident charge, which can result in

significant transient currents. This is a fast mechanism in the order of 100 ps.

• Charge collection by diffusion: the charge may diffuse in neutral zones (bulk of

the device), leading to considerable transient currents. This is a slow mechanism

in the order of nanoseconds.

• Recombination: The charge can recombine with free carriers in the lattice.

As Fig. 4.9 illustrates the charge collection can be extended via “field funnel-

ling” (Hsieh et al. 1981, 1983). If a high field region, such as the depletion region of

Fig. 4.9 Funnelling

effects and charge

collection mechanisms

(Messenger and Ash 1992)

92 4 Impact of Radiation on Electronics

a p-n junction, is traversed by a column of electron holes, the associated electric

field can be disturbed, spreading down along the particle’s track deep into the

substrate, consequently reducing the net charge in the depletion region.

Three different areas within the track can be distinguished: (1) the initial

depletion region, (2) the funnel region and (3) the bulk region. Within the external

depletion region, positive potential areas attract the electrons and negative potential

areas attract the holes.

Rapid collection by drift will take place in the funnel region whilst the diffusion

mechanisms will slowly collect the charge of the residual carriers in the bulk

region. The “funnelling effect” is effective in the range of a few nanoseconds.

The generated carrier density in the vicinity of the junction becomes similar to

the substrate doping concentration, and the electrical field is then re-established

back to its original position as figure below illustrates (Fig. 4.10).

4.5.1.3 Circuit Level Response

The collected charge transported in the device induces parasitic transient currents,

which turn could induce disturbances in the external circuits. Depending on (a) the

collected charge, (b) the intensity of the resultant current transient, (c) the details of

the circuit application and (d) the area affected, the excess of charge can be

manifested as one of many types of SEE (or a combination of them).

Semiconductor devices experience SEEs in two major forms: in the form of

destructive effects, which result in permanent degradation or even destruction of the

Fig. 4.10 Funnelling effects and charge collection mechanisms after a particle strike on a p-n

junction (Mavis 2002)

4.5 Single Event Effects (SEE) 93

device affecting functionality, and in the form of non-destructive effects, causing

no permanent damage. Table 4.2 presents different type of errors, their nature,

characteristics and a solution to eliminate their effect.

Soft errors are of temporal nature and imply that the physical functionality of the

circuit is not affected even though its temporal integrity is. Soft errors have been

defined (www.jedec.org/sites/default/files/docs/JESD89-3A.pdf) as “an erroneous
output signal from a latch or memory cell that can be corrected by performing one
or more normal functions of the device containing the latch or memory cell”.

Typical examples of this are undesired changes of logic value in sequential logic

and undesired analogue pulses that temporarily change the output of combinational

logic. Soft errors can be further categorised into transient and static errors (Mavis

and Eaton 2002).

Transient soft errors are “soft errors that can be corrected by repeated reading
without rewriting and without the removal of power” (“JEDEC JESD89-3A,” 2007).

On the other hand, static soft errors, or firm errors, are those that cannot be corrected

by repeated reading but can be corrected by rewriting without the removal of power,

resulting in a completely functional memory (Caywood and Prickett 1983).

When a soft error has occurred, it could result in a detected recoverable error

(DRE), detected unrecoverable error (DUE) or silent data corruption (SDC) (Kadayif

et al. 2010; Weaver et al. 2004). If fault tolerant techniques are implemented a soft

error could potentially be recovered, either by hardware or software. This is a DRE, a

more benign type of error, since recovery of the normal operation is possible.

DUE take place when the same fault tolerant techniques are able to discover

and/or report an error, from which recovery is not possible. A SDC take place when

an error is undetected and causes data corruption (SDC) (Constantinescu

et al. 2008). In this case, the corrupted data could go unnoticed making this type

of error benign, or could result in a visible error and/or catastrophic failure such as

crashing a computer system.

Table 4.2 Type of errors and how to fix them

Type of error Characteristics Nature Fix

Soft Transient

soft

Functionality in place Non-destructive Reading or writing

Incorrect logical value

Firm, Static

soft

Functionality in place Non-destructive Writing

Incorrect logical value

Reading does not fix it

Pseudo-hard Functionality lost Non-destructive Power-off cycle or

reducing the power

supply voltage

below the holding

voltage

No permanent damage

Hard Functionality lost Destructive Replacement of HW

Physical-permanent

damage

94 4 Impact of Radiation on Electronics

Hard errors, or Permanent errors, lead to loss of device functionality but, in

contrast with transient soft and firm errors, the functionality of the device is

permanently damaged. Repeated reading, writing or repowering is not effective

in recovering from this type of errors. In general, hard error effects can only be

corrected via maintenance action, involving replacement of components.

A further categorisation between hard and soft errors is pseudo hard errors,

sometimes referred to as power cycle soft errors (PCSE) (“JEDEC JESD89-3A,”

2007). These take place as a result of the ionising radiation from a particle strike,

when the functionality of the device is lost but the device is not permanently

damaged. Unlike soft errors, pseudo hard errors cannot be corrected by repetitive

readings or writings. Instead, they can be corrected by removing the power from the

device. Examples of this are non-destructive latchup and firm errors in FPGA where

the area affected by the particle strike is the control path (Edwards et al. 2004).

Although the data may not be corrupted, the device functionality is

compromised. SRAM based FPGA devices are subject to this type of error if the

“gate array” configuration in SRAM is corrupted. These systems contain the “gate

array” configuration area within ROM, which is loaded into the SRAM during

power up. Recovery can be achieved via repowering and reinitialisation.

A classification of SEEs is presented in Table 4.3. The numerous types of SEE

can be categorised depending on the type of degradation, recoverability and tech-

nologies susceptibility. Long- and short-term radiation effects on different

manufacturing technologies are presented in Table 4.4.

4.5.2 System Level Response

Many different acronyms are used to describe the numerous SEEs in digital

integrated circuits. Also called “reversible errors”, non-destructive effects can be

classified as SET, SEU, MBU, MCU and SEFI.

4.5.2.1 Single Event Upsets (SEUs): Conventional Upset Mechanisms

SEUs are a particular type of SEE that take place when a single energetic particle

strike causes a charge disturbance, large enough to directly modify the logic state of

a sequential element, such as a register, latch, flip-flop or a memory cell. It is by far

the most common effect affecting all kinds of memory devices, including SRAM,

DRAM, FLASH memories, microprocessor registers, DSPs, FPGAs, logic pro-

grammable state machines and other similar devices.

SEUs can be categorised as static soft errors since the device functionality is not

permanently affected (soft), and cannot be corrected by repetitive reading (static)

but only through the rewriting of new data (Baumann 2005a, b; JEDEC JESD89-

3A 2007).

4.5 Single Event Effects (SEE) 95

Between 1954 and 1957, there were reports of anomalies in electronic equip-

ment during above ground nuclear bomb tests. Since these anomalies were random,

and not related to any permanent hardware fault, these were attributed to electronic

noise from the bomb’s electromagnetic shock wave.

Even though the actual term“Single eventupset”wasfirst adopted in 1979 (Guenzer

et al. 1979), SEUs were, in fact, predicted in 1962 (Wallmark and Marcus 1962)

Table 4.3 Classification of single event effects

Acronym Name

Type of

error Affected technology

SET Single event transients Transient

soft

Combinatorial logic,

operational amplifiers,

analogic and mixed signal

circuits

SEU Single event upset Static soft RAM, PLC—sequential logic

SBU Single bit upset Static soft RAM, PLC—sequential logic

MCU Multiple cell upset Static soft RAM, PLC—sequential logic

MBU Multiple bit upset Static soft RAM, PLC—sequential logic

SEL Single event latchup

(microlatchups)

Pseudo-

hard

CMOS, CPUs, PLC

SEFI Single event functional interrupts Pseudo-

hard

Complex devices with built-in

state or control sections

Logic SEFI Address error, recoverable bust

error, temporary block error

Pseudo-

hard

Complex devices with built-in

state or control sections

Soft SEFI Resettable single event functional

interrupt

Static soft Complex devices with built-in

state or control sections

Hard SEFI Reboot or permanent single event

functional interrupt

Pseudo-

hard

Complex devices with built-in

state or control sections

SEL Single event latchup Hard CMOS, BiCMOS

Destructive

SEL

Address error, recoverable bust

error, temporary block error

Hard CMOS, BiCMOS

Non-destruc-

tive SEL

Resettable single event functional

interrupt

Pseudo-

hard

CMOS, BiCMOS

Micro-

latchup

Reboot or Permanent single event

functional interrupt

Pseudo-

hard

CMOS, BiCMOS

SEHE or

SHE or

SEHR

Single event hard error Hard Memories and latches in

logic devices

SESB or SES Single event snapback Pseudo-

hard

Power MOS, SOI

SEBO or

SEB

Single event burnout Hard Power MOS and bipolar

SEGR Single event gate rupture Hard Power MOSFETS, Flash

memory

SEDR Single event dielectric rupture

or micro-damages

Hard Non-volatile nMOS struc-

tures, FPGA (antifuse), linear

devices

96 4 Impact of Radiation on Electronics

T
a
b
le

4
.4

L
o
n
g
an
d
sh
o
rt
te
rm

ra
d
ia
ti
o
n
ef
fe
ct
s
o
n
d
if
fe
re
n
t
m
an
u
fa
ct
u
ri
n
g
te
ch
n
o
lo
g
ie
s—

X
1
ex
ce
p
t
S
O
I
o
f
si
n
g
le

ev
en
t
ef
fe
ct
s

T
ec
h
n
o
lo
g
y

F
u
n
ct
io
n

S
E
T

S
E
U

S
E
F
I

S
E
H
E

S
E
L

S
E
S
B

S
E
B
O

S
E
G
R

S
E
D
R

T
ID

D
D
D

C
M
O
S
,
S
O
I

S
R
A
M

x
x

x
1

x
x

D
R
A
M
/S
D
R
A
M

x
x

x
x
1

x
x

E
E
P
R
O
M
/F
la
sh

E
E
P
R
O
M

x
x

x
x
1

x
x

x

M
co
n
tr
o
ll
er
/μ
P

x
x

x
x

x
1

x

F
P
G
A

x
x

x
x
1

x
x

x
x

P
o
w
er

M
O
S

x
x

x

B
ip
o
la
r

x
x

x
x

x
x

4.5 Single Event Effects (SEE) 97

when it was forecasted that terrestrial cosmic rays would lead to the eventual

occurrence of upsets in microelectronics. Moreover, it was anticipated that this kind

of upset would limit the volume of semiconductor devices to a minimum of about

10 μm per side.

Evidence of a small rate of cosmic ray induced upsets in bipolar J-K flip-flops in

the space environment (Binder et al. 1975) was presented in 1975 confirming the

earlier predictions. Four anomalies were found in the analysis of 17 years of

satellite operation. It was suggested that 100 MeV heavy ions in the solar wind

striking the electronics might be responsible. During the early years of computing

there have been many reported cases of electronic anomalies, whose source was

unknown at the time.

As an example, in 1976, the Cray1 supercomputer at Los Alamos presented an

average of 25 memory parity soft errors per month. It was not until 2010 that a study

was published, attributing the cause of these anomalies to high-energy neutrons

from the cosmic ray background (Normand et al. 2010).

As integration density of DRAM increased to 64K, a significant SEU rate,

mainly caused by alpha particle contaminants in package materials was found in

terrestrial environments. The first evidence of SEUs at sea level in computer

electronics was reported by May and Woods from Intel Corporation in 1978.

Eventually, May and Woods attributed the anomalies to alpha particle from impu-

rities in the packaging modules (May and Woods 1979).

SEUs at sea level and aircraft altitudes due to cosmic radiation were first

predicted in 1979 by Ziegler and Lanford from IBM Corporation (Ziegler and

Lanford 1979). In 1984 SEU appearances due to cosmic radiation were reported

for the first time (Ziegler and Puchner 2004). The use of low alpha activity materials

(May 1979) mitigated the soft error rate due to this radiation from impurities,

leaving cosmic ray as the primary factor of “single event rate” (SER) (Pickel and

Blandford 1978), which is the amount of single events pet unit of time.

However, the increased use of large-scale integration (LSI) technology

decreased the volume of the sensitive elements, which implied a corresponding

reduction of the critical charge and the number of ion pairs needed to induce a soft

error. The resultant SER raise was attributed to a new source, protons from solar

events and trapped protons in the Van Allen belts (Wyatt et al. 1979).

The 1980s where characterised by extensive research and development of SEU

hardened electronics (Desko et al. 1990; Rockett 1988; Weaver et al. 1987) and

research on the fundamental SEU mechanisms, mostly on memory circuitry

(Adams and Gelman 1984; Blake and Mandel 1986), since SEUs in combinational

logic were rare (May et al. 1984). In 1984 SEUs induced by atmospheric neutrons

were predicted in avionics for the first time (Silberberg et al. 1984).

During the 1990s, the prediction of atmospheric neutron induced SEU in avion-

ics was rigorously demonstrated to occur during flight (Taber and Normand 1992).

Furthermore, the concern for SEU increased due to manufacturers reducing the

number of SEU hardened components which led to an increased interest for

commercially available off-the-shelf (COTS) components, even in space environ-

ments (Shirvani and McCluskey 1998; Underwood 1998).

98 4 Impact of Radiation on Electronics

Due to its high operating voltages, early SRAM cells were very robust, but with

technology scaling, in the last decades, SEUs have become more of a concern,

posing a major challenge for the design of memories. SEU susceptibility increases

exponentially as voltage decreases and, in contrast, decreases at power 4 as feature

size decreases.

Measurements of neutron accelerated induced upsets in 0.25 μm, 0.18 μm,

0.13 μm and 90 nm SRAM showed a SER/bit increase of 8 % per generation.

The SER of a 90 nm SRAM increased of a by 18 % for a 10 % reduction in voltage

(Hazucha et al. 2003).

In contrast, more recent results in technology nodes ranging from 250 nm

through 28 nm have shown that the SEU rate per bit has been declining up to the

65 nm node (Dixit and Wood 2011). However, this long term trend has been

reversed with results for 40 nm SRAM presenting 30 % higher bit SER than the

previous 65 nm technology (Dixit and Wood 2011). Note that the results provided

are based on bit SER. Nonetheless, for every generation the complexity and the

number of bits per unit area are increasing and so is the System SER. Recent

predictions using Monte-Carlo simulator CORIMS on neutron induced soft errors

in SRAMS show that system SER will increase �7 from 130 nm to 22 nm

technology (Ibe et al. 2010).

Embedded DRAM has been widely used in System on Chip (SOC) systems

thanks to its density and high performance. At the same technology node, the size of

an embedded DRAM bit cell is a quarter of the size of an embedded SRAM cell.

With scaling, the voltage reduction has also reduced Qcrit.

However, by replacing 2D capacitors (very efficient at collecting radiation

charge due to its high area junctions) for 3D capacitors, the collection efficiency

has decreased considerably, hence increasing Qcrit. The Qcrit increase due to

junction volume scaling is more significant than the Qcrit decrease due to voltage

scaling. Because of these, the DRAM bit SER has decreased to around 4� to 5� per

generation (Baumann 2005a, b). Then again, the DRAM system SER has remained

roughly constant over many generations.

In contrast with SRAM, whose SEU susceptibility has increased over the years,

the problematic earlier DRAM based on planar cells has evolved to become one of

the most robust devices.

Cell Upsets

A cell upset takes place if the deposited charge is greater or equal than the critical

charge of the cell, changing its original logical value. These could be single bit

upsets (SBUs), multi cell upsets (MCUs) or multiple bit upsets (MBUs).

Single bit upsets (SBUs) are single upsets in a memory cell caused by a single

event, i.e. one event producing a single bit error, and are very common on SRAMs.

A single particle can energise two or more memory cells, as shown by (Reed

et al. 1997). Multi cell upsets (MCUs), first reported in SRAMs exposed to the harsh

space radiation environment (Blake and Mandel 1986), are multiple bit upsets for

4.5 Single Event Effects (SEE) 99

one event regardless of the location of the multiple bits, i.e. an FPGA where one

routing bit gets an impact from a high energetic particle affecting several memory

positions.

Hence, MCUs involve both types of upsets, the ones that can be corrected by

EDC/ECC and those that cannot be. Traditionally, MCUs have represented a small

fraction of the total number of observed SEU (0–5 %) (Maiz et al. 2003). However,

in the case of FPGA, high linear energy transfer (LET) heavy ion induced radiation

experiments indicate that as geometries shrink the MCU probability significantly

increases, accounting for up to 35 % of the upsets induced (Quinn et al. 2005).

As for SRAM devices, it has been predicted that: (1) the MCU ratio will increase

�7 from 130 nm down to 22 nm; (2) the MCU maximum size (MxN bits rectan-

gular area including failed bits) will exceed as many as 1 Mbits in the extreme case;

and (3) for 22 nm process the maximum bit multiplicity will exceed as many as

100 bit (Ibe et al. 2010).

Multiple bit upsets (MBUs) also referred to as single word multiple bit upset

(SMUs) (Koga et al. 1993a, b) are a subset of MCUs. And MBU is a multiple bit

upset for one event that affects several bits in the same word. This type of deviation

cannot be corrected by EDC/ECC. However, it is possible to partially avoid MBUs

by using specific layout design of memory cells.

In contrast to cells, bit line upsets are only upset susceptible during a short period

of time, the pre-charge period specific from read cycle states. However, suscepti-

bility is dependent on the core cycle frequency. Therefore, bit line upset rates are

becoming more important (Schindlbeck 2005) since recent technologies make use

of shorter core cycles, which in turn involve higher susceptibility to upset.

Figure 4.11 shows the sensitive areas that are susceptible to cell and bit line

upset. NMOS drains of transistors connected to capacitors are sensitive zones to cell

upset.

In contrast, the sensitive zones to bit line upsets are the NMOS drains of

transistors connected to bit lines (Bougerol et al. 2008).

Historically, the occurrence of MCU was attributed to the collection of charges

generated by a nuclear spallation reaction as a result of the impact between a

secondary ion and the device. As sensitive devices shrink, neighbouring cells

present closer physical proximity, increasing the number of cells that can be

affected by the impact of a single particle. Nonetheless, novel MCUs are being

reported such as “charge sharing among neighbour nodes” (Amusan et al. 2006; Ibe

et al. 2006).

4.5.2.2 Single Event Transient (SET): An Emerging Upset Mechanisms

Without the peripheral logic that interconnects them, sequential logic including

embedded SRAM and DRAM would be useless. In general, the scientific commu-

nity is mostly concerned with the effects of SEUs on sequential logic even though

combinational logic is not immune to radiation as single event transients do occur

here as well (Baumann 2002; Buchner et al. 1997; Zhu et al. 2005).

100 4 Impact of Radiation on Electronics

However, confusion seems to exist in the literature regarding the terminology

used for single event transients. In analogue circuits, a SET has also been referred to

as “analogue single event upset” (Ecoffet et al. 1994). In digital circuits, a transient

that causes an incorrect state in the data output of a logic gate has been referred to as

“digital single event upset” (Reed et al. 1996).

Earlier publications often incorporate both phenomena, SET and SEU, together

as SEU, perhaps because the effects of an SET can potentially be propagated down

the logic line and change the state of a sequential logic element. In this case, the

effects are identical to the effects produced by an SEU as shown in Fig. 4.12. It is

also possible that more than on logic element change their state. This is known as a

single event multiple upset or SEMU and should not be confused with MBU/MCU.

In contrast with SEUs, SETs were at the time not considered a serious threat to

the reliability of semiconductors.

For the purposes of our work, the following definition will apply to the term

SET: Single Event Transients (SETs) are analogue transient pulses resulting from a

single ionising particle, that are large or big enough to momentarily change the

output of non latched elements, such as combinational logic, clock line and global

Fig. 4.11 Sensitive areas to

SEU in a DRAM memory

array (Bougerol et al. 2008)

4.5 Single Event Effects (SEE) 101

control lines to an incorrect logic value. The duration of such pulse is in the order of

100ps (Pouponnot 2005).

As seen previously in Sect. 4.5.1.2, different semiconductor technologies show

different charge collection and transport mechanisms that lead to different pulses.

Depending on the device technology, circuit topology, impact location, particle

energy device supply voltage and output load, the resultant SET would have unique

characteristics in terms of amplitude, waveform, polarity, duration, etc. Pulses can

vary from tenths of picoseconds to tenths of microseconds.

The effects of a SET can further be propagated along the logical path, and

potentially be latched into one or more flip-flop, latch or register at a distant location

from the original charge collection area. Yet, there has not been too much interest in

protecting combinational logic since this type of logic has a natural tendency to

mask these transient faults.

There are inherent masking mechanisms that mitigate the propagation of the

glitches, preventing the latch from taking place. These three mechanisms, that can

provide a certain level of natural resistance to soft errors, are logical masking,

electrical masking and latch-window masking (Shivakumar et al. 2002; Wirth

et al. 2008).

Logical masking takes place when the particle strikes a portion of the combina-

tional logic that, regardless of its output, has no effect on the output of the

subsequent gate, Fig. 4.13.

The result of the subsequent gate is solely determined by its other input values.

For instance, the output of a NAND gate with an input A equals to ‘1’ and an input

B equals to ‘0’ would not be affected by a glitch on the A input since regardless of

the value that A has, the gate’s output would be ‘1’.

Electrical masking occurs when, as the signal propagates, due to the electrical

properties of the subsequent logic gates, the pulse suffers from attenuation to a point

that it is not of sufficient magnitude to upset any downstream state element

(Fig. 4.13).

Latch window masking, also called timing windows masking, occurs when

the undesired pulse reaches a latch at the wrong time of the clock transition

Fig. 4.12 Traditional propagation of an SET in combinational logic

102 4 Impact of Radiation on Electronics

(Cha et al. 1993). In other words, the pulse does not satisfy the compulsory set-up and

hold time of the flip-flop. The transient will get latched if the pulse reaches the latch

within the “window of vulnerability” (Fig. 4.14), hence causing data corruption.

In terms of upset tolerance of single gates, there are two characteristics of

interest: glitch generation and glitch propagation (Dhillon et al. 2005). The shape

and the magnitude of the voltage glitch generated at the gate’s output are

Fig. 4.13 Effects of logical and electrical masking on a pipeline stage (Ramanarayanan

et al. 2009)

Fig. 4.14 Latch window masking; temporal relationship of latching a data SET as an error (Mavis

and Eaton 2002)

4.5 Single Event Effects (SEE) 103

determined by the glitch generation characteristics. The voltage magnitude of the

glitch depends on the total capacitance of the node, while the duration of the glitch

depends on the gate’s delay. Faster gates lead to wider glitches and therefore better

generation characteristics.

Alternatively, the glitch propagation characteristics of a logic gate determine the

glitch attenuation as it passes through the gate. Assuming a linear ramp at the output

of a gate, where d is the gate propagation delay and wi is the glitch duration at the

gate input, the glitch duration of the gate w0 can be approximated using Eq. (4.4)

(Dhillon et al. 2005) as:

w0 ¼ 0 if d > wi

w0 ¼ 2 wi � dð Þ if 2d > wi > d

w0 ¼ wi if wi > 2d

ð4:4Þ

According to Eq. (4.4), slower gates will induce more attenuation on glitches

than faster gates. Therefore, fast gates have better glitch propagation characteris-

tics. An increase in the gates capacitance would increase the delay of the gate,

which in turn, would reduce the glitch propagation characteristics. SETs affecting

the clock logic or the reset trees can lead to much larger problems (see

Sect. 4.5.2.3).

In the past, these masking effects are some of the reasons why SETs have not

been a dominant contributor in the overall SER. In addition, designers have not

been significantly concerned about errors in microprocessor logic because the

number of flops on microprocessors was much fewer than the number of memory

cells. Since flop protection techniques are more difficult to implement than memory

protection mechanisms such as parity or ECC, from 90 nm downwards, flop SEU

rates are higher than SRAM SEU rates.

SETs are particularly worrisome in safety-critical applications whose memory

has been protected to decrease SEU rates. In this type of systems, SET rates can be

the dominant reliability failure mechanism.

4.5.2.3 Single Event Functional Interrupt (SEFI)

SEFI represent the most disruptive version of non-destructive SEE. Although this

type of anomaly was previously predicted for space environments (Koga

et al. 1985), the term single event functional interrupt (SEFI) was first mentioned

in 1996 (EIA/JEDEC STANDARD 1996).

SEFI is defined as all non-destructive failure modes that lead to the malfunction

(or interruption of normal operation) of a part or the totality of the device (Bougerol

et al. 2008). This definition is in contrast with certain authors that define SEFI as the

cause of a higher error rate than expected due to uniformly distributed upsets (Crain

et al. 1999; LaBel et al. 1996).

104 4 Impact of Radiation on Electronics

The causes and effects of SEFIs vary from the type of component and the

technology used. In general, SEFIs are linked to an upset (SET or SEU) in a control

area that configures a specific function, and leads to the loss of that function. In

contrast to SEUs and SETs that may or may not affect the operation of the device,

every single type of SEFI leads to a direct malfunction.

Figure 4.12 shows an SET affecting combinational logic, not affected by the

logical and electrical masking mechanisms (as in Fig. 4.13), that propagates to a

register in a control area within the latch window (as in Fig. 4.14). If the register

affected is being used by a vital part of the system software, a SEFI could take place.

As microcircuits become more complex they also become more susceptible to

SEFIs; among those: SDRAMs (Harboe-Sorensen et al. 2007) with complex inter-

nal architecture (such as state machine), FLASH memories (Irom and Nguyen

2007; Nguyen et al. 1999; Oldham et al. 2008), FPGA (Czajkowski et al. 2006)

and microprocessors (Czajkowski et al. 2005). Dependent on cause, consequences

and recovery procedures, SEFIs can be classified as logic, soft or hard (see

Table 4.5):

Logic SEFIs (Bougerol et al. 2008): with regard to memories, it is also called

“address error”, “recoverable burst error” (Ladbury et al. 2006) or “temporary

block error” and mainly includes row and column errors. The upset of a row or

column register leads to the reading or writing of the wrong row/column. This type

of SEFI typically causes between X and 8 k addresses in errors where X is the

number of addresses per row/column (Bougerol et al. 2008). Rewriting of the right

values is used as to recover functionality (Schagaev and Buhanova 2001).

Examples of logic SEFIs are “fuse latch upsets” also called SEFLUs (Bougerol

et al. 2010, 2011) that lead to the wrong addressing of a whole row/column.

Manufacturers are experiencing an increasing number of defective cells, therefore

adding spare cells and exposing them to reliability tests. If during those tests, a cell

Table 4.5 Classification of SEFI

Name Also called Typical effect

Recovery

procedure

Technology

affected Examples

Logic
SEFI

Address error,

recoverable

bust error,

temporary

block error

Reading/writing

of the wrong

row, column;

512-8K

addresses in

errors

Rewriting

of the

right value

Complex

memories such

SDRAM

Fuse latch

upsets

(SEFLUs)

Soft
SEFI

Resettable

SEFI

Functionality

loss of up to a

full memory

bank

Refresh

cycles

FPGA, micropro-

cessors, complex

memories

Stuck block

errors

Hard
SEFI

Permanent

SEFI, Reboot

SEFI

Complete loss of

functionality

Complete

power

cycle of

the device

FPGA, micropro-

cessors, complex

memories

Events that

induce data and

functionality

loss that cannot

be recovered

4.5 Single Event Effects (SEE) 105

is found defective, fuse latches are used to disable the particular row/column.

Typical signatures of fuse latch upsets are multiples of X addresses where X is

the number of addresses belonging to a column/row.

Soft SEFIs also called “Resettable SEFIs” (Bougerol et al. 2008; Lawrence

2007) are due to upsets in the device configuration area and usually induce the

functionality loss of several thousands of addresses up to a full memory bank.

Reconfiguration of the device with a mode register set command can be used as a

recovery procedure of the functionality (but not the data). Examples of this are

“block SEFIs” also called “stuck block errors”, observed in the IBM Luna-ES rev C

during heavy ion testing (“NASNGSFC Landsat-7 Project Office, Private Commu-

nication,” 1995) where an entire row of 1,024 addresses was stuck to a specific

value. Since simple writing was not sufficient, device refresh cycles were used to

clear the problem. SEUs in selected areas of an FPGA such the JTAG bit serial

configuration port can lead to inability of reconfiguration.

Hard SEFIs (Bougerol et al. 2010; Harboe-Sorensen et al. 2007), also called

Reboot SEFIs (Bougerol et al. 2008), “permanent SEFIs” (Slayman 2005), “non

resettable errors” (Lawrence 2007, p. 512) or “persistent non recoverable errors”

(Ladbury et al. 2006) can be induced by different phenomena and lead to the

complete loss of memory functionality. Possible causes of this type of catastrophic

SEFI are upsets in the internal state machine, counter registers or activation of

special modes. An example of this is an SEU in one of the power on reset registers

that can lead to the removal of the entire configuration area. Complete power cycle

of the device is compulsory as a recovery procedure.

Fortunately, the probability of SEFI is low compared to other types of SEEs

(Slayman 2005). The reasons for that are:

1. The ratio of the periphery logic area to memory array area is very low;

2. The critical charge for logic gates is usually higher than for SRAM cells.

3. The most part of the periphery logic is combinational, and therefore less

susceptible to upsets due to the three inherent masking mechanisms.

SEFIs can also be classified as high current SEFIs if they involve a certain

increase in current (Koga et al. 2001a, b).

In addition to SEFIs in complex memories, the energetic particles can also strike

other circuits such that the error detection and correction mechanisms affect the

functioning of the whole circuit. In FPGAs, SEFIs can cause the device to stop from

functioning normally and therefore require a power reset in order to resume normal

operations.

In microprocessors, SEFIs can induce upsets in the program counter, illegal

branching and jumps to undefined states.

4.5.2.4 Single Event Latchup (SEL) and Other Destructive Effects

Also called “hard errors” or “non reversible errors”, “single event destructive

effects” are events that momentarily or permanently change the state of a device

106 4 Impact of Radiation on Electronics

or cell/node affecting their functionality. Destructive effects are persistent

even after a reset or reconfiguration and a replacement of components may

be required.

Single Event Latchup

A latchup is an unintended and potentially catastrophic state that affects CMOS

devices, characterised by excessive current flow between a power supply and its

ground rail.

It can take place due to the interaction between parasitic structures, usually an

npn- and a pnp-bipolar transistor.

A low resistance path develops between ground and power supply of the device

and remains after the triggering event has been removed. Once triggered, a latchup

can amplify currents to a point where the device fails as a result of thermal

overstress. This electrically induced effect typically occurs in improperly design

circuits.

However, it was demonstrated (Leavy and Poll 1969) that a latchup can also be

induced via ionising radiation (SEL), including high-energy protons, alpha parti-

cles, cosmic rays and heavy ions. The difference between a conventional latchup

(electrical) and a single event latchup (SEL) is that latter phenomenon is triggered

by an energetic particle instead of an electrical overvoltage. A classification of

different SEL is shown in Table 4.6.

Parasitic transistors of CMOS devices can be triggered by the strike of high-

energy protons, alpha particles, neutrons and heavy ions. An SEL may occur if

enough energy, critical charge, is deposited by a given particle within a microscopic

region of the device, regardless of the total flux. High currents can lead to metal

traces to vaporise, bond wires to fuse open and silicon regions can be melted due to

thermal runaway. Hence, the latched condition may potentially destroy the device,

affect other surrounding devices and destroy the power supply (traditional or

destructive SEL).

Both high current and low current SELs can occur (LaBel et al. 1992). Modern

devices may have many different latchup paths, making characterisation of those

latchup states a challenging task. In some cases, events resulting in localised high

current (micro-latchups) can remain functional.

Table 4.6 Classification of SEL

Name Type of error Nature Recovery procedure

Traditional or

destructive SEL

Hard High current Replacement of components

Non-destructive SEL Pseudo-hard Low current System restart

Micro-latchup Pseudo-hard Localised,

high current

Reducing the power supply voltage

below the holding voltage or reset

4.5 Single Event Effects (SEE) 107

In order to restore the device to a normal operation, these effects can be tolerated

by reducing the power supply voltage below the holding voltage e.g. power off-on

reset (PCSE). An example of this phenomenon is the latchup susceptibility of the

Pathfinder’s modem used in the Mars mission (Matijevic 1996). The latched states

with periods of up to 1 h were not destructive (micro-latchups), and thus, the

modem was adapted with additional circuitry and software to detect the event and

then correct it by powercycling the device.

Additionally, latent damages have been observed in several types of CMOS

devices after non-destructive latchup events (Becker et al. 2002). Becker defines

latent damages as “structural damages that cause no electrically observable para-
metric or catastrophic device failure, but can be detected by surface analysis using
optical or scanning electron microscopy”. These type of permanent structural

damages are a potential reliability hazard since the interconnect cross-sections in

the damaged area may be reduced by one or two orders of magnitude.

Sometimes the SELs are not localised and affect the entire device, but the current

may not be high enough to destroy the device (non-destructive SEL). Therefore,

SELs are not invariably destructive and can also be categorised as pseudo hard

errors.

Temperature is an important factor in SEL susceptibility. Higher temperatures

involve a cross section increment and reduction of SEL threshold (Johnston

et al. 1991).

SELs can be mitigated through internal fabrication process modification. Silicon

on insulator (SOI), silicon on sapphire (SOS) and the use of epitaxial substrates are

immune to this type of effects (Miller and Mullin 1991). However, those are very

expensive and their availability normally limited to mission critical systems in

space environments (Pouponnot 2005).

Additionally, different layout techniques, like guard drains and guard rings, are

often used in CMOS processes. Alternatively, SEL can be circumvented externally

through the use of current sensing, watchdogs, etc. Internal methods are trying to

keep the event from occurring. With external mechanisms, the event still occurs,

but there should be a recovery strategy to deal with them.

Single Event Hard Error (SHE or SEHR) or Stuck Bits

Since the mid-1980s certain SRAM devices, when exposed to heavy ions, experi-

enced semi-permanent stored bit patterns or stuck bits with no implication of total

dose effects. This form of damage was not reported until 1991 (Koga et al. 1991)

and was later studied and renamed as “single hard error” (SHE) (Dufour

et al. 1992).

SHE is an unalterable change of state of a memory element associated with

semi-permanent damage due to high-localised dose deposition from a single ion

track. This type of effect affects memories (SRAM, DRAM, Flash) and latches in

logic devices rendering the cell un-programmable (Dufour et al. 1992).

108 4 Impact of Radiation on Electronics

The cell may have an indeterminate value, also appearing as a permanent fault at

the system level. SHEs are considered semi-permanent since some of the stuck bits

tend to disappear (in some cases after a day (Duzellier et al. 1993)).

Single Event Snapback (SES or SESB)

This type of effect induces high currents in most cases and is particularly difficult to

differentiate from high current SELs (Beitman 1988; Koga and Kolasinski 1989).

While SESBs can take place in technologies immune to SEL, it does not require a

four-region structure to arise. In this context, snapback has been confirmed to be

particularly susceptible to SOI structures because of their internal design (Dodd

et al. 2000). With regard to SESB and NMOS technology, the parasitic NPN bipolar

transistor that exists between the drain and the source amplifies the avalanche

current resulting from the impact of an ionising particle. The transistor then

opens and remains open.

Like SEL, SESB is also considered a potentially catastrophic event since it can

lead to device destruction if not corrected within a short time of occurrence. The

main differences between SEL and SESB lie in the amplitude of the current

increase, their temperature dependence and recovery conditions. First, unlike

destructive SEL, it is often possible to restore normal operation and bring the

device out of the high current mode by changing the gate voltage without shutting

off the power supply. Secondly, the amplitude of the current increase is much lower

for SESB due to its localised nature.

Finally, contrary to SEL, SESB is weakly dependent on temperature (Johnston

1996). These facts can be used to distinguish between SESB and SEL mechanisms.

Single Event Burnout (SEB or SEBO)

SEBO typically occurs in power metal oxide semiconductor field-effect transistors

(power MOSFETs) and bipolar transistors since these devices contain parasitic

bipolar transistors between the drain and the source (Hohl and Galloway 1987;

Waskiewicz et al. 1986). SEBO creates a permanent short between a source and a

drain and involves high currents and localised overheating.

If the device is not provided with current limitation capabilities, and the drain-

source voltage exceeds the local breakdown voltage of the transistor, the SEBO can

lead to the destruction of the device by melting of the silicon in the affected region

(Stassinopoulos et al. 1992), illustrated by see Fig. 4.15.

It has been shown (Johnson et al. 1992) that higher temperatures decrease the

SEBO susceptibility. The probability of SEBO occurrence is low, but apart from the

selection of immune device technology, there are no mitigation techniques.

4.5 Single Event Effects (SEE) 109

Single Event Gate Rupture (SEGR)

It was first observed in non-volatile memories in 1980 (Pickel and Blandford 1980)

and later identified and confirmed in 1984 (Blandford et al. 1984). In 1987 was

reported in power MOSFETs (Fischer 1987) but due to the scaling of CMOS

technology SEGR has become a concern in low voltage circuits (Silvestri

et al. 2009).

This type of single event is often observed with SEB in power MOSFETs. SEGR

is triggered by a single ionising particle in a high field region of a gate oxide,

creating a localised gate rupture in such area (Sexton et al. 1997). This rupture

manifests as a permanent conducting path between the gate and the drain (gate

rupture—see Fig. 4.16). As a result, the electrical performance is compromised and

the functionality of the device may be affected.

Flash memories (Oldham et al. 2006) and non-volatile SRAM are SEGR sus-

ceptible during a write or clear operation due to the large voltage applied to the

memory elements.

Like SEBO, the probability of occurrence is low, but should be taken into

account in the component selection process. In order to mitigate SEGR, voltage

derating and limiting the available energy to a device can be employed.

Single Event Dielectric Rupture (SEDR)

Also called “micro damages”, SEDR was encountered during heavy ion SEE

testing of antifuse FPGA (Katz et al. 1994) and eventually identified as ion induced

rupture of antifuses. Similar to the SEGRs observed in power MOSFETs, SEDRs

affect non-volatile NMOS devices and non-volatile FPGAs (Katz et al. 1997; Swift

and Katz 1996). SEDRs are triggered by a single ionising particle, and lead to the

formation of a conducting path in a high field region of a dielectric.

Fig. 4.15 IRF 150 power MOSFET burnout: (a) Optical view of burnout area on the surface,

(b) Scanning electron microscope (SEM) sectional view of a burnout area with �1,000 magnifi-

cation (Stassinopoulos et al. 1992)

110 4 Impact of Radiation on Electronics

4.6 Conclusion

• Radiation can have a major impact on all kinds of embedded microelectronics

potentially leading to catastrophic failures.

• As we move to denser semiconductor technologies at lower voltages, system

single event rate will continue to rise and in particular the contribution of single

event upsets, single event transients, multi-cell upsets and single event func-

tional interrupts will increase.

• Error correcting codes are not efficient when dealing with certain multi-bit faults

and errors in combination logic. In the case of safety-critical embedded systems,

more efforts need to be directed towards research on mitigation techniques for

the recent and future undesired effects.

• This chapter presents an analysis of the long-term cumulative and short-term effects

of radiation on embedded systems. First, we make an overview of the fundamental

damage mechanisms and, resulting from such mechanisms we introduce the major

macro effects. Second, we focus on the short-term degradation induced by ionising

particles, namely single event effects. Third, we describe the physical mechanisms

that are responsible for SEE including charge deposition, charge transport, charge

collection, to finally fully describe the different circuit responses.

• As a result, an extensive taxonomy of single event effects has been produced,

describing their nature, type of degradation, susceptibility, fault rate trends and

recoverability.

Gate Oxide Ion Track

Gate Electrode

Inverted Interface

Holes
Electrons

Drain Contact

n+epilayer

Silicon Bulk
(n-epilayer)

Additional Induced
Image Charge at
Strike Location

VG (negative blased)

Fig. 4.16 SEGR as a result of the impact of a highly energetic particle. Holes from the particle’s

track aggregate under the gate oxide increasing the high field of the gate oxide to the dielectric

breakdown point (Allenspach et al. 1994)

4.6 Conclusion 111

Chapter 5

FT Models

5.1 Models

We defineM as the known model of a system that performs a given function F. Let
us imagine a new feature of extreme reliability in that model. In order to express

the existence of this new feature, the predicates P andQ are introduced to determine

the state of the model. P and Q also defined the direction of the time arrow

(see Fig. 5.1).

To analyse methods for achieving a required level of reliability with perfor-

mance and power consumption constraints, we offer a combination of the following

three models:

• The model of the system Ms

• The model of the faults Mfault that a RT FT system will be exposed to

• The model of fault tolerance MFT or the new structure that implements FT

As shown in Fig. 5.1, Ms, Mfault and MFT are mutually dependent models. Notice

that in this approach development and manufacturing costs of a solution are not

considered.

Mfault is a description of all faults that a system must tolerate. In binary logic a

typical permanent fault can manifest as “stuck at zero” or “stuck at one”.

Table 5.1 shows typical examples of HW faults. Hidden faults, also called Latent

faults are behavioural faults that exist in the hardware over a long period of time,

e.g.: Byzantine faults1 and fail-stop2 faults. Both types complicate the design of FT;

1 Byzantine faults occur when a faulty system continues to operate, producing incorrect results

sometimes giving the impression that they are working correctly. Dealing with this type of fault is

difficult.
2 Fail-stop (also known as fail-silent) faults take place when a faulty unit stops functioning,

producing no bad output. Fault stop assumes to produce no output - i.e. freezing the output, that

clearly indicates that units has failed.

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_5

113

all described faults should be tolerated within a limited and specified period of time.

This period actually determines the availability of the system. Fault types differ by

their impact, as well as the way they are handled.

Thus, the fault model has its own hierarchy, including single-bit, element,

behavioural and subsystem faults. One has to accept that the fault type is varying

and some action hierarchy to tolerate them is also required. A detailed fault model is

further developed and discussed in Sects. 5.2–5.4.

Fault encapsulation approaches can help to handle faults: due to deliberate

design solutions it is possible to ensure that severe faults in the system do not

escalate and remain simpler to handle, therefore making the fault handling practi-

cally possible to implement.

RT FT system applications assume long operational life; however, fault-handling

schemes are needed much more often towards the end of the device life cycle. The

appropriate techniques for tolerating faults of various types are presented on

Table 5.1. As discussed in Sect. 3.6.1 to tolerate transient faults, time redundancy

Fig. 5.1 New feature of an FT system: reliability

Table 5.1 Typical example of HW faults

Type of

fault Description Impact

Byzantine The behaviour of a component that gives

conflicting values to other components

The entire system is affected

Subsystem

fault

A temporary or permanent incorrect

behaviour of a subsystem

The entire system is affected

Open fault Resistance on either a line or a block due

to a bad connection

The value associated to the line or the

block is modified

Bridging

fault

Signals S1 and S2 are connected
unintentionally

The value associated to the line or the

block is modified to a different value

Stuck-at

fault

The result value is fixed to 0 or 1 The result value is stuck to 0 or 1

Bit-flip

fault

A state switch from 0 to 1, or vice versa,
when it should not

The result changes its original value

114 5 FT Models

http://dx.doi.org/10.1007/978-3-319-15069-7_3#Sec24_3

in hardware (e.g. instruction re-execution) might be effectively used and

implemented.

System software support is also needed, as the hardware cannot cover all

possible faults.

It is obvious that faults, occurring at the bit level (stuck zero, stuck one and

similar) should be efficiently handled ASAP (as soon as possible) and ALAP
(as local as possible), i.e. at the same or nearest level. The term “level” in our

case means the level in the hardware hierarchy on which the fault should be

handled.

In other words, when a “stuck-at zero” permanent fault has occurred in the

register file (RF) with no corrective schemes available, the whole RF has to be

replaced, if no other possible reconfigurations were predefined. In turn, when only

one RF is integrated in the chip and no other reconfigurations are defined then the

whole chip has to be replaced, etc. Pursuing these two principles allows limiting the

fault spreading and its impact to a higher level either in the chip or the system as a

whole.

Example: To tolerate bit-flip faults, hardware and system software information

redundancies might be used, as well as hardware structural support. In this sense

parity checking in registers, supported and implemented concurrently by hardware,

is described as HW(δI). HW(δS) and HW(δT) are needed as supportive redundan-

cies, HW(δS) describing the additional parity line and comparison logic, and HW
(δT) the additional time needed to update the parity line and executing the com-

parison. However, the main type of redundancy used in this approach is

information.

An exact characterisation of the distribution of faults for computer systems is

extremely difficult due to the number of different factors that determine faults, such

temperature, vibration, radiation exposure etc. Besides, discriminating between

transient and permanent faults is difficult. The transient–permanent fault ratio

varies from 10 to more than 1,000 depending on the technology, manufacturing

scale, operating conditions, etc. In the case of memories a typical value of hard error

rates is in the order of 10–100 FIT whereas for soft errors it can vary between 1,000

and more than 5,000. The upper bound belongs to aerospace and aviation, princi-

pally due to faults induced by alpha particles.

Figure 3.2 and Fig. 5.1 are transformed into Fig. 5.2 which presents various faults

in the system and various possible solutions. Mfault illustrates the fact that the fault

types are not separated. For example, Byzantine faults of the systemmight be “stuck
at zero” faults of the hardware that were spread throughout the system. The latency

of faults thus becomes crucial in determining the reliability of the system. Conse-

quently different faults require different actions and mechanisms to tolerate them.

The system model of Fig. 5.2 has overlapped SSW and HW ellipses to represent

the duality of the system: hardware and system software. Both of them must be

involved in the implementation of fault tolerance and real-time features.

The overlapped HW and SSW ellipses indicate that HW and SSW functions

might be applied to tolerate specific types of hardware faults. Other fault types

might also be tolerated by HW or SSW only. Mft is “a conceptual deliverer” of

5.1 Models 115

http://dx.doi.org/10.1007/978-3-319-15069-7_3#Fig2_3

reliability for the RT FT system. It has to be effective during the whole operational

lifetime of the computer itself.

As hardware degrades over time, the fault tolerance mechanisms are more likely

to be used towards the end of the life cycle. FT systems are designed with the

assumption that new types of faults do not appear during the operational life time of

the system, i.e. the system must be designed to be fault tolerant for the set of faults

and their types known at design time. All these solutions require careful analysis

due to their impact on the system reliability.

In contrast to the usual assumption in reliability modelling, one has to assume

that a fault might exist in the system over an arbitrary long period of time (latent

fault) and its detection and elimination is not possible “at once”. Consequently we

accept that FT is a process, and discuss it in the following sections. Using Dijkstra’s

approach (Dijkstra 1965) of defining a function as a process described by its

algorithm, we consider FT as a function that is also described and implemented

by an algorithm.

There are several options to achieve fault tolerance assuming the use of HW and

SSW by using various types of redundancy mentioned above. However, the use of

certain redundancy types might cause system performance degradation which is

especially true for software measures (Kulkarni et al. 1987; Oh et al. 2002a). Further

analysis of performance/reliability degradation should be taken into account.

The introduced system redundancy might be used in a way to tolerate only

certain fault types, thus degrading fault coverage, keeping performance at accept-

able levels. Software based redundancy might preserve the same type of fault

coverage but with more time redundancy—delays (recovery time degrades, avail-

ability degrades), but the fault coverage might not, and thus, the system degrades in

terms of reliability.

Fig. 5.2 Fault tolerance: a model of a computer system

116 5 FT Models

5.2 Model of Fault

It is unfeasible to describe all possible faults that may occur in a system. In order to

make the evaluation of faults possible, they are assumed to behave according to

some fault model. A fault model (FM) is considered as a way of summarising many

fault descriptions at once (Dunn 1991). Often it is desirable to discuss many

different faults at the same time and to describe their common characteristics.

Fault models are used to represent in a simple form the consequence of complex

physical mechanisms that lead to faults. In the case of electronic systems, the

modelling of faults can be implemented at two different levels: at the level of

hardware components that implement a system (e.g. memory subsystems, register

banks, ALU) or at the system level. The latter is directly related with the informa-

tion that the system manipulates (e.g. instructions and data program).

The simplest FM is to consider the logic gate as a single unit with a constant

failure rate, instead of considering different failure rates for the individual transis-

tors that form the unit. As in 0, analysing the physics of faults to the atomic and

molecular level would provide a clear understanding of the failure mechanisms.

Such understanding is very helpful in the development of fault models. Primarily

based on the work of (Avizienis et al. 2004), we extend the classification of faults

depending on the way they are originated or manifested.

5.3 Classification of Faults by Origin

Faults can be classified differently depending on attributes related to their origin,

including their cause, the level at which they take place, the phase of creation,

nature, system boundaries, phenomenological causes and intention. Table 5.2

shows a number of faults classified by their origin attributes.

5.3.1 Level Response

Hardware defects can be the source of physical faults. Logical faults can be used to
model the manifestation of physical faults on the behaviour of a system. Logical

faults represent physical faults in order to simplify the logic function of the circuit

and fault analysis process. They can be subdivided into structural faults, which are

related to structural models and modify the interconnection among components,

and functional faults, which are related to functional models and change the

functions of components and circuits.

Component faults are a type of structural faults, which can be applied at the

transistor level. Some of these are:

• Stuck-open or stuck-off: a transistor is always off and not controllable by input

• Stuck-short or stuck on: a transistor is always on and not controllable by gate

input

5.3 Classification of Faults by Origin 117

T
a
b
le

5
.2

C
la
ss
ifi
ca
ti
o
n
o
f
fa
u
lt
s
b
y
o
ri
g
in

L
ev
el

of
ab

st
ra
ct
io
n

S
tr
u
ct
u
ra
l
fa
u
lt
s

T
ra
n
si
st
o
r
le
v
el

(c
o
m
p
o
n
en
t
fa
u
lt
s)

S
tu
ck
-o
p
en

o
r
st
u
ck
-o
ff

S
tu
ck
-s
h
o
rt
o
r
st
u
ck
-o
n

G
at
e
le
v
el

(i
n
te
rc
o
n
-

n
ec
t
fa
u
lt
s)

S
tu
ck
-a
t
(A

rm
st
ro
n
g
1
9
6
6
;
G
al
ey

et
al
.
1
9
6
1
):
s-
a-
0
,

s-
a-
1

T
im

in
g
d
el
ay

(S
m
it
h
1
9
8
5
):
p
at
h
-d
el
ay

(P
D
F
)
an
d

g
at
e-
d
el
ay

(G
D
F
)
fa
u
lt
s

B
ri
d
g
in
g
(M

ei
1
9
7
4
)

F
u
n
ct
io
n
al

fa
u
lt
s

P
at
te
rn

se
n
si
ti
v
e
fa
u
lt
s

(P
S
F
)
(H

ay
es

1
9
7
5
)

P
as
si
v
e
P
S
F

A
ct
iv
e
P
S
F

S
ta
ti
c
P
S
F

C
o
u
p
li
n
g
fa
u
lt
s
(C
F
)

P
ha

se
of

cr
ea
ti
o
n
of

o
cc
ur
re
nc
e

(L
an
d
w
eh
r
et

al
.
1
9
9
4
)

D
ev
el
o
p
m
en
t
fa
u
lt
s

e.
g
.
sp
ec
ifi
ca
ti
o
n
fa
u
lt
s,
im

p
le
m
en
ta
ti
o
n
an
d
m
an
u
fa
ct
u
ri
n
g
fa
u
lt
s

O
p
er
at
io
n
al

fa
u
lt
s

e.
g
.
ag
ei
n
g
fa
u
lt
s

e.
g
.
al
p
h
a
p
ar
ti
cl
e
h
it
s

S
ys
te
m

b
ou

nd
ar
ie
s
(A

v
iz
ie
n
is

et
al
.
2
0
0
4
)

In
te
rn
al

e.
g
.
d
es
ig
n
an
d
im

p
le
m
en
ta
ti
o
n
fa
u
lt
s

E
x
te
rn
al

e.
g
.
ra
d
ia
ti
o
n
,
te
m
p
er
at
u
re

ch
an
g
es
,
p
o
w
er

su
rg
es

fr
o
m

ex
te
rn
al
p
o
w
er

su
p
p
ly

P
he
n
om

en
o
lo
g
ic
a
l
ca
us
e

N
at
u
ra
l
(J
en
n
in
g
s
1
9
9
0
)

H
u
m
an
-m

ad
e
(H

u
g
u
e
an
d
P
u
rt
il
o
2
0
0
2
)

C
a
pa

bi
li
ty
/o
bj
ec
ti
ve
/i
n
te
n
t

(B
ro
ck
le
h
u
rs
t
et

al
.
1
9
9
4
)

M
al
ic
io
u
s

D
el
ib
er
at
e

N
o
n
-m

al
ic
io
u
s

A
cc
id
en
ta
l

In
co
m
p
et
en
ce

N
a
tu
re

(A
v
iz
ie
n
is
et

al
.
2
0
0
4
)

H
ar
d
w
ar
e

C
el
l
er
ro
rs
,
co
m
b
in
at
io
n
al

lo
g
ic

er
ro
rs
..
.

S
o
ft
w
ar
e

B
ra
n
ch

er
ro
rs
,
m
is
si
n
g
in
st
ru
ct
io
n
s,
m
is
si
n
g
p
o
in
te
rs
..
.

118 5 FT Models

C
au

se
S
p
ec
ifi
ca
ti
o
n
m
is
ta
k
es

D
ef
ec
ts

Im
p
le
m
en
ta
ti
o
n

m
is
ta
k
es

e.
g
.
P
en
ti
u
m

F
D
IV

b
u
g
(C
o
e
et
al
.
1
9
9
5
;
P
ri
ce

1
9
9
5
)

M
an
u
fa
ct
u
ri
n
g
d
ef
ec
ts

G
lo
b
al

d
ef
ec
ts
o
r
g
ro
ss

ar
ea

d
ef
ec
ts
(K

o
re
n
an
d

K
o
re
n
1
9
9
8
)

S
p
o
t
d
ef
ec
ts
(K

o
re
n
an
d
S
in
g
h
1
9
9
0
)

O
p
er
at
in
g
en
v
ir
o
n
m
en
t—

ex
te
rn
al

d
is
tu
rb
an
ce
s

T
h
er
m
al

st
re
ss

H
ea
t

E
le
ct
ro
-m

ig
ra
ti
o
n
E
M

V
o
lt
ag
e
d
ro
p

N
o
is
e

E
le
ct
ri
ca
l

o
v
er
st
re
ss

H
o
t
ca
rr
ie
r
in
je
ct
io
n
H
C
I
(D

A
H
C
,
C
H
E
,
S
H
E
,

S
G
H
E
)

N
eg
at
iv
e
b
ia
s
te
m
p
er
at
u
re

in
st
ab
il
it
y
(N

B
T
I)

L
at
ch
u
p

In
d
u
ce
d
ch
ar
g
in
g

O
x
id
e
b
re
ak
d
o
w
n

R
ad
ia
ti
o
n

S
ee

T
ab
le
s
4
.1
,
4
.2
,
4
.3
,
4
.4
,
4
.5
,
an
d
4
.6

E
M
P

5.3 Classification of Faults by Origin 119

http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab1
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab2
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab3
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab4
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab5
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab6

Another type of structural faults, interconnect faults, can be applied at the gate
level. Among these:

• Stuck-at faults (SAF): single or multiple lines have a constant value of 0 (s-a-0
faults) or 1 (s-a-1 faults) regardless of the value of the other signals in the circuit
(Armstrong 1966; Galey et al. 1961)

• Timing/delay faults: certain defects due to manufacturing or external reasons do

not change the logic function of components, but can cause timing violations;

faults due to propagation delays along a path (path-delay faults, PDF) or gate
(transition or gate delay fault, GDF) (Smith 1985), exceeding the limits required

for correct operation

• Bridging faults (BFs): two or more distinct lines are shorted (Mei 1974) usually

due to particles or shorted metal line. Depending on the value the bridging could

be AND bridging (also referred to as 0-dominant), OR bridging (also referred to

as 1-dominant) or Indeterminate Bridging. It is obvious that the probability of

BF’s occurring increases with (1) shorter distances between metal lines due to

the use of shrinking technology and (2) the use of long parallel lines

(Tehranipoor et al. 2012).

Different types of functional faults that can be applied at the functional level are:

• Pattern sensitive faults (PSFs): where a fault signal depends on the signal values
of nearby components (Hayes 1975); typical in DRAM, there are three types of

PSFs due to changes in the neighbourhood pattern:

– Passive PSF: the value of a cell remains

– Active PSF: the value of a cell changes

– Static PSF: the value of a cell is being forced to a particular state (0/1)

• Coupling faults (CF): A subset of SPF, represent a specific pattern sensitivity

between two memory cells (Nair et al. 1978); Two memory cells Cj and Cj are

coupled if a transition from X to Y in one cell, say Ci, changes the state of the

other cell, given that:

X 2 0; 1f g and X ¼ A

• Idempotent coupling faults: a transition 0 ! 1, or 1 ! 0 in Ci forces the

contents of Cj to a specific value X 2 0; 1f g
• Inversion coupling faults: a transition 0 ! 1, or 1 ! 0 in Ci forces an inversion

0 ! 1, or 1 ! 0 of Cj.

120 5 FT Models

5.3.2 Cause of Faults

5.3.2.1 Specification Mistakes

Specification mistakes, which take place during the planning and design phases, can

be the source of faults (specification faults), including incorrect timing, power and

environmental requirements. The effect of certain specification faults may be

corrected via fault masking.

5.3.2.2 Defects

A hardware defect in electronics is the unintended difference between the imple-

mentation and the intended design. Implementation mistakes, such as the Pentium

FDIV bug (Coe et al. 1995; Price 1995), are a type of defects. Conversely,

imperfections in the fabrication process of state of the art VLSI technologies result

in manufacturing defects, whose severity increases proportionally with the size and

density of the chip.

Manufacturing defects are largely dependent on the specific technology and

layout, and include processing and material defects such: dust particles on the

chip, conducting layer defects (shorts and opens), oxide defects, scratches and

gate oxide pinholes, defects caused by either extra or missing material (Koren

and Koren 1998).

Manufacturing defects can be classified as global defects (or gross area defects),
affecting large areas of a wafer and so can be easily detected during manufacturing,

or as spot defects, which are random, affecting areas comparable to the single

device size, and therefore more difficult to be detected (Koren and Singh 1990).

5.3.2.3 Operating Environment

Correct functioning of digital systems is based on the assumption that electrical and

timing transistor parameters will remain bounded to certain margins (usually

�15 %). These margin tolerance specified at initial manufacturing can be violated

during operating time due to shifts induced by external disturbances.

These mechanisms can produce systematic degradation overtime or abrupt

failures of basic components. Transistors can be degraded due to electrical

overstress and radiation whereas oxide breakdown, electrostatic discharge and

ionising radiation are usually the cause of abrupt failures.

Hot carrier injection (HCI) has been one of the most common electrical

overstress ageing mechanisms, adversely affecting both nMOS and pMOS transis-

tors. It occurs when a charge carrier, an electron or a hole, gains enough kinetic

energy to break an interface state. Different mechanisms can be responsible forHCI
including substrate hot electrons (SHE) (Ning and Yu 1974), channel hot electrons

5.3 Classification of Faults by Origin 121

(CHE) (Cottrell et al. 1979), drain avalanche hot carriers (DAHC) (Takeda

et al. 1983) and secondarily generated hot electrons (SGHE) (Matsunaga

et al. 1980).

Negative Bias temperature instability (NBTI) (Schroder and Babcock 2003) is

also a critical reliability concern for pMOS transistors (not so much for nMOS) and
has been a persistent issue for generations below 130 nm (Schroder et al. 2003,

Alam et al. 2007). Interface traps are generated during negative bias conditions

Vgs ¼ � Vdd

� �
. Higher temperatures seem worsen NBTI, producing larger volt-

age, which if maintained over long periods (NBTI exhibits logarithmic dependence

on time), may significantly increase delays (Kumar et al. 2006, Kaczer 2005).

Another example of electrical-overstress mechanism is the latchup described in

Sect. 4.5.1 which can also be triggered electrically (Gregory and Shafer 1973).

As described in Sects. 4.2–4.4 non-ionising radiation can be the cause of DDD
while TID effects can be induced by ionising radiation. Other degradation mecha-

nisms can affect interconnection logic, e.g. electro-migration (EM).

In contrast with the previous long-term degradation mechanisms, the effect of

noise can produce abrupt failures. Examples of these are faults induced by the

effects of noise including oxide breakdown, electrostatic discharge (ESD) and

ionising radiation.
Oxide Breakdown is the destruction of an oxide layer of a semiconductor device,

e.g. time dependent dielectric breakdown (TDDB), early-life dielectric breakdown
(ELDB), and EOS/ESD-induced dielectric breakdown.

The ionising radiation mechanisms and the faults related to it have already been

discussed in Sect. 4.5.

5.3.3 Phase of Creation and Occurrence of Faults

Faults that take place during the manufacturing phase are development faults in

contrast with operational faults that take place during the service delivery of the

operation phase (Landwehr et al. 1994), e.g. faults due to radiation as in Chap. 4.

5.3.4 Nature/Dimension

According to their nature faults can be categorised as hardware (such as combina-

tional and sequential logic defects due to ageing, radiation, etc.) or software (branch
errors, missing instructions and pointers, etc.). The scope of this work focuses

exclusively on hardware faults and their effects.

122 5 FT Models

http://dx.doi.org/10.1007/978-3-319-15069-7_4#Sec6_4
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Sec2_4
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Sec4_4
http://dx.doi.org/10.1007/978-3-319-15069-7_4#Sec5_4
http://dx.doi.org/10.1007/978-3-319-15069-7_4

5.3.5 System Boundaries

With respect to the system boundaries, faults can also be classified as internal (originate

inside the system boundary) or external (originate outside the system boundary).

Internal faults are those that arise from within a system, often due to design

flaws. These are usually repeatable for a given set of inputs in the system. In

addition, they can also be the result of implementation faults, which if random,

are difficult to repeat.

External faults are those that originate from outside the system, propagating into the

system. These are normally the result of interference cause by the physical environment

including environmental faults (e.g. radiation, temperature changes), accidental dam-

age from an external system (e.g. power surges from an external power supply), etc.

5.3.6 Phenomenological Cause

The key components of embedded systems have an inherent susceptibility to

Natural (Jennings 1990) and human-made (Hugue and Purtilo 2002) faults. Natural

faults are generally random in nature and are caused by natural phenomena, without

human participation. These are normally a consequence of environmental

overstress. Human-made faults are the result of human action, including design

and interaction faults (operational misuses), and are usually due to mistakes in the

design, implementation, or use of systems.

5.3.7 Capability/Objective/Intent

Following the previous classification, human-made faults can either be deliberately

harmful (malicious faults) or can be triggered without purpose and awareness (non-
malicious faults) (Brocklehurst et al. 1994). Accidental faults are due to mistakes

and bad decisions as long as they are not made deliberately; these include interac-

tion, design and implementation faults. It is obvious that all natural faults have no

intention and therefore are accidental. Incompetence faults are faults due to mis-

takes or bad decisions that were the result of the lack of professional competence.

5.4 Classification of Faults by Manifestation

Apart from their origin, faults can be classified based on attributes related to their

manifestation, including their response, dimension, reproducibility, extent, persis-

tence, value, detectability, etc. . . Table 5.3 shows a number of faults classified by

their manifestation attributes.

5.4 Classification of Faults by Manifestation 123

Table 5.3 Classification of faults by manifestation

Response-timeli-
ness (Qian 2008)

Omission

faults

Commission

faults

Dimension Hardware

Software

System

Activation repro-
ducibility
(Avizienis

et al. 2004)

Solid

Elusive E.g. pattern sensitive faults (effects

of temperature, delay in timing due

to parasitic capacitance)

Extent Local

Global

Persistence/
duration

Permanent Easiest to diagnose; once the

component fails it will never work

correctly again

Temporary Transient

Intermittent

Value Determinate

Indeterminate

Plurality Single

Multiple

Correlation Independent

Related

Damage (see
Table 4.2)

Soft Transient-soft

Static-soft

Hard

Pseudo-Hard

Status Dormant

Active

Prospect (Laprie
2008)

Foreseen

Unforeseen

Foreseeable

Seriousness Benign

Malicious

(Meyer and

Pradhan

1991)

Symmetric Omissive

Transmissive

Asymmetric (Thambidurai and Park

1988)

Transmissive

(Byzantine)

Strictly omissive

(Azadmanesh and

Kieckhafer 2000)

(continued)

124 5 FT Models

http://dx.doi.org/10.1007/978-3-319-15069-7_4#Tab2_4

5.4.1 Response-Timeliness

Let a component C (see Fig. 5.3) receive a nonempty input sequence Vi 6¼ nullð Þ,
consistent with the specification, at time Ti. For Vi, the response Vj at time Tj is
correct iff:

• Vj ¼ Wj at time Tj, where Wj is the expected value according with the specifi-

cation and

• Tj ¼ Ti þ Td þ Δt, where Td is the minimum delay time of the component, Δt is
unpredictable delay time such that 0 � Δt � Tmax given that Tmax is the

maximum unpredictable delay of C.

Using the previous definition of correct response by (Qian 2008), there can be

four ways with regards to timeliness and expected value, by which a response can

deviate from the specification, which leads to the following classification of faults:

omission, timing, timely and commission faults:

Table 5.3 (continued)

Detectability
(Pomeranz and

Reddy 1993)

Detectable Recoverable DRE (Kadayif

et al. 2010; Weaver et al. 2004)

Undetectable Operationally redundant

Unrecoverable can lead to DUE and

SDC (Kadayif et al. 2010; Weaver

et al. 2004)

Partially

detectable

Under certain conditions, can be

detectable and irredundant, Can lead

to can lead to DUE and SDC

Diagnosability

Containability

Recoverability

Fig. 5.3 Input-response mechanism of component C with single output

5.4 Classification of Faults by Manifestation 125

Omission faults involve the absence of actions when these should be performed.

A fault that causes a component C not to respond to a nonempty input sequence

Vi 6¼ nullð Þ is an omission fault. The potential resulting failure would be an

omission failure, whose response would have the following properties:

• Vj ¼ null, Tj ¼ Ti þ Td þ Δt and

• Vj ¼ Wj, Tj ¼ 1
A timing fault is a fault that causes a component C to respond with the expected

value Wj to a nonempty input sequence Vi 6¼ nullð Þ either too early or too late. The
corresponding failure would be a timing failure. Using the previous mathematical

notation:

Vj ¼ Wj, either Tj < Ti þ Td or Tj > Ti þ Td þ Tmax

A timely fault is a fault that causes a component C to respond to a nonempty

input sequence Vi 6¼ nullð Þ, within the specified time interval, but with a wrong

value. The corresponding failure would be a timely failure:

Vj 6¼ Wj, Tj ¼ Ti þ Td þ Δt

Therefore, an omission fault is also timely fault with a null value produced

on time.

A commission fault of a component C is any violation from its specified

behaviour, with the following properties:

Vj 6¼ Wj, Tj ¼ Ti þ Td þ Δt or

Vj 6¼ Wj, Tj 6¼ Ti þ Td þ Δt or

Vj ¼ Wj, Tj 6¼ Ti þ Td þ Δt

Consequently, a commission fault is a subset of all other three types of faults.

5.4.2 Consistency

Before classifying faults with respect to consistency, the definition of correct

response was extended by (Qian 2008). Qian’s definition and fault classification

are suitable for systems that are required to produce replicated responses for a given

input sequence. Examples of such systems are:

• TMR (Johnson 1989; von Neumann 1956) systems (see Sect. 3.4.1.1) a non-

faulty component is required to send its output to three other components or

• A non-faulty component, which is part of some Byzantine agreement protocol, is

required to send its output to other components.

126 5 FT Models

http://dx.doi.org/10.1007/978-3-319-15069-7_3#Sec7_3

Figure 5.4 shows the response mechanism of a non-faulty component C with

multiple r identical outputs, as a result of receiving an input sequence Vi at time Ti.
The resulting outputs are defined as:

Vj ¼ V1
j , V

2
j , V

3
j , . . . , V r

j

n o

where V k
j , 1 � k � r are r outputs.

Tj ¼ T1
j , T

2
j , T

3
j , . . . , T r

j

n o

where V k
j , 1 � k � r is produced at time Tkj .

For a component C, with an input sequence Vi, received at time Ti, its replicated
response is correct (correct replicated response) iff:

Vj ¼ Wj;

where Wj is the expected vector of replicated outputs; and

T k
j ¼ Tj ¼ Ti þ Td þ Δt for all k, 1 � k � r

Therefore, in a correct replicated response all individual responses must have the

correct values “on time” (according to the specification), but not necessarily “at the

Fig. 5.4 Input-response mechanism of component C with replicated output

5.4 Classification of Faults by Manifestation 127

same time”. For instance, responses with same values, which take place at different

times, nevertheless within the specified interval, would be part of a correct repli-

cated response. Such interval is the skew interval and it is the period within which

all individual responses are produced. It is defined as T1
j � T k

j

���
���. For any two

outputs:

T1
j � T k

j

���
��� � Tmax for all 1, k, 1 � 1, k � r:

For replicated-response systems, two types of faults can be considered.

A consistent fault takes place when individual responses of a component deviate

from the specification in an identical manner whereas inconsistent faults are the

ones that cause any other breach of the specification.

An incorrect replicated response is a consistent fault iff:

V1
j ¼ V k

j , and T1
j � T k

j

���
��� � Tmax for all 1, k, 1 � 1, k � r:

Note that a consistent fault causes a component to produce identical values (not

necessarily correct values) within the skew interval, although “not on time”. A few

examples of consistent faults are faults with the following properties are:

• Some outputs being on time and the rest are produced early with correct values

• Some outputs being late and having correct values but the rest are correct

• All outputs having identically incorrect values.

An inconsistent fault is an incorrect replicated response iff its individual

responses do not satisfy the consistent failure conditions explained above.

A byzantine fault (the behaviour of a component that gives conflicting values to

other components) is a type of inconsistent fault.

5.4.3 Maintainability: Detectability, Diagnosability
and Recoverability

Fault detection, diagnosis and recovery are required to ensure resilience. Testing

and diagnosis may be online, offline or a combination of both (Kaegi-Trachsel

et al. 2009). Online testing and diagnosis are performed concurrently with system

operation whilst offline methods require that the system or subsystem is taken out of

service for a specific time.

Often, online testing is used for detection while offline diagnosis locates and

identifies the fault(s). As soon as the system/subsystem is repaired, offline testing

can be used to verify that the repair was successful before placing it back to normal

operation.

128 5 FT Models

Test vectors are used by automatic test pattern generation tools (ATPG)

(Agrawal and Chakradhar 1995; Roy et al. 1988) to attempt the detection of all or

most modelled fault groups. A test vector is a string of n logical values (0,1, or

irrelevant X) that are applied to the N corresponding primary inputs (PI) of a circuit,

at the same time frame, in order to detect one or more faults (Roy et al. 1988).

The specification of a test vector should have two components: the input to be

applied and the expected fault-free output (e.g. t¼ I/O¼ 0010/11). A fault will be

detected if the output under fault is different than the expected output. If a series of

test vectors are applied in a specific order, the term test sequence is used, otherwise
it is a test set (Roy et al. 1988). The term test pattern is often used to refer to any of
these three terms.

The testing process involves test pattern generation (ATPG), test pattern appli-

cation in the CUT and output evaluation by an output response analyser (ORA)

(Stroud 2002). Figure 5.5 shows the basic testing flow of a circuit, whose output

response after processing a test pattern is compared to the expected pattern (fault-

free response pattern that a non-faulty circuit would exhibit). The quality of testing

will depend on its fault coverage (defined in Sect. 2.5.2.3) and speed.

Following (Abramovici et al. 1994), let x be a random input vector, and Z(x) the

function of a circuit under test A with an input x. A fault f would transform A into a

new circuit Af with function Zf(x). Let T be a test set T ¼ t1 , t2, t3 . . . tnf g formed

by n ti test vectors where ti� 1. Figure 5.5, the CUT A is tested by applying T and

Fig. 5.5 Basic testing flow of circuit under test (CUT)

5.4 Classification of Faults by Manifestation 129

http://dx.doi.org/10.1007/978-3-319-15069-7_2#Sec24_2

comparing the output response Zf(ti) with the expected pattern Z(ti). A fault is

detected if the output response is different than the expected pattern:

Z xð Þ 6¼ Zf xð Þ:

With regards to fault diagnosis, a test is said to distinguish two faults f1 and f2
(distinguishable/diagnosable faults) if the output response of the faults are different
from each other:

Zf1 tð Þ 6¼ Zf2 tð Þ:

Conversely, two faults are functionally equivalent if all tests that detect f1 also

detect f2:

f 1 � f 2 iff Zf 1 tð Þ ¼ Zf 2 tð Þ for all t:

Functional equivalence can be easily analysed for logic gates. An example of

equivalent faults is shown in Fig. 5.6a. There is not an existing test that can

distinguish between the s-a-0 faults occurring in the input and output of the AND.
The same applies for all s-a-1 faults that occur in an OR gate.

Figure 5.6b shows six faults, two of each class A, B and C, in a CUT. Note that

detection, diagnosis together with containment and recovery are some of the goals

of testing (as specified in Sect. 2.5.2.3).

For fault detection at least one vector is needed (fault detection provides only

whether the circuit is free of faults or not).

For fault diagnosis at least one vector that produces different responses for every

fault class (fault diagnosis aims to determine time, location and type of the detected

fault) is needed.

Fig. 5.6 Fault diagnosis and equivalent faults. (a) Example of equivalent fault. (b) Fault detection
and diagnosis vs. vectors

130 5 FT Models

http://dx.doi.org/10.1007/978-3-319-15069-7_2#Sec24_2

For combinational circuits with multiple outputs, two types of equivalence can

be differentiated (Sandireddy and Agrawal 2005):

• Diagnostic equivalence: two faults are f1 and f2 are diagnostically equivalent iff

the functions of the two faulty circuits are identical at each output

• Detection equivalence: two faults are f1 and f2 are detection equivalent iff all

tests that detect f1 also detect f2, not necessarily with the same output.

Figure 5.7 shows an example circuit with two single s-a-0 faults in the input

c and output Y lines. Both are detection equivalent faults but are not diagnostically

equivalent.

A fault f2 dominates f1 f 2 > f 1ð Þ if the test set for f1 (T1) is a subset of the test for

f2 (T2). All tests pattern of f1 would detect f2. Therefore, f1 implies f2 and including

f1 in the fault list would be sufficient.

If two faults dominate each other then they are equivalent:

f 1 � f 2 iff f 1 > f 2 and f 2 > f 1:

ATPG tools generate test patterns that target possible physical faults according to

the fault model (Agrawal and Chakradhar 1995; Roy et al. 1988). An increase in the

complexity of circuits involves bigger fault dictionaries and patterns, slowing down

the ATPG process.

The implementation of quick detection and diagnostic mechanisms can improve

the effectiveness of resilience. One way of creating compact sets a is fault collaps-

ing, which is the process of reducing the number of faults by using redundancy,

equivalence and dominance relationships among faults is called fault collapsing

(Abramovici and Breuer 1979). To lessen the burden of test generation, two main

types of fault collapsing are used:

Fig. 5.7 Example of non-diagnostic detection equivalence

5.4 Classification of Faults by Manifestation 131

• Fault equivalence collapsing: uses the notion of fault equivalence to remove

most of the equivalent faults from the pattern. Faults of a logic circuit can be

divided into N disjoint equivalence subsets Si, where all faults within a subset are
mutually equivalent. A fault set Si is collapsed if it contains one fault from each

equivalence subset.

• Fault dominance collapsing: uses the notion of fault dominance to remove

dominating faults from the equivalent collapsed faults. If fault f2 dominates f1,
then f2 is removed from the fault list.

Figure 5.8b shows the dominance and equivalence relationships of a given

circuit (Fig. 5.8a).

Both equivalence and dominance relationships are transitive. For instance,

Fig. 5.8c—if fault f2 dominates f3 and f3 dominates f5 then f2 will dominate f5.
Collapsing algorithms use this transitivity property to reduce the fault patterns

(Prasad et al. 2002). If fault detection is the only objective (e.g. fail-safe system

that do not require diagnosis), then fault dominance collapsing can be used to

further reduce the fault list.

A fault f is detectable/testable if there is a test T that is able to test/detect f,
otherwise f is an undetectable/untestable fault (Agrawal and Chakradhar 1995).

Undetectable faults can be partitioned into two subsets: partially detectable faults

and redundant faults. A test set/sequence is said to be N-detectable if all faults are
detected at least N times with N different test vectors (McCluskey and Tseng 2000).

The higher the value of N the higher is the fault coverage.

A circuit is redundant if the function realised by the circuit without fault(s) is the
same as the function realised by the circuit with one or more faults (Carter 1979).

Redundant faults are undetectable faults that do not affect the circuit operation

Fig. 5.8 Example of non-diagnostic detection equivalence

132 5 FT Models

(operationally redundant). It can be argued why is it of interest to discover

redundant faults if they do not affect circuit logical behaviour. Discovering and

removing redundant faults from the tests is important for the following reasons:

• In redundant circuits, the presence of undetectable faults can invalidate certain

tests, raising problems such as (Friedman 1967):

– If f1 is a detectable fault and f2 is an undetectable fault, then f can become

undetectable in the presence of g. In that case, f1 is a second-generation

redundant fault (Friedman 1967)

– If two undetectable single faults g1 and g2 are simultaneously present in a

system, then they can become detectable

• Due to time and power consumption constrains, it is not feasible to perform a

complete search of all possible faults in any given circuit. There are certain

needs for minimising the tests patterns that detect existing faults.

• Additional current drains can be induced due to redundant faults such leakage

faults (Mao et al. 1990; Xiaoqing et al. 1996) and gate oxide shorts (Hawkins

et al. 2003; Segura and Hawkins 2005), which are especially undesirable in low-

power devices.

• Redundant defects may indicate a latent reliability problem.

In the case of combinational circuits, all undetectable faults are redundant faults

(Abramovici and Breuer 1979). Testing sequential logic is significantly more

difficult that testing combinational logic, whose response is a function of its initial

state.

In the case of sequential circuits, it has been shown that certain faults for which a

test sequence does not exist, under certain conditions, faulty behaviour may be

detected. These are partially/potentially detectable faults, faults that affect circuit
operation under some states (partially irredundant), but are not manifested at the

outputs for any input sequence under other states (therefore undetectable)

(Pomeranz and Reddy 1993).

The testability features, observability and controllability (defined in Sect.

2.5.2.2) are important to increase the effectiveness of fault detection. Therefore,

observability and controllability would increase the number of testable and tested

faults and so the fault coverage. Conversely, lack of testability would increase the

number of untestable and untested faults.

In terms of diagnosis, different approaches can be followed: offline diagnosis
based on fault dictionaries, effect-cause diagnosis also called online or dynamic
diagnosis based approaches, or a combination of these two approaches (Smith

1997).

Finally, as in Table 5.3, faults can also be classified according to their

diagnosability, containability and recoverability.

5.4 Classification of Faults by Manifestation 133

http://dx.doi.org/10.1007/978-3-319-15069-7_2#Sec23_2

5.5 FT and System Modelling

When a fault appears, extra redundancy is needed to cope with it. Thus, redundancy

and ability to use it form a sort of combination that is required to be applied within

kind of framework for implementation of reconfigurability.

When system and fault modelling are developed together, system behaviour in

presence of faults and control process of FT can be considered at earlier stages,

taking into account mutual dependencies of solutions at every stage of a process of

design and development.

Regarding embedded systems we are facing constrains and very often mutually

exclusive requirement in reliability, performance and power consumption. This

situation limits design options as Fig. 5.9 illustrates.

At the same time, redundancy can be used for various purposes and can be

involved as essential part of reconfiguration of the connected computers. System

reconfiguration purposes are:

• Performance improvement

• Reliability enforcement

• Energy-wise use

The approach of developing reconfigurable computer was named PRE-smart

computers (Schagaev 2009; Schagaev et al. 2010, 2013). Possible inheritance of

properties is shown on Fig. 5.10.

Thus, PRE (performance-, reliability- and energy-) wise systems might be

designed rigorously, using reconfigurability and recoverability as system features

introduced at conceptual level. Success of PRE designs use of this approach for

connected computers (networking, clusters multiprocessing) depends on careful

trading of the redundancy introduced to achieve the required property.

Fig. 5.9 Performance, reliability and power concerns on the design of embedded systems

134 5 FT Models

5.5.1 Trading P, R, E

Describing a system in terms of Structure, Information and Time as parameters of

redundancy (Schagaev 2001) it is possible to estimate reliability, as well as other

properties. Redundancy might be weighted, say, in units or values with or without

relation to the steps of any supportive algorithm that applies it to form and control

configuration.

While time and information is clear in units—seconds and bits, the structure,

especially structural redundancy requires some extra efforts. Note also that time,

information and structure are considered as independent variables. Structural

redundancy for our purposes might be measured using graph or graph notation:

dS :< dV, dE >

where dS denotes introduced structural redundancy, while dV and dE denoted extra

vertices and edges added in the structure to make step of algorithm implemented.

Fig. 5.10 Reconfiguration purposes of a system including fault tolerance

5.5 FT and System Modelling 135

Then our efforts toward PRE goal can be measured quantitatively as redundancy

vector:

dR ¼< dT, dS, dI > :

Time, information and structure as mentioned above are considered as independent

variables.

Further, reconfigurability of the system can be used for various purposes

(Fig. 5.9). To be able to use redundancy and apply reconfigurability we need

consider introduction of supportive tool for reconfigurability a syndrome. The

syndrome provides a real-time status for every element of the system, it show a

“snapshot-status” of the system in terms of reliability, performance and power

awareness.

Let us now analyse how generalised algorithm of fault tolerance might be

implemented using mentioned redundancy types and reconfiguration introduced

as a system property.

As Fig. 5.9 shows almost mutually contradictive requirements of performance,

power consumption and reliability limit design choice in design of embedded

systems. These constrains become even more serious when system is implemented

on a chip (SoC). In this case reliability of elements, performance and power

consumption are defined and limited by the same technology.

Regarding reliability available redundancy hints a potential solution: it is known

that max (Pi,Pj,Pk,Pl) is achieved when all mentioned probabilities of independent

elements are equal.

For example, for SoC it technologically means that we need to introduce in the

system different redundancy levels for each mentioned group of elements to

equalise reliabilities of various group. The same statement is true for performance

and power consumption, the latter is required to avoid “periferial” overheating of

elements from neighbouring subsystems. This segment of research needs attention

and is worth further exploring.

5.5.2 GAFT: Generalised Algorithm of Fault Tolerance

It is well known that fault tolerance of a computer system can be achieved by

introduction of static redundancy in hardware and system software (HW/SSW). It is

also well known that using traditional approaches of fault tolerance (Anderson and

Lee 1981, p. 81; Avizienis 1971; DeAngelis and Lauro 1976) is expensive in terms

of time, information or hardware overheads.

To avoid this, the authors (Schagaev 1986a, b, 1987; Sogomonian and Schagaev

1988) proposed to consider a fault tolerance not only as a feature but also as a

process that can be implemented algorithmically.

The introduction of static redundancy in HW and SSW might be prohibitively

expensive in terms of cost and power consumption. Therefore, a process that

136 5 FT Models

implements fault tolerance assuming dynamic interaction of existing redundancy

types between elements (Fig. 5.11) can tackle these problems. The three-step

algorithm (Sogomonian and Schagaev 1988) has been further developed. The

outcome of this work is the Generalised Algorithm of Fault Tolerance (GAFT), a

five-step fault-handling algorithm (Fig. 5.11):

• Detecting faults

• Identifying faults

• Identifying faulty components

• Hardware reconfiguration to achieve a repairable state

• Recovery of a correct state(s) for the system and user SW.

The different types of redundancy (information, time and structural either

hardware- or software-based) can be used to implement every step of GAFT.

At the same time, there is an essential extension for this algorithm regarding the

role of system software in implementation of hardware fault tolerance. Bullet (F) of

GAFT Fig. 5.11 above has a crucial importance, especially due to latency of

hardware faults that is increasing with complexity of computer systems. System

software related part of GAFT should be extended as Fig. 5.12 proposes. System

software should find correct state of software first to be able to continue recovery.

Only and when hardware recovery and, if necessary, reconfiguration have been

done the systems software fault-free state should be found and procedure of

toleration of fault completed. When latency is zero the latest recovery point is

sufficient. In real world we do not know what is size of latency is; therefore, a

searching of correct state of software is unavoidable. Fortunately the problem of

finding of software correct state was solved (Schagaev 1986a, b, 1987).

Generally speaking, the more complex the system implementation is, the more

complex Fault detection and diagnosis will be. This is particularly true for

Fig. 5.11 GAFT: generalised algorithm of fault tolerance

5.5 FT and System Modelling 137

multicore system (MIMD) processors that support vector instructions (SIMD) and

pipelined implementations, which are particularly complex. In principle the com-

plexity of GAFT implementations also depends on the complexity of the system, its

faults and fault tolerance models.

Hardware support is a faster mechanism than software support to achieve

reliability and with a proper design there should be little performance degradation.

However, the introduction of static redundancy in HW might be prohibitively

expensive in terms of cost and power consumption. Therefore, a process that

implements fault tolerance assuming dynamic interaction of existing redundancy

types between elements can tackle these problems.

GAFT might be used for comparison and overview of different design solutions

of FT systems. It also allows controlling fault coverage at every step of system

design, providing a tool for the selection of efficient solution and estimation of

overheads.

A substantial redundancy can cover multiple steps in GAFT, such as fault

detection and fault recovery; take, for example, TMR systems, when a faulty

channel output is overruled by two correct outputs.

The implementation of the hardware checking (step A of GAFT) at different

levels causes different timing for GAFT completion: microseconds for the instruc-

tion level, milliseconds for the procedure level, hundreds of milliseconds for the

Fig. 5.12 GAFT: generalised algorithm of fault tolerance

138 5 FT Models

module level, seconds to tens of seconds at the task level and tens of seconds to

minutes or even hours at the system level.

Different implementations would have different properties in terms of timing,

fault coverage, types of faults that can be tolerated, power consumption, complexity

and cost. Figure 5.13 illustrates various solutions of fault toleration at the level of

instruction, procedure, module and task. All shown systems are fault tolerant, have

different cost, redundancy level involved and coverage of faults tolerated.

It is, therefore, wise to combine different checking and recovery schemes in one

system to achieve required specifications, it is wise to combine different checking

and recovery schemes in one system.

For example, it might be beneficial to protect the processor and the memory by

using hardware schemes at the level of instructions (duplicated processors, tripli-

cate memory) and use higher-level schemes (procedure or module) for the other

hardware components due to cost and power constraints.

Processor and memory is used at every instruction execution. The implementa-

tion levels are not mutually exclusive; for example the combination of hardware-

and software-based checking can significantly improve fault coverage. In general,

the higher the implementation level the less hardware support is required, but with

higher timing and software coding overhead.

A good fault tolerant system tolerates the vast majority of transient faults within

the interval of instruction execution, making them invisible for other instructions

(and software). At the same time, our assumptions about transient “live” fault is

arbitrary, and thus, transient faults with longer time range or permanent faults might

be detected and recovered differently, for example, at the procedural or task level of

system software.

Fig. 5.13 System recovery time according the level of implementation of checking and recovery

schemes

5.5 FT and System Modelling 139

Taking into account that transient faults occur at an order of magnitude more

often than permanent faults, transient fault tolerance must be done extremely

effective.

In turn, it is necessary to implement special schemes for HW reconfigurability

and recoverability to eliminate the impact of permanent faults on the system.

GAFT completion requires three fundamental processes, called in literature P1,

P2 and P3 [Stepanyants 01]. The error checking process P1 is responsible for

checking the system state in terms of hardware fault existence/appearance. The

second process, the error recovery process P2 prepares recovery states when it is

scheduled by the system. The third one, the functional process P3 is a process of

calculations or instruction executions.

When a transient fault is detected, its toleration assumes recovering the informa-

tion that has been modified and restoring hardware states. The third one, the

functional process P3 is the process of calculation or instruction execution. Let us

assume the primary function of the real-time critical system as “process three” or P3.

Therefore, if the system ensures full functionality and transparent application

recovery for the process P3 (from a predefined set of faults in a given time frame)

then the system is fault tolerant.

In other words, we define a system as fault tolerant if and only if it implements
GAFT transparently for applications.

Or, in a bit more details:

If the system ensures full functionality and transparent application recovery for

the process P3 (from a predefined set of faults in a given time frame) then the

system is fault tolerant.

That is, we define a system as fault tolerant if and only if it implements GAFT
transparently for applications.

5.5.3 GAFT: System Estates and Actions to Implement
Fault Tolerance

GAFT above presents an approach of achieving a new and complex property (fault

tolerance) considering it as a process with several steps and phases. Further

generalisation and detailed analysis of system state change is presented below.

At any given time, a single processing element (SPE) system can be in one and

one only of five possible states: ideal, faulty, erroneous, degraded and failed.

Figure 5.14 shows the five S states, the potential T transitions and the M mecha-

nisms involved in fault tolerance. Two different areas can be differentiated: the

green area at the bottom half represents the conventional environment with no FT

capabilities whereas the red area at the top half represents the possible states and

transitions in a dependable environment.

140 5 FT Models

Considering S1 as the initial state, a single event can change this ideal state. Note

that with the exception of the transition T12, Fig. 5.14 does not contemplate the

cases where a single event can occur between transitions. If the deviation in

the form of voltage transient introduced by such event affects combinational

logic, the system would turn (Transition 1) into a faulty state S2. The voltage

transient may propagate to sequential logic such a memory cell or latch, potentially

flipping the bit and contaminating the data flowing within the system, and leading

the system to an erroneous state S3 (soft error in Fig. 5.14).

However, there are three masking effects that can prevent transition for this

particular event from S2 to S3: logical masking, electrical masking and latch-

window masking. Logical masking happens when one of the other inputs of the

affected gate is in controlling state so that the output does not vary (e.g. 1 for an

AND gate, or 0 for a NAND gate).

Electrical masking happens when the voltage transient impacts successive logic

gates and propagates through the logic chain fading out before reaching the

registered output. Latch-window masking happens when the arrival of the pulse

is outside the latching window, usually based on the setup time and hold time of the

sequential logic.

Nevertheless, if during the ideal state S1, as a result of the single event the

voltage transient affects the sequential logic directly, the system state would transit

straightforward to an erroneous state S3 (transition 6).

Fig. 5.14 GAFT: generalised algorithm of fault tolerance

5.5 FT and System Modelling 141

The implementation and the coverage of faults within the system can be mea-

sured probabilistically, assuming existence of undetected faults. We consider that

an undetected fault would lead (T9) to failure in the system (S6), unless the error is

overwritten [(e.g.: a memory bit that has flipped can potentially be flipped back to

the original value by another event before the fault detection mechanisms were

activated or before the error leads to a failure) transiting back to an ideal state. The

probability of overwritten errors is very small].

The implemented action of fault detection and recovery mechanisms differs

in terms of permanent and transient faults. Faults are initially detected by the by

the fault detection mechanisms (M1 in Fig. 5.14). A detected fault that is not

recoverable by the recovery mechanisms (M2) would lead to a failure (T11). In

most cases, recovery will be possible in two forms: full recovery (T8) and graceful

degradation (T4).
Ideally, a full recovery would turn the system back to the initial state S1 or, if full

recovery is not possible, SSW will make use of the reconfiguration mechanisms

(M3) to turn into gracefully degraded state S5. In this state the system can continue

operating properly. In some cases, depending on the severity of the failure, the

operating quality may decrease. This becomes more obvious if a further fault or

error occur.

Further graceful degradation may be possible depending on the levels of degra-

dation introduced in the implementation. Good example of degradation support for

memory can be found in (Bernstein et al. 1992, 1993).

Recovery from a degraded state takes place once the deviation has been

corrected. The recovery mechanisms should be able to return the system back to

correct state using additional reconfiguration (M5).

Clear, some logic framework, holistic principles to follow might help to design

and develop efficient architecture with required properties. Briefly the next section

explains the principles chosen for this work, as it is introduced in (Schagaev

et al. 2010); these principles are subject of next chapter.

5.6 Conclusion

• The chapter introduces a detailed fault model description and analyses it

together with generalised methods of fault toleration.

• We extend the model of faults defined by (Avizienis et al. 2004) and provide a

classification suggesting methods for recognition and reaction.

• Manifestation, detectability, diagnosability and recoverability are discussed as

one consistent flow proposing adequate solutions for diagnosis and recovery.

• We introduce the principle of reconfiguration of the system and consider how

reconfiguration might be used for various purposes addressing requirements and

implementing monitoring processes of:

142 5 FT Models

– Performance

– Reliability and

– Energy wise gain

• A generalised algorithm of fault tolerance is developed further with a full

explanation of system state changes and the actions required to be implemented.

5.6 Conclusion 143

Chapter 6

Hardware Support of Resilience

6.1 ERA Concept, System Design and Hardware Elements

The development of this new architecture follows the holistic principles proposed by

the ERA paradigm (Schagaev et al. 2010): simplicity, redundancy, reconfigurability,

scalability, reliability and resource awareness.

To support those principles a new hardware architecture (HW) and system software

(SSW) have been developed. A brief introduction to these principles is as follows:

Simplicity: Complexity is difficult to implement and handle efficiently. In addition,

big complex systems are more prone to faults, thus lowering reliability.

Reliability: The highest reliability of individual components is preferable but

always keeping in mind the cost-efficiency of its implementation.

Redundancy: Deliberate introduction of hardware and software redundancy pro-

vides the required level of reconfigurability to reach performance and reliability

goals.

Reconfigurability: Apart from the simplicity, reliability and deliberate introduction

of redundancy, it is essential to achieve balance between performance, reliability

and power. Reconfigurability serves three main purposes: performance, reliabil-

ity and power awareness. It allows the system to adapt twofold: first to recover

from a permanent fault and second adjusting the requirements of the running

application.

Scalability: Scalability should be kept in mind when designing a system so that it

can be extended if the requirements change.

Power-awareness: Mission critical systems have significant limitations of hardware

resources and power consumptions constraints (e.g. battery life). Thus, for wise

resource use, reconfigurability must be introduced.

By following these principles the processes of design and development of new

architecture can be defined.

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_6

145

Figure 6.1 shows a computer system as three semantically different (from the

point of view of information processing/transformation) elements. The above-

mentioned principles might be applied at the level of each element enabling design

by far more efficient computer system.

In terms of information processing point of view the hardware is based on a

Single Processing Element (SPE) that is divided into three areas (Fig. 6.1): first, the
information transformation area—further called active zone (AZ) and second the

information storage area—called passive zone (PZ). The interconnection of these

zones is the interfacing zone (IZ).
All three zones must have different properties and therefore need different

redundancy mechanisms to tolerate faults and make system reconfigurability pos-

sible and efficient. The proposed structure of each zone is shown in Fig. 6.2.

Active Zone: The active zone consists of the arithmetic unit and logic unit, both

separated for better fault isolation and easier implementation of hardware tests.

Interfacing Zone: This includes all communication components such as the pro-

cessor, the memory buses and the reconfiguration logic. A configurable bus

Fig. 6.1 System zones

from an information

processing point of view

Fig. 6.2 System zones from an information processing in ERA

146 6 Hardware Support of Resilience

allows the reconfiguration of the hardware to exclude failed hardware

components and go into a degraded state, or replace the failed component with

a working one.

Passive Zone: This includes basic storage systems, such as memory, that do not act

by themselves but are handled by controllers or devices.

Minimum deliberate redundancy has been introduced in the form of buffer,

register files, replicated memory modules, majority schemes (in terms of HW)

and interfacing logic. System software extra elements required to support fault

tolerance are: checkpoint monitor, recovery point monitor, process synchronisation

and reconfiguration monitors. They named monitors to express their uninterruptable

mode of operation.

Asmentioned above, hardware can be considered as three zones, (see Figs. 6.1 and

6.2) All elements in these zones have to be reconfigurable for their own purposes as

well as other zones requests.

All zones might have different reconfiguration properties. Reconfiguration

might have internal and external reasons. For example, when the system forms a

configuration for a task execution it might deliberately and externally exclude some

hardware elements from configuration due to task requirements or transient/perma-

nent fault. In turn, checking schemes activates internal reasons for reconfiguration.
Interactions between zones define the level of reconfigurability and flexibility of

the architecture. These new hardware reconfiguration abilities must be reflected and

supported as new features of the architecture.

6.2 ERA Hardware Configuration: ERRIC

6.2.1 Active Zone

The main principle used in the design of the processor is simplicity. The cost of P1

and P2 implementation of GAFT depends on the structure of the processor and

might become prohibitively high. Antola et al. (1986, p. 1) proved that the over-

heads necessary to make a CPU fully fault tolerant might easily exceed 100 %.

Thus, to avoid duplication, there is a requirement to keep redundancy level needed

to implement fault tolerance, as low as possible.

Following the simplicity principle, the instruction set and its implementation

within the processor is reduced to the absolute minimum required to support general

purpose computing. This allows the careful introduction of redundancy that imple-

ments error detection, diagnosis and recovery features. Complicated memory

addressing instructions are omitted, as they are not essential.

The instruction set architecture (ISA) consists of only 16 instructions with only

two of them for memory access. Such a simplified instruction set generally requires

less hardware (the control unit in particular), which increases, by design, the

reliability of a single processor.

6.2 ERA Hardware Configuration: ERRIC 147

Performance might also be increased as operating clock frequencies can be

improved. Extra details on the instruction architecture are explained further in

Sect. 7.2.

The proposed microprocessor offers clear advantages in comparison to CISC

architectures: fewer and simple addressing modes, hardwired design (no microcode),

fixed and simple instruction formats. In turn, a simple instruction format allows

fetching of two 16-bit instructions per machine cycle. The execution steps are similar

to other RISC processors.

There is no pipelining and all steps of one single instruction are executed within

one memory cycle. Pipelines are one of the most vulnerable elements of modern

microprocessors. The relative amount of area of the chip dedicated to pipelines is

increasing with scaling design complexities. For instance, instructions can stall in

the instruction queue and the longer they reside there, the higher the chances of

getting struck by an energetic particle.

A transient fault in a latch or a memory cell within the pipeline (e.g. SET or

SEU) can propagate and become an error at the micro-architectural level

(e.g. Register file or Instruction Register). Consequently, the effects of ionising

radiation in this area can lead to SEFI’s, severely decreasing the overall reliability.

The absence of pipelining or caches greatly simplifies the processor design,

which, in turn, simplifies the implementation of fault tolerance. A careful introduc-

tion of redundancy for checking and recovery allows the processor:

• To detect transient faults during the execution of the instruction.

• To abort the current instruction and,

• To re-execute it, all transparently to software.

There are known arguments that simple ISA’s do not have enough instructions to

perform most of the application operations. These argue that a small ISA would

result in higher compilation effort/time, and that the resultant programs would be

bigger, which would increase the amount of memory needed.

However, complex functions are well handled by the compiler instead of having

specialised instructions within the ISA dedicated to very particular tasks. Regarding

the size of the programs it is worth mentioning that:

• A bigger ISA such as CISC involves longer operation codes which, in turn,

increase the size of programs.

• In an architecture based on a smaller ISA, register references require fewer bits.

• It is usually claimed that smaller ISA requires more memory. ERA architecture

has unique design property: the size of all instructions is 16 bits, while the size of

a word is 32. Thus, the instruction density per word is 2 and the previous

arguments above about bigger code size for RISC do not stand to ERA.

• Since the price of the memory is very low and keeps decreasing this argument

also becomes less important.

The processor has a large register file with 32 general purpose registers with a

width of 32 bits and no restrictions on their use, which simplifies software devel-

opment (see Fig. 6.3). All standard instructions expect exactly two arbitrary

148 6 Hardware Support of Resilience

7.2.

registers as input, and save the result of the operation in one of these two registers,

thus overwriting one of the input values.

The impact of the size of the register file on overall performance of processor is a

question of further research.

Memory access is only possible for 32-bit words at a time, and it has to be

aligned. The main structure of the processor architecture is illustrated in Fig. 6.3.

The instructions are fetched from memory into the instruction register and

decoded by the Control Unit, which also manages the execution of each instruction.

Operands for each instruction being executed are fetched from either the register file

or memory multiplexed into the Arithmetic or Logic Units, AU and LU, respectively.

The output data from AU or LU goes either to memory through the data bus or is

written back to the Register File. The current value and type of the data might also

indicate an address for branch instructions.

The hardware for fault detection and error recovery process P1 and P2 are

marked in blue and red respectively. The hardware for the data manipulating

process P3 is marked green.

The simplified architecture Fig. 6.3 presents allows implementation of GAFT at

instruction level with reasonably small reliability (13 %) (Schagaev 2008).

As before, the three processes are essential for the guaranteed and successful

execution of each instruction. Two processes P1 and P2 cope with fault checking

and recovering of transient errors respectively.

P1 is initialised at the start of the instruction execution; P2 is required and

initiated when fault has been detected, but it is essential that the premodified state

is stored at the start of execution of every instruction.

P1 and P3 can operate concurrently. P1 and P2 have an influence on each other:

the higher the fault detection coverage achieved by P1, the more successful

recovery should be (Stepanyants 2001).

When data is written into the Register File, the Check Generator (marked in blue

in Figs. 6.3 and 6.4) generates the checking information for the 32-bit data storing

into the register file; this information allows the stored data to be verified later on.

Fig. 6.3 Architecture of active zone

6.2 ERA Hardware Configuration: ERRIC 149

The Checking schemes (marked in blue in Figs. 6.3 and 6.4) check the data

integrity when data are read out from the Register File and when it is possible;

correct the data before the ALU operation takes place.

In order to implement the fault recovery process P2 an extra Register Buffer

Rbuf(R*) is introduced (marked in red in Fig. 6.3). The register buffer is allocated

to keep premodified state of operand for the currently executed instruction.

When a fault is detected during instruction execution, it allows the processor to

restore to the initial state before the execution of the instruction, enabling the

instruction to be repeated. This enables us to tolerate faults within instruction

execution.

The extra Register Rbuf(R*), the checking schemes and the reverse instruction

sequencer combine to make the implementation of P1 and P2 possible without any

perceptible time overheads.

6.2.2 Passive Zone

Figure 6.5 presents the current custom hardware prototype of the ERA device. The

prototype is provided with two flash based ROM modules 128 Mb each

(8 Mb� 16 bit) with replicated bootstrapping firmware and operating system

software.

The proposed memory scheme may be regarded as a collection of four blocks,

16-bit wide, with identical size of 1 Mb each (16� 64 k). Using 16-bit memory

modules instead of 32-bit memory modules increases reliability and reduces, when

Fig. 6.4 Check generator and checking scheme

150 6 Hardware Support of Resilience

necessary, energy required for execution. Additionally, the scheme includes two

flash-based ROM modules with replicated bootstrapping firmware and operating

system software.

Reliability is increased by means of added working states and configurations.

Energy-wise operation is improving by means of this architecture ability to

activate only modules required - by means of using a single 16-bit memory module,

when necessary.

The proposed memory scheme allows different configuration schemes, explained

in Sect. 6.4.3.

6.2.3 Interfacing Zone

The above explained architecture principles of design relate to the interfacing zone

as well. The architecture needs something (logic) in the interfacing area to enhance

the flexibility and resilience of system operation between active and passive zones,

for wide range of applications where PRE-properties are key requirements.

Fig. 6.5 ERA prototype board

6.2 ERA Hardware Configuration: ERRIC 151

This motivates the ability to have a reconfigurable interfacing zone. One of

schemes that we propose is known as T-logic. T-logic is a hardware element that

provides reconfigurability of the architecture for performance-, reliability- and

energy-wise operation. This logic should be able to provide minimal configura-

tion—when one processor and memory remain.

Due to importance of T-logic as “major executive agent” for reconfigurability of

the whole system next section explain it in details.

6.3 ERA Reconfigurability

As declared earlier performance, reliability and energy-awareness are required for

the next generation of computer systems. Reconfigurability requires hardware and

system software implementation and support. In order to be able to change the

configuration when necessary (sometimes several times during a single mission)

systems should have special elements with specific properties such as extreme

reliability, performance and simplicity, supported by independence from faults of

the system.

For the purposes declared above we propose a hardware element called T-logic.

The main function of a T-element is to connect and disconnect the system compo-

nent, using “logic rotation” for various types of connections and configurations.

In order to connect and disconnect the system component there are several

“turns” of T-element as Table 6.1 below shows, describing the basics of T-Logic

element.

The reconfigurable interconnection schemes can execute dynamic

reconfiguration of system transparently from for software. For example, when we

use triple system elements configuration, T-elements might exclude faulty ones

from operation, leaving only two elements active (DMR). If further degradation is

allowed the configuration (in terms of fault tolerance) can continue up to a single

element (Schagaev and Buhanova 2001).

Figure 6.6 below illustrates how reconfiguration might be used for reliability

purposes using T-elements. The figure shows a diagram that exemplifies a scheme

with three memory modules working in parallel that at some point during operation

experiences two permanent failures in two out of three modules.

6.3.1 T-Logic for Memory Management

ERA power consumption can also be controlled using T-elements. Existing elec-

tronic technologies posses the following drawback: increase in power consumption

causes degradation of system reliability. Therefore, an ability to connect and

disconnect a system element might be function and requirement in real time and

other applications.

152 6 Hardware Support of Resilience

Again, for illustrative purpose we use an example when ERA uses three system

elements in redundant mode. If the task scheduled does not require a full size

configuration, the architecture can be configured to operate using either two ele-

ments or a single element on its own.

Hardware configuration should be implemented transparently to application

programs. Task defined requirements might be available for a run-time system.

Excluding memories will not change the logic of the program.

Figure 6.7 shows the power saving algorithm for a reconfigurable system. The

reconfigurable interconnection schemes improve the memory management flexi-

bility. For instance, if the computer architecture has three elements and the task

requires maximum capacity, the system will configure all memories in redundant

mode so that it can provide maximum capacity.

Table 6.1 T-logic rotation

Position+ Description+

The “T” logic connects the active zone to a front element that is

connected in redundant mode with a right element. This front

element leads the rest of the elements that is connected to

The “T?logic” connects the active zone to a front element. In this

case the element is working in serial mode

The “T?logic” connects the element to two neighbouring ele-

ments in redundant mode. The element is leaded by the left side

component that is connected to the active zone

The “T?logic” connects the element to a left element. system

component will be leaded by side element that is connected to the

active zone

Disconnected the element: The “T?logic” is disconnected from

the interconnection scheme. The energy consumption of the

element is reduced to the minimum

6.3 ERA Reconfigurability 153

Fig. 6.6 Algorithm of configuration for reliability using T-logic

Fig. 6.7 Energy-wise algorithm of configuration using T-logic

154 6 Hardware Support of Resilience

6.3.2 T-Logic for Configuration in ERA

Possible configurations of a system that uses “T” logic are presented in Table 6.2

below. The first Raw illustrates maximum reliability configuration (if three HW

elements are available). The power saving of the system could be improved by

disconnecting elements from system and keep them idle—raw 2.

The configuration for maximum capacity required for application is shown in the

third raw.

To provide fail-safe functioning for ERA T-logic itself should provide the follow-

ing property:

– when “T” element itself fails system functioning should continue. Its design,

therefore,must implement fail-safe principle; in this caseT logic element should

be replaced by wire to enable further system functioning. This all in fact defines

requirements for interconnection zone for ERA PRE-smart functioning.

Table 6.2 Possible system configurations using T-logic

Configuration Explanation

“T” configurators connect all three compo-

nents with processor. Top system compo-

nent acts as leading element. The rest

system elements compare the results and

participate in voting. Thus reliability of this

system configuration is high. “T” element

configures enables excluding faulty system

component

This system configuration serves for maxi-

mum energy saving. In this case “T” ele-

ment connects only one system component

with processor, while the rest are idle

In this case, all three components are used

for maximum hardware capacity. When

performance of application is main priority

this configuration fits the purpose

6.3 ERA Reconfigurability 155

This illustrates how principle of separation of concerns can be applied for design

of hardware schemes.

6.4 Syndrome

As mentioned earlier, the system new property must be supported by hardware and

system software implementation of required processes that make this property. We

introduce for this purpose a special hardware scheme called a syndrome. The term
Syndrome is new Latin (origin 1535-45) and was originated from Greek “syn-

drome” where:

• “Syn-” from combination, concurrence.

• “Dramein”, main meaning is “to run”.

For our purposes a syndrome is not passive, presenting “a snapshot status” of a

system, a Syndrome also is active, a serving tool to control the system configuration.

Thus, a syndrome is “a group of related or coincident things, events, actions,
signs and symptoms that characterize a particular abnormal condition”.

Further analysis and development of syndrome concept and application follows.

6.4.1 Syndrome Use

Clear that functions of a syndrome are not only passive, presenting “snapshot-

status”, but also active, serving as a tool to control of the system configuration and

enabling to estimate system conditions.

Syndrome also might help to answer a question that is shamefully omitted in the

vast majority of research about fault tolerance:

WHAT PROVIDES THE FAULT TOLERANCE OF THE SYSTEM?!

It is usually assumed that the core logic is ultra reliable and guarantees control of

configuration and reconfiguration. Unfortunately, using the homogeneous redun-

dancy may limit the increase in reliability since techniques based on the same type

of redundancy are vulnerable to the same threats.

Hybrid techniques based on heterogeneous redundancy can be more effective.

Thus, even when checking schemes of memory or configurators or processor

detect error and transfer information about it to the syndrome, this information

might not be useful if the system does not include either one or both mentioned

below:

• “External elements” responsible for exercising GAFT and making decision on

configuration/reconfiguration if necessary.

• Internal element that is capable to initiate required sequence.

156 6 Hardware Support of Resilience

Indeed, in regular computing system when there are faults in the processing

logic, to expect to expect that it is able to perform self-healing and then control and

monitor configuration of the rest of the system is an attribute of fairy tale, not

engineering and seems to be unrealistic. There is a solution though, as described

below.

Figure 6.8 shows conceptually ERA active zone divided by two AU and LU

elements.

To be able to absorb and trust an information about a status of an element, every

checking signals about condition of registers (not shown) memory, AU and LU as

well as control unit should be aggregated in syndrome.

The scheme of implementation of fault tolerance separates the passive zone and

active zone of the proposed architecture. A clear separation of the functions of

processing (of data operation) and storing (memory) enables to apply various

checking and recovery solutions. The passive zone has the elements to store data,

while active zone is for the data manipulation.

Fig. 6.8 Processor-memory structures with “separation of concern”

6.4 Syndrome 157

All processor registers (register file) may be protected by parity or other

checking schemes. During instruction execution data are loaded from the register

file into functional elements for operation and operands are checked.

If there is no fault detected during instruction execution the operation is consid-

ered as successful and the result is stored back into the register file or sent out to

memory. The fast and reliable memory access is possible by application of static

memory and register files.

The memory context data might be protected by schemes such as error checking

code, Hamming code, or recently proposed schemes (Gössel et al. 2008).

If error is detected, the control unit by executing GAFT attempts to restore the

damaged data and repeat the instructions:

• Restore the damaged data.

• Repeat the execution of the instruction that manifested a fault.

• Resumed execution.

ERA provides the fast and reliable recovery scheme within instruction execution

level, transparently for software.

Taking into account requirement of minimisation of redundancy the architecture

presented in Fig. 6.8 above seems to be efficient—there is no duplication or greater

level of reservation applied for active zone. Active zone consists of two non-

identical units: arithmetic and logic units respectively, (denote them AU and LU).

In terms of power consumption this scheme is also efficient. A question 2 arises:

IS IT POSSIBLE TO TOLERATE FAULTS WITHOUT DUPLICATION?

The previous question becomes crucial for implementation of fault tolerance for

any system and proposed scheme with minimum redundancy. The solution is

possible if we apply well-known mathematical results about equivalence of arith-

metic polynomial for logic functions (Vykhovanets 2006), attempting to represent

arithmetic functions by sequence of Boolean functions.

There is a theory when arithmetic functions are represented by Boolean func-

tions. These two groups of results hint us a possible solution:

• An ISA that consist of logic and arithmetic instructions should be supported by

sequence of functional equivalence of logic operators implemented by arith-

metic unit. For every arithmetic instruction a functionally equivalent sequence

of logic instructions should be added.

• Both sequences should be stored in different segments of read-only memory.

• If a fault occur in the AU a signal sets a flag in the syndrome and sequence of

logic operators is executed instead of arithmetic instructions to complete GAFT,

and vice versa.

Note that this equivalence and hardware redundancy is used only when a fault is

detected and the recovery procedure is initiated.

This enables the system to recover from transient errors and execute

reconfiguration. After reconfiguration, the system can either continue functioning

in normal mode or, in case of an unrecoverable permanent fault, it can provide fail

stop sequence of actions.

158 6 Hardware Support of Resilience

Area of applications for embedded safety critical systems set hard constrains for

instructions execution and replacement of arithmetic instructions by sequence of

logic ones has no justification to apply for execution of application programs.

The syndrome acts as a control centre for three main functions: fault monitoring,

reconfigurability and recovery (Fig. 6.9). These three functions serve for the

purpose of performance, reliability and power efficiency.

From a hardware point of view the syndrome is represented as a special

hardware register that will interact with the system via hardware interruptions

schemes.

Semantically, the structure of the syndrome is subdivided in three different areas

(Fig. 6.10):

• Fault control area.

• Configuration control area and,

• Power control area.

The Fault control area reflects the hardware status of the different areas of a

single processing element: processor, memory and interface. Full “Zero” syndrome

in this area indicates that no fault has been detected in the system. If a fault in a

specific element is detected, the corresponding bit is set to 1.

Fig. 6.9 Syndrome purposes

6.4 Syndrome 159

Each hardware element has sits own representative flag within syndrome. For

ROM memory group that consists of two chips syndrome of ROM condition has

two positions with zero when ROM works correctly. In turn, static RAM memory

has four hardware elements.

The configuration area of syndrome reflects memory mode that ERA is currently

using. The Bit mode field defines whether the addressing mode is 16 or 32 bits,

whereas the L/R field defines whether the memory banks are in linear or redundant

mode.

Bit mode: 0¼ 16 bits

1¼ 32-bit addressing mode

LR: 0¼Linear

1¼Redundant

The power management area reflects the status of the modules in terms of power.

Bits Power RAMModule 1, 2, 3 and 4 represent whether the Memory module is

powered:

0¼ Power Off

1¼ Power On

The combination of those three areas: Fault, configuration and Power manage-

ment control defines the state of the system. For example, a memory module could

be in the following states: faulty, failed, stand-by, ideal and off state. Checking

those three areas by a simple reading would determine the status of the memory

module. When reconfiguration is set by software, the states of syndrome might be

mirrored in memory. Keeping those states only in SSW is not universal solution, for

example when external element requires an access to a syndrome and local memory

is failed further use of available resources and elements becomes impossible.

Fig. 6.10 Syndrome for reconfigurable architecture

160 6 Hardware Support of Resilience

Without a doubt, the syndrome is one the most critical parts of the system. For

reliability purposes, there are three copies of the 32-bit register syndrome connected

to a voter within the processing element. Triplication of the syndrome increases

complexity of logic. The voter will be vulnerable as well (unless the voters are

triplicated). Another option that solves the complexity would be low-level harden-

ing techniques and/or using different technologies (such flash memory) just for the

syndrome register.

However, that will increase the manufacturing costs. Without this replication,

and possibly different, enhanced technology use a bit flip in the faults area of the

syndrome would lead to redundant fault detection processing, whereas a bit flip in

the configuration area would likely end up in a catastrophic failure.

6.4.2 Location Access andWay of Operation of the Syndrome

There are two major mechanisms that will be able to detect a fault: hardware logic

and SSW. Both, hardware logic (mismatch and voters) directly and SSW (testing

and detection mechanisms) via instruction should have access to the syndrome:

SSW events: If SSW has access to the syndrome, reading and writing the value

of the syndrome is compulsory. Note the current ISA does not include instructions

within the processor to do that, unless one of the registers (e.g.: register 31) is used

as a syndrome. This is similar to the VAX V70 processor [Kimura88] that includes

a status word placed in a fixed address of the memory. In this case, the register file

needs to be hardened. At least the syndrome needs to be hardened.

A bit flip in the configuration area of the syndrome could mistakenly turn off one

of the memory modules. As a consequence, a preferred way to access the syndrome

that avoids changing the ISA and hardening the register file is the use of the input/

output memory lines (mapped in a reserved address). This works as a TMR scheme,

with complete software independence.

Regardless of the hardware implementation, only one syndrome is visible to the

system software. An error in one of the syndrome registers is corrected by the

hardware without the software intervention.

However, it is useful that the SSW is aware of errors in the syndrome. Errors

within the syndromes are useful information in a potential contingency plan (e.g.:

setting the fault tolerance of the system to a higher level in case of recent particle

impacts).

6.4.2.1 Automatic Events Detection Mechanisms Using Hardware

Special HW interruptions are needed for this; if during the diagnosis of a memory

chip the ALU for example signals a problem, a diagnosis of the suspected element

should be done first.

6.4 Syndrome 161

The syndrome might be considered as independent new hardware—independent

from processor hardware elements and other schemes.

A method is needed for synchronising the operation of the processor with the

syndrome. One solution would be polling, where a loop that checks the status

of the syndrome is arranged. It has a major disadvantage: the processor is busy

reading the syndrome, instead of executing some useful code (wasteful in terms of

processing power).

Instead of polling the syndrome waiting for a change, a hardware interruption

system is preferred.

In this case, the syndrome subsystem is responsible for notifying its current state

to the processor.

When the syndrome needs the processor’s attention, it sends an electrical signal

through a dedicated pin in the interrupt controller. In this case, the processor stops

its current activity and jumps to execute a function (interrupt handler) which has to

be associated with the fault manifestation.

By using hardware interruptions, in terms of total execution time, the syndrome

will be accessed only when a fault is manifested and reflected in the syndrome.

Most of the time the fault area of the syndrome will be 0 and the rest of the areas

will only be altered when restarting of the system or when changing the

memory mode.

The same method might be applied to the control of other devices. Different

levels of interruptions are then needed. Active zone hardware should have higher

priority than passive zone hardware.

If a hardware mechanism sets the syndrome bits, then the processor executes a

trap (exception) and starts the diagnosis software.

The software treats the fault and clears the syndrome otherwise the processor

would trap again and restart the diagnosis.

This scheme introduces a requirements to set and reset syndrome register

internally (using own hardware or software) or externally, from the “rest of the

system” when ERA is used in the form of CC—connected computer structure.

If the syndrome is located within the active area, in the case of a faulty active

area a neighbour processing element may have difficulties accessing to it. To

resolve it there are three options:

• To enable system flexibility in fault handling, one has to implement syndrome

independently from the active area where it can be accessed via hardware by

neighbour single elements.

• Software message passing: Instead of hardware access SSW will deal with status

of single elements, by sending un update (periodic updates) on syndrome to the

single element neighbours before changing memory mode or when a fault has

been detected (if feasible in this last case). A syndrome table in a similar fashion

(but not as heavy) to the routing tables used by routers and the different routing

algorithms could be shared by different processing elements.

• Both, Hardware access and SW message passing are not mutually exclusive. A

combination of both is possible.

162 6 Hardware Support of Resilience

6.4.3 Syndrome: Passive Zone Configurations

A total of 25 operating states of memory are possible to operate in reliability-,

energy- or performance-wise modes. The characteristics of the proposed memory

architecture are given in Tables 6.3 and 6.4.

Memory modes are subdivided into two major categories, depending on the

number of bits read/written at once: 32 bits and 16 bits. At the moment there are ten

different usable configurations in 32-bit mode memory (defined in Table 6.4) and

15 different configurations in 16-bit mode memories (defined in Table 6.3). In

addition, two modes of operation, depending on the existing amount of redundancy,

can be selected:

Table 6.3 16-bit addressing modes in RA

Table 6.4 32-bit addressing modes in RA

6.4 Syndrome 163

1. Linear mode: where no module is replicated and

2. Redundant mode: with at least one module being replicated.

In order to explain the available memory modes, let us consider the letters in the

set {A,B,C,D, x} as a representation of information stored in the 16-bit memory

modules, where:

• A lowercase letter x represents a module is not in use.

• Identical letters represent identical information in different modules. In other

words, information stored in a module is n times replicated into n modules:

e.g. AA, AAA, BB and AAAA. In this case n-1 modules are connected in

shadow mode and perform all memory operations concurrently to their respec-

tive master memory module. A hardware voter in the memory controller com-

pares the output of the memory modules and triggers a fault in the syndrome in

case of mismatch.

• The pairs AB, BA and CD represent two 16-bit modules combined into a virtual

32-bit module.

6.4.3.1 32-Bit Mode

The memory modules of ERA are 16-bit-wide. Therefore, two memory chips must

be combined to allow 32-bit memory access. Table 6.4 reflects all the supported

memory combinations in 32-bit mode.

Only one memory mode is available in 32-bit Linear Mode (state 10 in

Table 6.4). Module 1 and 2 are combined and mapped in the memory space.

Module 3 and 4 are combined as well and mapped contiguously in the memory.

This configuration provides maximum space for the application but does not feature

fault tolerance, and not even fault detection at the memory level.

In terms of fault tolerance, the maximum redundancy based on 32-bit addressing

is the ABAB configuration (Table 6.4). The information in the two modules AB is

replicated on an extra pair AB. In every reading operation the data from both

memory pairs is compared. If there is a mismatch, the checkpoint area in RAM

will be the decisive factor in selecting the failure.

Note that 32-bit modes that involve three working modules such as ABAx

ABxB, AxAB or xBAB are not initial modes (starting in this mode does not offer

any advantage). Those four modes would typically involve that an error has

occurred in one of the modules ongoing diagnostics is taking place.

6.4.3.2 16-Bit Mode

With the main purpose of critical energy saving a 16-bit addressing mode was

introduced. This mode is using a single bank of memory. Hence, there is not

duplication of memory. The four different memory configurations, currently

allowed in this mode are presented in Table 6.3.

164 6 Hardware Support of Resilience

When only one single mode is available due to permanent faults in the other

three, the system could be restarted in a fresh 16-bit mode loading the different

SSW binary codes from a ROM location into RAM. Note that this mode is an

emergency mode and does not contemplate the possibility of hot switching from a

32-bit mode. Schemes to change from 32-bit mode to 16-bit/power saving mode

and vice versa are defined by the runtime system.

6.5 Graceful Degradation

If one of the memory modules fails, the system can be reconfigured to exclude it

from the current configuration. In terms of fault tolerance, the maximum redun-

dancy based on 32-bit addressing is the ABAB configuration (Fig. 6.11).

The ten admissible states in 32-bit mode are given in Fig. 6.11. Further degra-

dation is possible in 16-bit mode (Fig. 6.12). In terms of fault tolerance, the

maximum redundant configuration is based on 32-bit addressing ABAB configura-

tion. The transition between these states is completely dependent on soft/hard errors

and the efficiency of recovery mechanisms. However, a voluntary transition

between different states is also allowed.

In case of degradation, successful recovery mechanism could produce a transi-

tion from a degraded phase to an initial phase. The group of states or phases can be

distinguished:

Fig. 6.11 32-bit degradation phases

6.5 Graceful Degradation 165

• Phase 1: States with full checking and replication of every single bit. The single

state in this phase is the initial state and has maximum redundancy for 32-bit

ABAB configuration (see Table 6.4, Fig. 6.11).

• Phase 2: States in which at least 50 % of the bits are replicated. Transition to one

of the four different states available in this phase is due to a fault in one of the

memory modules of State 1.

• Phase 3: States in which replication of bits does not exist. Six possible states in

this phase could potentially lead to a failure.

If during operation phase 3, working module experiences a third permanent error

(at least one per module), then reboot of the system is the only way forward. In a

multi-element scenario and depending on the resources available, reliability needed

and current environment, SSW will have to decide whether to:

• cold switch the same element and restart using the 16-bit mode.

• keep using the healthy active area but make use of the neighbour memory

elements or,

• cold switch the execution to another element.

6.5.1 Graceful Degradation: Markov Analysis

Regarding computational capability and availability of resources, a system can be

modelled as being in one of many possible states. The number of states would be

large, if fine distinctions are made, or it may be relatively small if similar states are

Fig. 6.12 16-bit degradation phases

166 6 Hardware Support of Resilience

grouped together. Different events can force the system moves from one state to

another depending on resource availability and computational changes.

By quantifying the probability of state transitions, State-space modelling can

determine the probability of the system being in each specific state; this can be used

to obtain some parameters of resilience (reliability, safety, maintainability, safety,

etc.).

The sum of all input and output transition probabilities of each state should be 1.

The state of the system is characterised by the vector: (S0, S1, S2, S3, . . ., Sn).
A transition probability matrix has N states. On the t’th time-step the system is in

exactly one of the available states qt:

qt 2 S1, S2, S3, . . . , Snf g

There are discrete time-steps, t¼ 0, t¼ 1, We are interested on how the

system will behave after several time steps. Initial condition of the system: S0.

Given qt, qtþ1 are conditionally independent of qt�1, qt�2, . . . , q1, q0f g that is:

P qtþ1 ¼ sj
�
�qt ¼ si

� � ¼ P qtþ1 ¼ sj
�
�qt ¼ si, any earlier history

� �

The current state qt determines the probability distribution for the next state qtþ1.

In order to model of the system we do the following assumptions:

• System starts in the perfect state.

• Only one fault can occur at a time.

In order to simplify we make a first-order Markov assumption: we say that the

probability of an observation at time n only depends on the observation at time

n only depends on the observation at time n� 1. In a sequence {q1, q2, . . ., qn}

P qn
�
�qt�1, qt�2, . . . , q1, q0

� � � P qt
�
�qt�1

� �

Using the previous assumption, the joint probability can be expressed as:

P q1, q2, . . . , qnð Þ ¼
Yn

i¼1
P qi

�
�qi�1

� �

Figure 6.13 presents Markov model of reliability for reconfigurable memory

described above. The figure shows the transition probability in the case of four-

module memory scheme with TMR plus a spare configuration. The circles in the

figure represent one of the 15 possible states. The arrows reflect transitions from

source to destination state.

By merging states in the Markov model a simpler equivalent model is created.

Figure 6.14 represents such simplification illustrating the probabilities of transition

between the original TMR plus spare, a TMR, a DMR, a SMR and Fail states.

6.5 Graceful Degradation 167

6.6 Implementation Constraints

As explained before in Sect. 6.2.1 taking into account the 16-bit instruction size and

32-bit word size of memory organisation, at the time of compilation, the compiler

schedules memory loads on the first 16-bit instruction of a 32-bit two-instruction

“packet”. This way, memory loads and instruction fetches never occur at the same

time. When the memory configuration is set as 16-bit words each read or write

precede instruction execution. In the case of a 32-bit memory configuration two

instructions might be loaded from memory by one access.

Fig. 6.13 Markov model for the ERA memory system

Fig. 6.14 Reduced Markov model for the ERA memory system

168 6 Hardware Support of Resilience

6.6.1 Graceful Degradation: Markov Analysis

Different solutions could have been implemented for ERA’s memory addressing

scheme. We consider physical addressing and relative addressing.

Following the first case, as shown in Fig. 6.15, the lowest 4 bits of 32-bit

memory address would represent which modules are used to represent the lower

and the higher 16 bits. The encoding would be as follows: Bit 2 and 3 correspond to

M2 and represent the higher 16 bits.

However, by using this scheme, having the configuration of the modules phys-

ically mapped in program code would make reconfiguration difficult to implement.

If binary code reflects which bank the program should run on, then in case of fault

that requires code to be transferred to another bank (bank switching), a translation

would be needed.

This recompiling of the program is highly unlikely possible in real time of

program runs. This also affects recovery time and, in fact, it excludes the chances

of recovery in real time.

Besides, if the contents of the memory banks are physically different this will

affect the hardware checkers complexity; the checker function would need to

compare equal values in case of data comparison and different values in case of

address comparison. Thus, separation of concerns principle and a virtual memory

approach are preferred.

By removing M1 and M2 (Fig. 6.15), the memory addresses used in a program

code refer to a relative position, for instance, within a pair of modules AB. A

reconfigurable memory controller (see Fig. 6.16) that links the relative address to

the specific memory bank is used in a similar fashion to the translation of virtual

addresses into physical addresses.

Fig. 6.15 Theoretical memory configuration with support of reconfigurability

6.6 Implementation Constraints 169

6.6.2 Interfacing Zone: the Syndrome as Memory Controller

As previously seen in Table 6.1 the T-logic ERA element performs configuration

and reconfiguration of hardware by providing interconnection and dynamically

excluding faulty components from the operational system.

The T-logic interconnector provides flexibility of application of memory ele-

ments (32- and 16-bit configurations) and at the same time helps in fault contain-

ment. This logic is used to form a hardware configuration scheme adjustable to the

program requirements or when a hardware element itself (or architecture) detects

hardware faults and thus can’t be involved in further calculations.

Note that “isolation” might be temporary or permanent, subject to the element’s

“health”. The final decision about permanent isolation of an element will take place

when testing and recovery procedures are complete.

The four T-logic interconnectors, one for each memory bank, are physically

included in the T-logic Management Unit or TLMU. TLMU (see MMU in

Fig. 6.16) manages the connectivity of the memory, configures and reconfigures

the working mode to a 16-bit single memory, 32-bit double memory with master/

slave configuration or any of the 14 memory addressing schemes available

(Tables 6.3 and 6.4). Using the T-logic scheme memory elements could be isolated,

switched off for power reduction or doubled in capacity when the maximum storage

volume is required, addressing PRE-wise computing.

Fig. 6.16 MMU syndrome as a memory configurator

170 6 Hardware Support of Resilience

The Configuration and Power management flags of the syndrome describe the

different states of the memory modules. Different values in the configuration area

of the syndrome select the bank used and the mode.

The output memory lines of the processor determine a location within a memory

bank, whereas the Configuration and Power areas of the syndrome specify which

banks are to be used and in which mode.

One example of a possible memory configuration (State 1; Table 6.4) arranged

by “T”-logic is presented in Fig. 6.16. The example reflects a 32-bit (Bit mode¼ 1)

ABAB configuration with 2� 2 modules duplicated (Redundant¼ 1) working in

pairs.

By using this method we can increase the independence of software/hardware

configurations for the PRE-purposes. Memory addresses within the code do not

need to be arranged, as code integrity is a crucial requirement for safety critical

systems.

Let us define the following scenario where it is required to switch data and code

from modules 1 and 2 to module 3 and 4. Let us assume that the work mode is ABxx

32-bit, which is fast but not very reliable.

Assuming that the user (or an online fault detector manager using a fault model)

requires a higher level of reliability, transfer from the current ABxx mode to an

ABAB mode is required. An implementation of this example is based on the

following algorithm (omitting the testing procedures):

6.6 Implementation Constraints 171

6.6.3 Access to the Syndrome

The design of the TLMU should allow the possibility of neighbour elements

accessing the memory elements. Synchronisation is then required to avoid several

elements accessing the same memory at the same time.

Since the syndrome should also be accessible by other elements it may be a good

idea that the syndrome is located in this interfacing area. Having access to the

syndrome via TLMU would save logic since only one synchronisation element

(TLMU) will be used.

6.7 Conclusions

• A resilient architecture was proposed including the hardware and the system

software elements that can provide efficient performance, reliability and energy-

smartness.

• The principles of designed followed and the structural properties of active, passive

and interfacing zones are introduced. Active zone of hardware was also described

with emphasis on recoverability after malfunctions and implementation of

checking schemes. A processor with a reduced instruction set and a careful

introduction of redundancy including checking schemes and re-execution at the

instruction level can provide higher and efficient reliability.

• Reconfigurability of a real-time architecture at the system level was proposed

and analysed in the context of each zone. With regards to the interfacing zone, a

new element (T-logic), as a basic unit of reconfiguration, and its different

configurations were proposed. We analysed and described how the flexibility

of the T-elements has a positive effect in reliability and power-smart functioning

of the system.

• System-level reconfigurability can be achieved using a new hardware element

called Syndrome that can provide essential knowledge about hardware condi-

tions. We showed the relation of this element with the active, passive and

interfacing zones and how it can be used to implement GAFT. Functions of

the Syndrome for reliability, performance and energy-smart functioning were

described and explained.

• Taking into account that memory use has, by design, a high impact on system

reliability and power consumption, passive zone reconfigurability was analysed

and described in detail, including the control of configuration and the phases of

hardware degradation.

• A Markov model of reliability for passive zone was developed, and analysis

indicates the reliability gain of the different schemes permitted by the proposed

reconfigurable architecture.

• System software support of testing and reconfiguration (dealing with system

syndrome) was fully described. Shown that in combination of novel hardware

architecture and system software all key properties of performance-, reliability-

and energy-wise functioning can be improved.

172 6 Hardware Support of Resilience

Chapter 7

System Software Support

7.1 System Software Support of Hardware Checking

Consider a sequence of tests and programs T and P within a system as in Fig. 7.1.

The initial test T is executed before a given task execution guaranteeing HW

consistency, i.e. it guarantees that there is no fault at time t0 in the system.

However, if a permanent fault (e.g. a stuck bit) occurs immediately after the first

test or during the program execution, it might be invisible for an arbitrary long time

(latent period).

For periodic tasks, which are often used in control systems, we slightly adapt this

scheme as shown in Fig. 7.2.

Nevertheless, what if a transient fault occurs during the execution of P? As

mentioned in Sect. 3.5.2.1.1, at least three cases may take place:

• The effect of the fault lasts until P finishes, T detects the error and the recovery

mechanisms are able to restore normal functioning on time (detected recoverable

error or DRE);

• The effect of the fault lasts until P finishes, T detects the error but the recovery

on time is not possible (detected unrecoverable error or DUE);

• The effect of the fault might not last until P finishes and therefore T would not be

able to detect the fault, which in turn would allow the fault to remain undetected,

perhaps causing data corruption (silent data corruption or SDC). The corruption

could go unnoticed (benign error) or could result in a visible error.

Transient faults can be detected by re-executing the same program P with

comparison C of the result and the result state space. Figure 7.3 illustrates this

scenario. Note that for periodic tasks, the state of the program, which is used in the

next computation as input data, must also be compared, as transient faults might

affect data that is no longer used in the current computation but in the next.

Permanent faults however cannot be detected with the comparison scheme

alone, as they might affect both executions of P. That is, the scenario in Fig. 7.2

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_7

173

http://dx.doi.org/10.1007/978-3-319-15069-7_3#Sec21

can detect only permanent faults, whereas the scenario in Fig. 7.3 can detect only

transient faults.

The combined power to detect transient and permanent faults is illustrated

in Fig. 7.4 [program and test sequence], where C is used to detect transient faults

and T to detect permanent faults. Assuming that C triggers an error but T does not, it

is clear that a transient fault has occurred. Another run of program P with compar-

ison to the previous two runs can identify the run where the transient fault has

occurred.

In the following analysis, we concentrate on the detection of permanent faults

only and use only T in the analysis. The detection of transient faults can be

considered as included in the following analysis if the double execution of P with

following C as a whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness

of the hardware and also a periodic test before and after the execution of a program.

The applied tests might vary in depth (coverage), type of faults and the set of the

tested hardware.

Fig. 7.1 Ensuring HW integrity through program test execution

Fig. 7.2 Regular sequence of program execution with test of HW integrity to detect permanent

faults

Fig. 7.3 Ensuring HW integrity through program test execution to detect transient faults

Fig. 7.4 Ensuring HW integrity through program test execution to detect transient and permanent

faults

174 7 System Software Support

Every hardware component has typically at least one assigned test but might also

have more than one that could differ on the implementation level. Software based

tests need a processor and memory for the test execution even if a peripheral device

is tested. In order to guarantee that faults in other hardware components that are not

subject of the test itself do not have an influence on the outcome of the test, the

order of the tests must follow the principle of growing core: if a test of a hardware
component ui has implicit dependencies on another hardware component uj, the test
of uj must be executed first.

If the resources needed by a task are known in advance, it is sufficient to run after

the execution only the testing procedures of the accessed hardware resources

(selective testing), again by using the principle of growing core. This way, the

system stays fully operational even in the case of present faults in some hardware

components that are not in use. Spare components can be used for the relocation of

programs that have been running on faulty hardware components.

Of course, it is also necessary independent of this scenario to periodically test the

full hardware as otherwise faulty spare components are considered as fully opera-

tional and might be used again in a subsequent reconfiguration process.

A full hardware test also allows the system software to monitor the current full

state of the hardware and take appropriate actions if necessary. If no spare compo-

nents are available in the system, all programs depending on this component must

be obviously terminated. If no essential program is affected by this component, the

system can continue operating in a degraded mode.

For diagnostic and monitoring purposes the results of the tests should be

available for the software or even external systems. We propose therefore to

organise the test results of hardware-based test in so-called test syndromes before.

For every hardware component, for example the register file, AU, LU, internal

bus or device controllers, the checking procedures present their result in the form of

a syndrome to the software, indicating in binary form the state of the device. By

grouping all syndromes together in one register, the software has a very effective

way to check the integrity of the system. In case of a non-zero syndrome further

analysis of the hardware conditions is required, especially when the malfunction

duration is long.

Dependent on the used hardware checking scheme, it is not only possible to

signal a fault to the runtime but also to provide more information to the runtime

system to ease recovery. If for example the testing schemes discover stuck bits in

memory, it is sufficient to recover programs that access the affected location and

not all programs that are using this memory module.

Device drivers could for example provide their own testing schemes for their

respective device. Especially for devices, one could think of having a combination

of hardware and software based testing. I/O devices such as UARTs could effec-

tively be tested by cross-connecting the input and output wires by very simple

additional hardware logic and sending various bit patterns over this loopback

connection.

7.1 System Software Support of Hardware Checking 175

Timely task completion in real time systems is a key requirement, and therefore,

the testing overheads should be reduced as much as possible when and where

possible.

Figure 7.5 shows an example of three tasks with corresponding tests. Analysis of

the checking process assumption in this case is based on a time slice scheduler,

which distributes time slices to the running processes.

In this example, the processes run to completion and are called periodically by

the scheduler. Three tasks are running, each with its own test (the green boxes) at

the end of the task execution.

The test only checks the resources the respective process needs, which results in

different test execution times. The task execution is only considered as successful if

the test at the end of the task is successful.

If the test failed, the task is re-executed by using the same input data set as in the

first try.

For diagnostic and monitoring purposes the test results should be available to the

system software with supportive manifestation in syndrome that unit or to external

systems. Therefore, we propose to organise the test results of hardware in test

syndromes.

Difficulties arise if the task performs I/O on hardware devices or communicates

with other tasks.

7.2 System Software Support for Hardware
Reconfiguration

For every hardware component, e.g. register file, ALU, internal bus or device

controller, the checking procedures present their result in the form of a syndrome

to the software indicating, in binary form, the state of the device. By grouping all

syndromes together in one register, the software has a very effective way to check

the integrity of the system. In case of a non-zero syndrome further analysis of the

hardware conditions is required, especially when the duration of the malfunction

is long.

Depending on the checking scheme used, it is not only possible to signal a fault

to the runtime but also to provide it with extra information to ease recovery. For

instance, let us define a scenario where the testing schemes discover stuck bits in

Fig. 7.5 Tasks and test combined

176 7 System Software Support

memory due to a Hard SEL. It would be sufficient to recover programs that access

the affected location and not all programs that are using the affected memory

module.

Device drivers could for example provide their own testing schemes for their

respective device. Especially for devices, one could think of having a combination

of hardware and software based testing. I/O devices such as UARTs could effec-

tively be tested by cross connecting the input and output wires using very simple

additional hardware logic and sending various bit patterns over this loopback

connection.

In case of a detected hardware fault, the syndrome raises a hardware interrupt

and SSW takes control of the reconfiguration process. The whole procedure is

almost identical in the case of software-based schemes detecting the fault, with the

difference that the interrupt that is raised is not hardware but software based. In the

case of memory errors, if the current memory configuration does not use a redun-

dant mode, software based checking is the only possible approach.

The general procedure of software support during reconfiguration is listed as

follows:

• The hardware checking scheme triggers the syndrome interrupt.

• In order to distinguish the fault type, the syndrome interrupt handler then either

initiates a HW BuiltNIn SelfNTest (BIST) procedure of the device or runs a SSW
based self-test. In the case of SSW tests, writing different memory patterns to the

faulty memory address can be used to derive the fault type. The syndrome bit

indicating the fault has to be cleared after recovery. If after the test and recovery,

the syndrome still shows the fault, the memory module is considered faulty. The

affected memory address is still present in one of the processor registers and

based on the IRQ return address, the correct register number can be derived by

decoding the memory instruction that triggered the fault. In general, all software

based testing procedures that test memory must not use the stack (no procedure

calls, no data pushed on the stack) until the proper functioning of the used stack

locations is ensured.

• In case of a transient fault, the event is logged and the program execution

resumed. Logging the events is important as an accumulation of malfunctions

in a module or a specified memory location could hint a potential permanent

failure in the near future.

• In case of a permanent fault, the current memory configuration is extracted from

the syndrome, and the next degradation state is calculated according to the

application needs and predefined degradation tables.

• The new calculated memory configuration is written to the syndrome registers

and the power of the faulty unit is removed. In some configuration transitions,

the SSW has to adapt to the new situation and recover after excluding the faulty

unit but before including the new one.

• SSW clears the fault in the syndrome and resumes processing by returning from

the interrupt.

7.2 System Software Support for Hardware Reconfiguration 177

Some of the presented transitions in Sect. 6.5 need software intervention to fully

recover from a permanent fault and to establish a new working software state. We

show here a few situations where SW support is needed:

• Adding/Replacing a module of an already populated bank: if a memory module

of a redundant memory mode (DMR or TMR) that is suspected of presenting

faults is replaced by another module, memory content must be replicated to the

new module before it is included in the configuration. A small routine following

the algorithm described in Sect. 6.6.2 is sufficient to perform the copy without

modifying the memory during the operation. Before performing that routine,

SSW configures the syndrome to include a spare memory bank. After the

copy operation, the spare module can be included in the working set. These

actions must be performed for example when the system switches from

Phase 2 to Phase 1 in Fig. 6.10.

• Failed module in the runtime system area: The area of memory that contains by

convention all runtime system data structures is critical for system operation.

When the recovery procedures are unable to overcome the situation, if the

module has a replicated pair in redundant mode, the affected module is replaced

by its replicated version via syndrome. However, if the module is not replicated,

resetting the system either via a hardware watchdog or a software initiated power

cycle is the option as a last resort. The BIST mechanism automatically identifies

the failed module and configures another still working module to bank 1. The

runtime system can then restart all critical applications.

• Fault in a memory module that is not replicated: this case is the most difficult to

handle as the software must adapt to the smaller available memory space.

Instead of graceful degradation, software can also decide to “upgrade” the

system in terms of redundancy, i.e. going from a mode with less redundancy to a

mode with higher redundancy. The inclusion of a spare module corresponds to the

first point in the list above; if an already used module is moved to another bank,

software has to release all data structures residing on that module in case it is in non

redundant use and repopulate it with data according to Point 1.

Intentional change of the operating mode to a less redundant mode is of course

also possible, and needs no special software measures. As soon as the module is

reconfigured to a free bank, the runtime system can start using it.

7.3 System Software Monitor of Hardware Condition

A hardware monitor, which is part of the runtime system, is responsible for keeping

track of the hardware state. For every hardware component, which is managed by

the syndrome, the hardware monitor tracks the state in more detail than the

syndrome alone can provide.

It is also responsible for the execution of all software checking schemes and

performs the actual hardware reconfiguration.

178 7 System Software Support

http://dx.doi.org/10.1007/978-3-319-15069-7_6#Sec15
http://dx.doi.org/10.1007/978-3-319-15069-7_6#Sec19
http://dx.doi.org/10.1007/978-3-319-15069-7_6#Fig10

Thus, the hardware monitor must be accessible by the syndrome interrupt

handler as well as the runtime system. This monitor should however not directly

be accessible by applications; only drivers, which are part of the runtime system,

can register checking procedures for their respective hardware component.

When the system is turned on, the BIST procedures embedded in the system are

executed. It runs tests on all devices, using the principle of growing core, to ensure

the integrity of all devices. If a failure is detected, the syndrome sets the appropriate

fault bits.

The BIST is also responsible to initiate the system to a predefined working state,

i.e. the most reliable mode with all working available resources.

When the BIST finishes and passes control to the runtime system, the runtime

passes control to the hardware monitor which first mirrors the current state in

software and then reconfigures the system according to the need of the program.

As the syndrome might trigger an interrupt right after boot up, the syndrome

interrupt handler has to ensure that the stack pointer is valid and if not initialise it.

Every hardware component, which is managed by the syndrome, has shown with

exactly one state of Fig. 7.6. This state diagram shows also all possible transitions

between states, allowing the hardware monitor to reconfigure the system in a

consistent way.

In fact, all of the above presented cases in the degradation scenarios where

software intervention is required are clearly identifiable in Fig. 7.6.

Intervention is only required if the state transition goes from Stand-by to one of

the active cases (marked in blue).

Fig. 7.6 Hardware state diagram

7.3 System Software Monitor of Hardware Condition 179

After boot up, all devices are either in state OFF or in one of the blue operation

modes. As the BIST automatically configures the most reliable possible memory

configuration, the initial states of all devices must be acquired by reading the

syndrome. Given here is a short list of all possible states with a short description

of them:

• OFF: the device is currently not in use, powered o_ and isolated for fault

containment

• Stand-by: the device is powered on but not yet in use, i.e. in case of memory not

yet assigned to a memory bank. In case of reconfiguration, all transitions go

through this state.

• Active: the device is in use in a non-redundant mode. In case of memory, the

memory module is assigned to a bank in linear non-redundant mode.

• Duplicated: the device acts in duplicated mode.

• Triplicated: the device acts in triplicated mode.

• Suspected: As soon as a fault in the hardware is detected, the state of the affected
hardware component is set to “suspected” and the testing procedures are initiated

to diagnose the fault. If a device is often in this state, this could be a hint that the

device might fail in the near future. For reliability purposes it might therefore be

sensible to replace the component with a spare one.

• Faulty: dependent on the analysis outcome, the state is then set either to Faulty if
a permanent fault has been diagnosed or back to the previous state if it has been

only a transient fault. A device in the state Faulty is powered off.

The state transition diagram of Fig. 7.6 is not directly applicable to all devices.

A memory bank for example should during the transition not go through stand-by to

make sure that the stored data in the attached memory modules are not lost.

Periodical hardware checks should be performed on every single hardware

component despite its state. This ensures that no hidden faults can stay undetected

in the system and possibly spread. Thus, from any state exists a transition to the

“suspected” state. Also, from Stand-by state—when device or element is not

currently used they might be tested regularly.

It is even possible to revive faulty components, as for example environmental

changes could allow a component to function correctly again.

7.4 Conclusion

• System software support of hardware fault tolerance is described along execu-

tion of various steps of generalised algorithm of fault tolerance.

• We show that in principle hardware conditions and states might be detected,

evaluated and to some extent restored by system software without any support of

hardware design.

• Various schemes of testing organisation for detection of hardware malfunctions,

hardware permanent faults are presented, advantages (flexibility, ease of

180 7 System Software Support

upgrade) are mentioned as well as drawbacks (needs of time redundancy, much

higher performance of hardware growth of complexity of run-time system).

• Shown that implementation of testing programs might be “imbedded” into run-

time system making tests of hardware elements transparent for multitasking

operations.

• A special hardware structure called Syndrome is introduced in the context of

system software control of reconfiguration of hardware.

• System software run-time system structure, functions and features are discussed

to support phases of GAFT implementation: testing, malfunction toleration and

reconfiguration control.

7.4 Conclusion 181

Chapter 8

Implementation: Hardware Prototype,
Comparisons, Simulation and Testing

8.1 Instruction Execution

Figure 8.1 shows the execution flow of the proposed microprocessor. As we

mention in Sect. 6.2.1, the execution steps are similar to other RISC processors

and since there is no pipelining all steps of one single instruction are executed

within one memory cycle.

The fetching step loads an instruction from main memory storing it into the

Instruction Register (IR). Since every instruction is 16-bit wide this step is required

every second instruction. Decoding and Execution of the Instruction follows.

After execution of the first instruction, the second instruction from the Instruc-

tion Register (IR) can be executed without access to memory. This eases the speed

gap between processor and memory and reduces their dependency. Finally, storage

of the result takes place if the instruction execution has affected the content of

registers, processor flags or any other processor state.

The processor has two internal fetching states (F1 and F2) that are required by

the memory controller. Again, simplicity is not only applied to the processor but

also to the memory controller. Both are designed to avoid possible stalling due to

pending memory operations. This can be achieved by interleaving instruction

fetches and memory operations.

The fetching step always loads two 16-bit instructions from memory into the

internal IR. In sequential instruction execution, the compiler can schedule memory

instructions in every second instruction slot where no instruction has to be loaded

by the processor.

An example of this notion is illustrated Fig. 8.2, which is an extended version of

the instruction execution flow in Fig. 8.1. In the F1 state, the processor fetches an

instruction from memory; therefore, since the memory unit is busy during this

cycle, it cannot execute at the same time an instruction that involves memory.

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_8

183

http://dx.doi.org/10.1007/978-3-319-15069-7_6#Sec3

Only when the processor is in the fetching state F2, the processor is able to

execute a memory instruction. It is the compiler’s responsibility to schedule the

instruction in the proper order.

We choose to simplify the hardware design at the expense of adding complexity

to the compiler. By doing so, we reduce the amount of redundancy and therefore

increase system reliability. If the instruction executed is a branch instruction the

processor is switched automatically to the F1 state.

The reason for that is that the memory controller can only load 32-bit aligned

addresses and therefore, the jump destination locations must also be 32-bit aligned.

All these arguments and presented factors force the compiler to fill the memory

gaps with NOP instructions.

8.2 Instruction Set

As mentioned in Sect. 6.2.1, in the ultra reduced instruction set employed, each one

of the 16 instructions is encoded into 16 bits and only two of them are memory

instructions (load/store).

Fig. 8.1 Simple version of

the prototype’s Instruction

execution

184 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

http://dx.doi.org/10.1007/978-3-319-15069-7_6#Sec3

The instructions are designed as two operands instructions. They expect exactly

two arbitrary registers as input, and save the result of the operation in the first

register, thus overwriting one of the input values.

The compiler has to keep in mind that the content of the first register is

overwritten. Again, we increase the simplicity of design at the expense of com-

piler’s complexity. The impact of the size of the register file on overall performance

of processor is a question of further research.

Figure 8.3 illustrates the instruction format divided in four different areas. Bits

15 and 14 (in red) indicate the format of the operation, which could be 8-, 16- or

32-bit. Bits 13–10 (in grey) contain one of the 16 different operation codes. Bits 9–5

(in blue) and 4–0 (in green) contain the first and second operand, which could be

any of the 32 general purpose registers in the RF.

Fig. 8.2 Instruction

execution (extended

version)

8.2 Instruction Set 185

The following Table 8.1 lists the current ISA with a short description of every

instruction together with their assembler representation. The current architecture

comprises seven control, five logic and four arithmetic instructions. Whilst most

entries in Table 8.1 are self-explanatory, when we feel necessary we add some

further explanation.

A special case of code operation is Opcode 0 which in combination with the

format represents four different instructions: STOP, NOP, TRACE and RETI.
TRACE is used for debug purposes and RETI is used to exit an interrupt handler.

The compiler needs to be aware that constants cannot be directly encoded in the

instructions.

LDA is another special instruction that loads a constant to the specified register.

The next aligned 32 bits aligned after the active program counter store the constant

to be loaded. Placing two instructions into one 32-bit word increase code density

and performance.

As explained earlier, the processor executes the first instruction on the left before

executing the second one on the right. Since the program counter has the same value

for both instructions it would be problematic to jump directly to a second instruc-

tion, which is not 32-bit aligned and has no unique address. Therefore, it is

responsibility of the compiler to insert NOPs at the right places to prevent cases

where instruction reordering fails to fill the gap.

TheCND instruction performs an arithmetic comparison of the Registers Ri and Rj
storing the result in Rj. The functioning is similar to other platforms: the comparison

involves checking of three conditions saving these as flags in the first three bits of Rj:

• Bit 0: R1>R2
• Bit 1: R1<R2
• Bit 2: R1¼R2

Table 8.2 shows the relations of the comparison operations and their

corresponding bitmasks. By applying an appropriate mask to the flags, the result

for every possible comparison operation can be used as an argument in a condi-

tional jump or saved as a Boolean value.

At the moment there is no support for unsigned operations. All arithmetic

operations treat the values in the operands as signed values. All instructions accept

the same register for both arguments with the exception of conditional jump

instruction.

Fig. 8.3 Instruction format

186 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

Table 8.1 Instruction set explained

Name

Format

code

Op.

code Op1 Op2 Op2

NOP 01 0000 Ignored Ignored Execute no action except increasing the PC

STOP 00 0000 0 0 Stop instruction Execution

TRACE 00 0000 Ri> 0 Rj> Output Ri to debugger. Operand1 or

Operand2 must be >0

RETI 11 0000 Return from interrupt (Address in R31)

LD 11 0001 Ri Rj Load 32-bit memory at address Ri into
Register Rj (Rj :¼ *Ri)

LDA 00 0010 Ignored Rj Load the value from the next 32 bit words

(rel. to PC) and store it in Rj (Rj :¼ constant).

Operand1 is ignored

ST 11 0011 Ri Rj Store content of register Ri to the memory at

address Rj (*Rj :¼Ri)

MOV XX 0100 Ri Rj Move content of register Ri to register Rj
(Rj :¼Ri)

ADD XX 0101 Ri Rj Arithmetically add the content of Ri to the

content of Rj and store the result in

Rj (Rj :¼ Rj +Ri)

SUB XX 0110 Ri Rj Arithmetically subtract the content of Ri to
the content of Rj and store the result in

Rj (Rj :¼Rj�Ri)

ASR XX 0111 Ri Rj Shift the content of register Ri arithmetically

one bit to the right and store the result in Rj

ASL XX 1000 Ri Rj Shift the content of register Ri arithmetically

one bit to the left and store the result in Rj

OR XX 1001 Ri Rj Perform a bitwise logical OR of register Ri
with register Rj and store the result in Rj

AND XX 1010 Ri Rj Perform a bitwise logical AND of register Ri
with register Rj and store the result in Rj

XOR XX 1011 Ri Rj Perform a bitwise logical XOR of register Ri
with register Rj and store the result in Rj

LSL XX 1100 Ri Rj Shift the content of register Ri logically one

bit to the right and store the result in Rj

LSR XX 1101 Ri Rj Shift the content of register Ri logically one

bit to the left and store the result in Rj

CND XX 1110 Ri Rj Arithmetic comparison of Riwith Rj and store
the result in Rj

CBR XX 1111 Ri Rj Jump to address in Rj if Ri is non-zero and

save PC in Ri

Table 8.2 Instruction set

explained
Relation Bit mask

< 010

� 110

¼ 100

>¼ 101

> 001

6¼ 011

8.3 ERA Hardware Prototype

Figure 8.4 presents the current custom hardware prototype of the ERA device. The

prototype is providedwith twoflashbasedROMmodules 128Mbeach (8Mb� 16bit)

with replicated bootstrapping firmware and operating system software.

The proposed memory scheme may be regarded as a collection of 4 blocks,

16-bit wide, with identical size of 1 Mb each (16� 64k). Using 16-bit memory

modules instead of 32-bit memory modules increases reliability and reduces when

necessary energy required for execution.

Reliability is increased by means of added working states and configurations.

Energy-wise operation is improving by means of this architecture ability to

activate only modules required for application—by means of using a single 16-bit

memory module, when necessary.

Table 8.3 presents a basic memory map with memory locations occupied by the

ERA devices: ROM (2 banks) RAM (4 banks), USB, Ethernet, and UART inter-

face. The 4 RAMmodules are 1 Megabit each (64k� 16 bit). The flash based ROM

modules are 128 Mbit each (8 Mb� 16 bit).

Fig. 8.4 ERA prototype board

188 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

The SRAMmodules representing the units 8, 7, 5 and 6 are located in the highest

part of the memory, followed by the ROM modules (units 9 and 10). The USB,

Ethernet, Serial Ports, LED’s and switches of the ERA board are mapped in the

lower part of memory.

8.4 Architectural Comparison

Nowadays the embedded processor market is dominated by the ARM architectures

with their RISC processors. Other relevant hardware architectures are the LEON

designs that include FT versions of their SPARC processor.

Although 64-bit versions are available for the �86 and ARM architectures, in

order to keep consistency, we have chosen to make a comparison of 32-bit version

processors including Intel �86’s architectures.

Table 8.4 provides an overview of these hardware architectures and their driver

features. The table is based on data gathered from (Gaisler 2002; Heise 2009;

Hennessy and Patterson 2006; Sparc International, Inc. 1998).

SPARC and ARM processors are based on a simple Reduced Instruction Set

Architecture and therefore more similar to the ERRIC processor, whilst the �86 is

based on a Complex Instruction Set with a much larger number of instructions. The

table clearly shows the simplicity of ERRIC’s ISA with its 16 instructions, which is

by large margin smaller than the RISC and CISC architectures. Simple and less

powerful instructions come with the cost of longer code compared to the other

platforms.

The �86 is a registerNmemory architecture that allows using memory locations

directly in instructions. Conversely, ERRIC, ARM and SPARC as load and store
architectures must first load the argument into a register. The enormous number of

instructions of �86 has lead to the situation where the instruction decoder of an

Intel Atom CPU occupies more chip’s real state than the complete ARM Cortex-A5

(Heise 2009).

As an example let us examine the load from memory.

Table 8.3 ERA memory map

Memory range Device details Device

0700FFFFH–07000000H ISSI-IS61WV6416BLL SRAM logic module 2 (U7, U8)

0600FFFFH–06000000H ISSI-IS61WV6416BLL SRAM logic module 1 (U5, U6)

057FFFFFH–05000000H Sharp-LH28F128BFHT ROM logic module 1 (U9, U10)

04000000H FTDI-FT245BM USB

0300FFFFH–03000000H SMSC-LAN91c11i Ethernet

02000002H–02000000H RS232 UART Interface

01000000H Normal LEDs (1–2)

00000000H KNITTER Switch (3–4)

8.4 Architectural Comparison 189

Table 8.4 ERA comparison of hardware architectures

ERRIC x86 SPARC v8

ARM7TDMI

(ARMv5-TE)

ARM7TDMI

thumb

ISA type MISC CISC RISC RISC RISC

Integer

registers

32� 32 bits 8� 32 bits 31� 32 bits 15� 32 bits 8� 32 bits

+ SR, LR

Floating

point

registers

0 Optional

8� 32 bits or

8� 64 bit

(8� 80 bits

internal)

32� 32 bits or

16� 64 bits or

8� 128 bits

Optional

32� 32 bits

or

16� 64 bits

Optional

32� 32 bits

or

16� 64 bits

Vector

registers

0 Optional

8� 64 bits or

8� 128 bits

0 Optional

32� 32 bits

or

16� 64 bits

0

Address

space

32 bits flat 32 bits, flat or

segmented

32 bits flat 32 bits flat 32 bits flat

Instruction

size (bytes)

2 1–15 4 4 2

Multi-pro-

cessor

capable

No Yes Yes Yes No

Processor

modes

1 3 2 7 7

Data

aligned

Yes No Yes Yes Yes

MMU Yes Yes Optional Optional Optional

Memory

addressing

modes

1 7 2 6 6

Memory

addressing

sizes

32-bit 8, 16, 32 8, 16, 32, 64 8, 16, 32 8, 16, 32

ISA size 16 332:138 Inte-

ger and logic,

92 floating

point

72 53 37

I/O Memory

mapped

Instructions,

memory

mapped

Memory

mapped

Memory

mapped

Memory

mapped

Pipeline

length

No pipeline Atom: 16

i7: 14

Pentium4: 20–

31

Leon3: 7

SPARC64V:15

Ultra-SPARC

T2: 8

3 3

Specialities Very sim-

ple ISA,

built-in FT

Big ISA and

memory

operands

Register win-

dow, delayed

control transfer

Conditional

instruction

execution

32-bit ARM

instructions

partly

required

190 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

Prior to the memory access, e.g. in the case array accesses, the absolute memory

address must be explicitly calculated and stored in a register. In the SPARC

architecture the offset to the base address can first be stored in a distinct register

and then added on the fly in the load instruction itself. ARM processors even permit

to encode an offset to a base address given in a register directly in the instruction

itself.

The instruction set of ARM Thumb is a subset of the standard 32-bit ARM ISA.

The Thumb’s version targets resource constraint environments where only a 16-bit

data bus is available. The address space of the Thumb’s is still 32-bit and all

registers are 32-bit wide.

Nonetheless, while R0–R7 are directly accessible, R8–R16 are hidden. ERRIC’s

ISA, although even more constraint than the Thumb’s, is intended to be used as a

full instruction set, generic enough to encode all language features.

Compared to ARM’s, the ERRIC is much simpler and counts with less than half

the number of instructions. However, with ERRIC more elaborate instructions need

to be emulated, e.g. relative memory accesses or procedure calls.

The latter in particular is very efficiently implemented on the ARM by the “load

multiple” and “store multiple” instructions, which allows to efficiently putting all

procedure arguments on the stack. In contrast, ERRIC has to individually store all

arguments on the stack.

Table 8.5 illustrates the different data addressing modes supported by the

compared architectures. In some cases, such as SPARC, the architecture does not

directly provide an absolute addressing mode. In order to emulate absolute

addressing, the SPARC microprocessor uses a register + register mode with a

nullified second register. It even provides a register, which is always nullified, so

that the absolute addressing emulation does not incur any performance penalty.

CISC addressing modes are more powerful than RISC ones. Figure 8.5 summa-

rises the �86 addressing modes. The offset part of a memory address, can be either

a static displacement or through an address computation made up of one or more

elements. The resulting offset is called effective address and can constitute either

positive or negative values except for the scaling factor.

CISC addressing modes are more powerful than RISC ones. Figure 8.5 summa-

rises the �86 addressing modes. The offset part of a memory address, can be either

a static displacement or through an address computation made up of one or more

elements.

Table 8.5 Supported addressing modes

Data addressing mode ERRIC x86 SPARC v8 ARM ERM Thumb

Register X X (X) X X

Register + offset (displacement or based) – X X X X

Register + register (indexed) – X X X X

Register + scaled register (scaled) – X – X –

Register + offset and update register – – – X –

Register + register and update register – – – X –

8.4 Architectural Comparison 191

The resulting offset is called effective address and can constitute either positive

or negative values except for the scaling factor. ERRIC provides only absolute

memory addressing. Since the addresses must be explicitly computed before the

data can be loaded, ERRIC’s code requires more instructions. Table 8.6 compares

the offsets sizes that are directly encoded in the instruction.

Unless mentioned differently, the offset is always relative to the current instruc-

tion pointer. ERRIC does not allow encoding the offset in an instruction. Instead,

the offset is always given as an absolute address in a register. Therefore, ERRIC’s

requires an additional “load constant” instruction, which involves another extra

8 bytes (Load+NOP + 4 Byte constant).
With regard to safety of code, absolute jumps are desirable to relative jumps.

The reason for that is that calculated jumps (relative) are more prone to faults than

absolute jumps.

In the following page Table 8.7 presents an overview of the instructions that are

required in the compared architectures to be able perform basic operations (such as

load and stores). If an instruction is not available in the ISA, a sequence of

instructions is given. In Table 8.7, a “�” sign means that in order to simulate the

specific functionality more than a short instruction sequence is required. All

floating-point instructions are omitted, as the ERRIC architecture does not include

a floating-point unit, and all of them are emulated in software.

Fig. 8.5 Addressing modes of the �86 architecture

Table 8.6 Offset sizes encoded in instructions

Offset size encoded in

instructions (in bits) ERRIC x86

SPARC

v8 ARM

ERM

thumb

Unconditional jump call 0 8–32 Signed, relative or

absolute, direct or indirect

30 24 11

Conditional branch 0 8–32 Signed 19 24 8

192 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

Table 8.7 Comparison of selected instructions

Instructions ERRIC x86 SPARC v8

ARM7TDMI

(ARMv5-TE)

ARM7TDMI

thumb

Load word LD MOV LD LDR LDR

Load byte

signed

- MOVSX LDSB LDRSB LDRSB

Load byte

unsigned

LD, LDA,

AND-a
MOV LDUB LDRB LDRB

Store word ST MOV ST STR STR

Store byte -b MOV STB STRB STRB

ADD ADD ADD ADD ADD ADD

ADD (trap if

overflow)

- ADD,

INTO

ADDcc, TVS ADDS, SWIVS ADD, BVC

+4, SWI

Sub SUB SUB SUB SUB SUB

Sub (trap if

overflow)

- SUB,

INTO

SUBcc, TVS SUBS, SWIBS SUB, BVC

+4, SWI

Multiply - MUL,

IMUL

MULX MUL MUL

Divide - DIV,

IDIV

DIVX - -

AND AND AND AND AND AND

OR OR OR OR ORR ORR

XOR XOR XOR XOR EOR EOR

NOT - NOT - - -

Shift local left LSLc SHL SLL LSL LSL

Shift local right LSRc SHR SRL LSR LSR

Shift arithmetic

right

ASRc SAR SRA - -

Compare CND CMP SUBcc r0 CMP CMP

Conditional

Branch

CBR CALL CALL BL BL

Call CBR CALL CALL BL BL

Trap CBR INT n TIcc, SIR SWI SWI

Return from

Interrupt

RETI IRET DONE,

RETRY,

RETURN

MOVS pc, r14 -d

NOP NOP NOP SETHI r0, 0 MOV r0, r0 MOV r0, r0
aA sequence LD, LDA, AND must be used if the 8-bit data is aligned. Otherwise an LD and a

specific number of shift operations must be used.
bIn order to store an 8-bit value the destination address must be loaded, the appropriate bits must be

cleared using a bit mask, the argument must be shifted and the written back to memory. It seems

clear that omitting the use of 8-bit values would be more efficient.
cOnly one bit.
dSince Interrupts are always handled in 32-Bit mode, and therefore, a pure 16-bit Thumb CPU

would not support them.

8.4 Architectural Comparison 193

8.5 ERA Testing and Debugging

Detailed explanation of testing and debugging steps are presented in Appendix A.

8.6 ERA’s Assembler

The system software for ERA assembler-level programming consists of the following

components:

• AnAssembler that performs the compilation of source programs written in ERA

assembler into executable or object code.

– Program name: Assembler.exe
– Call form: assembler + [+options+] + source.era
– Result: source.obj + or source.code

• A Linker that takes several files with object code as input and produces the

single result object or executable file depending on the existence of external

references in the result.

– Program name: Linker.exe
– Call form: linker + [options] + [entry_point] + source1.obj. . .sourceN.obj
– Result: source1.code

• A Runner that takes an ERA executable file as input, loads it into the memory

(using the interface of the Model component) and executes it in the simulation

mode.

– Program name: Runner.exe
– Call form: runner + [+options+] + source.code
– Result: an output on the console or printing device

• A Preparator, an extra component which supports transition from the model to

the real ERA board. The Preparator takes the ERA executable file as input and

produces the pure binary file which is completely ready to load to the real

memory.

– Program name: Preparator.exe
– Call form: preparator+ source.code
– Result: source.bin

The overall configuration of the assembler (except the Preparator) is shown on

the picture below (Fig. 8.6).

As an example, below is source code of program implementing the simple

in-place sorting algorithm. The program is written in the ERA assembler.

194 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

The assembler’s syntax for every EAR instruction was described before. The

sorting algorithm itself is specified in Pascal-like language as follows:

Additional remarks about ERA assembler syntax are:

• For debugging purposes two pseudo-instructions have been added to the ERA

assembler: DATA and TRACE. DATA instruction just denotes literal data

which will go directly to the object code. TRACE instruction causes registers

specified in the instructions to be output to the console or to a printing device.

• Labels are specified as identifiers enclosed in angle brackets. The value of a label

is the address of the instruction or data immediately following the label.

Fig. 8.6 Flow of ERA

standard testing (top) and
flow of testing with support

of disassembler

8.6 ERA’s Assembler 195

• Comments have the form // sequence of any characters until end of line

The ERA program implementing the sorting algorithm looks like as follows:

196 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

8.6 ERA’s Assembler 197

Another example of a simpler program is illustrated in Table 8.8. The table

shows the location of data variables and code within the memory structure together

with an explanation of the specific line of code and their effect. The R31+ register,

set by the program loader, always keeps the base address of the global data and the

program code. The register uses negative offsets for the data and non-negative

offsets for the code and local data.

8.7 ERA’s Simulator: Dissimera

Reading binary code is a painful experience. In order to test and troubleshoot any

error of design, bug or incompatibility between the assembler and the VHDL code,

a new tool has been develop: a Disassembler and a Simulator in a combined tool

that will ease this process. In addition it will allow the simulation of the state of the

processor at any given time. Dissimera’s main goal is to simulate the basic core

features of ERA in a reliable and accurate manner.

The fundamental characteristics of this tool are:

• Disassembling of instructions: Binary-to-ASM and Binary-to-PSEUDOCODE

that will complement the assembler

• Ability to discern data from instructions

• Simulation of the ERA architecture including: Program Counter (PC), Instruc-

tion Registry (IR), Register FILE (RF) and memory contents

• Step-by-Step Execution

Table 8.8 Example of code transformed into assembly code by the assembler

198 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

• Breakpoints

• Overflow warning

• Logging

• Ability to compare results of simulation execution with the results of Altera

execution.

8.7.1 Architecture and Description

The main two functions of Dissimera, Disassembling and Simulation, are embedded

into a single software product. The architecture of such software is based on three

main modules: the Interface module, the parsing module and the simulation module.

The programming language used to implement those is ANSI C and currently targets

80� 86 machines.

The Dissimera disassembler reads the output of the assembler introduced previ-

ously. Dissimera uses such output, in binary code, as an input, to start the simulation

process.

The Interface module (IM) is based on an NCurses API with MIT licence to

implement the interface under a Windows Console. The IM is built independently

from the Dissimera’s engine (composed by the parsing and simulation modules)

with the intention of improving scalability. It is integrated in a way that escalating

to a newer interface or migration to a different operating system will not be

problematic.

Figure 8.7 illustrates the different elements of the current design of Dissimera’s

interface.

The current version is based on a single ERRIC’s processor with a 32-bit mode.

The Paddr1 and MAIN1 elements contain the addresses and binary contents of the

32-bit memory unit that contains the running code. Paddr2 andMEM also contain a

copy of the addresses and binary content but allow the user to browse the memory

contents during and after execution and check the program results. IDHEX3 shows

the Instructions in assembler or the data in hexadecimal numbering. ADDRF and

RF contain the name and value of the 32 registers that compose the register file. PC
is the program counter or instruction pointer. The Instruction Register or IR stores

the 32-bit value with the decoded instructions that are about to be executed. The

status of execution and a log with extra details is shown in the STATUS element.

The parser module (PM) involves three different processes. The first process is

the lexical analysis by which the input binary code is fragmented into meaningful

symbols (tokens) in the context of ERA’s pseudo-code language.

The next process is the syntactic analysis of these tokens that define allowable

expressions according to the rules of a formal grammar, based on the ISA format

introduced in before.

Finally, a semantic analysis works out the implications of the validated tokens

and takes appropriate action.

8.7 ERA’s Simulator: Dissimera 199

These three processes need extra attention. How can we determine the type of a

specific value? i.e. How can Dissimera be certain that a 16-bit binary value is either

code or data?

Figure 8.8 depicts what we already mentioned, the program loader sets R31 with

the base address of the global data (negative offsets) and program code (positive

offsets).

However, in the case of local data, by just examining a single binary value it is

not possible to determine its type, e.g. according to ERA’s ISA rules, a

11000100111000013 value can be interpreted:

• as a C4E1h data value, or

• as an LD3 R73 R13 instruction that loads the 32-bit value of the memory address

contained in R7 into the register R1 (i.e. R1:¼*R7).

The type of a value is determined by its context. Dissimera uses the execution

context to determine that, by performing two top-down runs before the assembly

code is presented on the screen. During the first run the code is fragmented and the

starting point of execution is determined.

The determination of type takes place in the second run. Dissimera proceeds to

silently execute instruction-by-instruction, marking the values as code tokens and

Fig. 8.7 Design of the interface of current version of simulator

200 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

decoding them consecutively performing the appropriate jump instructions and

following the Program Counter.

Once all the code lines are executed the rest of the tokens are marked as local

data tokens. This second run also includes error detection mechanisms for bad

syntax and buffer overflow.

Note that both runs are transparent in terms of user interface. Once the parsing

module has finished these processes, the UI contains now the results of

disassembling and the simulation process can start.

The simulation module (SM) is in charge of program execution. This stage

benefits from the two previous runs using the output of the parsing stage as an input.

Hence, the SM is able to differentiate from code tokens and local and global data

tokens.

Below, Fig. 8.9 presents a screenshot of the current version of Dissimera and the

IM, PM and SM modules.

Initially, the execution starts at the address set by program counter (loaded with

the content of R31). The PC holds the memory address of the next instruction to be

executed and is incremented just after fetching the 32 bits from memory containing

two instructions.

After the processor fetches the memory location stored in the PC, the instruction

is loaded in the Instruction Register (IR). The instructions are fetched sequentially

from memory unless a CBR instruction changes the sequence placing a new

value in it.

Dissimera offers several run modes:

• Normal Mode: It is the standard mode. The simulator continuously executes

instructions of a program until a STOP instruction is found.

• Debugging Mode: which includes the ability to place breakpoints within the

code and the ability to perform step-by-step execution. In addition, this mode

allows for step-back execution. Simulation can return to a previous state. All this

features benefit the debugging of the system.

Fig. 8.8 Memory

allocation of a program

in ERA

8.7 ERA’s Simulator: Dissimera 201

Dissimera can be used as a tool for analysis and debugging of ERA programs,

and more importantly, as a tool for testing and debugging of the hardware archi-

tecture. Figure 8.10 depicts two different testing methodologies for ERA. Initially,

several test programs are developed using the pseudo-code language introduced

before. The assembler is then used to obtain the tests programs in binary code

compatible with ERA. Note that box “Eugene Assembler” defines an involvement

in the debugging process system software written by Dr Eugene Zoueff, ETHZ, our

collaborator in various projects and programs.

Fig. 8.9 Memory allocation of a program in ERA

Fig. 8.10 Flow of standard ERA testing (top) and testing with Dissimera

202 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

These test programs are introduced into ERRIC’s soft-core processor through

the JTAG Interface of ERA’s board. The tests programs are executed with the

Quartus II Software and upon execution a memory dump with the results of

execution is produced.

After the Soft Processor simulation, the same initial test programs generated by

the assembler are introduced into Dissimera together with the memory dump of

execution results produced by Quartus II.

Here, the PM of Dissimera performs the disassembling of the binary code. After

full execution of the ERA program by the SM, using the Dissimera’s IM, the

memory dump of the MEM element can be compared and analysed with the

previous results of Quartus II.

In case of mismatch, debugging via step-by-step execution of both simulators

can help in the detection and location of design and implementation errors.

In the following page, Figs. 8.11 and 8.12 show the caller graph of Dissimera’s

main function.

Fig. 8.11 Flow of standard ERA testing (top) and testing with Dissimera

8.7 ERA’s Simulator: Dissimera 203

Fig. 8.12 Flow of standard ERA testing (top) and testing with Dissimera

204 8 Implementation: Hardware Prototype, Comparisons, Simulation and Testing

8.7.2 Dissimera Log Sample

A Dissimera log is divided in four-line units. What follows is an example of a Log

File related to the execution of the disassembler. Each unit represents information on

32-bit. The first line of each unit shows the instruction memory address and the

hexadecimal value of each 16-bit half. The second line contains the binary values of

each half. The third line and fourth lines include information on the assembly

instructions of the first and second half respectively, and their pseudo-codemeaning.

8.8 Conclusion

• In the development of reliable architectures there is a need for providing

accurate testing and debugging of hardware and software. In this chapter we

first show the implementation details of hardware architecture that are relevant

for simulation.

• We demonstrated ERA instruction execution flow and explained how it can

achieve the decoding and execution of two instructions per single fetch and its

implications on system compilers.

• We also provide an overview of the hardware prototype and its memory map-

ping together with an architectural comparison to other relevant RISC and CISC

architectures.

• We introduced Minimal Instruction Set Architecture that simplifies the instruc-

tion decoder design and the overall system’s reliability. ERA’s ISA has

16 instructions, does not have a pipeline and provides only absolute memory

addressing.

• We argue how far from being a drawback, this simplicity is sufficient to perform

safety-critical code improving efficiency reliability.

• We provide the details of a testing and debugging methodology of a hardware

prototype.

• Finally we showed the features and implementation of an assembler, and a

disassembler/simulator as a proof of concept of the architecture. These custom

tools are useful, not only for testing and debugging of the hardware prototype,

but for the system and application software.

8.8 Conclusion 205

Chapter 9

Conclusions

9.1 What We Have Done

The main objective of our research was and is to find new ways to introduce new

properties into computer architectures and understand drawbacks of existing com-

puter architectures.

At first we review the classic theories of reliability and fault tolerance and find

that:

A. the more components a system has, the higher the probability of system failure

and

B. the reliability of a system is often dominated by the reliability of its least reliable

component.

We conclude that some of the keys to improve reliability would be simplicity of

implementation and careful introduction of redundancy.

The terms Reliability, Fault-Tolerance and Dependability do not cover all the

attributes and presents properties of safety-critical applications or, after being

re-defined over the years, are ambiguous. As a consequence, in Chap. 2 we provide

a novel concept of Resilience that encompasses several attributes adapting them to

the safety-critical domain.

A resilient system, over a specified time interval, under specified environmental

and operating conditions (performability), “must be ready” (in terms of availability)

to perform its intended function (reliability), guaranteeing the absence of improper

system alterations (integrity). It must have the ability to conduct servicing and

inspections (testability) so that in case of failure quick restoration to a specified

working condition must be achieved (maintainability) can be provided or can

discontinue its operation in a safe way (safety).

Furthermore, a resilient system must have the ability to anticipate changes and

evolve (evolvability) while executing (adaptability), successfully accommodating

changes by reconfiguring elements of the system if necessary (reconfiguration).

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_9

207

http://dx.doi.org/10.1007/978-3-319-15069-7_2

Since one of the keys to improve resilience was the careful choice of redundancy

and the manner in which this should be applied, we decided to review the different

types of redundancy and how such redundancy is translated into functional mech-

anisms to either avoid or tolerate faults.

We also provide a full classification of fault-tolerant mechanisms based on the

type of redundancy employed and study their benefits and drawbacks. Fault avoid-

ance techniques do not guarantee complete removal of faults and present drawbacks

such as cost, speed of operation and chip’s area. Therefore, fault tolerance mech-

anisms are needed to further improve the resilience of safety-critical systems.

In order to select a specific set of redundancy types and effective techniques for

their applications in the process of implementation of FT we should first define the

different requirements of the particular application. Once the domain and require-

ments are defined we should select the techniques that are more suitable for such

requirements and the level at which the redundancy should be applied.

We realised that further improvement of existing mechanisms is based on

understanding and analysis how failures originate, what causes them, under what

circumstances, in which contexts and how often they happen. In Chap. 2 we

introduce the concept of vicious cycle that explains our interpretation of the reasons

behind the performance and reliability problems that jeopardise the continuation of

Moore’s Law. We also review the fault-failure-life cycle and defined the necessary

concepts of fault, error, failure and catastrophic failure.

Since the majority of hardware faults in current electronics are induced by

ionizing radiation, we studied the damage mechanisms at the physical level, the

sources of error and the micro- and macro-effects of such mechanisms. As a result

Chap. 4 provides an extensive taxonomy of radiation effects describing their nature,

type of degradation, susceptibility, fault rate trends and recoverability.

From the study of this taxonomy we conclude that as we moved to denser

technologies at lower voltages, system SER will continue to rise and in particular

the contribution of SEU, SET, MBU and SEFI will increase. We also conclude that

current mitigation techniques are not efficient when dealing with certain types of

SEE and/or with the upcoming rates.

In Chap. 5 we explain how any fault tolerant system involves a Model of the

System, a Model of Faults and a Model of Fault Tolerance. Consequently, we add

value to such system by developing a comprehensive Fault Model suggesting

methods for recognition and reaction against faults.

We discuss fault manifestation, detectability, diagnosability and recoverability and

propose adequate solutions for diagnosis and recovery. We have introduced the princi-

ple of reconfiguration of the system and how this might be used for various purposes:

performance, reliability and energy wise gain, improving the efficiency of resilience.

In addition, we introduce GAFT and extend it by providing the different states and

actions required to achieve fault tolerance and therefore improve system resilience.

In Chap. 6, using know-how and conclusions acquired in the previous chapters

we introduce a hybrid HW-SSW co-design approach of a resilient architecture with

the ability to reconfigure, achieving various levels of dependability in different

environments. As part of the architecture, we first introduce the syndrome as a tool

208 9 Conclusions

http://dx.doi.org/10.1007/978-3-319-15069-7_2
http://dx.doi.org/10.1007/978-3-319-15069-7_4
http://dx.doi.org/10.1007/978-3-319-15069-7_5
http://dx.doi.org/10.1007/978-3-319-15069-7_6

to handle new property of the system and analysed it as a process and as a tool for

reconfiguration that can provide efficiency of reliability, performance and power

consumption.

Any theory needs practical confirmation to define applicability and efficiency

limits. We, therefore also introduced the embedded recoverable reduced instruction

microprocessor and the ERA architecture defining their active, passive and inter-

facing zones of information processing.

We keep the redundancy level needed to implement fault tolerance, as low as

possible.

With regard to the active zone, the instruction set and its implementation are

reduced to theminimum; coprocessors, pipelining and floating-point units are removed

which simplifies the processor design and reduces the complexity and fault rates.

We explain the checking schemes and re-execution of instruction mechanisms

within ERRIC and how they can improve reliability.

With regard to the Interfacing zone, we introduce the T-Logic as basic unit of

reconfiguration and discuss its various configurations.

We introduce the syndrome and explained implementation details and how, in

combination with a Memory Management Unit and a Reconfigurable Memory

Scheme, it can act as a control centre of three functions: fault monitoring,

reconfigurability and recovery.

As part of the passive zone, the reconfigurable memory scheme can operate

25 memory configurations and support graceful degradation.

We quantify the probability of state transitions and provide a Markov model of

reliability for ERA’s configurable memory. Finally in this segment of research we

describe the system software support for testing and reconfiguration.We show that by

combining this novel hardware architecture with the system software, all key prop-

erties of performance, reliability and energy-wise functioning could be improved.

In further chapters we provide the implementation details of ERA’s hardware

prototype. Having a software simulator of a hardware platform at hand is very

useful to speed up software development and debugging of applications.

We developed an accurate hardware simulator with graphical user front end

called Dissimera. Dissimera’s main goal was not speed but to simulate reliably and

accurately the basic core features of ERA with fully reproducible results.

The simulator is built extendable; once core simulation is achieved, we will

escalate from there adding new features with an agile methodology. The develop-

ment of such disassembler/simulator gives us the possibility of:

1. Testing and locating errors of design of the soft core processor;

2. Understand the smallest details of the ERRIC functionality;

3. Simulation of the current version of the processor and the FT version of the

processor;

4. Testing and debugging of errors in application and system software.

Finally, we introduce a testing framework that in combination with Dissimera’s,

with ERA’s assembler and with commercial hardware simulators can properly test

and debug not only the ERA’s hardware prototype but ERRIC’s application and

system software.

9.1 What We Have Done 209

9.2 Next Steps

Arithmetic and logic units are both implemented through the use of logic compo-

nents. It is known that an arithmetic instruction can be translated into several logic

operations. Applying this principle, if an arithmetic unit is suspected of not being

able to provide correct service, arithmetic instructions can be translated into logic

ones that can be executed by the logic unit of the ALU.

Further research could be done on determining if logic operations can be

translated into a set of arithmetic ones and how can this be implemented. What

would it be the complexity of such translation? Performance would be affected

(graceful degradation), but this technique would allow a running program to finish

before recovery or fail-safe restart takes place.

The impact of the size of the register file on overall performance of processor is

also a question of further research as in Sect. 6.2.1.

Regarding Dissimera, although basic functionality has been achieved, the imple-

mentation of Dissimera is still a working progress:

• The design is completed and the user interface is fully defined.

• Assembling of pseudo code using ERA assembler-preparator (100 %

completed).

• Disassembling of binary into human readable code (assembly code) (100 %

completed).

• The simulator is capable of parsing the binary file resulting from the previous

step and is then capable of classifying data and instructions (100 % completed).

• Simulation of main memory, register file, program counter and instruction

registry is almost completed (90 %).

In future revisions we have the intention to include support for: syndrome, extra

memory configurations including 16-bit memory configurations and fault-injection.

Also:

• We are very interested in finding ways to exploit the functionality that the

syndrome can provide.

• We believe that for safety-critical missions such as embedded systems in

satellites or space further research is needed.

• We would like to pursue more research in dependency matrix mapping of

symptoms and failure modes.

• We would like to apply the context sensing (e.g. altitude, latitude, temperature,

dynamic events such as solar flares and weather forecasting) and experience to

system software in combination with the syndrome to be able to see and prove

the level of resilience of proposed approaches and our architecture.

210 9 Conclusions

http://dx.doi.org/10.1007/978-3-319-15069-7_6#Sec3

Chapter 10

Vision on Evolving System Future

10.1 Fundamental Problem

A sequential way of thinking developed by the human race through evolution was

constructed on a framework of languages and accompanied grammars (Williams

2003), where differences in dictionaries, alphabets and grammatical rules were

visible, but not critical (Schagaev et al. 2013). Indeed, we speak, write and listen to

each other sequentially—word after word, phrase after phrase—thereby creating a

one-dimensional sequence of information.

With the appearance of technological support for logical and arithmetic calcu-

lations, computers implemented a system of processing which mimicked our habit

of “sequentialism”. Calculations were implemented on developed hardware.

Modern hardware technology squeezes logic elements down to the nano-sized

with changed hardware structure, mapping electronics into a matrix of interconnected

blocks—in other words, hardware topology became two-dimensional.
There have been recent attempt to make 3D chips of memory and processors—a

simple Internet search indicates (40 million hits on the subject) that since 2007,

IBM, Intel, Samsung, Toshiba and others are progressing towards the production of

three-dimensional chips.

There are declarations that Moore’s law will finally be overcome and with the

corresponding boost in performance for future computers being substantial.

It is worth mentioning here that “Moore’s law” actually is not a law of nature, or

physics, thus a discussion of any limitations to “Moore’s law” is in some sense

irrelevant in the first place.

This is a subject for research regarding the impact of mass media on technolog-

ical developments; social science researchers might find it interesting.

There is an unsettling feeling however that the professed goals will not be

achieved. This feeling is based on a simple model: imagine a rope, of substantial

length, which we need to put into a square box of much smaller size.

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7_10

211

There is no doubt that this process will take time and the boxed rope will not be

as convenient to use as the straight one.

Now imagine that the box become three dimensional; it is debatable whether our

ability to use rope efficiently will grow at all
Adding the need to accept dynamic changes to some segments of rope—

updating, or deleting them and then reassembling the rope as a whole, typical

functions of run-time system—can reduce any optimism about the impact of 3D

to next-to-none. “Rope” here means, of course, a generalization of a program with

code and required data.

Figure 10.1 illustrates some of the problems we are facing in computer design. It

is clear that the marriage of one-dimensional programs with two- or three-

dimensional hardware may not be a successful one. It is also clear that the inclusion

of dynamic support for this collaboration will cause even more complications.

Fig. 10.1 Computer design problems

212 10 Vision on Evolving System Future

10.2 Known Solutions (What We Have . . .)

Computer science discovered parallel computing in the late 1940s to early 1950s

(Goldstine and Goldstine 1946), (Everett and Swain 1947), (Whirlwind 1952),

(Smithsonian 1990), (Hofstra 1999), (Holland 1960), (Newell 1960), (Schwartz

1961), (Slotnick et al. 1962), (Squire and Palais 1963), (Gosden 1966).

The real boom started just a few years ago. An absolutely stunning level of

technology and hardware density has been recently achieved (Nair 2002),

(LaPedus and EETimes 2003) with processor frequencies up to 4.7 GHz and

beyond (IBM 2007).

Surprisingly, the main questions in computer design and technology are still the

same as half a century ago. Specifically, the most challenging goal is the design and

development of a system that properly uses the relative dependencies of perfor-

mance, power consumption, cost, reliability, adaptability and flexibility.

None of these dependencies are studied together except in Monkman and

Schagaev (2013). Nobody even set a goal to make a system that will be efficient

and flexible along the lines previously mentioned.

It is clear that we need to describe the relationship between performance,

reliability and energy-efficiency of architecture, ability to “trade-off” these prop-

erties through design, and observing how these properties change over the life

cycle. It was only initially described by us in Monkman and Schagaev (2013).

The theory and development of a system with the required properties that

consider those properties as dynamic processes, as well as their interdependencies

and modifications (evolution), is in its infancy.

What we have to do now in ICT does not look encouraging: in system design, we

have failed to achieve even doubled performance by applying a doubled frequency

and quadruple energy, we have failed to achieve any visible system performance

growth using the same programs.

A part of the problem is of course that computer technological progress was not

accompanied, or supported sufficiently, by theoretical development, i.e. something

serious was missing in the first place.

Applying our mantra: “Any theory values by power of prediction and applica-
bility” we accept that computer science has failed to lead the ICT world and has

closed down discussion of technological developments.

In system software, the situation is confusing and again, not overly optimistic: an

overcrowded family of languages (2,500 members) (Kinnersley 2009), with slightly

fewer run-time systems (500+) (Berka 2009) shows a confusion and absence of

breakthrough developments in terms of efficient system software and hardware

designs, and coexistence.

The market domination of one or two operating systems, or languages has

nothing to do with a “best player wins” rule.

For example, state-of-the-art hardware illustrates a complete loss of direction;

Intel’s attempt for an 80-core processor system has ended up with statement Ames

(Ames 2007):

10.2 Known Solutions (What We Have . . .) 213

. . . Despite using such an efficient grid, the researchers found they could actually hurt

performance by adding too many cores. Performance scaled up directly from two cores to

four, eight and 16, performance began to drop with 32 and 64 cores . . .

Examples prove nothing, but it is clear: a new design strategy is required for the

next generation of computer architectures. It should start right from the design

phase and be pursued through the whole life cycle of the system and applications.

Any new design strategy should have the goal that the system evolve with

support from both hardware and system software.

This feature of “evolution” should be available on demand by user applications

and operational requirements. It is also clear that the next generation of computer

systems have to address all of the three prerequisites for evolution: Performance-,

Reliability- and Energy-smart functioning.

They should be pursued from the first phases of system design, enabling an

efficient trade between P, R and E, if user or environment require.

10.3 Attempts to Evolve

Our previous attempts to revise existing designs and find balanced developments of

ICT hardware and software were presented in Schagaev et al. (2013), Kaegi and

Schagaev (2013), Plyaskota and Schagaev (1995), and Monkman and Schagaev

(2013). This work summarizes our earlier concepts and developments.

At first, we propose a revision of the area of computer designs and development

by introducing a new system paradigm. Any paradigm has to be useful—see our

mantra above.

Thus, we have to develop supporting theoretical models and prototype system in

both software and hardware. Several holistic principles we have been using, are as

follows:

• Simplicity and redundancy.

• Reconfiguration and scalability.

• Reliability and fault tolerance.

• Energy-wise design.

These principles are explained to some extent in Table 10.1.

As described in Kaegi and Schagaev (2013), the declared principles have to be

pursued by applying redundancy in the form of information, structure and time.
The whole process has to be revised from concept through development and the

construction of algorithms, the further joint design of hardware and system software

and implementation and maintenance, each time pursuing a goal of simplicity and

introducing essential redundancy.

This would define the ability of future systems to reconfigure themselves for the

purposes of Performance-, Reliability- and Energy-smart operation.

214 10 Vision on Evolving System Future

It means also that new systems have to provide an efficient process for “trading

off” reliability, performance and power consumption.

Reconfigurabilitymight be implemented efficiently only when hardware designs

are supported by system software solutions.

Semantics and the structures of computer hardware vary. The area where

information is transformed (we call it the Active zone) is complex and largely

irregular. The Passive zone of hardware—where information is stored—has a

regular structure and the highest density of transistors.

An Interfacing zone acts as a bridge between the two and serves to maximize the

speed of data exchange.

Table 10.2 describes how these principles can be supported and followed during

the development of new hardware architectures (HW) and system software (SSW).

When used in combination, it might allow the next generation of computers to be

free from existing limitations.

In terms of information processing, computer architectures can be divided into

three areas: (1) the processing area—further called the Active zone, (2) the storage

area—called the Passive zone and (3) the Interfacing zone. All the three zones have

to be reconfigurable for their own purposes and the needs of other zones.

Dependencies between zones define the level of reconfigurability and flexibility

of the hardware and system software parts of the system architecture. Note here

also, that P, R and E are no longer system requirements, as they become modifiable
during life cycle: from the first phases of system design (Plyaskota and Schagaev

1995) down to maintenance.

Table 10.1 Holistic principles of computer system design

Simplicity Complexity is difficult to implement and handle efficiently. To reduce

complexity, “bells and whistles” in the architecture are excluded, together

with compatibility with main market players, or conventions (pipelines,

caches, TLB, etc.).

Redundancy The deliberate introduction of hardware and system software redundancy

and monitoring schemes provides the required level of reconfigurability to

reach performance and reliability goals. Redundancy has to implement three

processes: checking, recovery preparation and recovery.

Reconfigurability Reconfigurability serves three main purposes: performance, reliability and

power awareness. Handling reconfigurability should be done using Graph

Logic Model and run-time support. Active support for reconfiguration

during design and at run-time by hardware and system software resources is

required for scaling the system up to 100+ processors.

Reliability Minimum hardware redundancy for design of highly reliable main compo-

nents. Redundancy of system software and hardware maximizes both tol-

erance to malfunctions and permanent faults. System software, therefore,

supports hardware fault tolerance.

Resource-

awareness

Mission critical systems have significant limitations in terms of hardware

resources and power consumption constraints, (e.g. battery life). Thus, for

wise resource use, reconfigurability must be introduced.

10.3 Attempts to Evolve 215

T
a
b
le

1
0
.2

P
ro
p
er
ti
es

v
s.
co
m
p
o
n
en
ts
o
f
th
e
sy
st
em

S
im

p
li
ci
ty

R
ed
u
n
d
an
cy

R
ec
o
n
fi
g
u
ra
b
il
it
y

H
ar
d
w
ar
e

zo
n
es

A
ct
iv
e

(p
ro
ce
ss
o
rs
)

O
n
ly

es
se
n
ti
al

fo
r
in
st
ru
ct
io
n
ex
ec
u
ti
o
n

h
ar
d
w
ar
e
sh
o
u
ld

b
e
d
ev
el
o
p
ed
,
d
u
p
li
ca
te
d

in
st
ru
ct
io
n
“f
o
r
co
n
v
en
ie
n
ce
”
o
r
co
m
p
at
-

ib
il
it
y
sh
o
u
ld

b
e
ex
cl
u
d
ed
;
n
o
n
o
t
n
ec
es
-

sa
ry

b
ac
k
-s
ir
e
ac
ti
o
n
s
o
f
in
st
ru
ct
io
n

ex
ec
u
ti
o
n
,
su
ch

as
si
g
n
s
an
d
fl
ag
s.

E
x
tr
a
el
em

en
ts
an
d
sc
h
em

es
sh
o
u
ld

b
e

ad
d
ed

ei
th
er

fo
r
im

p
ro
v
em

en
t
o
f
re
li
ab
il
-

it
y
o
r
en
er
g
y
-w

is
e
fu
n
ct
io
n
in
g
.

D
es
ig
n
ed

p
ro
ce
ss
in
g
el
em

en
t
sh
o
u
ld

b
e

in
te
rn
al
ly

re
co
n
fi
g
u
ra
b
le

(n
o
t
u
se
d
h
ar
d
-

w
ar
e
is
d
is
ab
le
d
)
an
d
su
p
p
o
rt
o
f

re
co
n
fi
g
u
ra
b
il
it
y
o
f
th
e
sy
st
em

.

In
te
ra
ct
iv
e
(i
n
te
r-

n
al

an
d
ex
te
rn
al

in
te
rf
ac
e)

M
in
im

u
m

h
ar
d
w
ar
e
w
it
h
w
h
en

p
o
ss
ib
le

st
at
e-
le
ss

d
es
ig
n
s
sh
o
u
ld

b
e
u
se
d
,
u
si
n
g

as
y
n
ch
ro
n
o
u
s
lo
g
ic

as
m
u
ch

as
p
o
ss
ib
le
.

D
es
ig
n
ed

in
te
rc
o
n
n
ec
ti
o
n
s
m
u
st
b
e
id
en
ti
-

ca
l
in

te
rm

s
o
f
fu
n
ct
io
n
in
g
,
m
ak
in
g
m
ax
i-

m
u
m

re
co
n
fi
g
u
ra
b
il
it
y
p
o
ss
ib
le
,
ab
le
to

b
e

u
se
d
as

d
ir
ec
t
ac
ce
ss

in
w
ar
d
an
d
o
n
w
ar
d
.

C
o
n
tr
o
l
o
f
p
h
y
si
ca
l
an
d
v
ir
tu
al
ad
d
re
ss
es
.

P
as
si
v
e

(m
em

o
ir
es
)

R
ed
u
ce
d
co
m
p
le
x
it
y
o
f
ad
d
re
ss

sc
h
em

es

(i
n
te
rn
al

an
d
ex
te
rn
al
).

V
ir
tu
al

m
em

o
ry

(o
f
th
e
sa
m
e
ty
p
e)
.

A
b
il
it
y
to

sw
it
ch

d
at
a
an
d
p
ro
g
ra
m

ar
ea
s,

h
ie
ra
rc
h
y
o
f
re
co
v
er
y
p
o
in
ts
.

S
y
st
em

so
ft
w
ar
e

L
an
g
u
ag
e

A
t
la
n
g
u
ag
e
le
v
el
—

ca
n
ce
ll
in
g
o
f
co
m
p
le
x

d
at
a
st
ru
ct
u
re
s;
li
m
it
at
io
n
an
d
si
m
p
li
fi
ca
-

ti
o
n
o
f
p
ro
g
ra
m

d
es
cr
ip
ti
o
n
s
an
d
co
d
e

st
ru
ct
u
re
.

G
en
er
at
io
n
o
f
m
o
re

th
an

o
n
e
co
d
e
to

ru
n
a

p
ro
g
ra
m

fo
r
v
ar
io
u
s
re
q
u
ir
em

en
ts
:
P
.R
.E

A
u
to
m
at
ic

h
ie
ra
rc
h
y
fo
rm

at
io
n
o
f
re
co
v
-

er
y
p
o
in
t
(a
ls
o
fo
r
re
li
ab
il
it
y
o
f
o
p
er
at
io
n
).

S
em

an
ti
c
m
o
d
ifi
ca
ti
o
n
o
f
p
ro
g
ra
m

(g
ra
p
h
-l
o
g
ic

an
d
co
n
tr
o
l–
d
at
a–
p
re
d
ic
at
e

m
o
d
el
s,
se
e
fu
rt
h
er
)
to

re
d
u
ce

d
ep
en
d
en
-

ci
es

b
et
w
ee
n
co
d
e
se
g
m
en
ts
an
d
d
at
a;

su
p
p
o
rt
at

th
e
la
n
g
u
ag
e
an
d
o
p
er
at
in
g

sy
st
em

s-
se
rv
ic
e
o
p
er
at
in
g
sy
st
em

an
d

ru
n
-t
im

e
sy
st
em

),
p
ro
ce
ss
es
.

M
o
n
it
o
r
o
f

p
ro
ce
ss
es

S
im

p
li
fi
ed

su
p
p
o
rt
o
f
p
ro
ce
ss

sy
n
ch
ro
n
iz
at
io
n
.

R
ed
u
ci
n
g
th
e
n
u
m
b
er

o
f
st
at
es

in
sy
n
-

ch
ro
n
iz
at
io
n
sy
st
em

s
an
d
h
ie
ra
rc
h
y
o
f

p
ro
ce
ss
es
;
Im

p
le
m
en
ta
ti
o
n
o
f
u
n
iv
er
sa
l

lo
o
p
w
it
h
ab
il
it
y
to

co
n
tr
o
l
st
at
e
o
f
h
ar
d
-

w
ar
e
an
d
sy
st
em

so
ft
w
ar
e
at

th
e
sa
m
e

ti
m
e,
re
d
u
ci
n
g
re
so
u
rc
e
w
as
ti
n
g
.

Im
p
le
m
en
ta
ti
o
n
an
d
co
n
tr
o
l
o
f
so
ft
w
ar
e

d
u
ri
n
g
ru
n
-t
im

e
an
d
h
ar
d
w
ar
e—

m
ak
in
g

“i
n
te
g
ri
ty

m
ap
”
p
o
ss
ib
le
.

R
el
ia
b
il
it
y

su
p
p
o
rt

R
ec
o
v
er
y
p
o
in
ts
o
f
a
p
ro
g
ra
m
,
m
o
d
u
le
s

an
d
ta
sk
s—

to
im

p
le
m
en
t
h
o
t
sw

ap

(r
ec
o
n
fi
g
u
ra
b
il
it
y
)
w
h
en

n
ee
d
ed
.
S
av
in
g

o
n
ly

es
se
n
ti
al

d
at
a
fo
r
co
n
cr
et
e
ex
ec
u
ti
o
n

o
f
a
p
ro
g
ra
m
.

R
ed
u
ci
n
g
am

o
u
n
t
o
f
su
p
p
o
rt
iv
e
d
at
a
in

ru
n
-t
im

e
sy
st
em

fo
r
p
ro
g
ra
m

m
o
n
it
o
ri
n
g

In
tr
o
d
u
ci
n
g
o
f
re
se
rv
ed

d
at
a
b
lo
ck
s
to

ru
n

h
ar
d
w
ar
e
w
it
h
d
efi
ci
en
cy

(f
o
r
re
li
ab
il
it
y

p
u
rp
o
se

o
f
v
ie
w
).

216 10 Vision on Evolving System Future

Therefore, the requirements of evolving systems need themselves to be consid-

ered as processes. P–R–E dictates that system software has to be modified, includ-

ing language, run-time and service operating systems.

Figure 10.2 below qualitatively shows that system Performance (P)-, Reliability

(R)- and Energy (E)-smart design might be implemented by means of various

methods (circles) and to achieve any development we should choose only not-

mutually exclusive solutions.

It is worth mentioning that the properties of system software that are required

and useful at program preparation time, are not required at all during program run.

Obviously, they should be “stripped off” program code and instead, a “fine tuning”

of the code applied to fit existing hardware.

The communication, or interaction between agents, processes, communications,

monitors (use any other name from modern avalanche of terms), should also be

implemented by taking into account P, R and E requirements, as well.

One of the immediate observations that can be made from Fig. 10.2, regarding

performance, is that: the parallelization of a program should be prepared and

supported as much as the program structure enables, or even more, while concur-

rency within the program and during execution should reduced to a minimum, or

excluded.

Fig. 10.2 System properties reflection at system software

10.3 Attempts to Evolve 217

It is beyond the scope of one chapter to describe all possible developments of

system software and hardware for P–R–E systems. Below, we present just one

approach, attempting the redevelopment of system software for performance

improvement.

10.4 Proposed Approach (What We Need
and Why We Need This)

At first, we should choose the nearest, “rigorous” language and run-time system and

define a sequence of steps that lead to the modification of the system software with

the aim to improve reconfigurability and other requirements shown in the

Tables above.

To make reconfigurability work, we describe program and hardware using meta-

models. These meta-models are independent from the technological aspects, but

describe the structural properties of the algorithm and programs: Control–Data–

Predicate (CDP) and Graph Logic Model (GLM).

The languages of structural programming, modular programming (Turski and

Wasserman 1978), (Wirth 1988) and object oriented programming (Wirth 1989),

(Wirth 1992) were invented to provide the programmer a higher level of

abstraction.

There is no doubt that the separation of concerns increases visibility and clarity

and indeed, eases the process of programming.

These properties, unfortunately, are not necessary and even reduce performance

during execution, when hardware load and power consumption are crucial.

In terms of P–R–E, the properties of the system all attempt to deal with

parallelism and concurrency of programs and their execution at the same time.

They are still far from providing substantial gain, in spite of extreme efforts (Flynn

1972), (Fisher 1983).

Dijkstra (1965) has published an extension of the Dekker algorithm for a

solution of the concurrent execution of multiple processes and it is this solution,

in one form or another, that is used within languages and hardware (instructions like

“test and set”, IBM360).

The problem is the automatic extraction of the program parts that are indepen-

dently executable; parallelism is still a “work in progress” and attracts the attention

of researchers on a regular basis, all around the implementations of mutual exclu-

sion and synchronization (Lamport 1983; Lamport and Melliar-Smith 1985),

(Gutknecht 2006).

In discussions of performance gain system from software parallelism vast

majority of publications are oriented on Amdahl’s law.

However, Amdahl’s simplification of the efficiency of parallelism by cutting—

see our aforementioned rope in n chunks—does not reflect the fact that chunked

segments should be delivered into the processing areas, and the results subsequent
to processing should be collected back, usually into one block of data.

218 10 Vision on Evolving System Future

Read—in Amdahl ratio denominator grows, reducing gain from parallelism

even more.

Thus, the roles and impacts of language support of parallelization, service

operating system and run-time system were largely ignored.

Therefore, predictions of Amdahl about the gain achievable by parallelization

were extremely optimistic.

The following works and publications: Nair (2002), LaPedus and EETimes

2003), Hennesy (2008), Bryant and O’Hallaron (2002) highlighted problems of

massive parallelism in future hardware designs, showing that the way we approach

them either limits seriously or makes impossible to cope with the requirements of

configurability and scalability:

What is good for one purpose is unacceptable for another . . .

Due to architectural and technological limitations, known hardware designs are

not flexible enough in the mapping of algorithms to the hardware, and above all, do

not support changing of software structures or hardware configurations “on the fly”.

Commercial systems (Windows, Linux, etc.) have shown that attempts in the

effective use of hardware features have largely been a failure: the chip frequency

now goes beyond 5 GHz, but hardware design and existing software reduces useful

system performance down to the 100 s of MHz range.

To cope with this, future architectures must be redesigned with a justification of

concepts and arguments from the user level of abstractions, down to the hardware

level of representation, aiming at minimizing the degradation of any required

characteristics.

Technologically, new hardware chips have seemingly astronomical numbers of

logic gates and high physical density. This gives substantial advantage for pro-

gramming multiple-data problems, where it is possible to use matrix algebra, or

multiple data tasks with simple instructions. In turn, the density of hardware

elements has reached a technological limit of thermal density.

As already mentioned, accepting the principle of separation of concerns, the

programming language has to be hardware independent, as in this way, the logic

and complexity of an algorithm will be visible and separated from hardware

implementation. From another point of view, we should improve efficiency of

hardware and software work.

So the question remains:

How do we achieve the PRE-smartness of a system by modifying algorithms and

implementation?

Certainly, the compilation process of a program should be “fine-tuned” for

execution on the specific hardware.

Additionally, however, reconfiguring hardware before program execution also

reduces hardware overheads.

Examples prove nothing, unfortunately. In much more general terms, program

tuning for hardware Performance- or Reliability- or Energy-smart operation is

10.4 Proposed Approach (What We Need and Why We Need This) 219

becoming some kind of reversed programming, where hardware, not the user

(programmer), takes the dominant role.

Thus, we might explicitly seek to separate “what is good for the user from what

is good for the system and hardware” and, where possible, spread these require-

ments through the life cycle of software and system development, as Table 10.3

illustrates.

The separation of concerns and goals of PRE-smartness requires supportive

models of algorithmic applications from the system software point of view (lan-

guage and run-time systems) and at the same time, improve hardware efficiency.

Two models we propose for this are called Control–Data–Predicate (CDP) and

Graph Logic Model (GLM).

10.5 Supportive Models

10.5.1 Control–Data–Predicate (CDP) Model

Within CDP model each operator in a program can be defined in terms of modifi-

cations of three connected graphs: Control (C), Data (D) and Predicates (P),

illustrated in Fig. 10.3.

The Control graph presents a sequence of instructions for assembler or proces-

sor, or operators for language. Data dependencies related to each operator and data

that might be modified along program execution are illustrated by the Data graph.

Finally, a graph of Predicates defines the change of conditions inside hardware

and program to enable branching. Thus, every step of program execution is

described and defined by a change in three graphs.

While the program operators define a number of elements (nodes) in each graph,

the volume of the resulting predicates, state registers, processor and Program Status

Words (PSW), physically represented in the hardware by so-called processor status

registers, contributes to the “width” of each layer of these graphs.

Table 10.3 Phases of software development

User oriented phases (UW)

Concept Design Compilation Implementation

System software and hardware oriented phases

Analysis of the program

through Graph Logic Model

to find intrinsic parallelism in

Control, Data and Predicate

dependencies.

Recompilation of the pro-

gram into parallel form

with introduction of hardware

configuration and

reconfiguration features

into the program, as well

as concurrency management -

formation of an execution

string.

Dual String Execution (New

RT data structure that unites

arrays and records).

220 10 Vision on Evolving System Future

To support and exploit parallelism, we should simplify all three graphs by

separation of Data and Control, making them as independent as possible.

To support simplicity, a graph of Predicates should be simplified and

fragmented—in other words we propose that Predicates should be processed

when they are needed for decision-making and not stored in the hardware.

To support reliability and fault tolerance, the detection of possible changes

to program state caused by hardware deviation is required, together with the

development of recovery schemes of hardware and software (Kaegi and Schagaev

2013).

Therefore, any complex operator and hardware instruction respectively jeopar-

dize the possibility of generating “snapshots” of the previous hardware states, as

well as the flexibility of program segmentation, allocation and reconfiguration.

Predicate

Data

Control

i-th layer

Fig. 10.3 Control–Data–Predicate (CPD) model

10.5 Supportive Models 221

In the vast majority of architectures, as well as languages (their compilers) and

run-time systems, the functions of data access and data processing are mixed—

tightly coupled—and hardware state modification due to program execution is not

controlled explicitly.

This makes condition change latent and execution of a program unjustifiably

complex.

In a typical processor, such as ARM, Intel and SPARC, the Arithmetic and Logic

Unit (ALU), or even several of them, as well as shifters, registers, internal cache,

special registers, pipeline sequencers, etc., are active during the execution of each

instruction, sometimes with several data passes within a single instruction.

Thus, the complexity of hardware handling becomes enormous: 75 % of the die

size is occupied by translation look-ahead buffers, caches, synchronization logic

and pipelining.

However, none of these overheads are required from the point of view of the

programming language and program operators.

Any condition of the hardware related to an operator, or instruction representa-

tion (the three nodes within the same layer in Fig. 10.3) requires checking. This

makes parallelism or reliability much harder to achieve.

The reasoning is different, however: for parallelism, hardware should be

designed as “flat as possible”, but reliability demands the limitation of fault

propagation through hardware schemes.

The complexity of a system and the implementation cost of parallelization, or

fault tolerance are directly related to the amount of the resulting modifications of

the hardware and program states.

Our CDP model shows that when P is only used for the selection of the program

flow, a special operator and instruction can be defined to generate the current value

of P and store the result in a register, making system reconfigurability easier to

achieve.

To summarize, for the implementation of parallelization at the level of the

instruction set, the design objectives will be:

• Implementation of “as simple as possible” logic to form predicates;

• Mapping the language operators as close as possible to the processor’s modified

instruction set;

• Reducing the size of the state space that needs to be saved before the execution

of each instruction.

This brief analysis of CDP shows that clarifying the interaction of language and

hardware can save us from “improvements” that drive mutual loss. Studying the

CDP scheme of a program also allows potential program parallelism to be checked

in all three, graph dependencies. However, this is not the whole picture.

222 10 Vision on Evolving System Future

10.5.2 Graph Logic Model (GLM)

As a further improvement in parallelization and at the same time concurrency

reduction, we need to handle the actions that were initiated in parallel, but eventu-

ally end up in conflict when one or more resources are accessed.

To describe this, we introduce the Graph Logic Model (GLM), Figure 10.4.

Every meta-program structure might be described using GLM.

GLM provides a scheme to redevelop existing programs into their maximum

parallel and minimum concurrent forms, limited only by available hardware

resources.

An indicative example how the GLM works, using a program control graph, is

presented in Fig. 10.4.

Note that a GLMmight be applied for any of graph of the CDP model. GLM uses

logical operators from the set {AND, OR, XOR} for every program, or hardware

scheme that it describes. These operators are allocated for the input and output of

each vertex.

A vertex might be an operator, instruction, or state. Vertex a of Fig. 10.4 may be

described thus:

a : OR� αb, γ dð Þ, ANDþ β b, δ cð Þ ð10:1Þ

where “�” stands for every logical operator of an output link and “+” for every

input link, while α, γ, β and δ are weights, or priorities assigned for the link.

Until now research in parallelism was mostly targeted at finding parallel

branches of programs and independent data elements.

Fig. 10.4 Graph Logic

Model

10.5 Supportive Models 223

However, expecting pure parallelism is hardly feasible; what is initiated as

parallel segments ends up ultimately in concurrent mode, competing for a resource

such as a socket, printer or data concentrator.

The rare exception, such as graphic processors with high numbers of SIMD-like

processors, just proves the rule.

A simple notation, similar to Eq. (10.1), can describe program structures and

hardware structures consistently in terms of coexisting concurrency and parallelism.

GLM explicitly separates parallel and concurrent elements in the system descrip-

tion by introducing logic operators into the program graph for incoming and

outgoing ends of edges.

The application of the logic operator XOR (exclusive OR) on an input, or output

of an edge, defines ALL possible concurrencies in the program graphs.

In turn, all possible parallelism in the Control graph are defined by finding all

outgoing, or incoming edges explicitly described by the AND operator. The same

approach might be applied for the Data and Predicate dependency graphs of the

CDP model.

Moving forward, obvious questions of PRE-smartness arise:

Can we prove that the hardware representation for the chosen algorithm is parallelized in its

maximum possible way?

How does the current hardware–software solution correspond with a limitation of

available resources?

The answer to these questions is a part of the design challenge for any evolving

system. Having a correct program, CDP and GLM can then be applied to extract the

parallel segments and data paths and help in reducing concurrency.

This reversed programming gives us a chance to play with the software and

monitor system software redundancy (deliberately introduced at the recompilation

phase) and hardware redundancy (introduced at the design phase) on the fly.

It also enables to use reconfigurability of the system for Performance-,

Reliability- or Energy-smart functioning when it is necessary.

Figure 10.5 introduces the use of CDP and GLM for program parallelization.

There is no doubt that we have to start from correct sequential program.

The proposed sequence clearly separates properties required at the program-
writing phase from the properties required during execution, as the latter are

dependent on the hardware resources that are available and may change during

execution.

In this way, hardware features (that might be dynamically adapted during run-

time) become represented in the program logic.

A new language is needed to naturally express algorithms in a form that supports

program recompilation into a redundant form fitting with the “hardware view”.

This does not mean that other programming paradigms such as structured, or OO

are no longer useful. It means, however, that they have their limits and mostly serve

user convenience and interfacing.

The newly proposed paradigm serves to improve performance of the end prod-

uct. This is achieved with the design of a new reconfigurable architecture, a system

software and the dynamic transformation of existing software into a form that is

224 10 Vision on Evolving System Future

efficiently executable by adaptive hardware: Evolving Reconfigurable Architecture

(ERA), or more generally, Evolving System (ES).

Interestingly, the algorithm of parallelization might be applied for all three

dependency graphs—Control, Data and Predicate—and, therefore, deduce the

maximal parallel form. The availability of hardware serves as the termination

condition for this algorithm.

10.6 System Software for Evolving Systems

System software for the next generation of evolving systems includes both the

design of a new modular programming language called Active Language (AL),

and two operating systems: a run-time system, called the Active Reconfigurable

Run-Time System (ARRUS) and a service operating system (SOS). AL and

ARRUS are tightly coupled, as AL needs run-time system support for some of its

features, such as recovery.

10.6.1 Active Language (AL)

The language has to be able to describe active processes and is, in fact, a direct

derivative of Oberon (Wirth 1988; 1992) which includes the following new

features:

• A new data structure is introduced that eases the mapping of data to memory

(dual string model);

• GLM extensions will be exploited in the control and operator model;

Fig. 10.5 Sequence of steps to make sequential algorithm parallel

10.6 System Software for Evolving Systems 225

• Separation of interface and implementation to support dynamic software and

hardware reconfiguration;

• Deliberate reduction of the number of supported data structures and other

language features;

• Physical separation of constant, global and local variables and introduction of

recovery points (Kinnersley 2009);

• Support for recovery and reconfiguration points at the module level using special

program structures;

• A special language feature that allows safe hardware access will be introduced

which results in a completely type-safe language, without loopholes;

• AL carefully revises dangerous language constructs, such as unbounded loops,

and introduces the calculation of upper execution times and stack sizes to ease

certification;

• Rigorous memory management strives for an implementation without pointers

and references.

An essential set of the above-mentioned concepts has already been implemented

in our component-based, parallel programming language COMPOSITA (Bläser

2006), (Bläser 2007).

AL is a further development of this language, synthesizing additional concepts

for real-time and fault-tolerance. In COMPOSITA, programs are entirely composed

of active components which govern strict encapsulation and dynamic wiring, with a

dual concept of offered and required interfaces and communication-based interac-

tions (Fig. 10.6).

As the language is based on hierarchical composition and does not employ any

ordinary pointers or references, surrounding components properly control the

deletion of components and no garbage collection is needed for safe memory

management (Bläser 2006, 2007).

In turn, Fig. 10.7 shows an example of a component structure, where a compo-

nent can contain an inner network of sub-components. Communications follow a

formal protocol written in an EBNF-like notation.

Due to the strict encapsulation, the components and can be easily mapped to

various hardware architectures. Inherently, it enables parallelism (N components

Fig. 10.6 Describing hierarchical component structures

226 10 Vision on Evolving System Future

may be scheduled on up to N processors), as well as redundancy (the same

components may be executed as multiple replicated instances).

In subsequent work, a prototype compiler and run-time system for evolving

systems has already been developed.

Direct support for reconfigurability and recoverability of program structures at

the language level makes reconfiguration of system possible in case of hardware

degradation due to faults, or task special requirements of system power-saving

operation, or on the opposite, boosting task by using maximum hardware resources

for completion of a task with required time limits.

For hardware fault tolerance, where malfunctions outweigh permanent faults,

system software at the language level should include recovery points for the

program at various levels of program presentation: procedure, module and task.

A detailed description of language support of hardware fault tolerance using

recovery points is presented in Kaegi and Schagaev (2013).

Fig. 10.7 Communication-based component

10.6 System Software for Evolving Systems 227

Note here that the recovery point scheme will be embedded in the language and

oriented on the programs and data structure. This reduces the overhead for recovery

after malfunctions and eases the impact of possible permanent faults.

10.6.2 Active Reconfigurable Run-Time System

The run-time system, ARRUS, should also be involved in supporting real-time

processing, as well as real-time reconfiguration of the underlying hardware ele-

ments and the respective network topology, including:

• Flexible dynamic hardware resource management;

• Software reconfiguration to adapt to changes in hardware states and system

conditions;

• Management of hardware/software interactions in the presence of hardware

faults;

• Hardware state monitoring and support of graceful degradation using testing and

recovery procedures and reconfiguration management.

To match the required reconfigurability, parallelization, real-time, resilience to

hardware degradation, and distributed control processing, the ARRUS itself is built

in a strict hierarchical manner, as it is illustrated in Fig. 10.8.

The lowest level module has no dependencies at all and consists of the main

system monitor which is responsible for the coordination of all activities, such as

the initialization of reconfiguration entities, timer services (not shown), interrupt

handling and all the remaining depicted functions.

ARRUS also provides all the standard functions of a run-time system, such as

memory management, which are well known and explained in literature [34], [35].

These features are omitted in Fig. 10.8 to keep the diagram understandable. In a

standard control loop system, it is up to the programmer and the applications to

diagnose faults and react appropriately.

In ARRUS, however, this is not the responsibility of the application, but of the

run-time system. Thus, ARRUS is responsible for diagnosing faults (software

failure, malfunction, permanent fault, etc.) and notifying the appropriate software

and hardware monitoring services of any required changes.

In ARRUS, fault diagnosis (software failure, malfunction, permanent fault, etc.)

and handling (fault elimination, recovery and reconfiguration) is in the responsi-

bility of the run-time system, not of the application.

User applications are not allowed to communicate directly with the

reconfiguration mechanisms. The rationale behind this principle is the idea that

the run-time system is the only entity that knows the current hardware state, all

ongoing processes and their resources.

In case of a fault, it can thus based on the available resources reconfigure the

applications. The following developments will be crucial for the ARRUS fault

handling mechanism:

228 10 Vision on Evolving System Future

• Monitor hardware state. Possibly, either with interrupts (hardware signals

changes), or periodic, software-initiated, hardware checking (further, both

approaches are required to implement hierarchical hardware checking) (Kaegi

and Schagaev 2013);

Fig. 10.8 Structure of run-time system for an evolving system

10.6 System Software for Evolving Systems 229

• Reaction on hardware state changes. The run-time system is responsible for

the management of the hardware states and reconfigures the applications

accordingly;

• Collaboration of checking and recovery processes at the system software level

and hardware level. Introduction of fault-resilient, task scheduling and hard-

ware/software fault-handling strategies (schedule simpler task versions);

• Fault tolerant semaphores: A new concept that eliminates deadlocks caused by

hardware deficiencies.

ARRUS handles changes to hardware conditions using the notion of hardware

states and transitions, as Fig. 10.9 shows below. A hardware element in the Active,

Master or Slave states is included in the current working configuration.

If an element is in the Stand-by state, it is not active, but can be activated in a

further reconfiguration step.

If a fault is detected, the affected hardware element is set into the Suspected state

which means that, at least for a while (until the generalized algorithm of fault

tolerance (Schagaev 2008) is completed and a new valid configuration is established),

this hardware element will not be included in any working configuration.

This representation of the hardware state for every ERA element defines the

current configuration of the ERA hardware at the run-time system level.

A configuration change can be triggered by changed application, power, reli-

ability, or performance requirements, or a detected error.

Fig. 10.9 Hardware states from the run-time system point of view

230 10 Vision on Evolving System Future

10.7 Evolving System: Hardware

10.7.1 Basic Schemes

The indicative structure of a hardware element for evolving system is presented in

Fig. 10.10. Configurators called T-logic provide for flexible use of processor and

memory elements in the system configuration related to performance and health

conditions: when one processor is dealing with its own program (self testing,

autonomous calculations), it disconnects from the other nodes.

The same technique is used to form reconfigurable hardware that is capable of

adjusting to program requirements, or react to other events such as detected

permanent faults.

The memory configuration of an ERA element (Fig. 10.10) works for both

resilience and performance. A special logic scheme, T-logic, configures the mem-

ory structure.

When an application requires maximum reliability, the T-logic scheme might

configure the memory as a 4- or 3- (shown) unit with voter.

The configurations: two to compare and one spare, or three independent memory

elements are possible. The number of memory elements might vary. For recent

implementations, four memory elements were proposed.

However, the principles of configurability by using T-Logic elements remain

the same.

Fig. 10.10 ERA element

10.7 Evolving System: Hardware 231

The instruction set of an elementary processor is designed to recover from

hardware malfunctions by repetition of the instruction, making malfunction toler-

ance efficient (Schagaev 2008).

In comparison with Motorola, ARM and Intel, the proposed ERA is much

simpler, with a higher level of parallelism and frequency able to be achieved.

Due to simplicity-by-design, ERA only needs 10 % power, when compared with

the competitors, to reach the same clock speed.

The same technique is used to form a hardware configuration that is adjustable to

program requirements, or when a hardware element itself (or architecture) detects

hardware faults and cannot be involved in further program execution either on a

temporary, or permanent basis.

The final decision about permanent isolation of an element is performed during a

special mode of self-healing when testing and recovery procedures are executed.

Each element can be turned off individually to decrease power consumption.

Note that the structure assumes only one leading element at a time, enforced by a

“rotation” of the T-logic element. T-logic makes an ERA possible to operate until

“the last man is standing,” i.e. until a single processor, called ERRIC, and a single

memory element can communicate.

By design, the Evolving, Recoverable, Reduced-Instruction Computer (ERRIC)

is able to recover from major malfunctions and repeat the ongoing instruction when

an error is detected. The bespoke instruction set and its declared top-down imple-

mentation of all required features reduces the impact of malfunctions on the

performance and reliability of a system as a whole.

As it was shown in Schagaev (2008), the efficiency of malfunction tolerance

depends on the fault coverage and the amount of involved redundancy. The

efficiency of malfunction tolerance grows together with the ratio of malfunction

to permanent faults.

An indicative performance comparison of Motorola, ARM and Intel to proposed

architecture shows that the performance of ERRIC is not clock-to-clock competi-

tive with Intel and ARM, but as the implementation is much (up to six times)

simpler, a higher level of parallelism can be anticipated.

Additionally, early power estimation shows that ERRIC needs only 10 % power

compared to the competitors to reach the same clock speed. Finally, the absence by

design of pipelining support and the ability to access memory at almost half that of,

say, ARM, enables system monitoring and processor frequency variance when

applications require extreme performance.

Below, Fig. 10.11 shows a first prototype of ERA, designed and developed by

the authors in collaboration with ITACS Ltd.

Memory, organized as four, mutually replaceable schemes with virtual

addressing configure the ERA for Reliability (two pairs, or triple structure with

spare element), Energy-smartness (one element is active, the rest disabled), or full

capacity—when all elements form one memory bank for the program.

The ROMs function as one, or both can be active. At the moment, all

reconfigurations and ERA processor elements (four of them) are assembled on

Altera PLD, shown.

232 10 Vision on Evolving System Future

Further development will obviously lead to special chip for processors, memo-

ries with reconfiguration support and specula design of T-logic element to achieve it

maximum simplicity, performance and reliability.

The proposed reconfiguration schemes and design approach is the subject of

further development, as it provides a unique linear exchange, or reliability/perfor-

mance and power consumption, dependent on the actual need and request of user

task, or run-time system.

10.8 Evolving System: Multi-element Configuration

There is no doubt—see “model of rope and box” above—one has to address how, if

possible, we can use the resources of multi-agent systems supported by multi-

element architecture.

Conceptually, Fig. 10.12 presents the next step for a prototype of evolving

systems.

Each element of the proposed architecture might serve as a node in the system: it

can be turned off individually to decrease power consumption, or made inactive yet

Fig. 10.11 ERA element—first prototype

10.8 Evolving System: Multi-element Configuration 233

able to be included in any application configuration, or aggregated with others for

maximum capacity or reliability.

To recap, when applied throughout the whole system, T-logic elements enables

the whole evolving system to operate “until the last man stands,” i.e. until a single

processor (on the Fig. 10.10 ERRIC), and a single memory element can communi-

cate through the remaining links.

Note that active and passive elements (processor and memory) can be at the

extremities in this scenario.

Fig. 10.12 Indicative architecture of evolving system

234 10 Vision on Evolving System Future

Various areas of Evolving Architecture can be involved in different types of

tasks. Some segments might run safety-critical tasks—extremely demanding in

terms of reliability, while others execute heavy calculations of matrix algebra.

The pink-colored part of the scheme illustrates that when, for any reason, the

Active zone (ERRIC) is not in action (either because of task configuration, or

because a permanent fault has induced its idle status by system software).

Other processors might use local memories of one hardware section within the

system.

Finally, the dotted part of scheme illustrates that the leading active element has

only one connection, as it is counted as active and initiating an exchange; the others

involved are also “listening”.

The proposed approach is promising. Initially it was presented by Prof.

Schagaev (London Met) with some assistance from Prof. Gutknecht (ETH Zurich)

at EC program FET (Future and Emerging Technologies) Information Day in 2005,

January 14th, Brussels.

Since then we have developed: evolving system concept and theory, theoretical

analysis of reconfigurability, prototype of system software (language, system run-

time system) and hardware, including key elements such as processor, arithmetic

unit, logic unit, reconfiguration logic, showing and proving existence of practical

alternative to software and hardware brands and market predominated companies.

We do believe that human kind can do much more to propose in this domain of

knowledge and technology, leaving Microsoft, Apple, Intel and ARM behind.

10.9 Evolving System Approach vs. Berkley View

The recently published Berkley view on parallel computing (Asanovic et al. 2006)

differs from our approach. Table 10.4 is self-explanatory and illustrates the differ-

ences, showing both system software and hardware concepts and implementations.

Table 10.4 Berkley view vs. evolving reconfigurability approach

Berkley view Evolving reconfigurability approach

Seven goals (and 11 bullet points) New rigorously defined computing paradigm

based on GLM exploits automatically maxi-

mum possible parallelism of both algorithm and

hardware available and minimizes synchroni-

zation complexity at the run-time to reduce

concurrency. This approach guarantees

together with flexibility of hardware configura-

tion for both performance and reliability pur-

poses. Adjust available hardware for maximum

possible efficiency across the whole broad class

of applications usually covered by semantically

different architectures such as VUW, SIMD,

and MIMD.

Future computers must be effectively

parallel;

It is possible to consider 1,000+ cores;

Performance measurement for parallel com-

puting should be re-evaluated and new met-

rics introduced.

(continued)

10.9 Evolving System Approach vs. Berkley View 235

Table 10.4 (continued)

Berkley view Evolving reconfigurability approach

Auto-timing of software and hardware; Software will be written in traditional way,

and debugged on a standard systems;

Human centric computing in multi-core; Parallelization of the algorithm will be done

by backward compilation of a sequential pro-

gram. Using GLM again for representation of

task potential parallelism and fine-tuning of

hardware resources available on the wafer,

before and during application run.

Application of wide range of data typing.

Three levels of parallelism should be pursued:

task level word level and bit level;

Task level parallelism is prerogative of run-

time system and heavily dependent on work-

load and available resources during application

run: therefore, dynamic scheduling to optimize

task parallelism is exception not the rule in

evolving architecture. For evolving

reconfigurable architecture dynamic support of

parallelism should be an exception not a rule.

Parallel programs must be presented inde-

pendently to the number of processors

available;

Application of GLM for both redesign of algo-

rithms and timing on architecture available

resources (supported byT-configurator at the

element and architecture levels) maximize par-

allelism and minimize concurrency.
Limitations on features that reduce

parallelism;

OS functionality should be based on libraries

and virtual machines.

A higher-level rate of fault is expected

for multicore systems.

Assumptions about higher rate of permanent

hardware faults for the next generation of elec-

tronics are not correct. More details see, for

example in Feynman lectures. . .

SEC/DED options proposed. Number of malfunctions caused externally

by alpha particles and internally due to higher

density of elements on the wafer does not lead

to increased reliability by using SEC/DED;

most likely 16+ bit errors will take place in

hardware. System software contribution to the

malfunction of the system caused by support of

dynamic parallelism and complex concurrency

monitoring.

Synchronization overheads should

be reduced.

Overloaded by task parallelism, the monitoring

OS will be deadlocked. We propose a

reconfigurability of available hardware and

tasks by recompilation of existing algorithms.

Wide range of data types should

be implemented:

We propose Dual string data structure where for

each data element of the array a special

descriptor defines data type (altogether

232 types);

(continued)

236 10 Vision on Evolving System Future

10.10 Evolving System: Conclusion

• This work presents concepts and design ideas on how to cope with some known

drawbacks of computer architectures. Evolving systems of future computers will

exploit reconfigurability of hardware and software for Performance-, Reliability-

or Energy-wise functioning.

• At the system software level, a reconfigurability of hardware and software

should be introduced, represented and supported by programming language,

service operating system and run-time system. Ultimately, this will result in a

simple, yet scalable, reliable system and provide performance and power saving

options, with linear trade between.

• To avoid existing drawbacks of parallel and other reconfigurable architectures,

several holistic principles were presented and pursued through the whole life

cycle of computer systems: from the preparation of algorithms down to the

execution of programs and hardware.

• We presented a new approach, aiming to introduce a system with evolving

features, based on the mutual design of architecture and system software. System

software support for hardware reconfigurability is centered at the compiler level,

leaving only essential reconfigurability handling at the run-time level.

• It was shown that consistent support of system reconfigurability eases

parallelization, reduces concurrency, assists fault tolerance and implements a

power-awareness for applications, when necessary. Two models: Control, Data,

Predicate dependencies of the program and the Graph Logic Model represent

Table 10.4 (continued)

Berkley view Evolving reconfigurability approach

1 bit (Boolean); This covers all possible data types user can

dream or imagine. Efficiency of access to the

proposed data structure is equal to the array

access.

8 bits (Integer, ASCII);

16 bits (Integer, DSP fixed point, Unicode):

32 bits (Integer, Single-precision FP,

Unicode);

64 bits (Integer, Double-precision FP);

128 bits (Integer. Quad-Precision FP; Large

integer (>128 bits))

New models should support proven styles of

parallelism;

Styles of parallelism are application specific

and vary due to technology modification. We

propose an auto-tuning of existing programs

into their maximum parallel form;

FPGA systems are future HW platforms for

multi-core computing.

FPGA technology at the element level and

specially designed wafer with prefabricated

configuration fabric of active processing ele-

ment and passive elements enables monitoring

architecture for performance, power consump-

tion and reliability.

10.10 Evolving System: Conclusion 237

concurrency and parallelism of a program and enable their explicit separation. A

sequence was proposed to find the minimum form of any program in terms of

time overheads, limited only by available hardware resources. The generalized

algorithm of parallelization of sequential programs was presented.

• The structure of a reconfigurable, run-time system was discussed, together with a

scheme for hardware configurability support.

• Hardware elements and the structure of the whole architecture were presented,

with explanations of how maximum reconfigurability (“’til the last man is

standing”) is achieved.

• A comparison of the evolving reconfigurability approach with known approaches

was presented. In contrast with Von Neumann, we are attempting the design of

reliable (and reconfigurable) systems with reliability of components.

238 10 Vision on Evolving System Future

References

Abramovici M, Breuer MA (1979) On redundancy and fault detection in sequential circuits. IEEE

Trans Comput 28:864–865

Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing & testable design, 1st

edn. Wiley-IEEE, Hoboken NJ

Adams JH, Gelman A (1984) The effects of solar flares on single event upset rates. IEEE Trans

Nucl Sci 31:1212–1216. doi:10.1109/TNS.1984.4333485

Adams JH, Silberberg R, Tsao CH (1982) Cosmic ray effects on microelectronics. IEEE Trans

Nucl Sci 29:169–172. doi:10.1109/TNS.1982.4335821

Agrawal VD, Chakradhar ST (1995) Combinational ATPG theorems for identifying untestable

faults in sequential circuits. IEEE Trans Comput Aided Des Integrated Circ Syst 14:1155–1160

Alam M et al (2007) Characterization and estimation of circuit reliability degradation under NBTI

using on-line IDDQ measurement. In: Proceedings of design automation conference

Alanen J, Ungar LY (2011) Comparing software design for testability to hardware DFT and BIST.

In: 2011 I.E. AUTOTESTCON, pp 272–278

Allenspach M, Brews JR, Mouret I, Schrimpf RD, Galloway KF (1994) Evaluation of SEGR

threshold in power MOSFETs. IEEE Trans Nucl Sci 41:2160–2166

Ames B (2007) Intel tests chip design with 80-core processor. http://www.macworld.com/news/

2007 /02/12/intel/

Amusan OA, Witulski AF, Massengill LW, Bhuva BL, Fleming PR, Alles ML, Sternberg AL,

Black JD, Schrimpf RD (2006) Charge collection and charge sharing in a 130 nm CMOS

technology. IEEE Trans Nucl Sci 53:3253–3258

Anderson T, Lee PA (1981) Fault tolerance: principles and practice. Prentice-Hall, Englewood

Cliffs, NJ

Antola A, Erényi I, Scarabottolo N (1986) Transient fault management in systems based on the

AMD 2900 microprocessors. Microprocess Microprogram 17:205–217

Applebaum SP (1965) Steady-state reliability of systems of mutually independent subsystems.

IEEE Trans Reliab R-14:23–29

Arimoto K, Matsuda Y, Furutani K, Tsukude M, Ooishi T, Mashiko K, Fujishima K (1990) A

speed-enhanced DRAM array architecture with embedded ECC. IEEE J Solid State Circuits

25:11–17

Armstrong DB (1966) On finding a nearly minimal set of fault detection tests for combinational

logic nets. IEEE Trans Electron Comput EC-15:66–73

Asakura M, Matsuda Y, Hidaka H, Tanaka Y, Fujishima K (1990) An experimental 1-Mbit cache

DRAM with ECC. IEEE J Solid State Circuits 25:5–10

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7

239

http://dx.doi.org/10.1109/TNS.1984.4333485
http://dx.doi.org/10.1109/TNS.1982.4335821
http://www.macworld.com/news/2007 /02/12/intel/
http://www.macworld.com/news/2007 /02/12/intel/

Asanovic K, Bodik R, Catanzaro B, Gebis J, Husbands P, Keutzer K, Patterson D, Plishker W,

Shalf J, Williams S, Yelick K (2006) The landscape of parallel computing research: a view

from Berckeley. Technical report No. UCB/EECS-2006–183

Avizienis A (1971) Faulty-tolerant computing: an overview. Computer 4:5–8

Avizienis A (1976) Fault-tolerant systems. IEEE Trans Comput C-25:1304–1312

Avizienis A (1982) The four-universe information system model for the study of fault tolerance.

In: Proceedings of the 12th annual international symposium on fault-tolerant computing, Santa

Monica, CA, pp 6–13

Avizienis A, Kelly JPJ (1984) Fault tolerance by design diversity: concepts and experiments.

Computer 17:67–80

Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans Dependable Secure Comput 1:11–33

Azadmanesh MH, Kieckhafer RM (2000) Exploiting omissive faults in synchronous approximate

agreement. IEEE Trans Comput 49:1031–1042

Baeg S, Wen S, Wong R (2009) SRAM interleaving distance selection with a soft error failure

model. IEEE Trans Nucl Sci 56:2111–2118

Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models

Barth JL, LaBel KA, Poivey C (2004) Radiation assurance for the space environment. In:

Integrated circuit design and technology, ICICDT’04. International conference on presented

at the integrated circuit design and technology, pp. 323–333. doi:10.1109/ICICDT.2004.

1309976

Baumann RC (2001) Soft errors in advanced semiconductor devices-part I: the three radiation

sources. IEEE Trans Device Mater Reliab 1:17–22

Baumann R (2002) The impact of technology scaling on soft error rate performance and limits to

the efficacy of error correction. In: International electron devices meeting (IEDM’02). Digest.

pp 329–332

Baumann R (2005a) Soft errors in advanced computer systems. IEEE Des Test Comput

22:258–266

Baumann RC (2005b) Radiation-induced soft errors in advanced semiconductor technologies.

IEEE Trans Dev Mater Rel 5:305–316

Baumann R, Hossain T, Murata S, Kitagawa H (1995) Boron compounds as a dominant source of

alpha particles in semiconductor devices. In: Reliability physics symposium, 1995. 33rd annual

proceedings, IEEE international, pp 297–302

Beaudry MD (1978) Performance-related reliability measures for computing systems. IEEE Trans

Comput C-27:540–547

Becker HN, Miyahira TF, Johnston AH (2002) Latent damage in CMOS devices from single-event

latchup. IEEE Trans Nucl Sci 49:3009–3015

Beitman BA (1988) n-channel MOSFET breakdown characteristics and modeling for p-well

technologies. IEEE Trans Electron Dev 35:1935–1941

Bentoutou Y, Djaifri M (2008) Observations of single-event upsets and multiple-bit upsets in

random access memories on-board the Algerian satellite. In: IEEE nuclear science symposium

conference record (NSS’08), pp 2568–2570

Berger MJ, Coursey JS, Zucker MA, Chang J (2005) ESTAR, PSTAR, and ASTAR: computer

programs for calculating stopping-power and range tables for electrons, protons, and helium

ions (version 1.2.3). http://physics.nist.gov/Star. Accessed 11 Sept 2010.

Berka S (2009) Operating system documentation project. http://www.operating-system.org/

betriebssys tem/_english/index.htm

Bernstein AV, Tomfield YL, Schagaev IV (1992) Storage unit with high reliability characteristics.

I. Avtomat i Telemekh 145–152

Bernstein AV, Tomfield YL, Schagaev IV(1993) RAM of high reliability properties. II. Avtomat. i

Telemekh 169–179

Binder D, Smith EC, Holman AB (1975) Satellite anomalies from galactic cosmic rays. IEEE

Trans Nucl Sci 22:2675–2680. doi:10.1109/TNS.1975.4328188

240 References

http://dx.doi.org/10.1109/ICICDT.2004.1309976
http://dx.doi.org/10.1109/ICICDT.2004.1309976
http://dx.doi.org/10.1109/TNS.1975.4328188

Birolini A (2014) Reliability engineering, 7th edn. Springer, Heidelberg

Blake JB, Mandel R (1986) On-orbit observations of single event upset in Harris HM-6508 1K

RAMS. IEEE Trans Nucl Sci 33:1616–1619. doi:10.1109/TNS.1986.4334651

Blandford JT, Waskiewicz AE, Pickel JC (1984) Cosmic ray induced permanent damage in

MNOS EAROMs. IEEE Trans Nucl Sci 31:1568–1570

Bläser L (2006) A component language for structured parallel programming. Proc JMLC, Oxford,

UK

Bläser L (2007) A high-performance operating system for structured concurrent programs. In:

Proceedings of the workshop on Programming Languages and Operating Systems (PLOS), Oct

2007

Boatella C, Hubert G, Ecoffet R, Duzellier S (2009) ICARE on-board SAC-C: more than 8 years of

SEU & MCU, analysis and prediction. IEEE, pp 369–374

Bodsberg L, Hokstad P (1995) A system approach to reliability and life-cycle cost of process

safety-systems. IEEE Trans Reliab 44:179–186

Bogliolo A, Favalli M, Damiani M (2000) Enabling testability of fault-tolerant circuits by means

of IDDQ checkable voters. IEEE Trans Very Large Scale Integr Syst 8:415–419

Bose RC, Ray-Chaudhuri DK (1960) On a class of error correcting binary group codes. Inf Control

3:68–79

Bougerol A, Miller F, Buard N (2008) SDRAM architecture & single event effects revealed with

laser. In: 14th IEEE international on-line testing symposium (IOLTS’08). pp 283–288

Bougerol A, Miller F, Guibbaud N, Gaillard R, Moliere F, Buard N (2010) Use of laser to explain

heavy ion induced SEFIs in SDRAMs. IEEE Trans Nucl Sci 57:272–278. doi:10.1109/TNS.

2009.2037418

Bougerol A, Miller F, Guibbaud N, Leveugle R, Carriere T, Buard N (2011) Experimental

demonstration of pattern influence on DRAM SEU and SEFI radiation sensitivities. IEEE

Trans Nucl Sci 58:1032–1039

Bouricius WG, Carter WC, Schneider PR (1969) Reliability modeling techniques for self-

repairing computer systems. In: Proceedings of the 1969 24th national conference, ACM’

69. ACM, New York, NY, pp 295–309

Bradley PD, Normand E (1998) Single event upsets in implantable cardioverter defibrillators.

IEEE Trans Nucl Sci 45:2929–2940

Breuer MA (1973) Testing for intermittent faults in digital circuits. IEEE Trans Comput

C-22:241–246

Brocklehurst S, Littlewood B, Olovsson T, Jonsson E (1994) On measurement of operational

security. IEEE Aerosp Electron Syst Mag 9:7–16

Bryant R, O’Hallaron D (2002) Computer systems: a programmer’s perspective. Prentice Hall,

Upper Saddle River, NJ

Buchner S, Baze M, Brown D, McMorrow D, Melinger J (1997) Comparison of error rates in

combinational and sequential logic. IEEE Trans Nucl Sci 44:2209–2216

Buckle R, Highleyman WH (2003) The new nonstop advanced architecture: a massive jump in

processor reliability. Connection 24

Caldwell DW (1998) DSIGDE/PowerAnomaly Day300: analysis and resolution

Carter WC (1979) Hardware fault tolerance. In: Computing systems reliability. CUP Archive, pp

211–263

Carter WC, Bouricius WG (1971) A survey of fault tolerant computer architecture and its

evaluation. Computer 4:9–16

Carter WC, Schneider PR (1968) Design of dynamically checked computers. In: IFIP congress (2).

pp 878–883

Caywood JM, Prickett BL (1983) Radiation-induced soft errors and floating gate memories. In:

21st annual reliability physics symposium, 1983, pp 167–172

Cazeaux JM, Rossi D, Metra C (2004) New high speed CMOS self-checking voter. In: Pro-

ceedings of the international on-line testing symposium, 10th IEEE (IOLTS’04). IEEE Com-

puter Society, Washington, DC, p 58

References 241

http://dx.doi.org/10.1109/TNS.1986.4334651
http://dx.doi.org/10.1109/TNS.2009.2037418
http://dx.doi.org/10.1109/TNS.2009.2037418

Cha H, Rudnick EM, Choi GS, Patel JH, Iyer RK (1993) A fast and accurate gate-level transient

fault simulation environment. In: Digest of papers, presented at the twenty-third international

symposium on the fault-tolerant computing, 1993. FTCS-23, pp 310–319

Chen CL, Hsiao MY (1984) Error-correcting codes for semiconductor memory applications: a

state-of-the-art review. IBM J Res Dev 28:124–134

Claeys CL, Simoen E (2002) Radiation effects in advanced semiconductor materials and devices.

Springer, Heidelberg

Coe T, Mathisen T, Moler C, Pratt V (1995) Computational aspects of the pentium affair. IEEE

Comput Sci Eng 2:18–30

Conlon JC, Lilius WA, Tubbesing FH (1982) Test and evaluation of system reliability, availabil-

ity, maintainability: a primer. Office of the Director, Defense Test and Evaluation, Under

Secretary of Defense for Research and Engineering

Constantinescu C (2003) Trends and challenges in VLSI circuit reliability. IEEE Micro 23:14–19

Constantinescu C, Parulkar I, Harper R, Michalak S (2008) Silent data corruption – myth or

reality? In: IEEE international conference on dependable systems and networks with FTCS and

DCC, (DSN 2008), pp 108–109

Cottrell PE, Troutman RR, Ning TH (1979) Hot-electron emission in N-channel IGFET’s. IEEE

Trans Electron Dev 26:520–533

Crain SH, Velazco R, Alvarez MT, Bofill A, Yu P, Koga R (1999) Radiation effects in a fixed-

point digital signal processor. Presented at the radiation effects data workshop, 1999, pp 30–34

Czajkowski DR, Pagey MP, Samudrala PK, Goksel M, Viehman MJ (2005) Low power, high-

speed radiation hardened computer & flight experiment. Presented at the IEEE aerospace

conference, 2005, pp 1–10

Czajkowski DR, Samudrala PK, Pagey MP (2006) SEU mitigation for reconfigurable FPGAs.

Presented at the IEEE aerospace conference, 2006, p 7

DeAngelis D, Lauro JA (1976) Software recovery in the fault-tolerant spaceborne computer. , In:

IEEE computer society sixth int. fault-tolerant computing symp, Pittsburg, PA, Digest. pp

143–148

Department of Electrical Engineering (1952) Whirlwind I master drawing list and general rack

layout of computer. MIT, Cambridge, MA

Desko JC, Darwish MN, Dolly MC, Goodwin CA, Dawes WR, Titus JL (1990) Radiations

hardening of a high voltage IC technology (BCDMOS). IEEE Trans Nucl Sci 37:2083–2088

Dhillon BS (2006) Maintainability, maintenance, and reliability for engineers. CRC, Boca Raton,

FL

Dhillon YS, Diril AU, Chatterjee A, Metra C (2005) Load and logic co-optimization for design of

soft-error resistant nanometer CMOS circuits. In: IEEE International on-line testing sympo-

sium, Los Alamitos, CA, pp 35–40

Dijkstra EW (1965) Solution of a problem in concurrent programming control. Commun ACM

8:569

Dixit A, Wood A (2011) The impact of new technology on soft error rates. In: IEEE international

reliability physics symposium (IRPS), 2011, pp 5B.4.1–5B.4.7

Dodd PE (2005) Physics-based simulation of single-event effects. IEEE Trans Dev Mater Reliab

5:343–357

Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in digital

microelectronics. IEEE Trans Nucl Sci 50:583–602

Dodd PE, Shaneyfelt MR, Walsh DS, Schwank JR, Hash GL, Loemker RA, Draper BL, Winokur

PS (2000) Single-event upset and snapback in silicon-on-insulator devices and integrated

circuits. IEEE Trans Nucl Sci 47:2165–2174

Dreslinski RG, Wieckowski M, Blaauw D, Sylvester D, Mudge T (2010) Near-threshold comput-

ing: reclaiming Moore’s law through energy efficient integrated circuits. Proc IEEE

98:253–266

242 References

Dufour C, Garnier P, Carriere T, Beaucour J, Ecoffet R, Labrunee M (1992) Heavy ion induced

single hard errors on submicronic memories [for space application]. IEEE Trans Nucl Sci

39:1693–1697

Dugan JB, Trivedi KS (1989) Coverage modeling for dependability analysis of fault-tolerant

systems. IEEE Trans Comput 38:775–787

Dunn M (1991) Designer fault models for VLSI. Presented at the IEE colloquium on design for

testability, pp 4/1–4/5

Duzellier S, Falguere D, Ecoffet R (1993) Protons and heavy ions induced stuck bits on large

capacity RAMs. In: Second European conference on radiation and its effects on components

and systems (RADECS 93), pp 468–472

Duzellier S, Ecoffet R, Falguere D, Nuns T, Guibert L, Hajdas W, Calvert MC (1997) Low energy

proton induced SEE in memories. IEEE Trans Nucl Sci 44:2306–2310

Dyer CS, Sims AJ, Farren J, Stephen J (1990) Measurements of solar flare enhancements to the

single event upset environment in the upper atmosphere [avionics]. IEEE Trans Nucl Sci

37:1929–1937

Dyer CS, Truscott PR, Evans H, Sims AJ, Hammond N, Comber C (1996) Secondary radiation

environments in heavy space vehicles and instruments. Adv Space Res 17:53–58

Eckert DI (2001) Odyssey MEEB analysis. Lockheed-Martin presentation

Ecoffet R, Duzellier S, Tastet P, Aicardi C, Labrunee M (1994) Observation of heavy ion induced

transients in linear circuits. In: IEEE radiation effects data workshop, 1994, pp 72–77

ECSS (2007) Space engineering: methods for the calculation of radiation received and its effects,

and a policy for design margins—ECSS-E-10–12 Draft 0.5

Edwards R, Dyer C, Normand E (2004) Technical standard for atmospheric radiation single event

effects, (SEE) on avionics electronics. Presented at the IEEE radiation effects data workshop,

2004, pp 1–5

EIA/JEDEC Standard (1996) Test procedures for the measurement of single-event effects in

semiconductor devices from heavy ion irradiation. EIA/JEDEC Standard

Elsayed EA (1996) Reliability engineering. Prentice Hall, Upper Saddle River, NJ, Har/Dsk.

edition

Everett R, Swain F (1947) Report R-127, Whirlwind I computer block diagrams. MIT Servo-

mechanisms Laboratory

Felix JA, Shaneyfelt MR, Schwank JR, Dalton SM, Dodd PE, Witcher JB (2007) Enhanced

degradation in power MOSFET devices due to heavy ion irradiation. IEEE Trans Nucl Sci

54:2181–2189

Fieseler PD, Ardalan SM, Frederickson AR (2002) The radiation effects on Galileo spacecraft

systems at Jupiter. IEEE Trans Nucl Sci 49:2739–2758. doi:10.1109/TNS.2002.805386

Fischer TA (1987) Heavy-ion-induced, gate-rupture in power MOSFETs. IEEE Trans Nucl Sci

34:1786–1791

Fisher JA (1983) Very long instruction word architectures and the ELI-512. Proceedings of the

10th annual international symposium on computer architecture. ACM, Stockholm, Sweden, pp

140–150

Fleetwood D, Pantelides S, Schrimpf R (2008) Oxide traps, border traps, and interface traps in

SiO2. In: Fleetwood D, Pantelides S, Schrimpf R (eds) Defects in microelectronic materials

and devices. CRC, Boca Raton, FL

Flynn M (1972) Some computer organizations and their effectiveness. IEEE Trans Comput

C-21:948

Fortes JAB, Raghavendra CS (1985) Gracefully degradable processor arrays. IEEE Trans Comput

C-34:1033–1044

Franklin M, Saluja KK (1995) Embedded RAM testing. Records of the 1995 I.E. international

workshop on memory technology, design and testing, pp 29–33

Franzon P, Harrod W, Hill K, Hiller J, Karp S, Keckler S, Klein D, Lucas R (2010) Guide for HPC

applications on IBM power 755 system

Friedman AD (1967) Fault detection in redundant circuits. IEEE Trans Electr Comput

EC-16:99–100

References 243

http://dx.doi.org/10.1109/TNS.2002.805386

Furutani K, Arimoto K, Miyamoto H, Kobayashi T, Yasuda K, Mashiko K (1989) A built-in

Hamming code ECC circuit for DRAMs. IEEE J Solid State Circuits 24:50–56

Galey JM, Norby RE, Roth JP (1961) Techniques for the diagnosis of switching circuit failures. In:

Proceedings of the second annual symposium on switching circuit theory and logical design

(SWCT 1961), pp 152–160

Gaisler J (2002) A portable and fault-tolerant microprocessor based on the SPARC v8 architecture.

European Space Agency, Noorwijk. Conference on dependable systems and networks, DSN

2002. doi:10.1109/DSN.2002.1028926

Geer D (2007) For programmers, multicore chips mean multiple challenges. Computer 40:17–19

Geppert L (2004) A static RAM says goodbye to data errors [radiation induced soft errors]. IEEE

Spectr 41:16–17

Gnedenko B, Pavlov IV, Ushakov IA (1999) Statistical reliability engineering, 1st edn. Wiley-

Interscience, Hoboken NJ

Goldstein L (1979) Controllability/observability analysis of digital circuits. IEEE Trans Circuit

Syst 26:685–693

Goldstine A, Goldstine HH (1946) ENIAC, the electronic numerical integrator. Math Tables Other

Aids Comput 1:97–110

Gosden J (1966) Explicit parallel processing description and control in programs for multi- and

uni- processor computers. In: Proc of AFIPS’66, 7–10 Nov 1966. ACM, New York, pp

651–660

G€ossel M, Ocheretny V, Sogomonyan E, Marienfeld D (2008) New methods of concurrent

checking. Springer, The Netherlands

Goth G (2009) Entering a parallel universe. Commun ACM 52:15

Gountanis RJ, Viss NL (1966) A method of processor selection for interrupt handling in a

multiprocessor system. Proc IEEE 54:1812–1819

Gregory BL, Shafer BD (1973) Latch-up in CMOS integrated circuits. IEEE Trans Nucl Sci

20:293–299

Guenzer CS, Wolicki EA, Allas RG (1979) Single event upset of dynamic rams by neutrons and

protons. IEEE Trans Nucl Sci 26:5048–5052

Gutknecht J (2006) The dining philosophers problem revisited, JMLC 2006. Lect Notes Comput

Sci 4228:377–382

Hamming RW (1950) Error correction and error detection coding. Bell Syst Tech J 29:147–160

Hana HH, Johnson BW (1986) Concurrent error detection in VLSI circuits using time redundancy.

In: Proc IEEE Southeastcon 1986 regional conf., pp 208–212

Haraszti TP (2000) CMOS memory circuits. Springer, New York, NY

Harboe-Sorensen R, Guerre F-X, Lewis G (2007) Heavy-ion SEE test concept and results for

DDR-II memories. IEEE Trans Nucl Sci 54:2125–2130. doi:10.1109/TNS.2007.909747

Hauge PS, Ziegler JF, Srinivasan GR (1996) Special issue: terrestrial cosmic rays and soft errors.

IBM J Res Dev. http://portal.acm.org/citation.cfm?id¼226354. Accessed 7 Jan 2010

Hawkins C, Keshavarzi A, Segura J (2003) CMOS IC nanometer technology failure mechanisms.

The custom integrated circuits conference, 2003. Proceedings of the IEEE, pp 605–611

Hayes JP (1975) Detection of pattern-sensitive faults in random-access memories. IEEE Trans

Comput C-24:150–157

Hazucha P, Svensson C (2000) Impact of CMOS technology scaling on the atmospheric neutron

soft error rate. IEEE Trans Nucl Sci 47:2586–2594

Hazucha P, Karnik T, Maiz J, Walstra S, Bloechel B, Tschanz J, Dermer G, Hareland S,

Armstrong P, Borkar S (2003) Neutron soft error rate measurements in a 90-nm CMOS process

and scaling trends in SRAM from 0.25- mu;m to 90-nm generation. Technical digest, IEEE

international electron devices meeting. (IEDM’03). pp 21.5.1–21.5.4

Heidel DF, Marshall PW, LaBel KA, Schwank JR, Rodbell KP, Hakey MC, Berg MD, Dodd PE,

Friendlich MR, Phan AD, Seidleck CM, Shaneyfelt MR, Xapsos MA (2008) Low energy

proton single-event-upset test results on 65 nm SOI SRAM. IEEE Trans Nucl Sci

55:3394–3400

Heise B (2009) Computerproblemelegen check-in-system der lufthansalahr. http://www.heise.de/

newsticker/meldung/Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.

html

244 References

http://dx.doi.org/10.1109/DSN.2002.1028926
http://dx.doi.org/10.1109/TNS.2007.909747
http://www.heise.de/newsticker/meldung/Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.html
http://www.heise.de/newsticker/meldung/Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.html
http://www.heise.de/newsticker/meldung/Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.html

Hennessy JL, Patterson DA (2006) Computer architecture: a quantitative approach, 4th edn.

Morgan Kaufmann, Burlington, MA

Hentschke R, Marques F, Lima F, Carro L, Susin A, Reis R (2002) Analyzing area and perfor-

mance penalty of protecting different digital modules with hamming code and triple modular

redundancy. In: Proceedings of the 15th symposium on integrated circuits and systems design,

SBCCI’02. IEEE computer society, Washington, DC, p 95

Hill MD, Rajwar R (2001) The rise and fall of multiprocessor papers in ISCA [www.document].

The rise and fall of multiprocessor papers in the international symposium on computer

architecture (ISCA). http://pages.cs.wisc.edu/~markhill/mp2001.html. Accessed 4 Aug 2010

Hofstra University (1999) History in the computing curriculum. Appendix 4 1950–59. www.

comphist.org/pdfs/CompHist_9812tla4.pdf

Hohl JH, Galloway KF (1987) Analytical model for single event burnout of power MOSFETs.

IEEE Trans Nucl Sci 34:1275–1280

Holland JH (1960) Iterative circuit computers. In: Western joint IRE- AIEE-ACM computer

conference, May 3–5, 1960, San Francisco, CA, pp. 259–265

Howe CL, Weller RA, Reed RA, Mendenhall MH, Schrimpf RD, Warren KM, Ball DR,

Massengill LW, LaBel KA, Howard JW, Haddad NF (2005) Role of heavy-ion nuclear

reactions in determining on-orbit single event error rates. IEEE Trans Nucl Sci 52:2182–2188

Hsiao MY (1970) A class of optimal minimum odd-weight-column SEC-DED codes. IBM J Res

Dev 14:395–401

Hsieh CM, Murley PC, O’Brien RR (1981) A field-funneling effect on the collection of alpha-

particle-generated carriers in silicon devices. IEEE Electron Device Lett 2:103–105

Hsieh C-M, Murley PC, O’Brien RR (1983) Collection of charge from alpha-particle tracks in

silicon devices. IEEE Trans Electron Dev 30:686–693

Hughes HL, Benedetto JM (2003) Radiation effects and hardening of MOS technology: devices

and circuits. IEEE Trans Nucl Sci 50:500–521

Hugue MM, Purtilo J (2002) Guerrilla tactics: motivating design patterns for high-dependability

applications. In: Proceedings of the 27th annual NASA Goddard/IEEE software engineering

workshop, pp 33–39

Hutcheson GD (2009) The economic implications of Moore’s Law. In: Into the nano era. pp 11–38

Ibe E, Chung SS, Wen S, Yamaguchi H, Yahagi Y, Kameyama H, Yamamoto S, Akioka T (2006)

Spreading diversity in multi-cell neutron-induced upsets with device scaling. Presented at the

IEEE custom integrated circuits conference, 2006, pp 437–444

Ibe E, Taniguchi H, Yahagi Y, K S, Toba T (2010) Impact of scaling on neutron-induced soft error

in SRAMs from a 250 nm to a 22 nm design rule. IEEE Trans Electron Dev 57:1527–1538

IBM (2007) IBM Power6 microprocessor and IBM System p 570

Irom F, Nguyen DN (2007) Single event effect characterization of high density commercial

NAND and NOR nonvolatile flash memories. IEEE Trans Nucl Sci 54:2547–2553

ITRS (2011) International technology roadmap for semiconductors

JEDEC “JESD89-3A,” (2007) www.jedec.org/sites/default/files/docs/JESD89-3A.pdf

Jennings BF (1990) Fault detection in microprocessor based systems. In: IEE colloquium on fault

tolerant techniques, pp 7/1–718

Johansson K, Dyreklev P, Granbom O, Calver MC, Fourtine S, Feuillatre O (1998) In-flight and

ground testing of single event upset sensitivity in static RAMs. IEEE Trans Nucl Sci

45:1628–1632. doi:10.1109/23.685251

Johnson BW (1989) The design and analysis of fault tolerant digital systems. Addison-Wesley,

Reading, MA

Johnson BW, Aylor JH, Hana HH (1988) Efficient use of time and hardware redundancy for

concurrent error detection in a 32-bit VLSI adder. IEEE J Solid State Circuits 23:208–215

Johnson GH, Schrimpf RD, Galloway KF, Koga R (1992) Temperature dependence of single-

event burnout in n-channel power MOSFETs [for space application]. IEEE Trans Nucl Sci

39:1605–1612

References 245

http://www.document/
http://pages.cs.wisc.edu/~markhill/mp2001.html
http://dx.doi.org/www.jedec.org/sites/default/files/docs/JESD89-3A.pdf
http://dx.doi.org/10.1109/23.685251

Johnston AH (1996) The influence of VLSI technology evolution on radiation-induced latchup in

space systems. IEEE Trans Nucl Sci 43:505–521

Johnston AH, Hughlock BW, Baze MP, Plaag RE (1991) The effect of temperature on single-

particle latchup. IEEE Trans Nucl Sci 38:1435–1441

Kaczer B, Arkhipov V, Degraeve R et al (2005) Temperature dependence of the negative bias

temperature instability in the framework of dispersive transport. Appl Phys Lett 86:143506

Kadayif I, Sen H, Koyuncu S (2010) Modeling soft errors for data caches and alleviating their

effects on data reliability. Microprocess Microsyst 34:200–214

Kaegi T, Schagaev I (2013) System software support of hardware deficiency. In: ITACS 2013,

ISBN 978- 0-9575049-0-5

Kaegi-Trachsel T et al (2009) Hardware testing on the level of tasks. Preprints of the 30th

IFACworkshop on real-time programming and 4th international workshop on real-time software,

pp 79–84. https://fedcsis.org/2009/

Karimi F, Lombardi F (2002) A scan-BIST environment for testing embedded memories. In:

Proceedings of the eighth IEEE international on-line testing workshop. pp 211–217

Karnik T, Hazucha P (2004) Characterization of soft errors caused by single event upsets in CMOS

processes. IEEE Trans Depend Secure Comput 1:128–143

Kato M, Watanabe K, Okabe T (1989) Radiation effects on ion-implanted silicon-dioxide films.

IEEE Trans Nucl Sci 36:2199–2204

Katz R, Barto R, McKerracher P, Carkhuff B, Koga R (1994) SEU hardening of field program-

mable gate arrays (FPGAs) for space applications and device characterization. IEEE Trans

Nucl Sci 41:2179–2186

Katz R, LaBel K, Wang JJ, Cronquist B, Koga R, Penzin S, Swift G (1997) Radiation effects on

current field programmable technologies. IEEE Trans Nucl Sci 44:1945–1956

Kaufman L, Johnson BW (2001) Embedded digital system reliability and safety analysis. NUREG/

GR-0020

Kim J, Hardavellas N, Mai K, Falsafi B, Hoe J (2007) Multi-bit error tolerant caches using two-

dimensional error coding. In: Proceedings of the 40th annual IEEE/ACM international sym-

posium on microarchitecture (MICRO 40), pp 197–209

Kinnersley B (2009) The language list. http://people.ku.edu/~nkinners/LangList/Extras/langlist.

htm

Kish LB (2002) End of Moore’s law: thermal (noise) death of integration in micro and nano

electronics. Phys Lett A 305:144–149

Koga R, Kolasinski WA (1989) Heavy ion induced snapback in CMOS devices. IEEE Trans Nucl

Sci 36:2367–2374

Koga R, Kolasinski WA, Marra MT, Hanna WA (1985) Techniques of microprocessor testing and

SEU-rate prediction. IEEE Trans Nucl Sci 32:4219–4224

Koga R, Crain WR, Crawford KB, Lau DD, Pinkerton SD, Yi BK, Chitty R (1991) On the

suitability of non-hardened high density SRAMs for space applications. IEEE Trans Nucl

Sci 38:1507–1513

Koga R, Crawford KB, Grant PB, Kolasinski WA, Leung DL, Lie TJ, Mayer DC, Pinkerton SD,

Tsubota TK (1993a) Single ion induced multiple-bit upset in IDT 256K SRAMs. In: Second

European conference on radiation and its effects on components and systems (RADECS 93),

pp 485–489

Koga R, Pinkerton SD, Lie TJ, Crawford KB (1993b) Single-word multiple-bit upsets in static

random access devices. IEEE Trans Nucl Sci 40:1941–1946

Koga R, Crain SH, Yu P, Crawford KB (2001a) SEE sensitivity determination of high-density

DRAMs with limited-range heavy ions. In: IEEE radiation effects data workshop, 2001, pp

182–189

Koga R, Yu P, Crawford KB, Crain SH, Tran VT (2001b) Permanent single event functional

interrupts (SEFIs) in 128- and 256-megabit synchronous dynamic random access memories

(SDRAMs). In: IEEE radiation effects data workshop, pp 6–13

246 References

https://fedcsis.org/2009/

Kogge P, Bergman K, Borkar S, Campbell D, CarlsonW, DallyW, Denneau M, Franzon P, Harrod

W, Hill K, Hiller J, Karp S, Keckler S, Klein D, Lucas R, Richards M, Scarpelli A, Scott S,

Snavely A, Sterling T, Williams RS, Yelick KA (2008) Exascale computing study: technology

challenges in achieving exascale systems. DARPA IPTO, technical report DARPA-2008-13,

Sept 2008

Koren I, Koren Z (1998) Defect tolerance in VLSI circuits: techniques and yield analysis. Proc

IEEE 86:1819–1838

Koren I, Krishna CM (2007) Fault-tolerant systems. Morgan Kaufmann, San Francisco, CA

Koren I, Singh AD (1990) Fault tolerance in VLSI circuits. Computer 23:73–83

Kovalenko IN, Kuznetzov NY, Pegg PA (1997) Mathematical theory of reliability of time

dependent systems with practical applications, 1st edn. Wiley, New York, NY

Kulkarni GV, Nicola FV, Trivedi SK (1987) Effects of checkpointing and queueing on program

performance. Duke University, Durham, NC, USA

Kumar S, Kim C, Sapatnekar S (2006) An analytical model for negative bias temperature

instability. In: Proceedings of IEEE/ACM ICCAD, pp 493–496

LaBel K, Stassinopoulos EG, Brucker GJ, Stauffer CA (1992) SEU tests of a 80386 based flight-

computer/data-handling system and of discrete PROM and EEPROM devices, and SEL tests of

discrete 80386, 80387, PROM, EEPROM and ASICs, Workshop record. IEEE radiation effects

data workshop, 1992, pp 1–11

LaBel KA, Gates MM, Moran AK, Kim HS, Seidleck CM, Marshall P, Kinnison J, Carkhuff B

(1996) Radiation effect characterization and test methods of single-chip and multi-chip stacked

16 Mbit DRAMs. IEEE Trans Nucl Sci 43:2974–2981

Ladbury R, Berg MD, Kim H, LaBel K, Friendlich M, Koga R, George J, Crain S, Yu P, Reed RA

(2006) Radiation performance of 1 Gbit DDR SDRAMs fabricated in the 90 nm CMOS

technology node. In: IEEE radiation effects data workshop, pp 126–130

Lala JH, Harper RE (1994) Architectural principles for safety-critical real-time applications. Proc

IEEE 82:25–40

Lamport L (1983) The weak Byzantine Generals problem. J ACM 30:668–676

Lamport L, Melliar-Smith P (1985) Synchronising clocks in the presence of faults. J ACM 32

(1):52–78

Landis DL (1989) A self-test system architecture for reconfigurable WSI. In: International test

conference proceedings. Meeting the tests of time, pp 275–282

Landwehr CE, Bull AR, McDermott JP, Choi WS (1994) A taxonomy of computer program

security flaws. ACM Comput Surv 26:211–254

LaPedus M, EETimes (2003) Intel gears up 90-nm processor, chip set rollout. http://www.eetimes.

com/conf/idf/showArticle.jhtml?articleID¼10800811&kc¼3172

Laprie J (1995) Dependability – its attributes, impairments and means. In: Randell B, Laprie J,

Kopetz H, Littlewood B (eds) Predictably dependable computing systems. Springer, Heidel-

berg, pp 1–24

Laprie J-C (2008) From dependability to resilience 8, G8–G9

Laprie J, Avizienis A (1986) Dependable computing: from concepts to design diversity. In: Proc

IEEE, pp 629–638

Laprie JCC, Avizienis A, Kopetz H (eds) (1992) Dependability: basic concepts and terminology.

Springer, New York, NY

Latchoumy P, Sheik P, Khader A (2011) Survey on fault tolerance in grid computing

Lawrence RK (2007) Radiation characterization of 512Mb SDRAMs. In: IEEE radiation effects

data workshop, pp 204–207

Leavy JF, Poll RA (1969) Radiation-induced integrated circuit latchup. IEEE Trans Nucl Sci

16:96–103

Li J, Swartzlander E (1992) Concurrent error detection in ALUs by recomputing with rotated

operands. In: Proceedings of the IEEE international workshop on defect and fault tolerance in

VLSI systems, pp 109–116

References 247

http://www.eetimes.com/conf/idf/showArticle.jhtml?articleID=10800811&kc=3172
http://www.eetimes.com/conf/idf/showArticle.jhtml?articleID=10800811&kc=3172
http://www.eetimes.com/conf/idf/showArticle.jhtml?articleID=10800811&kc=3172
http://www.eetimes.com/conf/idf/showArticle.jhtml?articleID=10800811&kc=3172

Lie CH, Hwang CL, Tillman FA (1977) Availability of maintained systems: a state-of-the-art

survey. AIIE Transact 9:247–259

Lin S, Costello DJ (1983) Error control coding: fundamentals and applications. Prentice Hall,

Upper Saddle River, NJ

Mahout G, Pearce M, Andrieux M-L, Arvidsson C-B, Charlton DG, Dinkespiler B, Dowell JD,

Gallin-Martel L, Homer RJ, Jovanovic P, Kenyon IR, Kuyt G, Lundquist J, Mandic I,

Martin O, Shaylor HR, Stroynowski R, Troska J, Wastie RL, Weidberg AR, Wilson JA, Ye

J (2000) Irradiation studies of multimode optical fibres for use in ATLAS front-end links. Nucl

Instrum Meth A 446:426–434

Maiz J, Hareland S, Zhang K, Armstrong P (2003) Characterization of multi-bit soft error events in

advanced SRAMs. In: IEEE international electron devices meeting (IEDM’03), Technical

digest, pp 21.4.1–21.4.4

Mao W, Gulati RK, Goel DK, Ciletti MD (1990) QUIETEST: a quiescent current testing

methodology for detecting leakage faults. In: IEEE international conference on computer-

aided design (ICCAD-90), Digest of technical papers, pp 280–283

Marshall RW (1963) Microelectronic devices for application in transient nuclear radiation envi-

ronments. In: IEEE transactions on aerospace and navigational electronics, technical paper, pp

1.4.1–1–1.4.1–6

Mathew B, Saab DG (1993) Partial reset: an inexpensive design for testability approach. In:

Proceedings of the [4th] European conference on design automation, with the European event

in ASIC design. pp 151–155

Matijevic J (1996) Mars Pathfinder microrover – implementing a low cost planetary mission

experiment. John Hopkins Applied Physics Laboratory, pp 16–19

Matsunaga J, Momose H, Iizuka H, Kohyama S (1980) Characterization of two step impact

ionization and its influence in NMOS and PMOS VLSI’s. Presented at the international

electron devices meeting. pp 736–739

Mavis DG (2002) Single event transient phenomena—Challenges and solutions. In: Microelec-

tronics reliability and qualification workshop

Mavis DG, Eaton PH (2002) Soft error rate mitigation techniques for modern microcircuits. In:

40th annual reliability physics symposium proceedings, pp 216–225

May T (1979) Soft errors in VLSI: present and future. IEEE Trans Component Hybrid Manufact

Technol 2:377–387

May TC, Woods MH (1979) Alpha-particle-induced soft errors in dynamic memories. IEEE Trans

Electron Dev 26:2–9

May TC, Scott GL, Meieran ES, Winer P, Rao VR (1984) Dynamic fault imaging of VLSI random

logic devices. In: 22nd Annual reliability physics symposium, pp 281–283

McCluskey EJ, Tseng C-W (2000) Stuck-fault tests vs. actual defects. In: Proceedings of the

international test conference, 2000, pp 336–342

McEvoy D (1981) The architecture of Tandem’s NonStop system. In: Proceedings of the ACM’81

Conference, p 245

McMahan MA, Leitner D, Gimpel T, Morel J, Ninemire B, Siero R, Silver C, Thatcher R (2004) A

16MeV/nucleon cocktail for heavy ion testing. In: IEEE radiation effects data workshop, 2004,

pp 156–159

Mei KCY (1974) Bridging and stuck-at faults. IEEE Trans Comput C-23:720–727

Messenger GC, Ash MS (1992) The effects of radiation on electronic systems, 2nd edn. Springer,

New York, NY

Metra C, Favalli M, Ricco B (1997) Compact and low power on-line self-testing voting scheme.

Proceedings of the IEEE international symposium on defect and fault tolerance in VLSI

systems. pp 137–145

Meyer FJ, Pradhan DK (1991) Consensus with dual failure modes. IEEE Trans Parallel Distr Syst

2:214–222

Miller LS, Mullin JB (1991) Electronic materials: from silicon to organics. Springer, New york,

NY

248 References

Miller LA, Brice DK, Prinja AK, Picraux ST (1994) Molecular dynamics simulations of bulk

displacement threshold energies in Si. Radiation effects and defects in solids: incorporating

plasma science and plasma technology 129, 127

Monkman S, Schagaev I (2013) Redundancy + repeatability¼ recoverability. Electronics

2:212–233. doi:10.3390/electronics2030212, ISSN 2079-9292

MoonTK (2005)Error correction coding:mathematicalmethods and algorithms.Wiley,HobokenNJ

Mrstik BJ, Hughes HL, McMarr PJ, Lawrence RK, Ma DI, Isaacson IP, Walker RA (2000) Hole

and electron trapping in ion implanted thermal oxides and SIMOX. IEEE Trans Nucl Sci

47:2189–2195

Mukherjee SS, Emer J, Fossum T, Reinhardt SK (2004) Cache Scrubbing in Microprocessors:

Myth or Necessity? Proceedings of the 10th IEEE Pacific rim international symposium on

dependable computing (PRDC’04). IEEE Computer Society, Washington, DC, pp 37–42

Nair R (2002) Effect of increasing chip density on the evolution of computer architectures. IBM J

Res Dev 46:223–234

Nair R, Thatte SM, Abraham JA (1978) Efficient algorithms for testing semiconductor random-

access memories. IEEE Trans Comput C-27:572–576

Naseer R, Bhatti RZ, Draper J (2006) Analysis of soft error mitigation techniques for register files

in IBM Cu-08 90nm technology. In: 49th IEEE international Midwest symposium on circuits

and systems (MWSCAS’06), pp 515–519

NASNGSFC Landsat-7 Project Office. Private communication, 1995

Neuberger G, de Lima F, Carro L, Reis R (2003) A multiple bit upset tolerant SRAM memory.

ACM Trans Des Autom Electron Syst 8:577–590

Neuberger G, de Lima Kastensmidt FG, Reis R (2005) An automatic technique for optimizing

Reed-Solomon codes to improve fault tolerance in memories. IEEE Design Test Comput

22:50–58

Newell A (1960) A on programming a highly parallel machine to be an intelligent technician, IRE-

AIEE-ACM ’60 (Western), May 3–5. ACM, New York, NY, pp 267–282

Nguyen DN, Guertin SM, Swift GM, Johnston AH (1999) Radiation effects on advanced flash

memories. IEEE Trans Nucl Sci 46:1744–1750

Nicolaidis M (ed) (2010) Soft errors in modern electronic systems, 1st edn. Springer, New York,

NY

Ning TH, Yu HN (1974) Optically induced injection of hot electrons into SiO2. J Appl Phys

45:5373–5378

Nishioka Y, Ohyu K, Ohji Y, Kato M, da Silva EF, Ma TP (1989) Radiation hardened micron and

submicron MOSFETs containing fluorinated oxides. IEEE Trans Nucl Sci 36:2116–2123

Normand E, Wert JL, Quinn H, Fairbanks TD, Michalak S, Grider G, Iwanchuk P, Morrison J,

Wender S, Johnson S (2010) First record of single-event upset on ground, cray-1 computer at

Los Alamos in 1976. IEEE Trans Nucl Sci 57:3114–3120

Northcliffe L, Schilling R (1970) Range and stopping-power tables for heavy ions. At Data Nucl

Data Tables 7:233–463

Oh N, Shirvani PP, McCluskey EJ (2002a) Control-flow checking by software signatures. IEEE

Trans Reliab 51:111–122

Oh N, Shirvani PP, McCluskey EJ (2002b) Error detection by duplicated instructions in super-

scalar processors. IEEE Trans Reliab 51:63–75

Oldham TR, Ladbury RL, Friendlich M, Kim HS, Berg MD, Irwin TL, Seidleck C, LaBel KA

(2006) SEE and TID characterization of an advanced commercial 2Gbit NAND flash nonvol-

atile memory. IEEE Trans Nucl Sci 53:3217–3222

Oldham TR, Suhail M, Friendlich MR, Carts MA, Ladbury RL, Kim HS, Berg MD, Poivey C,

Buchner SP, Sanders AB, Seidleck CM, LaBel KA (2008) TID and SEE response of advanced

4G NAND flash memories. In: IEEE radiation effects data workshop, pp 31–37

Olsen J, Becher PE, Fynbo PB, Raaby P, Schultz J (1993) Neutron-induced single event upsets in

static RAMS observed a 10 km flight attitude. IEEE Trans Nucl Sci 40:74–77

References 249

http://dx.doi.org/10.3390/electronics2030212

Owens BD, Adams ME, Benzce WJ, Green G, Shestople P (2006) The effects of radiation events

on gravity probe B. IEEE Trans Nucl Sci (in press)

Pankratius V, Jannesari A, Tichy WF (2009) Parallelizing Bzip2: a case study in multicore

software engineering. IEEE Softw 26:70–77

Patel JH, Fung LY (1982) Concurrent error detection in ALU’s by recomputing with shifted

operands. IEEE Trans Comput C-31:589–595

Paul S, Cai F, Zhang X, Bhunia S (2011) Reliability-driven ECC allocation for multiple bit error

resilience in processor cache. IEEE Trans Comput 60:20–34

Pellish JA, Reed RA, Schrimpf RD, Alles ML, Varadharajaperumal M, Niu G, Sutton AK,

Diestelhorst RM, Espinel G, Krithivasan R, Comeau JP, Cressler JD, Vizkelethy G, Marshall

PW, Weller RA, Mendenhall MH, Montes EJ (2006) Substrate engineering concepts to

mitigate charge collection in deep trench isolation technologies. IEEE Trans Nucl Sci

53:3298–3305

Pickel JC, Blandford JT (1978) Cosmic ray induced in MOS memory cells. IEEE Trans Nucl Sci

25:1166–1171

Pickel JC, Blandford JT (1980) Cosmic-ray-induced errors in MOS devices. IEEE Trans Nucl Sci

27:1006–1015

Pierce WH (1965) Failure-tolerant computer design. Academic, New York, NY

Plyaskota S, Schagaev I (1995) Economic effectiveness of fault tolerance. Automation and

Remote Control 07:1017–1026

Podgorsak EB (2009) Radiation physics for medical physicists. Springer, New York, NY

Pomeranz I, Reddy SM (1993) Classification of faults in synchronous sequential circuits. IEEE

Trans Comput 42:1066–1077

Pouponnot ALR (2005) Strategic use of SEE mitigation techniques for the development of the

ESA microprocessors: past, present and future. In: Proceedings of the 11th IEEE international

on-line testing symposium, (IOLTS’05). IEEE Computer Society, Washington, DC, pp

319–323

Power 6 Specs: IBM Power6 Microprocessor and IBM System p 570, 2007

Prasad AVSS, Agrawal VD, Atre MV (2002) A new algorithm for global fault collapsing into

equivalence and dominance sets. In: Proceedings of the international test conference, 2002, pp

391–397

Price D (1995) Pentium FDIV flaw-lessons learned. IEEE Micro 15:86–88

Pritchard BE, Swift GM, Johnston AH (2002) Radiation effects predicted, observed, and Galileo

compared for spacecraft systems. In: 2002 IEEE radiation effects data workshop. California

Institute of Technology, Pasadena, CA, USA

Puchner H, Kapre R, Sharifzadeh S, Majjiga J, Chao R, Radaelli D, Wong S (2006) Elimination of

single event latchup in 90 nm SRAM technologies. Presented at the 44th annual reliability

physics symposium proceedings. IEEE International, pp 721–722

Qian Y (2008) Information assurance: dependability and security in networked systems. Morgan

Kaufmann, Burlington, MA

Quinn H, Graham P, Krone J, Caffrey M, Rezgui S (2005) Radiation-induced multi-bit upsets in

SRAM-based FPGAs. IEEE Trans Nucl Sci 52:2455–2461

Ramanarayanan R, Degalahal VS, Krishnan R, Kim J, Narayanan V, Xie Y, Irwin MJ, Unlu K

(2009) Modeling soft errors at the device and logic levels for combinational circuits. IEEE

Trans Depend Secure Comput 6:202–216

Ravishankar K, Iyer ZK (2003) Hardware and software error detection

Reed IS, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Ind Appl Math

8:300–304

Reed RA, Carts MA, Marshall PW, Marshall CJ, Buchner S, La Macchia M, Mathes B,

McMorrow D (1996) Single Event Upset cross sections at various data rates. IEEE Trans

Nucl Sci 43:2862–2867

250 References

Reed RA, Carts MA, Marshall PW, Marshall CJ, Musseau O, McNulty PJ, Roth DR, Buchner S,

Melinger J, Corbiere T (1997) Heavy ion and proton-induced single event multiple upset. IEEE

Trans Nucl Sci 44:2224–2229

Reed RA, Weller RA, Schrimpf RD, Mendenhall MH, Warren KM, Massengill LW (2006)

Implications of nuclear reactions for single event effects test methods and analysis. IEEE

Trans Nucl Sci 53:3356–3362. doi:10.1109/TNS.2006.885950

Reviriego P, Maestro JA, Cervantes C (2007) Reliability Analysis of Memories Suffering Multiple

Bit Upsets. IEEE Trans Device Mater Reliab 7:592–601

Reviriego P, Maestro JA, Baeg S, Wen S, Wong R (2010) Protection of memories suffering MCUs

through the selection of the optimal interleaving distance. IEEE Trans Nucl Sci 57:2124–2128

Reynolds DA, Metze G (1978) Fault detection capabilities of alternating logic. IEEE Trans

Comput C-27:1093–1098

Roche P, Gasiot G (2005) Impacts of front-end and middle-end process modifications on terrestrial

soft error rate. IEEE Trans Device Mater Reliab 5:382–396

Rockett LR (1988) An SEU-hardened CMOS data latch design. IEEE Trans Nucl Sci

35:1682–1687

Roy RK, Niermann TM, Patel JH, Abraham JA, Saleh RA (1988) Compaction of ATPG-generated

test sequences for sequential circuits. In: IEEE international conference on computer-aided

design (ICCAD-88). Digest of technical papers, pp 382–385

Sager D, Group DP, Corp I (2001) The microarchitecture of the pentium 4 processor. Intel Technol

J 1:2001

Saleh AM, Serrano JJ, Patel JH (1990) Reliability of scrubbing recovery-techniques for memory

systems. IEEE Trans Reliab 39:114–122

Sandireddy RKKR, Agrawal VD (2005) Diagnostic and detection fault collapsing for multiple

output circuits. In: Proceedings of the design, automation and test in Europe, vol 2, pp

1014–1019

Schagaev I (1986a) Detecting the defective computer in two-unit, fault tolerant system having a

sliding stand- by units. Automatic and Remote Control 5:143–150

Schagaev I (1986b) Algorithms of computation recovery, Automatic and remote control 7. Plenum,

New York, NY

Schagaev I (1987) Algorithms to restoring a computing process, Automatic and Remote Control

7. Plenum, New York, NY

Schagaev I (1989) Yet another approach to classification of redundancy. In: Proceedings of FTSD.

Prague, Czeschoslovakia, pp 485–490

Schagaev I (1990) Yet another approach to classification of redundancy. In: Proceedings of the

seventh IMECO symposium technical diagnostics, 17–19 Sept, Helsinki, pp 485–492

Schagaev JZI (2001) Redundancy classification and its applications for fault tolerant computer

design. IEEE TESADI-01

Schagaev I (2008) Reliability of malfunction tolerance. In: International multiconference on

computer science and information technology (IMCSIT), Wisla, Poland, pp. 733–737

Schagaev I (2009) ERA: embedded reconfigurable architecture – past present and future

Schagaev I, Buhanova G (2001) Comparative study of fault tolerant RAM structures, in: IEEE

DSN01. Presented at the IEEE DSN01, Goteborg

Schagaev I, Kaegi T, Gutknetch J (2010) ERA: evolving reconfigurable architecture. In: Pro-

ceedings of 11th ACIS, presented at the international conference on software engineering

artificial intelligence, Networking and Parallel/Distributed Computing, London

Schagaev I, Bacon E, Hagel G, Charnine M, Kirk B, Kravtsov G (2013) Weduca: Web-enhanced

design of university curricula, 07/2013. In: Proceeding of: FECS’13. ISBN: 1-60132-235-6

Schagaev I et al (2014) http://worldcomp-proceedings.com/proc/p2014/FCS3102.pdf

Schindlbeck G (2005) Types of soft errors in DRAMs. In: 8th European conference on radiation

and its effects on components and systems (RADECS 2005), pp PE1–1–PE1–5

Schroder DK, Babcock JA (2003) Negative bias temperature instability: Road to cross in deep

submicron silicon semiconductor manufacturing. J Appl Phys 94:1–18

References 251

http://dx.doi.org/10.1109/TNS.2006.885950
http://dx.doi.org/http://worldcomp-proceedings.com/proc/p2014/FCS3102.pdf

Schwank JR, Dodd PE (2003) Charge collection in SOI capacitors and circuits and its effect on

SEU hardness. IEEE Trans Nucl Sci 2937–2947

Schwartz E (1961) An automatic sequencing procedure with application to parallel programming.

JACM 8(4):513–537

Segura J, Hawkins CF (2005) Bridging defects, CMOS electronics. Wiley, New York, NY, pp

199–222

Seifert N, Zhu X, Massengill LW (2002) Impact of scaling on soft-error rates in commercial

microprocessors. IEEE Trans Nucl Sci 49:3100–3106

Sexton FW, Fleetwood DM, Shaneyfelt MR, Dodd PE, Hash GL (1997) Single event gate rupture

in thin gate oxides. IEEE Trans Nucl Sci 44:2345–2352

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, Pp

623–656

Shedletsky JJ (1978) Error correction by alternate-data retry. IEEE Trans Comput C-27:106–112

Sherman L (2003) Stratus continuous processing technology – the smarter approach to uptime.

Stratus Technologies Whitepaper. Technical report, Stratus Technologies

Shirvani PP, McCluskey EJ (1998) Fault-tolerant systems in a space environment: The CRC

ARGOS project. Stanford University, Stanford, CA

Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of

technology trends on the soft error rate of combinational logic. In: Proceedings of the

international conference on dependable systems and networks (DSN 2002), pp. 389–398

Silberberg R, Tsao CH, Letaw JR (1984) Neutron generated single-event upsets in the atmosphere.

IEEE Trans Nucl Sci 31:1183–1185

Silvestri M, Gerardin S, Paccagnella A, Ghidini G (2009) Gate rupture in ultra-thin gate oxides

irradiated with heavy ions. IEEE Trans Nucl Sci 56:1964–1970

Sklaroff JR (1976) Redundancy management technique for space shuttle computers. IBM J Res

Dev 20:20–28

Slayman CW (2005) Cache and memory error detection, correction, and reduction techniques for

terrestrial servers and workstations. IEEE Trans Device Mater Reliab 5:397–404

Slegel TJ, Averill RMI, Check MA, Giamei BC, Krumm BW, Krygowski CA, Li WH, Liptay JS,

MacDougall JD, McPherson TJ, Navarro JA, Schwarz EM, Shum K, Webb CF (1999) IBM’s

S/390 G5 microprocessor design. IEEE Micro 19:12–23

Slotnick DL, et al. (1962) The SOLOMON computer, AFIPS ’62 (Fall) proceedings, 4–6 Dec

1962, Philadelphia, ACM, New York, pp 97–107

Smith GL (1985) Models for delay faults based on paths. Proc. int. test conf, pp 342–349

Smith M (1997) Application-specific integrated circuits, 1st edn. Addison-Wesley Professional,

Boston, MA

Smithsonian Institute (1990) Comp. history. http://americanhistory.si.edu/collections/comphist/

Sogomonian E, Schagaev I (1988) Hardware and software fault tolerance of computer systems.

Avtomatika i Telemekhanika 3–39

Squire JS, Palais SM (1963) Physical and logical design of a highly parallel computer. Proc SJCC

Sparc International (1998)TheSPARCarchitecturemanual. http://www.gaisler.com/doc/sparcv8.pdf

Srour JR, Marshall CJ, Marshall PW (2003) Review of displacement damage effects in silicon

devices. IEEE Trans Nucl Sci 50:653–670

Stassinopoulos EG, Brucker GJ, Calvel P, Baiget A, Peyrotte C, Gaillard R (1992) Charge

generation by heavy ions in power MOSFETs, burnout space predictions and dynamic SEB

sensitivity. IEEE Trans Nucl Sci 39:1704–1711

Stepanyants A (2001) Fault tolerant processor and its reliability analysis. In: IEEE DSN01,

Goteborg

Storey DN (1996) Safety critical computer systems, 1st edn. Prentice Hall, Upper Saddle River, NJ

Stroud CE (2002) A designer’s guide to built-in self-test. Springer, Boston, MA

Swift G, Katz R (1996) An experimental survey of heavy ion induced dielectric rupture in Actel

Field Programmable Gate Arrays (FPGAs). IEEE Trans Nucl Sci 43:967–972

252 References

http://americanhistory.si.edu/collections/comphist/
http://www.gaisler.com/doc/sparcv8.pdf

Swift DW, John GH (1997) Evaluation of the space environment on TOPEX-Poseidon and on-

board failure of optocouplers. Document JPL D-14157

Swift GM, Guertin SM (2000) In-flight observations of multiple-bit upset in DRAMs. IEEE Trans

Nucl Sci 47:2386–2391

Taber AH, Normand E (1992) Investigation and characterization of SEU effects and hardening

strategies in avionics. IBM report 92–L75–020–2. Defense Technical Information Center

Taber A, Normand E (1993) Single event upset in avionics. IEEE Trans Nucl Sci 40:120–126

Takeda E, Kume H, Nakagome Y, Makino T, Shimizu A, Asai S (1983) An As-P double diffused

drain MOSFET for VLSI’s. IEEE Trans Electron Dev 30:652–657

Tehranipoor M, Peng K, Chakrabarty K (2012) Delay test and small-delay defects, Test and

diagnosis for small-delay defects. Springer, New York, NY, pp 21–36

Test method for beam accelerated soft error rate, 2007.

Thambidurai P, Park Y (1988) Interactive consistency with multiple failure modes. In: Proceed-

ings of the seventh symposium on reliable distributed systems. pp 93–100

Turski WM, Wasserman AI (1978) Computer programming methodology. SIGSOFT Softw Eng

Notes 3:20–21

Underwood CI (1998) The single-event-effect behaviour of commercial-off-the-shelf memory

devices-A decade in low-Earth orbit. IEEE Trans Nucl Sci 45:1450–1457

Valstar JE (1965) The contribution of testability to the cost-effectiveness of a weapon system.

IEEE Trans Aerospace AS-3:52–59

Velazco R, Fouillat P, Reis RA, da L (2007) Radiation effects on embedded systems. Springer,

New York, NY

Von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable

components, Automata studies. Princeton University Press, Princeton, NJ, pp 43–98

Vykhovanets VS (2006) Algebraic decomposition of discrete function Automation and Remote

Control March 2006, Volume 67, Issue 3, pp 361–392

Wallmark JT, Marcus SM (1962) Minimum size and maximum packing density of nonredundant

semiconductor devices. Proc IRE 50:286–298

Warren KM, Weller RA, Mendenhall MH, Reed RA, Ball DR, Howe CL, Olson BD, Alles ML,

Massengill LW, Schrimpf RD, Haddad NF, Doyle SE, McMorrow D, Melinger JS, Lotshaw

WT (2005) The contribution of nuclear reactions to heavy ion single event upset cross-section

measurements in a high-density SEU hardened SRAM. IEEE Trans Nucl Sci 52:2125–2131

Waskiewicz AE, Groninger JW, Strahan VH, Long DM (1986) Burnout of power MOS transistors

with heavy ions of Californium-252. IEEE Trans Nucl Sci 33:1710–1713. doi:10.1109/TNS.

1986.4334670

Weaver HT, Axness CL, McBrayer JD, Browning JS, Fu JS, Ochoa A, Koga R (1987) An SEU

tolerant memory cell derived from fundamental studies of SEU mechanisms in SRAM. IEEE

Trans Nucl Sci 34:1281–1286

Weaver C, Emer J, Mukherjee SS, Reinhardt SK (2004) Techniques to reduce the soft error rate of

a high-performance microprocessor. In: Proceedings of the 31st annual international sympo-

sium on computer architecture, pp 264–275

Williams HC (2003) The writing on the wall. University of Pennsylvania Press, Philadelphea,

PA. ISBN 0-8122-3711-0

Williams TW, Kapur R, Mercer MR, Dennard RH, Maly W (1996) Iddq testing for high

performance CMOS-the next ten years. In: European design and test conference proceedings

(EDTC 96), pp 578–583

Wirth N (1983) Programming in Modula-2. Springer, Berlin

Wirth N (1988) The programming language Oberon. Softw Pract Exper 18:671–690

Wirth N (1992) Project Oberon: the design of an operating system and compiler. Addison-Wesley,

Boston, MA

Wirth GI, Vieira MG, Neto EH, Kastensmidt FL (2008) Modeling the sensitivity of CMOS circuits

to radiation induced single event transients. Microelectron Reliab 48:29–36

References 253

http://dx.doi.org/10.1109/TNS.1986.4334670
http://dx.doi.org/10.1109/TNS.1986.4334670

Wood A (1999) Data integrity concepts, features, and technology. White paper, Tandem Division,

Compaq Computer Corporation

Woodard SE, Metze G (1978) Self-checking alternating logic: sequential circuit design, Pro-

ceedings of the 5th annual symposium on computer architecture, ISCA’78. ACM, New York,

NY, pp 114–122

Wrobel F, Hubert G, Iacconi P (2006) A semi-empirical approach for heavy ion SEU cross section

calculations. IEEE Trans Nucl Sci 53:3271–3276

Wyatt RC, McNulty PJ, Toumbas P, Rothwell PL, Filz RC (1979) Soft errors induced by energetic

protons. IEEE Trans Nucl Sci 26:4905–4910

Xiaoqing W, Saluja KK, Kinoshita K, Tamamoto H (1996) Equivalence fault collapsing for

transistor leakage faults. In: IEEE international workshop on IDDQ testing, pp 79–83

Yen YC (1996) Triple-triple redundant 777 primary flight computer Boeing commercial

airplanes. In: 1996 IEEE aerospace applications conference proceedings, vol 1, Seattle, WA.

doi:10.1109/AERO.1996.495891

Yu Qingkui, Tang Min, Zhu Hengjing, Zhang Haiming, Zhang Yanwei, Sun Jixing, 2005.

Experimental investigation of radiation damage on CCD with protons and cobalt 60 gamma

rays. In: 8th European conference on radiation and its effects on components and systems

(RADECS 2005), pp LNW2–1–LNW2–5

Zhu X, Baumann R, Pilch C, Zhou J, Jones J, Cirba C (2005) Comparison of product failure rate to

the component soft error rates in a multi-core digital signal processor. In: Proceedings of the

IEEE international 43rd annualreliability physics symposium, pp 209–214

Ziegler JF (1996) Terrestrial cosmic rays. IBM J Res Dev. doi:10.1147/rd.401.0019

Ziegler JF, Lanford WA (1979) Effect of cosmic rays on computer memories. Science

206:776–788

Ziegler JF, Puchner H (2004) SER—history, trends and challenges: a guide for designing with

memory ICs. Cypress

Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – The stopping and range of ions in matter. Nucl

Instr Meth Phys Res 268:1818–1823

254 References

http://dx.doi.org/10.1109/AERO.1996.495891
http://dx.doi.org/10.1147/rd.401.0019

Index

A
Active zone (AZ), 5, 146–151, 153, 157,

158, 162, 172, 209, 215, 235

Availability, 1, 9, 20, 25, 27, 29–33,

35–37, 59, 108, 114, 166, 167,

207, 225

B
Boundaries of fault, 29, 123

C
Classification of redundancy, 42, 44

Comparison of processor architectures,

6, 149, 189–193

D
Damage and temporary effects, 81–82,

86, 111, 208

E
Electronics, 1–5, 8, 10, 57, 79–111, 117,

121, 208, 211, 236

Embedded reconfigurable architecture,

5, 145–158, 160, 162, 164, 168,

170, 188–190, 194–205, 209, 210,

225, 230–233

Embedded recoverable reduced

instruction computer, 147–152,

189, 191, 192, 199, 203, 209,

232, 234, 235,

F
Fault avoidance, 2, 20, 39–41, 49, 77

Fault handling, 28, 39–40, 58, 114, 137,

162, 228, 230

Fault tolerance (FT), 2, 5, 6, 9, 20, 22–24,

34, 39, 40, 42–44, 46, 54–56, 59, 69,

113–143, 147, 148, 152, 156–158,

161, 164, 165, 180, 207–209, 214,

215, 221, 222, 226, 227, 230, 237

Functions of run-time system for support of

hardware reconfiguration, 153, 181,

212, 217–220, 222, 227, 228, 230,

237, 238

G
Generalized algorithm of fault tolerance

(GAFT), 6, 56, 136–142, 147, 149,

156, 158, 172, 181, 208, 230

Graceful degradation, 29, 33–35, 58, 142,

165–169, 178, 209, 210, 228

H
Hardware design, 5, 20, 57, 156, 180, 184,

213–215, 219, 222, 232

Hardware redundant system design, 23, 42,

45, 46

I
Information redundancy, 42, 43, 59–69, 76

Instruction execution, 139, 140, 148–150, 158,

159, 168, 183–185, 187, 205, 216, 222

© Springer International Publishing Switzerland 2015

V. Castano, I. Schagaev, Resilient Computer System Design,
DOI 10.1007/978-3-319-15069-7

255

Instruction set, 147, 172, 184–187, 189, 191,

205, 209, 218, 222, 232

Interfacing zone (IZ), 5, 146–147, 151–152,

170–172, 209, 215

M
Models of fault, 6, 72, 82, 113–143, 171, 208

O
Origins of fault, 42, 117–123

P
Passive zone (PZ), 5, 146, 147, 150–151,

157, 162–165, 172, 209, 215

Performability, 9, 33, 35–37, 207

Performance and power consumption

constrains, 3–5, 10, 12, 78, 113, 133,

134, 136, 138, 159, 172, 213, 215,

218, 233

Performance-, reliability-and energy-wise

systems (PRE), 6, 134, 136, 143, 151,

152, 155, 163, 170–172, 208, 209,

213, 214, 217, 219, 220, 224, 237

Processor testing, 6, 11, 209

R
Radiation, 1–5, 41, 49, 79–111, 115,

121–123, 148, 208

Reconfigurability, 35, 36, 134, 136, 140,

145–147, 152–156, 159, 169, 172, 209,

215, 218, 222, 224, 227, 228, 235–238

Reconfiguration mechanisms and control, 142,

146, 158, 181, 228

Recoverability, 26, 27, 32–33, 35–37, 65, 95,

111, 128–134, 140, 142, 172, 208, 227

Redundancy, 5, 20–24, 37, 39–78, 114–116,

131, 134–139, 145–148, 156, 158, 163,

164, 166, 172, 178, 181, 184, 207–209,

214, 224, 227, 232

Reliability, 1–6, 8–24, 27, 29, 30, 32–37,

39–42, 44, 47–51, 56–59, 64, 65, 79,

101, 104, 105, 108, 113–116, 122,

133–136, 138, 143, 145, 147–152, 155,

156, 159, 161, 166, 167, 171, 172, 180,

184, 188, 205, 207–209, 213–215, 221,

222, 231–235, 238

Reliability of redundant systems, 22–24

Resilience, 4–37, 41, 80, 128, 131, 145–172,

207, 208, 210, 228, 231

Run-time system testing support for real

time systems, 1, 4, 41, 57, 67, 78,

115, 136, 140, 152, 153, 169, 176,

181, 212, 213, 217–220, 222,

225–230, 233, 237, 238

S
Safety, 1, 2, 4, 7–10, 24–25, 34–37, 39, 41,

48, 57, 78, 79, 104, 111, 159, 167,

171, 192, 205, 207, 208, 210, 235

Security, 1, 9, 25–33, 35, 37

Simulation and tools, 183–205, 209, 210

Single event upsets, 96, 101

Software testing of hardware against

malfunctions, 2, 57, 58, 172,

175–177, 180, 227, 228, 232

Software testing of hardware permanent

faults, 4, 57, 58, 70, 71, 79, 96,

113, 115, 139, 145, 152, 165, 166,

173, 174, 177, 180, 227, 228, 231,

232, 235

Structural redundancy, 5, 42–59, 69, 72,

75–78, 135

System life cycle, 7–9, 16, 39, 40, 114,

116, 214, 215, 220

System modeling with fault tolerance, 134–142

System software, 6, 69, 105, 115, 136,

137, 139, 147, 151, 152, 156, 161,

172–181, 188, 194, 202, 209, 210,

213–215, 217, 218, 220, 224–230,

235, 237

System syndrome, 136, 156–165, 170–172,

175–181, 208–210

T
Time redundancy (TR), 23, 42, 43, 69–76, 78,

114, 116, 134, 181

256 Index

	Preface
	Contents
	Abbreviations
	Introduction
	Chapter 1: Basic Concepts, Motivation and Structure
	1.1 Motivation
	1.2 Scope and Contribution
	1.3 Structure

	Chapter 2: Background Concepts and Resilience
	2.1 System Failure Life Cycle
	2.2 Attributes and Measures of Resilience
	2.3 Reliability
	2.3.1 Performance and Reliability
	2.3.1.1 Power-Reliability Wall
	2.3.1.2 Reliability with Vicious Cycle

	2.3.2 Reliability and Unreliability Functions
	2.3.3 Probability Density Function
	2.3.4 Failure Rate Function
	2.3.5 Cumulative Hazard Function
	2.3.6 Bathtub Curve of Failure Rates
	2.3.7 Mean Time Between Failures (MTBF)
	2.3.8 Mean Time to Failure (MTTF)
	2.3.9 Reliability Prediction
	2.3.9.1 Serial Reliability
	2.3.9.2 Parallel Systems Reliability: Redundancy and Fault Tolerance
	2.3.9.3 Reliability for Mixed Serial and Parallel System

	2.4 Safety
	2.5 Security
	2.5.1 Integrity
	2.5.2 Maintainability
	2.5.2.1 Recoverability
	2.5.2.2 Serviceability and Testability, T(t)
	2.5.2.3 Coverage

	2.5.3 Availability
	2.5.3.1 Instantaneous or Point Availability, A(t)
	2.5.3.2 Average Uptime Availability (or Mean Availability),
	2.5.3.3 Limiting or Steady-State Availability, A()
	2.5.3.4 Inherent Availability, AI
	2.5.3.5 Achieved Availability, AA
	2.5.3.6 Availability-Recoverability-Reliability Relationship

	2.6 Performability
	2.7 Resilience
	2.7.1 Requirements
	2.7.2 Effectiveness of Resilience

	2.8 Conclusion

	Chapter 3: Dealing with Faults: Redundancy
	3.1 Handling Faults: Design Strategies
	3.2 Fault Avoidance
	3.3 Fault Tolerance: Using Redundancy
	3.3.1 Redundancy Notation

	3.4 Structural Redundancy HW(S)
	3.4.1 Static Redundancy
	3.4.1.1 Triple Modular Redundancy: HW(3S)+HW(deltaS)
	3.4.1.2 Comparing the Reliability of Simplex and TMR with Perfect Voter Systems
	Reliability of TMR with Voting

	3.4.1.3 N-Modular Redundancy: HW(nS)+HW(deltaS)

	3.4.2 Dynamic Redundancy
	3.4.2.1 Dual Modular Redundancy: HW(2S)+HW(deltaS)
	Redundant Execution
	Stand-by Redundancy

	3.4.2.2 Pair Spare

	3.4.3 Hybrid Redundancy

	3.5 Information Redundancy
	3.5.1 Error Detection Codes: EDC
	3.5.2 Error Correction Codes: ECC
	3.5.2.1 SEC-DED: Hamming and Hsiao: HW(deltaI)	
	SEC-DED Limitations and Alternative Techniques

	3.5.2.2 Complex Codes

	3.6 Time Redundancy
	3.6.1 Concurrent Error Detection: Basics of Time Redundancy
	3.6.1.1 Self-Duality

	3.6.2 Alternating Logic
	3.6.3 Recomputing with Shifted Operands (RESO)
	3.6.4 Recomputing with Rotated Operands (RERO)
	3.6.5 Recomputing with Swapped Operands (RESWO)
	3.6.6 Recomputing with Comparison (REDWC)

	3.7 Comparison of Main Redundancy Schemes
	3.8 Conclusion

	Chapter 4: Impact of Radiation on Electronics
	4.1 Introduction
	4.2 Radiation and Its Effect on Electronics
	4.3 Damage Mechanisms
	4.4 Radiation Macro-effects
	4.5 Single Event Effects (SEE)
	4.5.1 Physical Mechanisms Responsible for SEEs
	4.5.1.1 Charge Deposition
	4.5.1.2 Charge Transport and Collection
	4.5.1.3 Circuit Level Response

	4.5.2 System Level Response
	4.5.2.1 Single Event Upsets (SEUs): Conventional Upset Mechanisms
	Cell Upsets

	4.5.2.2 Single Event Transient (SET): An Emerging Upset Mechanisms
	4.5.2.3 Single Event Functional Interrupt (SEFI)
	4.5.2.4 Single Event Latchup (SEL) and Other Destructive Effects
	Single Event Latchup
	Single Event Hard Error (SHE or SEHR) or Stuck Bits
	Single Event Snapback (SES or SESB)
	Single Event Burnout (SEB or SEBO)
	Single Event Gate Rupture (SEGR)
	Single Event Dielectric Rupture (SEDR)

	4.6 Conclusion

	Chapter 5: FT Models
	5.1 Models
	5.2 Model of Fault
	5.3 Classification of Faults by Origin
	5.3.1 Level Response
	5.3.2 Cause of Faults
	5.3.2.1 Specification Mistakes
	5.3.2.2 Defects
	5.3.2.3 Operating Environment

	5.3.3 Phase of Creation and Occurrence of Faults
	5.3.4 Nature/Dimension
	5.3.5 System Boundaries
	5.3.6 Phenomenological Cause
	5.3.7 Capability/Objective/Intent

	5.4 Classification of Faults by Manifestation
	5.4.1 Response-Timeliness
	5.4.2 Consistency
	5.4.3 Maintainability: Detectability, Diagnosability and Recoverability

	5.5 FT and System Modelling
	5.5.1 Trading P, R, E
	5.5.2 GAFT: Generalised Algorithm of Fault Tolerance
	5.5.3 GAFT: System Estates and Actions to Implement Fault Tolerance

	5.6 Conclusion

	Chapter 6: Hardware Support of Resilience
	6.1 ERA Concept, System Design and Hardware Elements
	6.2 ERA Hardware Configuration: ERRIC
	6.2.1 Active Zone
	6.2.2 Passive Zone
	6.2.3 Interfacing Zone

	6.3 ERA Reconfigurability
	6.3.1 T-Logic for Memory Management
	6.3.2 T-Logic for Configuration in ERA

	6.4 Syndrome
	6.4.1 Syndrome Use
	6.4.2 Location Access and Way of Operation of the Syndrome
	6.4.2.1 Automatic Events Detection Mechanisms Using Hardware

	6.4.3 Syndrome: Passive Zone Configurations
	6.4.3.1 32-Bit Mode
	6.4.3.2 16-Bit Mode

	6.5 Graceful Degradation
	6.5.1 Graceful Degradation: Markov Analysis

	6.6 Implementation Constraints
	6.6.1 Graceful Degradation: Markov Analysis
	6.6.2 Interfacing Zone: the Syndrome as Memory Controller
	6.6.3 Access to the Syndrome

	6.7 Conclusions

	Chapter 7: System Software Support
	7.1 System Software Support of Hardware Checking
	7.2 System Software Support for Hardware Reconfiguration
	7.3 System Software Monitor of Hardware Condition
	7.4 Conclusion

	Chapter 8: Implementation: Hardware Prototype, Comparisons, Simulation and Testing
	8.1 Instruction Execution
	8.2 Instruction Set
	8.3 ERA Hardware Prototype
	8.4 Architectural Comparison
	8.5 ERA Testing and Debugging
	8.6 ERA´s Assembler
	8.7 ERA´s Simulator: Dissimera
	8.7.1 Architecture and Description
	8.7.2 Dissimera Log Sample

	8.8 Conclusion

	Chapter 9: Conclusions
	9.1 What We Have Done
	9.2 Next Steps

	Chapter 10: Vision on Evolving System Future
	10.1 Fundamental Problem
	10.2 Known Solutions (What We Have)
	10.3 Attempts to Evolve
	10.4 Proposed Approach (What We Need and Why We Need This)
	10.5 Supportive Models
	10.5.1 Control-Data-Predicate (CDP) Model
	10.5.2 Graph Logic Model (GLM)

	10.6 System Software for Evolving Systems
	10.6.1 Active Language (AL)
	10.6.2 Active Reconfigurable Run-Time System

	10.7 Evolving System: Hardware
	10.7.1 Basic Schemes

	10.8 Evolving System: Multi-element Configuration
	10.9 Evolving System Approach vs. Berkley View
	10.10 Evolving System: Conclusion

	References
	Index

