ON RAILS
P OWER R!!
The Comprehensive Guide

By Aneesho Bokhario

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

© 2007 Thomson Course Technology, a division of Thomson Learning Inc. All rights reserved.
No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system without written permission from Thomson Course Technology PTR,
except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are trademarks of
Thomson Course Technology, a division of Thomson Learning Inc., and may not be used
without written permission.

“Rails,” "Ruby on Rails,” and the Rails logo are trademarks of David Heinemeier Hansson.
All rights reserved.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software support. Please
contact the appropriate software manufacturer’s technical support line or Web site for
assistance.

Thomson Course Technology PTR and the author have attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by following the capitalization
style used by the manufacturer.

Information contained in this book has been obtained by Thomson Course Technology PTR
from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Thomson Course Technology PTR, or others, the Publisher
does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from use of such information.
Readers should be particularly aware of the fact that the Internet is an ever-changing entity.
Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple copies or
licensing of this book should contact the Publisher for quantity discount information.
Training manuals, CD-ROMs, and portions of this book are also available individually or can
be tailored for specific needs.

ISBN-10: 1-59863-216-7

ISBN-13: 978-1-59863-216-3

eISBN-10: 1-59863-217-5

Library of Congress Catalog Card Number: 2006923475
Printed in the United States of America

0708091011 PH1I0987654321

THOIVISON

—— -

COURSE TECHNOLOGY

Professional m Technical m Reference

Thomson Course Technology PTR, a division of Thomson Learning Inc.
25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

vww .allitebooks.cond

Publisher and General
Manager, Thomson Course
Technology PTR:

Stacy L. Hiquet

Associate Director of
Marketing:
Sarah O'Donnell

Manager of Editorial
Services:
Heather Talbot

Marketing Manager:
Mark Hughes

Acquisitions Editor:
Mitzi Koontz

Marketing Coordinator:
Meg Dunkerly

Project Editor:
Sandy Doell

Technical Reviewer:
John Flynt

PTR Editorial Services
Coordinator:
Erin Johnson

Copy Editor:
Gene Redding

Interior Layout Tech:
Digital Publishing Solutions

Cover Designer:
Mike Tanamachi

Indexer:
Sharon Shock

Proofreader:
Heather Kaufman Urschel

http://www.courseptr.com
http://www.allitebooks.org

This book is dedicated to my Grandmother, who looked after me before I started
school, took me on many great holidays, and raised eight children.

Ivww allitebooks.cond

http://www.allitebooks.org

Acknowledgments

| would like to thank:

My grandmother, Rada; my dad, Abdulah; and my mum, Julekq; also,
my aunts, Kulsum, Julie, Hajira, and Shaida; my uncles, Ebrahem,
Rashid, and Cassim; and my cousins, Celine, Zaeem, and Tess for their
continued support and encouragement.

Acquisitions editor Mitzi Koontz for her continued support and
patience.

Project and copy editor Sandy Doell for her direction, flexibility, close
attention to detail, and enthusiasm.

Copy editor Gene Redding and technical editor John Flynt for their
excellent feedback and suggestions.

Digital Publishing Solutions, Heather Kaufman Urschel, and Sharon
Shock, for their diligence in creating the final product.

Madonna for making great music to listen to while writing.

Special thanks to Emi Smith.

lvww.allitebooks.cond

http://www.allitebooks.org

About the Author

Aneesha Bakharia is a web developer and accomplished author. Aneesha
specializes in creating dynamic database-driven web sites. She has a Bach-
elor of Engineering degree in Microelectronic Engineering and various
postgraduate qualifications in multimedia, online course development, and
web design. In addition to Ruby on Rails Power!: The Comprehensive
Guide, she has written several other books for Course Technology PTR,
including Microsoft Visual C# 2005 Express Edition Programming for the
Absolute Beginner, Dreamweaver UltraDey Fast & Easy Web Develop-
ment, JavaServer Pages Fast & Easy Web Development, and Microsoft C#
Fast & Easy Web Development. Aneesha lives in Queensland, Australia.
She is fluent in C#, Java, JavaScript, ASP.NET, JSP, HTML, XML, Ruby,
Ruby on Rails, and VB.NET.

vww.allitebooks.cond

http://www.allitebooks.org

This page intentionally left blank

lvww allitebooks.cond

http://www.allitebooks.org

TABLE OF

CHAPTER 1

CHAPTER 2

Contents

Getting Started ... 1
Ruby on Rails Fundamental Conceptsccceueiiiiiiiiiiiiiiiiiiiiiiiiiiiicicicanen, 1
The Model View Controller Paradigmcccocoiiiiiiiiiiiiiniiiiiciiiccriicnens 3
Installing Ruby, Rails, and MySQLccccoiuiiiiiiiiiiiiiiiiiiccccccccccccces 4

Installing Rubyccccooviiiiiiiiiiiiiiiiiiiiiiiiiciiccccc e 5

Installing Ruby on Rails ..., 6

Installing MySQILccoiiiiiiiiiiiiiiiiiiiiiiiiiicet ettt 6
Creating a Ruby on Rails Projectcccccciiiiiiiiiiiiininiiiiiiiniiiiiiiciiciciiiiiiccciccennnes 7

Exploring the Ruby on Rails Directory Structureccccccoceviiciniiicciicicnncacn. 8

Using the Webrick Web Server ..o 10
Controllers, Actions, and VIEWSccoociiiiiciiiiiiieiiecieceececceceecee e 12
Using Embedded Ruby (ERb)cococooiiiiiiiiiiiiiiiiiiiiiiiccicccccccveee, 14

Linking $0 ACHONSccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicccce s 17
Displaying Random Imagescccceuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciccccccccennnas 18
Generating Your Own Ruby on Rails APl Documentationc..ccccceevccvenece 20
Joining the Rails Community ..o 21
ConclUSION .ottt 22
Ruby Essentialsccocooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicicicieciccieceenees 23
RUBY SYNEOX ottt ettt ettt sttt et ensseneneasnns 23
Interactive Ruby: irb ..o 24
Using the Ruby Interpreterccccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicccccccsnnes 25
Variables, Constants, and Assignmentcccccoiiimiiiiiiniciiiiniciiinicecricenen, 26
Objects and Data TYPesccccccuiiiiiiiiiiiiiiiiiiiiiiiiiiiceitcteteteteieiese ettt 27
] T T 28

vii

he b sl

www allitebooks.com

http://www.allitebooks.org

CONTENTS

CHAPTER 3

CHAPTER 4

Mathematical Operationscccccccciiiiiiiiiiciiiiiiiiiitiiieetiieeeieeeteneeeteeeneneanan 30
Generating Random Numbers ... 31
Conditional Processingccceiieiiiiiiieiiietiiicieteieiecteiceeeteieeteteeeseteeenenaeenenaanen 32
' o 7 34
< Y 35
HASRES ..ottt ettt 38
T o 3T 39
ReUSING €O ..ottt 40
Classes and Methodscccoccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciccct e 40
Handling EXCEPHONSc.coviuiiiiiiiiiiiiiiiiiiitiieeccet ettt sttt etenscenenenenens 44
Embedded Rubyccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 46
Using Webrick to Serve ERb Templates ... 49
CONCIUSION ..ot 51
Prototyping Database-Driven Applications with Rails 53
Creating a Contact Listccccocviiiiiiiiiiiiiiiiiiiiiiiiiiiininiinineninicesinencsennens 53
Creating an FAQ Mandgerccccciiiiiiiiniiiiiiiiiiiiiiiiicscsescineensonsensenconees 65
Creating d Weblogcccciiiiiiiiiiiiiiiiiiiiiiiicictcicctecctctee ettt 72
CONCIUSION ..ttt ettt ettt ettt e s s enean 81
Active Record ..ot 83
Migrationscccccieiiiiiiiiiiiiiiiiiiniir i 83
Adding and Removing Columns from a Tablecccccccoiiiiiiiiniinnin. 87
Altering Columns in a Tableccccoiiiiiiiiiiiiiiiiiiicccccciin, 90
Creating, Renaming, and Dropping Tables ... 91
Defining INdicesccooviiiiiiiiiiiiiiiiiciiiciceecctee ettt 91
Working with Active Record Modelscccccccoiiiiiiiiiiiiiiiiiiiiicicicis 92
Using Active Record Without Railscooooooooiiiii. 95
Retrieving Records with findoooiiiiiiiiiiiiiiiiicc 96
Using find_by_sql ..o 97
Dynamic Finders ...ttt 100
Column Statistics—Average, Max, Min, Sum, and Countcccccceeeen. 100

vww.allitebooks.cond

http://www.allitebooks.org

CHAPTER 5

CHAPTER 6

CONTENTS

Validahion ...t 101
Mapping Relationships with Active Recordccccccoiiiiiiiiiiiniiiiiiiiinnnen. 106
One-to-One Relationshipsc.cccccciiiiiiiiiiiiiiiiiiiiicicececceeiccctceeeceienan 107
One-to-Many Relationshipscccccccceiiiiiiiiiiiiiiiiiiiiciciieccericean 108
Many-to-Many Relationshipsccccccciiiiiiiiiiiiiiiiiiicccccee 109
Sorting with acts_as_listcccooiiiiiiiiiiiiiiiiiicc e 110
Hierarchies with acts_as_treecccocveeiiiiiimiiciiiiiiiicieceiereceseeieeeieeseenseneas 114
Timestamping Records ..ot 118
ConcluSion ..ottt 120
Action Controllercccccciiiiiiiiiiiiiiiiiiiiiiiiiiiciicia, 121
Processing Form Elementsccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicicieicctceccevcccnas 121
Retrieving Environment Variablesccccviiiiiiiiiiiiiiiicine 125
Exploring the Render Methodccccocoiiiiiiiiiiiiiciiiciiicecccceceeceeien 127
Using an Action to Generate Filesccccooiioiiiiiiiiiiiniiiiiiciiiiceciiccncecnns 129
REAIr@CHON ..ottt ettt 130
COOKIES .ttt ettt 131
5o 1< 7 T 132
Using the Flash ... 133
2TV 134
Creating a Date-Based Routing Rule for a Weblogccocccvviiinin. 136
Changing an Application’s Default Pageccccccoiiiiiiiiiiiiiinnne 137
Using the Rails Console to Test Routing Rulesccccccccvieiiiiicicniicnnne. 138
CONCIUSION ..ottt 139
Action VIEWccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiccicccic st 141
Embedded Ruby (ERb) and Templatesccccccouiiiiiiiiiiiiiiiininiiiiiiiiies 141
Passing Objects and Variables to a Templatecccocccoeieiiviiiiiiiiiciccnns 143
Creating Helperscocciiiiiiiiiiiiiiiiciiiiicctcieeceet ettt st eteiseseneeaeenen 144
Sharing Helpers ... 145
Rails Inbuilt Helpersccccccoiiiiiiiiiiiiiiiiiiiiiiiiicicccccccccce 145
Creating Linkscccoiiiiiiiiiiiiiiiiiiiiiiiiecect ettt ettt 147
iX

dly sl sl
o ok

www.al litebooks.con]

http://www.allitebooks.org

CONTENTS

CHAPTER 7

CHAPTER 8

e wle ol
B % %k

00T - 149
Including Template-Specific Content in a Layout ..o 149
Including Scripts and Style Sheets in a Layoutcccccccvieiiiiicccnnccnnee. 150

Parbials ...ooooiiiiiiiiii e 151
Partials and Collectionscccooviiiiiiiiiiiiiiiciiiiieciie ettt 151

Using Helpers to Create FOrmsccccvioiiieiiiioiiieiecriieeenenieeseteneeeneneeenes 152
Select BOXES ...ttt 156
Date and Time Fieldscoccooiiiiiiiiiiiiiicciceciece e 157
Modeless FOrms ...ttt 157

CONCIUSION ..ottt 158

Web Services and RESTful Applicationsccccoccciiiiiiinnnns 159

Working With XML ...ccocoiiiiiiiiiiiiiiiiiiiiiiiiiiiiicccicccccccccsesenenesesenenenenas 159
Validating XML oottt 159
Parsing an XML Documentcccccocuiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiciiccicinccnene 160
Generating XML ..o s 161

Using Web Servicescccoooiiiiiiiiiiiiiiiiiiiiiiiiitcteteteteteieeee e 163
REST-Style Web Servicesccccoiiiciiiiiiiiiiiiiiiiciiiiceeirceteieeenenscenaeean 163
XMLRPC ..ottt ettt ns st ssnesenesaane 166
SOAP ettt ettt s ne s 168
Using a WSDL File to Make SOAP Calls Easierccccccceeiicviiiicncnnnnne. 168
Searching Google with WSDLc.cccciiiiiiiiiiiiiiiiiiicccccciiiciiae. 168

Building RESTful Web Services with Railsc.ccccocoeviiiiiiiiiiiiiiiiiiiciicces 170
Converting an Active Record Model to XMLcccccoiviiiiiiniiiniiiiciinnne. 171
Using the scaffold_resource Generatorcccccceviviciiiiiiiiiiiccnccniene. 171

Using ActionWebService to Expose SOAP and XML-RPC Web Services 181

CONCIUSION ..ottt 185

AJAX and Railsccoooiiiiiiiiiiiiiiiiiiicccee e 187

What Is AJAX ARYWAY? ..o stesesetesessesenenena 187
The XMLHitpRequest Object ... 188

CHAPTER 9

CHAPTER 10

CHAPTER 11

Updating Multiple Page Elements with RJSccooeeee.

[00oY el U1~ s NN

Flex on Rails ..o
Download and Install the Flex 2 SDK ...
A Simple Flex Interface with MXMLc..cccoeviciniiiininnicnnnn.
Interface Design with Flex ...,
Using a Slider Control to Resize an Imagec............
Displaying a Series of Imagescccocceeiiviciiicriiinnnnn.
Creating a Drag-and-Drop Image Classifier
Using the DataGrid Control to Display XML

Building a Flex Interface for a Ruby on Rails Project

Exposing an Active Record Model as XMLcccccccvinncne
Adding an Employeecccccccocveiiiiiiiiiiiciiiiiiciececieieceennn
Deleting an Employeecccccocieiiiciiiiiiiciiiiciiiicicicicciecnne,
Updating an Employeecccccccciiiiiiiiiiiiiniiiiiiiiiiiiiiiciciicccnas

(00T Yo (VT T N

E-Mail, Image Processing, and Graphing
Sending and Receiving E-Mailc...ccoocoiiiiiiiininniiiiinne.

Action Mailer Configurationccccccccociiiiiiiiiiicinincnc.
Graphs ..o

CONCIUSION .ttt eese e neenseas

Rails Plug-Inscccccooiiiiiiiiiiiiiiiiiiiiiiiicccaes
Plug-in Installation ...
Versioning with acts_as_versionedccccccoccevviiicninnne.
Folksonomy with acts_as_taggablecccccccoviiiiinicnnns
Commenting with acts_as_commentable

Searching with acts_as_ferretcccccoeiviieiiiiiiccniccnnn.

CONTENTS

Xi

e ssl 3ol
X% BB

CONTENTS

CHAPTER 12

CHAPTER 13

sl ils 33l
o 3k ¥

Generating PDF Documentsccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiicicciicciccnccineicenes 291
ConcluSioN ..ot 293
Filters, Caching, and Active Supportcccccoccciviiiiiiinininine 295
FIHErS oo 295
Authentication with Filters ... 296
Using a before_filter o Log Actionsccccccociiiiiiiiiiiiiiiiiiiiiiccccicieee 302
Using an around_filter to Time Actionscccccccoceiiiciniiiiiciiccncieeecnanees 303
CAChING .ottt ettt ettt 304
Active SUPPOIT ..ot 308
Useful String EXFENSIONSc.c.viiiiiiiiiiiiiiiiiiiiiiiiiiiic e 308
Date and Time Calculations ... 309
Convert an Object 10 JSON or YAMLccccccccviiiininininininiiiiiiiiciciiiccnnan 310
Convert XMLto a Hash ... 311
FUN With AFFQys ...ccoooiiiiiiiiiiiiiiiictcteectct ettt 311
Numeric Enhancements ... 312
Pluralization ...t 313
CONCIUSION ..ottt 314
Testing and Debuggingccccocoiiiiiiiiiiiiiiiiiiiiiiiice 315
Using the Ruby Unit Testing Framework (Test::Unit)c.coooooiiiiiiiii.. 315
Setting Up the Test Database ..., 319
Testing in Railsocooooiiiiiiiiiiiiiiiiiiiiiiccc ettt 320
Unit Testing Modelsccooiiiiiiiiiiiiiiiiiiiiiicccccciiiccce 321
Using FIXIUrescccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiciccicctciticct et 324
Functional Testing Controllerscc..cocciiiiiiiiiiniiiiiiiiiciiiiiicieecccreiecees 326
Posting Form Datacccccviiiiiiiiiiiiiiiiiiiiniiiiiininiicninciisincnensncaneneas 330
Scaffolding and Functional Testingccccceieieiiiiciiieniciciciccecieiicncan 332
AUthenticationcoiiiiiiiiiiiiiiiiiiiiiiccct i 334
Integration TeSHNGccccceiiiiiiiiiiiiiiiiiiiiiii s 336
Code COVEragEe ..ottt sttt 338

CHAPTER 14

Appendix A

CONTENTS

DebUQGQGING .. ettt ettt 340
Using the debug Helperccccccoiiiiiniiiiiiiiiiiiciciiiiiiciccccae 340
Using the Built-In Logger Classcccocoiieiiiiiiiiniiiiiiiiiiicieecceieecreceneeeen 341
Checking Code for Syntax Errorsccccecceiiiiciiiocniiinicieiccericcneeecan 342

CONCIUSION ..ttt ettt ettt ettt e st e enee 343

Designing Rails Applicationsccococeiiiiiiiiniiiniiiinnin. 345

Designing @ WK ..ccccouiiiiiiiiiiiiiiiiiiciitceccteeiecet ettt et nen e e 345
Features ...ttt 345
I YV 346
BT 348
Creating the Model and Database ..., 349
The Controller and Viewccccociiiiiiiiiiiiiniiiiiiiiiiiiiiiiiciccciccne 350
Using the WIiKiooooiiiiiiiiiiiiiiiiiiiiiiictett e 362
Enhancements ...ttt 364

Designing @ FOrumcccccciiiiiiiiiiiiiiiiiiiiiiiiinininnincicniicscnnis s 365
Features ... 365
=Y ' 365
Creating the Model and Databasec.ccccooiiiiiiiiiiiiiiiiiics 366
The Controller and Viewccccociiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiciccciccce 367
Enhancements ...ttt 373

CONCIUSION ..ttt ettt ettt ettt et n et eaeenee 373

Ruby Quick Referenceccccocoiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiccies 375

Command Line Rubyccoiiiiiiiiiiiiiiiiiiiiciiccccccctctceecceeee e 375

RUBY COdE ..ottt ettt en e 376
BT T3V T 376
Mathematical Operationscccoiiieiiiiiciriieeiiiiicieeceeteceeeeneceersecenenne 377
Comparison OPeratorsccccccccciiiiiiiiiiiiiiiiiiiiiiieiiieieeieesieesesneeneas 377
Conditional CoNSIrUCESocooiiiiiiiiiiiiiiiicieececece e 377
< T 378
ATTQYS ittt sttt sttt 379

Xiii

2 sl 3l
BB ORx

CONTENTS

Appendix B

sl 1 <
B g %

[1 T T3 RROURR 380
[0 T 11 3 -3 382
L0 1 TSR 382
Ruby on Rails Quick Referenceccccocccviiiiiiiiiiiiiiicncnnnnnne. 383
1S Ye 1= TR 387

Introduction

Welcome to Ruby on Rails Power!

Thank you for purchasing this book. Ruby on Rails Power!: The Compre-
hensive Guide provides an introduction to both the Ruby language and the
Ruby on Rails framework. Ruby on Rails is feature-rich, easy to learn, and
powerful. It certainly is a great time to learn to develop database-driven
web applications. | hope this book inspires you to author the next successful
Web 2.0 application.

How This Book Is Organized
Here’s a look at the way this book is organized and a brief overview of

each chapter. You'll also find appendixes with quick reference guides for
both Ruby and Ruby on Rails.

Chapter 1: Getting Started

In Chapter 1, we install Ruby, Ruby on Rails, and the MySQL database
server. You will learn about Model View Controller architecture, the key
components in Rails (Active Record, Action Controller, and Action View)
as well as the benefits that Rails brings to web development. The traditional
“Hello World” application will be built in Rails. We also create a simple
Rails application that displays random images.

Chapter 2: Ruby Essentials
Ruby, an object-oriented, interpreted language, powers the Ruby on Rails
framework. An understanding of the Ruby language and its capabilities

XV

INTRODUCTION

XVi

and syntax will make learning Rails a breeze. In Chapter 2, you'll learn
about data types, conditionals, loops, data structures (arrays and hashes),
classes, and exceptions. We will also cover Embedded Ruby (ERb), which
allows Ruby code to be embedded within an HTML file and interpreted.

Chapter 3: Prototyping Database-Driven

Applications with Rails

Chapter 3 illustrates the power and simplicity that Rails brings to web de-
velopment. In Chapter 3, we will prototype three practical applications: a
contact list, FAQ manager, and weblog. The Rails scaffold generator will
be used to create a starting point for each application, which we can then
customize.

Chapter 4: Active Record

Active Record is a crucial Rails component and is responsible for mapping
object properties columns (or fields) in a database table—this is known as
object-relational mapping (ORM). Active Record makes it easy to insert,
update, delete, and search for data in a database without writing native
queries in SQL. We also look at migrations—a feature in Rails that allows
us to create and alter the tables and columns in a database. A migration
is even able to undo the changes made to a database. This means that we
are able to revert to a previous version of the database at any time.

Chapter 5: Action Controller

In Chapter 5, we'll learn to process posted forms, retrieve environment
variables, render templates, and redirect requests, as well as store data
within a cookie or session. We will also take a look at storing data tem-
porarily between requests in the flash. Finally, we cover routing rules—how
request URLs get mapped to controllers and actions.

Chapter 6: Action View

Action View is responsible for displaying templates that belong to a con-
troller’s action. Within a template, we are able to format the data retrieved
from a database as well as provide a forms-based interface for a user to
maintain the data. In this chapter you'll learn to use helpers, layouts, and
partials. You will also learn to associate form fields with an Active Record
model.

INTRODUCTION

Chapter 7: Web Services and RESTful Applications

In this chapter you'll learn to process and generate XML from within a Rails
application. You will learn to use web services (REST, XML-RPC, and WSDL)
exposed by the popular photo sharing web site Flickr and the Google
search engine. We will also cover adding both a REST and a traditional
web service APl to an existing Rails application.

Chapter 8: AJAX and Rails

This chapter begins by first explaining AJAX and the XMLHt tpRequest
object. AJAXis tightly integrated into the Rails application framework. Rails
uses the Prototype and Scriptaculous libraries behind the scenes. Numer-
ous helpers that add AJAX support to a Rails application are explained.
Finally, we cover Rails JavaScript (RJS) templates. RIS files (. rjs) map to
an action, are written in Ruby (not JavaScript), and are able to alter multiple
page elements at the same time.

Chapter 9: Flex on Rails

In Chapter 9, we look at building rich interfaces using Adobe Flex. The

declarative MXML syntax and interface controls are first covered. Rails

provides a great back end for Flex. We will build a database-driven ap-
plication with a Flex front end to view and maintain employee details.

Chapter 10: E-mail, Image Processing, and Graphing
In Chapter 10, we look at adding functionality to a Rails application by
using existing Ruby libraries. We learn to send e-mail using TMail; process
images with RMagick; and generate bar, pie, and line charts with Gruff.

Chapter 11: Rails Plug-Ins

Rails plug-ins place a plethora of functionality at your fingertips. In this
chapter you’ll learn to add commenting, version control, and tagging to
an Active Record model. The acts_as_ferret full text search plug-in,
which is based upon Lucene, will be covered. We even look at converting
a view to PDF format. Bookmark, Article, and Note manager applications
are created in this chapter.

Chapter 12: Filters, Caching, and Active Support
In Chapter 12, we look at miscellaneous Rails features. Filters are methods
that can be executed before or after an action within a controller. We will

INTRODUCTION

use filters to log the duration of actions and add authentication to an ap-
plication. Instead of always dynamically generating content, we look at

caching content that rarely changes in order to improve performance. Fi-
nally, we cover the Ruby language extension included in Active Support.

Chapter 13: Testing and Debugging

In this chapter, you’ll learn to use Ruby’s unit testing framework, namely
Test: :Unit, as well as write unit tests to test Active Record models, func-
tional tests, with which we test the actions within a controller, and integra-
tion tests to test functionality that spans multiple controllers. We also look
at techniques to debug a Rails application.

Chapter 14: Designing Rails Applications

In the final chapter, we build two practical applications in Ruby on Rails—
a wiki and a forum. The wiki stores a new version after each edit. Users of
the wiki can easily create new pages as well as view a history of edits and
even revert to a previous version. Wiki markup is also supported. The forum
allows messages to be threaded and is based in acts_as_nested set.

3l Note

The source code for each chapter can be downloaded from the Course Tech-
nology Web site: http://www.courseptr.com/downloads.

http://www.courseptr.com/downloads

Getting Started

In 2004, Ruby on Rails emerged from obscurity. It was a time when something just felt wrong
with current web development frameworks and technologies. Web development had become a
tedious task. So much time was being wasted on the plumbing that held an application together
that critical functionality was often neglected. Web application frameworks were just overly com-
plex and extremely time consuming to configure. Ruby on Rails solved all these problems and
made web development feel natural and fun again.

In this chapter you'll learn how to:
Install Ruby, Ruby on Rails, and MySQL

Create a Ruby on Rails project

Explore the directory structure of a Ruby on Rails project
Understand the Model View Controller (MVC) architecture
Create the traditional Hello World first application

Create a Rails application that displays random images

Explore the Ruby on Rails APl documentation

Ruby on Rails Fundamental Concepts

A lot of web frameworks and technologies existed and were well established when Rails (see
Figure 1.1) was first introduced by David Heinemeier Hansson in 2004, yet Rails was able to
easily redefine web development. The aim behind Ruby on Rails was to simplify web development
and improve programmer productivity. Core Rails concepts and techniques have managed to
inspire numerous clone frameworks in just about every popular language. Let's review these
fundamental concepts:

Conventions over configuration. Rails comes pre-configured with defaults. You don’t need
to spend hours editing the parameters in an XML file to get up and running. You just need

vww.allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 } Getting Started

to spend a little time learning conventions to reap the productivity rewards. This in no way
means that Rails is not configurable. Rails is very flexible but constraints are liberating.

Start with a specific, well-defined directory structure. In a Rails application there is a specific
place for everything, including models, views, controllers, images, style sheets, JavaScript,
and configuration settings. This illustrates the convention over configuration idea. Instead of
wasting time thinking about where something trivial like JavaScript should be placed, just
accept the predefined directory structure and get on with the functional requirements of your
application.

Use Ruby. Rails is built using Ruby. Ruby is fully object-oriented. Ruby also has a very con-
cise and expressive syntax. You will learn more about Ruby and its impressive features in
Chapter 2, “Ruby Essentials.”

Use the Model View Controller (MVC) architecture. The Model View Controller architecture
is a natural fit for web applications and is fully implemented by Rails. Rails has the simplest
and most intuitive MVC implementation | have ever seen.

Employ metaprogramming concepts. Metaprogramming is when you use code to gener-
ate code. Rails includes script generators to create stub files for you. The rails generator,
for example, creates a new project with the Rails predefined directory structure. There are
also script generators to create the required files for models and controllers within your
application.

Don’t Repeat Yourself (DRY). Rails promotes code reuse. Rails provides practical ways to
abstract code so that it can be used in multiple places. This is aided in part by the MVC
architecture.

Embrace Web 2.0 and AJAX. AJAX-enhancing a web application with Rails is an absolute
breeze. The Prototype and Scriptaculous JavaScript libraries are both included with Rails.
You don’t even have to know JavaScript; using Rails helpers and Rails JavaScript templates
(RJS) you just need to know Ruby.

Built-in unit, functional, and integrations testing. Writing test cases is advocated as part of
the development process. When you use a script generator to create a new controller or
model, stub files for unit and functional test cases also get generated. Comprehensive tests
will help you to detect errors when an enhancement is made to an application.

Object-relational mapping. Rails makes accessing relational databases a breeze with Active
Record, which smartly maps table fields to Ruby objects automatically. No XML configuration
files need to be edited.

Server lifecycle aware. Rails is the first framework to understand the different environments

that developers work in. Rails knows that as a developer you will mostly likely work code
on a development server, transfer code to a staging server for testing, and finally, if all is

The Model View Controller Paradigm

working according to plan, deploy your application to a live production server. Details for
each environment are stored within the Rails application and are easily edited in a human-
readable data format.

Developer productivity. Rails simplifies routine tasks leaving heaps of time to concentrate
on functionality and usability. Rails inspires developers to add that final finishing touch to
their application.

Figure 1.1
The Ruby on Rails web site.

The Model View Controller Paradigm

Model View Controller (MVC) is a way of separating an application intro three components: the
model, the view, and the controller. MVC was first invented by Trygve Reenskaug all the way
back in 1974. The MVC paradigm is a perfect match for web development. Business logic inter-
mixed with database access code makes it difficult to maintain, debug, and extend web
applications. The MVC paradigm allows for clean separation of business logic (the controller),
data (the model), and the formatting of data for display and user interaction (the view).

The model manages the data, which is usually stored in a database. The model both retrieves
and inserts data into the databases, and enforces any associated business rules. The Active
Record component in Ruby on Rails creates models.

The controller maps user input requests to a matching command or action. The action in Rails
is a method, which is able to interact with the model, perform required calculations, and
pass the results to the view. Action Controller is responsible for routing get and post re-
quests to their corresponding action or method.

} Getting Started

The view is responsible for displaying data. A view should not contain complex processing
logic. A view should only be responsible for formatting and displaying the data variables
passed to it from the action. Action View displays the .rhtml templates, which contain
embedded Ruby code. The view is actually the user interface. The view could contain links
that call other actions. Forms that are used to enter and update data are also displayed by
the view. Actions are also able to process data entered into a form and submitted.

Active Record is in charge of Object/Relational Mapping (ORM). Active Record provides an
object-oriented wrapper around a database. Database tables are mapped to classes. This means
that fields within a table are referenced as the properties of a class. Active Record also provides
class methods for performing operations on the data such as save and find. Unlike other ORM
libraries, Active Record requires no complex configuration and is able to infer mappings based
on conventions used in naming tables and fields. Active Record makes Rails the most productive
framework for database-driven web sites.

d Note

The controller and view components in Rails are so interconnected that they are packaged together and
called Action Pack.

Installing Ruby, Rails, and MySQL

You are keen and eager to get started, but before you can create database-driven web sites with
Rails you will need to install Ruby, Ruby on Rails, and MySQL. We will be installing these packages
on Windows. If you have a Macintosh or Linux computer, the screen shots will look different. You
will also need to download the appropriate binaries for your platform as well.

.l Note
Other items to include on your shopping or download list:

A good text editor. Programming requires editing code—lots of code almost every day. If you are
using a Mac, TextMate (http://macromates.com/) is an excellent choice. RadRails (http://
www.radrails.org/) is a good cross platform editor for Rails that is based on Eclipse. Any text editor
that you are comfortable with will suffice. Syntax highlighting (Ruby, HTML, JavaScript), code block
indentation, and auto-completion will help improve your productivity.

Version control. Popular choices for version control are CVS or SubVersion. A version control
repository stores changes and allows you to revert to previous versions. You can even review a
list of all changes made, called a history. You can also manage your software releases on different
branches. Remember to commit changes to your repository regularly.

http://macromates.com/
http://www.radrails.org/
http://www.radrails.org/

Installing Ruby, Rails, and MySQL

8 Note

InstantRails is approximately 50 MB and installs Ruby, Rails, and MySQL all at the same time.

Installing Ruby

Download the latest stable One-Click Ruby Installer for Windows from
hitp://rubyinstaller.rubyforge.org/. The One-Click Ruby Installer is an executable file (.exe). In-
stall Ruby by double-clicking on the executable. You can simply follow the onscreen instructions
(see Figure 1.2) accepting the default settings.

Figure 1.2
The One-Click Ruby

Installer.

.l Note
The command prompt is going to be your new best friend if you are a Windows user. If you are a Linux
user, the command prompt is already an old acquaintance. Throughout this book, we’ll need to use the
command prompt to install applications, create new Rails projects, and even generate skeleton MVC
code. The command prompt looks different on each platform, so to make the examples cross-platform,
the command prompt will be represented by the $ symbol. Figure 1.3 shows the Windows command
prompt.

After Ruby is installed, we can try some Ruby code to make sure it is working. Ruby contains an
interactive shell called irb. Irb can be started from the command line by typing:

S irb --simple-prompt

http://rubyinstaller.rubyforge.org/

} Getting Started

Figure 1.3

. lows KP [Uersion 5.1.2
The Windows command (0> Copywigh 959801 Microsoft Comp.
prompt. Docunents neesharcd. .

\Documents and Set

Irb allows you to type Ruby code at the command prompt and have the code evaluated when
you press the Enter key. We can now try some simple Ruby code snippets in irb:

s 1 + 1

=> 2

$ "hello".reverse
=> "olleh"

Exit irb by typing:

S exit

Installing Ruby on Rails

Now that Ruby is working, we are ready to install Rails. Ruby contains a package manager
call RubyGems. RubyGems is able to download software packaged into the gem format from
RubyForge. RubyGems operates from the command line. The instal1l command will install Rails:

$ gem install rails --include-dependencies

RubyGems will also install the libraries that Rails requires. This includes Rake, Action Mailer,
Active Record, and Active Pack.

You can use this command line gem to update to the latest version of Rails (see Figure 1.4):

$ gem update rails --include-dependencies

Installing MySQL

MySQL is a popular database that has successfully served as the data source for numerous
popular sites developed in Rails. Active Record has no database-specific code, but for databases

Creating a Ruby on Rails Project

@ Command Prompt -[o] x| Figure 1.4

oft Window . . .
pyright 1985-200 - Using gems to install Rails.

yforge .ury

identified or oper|

by identilied or

rhiiB61:38: ':' not followed by ident if ied

-rbiiB65:3%: ‘=" vt fullowed by identif ied

other than MySQL, you will need to install a database driver. To save you this trouble it is rec-
ommended that you use MySQL.

The latest stable MySQL release can be downloaded from hitp://dev.mysql.com/downloads/

mysql/. Run the installer and accept the defaults. The Configuration Wizard will be displayed.

Make sure you choose a secure root password. Failing to enter a root password could result in
serious security breaches.

A graphical interface to create databases and tables and to inspect your data will also be a valu-
able asset. HeidiSQL (http://www.heidisql.com/) and SQLyog (http://www.webyog.com/en/)
are two open source options. SQlyog is shown in Figure 1.5.

Creating a Ruby on Rails Project

A Ruby on Rails project must follow a specific directory structure. The rails generator script runs
from the command line prompt and creates the required folders, config files, and scripts. The
name of the project or application that is to be created must be passed to the rails generator
script. The rails generator script saves us from having to create our own version of the Rails project
structure. This is advantageous because we won’t need to re-create our version each time Rails

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
http://www.heidisql.com/
http://www.webyog.com/en/

CHAPTER 1 } Getting Started

gets an update. The rails command is builtin, and each time it is run, the current Rails installation
is used. I'd rather run one command rather than manually copying and customizing a previous
project.

Figure 1.5
Using SQLyog as a GUI
interface to MySQL.

Type the following at the command prompt to create a project called my_first_app:

$ rails my_first_app

Exploring the Ruby on Rails Directory Structure

Ruby on Rails provides a skeleton or starting point source code structure. The rails generator
script creates a directory that is named after the project’s name. Within the project directory a
series of files and directories are created. Every file or folder that is created is logged to the
console. Here is an extract of the log that printed when my_first_app was created—only
directories are listed:

create

create app/controllers
create app/helpers

create app/models

create app/views/layouts
create config/environments
create db

create doc

create 1lib

Creating a Ruby on Rails Project

create 1lib/tasks

create log

create public/images

create public/javascripts

create public/stylesheets

create script/performance

create script/process

create test/fixtures

create test/functional

create test/integration

create test/mocks/development

create test/mocks/test

create test/unit

Let's take a peek at what is inside the most important folders:

The app folder is where your application code goes. Rails splits your application into three
interacting components: models, controllers and views. This is depicted in the app subfolder
structure.

The config folder stores configuration settings. It contains numerous files that store configu-
ration details. The most important is database.yml, which specifies the databases to be
used in development, testing, and production. The Rails environment structure
(environment .rb) and action router (routes.rb) are also found in this folder.

The db folder provides a place to store database creation and manipulation scripts.

The generated documentation that RubyDoc produces is placed in the doc folder.

The log directory contains error logs. There is a log file for each environment
(development.log, test.log, and production.log). A server. log file is also
placed here.

The public directory is where you would place static HTML web pages. There are subfolders

for your images, JavaScript files, and style sheets. The JavaScript subfolder contains

the . s files for the Scriptaculous and Prototype frameworks.

The script folder contains the generator scripts. There are scripts to start the Webrick web
server as well as generate models and controllers. We will be using these scripts in just about
every chapter of this book.

The unit, functional, and integration test cases are placed in the test folder. Chapter 13,
“Testing and Debugging” covers testing.

CHAPTER 1 } Getting Started

Using the Webrick Web Server

Ruby on Rails comes with its own web server—Webrick. A Webrick server can be started for each
Rails project. The script/server generator is used to create a Webrick server that runs on
port 3000 by default. Type cd my_£first_app to navigate to the newly created folder for your
project and at the command prompt type:

$ ruby script/server

Webrick will display the following within the console window:

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

[2006-10-14 14:49:08] INFO WEBrick 1.3.1

[2006-10-14 14:49:08] INFO ruby 1.8.4 (2006-04-14) [i386-mswin32]
[2006-10-14 14:49:08] INFO WEBrick::HTTPServer#start: pid=5472 port=3000

We can now view our Rails project from within a web browser with the following URL: http://
localhost:3000/. We have not added any code to our project, but we are already able to view
the Rails “Welcome aboard” page. In Figure 1.6 the “About your application’s environment”
link has been clicked and version numbers of all the components are displayed.

Figure 1.6
The Rails Welcome
aboard page.

Flip back to the console window where Webrick was started. Each page request is reflected within
the console—even the Firefox request for a favicon and required . s files. A favicon is an icon

Creating a Ruby on Rails Project

that is displayed to the left of the URL in the address bar. Firefox makes a request for an icon
called favicon.ico for each new domain encountered:

127.0.0.1 - - [14/0ct/2006:14:54:18 E. Australia Standard Time]
"GET / HTTP/1.1" 200 7552

- >/

127.0.0.1 - - [14/0ct/2006:14:54:20 E. Australia Standard Time]

"GET /javascripts/prototype.js HTTP/1.1" 200 55149
http://localhost:3000/ -> /javascripts/prototype.js

127.0.0.1 - - [14/0ct/2006:14:54:21 E. Australia Standard Time]
"GET /javascripts/effects.js HTTP/1.1" 200 32871
http://localhost:3000/ -> /javascripts/effects.js

127.0.0.1 - - [14/0ct/2006:14:54:21 E. Australia Standard Time]
"GET /images/rails.png HTTP/1.1" 200 1787
http://localhost:3000/ -> /images/rails.png

127.0.0.1 - - [14/0ct/2006:14:54:21 E. Australia Standard Time]
"GET /favicon.ico HTTP/1.1" 200 0

- -> /favicon.ico

127.0.0.1 - - [14/0ct/2006:14:55:49 E. Australia Standard Time]
"GET /rails/info/properties HTTP/1.1" 200 896

- -> /rails/info/properties

127.0.0.1 - - [14/0ct/2006:14:55:55 E. Australia Standard Time]
"GET /rails/info/properties HTTP/1.1" 200 896

- -> /rails/info/properties

Webrick can be started on a port other than 3000. You simply need to use the -p flag to set the
port. The following example starts Webrick on port 80:

$ ruby script/server -p 80

Press Ctrl+C to shut down the Webrick server. Help options are also available by typing -help
while the console window has focus.

3l Note

Webrick is an ideal server to use while developing, but you will need to consider alternatives within your
live production environment.

vww.allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 } Getting Started

Controllers, Actions, and Views

We can now have some fun and see the Rails framework in action (no pun intended). We will
be creating a Rails version of the traditional Hello World application. We will start by using
script/generate to create a controller called Greeting:

$ ruby script/generate controller Greeting

The following log of files is output to the console:

exists app/controllers/

exists app/helpers/

create app/views/greeting

exists test/functional/

create app/controllers/greeting controller.rb
create test/functional/greeting controller_test.rb

create app/helpers/greeting helper.rb

The greeting controller.rb, greeting_controller_test.rb, and greeting
helper.rbfiles have been created. The methods or actions in a controller need to link to a view.
Rails creates a folder for you to store the views that belong to a specific controller in the app/
views directory.

We passed Greeting to script/generate, but it converted the name to lowercase and added
a_controller suffix. This is a Rails convention. The _controller suffix must be added to all
controllers. The greeting controller.rbfile containsaclasscalled GreetingController.
The class that is associated with a controller starts with a capital letter and is suffixed with
Controller.

We can now edit the app/controllers/greeting_controller.rb file and add an index
action. To add an action we simply need to add a method called index:

class GreetingController < ApplicationController
def index
end

end

Save the app/controllers/greeting controller.rb file, start Webrick up and view
http://localhost:3000/greeting in a web browser. Oops—we get a Template is missing error as
shown in Figure 1.7. Rails seems to be looking for /app/views/greeting/index.rhtml.
This is the view template that corresponds to the index action.

The index method does not contain any code. Actions automatically link to a view template with
a matching name. We have not yet created the /app/views/greeting/index.rhtml file.

7 Controllers, Actions, and Views

Figure 1.7
The Template is missing

error message.

We just want to print Hello World, so instead of creating an index.rhtml template file, we will
just use the render_text method:

class GreetingController < ApplicationController
def index
render_text "Hello World"
end

end

Ed Note
Parentheses are not mandatory, but can be used to pass parameters to a method in Ruby. These two
method calls are therefore semantically correct and equivalent:
render_text "Hello World"
render_text ("Hello World")

Hurray! We just need to reload the hitp://localhost:3000/greeting URL and the Hello World
message will be displayed. We did not even need to restart Webrick—our changes to the index
action were automatically picked up once the page was refreshed. This is surely going to make
development a lot easier. Ruby allows full object-oriented support without any need for compiled
classes.

CHAPTER 1 } Getting Started

We could enter hitp://localhost:3000/greeting/index to display the response of the index action.
In this case both the controller and action are included in the URL path. If only a controller is
present in the URL path, Rails will look for an index method and the corresponding index . rhtml
template.

We will now create the app\views\greeting\index.rhtml template file. The app\views\
greeting)\ folder has already been created by script\generate. Files with the .rhtml
extension are able to include Ruby code. We need to remove the render_text method from
the index method or the app\views\greeting\index.rhtml file won’t be retrieved when
the index action is called.

The app\views\greeting\index.rhtml file:

<html><head>

<title>Hello World</title>
</head>

<body>

<hl>Hello World</hl>
</body>

</html>

Refresh the http://localhost:3000/greeting/ URL, and the Hello World message will be displayed
with more emphasis.

Using Embedded Ruby (ERb)

We can use the <%= and %> delimiters to insert the result of an expression in an . rhtm1 template.
View templates files (i.e., files with .rhiml extensions) are processed by ERb. ERb stands for

embedded Ruby.

In Ruby we can get the current time by calling the Time . now method. We will use the <%= and
%> delimiters to dynamically render the current time (see Figure 1.8):

<html>

<head>

<title>Hello World</title>
</head>

<body>

<hl>Hello World</hl>

The current time: <%= Time.now %>
</body>

</html>

Using Embedded Ruby (ERb)

Figure 1.8
Dynamic output with ERb.

In ERb the <% and %> delimiters allow Ruby code to be placed within an . rhtm1 file. In this
example, a loop writes Hello World to the screen five times (see Figure 1.9):

<html>

<head>

<title>Hello World</title>

</head>
<body>

<%

5.times do
%>

<hl>Hello World</hl>

The current time: <%=
</body>
</html>

Time.now %>

Instance variables set within an action are available for use in the corresponding view. In the
index action we set an instance variable called @message. The @message variable can then be
displayed by the index (or index.rhtml) view. The @message is set to Hello World. We also
set the @current_time variable:

CHAPTER 1 } Getting Started

Figure 1.9

Hello World times five.

class GreetingController < ApplicationController
def index
@message = "Hello World"
@current_time = Time.now
end

end

After the action is executed, the corresponding view is displayed. Now we can use the <% and
%> delimiters to display the @message and @current_time variables in the index.rhtml
view:

<html>

<head>

<title><%= @message %$></title>

</head>

<body>

o

<
5.times do

o

>

<hl><%= @message %></hl>

A
oe

end

o

>

The current time: <%= @current_time %>

16

e o b
B ¥ %

Using Embedded Ruby (ERb)

</body>
</html>

Linking to Actions

Let's add some more actions to the Greeting controller. The action we add will be called
say_goodmorning and say_goodafternoon. Both methods are included in the app/
controllers/greeting controller.rb file:

class GreetingController < ApplicationController

def index

end

def say_goodmorning
end

def say_goodafternoon

end

end

We need corresponding app\views\greeting\say goodmorning.rhtml and app\
views\greeting\say_goodafternoon.rhtml templates. We won’t make a mistake again
and call the actions without a view template because we know a Template is missing error message
will be produced.

The app\views\greeting\say goodmorning.rhtml file:

<html>

<head>

<title>Good Morning </title>
</head>

<body>

<hl1>Good Morning</hl>
</body>

</html>

CHAPTER 1 } Getting Started

The app\views\greeting\say_goodafternoon.rhtml file:

<html>

<head>

<title>Good Afternoon </title>
</head>

<body>

<hl1>Good Afternoon</hl>
</body>

</html>

The say_goodmorning action is accessed via http://localhost:3000/greeting/
say_goodmorning. The say_goodafternoon action is accessed via http://localhost:3000/
greeting/say_goodafternoon. How do we include a link in one template that is able to request
that another action be displayed? We could include a direct link within our template file:

Say Good Morning

Several issues are associated with direct or hard coded links. If the way Rails handles routing to
controllers and actions changes or you restructure your application, the hard coded links will
need to be fixed manually. Rails, however, provides a 1ink_to () helper method with the sole
purpose of inserting dynamic links to controllers and their associated actions. We could now
rewrite the link to the say_goodmorning action as:

<%= link_to "Say Good Morning", :action => "say_ goodmorning" %>

The 1ink_to method is placed within the <% and %> delimiters. The first parameter is the text to
be displayed in the hyperlink. The second parameter specifies the action to link to. A colon is
placed in front of the word action—this is a Ruby symbol and can be read as “the item named
action.” The => operator assigns the name of the actions (a string) to :action. Thisis a keyword
parameter and is used extensively in helper methods. This is useful when a number of optional
parameters can be passed to a helper method.

Displaying Random Images

We are going to build an additional project, just to reinforce the controller and view concepts
covered in this chapter. We will display a randomly selected image each time a page is requested.
Our controller will be called RandomImage, and the action to display the random image, show.

Displaying Random Images

We start by creating a new controller:

S ruby script/generate Controller RandomImage

The app/controllers/random_image_controller.rb file and app/views/
random_image folder are created. We can now edit the random_image_controller.rb
file. The RandomImageController class has been created. We will insert the show action:

class RandomImageController < ApplicationController
def show
end

end

The show action maps to the show. rthml template. We will need to create this file and place it
within the app/views/random_image folder. Within the view we need to select and display a
random image. We have five images and have saved them to the /public/images folder. We
will store the names of the images in an array, generate a random number between 0 and 4, and
then display the image that corresponds to the random number. Here is the Ruby code:

images = ["imagel.jpg", "image2.jpg", "image3.Jjpg", "imaged.jpg", "image5.jpg"]
random_no = rand(5)

random_image = images[random_no]

This code can be inserted between the <% and %> delimiters in the show.rthml file:

<html>

<head>

<title>Random Image</title>
</head>

<body>

<hl>Random Image</hl>

<

oe

images = ["imagel.jpg", "image2.Jjpg", "image3.jpg", "imaged.jpg", "image5.jpg"]
random_no = rand(5)
random_image = images [random_no]

>

o

<img src="/public/images/<%= random_image%>">
</body>
</html>

CHAPTER 1 } Getting Started

Code mixed with HTML in the view is both hard to read and maintain. The code to randomly
select an image should be placed within the controller. The random_image instance variable
will still be available to the view:

class RandomImageController < ApplicationController
def show
@images = ["imagel.jpg", "image2.jpg", "imageld.jpg", "imaged.jpg",
"image5.Jjpg"]
@random_no = rand(5)
@random_image = images[random_no]
end

end

Our view now only needs to reference the random_image variable where the image must be
inserted:

<html>

<head>

<title>Random Image</title>

</head>

<body>

<hl>Random Image</hl>

<img src="/public/images/<%= random_image%>">
</body>

</html>

Generating Your Own Ruby on Rails API Documentation

The Rails APl documentation is available from http://api.rubyonrails.org. This is a handy resource
to view documentation of individual Rails components (Active Record, Action Pack, Action Mailer,
etc.) and Rails helper methods (e.g., h ()). It might, however, not be practical to view the docu-
mentation online.

We start by creating a new Rails application. This is done by typing rails at the command prompt
followed by the name of the application. After a folder has been created and populated with the
predefined Rails directory structure, follow these instructions, to be typed at a command prompt
to generate a local copy of the API:

S rails sample_app

$ cd sample_app

S rake rails:freeze:gems

http://api.rubyonrails.org

Joining the Rails Community

$ echo >vendor/rails/activesupport/README

$ rake doc:rails

Building the documentation will take a few minutes. Once complete the generated documentation
will be placed within the doc/api directory. You can copy this directory to a new location and
then delete the sample_app project. Figure 1.10 show the Rails APl documentation being viewed
locally.

Figure 1.10
The Ruby on Rails API

documentation.

Joining the Rails Community
Ruby on Rails has a vibrant and active user base. The mailing list provides a way to keep up with
current developments and tool announcements. If you are ever stuck or have a bug you just can’t
fix, the mailing list is a great place to ask for assistance. There is also a Ruby on Rails weblog and
podcast. The Ruby on Rails podcast, hosted by Geoffrey Grosenbach, is both entertaining and
informative.

Mailing list: http://groups.google.com/group/rubyonrails-talk

Ruby on Rails weblog: http://weblog.rubyonrails.com/

Ruby on Rails Podcast: http://podcast.rubyonrails.org/

Ruby on Rails Wiki: http://wiki.rubyonrails.org/rails

vww.allitebooks.cond

http://groups.google.com/group/rubyonrails-talk
http://weblog.rubyonrails.com/
http://podcast.rubyonrails.org/
http://wiki.rubyonrails.org/rails
http://www.allitebooks.org

CHAPTER 1 } Getting Started

Conclusion

In this chapter you learned to install the key software elements required to get you started and
even built a very simple Ruby on Rails application. It is quite easy to see why Rails has not

only received so much publicity but is also used to develop numerous popular Web 2.0 sites. In
Chapter 2, “Ruby Essentials,” we delve into Ruby, the language that powers Rails. Working
knowledge of Ruby will help you to better understand and enhance your Rails applications. In
Chapter 3, “Prototyping Database-Driven Applications with Rails,” the fun really begins when
we start to use Rails to power a database-driven site.

Ruby Essentials

The first public release of Ruby was made by Yukihiro “Matz” Matsumoto in 1995. Ruby is a
cross between Small-Talk and Perl. Ruby popularity began to soar after the release of the Ruby
on Rails full stack web framework in 2004. Programmers from around the world then began to
appreciate Ruby’s powerful, yet simple, syntax. Ruby is fully object-oriented but also supports the
functional and procedural paradigms. Ruby is also an interpreted language, which means that
compilation is not required. This chapter introduces you to the Ruby language and provides many
examples for you to try. A thorough understanding of Ruby will help you build more powerful
Rails applications.

In this chapter you’ll learn how to:

Understand the Ruby language syntax
Use the Interactive Ruby shell (irb)

Understand Ruby data types
Perform string and mathematical operations in Ruby
Use conditionals and loops

Use the array and hash data structures

Organize code with classes and methods

Handle exceptions

Use Embedded Ruby (ERb)

Ruby Syntax

An example Ruby program is shown in Figure 2.1. The Ruby code prints a counter variable to
the console 10 times using a while loop. This is a very simple code snippet, but it does highlight
the essence of Ruby language syntax. From this simple code example we note that:

CHAPTER 2} Ruby Essentials

Ruby files have a . rb extension.
The ; character does not need to be placed at the end of each line.
The # character is used to denote a comment.
The equalto sign (=) is used to assign a value to a variable.
Variables don’t need to be declared as a specific data type before they are used.

The begin and end keywords mark the while loops code block. The { and } matching
braces are not required.

Strings are enclosed in quotation marks.

The puts method prints a string to the console.

@ RubySyntax.rb - SciTE WO %
Fin Edt Search View Tooks Ophiors Language Buffers Pﬂ‘h
L RubySyntaz.rh

Figure 2.1

Dissecting Ruby language

syntax.

counter = 1
beqgin
puts "Loop itecation A
counter = counter + 1
wrd wehile courter < 11

puts "hoop Compleces

Interactive Ruby: irb

Interactive Ruby (irb) is a Ruby shell program that evaluates Ruby code and prints the result to
the console. irb is a great learning tool as it allows you to enter Ruby code and immediately see
output as well as errors. Let’s use irb to experiment with the Ruby language. We start irb at the
command prompt:

$ irb --simple-prompt

We need to press Enter at the end of each line of code. irb makes a handy calculator:

>> 1 + 1
=> 2

>> 100 * 3
=> 300

The puts method is used to write text to the console:

>> puts "Hello"
Hello

=> nil

Using the Ruby Interpreter

The puts method does not return a value, so a nil object or simply nil is displayed are
the result.

We can get irb to deliver a personalized greeting. The gets method captures keystrokes until
the Enter key is pressed. The keystrokes captured by the gets methods can be assigned to a
variable, in this case called name. The #{...} syntax is used to insert the value stored in a variable
in a string before it is output.

>> puts "Please enter your name:"
=> Please enter your name

>> name = gets

Aneesha

>> puts "Hello #{name}"

8 Note

You will encounter occasions when you need to enter lengthy lines of Ruby code. It is very easy to enter
multi-ine Ruby statements in irb; we can make lines wrap around by placing a backslash (\) at the end
of each line. This technique is shown in the example that follows.

>> puts "This is a very long " \

"sentence that spans two lines"

We can exit irb at any time by entering the exit keyword.

>> exit

Using the Ruby Interpreter

While irb is a great tool for testing Ruby one liners and experimenting with Ruby syntax, it does
not replace the need to use the Ruby interpreter. The Ruby interpreter is run from the command
prompt and executes programs stored in a file. There are over 20 command line switches for the
Ruby interpreter. Table 2.1 lists the most important and useful command line switches.

Create a new text file called rubyexample.rb. This program will ask the user to enter their
name and then print a customized greeting to the console. Enter the following lines of code and
save the file:

puts "Please enter your name:"
name = gets

puts "Hello #{name}"

We can now use the Ruby interpreter to check the file for syntax errors:

CHAPTER 2} Ruby Essentials

Table 2.1 Summary of Ruby Command Line Switches

Switch Description

-c Check a program for syntax errors. The program is not executed.

-w Display warming messages while a program is being executed.

-e Executes the code provided between quotation marks.

-v Displays Ruby version information and displays warnings.

-1 Forces a newline character fo be printed fo the console after all output statements.

--version Displays the Ruby version number.

S ruby -cw rubyexample.rb

If "Syntax OK" isreturned, we are ready to execute our simple program by typing the following
at the command prompt:

S ruby rubyexample.rb

Variables, Constants, and Assignment

The equal-to sign (=) is used to associate a value with a variable—known as an assignment oper-
ator. Variables don’t need to be declared in Ruby and can store strings, characters, whole
numbers, and decimals. A variable gives you the ability to meaningfully name or label the data
you will use in a program. Once variables are assigned a value, you can include the variable in
any of the code that follows. You can also update the value stored in a variable at any time.

Using irb, we will create a variable called city and use assignment operator (=) to assign a
string value of "Brisbane" to the variable.

>> city = "Brisbane"

=> "Brisbane"

We can use puts to print the contents of the variable to the irb console:

>> puts = "I live in sunny " + city + "."
I live in sunny Brisbane.

=> nil

The value stored in a variable can be changed by assigning a new value to an existing variable.
Here the variable called city will be changed from "Brisbane" to "Sydney":

>> city = "Sydney"
=> "Sydney"

>> puts = "I live in " + city + "."

Objects and Data Types

I live in Sydney.

=> nil

It is very important that you name your variables appropriately as this will make both writing and
debugging your code easier. Descriptive variables are also very useful to other developers who
may help to fix or enhance the code that you write. In Ruby, variables must begin with a lowercase
letter. This is a Ruby convention.

Constants are used to store fixed values that are not meant to be changed while a program is
being interpreted. A value must therefore only be assigned to a constant once. The first letter of
the name of a constant must be in uppercase. This is the Ruby convention to denote a constant.

You can change the value of a constant, but Ruby will display a warning message:

>> Pi = 3.12

=> 3.12

>> Pi = 3.12222

(irb) warning: already initialized constant Pi
=> 3.12222

Objects and Data Types
In Ruby everything is an object, even simple data types. Strings, integers, and floats are all objects.
Objects have methods that can be called via dot (.) notation. Some examples:

>> a_string = "This is a string."
>> a_number = 5

>> a_floating_point_number = 0.5

Let's use the class method to determine which classes our objects belong to:

>> a_string.class

=> String

>> a_number.class

=> Fixnum

>> a_floating point_number.class

=> Float

We can also use the is_a? method to check if a variable is an instance of a particular object:

>> a_string.is_a? (String)
=> true
>> a_string.is_a? (Float)

=> false

CHAPTER 2} Ruby Essentials

The to_* methods are handy when you need to convert data types. An integer can be converted
to a string using the to_s method. A string can be converted to an integer using the to_i method.

>> 5.to_s

=> |l5|l
>> "5" to_i
=> 5

There is even a method to list all of the methods that an object can call. Surprisingly this method
is called methods. Table 2.2 displays the sorted list of methods available to string objects.

>> "A string".methods

>> "A string".methods.sort

Strings
Text entered by a user or read in from a file is represented by the string class in Ruby. The string

class provides various useful methods for manipulating and processing textual information (see
Table 2.2). Strings are enclosed in quotations marks. Here are some examples:

>> name = "Celine"
"Celine"
>> sentence = "This is a sentence."

"This is a sentence"
>> paragraph = "This is a paragraph. This is the 2nd line in a paragraph."

"This is a paragraph. This is the 2nd line in a paragraph."

Table 2.2 String Manipulation Methods
Method Example Result
capitalize "hello”.capitalize "Hello”
upcase "hello”.upcase "HELLO"
downcase "HELLO".downcase "hello”
swapcase "Hello".swapcase "hEllO”
strip "Hello" sfrip "Hello”
Istrip "Hello" Istrip "Hello "
rstrip "Hello" rstrip "Hello”
chop "Hello".chop "Hell”
chomp "Hello/n".chomp "Hello"
reverse “olleh”.reverse "hello”

28

s Strings

The methods in Table 2.2 all return a new string and don’t alter the original string. There are,
however, bang (!) equivalents for each method which do alter the original strings. We'll get a
better understanding of bang (!) methods once we try a few examples in irb.

>> city = "brisbane"
=> "brisbane"

>> city.capitalize
=> "Brisbane"

>> puts city

=> "brisbane"

>> city.capitalize!
=> "Brisbane"

>> puts city

=> "Brisbane"

As you can see, the capitalize method has not changed the contents of the variable called
city.The capitalize! method has, however, updated the value stored by the city variable.

The plus sign (+) is used to concatenate strings together:

>> "Good " + "Morning"

=> "Good Morning"

If a variable is enclosed in quotation marks, we can even assign a numeric value to it as a string
and use the to_i method to convert the data back to an integer:

>> "3" 4+ "4

=> "34""

>> num = "1"
=>"1"

>> num.to_i + 5

=> 6

Multiplying a string by a number:

>> "Hello" * 3

=> "HelloHelloHello"

The interpolation operator (#{...}) allows variables and expressions to be inserted in strings and
evaluated before the string is output. Here is an example:

>> name = "Aneesha"

=>"Aneesha"

CHAPTER 2} Ruby Essentials

>> puts "Hello #{name}"

=> "Hello Aneesha"

Certain characters, such as a backslash (\) and a quotation mark ("), need to be escaped within
a string:

>> "This string has a backslash \\ and a quotation mark \"."

Ruby also supports textual data enclosed in single quotes. Interpolation is not supported in strings
enclosed in single quotes. The interpolation operator is simply printed out. In strings enclosed in
single quotes, only the single quote needs to be escaped.

>> 'Let\’s try to print a variable "#{name}"'

=> 'Let’s try to print a variable "#{name}"'

Mathematical Operations

Alarge percentage of the programs that you write will need to perform mathematical calculations
in some form or another. Table 2.3 displays the mathematical operators available within the Ruby
language. As expected, addition, subtraction, multiplication, and division are all supported. Table
2.3 also shows the modulus (%) and exponent operators (**).

Table 2.3 Mathematical Operators in Ruby

Operator Description

+ Addition

- Subtraction
* Multiplication
/ Division

% Modulus

o Exponent

Simple addition, subtraction, multiplication, and division in the irb shell:

>> 234 + 334

=> 568

>> 560 - 60
=> 500

>> 500 * 2
=> 1000

>> 1000 / 2

Mathematical Operations

=> 500
>> 3/2
=> 1

Hold on—3/2 is not equal to 1. The correct value answer should be 1.5. What is going on2 Ruby
returns the integer component when two integers are divided. If we wanted a floating point
number returned, one of the values in the expression would need to be a float.

>> 3.0/2
= 1.5

The +, -, *, and / operations can be used with variables. Table 2.4 shows the Ruby shortcut
syntax for adding, subtracting, multiplying, or dividing from a variable. We can try these out in irb:

>> x = 5
5
>> X += 2
7
=> x ** 3
343

Table 2.4 Shortcut Syntax for Performing Mathematical Operations on Variables

Example Shortcut Meaning
x=x+4 x+=4 Add 4 to x
x=x-4 x=4 Subtract 4 from x
x=x"4 x *=4 Multiply x by 4
x=x/4 x /=4 Divide x by 4
x=x%3 x %=3 x modulo 3
x=x"*3 x **=3 x cubed (x * x * x|

Generating Random Numbers

Some web sites display a random quote, product, orimage. This is a simple yet powerful technique
to provide dynamic and interesting content to regular web site visitors. A random number
generator is required to reproduce this concept. In Ruby we just need to call the rand method to
generate a random number between 0 and 1. Each time we call rand a different number is
returned to 15 decimal places.

>> rand

=> 0.462668225169182

vww.allitebooks.cond

http://www.allitebooks.org

CHAPTER 2} Ruby Essentials

>> rand
=> 0.343490909078823
>> rand
=> 0.872672369927781

If we pass an integer value to the rand method, it will return random integer (whole number)
values from O to 1 below the specified integer. This means that if we only had five images, we
could use rand (5) to generate arandom number between 0 and 4 and display the appropriately
numbered image.

>> rand(5)
=> 0
>> rand(5)
=> 2
>> rand(5)
= 3
>> rand(5)
=> 1
>> rand(5)
=> 4

Conditional Processing

In our daily lives we constantly need to make decisions. Computer programs would be almost
useless if they could not be programmed to evaluate expressions, make decisions, and execute
the appropriate code. Ruby provides operators to make comparisons (see Table 2.5). Comparison
operators return either a true or false value. The results returned by a comparison operator can
then be used by an i f statement to determine whether a code block should be executed. This is
indeed powerful as your code nolongerneedsto be linear and canrespondto changing conditions.

Table 2.5 Comparison Operators in Ruby

Symbol Description

== Equal

I= Notf equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal fo

Conditional Processing

Let's use irb to perform some simple equality comparisons:

>> 1 == 2

=> false

>> 1 == "1".to_1
=> true

>> 5 < 10

=> true

>> 344 > 4

=> true

Next we will execute the code within an i f and end code block if an expression returns a true
value. The == operator is used to compare the value stored in the variable x with the integer value
of 10. If x is equal to 10, some text will be printed to the console. If x is not equal to 10, the line
will be skipped and code execution will resume after the end keyword.

if x == 10
puts "The variable x is equal to 10."
end
Placing the then keyword after the comparison allows us to shrink this code to one line:

if x==10 then print "The variable x is equal to 10."

We could also use a ; instead of the then keyword.

if x==10; print "The variable x is equal to 10."; end

The else clause and the code that it wraps will be executed if the expression evaluated by the
if clause is false. There can be only one else clause used in conjunction with an if statement.

x =5
if x == 10

print "The variable x is equal to 10."

CHAPTER 2} Ruby Essentials

else
print "The variable x is not equal to 10."

end

Multiple elsif clauses can follow an if code block. The elsif clause allows additional con-
ditions to be evaluated and an appropriate code block to be executed. In the example that
follows, if, elsif, and else clauses are used.

x =5
if x == 10
print "The variable x is equal to 10."
elsif x ==
print "The variable x is equal to 5."
else
print "The variable x contains a value other than 10 and 5."
end

The case statement comes in handy when evaluating the same variable in each elsi £ statement.
The case statement provides simplified syntax instead of re-evaluating the variable for each
elsif clause. The when keyword replaces the elsif keyword and no comparison operators
are required. Here is an example of using case to evaluate the variable x against values and
execute the appropriate code block.
X =5
case X
when 5

puts "x is equal to 5"
when 1

puts "x is equal to 1"
else

puts "No match"

end

Loops

Looping constructs allow blocks of code to be executed a predefined number of times or until a
condition becomes true. If we wanted to output Hello World five times, we could copy and paste
the code five times. If we wanted to print a customized greeting for 50 people it would simply
not be practical to copy and paste each line 50 times, especially if we then had to alter the
greeting. The simplest loop in Ruby is the times do loop. Here we print Hello World 5 times:

5.times do
puts "Hello World"

end

The do loop requires a counter variable; n is used in the example below. Each time the loop is
executed, the counter variable must be incremented. The do loop iterates until the break if
clause becomes true.

n=1

loop do
n=n+1
puts "Loop iteration #{n}"
break if n > 9

end

The while loop requires a counter variable but first checks whether a counter variable has
exceeded the required iterations (condition is true) before commencing with the next iteration.
The counter variable must be incremented within each loop iteration.

n=1

while n < 11
puts "Loop iteration #{n}"
n=n-+1

end

Ruby allows us to place the while keyword and evaluate the condition at the end of the loop
iteration:

n=1

begin
puts "Loop iteration #{n}"
n=n+1

end while n < 11

Arrays

An array is a fundamental data structure in Ruby that is used to store and process similar data in
an automated manner. An array usually contains a set of values that can be accessed via an
index. Arrays usually store data of the same type, but arrays in Ruby are able to store different
data types. Arrays are easy to implement and very efficient.

There are two ways to create an array in Ruby:

CHAPTER 2} Ruby Essentials

numbers = Array.new

or

numbers = []

Arrays are dynamic in Ruby and don’t need to be initialized to a predefined size or data type.
Elements can also be added or removed as required. Some examples:

An array that stores mixed data types - integers, strings and floats
messages = [1,2,"three",4.0]

An array storing numeric data

numbers = [1,2,3,4,5,6]

An array that stores Strings

name = ["Madonna", "Aneesha", "Celine"]

An array that stores decimal values

x_coordinates = [1.0, 3.4, 35.6, 24]

Each element in an array has a unique index. The index is used to reference an element so that
it can be updated, retrieved, or removed. The index count in an array starts at 0. Let’s create an
array that stores Australian cities and then display the first element (referenced as 0).

cities = ["cairns", "brisbane", "sydney", "perth", "adelaide"]

puts cities[0]

The array is a Ruby object and has many useful methods. The sort method rearranges the
elements in an array so that they are in alphabetical order:

>> cities.sort

=> ["adelaide", "brisbane", "cairns", "sydney", "perth"]

The reverse method inverts the order of the array:

>> cities.reverse

=> ["perth", "sydney", "cairns", "brisbane", "adelaide"]

We can determine how many elements are in an array with the 1ength method:

>> cities.length

The +, -, and * operators can be used on arrays:

Using + to add an element to an array
cities + ["gold coast"]

Using - to remove an element

cities - ["sydney"]

Using * to repeat the elements is an array

cities * 2

=> ["adelaide", "brisbane", "cairns", "sydney", "perth", "adelaide",
"brisbane", "cairns", "sydney", "perth"]

The unshift method is used to add an element at the beginning of an array in index
position O:

>>numbers = [1,2,3,4]

>>numbers.unshift (0)

=> [0,1,2,3,4]

The push method adds an element to the end of an array:

>>numbers.push (5)

=> [1,2,3,4,5]

>> numbers.push (6,7, 8)

=> [1,2,3,4,5,6,7,8]

We can use two less than signs (<<) to do the equivalent push:

an_array << 5

Two strings can either be concatenated with the concat method or the + symbol:
>>[1,2,3].concat ([4,5,6])

>>numbers + [4,5,6]

Checking if an array is empty:

>> numbers.empty?

We can even check if an array contains an element with a certain value:

>> numbers.include? (1)

It is not uncommon for arrays to contain duplicate values, which can easily be removed with the

uniqg method:

>> [1,2,2,3,4,5,5,6].uniqg
= [1,2,3,4,5,6]

The each do code block iterates over all elements and stores the value of the current element in
the variable between the pipe characters. This is handy when we need to print all elements.

CHAPTER 2} Ruby Essentials

cities.each do |city]
puts "Australia has a city called " + city

end

The each_with_index code block does exactly as its name implies. It takes both index and
element value variables between the pipe characters. We can now print out an elements index
as well.

cities.each_with_index do |i,city]|
puts "Australia has a city called #{i}= " + city

end

Hashes

A hash is another popular data structure in Ruby. A hash is very similar to an array except a hash
does not store elements by index. Each element in a hash must have a unique key. The key is used
to reference the elements for retrieval, modification, or removal.

This is the syntax for creating a post_codes hash that associates a postal code (hash value)

with a city name (hash key).

post_codes =

{
"Brisbane" => 4000,
"Mt Gravatt" => 4122,
"Carindale" => 4152

}

We can then use the key to retrieve the post code:

puts "Enter a Suburb in Brisbane:"

suburb = gets.chomp

puts "The post code is " + post_codes[suburb].to_s

Adding a new key value pair is very simple:

post_codes["Kelvin Grove"] = 4065

The hash is an object and as such has many useful methods. The keys method prints all keys in
the hash while the values method outputs all the values:

>> post_codes.keys

>> post_codes.values

We can also determine the number of keys in a hash and find out if a certain key exists:

38

Functions

Check if a post code for Carindale exists in the post_codes hash
>> post_codes.has_key? ("Carindale") .to_s
Determine the size of a hash

>> puts post_codes.size.to_s

We can also use the each_key and the each_value code blocks to iterate over either the key
or values of a hash. The each code block gives us access to both the key and value:

using each_key

post_codes.each_key do |key|
puts key

end

Using each_value

post_codes.each_value do |val|
puts val

end

Using the each code block to print both keys and values

post_codes.each do |key,val|
puts "#{key} - #{val}"

end

In the following example a hash is inverted. Inverting a hash turns the keys into the values and
the values are in turn made into the keys. We can now enter a post code and retrieve the matching
city’s name.

post_codes.invert.each do |key,val|

puts "#{key} - #{val}"

end

8 Note

The Ruby APl documentation is a handy reference and is located at: http://www.ruby-doc.org/. Consult
the API for a full list of available objects and methods.

Functions

Code placed within a function can be reused or called from multiple places within the same script.
A function is not associated with an object and can be called generically—this is what distinguishes
a function from a method. The def keyword is used to create a function. The name of the function
must be placed after the def keyword. The end keyword is used to close the code block.

39

http://www.ruby-doc.org/

CHAPTER 2} Ruby Essentials

A function that prints Hello to the console:

def greet_me
puts "Hello"

end

Calling the function multiple times:

Call the greet_me function for the first time
greet_me
Call the greet_me function for the second time

greet_me

Functions can also take parameters or arguments that can be used within the code block. This
function takes an argument called name so that a personalized greeting can be displayed:

def greet (name)
puts "Hello #{name}"

end

Ruby provides two ways to call a function and pass parameters to it:

Call the greet function for the first time and pass name
greet ("Daniel")
Call the greet function without parentheses

greet "Sandy"

Reusing Code

Once a function is added to a Ruby file, it can’t be called from another Ruby script. If you would
like to reuse your functions in multiple scripts, they need to be placed in a file that will serve as a
code library. The code library that contains the functions can then be reused. The require
keyword is used to specify a file that must be included in the current script.

require 'functions.rb'
puts "Please enter the temperature in Celcius:"

puts "The temperature in Fahrenheit is: " + calctemp(gets)

Classes and Methods

Ruby is an object-oriented language. Even simple data types are objects in Ruby. Ruby allows
you to design your own classes from which object instances can be created. A class encapsulates
methods and attributes or properties. A class serves as a blueprint for creating object instances.

Classes and Methods

Every class must have an initialize method, which sets the default attribute values. Within a
class object or instance, variables are prefixed with the @ symbol.

We are going to model a simple Employee class. Initially the Employee class will only have a
single attribute, called first_name, but additional attributes will be added as the section
progresses. All objects created from the Employee class will have access to the first_name
instance variable.

The Employee class:

class Employee
def initialize(first_name)
@first_name = name
end

end

The Employee class contains a single method called initialize, which sets @first_name.
Now we can create our first object instance by using the new method and passing it an employee’s
first name. The new method is known as a constructor.

employeel = Employee.new("Aneesha")

The employeel object has been created. We can now add a method to access or read the
first_name aftribute that was set with the constructor.

class Employee
def initialize(first_name)
@first_name = first_name
end
def first_name
@first_name
end
end
employeel = Employee.new("Aneesha")

puts employeel.first_name

This can further be simplified by using an attr_reader. The first_name method is replaced
by attr_reader :firstname.

class Employee
attr_reader :first_name
def initialize(first_name)

@first_name = first_name

vww.allitebooks.cond

http://www.allitebooks.org

CHAPTER 2} Ruby Essentials

end
end
employeel = Employee.new("Aneesha")

puts employeel.first_name

Next we will set the first name attribute to be a blank default value and create a method to
set the attribute:

class Employee
attr_reader :first_name
def initialize

@first_name = ""

end

def first _name =(first_name)
@first_name = first_name

end

end
employeel = Employee.new
employeel.first_name = "Aneesha"

puts employeel.first_name

We can simplify the setting and attribute syntax by using an attr_writer. The
attr_writer is used to specify the instance variable that can be updated instead of using a
method.

class Employee
attr_reader :first_name
attr_writer :first_name
def initialize
@name = ""
end
end
employeel = Employee.new
employeel.first_name = "Aneesha"

puts employeel.first_name

The attr_accessor is handy if the instance variables require both read and write access. The
attr_accessor keyword has helped us to reduce the code required for each instance variable
that required read and write access by five lines:

Classes and Methods

class Employee
attr_accessor :first_name
def initialize

@first_name = ""

end

end

employeel = Employee.new

employeel .name = "Aneesha"

puts employeel.name

We can now complete our Employee class by adding email, phone, and department as
additional attributes. The example that follows illustrates Ruby’s powerful syntax and the ease
with which it allows you to create new classes. Object-oriented programming has never been
easier.

class Employee
attr_accessor :first_name, :email, :phone, :department
def initialize

@first_name = @email = @phone = @department = ""

end

end

employeel = Employee.new

employeel.first_name = "Aneesha"

employeel.email = "aneesha.bakharia@gmail.com"

employeel .phone = "2341"

employeel .department = "Marketing"

puts employeel.first_name

puts employeel.email

puts employeel.phone

puts employeel.department

Ruby’s inbuilt objects have a to_s method to print output to a string. This is a standard convention
used in Ruby. We are going to extend the Employee class to incorporate a to_s method that
will neatly print an employee object’s attributes.

class Employee
attr_accessor :first_name, :surname, :email, :phone, :department
def initialize

@first_name = @surname = Eemail = @phone = @department = ""

CHAPTER 2} Ruby Essentials

end

def full_ _name

@first_name + " " + @surname
end
def to_s
" " + @first_name + "\n" + \
" "+ Qemail + "\n" + \
" " + @hone + ", " + @department
end

end

employeel = Employee.new

employeel.first_name = "Aneesha"
employeel.surname = "Bakharia"

employeel.email = "aneesha.bakharia@gmail.com"
employeel .phone = "2341"

employeel .department = "Marketing"

puts employeel.full_name

puts employeel.to_s

Handling Exceptions

Sometimes unexpected events occur while a program is executing. A file that is being written to
may have been changed to read only; while sending a network request, the network may go
down; or dozens of other unexpected events may occur. Without providing code to deal with
these errors, Ruby will print an exception message to the console and terminate. This is not user
friendly and makes your program look unprofessional.

A ZeroDivisionError occurs when an attempt is made to divide a number by 0. This type of
exception could easily occur if a user entered a number that was then used as the denominator.
We can simulate a ZeroDivisionError exception in irb:

>>10/0
=> ZeroDivisionError: Divided by Zero
The zeroDivisionError exception from the Ruby interpreter:

$ ruby dividebyzero.rb
dividebyzero.rb:7:in /': divided by 0 (ZeroDivisionError) from

dividebyzero.rb:7

Handling Exceptions

Ruby provides a simple and effective mechanism to deal with unexpected errors that occur while
a program is being interpreted. This mechanism is known as exception handling and relies upon
the rescue clause. An exception is a special object, an instance of the Exception class, e.g.
ZeroDivisionError. The rescue clause is able to detect that an exception has occurred and
deal with it in an appropriate manner or terminate the application if necessary.

Using the rescue clause is very easy; we simply need to add a rescue clause. The code that
handles the unexpected behavior in the rescue clause is then placed in the rescue clause. The
following code implements a rescue clause:

Rescue an exception

numl = 10
num2 = 0
begin

puts numl/num?2

rescue
puts "An exception occurred"
exit

end

We could also explicitly only handle a zeroDivisionError:

Rescue a Divide by Zero exception

numl = 10
num2 = 0
begin

puts numl/num?2

rescue ZeroDivisionError
puts "An divide by zero exception occurred."
exit

end

Multiple rescue clauses are used to deal with different exceptions that may occur. Table 2.6
contains a list and descriptions of common exceptions.

begin
puts numl/num?2
rescue ZeroDivisionError
puts "A divide by zero exception occurred."

exit

CHAPTER 2} Ruby Essentials

rescue IOError
puts "An IO Error has occurred."
exit

rescue
puts "An exception has occurred."
exit

end

Table 2.6 Common Exceptions

Exception Description

RuntimeError The RuntimeError is the default exception.

NoMethodError The method of function being called does not exist.

NameError The method or variable is not available.

IOError An error has occurred while reading or writing to an oufput stream.
TypekError A method is passed an argument of incorrect type

ArgumentError An incorrect number of parameters are passed to a method or function.

Embedded Ruby

Embedded Ruby (known as ERb), written by Seki Masatoshi, allows Ruby to be embedded with
textual documents and used as a template engine. Although it is possible to use puts to
dynamically generate text files and HTML markup, doing so would not be very practical. In the
example that follows, puts is used to render a web page to display the rainfall averages stored
in a hash data structure. The HTML markup, however, is not easy to write or update as itis enclosed
in quotation marks. Ruby is also used to output a lot of static content. An easier approach would
be to keep the static textual content or markup as is and have special delimiters to insert the Ruby
code that needs to be interpreted. This is the exact purpose of ERb.

page_title = "Rainfall Averages"
puts "<html>"
puts "<head>"
puts "<title>#{page_titlel}</title>"
puts "</head>"
puts "<body>"
rainfall =
{

"Jan - Mar" => "10mm",

Embedded Ruby

"Apr - Jun" => "20mm",
"Jul - Sep" => "2mm",
"Oct - Dec" => "émm",
}
puts "<h2>#{page_title}</h2>"
puts "<table border='1'>"
puts "<tr><td>Quarter</td><td>Rainfall</td></tr>"
rainfall.each do |key, value]
puts "<tr><td>#{key}</td><td>#{valuel}</td></tr>"

end

puts "</table>"

puts "<hr>"

puts "Last updated: #{Time.now}"
puts "</body>"

puts "</html>"

ERb loads a file, outputs the text, and processes the Ruby code found within the <% and %>
delimiters. The <%= and %> delimiters output an expression or variable. The following example
generates a web page with a random message:

<% page_title = "Random Message" %>
<html>

<head>

<title><%=page_title%></title>

</head>

<body>

<h2><%=page_title%></h2>

<%

Generate a random number between 1 and 3
rand_no = rand(3)

if rand_no ==

%>

Random Message 1

<%
elsif rand_no == 1

oe

>

Random Message 2

CHAPTER 2} Ruby Essentials

Random Message 3

<hr>

Last updated: <%=Time.now$>
</body>

</html>

ERb is run from the erb command line utility:

$ erb erbdemo.rb

The erbdemo . rb file produces the following output:

<html>
<head>
<title>Random Message</title>
</head>
<body>

<h2>Random Message</h2>
Random Message 1

<hr>

Last updated: Thur Sep 21 12:12:04 E. Australian Standard Time 2006
</body>

</html>

We can now use ERb to simplify the rainfall averages example. | am sure you will agree that the
HTML code is now easier to maintain and comprehend.

<% page_title = "Rainfall Averages" %>
<html>
<head>

<title><%=page_title%></title>

</head>

Embedded Ruby

<body>

o

<

rainfall =

"Jan - Mar" => "10mm",
"Apr - Jun" => "20mm",
"Jul - Sep" => "2mm",

"Oct - Dec" => "6mm"

o0

>
<h2><%=page_title%></h2>
<table border="1">

<tr><td>Quarter</td><td>Rainfall</td></tr>

o

<

rainfall.each do |key, value]

oe
\

<tr><td><%=key%$></td><td><%=value%></td></tr>

A
oP

end

oo

>
</table>

<hr>

Last updated: <%=Time.now%>
</body>

</html>

Using Webrick to Serve ERb Templates

ERb is a great command line utility for processing Ruby embedded within a text document. ERb,
however, prints the output to the console. This might not be ideal as HTML is best viewed from
within a popular web browser such as Firefox. The solution would be to serve the ERb templates
via a lightweight http server such as Webrick. We first encountered Webrick in Chapter 1,
“Getting Started,” when it was used to serve your first Ruby on Rails application.

The following script saved with a . rhtml extension does some amazingly complex things in a
few lines of code. A web server is set to run from port 3000, a mime type is created for . rhtml
files, and then the directory which stores the .rhtml files is mounted. Once this script is run
(startwebrick.rb), all the . rhtml files places in the mounted directory will be available for
viewing from a web browser.

CHAPTER 2} Ruby Essentials

Run a Webrick http server to serve Embedded Ruby files on port 3000
require 'webrick'

include WEBrick

Create a new http server on port 3000

wb_server = HTTPServer.new(:Port => 3000)

Associate the text/html mime type with .rhtml files
HTTPUtils::DefaultMimeTypes.store('rhtml', 'text/html')

Not needed on Unix/Linux/ - CGIHandler is only required on Windows.
wb_server.config.store(:CGIInterpreter, "#{HTTPServlet::CGIHandler: :Ruby}")
Mount the folder that contains the .rhtml files to be served
wb_server.mount ('/', HTTPServlet::FileHandler, '\
RubyOnRailsPower\Chapter2\code\webrick\www')

Shut down if an error is trapped

["TERM', 'INT'].each do |signal|

trap(signal) { wb_server.shutdown }

end

Start the server

wb_server.start

Figure 2.2 shows the rainfall averages web page served by Webrick. The web browser sends a
request to Webrick. Webrick receives the request and recognizes that a . rhtml file is required.
Webrick retrieves the file, uses ERb to interpret the embedded Ruby code, and then sends the
resulting HTML file back to the web browser. The web browser renders the HTML markup and
the page is displayed.

Figure 2.2
Delivering dynamic ERb
templates with Webrick.

Conclusion

Conclusion

A lot of Ruby language syntax and concepts were covered in this chapter. Ruby is simple, pow-
erful, and elegant and allows you to do more with less code. You have learned to use the
Interactive Ruby shell (irb), run your Ruby code with the Ruby interpreter, write simple programs
to perform mathematical calculations and process text, model your own objects, and finally serve
dynamic web pages with embedded Ruby. These concepts will be extended and used throughout
the rest of this book. The Rails framework is, after all, powered by the Ruby language. In the next
chapter we will take a look at Ruby conventions used in the Rails framework.

vww.allitebooks.cond

http://www.allitebooks.org

This page intentionally left blank

Prototyping Database-
Driven Applications
with Rails

In Chapter 1, “Getting Started,” the MVC architecture was introduced. We also explored the
view and controller components as implemented by Rails. Our focus now turns to Active Record,
the Rails component responsible for building models that interact with a database. This is designed
to be a very practical chapter because Active Record is introduced in the context of prototyping
a contact list, FAQ manager, and weblog. Although it may seem overly ambitious to create three
database-driven applications in a single chapter, rest assured that this is all made possible by the
powerful built-in functionality that Rails brings to web development.

In this chapter you’ll learn how to:

Design a MySQL database

Use Active Record to scaffold a model to a database table

Perform simple input validation

Customize the code generated by a scaffold

Create a contact list
Create an FAQ manager

Create a weblog

Creating a Contact List

Our journey begins with the need for a simple tool to manage the contact details of all your
friends. You would like to store the data in a database and publish the list of contact details to a
password-protected location on your web site. It would also be nice to be able to maintain the
list via a web interface. A simple Create, Retrieve, Update, and Delete (CRUD) interface is all
that is required.

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

3l Note

A MySQL database server is required. If you have not installed MySQL, please refer to Chapter 1.

Let’s create a new Rails application called contactlist:

$ rails contactlist

The rails command will create a directory called contact1list with the skeleton code and
structure that a Rails application requires.

The config/database.yml file stores the details required to access a database. The .ym1
extension belongs to a YAML file. YAML is a human-readable data format and stands for YAML
Ain’t Markup Language. This is great; we don’t need to enter our database access details into
an overly complex XML format. Open the config/database.yml file:

development:
adapter: mysqgl
database: contactlist_development
username: root
password: your_password
host: localhost
test:
adapter: mysqgl
database: contactlist_test
username: root
password: your_password
host: localhost
production:
adapter: mysqgl
database: contactlist_production
username: root
password: your_password

host: localhost

The config/database.yml file stores details for a development, test, and production database.
These databases will be used in the different environments that are required during a project’s
development and maintenance lifecycle. The adapter, database, username, password, and host
details need to be entered for each environment. As we are using a MySQL database, the adapter
is set to MySQL. The database name is simply the name of the Rails project followed by an
underscore and the environment (development, test, or production); another convention to make

54

Creating a Contact List

your life easier. If you are running the MySQL server on the same machine as the web server,
then the host must be set to 1ocalhost, which is also the default. Enter the password to access
your database server and save the database.yml file.

3l Tip

A space is required after the colon before you enter any of the settings. As an example,
password: your_password is correct while password:your_password would cause a database
access error. | have made this error many times.

We now need to create a database called contactlist_development—use your MySQL
visual editor to create the database. The database requires a single table called contacts. The
contacts table requires the following fields:

0 id This is a unique, auto-incrementing primary key.

firstname The firstname field stores a name or nickname.
lastname The 1astname field stores the surname.

email The email field stores the email address.

mobile The mobile field stores the mobile phone number.
note The note field stores the arbitrary text/information.

Some table and field naming conventions to remember:

Table names are plural. Tables contain multiple rows or items so this makes sense.

Auto-incrementing primary key fields must be called id.

We can use script/generate to create a model. We will create a model called contact (the
model name is the singular equivalent of the table name). We have a table called contacts, so
the model is called contact.

$ ruby script/generate model contact

The following files are created:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/contact.rb
create test/unit/contact_test.rb

create test/fixtures/contacts.yml

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

create db/migrate

create db/migrate/001_create_contacts.rb

Open the db/migrate/001_create_contacts.rb file. This file is a migration: we use it to
create the contacts table. We could use an SQL script to create the table, but writing a migration
is simpler, done in Ruby, and database neutral. We will learn all about migrations in Chapter 4,
“Active Record.” We don’t need to specify the id field; the migration is smart enough to auto-
matically create one for us. Create the contacts table and all the required fields:

class CreateContacts < ActiveRecord::Migration
def self.up

create_table :contacts do |t]

t.column :firstname, :string
t.column :surname, :string
t.column :email, :string
t.column :mobile, :string
t.column :note, :text

end
end
def self.down

drop_table :contacts
end

end

Run the migration:

$ rake db:migrate

The following has been output to the console, and the contacts table is created. You can verify
that the table exists with a visual editor for MySQL:

(in C:/rails/contactlist)
== CreateContacts: migrating ==
-- create_table(:contacts)

-> 0.0940s

CreateContacts: migrated (0.0940s) =======================================

Openthe app/models/contact.rbfile. Aclass called Contact has been created and inherits
from ActiveRecord: :Base:

class Contact < ActiveRecord: :Base

end

Creating a Contact List

Create a controller called contact:

S ruby script/generate controller contact

The following files are created:

exists app/controllers/

exists app/helpers/

create app/views/contact

exists test/functional/

create app/controllers/contact_controller.rb
create test/functional/contact_controller_test.rb

create app/helpers/contact_helper.rb

We need to link the contact controller to the contact model. The simplest way to do this is
with a scaffold. With one line of code, we can enable a CRUD interface for the Contact List
application. Open the app/controllers/contact_controller.rb file and enter
scaffold :contact.

class ContactController < ApplicationController
scaffold :contact

end

Start the builtin Webrick web server by typing the following at the command prompt:

$ ruby script/server

Open the http://localhost:3000/contact URL in a web browser. The Contact List application
will be displayed (see Figure 3.1). The Listing contacts heading, a table with column heading
for each field stored in the contacts table, and a link called New contact, which maps to

the /contact/new action, is displayed.

We don’t have any details in the contactlist_development database, so let's add some
entries by clicking on the New contact link. The New contact form is displayed in Figure 3.2. The
form contains input fields for you to enter the firstname, lastname, email, mobile, and
note fields. Active Record was even smart enough to know that the note field required a multi-
line text input box.

At this point you realize that a homephone field will be valuable as some of your friends either
don’t have a mobile phone or turn it off at night. So before you use the New contact form, you
add this field to the contacts table (see Figure 3.3).

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

Figure 3.1
Displaying the Contact List

application.

Figure 3.2

The New contact form.

Refresh the New contact form (http://localhost:3000/contact/new). Without a server restart,
Active Record and the scaffolding has picked up the table changes. The homephone field is added
to the form (see Figure 3.4). Add a contact and click on the Create button.

The http://localhost:3000/contact/list URL is displayed (see Figure 3.5). At the top of the page
a confirmation message is present: “Contact was successfully created”. The table now displays
the contact details we have just entered. We also have links to show, edit, and delete the record.
This is great because it provides a simple CRUD maintenance interface for our application.
Give the interface a good test by creating, editing, and deleting records.

Creating a Contact List

Figure 3.3
Adding the homephone

field to the contacts table.

Figure 3.4
The homephone field is
added to the New contact

form.

There is no input field validation and you are able to add blank records to the contact list. This
can easily be fixed. The enforcement of required fields is a business rule and should therefore be
placed in the model (app/models/contact.rb). Here is the syntax to make the firstname
field mandatory with validates_presence_of:

class Contact < ActiveRecord: :Base
validates_presence_of :firstname

end

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

Figure 3.5
Display CRUD interface.

We could also ensure that multiple fields are validated by separating variable names with a
comma:

class Contact < ActiveRecord: :Base
validates_presence_of :firstname, :surname, :email

end

d Note

Rails includes a comprehensive list of validation routines such as validates_size of,
validates_numericality of, and validates_format_of. These will be covered Chapter 4,
“Active Record.”

When we try to add a contact with the £irstname field blank we now get a validation error
message. Rails even highlights the field that violates the validation rules. This is shown in
Figure 3.6. It is amazing what we can achieve by adding a single line to our model.

Passing the contact model to the scaffold method in the ContactController was all we
needed to create a CRUD for the contacts table. We have been able to deliver all of the required
features in record time. The application is fully functioning, but we would like to make some
cosmetic changes such as change the title to Contact List, add a border to the table that displays
the contacts, and change “destroy” to “delete” (see Figure 3.7). The scaffold command uses
internal Rails code to dynamically render the interface each time the application is called. We
can, however, generate our own version of the scaffold controller and view files:

Creating a Contact List

$ ruby script/generate scaffold contact contact

Figure 3.6
Oops! | have not filled out
a mandatory field.

Figure 3.7
The Contact List application

with a few contacts added.

The following is output to the console:

exists app/controllers/
exists app/helpers/
exists app/views/contact
exists test/functional/

dependency model

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

exists app/models/

exists test/unit/

exists test/fixtures/

identical app/models/contact.rb
identical test/unit/contact_test.rb
identical test/fixtures/contacts.yml

create app/views/contact/_form.rhtml

create app/views/contact/list.rhtml

create app/views/contact/show.rhtml

create app/views/contact/new.rhtml

create app/views/contact/edit.rhtml

overwrite app/controllers/contact_controller.rb? [Ynaqg] Y
force app/controllers/contact_controller.rb

overwrite test/functional/contact_controller_test.rb? [Ynaqg] Y
force test/functional/contact_controller_ test.rb
identical app/helpers/contact_helper.rb

create app/views/layouts/contact.rhtml

create public/stylesheets/scaffold.css

As you can see, script/generate is very smart about what it keeps identical, what it creates,
and what needs to be overwritten. While running the scaffold command, we were asked
whether the app/controllers/contact_controller.rb file could be overwritten. We
replied Yes by typing Y at the command line. The app/models/contact.rb file has not been
changed. Let’s take a peek at the updated app/controllers/contact_controller.rbfile:

class ContactController < ApplicationController
def index
list
render :action => 'list'
end
GETs should be safe (see http://www.w3.o0rg/2001/tag/doc/whenToUseGet.html)
verify :method => :post, :only => [:destroy, :create, :update],
:redirect_to => { :action => :list }
def list
@contact_pages, @contacts = paginate :contacts, :per_page => 10
end
def show

@contact = Contact.find(params[:1d])

62

shs. aglss
BB R

Creating a Contact List

end
def new
@contact = Contact.new
end
def create
@contact = Contact.new(params|[:contact])
if @contact.save
flash[:notice] = 'Contact was successfully created.'
redirect_to :action => 'list’
else
render :action => 'new'
end
end
def edit
@contact = Contact.find(params[:1id])
end
def update
@contact = Contact.find(params[:1d])

if @contact.update_attributes (params|[:contact])

flash[:notice] = 'Contact was successfully updated.'
redirect_to :action => 'show',6 :id => @contact
else

render :action => 'edit'
end
end
def destroy
Contact.find(params|[:id]) .destroy
redirect_to :action => 'list’

end

end

The contact controller contains the index, 1ist, show, new, create, edit, update, and
destroy actions. Each action is a method—the def keyword is used to define methods. These
actions are all required in the contact list CRUD. The index action calls the 1ist action, which
inturn, renders the app/views/contact/list.rhtml template. The app/views/contact/
list.rhtml template is where we would like to make our alterations. The amended code, with
a new heading, a border added to the table, and the "destroy" link changed to "delete™,

appears (see Figure 3.8):

3

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

Figure 3.8
The Contact List application

wit

<h
<t

<%

<%
</

<%

h a few amendments.

1>Contact List</hl>

able>

<tr>

<% for column in Contact.content_columns %>

<th><%= column.human_name %></th>

for contact in @contacts %>

<tr>

<% for column in Contact.content_columns %>
<td><%=h contact.send(column.name) %$></td>

<% end %>

<td><%= link_to 'Show', :action => 'show', :id => contact %></td>
<td><%= link_to 'Edit', :action => 'edit',6 :id => contact %></td>
<td><%= link_to 'Delete', { :action => 'destroy', :1id => contact },
:confirm => 'Are you sure?', :post => true %$></td>

</tr>

end %>

table>

= link_to 'Previous page', { :page => @contact_pages.current.previous

@contact_pages.current.previous %>

if

Creating an FAQ Manager

<%= link_to 'Next page', { :page => @contact_pages.current.next } if
@Qcontact_pages.current.next %>

<%= link_to 'New contact', :action => 'new' %>

The table column names are dynamically generated—this is why we can add new fields to the
database table and refresh the page for our changes to take effect. If more than 10 records are
available, the result set will be paginated with Next and Previous links. You will notice that there
are no opening and closing <htm1> tags. This is because the page layout has been abstracted.
The app/views/layouts/contact.rhtml is used by all views rendered by the Contact
controller:

<html>

<head>
<title>Contact: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>

</html>

d Note

The yield variable contains the rendered content of the requested action. The <%= and %> delimiters
are used to render this variable within the page layout.

Thelist.rhtml,show.rhtml,new.rhtml,edit.rhtml,ond_form.rhtmltempkﬂescom
tain the forms used in the CRUD and are stored in the app/views/contact/. Please explore
the code in these files on your own.

Creating an FAQ Manager

We now turn our attention to a slightly more complex application: a Frequently Asked Questions
(FAQ) Manager. The FAQ Manager will allow help desk support staff to maintain a categorized
list of answers to commonly asked questions. The inclusion of categories means that our database
will need two related tables.

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

After an initial scoping meeting with your client, you determine that the following functionality is
required:

A CRUD interface to maintain the questions and answers.

Each question and answer must be associated with a category.

A CRUD interface to maintain the categories.

Wiki markup formatting support within the answers field.
The converting of wiki markup to HTML adds a nice touch to the FAQ Manager, but you have no
idea how to make this happen and meet the project deadlines. A routine web search, however,
reveals that Rails includes a helper method called Textilize. Table 3.1 shows a sampling of

the markup support provided by Textilize. Textilize uses RedCloth, alibrary for Ruby. We
will need to install RedCloth before we can use the Textilze () helper method within a view:

$ gem install RedCloth

Table 3.1 Formatting with RedCloth

Textile Markup Rendered HTML
italic italic

bold bold

*italic and bold* italic and bold

"Alink":http://rubyonrails.com A 1ink

Create a database called fagmanager_development. The database requires two tables: faqgs
and categories. The fags table requires id, question, answer, and category_id fields. The
category_id field will relate an FAQ to a category. Related fields are named after the singular
version of the table name and suffixed with _id. This is a Rails convention. The categories
table requires an id and name field. Create a new Rails application called fagmanager:

$ rails fagmanager

The skeleton structure will be created. Don't forget to open the config/database.yml file and
update the database settings.

Start the Webrick server:
$ ruby script/server
Generate the fag model:

$ ruby script/generate model faqg

http://rubyonrails.com

Creating an FAQ Manager

The following is output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/faqg.rb
create test/unit/fag test.rb
create test/fixtures/fags.yml
create db/migrate

create db/migrate/001_create_fags.rb

Edit the db/migrate/001_create_fags.rb migration. We need to create a table with
question, answer, and category_id fields:

class CreateFags < ActiveRecord::Migration
def self.up
create_table :fags do |t
t.column :question, :string
t.column :answer, :text
t.column :category_id, :integer
end
end
def self.down
drop_table :fags
end

end

Generate the category model:

S ruby script/generate model category

The following is output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/category.rb
create test/unit/category_test.rb
create test/fixtures/categories.yml
exists db/migrate

create db/migrate/002_create_categories.rb

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

Edit the db/migrate/002_create_categories.rb migration. We need to create a table
with a name field:

class CreateCategories < ActiveRecord::Migration

def self.up

create_table :categories do |t

t.column :name, :string

end
end
def self.down

drop_table :categories
end

end

Run the migrations:

$ rake db:migrate

The following has been output to the console and the contacts table is created. You can verify
that the table exists with a visual editor for MySQL:

(in C:/rails/fagmanager)
== CreateFags: migrating =============z=====z===s============s===-================
-- create_table(:faqgs)
-> 0.0930s
== CreateFags: migrated (0.0930s) ===

== CreateCategories; migrating ———=—==
-- create_table(:categories)
-> 0.1090s

== CreateCategories: migrated (0.1090g) =====================================

Inthe fagmodel, we ensure that the question field ismandatory. An fag belongsto a category.
We can specify this relationship in the app/models/faq.rb file (Fag class):

class Fag < ActiveRecord: :Base
belongs_to :category
validates_presence_of :question

end

Within the category model, the name field is required. A category has many fags. We need to
define a has_many relationship in the app/models/category.rb file (Category class).

Creating an FAQ Manager

class Category < ActiveRecord: :Base
has_many :fags
validates_presence_of :name

end
We can now create controllers called fag and category:
S ruby script/generate controller fag

$ ruby script/generate controller category

The interface for managing the FAQs is created by scaffolding for the fag model to the fag
controller. You can test the interface from http://localhost:3000/faq (see Figure 3.9):

$ ruby script/generate scaffold fag fag

Figure 3.9
The FAQ manager.

We generate a scaffold to the maintain categories as well. You can view the Categories manager
at hitp://localhost:3000/category (see Figure 3.10):

S ruby script/generate scaffold category category

We have working add and edit forms, but they don‘t allow a user to specify a category for an
FAQ. The add form must contain a drop-down box where a user can select an appropriate
category. The edit form should display the selected option within the drop-down list. We need to
retrieve a list of all categories and make this collection available to the edit and new views. Open
the app/controllers/faqg.rb file and add an @categories instance variable to the edit
and new actions. The @categories instance variable must be set to Category. find_all.

59

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

Figure 3.10

Maintaining categories.

The £ind_all method simply returns all records within the Category model (i.e. categories
table). Here are the amended methods:
def edit

@fag = Faqg.find(params[:1d])

@categories = Category.find_all

end
def new

@fag = Fag.new

@categories = Category.find_all
end

Both the new and edit views use a partial to render the form elements. This makes our life easy
as we only need to add code to one file and have the categories drop-down list appear on both
the new and edit forms. We use an each do loop to iterate over the categories collection and
print <option> tags for each category. We also use an if statement to determine whether an
option should be selected within the drop-down list when the edit form is loaded. The New faq
form with a category drop-down list is displayed in Figure 3.11. Here is the source code listing
for the app/views/faq/_form.rhtml partial.

<%= error_messages_for 'faqg' %>

<!--[form: faqg]-->

<p><label for="faqg question">Question</label>

<%= text_field 'faqg', 'question' %></p>

<p><label for="faqg answer">Answer</label>

Creating an FAQ Manager

<%= text_area 'faqg', 'answer' %></p>
<p><label for="faqg category">Category</label>

<select name="fag[category_id]">
<% @categories.each do |category| %>
<option value="<%= category.id %>"
<%= ' selected' if category.id == @faqg.category_id %>>
<%= category.name %>
</option>
<% end %>
</select>
</p>

<!--[eoform: fag]-->

Figure 3.11
Specifying a category
within the New faq form.

Finally, we need to spice up the FAQ listing. We want to display the FAQs sequentially, one below
the other, and not in a table, so we open the app/views/faqg/list.rhtml template and
remove the table and the loop that renders the table column names. We display the question,
answer, and category, each on a new line. The Textilize () helper method is used to parse
the answer field and render textile markup as HTML. The category name is referenced using dot
notation: fag.category.name. The Show, Edit, and Destroy links are positioned after the
category name. We also include a link to the Category controller so that users can easily access
the interface to maintain categories. Figure 3.12 displays the completed application.

The final code listing for the app/views/faqg/list.rhtml:

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

<hl1>FAQ Manager</hl>

<% for faqg in @fags %>
<%=fag.question %>

<%= textilize(faqg.answer) %$>

Category: <%=faqg.category.name %>

(<%= link_to 'Show', :action => 'show', :id => faqg.id %> |

<%= link_to 'Edit', :action => 'edit', :id => faq.id %> |

<%= link_to 'Destroy', { :action => 'destroy',6 :id => fag.id }, :confirm =>
'Are you sure?', :post => true %>)

<hr>

<%= link_to 'Previous page',6 { :page => @fag pages.current.previous } if
@fag pages.current.previous %>
<%= link_to 'Next page', { :page => @fag pages.current.next } if

@fag pages.current.next %>

<%= link_to 'New fag', :action => 'new' %> |

<%= link_to 'Manage Categories',6 :action => 'list', :controller => 'category' %>
Figure 3.12

The FAQ manager in

action.

Creating a Weblog
| am sure that you either have a weblog or you subscribe to weblogs. A weblog is essentially a
diary. You make entries, which are date stamped, and web site visitors can add comments. In this

72

she ol gl
A o

Creating a Weblog

section, you are going to build a simple but fully functional weblog that is powered by Ruby on
Rails. Here are the functional requirements:

Display a list of entries in reverse chronological order.
Add new posts with a form.
Format posts with Textile markup.
Allow visitors to add comments.
First create a new Rails application called weblog:

S rails weblog

Start the Webrick web server:

$ ruby script/server

Open the config/database.yml file and enter the password to access your local database
server. Save the database.yml file.

Create a database called weblog development. The weblog development database
requires two tables: posts and comments. The posts table will store each entry made to the
weblog. The posts table has id, title, body, and created_at fields. The created_at field
isadatetime datatype in MySQL. The comments table requires id, body, and post_id fields.
The post_id field relates the comments table to the posts table. A post can contain many
comments.

Create a model called post:

$ ruby script/generate model post

The following is output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/post.rb
create test/unit/post_test.rb
create test/fixtures/posts.yml
create db/migrate

create db/migrate/001_create_posts.rb

Edit the db/migrate/001_create_posts.rb migration. We need to create a table with
guestion, answer, and category_id fields:

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

class CreatePosts < ActiveRecord::Migration
def self.up
create_table :posts do |t]
t.column :title, :string
t.column :body, :text
t.column :created_at, :datetime
end
end
def self.down
drop_table :posts
end

end

Run the migration to create the posts table:

$ rake db:migrate

The following is output to the console:

(in C:/rails/weblog)

== CreatePosts: migrating ===
-- create_table(:posts)

-> 0.0930s

CreatePosts: migrated (0.0930s) ==

Create a controller called blog:

$ ruby script/generate controller blog

The title field of a post is mandatory, so we add this rule to the app/models/post.rb file:

class Post < ActiveRecord::Base
validates_presence_of :title

end

We are anxious to play with the weblog, so we scaffold the blog controller to the post model.
This is achieved by passing :post to the scaffold () method in the app/controllers/
blog.rb:

class BlogController < ApplicationController

scaffold :post

end

Creating a Weblog

Point your web browser to hitp://localhost:3000/blog. Figure 3.13 shows the weblog after two
entries have been made. The entries are displayed in a table. This is not suitable because weblog
entries are usually displayed one below the other. Also, the body field may be lengthy depending
upon the nature of the post, so it makes sense for each post to be displayed separately.

Figure 3.13
Weblog entries displayed

in a table.

It is obvious that we need to customize the view/blog/list.rhtml file. We need to get Rails
to generate the source code by typing the following at the command prompt:

S ruby script/generate scaffold post blog

We remove the table, display each weblog entry individually, and use the Textilize () helper

method to format the body:

<hl1>My Weblog</hl>

<p><%= link_to 'New post', :action =>
<% for post in @posts %>
<div>

<h2><%= link_to post.title, :action =>

<p><%=textilize(post.body) %$></p>

)
>

<p><%=post.created_at.to_s()

(<%= link_to 'Edit', :action => 'edit',
{ :action => 'destroy', :id => post },
:post => true %>)

</p>

</div>

'new'’

></p>

'show', :id => post %></h2>

:1d => post %> | <%= link_to 'Destroy’,

:confirm => 'Are you sure?',

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

<% end %>

</table>

<%= link_to 'Previous page',6 { :page => @post_pages.current.previous } if
@post_pages.current.previous %>

<%= link_to 'Next page', { :page => @post_pages.current.next } if

@post_pages.current.next %>

Figure 3.14
Displaying weblog entries

in a list.

Figure 3.14 shows the new and improved weblog display. The entries, however, are displayed
in order of posting (first to last). We would like to display the post in reverse chronological order
(see Figure 3.15). We can do this by looping over post .reverse:

<hl>My Weblog</hl>

<p><%= link_to 'New post', :action => 'new' $%></p>

<% for post in @posts.reverse %>

<div>

<h2><%= link_to post.title, :action => 'show',6 :id => post %></h2>
<p><%$=textilize(post.body) %$></p>

<p><%=post.created_at.to_s() %>

(<%= link_to 'Edit', :action => 'edit', :id => post %> | <%= link_to 'Destroy’',
{ :action => 'destroy', :id => post }, :confirm => 'Are you sure?',
:post => true %>)

</p>

</div>

76

shs. aglss
BB R

Creating a Weblog

<% end %>

</table>

<%= link_to 'Previous page', { :page => @post_pages.current.previous } if
@post_pages.current.previous %>

<%= link_to 'Next page', { :page => @post_pages.current.next } if

@post_pages.current.next %>

Figure 3.15
Displaying recent weblog

entries first.

We have formatted the display of a weblog post on the 1ist.rhtml template. We would like
this formatting to be used on the show. rhtml template as well. Rather than copying the code

to the show. rhtml template, we create a partial that both 1ist.rhtml and show.rhtml can
reference. We are putting the Don’t Repeat Yourself (DRY) principle into action. The name of a
partial always begins with an underscore. We call our partial _post.rhtml. Here is the code:

<div>

<h2><%= link_to post.title, :action => 'show', :1d => post %></h2>
<p><%=textilize(post.body) %$></p>

<p><%$=post.created_at.to_s() %>

(<%= link_to 'Edit', :action => 'edit',6 :1d => post %> | <%= link_to 'Destroy',
{ :action => 'destroy',6 :id => post }, :confirm => 'Are you sure?',

:post => true %>)

</p>

</div>

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

We can now use the render_partial helperinthe 1ist.rhtml template. We don’t need to
place this call within a loop because the render_partial helper is able to take a collection:

<hl>My Weblog</hl>

<p><%= link_to 'New post',6 :action => 'new' %></p>
<%= render :partial => "post", :collection => @posts.reverse %>
<%= link_to 'Previous page', { :page => @post_pages.current.previous } if

@post_pages.current.previous %>

<%= link_to 'Next page', { :page => @post_pages.current.next } if
@post_pages.current.next %>

The show.rhtml file is also simplified:

<%= render :partial => "post", :object => @post %>
<%= link_to 'Edit', :action => 'edit', :id => @post %> |
<%= link_to 'Back', :action => 'list' %>

We are able to post and display weblog entries, but we still need to include a commenting system.
Let's generate a comments model:

$ ruby script/generate model comment

The following is output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/comment.rb
create test/unit/comment_test.rb
create test/fixtures/comments.yml
exists db/migrate

create db/migrate/002_create_comments.rb

Edit the db/migrate/002_create_comments.rb file and create the comments table:

class CreateComments < ActiveRecord::Migration
def self.up
create_table :comments do |t
t.column :body, :text
t.column :post_id, :integer

end

Creating a Weblog

end

def self.down
drop_table :comments
end

end

Run the migration to create the comments table:

S rake db:migrate

The following is output to the console:

(in C:/rails/weblog)
== CreateComments: migrating ==
-- create_table(:comments)

-> 0.1090s

CreateComments: migrated (0.1090s) =======================================

Add a belongs_to reference to the comments. rb file:

class Comment < ActiveRecord: :Base
belongs_to :post

end

Add a has_many relationship to the post . rb file:

class Post < ActiveRecord: :Base
validates_presence_of :title
has_many :comments

end

We are now able to get all comments attached to a post with @post . comments, which is a
collection that we can iterate over and access sub-fields such as comment . body. We will use this
in the show. rhtml file to display the comments below the weblog entry. Finally, we include a
form with a text area where a visitor can enter and submit a comment (see Figure 3.16). The
comment is posted to the comment action. The form_tag, text_area, and submit_tag
helpers are used to generate their HTML counterparts.

The code listing for the show. rhtml file:

<%= render :partial => "post", :object => @post %>
<%= link_to 'Edit', :action => 'edit', :id => @post %> |

<%= link_to 'Back', :action => 'list' %>

CHAPTER 3 } Prototyping Database-Driven Applications with Rails

<h2>Comments</h2>

o

<% for comment in @post.comments %>

A
oe

= comment.body %>

<hr />

<% end %>

<%= form_tag :action => "comment", :id => @post %>
<%= text_area "comment", "body" %>

<%= submit_tag "Comment!" %>

</form>

Figure 3.16

Adding comments to a

weblog entry.

We are almost done, but we still need to build the comment action. The comment action (or
comment method inblog_controller.rb) needsto add a comment to the database, provide
the user with a confirmation message, and redirect to the show action. We are able to achieve
all of this in three lines of code:

def comment
Post.find(params[:1d]) .comments.create (params|:comment])
flash[:notice] = "Your comment has been added!"

redirect_to :action => "show", :1d => params|[:id]

end

Conclusion

Conclusion

In a single chapter we have built three applications: contact list, FAQ manager, and weblog. You
were easily able to connect Rails to a database, create a model of a database, enforce input
validation, and generate a CRUD interface to add, edit, delete, and display data. The concepts
and philosophies behind the Ruby on Rails platform have certainly changed database-driven web
development forever and for the better. Convention over configuration increases programmer
productivity—this is a huge benefit. In the next chapter, we will delve into Active Record and
increase the complexity of the applications that we will be developing.

This page intentionally left blank

Active Record

In this chapter, you'll discover why Active Record is a key component of the Rails framework.
Active Record is an implementation of object-relational mapping (ORM). Active Record maps
Ruby objects to the rows and columns in a database table, allowing us to easily insert, update,
search, and delete data without needing to write queries. Active Record comes configured by
default and is able to dynamically map table columns to object attributes. You don’t need to write
accessor methods for each column in a table. This chapter also covers migrations—a handy way
to place a database schema under version control as well as create and alter database tables
while you develop and enhance a web application. In this chapter you'll learn to:

Create and modify database tables and columns with migrations.
Use migrations to update and reverse changes to a database schema.

Use Active Record models.

Add data validation to Active Record models.

Use the £ind method to search a database and return Active Record objects.
Model one-to-one, one-to-many, and many-to-many relationships with Active Record.
Use the acts_as_list and acts_as_tree Active Record extensions.

Automatically insert and update timestamp fields.

Migrations

The process for designing a web application usually starts with a database and a few tables.
Agile practices dictate that the database tables will change over time as requirements are gath-
ered and implemented. As a developer, on numerous occasions a full database schema has been
demanded of me, and although | was able to deliver a schema, it had no resemblance to that of
the deployed product. It is simply impossible to design a completed database schema at the
beginning of a project. Tables will be added, column names will change, and new relationships

8

CHAPTER 4} Active Record

will be mapped as the product reaches a release milestone. Each increment in product version
will have its share of database changes.

This raises an interesting question: How do we manage the changes that occur to the structure of
the tables in a database? Remember that we need to deploy changes across our development,
testing, and production environments. This problem gets compounded because we usually work
in a team that is comprised of numerous other developers. Add to this the fact that your product
may need to support multiple databases such as MySQL and Oracle. So, as developers, we need
to realize that agile development practices need to be supported by agile database design tech-
niques. Luckily, this is something Rails addresses (and provides a solution for) in the form of
migrations. In the first instance, migrations remove the need to write database-specific scripts to
create and modify tables. Migrations allow us to write Ruby code to create and modify a
database. While this is important in itself, migrations also allow us to roll back or undo the changes
that have been made to a database. Each change or addition is stored in a new migration file
(version) and must contain code to undo the specified changes. At any time, we can update a
database to the latest migration or revert to a previous migration.

A migration template is created when we use script/generate to create a model:

$ ruby script/generate model employee

The following directories and files are created:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/employee.rb
create test/unit/employee_test.rb
create test/fixtures/employees.yml
create db/migrate

create db/migrate/001_create_employees.rb

Migrations are stored in the db/migrate directory. The filename for a migration follows a specific
naming convention—a three-digit sequence number, the word create, and the plural name of

the model (i.e., the table name) each separated by an underscore. The sequence number begins
at 1, and Rails automatically increments the sequence number when a new migration is created.

A migration can also be generated manually:

$ ruby script/generate migration CreateEmployees

Migrations

Ed Tip
Pass --skip-migration as an argument to the model generator command if you don’t want to

generate a migration:

S ruby script/generate model employee --skip-migration

Open the 001_create_employees.rb file. The template for the migration will be displayed:

class CreateEmployees < ActiveRecord::Migration

def self.up

create_table :employees do |t]

t.column :name, :string

end
end
def self.down

drop_table :employees
end

end

A migration is a subclass of ActiveRecord:Migration. A migration requires a self.up and
self.down method. The self.up method needs to implement the code to add to or alter a
database. The self . down must contain code to undo the changes made inthe sel £ . up method.
Asthe CreateEmployees migration is created by the model generator, it already contains code
to create and drop a table called employees. Within the create table code block, we need
to add the columns or fields that we require. A commented out example to define a column is
given (# t.column :name, :string) inthetemplate.The employeestable requires columns
to store the firstname, lastname, email, phoneext, department, and salary of an em-
ployee. Let’s add these to the migration:

class CreateEmployees < ActiveRecord::Migration
def self.up

create_table :employees do |t]

t.column :firstname, :string
t.column :lasttname, :string
t.column :email, :string
t.column :phoneext, :string
t.column :department, :string
t.column :salary, :float

end

CHAPTER 4} Active Record

end

def self.down
drop_table :employees

end

end

We need to specify the column name and the data type. Data types of :binary, :boolean,
:date, :datetime, :decimal, : float, :integer, :string, : text, : time, and

: timestamp are available. These data types provide a level of abstraction from the underlying
database. Table 4.1 contains the optional parameters for columns creation. The :string type
would create a column of type varchar (255) on a MySQL database but a type of char
varying (255) on a Postgres database. The benefits are twofold. We can specify a column type
with a simple declarative syntax (less to remember) and also apply migrations to a variety of
databases, including MySQL, Oracle, Postgres, and SQlite.

Table 4.1 Optional Column Parameters

Option Description

:null => true or false Setsthe columnsto a null value

:limit => size Sefs the number of characters in a text column
:default => value Sets the default value that must be assigned when a new record is created
:precisionand :scale Available for decimal columns. It is wise to specify : precision

and :scale due to database incompatibiliies. A precision of 5 and @

scale of O store —=99,999 to +99,990.

We can run the migration:

$ rake db:migrate

The table is created:

(in C:/rails/migrations)
== CreateEmployees: migrating ===
-- create_table(:employees)

-> 0.1250s

== CreateEmployees: migrated (0.1250s) ======================================

Migrations

Figure 4.1
The Employees table.

Figure 4.1 shows the table that has been created. You’ll notice that a primary key called id has
been created automatically. This is useful because id is the assumed default for all primary
keys in Rails. An additional table called schema_info has also been created. The
schema_info table contains a single column called version, which will contain the version of
the last applied migration (see Figure 4.2). Rails uses this information to determine the migration
that needs to be applied or reverted.

Figure 4.2
The schema_info table.

Adding and Removing Columns from a Table

The most common database alteration you will need to make is adding a column to an existing

table. This too can be managed by a migration. The add_column method does exactly what its
title suggests. The add_column method takes the name of the table that a column must be added

87

CHAPTER 4} Active Record

to asits first parameter. The name of the field to be added and its data type must also be specified.
We will add a column called gender to the employees table.

Generate a migration called add_gender_column:

$ ruby script/generate migration add_gender_column
exists db/migrate

create db/migrate/002_add_gender_column.rb

As you can see, the migration sequence is now at number 2. Open the
002_add_gender_column.rb, we will need to add code to the skeleton created by the
script/generate command:

class AddGenderColumn < ActiveRecord::Migration
def self.up
end
def self.down
end

end

Because this migration was not created by the generate model command, we have empty
self.up and self.down methods. We need to add code that will add a column in the
self.up method and code to undo the action (remove the column) in the self.down method.

class AddGenderColumn < ActiveRecord::Migration
def self.up
add_column :employees, :gender, :string
end
def self.down
remove_column :employees, :gender
end

end

Run the migration:

$ rake db:migrate

The field is added to the employees table:
(in C:/rails/migrations)
== AddGenderColumn: migrating ===

-- add_column (:employees, :gender, :string)

Migrations

-> 0.2970s
== AddGenderColumn: migrated (0.2970s) ======================================

Figure 4.3
The gender field added to

the employees table.

We check the employees table (see Figure 4.3) just to make sure that the gender field has actually
been added. At any time, we can revert back to version 1 of the migration:

S rake db:migrate VERSION=1

The change made to the database by the AddGenderColumn migration is reverted:

(in C:/rails/migrations)

== AddGenderColumn: reverting ===
-- remove_column (:employees, :gender)

-> 0.4690s

AddGenderColumn: reverted (0.4690s) ======================================

Running rake db:migrate again will return the database to the latest version:

S rake db:migrate

The gender column is added again:

(in C:/rails/migrations)

== AddGenderColumn: migrating ===
-- add_column (:employees, :gender, :string)

-> 0.2810s

AddGenderColumn: migrated (0.2810s) ======================================

CHAPTER 4} Active Record

Altering Columns in a Table

Terminology changes as a project progresses. It is wise to update the affected models, database
tables, and column names. While this will involve some work, it will make debugging, product
maintenance, and upgrades easier. Developers added to the project at a later date will be less
confused and very grateful.

The rename_column method is used to change the name of a column. The rename_column
method takes three parameters: the table name, the existing column name, and the new column
name. In the example that follows we change the 1astname column to surname:

class RenameColumn < ActiveRecord::Migration
def self.up
rename_column (employees, lastname, surname)

end

def self.down
rename_column (employees, surname, lastname)
end

end

The rename_column method only changes the name of a column. There may be occasions when
you need to change the data type and other options such as the size or default value of a column.
The change_column method enables you to alter the data type and allows various options

to be set. The change_column method takes four parameters : the table_name, the
column_name, the data type, and a hash of options.

In this example we change the phoneext field from a string to an integer:

class ChangeColumn < ActiveRecord::Migration
def self.up
change_column :employees, :phoneext, :integer

end

def self.down
change_column :employees, :phoneext, :string
end

end

Use the change_column method with great care. Although it may be possible to convert a field
with 1 to an integer, it is not possible to convert the string One to an integer value—an exception
will be thrown. It is best to review the data stored in a field prior to using the change_column

Migrations

method; you may need to programmatically massage the data into an acceptable format. In some
cases it may be necessary to make a migration that can’t be reversed:

class ChangeColumn < ActiveRecord::Migration
def self.up
change_column :employees, :phoneext, :integer

end

def self.down
raise ActiveRecord::IrreversibleMigration
end

end

Creating, Renaming, and Dropping Tables

The create_table method takes the name of the table and a hash of options as para-
meters. The : force => true option will drop or delete a table if it already exists. Use

the : force option with care as data will be lost. Setting : temporary => true will create a
temporary table. Temporary tables get deleted when an application is disconnected from a
database.

The rename_table method is used to change the name of a table:

class RenameEmployees < ActiveRecord::Migration
def self.up
rename_table :employees, :workers
end
def self.down
rename_table :workers, :employees
end

end

Defining Indices

Fields that are regularly used as search criteria should be indexed to improve database perfor-
mance. We can add and remove indices from within a migration. The add_index and
remove_index methods take the name of the table and the name of a column. In this example
we add an index to the firstname column:

class AddNameIndexToEmployees < ActiveRecord::Migration
def self.up
add_index :employees, :firstname

end

CHAPTER 4} Active Record

def self.down
remove_index :employees, :firstname
end

end

3 Tip

Watch the Migrations Screencast presented by David Heinemeier Hansson, the creator of the Rails
framework, at http://www.rubyonrails.com/screencasts.

Working with Active Record Models

Active Record is undeniably both the simplest and most powerful implementation of object-rela-
tionship mapping (ORM). Active Record is able to map a class to a database table without
requiring a programmer to enter any specific table column to object attributes mapping config-
uration details. Active Record comes configured by default—all you need to do is learn a few
conventions:

Table names must be in plural form. The table to store employee details is therefore called
employees. The class that maps to the employees table, also known as a model, must have
the singular name of the table (employee).

The unique primary key must be called id. In fact, when we used the create_table method
within a migration, we did not even need to specify a primary key because one called id
was added automatically.

Active Record maps tables to classes, table rows to objects, and columns (or fields) to object
attributes. Active Record includes methods to create, update, delete, and search for records. In
the previous section we created a model called employee and used the CreateEmployees
migration (001_create_employees.rb) to create an employees table with firstname,
surname, email, gender, salary, phoneext, and department. All the examples of Active
Record usage in this section will be illustrated from within the Rails console. The first thing we will
do is get a list of columns within the employees table:

$ ruby script/console
Loading development environment.

>> Employee.column_names

http://www.rubyonrails.com/screencasts

Working with Active Record Models

=> ["id", "firstname", "lastname", "email", "phoneext", "department", "salary",

"gender"]

Now let's add a new record. We need to create a new Employee object, assign data to the
object’s attributes, and then call the save method to insert the record into the database table:

>> an_employee = Employee.new

=> #<Employee:0x396b538 @Qattributes={"department"=>nil, "phoneext"=>nil, "salary
"=>nil, "gender"=>nil, "lastname"=>nil, "firstname"=>nil, "email"=>nil}, @new_re
cord=true>

>> an_employee.firstname = "Aneesha"

=> "Aneesha"

>> an_employee.lastname = "Bakharia"

=> "Bakharia"

>> an_employee.email = "aneesha.bakharia@gmail.com"

=> "aneesha.bakharia@gmail.com"

>> an_employee.phoneext = 1234
=> 1234
>> an_employee.gender = "Female"

=> "Female"

>> an_employee.salary = 25000

=> 25000

>> an_employee.department = "IT"
=> "IT"

>> an_employee.save

=> true

After calling the save method, we check the database to make sure the record has been added
(see Figure 4.4).

The create method is also very handy as it takes a hash of attributes and saves them to the
database in a single call:

an_employee = Order.create(
:firstname => "Celine",
:lastname => "Bakharia",
:phoneext => "2345",
:department => "Marketing",

:email => "c@randomsyntax.com",

CHAPTER 4} Active Record

:salary => "23456",

:gender => "Female")

Figure 4.4
Making sure a new

employee has been added.

Multiple records can be inserted with the create method:

orders = Order.create(

[{ :firstname => "Celine",
:lastname => "Bakharia",
:phoneext => "2345",
:department => "Marketing",
:email => "c@randomsyntax.com",
:salary => "23456",

:gender => "Female"

1,

{ :firstname => "Zaeem",
:lastname => "Bakharia",
:phoneext => "34567",
:department => "Sales",

:email => "z@randomsyntax.com",
:salary => "23456",

:gender => "Male"

Y1)

94

R RNOR

Working with Active Record Models

Each record in a database table has a unique primary key called id. The £ind method in its
simplest form takes an id as a parameter and returns the table row as an object. The £ ind method
is very powerful and will be covered in detail in the section that follows. We will use £ind to
retrieve the record with an id of 1, make it into an object, update the department attribute,
and then save the record back to the database table:

>> an_employee = Employee.find (1)

=> #<Employee:0x3934858 @attributes={"department"=>"IT", "phoneext"=>"1234",
"salary"=>"25000", "gender"=>"Female", "lastname"=>nil, "firstname"=>"Aneesha",
"id

"=>"1", "email"=>"aneesha.bakharia@gmail.com"}>

>> an_employee.department = "Marketing"

=> "Marketing"
>> an_employee.save

=> true

The update method takes an id and a hash of values that need to be updated. The update
method updates the data without the need to call the save method:

an_employee = Employee.update (3, :department => "Sales", :email =>

"sales@randomsyntax.com")

The delete method takes the id of the record that must be deleted as a parameter:

>> Employee.delete(2)
=> 1

The delete method can also be used to delete an array defining multiple records:

Employee.delete([5,7,9,10])

Using Active Record Without Rails

If you build database applications with Ruby that are not web-based, you'll be happy to know
that Active Record can be used without Rails, even though it is a crucial component of Rails. In
the example that follows, we connect to a database (with the establish_connection
method), create a class for our model (the singular name of the table), search for the employee
with an id of 1, and then update their firstname:

require "rubygems"
require_gem "activerecord"
ActiveRecord: :Base.establish_connection(:adapter => "mysqgl",

:host => "localhost", :database => "testdb")

CHAPTER 4} Active Record

class Employee < ActiveRecord: :Base
end

staff_member = Employee.find (1)
staff_member.firstname = "Aneesha"

staff member.save

Retrieving Records with find

Each model inherits a method called £ind. The find method in its simplest form takes an id or
an array of ids and returns the matching records as objects. When the £ind method is passed
a :conditions hash, it becomes a powerful replacement for raw SQL. The first parameter the
find method takes is either the : first or :all symbols. : first returns a single row,

while :a11 returns multiple rows that match the specified criteria.

Anything passed to the : conditions symbol will be added to the SQL statement’s where clause.
The following search will produce "Select * from Employees WHERE
firstname='Aneesha' and lastname='Bakharia'" asthe query:

employees = Employee.find(:all,

:conditions => "firstname='Aneesha' and lastname='Bakharia'")

d Note

The £ind method returns an empty array if no records match the search criteria.

Never reference variables directly when specifying : conditions. This leaves your application
susceptible to SQL injection.

Extremely bad practice
employees = Employee.find(:all,

:conditions => "firstname='#{firstname}' and lastname='#{lastname}'")

The safe alternative is to use a placeholder in the form of a question mark (?). Active Record
escapes and quotes the inserted values for you. You then pass the matching variables as an array
to the : conditions symbol. The above example could be re-written as follows:

employees = Employee.find(:all,

:conditions => "firstname= ? and lastname=?", firstname, lastname)

Sometimes keeping track of the order of placeholders can be tedious and error-prone. Luckily,
we can also use : symbols to name placeholders:

96

Retrieving Records with find

employees = Employee.find(:all,
:conditions => "firstname= :firstname and lastname= :lastname",

{:firstname => firstname, :lastname => lastname})

We can even use the ¢ wildcard character in a search:

employees = Employee.find(:all,

:conditions => ["lastname= ?", lastname +"%"1])

The : order option allows us to determine the order of returned records:

employees = Employee.find(:all,

:conditions => "lastname='Bakharia'", :order => "lastname, firstname DESC")

Limiting the number of records returned with : 1imit:

employees = Employee.find(:all,

:conditions => "lastname='Bakharia'", :limit => 5)

The £ind method produces an SQL query that retrieves all columns in the table being queried
(select *).If atable contains many fields, but you only need to utilize data from a few columns,
improved performance will be accomplished if you only return the required columns in the query.
The columns to be returned can be specified with : select. In this example only the 1astname
and firstname columns are returned:

employees = Employee.find(:all,

:conditions => "lastname='Bakharia'", :select => "firstname,lastname")

The : first symbol can be used to return the first matching record. Here are a few examples:

an_employee = Employee.find(:first)

an_employee = Employee.find(:first, :conditions => "firstname = 'Celine'")

Using find_by_sql

The £ind method serves us well but the need to utilize SQL is compelling under certain circum-
stances. You may need to optimize queries for performance, utilize SQL specific to a particular
database (MySQL or Oracle), or create complex queries with Group By and Having clauses
for reporting purposes. The find_by_sql takes an SQL query and returns an array of Active
Record objects. The attributes of the returned Active Record objects correspond to the column
names specified in the Select clause of the SQL query.

To illustrate the use of £ind_by_sql, we will create a table to store popular songs by genre.
Each song will have a sales figure associated with it. A Group By query will be used to return

CHAPTER 4} Active Record

the total sales per genre. The array of objects returned by find_by_sql will be passed to a
view for display.

Create a model called song:

$ ruby script/generate model song

The migration (006_create_songs . rb) will create a table called songs. The songs table re-
quires title, sales, and genre columns. We also use the migration to insert data into the table. The
Song.create method can be used from within a migration and provides an efficient way to load
sample data:

class CreateSongs < ActiveRecord::Migration
def self.up
create_table :songs do |t]

t.column :title, :string

t.column :sales, :float

t.column :genre, :string
end
Song.create :title => 'Song 1', :sales => 12308, :genre => 'Pop'
Song.create :title => 'Song 2', :sales => 60000, :genre => 'Rock’
Song.create :title => 'Song 3', :sales => 80000, :genre => 'Classical'
Song.create :title => 'Song 4', :sales => 15000, :genre => 'Pop'
Song.create :title => 'Song 5', :sales => 12000, :genre => 'Techno'
Song.create :title => 'Song 6', :sales => 55000, :genre => 'Rap'
Song.create :title => 'Song 7', :sales => 45000, :genre => 'Techno'
Song.create :title => 'Song 8', :sales => 35000, :genre => 'Rap'

end

def self.down
drop_table :songs

end

end

Run the migration:

$ rake db:migrate

The songs table is created:
(in C:/rails/migrations)
== CreateSongs: migrating ===

-- create_table(:songs)

Retrieving Records with find

-> 0.1100s
== CreateSongs: migrated (0.3910s) ==

Create a controller called song:

$ ruby script/generate controller song

Within the song controller, we create an action called report. The @report object stores the
results returned as arrays from the £ind_by_sql method. The query passed to the
find_by_sqgl method uses a Group By clause to return the total sales for each musical genre:

class SongController < ApplicationController
def report
@report = Song.find_by_sgl ("SELECT genre, sum(sales) AS total FROM
songs GROUP BY genre ORDER BY total DESC")
end

end

Figure 4.5

A report created with data
from the find_by_sql
method.

The app\views\song\report.rhtml file loops over the @report object and prints out the
total sales for each music genre (see Figure 4.5):

<h2>Song Sales by Genre</h2>

<% for item in @report %>

<%= item.genre %> - $<%= item.total %>

<% end %>

CHAPTER 4} Active Record

<hr>

Ed Tip

You can use find_by_sql without a model. The find by sql method just executes SQL and returns
a result set and does not need to interact with the methods of a model.

Dynamic Finders

Most of the time, you'll find yourself searching individual table columns for a specified value.
Dynamic finders use pure Ruby magic to accomplish this task. We simply need to append the
name of the field that must be searched to the £ind_by method. The £ind_by_ method
returns a single record. The £ind_all_by method, as its name suggests, returns all records that
match the criteria.

Search the firstname column for "Aneesha":

an_employee = Employee.find_by_firstname ("Aneesha")

Find all employees in the "Marketing" department:

employees = Employee.find_all_by department ("Marketing")

Behind the scenes find_by firstname ("Aneesha") is converted to:

find(:firstname, :conditions => ["firstname = ?", "Aneesha"])

Dynamic finders also support an optional hash just like the £ind method:

employees = Employee.find_all_by department ("Marketing", :limit => 10,
:conditions => "gender = 'Female'")

Dynamic finders can even be used to search multiple columns:

employees = Employee.find by firstname_and_lastname ("Aneesha", "Bakharia")

Column Statistics—Average, Max, Min, Sum, and Count

The Active Record model object also wraps the aggregate functions available in common
databases such as MySQL. Using these methods, we are able to determine the average, maxi-
mum, minimum, and total salary for an employee. We can also get a count of all records in the
employees table:

100

Validation

average = Employee.average(:salary)
max = Employee.maximum(:salary)

min

Employee.minimum(:salary)
total = Employee.sum(:salary)

number = Employee.count

We can even get a count of a filtered result set:

custom_countl = Employee.count "salary > 20000"

custom_count2 = Employee.count ["salary > ?", minimum_salary]

Validation

Display a form to a user and no matter how detailed and descriptive your instructions are, there
will always be users who enter data that is invalid or in an incorrect format. Invalid data in a
database is hard to process and unless you contact each user individually, you will be left with
incomplete information. This is why validation is so important. The most sensible place to put our
validation rules is within the model. The model interacts directly with the database table to insert
new data as well as update existing data.

The employee model (app\models\employee.rb) currently has no validation and we are able
to store an invalid email address and blank fields in the database:

$ ruby script/console

Loading development environment.

>> an_employee = Employee.new

=> #<Employee:0x39c47a0 @Qattributes={"department"=>nil, "phoneext"=>nil, "salary
"=>nil, "gender"=>nil, "lastname"=>nil, "firstname"=>nil, "email"=>nil}, @new_re
cord=true>

>> an_employee.firstname = "Aneesha"

=> "Aneesha"

>> an_employee.email = "somewhere"

=> "gsomewhere"

>> an_employee.lastname = ""

=> "n

>> an_employee.save

=> true

101

CHAPTER 4} Active Record

The following validation helpers are available for inclusion on a model:
validates_acceptance_of
wvalidates_associated
wvalidates_confirmation_of
wvalidates_each
validates_exclusion_of

validates_format_of

validates_inclusion_of

wvalidates_length_of

wvalidates_numericality_of
wvalidates_presence_of

% wvalidates_size_ of

validates_uniqueness_of

We need to ensure that the firstname and 1lastname attributes are not blank, so we use the
validates_presense_of helper. The salary needs to be a numeric value, so
validates_numericality_of can be used to enforce this constraint. Finally, we use the
validates_format_of helper to match the entered email address to a regular expression. A
regular expression consists of a sequence of characters that define a pattern. The regular ex-
pression in the example that follows contains a sequence of characters that match a valid email
address. Here is the updated employee model (app\models\employee.rb) file:

class Employee < ActiveRecord::Base
validates_presence_of :firstname, :lastname
validates_numericality_of :salary
validates_format_of :email,
:with => /7~ (["@\s]+)@((?:[-a-z0-9]1+\.)+[a-2z]1{2,})$/1

end

Validation will now be performed prior to data being saved. When a new Employee object has
invalid dataq, it can’t be saved:

S ruby script/console

Loading development environment.

>> new_employee = Employee.new

=> #<Employee:0x39c2950 Qattributes={"department"=>nil, "phoneext"=>nil, "salary

"=>nil, "gender"=>nil, "lastname"=>nil, "firstname"=>nil, "email"=>nil}, @new_re

102

Validation

cord=true>

>> new_employee.firstname = "Aneesha"
=> "Aneesha"

>> new_employee.lastname = ""

=> """

>> new_employee.email = "nowhere"

=> "nowhere"

>> new_employee.save

=> false

An error object is added to the Active Record model when invalid data is encountered. We are
able to access the list of errors:

>> new_employee.errors.each {|attribute, error| puts attribute + ": " + error}
salary: is not a number

lastname: can't be blank

email: is invalid

=> {"salary"=>["is not a number"], "lastname"=>["can't be blank"],

"email"=>["is invalid"]}

Within a Rails application, if validation fails on an Active Record object, the error object is pop-
ulated with the validation error messages and the form is re-displayed. The
error_messages_for helper is used within a view template to display validation errors:

<hl>New Employee</hl>
<%= start_form_tag :action => 'create' %>

<

oe
1l

error_messages_for 'employee' %>

<p><label for="employee_firstname">Firstname</label>;
<%= text_field 'employee', 'firstname'$%$></p>
<p><label for="employee_lastname">Lastname</label>;
<%= text_field 'employee', 'lastname' %></p>
<p><label for="employee_email">Email</label>;

<%= text_field 'employee', 'email'%></p>

<%= submit_tag "Add" %>

<%= end_form_tag %>

<%= link_to 'Back', :action => 'list' %>

If we return to the contact list we developed in Chapter 3, “Prototyping Database-Driven Appli-
cations with Rails,” we can analyze the interaction between the form to add a new contact (the
view), the controller, and the model to get a better understanding of validation and the display

103

CHAPTER 4} Active Record

of error messages. In the contact model (/app/models/contact.rb), we included a
validates_presense_of helper to ensure that the firstname, surname, and email
columns in the contacts database table are mandatory:

class Contact < ActiveRecord: :Base
validates_presence_of :firstname, :surname, :email

end

The _form.rhtml partial in the /app/views/contact/ folder, which is used
by both new and edit forms, includes the error_messages_for helper. The
error_messages_for helper takes the name of the model as a parameter:

<%= error_messages_for 'contact' %>
<!--[form:contact]-->

<p><label for="contact_firstname">Firstname</label>

<%= text_field 'contact', 'firstname' %$></p

<p><label for="contact_surname">Surname</label>

<%= text_field 'contact', 'surname' $%$></p>

<p><label for="contact_email">Email</label>

<%= text_field 'contact',K ‘'email' %></p>

<p><label for="contact_mobile">Mobile</label>

<%= text_field 'contact', 'mobile' %></p>

<p><label for="contact_homephone">Homephone</label>

<%= text_field 'contact', 'homephone' %$></p>

<p><label for="contact_note">Note</label>

<%= text_area 'contact', 'note' %></p>

<!--[eoform:contact]-->
The form to insert a new contact (app/views/faqg/new.rhtml) simply includes the
_form.rhtml partial and posts the data entered by the user to the create action:

<hl>New contact</hl>

<% form_tag :action => 'create' do %>
<%= render :partial => 'form' %>
<%= submit_tag "Create" %>

<% end %>

<%= link_to 'Back',6 :action => 'list' %>

Validation

We can now take a look at an excerpt from the contact_controller.rb file to see how the
create action determines whether a contact object is invalid (i.e., fails validation) and passes
the error object to the new. rhtml template for display. A new object (@contact) is created
by passing params [:contact] to the Contact .new method—this assigns all the input fields
from the form to the appropriate attributes in the @contact object. The @contact object is then
saved by calling the save method. Remember that if validation fails, the object will not be saved
and that the save method will return a false result and set the error object. An if statement
is used to check if the @contact object is saved (i.e., @contact . save returns a true value)
and display the 1ist.rhtml template. If the @contact object is not saved, the new contact
form is displayed (new.rhtml template). The @contact object, which is passed to the tem-
plate, has the form data entered by the user, so the data is preserved between redirects.
Because validation has failed, the error object is also populated and will be displayed by the
error_messages_for helper. Figure 4.6 illustrates the display of a validation error message
on the new contact form.

Figure 4.6
Validation error messages

in Rails.

class FagController < ApplicationController

def new
@contact = Contact.new
end
def create
@contact = Contact.new(params][:contact])

if @contact.save

CHAPTER 4} Active Record

flash[:notice] = 'Contact was successfully created.'
redirect_to :action => 'list'

else
render :action => 'new'

end

end

end

Mapping Relationships with Active Record

Relational databases have multiple tables! We have thus far only looked at single table Active
Record models—this is all about to change in this section. The employees table we created in the
migrations section of this chapter had a column called department, in which we stored data like
"Marketing", "IT",and "Sales". Multiple employees belong to each department, so multiple
records would store the name of the department. What happens when a department changes its
name? We could write an update query across all records that match the department name. This
would be terribly inefficient and is a classic example of why databases need to be normalized.
The solution is to create a table that just stores the names of the departments and has a unique
id for each department. The employees table then only needs to reference the foreign key of the
department’s table. We now only need to update a single record if a department name changes.

It would be nice if we could get the name of the department by simply typing:

department_name = employee.department.name

instead of:

department_id = employee.department_id
department = Department.find(department_id)

department_name = department.name

Guess what? You can!

Foreign key relationships are converted to object mappings by Active Record. Foreign keys must
follow a naming convention—they are the lowercase version of the related table’s model name
(or the singular form of the table name) with _id added as a suffix. The foreign key that relates
the employees table to the departments table is called department_id. A sample migration to
illustrate the creation of a foreign key:

106

Mapping Relationships with Active Record

class BuildProjectDb < ActiveRecord::Migration
def self.up
create_table :employees do |t]
t.column :firstname, :string
t.column :department_id, :integer
end
create_table :departments do |t]
t.column :name, :string
end
end
def self.down
drop_table :employees
drop_table :departments
end

end

Active Record needs a little help in order to pick up the relationships between tables, so we
annotate our models with declarations: has_one, has_many, belongs_to, and
has_and_belongs_to_many (habtm).

As an example to illustrate the use of has_many and belongs_to, we will model a Project Task
List Manager. In this application, each project has multiple tasks associated with it. The database
contains a projects and a tasks table. The tasks table has a foreign_key called project_id.

A project is associated with a many tasks, so we add the has_many declaration to the project
model:

class Project < ActiveRecord::Base
has_many :tasks

end

Atask belongs_to a project:

class Task < ActiveRecord: :Base
belongs_to :project

end

One-to-One Relationships

A one-to-one relationship occurs when a row in a table is associated with either one or zero
records in another table via a foreign key. We have a table called users in our database. We
want to store a photo for each user in the users table but decide to create a new photos table.

107

CHAPTER 4} Active Record

The main reason for adding the photos table rather than adding a photo column to the users table
is because we need to add width and height columns to define the dimensions of the photo. The
photos table contains the £ilename, width, height, and user_id columns. The user_id
is the foreign key that relates the record back to the users table.

A user is associated with a single photo, so we add the has_one declaration to the user model:

class User < ActiveRecord: :Base
has_one :photo

end

A photo is attached to a user so, we add belongs_to to the photo model:

class Photo < ActiveRecord: :Base
belongs_to :user

end

3 Tip

As a rule of thumb, the table with the foreign key always gets the belongs_to declaration.

One-to-Many Relationships

A one-to-many association occurs when a row in a table is associated with multiple rows in another
table. A book, for example, is made up of many chapters. The books table simply contains the
name of the book. The chapters table contains the book_id, name, and position columns. The
book_id field is the foreign key that associates a chapter with a book.

We add the has_many declaration to the Book model:

class Book < ActiveRecord: :Base
has_many :chapters

end

A chapter is attached to a book, so we add belongs_to to the chapter model:

Mapping Relationships with Active Record

class Chapter < ActiveRecord: :Base
belongs_to :book

end

Return the chapter that has an id of 1:

a_chapter = Chapter.find(1l)

Get the id for the associated book:

a_chapter.book.id

Get the name of the associated book:

a_chapter.book.name

Create and save a new book:

a_chapter.book = Book.new(:name => "Power Rails")

a_chapter.save!

Get the id of the newly added book:

a_chapter.book.id

Get the name of the newly added book:

a_chapter.book.name

Finally, we can use the create_modelname method to initialize and save a book:

a_chapter.create_book(:name => "Rails Rulz")

Many-to-Many Relationships

Multiple records in a table are associated with multiple records in another table. We have a
products table in our database. We wish to categorize the products. It is impossible to assign a
product to a single category, so we need a way to associate multiple categories with a product.
A product will be associated with multiple categories, and a category will be associated with
multiple products.

There is a collection of items on each side of the relationship. A simple foreign key won't allow
us to model this relationship—we need a join table. A join table contains two foreign keys.

The name of the join table is the concatenation of the two related tables in alphabetical order.
We use the plural table names as is. In our example, the join table will be called
categories_products.

CHAPTER 4} Active Record

Many-to-many relationships are modeled with the has_and_belongs_to_many declaration.
Both the product and the category models get the has_and_belongs_to_many declaration.

The product model:

class Product < ActiveRecord: :Base
has_and_belongs_to_many :categories

end

The category model:

class Category < ActiveRecord: :Base
has_and_belongs_to_many :products

end

Sorting with acts_as_list

In a list, the order is used to display the items. We also need to provide the user with the ability
tore-order the itemsin list. The acts_as_1ist declaration adds a number of methods to facilitate
the re-ordering of items. To illustrate the use of acts_as_1ist, we will build a handy Project
Task List Manager. This little utility can be used to prioritize the tasks in a project.

We generate a migration called build_project_db:

S ruby script/generate migration build_project_db

In the build_project_db migration we will create two tables: projects and tasks. We also
insert initial project and task data. Instead of first creating a model and then editing the generated
migration, we have chosen to design the database first. We can still work in an agile manner and
use migrations to add/remove columns as needed:

class BuildProjectDb < ActiveRecord::Migration
def self.up
create_table :projects do |t]
t.column :title, :string
end
vid_project = Project.create :title => 'Video Transcripts'
create_table :tasks do |t]
t.column :project_id, :integer
t.column :title, :string
t.column :position, :integer

end

Sorting with acts_as_list

Task.create :project_id => vid_project.id,
:title => 'Set up site',
:position => 1
Task.create :project_id => vid_project.id,
:title => 'Learn Flex',
:position => 2
Task.create :project_id => vid_project.id,
:title => 'Build a video annotation tool in Flex',
:position => 3
Task.create :project_id => vid_project.id,
:title => 'Build backend with Rails',
:position => 4
Task.create :project_id => vid_project.id,
:title => 'Design Interface',
:position => 5
end
def self.down
drop_table :projects
drop_table :tasks
end

end

Now we generate models called project and task. We don’t need to generate a migration file
with the models, so we pass --skip-migration as a command line argument to the generator:

$ ruby script/generate model project --skip-migration

$ ruby script/generate model task --skip-migration

Add the has_many declaration to the project model. A project has_many tasks:

class Project < ActiveRecord::Base
has_many :tasks, :order => "position"

end

Add the belongs_to declaration to the task model. A task belongs_to a project. The tasks
within a project have a priority (i.e., an ordering). We specify the scope as :project because
each project will have its own related task list:

CHAPTER 4} Active Record

class Task < ActiveRecord: :Base
belongs_to :project
acts_as_list :scope => :project
end

Create the projects and tasks tables:

$ rake db:migrate
(in C:/rails/migrations)
== BuildProjectDb: migrating ==
-- create_table(:projects)
-> 0.1090s
-- create_table(:tasks)
-> 0.1570s
== BuildProjectDb: migrated (0.5310s) =======================================

A summary of methods added to a model with acts_as_1ist added:
i decrement_position
first?
higher_item
1in_list?
1ncrement_position
insert_at
last?
Jlower_item
move_higher
i move_lower
i move_to_bottom
i move_to_top
remove_from_list
Create a controller called tasks. The index action displays the task list. Next to each task we

provide links to re-order the items. The move action responds to these requests to re-position a
task and redirects back to display the task list (i.e., index action):

$ ruby script/generate controller tasks

class TasksController < ApplicationController

[12

Sorting with acts_as_list

def index
@project = Project.find(1)
@tasks = Task.find(:all, :conditions => ["project_id = %d4", 1],

:order => "position")

end

def move
if

["move_lower", "move_higher", "move_to_top", "move_to_bottom"].include?

(params [:method]) \

and params|:task_id] =~ /"\d+$/

Task.find (params|[:task_id]) .send(params|[:method])
end
redirect_to(:action => "index", :id => 1)

end

end

The index.rhtml (see Figure 4.7) allows the user to prioritize tasks:

<hl>Project: <%= @project.title %></hl>

<h2>Tasks:</h2>

<% for task in @tasks %>

<%= task.title %>

<% unless task.first? %>

<%= link_to "up", {:action => "move", :method => "move_higher",

:1d => 1, :task_id => task.id } %>

<%= link_to "first", {:action => "move", :method => "move_to_top",
:id => 1, :task_id => task.id } %>

<% end %>

<% unless task.last? %>

<%= link_to "down", {:action => "move", :method => "move_lower",
:id => 1, :task_id => task.id } %>

<%= link_to "last", {:action => "move", :method => "move_to_bottom",
:id => 1, :task_id => task.id } %>

<% end %>

</1li>

<% end %>

113

g

2%,
%,
i

£
ko

CHAPTER 4} Active Record

3l Note

The Up and First links are not shown for the first item in the list. The Down and Last links are not shown
for the last item.

Figure 4.7 & Marilla Firefox Toa
) Be ER Yew Go [ockmwls JusmBooh Tock Hew

PrOViding fhe user Wil‘h fhe @ - . _’__!aj \”.\. bt o allwost ;3000 Lrshs fndere wl @ |ICL
Gbilif)’ to re-order a |iS|'. I Gotting Started B Lotest Headioes | | WordPress » Login |] Drasg this ik Lo your .,

Project: Video Transcripts

Tasks:

:_.
Ll
=fg

Build backend with Rails up fi
Design Interfice g frat

AoBow R

Hierarchies with acts_as_tree

An organization chart, your family tree, and the sections in a book are all examples of hierarchical
data. A single database table is used to store parent-child relationships. Each record has a field,
called parent_id by convention, which relates the record to its parent. Hierarchical data is
modeled with the acts_as_tree declaration.

The chapters, sections, and subsections in a book are an example of a hierarchy. We will create
a sections table to store this hierarchy and use the acts_as_tree declaration to help us model
the hierarchy so that we can access the hierarchical tree in an object-oriented manner (i.e., friendly
Active Record manner).

We start by creating a model called section:

$ ruby script/generate model section

A migration was created when the model generator was run. We edit
008_create_sections.rband create parent id and title columns in the sections table. We
use Section.create to insert example chapters and sections in the book. The root node (which
just stores the title of the book) has a null parent_ia:

class CreateSections < ActiveRecord::Migration
def self.up
create_table :sections do |t

t.column :parent_id, :integer

114

Hierarchies with acts_as_tree

t.column :title, :string
end

Section.create :title => 'Power Ruby on Rails'

Section.create :parent_id => 1, :title => 'Chapter 1°'
Section.create :parent_id => 1, :title => 'Chapter 2'
Section.create :parent_id => 3, :title => 'Chapter 2 - Section 1'°'
Section.create :parent_id => 3, :title => 'Chapter 2 - Section 2'
Section.create :parent_id => 3, :title => 'Chapter 2 - Section 3'
Section.create :parent_id => 2, :title => 'Chapter 1 - Section 1°'

end

def self.down
drop_table :sections

end

end

We use rake db:migrate to create the sections table:

$ rake db:migrate
(in C:/rails/migrations)
== CreateSections: migrating ==
-- create_table(:sections)
-> 0.1410s

CreateSections: migrated (0.3280s) =======================================

We now add the acts_as_tree declaration to the section model:

class Section < ActiveRecord: :Base
acts_as_tree :order => "title"

end

Before we jump in and use the methods acts_as_tree has added to our model in a controller,
we will first give them a test within the Rails console:

$ ruby script/console

Loading development environment.

We can use the £ind method to return the root by searching for a record with a parent_id set
to null:

>> root = Section.find(:first, :conditions => "parent_id is null")

=> #<Section:0x395e090 @attributes={"title"=>"Power Ruby on Rails", "id"=>"1", "

parent_id"=>nil}>

CHAPTER 4} Active Record

A call to children gives us all the sub nodes below the root. This includes "Chapter 1" and
"Chapter 2":

>> root.children
=> [#<Section:0x3955b5¢c @attributes={"title"=>"Chapter 1", "id"=>"2", "parent_id
"=>"1"}>, #<Section:0x3955b20 @attributes={"title"=>"Chapter 2", "id"=>"3", "par

ent_id"=>"1"}>]

We now turn our attention to adding nodes to our tree. We add "Chapter 3":

>> new_chapter = Section.create(:parent_id => 1, :title => "Chapter 3")

=> #<Section:0x3948204 @attributes={"title"=>"Chapter 3", "id"=>8, "parent_id"=>
1}, @Gnew_record=false, @new_record before save=true, @errors=#<ActiveRecord::Err
ors:0x3945978 @base=#<Section:0x3948204 ...>, @errors={}>>

We can get the siblings or node at the same level as our newly added chapter. "Chapter 1"
and "Chapter 2" are at the same level as "Chapter 3":

>> new_chapter.siblings
=> [#<Section:0x3939948 @attributes={"title"=>"Chapter 1", "id"=>"2", "parent_id
"=>"1"}>, #<Section:0x39398e4 Rattributes={"title"=>"Chapter 2", "id"=>"3", "par

ent_id"=>"1"}>]

We can use children.create to create subsections for "Chapter 3" without specifying the
parent_id:

>> new_chapter.children.create(:title => "Chapter 3 - Section 1")

=> #<Section:0x3934e34 @attributes={"title"=>"Chapter 3 - Section 1", "id"=>9, "
parent_id"=>8}, @new_record=false, @new_record_before_ save=true, @errors=#<Activ
eRecord: :Errors:0x3934218 @base=#<Section:0x3934e34 ...>, @Qerrors={}>>

>> new_chapter.children.create(:title => "Chapter 3 - Section 2")

=> #<Section:0x392bb2c @Qattributes={"title"=>"Chapter 3 - Section 2", "id"=>10,
"parent_id"=>8}, @new_record=false, @new record_before_save=true, @errors=#<Acti

veRecord: :Errors:0x392a2a4 @base=#<Section:0x392bb2c ...>, @errors={}>>

At any time, we can get the parent of a node:

>> new_chapter.parent

=> #<Section:0x393bal4 @attributes={"title"=>"Power Ruby on Rails", "id"=>"1", "
parent_id"=>nil}, @children=[#<Section:0x3939948 @attributes={"title"=>"Chapter

1", "id"=>"2", "parent_id"=>"1"}>, #<Section:0x39398e4 @attributes={"title"=>"Ch

116

Hierarchies with acts_as_tree

apter 2", "id"=>"3", "parent_id"=>"1"}>, #<Section:0x39398a8 @attributes={"title
":>"Chapter 3", "id":>"8", "parent_id":>"1"}>]>

Let's use acts_as_tree in a controller and render the tree in a view. We start by creating a
controller called chapters:

S ruby script/generate controller chapters

We create an action called showtree in the chapters_controller.rb file. We set @root
to Section.find_by parent_id(nil).The find_ by parent_id method is a dynamic
finder and is the equivalent of Section. find (: first, :conditions => "parent_id is
null"):

class ChaptersController < ApplicationController
def showtree
@root = Section.find_by_parent_id(nil)
end

end

The showtree.rhtml file simply uses a code block to print out the chapters in the book (see
Figure 4.8):

<h2>Book Chapters for <%=@root.title %$></h2>

<% @root.children.each do |child]| %>

<1li><%= child.title %> (parent: <%= child.parent.title %>)

<% end %>

<hr>
. Mazilla Firefox =3 .
—— = o Figure 4.8
Fle Bl Yew Go [uokewls SumBoh Tock Hel
@ - - .f.‘g] § \"ﬁ] b o allwost 3000 haphers fubrovelres & @ % [[CL Dlsplcylng hierarchical
1 Getting Started Gl Latest Hesdires | | WordPress > Login |] Drasy this ik Lo your .. dctc.

Book Chapters for Power Ruby on Rails

* Chapter 1 (parent Power Ruby on Fals)

Chapter 2 (parent; Power Ruby on Rails)

CHAPTER 4} Active Record

Ed Tip
In Chapter 14, “Designing Rails Applications,” we will build a threaded forum using

acts_as_nested_tree

Timestamping Records

Active Record has one more trick up its sleeve—the ability to timestamp fields that are called
created_at, created_on, updated_at, and updated_on. Once these fields are detected,
Active Record automatically adds a timestamp when the record is saved.

To illustrate the use of created_at and updated_at, we create an item model:

$ ruby script/generate model item
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/item.rb
create test/unit/item_test.rb
create test/fixtures/items.yml
exists db/migrate

create db/migrate/005_create_items.rb

Edit the 005_create_items.rb migration file and add created_at and updated_at
columns to the items table. The data type is set to datetime:

class Createltems < ActiveRecord::Migration
def self.up
create_table :items do |t]
t.column :title, :string
t.column :created_at, :datetime
t.column :updated_at, :datetime
end

end

def self.down
drop_table :items
end

end

118

Timestamping Records

Run the migration to create the items table:

S rake db:migrate

(in C:/rails/migrations)

== Createltems: migrating ===
-—- create_table(:1items)

-> 0.1090s

CreateItems: migrated (0.1090s) ==

Now we use the create method to insert a record directly into the items table:

$ ruby script/console

Loading development environment.

>> Ttem.create :title => "Item 1"

=> #<Item:0x39c2874 Rattributes={"updated_at"=>Mon Jan 08 19:18:36 E. Australia
Standard Time 2007, "title"=>"Item 1", "id"=>1, "created_at"=>Mon Jan 08 19:18:3
6 E. Australia Standard Time 2007}, @new_record=false, @errors=#<ActiveRecord: :E

rrors:0x396bacd4 @base=#<Item:0x39c2874 ...>, @errors={}

Figure 4.9

The timestamped
created_at and
updated_at fields.

The record that is saved back to the items table has the current time entered into the
created_at and updated_at fields (see Figure 4.9). If we update the record, only the
updated_at field will change. The timestamp is based on local time, but this can be configured
to Coordinated Universal Time (UTC) by editing the config/environment. rb file:

ActiveRecord: :Base.default_timezone = :utc

JIIQ

CHAPTER 4} Active Record

Ed Tip

It is convention to store updated_on and created_on columns as Date fields while updated_at and
created_at must be DateTime fields.

We can disable timestamping on a per model basis:

class Item < ActiveRecord::Base
self.record_timestamps = false

end

Automatic timestamping can be turned off on a per application basis by setting
ActiveRecord: :Base.record_timestamps to false in the environment. rb file:

ActiveRecord: :Base.record_timestamps = false

Conclusion

Phew! We have covered a lot of ground and learned to use a crucial component of the Rails
framework. Active Record greatly simplifies database access while still remaining extremely
powerful. We looked at £ind as an alternative to writing SQL and modeled one-to-one, one-to-
many, and many-to-many relationships. Out of the box, the default Active Record settings were
able to serve us well. As you proceed to future chapters, take a moment to recap the Active Record
naming conventions:

Primary keys must be called id.
Table names must be in plural (e.g. employees).

% Model names must be singular (e.g. employee).

Foreign keys must take the name of their related table’s class name and have _id as a suffix
(e.g. department_id).

% Table columns that need to be timestamped must be called created_at, created_on,
updated_at, or updated_on.

Action Controller

This is the second chapter dedicated to the MVC paradigm, and it covers Action Controller—the
component responsible for controllers in Rails. Action Controller implements functionality that is
crucial to the underpinning architecture of any web application. Key to Action Controller’s success
is its tight integration with Action View. From within a controller, where all our application’s
business logic must be placed, we are able to persist data across requests, redirect incoming
requests, retrieve posted form data, and customize template rendering. Finally, we will cover the
concepts behind creating new routing rules for URLs within your Rails application.

In this chapter you'll learn to:

Process forms

Retrieve environment variables

Use the render method to display templates
Redirect requests
Use cookies and sessions

Use a temporary session-based storage area known as the flash to share messages between
requests

Understand and customize routing rules

Processing Form Elements

Rails, acting as a framework, wires everything together in a cohesive and transparent manner.
In previous chapters we have used the script/generate scaffold command to output all
the required controllers, actions, and views to deliver CRUDS for our Active Record models. The
forms to insert and edit a model were automatically tied to a controller’s action. It is useful to
understand how forms elements are constructed, posted to a controller’s action, retrieved in an

12]

CHAPTER 5} Action Controller

action, and passed to a view. In this section we will build an example form and process the form
elements with a simple action.

We start by generating a formprocessor controller:

$ ruby script/generate controller formprocessor

The following is output to the console:

exists app/controllers/

exists app/helpers/

create app/views/formprocessor

exists test/functional/

create app/controllers/formprocessor_controller.rb
create test/functional/formprocessor_controller_test.rb

create app/helpers/formprocessor_helper.rb

The app\views\ formprocessor\showform.rhtml file will be rendered by

an action called showform. An action is simply a method within a controller’s class. The
showform.rhtml template uses helpers to generate form elements. The start_form_tag
helper renders an opening HTML form tag (< form>). We specify that the show_formdata action
must be used to process the form. The end_form_tag helper closes the form with a </ form>
tag. The form also uses the text_field_tag (textinputfield), select_tag (drop down select
box), check_box_tag (checkbox), and submit_tag (submit button) helpers to insert form
elements. Figure 5.1 shows the form displayed in a browser.

<h2>A Simple Form</h2>

<%= start_form_tag(:action => "show_formdata") %>
<p>Text Field:

<%= text_field_tag("name", "Aneesha") %$></p>
<p>Drop-down Selection Box:

<% languages = ["Ruby", "Java", "C#"].map do |lang]
"<option>#{lang}</option>"

end.to_s %>

<%= select_tag("prog_languages[]", languages, :multiple => "true") %></p>
<p>Checkboxes:

<%= check_box_tag("operating_systems[]", "Windows") %> Windows

<%= check_box_tag("operating systems[]", "Linux") %> Linux

<%= check_box_tag("operating_systems[]", "Mac") %> Mac

A

/P>

Processing Form Elements

<%= submit_tag("Submit Form") %>

<%= end_form_tag %>

& hiazila Firefox M=% Figure 5.1
Ol Edk Mew Go [Dockmarks GaapDook Tocks Help O Asi | f " d 'ih
A ! p == . simple rorm creared wi
G- 8 O @0 oo Howa P

: = = helpers.
M Gettng Started G Latest Headines | | Worderass » Login {00 e-Likerats | | Cragthic bnkto your ...

A Simple Form

Text Field: Aneecha

Java
Drop-down Selection Box BT - |
Checkboxes. I Wmdows] Lo] bac

| Submit Fam |

Lane

The generated HTML source code when the showform action is rendered:

<h2>A Simple Form</h2>

<form action="/formprocessor/show_formdata" method="post">

<p>Text Field:

<input id="name" name="name" type="text" value="Aneesha" /></p>
<p>Drop-down Selection Box:

<select id="prog_languages|[]" multiple="multiple" name="prog_languages|[]">
<option>Ruby</option>

<option>Java</option>

<option>C#</option>

</select></p>

<p>Checkboxes:

<input id="operating_systems[]" name="operating_systems[]" type="checkbox"
value="Windows" /> Windows

<input id="operating_systems[]" name="operating_systems[]" type="checkbox"
value="Linux" /> Linux

<input id="operating systems[]" name="operating systems[]" type="checkbox"

value="Mac" /> Mac

123

e .
B w w

CHAPTER 5} Action Controller

</p>
<input name="commit" type="submit" value="Submit Form" />

</form>

The formprocessor controller (formprocessor_controller.rb file) has two actions. The
showform action displays the form shown in Figure 5.1. The show_formdata action retrieves
the posted form data and stores the data in instance variables. These instance variables can
be accessed within the show_formdata.rhtml template. This means that we can use
show_formdata.rhtml to display the contents of the posted form. Posted form data is stored
within the params hash. We can access each form element as either a string or symbol or key
from the params hash:

class FormprocessorController < ApplicationController
def showform

end

def show_formdata
@name = params/|[:name]
@prog_languages = params|:prog_languages] || [1]
@operating_systems = params|[:operating_systems] || [1]
end

end

The @name variable is set by retrieving the : name symbol from the params hash. The

:name symbol contains the data entered into the name input field. The prog_languages drop-
down select box contains multiple elements, but because it is stored as an array with the
params hash, we can still just reference it as params [: prog_languages]. The checkboxes

used to specify an operating system are also stored as an array as multiple checkboxes could be
checked.

Here is an example params hash:

{
"prog_languages"=>["Ruby", "Java", "C#"],
"operating systems"=>["Windows", "Linux", "Mac"]

}

Finally, we create a template (show_formdata.rhtml) to display the posted form data. The
@name, @prog_languages, and @operating_systems variables are available for use within
the template. The @name variable can simply be displayed by using the <%= and %> delimiters.

124

Retrieving Environment Variables

Because the @prog_languages and @operating_systems variables are arrays, we need to
use a join method to display their contents as a comma delimited list:

<h2>Display Posted Form Data</h2>

<%= @name %>

Name:

Programming Languages: <%= @prog_languages.join(", ") %>

Operating Systems: <%= @Qoperating_systems.join(", ") %>

<p>

YAML Output from Debug:

<%= debug (params) %>

</p>

.3 Note
The debug method displays the params hash in YAML, which is completely human readable. This is a

simple way to display and analyze posted form data. The name of the executed controller and action
are also displayed.

Retrieving Environment Variables

The request object also holds numerous variables related to the request and the server processing
the request. These variables are known as environment variables. All server-side platforms used
for web development (including JSP, Servlets, ASP.NET, PHP, and ColdFusion) provide access

to these variables via a request object. Table 5.1 contains a list of useful environment variables.

Table 5.1

Environment Variables

Variable

REQUEST_URI
SERVER_NAME
SERVER_PROTOCOL
SERVER_PORT
REQUEST_METHOD
PATH_INFO
PATH_TRANSLATED
QUERY_STRING
REMOTE_HOST
REMOTE_ADDR

Description

The full request URL

The domain name or IP address of the server

Name and revision of the request protocol

The port the request was made on

The type of request made. This could be either GET or POST
The virtual path of the file or script being requested

The physical location or mapping of the virtual path
Variables (key-value pairs) that follow the 2 in the URL
Domain name of the computer making the request

IP address of the computer making the request

125

CHAPTER 5} Action Controller

Variable Description

CONTENT_TYPE The type of data attached to the POST request

CONTENT_LENGTH The size of data sent with the request

HTTP_ACCEPT Content or mime-ypes supported by the web browser making the request
HTTP_USER_AGENT The web browser making the request

Create a controller called environmentvariables:

$ ruby script/generate controller environmentvariables

Within the app/views/environmentvariables/index.rhtml template, we can now ac-
cess a range of environment variables including request . env ["REQUEST_METHOD"] and
request.env["REMOTE_ADDR"]:

<h2>Displaying Environment Variables</h2>

REQUEST_URI: <%= request.env["REQUEST URI"] %>

SERVER_NAME: <%= request.env["SERVER_NAME"] %>

SERVER_PROTOCOL: <%= request.env["SERVER_PROTOCOL"] %>

SERVER_PORT: <%= request.env["SERVER_PORT"] %>

REQUEST_METHOD: <%= request.env["REQUEST METHOD"] %>

PATH_INFO: <%= request.env["PATH_INFO"] %>

PATH_TRANSLATED: <%= request.env["PATH_TRANSLATED"] %>

SCRIPT_NAME: <%= request.env["SCRIPT _NAME"] %>

QUERY_STRING: <
REMOTE_HOST: <%
REMOTE_ADDR: <%= request.env["REMOTE_ADDR"] %>

%= request.env["QUERY_STRING"] %>

request.env|["REMOTE_HOST"] %>

CONTENT_TYPE: <%= request.env["CONTENT_TYPE"] %>

CONTENT_LENGTH: <%= request.env["CONTENT_ LENGTH"] %>

HTTP_ACCEPT: <%= request.env["HTTP_ACCEPT"] %>

HTTP_USER_AGENT: <%= request.env["HTTP_USER_AGENT"] %>

Figure 5.2 displays the rendered web page. You are probably thinking that a template error
should be produced instead because we have not created an index action within the
environmentvariables controller. We don’t need to specify an index action unless we need
to include additional business logic. If no action is specified in the URL path and no index action
is present in the controller, the index . rhtml template will be displayed automatically.

126

Exploring the Render Method

- gl .

& Mozilla Firefox SJ283) Figure 5.2

Dle [dt Yew Go Dockmarks ZrapDook Jooks Lisp .. d d | .

@ - - l"r__':;j N:;\ L1 bt focaltvost: 3000 ermvirummenvarisbies x| @ & (ICL Retrlevmg an Ispldying
@ Getting Started B Lotest Headines || WerdPress » Login {0 e Literate | | Drag this bk to your ... environment vcrlubles ina
Displaying Environment Variables template.

FEQUEST_URIL hitp Mocalbost 3000/envaommnentvanables

SEREVER,_NAME locahost

SERVER _PROTOCOL: HTTFI.1

SERVER_PORT 3000

REQUEST_METHOD: GET

PATH_DTFO; fenvironmenivariables

PATH_TRANSLATED.

SCRIPT _NAME:

QUERY_STRING

REMOTE_HOST: 127.0.0.1

EEMOTE_ADDE: 127.0.0.1

CONTENT_TYPE

CONTENT LENGTH.

HTTP_ACCEFT: textionl, apphcationfml, applic ationfchtmd bl pesthtol, g=01. 9 tesxtiplain, q=0. 8 image/png, **,q=0.5
HTTP_USER_AGENT Monmlla/s O (Windows, 17, Windows NT 5.1, en-T15; w1 8 0 8) Geekof20061206 Firefoxl1 50 9

Exploring the Render Method

This section looks at how web pages are generated—a process known as rendering in Rails. Once
an action has run, Rails looks for and renders a . rhtml template with the same name as the
action. This is very powerful and saves us from having to map actions to templates manually. In
most cases, this default behavior is exactly what we require, but once you start building applica-
tions, you will encounter situations where you need to customize the mapping of actions to
templates. The render method in the ActionController: :Base class allows us to specify an
alternate template.

The following controller has two methods: index and show_cities. The index action calls the
show_cities action by passing 'show_cities’ asthe :action to the render method:

class SampleController < ApplicationController

def index
@cities = ['Brisbane', 'Sydney', 'Cairns']
render :action => 'show_cities'

end

def show_cities
@cities = ['Perth', 'Gold Coast', 'Melbourne']

end

end

2%,

127

CHAPTER 5} Action Controller

If the show_cities action is called, the show_cities method will be executed and then the
show_cities.rhtml template will be rendered. If the index action is called, the @cities
instance variable will be set, and once all code in the method is run, the show_cities.rhtml
template will be rendered. Even though we are passing the :action to render, the
show_cities action is not executed. The render method, as its name suggests, only renders
a template. This means that if the template references any variables, these will need to be set in
the current action. As you can see, we set the @cities variable in both the index and
show_cities actions.

8 Note

The template specified by the render method is only generated once all code in the action is run. The
render method is only allowed to be called once within an action. Calling render multiple times will
produce an error.

If you really wanted to both call an action and render a template, we could do this as follows:

class SampleController < ApplicationController
def index
show_cities and render :action => 'show_cities'
end
def show_cities
@cities = ['Perth', 'Gold Coast', 'Melbourne']
end

end

Sometimes we just need to send some text to a browser and don’t actually need a full template.
The render method in its simplest form is able to just take a string as a parameter and send the
string as text to a browser:

class TextController < ApplicationController
def display_ text
render (:text => "Hey - Rails is cool!")
end

end

We can also pass the absolute path and filename of the template file to the render method.
The file extension must be included. If the template file is in the default location, set the
optional :use_full_path parameter to true. We use the : locals hash to set variables that
can be accessed within the specified template:

128

Using an Action to Generate Files

render (:file =>path, [:use_full_path :>true|false 1, [:locals =>hash 1)

The : template parameter allows us to specify a template from another controller. The action
and the controller names must be separated with a forward slash (/):

class SampleController < ApplicationController
def index
render (:template => "controller/sample_action")
end

end

Using an Action to Generate Files

Instead of rendering a template after an action is run, we can also send a binary stream to a web
browser. A binary stream could be a file or an image—you must, however, specify an appropriate
mime or content type and content disposition. The web browser uses the content type and content
disposition to determine whether to display the data inline, launch an application, or ask the user
to save the file. The send_data method takes the binary siream as the first parameter.

The :filename, : type, and :disposition must also be specified. The : filename is the
name that the file will be saved as when it is downloaded by a user. The : type is the mime-type
or content type of the binary data stream. The default content type is application/octet-
stream. The :disposition setting allows us to determine whether the data should be displayed
inline or saved/downloaded.

Here is an example of using the send_data method to retrieve an image stored as binary data
(blob) within a database field and render the image as a png image format:

def render_pic
@pic = Pic.find(params[:id])
send_data (@pic.data,
:filename => @pic.name,
:type => @pic.content_type,
:disposition => "inline")

end

The send_file method is also useful. With the send_fi1le method, we can specify a file to be
sent to a browser. This is handy if we want to hide the file location of a file, password protect
files, or only allow access to logged in users:

send_file('/path/to.jpeg', :type => 'image/jpeg', :disposition => 'inline')

129

CHAPTER 5} Action Controller

Redirection

The redirect_to method is located within the ActionController: :Base class. The
redirect_to method performs HTTP redirection. You are able to redirect a request to an ex-
ternal URL or to a controller and action within your current application. With redirect_to, we
can redirect a request to another action within the currently called controller, an action in another
controller, and even external URL. Redirecting to an external web site is easy because we only
need to pass a URL to the redirect_to method. More complex internal site redirects require
a hash with an optional controller, action, and id keys.

8 Note

Actions with a callto redirect_todon’tneeda . rhtml template because the body of the HTTP redirect
is not displayed within a browser.

In this example, various calls to redirect_to are made to illustrate the use of the
optional :action, :controller, and :id seftings:

class RedirectionController < ApplicationController
def rubyonrails_site
Redirect to an external URL
redirect_to "http://www.rubyonrails.org/"
end
def checkout
Redirect to the goto_checkout action in the current controller
redirect_to :action => 'goto_checkout'
end
def index
Redirect to the show_book action in the book controller
redirect_to :controller => 'book', :action => 'show_book'
end
def reserve_book
Redirect to the request_book action and pass the id
redirect_to :action => 'request_book', :id => params|[:id]
end
def buy_book
Redirect to the purchase_book action and pass the id

redirect_to :action => 'purchase_book', :id => 234563

Cookies

end

end

You'll notice that in some of the actions we neglected to specify a controller and an action. If no
controller is specified, the current controller is assumed. If no action is specified, the index action
will be run.

Ed Warning

Execution does not stop when a redirect_to is encountered. Rails still runs the code placed after a
redirect_to. Don’t place any code that may be harmful or dangerous after a redirect_to call, as
it won’t be ignored.

Cookies

Rails includes a cookie object, which encapsulates the HTTP cookie protocol. Cookies were
introduced as a solution to the statelessness of the HTTP protocol. Cookies store data within a
client’s browser. Cookies can be accessed between HTTP requests. The cookie object returns a
hash of key/value pairs.

Setting a cookie called my_name:

cookies[:my name] = "Aneesha"

Retrieving a cookie called my_name:

my_name = cookies|[:my_name]

Even though a cookie key/value pair is set in code, the data will only be saved as a cookie in a
user's browser once the request is completed. In the following example, we use both the
redirect_to and render methods covered in previous sections. We set a cookie, then redirect
to an action that will retrieve and display the value stored in the cookie:

class CookiecutterController < ApplicationController
def set_cookie
cookies|[:my_name] = "Aneesha"
redirect_to :action => "show_cookie"
end
def show_cookie
my_name = cookies[:my_name]

render (:text => "Hello #{my_name}!")

“I3I

CHAPTER 5} Action Controller

end

end

Ed Tip

Cookies are only useful for storing string data, and are only able to store four kilobytes of data. Use
sessions, covered in the next section, to store objects and structured data.

Cookies expire and are deleted once the current web browser is closed. We can, however,
manually set the expiration date. In the following example, the cookie will expire after 24 hours:

cookies[:my_name] = { :value => 'Aneesha', :expires => Time.now + 24.hour}

We can also delete cookies from within our code:

cookies.delete :my_name

There are optional parameters we could include in the cookies hash. The : domain

and :path options determine the domains and paths within an application that can read and

update a cookie. Setting : secure to true will only allow cookies to be accessed over HTTPS or
secure encrypted connections.

Sessions

Cookies would be much more useful if we could store structured data and data that exceeded
the four kilobyte limit. Sessions were introduced to address these limitations. A session only stores
a unique id as a cookie. The unique id (_session_id) is used to identify the user and associates
the user with data stored on the server. A session is a hash and is able to store multiple key/value
pairs. Because the data is stored on the server, structured data and serializable objects are able
to be stored.

Storing a key/value pair in the session hash:

session|[:username] = "Aneesha"

Retrieving a key/value pair from the session hash:

@username = session[:username]

If you are running more than one Rails application on a server, you should customize the
session_key. The session_options are setin the config/environment.rb file:

ActionController: :Base.session_options|[:session_key] = 'your_app_name'

Using the Flash

Session data by default is stored locally in a flat file known as PStore. Pstore, however,
does not scale very well and can’t be shared across multiple servers in a clustered environment.
We can, however, store sessions within the current Rails applications database using
ActiveRecordStore.

The session storage option is set by the session_store attribute of ActiveRecord: :Base:
config.action_controller.session_store = CGI::Session::PStore

We need to change the session_storage option to :active_record_store to enable
database storage:

config.action_controller.session_store = :active_record_store

There is a Rake command to run a migration to create a sessions table:
S rake db:sessions:create

The sessions table has an index on the session_id field. There is also a timestamped
updated_at field.

Using the Flash

The flash is a temporary storage area where data can be preserved between action calls
(requests) and redirects. We can store key/value pairs in the flash—it is just a hash stored within
the current session. The flash is handy when you need to inform the user of the outcome of the
last action or display an error message. Values stored in the hash are only available to the next
request and then deleted.

Storing data in the flash:

flash[:info] = "The entry has successfully been added."

We are able to store multiple key/value pairs in the flash:
flash[:info] = "The entry has successfully been added."
flash[:error] = "An error has occurred."

The flash can be accessed from within a template:

<div id="info">
<%= @flash[:info] %>

</div>

We can use an i f statement to check whether a key/value pair exists in the hash and then display
the div tag:

133

CHAPTER 5} Action Controller

<% if @flash[:info] %>
<div id="info">
<%= @flash[:info] %>
</div>

<% end %>

It is also possible to set a key/value pair and only make it available to the current request (not
save it as a session):

flash.now[:info] = "Just for this request"

The keep method allows us to store a key/value pair for an additional request:

flash.keep(:1info)

If no parameters are passed to the keep method, all key/values pairs in the flash will be
preserved for another request:

flash.keep()

Routing

In Chapter 3, “Prototyping Database-Driven Applications with Rails,” we made an FAQ Manager.
The FAQ Manager was primarily built using the scaffold command. While testing the appli-
cation, you would have noticed that typing hitp://localhost:3000/faq as the URL loaded the
index action of the faqg controller. The index action displayed all the FAQs. They were dis-
played with links to show, edit, and delete individual FAQs. We were also able to add a new
FAQ. The edit form is shown in Figure 5.3. You'll notice that the URL to display the edit form is
http://localhost:3000/faq/edit/ 1. Rails is able to parse the URL and map the request to the
appropriate controller and action as well as assign a value to the : id. The URL to show an FAQ
is http://localhost:3000/faq/show/ 1. Again, Rails is able to route this request to the show con-
troller. This raises some interesting questions. Where does this routing occur?2 How can we create
custom routing rules?

Rails provides intelligent defaults in relation to routing requests to controllers and actions without
requiring you to author complex XML configuration files. This does not mean that you can’t easily
change the default configuration settings. Routing is a classic example of the flexibility provided
by Rails. The config/routes.rb file contains the URL routing rules. The code that Rails gen-
erates comes with two rules. The first rule handles the requests for a Web Service Description
Language (WSDL) file. You’ll learn more about WSDL in Chapter 7, “Web Services and RESTful
Applications.” The second routing rule is responsible for mapping http://localhost:3000/faq/
edit/1 to the edit action of the faq controller:

oy

Routing

& Faq: edit - Mozilla Firefox EE

e [Cdk Mew Go [Oockmerks GorapDook Tools Llelp

Figure 5.3

= 3 A simple form created with
- - & 1D) 1 rewitscahostmuuitoaiedtin [] ® o [IGL P

: = helpers.
P Getng started B Latect Headines | | WordPress » Logn {00 e-Lkerate | | Drag this inkto your ... elpers

=]

Editing faq

Question
Uueshon 1

Answar
knswer to Question 1.

Category
Databagas |»

|_Edit

Shuw | Back

bane

ActionController::Routing::Routes.draw do |map|
map.connect ':controller/service.wsdl',6 :action => 'wsdl'

map.connect ':controller/:action/:id'

end

Each map . connect declaration is responsible for a routing rule. The first match is used
and, if no match occurs, a routing error will be produced. The pattern matching
':controller/:action/:id' matches URLs with three components separated by a forward

slash (/). The components preceded with a : (i.e., symbols in Ruby) are added as keys to the
params hash.

The params hash produced for http://localhost:3000/faq/edit/1:

@params = { :controller => 'faqg', :action => 'edit', :id => 1 }

Additional parameters accepted by map . connect:

:defaults => { :name => "value", ...}

CHAPTER 5} Action Controller

This allows us to set any default values. As an example, we could specify the default action to be
index and the :id to be nil.

defaults => { :action => "index", :1d => nil }

This matches a URL component to a regular expression. This can be very powerful and we will
use this to help us match dates in a URL.

:requirements => { :name =>/regularexpression/, ...}

We can specify the request type under which a route will be matched by using : conditions.
This is very handy because we could map the same URL to different actions based upon whether
a get or post request was made. Here is an example:

ActionController::Routing: :Routes.draw do |map|

map.connect 'fag/destroy',
:conditions => { :method => :get },
:controller => "faqg",
:action => "show"

map.connect 'fag/destroy’',
:conditions => { :method => :post },
:controller => "faqg",
action => "destroy"

end

Creating a Date-Based Routing Rule for a Weblog

The following map . connect rule allows http://localhost:3000/article/2007/12/8 to be used
to display all the articles published on the 8th of December 2007. Regular expressions are used
to match the year, month, and day and to add the key/value pairs to the params hash. We also
set defaults if the day and month are missing:

map.connect "article/:year/:month/:day",
:controller => "article",
raction => "show",
:requirements => { :year => /(19|20)\d\d/,
:month => /[01]?\d/,
:day => /[0-3]?\d/},
:day => nil,

:month => nil

Routing

Changing an Application’s Default Page

You probably have noticed that even though we have built numerous sample applications, the
default mapping of the domain (http://localhost:3000) has still been pointing to the "Welcome
to Rails" page, which is located in the public/index.html (see Figure 5.4). The public/index.html
page can be customized, but it is still going to be a static page. In most cases, a static home page
is inappropriate—we are, after all, building dynamic database-driven applications. Routing comes
to the rescue and allows us to map the home page to any controller and action within our
application.

Figure 5.4
The Welcome to Rails
starting page.

The public/index.html must be removed. Due to the inbuilt Rails routing rule, if the public/
index.html file is found, it will always be displayed no matter what other mappings are specified.

We add a mapping to the config/routes. rb file that displays the homepage action of the
welcome controller when only the domain is called from within a browser (http:// http://
localhost:3000/):

ActionController: :Routing: :Routes.draw do |map|
map.connect '', :controller => "welcome", :action => "homepage"
map.connect ':controller/service.wsdl', :action => 'wsdl'
map.connect ':controller/:action/:id'

end

3

CHAPTER 5} Action Controller

The firstmap . connect call we make inthe config/routes. rbfile has a blank initial argument.
In this rule, no path is specified and the call will match all the URLs where only the domain has
been specified (i.e., blank URLs). We are then able to set the controller and its actions that must
be called when a pathless URL has been specified.

Using the Rails Console to Test Routing Rules
Routing rules can be tested from within the Rails console. In some cases this is easier than testing
the routing rules in a web browser. Run the Rails console for any Rails application:

$ ruby script/console

Loading development environment.

Create an instance of ActionController: :Routing: :Routes. The RouteSet is quite
complex—the full result produced is not listed:

>> r = ActionController::Routing: :Routes
=> #<ActionController::Routing: :RouteSet:0x323c794
@builder=#<ActionController::

Routing: :RouteBuilder:0x3ac8f0c @optional_separators=["/"], @separators=["/",

"o,
7

Use puts to list the routing rules for the current application. Three items are listed for each rule:
the HTTP request to respond to, the format to match, and optional parameters:

>> puts r.routes

ANY /:controller/service.wsdl/ {:action=>"wsdl"}
ANY /:controller/:action/:1id.:format/ {}

ANY /:controller/:action/:id/ {}

=> nil

We can now use the recognize method to check whether a path is valid:
>> r.recognize_path "/faqg"

=> {:controller=>"faqg", :action=>"index"}

We could also generate a path to access a controller:

>> r.generate :controller => :fag

=> "/faq"

If routing rules are changed, you will need to reload the config/routes. rb file. This can be
done within the console:

138

Conclusion

>> load "config/routes.rb"

=> []

Conclusion

This chapter covered the essential elements that make up Action Controller. You learned to utilize
methods to help customize template rendering, redirect incoming requests, use the flash to
communicate between requests, and customize URL routing. You also learned how to process
posted forms and use the params hash. Action Controller is only one half of Action Pack—Action
View will be covered in depth in the chapter that follows.

This page intentionally left blank

Action View

In the last two chapters we covered Active Record and Action Controller. We now turn our
attention to Action View—the remaining component of the Model View Controller (MVC)
paradigm. The View is responsible for rendering the data for display or interaction. Examples
include records retrieved from a database displayed in a tabular manner within a web page or
a form where a user can edit the data already stored in a database table. Key Rails concepts
such as helpers, layouts, and partials will also be covered.

In this chapter you'll learn to:

Create templates using Embedded Ruby (ERb)
Use helper methods

Share layouts across templates

Use partials to share code across templates
Use helpers to create forms

Use helpers to associate form fields with a model

Embedded Ruby (ERb) and Templates

Action View is the Rails component responsible for rendering a view that is associated with a
controller’s action. A controller can have multiple actions (also known as methods), each of which
is automatically mapped to render a view with the same name. A view is also known as a template
or a template file. Actions automatically map to . rhtml templates, which are contained within
the app /views folder. A . rhtml template renders HTML and can contain Ruby code. Embedded
Ruby (ERb) allows Ruby code to be interpreted when itis placed in a text file. We first encountered
ERb in Chapter 2, “Ruby Essentials.”

A folder that corresponds to the name of each controller is created in the app/views folder. If
we created a simple Rails application that has an admin and a user controller, the templates for

14

CHAPTER 6} Action View

the admin controller will be found in the app /views/admin folder. The templates for the user
controller will be located in the app/views /user folder.

We are not restricted to using the automatic mapping of actions to . rhtml templates with the
same name. The render method could be used to call another action, redirect to another con-
troller’s action, or call a template file that is located elsewhere:

render (:action => action_name') # render template from another action
render (:template => 'controller/name') # render the template of an action from
another controller

render (:file => 'folder_name/template') # render template from another folder

The rendered view does not have to be HTML. The generated view could also be XML, PDF, or
RJS (Rails JavaScript). We will cover the generation of these different types of views throughout

the book:
XML generation is covered in Chapter 7, “Web Services and RESTful Applications.”
RJS generation is covered in Chapter 8, “AJAX and Rails.”
% PDF generation is covered in Chapter 10, “Rails Plug-Ins.”

Within a . rhtml file the <%= and %> delimiters are used to evaluate an expression, convert the
result to a string (using a to_s method), and insert the result with the generated HTML file.

Displaying the current time:

<%= Time.now %>

The <% and %> delimiters can be used to insert arbitrary Ruby code. In the following example, a
variable called page_title is set and then printed out in two places using the <%= and %>
delimiters. The rainfall data is stored in a hash and output using a code block:

<% page_title = "Rainfall Averages" %>
<html>
<head>

<title><%=page_title%></title>
</head>
<body>

o

<
rainfall =
{
"Jan - Mar" => "10mm",
"Apr - Jun" => "20mm",

"Jul - Sep" => "2mm",

Passing Objects and Variables to a Template

"Oct - Dec" => "omm"
}

%>
<h2><%=page_title%></h2>
<table border="1">
<tr><td>Quarter</td><td>Rainfall</td></tr>
<%
rainfall.each do |key, value]
%>

<tr><td><%=key%$></td><td><%=value%$></td></tr>

o

<

end

oe

>

</table>

<hr>

Last updated: <%=Time.now%>
</body>

</html>

Anewline characterisincluded for each <% and %> delimiter pair. If this extra whitespace prevents
you from debugging the generated HTML or causes an increase in bandwidth/download file
size, the <% and -%> delimiters should be used. Here is an example that does not produce a
newline character:

<% the_time = Time.now -%>

<%=the_time %>

Passing Objects and Variables to a Template

Aview is able to access instance variables set in the action from which it was called. In the example
that follows, an instance variable called the_time is set in the telltime action within the
timefunctions controller.

The timefunctions controller.rb file inthe app/controllers folder:

class TimeFunctionsController < ApplicationController
def telltime
@the_time = Time.Now
end

end

143

CHAPTER 6} Action View

The telltime.rhtml file in the app/views/timefunctions folder:

<html>
<head>
<title><%=the_time%$></title>

</head>

<body>

<h2><%=the_time%></h2>

</body>

</html>

We also have access to posted form data, the session, and request and response objects:

<html>
<head>

<title>Objects available to a View</title>
</head>
<body>
<h2>Session</h2> <%= debug(session) %>
<h2>Params</h2> <%= debug (params) %>
<h2>Response</h2> <%= debug(response) %>
</body>
</html>

8 Note

The debug method serializes objects to YAML and HTML escapes the output, making it easier to read
the contents of an object you wish to review.

Creating Helpers

Even though business logic is placed in the controller, you will require Ruby code to help you
format output for display. Rather than place this code directly within the view, Rails allows helper
modules to be accessed from within a . rhtml template. Helpers promote code reuse because
they can be shared across views. Helpers are also easier to test. You will really appreciate helpers
when you need to work with an interface designer. A view file that does not have complex
embedded Ruby is easier for an interface designer to work with.

A helper is a module, and a module in Ruby is simply a collection of functions. Each controller
has its own helper module. All of the actions and views associated with a controller have access

144

Rails Inbuilt Helpers

to its helper module. When script/generate is run, the helper module for a controller is
created and named according to the Rails convention. A controller called FAQController has a
helper module called FAQHelper that is stored in the app/helpers/fag helper.rb file.

Here we made a FAQHelper (app/helpers/fag _helper.rb) with a page_title method:

module FAQHelper
def page_title
@page_title || "Frequently Asked Questions - FAQ"
end

end

We can now call this method from an . rhtml template:

<html>
<head>
<title><%= page_title %></title>
</head>
<body>
<h2><%= page_title %></</h2>
</body>
</html>

Sharing Helpers

The application_helper.rb helper module is available to views throughout your entire
application. The application_helper.rb file is located within the app/helpers folder.
We are also able to include helper modules from other controllers. In this example, the
TimeFunctions controller is able to call methods from the DateFunctions controller:

class TimeFunctionsController < ApplicationController
helper :datefunctions

end

Rails Inbuilt Helpers

Rails includes numerous helpers to assist with formatting. Let’s explore a sampling.
Convert a file size from bytes to kilobytes:

<%= number_to_human_size(888_000) %> # 886.1 KB

Convert a decimal number to a percentage:

<%= number_to_percentage(52.22222222, :precision => 1) %> # 62.2%

145

CHAPTER 6} Action View

As you can see, the inbuilt Rails helpers can be called from within the <¢= and %> delimiters.

It is not advisable to display data entered by a user without first escaping any HTML code that
could potentially break the layout of a web page. The htm1_escape helper, as its name suggests,
escapes HTML markup. This means that some text will be displayed
instead of some text. In this example, the first_name field is escaped with the shorthand syntax
for calling html_escape:

The value of first_name is <%= h(params[:first_name]) %>
The sanitize helper leaves formatting intact but removes <form> and <script> tags because

these may introduce security concerns. OnClick events as well as links that call JavaScript functions
(A Javascript link) are also removed.

The value of form text is <%= sanitize(params|[:form_text]) %>
The auto_1ink helper makes all URLs and e-mail links clickable. We can also specify the

href option that needs to be inserted. The following example changes the target of 1ink to
"_blank":

auto_link (form_text, :all, :target => '_blank')

The strip_links method removes all <a href> tags:

strip_links (form_text)

The simple_format method converts line breaks (\n) to <br \> tags and surrounds
paragraphs with <p> and </p> tag pairs.

Simple_format (form_text)

The truncate helper only displays the specified number of characters and replaces the last
three characters in the sequence with the truncate_string ("...") if the text is longer than
specified.

truncate (form_text, length = 15, truncate_string = "...")

There are also Rails helpers to support textile and markdown formatting. We used the

textilize helper in Chapter 3 to mark up our blog posts. RedCloth must be installed to
use the textilize helper. BlueCloth is required by the markdown helper.

textilize (form_ text)

markdown (form_text)

Creating Links

Creating Links

In this section, we will be using helpers from the Actionview: :Helpers: :UrlHelper
modules. The 1ink_to helper inserts links to actions in a controller. This example will render a
link called "Add an FaQ" that, when clicked, will send a Get request to the add_faq action:

<%= link_to "Add FAQ", :action => "add_faqg" %>
The first parameter passed to 1ink_to contains the text inserted between the <a href> and

 tag pairs. The :action parameter is a hash, and it specifies the link’s target. Here we call
the delete action and pass the id of the object that must be deleted.

<%= link_to "Delete FAQ", { :action => "delete", :1id => @faqg} %>

There is an optional third parameter, which is also a hash and sets the HTML attributes. Here a
class from a style sheet is specified:

o

<%=
link_to "Delete FAQ ", { :action => "delete", :1d => @faqg},
{ :class => "faglink" }

%>

To make sure that the user really wants to delete a record, we can display a JavaScript prompt:

o

<%=
link_to "Delete FAQ ", { :action => "delete", :1d => @faq},
{

:class => "faglink",

:confirm => "Are you sure you want to delete this record?"

&l Tip
We can also use the 1ink_to method to insert absolute URLs:

<%= link_to("Google", "http://www.google.com") %>

The button_to helper takes the same parameters as the 1ink_to helper and inserts a button
and a form.

In the example that follows, a mailto link will be inserted by the mail_to helper. Amailto
link opens your mail client if it is an installed application, such as Eudora or Microsoft Outlook.

147

CHAPTER 6} Action View

The encode parameter uses JavaScript to make the link harder to be mined by e-mail address
harvesters.

<%= mail_to("superiorsupport@randomsyntax.com", "Get some help",
:subject => "Support request",
:encode => "javascript")

>

o

Ed Tip

Use the :replace_at and :replace_dot options to replace @ and dots in the specified e-mail
address. E-mail harvesters are getting smarter, so this is unlikely to work.

The image_tag helper inserts images. The first parameter passed to the image_tag method is
the path to the image. If the path does not begin with a /, it is assumed to be in the /images
directory.

The image_tag helper can be used to create tags. The image size may be specified using
asingle : size parameter (of the form widthxheight) or by explicitly giving the width and height
as separate parameters. The size option can be used to specify both the width and the height
of the image, or we could set these options separately.

<%= image_tag("/images/rails.png", :size => "200x200") %>
<%= image_tag("/images/train.gif", :width => "200", :height => "230") %>
el Tip

It is an accessibility requirement to include alternate text for an image. You should always set the a1t
parameter, but if you don’t, Rails will use the filename as the a1t attribute.

In this example, we use an icon to delete a record by passing image_tagtothe 1ink_helper:

<%= link_to(

image_tag("deleteicon.gif", :size => "45x20"),
{ :controller => "managefaqg",

raction => "delete",

:id => @Qfaqg},

{ :confirm => "Are you sure you want to delete this FAQ?" })

Layouts

Layouts

Page elements, such as a header, footer, and sidebar, are usually shared across an entire
application or a subset of pages. When the script /generateisrun, alayoutfile is also created
and placed in the app/views/layouts folder. Each call to an action in a controller renders
two templates—the template associated with the action and the layout file for the controller. The
rendered output of the called action is actually passed to the layout as : 1ayout. The yield
method is used to insert the action’s rendered content into the template.

An example admin.rhtml layout in app/views/layouts:

<html>

<head>

<title>Controller name: <%= controller.action_name %></title>
</head>

<body>

<%= yield :layout %>

</body>

</html>

This template is rendered by the savhello action:

<hl>Say Hello</hl>

The output displayed in the browser includes the rendered layout:
<html>

<head>

<title>Form: sayhello</title>

</head>

<body>

<hl>Say Hello</hl>

</body>

</html>

8 Note

Instance variables available to an action’s template are also available within the layout.

Including Template-Specific Content in a Layout
Templates can inject their own content into a layout. This is handy if you need to include specific
HTML elements (such as a sidebar), stylesheets, or JavaScript for certain templates. The

149

CHAPTER 6} Action View

content_for block stores the content in a symbol. Ruby code can be placed in the
content_for block—just use normal ERb:

<hl>Template with Sidebar</hl>
<% content_for (:sidebar) do %>
It is <%= Time.Now %>

<% end %>

If : sidebar has been set, its content will be injected into the layout by yield :sidebar:

<html>
<body>
<%= yield :sidebar %>
</body>
</html>

Including Scripts and Style Sheets in a Layout

The AssetTagHelper (ActionView: :Helpers: :AssetTagHelper) module has a few
methods that will come in handy when building layouts. The AssetTagHelper includes helpers
to link to style sheets and JavaScript code.

The javascript_include_tag method inserts <script> tags for each JavaScript
filename passed to the method in a comma separated list. The JavaScript files must be placed
in the public/javascripts folder. If the:defaults parameter is passed to the
javascript_include_tag, the JavaScript files for the Prototype and Scriptaculous libraries
(prototype.js, effects.]js, dragdrop.js, and controls.js) as well as
application.js will be rendered.

The stylesheet_link_tag is used to output a <style> tag and reference the style sheets
passed as a list to the helper.

<%= stylesheet_link_tag("faqg,admin"%>

Ed Tip

Static content need not reside within your current application, or even on the same server. Sometimes it
makes more sense to have a dedicated server to handle static content. The asset_host variable can
be used to set the path to a static content or media server:

ActionController: :Base.asset_host = "http://www.randomsyntax.com/

staticmedia"

150

Partials

Partials

A partial can best be described as a subtemplate. A partial is a snippet of HTML markup and
Ruby code that can be called from other templates. Objects can be passed to partials, making
them very powerful. The name of a . rhtml template file that is a partial must be prefixed with
an underscore. The naming convention is used to make it easy to differentiate partials and normal
template files.

We use the render_partial helperinthe 1ist.rhtml template. Objects are passed to the
partial via the : object attribute.

<hl>My Weblog</hl>
<p><%= link_to 'New post', :action => 'new' $%></p>

<%= render (:partial => "post", :object => @posts.id) %>

We name our partial _post.rhtml and place it in the app/views/blog folder. The partial
can access the properties of the object that has been passed to it. Here is the code:

<div>

<h2><%= link_to post.title, :action => 'show',6 :id => post %></h2>
<p><%$=textilize(post.body) %$></p>

<p><%=post.created_at.to_s() %> </p>

</div>

Partials and Collections
In the following template we use a for loop to iterate over all posts in our blog in reverse order:

<hl1>My Weblog</hl>

<p><%= link_to 'New post', :action => 'new' $%$></p>

<% for post in @posts.reverse %>

<div>

<h2><%= link_to post.title, :action => 'show',6 :id => post %></h2>
<p><%$=textilize(post.body) %$></p>

<p><%=post.created_at.to_s() %>

(<%= link_to 'Edit', :action => 'edit', :id => post %> | <%= link_to 'Destroy’',
{ :action => 'destroy', :id => post }, :confirm => 'Are you sure?', :post =>
true %>)

</p>

</div>

151

CHAPTER 6} Action View

The HTML used to display the blog post needs to be used in the show.rhtml template as well.
The show.rhtml file will have additional functionality to allow comments to be added to the
blog. Instead of copying the code to display a post, we create a partial called _post.rhtml:

<div>

<h2><%= link_to post.title, :action => 'show', :id => post %></h2>
<p><%=textilize(post.body) %$></p>

<p><%=post.created_at.to_s() %> </p>

</div>

The show.rhtml can simply call the _post.rhtml partial:

<%= render :partial => "post", :object => @post %>
<%= link_to 'Edit', :action => 'edit', :id => @post %> |
<%= link_to 'Back', :action => 'list' %>

The 1ist.rhtml file that displays all posts also gets drastically simplified. We don’t need to
place the partial within a loop because the render helper is able to take a collection:
<hl>My Weblog</hl>

<p><%= link_to 'New post',6 :action => 'new' %></p>

<%= render :partial => "post", :collection => @posts.reverse %>

The :spacer_template parameter allows us to specify a template after each iteration of the
collection:

<hl>My Weblog</hl>
<p><%= link_to 'New post', :action => 'new' $%></p>
<%= render :partial => "post", :collection => @posts.reverse, :spacer_template

=> "hrdivider" %>

Ed Tip

Partials can be referenced by path. This makes it easy to share partials across controllers. Itis a convention
to place shared partials in a folder called shared.

<%= render (:partial => "shared/post" , :object => @post) %>

Using Helpers to Create Forms

Forms allow users to enter and edit data. Rails has a unique way of mapping form elements
to ActiveRecord model objects—making it very simple to build database-enabled web

152

Using Helpers to Create Forms

applications. Let’s take a look at an insert FAQ form (new. rhtm1) generated by
script/generate scaffold. The new. rhtml form allows users to enter a new FAQ that will be
mapped to an fag ActiveRecord object and saved to the database.

<hl>New fag</hl>

<%= start_form_tag :action => 'create' %>
<%= render :partial => 'form' %>
<%= submit_tag "Create" %>

<%= end_form_tag %>

<%= link_to 'Back', :action => 'list' %>

The start_form_tag helper inserts the opening <form> tag and posts the form to the
create action. The end_form_tag closes the form with the </ form> tag. The submit_tag
helper inserts a Submit button and names it Create. The 1ink_to helper that we covered earlier
in this chapter provides a link to the 1ist action, which will render 1ist.rhtml and display all
the FAQs.

The form elements are actually going to be the same across the Edit and New forms, so these
elements have actually been extracted and placed within a partial called _form.rthml. The
automated scaffold generator is indeed smart. Let’s take a peek into the _form.rhtml form:

<%= error_messages_for 'faqg' %>
<!--[form: fag] -->
<p><label for="fag question">Question</label>

<%= text_field 'faqg', 'question' %></p>
<p><label for="faqg answer">Answer</label>

<%= text_area 'faqg', 'answer' %></p>
<p><label for="faqg category">Category</label>

<select name="faqg[category_ id]">
<% @categories.each do |category| %>
<option value="<%= category.id %>"
<%= ' selected' if category.id == @fag.category_ id %>>
<%= category.name %>
</option>
<% end %>
</select>
</p>

<!--[eoform: fag] -->

153

CHAPTER 6} Action View

The text_field helper renders a text entry input box. It takes the name of the Active Record
model and the attributes or properties that the form fields maps to. The text_area helper takes
the same parameters. Table 6.1 lists the helpers used in the form, and shows the HTML that has
been rendered. Here is what the rendered HTML source looks like:

<hl>New fag</hl>

<form action="/fag/create" method="post">

<!--[form: fag]-->

<p><label for="fag question">Question</label>

<input id="fag question" name="fag[question]" size="30" type="text" /></p>
<p><label for="faqg answer">Answer</label>

<textarea cols="40" id="fag answer" name="fagl[answer]" rows="20">
</textarea></p>

<p><label for="faqg category">Category</label>

<select name="fag[category_id]">

<option value="1">
Databases

</option>

<option value="2">
Forums

</option>

<option value="3">
General

</option>

<option value="4">
Intranet
</option>
</select>

</p>
<!--[eoform: fag]-->
<input name="commit" type="submit" value="Create" />
</form>

Back

>

ik uk ¥

Table 6.1 Rendered Form Elements

Using Helpers to Create Forms

Helper

<%= start_form_tag :action =>
'create' %>

<%= text_field 'faqg', 'question' %>

<%= text_area 'faq', 'answer' %>

<%= submit_tag "Create" %>

<%= end_form_tag %>

Rendered HTML Tag

<form action="/faqg/create"
method="post">

<input id="fag question" name="faqg
[question]" size="30"

type="text" />

<textarea cols="40"

id="faqg answer" name="faqg
[answer]" rows="20"></textarea>
<input name="commit"

type="submit" value="Create" />

</form>

In Table 6.1 you can clearly see how Rails makes use of the id and name elements of HTML form
elements. The model name (fag), an underscore, and the model attribute name (question) are
assigned to the id. The name attribute is set to the modelname [modelattribute] (fag
[question]). Posted form data is stored in the params hash. Simple values are just stored as
ascalarinthe hash. Ifbraces ([1) are present, Rails assumes that the fields are part of a structured
data set and stored in a hash. The string inside the braces (question) is the key in the hash.

8 Note

The form_tag Helper is a block.

In versions of Rails prior to 1.2, you might have noticed that the form_tag was not a code block and
the HTML tag to close a form (</form>) had to be used:

A

%= form_tag :action => :edit

</form>

In Rails 1.2, the form_tag is a proper block and the end_form_tag can be used to close the form:

A
oP

<%= end_form_tag %>

= form_tag :action => :edit %>

155

CHAPTER 6} Action View

Select Boxes

The select helper renders a select box. The choices parameter must contain a collection of
items that must be displayed as options within the select box—arrays, hashes, and database
records are all acceptable.

form.select (:attribute, choices, options, html_options)

In this example, the cities in Australia are displayed in a select box:

<% form_for :vacation do |form| %>
<%= form.select(:city, %w{ Brisbane Sydney Melbourne Perth}) %>

<% end %>

The following HTML is generated:

<select id="vacation_city" name="vacation[city]" >

<option value="Brisbane" selected="selected" >Brisbane</option>
<option value="Sydney" >Sydney</option>

<option value="Melbourne" >Melbourne</option>

<option value="Perth" >Perth</option>

</select>

We can also set the option values to an id:

<%= form.select(:id,

[
["Brisbane', 117,
['Sydney', 2],
['Melbourne', 3],
['Perth', 4],

)

Q
5>

This will produce the following HTML:

<gelect id="vacation_id" name="vacation[id]" >
<option value="1" >Brisbane</option>

<option value="2" >Sydney</option>

<option value="3" >Melbourne</option>

<option value="4" selected="selected" >Perth</option>

</select>

Using Helpers to Create Forms

Date and Time Fields

The ActionView: :Helpers: : DateHelper module has helpers to render a set of data and
time select boxes. The datetime_select helper takes an Active model object as the first
parameter and the datetime field as the second. An optional start_year parameter can also
be specified:

datetime_select ("blogpost", "updated_on")
datetime_select ("blogpost", "created_on", :start_vyear => 2005)

If the time select boxes are not required, use the date_select helper:

date_select ("blogpost", "updated_on")
date_select ("blogpost", "updated_on", :start_year => 2005)
date_select ("blogpost ", "created_on", :order => [:day, :month, :year])

Modeless Forms

Not all forms need to be associated with a model. The helpers from FormTagHelper only require
a field name instead of a model object. In this example, we create a form to convert a Fahrenheit
temperature to degrees Celcius.

<% form_tag :action => 'convert_temp' do %>
Enter Fahrenheit Temperature: <%= text_field_tag :temperature %>
<%= submit_tag "Convert to Celcius" %>

<% end %>

After the form is submitted, the field will be stored in the params hash.These are the available
form field helpers found in the FormTagHelper module:

form_tag

text_area_tag

text_field_tag

hidden_field_tag

password_field_tag
radio_button_tag

gelect_tag

check_box_tag

file_field_tag

submit_tag

157

CHAPTER 6} Action View

Conclusion

This chapter served to reinforce the role of the View in the MVC paradigm that Rails advocates
and embraces. Helpers, partials, and layouts all play a crucial role in enforcing the Don’t Repeat
Yourself (DRY) principle. A few new Embedded Ruby (ERb) tips and tricks were also covered.
We also used helpers to design forms that allow data to be inserted into a model or to edit the
data stored in a model. The Fahrenheit to Celcius temperature converter was an example of a
form not associated with a model.

Web Services and
RESTful Applications

Flickr, Google, YouTube, Amazon, Basecamp, Backpack, and Yahoo all expose their services via
an APl. Web services allow us to utilize the data and functionality made available by these
companies in our own applications. Data is usually encoded into an XML format, so we will first
cover working with XML in Ruby. REST, SOAP, and XML-RPC will be covered. We will also expose
an API for a Rails application via REST and an Action Webservice (AWS) for use by the rest of
the world.

In this chapter you'll learn to:

Validate, parse, and generate XML

Use REST, SOAP, WSDL, and XML-RPC
Use the Flickr APl via XML-RPC and REST
REST-enable a Rails application

% Expose a web service APl in Rails

Working with XML

XML certainly does not provide a lightweight way to transfer data, though it has been embraced
as an industry standard. Ruby programmers have a preference for JSON and YAML because
those formats are human readable and easily editable. We still need to interact with the rest of
the world, so this section is dedicated to using Ruby to validate, parse, and generate XML.

Validating XML

Don’t ever assume that an XML packet is valid or well formed. Sometimes a matching opening
or closing tag may be missing. This could occur in an XML file you have generated or even a
reliable XML feed that your Web application relies on. Using REXML, we are able to detect a
ParseException and provide an appropriate error message. REXML throws a parse exception
if it encounters invalid XML. We also use the Ruby rescue code block, first introduced in

29

CHAPTER 7} Web Services and RESTful Applications

Chapter 2, “Ruby Essentials.” In the example that follows, a / is missing from the closing
<person> tag.

require 'rexml/document'
xml = "<xml><person>Aneesha<person>"
begin
REXML: : Document .new (xml)
rescue REXML: :ParseException
puts "An error has occurred - Invalid XML"
end

8 Note

REXML brings XML processing to Ruby. REXML allows us to manipulate XML using code blocks, which
really makes dealing with XML a pleasure in Ruby. REXML is written by Sean Russell.

Parsing an XML Document

There are two ways to manipulate XML: DOM (Document Object Model) and SAX (Simple API
for XML). DOM loads the entire XML file into a nested tree of objects. Depending upon the
size of the XML file, this can store lots of objects in memory. SAX uses the StreamParser class
and parses and processes an XML packet at the same time. Only one XML node is loaded into
memory at a time. SAX is the preferred method for processing large XML files.

We need to use the REXML Document class (REXML: : Document) to process an XML packet via
the DOM method. The methods of Document and Element classes allow us to access the XML
tree data. We use Document . root to get the document’s root element (<orders>) and then
call each element to iterate over the child nodes (<order> elements). Here is an example:

require 'rexml/document'

xml = %{

<orders>

<order>

<id>100192</id>

<date>05/11/2006</date>

<client>Aneesha Bakharia</client>
<items>

<item description="Pink Champagne" gty="1" />
<item description="Ruby Gems" gty="4" />
</items>

</order>

<order>

<i1d>100194</id>

.160

Working with XML

<date>05/11/2006</date>
<client>Celine Bakharia</client>
<items>
<item description="Chocolate Cake" gty="2" />
</items>
</order>
</orders>
}
order_objs = REXML: :Document .new (xml)
order_objs.root.each_element do |order]|
order.each_element do |node|
if node.has_elements?
node.each_element do |chi1d|
puts "#{child.name}: #{child.attributes|['description']}
(Qty: #{child.attributes['qgty']1})"
end
else
puts "#{node.name}: #{node.text}"
end
end

end

The following is output when the xmlparse. rb script is run:

S ruby xmlparse.rb

id: 100192

date: 05/11/2006

client: Aneesha Bakharia
item: Pink Champagne (Qty: 1)
item: Ruby Gems (Qty: 4)

id: 100194

date: 05/11/2006

client: Celine Bakharia

item: Chocolate Cake (Qty: 2)

Generating XML

Generating XML was always a tedious task until | discovered Rails and Builder, an extremely
lightweight and intuitive XML generator. The usefulness of Builder can best be explained with
examples. We first need to install Builder:

S gem install builder

We can play with Builder using irb, the interactive Ruby shell:

161

CHAPTER 7} Web Services and RESTful Applications

$ irb --simple-prompt

>> require 'builder'

We create an object called xm1 by calling the xm1Markup method. We set : target to
stdout. This will print the output to the console. We also set : indent to 1, which will output the
XML nodes by one space.

>> xml = Builder::XmlMarkup.new(:target => $stdout, :indent => 1)

We call the instruct method to output the XML declaration:

>> xml.instruct!

=> <?xml version="1.0" encoding="UTF-8"7?>

We can generate an XML comment:

>> xml.comment! "This is a comment"

=> <!-- This is a comment -->

Element nodes also are very simple:

>> xml.xmlnode "Text in xmlnode"

=> <xmlnode> Text in xmlnode </xmlnode>

We can add an attribute to a node:

>> xml.xmlnode ("Text in xmlnode", "type" => "test")

<xmlnode type="test"> Text in xmlnode </ xmlnode >

We can even place nodes within other nodes to create a hierarchy:

>> xml.event {
xml.date "2006/11/22"
xml.title "O01"
xml.duration "2 days"

}

=> <event>
<date>2006>date>
<title>01>title>
<duration>0l>duration>

<event>

As you can see, Builder makes generating valid XML a trivial task. In the next example we convert
a hash to an XML packet:

162

Using Web Services

require 'builder’
media = {
'dialup' => 'dialup.wmv', 'broadband' => 'broad.wmv',
'download' => 'download.wmv'
}
xml = Builder::XmlMarkup.new(:target => $stdout, :indent => 2)
xml.instruct! :xml, :version => "1.1", :encoding => "utf-8"
xml.media do
media.each do | name, filename |
xml .media(filename, :item => name)
end

end

The following XML packet is output to the console:

<?xml version="1.1" encoding="utf-8"7?>

<media>
<media item="dialup">dialup.wmv</media>
<media item="download">download.wmv</media>
<media item="broadband">broad.wnv</media>

</media>

Using Web Services

A web service runs on top of the HTTP protocol. A request (usually in the form of an XML packet)
is sent to a web service, which in turns returns a response as an XML packet. Essentially, a web
service provides a way for distributed systems to talk to each other (request services) over HTTP.
None of the unfriendly XML gets shown to the user; instead, the returned XML is parsed, and the
information is processed and presented in a user-friendly way to the user. The user need not even

know that a web service has been accessed. There are three types of web services: REST-style
services, XML-Remote Procedure Calls (RPC), and SOAP (Simple Object Access Protocol).

REST-Style Web Services

REST-style web services are the easiest to understand and use. REST is an acronym for Represen-
tational State Transfer. REST web services are simply HTTP GET and POST requests. A URL path
maps to a service that returns an XML document. HTTP GET requests are used to retrieve data,
while POST requests modify or delete data. The XML returned by RESTful web services is usually
easy to read and parse with REXML: RDF, RSS, Atom, and proprietary XML formats. The emer-
gence of REST has challenged mainstream web service standards such as SOAP. Web services
were getting too complex, and REST, which Rails embraces, makes everything agile.

163

CHAPTER 7} Web Services and RESTful Applications

Because REST does not dictate a specific XML format, you will need to become proficient with
REXML and parsing XML. This is the only downside to embracing REST.

Using the Flickr REST API

Flickr, a popular photo sharing site, provides an API via REST, XML-RPC, and SOAP. It is not

uncommon to find popular sites supporting all three types of web services. Flickr’s APl is com-
prehensively documented at http://www.flickr.com/services/api/. An api_key is
required to access the API. You will need to register as a developer to receive the api_key.

We are going to search for photos with a specific tag. The tag search is documented at
http://www.flickr.com/services/api/flickr.photos.search.html. We need to pass the api_key,
the tags, and the number of images that must be returned per page (per_page) in a URL.
We will be passing the type of license, which is optional, because we want only images under
the Creative Commons license returned. Information on the licensing options is found at
http://www.flickr.com/services/api/flickr.photos.licenses.getinfo.html.

We can test our search from within a web browser. Please note that you will need to insert your
own api_key in the following URL:

http://www.flickr.com/services/rest/2api_key=xxxcxx&

method=flickr.photos.search&
tags=flower&license=4&

per_page=5

The following XML is returned:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="4195" perpage="5" total="20974">
<photo 1d="318298688" owner="28481088@N00" secret="d545531b06"
server="125" farm="1" title="Tulip shadow" ispublic="1"
isfriend="0" isfamily="0" />
<photo 1d="318296448" owner="28481088@N00" secret="blfd7266ece"
server="141" farm="1" title="Tulips on blue 2" ispublic="1"
isfriend="0" isfamily="0" />
<photo 1d="318296449" owner="28481088@N00" secret="938e6alccb"
server="135" farm="1" title="Tulips on blue 3" ispublic="1"
isfriend="0" isfamily="0" />
<photo 1d="318296447" owner="28481088@N00" secret="a4531cdb8a"
server="142" farm="1" title="Tulips on blue 1" ispublic="1"

isfriend="0" isfamily="0" />

164

http://www.flickr.com/services/api/flickr.photos.search.html
http://www.flickr.com/services/api/flickr.photos.licenses.getInfo.html
http://www.flickr.com/services/api/
http://www.flickr.com/services/rest/?api_key=xxxcxx&

Using Web Services

<photo 1d="318296444" owner="28481088@N00" secret="804cccf873"
server="133" farm="1" title="Tulip on the window" ispublic="1"
isfriend="0" isfamily="0" />
</photos>

</rsp>

Each photo has a unique ID, but we will need to look up how to construct the URL to each
image so that we can display the photos on our own web page. This information can be found
at hitp://www.flickr.com/services/api/misc.urls.html. The URL takes the following format:

http://static.flickr.com/{server-id}/{id}_{secret}.jpg

We can easily pass the returned XML and construct this URL for each image that needs to be
displayed. Let's try to retrieve the first image in our web browser by typing:

http://static.flickr.com/125/318298688_d545531b06.jpg

The image loads in a web browser. We now move on to getting a Rails application to access the
Flickr REST API. We start by creating a Flickr controller (£1ickr_controller.rb) with a
flickrsearch action. The f1ickrsearch action dynamically constructs the REST URL,

uses the Net : :HTTP. get () method to call the Flickr server, and finally parses the returned XML
with REXML. The parsed XML document is assigned to @photos, which we can access in
flickrsearch.rhtml:

class FlickrController < ApplicationController
def flickrsearch
tags = CGI.escape("flowers")
flickr API_key = "XXXXXXX"
url = "http://www.flickr.com/services/rest/?api_key=#{flickr_API_key}&
method=flickr.photos.search&
tags=#{tagsl}&
license=4&
per_page=10"
result = Net::HTTP.get (URI (url))
@photos = REXML: :Document.new result
end

end

In the view (flickrsearch.rhtml), we can parse the XML and output the images:

o

<

@photos.root.each_element do |photo]

http://www.flickr.com/services/api/misc.urls.html
http://static.flickr.com/{server-id}/{id}_{secret}.jpg
http://static.flickr.com/125/318298688_d545531b06.jpg

CHAPTER 7} Web Services and RESTful Applications

photo.each_element do |node]
image_url = "http://static.flickr.com/
#{node.attributes["server"]}/
#{node.attributes["id"]}_#
{node.attributes|["secret"]}.Jjpg"

<p>
<%= image_tag(image_url, :border => "0", :height => "100") %>

<%= node.attributes(["title"] %>

</p>

<%

end

end

%>

XML-RPC

XML - Remote Procedure Calls (RPC) is language independent and firewall friendly because it
relies on the HTTP protocol. XML-RPC is an early ancestor of SOAP. An XML-RPC request is a
specially formatted HTTP POST request: The name of the remote method and the parameters it
requires are encoded as XML. The XML-RPC response contains serialized data structures. XML-
RPC is available from a specific URL known as an end point URL.

Using the Flickr XML-RPC API
Information on XML-RPC Flickr services can be found at http://www.flickr.com/services/api/
request.xmlrpc.html. The Flickr XML-RPC end point URL is http://api.flickr.com/services/xmlrpc/.

The following is a sample request to the f1ickr.test.echo service:

<methodCall>
<methodName>flickr.test.echo</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>name</name>
<value><string>value</string></value>
</member>

<member>

http://www.flickr.com/services/api/request.xmlrpc.html
http://www.flickr.com/services/api/request.xmlrpc.html
http://api.flickr.com/services/xmlrpc/

Using Web Services

<name>name2</name>
<value><string>value2</string></value>
</member>
</struct>
</value>
</param>
</params>

</methodCall>

In the following example we embed a Ruby XML-RPC client as an action within a controller. We
make an XML-RPC call to the flickr.interestingness.getList service, which returns a
list of interesting photos. We require only five images per page (so we set the per_page
parameter to 5):

class FlickrController < ApplicationController

def flickrxmlrpc
flickruri = "http://www.flickr.com/services/xmlrpc/"
server = XMLRPC::Client.new2 (flickruri)
flickr API_key = "XXXXXXX"
parameters = {:api_key => flickr_API_key, :per_page => "5H"}
result = server.call("flickr.interestingness.getList",

parameters)

@photos = REXML: :Document.new result

end

end

We use simple XML parsing in the view (flickrxmlrpc. rhtm1) to display the images:
<%

@photos.root.each_element do |pic|

image_url = "http://static.flickr.com/#{ pic.attributes["server"]}/
#{ pic.attributes["id"]}_#{ pic.attributes["secret"]}.jpg"

%>

<%= image_tag(image_url, :border => "0", :height => "100") %>

<%= pic.attributes(["title"] %>

CHAPTER 7} Web Services and RESTful Applications

SOAP

The Simple Object Access Protocol (SOAP) is a descendant of XML-RPC, but it certainly is more
complex. SOAP involves encoding a method call into XML and sending the XML to a server, which
in turn returns data structures serialized into XML. It sounds similar to XML-RPC, but the XML
encoding is more elaborate.

In order to make a successful SOAP request, you need the web service end point URL, the
namespace used by the web service, the name of the method you are calling, and the param-
eters you need to pass the method. In Ruby, we need to create a new instance of the

SOAP: :RPC: :Driver and then use add_method to attach the method we need to call from the
SOARP service. In the example that follows we need to access the Stockquote web service. The
getQuote () method must be passed the symbol of a business—a stockquote for the business will
be returned:

require 'soap/rpc/driver'

soapdriver = SOAP::RPC::Driver.new('http://services.xmethods.net/soap/"',
'urn:xmethods-delayed-quotes"')

soapdriver.add_method('getQuote', 'symbol')

puts 'Stock price: %.2f' % soapdriver.getQuote('BBBB')

Using a WSDL File to Make SOAP Calls Easier

The Web Service Definition Language (WSDL) makes it easier to work with SOAP calls by loading
the signature of all available method calls. This means that we don’t need to read a SOAP call
manually to determine which methods we need to use and what parameters are required.

We no longer need to use the add method to define the getQuote method, and the code is
reduced to:

require 'soap/wsdlDriver'
wsdl = 'http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl'
soapdriver = SOAP::WSDLDriverFactory.new(wsdl) .create_rpc_driver

puts "Stock price: %.2f" % soapdriver.getQuote('BBBB')

Searching Google with WSDL

The Google search APl is exposed via WSDL: http://api.google.com/GoogleSearch.wsdl (see
Figure 7.1). You will need a developer API to access the service. We will create an action called
search within a controller that calls the doGoogleSearch () method (see Figure 7.2):

class GoogleController < ApplicationController
def search
api_key = 'XXXXXXX'

@searchquery = 'Ruby on Rails'

168

http://api.google.com/GoogleSearch.wsdl

Using Web Services

XSD: :Charset.encoding = 'UTF8'
"http://api.google.com/GoogleSearch.wsdl"

wsdlfile =
SOAP: :WSDLDriverFactory.new(wsdlfile) .create_rpc_driver

@searchquery, 0, 5, false, ,

driver =
driver.doGoogleSearch (api_key,

@result =

[[||)

false, , '
end

end

Figure 7.1
The Google Search API

exposed via WSDL.

Figure 7.2
The doGoogleSearch()

method.

In the search.rhtml template we display the five search results (see Figure 7.3):

CHAPTER 7} Web Services and RESTful Applications

<p>
You searched for: <%= @searchquery %>

Results Found: <%= @result.estimatedTotalResultsCount %>
</p>

<% @result.resultElements.each do |res| %>

Title: <%= res|["title"] %>

Summary: <%= res.snippet %>

Link: <a href="<%= res["URL"] %>"><%= res["URL"] %>
<hr/>

<% end %>

Figure 7.3
Calling the
doGoogleSearch()
method via WSDL.

Building RESTful Web Services with Rails

REST-based web services deliver custom XML formats via an HTTP request (URL). It is very easy
to map a URL to a controller and an action in Rails. We can get an action to render an XML
document; this is known as an RXML template. RXML templates have a . rxml extension. When
RXML templates are delivered, we need to turn off the rendering of layouts. Here is an example
controller in which we render a layout for all actions except restrequest:

class RestController < ApplicationController
layout "application", :except => [:restrequest]
def restrequest
@australiancities = ["Brisbane", "Sydney", "Perth"]

end

end

Building RESTful Web Services with Rails

The code for the restrequest . rxml view template is as follows:

xml.instruct! :xml, :version=>"1.0", :encoding=>"UTF-8"
xml .australiancities do
counter = 0
@ australiancities.each do |city|
counter = counter + 1
xml .name (city, :id => counter)
end

end

In an RXML template we can access the Builder class that is packaged with Rails. | am sure you
will agree that the Builder class makes XML generation atrivial task. We can view the generated
XML at http://localhost:3000/rest/restrequest.

8 Note

When an action is called, Action Pack looks for a matching RHTML template. If one is not found, it then
looks for an RXML template. There is no need to map the action to the RXML template manually. This is
another really useful Rails feature.

Converting an Active Record Model to XML

The to_xml method is extiremely powerful and easy to use. We can convert a set of records
(usually returned by using the £ind method) to XML with the to_xm1 method. In the code that
follows, the £find method returns all records in the employees table (i.e., the Employee model)
and then renders the records to XML (see Figure 7.4):

class EmployeesController < ApplicationController
def list
@employees = Employee.find :all
render :xml => @employees.to_xml
end

end

Using the scaffold_resource Generator

There is more to being REST-enabled than simply generating XML. We need to be able to res-
pond to HTTP GET requests for data retrieval as well as POST requests for the modification
and deletion of data. We have used the scaffold command to generate a CRUD interface,
we will now use the scaffold_resource command to REST-enable an application. The

171

CHAPTER 7} Web Services and RESTful Applications

scaffold_resource command takes the name of the model that we need to generate a REST
interface for as its first argument. We then pass the name and data type of each field that is part
of the model as arguments. The name of the field and the data type are separated by a colon
(:). The data types are the same data types available for use within a migration.

Figure 7.4
Active Record models
converted to XML.

We are going to create an application to log bugs and expose its APl via REST. The model name
is bug and the bugs table will contain a title and a description field:

$ ruby script/generate scaffold_resource bug title:string

description:text

The scaffold_resource generator produces the bugs controller, related views, and a migration
based upon the fields and data types we passed the scaffold_resource command:

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/bugs

exists test/functional/

exists test/unit/

create app/views/bugs/index.rhtml
create app/views/bugs/show.rhtml
create app/views/bugs/new.rhtml
create app/views/bugs/edit.rhtml
create app/views/layouts/bugs.rhtml

create public/stylesheets/scaffold.css

Building RESTful Web Services with Rails

create app/models/bug.rb

create app/controllers/bugs_controller.rb
create test/functional/bugs_controller_test.rb
create app/helpers/bugs_helper.rb

create test/unit/bug_test.rb

create test/fixtures/bugs.yml

create db/migrate

create db/migrate/001_create_bugs.rb

route map.resources :bugs

The last thing the scaffold_resource generator does is modify the config/routes. rb file.
The map . resources :bugs command is added to the config/routes.rb file. This is
a very powerful command because it adds seven routes and four route helpers to the
BugsController. Table 7.1 lists the newly available routes.

The modified config/routes. rb file:

ActionController::Routing::Routes.draw do |map|
map.resources :bugs
map.connect ':controller/service.wsdl', :action => 'wsdl'
map.connect ':controller/:action/:id.:format'
map.connect ':controller/:action/:id'

end

Table 7.1 REST Routes and Helpers

HTTP Method URL Action Helper

GET /bugs index bugs_url

POST /bugs create bugs_url

GET /bugs/new new new_bugs_url

GET /bugs/1 show bugs_url(:id => 1)

PUT /bugs/1 update bugs_url(:id => 1)

GET /bugs/ Tedit edit edit_bugs_url(:id => 1)
DELETE /bugs/1 destroy bugs_url(:id => 1)

The scaffold_resource command has created a migration to create the bugs table and the
required fields (db/migrate/001_create_bugs.rb):

class CreateBugs < ActiveRecord::Migration

def self.up

173

CHAPTER 7} Web Services and RESTful Applications

create_table :bugs do |t]
t.column :title, :string
t.column :description, :text
end
end
def self.down
drop_table :bugs
end

end

We can now run the migration:

S rake db:migrate

The bugs table is created:

== CreateBugs: migrating ==
-- create_table(:bugs)

-> 0.2190s
== CreateBugs: migrated (0.2190s) ===

We can now run the Webrick web server and take a closer look at the application in action:

$ ruby script/server

We can access the application from http://localhost:3000/bugs . A link is displayed to add a
new bug (see Figure 7.5). Click on the New bug link.

Figure 7.5
The Bugs application.

Building RESTful Web Services with Rails

The form to add a new bug is located at http://localhost:3000/bugs/new. We are able to enter
a title and description for the bug (see Figure 7.6). Click on the Create button.

Figure 7.6
Adding a new bug.

The hitp://localhost:3000/bugs/1 URL is displayed (see Figure 7.7). This URL displays the bug
report that has an id equal to 1.

Figure 7.7
Using an id to display
a bug.

This is great, but it looks like a normal CRUD interface. How do we access the APl to add, modify,
and retrieve bugs via REST2 Go to hitp://localhost:3000/bugs/1.xml (see Figure 7.8).

175

CHAPTER 7} Web Services and RESTful Applications

Figure 7.8
Using anid to display a bug
XML packet.

Go to http://localhost:3000/bugs and add a few more bug reports (see Figure 7.9). Show, Edit,
and Destroy links are now shown for each bug.

Figure 7.9
A CRUD interface for the
Bugs application.

We can now retrieve all the bugs as an XML packet from http://localhost:3000/bugs.xml URL
(see Figure 7.10).

The BugsController has seven actions: index, show, new, edit, create, update, and
delete. The index, show, new, and edit actions respond to HTTP GET requests. The
create, update, and delete actions respond to HTTP POST requests. A comment is included
above each action to show you the URLs that access either the HTML or XML versions. The

17§

Building RESTful Web Services with Rails

respond_to code block determines the type of response that should be returned, in this case,
either the . rhtml template or the XML packet. The to_xm1 method is used to convert the records
returned by the £ind method to XML. Here is the generated controller code (app/con-
trollers/bugs_controller.rbk

Figure 7.10
Displaying all bugs in an
XML packet.

class BugsController < ApplicationController
GET /bugs
GET /bugs.xml
def index
@bugs = Bug.find(:all)

respond_to do |format|

format.html # index.rhtml

format.xml { render :xml => @bugs.to_xml }
end

end

GET /bugs/1
GET /bugs/1l.xml
def show
@bug = Bug.find(params|[:id])

respond_to do |format|

format.html # show.rhtml

CHAPTER 7} Web Services and RESTful Applications

format.xml { render :xml => @bug.to_xml }
end

end

GET /bugs/new
def new
@bug = Bug.new

end

GET /bugs/1l;edit
def edit
@bug = Bug.find(params[:1id])

end

POST /bugs
POST /bugs.xml
def create

@bug = Bug.new (params|[:bugl)

respond_to do |format|
if @bug.save
flash[:notice] = 'Bug was successfully created.'
format.html { redirect_to bug_url (Cbug) }
format.xml { head :created, :location => bug_url (@bug) }
else
format.html { render :action => "new" }
format.xml { render :xml => @bug.errors.to_xml }
end
end

end

PUT /bugs/1
PUT /bugs/1l.xml
def update
@bug = Bug.find(params[:1id])

respond_to do |format|

178

e <l e
B 3k

Building RESTful Web Services with Rails

if @bug.update_attributes (params]|:bugl)
flash[:notice] = 'Bug was successfully updated.'
format.html { redirect_to bug_url (Cbug) }
format.xml { head :0k }

else
format.html { render :action => "edit" }
format.xml { render :xml => @bug.errors.to_xml }

end

end

end

DELETE /bugs/1l

DELETE /bugs/1l.xml

def destroy
@bug = Bug.find(params|[:id])
@bug.destroy

respond_to do |format|
format.html { redirect_to bugs_url }
format.xml { head :0k }
end
end

end

The index.rhtml template, which corresponds to the index action, uses helper methods to
display links to the show, edit, and destroy actions. These helpers were created by the
inclusion of the map . resources :bugs command in the config/routes.rb file. The
index action is accessed via hitp://localhost:3000/bugs:

<hl>Listing bugs</hl>
<table>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
<% for bug in @bugs %>
<tr>

<td><%=h bug.title %></td>

CHAPTER 7} Web Services and RESTful Applications

<td><%=h bug.description %$></td>
<td><%= link_to 'Show', bug path(bug) %></td>
<td><%= link to 'Edit', edit_bug_ path(bug) %$></td>
<td><%= link_to 'Destroy', bug_path (bug),
:confirm => 'Are you sure?',6 :method => :delete %>
</td>
</tr>

<% end %>

</table>

<%= link_to 'New bug', new_bug path %>

The new.rhtml template accessed via http://localhost:3000/bugs/new:

<hl>New bug</hl>
<%= error_messages_for :bug %>
<% form_for (:bug, :url => bugs_path) do |f]| %>
<p>
Title

<%= f.text_field :title %>
</p>
<p>
Description

<%= f.text_area :description %>
</p>
<p>
<%= submit_tag "Create" %>
</p>
<% end %>

<%= link_to 'Back', bugs_path %>

The show.rhtml template accessed via http://localhost:3000/bugs/1:
<p>
Title:
<%=h @bug.title %>
</p>
<p>

Description:

180

sl 9l slas
B ORE R

Using ActionWebService to Expose SOAP and XML-RPC Web Services

<%=h @bug.description %>
</p>
<%= link_to 'Edit', edit_bug_path(@bug) %> |
<%= link_to 'Back', bugs_path %>

The edit.rhtml template accessed via http://localhost:3000/bugs/1;edit:

<hl>Editing bug</hl>
<%= error_messages_for :bug %>
<% form_for(:bug, :url => bug path(@bug), :html => { :method => :put }) do \f| %>
<p>
Title

<%= f.text_field :title %>
</p>
<p>
Description

<%= f.text_area :description %>
</p>
<p>

<%= submit_tag "Update" %>

%
<%= link_to 'Show', bug_path(@bug) %> |
%= link to 'Back', bugs_path %>

Using ActionWebService to Expose SOAP and XML-RPC Web

Services

ActionWebService (AWS) is the Rails component responsible for SOAP and XML-RPC web ser-
vices. AWS binds SOAP and XML-RPC methods to controllers in a Rails application. AWS does
a lot of hard work for you behind the scenes. It parses an XML request and constructs the WSDL
and XML response. All you need to worry about is the functionality you need to expose via an

API.
Make sure you have the latest version of AWS:

S gem install actionwebservice

AWS includes a script to generate the required files:

$ script/generate web_service WebServiceName Methodl Method2

CHAPTER 7} Web Services and RESTful Applications

Let's create a web service with a method called sayhello, which takes a single string
firstname parameter:

$ script/generate web_service greetings sayhello

An apis folder is added to the /app folder. The app/apis/greetings api.rb and the
app/controllers/greetings_controller.rb files are also created:

create app/apis/

exists app/controllers/

exists test/functional/

create app/apis/greetings_api.rb

create app/controllers/greetings_controller.rb

create test/functional/greetings_api_test.rb

View the app/apis/greetings_api.rb .This file includes the sayhello method. We need
to define the data types that the method expects and returns:

class GreetingsApi < ActionWebService::API::Base
api_method :sayhello,
:expects => [{:firstname => :stringl}],
:returns => [{:greeting => :string}]

end

8 Note

We need to type the parameters our methods require and the values they return because Ruby is a
loosely typed language (see Table 7.2). Other languages that we use to call our web service may be
written in strongly typed languages such as Java and C#. The : expects and : returns hashes serve
this purpose. AWS will raise an error if : expects is not specified. If : returns is not set, nothing will
be returned.

Now we editthe GreetingsController with the methods defined in our API. The GreetingsAPI
maps to actions in the GreetingsController, which is stored in the app/controllers/
greetings_controller.rb file:

class GreetingsController < ApplicationController
wsdl_service_name 'Greetings'
def savhello(firstname)
"Hello #{ firstname }"
end

end

182

Using ActionWebService to Expose SOAP and XML-RPC Web Services

Table 7.2 Action WebService (AWS) Data Types

:bool Boolean

:int Intfeger

:string String

:base64 Binary Base-64 encoded data
:float Floafing-point number

:time Timestamp

:datetime Date and timestamp

:date Date

View http://localhost:3000/greetings/wsdl in a web browser (see Figure 7.11). You will see
that AWS has generated a WSDL file. This is an example of a direct-dispatching web service.
Congratulations: You have exposed your first API.

Figure 7.11
Viewing a Rails-generated
WSDL file.

http://localhost:3000/greetings/api is the end point URL that you need to provide to SOAP
clients. You may recall that we required the namespace as well when we made a SOAP request
to get stock quotes. The namespace that AWS uses is urn: ActioniebService. AWS also
generates an XML-RPC version accessible from hitp://localhost:3000/greetings/api.

Here is an XML-RPC client in Ruby to test the web service:

require 'xmlrpc/client'
xmlserver = XMLRPC::Client.new2 ("http://localhost:3000/greetings/api")
result = server.call ("sayhello", "Celine")

puts result

CHAPTER 7} Web Services and RESTful Applications

This is a SOAP client in Ruby to test the web service:

require 'soap/wsdlDriver'
wsdl = "http://localhost:3000/greeting/wsdl"
soapdriver = SOAP::WSDLDriverFactory.new(wsdl) .create_rpc_driver

puts "Greeting: #{soapdriver.savhello('Celine')}

Rails automatically maps the API to the controller and sets the dispatching mode to :direct.
There are three dispatching modes: :direct, :delegated, and : layered. The dispatching
mode maps methods in your APl to actions in controllers. The greetings APl example used the
AWS default of : direct. When :direct dispatching is used, you are allowed only to map an
API to a single controller. Depending upon the complexity of your APl and application, a single
controller may just not be enough.

The :delegated and :layered dispatching modes use the same code. Web service methods
are defined in a model and the model is associated with the API, which can then access methods
from various controllers. The only difference between : 1ayered and : delegated dispatching
is the end point URL to access the web service. A separate URL is required to access each method
with : delegated dispatching. : 1ayered dispatching mode, on the other hand, has a single
entry point URL and lets AWS do the routing. Of course, if you use WSDL, there is no difference
between :layered and :delegated.

Here is an example of a : 1ayered controller:

class LayeredExampleController < ApplicationController
web_service_dispatching mode :layered
web_service_scaffold :invoke
web_service :book, BookService.new
web_service :magazine, MagazineService.new

end

The code for the book searching service (app/apis/book_service.rb) is as follows:

class BookService < ActionWebService::Base
web_service_api BookApi
def find_all_books
Book.find(:all) .map{ |book| book.id }
end
def find_book_by_id(id)
Book.find(id)

end

end

Conclusion

Conclusion

This chapter covered a lot of ground in terms of web services. First we looked at validating,
parsing, and generating XML. We were then able to cover examples using each of the three types
of web services, including using both XML-RPC and REST to access the Flickr APl. We also learned
to generate XML views (RXML templates), convert a collection of Active Record objects to XML
(using the to_xml method), and use the scaffold_resource command to generate a CRUD
interface that can also be accessed in a RESTful manner. Finally, we used Action WebService to
expose an APl in a Rails application.

This page intentionally left blank

AJAX and Rails

AJAX is a buzz word that deserves most of the hype that has been thrust upon it. AJAX is an
acronym for Asynchronous JavaScript and XML, and it is of interest to developers because it
allows data to be transferred to and from a web server without a full page request. AJAX also
caused a resurgence in the popularity of JavaScript. This propelled the development of enhanced
effects and drag-and-drop techniques initially not thought possible with JavaScript. Ruby on Rails
treats AJAX like a first class citizen. With Rails you are able to implement complex AJAX-enabled
interfaces without writing heaps of JavaScript—all functionality is available either as a Ruby helper
method or a Rails JavaScript (RJS) template.

In this chapter you'll learn to use:

The XMLHt tpRequest object

The Prototype JavaScript library

The Scriptaculous JavaScript library
Rails AJAX Helpers

Rails JavaScript (RJS) templates

What Is AJAX Anyway?

In 2004, Google introduced Google Maps and Google Suggest, two products that would trigger
a web application renaissance and mark the beginning of Web 2.0. | remember the first time |
played with Google Maps. | really did not think it would be possible to smoothly scroll and zoom
in and out of maps using JavaScript (see Figure 8.1). How could new map data be sent to a web
browser and rendered without the need for a page refresh? Google Suggest was even able to
predict what | was searching for after | entered only a few characters of my search query (see
Figure 8.2). Toward the end of 2004, tutorials for creating auto-completing text input fields
and displaying search results without reloading a web page started to emerge. In all these

187

CHAPTER 8} AJAX and Rails

tutorials, the XMLHt t pRequest object was the key cross-browser ingredient. The AJAX acronym
was first used in February 2005 by Jesse Games Garrett in his ground-breaking article entitled

“Ajax: A New Approach to Web Applications.” AJAX stands for Asynchronous JavaScript and
XML.

Figure 8.1
Google Maps—is this really

using JavaScript?

Figure 8.2
Google AutoSuggest—
search suggestions before

you finish typing?

The XMLHttpRequest Object

The xMLHt tpRequest object was first introduced by Microsoft in Internet Explorer 5 way back
in the 1990s, but it didn’t become mainstream until 2004, when support was incorporated into
the Mozilla and Safari web browsers. The xMLHt tpRequest object is available to JavaScript

188

What Is AJAX Anyway?

and, as its name indicates, allows HTTP requests to be sent to a web server and the HTML or XML
text returned to be processed. Rails and the JavaScript frameworks it includes do a lot of the hard
work of wiring and responding to XMLHt t pRequest object calls. So why bother learning about
the xMLHt tpRequest object? The answer is simple: Every developer needs to understand the

fundamental concepts behind a technology. A working knowledge of how the XMLHt t pRequest
object works will help you push the boundaries of what is possible in a web browser, and it will
also help you debug your applications. Rails does an awesome job of making AJAX easy to imple-
ment, but depending upon what you are trying to implement, you will encounter JavaScript errors
along the way. Not knowing much about the fundamentals won’t help you overcome hurdles.

Unfortunately, Internet Explorer does not share the same syntax as Mozilla-based browsers and
Safari. This means that we need to write code to support two types of browsers. In Safari and
Mozilla we just need to call the XMLHt tpRequest () constructor:

var in_page_request = new XMLHttpRequest () ;

Internet Explorer’s implementation is an ActiveX control, so we’ll need to create an
ActiveXObject instance:

var in_page_request = new ActiveXObject ("Microsoft.XMLHTTP") ;

We can use the following code to ensure the XMLHt tpRequest () object is cross-browser
compatible:

in_page_request = null;
// code for Mozilla, Safari and FireFox
if (window.XMLHttpRequest)
{
in_page_request = new XMLHttpRequest () ;
}
// code for Internet Explorer
else if (window.ActiveXObject)
{
in_page_request = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

Table 8.1 lists the XMLHt t pRequest object’s methods. The open () and send () methods will

be used the most. In the open () method, you specify whether you would like to send the request
via POST or GET and set the URL for the server-side script that will process the request. Use GET
if you are passing a few parameters in querystring of the URL and primarily retrieving data.
The POST method should be used if you are sending data that could possibly exceed 512 bytes.

189

CHAPTER 8} AJAX and Rails

Table 8.1 XMLHitpRequest Object Methods

Method Description

abort () Aborts the current request
getAllResponseHeaders () Returns the header labels and values
getResponseHeader ("header_name") Returns the value for a given header label
open ("method", "url", "asynchronous_flag", Sefs the HTTP request method (GET or
"username", "password") POST) and URL

send (data_to_send) Sends data fo the URL specified in open ()

d Note

Methods and functions in JavaScript require parentheses, e.g., open (), while parentheses in Ruby are
optional.

The third parameter passed to open () is a Boolean value (i.e., either true or false) that dictates
if the request should be handled asynchronously. Setting this flag to true means that the script
does not stop and wait for a response once send () is triggered—this is an asynchronous call.
This is useful because it allows the user to continue interacting with the web page. It also means
that we can trigger multiple AJAX calls. It is not a good idea to set this flag to false because the
network may hang while the browser continues to wait for a response.

Table 8.2 lists all the properties associated with the XMLHt tpRequest object. The
onreadyStateChange property is used to specify the JavaScript function that must be executed
when a change in state occurs. The readystate property contains the current state. When a
state change occurs (such as when onreadyStateChange is triggered), we can read the
readystate property to determine the current state. When the send () method is called,
readystate will be set to 1oading (1). When the server responds to the HTTP request,
readystate will change to 1oaded (2) and the onreadystatechange event will be triggered.

The data that is sent back to the browser can be obtained from either the responseText or
responseXML property. Use the responseText property if plain text or HTML is returned. The
responseXML property returns an XML Document Object Structure (DOM) that you will need
to traverse. A status code of 200 is returned if the request has been successful.

What Is AJAX Anyway?

Table 8.2 XMLHitpRequest Object Properties

Property Description

onreadystatechange Used fo specify an event handler that responds to a state change
readystate Status flags:

O - uninitialized

1 - loading

2 -loaded

3 - interactive

4 - complefe

responseText Data returned as a string
responseXML XML data returned as a DOM structure
status Code returned by the HTTP server:

404 - Page not found
200 - Success

statusText Label for the status code

In the example that follows, a link click triggers an asynchronous request for a text file, which
when loaded is displayed with a div tag:

<html>

<head>

<title>XMLHttpRequest Object Example</title>

<script type="text/javascript">

var in_page_request

function loadText (url)
{
in_page_request = null
// code for Mozilla, Safari and FireFox
if (window.XMLHttpRequest)
{
in_page_request = new XMLHttpRequest ()
}
// code for Internet Explorer

else if (window.ActiveXObject)

CHAPTER 8} AJAX and Rails

in_page_request = new ActiveXObject ("Microsoft.XMLHTTP")
}
if (in_page_request != null)
{
in_page_request.onreadystatechange = process_Request
in_page_request.open ("GET",url, true)

in_page_request.send (null)
else
alert ("Oops - Your browser does not support AJAX!")

}

function process_Request ()

{
if (in_page_request.readyState == 4) // if readyState is loaded

{
if (in_page_request.status == 200) // if status is OK

{
document .getElementById ('txt_display') .innerHTML=in_page_request.responseText

}
else
{
alert ("Error retrieving data:" + status.statusText)
//display label associated with status code
}
}
}
</script>
</head>
<body>

<h2>Playing with the XMLHttpRequest Object</h2>

<div id="txt_display" style="border:1lpx solid
black;height:40;width:300"></div>

Get Text via XMLHttpRequest Object

o

2%

*x
B
pi
2%
C‘(L

What Is AJAX Anyway?

</body>
</html>

JavaScript Frameworks Packaged with Rails

AJAX frameworks essentially seek to simplify the use of the xMLHt tpRequest object. The year
2005 saw the emergence of many AJAX- and JavaScript-related frameworks. It certainly felt like
anew AJAX framework was beta released every week. Two popular and feature-rich frameworks
are Prototype and Scriptaculous. Luckily, both Prototype and Scriptaculous are baked right into
your favorite web application framework (see Figure 8.3).

Figure 8.3
Rails includes Prototype

and Scriptaculous.

PrOTOTYPE

Prototype is the creation of Sam Stephenson and was designed to ease object-oriented
programming in JavaScript. There are many similarities between Ruby’s built-in classes and the
functionality provided by the library. Essentially, with Prototype you write less JavaScript code
but are able to implement much more functionality. Prototype can be downloaded from
http://www.prototypejs.org and is a single JavaScript file that is approximately 70KB.

Prototype has an incredibly powerful 2jax . Updater class. With an Ajax.Updater object we
can issue an XMLHt tpRequest and update the contents of a div element in a single line of code.
The 1oadText function from the example in the previous section is replaced, and we don’t need
any other functions. The prototype. js file needs to be included. The 1oadText () function
takes a single parameter, the URL of the page to call. Within the function we set a parameter that
will be included as a querystring appended to the URL. We can then create a new instance of
the Ajax.Updater object. The first argument is the ID of the div that will be updated. The second
argument is the URL. Within the { and } curly braces, the HTTP method and querystring parameters
are set. Remember that the HTTP method can be set to GET or POST.

<html>
<head>

<title>Prototype: Using the Ajax.Updater Class</title>

http://www.prototypejs.org

CHAPTER 8} AJAX and Rails

<script src="prototype.js" language="JavaScript" type="text/javascript">
</script>
<script>
function loadText (url)
{

var pars = 'someParameter=12345232";

var in_page_request = new Ajax.Updater('placeholder', url,

{ method: 'get', parameters: pars });

}
</script>
</head>
<body>
<h2>Prototype: Using the Ajax.Updater Class</h2>
<div id="placeholder" style="border:1lpx solid black;height:40;width:300">
</div>

<input type="button" value="Trigger the Ajax.Updater object"
onclick="loadText ('text.txt')">
</body>
</html>

Prototype includes numerous utility functions to help reduce programmer keystrokes. | wish all
frameworks were this programmer friendly. The $ () function is the equivalent of the
document .getElementById () function of the DOM, but much shorter. $ () will come in handy
when you do many DOM manipulations. So if we wanted to retrieve the contents of a div tag,
we would just need to write:

var d = $('myDiv');
alert (d.innerHTML) ;

If we used the default DOM syntax:

var d = document.getElementById('myDiv') ;
alert (d.innerHTML) ;

There is also a $F () method that replaces document . form when retrieving the contents of a
form element:

<html>
<head>

<title>Using the S$F() method</title>

e’

194

What Is AJAX Anyway?

<script src="prototype.js"></script>
<script>
function GetUsername ()

{

var username = SF('username') ;
alert ("The username is: " + username) ;
}
</script>
</head>
<body>

<h2>Using the $F() method</h2>

<form>

Username: <input type="text" id="username" value="aneesha">

<input type="button" value="Display Username" onclick="GetUsername () ;">

</form>

</body>

</html>

SCRIPTACULOUS

Scriptaculous (see Figure 8.4) adds effects, sortable lists, drag-and-drop, and controls to the mix.
The controls available include sliders, in-place text editors, and auto-complete text input fields.
Scriptaculous brings an amazing range of features to your web applications. It is obvious that a
lot of thought has gone into the framework. Scriptaculous is built on top of Prototype and was
created by Thomas Fuchs.

Figure 8.4
The ultra-cool

script.aculo.us domain.

195

CHAPTER 8} AJAX and Rails

Before | encountered Scriptaculous, | thought that | would need to write a lot of JavaScript code
to allow users to be able to reorder items in a list in a drag-and-drop manner. | was very wrong.
The and <1i> tags are used to render a listin HTML. We need to give the list a unique ID.
We then need to pass this unique ID to the Sortable.create () method, which does all the
hard work.
<html>
<head>

<title>Scriptaculous Sortables Demo</title>

<script src="prototype.js" type="text/javascript"></script>

<script src="scriptaculous.js" type="text/javascript"></script>
</head>
<body>

<h2>Scriptaculous Sortables Demo</h2>
<ul id="testlist">

<1li id="item_1">Item one

<li id="item_l1">Item two

<1li id="item 1">Item three</1li>

<p id="testlist_serialize">(waiting for onChange event)</p>

<script type="text/javascript">

// <! [CDATA[

Sortable.create('testlist',

{ghosting:true, constraint:false,hoverclass: 'over',

onChange: function (element)

{S('testlist_serialize') .innerHTML = Sortable.serialize(element.parentNode)
11)

/711>

</script>

</body>
</html>

4 Tip

Don't forget to include prototype.js when you are using Scriptaculous.

196

What Is AJAX Anyway?

Effects provide a great way to attract the attention of a user when an interface change is occur-
ring or data has been updated after an AJAX request. Scriptaculous has a variety of effects
available, such as Highlight, BlindUp, BlindDown, SlideUp, and SlideDown. An example of using
a link to trigger these effects is seen here:

<html>
<head>
<title>Effects with Scriptaculous</title>
<script src="prototype.js" type="text/javascript"></script>
<script src="scriptaculous.js" type="text/javascript"></script>
<style type="text/css" media="screen">
#example{ background-color: #888; }
</style>
</head>
<body>
<hl>Effects with Scriptaculous</hl>
<a href="#"
onclick="new Effect.Highlight ('example', {duration:1.5});
return false;">Highlight |
<a href="#"
onclick="new Effect.BlindUp ('example', {duration:1.5});
return false;">BlindUp |
<a href="#"
onclick="new Effect.BlindDown ('example', {duration:1.5});
return false; ">BlindDown |
<a href="#"
onclick="new Effect.SlideUp ('example', {duration:1.5});
return false;">SlideUp |
<a href="#"
onclick="new Effect.SlideDown ('example', {duration:1.5});
return false;">SlideDown
<div id="example">
<div style="overflow:hidden">
This is a paragraph. This is a paragraph. This is a paragraph. This is a
paragraph. This is a paragraph. This is a paragraph. This is a paragraph. This
is a paragraph. This is a paragraph. This is a paragraph. This is a paragraph.
This is a paragraph. This is a paragraph. This is a paragraph. This is a
paragraph. This is a paragraph. This is a paragraph. This is a paragraph. This

is a paragraph. This is a paragraph. This is a paragraph.

197

o

CHAPTER 8} AJAX and Rails

</div>

</div>

</body>

</html>

The following code snippet inserts an InPlaceEditor control (see Figure 8.5). The
InPlaceEditor replaces text onscreen with a text input field, an OK button, and a cancel link
to revert to displaying the text. The InPlaceEditor provides a nice way to make content
editable without refreshing the web page. The OK button posts data back to a server-side script.

<hl id="ContentToEdit">To be edited</hl>

<script>

new Ajax.InPlaceEditor ($ (ContentToEdit), 'text.txt',6 {
submitOnBlur: true, okButton: true, cancelLink: true,
ajaxOptions: {method: 'get'}
})

</script>

Figure 8.5
The InPlaceEditor

in action.

The Ajax.Autocompleter () method is used to create an autocompleter control. We first need
an input box and a div. When the user enters text, the text is sent to a server. The server returns
possible matches, and this is displayed in the div. The Ajax.Autocompleter () method takes
four parameters. The first two parameters set the input field and the div tag. The third parameter
specifies the server-side script that will return the suggestions. Finally, we can pass a series of
parameters that will be appended to the querystring.

198

What Is AJAX Anyway?

Autocompleter: <input id="acl" type="text" name="acl"/>
<div id="aclupdate"
style="display:none;border:1lpx solid black;background-color:white; ">
</div>
<script type="text/javascript" language="javascript">
// <![CDATA[
new Ajax.Autocompleter('acl',
'aclupdate',
'autocomplete_result.html',
{parameters: 'a=b&b=c'}
)i
/711>

</script>

Rails JavaScript Helpers

We now turn our focus to adding server-side support to AJAX powered web interfaces. We'll be
using Ruby on Rails to respond to AJAX calls. Rails will save data from InPlaceEditors, send
back suggestions for display in autocompletion controls, and update the order of list items after
they have been dragged to a new position. As always, wiring up Rails and AJAX is a delight. We
won’t need to write any JavaScript. It is true that AJAX support in Rails relies on the Prototype
and Scriptaculous libraries, but Rails includes helper tags that allow us to include these libraries
in .rhtml templates.

THE JAVASCRIPT_INCLUDE_TAG HELPER

The javascript_include_tag is used to include the appropriate JavaScript library files from
the public/javascript folder. The javascript_include_tag provides an alternative to
using the standard HTML <script> tags to include the required libraries. The
javascript_include_tag must be placed within the opening and closing <head> tags.
Figure 8.6 displays the rendered output of using the javascript_include_tag with the
defaults parameter.

<html>

<head>

<title> javascript_include_tag demo</title>
<%= javascript_include_tag :defaults %>
</head>

<body>

</body>

</html>

199

CHAPTER 8} AJAX and Rails

Figure 8.6
Viewing the output of the

javascript_include_tag.

8 Note

Place JavaScript code that you would like included across your application in the application.js
file. If defaults is specified and you have an application. js file, it will be included.

We could also choose to include only the prototype. js file:

<%= javascript_include_tag "prototype" %>

Multiple scripts can be included:
<%= javascript_include_tag "prototype,controls,effects,draganddrop" %>
You can even add your own JavaScript files. Place the . js files in the public/javascripts

folder and pass the files to the javascript_include_tag as a comma-delimited list. Don't
include the . js extension:

<%= javascript_include_tag "scriptl,script2,script3" %>
THE LNK_TO_REMOTE HELPER
The 1ink_to_remote helper inserts a link, wires the link up to a Rails action, and specifies the

div where the returned text or HTML markup will be displayed. This is a pretty awesome helper.
Here is the syntax:

<%= link_to_remote("Get the Time",

:update => "time_div",

200

What Is AJAX Anyway?

:url =>{ :action => :tell_time }

%>

Let's create a very simple example in which a user clicks a link to get the current time. We will
first need a controller:

S ruby script/generate controller linktoremote

Open the generated 1inktoremote_controller.rb file and add the index method:

class LinktoremoteController < ApplicationController
def index
end

end

Create an index.rhtml file and save it to the app\views\linktoremote folder. Enter the
HTML markup for the “Get the Time” example. Don't forget to use the
javascript_include_tag helper to insert the required JavaScript files—in this example we
only need the prototype. s file. Include a div and set its id to t ime_div. Finally, we will add
alink_to_remote helper. The update argument is set to the id of the div that will display the
time. The tell time action is wired up to handle the call.

<html>

<head>

<title>Get the Time</title>

<%= javascript_include_tag "prototype" %>

</head>

<body>

<hl>Get the Time</hl>

<div id="time_div">

</div>

<%= link_to_remote("Get the Time",
:update => "time_div",

curl =>{ :action => :tell time }

</body>
</html>

201

CHAPTER 8} AJAX and Rails

In the linktoremote_controller.rb file we add a tell_time method that simply returns
the current time. In Ruby we can use the now method of the DateTime object to get the current
time.

class LinktoremoteController < ApplicationController
def index
end
def tell_ time
render_text "The time is: " + DateTime.now.to_s + "
"
end

end

Figure 8.7 shows the “Tell Time” example in action. Let’s take a peek at the source code that is
generated. As you can see, the 1ink_to_remote tag has inserted the required JavaScript code.
You should not be surprised to see that the Ajax.Updater object from Prototype is being used
to do all the hard work. Here is a listing of the resulting HTML and JavaScript code:

<html>

<head>

<title>Get the Time</title>

<script src="/javascripts/prototype.js?1160183870" type="text/javascript">
</script>

</head>

<body>

<hl>Get the Time</hl>

<div id="time_div">

</div>

<a href="#" onclick="new Ajax.Updater ('time_div"',
'/ajaxhelper/tell_time',

{asynchronous:true, evalScripts:true}); return false;">
Get the Time

</body>

</html>

It may not always be practical to replace the contents of a div. There are times when

it would be beneficial to insert the new content above or below the current content. The
link_to_remote tag includes an update option to allow insertion above or below the exist-
ing content in a div. The position option could be set to before, top, bottom, or after:

202

What Is AJAX Anyway?

Figure 8.7
Using the
link_to_remote helper.

<%= link_to_remote("Get the Time",
:update => "time_div",
curl =>{ :action => :tell_time },
:position => "after")

%>

DYNAMICALLY ADDING FORM ELEMENTS

We can also use the 1ink_to_remote helper to add HTML markup to a web page. A practical
application would be providing a user with a link to add more input boxes to a form dynamically
(see Figure 8.8). This can easily be achieved by calling an action that renders a . rhtm1 template
or just some HTML markup. Setting :position to after will append the rendered content to
the existing content in the div.

Create a new controller called formelements:

$ ruby script/generate controller formelements

Add index and add_form_element methods to the formelements controller.rb file.
The add_form_element method only needs to output an <input> tag.

class FormelementsController < ApplicationController
def index
end
def add_form_element
render :text => '
<input type="text">
'
end

end

CHAPTER 8} AJAX and Rails

Finally, we create the index.rhtml file and place it in the /views/formelements folder. The
index.rhtml file contains a form. The input boxes are placed with a div tag. Below the div
tag we place the 1ink_to_remote tag that will call the add_form_element method:

<html>

<head>

<title>Add form elements</title>

<%= javascript_include_tag "prototype" %>

</head>

<body>

<hl>Add form elements</hl>

<form>

<div id="inputs_div">

<input type="text">

</div>

<%= link_to_remote("Add input box",
:update => "inputs_div",
:url =>{ :action => :add_form element },

:position => "after"

3>

</form>
</body>
</html>

Figure 8.8
Dynamically adding form

fields to a form.

What Is AJAX Anyway?

THE FORM_REMOTE_TAG HELPER

With the form_remote_tag helper, a Rails application can easily be AJAX enhanced. Simply
replace the form_tag with the form_remote_tag when you need to post all the data entered
into a form to an action and update the contents of a div.

<%= form_remote_tag(:url => { :action => "ask_dr_rails" },
:update => "dr_rails_reply",
:position => :top

)

%>

The form_remote_tag takes the following parameters:

The URL is used to specify the Rails action.
The update parameter sets the div tag that must be changed with the data that is returned.

The last parameter allows you to specify how content gets inserted into the div.

We are now going to use the form_remote_tag to create an online psychiatrist called Dr. Rails.
Dr. Rails will be on call 24-7 as long as your web server stays up. Dr. Rails will be able to hold
a conversation with you. You just need to enter your problem in a text field and hit the Ask

Dr. Rails button. The form_remote_tag will post your question to Dr. Rails (actually a Rails
method called ask_dr_rails()). Dr. Rails will use some nifty Ruby code to try and hold an
intelligent conversation with you (see Figure 8.9).

Figure 8.9
Chatting with Dr. Rails.

Let's create a drrails controller:

CHAPTER 8} AJAX and Rails

$ ruby script/generate controller drrails

To make Dr. Rails appear to be smart, we randomly select from a set of phrases such as “Tell me
more2” or “Have you always felt this way?”. Add the following code to the controller:

class DrrailsController < ApplicationController

def index

end

def ask dr_rails
randno = rand(3)

if randno == 0

render_text "Tell me more?"

elsif randno ==

render_text "Have you always felt this way?"

else
problem_field = params|[:problem_field]
problem_field= problem_field.sub("I", "You")
problem_field= problem_ field.sub(" am "," are ")
problem_field= problem_ field.sub(" my "," you ")
render_text problem_ field

end

end

end

Create an index. rhtml file and save it to the app/views/drrails folder. The template needs

to contain:

An input box for a user to enter a problem
A submit button
Adivtagcalled dr_rails_reply

<html>

<head>

<title>Ask Dr Rails</title>

<%= javascript_include_tag :defaults %>
</head>

<body>

<hl>Ask Dr Rails</hl>

<%= form_remote_tag(

:url => { :action => "ask_dr_rails"

206

sl
ki

What Is AJAX Anyway?

:update => "dr_rails_reply",
:html => { :id => 'dr_rails_form' }
) %>
Enter your problem:
<%= text_field_tag 'problem_field',6 nil, :size => 40 %>
<%= submit_tag 'Ask Dr Rails' %>

<div id="dr_rails_reply"></div>
<%= end_form_tag %>
</body>
</html>

THE TEXT_FIELD_WITH_AUTO_COMPLETE HELPER

When a user enters data into a text field, we can match the characters he has entered with the
data stored in a database and offer a list of possible suggestions. Rather than enter the whole
word or phrase, the user can simply scroll through the list and select one of the selected items.
The text field with_auto_complete helper makes wiring up auto-completion to an
Active Record model a trivial task.

We will illustrate the use of text field with_auto_complete helper. The example that
follows tries to match the characters entered to a database table that contains a list of Australian
cities (see Figure 8.10).

Figure 8.10
The AustralianCities table.

Generate a model called australiancity:

$ ruby script/generate model australiancity

CHAPTER 8} AJAX and Rails

The following will be output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/australiancity.rb
create test/unit/australiancity_test.rb
create test/fixtures/australiancities.yml
create db/migrate

create db/migrate/001_create_australiancities.rb

Edit db/migrate/001_create_australiancities.rb. The australiancities table requires
an id and a city field. We use the create method to insert cities into the database:

class CreateAustraliancities < ActiveRecord::Migration
def self.up
create_table :australiancities do |t|
t.column :city, :string
end
Australiancity.create :city => "Brisbane"
Australiancity.create :city => "Sydney"
Australiancity.create :city => "Cairns"
Australiancity.create :city => "Perth"
Australiancity.create :city => "Gold Coast"
end
def self.down
drop_table :australiancities
end

end

Run the migration:

$ rake db:migrate

The australiancities table will be created:

(in C:/rails/ajax)
== CreateAustraliancities: migrating ==
-—- create_table(:australiancities)

-> 0.1090s

== CreateAustraliancities: migrated (0.1090s) ===============================

What Is AJAX Anyway?

Generate a controller called australiancity:

S ruby script/generate model australiancity

Edit the generated australiancity_controller.rb file. Add an index method to the con-
troller. We need to include a call to auto_complete_for, which takes two parameters. The
first parameter contains the model we are matching the input field from our view with. The second
parameter specifies the name of the field we are matching to within the database table.

class AustraliancityController < ApplicationController
auto_complete_for :australiancity, :city
def index
end

end

We now put the text_field_with_auto_complete helper to good use in our
index.rhtml view.

<html>

<head>

<title>AutoCompletion: Australian Cities</title>
<%= javascript_include_tag :defaults %>

</head>

<body>

<hl>Select a City</hl>

A
oe
1l

start_form_tag %>

A
oe
Il

text_field with_auto_complete :australiancity, :city %>

A
o
1l

submit_tag 'Add' %>

A
oe
1l

end_form_tag %>
</body>
</html>

THE SORTABLE_ELEMENTS HELPER

Earlier in this chapter we learned to use Scriptaculous to create drag-and-drop sortable lists. We
are now going to use this technique to reorder a list of items stored in a database. As usual there
is an appropriate Rails helper available: the sortable_elements helper. Figure 8.11 shows
a task list being reordered.

We start with a simple database table called tasks. The tasks table has an 1D field, a name field,
and a position field. Multiple tasks belong to a project. The second table we need to create is
called projects. The projects table has an 1D field and a name field.

209

CHAPTER 8} AJAX and Rails

Figure 8.11
A drag-and-drop sortable
list.

Generate a model called project:

$ ruby script/generate model project

The following will be output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/project.rb
create test/unit/project_test.rb
create test/fixtures/projects.yml
exists db/migrate

create db/migrate/003_create_projects.rb

Edit the db/migrate/002_create_projects.rb migration. The projects table needs a
name field. We will create the first project as well:

class CreateProjects < ActiveRecord::Migration

def self.up

create_table :projects do |t

t.column :name, :string

end

Project.create :name => "My Web 2.0 App"
end
def self.down

210

drop_

end

end

What Is AJAX Anyway?

table :projects

Generate a model called task:

$ ruby script/generate model task

The following will be output to the console:

exists
exists
exists
create
create
create
exists

create

app/models/

test/unit/

test/fixtures/
app/models/task.rb
test/unit/task_test.rb
test/fixtures/tasks.yml
db/migrate
db/migrate/002_create_tasks.rb

Edit the db/migrate/002_create_tasks.rb migration. The tasks table needs name and
position fields. We'll create some tasks at the same time:

class CreateTasks < ActiveRecord::Migration

def self.

up

create_table :tasks do |t]

t.column :name, :string

t.column :project_id, :integer

t.column :position, :integer

end

Task.

Task.

Task.

Task.

Task.

end

create :name => "Get hosting", :project_id => 1,
:position => 1

create :name => "Design application", :project_id => 1,
:position => 2

create :name => "Program application", :project_id => 1,
:position => 3

create :name => "Test application", :project_id => 1,
:position => 4

create :name => "Get spare time", :project_id => 1,

:position => 5

CHAPTER 8} AJAX and Rails

def self.down
drop_table :tasks
end

end

Run the rake task to create the database tables:

$ rake db:migrate

Enter belongs_to :project inthe model/task.rb file:

class Task < ActiveRecord: :Base
belongs_to :project

end

A project has multiple tasks, so we add a has_many relationship. We also specify the field used
to order the tasks.

class Project < ActiveRecord: :Base
has_many :tasks, :order => "position"

end

Generate a controller called task:

S ruby script/generate controller tasklist

Editthe controller/tasklist_controller.rb file. We need anindex method that assigns
the first project from the projects table to an instance variable available to the index.rhtml
view. We also need an order method. The order method will be called each time a task is
repositioned. The reordered sequence is sent back via the 1ist parameter. We can use an
each_with_index iterator to loop though the list and update the position field for each task.

class TaskController < ApplicationController

def index
@project = Project.find(:first)

end

def order
order = params[:1list]
order.each _with index do |id, position|

Task.find (id) .update_attribute (:position, position + 1)

end

render :text => "Updated task list order is: #{order.join(', ')}"

212

What Is AJAX Anyway?

end

end

Finally, we use the sortable_element helperin our view. After the update, the order div will
contain the reordered list. We also use a visual effect for the first time. When the database and
the div tag have been updated, we use the highlight visual effect to give the user a visual
indication that an update has occurred.

<html>

<head>

<title>Drag and Drop TaskList Reorder</title>
<%= javascript_include_tag :defaults %>
</head>

<body>

<hl><%= @project.name %></hl>

<ul id="list">

<% for task in @project.tasks -%>

<1li id="task_<%= task.id %>" style="cursor:move; "><%= task.name %$></1i>
<% end %>

<div id="order"></div>

<%= sortable_element 'list',

:update => 'order',

:complete => visual_effect(:highlight, 'list'),

:url => { :action => "order" } %>

</body>
</html>

THE PERIODICALLY__CALL_REMOTE HELPER

We don’t need to rely on user interaction to make AJAX requests. We can also periodically poll
a method within a controller. This technique is useful to update information on a page periodically
such as stock quotes or messages in a multi-user chat room. The periodically call_re-
mote helper takes the following parameters:

update, which specifies the div tag that must be updated

url, which assigns a controller action to respond to the request

frequency, which sets the interval between calls in seconds

"213

CHAPTER 8} AJAX and Rails

Here is an example:

<%= periodically_call_remote (
:update => 'process-list',
:url => { :action => :ps },

:frequency => 2)

o

>

3l Warning

Continuously polling a server can cause load and performance issues. Use the
periodically call_remote he|per with great care.

Updating Multiple Page Elements with RJS

The AJAX helpers are great, but they are only able to call or update a single page element. This
is where Rails JavaScript (RJS) templates come to the rescue. An RJS template maps to a controller’s
action. If no . rhtml template is available that matches the name of the action, Rails looks for a
view with the . rjs extension. Within an RJS template, we are able to use Ruby to control page
elements—no JavaScript is required. The Ruby code is converted to JavaScript automatically when
it is sent to the browser. We will now look at some simple RJS commands.

Hide an element on a page:

page.hide 'header'

Show an element on a page:

page.show 'header'

Redirect to another controller and action:

page.redirect_to :controller => 'faqg',6 :action => 'show'

Redirect to an external site:

page.redirect_to 'http://www.google.com'

Reset a form:

page.form.reset 'sample form'

Display a visual effect:

page.visual_effect :highlight, 'text_entry'

214

Updating Multiple Page Elements with RJS

Inject HTML or text into a div from a partial template:
page.insert_html :bottom, 'text_entry', :partial => 'text_entry'
We are going to create a simple example to illustrate the power of Rails Javascript templates.

The example is called IdeaPad. IdeaPad displays a log of all your great ideas. IdeaPad also
provides a text input box for you to enter new ideas (see Figure 8.12).

Figure 8.12
The IdeaPad in action.

Generate a controller called ideapad:

$ ruby script/generate controller ideapad

The controller (ideapad_controller.rb) has an index action, which will display the
index.rhtml. The add_idea action maps to the add_idea.rjs template. The @idea
instance variable contains the posted back idea field:

class IdeapadController < ApplicationController
def index
end
def add_idea
@idea = params]|:idea]
end

end

The index. rhtml template displays the form for you to enter your idea, which will be appended
to the log contained in the "ideas" div. The form_remote_tag helper is used to post the idea
to the add_idea action:

215

CHAPTER 8} AJAX and Rails

<html>

<head>

<title>IdeaPad</title>

<%= javascript_include_tag :defaults %>

</head>

<body>

<hl1>My Idea Pad</hl>

<%= form_remote_tag :url => { :action => 'add_idea' }, :html => { :id => 'idea-
form' } %>

<%= text_field_tag 'idea', nil, :size => 40 %>

o

<%= submit_tag 'Add Idea' %>
<%= end_form_tag %>

<div id="ideas"></div>
</body>

</html>

The add_idea.rjs injects the HTML generated by the idea partial (_idea.rhtml), highlights
the "ideas" div, and resets the form:

page.insert_html :bottom, 'ideas',6 :partial => 'idea'
page.visual_effect :highlight, 'ideas'

page.form.reset 'idea-form'

The _idea.rhtml partial simply timestamps the @idea instance variable (i.e., the idea posted
with the form):

<p>

[<%= Time.now.to_s(:db) %>] <%=h idea %>

</p>

3 Tip
We can use RJS to make a printer friendly version of a page by hiding appropriate page elements, such
as a header and footer, and then print the page by calling window. print ():
page.hide 'header'
page.hide 'footer'

page.<<'javascript:window.print () '

216

Conclusion

Ed Tip
We can use the render method to render an RJS template directly:

def task
skip task.rhtml or task.rxml
render :action => "product.rjs"

end

Conclusion

Ruby on Rails incorporates impressive AJAX functionality. Everything from auto-completing text
input boxes to drag-and-drop sortable lists is available as a Rails helper method. This chapter

aims to give you a good understanding of the XMLHt tpRequest object, but as you might have
realized, you really don’t need to write any JavaScript to create AJAX-enabled Web 2.0 appli-
cations. Rails JavaScript (RJS) templates add yet another dimension to the mix. RJS allows us to
use Ruby to generate JavaScript. We are able to update multiple page elements using RJS. In the
next chapter, “Flex on Rails,” we will explore an alternate Flash-based user interface technology.

217

This page intentionally left blank

Flex on Rails

The Adobe Flex 2 Software Development Kit (SDK) is designed to help programmers build Rich
Internet Applications in Flash. In Flex, MXML markup is used to declaratively author an interface
that can then be compiled into Flash. Flex includes numerous useful components and makes it
much easier to build Flash interfaces than using the Flash IDE, which was primarily designed as
an animator’s tool. Ruby on Rails is an ideal choice as a backend for Flex interfaces. In Rails it is
easy to build database enabled applications. We will use this functionality to integrate a Flex
interface with a Rails exposed database backend.

In this chapter you'll learn to:

Download and install the Flex 2 SDK

Write Flex MXML markup and compile to Flash
Design Flex user interfaces

Write basic ActionsScript

Expose an ActiveRecord model as XML

Build Flex interfaces for Ruby on Rails

Download and Install the Flex 2 SDK

We start our journey by downloading the Flex 2 SDK from the Adobe web site (http://
www.adobe.com/products/flex/). The Flex SDK is free and allows you to compile MXML markup
into a Flash file. Figure 9.1 shows the directory structure of the Flex 2 SDK after it has been
unzipped. The samples folder contains example Flex applications including a Flex Store and
PhotoViewer. These examples will give you a good idea of what is possible with Flex. Before you
can explore these applications, you will need to compile the MXML markup into Flash (. swf)
files by executing the build-samples.bat file. The build-samples.bat file takes a few
minutes to run because it compiles all the Flex examples included in the SDK.

219

http://www.adobe.com/products/flex/
http://www.adobe.com/products/flex/

CHAPTER 9} Flex on Rails

Figure 9.1 [Crea LEE|
Mle Cdt View [lavorkes Toak el &
The Flex 2 SDK.

Qo - © - 1T /.-"J:alch |1 Tolders | [T21]

File and Fuliler Tasks (R e J J J el J

£ Mk e Pl b - lia ilrgre e gk

@) Fublich this folder to the
el

&d Share this Folder a | QJ ef'
addbonalle... heensehkm readme.him
other Places £
[Experimenis
) My Documents
T Shared Donumeants
i§ My Computer
S My Metwark Places

Dl il ¥

9 chjects 73,6 KD ‘g My Computer

=3 Note

The Flash files that Flex 2 generates require Flash Player 9. If your web browser does not have Flash
Player 9, Flash files generated by Flex will not render or function properly. You can upgrade to Flash
Player 9 by visiting the Adobe web site. The Flex 2 SDK includes a version of Flash Player with debugging
support in the player/debug folder.

Once the sample applications are compiled, they can be viewed within a web browser. The Flex
Store application is shown in Figure 9.2.

Figure 9.2

The Flex 2 Store in action.

220

e’

3

A Simple Flex Interface with MXML

Flex Explorer, found in the samples/explorer folder, allows you to experiment with all of the
available interface components as well as view the MXML markup used to build the examples.
In Figure 9.3 the DataGrid component is displayed.

Figure 9.3
The DataGrid component

viewed in Flex Explorer.

A Simple Flex Interface with MXML

We are going to use MXML to build a simple interface in Flex. The interface will use the Panel,
TextInput, Label, and Button controls. Create a new folder called FlexExample in the
samples folder of your Flex 2 SDK installation. Create a file called F1exExample.mxml. Copy
the markup that follows into this file:

<?xml version="1.0"7?>
<!-- Simple Flex Example. -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="Flex Example" height="75%" width="75%" paddingTop="10"
paddingLeft="10">
<mx:TextInput id="src" text="Hello World!"/>
<mx:Button label="Copy Input" click="lbldest.text = src.text"/>
<mx:Label id="lbldest" text=""/>
</mx:Panel>

</mx:Application>

MXML is a proprietary XML format used by Flex. With MXML, you can declaratively author
an interface. The <mx: Application> opening and closing tags must be present in an
MXML file. All controls used in your interface must be placed in the opening and closing

221

CHAPTER 9} Flex on Rails

<mx:Application> tags. A tag is used to represent each control. The example contains the
<mx:TextInput>, <mx:Button>, <mx:Label>, and <mx: Panel> tags because our interface
requires the Text Input, Button, Label, and Panel controls. The tags used to represent the
controls also have attributes. It is important to include an id attribute for each control.

8 Note

The <! -- and --> delimiters are used to include code comments in an MXML file.

The example we are creating allows the user to enter text into a Text Input control (id="src"
and when the Copy Input button is clicked, the Label control (id="1bldest") will display the
text. The Button control has a click attribute. We can use some simple ActionScript code to
retrieve the text property of the Text Input box and assign this value to the text property of the
Label control. ActionScript is an object-oriented scripting language that runs in the Flash Player.

We are now ready to compile our simple example into a Flash file (. swf). The mxm1c . exe file
in the bin folder of the Flex SDK is the compiler. We will make a simple bat file to execute the
compiler. The bat file must be placed in the same folder as your MXML files. The contents of the
build.bat file:

@echo off
SET OPTS=-use-network=false

for /R . %%f in (*.mxml) do ..\..\bin\mxmlc.exe %0PTS% "%%f"

We now need to create a web page to view our swf file (see Figure 9.4). The page uses the
<object> tag to display Flash in Internet Explorer and the <embed> tag for Firefox. The
FlexExample.html file is displayed below:

<html>
<head>
<title>Example Flex Interface</title>
</head>
<body>
<table width='100%"' height='100%"' cellspacing='0"' cellpadding='0"'><tr>
<td valign='top'>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="FlexExample" width="100%" height="100%"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">

<param name="movie" value="FlexExample.swf" />

222

A Simple Flex Interface with MXML

<param name="quality" value="high" />
<param name="bgcolor" wvalue="#5c5f45" />
<param name="allowScriptAccess" value="sameDomain" />
<embed src="FlexExample.swf " quality="high"
bgcolor="#5c5f45"
width="100%" height="100%" name="FlexExample"
align="middle"
play="true"
loop="false"
quality="high"
allowScriptAccess="sameDomain"
type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/go/getflashplayer">
</embed>
</object>
</td></tr></table>
</body>
</html>

Figure 9.4
Viewing the generated

Flash file in a web browser.

We are now going to make the click handler of the Button control call a method and place the
code that copies the text entered into the Text Input to the Label control within this method. The

CHAPTER 9} Flex on Rails

method will be called CopyText (). ActionScript code is placed within the <mx : script> tags.
The method must be place within a <! [CDATA[..] 1> element.

<?xml version="1.0"?>
<!-- Simple Flex Example. -->

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script>
<! [CDATA[
private function copytext () :void {

lbldest.text = src.text;

11>
</mx:Script>
<mx:Panel title="Flex Example" height="75%" width="75%" paddingTop="10"
paddingLeft="10">
<mx:TextInput id="src" text="Hello World!"/>
<mx:Button label="Copy Input" click="lbldest.text = src.text"/>
<mx:Label id="lbldest" text=""/>
</mx:Panel>

</mx:Application>

Interface Design with Flex

Flex provides a wide variety of components that can be assembled using the MXML declarative
syntax. With MXML, creative, intuitive, and user friendly interfaces can be created. It is impossible
to cover every Flex component in a single chapter. | could actually dedicate an entire book to
Flex. This section will, however, detail a variety of examples, each using a different set of controls
and showcasing the unique possibilities of Flex. The following types of controls are available for
inclusion in your own applications:

Data entry controls. These include Textinput boxes, TextAreas, Labels, Color selectors,
Calendar entry controls, and even sliders.

Buttons. Flex includes Buttons, Toggle Buttons, Checkboxes, and Radio boxes.

Validators. These work with Textlnput boxes and display in-place messages to inform the
user that a field is required or check if the data entered matches the format of an email
address or regular expression.

Loader controls. These controls are able to load images, Flash files (in . swf format), and
Flash Video.

Interface Design with Flex

Containers. Controls can be placed inside containers. Panels, DividedBoxes, Accordions,
and Tab bars are example container controls.

Effects and transitions. Flex provides numerous effects such as fade or blur for use in your
applications.

Using a Slider Control to Resize an Image

In this example, we will be using a slider control to dynamically resize an image (see Figure 9.5).
We will be using the <mx : S1ider> and <mx: Image> tags. Some basic ActionScipt is all that's
required to set the width and height of the image to the value that matches the position of the
slider.

Figure 9.5
Using a slider to resize an

image.

The Panel control is used as the container in this example. The slider and image will be placed in
the panel. We give the tit1le aftribute to give the example a meaningful heading.

<mx:Panel id="panel" title="Using a Slider to Resize an Image"
height="100%" width="95%" paddingTop="10" paddingBottom="10"
paddingLeft="10" paddingRight="10">

Images can either be embedded in the generated swf file or dynamically loaded. We use

the embed syntax to specify the image and embed it in the generated swf file. The
creationComplete eventis fired when the image is first displayed, and we calculate the width
and height of the image and set these attributes.

<mx:Image id="img" source="@Embed('assets/Nokia_6630.png')"

creationComplete="imgWidth=img.width; imgHeight=img.height;" />

CHAPTER 9} Flex on Rails

We will use an HS1ider control. This is a horizontal slider. We could also use a vs1ider, which
displays a vertical slider. We need to set the minimum and maximum attributes, and we need to
set 1iveDragging to true to allow the slider to be dragged. When a slider change event is
triggered, the ResizeImage () method is called.

<mx:HSlider id="Slider" minimum="0" maximum="100" value="100"
dataTipPlacement="top"
tickColor="red"
snapInterval="1" tickInterval="10"
labels="['0%"','100%"']"
allowTrackClick="true"
liveDragging="true"

change="ResizeImg() ;"
/>

The ResizeImage () method sets the width and height of the image to the slider’s percentage
value. We need to use uint to convert the value returned to a whole number.

private function ResizelImg () :void
{
img.width=uint (imgWidth*Slider.value/100) ;
img.height=uint (imgHeight*Slider.value/100) ;
}

Here is the full source listing:

<?xml version="1.0"7?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<1 [CDATA [
private var imgWidth:Number=0;

private var imgHeight :Number=0;

private function ResizeImage () :void

{
img.width=uint (imgWidth*Slider.value/100) ;
img.height=uint (imgHeight*Slider.value/100) ;

11>

</mx:Script>

226

e’

kg

Interface Design with Flex

<mx:Panel id="panel" title="Using a Slider to Resize an Image"
height="100%" width="95%" paddingTop="10" paddingBottom="10" paddingLeft="10"
paddingRight="10">
<mx :HBox height="100%" width="100%">
<mx:Image id="img" source="@Embed('assets/Nokia_6630.png"')"
creationComplete="imgWidth=img.width; imgHeight=img.height;" />
</mx:HBox>
<mx:HSlider id="Slider" minimum="0" maximum="100" value="100"
dataTipPlacement="top"
tickColor="red"
snapInterval="1" tickInterval="10"
labels="['0%"','100%"']"
allowTrackClick="true"
liveDragging="true"
change="ResizeImg();"/>
</mx:Panel>

</mx:Application>

Displaying a Series of Images

The TileList control displays elements in a series of rows and columns. We will use TileList to display
images in a scrollable grid (see Figure 9.6). We will be using <mx: Panel>, <mx:TileList>,
<mx:DataProvider>, and <mx:Array>.

Figure 9.6
Using the TileList control.

CHAPTER 9} Flex on Rails

First we set up the images that will be displayed. We will again be embedding them within the
generated swt. This time we will use annotation in ActionScript. The [Bindable] annotation
means the image can be assigned or bound to an image control. The [Embed] annotation sets
the location of the image. We repeat the following code for each image we include.

[Bindable] [Embed (source="assets/Nokia_6630.png")]
public var phonel:Class;

<mx:TileList id="TileImages" height="500" width="300"
maxColumns="2" rowHeight="225" columnWidth="125">

The <mx: TileList> is placed within a Panel control. We want to display images in two columns,
so we set the maxColumns attribute to 2.

<mx:TileList id="TileImages" height="500" width="300"
maxColumns="2" rowHeight="225" columnWidth="125">

We use the <mx : DataProvider> and the <mx: Array> to bind a list of images to the TileList
control. The <mx:Object> tag is used to set a label and the image. The icon attribute of the
first <mx : Object> tag is setto {phonel}. The { and } characters indicate that the attribute must
be bound to phonel, which was set via annotations to an embedded image. This data binding
is repeated for all the <mx: Object> tags until all images are included.

<mx:dataProvider>
<mx:Array>
<mx:0bject label="Nokia 6630" icon="{phonel}"/>
<mx:0bject label="Nokia 6680" icon="{phone2}"/>
<mx:0bject label="Nokia 7610" icon="{phone3}"/>
<mx:0bject label="Nokia LGV" icon="{phoned}"/>
<mx:0bject label="Nokia LMV" icon="{phone5}"/>
</mx:Array>
</mx:dataProvider>
The MXML source for the TileList example:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<! [CDATA [
[Bindable]
[Embed (source="assets/Nokia_6630.png")]
public var phonel:Class;
[Bindable]

228

Interface Design with Flex

[Embed (source="assets/Nokia_6680.png")]
public var phone2:Class;
[Bindable]
[Embed (source="assets/Nokia_7610.png")]
public var phone3:Class;
[Bindable]
[Embed (source="assets/Nokia_lg_v_keypad.png")]
public var phone4:Class;
[Bindable]
[Embed (source="assets/Nokia_sm_v_keypad.png")]
public var phone5:Class;
11>
</mx:Script>
<mx:Panel title="Using a TileList to Display a Series if Images"
height="100%" width="100%"
paddingTop="10" paddingBottom="10" paddingLeft="10" paddingRight="10">
<mx:TileList id="TileImages" height="500" width="300"
maxColumns="2" rowHeight="225" columnWidth="125">
<mx:dataProvider>
<mx:Array>
<mx:0bject label="Nokia 6630" icon="{phonel}"/>
<mx:0bject label="Nokia 6680" icon="{phone2}"/>
<mx:0bject label="Nokia 7610" icon="{phone3}"/>
<mx:0bject label="Nokia LGV" icon="{phoned4}"/>
<mx:0bject label="Nokia LMV" icon="{phoneb5}"/>
</mx:Array>
</mx:dataProvider>
</mx:TileList>
</mx:Panel>

</mx:Application>

Creating a Drag-and-Drop Image Classifier

We now focus our attention on some of the drag-and-drop functionality built into Flex. It is amaz-
ingly simple to enable drag-and-drop functionality in a Flex application. The Drag and Drop Image
Classifier displays a set of images that need to be classified or dragged into an appropriate TileList
control (see Figure 9.7). To make this example more challenging, the list of images will be loaded
from an XML file and we will create a Flex component.

29

CHAPTER 9} Flex on Rails

Figure 9.7
The Drag and Drop Image

Classifier.

First we create an XML file that contains a list of all images and their respective locations:

<?xml version="1.0" encoding="utf-8"?>
<activity title="Classification" type="Classification">
<items>
<item title="One" imageurl="assets/products/DoCoMo_901_ic.png" />
<item title="Two" imageurl="assets/products/DoCoMo_F900_1i.png" />
<item title="Three" imageurl="assets/products/Casio_W21CA.png" />
<item title="Four" imageurl="assets/products/DoCoMo_901_ic.png" />
<item title="Five" imageurl="assets/products/Siemens_SX1l.png" />
<item title="Six" imageurl="assets/products/Casio_W21CA.png" />
<item title="Seven" imageurl="assets/products/DoCoMo_901_ic.png" />
</items>

</activity>

The Item.mxml file will be our first Flex component. Flex components can be re-used a number
of times in Flex applications. Components also help to reduce the size and complexity of the main
MXML file in applications. In the Ttem.mxm1 component we place an image in an HBox
control. We databind the source of the image to {data.imageurl}. We also include a label
that is setto {data.title}. The component displays only a single image and receives the
{data.imageurl} and {data.title} fields, which it will bind. The title and imageurl
fields are from the XML file.

<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml" backgroundAlpha="0"
borderStyle="none" width="165" height="120" verticalAlign="middle"

Interface Design with Flex

verticalGap="0" verticalScrollPolicy="off">
<mx:Image id="img" height="100" width="50" source="{data.imageurl}"/>
<mx:VBox width="100%" paddingTop="0" horizontalGap="4">
<mx:Label text="{data.title}" fontWeight="bold"/>
</mx:VBox>

</mx:HBox>

We are now ready to code our main MXML file. The <mx : HTTPService> tag is extremely
powerful, and we will use it extensively in the remainder of this chapter. In this instance, we use
HTTPService to load the XML file. HTTPService is triggered when the creationComplete event
is fired in the applications. The <mx : Model> tag provides an intuitive way to reference the data
in the XMLfile, e.g. activityModel.title and activityModel.items.item, the latter of
which will be databound to our component.

Images can be dragged onto a Tilelist by setting the dragEnabled, dropEnabled, and
dragMoveEnabled attributes to true. Our application has two TileLists, both placed in Panel
controls, which are in an HDividedBox control. The HDividedBox makes each panel resizable.

A HorizontalList control displays the images that need to be classified (i.e., dragged to an appro-
priate TileList control). The dataProvider attribute is set, {activityModel.items.item},
to bind it to the data from the XML file. The i temRenderer attribute is set to the name of the
component we have designed to display a labeled image. We called our component Ttem. mxm1,
so this is set to Ttem. Finally, the dragEnabled, dropEnabled, and dragMoveEnabled
attributes are set to true.

The source code listing for the Drag and Drop Classifier:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" backgroundAlpha="0"
creationComplete="srv.send() ;">
<mx:HTTPService id="srv" url="Classifier.xml" useProxy="false" />
<mx:Model id="activityModel">{srv.lastResult.activity}</mx:Model>
<mx:Label id="Title" text="{activityModel.title}" fontSize="16" />
<mx:VBox width="100%" height="100%">
<mx:HDividedBox width="100%" height="75%">
<mx:Panel id="catl" width="100%" height="100%" >
<mx:TileList
height="100%"
width="100%"
id="tl_Categoryl"

itemRenderer="Item"

231

CHAPTER 9} Flex on Rails

rowHeight="130"
columnwWidth="175"
allowMultipleSelection="false"
dragEnabled="true"
dropEnabled="true"
dragMoveEnabled="true" />
</mx:Panel>
<mx:Panel id="cat2" width="100%" height="100%" >
<mx:TileList
height="100%"
width="100%"
id="tl_Category2"
itemRenderer="Item"
rowHeight="130"
columnwWidth="175"
allowMultipleSelection="false"
dragEnabled="true"
dropEnabled="true"
dragMoveEnabled="true" />
</mx:Panel>
</mx:HDividedBox>
<mx:Panel title="Items to be classified:"
width="100%" height="25%" >
<mx:HorizontalList
id="ItemsDsp"
width="100%"
dataProvider="{activityModel.items.item}"
itemRenderer="Item"
allowMultipleSelection="true"
dragEnabled="true"
dropEnabled="true"
dragMoveEnabled="true" />
</mx:Panel>
</mx:VBox>

</mx:Application>

232

sl sl sk
B 3k wk

Interface Design with Flex

Using the DataGrid Control to Display XML

In this example, we will be using the DataGrid control (see Figure 9.8). The DataGrid is a table-
like control with columns and rows. Rows of data retrieved from a database can be displayed,
edited, and removed from a DataGrid. We will bind XML to a DataGrid. The XML, however, will
not be loaded from an external file; rather, we will use the <mx : XML.L.i st > control to embed the
XML in the application. This is a very valuable feature if dynamic data is not required.

Figure 9.8
Displaying XML in a
DataGrid.

An excerpt from the XMLList control is shown below. We can simply place this tag within our
MXML file. The employees’ XMLList has name, phone, and email fields for each employee.
These fields will need to be databound to the DataGrid control.

<mx:XMLList id="employees">
<employee>
<name>Aneesha Bakharia</name>
<phone>2342</phone>
<email>aneesha.bakharia@gmail.com</email>

</employee>

</mx:XMLList>

The DataGrid control is placed in a panel. The dataProvider attribute is set to the id of the
XMLList control—this binds the XML to the DataGrid. Within the <Mx : columns> tag, we can
define the columns in the DataGrid and also set the fields to which they are bound. We need
three <mx : DataGridColumn> tags to display the name, phone, and email fields.

23

CHAPTER 9} Flex on Rails

<mx:DataGrid id="dg" width="100%" height="100%" rowCount="5"
dataProvider="{employees} ">
<mx:columns>
<mx:DataGridColumn dataField="name" headerText="Name"/>
<mx:DataGridColumn dataField="phone"
headerText="Phone" />
<mx:DataGridColumn dataField="email"
headerText="Email"/>
</mx:columns>

</mx:DataGrid>

The source code for displaying XML in a DataGrid control:

<?xml version="1.0"7?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:XMLList id="employees">
<employee>
<name>Aneesha Bakharia</name>
<phone>2342</phone>
<email>aneesha.bakharia@gmail.com</email>
</employee>
<employee>
<name>Celine Bakharia</name>
<phone>2341</phone>
<email>celine.bakharia@gmail.com</email>
</employee>
<employee>
<name>Zaeem Bakharia</name>
<phone>5674</phone>
<email>zaeem.bakharia@gmail.com</email>
</employee>
</mx:XMLList>
<mx:Panel title="Displaying XML with a Datagrid"
height="100%" width="100%"
paddingTop="10"
paddingLeft="10"
paddingRight="10">
<mx:DataGrid id="dg" width="100%" height="100%"

234

sl 9l <l
gk Ak

Exposing an Active Record Model as XML

rowCount="5" dataProvider="{employees}">
<mx:columns>
<mx:DataGridColumn dataField="name" headerText="Name"/>
<mx:DataGridColumn dataField="phone"
headerText="Phone" />
<mx:DataGridColumn dataField="email"
headerText="Email"/>
</mx:columns>
</mx:DataGrid>
<mx:Form width="100%" height="100%">
<mx:FormItem label="Name:">
<mx:Label text="{dg.selectedItem.name}"/>
</mx:FormItem>
<mx:FormItem label="Email">
<mx:Label text="{dg.selectedItem.email}"/>
</mx:FormItem>
<mx:FormItem label="Phone">
<mx:Label text="{dg.selectedItem.phone}"/>
</mx:FormItem>
</mx:Form>
</mx:Panel>

</mx:Application>

Building a Flex Interface for a Ruby on Rails Project

We are going to build a Flex interface to display, update, and delete employee details as well
as add the contact details of new employees. The Flex interface will interact with Rails, which will
perform the database tasks. | guarantee that we will accomplish this ambitious project in record
time and only 19 lines of Ruby code. The Staff Directory project takes advantage of the REST
features built into Rails and the <mx : HTTPService> tag in Flex, which allows us to get and post
data to a web service.

Exposing an Active Record Model as XML

Our first task involves publishing a list of employees to XML from Rails. Once this feed is created,
we can use an HTTPService in Flex to retrieve the XML and bind it to a DataGrid control. We
start by creating a new rails application called staffdirectory:

S rails staffdirectory

235

CHAPTER 9} Flex on Rails

Move into the staffdirectory folder and then create a model:

$ ruby script/generate model employee

The following is output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/employee.rb
create test/unit/employee_test.rb
create test/fixtures/employees.yml
create db/migrate

create db/migrate/001_create_employees.rb

Edit the db/migrate/001_create_employees.rb migration. We need name, email,
phone, and department fields in the employees table. The migration is also used to insert two
records into the database:

class CreateEmployees < ActiveRecord::Migration
def self.up
create_table :employees do |t]
t.column :name, :string
t.column :email, :string
t.column :phone, :string
t.column :department, :string
end
Employee.create :name => "Aneesha Bakharia",
:email => 'aneesha.bakharia@gmail.com',
:phone => "1234",
:department => "IT"
Employee.create :name => "Celine Bakharia",
:email => 'c.b@randomsyntax.com',
:phone => "1244",
:department => "Design"
end
def self.down
drop_table :employees

end

end

Exposing an Active Record Model as XML

Run the migration:

S rake db:migrate

The following is output to the console:

(in C:/rails/staffdirectory)

== CreateEmployees: migrating ===
-- create_table(:employees)

-> 0.1560s

CreateEmployees: migrated (0.1560s) ======================================

Create the employees controller:

$ ruby script/generate controller employees

The following is output to the console:

exists app/controllers/

exists app/helpers/

create app/views/employees

exists test/functional/

create app/controllers/employees_controller.rb
create test/functional/employees_controller_test.rb

create app/helpers/employees_helper.rb

Open the app/controllers/employees_controller.rb file and add a 1ist action. This
action retrieves all the employees from the employees table and then renders this list to XML. The
to_xml method is used to convert the employees data to the XML format:

class EmployeesController < ApplicationController
def list
@employees = Employee.find :all
render :xml => @employees.to_xml
end

end

We start the Webrick web server on port 80 and point our browser to http://localhost/
employees/list to view the Employee XML feed (see Figure 9.9):

$ ruby script/server -p 80

237

CHAPTER 9} Flex on Rails

Figure 9.9
Converting a model to
XML.

We can now use the <mx : HTTPService> tag to retrieve the dynamic XML feed and bind the
data to a DataGrid (see Figure 9.10). The Flash file and the web page need to be placed within
the public folder of your Rails application.

<?xml version="1.0"7?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns="*" layout="absolute"
creationComplete="employeeRequest.send () ">
<mx:HTTPService
id="employeeRequest"
url="http://localhost/employees/list" useProxy="false"/>
<mx:Panel title="Displaying XML with a Datagrid"
height="100%"
width="100%"
paddingTop="10"
paddingLeft="10"
paddingRight="10">
<mx:DataGrid id="dg"
width="100%"
height="100%"
rowCount="5"
dataProvider="{employeeRequest.lastResult.employees.employee}">

<mx:columns>

Adding an Employee

<mx:DataGridColumn dataField="name" headerText="Name"/>
<mx:DataGridColumn dataField="phone" headerText="Phone"/>
<mx:DataGridColumn dataField="email" headerText="Email"/>
<mx:DataGridColumn
dataField="department"
headerText="Department" />
</mx:columns>
</mx:DataGrid>
</mx:Panel>

</mx:Application>

Figure 9.10
Retrieving and displaying
an XML feed in a DataGrid.

Adding an Employee

We will display a form when the Add an Employee button is clicked and use the states feature
of Flex to do so. The form contains fields where a user can enter the name, email, phone, and
department of an employee. The Add button will trigger the state change. This form will be sent
to Rails via an HTTPService, which has the method attribute set to post. We are, in fact, sending
the data back to Rails in an XML format:

<mx:HTTPService contentType="application/xml"
id="employeeCreateRequest"
result="employeeRequest.send() ;"
url="http://localhost/employees/create"
useProxy="false" method="POST">

239

CHAPTER 9} Flex on Rails

<mx:request xmlns="">
<employee>
<name>{ fName. text}</name>
<email>{fEmail.text}</email>
<phone>{fPhone. text}</phone>
<department>{fDepartment. text}</department>
</employee>
</mx:request>

</mx:HTTPService>

The Employees controller needs to respond to the create request. We need to publish the XML
feed after we save the data so that the new data is returned to the HTTPService and the DataGrid
control is in turn updated. Here is the code to do so:

def create
@employee = Employee.new (params]|:employee])
@employee.save
render :xml => @employee.to_xml

end

Figure 9.11 shows the Flex interface being used to add new employees. Here is the source code:

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel title="Staff Directory"
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns="%*"
creationComplete="employeeRequest.send () ">
<mx :HTTPService id="employeeRequest"
url="http://localhost/employees/list"
useProxy="false"/>
<mx:HTTPService contentType="application/xml"
id="employeeCreateRequest"
result="employeeRequest.send() ;"
url="http://localhost/employees/create"
useProxy="false"
method="POST" >
<mx:request xmlns="">
<employee>

<name>{ fName. text }</name>

240

Adding an Employee

<email>{fEmail.text}</email>

<phone>{fPhone. text}</phone>

<department>{fDepartment. text}</department>

</employee>

</mx:request>

</mx:HTTPService>

<mx:DataGrid id="dg"
width="800"

dataProvider="{employeeRequest.lastResult.employees.employee}"

editable="false"

</mx:DataGrid>

>
<mx:columns>

<mx:DataGridColumn

<mx:DataGridColumn

<mx:DataGridColumn

<mx :DataGridColumn

</mx:columns>

headerText="Name"
dataField="name"
width="480"/>
headerText="Email"
dataField="email"
width="240"/>
headerText="Phone"
dataField="phone"
width="80"/>
headerText="Department"
dataField="department"
width="80"/>

<mx:ControlBar id="EmployeeControlBar">

<mx:Button label="Add Employee" id="btnAdd" click="currentState='Add'" />

</mx:ControlBar>

<mx:states>

<mx:State name="Add">

<mx

<mx:

<mx:

<mx:

:AddChild position="las

Form width="800" id="f

tChild">

rmCreate">

FormHeading label="Add a new Employee"/>

FormItem label="Name"

<mx:TextInput width="2

</mx:FormItem>

<mx:FormItem label="Email"

required="true">
60l| id: n fName n />

required="true">

241

1y sl o5l
B w w

CHAPTER 9} Flex on Rails

<mx:TextInput width="260" id="fEmail"/>
</mx:FormItem>
<mx:FormItem label="Phone" required="true">
<mx:TextInput width="260" id="fPhone"/>
</mx:FormItem>
<mx:FormItem label="Department" required="true">
<mx:TextInput width="260" id="fDepartment"/>
</mx:FormItem>
<mx:FormItem direction="horizontal">
<mx:Button label="Submit"
click="employeeCreateRequest.send () ;currentState="'"'"/>
<mx:Button label="Cancel" click="currentState='""/>
</mx:FormItem>
</mx:Form>
</mx:AddChild>
</mx:State>
</mx:states>

</mx:Panel>

Figure 9.11
Adding an Employee.

Deleting an Employee
Deleting an employee requires an additional HTTPService that can pass the id of the employee
to the delete method:

24

she ol gl
A o

£y

<mx:HTTPService id="employeeDeleteRequest"
result="employeeRequest.send() ;"
url="http://localhost/employees/delete"

useProxy="false" />

The delete method needs to be added to the Employees controller:

def delete
@employee = Employee.find(params|[:id])
@employee.destroy
render :xml => @employee.to_xml

end

A delete button is added to the ControlBar control. When the button is clicked, the
deletehandler () method must be executed.

<mx:Button label="Delete" click="deleteHandler (event);"/>

% Deleting an Employee

The deleteHandler () method displays an Alert box to confirm that the selected resource must
be deleted (see Figure 9.12). If the user clicks on OK, the id is passed to the send method of

the employeeDeleteRequest HTTPService. The full source code is included:

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel title="Staff Directory"
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns="*"
creationComplete="employeeRequest.send () ">
<mx:Script>
<! [CDATA[
import mx.controls.Alert;
import mx.events.CloseEvent;
private function deleteHandler (event:Event) : void
{
Alert.show("Are you sure you want to delete this item?",
"Delete Item", 3, this,
function (event:CloseEvent) :void
{
if (event.detail==Alert.YES)
employeeDeleteRequest.send({id: dg.selectedItem.id}) ;
})

CHAPTER 9} Flex on Rails

}
11>
</mx:Script>
<mx:HTTPService id="employeeRequest"
url="http://localhost/employees/list"

useProxy="false" />

<mx:HTTPService contentType="application/xml"
id="employeeCreateRequest"
result="employeeRequest.send () ;"
url="http://localhost/employees/create"
useProxy="false"
method="POST">
<mx:request xmlns="">
<employee>
<name>{ fName. text}</name>
<email>{fEmail.text}</email>
<phone>{fPhone. text}</phone>
<department>{fDepartment.text}</department>
</employee>
</mx:request>
</mx:HTTPService>
<mx:HTTPService id="employeeDeleteRequest"
result="employeeRequest.send() ;"
url="http://localhost/employees/delete"
useProxy="false" />
<mx:DataGrid id="dg"
width="800"
dataProvider="{employeeRequest.lastResult.employees.employee}"
editable="false" >
<mx:columns>
<mx:DataGridColumn headerText="Name"
dataField="name" width="480"/>
<mx:DataGridColumn headerText="Email"
dataField="email" width="240"/>
<mx:DataGridColumn headerText="Phone"
dataField="phone" width="80"/>

244

sl sl sk
B 3k wk

Deleting an Employee

<mx:DataGridColumn headerText="Department"
dataField="department" width="80"/>
</mx:columns>
</mx:DataGrid>
<mx:ControlBar id="EmployeeControlBar">

<mx:Button label="Add Employee"

id="btnadd"
click="currentState='Add'" />
<mx:Button label="Delete" click="deleteHandler (event);"/>

</mx:ControlBar>
<mx:states>
<mx:State name="Add">
<mx :AddChild position="lastChild">
<mx:Form width="800" id="frmCreate">
<mx : FormHeading label="Add a new Employee"/>
<mx:FormItem label="Name" required="true">
<mx:TextInput width="260" id="fName"/>
</mx:FormItem>
<mx:FormItem label="Email" required="true">
<mx:TextInput width="260" id="fEmail"/>
</mx:FormItem>
<mx:FormItem label="Phone" required="true">
<mx:TextInput width="260" id="fPhone"/>
</mx:FormItem>
<mx:FormItem label="Department" required="true">
<mx:TextInput width="260" id="fDepartment"/>
</mx:FormItem>
<mx:FormItem direction="horizontal">
<mx:Button label="Submit"
click="employeeCreateRequest.send () ;currentState='"'"/>
<mx:Button label="Cancel" click="currentState='"'"/>
</mx:FormItem>
</mx:Form>
</mx:AddChild>
</mx:State>
</mx:states>

</mx:Panel>

245

e e
b H

Y

CHAPTER 9} Flex on Rails

Figure 9.12

Deleting an employee.

Updating an Employee

DataGrids in Flex are editable—Textlnput box is placed within a cell when it is clicked (see
Figure 9.13), and the data can be edited and sent back to be stored via an HTTPService post.
We will add an Update button, which, when clicked, will make the DataGrid control editable.

Figure 9.13
Updating an employee.

First we need to add an update method to our controller. This brings the total lines of Ruby code
to only 19. Rails, Active Record, and the to_xm1 methods are tremendously powerful.

24

Updating an Employee

def update
@employee = Employee.find(params[:1d])
@remployee.update_attributes (params|[:employee])
render :xml => @employee.to_xml

end

We create an employeeUpdateRequest HTTPService. We don’t need to send back XML as
we did for the employeeCreateRequest. We will use ActionScript to send back each field in
arow as it is edited.

<mx:HTTPService id="employeeUpdateRequest"
result="employeeRequest.send() ;"
url="http://localhost/reviews/update"
useProxy="false"

method="POST" />

An Update Employee Button is added to the ControlBar control. This button calls the
updateHandler () method when clicked:

<mx:Button label="Update Data"
click="updateHandler (event) "
id="btnUpdateData" />
public function checkUpdate (event:DataGridEvent) : void
{
if (event != null)
{
var params:0bject = new Object () ;
params['id'] = event.currentTarget.editedItemRenderer.datal'id']
params ['employee[' + event.dataField +']'] =
TextInput (event.currentTarget.itemEditorInstance) .text

employeeUpdateRequest.send (params) ;

}

The editable attribute is set to false for the DataGrid control. The itemEndEdit event calls the
checkUpdate method. The checkUpdate method will send the updated data back to the
Update controller in our Rails application.

<mx:DataGrid id="dg"
width="800"

dataProvider="{employeeRequest.lastResult.employees.employee}"

CHAPTER 9} Flex on Rails

editable="false"
itemEditEnd="checkUpdate (event) ;">

The updateHandler () method makes the DataGrid editable. It also changes the label of the
Update Button and the click handler. The code for the updateHandler () method:

import mx.events.DataGridEvent

private function updateHandler (event:Event) : void

{
dg.editable=true
btnUpdateData.label = "End Updates"
btnUpdateData.removeEventListener ('click', updateHandler)

btnUpdateData.addEventListener('click', endUpdateHandler)
}

The full source code listing:

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel title="Staff Directory"
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns="*"
creationComplete="employeeRequest.send () ">
<mx:Script>
<! [CDATA[
import mx.controls.Alert;
import mx.events.CloseEvent;
private function deleteHandler (event:Event) : void
{
Alert.show("Are you sure you want to delete this item?",
"Delete Item", 3, this,
function (event:CloseEvent) :void
{
if (event.detail==Alert.YES)
employeeDeleteRequest.send ({id: dg.selectedItem.id}) ;

1)
}
import mx.events.DataGridEvent
private function updateHandler (event:Event) : void
{

248

ENRINOR

o

Updating an Employee

dg.editable=true
btnUpdateData.label = "End Updates"
btnUpdateData.removeEventListener ('click', updateHandler)

btnUpdateData.addEventListener ('click', endUpdateHandler)

}
public function checkUpdate (event:DataGridEvent) : void
{
if (event != null)
{
var params:0bject = new Object () ;
params|['id'] = event.currentTarget.editedItemRenderer.datal'id']
params ['employee[' + event.dataField +']'] =
TextInput (event.currentTarget.itemEditorInstance) . text
employeeUpdateRequest.send (params) ;
}
}

11>

</mx:Script>

<mx:HTTPService id="employeeRequest"
url="http://localhost/employees/list"
useProxy="false"/>

<mx:HTTPService id="employeeUpdateRequest"
result="employeeRequest.send() ;"
url="http://localhost/reviews/update"
useProxy="false"

method="POST" />

<mx:HTTPService contentType="application/xml"
id="employeeCreateRequest"
result="employeeRequest.send() ;"
url="http://localhost/employees/create"
useProxy="false"
method="POST">
<mx:request xmlns="">
<employee>
<name> { fName. text }</name>

<email>{fEmail.text}</email>

CHAPTER 9} Flex on Rails

<phone>{fPhone. text}</phone>
<department>{fDepartment.text}</department>
</employee>
</mx:request>
</mx:HTTPService>
<mx:HTTPService id="employeeDeleteRequest"
result="employeeRequest.send() ;"
url="http://localhost/employees/delete"
useProxy="false" />
<mx:DataGrid id="dg"
width="800"
dataProvider="{employeeRequest.lastResult.employees.employee}"
editable="false"
itemEditEnd="checkUpdate (event) ;">
<mx:columns>
<mx:DataGridColumn headerText="Name"
dataField="name"
width="480"/>
<mx:DataGridColumn headerText="Email"
dataField="email"
width="240"/>
<mx:DataGridColumn headerText="Phone"
dataField="phone"
width="80"/>
<mx:DataGridColumn headerText="Department"
dataField="department"
width="80"/>
</mx:columns>
</mx:DataGrid>
<mx:ControlBar id="EmployeeControlBar">
<mx:Button label="Add Employee"
id="btnadd"
click="currentState='Add'" />
<mx:Button label="Delete" click="deleteHandler (event);"/>
<mx:Button label="Delete" click="deleteHandler (event);"/>
<mx:Button label="Update Data"

click="updateHandler (event) "

250

sl sl sk
B 3k wk

Conclusion

id="btnUpdateData" />
</mx:ControlBar>
<mx:states>
<mx:State name="Add">
<mx:AddChild position="lastChild">
<mx:Form width="800" id="frmCreate">
<mx :FormHeading label="Add a new Employee"/>
<mx:FormItem label="Name" required="true">
<mx:TextInput width="260" id="fName"/>
</mx:FormItem>
<mx:FormItem label="Email" required="true">
<mx:TextInput width="260" id="fEmail"/>
</mx:FormItem>
<mx:FormItem label="Phone" required="true">
<mx:TextInput width="260" id="fPhone"/>
</mx:FormItem>
<mx:FormItem label="Department" required="true">
<mx:TextInput width="260" id="fDepartment"/>
</mx:FormItem>
<mx:FormItem direction="horizontal">
<mx:Button label="Submit"
click="employeeCreateRequest.send() ;currentState="'"'"/>
<mx:Button label="Cancel" click="currentState='"'"/>
</mx:FormItem>
</mx:Form>
</mx:AddChild>
</mx:State>
</mx:states>

</mx:Panel>

Conclusion

Flex provides a viable alternative to AJAX-powered interfaces. Flex has a wide variety of interface
controls, it supports data binding from either XML or a web service, and it is very easy to integrate
with an existing Rails application. Flex interfaces are authored in a declarative tag-like syntax
known as MXML. This chapter highlights the superior capabilities of Rails that enable an Active
Record model to be published to XML, as well as allow records to be updated and new records
to be added via a web service.

25!

This page intentionally left blank

E-Mail, Image
Processing, and
Graphing

We will be using existing Ruby libraries to extend and enhance the capabilities of Rails applica-
tions. Ruby extensions such as TMail, Gruff, and RMagick add a professional touch to service-
oriented web applications. The ability to send e-mail, convert and reduce images to an
appropriate format, and generate meaningful graphs in a Web application is extremely
important.

In this chapter you’ll learn to:

Send and receive e-mails with Action Mailer and TMail

Use RMagick to create and process images

Generate line, bar, and pie charts with Gruff

Sending and Receiving E-Mail

The ability to send automated e-mail messages is extremely important and has many functional
applications. Web-enabled applications send out e-mails to confirm registration, acknowledge
product orders, advertise or inform consumers of new products, inform users of recent site activity,
and so on. As a developer, you could even have bug or error reports e-mailed directly to you.
E-mail is certainly an invaluable communication medium. Itis hard to imagine a person not having
an e-mail address.

Ruby on Rails includes the Action Mailer component, which facilitates the processing of e-mail
messages. Action Mailer is built upon the TMail library to model and process e-mail messages.
TMail is written by Minero Aoki.

Action Mailer Configuration

You will need to change the Action Mailer configuration settings to enable successful e-mail pro-
cessing because the default Action Mailer settings may only work on certain hosts. If you are
using the same configuration settings for your development, testing, and production setups, you

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

can add the Action Mailer settings to the /config/environment.rb file. If your environments
require different settings, then add the details to the appropriate /config/environments

folder.

The ActionMailer: :Base.delivery method supports three e-mail delivery methods:
smtp, sendmail, and test. Use the test method in your development environment, especially
when you are running unit or functional tests. The test method does not send real e-mails; instead,
the e-mails are placed in an array and are available via ActionMailer: :Base.deliveries.
The sendmail method uses the Sendmail program found in the /usr/bin folder. Unfortunately
you can’t always assume that the Sendmail program is installed and placed in the /usr/bin
folder. The third option, smtp, uses a real SMTP server, is the default, and is the most reliable
option. The SMTP server could reside on either the same server that houses your web application
or another server. Table 10.1 contains required SMTP settings, along with a description.

Example Action Mailer syntax:

ActionMailer: :Base.server_settings =

{
:address => "smtp.hostname.com",
:port => 25,
:domain => "your.domain.com",
:authentication => :login,
:user_name => "aneesha",

:password => "guess_my_ password"

Table 10.1 SMTP Configuration Settings

:address The address of the SMTP server. If the SMTP server is running on the same server as
your web application, the default will be localhost.

:port The port of the SMTP server. The default port is 25.

:domain The domain name of your web server (the server sending the e-mail message).

;authentication The following is supported: :plain, : login, or :cram_md5. Consult with your
system administrator fo determine which is appropriafe.
:user_name The username if authentication is required.

:password The password if authentication is required.

Another way of turning e-mail delivery off for testing purposes is to set the
ActionMailer: :Base.perform deliveries methodto false:

ActionMailer: :Base.perform_deliveries = false

254

Sending and Receiving E-Mail

The default character set for encoding e-mail messages is set with the default_charset
property.

ActionMailer: :Base.default_charset = "utf-8"

The default content type is text/plain. This setting is suitable only for plain text e-mail messages.
Use the text/html sefting if you are sending HTML formatted e-mail messages.

ActionMailer: :Base.default_content_type = "text/html"

Sending E-Mail

A generator script (script/generate mailer) is used to create Mailer classes within the
app/models folder. It might seem odd at first to have the Mailer classes placed in the
models folder, but as this section unfolds it will all begin to make sense. Each method within
the Mailer class has a corresponding . rhtml template file stored in the app/views folder.
This is akin to having a view for each action within a controller class. The views provided for the
methods within a Mailer class allow you to use ERb syntax to embed Ruby within an e-mail
template.

We must pass the name of the Mailer class to the script/generate mailer generator
followed by the e-mail action method names. If multiple e-mail action method names are specified,
multiple methods within the class will be generated.

Generate the NewsletterMailer class and confirm subscription e-mail action method:

S ruby script/generate mailer NewsletterMailer confirm_subscription

The following files are created:

i app/models/newsletter_mailer.rb

app/views/newsletter_mailer/confirm_subscription.rhtml

The app/models/newsletter_mailer.rb file contains the NewsletterMailer class,
which inherits from ActionMailer: :Base. The confirm_subscription () method sets up

instance variables for the e-mail message. The e-mail instance variables (see Table 10.2) define
the subject, body and e-mail recipients:

class NewsletterMailer < ActionMailer: :Base

def confirm_subscription(sent_at = Time.now)

@subject = 'NewsletterMailer#confirm_subscription'
@body = {1

@recipients = '

@from = '

@sent_on = sent_at

255

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

@headers = {3
end

end

Table 10.2 E-Mail Message Instance Variables

Variable Data Type Description

@recipients Array or String One or more e-mail addresses for recipients, such as
aneesha.bokharia@gmail.com or @recipients =
["aneesha.bakharia@gmail.com”,"Celine
<aneesha.bakharia@gmail.com>"].

@cc Array or String Recipients that receive a carbon copy of the e-mail.

@bcc Array or String Recipients that receive a blind copy of the e-mail.

@from Array or String The e-mail address of the sender that a recipient can reply to.
@subject String A brief description of the e-mail message.

@body Hash A hash containing values that must be passed to the e-mail template file

within the views folder.
@charset String The character set of the e-mail. Defaults to the default_charset =
"utf-8" sefting variable.

@sent_on Time The time the e-mail was sent is included within the e-mail’s header.

An example e-mail template (. rhtml view file) that has been passed the first name of a user who
has just subscribed to a newsletter follows:

Dear <%= @first_name %>

Thank you for subscribing to Rails News.

A monthly newsletter will be e-mailed to you.
Sincere thanks

The Rails News Team

3l Note

Partials can be called from within an e-mail template file, but you will need to pass the explicit path to
the template. You need to do this because the partial is not being invoked from a controller action. Here
is an example:

<%= render (:partial => "./item", :collection => @order.items) %>

Sending and Receiving E-Mail

Now that we have modeled the e-mail message and its associated template file, we need a
controller to send the e-mail. We can accomplish this in two ways using class methods: Create an
e-mail object and then call the deliver method or send the e-mail to the defined recipients. The
class methods are called create_xxx and deliver_xxx, where xxx is the name of the
action method, such as create_ confirm_subscription and

deliver_ confirm_subscription for the NewletterMailer class.

The create_ confirm subscription() call invokes confirm subscription () within
our NewletterMailer class, and an e-mail template will be rendered. The encoded () method
returns the generated template as text. Let's create an e-mail message and preview it in a web
browser (see Figure 10.1) before we send it off:
class EmailController < ApplicationController
def sent_confirmation_email
name = "Aneesha"
email = NewletterMailer.create_confirm_subscription (name)

render (:text => "<pre>" + email.encoded + "</pre>")

end
end
& Mozilla Firefox |_._J@ Flgure 10.1
Cle [Cdt Wew Go Dookmarks SoepDook Tooks sl P . . 'I
1 . “ 1 reviewing an e-mai
@ -G - § | ":_ﬁ hittp: flocalbost 300U emal > O w |IGL 9
P Gettng Started B Latect Headines | | Worderess > Login message.

Dear Aneesha

Thank you far subseribing to Rails Mews
A maonthly Newsletler will be e-mded 1o you.

Sincere Thanks
The Fails Mews Team

bang

We are now ready to send the e-mail message by calling

NewletterMailer.deliver_confirm_subscription (name)

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

HTML Formatted E-Mails

Since we are already using . rhtml template files to create the body of the e-mail, we can easily
generate HTML formatted messages. We just need to insert the appropriate HTML tags within our
view and set the content type to text/html:

email.set_content_type("text/html")

3 Tip

Always either prefix or suffix a mailer class with the word mailer so as not to confuse your e-mail models
with regular Active Record models.

In the following example, multiple values are passed to the e-mail template via the @body instance
variable, which takes a hash data structure.

class NewletterMailer < ActionMailer: :Base

def welcome_message(first_name, email_address)

@subject = "Rails News"

@body = {:name => first_name, :email => email_address}
@recipients = email_address

@from = "clientsupport@yourdomain.com"

@sent_on = Time.now
end

end

Attaching Files to E-Mail Messages

Files are attached to an e-mail message with the part () method. The part () method takes a
hash structure containing the MIME type of the file, its file name, and transfer encoding method
(such as baseé4). We can include numerous calls to the part () method, thereby attaching
multiple files. In this example, a JPEG image is attached to an e-mail message:

class NewletterMailer < ActionMailer::Base

def welcome_message(first_name, email_address)

@subject = "Rails News"

@body = {:name => first_name, :email => email_address}
@recipients = email_address

@from = "clientsupport@yourdomain.com"

@sent_on = Time.now

part (:content_type => "image/Jjpeg",

:disposition => "attachment; filename=rails_news_newletter.jpg",

258

Sending and Receiving E-Mail

:transfer_encoding => "base64") do |attachment.body =

File.read("header.jpg")

end

end

8 Note

The attached file will have the name assigned within the disposition key.

Receiving E-Mail

Action Mailer also makes it possible to process incoming e-mail. This might be handy if you want
to log bug report e-mails to an issue tracking database and send out a confirmation e-mail that
contains the support ticket number. Once you are able to capture the e-mail with Rails, it is very
easy to process the TMail: :Mail object that corresponds to the incoming message. Intercepting
the message from a mail server, however, can be quite difficult, and varies depending upon the
setup and software used as an e-mail server.

Let's deal with the easy bit first. Action Mailer is able to process a TMail: :Mail object. Your
Action Mailer class requires a receive () method, which must be passed a TMail: :Mail
object. You then can retrieve the e-mail’s subject line, body, file attachments, and recipient list.
Here is an example:

class NewletterMailer < ActionMailer::Base
def receive(email)
bugreport = Bugreport.new
bugreport.from = email.from[0]
bugreport.desciption = email.body
if email.has_attachments?
email.attachments.each do |attachment |
filecollection = FileCollection.new(
:name => attachment.original_filename,
:body => attachment.read)
bugreport.FileCollection << filecollection
end
end
bugreport.save
end

end

259

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

Now we can move on to the not so easy task of intercepting the e-mail before it is delivered by
the mail server. Essentially we need a script to grab the e-mail message (as raw text) and pass it
to the receive () method located within the Action Mailer class. If Sendmail was being used,
the script would need to be executed when an e-mail was placed in a mailbox (associated with
an e-mail address). There are, however, many different e-mail servers. The Ruby on Rails Wiki
provides possible solutions for mailman, QMail, POP3, and imap (see hitp://
wiki.rubyonrails.com/rails/show/HowToReceiveEmailsWithActionMailer).

Image Processing with RMagick

Free, open source, and commercial image editors are available in abundance, so why is there a
need for image processing within a web application? The answer is simple—not all users are
familiar with image editing and conversion concepts or software. You can’t rely on all users to
upload an image optimized for display within a web page or a thumbnail image to the exact
dimensions. Failing to post process an image after it has been uploaded is a recipe for disaster
because you could be storing large files and eating up valuable bandwidth each time the image
is viewed. There also are more creative applications such as a dynamic postcard (e-card) builder,
photo sharing service, and easy- to-use online image editing wizards.

RMagick is a robust and feature-rich image conversion, manipulation, and effects toolkit for Ruby.
The image manipulation that you are able to achieve programmatically with RMagick is simply
breathtaking. RMagick provides an interface to the InageMagick (http://

www.imagemagick.org) and GraphicsMagick (http://www.graphicsmagick.org) image process-
ing libraries. More than 90 popular image formats such as PNG, GIF, and JPEG are supported.

An RMagick gem is available but not downloadable from the gem server at RubyForge. You will
need to download and install the gem manually:

Download RMagick from http://rubyforge.org/projects/rmagick/.

Unzip to a folder.
Navigate to the folder that contains all the unzipped files.
Run Run ImageMagick-6.2.9-3-08-windows-dll.exe and follow the onscreen
instructions.
Type the following at the command prompt:
S C:\yourinstallfolder\RMagick-1.9.1-IM-6.2.3-win32>gem install rmagick-1.13.0-

win32.gem

>> Successfully installed rmagick, version 1.13.0

We are now ready to try our first RMagick example in Ruby. We will simply create an Image
object with a red background and set both its width and height to 100 pixels. The write ()
method is used to save the image to the format specified in the file extension. The generated

6

s

http://www.imagemagick.org
http://www.imagemagick.org
http://www.graphicsmagick.org
http://rubyforge.org/projects/rmagick/
http://wiki.rubyonrails.com/rails/show/HowToReceiveEmailsWithActionMailer
http://wiki.rubyonrails.com/rails/show/HowToReceiveEmailsWithActionMailer

Sending and Receiving E-Mail

image will be saved to the same folder where the script is located. The resulting red square is
shown in Figure 10.2.

require 'rubygems'

require 'RMagick'’

include Magick

test_image = Image.new(100,100) { self.background_color = "red" }
test_image.write("testimage.jpg")

exit

Figure 10.2
Using RMagick to create a

red square.

Converting an Image to Another Format

RMagick supports 90 image formats and allows for one format to be converted to another. This
comes in handy when you need to convert an image to a web-friendly format such as to convert
a bitmap (. bmp) to either the GIF, JPEG, or PNG format. All we need to do is pass the filename
of the image to the Tmage.read () method and then use the Tmage .write () method to save
the file to an alternate format. The file extension passed to the ITmage.write () method deter-
mines the saved format.

In the following example, a PNG file is converted to both the GIF and JPEG formats:

require 'rubygems'

require 'RMagick'

img = Magick::Image.read('sample.png').first #Return the first image
img.write('sample.jpg')

img.write('sample.gif')

d Note

The Image . read () method returns an array of images because some image formats contain a sequence
of multiple images, such as an animated GIF. To access the firstimage or only image stored in a file, call
the first property.

A261

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

We can also explicitly set or retrieve the image format:

img.format = "GIF"

Creating an Animated GIF

Animated GIFs were much more popular in the mid 1990s. Animated GIFs were to 90s web site
design what reflected logos are to Web 2.0. Animated GIFs would not be covered if RMagick
did not make them so easy to create:

img_list = ImageList.new("imagel.gif", "image2.gif", "image3.gif")

img_list.write("animatedgif.gif")

As you can see, we need only to pass the ImageList.new() method a comma-delimited list of
the images that need to be included in the animation and then use the write () method to save
to the GIF format.

Adding Text fo an Image

The annotate () method of the Draw object is able to overlay formatted text on an image. You
could use this functionality to insert a copyright symbol, watermark, or textual description on an
image. Choose the color of text added to an image carefully so as to avoid antialiasing and color
conflicts that influence the readability of text.

In this example, “Rmagick” is drawn on top of a 200 x 100 pixels wide blue background (see
Figure 10.3). The text is white, 20 points in size, and bold.

require 'rubygems'

require 'RMagick'

include Magick

test_image = Image.new(200,100) { self.background_color = "blue" }
text = Magick::Draw.new

text.pointsize = 20

text.fill = 'white’

text.font_weight = Magick::BoldWeight

text.annotate (test_image,20,20,50,50, "RMagick")
test_image.write("Text.jpg")

exit

Figure 10.3
Using RMagick to insert

text into an image.

262

Sending and Receiving E-Mail

In the next example, we insert a copyright symbol in the lower-right side of an image. The
Magick: :SouthEastGravity property is used to help position the text at the desired position.
Table 10.3 lists gravity settings, which are useful to help position an image or text in relation to
another.

'rubygems'
'RMagick’

require
require
img = Magick::Image.read("sunset.png").first
copyright_text = '\251 Your Inc'

copyright_symbol = Magick::Draw.new
copyright_symbol.pointsize = 14
copyright_symbol.font_weight = Magick::BoldWeight
copyright_symbol.fill = 'white'
copyright_symbolgravity = Magick::SouthEastGravity
18,

copyright_symbol.annotate(img, 0, 0, 3, copyright_text)

img.write('sunsetwithcopyright.png')

Table 10.3 Gravity Settings

Gravity Type Description
ForgetGravity Gravity not required
NorthWestGravity Top left position
NorthGravity Top center position
NorthEastGravity Top right posifion
WestGravity Left center position
CenterGravity Center position
EastGravity Right center position
SouthWestGravity left bottom position
SouthGravity Bottom center position
SouthEastGravity Bottom right position

Image Manipulation

RMagick provides access to a variety of filters and effects. Filters such as reduce_noise,
enhance, and despeckle help to refine defects (such as noise) in an image. Effects such as

sepiatone, vignette, solarize, and sketch might not be all that useful, but they are fun
to play with and require only a single method.

despeckle preserves edges within an image while reducing noise:

263

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

require 'rubygems'

require 'RMagick'

img = Magick::Image.read('sunset.jpg').first
img = img.despeckle

img.write ('despeckledimage.jpg')

enhance uses a digital filter to improve the overall image appearance:

require 'rubygems'
require 'RMagick'
img = Magick::Image.read('sunset.jpg').first
img = img.enhance

img.write ('enhancedimage.jpg')

The reduce_noise () method softens an image without affecting edges or boundaries within
the image. The method takes a single parameter (the radius), but if you pass a value of 0, the
method is smart enough to calculate a value for you.

require 'rubygems'

require 'RMagick'’

img = Magick::Image.read('sunset.jpg').first
img = img.reduce_noise(0)

img.write('reducednoiseimage.jpg')

vignette masks an image with a circle and then fades the edges to match a background color
(see Figure 10.4).

require 'rubygems'

require 'RMagick’

img = Magick::Image.read('sample.jpg').first
img = img.vignette

img.write('vignetteimage.jpg')

solarize produces an interesting effect by overexposing an image.

require 'rubygems'

require 'RMagick'’

img = Magick::Image.read('sample.jpg').first
img = img.solarize(127.5)

img.write('solarizedimage.jpg')

Sending and Receiving E-Mail

Figure 10.4
The vignette effect

applied to an image.

The sepiatone effect is able to make your photographs look like they are from an older era
(see Figure 10.5).

Figure 10.5
The sepiatone effect

applied to an image.

265

e .
B gk 3k

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

require 'rubygems'

require 'RMagick'

img Magick::Image.read('sample.jpg') .first
img = img.sepiatone(255) #MaxRGB

img.write('sepiatoneimage.jpg')

We can even make an image almost look like it was painted with water colors (see
Figure 10.6).

require 'rubygems'

require 'RMagick'

img = Magick::Image.read('sample.jpg').first

img = img.oil_paint(2)

img.write('oilpaintedimage.jpg')

Figure 10.6
RMagick does oil painting.

Creating Thumbnails

In this section we discuss different techniques to change the size of an image. A thumbnail is a
reduced (both dimensions and file size) version of an image. RMagick provides the Resize (),
Scale(), Sample (), and Thumbnail () methods, all of which are capable of reducing the
dimensions of an image. All of these methods take two parameters: the required width and height.

266

Epe e
gk uk

Sending and Receiving E-Mail

The thumbnail () method is optimized to produce images that are roughly 10% of their original
size:

require 'rubygems'

require 'RMagick'’

img = Magick::Image.read('sunset.jpg') .first

width = 100

height = 100

thumb = img.thumbnail (width, height)

thumb.write('thumbnail.jpg"')

The thumbnail () method does not preserve the original aspect ratio. An image that is rectan-
gular in shape will be square when reduced in size. We will explore a few techniques to preserve
aspect ratio. A scale factor could be applied to the image’s width and height. We use the
Magick: : Image#columns and Magick: : Image#rows properties of an Image object to
retrieve an image’s width and height:

require 'rubygems'

require 'RMagick'

img = Magick::Image.read('sunset.jpg').first

thumb = img.thumbnail (img.columns*0.1, img.rows*0.1)

thumb.write('thumbnail.jpg")

We could also scale an image to 10% of its original size. The scale factor is passed to the
scale () method as a single parameter. The desired width and height can also be passed to the
scale() method.

require 'rubygems'

require 'RMagick’

img = Magick::Image.read('sunset.jpg').first
thumb = img.scale(0.10)
thumb.write('thumbnail.jpg"')

Theresize_to_fit () methodtakesthe width and height as parameters. The resize_to_fit ()
method resizes an image to be within the bounds of the specified dimensions while maintaining
the original aspect ratio.

require 'rubygems'

require 'RMagick'’

img = Magick::Image.read('sunset.jpg') .first
thumb = img.resize_to_£fit(100,100)
thumb.write('thumbnail.jpg')

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

Rather than shrinking an image, extracting a portion of the image might be a viable alternative
that allows more detail to be preserved. The crop () method is used to cut out a square or
rectangular segment of an image.

The following code extracts a 200 x 300 pixel rectangle taken from the center of the image:

cropped_img = img.crop (Magick::CenterGravity, 200, 300)

Generating Thumbnails from a Rails Application

We have thus far explored the graphics manipulation functionality included in RMagick from
within a standalone Ruby file. In this section we will focus on using RMagick from a Rails appli-
cation and build a web-based thumbnailing tool.

The thumbnailing tool will allow users to upload an image. The uploaded image will be reduced
in size, converted to an appropriate format (either GIF or JPEG), and saved to a database. In
previous chapters we have explored saving an uploaded file to the file system. It makes sense to
cover the storage and retrieval of binary image files within a database in this section.

First we'll need to create a database with Ttems and Pics folders. The Items table must have
id and name fields. The pics table will store and relate an image to an item. The pics table requires
id, item_id, name, content_type, and data fields. The data field needs to store binary data
and must be of type b1ob. The uploaded image, after it has been processed and reduced in size,
will be stored in the data field.

Create a new Rails application called thumbnailer:

$ rails thumbnailer

Generate a model for the items table:

S ruby script/generate model item

The following will be output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/item.rb
create test/unit/item_test.rb
create test/fixtures/items.yml
create db/migrate

create db/migrate/001_create_items.rb

Edit the db/migrate/001_create_items.rb migration. The items table must have a name

field:

Sending and Receiving E-Mail

class Createltems < ActiveRecord::Migration

def self.up

create_table :items do |t]

t.column :name, :string

end
end
def self.down

drop_table :items
end

end

Generate a model for the pics table:

$ ruby script/generate model pic

The following will be output to the console:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/pic.rb
create test/unit/pic_test.rb
create test/fixtures/pics.yml
exists db/migrate

create db/migrate/002_create_pics.rb

Edit the db/migrate/002_create_pics.rb migration. The pics table requires name,
content_type, data, and item_id fields:

class CreatePics < ActiveRecord::Migration
def self.up
create_table :pics do |t
t.column :name, :string
t.column :content_type, :string
t.column :data, :binary
t.column :item_id, :integer
end
end
def self.down
drop_table :pics

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

end

end

Run the migrations to create the database tables:

$ rake db:migrate

The following is output to the console:

(in C:/rails/thumbnailer)

== Createltems: migrating ===

-—- create_table(:items)

-> 0.0930s

== Createltems: migrated (0.0930s8) ==

== CreatePics: migrating ==

-- create_table(:pics)

-> 0.1250s

== CreatePics: migrated (0.1250s) ===

Generate a controller called imageprocessor:

$ ruby script/generate controller imageprocessor

The following is output to the console:

exists
exists
create
exists
create
create

create

app/controllers/

app/helpers/

app/views/imageprocessor

test/functional/
app/controllers/imageprocessor_controller.rb
test/functional/imageprocessor_controller_test.rb

app/helpers/imageprocessor_helper.rb

Edit the apps /model/item. rb file. Establish a has_many relationship with the pic model:

class Item < ActiveRecord: :Base

has_many :pics

end

Edit the apps /model/pic.rb file. The RMagick library must be referenced. We need to add
functionality to the Pic class or model so that it is able to reduce the size of an image and save
the resulting image as a b1ob in the data field. Also, we need to establish a belongs_to rela-
tionship with the item model.

270

Sending and Receiving E-Mail

require 'RMagick' # if used in multiple locations add to environment.rb
include Magick
class Pic < ActiveRecord::Base
belongs_to :item
def pic=(image_field)
self.name =
File.basename (image_field.original_filename) .gsub(/["\w._-1/, '"')
self.content_type = image_field.content_type.chomp
img =
Magick::Image: :read_inline (Base64.b64dencode (image_field.read)) .first
self.data = img.resize_to_fit (100, 100).to_blob
end

end

The pic method retrieves the filename, content type, and image in binary format. The image data
is baseé4 encoded, resized, and then converted to a blob. The to_blob () method converts
the uploaded image to a b1ob data type so that it can be inserted into the database. Internet
Explorer returns the full path to the file as stored on a user’s local drive, so we need to strip out
the path details before we save the filename.

Create the following actions within the imageprocessor_controller.rb file:

* index

This action will render the index.rhtml file, which displays an image upload form.
* show
The show action links to the show.rhtml file. The show. rhtm1 file will display a thumbnail

within a web page. An tag is used to display the thumbnail. The src attribute of the
 tag calls the render_pic controller.

* render_pic

The render_pic action retrieved a data field from the Pics table and uses the send method to
push the image, its associated filename, and its content type to a web browser.

* create

The create action saves an item object and checks that the uploaded image is of the correct

MIME type. The pic model has been enhanced to process the image, so all we need to do from
within the controller action is call the save () method.

The full source code listing of imageprocessor_controller.rbis as follows:

271

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

class ImageprocessorController < ApplicationController
def index
end
def show
end
def render_pic
@pic = Pic.find(params|[:id])
send_data (@pic.data,
:filename => @pic.name,
:type => @pic.content_type,
:disposition => "inline")
end
def create
@item = Item.new(params[:item])
@item.save
unless params|[:pic]['pic'].content_type =~ /"“image/
flash[:error] = 'Please select an image file to upload.'
render :action => 'index'
return
end
@pic = Pic.new(params|:pic])
@pic.item_id = @item.id
if @pic.save
flash[:notice] = 'Item was successfully created.'
redirect_to :action => 'show'
else
flash[:error] = There was a problem saving the image.'
render :action => 'index'
end
end
end
The index.rhtml template uses the file_field helperto insert a file upload input box in the
form (see Figure 10.7):

<html>
<head>
<title>Image Thumbnailer</title>
</head>
<body>

272

NN

Sending and Receiving E-Mail

<hl>Tmage Thumbnailer</hl>

<%= form_tag({:action=>'create'}, :multipart=>true) %>
<% if @flash[:error] %>

<div class="error"><%= @flash[:error] %></div>

<% end %>

<p>Name: <%= text_field 'item', 'name' %></p>

<p>Description:
 <%= text_area 'item', 'description', :rows => 5 %></p>
<p>Image:<%= file_field("pic", "pic", :class => 'textinput') %>

<%= submit_tag "Create Thumbnail" %>
<%= end_form_tag %>

</body>

</html>

Figure 10.7
Creating a thumbnail from

within a Rails application.

In the show.rhtml template we can just use a tag to display the thumbnail :

<html>

<head>

<title>Show Image Thumbnail</title>

</head>

<body>

<hl>Show Image Thumbnail</hl>

<img src="<%= url_for(:controller => "imageprocessor",

:action => "render_pic",

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

:id => 3) %>" />
</body>
</html>

Graphs

Reviewing rows and rows of data is a tedious task. Graphs provide us with an intuitive visual
representation that is helpful when searching for trends and relationships. This section discusses
the graphing capabilities of the Gruff library. Gruff (http://rubyforge.org/projects/gruff/) is
written by Geoffrey Grosenbach (of Ruby on Rails podcast fame) and is powered by RMagick.
Gruff is able to draw bar (Gruff: :Bar), line (Gruff: :Line), and pie (Gruff: : Pie) charts.
Gruff also supports themes and customized colors.

A Gruff gem is available from RubyForge, so it can easily be installed:

$ gem install gruff

A pie graph object (see Figure 10.8) is created with the Gruff : : Pie.new method. We can then
set the title, theme, and datasets. The write () method saves the graph to the specified path, file,
and image format:

require 'rubygems'
require 'Gruff'
include Gruff
= Gruff::Pie.new
.theme_37signals

.title = "Product Line Sales"

p

b

b

p.data('Laptops', [251])
p.data('Desktops', [20])
p.data('Mobile Devices', [65])
p

.write('c:/rmagick/graphs/pie_graph.png')

The following creates a line graph (see Figure 10.9):

require 'rubygems'
require 'Gruff'
include Gruff

g = Gruff::Line.new

g.title = "A Line Graph"

g.data("DataSet 1", [1, 6, 8, 4, 7, 91)
g.data("DataSet 2", [6, 7, 7, 2, 6, 81])
g.data("DataSet 3", [3, 1, 1, 3, 2, 101)

http://rubyforge.org/projects/gruff/

Graphs

g.labels = {0 => '2001', 1 => '2002', 2 => '2003', 3 => '2004', 4 => '2005', 5
=> '2006"'}
g.write('c:/rmagick/graphs/line_graph.jpg"')

- Fi 10.8
Product Line Sales 9ure
)) A pie chart.
Laptops [l Desktops [Mobile Devices
59%
18%
- Figure 10.9
A Line Graph A line graph.

Il DataSet 1 DataSet 2 [DataSet 3

275

e <l <l

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

A bar graph is created by the following (see Figure 10.10):
require 'rubygems'
require 'Gruff'

include Gruff

g = Gruff::Bar.new
g.title = "A Bar Graph"
g.data("DataSet 1", [1, 6, 8, 4, 7, 91)
g.data("DataSet 2", [6, 7, 7, 2, 6, 8])
g.data("DataSet 3", [3, 1, 1, 3, 2, 10])
g.labels = {0 => '2001"',

1 => '2002",

2 => '2003",

3 => '2004",

4 => '2005"',

5 => '2006"'}
g.write('c:/rmagick/graphs/bar_graph.jpg')

Figure 10.10
A bar graph.

A Bar Graph

Il DataSet 1 DataSet 2 [DataSet 3

2003

276

sl sl sk

Graphs

3l Note

Gruff::Pie.new, Gruff: :Bar.new,and Gruff: :Line.new also accept a single parameter, which
specifies the width of the generated graph.

Generating Graphs in Rails

Gruff can easily be integrated with Rails to produce powerful web-based reports. We can either
include the Gruff library with the require directive wherever it is required or place the reference
inthe config/environment.rb file. Inthe render_graph action within the GraphController
code that follows, the pie chart object is converted to a b1ob (with the to_blob () method) and
passed to a web browser via the send_data method:

class GraphController < ApplicationController
def render_graph
p = Gruff::Pie.new
p.theme_37signals
p.title = "Product Line Sales"
p.data('Laptops', [25])
p.data('Desktops', [20])
p.data('Mobile Devices', [65])
send_data (p.to_blob,
:disposition => 'inline',
:type => 'image/png',
:filename => "graph.png")
end

end

An tag can then display the rendered graph (see Figure 10.11):

<img src="<%= url_for
(:controller => " GraphController",
:action => " render_graph "

) %> />

277

CHAPTER 1 O} E-Mail, Image Processing, and Graphing

Figure 10.11
Using Gruff to display
graphs.

Conclusion

Action Mailer is a Rails component equipped with a script generator to help model e-mail mes-
sages that can be rendered with dynamic . rhtm1 templates (views). RMagick has some
impressive image manipulation functionality. We are able to create thumbnail versions of an
uploaded image file. In this chapter, Gruff was used with a Ruby on Rails application to produce
line, bar and pie charts.

Although only three Ruby libraries were covered in this chapter, the concepts covered lend them-
selves to incorporating other libraries as well. The capabilities available at your fingertips are
endless. Have fun!

Rails Plug-Ins

Rails is completely extensible. This is illustrated by the huge number of available plug-ins. This
chapter concentrates on plug-ins that extend Active Record and simplify the integration of com-
ments, tags, versions, and fulltext search into an application. We will also look at an extension
to Action View that allows Rails to render a PDF document as a view. Plug-ins are particularly
useful for prototyping applications. In this chapter we will build a bookmark manager with tagging
support, an article manager with support for comments and fulltext search, and a note manager
that versions all notes as they are edited.

In this chapter you'll learn to:
Install plug-ins
Version content with acts_as_versioned
Add tagging with acts_as_taggable
Add comments with acts_as_commentable
Add full text search with acts_as_ferret

Generate PDF documents

Plug-In Installation

Plug-ins are listed on the Rails wiki at http://wiki.rubyonrails.org/rails/pages/Plugins. Rails uses
this page to get a list of valid plug-in subversion repositories by looking for URLs with /plugins
in the path. We can get Rails to parse the Wiki page for new plug-ins by typing:

$ ruby script/plugin discover

We can then display a list of plug-in repositories:

$ ruby script/plugin list --remote

okt

http://wiki.rubyonrails.org/rails/pages/Plugins

CHAPTER 11 } Rails Plug-Ins

We can view a list of currently installed plug-ins:

S ruby script/plugin list --local

We can add a plug-in manually:

$ ruby script/plugin source

And we can delete a plug-in:

$ ruby script/plugin delete

Plug-ins are placed within the vendor/plugins directory after installation. Once a plug-in is
installed, you will need to restart the Webrick web server, if it is already running. Each plug-in
has an init.rb file that is executed when the application is started. Plug-in initialization code is
placed within the init.rb file.

Ed Tip
You can use the script/generate plugin command to create a skeleton structure for a plug-in:

S ruby script/generate plugin acts_as_madonna

Versioning with acts_as_versioned

acts_as_versioned is an Active Record extension that stores a new version of a record each
time the content is updated. acts_as_versioned maintains a history of edits, and with some
code we will be able to allow users to view and swap between versions.

The following code will install acts_as_versioned:

$ ruby script/plugin install acts_as_versioned

The following files will be installed:

+ ./acts_as_versioned/CHANGELOG

+ ./acts_as_versioned/MIT-LICENSE

+ ./acts_as_versioned/README

+ ./acts_as_versioned/RUNNING_UNIT TESTS

+ ./acts_as_versioned/Rakefile

+ ./acts_as_versioned/init.rb

+ ./acts_as_versioned/lib/acts_as_versioned.rb
+ ./acts_as_versioned/test/abstract_unit.rb

+ ./acts_as_versioned/test/database.yml

280

Versioning with acts_as_versioned

+ ./acts_as_versioned/test/fixtures/authors.yml

+ ./acts_as_versioned/test/fixtures/locked_pages.yml

+ ./acts_as_versioned/test/fixtures/locked_pages_revisions.yml

+ ./acts_as_versioned/test/fixtures/migrations/1_add_versioned_tables.rb
+ ./acts_as_versioned/test/fixtures/page.rb

+ ./acts_as_versioned/test/fixtures/page_versions.yml

+ ./acts_as_versioned/test/fixtures/pages.yml

+ ./acts_as_versioned/test/fixtures/widget.rb

+ ./acts_as_versioned/test/migration_test.rb

+ ./acts_as_versioned/test/schema.rb

+ ./acts_as_versioned/test/versioned_test.rb

We will build an application to arbitrary notes—when notes are edited a new version will be
stored. acts_as_versioned has certain conventions that must be followed. The table that stores
the item being versioned must contain a version field.

The following will create a Notes table with a version field:

class CreateNotes < ActiveRecord::Migration
def self.up

create_table 'notes' do |t

t.column 'title', :string
t.column 'body', :text
t.column 'version', :int
end
end

def self.down
drop_table 'notes'
end

end

Next we need to create a second table called note_versions, the singular form of the table
name suffixed with _versions. This table will store older versions:

class AddVersions < ActiveRecord::Migration
def self.up

create_table 'note_versions' do |t]

t.column 'note_id', :int
t.column 'title', :string
t.column 'body', :text

_281

CHAPTER 11 } Rails Plug-Ins

t.column 'version',6 :int
end
def self.down

drop_table 'note_versions'
end

end

Within the app/models/note.rb file we just need to call acts_as_versioned:

class Statement < ActiveRecord::Base
acts_as_versioned

end

On the edit form we can add some code to allow a user to revert to a previous version. The code
will call the ' revert_version' action:

<hl>Editing note</hl>

<%= start_form_tag :action => 'update', :id => @note %>
<%= render :partial => 'form' %>

<p><label for="note_version">Version</label>:

<% if @note.version > 0 %>

<% (1..@note.versions.length) .each do |v| %>

<% if @note.version == v %>

ink_to v, :action => 'revert_version', :1id => @note, :version => v %>

</p>
<%= submit_tag 'Edit' %>

<%

end_form_tag %>

o0
Il

< nk_to 'Show', :action => 'show', :id => @statement %> |

1i
<%= link_to 'Back', :action => 'list' %>

An excerpt from the Note controller with only the revert_version action listed follows. The
revert_to! method is called:

Folksonomy with acts_as_taggable

class NoteController < ApplicationController
def revert_version
@note = Note.find(params|[:id])
@note.revert_to! (params|[:version])
redirect_to :action => 'edit', :id => @note
end

end

Folksonomy with acts_as_taggable

Tags are keywords that are associated with a content item. Tags are entered by users and are
known as a folksonomy because the keywords used are not predefined. Tags can be thought of
as a type of category and are usually displayed as a list or atag cloud. The acts_as_taggable
plug-in is an Active Record plug-in. We are now able to add tags to any Active Record model:

Installing acts_as_taggable:

$ ruby script/plugin install http://dev.rubyonrails.com/svn/rails

The following files are installed:

/plugins/acts_as_taggable/

+ ./acts_as_taggable/init.rb

+ ./acts_as_taggable/lib/README

+ ./acts_as_taggable/lib/acts_as_taggable.rb

+ ./acts_as_taggable/lib/tag.rb

+ ./acts_as_taggable/lib/tagging.rb

+ ./acts_as_taggable/test/acts_as_taggable_test.rb

The use of acts_as_taggable will be illustrated by a simple bookmark (or link storing) appli-
cation. A bookmark consists of a title, body, and URL. The tag_with method is part of
acts_as_taggable and takes a comma-delimited list of tags to associate with a bookmark.
The tags method returns a list of tags associated with an Active Record object. The
find_tagged_with method will return all bookmarks with a specified tag. The
bookmark.rb model file only needs to call acts_as_taggable for us to take advantage of
the plug-in:
class Bookmark < ActiveRecord::Base

acts_as_taggable

end

CHAPTER 11 } Rails Plug-Ins

We can use the Rails console to get some experience with the acts_as_taggable plug-in. We
are able to create a bookmark object and add tags to the object as well as list all the tags
associated with an object:

>> c= Bookmark.create(:title => "Link", :body => "a link", :url =>

"http://www.google.com")

=> #<Bookmark:0x3982904 @attributes={"body"=>"a link", "title"=>"Link",
"url"=>"

http://www.google.com", "id"=>1}, @new_record=false,
@errors=#<ActiveRecord: :Errors:0x3924818 @base=#<Bookmark:0x3982904 ...>,

@errors={}>, @new_record_before_save=true>
>> c.tag_with("search, rank, hello")
=> ["search", "rank", "hello"]

>> c.tags

=> [#<Tag:0x38e4600 Qattributes={"name"=>"search", "id"=>"1"}>,
#<Tag:0x38ed45c4Rattributes={"name"=>"rank", "id"=>"2"1}>,
#<Tag:0x38e4588 @attributes={"name"=>"hello", "id"=>"3"}>]

>> c2 = Bookmark.create(:title => "Link 2", :body => "link 2",

:url => "http://www.madonna.com")

=> #<Bookmark:0x38cec60 Qattributes={"body"=>"1link 2",
"title"=>"Link 2", "url"=>"http://www.madonna.com",
"id"=>2}, @new_record=false, @Qerrors=#<ActiveRecord::
Errors:0x38cab38 @base=#<Bookmark:0x38cec60 ...>,
@errors={}>, @new_record_before_save=true>

>> c2.tag_with("search, madonna")

=> ["search", "madonna"]

>> c2.tags

=> [#<Tag:0x3895clc Qattributes={"name"=>"search", "id"=>"1"}>,
#<Tag:0x3895a00

Cattributes={"name"=>"madonna", "id"=>"4"}>]

>> exit

The bookmark_controller.rb file can now be enhanced to include support for tagging. The
list action assigns a list of all tags to the @tags instance variable:

def list
@bookmarks = Bookmark.find(:all)
@tags = Tag.tags(:1limit => 100, :order => "name desc")

end

Folksonomy with acts_as_taggable

The create action saves the bookmark and uses the tag_with method to assign the tags to the
bookmark:

def create

@bookmark = Bookmark.new (params|[:bookmark])

if @bookmark.save
@bookmark.tag with (params|:tags])
flash[:notice] = 'Bookmark was successfully created.'
redirect_to :action => 'list’'

else
render :action => 'new'’

end

end

We even provide a tag_search action that facilitates searching for all bookmarks with a
particular tag:

def tag_search
@bookmarks = Bookmark.find tagged_with (params[:id])

end

The full source code listing for bookmark_controller.rb:

class BookmarkController < ApplicationController
def index
list
render :action => 'list’
end
GETs should be safe
#(see http://www.w3.0rg/2001/tag/doc/whenToUseGet .html)
verify :method => :post, :only => [:destroy, :create, :update],

:redirect_to => { :action => :list }

def list

@bookmarks = Bookmark.find(:all)

@tags = Tag.tags(:1limit => 100, :order => "name desc")
end

def tag_search

CHAPTER 11 } Rails Plug-Ins

@bookmarks = Bookmark.find_tagged_with (params[:id])

end

def show
@bookmark = Bookmark.find(params[:1id])

end

def new
@bookmark = Bookmark.new
@tags = ""

end

def create

@bookmark = Bookmark.new (params|[:bookmark])

if @bookmark.save
@bookmark.tag_with (params|[:tags])
flash[:notice] = 'Bookmark was successfully created.'
redirect_to :action => 'list’

else
render :action => 'new'

end

end

def edit
@bookmark = Bookmark.find(params[:id])

end

def update

@bookmark = Bookmark.find(params[:1id])

if @bookmark.update_attributes (params|:bookmark])
flash[:notice] = 'Bookmark was successfully updated.'
redirect_to :action => 'show', :id => @bookmark

else
render :action => 'edit'

end

end

286

sl sl sk
B 3k wk

Folksonomy with acts_as_taggable

def destroy
Bookmark.find (params|[:id]) .destroy
redirect_to :action => 'list’

end

end

Following is the _form.rb partial with support for the entry of tags. The partial is used by
the create and update forms. The tags associated with a bookmark are displayed as a comma-
separated list by the text_field_tag helper:

<%= error_messages_for 'bookmark' %>
<!--[form:bookmark]-->

<p><label for="bookmark title">Title</label>

<%= text_field 'bookmark', 'title' %></p>
<p><label for="bookmark_ body">Body</label>

<%= text_area 'bookmark', ‘'body' %></p>

<p><label for="bookmark_url">Url</label>

<%= text_field 'bookmark', 'url' $></p>

<p><label for="tags">Tag</label>

<%= text_field_tag 'tags', @bookmark.tags.collect{|t]| t.name}.join(", ") %></p>
<!--[eoform:bookmark]-->

A comma-delimited list of tags associated with a bookmark is displayed by calling
bookmark.tags.collect{|tag| tag.name}.join(", ").Thiscode can be added to
edit and update forms as well as the tag search results view:

<1li> <a href="<%=bookmark.url%>"><%=bookmark.title%>
(<%= link_to 'Edit', :action => 'edit', :id => bookmark %> |

<%

link_to 'Destroy', { :action => 'destroy',
:id => bookmark 1},
:confirm => 'Are you sure?',
:post => true %>)

<%=bookmark.body%>

Tags:

<

oe

if bookmark.tags.blank?

non

CHAPTER 11 } Rails Plug-Ins

else

bookmark. tags.collect{|tag| tag.name}.join(", ")

Commenting with acts_as_commentable

In Chapter 3, “Prototyping Database-Driven Applications with Rails,” we built a simple weblog
with support for comments within each post. We will now explore the acts_as_commentable
plug-in, which extends any model to support commenting. We have a Rails application that allows
articles to be stored. We will allow site visitors to add comments to the articles.

Installing acts_as_commentable:

$ ruby script/plugin install http://juixe.com/svn/acts_as_commentable
+ ./acts_as_commentable/MIT-LICENSE

+ ./acts_as_commentable/README

+ ./acts_as_commentable/init.rb

+ ./acts_as_commentable/install.rb

+ ./acts_as_commentable/lib/acts_as_commentable.rb

+ ./acts_as_commentable/lib/comment.rb

+ ./acts_as_commentable/tasks/acts_as_commentable_tasks.rake

+ ./acts_as_commentable/test/acts_as_commentable_test.rb

acts_as_commentable requires a table called comments with specific fields as outlined in the
migration below:

def self.up

create_table :comments, :force => true do |t]
t.column :title, :string, :1limit => 50, :default => ""
t.column :comment, :string, :default => ""
t.column :created_at, :datetime, :null => false
t.column :commentable_id, :integer, :default => 0, => false
t.column :commentable_type, :string, :limit => 15,
:default => "", :null => false

t.column :user_id, :integer, :default => 0, :null => false
end
add_index :comments, ["user_id"], :name => "fk_comments_user"

end

288

Commenting with acts_as_commentable

def self.down
drop_table :comments

end

We have generated a scaffold for the articles model. To enable commenting, we need to add
acts_as_commentable to our model:

class Article < ActiveRecord: :Base
acts_as_commentable

end

Within the article_controller.rb file, we need to add a comment action that creates a
new comment object and associates the object with an article:

class ArticleController < ApplicationController
def comment
comment = Comment.new (params]|[:comment])
Article.find(params|[:id]) .add_comment (comment)
flash[:notice] = "Your comment has been added!"
redirect_to :action => "show", :1d => params|[:id]
end

end

The show.rhtml view template is called to display an article and list all associated comments.
We also include a form to add a comment by posting to the comment action.

<%= render :partial => "article", :object => @article %>
<h2>Comments</h2>

<% for comment in @article.comments %>

<%= comment.title %>

= comment .comment %>

A
o

<hr />
<% end %>
<%= form_tag :action => "comment", :id => Qarticle %>

<p><label for="comment_title">Title</label>

<%= text_field 'comment', 'title' $></p>
<%= text_area "comment", "comment" %>

<%= submit_tag "Comment!" %>

</form>

CHAPTER 11 } Rails Plug-Ins

Searching with acts_as_ferret

Lucene provides an API for integrating full-text search into a Java application. Ferret is a port of
Lucene to the Ruby language. Lucene is both extremely customizable and powerful. A fulltext
search engine breaks a document down into words and creates an index. The index is organized
in such a manner that no matter what search terms you use, the time it takes to return matching
documents will always be the same. Lucene allows you to determine the fields that are stored in
the index, making it easy to add fulltext search to a web application.

We use gem to install Ferret:

$ gem install ferret

Some simple Ruby code is needed to store the index on the file system, tokenize two documents,
and insert the tokens within the file-based index. The documents are actually hashes; this allows
us fo separate the documents into fields. In this example, the documents have a title field and a
body field. This could easily be expanded to include a unique ID and other fields retrieved from
a database.

The create index.rb file:

require 'ferret'
include Ferret

index = Index::Index.new(:path => '/index"')

index << {:title => "Power Ruby", :body => "The Ruby port of Lucene is
awesome. "}

index << {:title => "This is great", :body => "full text search at my finger
tips."}

In true Ruby style, we can use a code block to search the index:

require 'ferret'
include Ferret
index = Index::Index.new(:path => '/index')
index.search_each('body: "Lucene"') do |id, score|
puts "Document #{index[id][:title]} found with a score of #{score}"

end

The previous two code snippets are very impressive in terms of functionality, but full-text searching
gets even better because the acts_as_ferret plug-in integrates Ferret with any Active Record
model.

acts_as_ferret can be installed with the script/plugin install command:

$ ruby script/plugin install

svn://projects.jkraemer.net/acts_as_ferret/tags/stable/acts_as_ferret

Generating PDF Documents

We just need to make a call to acts_as_ferret from within our model and tell it which fields
from our model must be indexed:

class Article < ActiveRecord: :Base
acts_as_ferret :fields => ['title', 'body']

end

Within our Article controller, the find_by_contents method will return search results from
the Ferret index

class ArticleController < ApplicationController
def search
@results = Article.find_by contents ("Lucene")
end

end

The @results variable is passed to the search.rhtml view template, which lists all search
results:

<hl>Article Search</hl>

<% 1f @results %>

<p>Your search for returned <%= @results.size %> Results:</p>

<% @results.each { |result]| %>

<1li><%= link_to result.title, :action => 'show', :1id => result %>

<% } %>

Generating PDF Documents

PDF is a universally supported format that preserves formatting when viewed and printed. The
PDF Writer library brings PDF reports to Ruby. The PDF Writer library can be used within a Rails
application to generate PDF reports. Railspdf is a plug-in that allows a view template to render
and send a PDF file to a web browser.

We use gem to install PDF Writer:

$ gem install pdf-writer

291

CHAPTER 11 } Rails Plug-Ins

Enter y for required dependencies:

Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency color-tools? [Yn] vy

Install required dependency transaction-simple? [Yn] vy
Need to update 1 gems from http://gems.rubyforge.org
Successfully installed pdf-writer-1.1.3

Successfully installed color-tools-1.3.0

Successfully installed transaction-simple-1.3.0

Installing ri documentation for pdf-writer-1.1.3...
Installing ri documentation for color-tools-1.3.0...
Installing ri documentation for transaction-simple-1.3.0...
Installing RDoc documentation for pdf-writer-1.1.3...
Installing RDoc documentation for color-tools-1.3.0...

Installing RDoc documentation for transaction-simple-1.3.0...

8 Note

Documentation for PDF Writer is also installed with the PDF Writer library. Information on PDF Writer
can be found at http://www.artima.com/rubycs/articles/pdf_writer2.html.

PDF Writer can be used directly within a controller. We need to include a reference to require
"pdf/writer" in the controller. A PDF: :Writer object is created by calling the new method.
Properties such as font, text, and justification can be set. The render method generates
the PDF file that is passed to the send_data method. The send_data method sends the PDF
document to a web browser. When the report action in the HelloController controller is
called, a PDF document will be generated and sent to a web browser for download. The
send_data method also requires a filename and MIME type. In this case the MIME type is set
to "application/pdf".

require "pdf/writer"
class HelloController < ApplicationController
def report
pdf_report = PDF::Writer.new
pdf_report.select_font "Times-Roman"
pdf_report.text "Hello, Ruby.", :font_size => 72,
:justification => :center

send_data pdf_report.render, :filename => "hello.pdf",

292

http://www.artima.com/rubycs/articles/pdf_writer2.html

Conclusion

:type => "application/pdf"
end

end

This all works, but we are doing document generation in the controller. It makes sense to take
HTML and XML out to the view. The same benefits apply to generating the PDF document in the
view. An action can be routed to a . rhtml or . rxml template to generate HTML and XML,
respectively. railspdf is a plug-in that allows actions to map to . rpdf template files. Let's install
the railspdf plug-in:

ruby script/plugin install svn://rubyforge.org//var/svn/railspdfplugin/railspdf

We can now pass data from an action to a . rpdf view. No send_data method call is required:

class HelloController < ApplicationController
def report
@name = "Ruby"
end

end

The code for the pdf . rpdf template is reduced to just two lines. There is no need to initialize
PDF: :Writer because this is already done:

pdf.select_font "Times-Roman"

pdf.text "Hello, #{@name}.", :font_size => 72, :justification => :center

Conclusion

Many more useful plug-ins are available. This chapter has served as an introduction to popular
and useful plug-ins (acts_as_versioned, acts_as_commentable, acts_as_taggable,
andacts_as_ferret)that will be of great assistance for prototyping applications. The concepts
taught, however, apply to other plug-ins, so you should have no trouble installing a plug-in and
using it within either a model, a view, or a controller in your Rails application.

293

This page intentionally left blank

Filters, Caching, and
Active Support

This chapter pulls together key Rails features that will not only make Ruby programming more
enjoyable but also help you to centralize code and improve performance. Filters are supported
by Action Controller and allow code to be run before and after actions in a controller are exe-
cuted. Practical examples of filter usage will be covered including basic authentication. Instead
of dynamically rendering content for each page request, we will use the caching mechanisms
provided by Rails to improve performance for content that is rarely updated. Active Support is
yet another Rails component, albeit a special component that Active Record, Action Controller,
and Action View all themselves utilize. Active Support extends base Ruby classes and has im-
pressive functionality that you can use directly in your own applications’ models and controllers.

In this chapter you’ll learn to:

Use filters to authenticate users and to track and time actions being accessed
Use page and action caching to help improve your application’s performance

Use the array, string, date, and pluralization extensions provided by Active Support

Filters

A filter is a method in a controller that can be executed before, after, or before and after all
actions within the controller are executed. Filters can even be placed within a class of their own
and shared across many controllers in your application. Filters are specified in a controller by
the before_filter, after_filter, and around_filter directives. The filter directive is
passed the name of the method that must be executed as the first parameter. The : except
parameter is optional and allows us to specify actions that must be excluded from the filter. In the
sections that follow, example filter usage will be illustrated.

CHAPTER 1 2} Filters, Caching, and Active Support

A before_ filter directive added to a controller:

class AdminController < ApplicationController
before_filter :sample_method

end

An after_ filter directive added to a controller:

class AdminController < ApplicationController
after_filter :sample_method

end

An around_filter directive added to a controller:

class AdminController < ApplicationController
around_filter :sample_method

end

A before filter that executes the authentication_check method for all action requests in a
controller except the login action:

before_filter :authentication_check, :except => [:login]

Avuthentication with Filters

The most important use of filters is for authentication. With a before_filter, you will be able
to enforce authentication against all actions that require restricted access. In this example, we
will set up a database to store user credentials and enforce authentication on an admin controller.

We start by generating a model called user:

S ruby script/generate model user

The following files and folders will be created:

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/user.rb
create test/unit/user_test.rb
create test/fixtures/users.yml
create db/migrate

create db/migrate/001_create_users.rb

You will notice that when we create a model called user, a migration called
001_create_users.rb is generated for us as well. Because | knew this would be done for

296

Filters

us, | did not generate a migration first. We can now edit the 001_create_users.rb file and
add the fields required by the users table. We only need a user_name and hashed_password

field:

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t]
t.column :username, :string
t.column :hashed_password, :string
end

end

def self.down
drop_table :users
end

end

We now run our migration and create the users table:

S rake db:migrate
(in C:/rails/authentication)
== CreateUsers: migrating ===
-- create_table(:users)
-> 0.1250s

CreateUsers: migrated (0.1250s) ==

We edit the user . rb file. The username must be unique, so we set the
validates_uniqueness_of directive. We will use the digest/sha2 library to create the
password hash. We include a method to set the password that will be inserted in the database:

require 'digest/sha2'
class User < ActiveRecord: :Base
validates_uniqueness_of :username
def password=(pass)
self.hashed _password = Digest::SHA256.hexdigest (pass)
end

end

Ideally, we would create an interface to add a user or a self registration form. Because this is an
example to illustrate filters, we will just create a new user with the Rails console:

297

CHAPTER 1 2} Filters, Caching, and Active Support

$ ruby script/console

Loading development environment.

>> aneesha = User.create(:username => "aneesha")

=> #<User:0x39bdf04 @attributes={"hashed password"=>nil, "username"=>"aneesha",
"id"=>1}, @new_record=false, @Qerrors=#<ActiveRecord: :Errors:0x396al9c @base=#<Us
er:0x39bdf04 ...>, @errors={}>>

>> aneesha.password ="donttellme"

=> "donttellme"

>> aneesha.hashed_password

=> "47c105d8c2634273e04dcd76aa5fdeff732586bb8814277a7a3a47a5¢c9a1338f"

>> aneesha.save

=> true

>> exit

We can now generate a controller called admin:

$ ruby script/generate controller admin

The admin controller needs to display a login form. The first action we add to the controller is
called login, which renders the 1ogin.rhtml template if called by a get request. If login is
called by a post request, it is assumed that the login form has been posted and we check to see
if the username and password combination are stored in the users table. If the password or
username is not found, we store the error message in flash[:info] and redirect back to the
login page. If the username and password are valid, we set session[:username] and
return to the action and controller that was originally requested. The
session[:intended_controller] andsession[:intended_action] needto be set by
the authentication filter so that all actions are caught.

def login
if request.post?
user = User.find(:first,
:conditions => ['username = ?', params|:username]])
if user.blank? || Digest::SHA256.hexdigest (params|[:password])
!= user.hashed_password
flash[:info] = "Invalid Username or Password!"
redirect_to :action => "login"
return

end

Filters

session[:username] = user.username
redirect_to :action => session[:intended_action],
:controller => sgession|:intended_controller]
end

end

The 1ogin.rhtml template displays the login form, which has a username and password field.
The form posts to the 1ogin action. If f1ash[:info] is set, this means that the invalid username
or password error message must be displayed.

<html>
<head>
<title>Admin: Login Form</title>
</head>
<body>
<h2>Admin: Login Form</h2>
<% if @flash[:info] %>
<p><div id="info">
<%= @flash[:info] %>

</div></p>

<%= start_form_tag :action => "login" %>
<label for="username">Username:</label>

<%

text_field _tag "username" %>

<label for="password">Password:</label>
<%= password_field_tag "password" %>

<%= submit_tag "Login" %>

<%= end_form_tag %>

</body>

</html>

Next we add the 1ogout and show_admin actions to the controller. The show_admin
action just needs to display the show_admin template. The 1ogout action resets
session[:username] to log the user out:

def logout
session|:username] = nil

end

CHAPTER 1 2} Filters, Caching, and Active Support

def show_admin

end

The show_admin.rhtml template informs users that they have access to the admin area. It also
includes a Logout link:

<html>

<head>
<title>Admin</title>
</head>

<body>

You have access to the Admin area.

<%= link_to 'Logout', :action => 'logout' %>
</p>

</body>

</html>

The 1logout.rhtml template includes a link that will force users to login before they can access
the admin area again:

<html>

<head>

<title>Admin: Logout</title>
</head>

<body>

You have logged out.

<%= link_to 'Try to access the Admin area.', :action => 'show_admin' %>
</p>

</body>

</html>

We are now ready to implement a filter to enforce authentication. The method will be
called authentication_check. If session[:username] is not set, the method sets
session[:intended_action] and session|[:intended_controller] and then
redirects the user to the login form.

def authentication_check
unless session|[:username]

session[:intended_action] = action_name

Filters

session|[:intended_controller] = controller_name
redirect_to :action => "login"
end

end

The authentication filter needs to be run before the user is allowed to access all actions, especially
show_admin, but not the login action. We use the before_filter directive and its optional
except parameter to achieve the required functionality. The final source code listing for the
admin controller (admin_controller.rb) follows:

require 'digest/sha2’
class AdminController < ApplicationController
before_filter :authentication_check, :except => [:login]
def authentication_check
unless session|[:username]
session[:intended_action] = action_name
session[:intended_controller] = controller_name
redirect_to :action => "login"
end

end

def login
if request.post?
user = User.find(:first,
:conditions => ['username = ?', params|:username]])
if user.blank? || Digest::SHA256.hexdigest (params|[:password])
= user.hashed_password
flash[:info] = "Invalid Username or Password!"

redirect_to :action => "login"

return
end
session|[:username] = user.username
redirect_to :action => session[:intended_action],
:controller => sgession|:intended_controller]
end

end

def logout

CHAPTER 1 2} Filters, Caching, and Active Support

session|:username] = nil

end

def show_admin
end

end

Using a before_filter to Log Actions

Thebefore filter canalsobe usedtotrack all actionsthat have been accessed. The controller
inthe example below implements afilter called Act ionLoggerFilter.ActionLoggerFilter
is actually a class. Placing the code for a filter in a class allows us to implement the filter across
all controllers in the application. The showform and show_formdata actions can be tracked
by ActionLoggerFilter.

class MyappactionsController < ApplicationController
before_filter ActionLoggerFilter
def showform
end
def show_formdata
@name = params|:name]
@prog_languages = params|[:prog_languages] || [1]
@operating systems = params|[:operating_systems] || [1]
end

end

The action logger filter.rb containsthe ActionLoggerFilter class. The
action_logger_filter.rbfileis placedinthe app/controllers folder. We create a new
Logger object and then use 1og.info to add to our log file. We even store posted form data
(from the params hash) in the actions. log file:

require 'logger'
class ActionLoggerFilter
def self.filter (controller)
log = Logger.new('C:/rails/authentication/log/actions.log"')
log.info("Action: " + controller.action_name +
" Params: "+controller.params.to_json)
end

end

302

Filters

After requesting the actions in our controller we can view the actions. 1og file:

Logfile created on Mon Jan 01 14:03:02 E. Australia Standard Time 2007 by
logger.rb/1.5.2.7

Action: showform Params: {"action": "showform", "controller": "myappactions"}
Action: show_formdata Params: {"name": "Aneesha", "commit": "Submit Form",
"prog_languages": ["Ruby", "Java", "C#"], "action": "show_formdata",
"controller": "myappactions", "operating systems": ["Windows", "Linux", "Mac"]}

Using an around_filter to Time Actions

The around_filter runs code before and after an action is executed. We will use an
around filter to calculate and log the time each action takes to execute. This is useful to determine
slow-running actions that may need performance enhancements.

Use the around_filter directive to create a new instance of the DurationLogger:

class MyappactionsController < ApplicationController
around_filter DurationLogger.new
def showform
end
def show_formdata
@name = params|[:name]
@prog_languages = params|[:prog_languages] || [1]
@operating systems = params|[:operating_systems] || [1]
end

end

Within the DurationLogger class we need before and after methods. Inthe before method
we set @start, which stores the time prior to the execution of an action. The after method
determines the amount of time it took the action to run using @start and then writes the details
to duration. log.

require 'logger'
class DurationLogger
def before(controller)
@start = Time.now

end

def after(controller)
log = Logger.new('C:/rails/authentication/log/duration.log')

duration = Time.now.to_f - @start.to_f

:3()3

CHAPTER 1 2} Filters, Caching, and Active Support

Q

log.info(controller.action_name + ", Duration: %.2f" % duration)
end

end

The duration.log file after a few actions have been requested:

Logfile created on Mon Jan 01 14:07:57 E. Australia Standard Time 2007
by logger.rb/1.5.2.7

showform, Duration: 0.00

show_formdata, Duration: 0.00

show_formdata, Duration: 0.02

Caching

Most applications you build will be viewed by many but updated by a select few who have the
appropriate rights. The owner of a blog, for example, would add new entries and possibly update
an entry, but all visitors would only view entries. It probably takes a few queries to view the blog
entries within a themed interface. These queries will be run for each visitor and unless blog entries
have been added, updated, or deleted, each visitor will see the same content. This is not really
a problem until the blog becomes popular and receives heavy traffic—then it becomes a perfor-
mance issue. The solution is to cache the content and only update the cache when a change (edit,
update, delete, or new entry) occurs.

Caching is only turned on in production mode. We will need to enable caching to test within a
development environment. We need to set
config.action_controller.perform_caching to true in development.rb:

config.action_controller.perform caching = true

We are going to create a News application using the scaffold command to generate the
controller code and interface. The News application is an ideal candidate for caching because
once an item is added, it is rarely changed, and most site traffic will be requests to view the news
items. We start by generating a migration to create the newsitem table:

$ ruby script/generate migration add_newsitem_table
create db/migrate

create db/migrate/001_add_newsitem_table.rb

The newsitems table only requires title and type fields to be used in our caching example. If
this was a real application, more fields such as a body would be required. The migration to create
the newsitems table:

£ 3 Cachiﬂg

class AddNewsitemTable < ActiveRecord::Migration
def self.up
create_table :newsitems do |t]
t.column "title", :string
t.column "type", :string
end

end

def self.down
drop_table :newsitems
end

end

Run the rake command to create the table:

S rake db:migrate
(in C:/rails/caching)
== AddNewsitemTable: migrating ==
-- create_table(:newsitems)
-> 0.0940s
== AddNewsitemTable: migrated (0.0940s) =======================================

Next we use a scaffold to generate the newsitem model and controller:

$ ruby script/generate scaffold newsitem newsitem

The first type of caching that we will use is called page caching. With page caching the entire
page or request, as defined by a unique URL, is cached. The caches_page directive must be
added to a controller to enable page caching. The name of the action to be cached must be
passed to the caches_page directive. The list action in the newsitem controller displays all
news items. The following directive will cache the list action:

caches_page :1list

The first time http://localhost:3000/newsitem/list is requested, a static version will be stored as
public\newsitem\list.html. A folder inthe public directory has been created correspond-
ing to the name of the cached controller. The action name has .html appended and is the
filename of the cached content.

All seems to work fine and a speed improvement is noted immediately. However, when we add
a new item, delete an item, or update an item, the list action always displays the out of date
version that was cached. We need to determine all the actions involved in changing news items

5()5

CHAPTER 1 2} Filters, Caching, and Active Support

and then add code in these actions to delete the cached version of the content rendered by the
list action. The expire page directive is used to achieve this:

expire_page :action => "list"

The newsitem controller with the expire_page directive added to all actions that alter content
is as follows:

class NewsitemController < ApplicationController
caches_page :1list
def index
list
render :action => 'list'

end

GETs should be safe (see http://www.w3.org/2001/tag/doc/whenToUseGet.html)
verify :method => :post, :only => [:destroy, :create, :update],

:redirect_to => { :action => :list }

def list
@newsitem_pages, @newsitems = paginate :newsitems, :per_page => 10

end

def show
@newsitem = Newsitem.find(params[:1d])

end

def new
@newsitem = Newsitem.new
expire_page :action => "list"

end

def create
@newsitem = Newsitem.new (params|[:newsitem])
if @newsitem.save
expire_page :action => "list"
flash[:notice] = 'Newsitem was successfully created.'
redirect_to :action => 'list'

else

£ Cachiﬂg

render :action => 'new'
end

end

def edit
@newsitem = Newsitem.find(params|[:1d])
expire_page :action => "list"

end

def update
@newsitem = Newsitem.find(params[:1id])
if @newsitem.update_attributes (params|:newsitem])

expire_page :action => "list"

flash[:notice] = 'Newsitem was successfully updated.'
redirect_to :action => 'show', :id => @newsitem
else

render :action => 'edit’'
end

end

def destroy
Newsitem.find (params|[:1d]) .destroy
expire_page :action => "list"
redirect_to :action => 'list'

end

end

Tip
It makes no sense to cache content that is rapidly updated such as stock quotes. If the display of this data
is causing a performance problem, cache the data but don’t delete the cache when the data is updated.

Instead, run a batch process that periodically deletes the cached content—you can do this by deleting
the folder that contains the cached version.

We can also cache actions by using the caches_action directive. Caching an action is

beneficial if we want to run some code before or after an action is run (i.e., execute a filter).

}()7

CHAPTER 1 2} Filters, Caching, and Active Support

If we wanted to ensure that a user was authenticated before the cached version was retrieved,
the caches_action should be used instead of the caches_page directive:

caches_action :1list

8 Note

The around_filter runs code before and after an action in a controller. The action cache is an
example of an around filter.

Active Support

Active Support is a library of extremely useful extensions to the Ruby language. Active Support
is used by other Rails components such as Active Record, Action Controller, and Action View.
You can take advantage of Active Support’s functionality and syntactic magic in your Rails
application.

Active Support encompasses a diverse range of extensions—everything from pluralization to
enumeration. Each extension will be illustrated with a simple example in the sub-sections that
follow. The Rails console will be used in all examples. The Rails console is like the Interactive Ruby
Shell (irb), first introduced in Chapter 1 and used in Chapter 2 to help you to learn the essential
ingredients of the Ruby language.

Starting the Rails console:

S ruby script/console

The >> prompt will be displayed. This indicates that you are ready to start trying Active Support:

Loading development environment.

>>

Useful String Extensions

In Ruby, string[4] returns an integer value when we really want the character at position 4
returned. Active Resource extends the string class with an at () method, which does return the
character at a given position:

>> a_string = "Rails is fun"
=> "Rails is fun"
>> a_string.at (4)

=> n"gn"

308

Active Support

We can get the characters of a string up to a specified position with the to method:

>> a_string.to(7)

=> "Rails is"

The from method gets all characters from a specified position:

>> a_string.from(9)

=> "fun"

We can also get the first and last characters of a string:

>> a_string.first()
=> "R"

>> a_string.first(4)
=> "Rail"

>> a_string.last(3)
=> "fun"

>> a_string.last

=> "n"

Date and Time Calculations
The to_s method helps format both Date and Time objects. The to_s method takes : short
and : long as formatting options. The to_s method applied to a Date object looks like this:

>> the_date = Date.today

=> #<Date: 4908201/2,0,2299161>
>> the_date.to_date

=> #<Date: 4908201/2,0,2299161>
>> the_date.to_s

=> "2006-12-31"

>> the_date.to_s(:short)

=> "31 Dec"

>> the_date.to_s(:1long)

=> "December 31, 2006"

>> the_date.to_s (:db)

=> "2006-12-31"

The to_s method applied to a Time object:

>> the_time = Time.now
=> Sun Dec 31 17:28:55 E. Australia Standard Time 2006

>> the_time.to_s

399

CHAPTER 1 2} Filters, Caching, and Active Support

=> "Sun Dec 31 17:28:55 E. Australia Standard Time 2006"
>> the_time.to_s(:short)

=> "31 Dec 17:28"

>> the_time.to_s(:1long)

=> "December 31, 2006 17:28"

>> the_time.to_s(:db)

=> "2006-12-31 17:28:55"

Date and time calculations can now be done in a breeze:

>> 30.minutes.ago

=> Sun Dec 31 17:01:08 E. Australia Standard Time 2006
>> 10.hours.ago

=> Sun Dec 31 07:31:22 E. Australia Standard Time 2006
>> 10.hours.from_now

=> Mon Jan 01 03:31:31 E. Australia Standard Time 2007
>> 1.day.from now

=> Mon Jan 01 17:31:46 E. Australia Standard Time 2007
>> 3 .months.ago

=> Mon Oct 02 17:31:57 E. Australia Standard Time 2006
>> Time.days_in_month(2)

=> 28

>> Time.days_in_month (2,2000)

=> 29

Convert an Object to JSON or YAML

JavaScript Object Notation (JSON) is a data-interchange format with a small footprint. Like
YAML, JSON is easy to read and write. JSON and YAML are good replacements for XML. Active
Support extends objects in Ruby with to_json and to_yaml methods. This is especially useful
if we wish to pass objects to Javascript.

>> person = Struct.new(:name, :address, :zip)

=> #<Class:0x39c05d8>

>> me = person.new("Aneesha Bakharia", "Somewhere, Australia",4122)

=> #<struct #<Class:0x39c05d8> name="Aneesha Bakharia", address="Somewhere, Aust
ralia", zip=4122>

>> me.to_json

=> "[\"Aneesha Bakharia\", \"Somewhere, Australia\", 4122]"

>> me.to_yaml

310

sl
ki

Active Support

=> "--- lruby/struct: \nname: Aneesha Bakharia\naddress: Somewhere, Australia\nz
ip: 4122\n"

Convert XML to a Hash

The from_xml method takes a string containing XML and stores each XML element as a key in
a hash data structure. This is great because hashes are familiar and easy to work with in Ruby.
>> Hash.from_xml
'<blog><blogpost><id>2</id></blogpost><blogpost><id>5</id></blogpost></blog>"
=>{"blog"=>{"blogpost"=>[{"id"=>"2"}, {"id"=>"5"}1}}

Fun with Arrays

Active Support array extensions are pure magic. | keep using these in my Rails applications, and
| am sure you will find them handy as well. Sometimes | am left wondering why these extensions
are not part of the Ruby core.

Add all values in an array:

>> [5,10,15] .sum

=> 30

We can make smart comma-delimited lists with to_sentence:

>> %w[Aneesha Celine Zaeem Tess].to_sentence

=> "Aneesha, Celine, Zaeem, and Tess"

That is great, but you may not want the last comma before the 'and .
The :skip_last_comma option does what its name suggests:

>> %w[Aneesha Celine Zaeem Tess].to_sentence(:skip_last_comma => true)

=> "Aneesha, Celine, Zaeem and Tess"

The : connector option lets us replace the 'and':

>> %w[Aneesha Celine Zaeem Tess].to_sentence(:connector=> '&"')

=> "Aneesha, Celine, Zaeem & Tess"

We can break up an array with in_groups_of. We pass the number of elements per group to
the in_groups_of method. Let’s split an array with eight elements into groups of two:

>> [1,2,3,4,5,6,7,8].in_groups_of(2) {|slice| puts slice.inspect}
= [1, 2]

[3,4]

[5,6]

[7,61]

311

CHAPTER 1 2} Filters, Caching, and Active Support

What if the number of elements isn’t divisible by the number of groups we require:

>> [1,2,3,4,5,6,7,8].in_groups_of(3) {|slice| puts slice.inspect}

=> [1, 2, 3]
(4, 5, 6]
[7, 8, nil]

If 'nil" is not acceptable, we can pass another parameter to the in_group_of method and
provide a replacement:

>> [1,2,3,4,5,6,7,8].in_groups_of (3, "-") {|slice| puts slice.inspect}
=> [1, 2, 3]

[4, 5, 6]

(7, 8, "-"1

Setting the second parameter to false just removes blank elements from the resulting array:

>> [1,2,3,4,5,6,7,8].in_groups_of (3, false) {|slice| puts slice.inspect}

=> [1, 2, 3]
[4, 5, 6]
[7, 8]

Numeric Enhancements
| used to write logic to handle the ordinance of a number but then | discovered the ordinalize
method. Needless to say | have never looked back.

>> 1.ordinalize
=> "lst"

>> 2.ordinalize

=> "2nd"
>> 3.ordinalize
=> "3rd"
>> 4 .ordinalize
=> "4th"
>> 5.ordinalize
=> "5th"

>> 21.ordinalize
=> |l2lst|l
We can check whether a number is even or odd:

>> 8.even-?

=> true

312

Active Support

>> 8.odd?
=> false
>> 3.even?
=> false
>> 3.0dd?

=> true

Using the multiple_of method:

>> 100.multiple_of? 5
=> true
>> 3.multiple_of? 2

=> false

Getting the size in bytes:

>> 20.bytes

=> 20

>> 30.bytes

=> 30

>> 30.kilobytes
=> 30720

>> 30.megabytes
=> 31457280

>> 30.gigabytes
=> 32212254720
>> 30.terabytes
=> 32985348833280

Pluralization
Pluralization in Rails is pretty smart—Rails has a good handle on the pluralization rules for the
English language. Let’s see just how smart it really is:

>> "dog".pluralize

=> "dogs"

>> "cake".pluralize

=> "cakes"

>> "chocolate".pluralize
=> "chocolates"

>> "box".pluralize

2:7:3 I 3

CHAPTER 1 2} Filters, Caching, and Active Support

=> "boxes"

>> "horse".pluralize
=> "horses"

>> "mouse" .pluralize
=> "mice"

>> "leaf".pluralize

=> "leafs"

Oops! The plural of leaf is not leafs. Let’s try a few more:

>> "man".pluralize
=> "men"
>> "criterion".pluralize

=> "criterions"

The plural of criterion is criteria. Rails does a good job but is admittedly not perfect. Hopefully,
thorough testing will reveal the words of incorrect pluralizations and we can add rules to the
inflector module. We can define words that have irregular or no plurals as well as a new plural
for a word with an incorrect plural. In the confide directory, you will find the

environment . rb file. We will add a new inflector rule to deal with the incorrect "1eaf " plural:

Inflector.inflections do |inflect|
inflect.irregular "leaf", "leaves"

end

To get Rails to pick up the new rules, we need to exit and restart the Rails console:

$ ruby script/console

Loading development environment."
>> "leaf".pluralize

=> "leaves"

>> "leaves".singularize

=> "Jeaf"

Conclusion

Three diverse but nonetheless important Rails features were covered in this chapter: filters,
caching, and Active Resource. This is the last chapter in which additional Rails functionality will
be introduced. In the chapter that follows, we will change our focus to implementing real-world
web applications. Enjoy the ride!

314

Testing and
Debugging

Rails is fully integrated with Test: : Unit, Ruby’s unit testing framework. Models, controllers,
actions, and even complex user scenarios that span multiple controllers are able to be tested. The
model and controller generators create stub test files to remove all barriers of entry. Testing is
now fully part of the development process. Testing uncovers bugs, so a few techniques to help
you debug your application are also included.

In this chapter you’ll learn to:
Use the Ruby unit testing framework (Test: :Unit)
Set up a database for testing
Unit test models

Functional test controllers

Werite integration tests across controllers and actions
Determine the percentage of code covered during testing
Display debug information

Write debug statements to log files

Check code for syntax errors

Using the Ruby Unit Testing Framework (Test::Unit)

Test: :Unit is the unit testing framework that is included in the Ruby standard library. Rails uses
Test: :Unit behind the scenes for unit, functional, and integration testing, so it makes sense to
first learn to use Test: : Unit to unit test a simple class.

Our class is called Employee and is saved to a directory called employee/app. The employee
directory can be thought of as the project directory. Application code within a project is
saved to the /app directory. The Employee class has accessor methods for firstname and

32

CHAPTER 1 3} Testing and Debugging

lastname. It also has a method that concatenates the firstname and lastname and returns
a fullname.

class Employee
attr_accessor :firstname, :lastname
def initialize(firstname, lastname)
@firstname, @lastname = firstname, lastname
end
def fullname
firstname + ' ' + lastname
end

end

The unit test for the Employee class is placed in a directory called test. The unit test filename
is the name of the class being unit tested with _test appended. The name of the class is just the
class name appended with Test. The unit test class extends the Test: :Unit: :TestCase
framework class. We require the Employee class and test/unit. Each method in the
EmployeeTest class is a test and is able to make numerous assertions. The names of methods
must be prefixed with test_. An assertion simply checks that a value returned by the class being
tested matches what we determine to be the correct response.

test/employee_test.rb
require File.join(File.dirname(__FILE_), '..',6 'app', 'employee')
require 'test/unit'
class EmployeeTest < Test::Unit::TestCase
def test_firstname
employee = Employee.new('Aneesha', 'Bakharia')
assert_equal 'Aneesha', employee.firstname
end
def test_lastname
employee = Employee.new('Celine', 'Bakharia')
assert_equal 'Bakharia', employee.lastname
end
def test_fullname
employee = Employee.new('Celine', 'Bakharia')
assert_equal 'Celine Bakharia', employee.fullname

end

end

Using the Ruby Unit Testing Framework (Test::Unit)

The test_firstname test initializes an Employee object with a first and last name. It then
retrieves the firstname attribute and checks if the returned value matches the value that was
passed to the constructor. The assert_equal method is used to check that the values match.
The test_lastname asserts that the 1astname attribute is working. The test_fullname
method checks that the 1astname and firstname attributes are concatenated.

4 Tip

A test suite consists of a number of test cases.

We now are able to run the test. Because the test is just a Ruby file, we can just type:

S ruby test/employee_test.rb

We receive feedback that three tests, three assertions, zero failures, and zero errors have
occurred:

Loaded suite test/employee_test

Started
Finished in 0.0 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

Let's alter the Employee class so that the test will fail. Suppose that another developer wants to
use the fullname method but requires that a comma be placed between the first and last names.
The other developer does not realize that the code might be used in multiple places. This is a fairly
trivial example, but it often occurs in real life.

class Employee
attr_accessor :firstname, :lastname
def initialize(firstname, lastname)
@firstname, @lastname = firstname, lastname
end
def fullname
firstname + ', ' + lastname
end

end

Before the code is deployed, the test case is run again—this time with a failed test:

317

CHAPTER 1 3} Testing and Debugging

$ ruby test/employee_test.rb
Loaded suite test/employee_test
Started
FL
Finished in 0.125 seconds.
1) Failure:
test_fullname (EmployeeTest) [test/employee_test.rb:16]:
<"Celine Bakharia"> expected but was <"Celine, Bakharia">.

3 tests, 3 assertions, 1 failures, 0 errors

3 Tip

A version control system such as Subversion or CSV will help you track down where a change has
occurred and by whom when a test case does eventually fail.

The assert_equal is one example of an assertion method; there are many more at your
disposal. Table 13.1 displays a list of assertion methods that Test : : Unit supports. Some
methods take a message as an optional argument. The message gets displayed if the assertion
fails.

Table 13.1 Test::Unit Assertions

Assertion Description

assert (boolean, [messagel) Assertion is passed if the Boolean is frue. The

message paramefer is opfional.

assert_equal (expected, actual, [messagel) Asserfion is passed if expected is equal to
actual.

assert_not_equal (expected, actual, Assertion is posseol if expected is not

[message]) equo| to actual.

assert_match(pattern, string, [message]) Assertion is passed if string mafches
pattern.

assert_no_match(pattern, string, [message]) Asserfionis passed if string does not

match pattern.
assert_nil (object, [messagel) Assertion is passed if object is nil.

assert_not_nil (object, [message]) Assertion is possed if object is not nil.

Setting Up the Test Database

Assertion Description

assert_instance_of (class, object, Assertion is passed if object is of type
[message]) class.

assert_raise (Exceptionl, Exception2, ...) Assertion is passed if one of the exceptions
{block} is raised by the block.

assert_nothing raised(Exceptionl, Assertion is passed if none of the exceptions
Exception2, ...) {block} are raised by the block.

el Tip

Within a test case, we can include setup and teardown methods. Use the setup method to load data
that will be used by the tests or establish database connections. The teardown method gets executed
after all tests have been run. The teardown method is the ideal place to put clean-up code and close
database connections.

Setting Up the Test Database

Te

sting in Rails requires its own database. Before a test begins, the data in the test database gets

deleted and repopulated. It is wise to create a database that is named after your project and has
_test appended when you create your development database. This will allow you to start writing
tests from the very beginning and instill a practice of continual testing. The test database is spec-
ified in the config/database.yml file. In this example, the testingrails_development

and testingrails_test database connections are specified:

de

te

velopment :

adapter: mysqgl

database: testingrails_development

username: root

password: secret

host: localhost

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
st:

adapter: mysqgl

database: testingrails_test

username: root

319

CHAPTER 13 } Testing and Debugging

password: secret
host: localhost
production:
adapter: mysqgl
database: testingrails_production
username: root
password: secret

host: localhost

The test database is an empty database. We will use migrations to create tables and columns in
the development database. When we are ready to test, we need to copy the schema to the test
database. This is easily achieved by a rake command:

S rake db:test:prepare

Testing in Rails

Rails has been encouraging us to write tests from the moment we created our very first application.
All new Rails applications have a tests directory. Within the tests directory, the following
subdirectories are found:

fixtures: The fixtures directory contains YAML files (. ym1) that are used to populate
a test database prior to running the actual tests.

unit: The unit directory contains unit tests. In Rails, unit tests are used to test
models.

functional: Functional tests are placed in the functional directory. Functional tests are

used to test controllers and actions in Rails.
integration: Integration tests simulate user activity on your site and test functionality across
controllers and actions.

Create a Rails application called testingrails:

$ rails testingrails

The test/unit and test/test_helper.rb file is created:
create test/unit

create test/test_helper.rb

Each time you create a model or a controller, the generator script also creates a skeleton file for
the unit and functional tests:

Unit Testing Models

$ ruby script/generate model user
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/user.rb
create test/unit/user_test.rb
create test/fixtures/users.yml
create db/migrate
create db/migrate/001_create_users.rb
$ ruby script/generate controller users
exists app/controllers/
exists app/helpers/
create app/views/users
exists test/functional/
create app/controllers/users_controller.rb
create test/functional/users_controller_test.rb

create app/helpers/users_helper.rb

Unit Testing Models

In Rails, models are unit tested. Unit tests use Test: : Unit and are placed in the tests/unit
folder. A common test to perform on models is to check if the validation works as desired.

We will create a table called users in our database with four columns: firstname, lastname,
username, and email.

Generate a user model:

$ ruby script/generate model user

Now we can edit the migration (001_create_users.rb) and create the users table:

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t]

t.column :username, :string

t.column :firstname, :string
t.column :lasttname, :string
t.column :email, :string

end

end

321

CHAPTER 1 3} Testing and Debugging

def self.down
drop_table :users
end

end

We run the migration:

$ rake db:migrate
(in C:/rails/testingrails)
== CreateUsers: migrating ===
-- create_table(:users)
-> 0.0790s

CreateUsers: migrated (0.07908) ==

We add validation helpers to the user model (app/models/user.rb):

class User < ActiveRecord::Base
validates_presence_of :firstname, :lastname, :username
validates_format_of :email,
:with => /7~ (["@\s]+)@((?:[-a-z0-9]1+\.)+[a-z]1{2,})$/1

end

We are just about to start writing tests, but because our test database is empty, we need to copy
the schema from the development database:

S rake db:test:prepare

The test/unit/user_test.rb file was created by the model generator. The file is a skeleton
for a unit test. The class inherits from Test : :Unit: : TestCase as expected. It also includes a
dummy test that always passes. The reason for the inclusion of test_truth is to allow you to
run tests even if a test was just added:

require File.dirname(__FILE__) + '/../test_helper'
class UserTest < Test::Unit::TestCase
fixtures :users
Replace this with your real tests.
def test_truth
assert true
end

end

322

lss
kx3

Unit Testing Models

We edit the test/unit/user test.rb file and add a test_validation method. We
initialize a user and then assert that the object is not valid. It won’t be valid because the mandatory
fields (firstname, lastname, and username) have not been set. We also assert that the
errors object contains error messages for the invalid fields:

require File.dirname(__FILE__) + '/../test_helper'
class UserTest < Test::Unit::TestCase
fixtures :users
def test_validation
user = User.new
assert l!user.valid?
assert user.errors.invalid? (:firstname)
assert user.errors.invalid? (:lastname)
end

end

We run the test:

S ruby test/unit/user_test.rb

Our one test and one assertion have passed:

Loaded suite test/unit/user_test

Started
Finished in 0.219 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Let's add another test called test_email validation. In this test we will use the
assert_equal method to make sure that the appropriate message is returned if an invalid
email address is assigned to the email attribute:

require File.dirname(__FILE__) + '/../test_helper'
class UserTest < Test::Unit::TestCase
fixtures :users
def test_validation
user = User.new
assert l!user.valid?
assert user.errors.invalid? (:firstname)

assert user.errors.invalid? (:lastname)

323

CHAPTER 13 } Testing and Debugging

end
def test_email validation
user = User.new(:email => "invalidemail.com")
assert !user.valid?
assert_equal "is invalid", user.errors.on(:email)
end

end

Now we will have two successful tests and five successful assertions:

$ ruby test/unit/user_test.rb
Loaded suite test/unit/user_test

Started
Finished in 1.031 seconds.

2 tests, 5 assertions, 0 failures, 0 errors

4 Tip

You will no doubt have multiple unit tests (one for each model). All tests can be run by typing rake
test:units at the command line.

Using Fixtures

We have thus far used Active Record objects to help simulate the addition and validation of
data. What if we need to perform tests on data already in a database? Fixtures allow us to
prepopulate a test database with data. Each time we run a test, the test database will be returned
to the state specified by the fixture. Fixtures are placed in the tests/fixtures directory. A
fixture for the user model is created by the model generator (users.ym1):

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
first:

id: 1
another:

id: 2

A fixture could use the YAML or CSV format. The default file that has been generated uses YAML
because this is the preferred format. The file is named after the database table and not the
model—it is a plural word.

Unit Testing Models

Each row of data that will be inserted into the table is labeled. This allows us to refer to it within
the test case. The name/value pairs are not indented—spaces are used. Be very careful to preserve
the spaces when you edit or insert more rows, because the YAML parser will throw errors if it
can't parse the file.

To illustrate the usefulness of fixtures, we will use a fixture to help test that we can’t add a
duplicate username to the users table. The validates_unigueness_of helper is used to
enforce this validation:

class User < ActiveRecord: :Base
validates_uniqueness_of :username
validates_presence_of :firstname, :lastname, :username
validates_format_of :email,
:with => /A~ ([7@\s]+)@((?:[-a-z0-9]+\.)+[a-2z]{2,})s$/1

end

We edit the users.yml fixture and create a record named first user:

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
first_user:

id: 1

username: aneesha

firstname: Aneesha

lastname: Bakharia

email: aneesha.bakharia@gmail.com

In the test/unit/user_test.rb file we add the fixture directive (fixtures :users) so
that we can use the fixture in the test. The fixture directive will force all records in the users table
to be deleted and populated with the data specified in the fixture before each test commences.
We can use the labels in the users.ym1 file to return an Active Record object: Calling users
(:first_user) returns a user model with the data defined for that row in the fixture. We now
add a test to ensure no duplicate usernames can be stored:

require File.dirname(__FILE__) + '/../test_helper’
class UserTest < Test::Unit::TestCase
fixtures :users
def test_unigque_username
user = User.new(:username => users(:first_user) .username)
assert !user.save

assert_equal "has already been taken", user.errors.on(:username)

325

CHAPTER 1 3} Testing and Debugging

end

end

As a matter of interest this is what a CSV fixture looks like:

id, username, firstname, lastname, email
1, "aneesha", "Aneesha", "Bakharia", "aneesha.bakharia@gmail.com"

2, "celine", "Celine", "Bakharia", "cb@randomsyntax.com"

Functional Testing Controllers

In Rails, testing a controller and its actions is called a functional testing. Functional tests still use
Test: :Unit but are able to simulate HTTP requests to a controller’s action (just like the ones
made by a web browser) and inspect the response. When the controller generator is used, a
skeleton functional test is created as well:

S ruby script/generate controller users
exists app/controllers/
exists app/helpers/
create app/views/users
exists test/functional/
create app/controllers/users_controller.rb
create test/functional/users_controller_test.rb

create app/helpers/users_helper.rb

The generated functional test inherits from Test: :Unit: : TestCase and contains the
test_truth method that always returns true. There is an extra method called setup. The
setup method is run before the test methods. Within the setup method, a new instance of the
controller is created. Request and response objects are also created and allow us to perform
functional tests that would normally only be run from within a web browser.

require File.dirname(__FILE__) + '/../test_helper’

require 'users_controller'

Re-raise errors caught by the controller.

class UsersController; def rescue_action(e) raise e end; end

class UsersControllerTest < Test::Unit::TestCase

def setup
@controller = UsersController.new
@request = ActionController: :TestRequest.new
@response = ActionController: :TestResponse.new

end

Functional Testing Controllers

Replace this with your real tests.
def test_truth

assert true
end

end

Our sample controller called UsersController (users_controller.rb) is exceptionally
simple but will illustrate key functional testing concepts. The controller has three actions. The
index action displays the index.rhtml template. The 1ist action just redirects to the
index action. The setflash action stores a message in flash[:notice] and then redirects
to the index action.

class UsersController < ApplicationController

def index

end
def list
redirect_to :action => 'index'
end
def setflash
flash[:notice] = 'The item was successfully created.'

redirect_to :action => 'index'
end

end

In atest case we use the get method to call the index action andthe assert response method
to ensure that the request was a success:

def test_index
get :index
assert_response :success

end

We could even use the assert_template method to check that the index.rhtml template
was rendered:

def test_index_template
get :index
assert_response :success
assert_template "index"

end

é}27

CHAPTER 1 3} Testing and Debugging

The 1ist action redirects to the index action, so after using get to request the action, we use
assert_redirected_to to make sure that we are redirected to the index action:

def test_list_redirection
get :1list
assert_redirected_to :action => "index"

end

We can even check that the £1ash has the correct value with assert_equal:

def test_set_flash
get :set_flash
assert_redirected_to :action => "index"
assert_equal "The item was successfully created.", flash[:notice]

end

Here is the full code listing for the test/functional/users_controller_test.rb file:

require File.dirname(__ _FILE_) + '/../test_helper’

require 'users_controller'

Re-raise errors caught by the controller.

class UsersController; def rescue_action(e) raise e end; end

class UsersControllerTest < Test::Unit::TestCase

def setup
@controller = UsersController.new
@request = ActionController: :TestRequest.new
@response = ActionController::TestResponse.new
end

def test_index
get :index
assert_response :success

end

def test_index_template
get :index
assert_response :success
assert_template "index"

end

def test_list_redirection
get :list

assert_redirected_to :action => "index"

Functional Testing Controllers

end
def test_list_redirection
get :1list
assert_redirected_to :action => "index"
end
def test_set_flash
get :set_flash
assert_redirected_to :action => "index"
assert_equal "The item was successfully created.", flash[:notice]
end

end

The four tests and eight assertions all run successfully:

$ rake test:functionals

(in C:/rails/testingrails)
c:/ruby/bin/ruby-Ilib;test"c:/ruby/lib/ruby/gems/1.8/gems/rake-0.7.1/1lib/rake/
rake_test_loader.rb" "test/functional/users_controller_test.rb"

Loadedsuitec: /ruby/lib/ruby/gems/1.8/gems/rake-0.7.1/1ib/rake/rake_test_loader
Started
Finished in 0.875 seconds.

4 tests, 8 assertions, 0 failures, 0 errors

Rails adds several assertions to help with functional testing (see Table 13.2). In the previous
example we used assert_response, assert_redirected_to, and assert_template

Table 13.2 Rails-Specific Assertions

Assertion Description

assert_dom_equal A%emonraumstrueiﬂwm)HTNﬂshmgsomemesome

assert_dom_not_equal A%emonrmumstrueiﬂwm)HTNﬂshmgsomenloesome

assert_tag Assertion returns true if the body of the response contains a tag/node/
element that matches the specified conditions.

assert_recognizes Assertion returns true if the routing rules parse the specified URL path.

assert_redirected_to Asserfion refurns true if a redirection occurs to the specified actfion.

sl ol

3

CHAPTER 1 3} Testing and Debugging

Assertion Description

assert_response A%emonraumstrueiﬂhespedﬂaiHTTPmmpmmecodeBreMmed

assert_template Assertion returns true if the specified template file was used to generate the
response.

assert_valid Assertion returns true if the Active Record object is valid.

Posting Form Data

Within a functional test, we can simulate a form post and then check that the posted form data is
displayed. In the previous section we used the get method to make a request; we will now use
the post method in a functional test. The assert_tag will help us check whether the returned
response contains the posted data.

We start by generating a controller:

$ ruby script/generate controller formprocessor
exists app/controllers/
exists app/helpers/
create app/views/formprocessor
exists test/functional/
create app/controllers/formprocessor_controller.rb
create test/functional/formprocessor_controller_test.rb

create app/helpers/formprocessor_helper.rb

The controller (formprocessor_controller.rb) has two actions. The showform action
renders showform. rhtml, which displays a form with a single field called name. The
show_formdata action receives the posted data, sets the @name variable, and then renders
show_formdata.

class FormprocessorController < ApplicationController
def showform
end
def show_formdata
@name = params|[:name]
end

end

The show_formdata.rhtml template:

<h2>A Simple Form</h2>

<%= start_form_ tag(:action => "show_formdata") %>

Functional Testing Controllers

<p>Text Field:

<%= text_field_tag("name", "Aneesha") %$></p>
<%= submit_tag("Submit Form") %>
<%= end_form_tag %>

The showform.rhtml template displays the @name variable within opening and closing <h2>
tags:

<h2>Name: <%= @name %></h2>

We now edit formprocessor_controller_ test.rband add a test_show_formdata
test. We use assert_tag to check that the text between the opening and closing <h2> tags
matches the name posted to the form:

require File.dirname(__FILE__) + '/../test_helper’

require 'formprocessor_controller'

Re-raise errors caught by the controller.

class FormprocessorController; def rescue_action(e) raise e end; end

class FormprocessorControllerTest < Test::Unit::TestCase

def setup
@controller = FormprocessorController.new
@request = ActionController: :TestRequest.new
@response = ActionController::TestResponse.new
end

def test_show_ formdata
post :show_formdata, :name => 'Aneesha'
assert_response :success
assert_template "show_formdata"
assert_tag :tag => "h2", :content => "Name: Aneesha"
end

end

We run the one test and three assertions:

$ ruby test/functional/formprocessor_controller_ test.rb
Loaded suite test/functional/formprocessor_controller_test
Started

Finished in 0.141 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

CHAPTER 1 3} Testing and Debugging

Scaffolding and Functional Testing

In Chapter 3, “Prototyping Database-Driven Applications with Rails,” we created an FAQ
Manager that primarily used the Rails scaffold generator. You'll be pleased to know that even
the scaffold command generates a functional test, and it's not just a stub file. It actually has
tests for each action, including show, new, create, and destroy. Please review the

faqg controller_test.rb file; it is a useful learning tool for writing CRUD functional tests:

require File.dirname(__FILE__) + '/../test_helper'

require 'fag controller'

Re-raise errors caught by the controller.

class FagController; def rescue_action(e) raise e end; end
class FagControllerTest < Test::Unit::TestCase

fixtures :fags

def setup
@controller = FagController.new
@request = ActionController: :TestRequest.new
@response = ActionController::TestResponse.new

end
def test_index
get :index
assert_response :success
assert_template 'list'
end
def test_list
get :1list
assert_response :success
assert_template 'list'
assert_not_nil assigns(:faqgs)
end
def test_show
get :show, :id => 1
assert_response :success
assert_template 'show'
assert_not_nil assigns(:faq)
assert assigns(:faq).valid?
end

def test_new

get :new
assert_response :success
assert_template 'new'

assert_not_nil assigns(:faq)

end

def test_create

num_fags = Fag.count
post :create, :fag => {}
assert_response :redirect
assert_redirected_to :action => 'list’

assert_equal num_fags + 1, Fag.count

end
def test_edit

get :edit, :id => 1
assert_response :success
assert_template 'edit'
assert_not_nil assigns(:faq)

assert assigns(:faq).valid?

end

def test_update

post :update, :1d => 1

assert_response :redirect

assert_redirected_to :action => 'show',

end

def test_destroy

assert_not_nil Faqg.find (1)
post :destroy, :id => 1
assert_response :redirect

assert_redirected_to :action => 'list’

assert_raise(ActiveRecord: :RecordNotFound)

Fag.find (1)

end

end

{

Functional Testing Controllers

:id => 1

AN
N
2.\

%
33

CHAPTER 1 3} Testing and Debugging

Avuthentication

In Chapter 12, we used filters to force a user to log in before being allowed to see certain admin-
only areas of a web site. We are now going to build a functional test to ensure that our
authentication is working correctly.

Before we get started, let's take another look at the user model. Note that the password is
encrypted and stored in the hash_password field:

require 'digest/shal'
class User < ActiveRecord: :Base

validates_uniqueness_of :username

def password=(pass)
self.hashed_password = Digest::SHA256.hexdigest (pass)
end

end

Inthe controller, the authentication_check method is applied as afilter for all actions except
login. If the user has not logged in (session[:username] is not set) a login page is shown.
The login page requires a username and password and posts back to the login action. If the
username and password are in the database, the user is allowed access to the other actions. If
they are invalid, a message is added to the £1ash and shown on the login form. Here is the
source code for the Admin controller:

require 'digest/sha2'
class AdminController < ApplicationController
before_filter :authentication_check, :except => [:login]
def authentication_check
unless session|:username]
session[:intended_action] = action_name
session[:intended_controller] = controller_ name
redirect_to :action => "login"
end
end
def login
if request.post?
user = User.find(:first,
:conditions => ['username = ?',
params [:username]])

if user.blank? || Digest::SHA256.hexdigest (params|:password]) !=

334

Functional Testing Controllers

user .hashed_password
flash[:info] = "Invalid Username or Password!"

redirect_to :action => "login"

return
end
session[:username] = user.username
redirect_to :action => session[:intended_action], :controller =>

session[:intended_controller]

end
end
def logout
session[:username] = nil
end

def show_admin
end

end

With the fixture (users.yml) we add a username and password to validate against. The
password is encrypted. This would present a problem except that fixtures are able to include
Embedded Ruby. We can use the <%= and %> delimiters. This is very powerful, and we can encrypt
the password using Ruby:

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
<% require 'digest/sha2' %>
aneesha:

id: 1

username: aneesha

hashed_password: <%=Digest::SHA256.hexdigest ('donttellme') %>

Inthe test_login method, we post the username and password to the 1ogin action and check
that session[:username] has been set:

def test_login
aneesha = users(:aneesha)
post :login, :username => aneesha.username, :password => 'donttellme’
assert_equal aneesha.username, session|[:username]

end

The test_invalid_password method posts an incorrect password to the 1ogin action and
checks that flash[:info] is set:

335

CHAPTER 1 3} Testing and Debugging

def test_invalid_password
aneesha = users(:aneesha)
post :login, :username => aneesha.username, :password => 'tellme'
assert_redirected_to :action => "login"
assert_equal "Invalid Username or Password!", flash[:info]

end

The full source code listing for the admin_controller_test.rb:

require File.dirname(__FILE_) + '/../test_helper'

require 'admin_controller'

Re-raise errors caught by the controller.

class AdminController; def rescue_action(e) raise e end; end
class AdminControllerTest < Test::Unit::TestCase

fixtures :users

def setup
@controller = AdminController.new
@request = ActionController: :TestRequest.new
@response = ActionController: :TestResponse.new
end

def test_login
aneesha = users(:aneesha)
post :login, :username => aneesha.username, :password => 'donttellme'
assert_equal aneesha.username, session|:username]
end
def test_invalid_password
aneesha = users(:aneesha)
post :login, :username => aneesha.username, :password => 'tellme'
assert_redirected_to :action => "login"
assert_equal "Invalid Username or Password!", flash[:info]
end

end

Integration Testing

Integration tests allow you to model tests based upon the activity performed by your users or web
site visitors. Functional tests are able to test only a single controller. With integration tests, we can
test across controllers and actions. Integration tests were first introduced in Rails 1.1.

Integration Testing

Unlike unit and functional tests, integration tests are not created when a model or controller is
generated. However, there is an integration test generator:

S ruby script/generate integration_test user_scenario

Running the intergration_test generator will create a test file:

exists test/integration/

create test/integration/user_ scenario_test.rb

The stub file inherits from IntegrationTest. You can include multiple fixtures:

require "#{File.dirname(__FILE_)}/../test_helper"
class UserScenarioTest < ActionController::IntegrationTest
fixtures :your, :models
Replace this with your real tests.
def test_truth
assert true
end

end

In the following example we test that a user can register and then log in:

require "#{File.dirname(__FILE_)}/../test_helper"
class UserScenarioTest < ActionController::IntegrationTest
fixtures :user, :preferences
def test_register_new_ user
get "/register"
assert_response :success
assert_template "register/regform"
post "/register",
:user_name => "aneesha",
:password => "donttellme"
assert_response :redirect
follow_redirect!
assert_response :success
end

end

You can use rake to run all tests found in the tests/integrations directory:

rake test::integration

337

CHAPTER 13 } Testing and Debugging

Ed Tip

When a user reports a bug, write a test to reproduce the error. This will increase the number of integration
tests and also give you ideas on the types of integration tests you should be building. When changes are
made to your application, you can also ensure that the same bugs don’t creep in again.

Ed Tip

If you'd like to test AJAX within your application, try Selenium. Selenium runs inside a browser
and has a recorder to help you design tests. More information on Selenium can be found at
http://www.openqa.org/selenium/.

Code Coverage

It is good to get an indication of how much code you have written in relation to test code. Ideally
you should aim to get close to a 1:1 ratio to make sure everything your code is doing gets tested.
The rake stats command prints code and test statistics:

$ rake stats

(in C:/rails/authentication)

T e e fmmmm— fmmmm———— e fmmm———— +
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
e B Fommm———— fmmm fomm to——— Fom————— +
Helpers	7	6	0	0	0	0
Controllers	74	58	5 9	1	4	
Components	0	0	0	0	0	0
Functional tests	46	35	4	7	1	3
Models	9	7	1	1	1	5
Unit tests	10	7	1 1	1	5	
Libraries	0	0	0	0	0	0
Integration tests	0	0	0	0	0	0
e e fmmm———— fmmm fmm - fom————— +						
Total	146	113	11	18	1	4
e o ————— fmm——— fmm fmmm——— e fmm————— +
Code LOC: 71 Test LOC: 42 Code to Test Ratio: 1:0.6

The rake stats command traverses through all the folders in your application and prints the
number of lines of code, number of classes, and number of methods in an ASClII table. The code
to test ratio is also displayed.

338

http://www.openqa.org/selenium/

Code Coverage

How do we know that we have tested everything2 Code is often made up of complex logic! How
do we ensure that every scenario is tested? The rake stats command just gives us a ratio but
can’t tell us which segments of code have not been tested. A useful tool called rcov can run tests
and then produce a report that will show the code segments that have not been tested.

A gem is used to install rcov:

$ gem install rcov

If your operating system is Windows, make sure you select the mswin32 version.

We now tell rcov to determine the code coverage of all the functional tests. We have removed
a test to check if the f1ash was set before a redirection occurs. This means that not all code is
tested. Let’s see if rcov can pick this up:

$ rcov test/functional/*
Loaded suite c:/ruby/bin/rcov

Started
Finished in 0.141 seconds.

4 tests, 8 assertions, 0 failures, 0 errors

The output of rcov looks like that from a routine functional test, but behind the scenes rcov
produces a coverage report and places it in the /coverage/ directory. Open the
index.html to view the report (see Figure 13.1). A list of files and their percentage of code
coverage is shown. The app/controllers/users_controller.rb file has only 63% test

Figure 13.1

The rcov report.

339

CHAPTER 13 } Testing and Debugging

coverage. We can click on the link to see the code segment that has not been tested (see
Figure 13.2). In this case, the set f1ash action has not been tested.

Figure 13.2
Code not tested by a

functional test.

3 Tip

More info on rcov can be found at http://eigenclass.org/hiki.rb2rcov.

Debugging
This section includes some handy techniques to help you fix errors, whether they are detected
while you are coding or after running a test suite.

Using the debug Helper

The debug helper can be used in a view (. rthml) template. The debug helper is able to output
the contents of HTTP headers, the params hash, the request object, the response object, and
all the data stored in a session.

An example template using all the debug variations:

<h2>Headers:</h2>

<%= debug (headers) %$>

<h2>Environment Variables:</h2>
<%= debug(request.env) %>

<h2>Params hash:</h2>

<%= debug (params) %>

http://eigenclass.org/hiki.rb?rcov

Debugging

<h2>Request:</h2>
<%= debug(request) %$>

<h2>Response:</h2>

<%= debug (response) %>

g

<h2>Session</h2>

<%= debug(session) %>

3 Tip
The raise method can be used to convert any object into a string. This is a useful technique to print the
attributes of an object. To make the result more readable we convert to YAML:
def index
@Quser = User.find_by_ firstname ()
raise @user.to_yaml

end

Using the Built-In Logger Class

Rails includes development and production log files. Log files are stored in the # {RATLS_ROOT} /
log directory. The Logger class can be used to write custom entries into log files. The Logger
class supports severity levels: debug, info, warn, error, and fatal.

Examples to add entries with varying severity:

logger.debug "A sample debug message"
logger.info "A sample info message"
logger.warn "A sample warn message"
logger.error "A sample error message"

logger.fatal "A sample fatal message"

The following will be inserted into the log:

DEBUG A sample debug message
INFO A sample info message
WARN A sample warn message
ERROR A sample error message

FATAL A sample fatal message

Within the config/environment.rb file, we can set the lowest severity level that we would
like to output. All levels of greater severity will also be output:

341

CHAPTER 13 } Testing and Debugging

Rails::Initializer.run do |config]|
config.log_level = :debug

end

There are also methods to test whether logger severity is supported in the current environment
(development or production):

logger.debug?
logger.info?
Jlogger.warn?
logger.error?
Jlogger.fatal?
We can therefore check if a severity level is supported before we try to write to the log:

if logger.debug? then
logger.debug "A debug message"

end

3 Tip
Within the config/environment . rb file we can specify the format of a log entry. In this example we add a
timestamp:
class Logger
def format_message(severity, timestamp, progname, msg)
“[#{timestamp.strftime (“$Y-%m-%d $H:%M:%S”)}] #{severity} #{msg}\n”
end

end

Checking Code for Syntax Errors

In Chapter 2, “Ruby Essentials,” we learned to use command switches for the Ruby interpreter.
The -cw switch enables us to check the syntax of Ruby code and display warning messages. The
-cw switch does not execute code. We can use the switch to check the code in models and
controllers before we request an action in a browser:

$ ruby -cw app/models/user.rb

342

Conclusion

Conclusion

We have unit tests to test our models, functional tests to test actions in a controller, fixtures to help
us load test data into the test database, and integration tests to simulate user activity that spans
multiple controllers and actions. Testing in Rails is fully integrated! Generators even help you with
skeleton files to help you get started. You don’t have any excuse not to write test cases and
improve the quality and reliability of your application as it is maintained and upgraded. This
chapter also included some useful debugging techniques.

Easd

This page intentionally left blank

Designing Rails
Applications

In this chapter we apply all that we have learned throughout the book to design and build two
Rails applications—a wiki and a forum. We start with a feature list for each application, install
required plug-ins and libraries, use migrations to create the database, add validation rules to the
model, program the logic for the controller, and design the view templates.

Designing a Wiki

A wiki allows web pages to be created, updated, and hyperlinked in a simple and intuitive manner.
Wikipedia is the most well known wiki, but in recent years it is hard to find a web application,
framework, or technology that does not use a wiki to allow for the collaborative creation and
versioning of documentation. We are going to design and build a wiki with Rails.

Features
We are going to design a simple, yet functional wiki. The following key features are required:

Wiki markup. We need to support textile formatting. Users have come to rely on and are
familiar with wiki. We can easily implement this functionality by using the textilize helper.
We need to install RedCloth before we are able to use the textilize helper.

The ability to create, edit, and version pages. No problem with creating and updating pages
in Rails. Versioning should not be too difficult but instead of making our own solution, we
choose to use the acts_as_versioned plug-in that was introduced in Chapter 11.

Hyperlink CamelCased words. CamelCased words are links to new or existing pages in a
wiki. We will use a regular expression to hyperlink CamelCased words. If a page that is
linked to is not found, a form allowing the user to create the page will be displayed.

List all wiki pages. A list of all pages with links to edit and view each page.

CHAPTER 1 4} Designing Rails Applications

Version history. Display a list of versions and allow the user to revert to either a previous or
more recent version of a page. The acts_as_versioned plug-in has a revert_to
method, which we will use to implement this feature.

We would also like to use a differencing algorithm to compare two versions. We would like
to see additions and deletions in a visual manner. A quick search on the Rails mailing list
reveals a solution proposed by Beate Paland. The solution uses the di £ £ . rb file from Instiki
(a wiki built in to Ruby): http://dev.instiki.org/file/instiki/trunk/lib/diff.rb.

Intuitive navigation. A navigation panel must be displayed on the right side of the page. The
panel must be available on all pages and must provide links to show page history, edit the
page, return to the home page, and display a list of all pages in the wiki.

Layout

We create a two-column layout in the style sheet. The wiki contents will be displayed in the left
column while the navigation will be displayed on the right. Figure 14.1 shows the layout rendered
in a web browser.

Figure 14.1
The wiki layout.

The wiki.css file:

body
{

font:12px/1.2 Verdana, Arial, Helvetica, sans-serif;
background: #CCCCCC;
padding:0px;

http://dev.instiki.org/file/instiki/trunk/lib/diff.rb

margin:0px;

}

#wikipagebody

{
float:left;
width:70%;
background: #FFFFCC;
border-right:2px solid #000;
border-bottom:2px solid #000;
margin-right:10px;
padding-bottom: 15px;

}

#menu

{

}

#rightcontent p

{
font-size:10px;
margin-left:0px;

}

div#flash

{
border: thin groove #CC0000;
margin:Opx 30px 10px 30px;
background-color: #CCCCCC;
width: 80%;

}

b

{

margin:0px 30px 10px 30px;

Designing a Wiki

CHAPTER 1 4} Designing Rails Applications

hl
{

font-size:1l4px;

padding-top:10px;

margin:0px 30px 10px 30px;
}
3 Tip

We include the div#£lash because we know that Flash messages will need to be displayed.

Setup

Key features of the wiki require the acts_as_versioned plug-in and RedCloth library.
After we have created a Rails application called wiki, we will need to install the
acts_as_versioned plug-in and RedCloth library.

Create a Rails application called wiki:

$ rails wiki

Change to the wiki directory:

S cd wiki

Install the acts_as_versioned plug-in:

$ ruby script/plugin install acts_as_versioned

Install the RedCloth library:

$ gem install RedCloth

Create a database called wiki_development and enter the database password in the
database.yml file:

development:
adapter: mysqgl
database: wiki_development
username: root
password: secret
host: localhost

348:,,

Designing a Wiki

Creating the Model and Database
A wiki is made up of pages, so we create a table called pages. The pages table requires columns
to store the title, body, created_at, and edited_by fields. Create the page model:

S ruby script/generate model page

We can now edit the 001_create_pages.rb migration and specify the column names
required by the pages table:

class CreatePages < ActiveRecord::Migration
def self.up
create_table :pages do |t]
t.column :title, :string, :limit => 100
t.column :body, :text
t.column :created_at, :datetime
t.column :edited_by, :string
end
end
def self.down
drop_table :pages
end

end

We add validation rules to the page model (app/models/page.rb). The : title must be
unique and the edited_by field is mandatory. The acts_as_versioned declaration is also

added:

class Page < ActiveRecord: :Base
validates_uniqueness_of :title
validates_presence_of :title, :edited_by
acts_as_versioned

end

We need to implement versioning with acts_as_versioned. The pages table requires a version
column. We create a new migration called 002_add_version_column.rb:

class AddVersionColumn < ActiveRecord::Migration
def self.up
add_column :pages, :version, :integer
end
def self.down

349

CHAPTER 1 4} Designing Rails Applications

remove_column :pages, :version
end

end

The acts_as_versioned plug-in requires a table called page_versions. The
create_versioned_table method createsthe required table (003_add_version_table.rb):

class AddVersionTable < ActiveRecord::Migration
def self.up
Page.create_versioned_table
end
def self.down
Page.drop_versioned_table
end

end

We create a migration solely for the purpose of adding a HomePage to the wiki
(O 04_add_homepage. rb):

class AddHomepage < ActiveRecord::Migration
def self.up
Page.create :title => "HomePage",

:body => 'This is the Wiki Home Page.',
:edited_by => "Aneesha"

end

def self.down

end

end
Run the migrations:
$ rake db:migrate

Figure 14.2 shows the page_versions table that the acts_as_versioned plug-in uses. A
version for the HomePage has even been created.

The Controller and View

The scaffold generator provides many of the features we require, so we use it and will customize
its output to fit our needs:

S ruby script/generate scaffold page wiki

Designing a Wiki

Figure 14.2
The page_versions
table will store versions of

pages in the wiki.

The wiki controller is the main controller of the application. We change the config/routes.rb
file so that http://localhost:3000 maps to the wiki controller:

ActionController: :Routing: :Routes.draw do |map|
map.connect '', :controller => "wiki"
map.connect ':controller/service.wsdl', :action => 'wsdl'
map.connect ':controller/:action/:id'

end

We copy the wiki .css file we created earlier to the public/stylesheets folder. The
apps/views/layouts/wiki.rhtml, which will be applied to all the views rendered by the
wiki controller, needs to reference the wiki .css file—the stylesheet_link_tag helperis
used. The wiki.rhtml file will lay out the wiki page and the navigation panel. The navigation
panel includes links to actions within the wiki controller, namely edit, history, list,

and new:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"DTD/xhtmll-transitional.dtd">
<html>
<head>
<title>Wiki: <%= controller.action_name %></title>
<%= stylesheet_link tag "wiki" %>
</head>
</head>
<body>

CHAPTER 1 4} Designing Rails Applications

<div id="wikipagebody">
<% 1f @flash[:notice] %>

<div id="flash"><%= flash[:notice] %></div>

<%= yield %>

</div>

<div id="menu">
<hl>Menu</hl>
<% 1f @page and @page.title %>

<%= link_to "Edit this page", { :action => "edit",

oe
\

:id => @page.id }

<%= link_to "Page History", { :action => "history",
:id => @page.id } %>

<% end %>
<p>HomePage </p>
<p><%= link_to "List of Wiki Pages", :action => 'list' $%$></p>
<p><%= link_to "Add a New Page", :action => 'new' $%></p>
</div>
</body>
</html>
3 Tip

We only display the £1ash div if a message has been set.

Displaying a Wiki Page

The index action is called when the wiki is accessed via http://localhost:3000 and
http://localhost:3000/wiki. If the title is not included in the query string, ' HomePage ' is assumed.
If the specified page does not exist, the user is redirected to the new action where she will be
able to add a new page. When a page exists, a regular expression transforms all CamelCased
words into hyperlinks and renders the show template. Figure 14.3 shows the ' HomePage ' of
the wiki. The index action within the wiki controller is as follows:

352

Designing a Wiki

Figure 14.3
The wiki home page.

def index
@page = Page.find by_title(params[:title] || 'HomePage')
if @page.nil?
redirect_to :action => 'nmew', :title => params[:title]
else
@page.body.gsub! (
Regexp.new('\b((?:[A-Z]\w+){2,})"),
'\1"')
render :action => 'show'
end

end

The show action retrieves @page from the id and uses a regular expression to convert
CamelCased words into hyperlinks:

def show
@page = Page.find(params|[:id])
@page.body.gsub! (
Regexp.new('\b((?:[A-Z]\w+){2,})"),
'\1"')

end

CHAPTER 1 4} Designing Rails Applications

The show template (views/wiki/show.rhtml) displays the title and the body of a page. The
textilize helper is used to render wiki markup. Both the index and show actions call the
show template:

<hl><%= @page.title %$></hl>

<div><%= textilize (@page.body) %></div>

Adding and Editing Wiki Pages

We believe in keeping things DRY and so we place all form elements in a partial
(_form.rhtml) that both the new and edit forms can utilize. The _form.rhtml partial includes
the title, body, created_at, and edited_by fields:

<%= error_messages_for 'page' %>

<!--[form:page] -—>

<p><label for="page_title">Title</label>

<%= text_field 'page', 'title' %></p>

<p><label for="page_body">Body</label>

<%= text_area 'page', 'body' %></p>

<!l--

<p><label for="page_created_at">Created at</label>

<%= datetime_select 'page',6 'created_at' $></p>

-—>

<p><label for="page_edited_by">Edited by</label>

<%= text_field 'page', 'edited_ by' %></p>

<!--[eoform:page] -->

The new action creates a new Page object. The title attribute of the new Page object is

set to blank; if not, title key is in the params hash. We do this check because a hyperlinked
CamelCased page link may be embedded within the body of another page. If this link is clicked,
we want the title to match that of the CamelCased link:

def new
@page = Page.new
@page.title = params[:title] || '

end

The new.rhtml template includes the form partial (_form.rhtml) (see Figure 14.4):

<hl>New page</hl>
<%= start_form_tag :action => 'create' %>

<%= render :partial => 'form' %>

354

Designing a Wiki

<%= submit_tag "Create" %>

<%= end_form_tag %>

Figure 14.4
Add a new wiki page.

The new form is processed by the create action. The @page object is constructed from
params [:page]. If @page. save is a success (i.e., no validation errors occur),
flash[:notice] is set, and the page is displayed by redirecting to the index action and
passing the title of the page as a parameter:

def create
@page = Page.new (params]|:page])

if @page.save

flash[:notice] = 'Page was successfully created.'
redirect_to :action => 'index', :title => params[:title]
else
render :action => 'new'
end

end

The edit action finds a page either by its id or title:

def edit
@page = (Page.find(params[:id]) ||
Page.find by title(params[:title]))

end

355

CHAPTER 1 4} Designing Rails Applications

The edit form (edit.rhtml) includes the _form.rhtml partial (see Figure 14.5):

<hl>Editing page</hl>

<%= start_fo

<%= render

rm_tag :action => 'update', :1id => @page %>

:partial => 'form' %>

<%= submit_tag 'Edit' %>

<%= end_form_tag %>

Figure 14.5

Editing a wiki page.

The edit form is processed by the update action. The @page object is found by its id and the
update_attributes method is used to save the data back to the database. If successful, the
user is redirected to the show action:

def update

end

@page = Page.find(params|[:id])
if @page.update_attributes (params]|:page])

flash[:notice] = 'Page was successfully updated.'
redirect_to :action => 'show', :id => @page

else
render :action => 'edit’

end

Designing a Wiki

Displaying a List of all Wiki Pages
The 1ist action retrieves all pages in the wiki and displays them in sets of 10 (see Figure 14.6):
def list
@page_pages, @pages = paginate :pages, :per_page => 10

end

The 1ist.rhtml file displays links to view and edit each page:
<hl>Listing pages</hl>

<% for page in @pages %>
<%= link_to page.title, :action => 'show',6 :id => page %>
(<%= link_to 'Edit', :action => 'edit', :id => page %>)
<% end %>

%= link_to 'Previous page',

<
{ :page => @page_pages.current.previous } if @page_pages.current.previous %>
<%= link_to 'Next page',

{

:page => @page_pages.current.next } if @page_pages.current.next %>

Figure 14.6
Displaying a list of all

wiki pages.

CHAPTER 1 4} Designing Rails Applications

Displaying Page History

The history action finds a Page object by its id and sets the @page instance object. We will
be able to access the @page.version property to determine the current version of the page
and the @page.versions. length atiribute will return the number of versions being stored:

def history
@page = Page.find(params[:id])

end

The history.rhtml template loops through the @page . versions.length collection and, if
the version does not match that of the current object, prints a 'Revert' and 'Diff' link next
to the name of the version (see Figure 14.7):

<hl>Version History:<%= @page.title %$></hl>

<p>

<% if @page.version > 0 %>

<% (1..@page.versions.length).each do |v| %>

<% 1f @page.version == v %>

<%= v %> [Current]

<% else %>

<%= v %> [<%= link_to 'Revert', :action => 'revert_version',6 :id => @page,
:version => v %> | <%= link_to 'Diff', :action => 'diff_compare',
:id => @page, :version => v %>]

end %>

A
o0

end %>

A
o

end %>

A
oe

</p>

The revert_version action uses the revert_to method to go back to a previous version. The
revert_to method is added to the page model when the acts_as versioned declaration

is added:

def revert_version
@page = Page.find(params|[:id])
@page.revert_to! (params|[:version])
redirect_to :action => 'index',6 :title => @page.title

end

Designing a Wiki

Figure 14.7
Displaying the history for
a page.

Comparing Versions

The History page displays a link next to each version that, when clicked, should compare the
selected version to the current version. We will be using the http://dev.instiki.org/
file/instiki/trunk/1lib/diff.rb file. The downloaded diff.rb file must be placed in
the \ 1ib directory of the Rails application. We also need to include the diff library in the config/
environment . rb file:

require 'diff’

include HTMLDiff

The current version of the page is retrieved by its id. The version we need to compare it to is
retrieved using the find version method. We pass the @curr page and @version page
to the HTMLDi £ £.diff method.

def diff_compare
@curr_page = Page.find(params[:id])
@version_page = @Qcurr_page.find_version (params|[:version])
@diff_results = HIMLDiff.diff (CGcurr_page.body, @version_page.body)

end

The diff_compare.rhtml template displays the insertions and deletions that have been made
between versions (see Figure 14.8):

<hl>Version Diff: <%= @curr_page.title %> </hl>
<p>
<%= @diff_results %>

</p>

359

http://dev.instiki.org/file/instiki/trunk/lib/diff.rb
http://dev.instiki.org/file/instiki/trunk/lib/diff.rb

CHAPTER 1 4} Designing Rails Applications

Figure 14.8
The output of comparing

two versions of a wiki page.

Source Code for the Wiki Controller
Here is the full source code listing for the wiki controller:

class WikiController < ApplicationController
def index
@page = Page.find by_title(params[:title] || 'HomePage')
if @page.nil?
redirect_to :action => 'nmew', :title => params[:title]
else
@page.body.gsub! (
Regexp.new('\b((?:[A-Z]\w+){2,})"'), '\1")
render :action => 'show'
end
end
GETs should be safe (see http://www.w3.0rg/2001/tag/doc/whenToUseGet.html)
verify :method => :post, :only => [:destroy, :create, :update 1],
:redirect_to => { :action => :list }
def list
@page_pages, @pages = paginate :pages, :per_page => 10
end
def show
@page = Page.find(params|[:id])
@page.body.gsub! (

s

Designing a Wiki

Regexp.new('\b((?:[A-Z]\w+){2,})"'), '\1")
end
def new

@page = Page.new
@page.title = params[:title] || "'
end
def create
@page = Page.new (params]|:page]l)

if @page.save

flash[:notice] = 'Page was successfully created.'
redirect_to :action => 'index',6 :title => params[:title]
else
render :action => 'new'
end
end
def edit
@page = (Page.find(params[:id]) ||
Page.find by title(params[:title]))
end
def update
@page = Page.find(params|[:id])
if @page.update_attributes (params]|:page])
flash[:notice] = 'Page was successfully updated.'
redirect_to :action => 'show',6 :id => @page
else
render :action => 'edit'
end
end

def history
@page = Page.find(params|[:id])

end

def revert_version
@page = Page.find(params|[:id])
@page.revert_to! (params|:version])

redirect_to :action => 'index',6 :title => @page.title

i\
L]

2

CHAPTER 1 4} Designing Rails Applications

end
def diff_compare
@Qcurr_page = Page.find(params|[:id])
@version_page = @curr_page.find_version (params|[:version])
@diff_results = HTMLDiff.diff (Qcurr_page.body, @version_page.body)
end

end

Using the Wiki

We have implemented all the required features and are ready to start using the wiki. Open
http://localhost:3000 in a web browser. The index action of the wiki controller will be

called. The HomePage will be displayed. Click on the “Edit this page” link. The edit form will be

displayed. Include some wiki markup and then type “PageTwo” (see Figure 14.9). Click on the
Edit button.

Figure 14.9
Using wiki markup and
CamelCasing to insert a

page link.

The message in the flash will be displayed. The wiki markup will be rendered. The CamelCasing
is converted to a hyperlink. ' PageTwo ' does not exist, so when we click on the link, a form to
create a new page will be displayed. This is shown in Figure 14.10. The page title is displayed
by default.

After the page is displayed, clicking on the "PageTwo" link will display the page (see
Figure 14.11).

362

Designing a Wiki

Figure 14.10
Adding a new page.

Figure 14.11
Clicking on a CamelCased
link will display the page if

it exists.

Click on the "HomePage" link. As there are multiple versions of "HomePage™", we can click on
the "Page History" link. The "Page History" includes links to revert to a previous version
or view a comparison (see Figure 14.12).

Click on a "Dif£" link. The output of the differencing algorithm will be displayed. We can easily
see where additions and deletions are made in Figure 14.13.

CHAPTER 1 4} Designing Rails Applications

Figure 14.12
Viewing the versions of

a page.

Figure 14.13
A visual comparison of

versions.

Enhancements
We have implemented all the features we set out to, but there is still room for improvement. Here
are some features that you can implement to enhance the wiki:

Allow images and file attachments
% Implement a user model and authentication

% Allow pages to be deleted

324

Designing a Forum

Designing a Forum

We are going to create a threaded discussion forum. A forum allows users to view and respond
to messages or posts. The relationship between messages is stored in a database table. The
hierarchy between messages is displayed when the forum is viewed.

Features

The forum will be modeled using acts_as_nested_set. In Chapter 4, we used
acts_as_tree. Both acts_as_tree and acts_as_nested_set have advantages and
disadvantages. The nested set model is more efficient than acts_as_tree when you need to
retrieve and display a tree. With acts_as_nested_set, we are able to retrieve an entire tree
with a single query. acts_as_nested_set requires more database work behind the scenes
when entries are inserted.

The following key features need to be implemented in the forum:

The ability to display the hierarchical structure of a forum on a single web page. The
relationships between forum messages need to be displayed in a tree-like view.

The ability to view messages. A link must be included that allows a message to be viewed.

The ability to reply to messages. A link to allow a user to reply to a message.

Setup
Because acts_as_nested_set is included with Rails, we don't need to install any plug-ins or
libraries.

Create a Rails application called forum:

$ rails forum

Change to the forum directory:

S cd forum

Create a database called forum_development and enter the database password in the
database.yml file:

development:
adapter: mysqgl
database: forum_development
username: root
password: secret
host: localhost

CHAPTER 1 4} Designing Rails Applications

Creating the Model and Database
We start by generating a model called forumpost:

$ ruby script/generate model forumpost

The subject, message, added_by, and created_at fields are required by each post. The
acts_as_nested_set requires aparent_id, 1ft, and rgt fields as well. The subject and
added_by fields are mandatory. We edit the app/models/forumpost . rb file and add the
validation rule and the acts_as nested_set declaration:

class Forumpost < ActiveRecord: :Base
validates_presence_of :subject, :added_by
acts_as_nested_set

end

Next we open the 001_create_forumposts.rb file and add the code to create the required
columns within the forumposts table. We also insert a post and a reply in the table:

class CreateForumposts < ActiveRecord::Migration
def self.up
create_table :forumposts do |t]

t.column :parent_id, :integer

t.column :1ft, :integer

t.column :rgt, :integer

t.column :subject, :string

t.column :message, :text

t.column :added_by, :string

t.column :created_at, :datetime
end

parent = Forumpost.create :subject => "My first forum!",
:message => "This is so cool. Please reply.",
:added_by => "Aneesha"

reply = Forumpost.create :subject => "My first forum!",
:message => "Yes - acts_as_nested_set is quite useful.",
:added_by => "Celine"

parent.add_child(reply)

end

Designing a Forum

def self.down
drop_table :forumposts
end

end

3 Tip

Refer to the Rails documentation for more infoonacts_as_nested_set: hitp://www.rubyonrails.org/
api/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html.

Run the migration:

S rake db:migrate

Figure 14.14 shows the forumposts table. acts_as_nested_set inserts the values for the
1ft and rgt columns.

Figure 14.14

The forumposts table.

The Controller and View

The forum controller is the main controller of the application. We change the
config/routes.rb file so that hitp://localhost:3000 maps to the forum controller:

ActionController: :Routing: :Routes.draw do |map|
map.connect '', :controller => "forum"

map.connect ':controller/service.wsdl', :action => 'wsdl'

http://www.rubyonrails.org/api/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html
http://www.rubyonrails.org/api/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html

CHAPTER 1 4} Designing Rails Applications

map.connect ':controller/:action/:id'

end

Displaying a Forum Thread
The index action of the forum controller retrieves all posts ordered by the 1 £t column and stores
the result in @ forumposts:

def index
@forumposts = Forumpost.find(:all, :order=>"1ft")

end

The index.rhtml template displays all the posts within the @ forumposts collection. The sub-
ject, date, and name of the poster are displayed. Each post also has a View and Reply link.

<hl>Threaded Forum</hl>
<% for post in @forumposts %$>

<%= post.subject %> (<%= post.created_at.to_s(:short) %> by <%= post.added_by

%>)

<% unless post.send(post.parent_column) == nil %>

<%= link_to "view", :action => "view", :post => post.id %> |
<% end %>
<%= link_to "reply", :action => "new", :parent => post.id %>

]

<% end %>

Let’s take a look at how the index template displays the post and the reply we added to the
forumposts table within the migration (see Figure 14.15). We were able to retrieve all the posts
in the thread, but we still need to format the thread as a tree. We create a helper method to
help us determine the indentation required (app\helpers\forum_helper.rb):

module ForumHelper
def indent (post, i=0)
$i =1
if post.send(post.parent_column) == nil
return $i
else
parent = Forumpost.find(post.send(post.parent_column))
indent (parent, $i += 1)
end

end

end

Designing a Forum

Figure 14.15
Displaying the forum
without indentation.

We use the indent helper to insert a dash for each level of indentation required (see
Figure 14.16):

<hl>Threaded Forum</hl>
<% for post in @forumposts %$>

<% indent (post) .times do %$>-<% end %>
<%= post.subject %> (<%= post.created_at.to_s(:short) %> by <%= post.added_by
%>)
[
<% unless post.send(post.parent_column) == nil %>
<%= link_to "view", :action => "view", :post => post.id %> |
<% end %>
<%= link_to "reply", :action => "new", :parent => post.id %>
]

<% end %>

Viewing Posts
The view action simply retrieves a Forumpost object by its id:
def view
@post = Forumpost.find(params|[:post])

end

CHAPTER 1 4} Designing Rails Applications

Figure 14.16
Display a threaded
discussion forum with

indentation.

The view.rhtml template displays the subject, message, date, and added_by fields (see
Figure 14.17):

<hl>View Post</hl>

<p>Subject: <%= @post.subject %></p>
<p>Message: <%= @post.message %></p>
<p>Date: <%= @post.created_at.to_s(:short) %></p>
<p>Added by: <%= @post.added_by %></p>

<%= link_to 'Back', :action => 'index' %>

Figure 14.17

Display a message.

Designing a Forum

Replying to a Post
The new action retrieves the parent post and then sets the subject of the new post to the
parents subject:

def new
@parent = Forumpost.find(params]|:parent])
@forumpost = Forumpost.new
@forumpost.subject = @parent.subject

end

The new. rhtm1 file displays a form for a user to reply to a post (see Figure 14.18):

<hl>New post</hl>

<%= start_form_tag :action => 'reply',6 :parent => @parent.id %>
<%= error_messages_for 'forumpost' %>

<p><label for="forumpost_subject">Subject:</label>

<%= text_field 'forumpost', 'subject', :size => 50 %></p>
<p><label for="forumpost_message">Message:</label>

<%= text_area 'forumpost', 'message', :rows => 4 %></p>

<p><label for="forumpost_added_by">Added by:</label>

<%= text_field 'forumpost', 'added_by', :size => 50 %></p>
<%= submit_tag "Reply" %>

<%= end_form_tag %>

<%= link_to 'Back',6 :action => 'index' %>

Figure 14.18
Replying to a post.

CHAPTER 1 4} Designing Rails Applications

The reply action saves the post and then uses the add_chi1d method to associate the post with
its parent:

def reply
parent = Forumpost.find(params|["parent"])
@forumpost = Forumpost.create(params|[:forumpost])
parent.add_child(@forumpost)
if @forumpost.save
flash[:notice] = 'The post has been added.'
else

flash[:notice]

'The post was unable to be added.'
end
redirect_to :action => 'index'

end

Source Code for the Forum Controller
Here is the full source code listing for the forum controller:

class ForumController < ApplicationController
def index

@forumposts = Forumpost.find(:all, :order=>"1ft")

end

def view
@post = Forumpost.find(params][:post])

end

def new
@parent = Forumpost.find(params]|[:parent])
@forumpost = Forumpost.new

end

def reply

parent = Forumpost.find(params|["parent"])
@forumpost = Forumpost.create (params|[:forumpost])
parent.add_child(@forumpost)
if @forumpost.save

flash[:notice] = 'The post has been added.'

else

flash[:notice] 'The post was unable to be added.'

end

Conclusion

redirect_to :action => 'index'
end

end

Enhancements
You might consider adding the following features to the forum:

Support for wiki markup within a post

User subscription and authentication

The creation and display of multiple forums

Conclusion

In this chapter, we built a wiki and a forum. The wiki supported wiki markup, stored a new version
of a page each time the page was updated, and even allowed changes between versions to be
compared. The forum used acts_as_nested_set to thread forum posts. | hope you have found
learning Rails to be rewarding and are enthusiastic about building your next web application. |
wish you all the best. Have fun!

This page intentionally left blank

Appendix A

Ruby Quick Reference

This quick reference guide will come in handy as you familiarize yourself with Ruby and start to
program database enabled applications using the Rails framework. This reference guide accom-
panies Chapter 2: “Ruby Essentials.”

Command Line Ruby
Start Interactive Ruby (irb):

$ irb

Start Interactive Ruby with a simple prompt:
$ irb --simple-prompt

Check Ruby code syntax:

S ruby -cw filename.rb

Execute a Ruby program:

ruby filename.rb

375

e .

Appendix A} Ruby Quick Reference

Interpret a Ruby program with warnings displayed:

S ruby -w filename.rb

Display the Ruby version number:

$ Ruby --version

Ruby Code

Comment in code:

This is a comment

Variable assignment:

variable begin with a lowercase letter
name = "Aneesha"

Constants:

constants begin with an uppercase letter
Pi = 3.14

Data types:

name = "Aneesha" # a string
no = 20 # an integer

fraction = 0.5 # a float
Strings

Repeat a string:

>> "Hello " * 3

=> Hello Hello Hello
Capitalize a string:

>> "hello".capitalize

=> Hello

Interpolation (variable substitution):

>> name = "Aneesha"
>> puts "Hello #{var}"

=> Hello Aneesha

376

Mathematical Operations
Addition: +

Subtraction: -

Multiplication: *

Division: /

Remainder: %

Exponent: **

Shortcut operators:

R

4 4 4 4 4

Generate a Random Number

Generate a random number between 0 and 1:

>> rand

Genarate a random number between 0 and 5:

>> rand (5)

Comparison Operators
equal = =

not equal to!=

greater than >

less than <

greater than or equal to >=

less than or equal to <=

Conditional Constructs
The if statement:

if x == 10

print "The variable x is equal to 10."

end

The 1f - else statement:

if x == 10

print "The variable x is equal to 10."

Ruby Code

377

Appendix A} Ruby Quick Reference

else
print "The variable x is not equal to 10."

end

The if - elsif - else statement:

if x == 10

print "The variable x is equal to 10."
elsif x==

print "The variable x is equal to 5."
else

print "No match."

end

The case statement:

x =5
case x
when 5
puts "x is equal to 5"
when 1

puts "x is equal to 1"

else

puts "No match"
end
Loops

times do loop
5.times do
puts "Hello World"
end
do loop
n=1
loop do
n=n-+1
puts "Loop iteration #{n}"
break if n > 9
end

while loop

n=1

while n < 11
puts "Loop iteration #{n}"
n=n+1

end

puts "Done"

until loop

n=1

until n > 10
puts "Loop iteration #{n}"
n=n+1

end

puts "Done"

Arrays

Create a new array:

numbers = Array.new

Or

numbers = []

An array that stores mixed data types
messages = [1,2,"three",4.0]

An array storing numeric data

numbers = [1,2,3,4,5,6]

An array that stores Strings

names = ["Madonna", "Aneesha", "Celine"]
An array that stores decimal values
x_coordinates = [1.0, 3.4, 35.6, 24]

Sort an array:

>> cities.sort

=> ["adelaide", "brisbane", "cairns", "sydney", "perth"]
Reverse the order of an array:

>> cities.reverse

=> ["perth", "sydney", "cairns", "brisbane", "adelaide"]

Ruby Code

Appendix A} Ruby Quick Reference

Determine the number of items in an array:

>> cities.length

Add an element at position O:
>>numbers = [1,2,3,4]
>>numbers.unshift (0)

Add an element to the end of an array:
>>numbers.push (5)

=> [1,2,3,4,5]

>> numbers.push (6,7, 8)

=> [1,2,3,4,5,6,7,8]
Concatenate arrays:
>>[1,2,3].concat([4,5,6])
>>numbers + [4,5,6]

Check if an array is empty:

>> numbers.empty?

Check if an array contains an element with a certain value:

>> numbers.include? (1)

Remove duplicates:

>> [1,2,2,3,4,5,5,6].uniq
=> [1,2,3,4,5,6]

Iterate over elements in an array:

cities.each do |city]|
puts "City " + city

end

cities.each_with_index do |i,city]|
puts "City index #{i}= " + city

end

Hashes
Create a hash:

post_codes =

{

380

Ruby Code

"Brisbane" => 4000,
"Mt Gravatt" => 4122,
"Carindale" => 4152

}

Return the value for a key:

>> puts post_codes[“Brisbane”].to_s

Assign a new value to a key:
post_codes["Kelvin Grove"] = 4065
List all Keys:

>> post_codes.keys

List all values:

>> post_codes.values

Check if a key exists:

>> post_codes.has_key? ("Carindale")

Determine the number of key value pairs:

>> puts post_codes.size.to_s

Print each key:

post_codes.each_key do |key|
puts key

end

Print each value:

post_codes.each_value do |vall]
puts val

end

Print key, value pairs:

post_codes.each do |key,val|
puts "#{key} - #{val}"

end

Appendix A} Ruby Quick Reference

Invert a hash:

Swap Key - value pairs
post_codes.invert.each do |key,val|
puts "#{key} - #{val}"

end

Functions
A simple function
def greet_me

puts "Hello"

end

A function that takes an argument:

def greet (name)
puts "Hello #{name}"

end

Classes
A class with attr_reader and attr writer:

class Employee
attr_reader :name
attr_writer :name
def initialize
@name = ""
end

end

A class with att_accessor:

class Employee
attr_accessor :name
def initialize
@name = ""
end

end

sl

Appendix B

Ruby on Rails Quick Reference

The Ruby on Rails framework advocates “convention over configuration.” Learning the “conven-
tions” in this appendix will help you become a proficient Rails developer.

Create a Rails application
Run the inferactive Rails
console

Start Webrick

Start Webrick on port 80

Generate a model
Generate a controller
Freeze current rails version

Generate a scaffolding for a

model

rails application_name

ruby script/console

ruby script/server

ruby script/server -p 80

ruby script/generate model non_plural_tablename
e.g. ruby script/generate model employee

ruby script/generate controller plural_table_name
e.g. script/generate controller employee

rake rails:freeze:gems

ruby script/generate scaffold modelname

controllername

383

e .

Appendix A} Ruby on Rails Quick Reference

Generate a migration
Generate a mailer class

Generate a web service AP

Generate an infegration test
Using Rake

Update files in the app,
scripts, and public folders
Update the Prototype and
Scriptaculous Javascript
libraries

Update the Rails generators
found in the scripts folder
Delete the log files

Update the database fo the
latest migration

Revert or update the
database to a migration
version

Display code statistics
Create a fable to store
session dafa in current
database

Delete enfries from the
sessions fable

Active Record Conventions
Table names must be in
plural form

All tables must have a
primary key called id

Foreign keys must have the

name of the parent table with

an underscore and id

384

ashe ahe ol

g

ruby script/generate
ruby script/generate
ruby script/generate
api_one api_two

ruby script/generate

migration newtablename
mailer registration signup

web_service servicename

integration_test testname

rake rails:update

rake rails:update:javascripts
rake rails:update:scripts
rake log:clear

rake db:migrate

rake db:migrate VERSION=5
rake stats

rake db:sessions:create

rake db:sessions:clear

Table name: employees

Primary key: id

Foreign key: parent_id

23

Ruby on Rails Quick Reference

Timestomps added to fields updated_at

on update updated_on

Timestamps added fo fields created_at

on creation created_on

Active Record Model Validation

Required fields validates_presence_of :fieldl, :field2
Numeric fields validates_numericality_of :numericfield
Password confirmation validates_confirmation_of :password
Character range validation validates_length_ of :password,

minimum => 6,

message=>"must be 6 characters in length."

Unit Testing

Run a single unit test ruby unit/test/unitname_test.rb
Run all tests rake test

Run all unit tests rake test:units

Run all functional tests rake test:functionals

Run an integration test rake test:integration

Rails Plugins

Discover a list of plugin ruby script/plugin discover

repositories from the Rails wiki

Display a list of available ruby script/plugin list

plugins

Install a plugin by name ruby script/plugin install plugin_name

Install a plugin from a URL ruby script/plugin install
http://somewhere.com/projects/plugins/plugin_name

Update a plugin ruby script/plugin update

Add a plugin source code ruby script/plugin source

repository

List all plugin source code ruby script/plugin sources

repositories

This page intentionally left blank

Index

Symbols

+ (addition) operator, 30—31

= (assignment operator), 26

\ (backslash), 25, 30

: (colon), 18

/ (division) operator, 30—31

. (dot) notation, 27

== (equal) operator, 32

** (exponent) operator, 30

/ (forward slash), 129

> (greater than) operator, 32

>= (greater than or equal to) operator, 32
< (less than) operator, 32

<= (less than or equal to) operator, 32
% (modulus) operator, 30

* (multiplication) operator, 30—31
1= (not equal to) operator, 32

| (pipe character), 37

" (quotation marks), 28, 30

- (subtraction) operator, 30—31

_ (underscore) character, 77

% (wildcard) character, 97

A

abort method, 189
Action Controller, 121
cookies, 131—132
environment variables, retrieving, 125—126
file generation, 129
flash, 133—134
form elements processing, 121—-125
redirection, 130—I131
render method, 127—-129
routing, 134—136
sessions, 132—133
Action Mailer configuration
e-mail
file attachments, 258—259
HTML formatted, 258
messages, instance variables, 256
receiving, 259—260
sending, 254—257
overview, 253—254
actions
controllers and, 12, 14
linking to, 17—18

logging, 302—303
timing, 303—304
views and, 12, 14
ActionWebService (AWS), 181—184
Active Record
fundamental concepts, 4
quick reference guide, 384—38s5
record conversion, to XML, 171
Active Support
array extensions, 311—312
date and time calculations, 309—310
numeric enhancements, 312—313
string extensions, 308—309
acts_as_commentable plug-in, 288—289
acts_as_ferret plug-in, 290—291
acts_as_list method, 110—114
acts_as_taggable plug-in, 283—288
acts_as_tree method, 114—117
acts_as_versioned plug-in, 280—283
add_column method, 87—88
add_index method, 91
addition (+) operator, 30—31
AJAX (Asynchronous JavaScript and XML)
form_remote_tag helper, 205—207
fundamental concepts, 2
javascript_include_tag helper, 199—200
link_to_remote helper, 200—204
overview, 187—188
periodically_call_remote helper, 213—214
Prototype framework, 193—195
Scriptaculous framework, 195—199
sortable_elements helper, 209—213
text_field_with_auto_complete helper, 207—209
animated GIFs, 262
annotate method, 262
answer fields, 67, 71
Aoki, Minero, 253
API documentation, 20—21, 160
app folder, 9
applications, creating new, 20—21
architecture, MVC, 2
ArgumentError exception, 46
around_filter, 303—304
arrays
adding elements to, 37
defined, 35
extensions, 311—312

INDEX}

quick reference guide, 379—380
sorting, 36
assignment operator (=), 26
Asynchronous JavaScript and XML. See AJAX
attributes, methods, 42—43
authentication, 296—302
auto_link helper, 146
averages, 100—IOI
AWS (ActionWebService), 181—184

B

backslash (Y), 25, 30

bar graphs, 276
before_filter, 302—303
binary data type, 86
binary stream, 129

blog controller, weblogs, 74
body field, weblogs, 74
boolean data type, 86
BugsController, 173—181
Button control, 222—223
button_to helper, 147

C

-c command line switch, 26
caching, 304—308
CamelCased words, 362—363
capitalize method, 28—29
case statement, 34
case-sensitivity, 27
checkboxes, form elements processing, 124
checkUpdate method, 247
chomp method, 28
chop method, 28
class method, 27
classes
defined, 40
quick reference guide, 382
String, 28
code reuse, 2, 40
collections, 151—152
colon (), 18
columns, table
adding/removing, 87—88
altering, go—o1
renaming, 90
statistics, 100—101
comma-delimited lists, 311
command line switches
-c, 26

388

-e, 26

-1, 26

quick reference guide, 375—376

-v, 26

-version, 26

-W, 26
commands

model generator, 85

rails, 7—8
commenting, 288—289
comments table, weblogs, 73, 78—80
comparison operators, 32—34, 377
concat method, 37
concatenation, 29
conditional processing, 32—34, 377378
config database file, contact list creation, 54
config folder, 9
configurations, fundamental concepts, 2
constants, 27
contact list creation

amendments, 63—64

config database file, 54

discussed, 53

mandatory fields, 59—61

migration files, 56

New contact links, 57—58

table and field naming conventions, 54

validation, 60
CONTENT_LENGTH environment variable, 126
CONTENT_TYPE environment variable, 126
controllers, 12, 14
conversion

data type, 28

decimal number, 145

file size, 145

integers, 28

string, 28
cookies, 131—132
Coordinated Universal Time (UTC), 119
CopyText method, 224
create action, 173
create method, 93—94
CRUD (Create, Retrieve, Update, and Delete)

interface, 53, 57

D

data types
conversion, 28
list of, 86
overview, 27—28

databases. See tables
DataGrid control, 233—235
date and time calculations, 309—310
date and time fields, form elements, 157
date data type, 86
date-based routing rules, 136
datetime data type, 86
db folder, 9
db/migrate directory, 84
decimal data type, 86
decimal number conversion, 145
def keyword, 39
DELETE method, 173
delete method, 95, 242—244
deleteHandler method, 243
deleting
plug-ins, 280
table records, 95
descriptive variables, 27
directory structure
folders, 8—9
fundamental concepts, 2
division (/) operator, 30—31
do loop, 35
doc folder, 9
DOM (Document Object Model), 160—161
Don't Repeat Yourself (DRY) action, 76—77
dot (.) notation, 27
downcase method, 28
drag and drop functionality, Flex 2 SDK, 229—232
dropping tables, 91
DRY (Don’t Repeat Yourself) action, 76—77
dynamic finders, 100

E

-e command line switch, 26
edit action, 173
else clause, 33—34
elsif clause, 34
e-mail
Action Mailer configuration, 253—254
file attachments, 258—259
HTML formatted, 258
messages, instance variables, 256
receiving, 259—260
sending, 254—257
encode parameter, 148
end keyword, 39
environment variables, 125—126
equal (==) operator, 32
erb command, 48

ERb (Embedded Ruby), 14—16
fundamental concepts, 46—49
templates, 49—50, 141—142

error messages, validation, 103—105

exception handling, 44—46

exit keyword, 25

exponent (**) operator, 30

F

FAQ (Frequently Asked Questions) Manager
answer fields, 67, 71
categories, maintaining, 69—70
categories table, 66
category fields, 67
completed application, 71—72
discussed, 65
faqs table, 66
name fields, 68
New faq form, 70—71
question fields, 67
table verification, 68
testing, 69
file attachments, e-mail, 258—259
file generation, 129
file size conversion, 145
filters
actions, logging, 302—303
actions, timing, 303—304
around_filter, 303—304
authentication with, 296—302
before_filter, 302—303
overview, 295
find method, 95—97
find_all_by method, 100
find_by method, 100
find_by_sql method, 97—100
flash storage area, 133—134
Flex 2 SDK
DataGrid control, 233—235
downloading, 219
drag and drop functionality, 229—232
employee details example
Add an Employee button, 239—242
delete method, 242—244
discussed, 235
migration, 236—237
update method, 246—251

image example
displaying series of, 227—229
resizing, 225—226

INDEX}

installation, 219—221
interface, 221—224
interface design, 224—225
MXML format, 221—222
Flickr photo sharing site, 164—165
float data type, 86
floating point numbers, 31
folders
app, 9
config, 9
db, 9
directory structure, 8—9
doc, 9
script, 9
foreign key relationships, 106
form elements processing, 121—125
date and time fields, 157
helpers, 152—155
modeless forms, 157
select boxes, 156
format conversion, image processing, 261—262
formprocessor controller, 122, 124
form_remote_tag helper, 205—207
forum design
controller, source code, 372
enhancements, 373
features, 365
forum thread, displaying, 367, 369
model and database creation, 366—367
posts
replying to, 371—372
viewing, 369—370
setup, 365
forward slash (/), 129
Frequently Asked Questions (FAQ) Manager. See FAQ
Manager
from_xml method, 311
Fuchs, Thomas, 195
functional testing, 9
functionality, fundamental concepts, 3
functions
fundamental concepts, 39—40
quick reference guide, 382
fundamental concepts, 1—3

G

Garrett, Jesse Games, 188
generating files, 129

GET method, 163, 173
getAllResponseHeaders method, 189

390

getResponseHeader method, 190
gets method, 25
Google searches, 168—170
graphing capabilities

bar graphs, 276

line graph, 274—275

pie graphs, 274

web-based reports, 277
greater than (>) operator, 32
greater than or equal to (>=) operator, 32
Grosenback, Geoffrey, 21
Group By query, 97
Gruff library graphing capabilities

bar graphs, 276

line graph, 274—275

pie graphs, 274

web-based reports, 277

H

Hansson, David Heinemeier, 1, 92
hashes, 38—39
converting XML to, 311
quick reference guide, 380—382
HeidiSQL, 7
Hello World application, 12—13
helpers
auto_link, 146
built-in, 145—146
button_to, 147
creation, 144—145
form creation, 152—155
form_remote_tag, 205—207
image_tag, 148
javascript_include_tag, 199—200
link_to_remote, 200—204
mail_to, 147
markdown, 146
periodically_call_remote, 213—214
sanitize, 146
sharing, 145
sortable_elements, 209—213
start_form_tag, 153
text_field, 153
text_field_with_auto_complete, 207—209
truncate, 146
hierarchical data, 114—117
homepage action, 137
HSlider control, 226
HTML form tag, 122
HTML formatted e-mail, 258

HTTP_ACCEPT environment variable, 126
HTTP_USER_AGENT environment variable, 126

id primary key, 87, 95
if statement, 32—33
image processing
adding text to images, 262—263
animated GIF, 262
format conversion, 261—262
image manipulation, 263—266
overview, 260—261
thumbnails, 266—268
image_tag helper, 148
index action, 173
indexes, searches, 91
initialize method, 41
InPlaceEditor control, 198—199
installation
Flex 2 SDK, 219—221
MySQL, 7
One-Click Ruby Installer, 5
Ruby, 56
Ruby on Rails, 6
instance variables, 124
instruct method, 162
integer data type, 86
integers, conversion, 28
integrations testing, 2, 9
interface design, Flex 2 SDK, 224—225
interface, Flex 2 SDK, 221—224
interpolation operator, 29—30
IOError exception, 46
irb shell program, 6, 24—25

J

javascript_include_tag helper, 199—200
JSON (JavaScript Object Notation), 310

K

keywords
def, 39
end, 39
exit, 25
require, 40

L

-1 command line switch, 26
Label control, 222

layouts
scripts in, 150
style sheets in, 150
template-specific content in, 149—150
wiki design, 346—348
length method, 36
less than (<) operator, 32
less than or equal to (<=) operator, 32
line graphs, 274—275
links
to actions, 1718
creation, 147148
link_to_remote helper, 200—204
lists
comma-delimited, 311
sorting, 110—114
tasks, 112—113
log directory, 9
loops
defined, 34
do, 35
quick reference guide, 377—378
while, 35
Istrip method, 28

M

mailing list, 21
mail_to helper, 147
mandatory fields, contact list creation, 59—61
many-to-many relationships, 109—110
markdown helper, 146
Masatoshi, Seki, 46
mathematical operators, 30—31, 377
max method, 100—101
metaprogramming, fundamental concepts, 2
methods

abort, 189

acts_as_list, 110—114

acts_as_tree, 14—I17

add_column, 87—88

add_index, 91

annotate, 262

attributes, 42—43

capitalize, 28—29

checkUpdate, 247

chomp, 28

chop, 28

class, 27

concat, 37

CopyText, 224

391

INDEX}

create, 93—94
DELETE, 173

delete, 95, 242—244
deleteHandler, 243
downcase, 28

find, 95—97
find_all_by, 100
find_by, 100
find_by_sql, 97—100
from_xml, 311

GET, 163, 173
getAllResponseHeaders, 189
getResponseHeader, 190
gets, 25

initialize, 41
instruct, 162
length, 36

Istrip, 28

max, 100—I101

min, 100—101

open, 190

part, 258

POST, 163, 173
push, 37

PUT, 173

puts, 24—25

rand, 3132
receive, 259—260
redirect_to, 130—131
remove_index, 91
render, 127—129
Resizelmage, 226
respond_to, 177
reverse, 28, 36
rstrip, 28

save, 93

scaffold, 74
scaffold_resource, 171—176
self.down, 85, 88
self.up, 85, 88
send, 190
send_data, 129
send_file, 129
showform, 122—123
simple_format, 146
sort, 36

string manipulation, 28
strip, 28
strip_links, 146
swapcase, 28
Textilize, 66, 71, 75

22

time, 14—16
to_xml, 171, 177
unshift, 37
upcase, 28
update, 95, 246—251
updateHandler, 247—248
XmlMarkup, 162
migrations
contact list creation example, 56
db/migrate directory, 84
discussed, 83
manual generation, 84—85
model generator command, 85
self.down method, 85, 88
self.up method, 85, 88
storage, 84
min method, 100—101
model generator command, 85
Model View Controller (MVC), 2—4
modeless forms, 157
modulus (%) operator, 30
multiplication (*) operator, 30—31
MVC (Model View Controller), 2—4
MXML format, 221—222
MySQL installation, 7

N

NameError exception, 46
naming conventions

table fields, 54

tables, 92
naming variables, 27
new action, 173
New contact links, 57—58
NoMethodError exception, 46
not equal to (!=) operator, 32

o)

Object/Relational Mapping (ORM), 4
ohjects

data types and, 27—28

passing to templates, 143—144
One-Click Ruby installer, 5
one-to-many relationships, 108—109
one-to-one relationships, 107—108
onreadystatechange property, 190
open method, 190
operators

assignment, 26

comparison, 32—34, 377

interpolation, 29—30
mathematical, 3031, 377
ORM (Object/Relational Mapping), 4

P

Panel control, 225
parsing XML document, 160—161
part method, 258
partials, 151—152
PATH_INFO environment variable, 125
PATH_TRANSLATED environment variable, 125
PDF Writer library, 291—293
periodically_call_remote helper, 213—214
pie graphs, 274
pipe () character, 37
plug-ins
acts_as_commentable, 288—289
acts_as_ferret, 290—291
acts_as_taggable, 283—288
acts_as_versioned, 280—283
adding manually, 280
deleting, 280
quick reference guide, 385
repositories, 279
pluralization, 313—314
podcast, 21
POST method, 163, 173
posts, forum design
replying to, 371—372
viewing, 369—370
posts table, weblogs, 73—74
productivity, fundamental concepts, 3
Project Task List Manager, 107
properties, XMLHttpRequest object, 190—191
Prototype framework, 193—195
public directory, 9
push method, 37
PUT method, 173
puts method, 24—25

Q

QUERY_STRING environment variable, 125
question fields, 67

quotation marks ("), 28, 30

R

RadRails text editor, 5
Rails API documentation, 20—21
rails command, 7—8

Rails JavaScript (R]S), 214—216
Rails Welcome aboard page, 11
Rake, quick reference guide, 384
random images, 18—19
random number generation
rand method, 31—32
random images, 18—20
read access, 42
readystate property, 190
receive method, 259—260
receiving e-mail, 259—260
RedCloth library, 66
redirection, 130—131
redirect_to method, 130—131
regular expressions, 102
relational databases
fundamental concepts, 2
relationships
foreign key, 106
many-to-many, 109—I110
one-to-many, 108—109
one-to-one, 107—108
Remote Procedure Call (RPC), 166—167
REMOTE_ADDR environment variable, 125
REMOTE_HOST environment variable, 125
remove_index method, 91
renaming
table columns, 9o
tables, 91
render method, 127—129
REQUEST_METHOD environment variable, 125
REQUEST_URI environment variable, 125
require keyword, 40
rescue clause, 45
Resizelmage method, 226
respond_to method, 177
responseText property, 191
responseXML property, 191
REST-style web services, 163—165, 170—I171
reusing code, 2, 40
reverse method, 28, 36
REXML, 159—160
RJS (Rails JavaScript), 214—216
RMagick utility image processing
adding text to images, 262—263
animated GIF, 262
format conversion, 261—262
image manipulation, 263—266
overview, 260—261
thumbnails, 266—268
routing, 134—135

393

INDEX}

application default page, changing, 137 SMTP configuration, 254
date-based routing rules, 136 SOAP (Simple Object Access Protocol), 168
testing, 138 sort method, 36

RPC (Remote Procedure Call), 166—167 sortable_elements helper, 209—213

rstrip method, 28 sorting

Ruby installation, 5—6 arrays, 36

Ruby interpreter, 25—26 lists, 11o—114

Ruby on Rails SQLyog, 7
directory structure, 8—9 start_form_tag helper, 153
installation, 6 statistics, 100—I101
quick reference guide, 383—385 status property, 191

RuntimeError exception, 46 statusText property, 191

Stephenson, Sam, 193
String class, 28

S string data type, 86
sanitize helper, 146 string extensions, 308—309
save method, 93 strings
SAX (Simple API for XML), 160 concatenation, 29
scaffold method, 74 conversion, 28
scaffold_resource method, 171—176 quick reference guide, 376
schema_info table, 87 string manipulation methods, 28
script folder, 9 strip method, 28
Scriptaculous framework, 195—199 strip_links method, 146
scripts, in layouts, 150 style sheets, in layouts, 150
searches subtraction (-) operator, 30—31
acts_as_ferret plug-in, 290—291 swapcase method, 28
dynamic finders, 100 syntax, example Ruby program, 23—24
find method, 95—97 system requirements, text editors, 4
find_all_by method, 100
find_by method, 100
find_by_sql method, 97—100 T
Google, 168—170 tables
indexes, 91 columns
select boxes, 156 adding/removing, 87—88
Select clause, 97 altering, 90—91
self.down method, 85, 88 renaming, 9o
self.up method, 85, 88 statistics averages, 100—101
send method, 190 creating, 91
send_data method, 129 dropping, 91
send_file method, 129 hierarchical data, 114—117
sending e-mail, 254—257 naming conventions, 54, 92
SERVER_NAME environment variable, 125 records, deleting, 95
SERVER_PORT environment variable, 125 records, inserting, 93
SERVER_PROTOCOL environment variable, 125 renaming, 91
servers timestamps, 118—120
fundamental concepts, 3 tags
Webrick, 10—11, 49—50 acts_as_taggable plug-in, 283—288
sessions, 132—I133 HTML form, 122
show action, 173 opening and closing, 221—222
showform method, 122—123 tasks, 112—113
Simple API for XML (SAX), 160 templates
simple_format method, 146 ERb, 49—50

394

passing objects to, 143—144
passing variables to, 143—144
template-specific content in layouts, 149—150
View template files, 14
testing
functional, 9
fundamental concepts, 2
integrations, 9
routing rules, 138
unit, 9, 385
text data type, 86
text editors
RadRails, 5
system requirements, 4
text_field helper, 153
text_field_with_auto_complete helper, 207—209
Textilize method, 66, 71, 75
TextInput control, 222
then keyword, 33
thumbnails, 266—268
TileList control, 227—228
time and date calculations, 309—310
time and date fields, form elements, 157
time data type, 86
time method, 14—16
timestamps, 118—120
timing actions, 303—304
title field, weblogs, 74
to_xml method, 171, 177
truncate helper, 146
TypeError exception, 46

U

underscore () character, 77

unit testing, 9, 385

unshift method, 37

upcase method, 28

update action, 173

update method, 95, 246—251
updateHandler() method, 247—248
usability, fundamental concepts, 3
UTC (Coordinated Universal Time), 119

\'

-v command line switch, 26
validation
contact list creation, 60
discussed, 101
error messages, 103—105
helpers, 102

regular expressions, 102
XML, 159
varchar data type, 86
variables, 26
case-sensitivity, 27
descriptive, 27
environment, 125—126
instance, 124
naming, 27
passing to templates, 143—144
-version command line switch, 26
version control, 5
versioning, 280—283
View template files, 14
views, 12, 14
VSlider control, 226

w

-w command line switch, 26
Web Service Definition Language (WSDL), 168—170
web services
AWS (ActionWebService), 181—184
Flickr photo sharing site, 164—165
REST-style, 163—165, 170—171
SOAP (Simple Object Access Protocol), 168
WSDL (Web Service Definition Language), 168—170
XML-RPC, 166—167
web-based reports, graphing capabilities, 277
weblogs, 21
blog controller, 74
body field, 74
comments table, 73, 78—80
date-based routing rules, 136
discussed, 72
entries, displaying, 76
functional requirements, 73
posts table, 73—74
recent entries, displaying first, 76—77
title field, 74
Webrick server, 10—I1, 49—50
Welcome aboard page, 11
while loop, 35
wiki design
adding/editing pages, 354—356
CamelCased words, 362—363
displaying pages, 352—354
displaying pages, list of, 357
enhancements, 364
key features, 345
layout, 346—348

395

INDEX}

markup, 362
model and database creation, 349—350
page history, displaying, 358
setup, 348
version comparison, 359
wiki controller, 350—351
wiki controller, source code, 360—362
wildcard (%) character, 97
write access, 42
WSDL (Web Service Definition Language), 168—170

X

XML
converting Active Record model to, 171
converting to hash, 31
document, parsing, 160—161
generating, 161—163
REXML, 159—160

RPC (Remote Procedure Call), 166—167
to_xml method, 171, 177
validation, 159
XMLHttpRequest object
cross-browser compatibility, 189
div tag, 191-192
methods, 189—190
overview, 188
properties, 190—I91
XmIMarkup method, 162

Y

YAML file, 54

yA

ZeroDivisionError exception, 44—45

THOIVISON

COURSE TECHNOLOGY

funway

Professional m Technical m Ref

to learn programming

Let's face it.

for the gabsolute
beginner

for the absolute beginner

AppleScript Studio Programming
for the Absolute Beginner

C Programming
for the Absolute Beginner

C++° Programming
for the Absolute Beginner

Java" Programming
for the Absolute Beginner, Second Edition

Microsoft® Access VBA Programming
for the Absolute Beginner, Second Edition

Microsoft® Excel VBA Programming
for the Absolute Beginner, Second Edition

THOMSON

COURSE TECHNOLOGY

Professional m Technical m Reference

o)4 0

Microsoft® Visual Basic 2005 Express Edition
Programming for the Absolute Beginner

Microsoft® Visual C++ 2005 Express Edition
Programming for the Absolute Beginner

Microsoft® Visual C# 2005 Express Edition
Programming for the Absolute Beginner

Python Programming
for the Absolute Beginner, Second Edition

Perl Programming
for the Absolute Beginner

Call 1.800.648.7450 to order
Order online at www.courseptr.com

www.courseptr.com

-
‘— . Professional m Technical m Reference
E — -

hack-er (an.Informal)

1. One who is proficient at using or programming a computer; a
computer buff.

2. One who programs enthusiastically—-even obsessively—-or who
enjoys programming rather than just theorizing about programming.

3. A person who enjoys exploring the details of programmable
systems and how to stretch their capabilities.

4. One who cracks a computer system for the sheer challenge of

j.::i.ng =i-".o! }* o
Take your hacking skills to the limit!

ey . 1

THE UNUFFICIaL GUIDE TU

The Unofficial Guide to Ethical Hacking Hacking Mobile Phones Network Security
Second Edition ISBN: 1-59863-106-3 m $24.99 A Hacker's Perspective
ISBN: 1-59863-062-8 m $49.99 Ankit Fadia ISBN: 1-59200-045-2 m $49.99
Ankit Fadia Coming in November! Ankit Fadia

New! Available Now

www.courseptr.com

