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Preface

Just as water retains no constant shape, so in warfare
there are no constant conditions

—Lionel Giles, The Art of War by Sun Tzu

The ideas introduced in this book explore the relationships among rule-based
systems, machine learning and big data. Rule-based systems are seen as a special
type of expert systems, which can be built by using expert knowledge or learning
from real data. From this point of view, the design of rule-based systems can be
divided into expert-based design and data-based design. In the present big data era,
the latter approach of design, which typically follows machine learning, has been
increasingly popular for building rule-based systems. In the context of machine
learning, a special type of learning approach is referred to as inductive learning,
which typically involves the generation of rules in the form of either a decision tree
or a set of if-then rules. The rules generated through the adoption of the inductive
learning approach compose a rule-based system.

The focus of this book is on the development and evaluation of rule-based
systems in terms of accuracy, efficiency and interpretability. In particular, a unified
framework for building rule-based systems, which consists of the operations of rule
generation, rule simplification and rule representation, is presented. Each of these
operations is detailed using specific methods or techniques. In addition, this book
also presents some ensemble learning frameworks for building ensemble rule-based
systems. Each of these frameworks involves a specific way of collaborations
between different learning algorithms. All theories mentioned above are designed to
address the issues relating to overfitting of training data, which arise with most
learning algorithms and make predictive models perform well on training data but
poorly on test data.

Machine learning does not only have a scientific perspective but also a philo-
sophical one. This implies that machine learning is philosophically similar to
human learning. In fact, machine learning is inspired by human learning in order to
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simulate the process of learning in computer software. In other words, the name of
machine learning indicates that machines are capable of learning. However, people
in other fields have criticized the capability of machine learning by saying that
machines are neither able to learn nor outperform people intellectually. The argu-
ment is that machines are invented by people and their performance is totally
dependent on the design and implementation by engineers and programmers. It is
true that machines are controlled by programs in executing instructions. However,
if a program is an implementation of a learning method, then the machine will
execute the program to learn something. On the other hand, if a machine is thought
to be never superior to people, this will imply that in human learning students
would never be superior to their teachers. This is not really true, especially if a
student has the strong capability to learn independently without being taught.
Therefore, this should also be valid in machine learning if a good learning method
is embedded in the machine.

In recent years, data mining and machine learning have been used as alternative
terms in the same research area. However, the authors consider this as a miscon-
ception. According to them, data mining and machine learning are different in both
philosophical and practical aspects.

In terms of philosophical aspects, data mining is similar to human research tasks
and machine learning is similar to human learning tasks. From this point of view,
the difference between data mining and machine leaning is similar to the difference
between human research and learning. In particular, data mining, which acts as a
researcher, aims to discover something new from unknown properties, whereas
machine learning, which acts as a learner, aims to learn something new from known
properties.

In terms of practical aspects, although both data mining and machine learning
involve data processing, the data processed by the former needs to be primary,
whereas the data processed by the latter needs to be secondary. In particular, in data
mining tasks, the data has some patterns which are previously unknown and the aim
is to discover the new patterns from the data. In contrast, in machine learning tasks,
the data has some patterns which are known in general but are not known to the
machine and the aim is to make the machine learn the patterns from the data. On
the other hand, data mining is aimed at knowledge discovery, which means that the
model built is used in a white box manner to extract the knowledge which is
discovered from the data and is communicated to people. In contrast, machine
learning is aimed at predictive modelling, which means that the model built is used
in a black box manner to make predictions on unseen instances.

The scientific development of the theories introduced in this book is philo-
sophically inspired by three main theories—namely information theory, system
theory and control theory. In the context of machine learning, information theory
generally relates to transformation from data to information/knowledge. In the
context of system theory, a machine learning framework can be seen as a learning
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system which consists of different modules including data collection, data pre-
processing, training, testing and deployment. In addition, single rule-based systems
are seen as systems, each of which typically consists of a set of rules and could also
be a subsystem of an ensemble rule-based system by means of a system of systems.
In the context of control theory, learning tasks need to be controlled effectively and
efficiently, especially due to the presence of big data.

Han Liu
Alexander Gegov

Mihaela Cocea

Preface vii

www.allitebooks.com

http://www.allitebooks.org


Acknowledgments

The first author would like to thank the University of Portsmouth for awarding him
the funding to conduct the research activities that produced the results disseminated
in this book. Special thanks must go to his parents Wenle Liu and Chunlan Xie as
well as his brother Zhu Liu for the financial support during his academic studies in
the past as well as the spiritual support and encouragement for his embarking on a
research career in recent years. In addition, the first author would also like to thank
his best friend Yuqian Zou for the continuous support and encouragement during
his recent research career that have facilitated significantly his involvement in the
writing process for this book.

The authors would like to thank the academic editor for the Springer Series in
Studies in Big Data Prof. Janusz Kacprzyk and the executive editor for this series
Dr. Thomas Ditzinger for the useful comments provided during the review process.
These comments have been very helpful for improving the quality of the book.

ix

www.allitebooks.com

http://www.allitebooks.org


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background of Rule Based Systems . . . . . . . . . . . . . . . . . . . . . 1
1.2 Categorization of Rule Based Systems . . . . . . . . . . . . . . . . . . . 5
1.3 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Chapters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Discrete Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 If-then Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Statistical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Single Rule Based Classification Systems . . . . . . . . . . . . . . . . . 23
2.8 Ensemble Rule Based Classification Systems . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Generation of Classification Rules . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Divide and Conquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Separate and Conquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Simplification of Classification Rules . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Pruning of Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Pruning of If-Then Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Illustrative Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-319-23696-4_1
http://dx.doi.org/10.1007/978-3-319-23696-4_1
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_1#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_2
http://dx.doi.org/10.1007/978-3-319-23696-4_2
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-23696-4_2#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_3
http://dx.doi.org/10.1007/978-3-319-23696-4_3
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_3#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_4
http://dx.doi.org/10.1007/978-3-319-23696-4_4
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_4#Bib1
http://www.allitebooks.org


5 Representation of Classification Rules . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Linear Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Rule Based Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Ensemble Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Parallel Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Sequential Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Hybrid Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Interpretability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1 Learning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Data Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Model Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Human Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.1 Overview of Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Impact on Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3 Case Study I-Rule Generation . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Case Study II-Rule Simplification. . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Case Study III-Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . 92
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.1 Theoretical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2 Practical Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3 Methodological Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.4 Philosophical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.5 Further Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xii Contents

http://dx.doi.org/10.1007/978-3-319-23696-4_5
http://dx.doi.org/10.1007/978-3-319-23696-4_5
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_5#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_6
http://dx.doi.org/10.1007/978-3-319-23696-4_6
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_6#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_7
http://dx.doi.org/10.1007/978-3-319-23696-4_7
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_7#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_8
http://dx.doi.org/10.1007/978-3-319-23696-4_8
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_8#Bib1
http://dx.doi.org/10.1007/978-3-319-23696-4_9
http://dx.doi.org/10.1007/978-3-319-23696-4_9
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-23696-4_9#Bib1


Appendix 1: List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix 2: Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix 3: UML Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix 4: Data Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Contents xiii



Chapter 1
Introduction

1.1 Background of Rule Based Systems

Expert systems have been increasingly popular for commercial applications. A rule
based system is a special type of expert system. The development of rule based
systems began in the 1960s but became popular in the 1970s and 1980s [1]. A rule
based system typically consists of a set of if-then rules, which can serve many
purposes such as decision support or predictive decision making in real applica-
tions. One of the main challenges in this area is the design of such systems which
could be based on both expert knowledge and data. Thus the design techniques can
be divided into two categories: expert based construction and data based con-
struction. The former follows a traditional engineering approach, while the later
follows a machine learning approach. For both approaches, the design of rule based
systems could be used for practical tasks such as classification, regression and
association.

This book recommends the use of the data based approach instead of the expert
based approach. This is because the expert based approach has some limitations
which can usually be overcome by using the data based approach. For example,
expert knowledge may be incomplete or inaccurate; some of experts’ points of view
may be biased; engineers may misunderstand requirements or have technical
designs with defects. When problems with high complexity are dealt with, it is
difficult for both domain experts and engineers to have all possible cases considered
or to have perfect technical designs. Once a failure arises with an expert system,
experts or engineers may have to find the problem and fix it by reanalyzing or
redesigning. However, the real world has been filled with big data. Some previously
unknown information or knowledge could be discovered from data. Data could
potentially be used as supporting evidence to reflect some useful and important
pattern by using modelling techniques. More importantly, the model could be
revised automatically as a database is updated in real time when data based mod-
elling technique is used. Therefore, the data based approach would be more suitable
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than the expert based approach for construction of complex rule based systems.
This book mainly focuses on theoretical and empirical studies of rule based systems
for classification in the context of machine learning.

Machine learning is a branch of artificial intelligence and involves two stages:
training and testing. Training aims to learn something from known properties by
using learning algorithms and testing aims to make predictions on unknown prop-
erties by using the knowledge learned in the training stage. From this point of view,
training and testing are also known as learning and prediction respectively. In
practice, a machine learning task aims to build a model that is further used to make
predictions by adopting learning algorithms. This task is usually referred to as
predictive modelling. Machine learning could be divided into two types: supervised
learning and unsupervised learning, in accordance with the form of learning.
Supervised learning means learning with a teacher because all instances from a
training set are labelled. The aim of this type of learning is to build a model by
learning from labelled data and then to make predictions on other unlabelled
instances with regard to the value of a predicted attribute. The predicted value of an
attribute could be either discrete or continuous. Therefore, supervised learning could
be involved in both classification and regression tasks for categorical prediction and
numerical prediction, respectively. In contrast, unsupervised learning means learn-
ing without a teacher. This is because all instances from a training set are unlabelled.
The aim of this type of learning is to find previously unknown patterns from data
sets. It includes association, which aims to identify correlations between attributes,
and clustering, which aims to group objects based on similarity measures.

On the other hand, machine learning algorithms are popularly used in data
mining tasks to discover some previously unknown pattern. This task is usually
referred to as knowledge discovery. From this point of view, data mining tasks also
involve classification, regression, association and clustering. Both classification and
regression can be used to reflect the correlation between multiple independent
variables and a single dependent variable. The difference between classification and
regression is that the former typically reflects the correlation in qualitative aspects,
whereas the latter reflects in quantitative aspects. Association is used to reflect the
correlation between multiple independent variables and multiple dependent vari-
ables in both qualitative and quantitative aspects. Clustering can be used to reflect
patterns in relation to grouping of objects.

In data mining and machine learning, automatic induction of classification rules
has become increasingly popular in commercial applications such as predictive
decision making systems. In this context, the methods for generating classification
rules can be divided into two categories: ‘divide and conquer’ and ‘separate and
conquer’. The former is also known as Top-Down Induction of Decision Trees
(TDIDT), which generates classification rules in the intermediate form of a decision
tree such as ID3, C4.5 and C5.0 [2]. The latter is also known as covering approach
[3], which generates if-then rules directly from training instances such as Prism [4].
The ID3 and Prism algorithms are described in detail in Chap. 3.

Most rule learning methods suffer from overfitting of training data, which is
termed as overfitting avoidance bias in [3, 5, 6]. In practice, overfitting may results
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in the generation of a large number of complex rules. This not only increases the
computational cost, but also lowers the accuracy in predicting further unseen
instances. This has motivated the development of pruning algorithms with respect
to the reduction of overfitting. Pruning methods could be subdivided into two
categories: pre-pruning and post-pruning [3]. For divide and conquer rule learning,
the former pruning strategy aims to stop the growth of decision trees in the middle
of the training process, whereas the latter pruning strategy aims to simplify a set of
rules, which is converted from the generated decision tree, after the completion of
the training process. For separate and conquer rule learning, the former pruning
strategy aims to stop the specialization of each single rule prior to its normal
completion whereas the latter pruning strategy aims to simplify each single rule
after the completion of the rule generation. Some theoretic pruning methods, which
are based on J-measure [7], are described in detail in Chap. 4.

The main objective in prediction stage is to find the first firing rule by searching
through a rule set. As efficiency is important, a suitable structure is required to
effectively represent a rule set. The existing rule representations include decision
trees and linear lists. Decision Tree representation is mainly used to represent rule
sets generated by the ‘divide and conquer’ approach. A decision tree has a root and
several internal nodes representing attributes and leaf nodes representing classifi-
cations as well as branches representing attribute values. On the other hand, linear
list representation is commonly used to represent rules generated by ‘separate and
conquer’ approach in the form of ‘if-then’ rules. These two representations are
described in detail in Chap. 5.

Each machine learning algorithm may have its own advantages and disadvan-
tages, which results in the possibility that a particular algorithm may perform well
on some datasets but poorly on others, due to its suitability to particular datasets. In
order to overcome the above problem and thus improve the overall accuracy of
classification, the development of ensemble learning approaches has been moti-
vated. Ensemble learning concepts are introduced in Sect. 1.3 and popular
approaches are described in details in Chap. 6.

As mentioned above, most rule learning methods suffer from overfitting of
training data, which is due to bias and variance. As introduced in [8], bias means
errors originating from learning algorithm whereas variance means errors origi-
nating from data. Therefore, it is necessary to reduce both bias and variance in order
to reduce overfitting comprehensively. In other words, reduction of overfitting can
be achieved through scaling up algorithms or scaling down data. The former way is
to reduce the bias on algorithms side whereas the latter way is to reduce the
variance on data side. In addition, both ways usually also improve computational
efficiency in both training and testing stages.

In the context of scaling up algorithms, if a machine learning task involves the
use of a single algorithm, it is necessary to identify the suitability of a particular
algorithm to the chosen data. For example, some algorithms are unable to directly
deal with continuous attributes such as ID3. For this kind of algorithms, it is
required to discretize continuous attributes prior to training stage. A popular method
of discretization of continuous attributes is Chi-Merge [9]. The discretization of
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continuous attributes usually helps speed up the process of training greatly. This is
because the attribute complexity is reduced through discretizing the continuous
attributes [8]. However, it is also likely to lead to loss of accuracy. This is because
information usually gets lost in some extent after a continuous attribute is dis-
cretized as mentioned in [8]. In addition, some algorithms prefer to deal with
continuous attributes such as K Nearest Neighbor (KNN) [10] and Support Vector
Machine (SVM) [11, 12].

In the context of scaling down data, if the training data is massively large, it
would usually result in huge computational costs. In addition, it may also make
learning algorithms learn noise or coincidental patterns. In this case, a generated
rule set that overfits training data usually performs poorly in terms of accuracy on
test data. In contrast, if the size of a sample is too small, it is likely to learn bias
from training data as the sample could only have a small coverage for the scientific
pattern. Therefore, it is necessary to effectively choose representative samples for
training data. With regard to dimensionality, it is scientifically possible that not all
of the attributes are relevant to making classifications. In this case, some attributes
need to be removed from the training set by feature selection techniques if the
attributes are irrelevant. Therefore, it is necessary to examine the relevance of
attributes in order to effectively reduce data dimensionality. The above descriptions
mostly explain why an algorithm may perform better on some data sets but worse
on others. All of these issues mentioned above often arise in machine learning tasks,
so the issues also need to be taken into account by rule based classification algo-
rithms in order to improve classification performance. On the basis of above
descriptions, it is necessary to pre-process data prior to training stage, which
involves dimensionality reduction and data sampling. For dimensionality reduction,
some popular existing methods include Principle Component Analysis (PCA) [13],
Linear Discriminant Analysis (LDA) [14] and Information Gain based methods
[15]. Some popular sampling methods include simple random sampling [16],
probabilistic sampling [17] and cluster sampling [18].

In addition to predictive accuracy and computational efficiency, interpretability
is also a significant aspect if the machine learning approaches are adopted in data
mining tasks for the purpose of knowledge discovery. As mentioned above,
machine learning methods can be used for two main purposes. One is to build a
predictive model that is used to make predictions. The other one is to discover some
meaningful and useful knowledge from data. For the latter purpose, the knowledge
discovered is later used to provide insights for a knowledge domain. For example, a
decision support system is built in order to provide recommendations to people with
regard to a decision. People may not trust the recommendations made by the system
unless they can understand the reasons behind the decision making process. From
this point of view, it is required to have an expert system which works in a white
box manner. This is in order to make the expert system transparent so that people
can understand the reasons why the output is derived from the system.

As mentioned above, a rule based system is a special type of expert systems.
This type of expert systems works in a white box manner. Higgins justified in [19]
that interpretable expert systems need to be able to provide the explanation with
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regard to the reason of an output and that rule based knowledge representation
makes expert systems more interpretable with the arguments described in the fol-
lowing paragraphs:

A network was conceived in [20], which needs a number of nodes exponential in
the number of attributes in order to restore the information on conditional proba-
bilities of any combination of inputs. It is argued in [19] that the network restores a
large amount of information that is mostly less valuable.

Another type of network known as Bayesian Network introduced in [21] needs a
number of nodes which is the same as the number of attributes. However, the
network only restores the information on joint probabilities based on the assump-
tion that each of the input attributes is totally independent of the others. Therefore,
it is argued in [19] that this network is unlikely to predict more complex rela-
tionships between attributes due to the lack of information on correlational prob-
abilities between attributes.

There are some other methods that fill the gaps that exist in Bayesian Networks
by deciding to only choose some higher-order conjunctive probabilities, such as the
first neural networks [22] and a method based on correlation/dependency measure
[23]. However, it is argued in [19] that these methods still need to be based on the
assumption that all attributes are independent of each other.

1.2 Categorization of Rule Based Systems

Rule based systems can be categorized based on the following aspects: number of
inputs and outputs, type of input and output values, type of structure, type of logic, type
of rule bases, number of machine learners and type of computing environment [24].

For rule based systems, both inputs and outputs could be single or multiple.
From this point of view, rule based systems can be divided into four types [25]:
single-input-single-output, multiple-input-single-output, single-input-multiple-out-
put, and multiple-input-multiple-output. All the four types above can fit the char-
acteristics of association rules. This is because association rules reflect relationships
between attributes. An association rule may have a single or multiple rule terms in
both antecedent (left hand side) and consequent (right hand side) of the rule. Thus
the categorization based on number of inputs and outputs is very necessary in order
to make the distinction of association rules.

However, association rules include two special types: classification rules and
regression rules, depending on the type of output values. Both classification rules
and regression rules may have a single term or multiple rule terms in the antecedent,
but can only have a single term in the consequent. The difference between classi-
fication rules and regression rules is that the output values of classification rules
must be discrete while those of regression rules must be continuous. Thus both
classification rules and regression rules fit the characteristics of ‘single-input-single-
output’ or ‘multiple-input-single-output’ and are seen as a special type of associ-
ation rules. On the basis of the above description, rule based systems can also be
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categorized into three types with respects to both number of inputs and outputs and
type of input and output values: rule based classification systems, rule based
regression systems and rule based association systems.

In machine learning, as mentioned in Sect. 1.1, classification rules can be
generated in two approaches: divide and conquer, and separate and conquer. The
former method is generating rules directly in the form of a decision tree, whereas
the latter method produces a list of ‘if-then’ rules. An alternative structure called
rule based networks represents rules in the form of networks, which will be
introduced in Chap. 5 in more detail. With respect to structure, rule based systems
can thus be divided into three types: treed rule based systems, listed rule based
systems and networked rule based systems.

The construction of rule based systems is based on special types of logic such as
deterministic logic, probabilistic logic and fuzzy logic. From this point of view, rule
based systems can also be divided into the following types: deterministic rule based
systems, probabilistic rule based systems and fuzzy rule based systems.

As rule based systems can also be in the context of rule bases including single
rule bases, chained rule bases and modular rule bases [25]. From this point of view,
rule based systems can also be divided into the three types: standard rule based
systems, hierarchical rule based systems and networked rule based systems.

In machine learning context, a single algorithm could be applied to a single data
set for training a single learner. It can also be applied to multiple samples of a data
set by ensemble learning techniques for construction of an ensemble learner which
consists of a group of single learners. In addition, there could also be a combination
of multiple algorithms involved in machine learning tasks. From this point of view,
rule based systems can be divided into two types according to the number of
machine learners constructed: single rule based systems and ensemble rule based
systems.

In practice, an ensemble learning task could be done in a parallel, distributed
way or a mobile platform according to the specific computing environments.
Therefore, rule based systems can also be divided into the following three types:
parallel rule based systems, distributed rule based systems and mobile rule based
systems.

The categorizations described above aim to specify the types of rule based
systems as well as to give particular terminologies for different application areas in
practice. In this way, it is easy for people to distinguish different types of rule based
systems when they are based on different theoretical concepts and practical tech-
niques or they are used for different purposes in practice.

1.3 Ensemble Learning

As mentioned in Sect. 1.1, ensemble learning is usually adopted to improve overall
accuracy. In detail, this purpose can be achieved through scaling up algorithms or
scaling down data. Ensemble learning can be done both in parallel and sequentially.
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In the former way, there are no collaborations among different learning algorithms
and only their predictions are combined together for the final prediction making
[26]. In this context, the final prediction is typically made by voting in classification
and by averaging in regression. In the latter way of ensemble learning, the first
algorithm learns a model from data and then the second algorithm learns to correct
the former one, and so on [26]. In other words, the model built by the first algorithm
is further corrected by the following algorithms sequentially.

The parallel ensemble learning approach can be achieved by combining different
learning algorithms, each of which generates a model independently on the same
training set. In this way, the predictions of the models generated by these algorithms
are combined to predict unseen instances. This approach belongs to scaling up
algorithms because different algorithms are combined in order to generate a
stronger hypothesis. In addition, the parallel ensemble learning approach can also
be achieved by using a single base learning algorithm to generate models inde-
pendently on different sample sets of training instances. In this context, the sample
set of training instances can be provided by horizontally selecting the instances with
replacement or vertically selecting the attributes without replacement. This
approach belongs to scaling down data because the training data is preprocessed to
reduce the variance that exists on the basis of the attribute-values.

In sequential ensemble learning approach, accuracy can also be improved
through scaling up algorithms or scaling down data. In the former way, different
algorithms are combined in the way that the first algorithm learns to generate a
model and then the second algorithm learns to correct the model, and so on. In this
way, the training of the different algorithms takes place on the same data. In the
latter way, in contrast, the same algorithm is used iteratively on different versions of
the training data. In each iteration, a model is generated and evaluated using the
validation data. According to the estimated quality of the model, the training
instances are weighted to different extents and then used for the next iteration. In the
testing stage, these models generated at different iterations make predictions
independently and their predictions are then combined to predict unseen instances.

For both parallel and sequential ensemble learning approaches, voting is
involved in the testing stage when the independent predictions are combined to
make the final prediction on an unseen instance. Some popular methods of voting
include equal voting, weighted voting and naïve Bayesian voting [26]. Some
popular approaches of ensemble learning for generation of classification rules are
described in Chap. 6 in more depth.

1.4 Chapters Overview

This book consists of nine main chapters namely, introduction, preliminary of rule
based systems, generation of classification rules, simplification of classification rules,
representation of classification rules, ensemble learning approaches, interpretability
analysis, case studies and conclusion. The rest of this book is organized as follows:
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Chapter 2 describes some fundamental concepts that strongly relate to rule based
systems and machine learning such as discrete mathematics, statistics, if-then rules,
algorithms, logic and statistical measures of rule quality. In addition, this chapter
also describes a unified framework for construction of single rule based classifi-
cation systems, as well as the way to construct an ensemble rule based classification
systems by means of a system of systems.

Chapter 3 introduces two approaches of rule generation namely, ‘divide and
conquer’ and ‘separate and conquer’. In particular, some existing rule learning
algorithms are illustrated in detail. These algorithms are also discussed compara-
tively with respects to their advantages and disadvantages.

Chapter 4 introduces two approaches of rule simplification namely, information
theoretic pre-pruning and information theoretic post-pruning. In particular, some
existing rule pruning algorithms are illustrated. These algorithms are also discussed
comparatively with respects to their advantages and disadvantages.

Chapter 5 introduces three techniques for representation of classification rules
namely, decision trees, linear lists and rule based networks. In particular, these
representations are illustrated using examples in terms of searching for firing rules.
These techniques are also discussed comparatively in terms of computational
complexity and interpretability.

Chapter 6 introduces three approaches of ensemble learning namely, parallel
learning, sequential learning and hybrid learning. In particular, some popular
methods for ensemble learning are illustrated in detail. These methods are also
discussed comparatively with respects to their advantages and disadvantages.

Chapter 7 introduces theoretical aspects of interpretability on rule based systems.
In particular, some impact factors are identified and how these factors have an
impact on interpretability is also analyzed. In addition, some criteria for evaluation
on interpretability are also listed.

Chapter 8 introduces case studies on big data. In particular, the methods and
techniques introduced in Chaps. 3, 4, 5 and 6 are evaluated through theoretical
analysis and empirical validation using large data sets in terms of variety, veracity
and volume.

Chapter 9 summaries the contributions of this book in terms of theoretical
significance, practical importance, methodological impact and philosophical
aspects. Further directions of this research area are also identified and highlighted.
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Chapter 2
Theoretical Preliminaries

As mentioned in Chap. 1, some fundamental concepts strongly relate to rule based
systems and machine learning, including discrete mathematics, statistics, if-then
rules, algorithms, logic and statistical measures of rule quality. This chapter illus-
trates these concepts in detail. In addition, this chapter also describes a unified
framework for construction of single rule based classification systems, as well as
the way to construct an ensemble rule based classification systems by means of a
system of systems.

2.1 Discrete Mathematics

Discrete mathematics is a branch of mathematical theory, which includes three main
topics, namely mathematical logic, set theory and graph theory. In this book, rule
learning methods introduced in Chap. 3 are strongly based on Boolean logic, which
is a theoretical application of mathematical logic in computer science. As men-
tioned in Sect. 1.1, a rule based system consists of a set of rules. In other words,
rules are basically stored in a set, which is referred to as rule set. In addition, the
data used in machine learning tasks is usually referred to as a dataset. Therefore, set
theory is also strongly related to the materials in this book. The development of rule
based networks, which is introduced in Chap. 5, is fundamentally based on graph
theory. On the basis of above description, this subsection introduces in more detail
the three topics as part of discrete mathematics with respects to their concepts and
connections to the context of this book.

Mathematical logic includes the propositional connectives namely conjunction,
disjunction, negation, implication and equivalence. Conjunction is also referred to
as AND logic in computer science and denoted by F = a ˄ b. The conjunction could
be illustrated by the truth table (Table 2.1).

Table 2.1 essentially implies that the output is positive if and only if all inputs
are positive in AND logic. In other words, if any one of the inputs is negative, it
would result in a negative output. In practice, the conjunction is widely used to
make judgments especially on safety critical judgment. For example, it can be used
for security check systems and the security status is positive if and only if all
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parameters relating to the security are positive. In this book, the conjunction is
typically used to judge if a rule is firing and more details about it are introduced in
Sect. 1.4.3.

Disjunction is also referred to as OR logic in computer science and denoted by
F = a ˅ b. The disjunction is illustrated by the truth table (Table 2.2).

Table 2.2 essentially implies that the output would be negative if and only if all
of the inputs are negative in OR logic. In other words, if any one of the inputs is
positive, then it would result in a positive output. In practice, it is widely used to
make judgments on alarm system. For example, an alarm system would be activated
if any one of the parameters appears to be negative.

Implication is popularly used to make deductions, and is denoted by F = a → b.
The implication is illustrated by the truth table (Table 2.3).

Table 2.3 essentially implies that ‘a’ is defined as an antecedent and ‘b’ as a
consequent. In this context, it supposes that the consequent would be deterministic
if the antecedent is satisfied. In other words, ‘a’ is seen as the adequate but not
necessary condition of ‘b’, which means if ‘a’ is true then ‘b’ will definitely be true,
but b may be either true or false otherwise. In contrast, if ‘b’ is true, it is not
necessarily due to that ‘a’ is true. This can also be proved as follows:

F ¼ a � b , :a _ b

The notation ¬a ˅ b is illustrated by the truth table (Table 2.4). In particular, it
can be seen from the table that the output is negative if and only if ‘a’ provides a
positive input but ‘b’ provides a negative one.

Table 2.4 essentially implies that the necessity condition that the output is
negative is to have ‘a’ provide a positive input. This is because the output will
definitely be positive when ‘a’ provides a negative input, which makes ‘¬a’ provide
a positive input. In contrast, if ‘a’ provides a positive input and ‘b’ provides a
negative input, then the output will be negative.

It can be seen from Tables 2.3 and 2.4 that the outputs from the two tables are
exactly same. Therefore, Table 2.3 indicates that if an antecedent is satisfied then

Table 2.1 Conjunction truth
table

a b F

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.2 Disjunction truth
table

a b F

0 0 0

0 1 1

1 0 1

1 1 1
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the consequent can be determined. Otherwise, the consequent would be
non-deterministic. In this book, the concept of implication is typically used in the
form of if-then rules for predicting classes. The concept of if-then rules is intro-
duced in Sect. 2.3.

Besides, negation and equivalence are actually not applied to the research
methodology in this book. Therefore, they are not introduced in detail here, but the
interested reader can find these two concepts in [1].

Set theory is another part of discrete mathematics as mentioned earlier. A set is
defined as a collection of elements. The elements maybe numbers, points and names
etc., which are not ordered nor repetitive, i.e. the elements can be stored in any
order and are distinct from each other. As introduced in [2, 3], an element ‘e’ has a
membership in a set ‘S’, which is denoted by ‘e 2 S’ and it is said that element ‘e’
belongs to set ‘S’. The fact that the element ‘e’ is not a member of set ‘S’ is denoted
by ‘e 2 S’ and it is said that element ‘e’ does not belong to set ‘S’. In this book, set
theory is used in the management of data and rules, which are referred to as data set
and rule set respectively. A data set is used to store data and each element represents
a data point. In this book, a data point is usually referred to as an instance. A rule set
is used to store rules and each element represents a rule. In addition, a set can have a
number of subsets depending on the number of elements. The maximum number of
subsets for a set would be 2n, where n is the number of elements in the set. There
are also some operations between sets such as union, intersection and difference,
which are not relevant to the materials in this book. Therefore, the concepts relating
to these operations are not introduced here—more details are available in [1, 3].

On the other hand, relations can be defined between sets. A binary relation exists
when two sets are related. For example, there are two sets denoted as ‘Student’ and
‘Course’ respectively. In this context, there would be a mapping from students and
courses, and each mapping is known as an ordered pair. For example, each student
can register on one course only, but a course could have many students or no
students, which means that each element in the set ‘Student’ is only mapped to one
element in the set ‘Course’, but an element in the latter set may be mapped to many

Table 2.4 Negation truth
table

a b ¬a F

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 1

Table 2.3 Implication truth
table

a b F

0 0 1

0 1 1

1 0 0

1 1 1
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elements in the former set. Therefore, this is a many-to-one relation. This type of
relation is also known as a function. In contrast, if the university regulations allow
that a student may register on more than one course, the relation would become
many-to-many and is not a function any more. Therefore, a function is generally
defined as a many-to-one relation. In the above example, the set ‘Student’ is
regarded as the domain and the set ‘Course’ as range. In this book, each rule in a
rule set actually acts as a particular function to reflect the mapping from input space
(domain) to output space (range).

Graph theory is also a part of discrete mathematics as mentioned earlier in this
subsection. It is popularly used in data structures such as binary search trees and
directed or undirected graphs. A tree typically consists of a root node and some
internal nodes as well as some leaf nodes as illustrated in Fig. 2.1. In this figure,
node A is the root node of the tree; node B and C are two internal nodes; and node
D, E, F and G are four leaf nodes. A tree could be seen as a top-down directed
graph. This is because the search strategy applied to trees is in top-down approach
from the root node to the leaf nodes. The search strategy could be divided into two
categories: depth first search and breadth first search. In the former strategy, the
search is going through in the following order: A → B → D → E → C → F → G.
In contrast, in the latter strategy, the search would be in a different order:
A → B → C → D → E → F → G. In this book, the tree structure is applied to the
concept of decision tree to graphically represent a set of if-then rules. More details
about this are introduced in Chap. 5.

In contrast to trees, there is also a type of horizontally directed graphs in one/two
way(s) as illustrated in Figs. 2.2 and 2.3. For example, a feed-forward neural
network is seen as a one way directed graph and a feedback neural network as a two
way directed graph.

In a directed graph, what could be judged is on the reachability between nodes
depending on the existence of connections. For example, looking at Fig. 2.2, it can
only be judged that it is reachable from node A to node C but unreachable in the

Fig. 2.1 Example of tree structure
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opposite way. This is because there is only a one way connection from node A to
node C. In contrast, there is a two way connection between node A and node C
through looking at Fig. 2.3. Therefore, it can be judged that it is reachable between
the two nodes, i.e. it is reachable in both ways (A → C and C → A). In this book,
the concept of directed graphs is applied to a special type of rule representation
known as rule based network for the purpose of predictive modelling. Related
details are introduced in Chap. 5.

In addition, a graph could also be undirected, which means that in a graphical
representation the connections between nodes would become undirected. This
concept is also applied to network based rule representation but the difference to
application of directed graphs is that the purpose is for knowledge representation.
More details about this are introduced in Chap. 5.

Fig. 2.2 Example of one way directed graph

Fig. 2.3 Example of two way directed graph
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2.2 Probability Theory

Probability theory is another branch of mathematics, which is a concept involved in
all type of activities [4]. Probability is seen as a measure of uncertainty for a
particular event. In general, there are two extreme cases. The first one is that if an
event A is exact, then the probability of the event, denoted by P (A), is equal to 1.
The other case is that if the event is impossible, then the corresponding probability
would be equal to 0. In reality, most events have a random behavior and their
corresponding probabilities would be ranged between 0 and 1. These events typi-
cally include independent events and mutually exclusive events.

Independent events generally mean that for two or more events the occurrence of
one does not affect that of the other(s). However, the events will be mutually
exclusive if the occurrence of one event results in the non-occurrence of the other
(s). In addition, there are also some events that are neither independent nor mutually
exclusive. In other words, the occurrence of one event may result in the occurrence
of the other(s) with a probability. The corresponding probability is referred to as
conditional probability, which is denoted by P(A|B). The P(A|B) is pronounced as
‘the probability of A given B as a condition’. According to Bayes theorem [5], P(A)
is seen as a prior probability, which indicates the pre-degree of certainty for event
A, and P(A|B) as a posterior probability, which indicates the post-degree of cer-
tainty for event A after taking into consideration event B. In this book, the concept
of probability theory introduced above is related to the essence of the methods for
rule generation introduced in Chap. 3. In addition, the concept is also related to an
information theoretic measure called J-measure, which is discussed in Sect. 2.6.

Probability theory is typically jointly used with statistics. For example, it can
well contribute to the theory of distribution [4] with respect to probability distri-
bution. As mentioned in [4], a probability distribution is often transformed from
frequency distribution. When different events have the same probability, the
probability distribution is in the case of normal distribution. In the context of
statistics, normal distribution occurs while all possible outcomes have the same
frequency resulting from a sampling based investigation. Probability distributions
also help predict the expected outcome out of all possible outcomes in a random
event. This could be achieved by weighted majority voting, while the random event
is discrete, or by weighted averaging, while the event is continuous. In the above
context, probability is actually used as the weight and the expected outcome is
referred to as mathematical expectation. In addition, the probability distribution also
helps measure the approximate distance between expected outcome and actual
outcome, while the distance among different outcomes is precise such as rating
from 1 to 5. This could be achieved by calculating the variance or standard devi-
ation to reflect the volatility with regard to the possible outcome. In this book, the
probability distribution is related to a technique of information theory, which is
known as entropy and used as a measure of uncertainty in classification. In addition,
the concept on mathematical expectation is used to measure the expected accuracy
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by random guess in classification and variance/standard deviation can be used to
measure the randomness of an algorithm of ensemble learning.

2.3 If-then Rules

As mentioned in Sect. 1.1, rule based system typically consists of a set of if-then
rules. Ross stated in [1] that there are many different ways for knowledge repre-
sentation in the area of artificial intelligence but the most popular one would
perhaps be in the form of if-then rules denoted by the expression: IF cause (ante-
cedent) THEN effect (consequent).

The expression above typically indicates an inference that if a condition (cause,
antecedent) is known then the outcome (effect, consequent) can be derived [1].
Gegov introduced in [6] that both the antecedent and the consequent of a rule could
be made up of multiple terms (inputs/outputs). In this context, an antecedent with
multiple inputs that are linked by ‘and’ connectives is called a conjunctive ante-
cedent, whereas the inputs that are linked by ‘or’ connectives would make up a
disjunctive antecedent. The same concept is also applied to rule consequent. In
addition, it is also introduced in [6] that rules may be conjunctive, if all of the rules
are connected by logical conjunction, or disjunctive, if the rules are connected by
logical disjunction. On the other hand, a rule may be inconsistent, which indicates
that the antecedent of a rule may be mapped to different consequents. In this case,
the rule could be expressed with a conjunctive antecedent and a disjunctive
consequent.

In this book, if-then rules are used to make prediction in classification tasks. In
this context, each of the rules is referred to as a classification rule, which can have
multiple inputs, but only a single output. In a classification rule, the consequent
with a single output represents the class predicted and the antecedent with a
single/multiple input(s) represents the adequate condition to have this class pre-
dicted. A rule set that is used to predict classes consists of disjunctive rules which
may be overlapped. This means that different rules may have the same instances
covered. However, if the overlapped rules have different consequents (classifica-
tion), it would raise a problem referred to as conflict of classification. In this case,
conflict resolution is required to solve the problem according to some criteria such
as weighted voting or fuzzy inference [1]. When a rule is inconsistent, it would
result in uncertainty in classification. This is because the prediction of class
becomes non-deterministic when this problem arises. More details about conflict
resolution and dealing with inconsistent rules are introduced in Chap. 3.

Another concept relating to if-then rules is known as a rule base. In general, a
rule base consists of a number of rules which have common input and output
variables. For example, a rule base has two inputs: x1 and x2 and one output y as
illustrated by Fig. 2.4.

If x1, x2 and y all belong to {0, 1}, the rule base can have up to four rules as
listed below:
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If x1 = 0 and x2 = 0 then y 2 {0, 1}
If x1 = 0 and x2 = 1 then y 2 {0, 1}
If x1 = 1 and x2 = 0 then y 2{0, 1}
If x1 = 1 and x2 = 1 then y 2 {0, 1}

In practice, rule bases can be used to effectively and efficiently manage rules
with respects to their storage and retrieval. For example, if a particular rule is
searched for, it could be efficiently retrieved by locating at the rule base in which
the rule is found. This is a significant difference to rule set for retrieval purpose. As
mentioned earlier in this section, set is used to store a collection of elements which
are not ordered nor grouped properly. From this point of view, it is not efficient to
look for a particular rule in a rule set. The only way to deal with that is to linearly
go through the rules one by one in the rule set until the target rule is found. In the
worst case, it may be required to go through the whole set due to that the target rule
is restored as the last element of the rule set. Therefore, the use of rule base would
improve the efficiency in predicting classes on unseen instances in testing stage.
More details about the use of rule bases are introduced in Chap. 8.

2.4 Algorithms

Aho et al. defined in [3] that “algorithm is a finite sequence of instructions, each of
which has a clear meaning and can be performed with a finite amount of effort in a
finite length of time”. In general, an algorithm acts as a step by step procedure for
problem solving. An algorithm may have no inputs but must have at least one
output with regard to solving a particular problem. In practice, a problem can
usually be solved by more than one algorithm. In this sense, it is necessary to make
comparison between algorithms to find the one which is more suitable to a par-
ticular problem domain. An algorithm could be evaluated against the following
aspects:

Accuracy, which refers to the correctness in terms of correlation between inputs and
outputs.
Efficiency, which refers to the computational cost required.
Robustness, which refers to the tolerance to incorrect inputs.
Readability, which refers to the interpretability to people.

RB1
x1

x2
y

Fig. 2.4 Rule base with inputs x1 and x2 and output y
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Accuracy would usually be the most important factor in determining whether an
algorithm is chosen to solve a particular problem. It can be measured by providing
the inputs and checking the outputs.

Efficiency is another important factor to measure if the algorithm is feasible in
practice. This is because if an algorithm is computationally expensive then the
implementation of the algorithm may be crashed on a hardware device. Efficiency
of an algorithm can usually be measured by checking the time complexity of the
algorithm in theoretical analysis. In practice, it is usually measured by checking the
actual runtime on a machine.

Robustness can usually be measured by providing a number of incorrect inputs
and checking to what extent the accuracy with regard to outputs is affected.

Readability is also important especially when an algorithm is theoretically
analyzed by experts or read by practitioners for application purpose. This problem
can usually be solved by choosing a suitable representation for the algorithm to
make it easier to read. Some existing representations include flow chart, UML
activity diagram, pseudo code, text and programming language.

This book addresses these four aspects in Chaps. 3, 4, 5, 6 and 7 in the way of
theoretical analysis, as well as algorithm representation with regard to algorithm
analysis.

2.5 Logic

Ross stated in [1] that logic is a small part of the capability of human reasoning,
which is used to assist people in making decisions or judgments. Section 2.1
introduced mathematical logic which is also referred to as Boolean logic in com-
puter science. As mentioned in Sect. 2.1, in the context of Boolean logic, each
variable is only assigned a binary truth value: 0 (false) or 1 (true). It indicates that
reasoning and judgment are made under certainty resulting in deterministic out-
comes. From this point of view, this type of logic is also referred to as deterministic
logic. However, in reality, people usually can only make decisions, and apply
judgment and reasoning under uncertainty. Therefore, the other two types of logic,
namely probabilistic logic and fuzzy logic, are used more popularly, both of which
can be seen as an extension of deterministic logic. The main difference is that the
truth value is not binary but continuous between 0 and 1. The truth value implies a
probability of truth between true and false in probabilistic logic and a degree of that
in fuzzy logic. The rest of the subsection introduces the essence of the three types of
logic and the difference between them as well as how they are linked to the concept
of rule based systems.

Deterministic logic deals with any events under certainty. For example, when
applying deterministic logic for the outcome of an exam, it could be thought that a
student will exactly pass or fail a unit. In this context, it means the event is certain to
happen.
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Probabilistic logic deals with any events under probabilistic uncertainty. For the
same example about exams, it could be thought that a student has an 80 % chance to
pass, i.e. 20 % chance to fail, for a unit. In this context, it means the event is highly
probable to happen.

Fuzzy logic deals with any events under non-probabilistic uncertainty. For the
same example about exams, it could be thought that a student has 80 % factors of
passing, i.e. 20 % factors of failing, for a unit with regard to all factors in relation to
the exam. In this context, it means the event is highly likely to happen.

A scenario is used to illustrate the above description as follows: students need to
attempt the questions on four topics in a Math test. They can pass if and only if they
pass all of the four topics. For each of the topics, they have to get all answers
correct to pass. The exam questions do not cover all aspects that students are taught,
but should not be outside the domain nor be known to students. Table 2.5 reflects
the depth of understanding of a student in each of the topics.

In this scenario, deterministic logic is not applicable because it is never deter-
ministic with regard to the outcome of the test. In other words, deterministic logic is
not applicable in this situation to infer the outcome (pass/fail).

In probabilistic logic, the depth of understanding is supposed to be the proba-
bility of the student passing. This is because of the assumption that the student
would exactly gain full marks for which questions the student is able to work out.
Therefore, the probability of passing would be: p = 0.8 × 0.6 × 0.7 × 0.2 = 0.0672.

In fuzzy logic, the depth of understanding is supposed to be the weight of the
factors for passing. For example, for topic 1, the student has 80 % factors for
passing but it does not imply that the student would have 80 % chance to pass. This
is because in reality the student may feel unwell mentally, physically and psy-
chologically. All of these issues may make it possible that the student will make
mistakes as a result of that the student may fail to gain marks for which questions
that normally he/she would be able to work out. The fuzzy truth value of passing is
0.2 = min (0.8, 0.6, 0.7, 0.2). In this context, the most likely outcome for failing
would be that the student only fails one topic resulting in a failure of Math. The
topic 4 would be obviously the one which is most likely to fail with the fuzzy truth
value 0.8. In all other cases, the fuzzy truth value would be less than 0.8. Therefore,
the fuzzy truth value for passing is 0.2 = 1 − 0.8.

In the context of set theory, deterministic logic implies that a crisp set that has all
its elements fully belong to it. In other word, each element has a full membership to
the set. Probabilistic logic implies that an element may be randomly allocated to one
of a finite number of sets with normal distribution of probability. Once the element
has been allocated to a particular set, then it has a full membership to the set. In
other words, the element is eventually allocated to one set only. Fuzzy logic implies
that a set is referred to as fuzzy set because each element may not have a full

Table 2.5 Depth of
understanding for each topic

Topic 1 Topic 2 Topic 3 Topic 4

80 (%) 60 (%) 70 (%) 20 (%)
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membership to the set. In other words, the element belongs to the fuzzy set to a
certain degree.

In the context of rule base systems, a deterministic rule based system would have
a rule either fire or not. If it fires, the consequence would be deterministic.
A probabilistic rule based system would have a firing probability for a rule. The
consequence would be probabilistic depending on posterior probability of it given
specific antecedents. A fuzzy rule based system would have a firing strength for a
rule. The consequence would be weighted depending on the fuzzy truth value of the
most likely outcome. In addition, fuzzy rule based systems deal with continuous
attributes by mapping the values to a number of linguistic terms according to the
fuzzy membership functions defined. More details about the concepts on rule based
systems outlined above are introduced in Chap. 5.

2.6 Statistical Measures

In this book, some statistical measures are used as heuristics for development of
rule learning algorithms and evaluation of rule quality. This subsection introduces
some of these measures, namely entropy, J-measure, confidence, lift and leverage.

Entropy is introduced by Shannon in [7], which is an information theoretic
measure of uncertainty. Entropy E can be calculated as illustrated in Eq. (2.1):

E ¼ �
Xn

i¼0

pi � log2 pi ð2:1Þ

where p is read as probability that an event occurs and i is the index of the
corresponding event.

J-measure is introduced by Smyth and Goodman in [8], which is an information
theoretic measure of average information content of a single rule. J-measure is
essentially the product of two terms as illustrated in Eq. (2.2):

JðY ; X ¼ xÞ ¼ PðxÞ � jðY ; X ¼ xÞ ð2:2Þ

where the first term P(x) is read as the probability that the rule antecedent (left hand
side) occurs and considered as a measure of simplicity [8]. In addition, the second
term is read as j-measure, which is first introduced in [9] but later modified in [8]
and considered as a measure of goodness of fit of a single rule [8]. The j-measure is
calculated as illustrated in Eq. (2.3):

jðY ; X ¼ xÞ ¼ PðyjxÞ � PðyjxÞ
PðyÞ

� �
þ 1� PðyjxÞ � 1� PðyjxÞ

1� PðyÞ
� �� �

ð2:3Þ
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where P(y) is read as prior probability that the rule consequent (right hand side)
occurs and P(y|x) is read as posterior probability that the rule consequent occurs
given the rule antecedent as the condition.

In addition, j-measure has an upper bound referred to as jmax as indicated in [8]
and illustrated in Eq. (2.4):

jðY ;X ¼ xÞ�maxðPðyjxÞ � 1
PðyÞ

� �
; 1� PðyjxÞ � 1

1� PðyÞ
� �� �

ð2:4Þ

However, if it is unknown to which class the rule is assigned as its consequent,
then the j-measure needs to be calculated by taking into account all possible classes
as illustrated in Eq. (2.5):

jðY ; X ¼ xÞ ¼
Xn

i¼0

PðyijxÞ � Pðyi jxÞ
PðyiÞ

� �
ð2:5Þ

In this case, the corresponding jmax is calculated in the way illustrated in
Eq. (2.6):

jðY ; X ¼ xÞ� max
i

Pðyi jxÞ � 1
PðyiÞ

� �� �
ð2:6Þ

Confidence is introduced in [10], which is considered as predictive accuracy of a
single rule, i.e. to what extent the rule consequent is accurate while the rule ante-
cedent is met. The confidence is calculated as illustrated in Eq. (2.7):

Conf ¼ Pðx; yÞ
PðxÞ ð2:7Þ

where P(x, y) is read as the joint probability that the antecedent and consequent of a
rule both occur and P(x) is read as prior probability as same as used in J-measure
above.

Lift is introduced in [11], which measures to what extent the actual frequency of
joint occurrence for the two events X and Y is higher than expected if X and Y are
statistically independent [12]. The lift is calculated as illustrated in Eq. (2.8):

Lift ¼ Pðx; yÞ
PðxÞ � PðyÞ ð2:8Þ

where P(x, y) is read as the joint probability of x and y as same as mentioned above
and P(x) and P(y) are read as the coverage of rule antecedent and consequent
respectively.

Leverage is introduced in [13], which measures the difference between the actual
joint probability of x and y and the expected one [12]. The leverage is calculated as
illustrated in Eq. (2.9):
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Leverage ¼ Pðx; yÞ � PðxÞ � PðyÞ ð2:9Þ

where P(x, y), P(x) and P(y) are read as same as in Eq. (2.9) above.
A more detailed overview of these statistical measures can be found in [14, 15].

In this book, entropy is used as a heuristic for rule generation and J-measure is used
for both rule simplification and evaluation. In addition, confidence, lift and leverage
are all used for evaluation of rule quality. More details on this will be given in
Chaps. 3, 4, 5 and 6.

2.7 Single Rule Based Classification Systems

As mentioned in Chap. 1, single rule based systems mean that a particular rule
based system consists of one rule set only. If such rule based systems are used for
classification, they can be referred to as single rule based classification systems.

In machine learning context, single rule based classification systems can be
constructed by using standard rule learning algorithms such as ID3, C4.5 and C5.0.
This kind of systems can also be constructed using ensemble rule based learning
approaches.

In both ways mentioned above, rule based classification systems can be con-
structed by adopting a unified framework that was recently developed in [16]. This
framework consists of rule generation, rule simplification and rule representation.

Rule generation means to generate a set of rules by using one or more rule
learning algorithm(s). The generated rule set is eventually used as a rule based
system for prediction making. However, as mentioned in Chap. 1, most of rule
learning algorithms suffer from overfitting of training data, which means the gen-
erated rule set may perform a high level of accuracy on training instances but a low
level of accuracy on testing instances. In this case, the set of rules generated need to
be simplified by means of rule simplification and using pruning algorithms, which
generally tends to reduce the consistency but improve the accuracy of each single
rule. As introduced in Chap. 1, rule generation algorithms can be divided into two
categories: divide and conquer and separate and conquer. In addition, pruning
algorithms can be subdivided into two categories: pre-pruning and post-pruning. In
this context, if the divide and conquer approach is adopted, rule simplification is
taken to stop the growth of a branch in a decision tree if pre-pruning is adopted for
the simplification of rules. Otherwise, the rule simplification would be taken to
simplify each branch after a complete decision tree has been generated. On the other
hand, if the separate and conquer approach is adopted, rule simplification is taken to
stop the specialization of a single rule if pre-pruning is adopted for the simplifi-
cation. Otherwise, the rule simplification would be taken to post-prune each single
rule after the completion of its generation.

Rule representation means to represent a set of rules in a particular structure such
as decision trees, linear lists and rule based networks. In general, appropriate
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representation of rules enables the improvement of both interpretability and com-
putational efficiency.

In terms of interpretability, a rule based system is required to make knowledge
extracted from the system easier for people to read and understand. In other words,
it facilitates the communication of the knowledge extracted from the system. On the
other hand, the rules should allow to interpret knowledge in a great depth, in an
explicit way. For example, when a system provides an output based on a given
input, the reason why this output is derived should be explained in a straightforward
way.

In terms of computational efficiency, a rule based system is required to make a
quick decision in practice due to time critical aspects. In particular, rule represen-
tation is just like data structures which are used to manage data in different ways. In
software engineering, different data structures usually lead to different levels of
computational efficiency in some operations relating to data management such as
insertion, update, deletion and search. As mentioned in Chap. 1, it is required to
find the first firing rule as quickly as possible in order to make a quick prediction.
Therefore, this could be seen as a search problem. As mentioned above, different
data structures may provide different levels of search efficiency. For example, a
collection of items stored in a linear list can only be searched linearly if these items
are not given indexes. However, if the same collection of items is stored in a tree,
then it is achievable to have a divide and conquer search. The former way of search
would be in linear time whereas the latter way in logarithmic time. In this sense,
efficiency in search of firing rules would also be affected by the structure of the rule
set. It is also defined in [17] that one of the biases for rule based systems is ‘search
bias’, which refers to the strategy used for the hypothesis search. In general, what is
expected is to make it unnecessary to examine a whole rule set, but as few rule
terms as possible.

Overall, the unified framework for construction of single rule based classification
systems consists of three operations namely, rule generation, rule simplification and
rule representation. In practice, the first two operations may be executed in parallel
or sequentially depending on the approaches adopted. Rule representation is usually
executed after the finalization of a rule set used as a rule based system. More details
about these operations are presented in Chaps. 3, 4 and 5.

2.8 Ensemble Rule Based Classification Systems

As mentioned in Chap. 1, ensemble rule based classification systems mean that a
particular rule based system consists of multiple rule sets, each of which could be
seen as a single rule based systems. This defines a novel way of understanding
ensemble rule based systems in the context of system theory [18]. In particular,
each of the single rule based systems could be seen as a subsystem of the ensemble
rule based system by means of a system of systems.
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Ensemble rule based classification systems could be constructed by using
ensemble learning approaches. Each of the single rule based classification systems
can be constructed still based on the unified framework introduced in Sect. 2.1. In
particular, for rule learning algorithms, ensemble learning can be adopted in the
way that a base algorithm is used to learn from a number of samples, each of which
results from the original training data through random sampling with replacement.
In this case, there are n rule sets generated while n is the number of samples. In the
testing stage, each of the n rule sets make an independent prediction on an unseen
instance and their predictions are then combined to make the final prediction. The
n rule sets mentioned above make up an ensemble rule based system for prediction
purpose as mentioned in the literature [19]. A typical example of such systems is
Random Forest which consists of a number of decision trees [20] and is usually
helpful for decision tree learning algorithms to generate more accurate rule sets
[21]. On the other hand, in order to construct ensemble rule based classification
systems, ensemble learning can also be adopted in another way that multiple rule
learning algorithms work together so that each of the algorithms generates a single
rule set on the same training data. These generated rule sets, each of which is used
as a single rule based classification systems, are combined to make up an ensemble
rule based classification system.

The two ways to construct ensemble rule based systems mentioned above follow
parallel learning approaches as introduced in Chap. 1. Ensemble rule based systems
can also be constructed following sequential learning approaches. In particular, the
same rule learning algorithm is applied to different versions of training data on an
iterative basis. In other words, at each iteration, the chosen algorithm is used to
generate a single rule set on the training data. The rule set is then evaluated on its
quality by using validation data and each of the training instances is weighted to a
certain degree based on its contribution to generating the rule set. The updated
version of the training data is used at the next iteration. As the end, there is a
number of rule sets generated, each of which is used as a single rule based clas-
sification system. These single systems make up the ensemble rule based classifi-
cation systems.

Ensemble rule based systems can be advanced via different computing envi-
ronments such as parallel, distributed and mobile computing environments.

Parallel computing can significantly improve the computational efficiency for
ensemble learning tasks. In particular, as mentioned above, parallel learning can be
achieved through the way that a number of samples are drawn on the basis of the
training data, each of the sample is used to build a single rule based system by using
the same rule learning algorithm. In this context, each of the drawn samples can be
loaded into a core of a parallel computer and the same rule learning algorithm is
used to build a single rule based systems on each core on the basis of the training
sample loaded into the core. This is a popular approach known as parallel data
mining [22, 23].

Distributed computing can make ensemble rule based systems more powerful in
practical applications. For example, for some large companies or organizations, the
web architecture is usually developed in the form of distributed database systems,
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which means that data relating to the information of the companies or organizations
is stored into their databases distributed in different sites. In this context, distributed
data mining is highly required to process the data. In addition, ensemble rule based
systems also motivate collaborations between companies through collaborations
involved in ensemble learning tasks. In particular, the companies that collaborate
with each other can share access to their databases. Each of the databases can
provide a training sample for the employed rule learning algorithm to build a single
rule based system. Each of the companies can have the newly unseen instances
predicted using the ensemble rule based system that consists of a number of single
rule based systems, each of which is from a particular database for one of the
companies. Some popular distributed data mining techniques can be found in [24,
25]. Similar benefits also apply to mobile data mining such as Pocket Data Mining
[26, 27].

More details about these ensemble learning approaches for construction of rule
based systems is given in Chap. 6 in more depth.
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Chapter 3
Generation of Classification Rules

As mentioned in Chap. 1, rule generation can be done through the use of the two
approaches: divide and conquer and separate and conquer. This chapter describes
the two approaches of rule generation. In particular, the existing rule learning
algorithms, namely ID3, Prism and Information Entropy Based Rule Generation
(IEBRG), are illustrated in detail. These algorithms are also discussed compara-
tively with respects to their advantages and disadvantages.

3.1 Divide and Conquer

As mentioned in Chap. 1, divide and conquer approach is also known as Top Down
Induction of Decision Trees (TDIDT) due to the fact that classification rules gen-
erated through the use of this approach are in the form of decision trees. The basic
procedures of TDIDT are illustrated in Fig. 3.1.

For the TDIDT approach, the most important procedure is the attribute selection
for partition of a training subset on a node of a decision tree. In particular, the
attribution selection can be done through either random selection or employment of
statistical measures such as information gain, gain ratio and Gini index [2].

A popular method that follows the divide and conquer approach is ID3, which is
based on information gain for attribute selection and was developed by Quinlan in
[3]. A successor of ID3, which is known as C4.5 and extended to involve direct
processing of continuous attributes, was later presented by Quinlan. Another
method of TDIDT is known as CART, which stands for Classification and
Regression Trees and aims to generate binary decision trees [4].

3.2 Separate and Conquer

As mentioned in Chap. 1, the separate and conquer approach is also known as
covering approach due to the fact that this approach involves sequential generation
of if-then rules. In particular, this approach aims to generate a rule that covers the
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instances that belong to the same class and then starts to generate the next rule on
the basis of the rest of training instances that are not covered by the previously
generated rules. The basic procedures of the separate and conquer approach are
illustrated in Fig. 3.2.

As introduced in [1], the majority rule is included as the last rule in a rule set,
which is supposed to cover all the remaining instances that are not covered by any
other generated rules. This rule is also referred to as default rule, which is used to
assign a default class (usually majority class) to any unseen instances that cannot be
classified by using any other generated rules.

On the other hand, in contrast to the divide and conquer approach, the most
important procedure for the separate and conquer approach is at the selection of
attribute-value pair. More details on this is introduced later in this section using
specific methods that follow this rule learning approach.

Input: A set of training instances, attribute A
i
, where i is the index of the attribute A, val-

ue V
j 
, where j is the index of the value V

Output: A decision tree.

if the stopping criterion is satisfied then
create a leaf that corresponds to all remaining training instances

else 
choose the best (according to some heuristics) attribute A

i

label the current node with A
i

for each value V
j 

of the attribute A
i 
do

label an outgoing edge with value V
j

recursively build a subtree by using a corresponding subset of training instances
end for

end if

Fig. 3.1 Decision tree learning algorithm [1]

Input: A set of training instances
Output: An ordered set of rules

while training set is not empty do
generate a single rule from the training set
delete all instances covered by this rule
if the generated rule is not good then

generate the majority rule and empty the training set
end if

end while

Fig. 3.2 Rule covering approach [1]

30 3 Generation of Classification Rules

www.allitebooks.com

http://www.allitebooks.org


A popular method that follows the separate and conquer approach is Prism,
which was developed by Cendrowska in [5]. The basic procedure of the method is
illustrated in Fig. 3.3.

The Prism algorithm can be seen as an example of the backward rule generation
approach that was introduced in Chap. 2. This is because the algorithm aims to first
give a target class as the consequent of the rule, and then to search for causes as the
condition that can derive this target class until the adequacy condition is found. In
other words, the Prism algorithm involves the specialization of rule antecedent in
order to have all the instances covered by this rule belong to the target class
assigned as the consequent of this rule.

As can be seen from Fig. 3.3, the Prism algorithm employs probability as the
heuristic for the selection of attribute-value pairs to specialize the rule antecedent.
In particular, the rule generation is normally completed when the posterior prob-
ability of the target class given all the chosen attribute-value pairs is equal to 1.

On the other hand, rule learning by Prism aims to extract knowledge on a single
classification. In other words, the aim is to explore under what conditions an
instance can be classified to a particular category. In addition, the knowledge
discovery for one classification is totally independent of the others. This is because

Fig. 3.3 Prism algorithm
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the Prism algorithm involves continuous generation of rules, all of which have the
same target class assigned as the rule consequent, until all instances that belong to
this class have been covered by at least one of the generated rules. Then the same
process is repeated for the next class to generate any possible rules on the basis of
the original training set.

Another method that follows separate and conquer approach is referred to as
IEBRG, which stands for Information Entropy Based Rule Generation and has been
recently developed in [6]. The basic procedure of the method is illustrated in
Fig. 3.4.

The IEBRG algorithm can be seen as an example of the forward rule generation
approach that was introduced in Chap. 2. This is because the IEBRG algorithm
aims to specialize the antecedent of a rule until all instances covered by the rule
belong to the same class. In other words, the algorithm involves specialization of
rule antecedent in order to have the rule cover all instances that belong to the same
class no matter which particular class it is.

As can be seen from Fig. 3.4, the IEBRG algorithm employs entropy as the
heuristic for the selection of attribute-value pairs to specialize the rule antecedent.
In particular, the rule generation is normally completed when the conditional
entropy given all the chosen attribute-value pairs is equal to 0.

Fig. 3.4 IEBRG algorithm
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On the other hand, rule learning by IEBRG aims to reduce the uncertainty in
discriminating different classes. In other words, the aim is to explore under what
conditions an unseen instance can be classified under certainty. In addition, IEBRG
can generate a set of ordered rules in contrast to Prism. This is because IEBRG
algorithm generates each of the rules on the basis of gradually reduced training
subset. In other words, the training subset is reduced per each rule generated due to
the removal of the instances covered by previously generated rules and is never
reset to its original size. As the first rule is generated on the basis of the whole
training set, this rule is the most important. The second rule is generated on the
basis of the reduced training subset that excludes the instances covered by the first
rule. Therefore, the second rule is less important than the first one but more
important than all of the others and so on.

3.3 Illustrative Example

This section illustrates ID3, Prism and IEBRG using a data set that is named
contact-lenses [5] and retrieved from UCI repository [7]. The details of this data set
are illustrated in Table 3.1.

Table 3.1 Contact lenses data

Age Prescription Astigmatic Tear production rate Class

Young Myope No Reduced No lenses

Young Myope No Normal Soft lenses

Young Myope Yes Reduced No lenses

Young Myope Yes Normal Hard lenses

Young Hypermetrope No Reduced No lenses

Young Hypermetrope No Normal Soft lenses

Young Hypermetrope Yes Reduced No lenses

Young Hypermetrope Yes Normal Hard lenses

Pre-presbyopic Myope No Reduced No lenses

Pre-presbyopic Myope No Normal Soft lenses

Pre-presbyopic Myope Yes Reduced No lenses

Pre-presbyopic Myope Yes Normal Hard lenses

Pre-presbyopic Hypermetrope No Reduced No lenses

Pre-presbyopic Hypermetrope No Normal Soft lenses

Pre-presbyopic Hypermetrope Yes Reduced No lenses

Pre-presbyopic Hypermetrope Yes Normal Hard lenses

Presbyopic Myope No Reduced No lenses

Presbyopic Myope No Normal Soft lenses

Presbyopic Myope Yes Reduced No lenses
(continued)
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As mentioned in Sect. 3.1, ID3 makes attribute selection based on entropy. In
addition, Prism and IEBRG make selection of attribute-value pairs based on pos-
terior probability and conditional entropy respectively. For each of them, it is nec-
essary to create a frequency table for each attribute (Tables 3.2, 3.3, 3.4 and 3.5).

For ID3, the average entropy for each of the attributes is in the following:

E ageð Þ ¼ 1=3� � 1=2ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=4ð Þ � 1=4ð Þ � log2 1=4ð Þð Þ
þ 1=3� � 1=2ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=2ð Þð Þ
þ 1=3� � 1=2ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=2ð Þð Þ ¼ 3=2

E ðprescriptionÞ ¼ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=4ð Þ � 1=4ð Þ � log2 1=4ð Þð Þ
þ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=4ð Þ � log2 1=4ð Þ � 1=4ð Þ � log2 1=4ð Þð Þ ¼ 3=2

E ðastigmaticÞ ¼ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ
þ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ ¼ 1

E tear production rateð Þ ¼ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ
þ 1=2� �1� log2 1ð Þð Þ ¼ 1=2

As E (tear production rate) is the minimum, the data set illustrated in Table 3.1 is
split on the attribute tear production rate. This results in two subsets as below.

It can be seen from Table 3.6 that all instances belong to the class no lenses,
which indicates there is no uncertainty remaining in the subset. Therefore, it results
in an incomplete decision tree as illustrated in Fig. 3.5.

Table 3.2 Frequency table for age

Class label Age = young Age = pre-presbyopic Age = presbyopic

No lenses 4 4 4

Soft lenses 2 2 2

Hard lenses 2 2 2

Total 8 8 8

Table 3.3 Frequency table for spectacle prescription

Class label Prescription = myope Prescription = hypermetrope

No lenses 6 6

Soft lenses 3 3

Hard lenses 3 3

Total 12 12

Table 3.1 (continued)

Age Prescription Astigmatic Tear production rate Class

Presbyopic Myope Yes Normal Hard lenses

Presbyopic Hypermetrope No Reduced No lenses

Presbyopic Hypermetrope No Normal Soft lenses

Presbyopic Hypermetrope Yes Reduced No lenses

Presbyopic Hypermetrope Yes Normal Hard lenses
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The left branch comprising tear production rate = reduced is terminated by
giving a leaf node labeled no lenses. The right branch comprising tear production
rate = normal is still not terminated, which means it is required to select another
attribute other than tear production rate to be split at the node which is labeled with
a question mark. For this, it is needed to create a frequency table for each of the rest
of the attributes namely age, prescription and astigmatic from the subset 2 for the
data set illustrated in Table 3.7 as follows.

According to Table 3.8, 3.9, 3.10, the average entropy for each of the attributes
is shown below.

Table 3.4 Frequency table for astigmatic

Class label Astigmatic = yes Astigmatic = no

No lenses 6 6

Soft lenses 6 0

Hard lenses 0 6

Total 12 12

Table 3.5 Frequency table for tear production rate

Class label Tear production rate = normal Tear production rate = reduced

No lenses 0 12

Soft lenses 6 0

Hard lenses 6 0

Total 12 12

Table 3.6 Subset 1 for contact lenses data

Age Prescription Astigmatic Tear production rate Class

Young Myope No Reduced No lenses

Young Myope Yes Reduced No lenses

Young Hypermetrope No Reduced No lenses

Young Hypermetrope Yes Reduced No lenses

Pre-presbyopic Myope No Reduced No lenses

Pre-presbyopic Myope Yes Reduced No lenses

Pre-presbyopic Hypermetrope No Reduced No lenses

Pre-presbyopic Hypermetrope Yes Reduced No lenses

Presbyopic Myope No Reduced No lenses

Presbyopic Myope Yes Reduced No lenses

Presbyopic Hypermetrope No Reduced No lenses

Presbyopic Hypermetrope Yes Reduced No lenses
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Table 3.10 Frequency table for astigmatic at the second iteration

Class label Astigmatic = yes Astigmatic = no

No lenses 0 0

Soft lenses 0 6

Hard lenses 6 0

Total 6 6

Table 3.7 Subset 2 for contact lenses data

Age Prescription Astigmatic Tear production rate Class

Young Myope No Normal Soft lenses

Young Myope Yes Normal Hard lenses

Young Hypermetrope No Normal Soft lenses

Young Hypermetrope Yes Normal Hard lenses

Pre-presbyopic Myope No Normal Soft lenses

Pre-presbyopic Myope Yes Normal Hard lenses

Pre-presbyopic Hypermetrope No Normal Soft lenses

Pre-presbyopic Hypermetrope Yes Normal Hard lenses

Presbyopic Myope No Normal Soft lenses

Presbyopic Myope Yes Normal Hard lenses

Presbyopic Hypermetrope No Normal Soft lenses

Presbyopic Hypermetrope Yes Normal Hard lenses

Table 3.8 Frequency table for age at the second iteration

Class label Age = young Age = pre-presbyopic Age = presbyopic

No lenses 0 0 0

Soft lenses 2 2 2

Hard lenses 2 2 2

Total 4 4 4

Table 3.9 Frequency table for spectacle prescription at the second iteration

Class label Prescription = myope Prescription = hypermetrope

No lenses 0 0

Soft lenses 3 3

Hard lenses 3 3

Total 6 6
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E ageð Þ ¼ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ
þ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ ¼ 1

E prescriptionð Þ ¼ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ
þ 1=2� � 1=2ð Þ � log2 1=2ð Þ � 1=2ð Þ � log2 1=2ð Þð Þ ¼ 1

E astigmaticð Þ ¼ 1=2� �1� log2 1ð ÞÞ þ 1=2� ð�1� log2 1ð Þð Þ ¼ 0

Therefore, the attribute astigmatic is selected to be split at the node that is
labeled with a question mark in Fig. 3.5, which means that the subset 2 for the data
set illustrated in Table 3.7 is split on the astigmatic attribute resulting in two further
subsets (Tables 3.11 and 3.12).

It is clear that both subsets illustrated above have all instances belong to the
same class and thus remains no uncertainty. The complete decision tree is generated
as illustrated in Fig. 3.6.

For Prism, if the class no lenses is chosen as the target class, the first rule
generated is represented in the form: if tear production rate = reduced then
class = no lenses; this is because the posterior probability P (tear production
rate = reduced|class = no lenses) = 1, which is the highest one and leaves no
uncertainty. It can also be seen from Table 3.5 that there are 12 instances com-
prising the attribute-value pair tear production rate = reduced, all of which belong
to the class no lenses. All the subsequent rules are generated in the same way as the
first rule by appending rule terms on the left hand side by iteratively selecting the
attribute-value pair with the highest posterior probability of the target class.

For IEBRG, the first rule generated is also the same as the one represented
above:

if tear production rate = reduced then class = no lenses; this is because the
conditional entropy E(tear production rate = reduced) = 0 is the minimum and
indicates that there is no uncertainty any more for classifying instances covered by
this rule. The same can also be seen from Table 3.5 as mentioned above. All the
subsequent rules are generated in the same way as the first rule by appending rule
terms on the left hand side of the rule by iteratively selecting the attribute-value pair
with the lowest conditional entropy for discriminating different classes.

Fig. 3.5 Incomplete decision
tree comprising attribute Tear
production rate
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3.4 Discussion

As summarized by Han and Kamber in [2], decision tree learning is so popular due
to the following reasons:

Firstly, the generation of decision trees does not need any prior knowledge in a
domain nor parameters setting. Therefore, decision tree learning is seen as an
appropriate approach for knowledge discovery.

Secondly, the decision tree learning algorithms are able to effectively deal with
training data in high dimensionality.

Thirdly, the decision tree representation is interpretable. In other words,
knowledge extracted from a decision tree is easily communicated to people.

Fourthly, the training by the induction algorithm is not expensive and the pre-
diction by a decision tree classifier is straightforward and efficient.

Fifthly, the decision tree learning algorithms can generate accurate classifiers in
general.

Finally, the learning algorithm is not domain dependent but data dependent. In
this context, the decision tree learning algorithm can be used broadly in many
different application areas such as medicine, finance and biology. However, the
performance in a particular task is highly dependent on the suitability to the data
used.

Although the TDIDT has some advantages listed in [2] and described above,
Cendrowska has criticized the principles of rule generation by the decision tree
learning approach. In particular, Cendrowska pointed out in [5] that one of the
disadvantages of decision tree learning approach is that there are some rules that

Table 3.11 Subset 2.1 for contact lenses data

Age Prescription Astigmatic Tear production rate Class

Young Myope No Normal Soft lenses

Young Hypermetrope No Normal Soft lenses

Pre-presbyopic Myope No Normal Soft lenses

Pre-presbyopic Hypermetrope No Normal Soft lenses

Presbyopic Myope No Normal Soft lenses

Presbyopic Hypermetrope No Normal Soft lenses

Table 3.12 Subset 2.2 for contact lenses data

Age Prescription Astigmatic Tear production rate Class

Young Myope Yes Normal Hard lenses

Young Hypermetrope Yes Normal Hard lenses

Pre-presbyopic Myope Yes Normal Hard lenses

Pre-presbyopic Hypermetrope Yes Normal Hard lenses

Presbyopic Myope Yes Normal Hard lenses

Presbyopic Hypermetrope Yes Normal Hard lenses
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cannot necessarily be represented in a tree structure. In this context, if the rules are
forced to fit in a tree structure, the decision tree will encounter the replicated subtree
problem as illustrated in Fig. 3.7. It can be seen from the Fig. 3.7 that the four
sub-trees which have node C as their roots are identical.

In a medical diagnosis system, the replicated subtree problem may lead to
unnecessary surgery [5]. There are some reasons identified in [5, 8] through
analysis of ID3 as follows:

• The decision tree learning approach is attribute oriented.
• Each iteration in the generation process chooses the attribute on which to be

split aiming at minimizing the average entropy, i.e. measuring the average

Fig. 3.6 Complete decision tree

Fig. 3.7 Cendrowska’s replicated subtree example [9]
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uncertainty. However, this doesn’t necessarily mean that the uncertainty for
each single rule is reduced.

• An attribute might be highly relevant to one particular classification and irrel-
evant to the others. Sometimes only one value of an attribute is relevant to
making classifications.

Some comparisons and contrasts between ID3 and Prism are made and described
in [8] as follows:

Firstly, both ID3 and Prism are greedy algorithms as they both involves greedy
search for generation of rules.

Secondly, ID3 measures the reduction of uncertainty on average in making a
classification on the basis of an attribute selected. In contrast, Prism measures the
certainty factor in the determination of a particular classification on the basis of an
attribute-value pair selected. Therefore, ID3 is attribute oriented whereas Prism is
attribute-value oriented.

Thirdly, rules generated by ID3 may contain redundant attributes. In contrast,
Prism usually generates more general and fewer rules than ID3.

On the basis of the above description, Prism has some obvious advantages in
comparison with ID3 and other decision tree learning algorithms. However, Prism
also has some disadvantages in terms of classification conflict, inconsistent rules
and computational efficiency [6, 10–12].

Prism may generate a rule set which results in a classification conflict in pre-
dicting unseen instances. This can be illustrated by the example below:

What should the classification be for an instance with x = 1, y = 1 and z = 1? One
rule gives class a, the other one gives class b. In the context of deterministic logic,
the instance should only belong to one class. This problem needs to be solved by
adopting conflict resolution strategies. A simple approach is to assign the unseen
instance the class which is the consequent of the first firing rule in the rule set.
However, the above strategy is effective in general if and only if the set of rules are
ordered according to their importance. In other words, the first firing rule is usually
considered most confident.

As mentioned in Sect. 3.2, Prism involves that rules on one classification are
generated totally independent of that on the other classifications. In other words, the
rules on different classifications are generated in parallel. Therefore, there is no way
to rank the rules on different classifications by Prism and thus the conflict resolution
strategy mentioned above is not applicable to the algorithm.

On the other hand, Prism is likely to encounter generation of inconsistent rules
due to inappropriate selection of target class pre-assigned to the rule being gener-
ated. As introduced in Sect. 3.2, Prism involves continuous selection of the same
class as the target class for rule generation until all possible rules have been gen-
erated. This could be seen as a bias originating from the Prism algorithm since it is
highly possible at any iterations that one of the other classes is a more appropriate
candidate for being the target class. If the selection of the target class is inappro-
priate, then it is likely to result in the generation of inconsistent rules. In other
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words, the rule convers instances that belong to different classes, but there is no way
to specialize the rule on its left hand side any more.

Besides, Prism is also computationally expensive. One of the reasons is due to
the inappropriate selection of the target class. As mentioned above, if the selection
is not appropriate, the rule generation cannot be completed until all attributes have
been examined. As a result, the rule comprises the same number of rule terms as
data dimensionality, i.e. the number of attributes. If the training data is large, it
would result in the generation of complex rules, which usually requires high
computational cost. Another reason is due to the nature of the learning strategy
involved in Prism. In particular, as mentioned above, Prism involves the generation
of rules on the basis of large training subsets at most iterations. This is because the
reduced training subset needs to be restored to its initial version once all instances
of a single class have been covered by the previously generated rules. In this
context, most rules are generated on the basis of a large training set.

Due to the above limitations of Prism, IEBRG has been recently developed in [6]
in order to complement Prism.

As mentioned in Sect. 3.2, IEBRG involves the generation of ordered rules.
Therefore, the conflict resolution strategy is effectively applicable to the algorithm
when conflicts of classification occur.

The empirical results reported in [6] indicate IEBRG is less likely to generate
inconsistent rules. This is because the above algorithm pays special attention to
minimizing the uncertainty for each rule being generated no matter what the target
class is. This removes the bias on selection of target classes that happens from
Prism.

On the other hand, the theoretical analysis made in [10] and the empirical results
reported in [6] indicate that IEBRG is likely to generate a smaller number of more
general rules than Prism. In addition, the empirical results also indicate that the
IEBRG algorithm usually generates more accurate rule sets than the Prism.

Chapter 8 will introduce a case study on big data, which reports more detailed
theoretical analysis and empirical study for the two rule generation methods
mentioned above.
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Chapter 4
Simplification of Classification Rules

As mentioned in Chap. 1, pruning methods are increasingly required for rule
simplification due to the overfitting problem. This chapter introduces two approa-
ches of rule simplification namely, pre-pruning and post-pruning. In particular,
some existing rule pruning algorithms are described in detail. These algorithms are
also discussed comparatively with respects to their advantages and disadvantages.

4.1 Pruning of Decision Trees

As mentioned in Chap. 2, decision trees can be simplified in two ways namely,
pre-pruning and post-pruning. In the former way, the pruning action aims to stop a
particular branch in a tree growing further. In the latter way, the pruning action aims
to simplify each of the branches in a tree after the whole tree has been generated. In
particular, the tree needs to be converted into a set of if-then rules before the
pruning action is taken. The rest of this section introduces a particular type of tree
pruning based on J-measure in the manner of both pre-pruning and post-pruning.

For pre-pruning of decision trees, it is unknown which class is eventually
labelled on the leaf node of a particular branch. Therefore, the calculation for the
value of J-measure needs to follow the Eqs. (2.3) and (2.6) shown in Sect. 2.6. The
corresponding upper bound of J-measure, which is referred to as Jmax, is calculated
following the Eqs. (2.3) and (2.7) shown in Sect. 2.6.

In the above context, J-measure based tree pre-pruning works in the procedures
as illustrated in Fig. 4.1.
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The stopping criteria mentioned in Fig. 4.1 can be in accordance with value of
J-measure and Jmax. In particular, the stopping criteria may be met when the
highest value of J-measure observed so far is already higher than the Jmax value
achieved at the current node. In addition, the stopping criteria may also be met
when the value of J-measure is equal to the Jmax value at the current node.
However, the above J-measure based pre-pruning method may not be able to make
an optimal tree so that each of the branches in the tree achieves the highest value of
J-measure. In other words, the highest value of J-measure may be achieved in a
node which is a precursor of the node at which the corresponding branch is stopped
growing. Due to the possible presence of this issue, the above pre-pruning method
needs to be evolved to a hybrid pruning method by means of combination of
pre-pruning and post-pruning strategies. In particular, each branch is forced to stop
growing when it is necessary. After the completion of the whole tree generation,
each of the branches needs to be converted into a single if-then rule for post-pruning
to have this rule achieve the highest value of J-measure. Section 4.3 will illustrate
this in detail using a specific example.

On the other hand, decision trees can also be simplified purely by post-pruning
each of its branches. The J-measure based post-pruning is illustrated in Fig. 4.2.

In particular, there are two specific methods of J-measure based post pruning.
The first method is inspired by SQUEEZE [1] which is illustrated in Fig. 4.3.

The second method is inspired by ITRULE [2] and is illustrated in Fig. 4.4.
The above pruning strategy involves a recursive process for searching for the

global maximum of J-measure in order to get the rule with the optimized ante-
cedent. Section 4.3 will illustrate the two methods introduced above in detail using
specific examples.

Input: a tree node n, J-measure of a node J(n), Jmax of a node Jmax(n), Maximum of J-
measure max(J), class C
Output: a decision tree T
Initialize: max(J)= 0;
for each branch do

calculate J(n) and Jmax(n)
if J(n)> max(J) then

max(J)= J(n)
end if
if stopping criteria is met Then

stop this branch growing, label the current node n with the most common class C
end if

end for

Fig. 4.1 J-measure based tree pre-pruning
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Input: a set of rules rule[i], where i is the index of rule, values of J-measure J[i][j][k], 
where j is the order of a particular child rule and k is the index of a child rule in the order 
of j, highest value of J-measure (for rule[i]) max[i], order for the optimal rule m, index 
for the optimal rule n[i]
Output: a set of simplified rules

for each rule rule[i] do
max[i]=0, m=0, n[i]=0
for each order j

for each child rule k
calculate J[i][j][k]
if J[i][j][k]> max[i] then

max[i]= J[i][j][k]
m=j
n[i]=k

end if
else if J[i][j][k]= max[i]

take the rule with a higher order
end else if

end for
end for

end for

Fig. 4.2 J-measure based tree post-pruning

For each single rule
1. Calculate the J-measure for the rule which is referred to as the parent 

rule.
2. For each of the child rules generated by removing a single rule term (at-

tribute-value pair) from the parent rule, calculate the J-measure (if the 
parent rule is order K, each of the child rules is order K-1)

3. Choose the rule among the parent rule and the set of its child rules with 
highest J-measure. Special cases:

a) If two rules have the same J-measure, choose the one with the 
lower order.

b) If two rules of the same order have the same J-measure, ran-
domly choose one of the two.

4. If the chosen rule is not the parent rule, the chosen rule becomes a new 
parent rule; repeat steps 2-4. If the chosen rule is the parent rule, termi-
nate the process.

Fig. 4.3 Post-pruning inspired by SQUEEZE [1]
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4.2 Pruning of If-Then Rules

As mentioned in Chap. 2, if-then rules can be simplified in two ways namely,
pre-pruning and post-pruning. In contrast to tree pruning, the pruning of if-then
rules is taken per single rule generated. In other words, each single rule is pruned
prior to the generation of the next rule rather than posterior to the completion of the
generation of a whole rule set. In this context, pre-pruning aims to stop the spe-
cialization of the consequent of a rule. Post-pruning aims to simplify the consequent
of a rule after its generation has been completed. The rest of this section introduces
a particular type of rule pruning based on J-measure in the manner of both
pre-pruning and post-pruning.

In the above context, a J-measure based rule pre-pruning works in the procedures
illustrated in Fig. 4.5.

However, the above J-measure based pre-pruning method may not be able to
make an optimal rule by means of that the rule achieves the highest value of
J-measure. In other words, the highest value of J-measure may be achieved at one
term which is a precursor of the term at which the rule is stopped being specialized.
Due to the possible presence of this issue, the above pre-pruning method needs to
be evoluted to a hybrid pruning method by means of combination of pre-pruning
and post-pruning strategies. In particular, a single rule is forced to stop being
specialized when it is necessary. Then the rule is simplified by removing some rule
terms in order to have the rule achieve the highest value of J-measure. A hybrid
J-measure based pruning method is referred to as Jmid-pruning which is introduced
in [3]. Section 4.3 will illustrate this method in detail using a specific example.

J-measure based post-pruning for if-then rules is similar to that applied to
decision trees. The only difference is that the pruning is taken as soon as a single
rule is completely generated prior to the generation of the next rule rather than is
taken after the generation of the whole rule set. The two specific methods, which are

For each single rule
Calculate the J-measure for the rule which is referred to as the parent rule.
Compare the current J-measure with the highest one recorded so far
Update the highest value of the J-measure
For each of its child rules

Repeat the process recursively for calculating the J-measure
Choose the child rule with the highest J-measure. Special cases:

a) If two rules have the same J-measure, the one with the lower order is 
selected.

b) If two rules have the same J-measure as well as the order, randomly 
choose one of the two.

Fig. 4.4 Post-pruning inspired by ITRULE
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inspired by SQUEEZE and ITRULE respectively, can also be successfully applied
to rule post-pruning in the same manner. Section 4.3 will illustrate these two
methods mentioned above in detail using specific examples.

4.3 Illustrative Examples

This section illustrates Jmid-pruning, SQUEEZE and ITRULE using examples. For
Jmid-pruning, let’s see the rule: if a = 2 and b = 1 and c = 3 and d = 1 then class = 3;
after adding the four terms subsequently, the corresponding J-measure and Jmax
values change in the trend:

If a = 2 then class = 3; (J-measure = 0.110, Jmax = 0.530)
If a = 2 and b = 1 then class = 3; (J-measure = 0.168, Jmax = 0.293)
If a = 2 and b = 1 and c = 3 then class = 3; (J-measure = 0.004, Jmax = 0.055)
Finally: the complete rule as above: (J-measure = 0.048, Jmax = 0.048)

In the above example, Jmid-pruning would stop the rule being specialized after
the third rule term c = 3 is added to the left hand side. This is because at that stage
the highest J-measure recorded so far (0.168) is already higher than the current
Jmax (0.055). The simplified rule is in the form: If a = 2 and b = 1 then class = 3;

Input: a set of rules rule[i], a set of rule terms term [i][j], values of J-measure J[i][j], 
values of Jmax Jmax[i][j], highest value of J-measure max[i], index for optimal rule index
Output: a set of simplified rules
Initialization: max[i]=0, index=-1

for each rule rule [i] do
for each rule term term [i][j]

calculate J[i][j] and Jmax[i][j]
if J[i][j]> max[i] then

max[i]= J[i][j]
index= j

end if
if max[i]> Jmax[i][j]

stop specialization of rule consequent
end if

end for
end for

Fig. 4.5 J-measure based rule pre-pruning
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For SQUEEZE, the generated rule: if a = 2 and b = 1 and c = 3 and d = 1 then
class = 3; needs to be simplified by attempting to remove any one of the rule terms
to get a set of its child rules as follows:

Rule 1: if b = 1 and c = 3 and d = 1 then class = 3; (J-measure = 0.029)
Rule 2: if a = 2 and c = 3 and d = 1 then class = 3; (J-measure = 0.122)
Rule 3: if a = 2 and b = 1 and d = 1 then class = 3; (J-measure = 0.159)
Rule 4: if a = 2 and b = 1 and c = 3 then class = 3; (J-measure = 0.221)

On the basis of the above four child rules, the parent rule needs to be simplified
to the form of the rule 4 as this rule has the highest J-measure. The new parent rule
has three child rules as follows:

Rule 4.1: if b = 1 and c = 3 then class = 3; (J-measure = 0.168)
Rule 4.2: if a = 2 and c = 3 then class = 3; (J-measure = 0.153)
Rule 4.3: if a = 2 and b = 1 then class = 3; (J-measure = 0.127)

On the basis of the above three child rules, the parent rule does not need to be
simplified any more as the J-measure is higher than that of any of its child rules.
Therefore, the finalized rule is in the form: if a = 2 and b = 1 and c = 3 then
class = 3.

However, for ITRULE, in addition to checking child rules of Rule 4, it is also
required to check all child rules for each of the other three rules namely, Rule 1,
Rule 2 and Rule 3, with regard to their values of J-measure. In other words, a single
rule has 2n − 1 child rules where n is the number of rule terms. For the above
example: if a = 2 and b = 1 and c = 3 and d = 1 then class = 3; there would be 15
child rules (including the above rule itself) in total. In this case, it is necessary to
check all the 15 child rules with regard to their values of J-measure and to take the
one with the highest J-measure as the finalized version.

4.4 Discussion

This chapter introduces methods for pruning decision trees and if-then rules. In
general, pre-pruning is computationally more efficient than post-pruning for both
decision trees and if-then rules. This is because the former can usually stop rule
generation in advance and thus reduce the computational costs. However,
pre-pruning can usually only result in a locally optimal tree or rule set whereas
post-pruning can usually get a tree or rule set optimal globally and thus perform a
higher level of accuracy.

For decision tree pruning, stopping one branch growing does not affect the
growth of any other branches when pre-pruning is adopted. Post-pruning each of
braches, which has been converted into a single rule, does not affect the other
branches either. However, post-pruning the rules, each of which is converted from
one branch of a tree, may make the set of rules unable to fit in a tree structure any
more. In addition, these rules may also be overlapping with each other.

48 4 Simplification of Classification Rules



For pruning of if-then rules, stopping one rule being specialized on its left hand
side will affect the generation of any subsequent rules when pre-pruning is adopted.
Post-pruning per rule generated will also encounter the same issue for generation of
any subsequent rules.

J-measure is the most appropriate choice for estimation of rule quality as
mentioned in [4] since it takes into account both simplicity and measure of fitness of
a single rule [2]. In the context of rule pruning, the performance is strongly
dependent on the search strategy, which is referred to as search bias [5]. In other
words, it is expected to find the global maximum for J-measure among a particular
rule and all its child rules with any orders. If the global maximum is successfully
found, then the decision tree or rule set would be in the highest quality in theory. In
order to achieve this goal, it is necessary to adopt post-pruning strategies that are
based on J-measure.

Section 4.1 introduced two specific methods of post-pruning, which are inspired
by SQUEEZE and ITRULE respectively. As mentioned earlier, these two methods
can be successfully applied to both decision trees and if-then rules for simplifica-
tion. SQUEEZE is more efficient than ITRULE. This is because the former involves
a divide and conquer search and the time complexity is O (log (n)), where n is the
number of child rules. For example, there is a rule referred to as parent rule and is
represented in the form: if a = 1 and b = 1 and c = 1 then class = 1;
(J-measure = 0.28)

This rule has three child rules by removing any one of the three terms as follows:

Rule 1: if b = 1 and c = 1 then class = 1; (J-measure = 0.35)
Rule 2: if a = 1 and c = 1 then class = 1; (J-measure = 0.23)
Rule 3: if a = 1 and b = 1 then class = 1; (J-measure = 0.30)

Rule 1 has two child rules as follows:

Rule 1.1: if b = 1 then class = 1;
Rule 1.2: if c = 1 then class = 1;

Rule 2 and 3 also have two child rules respectively. In the above example, Rule
1 has the highest J-measure so rule 1 becomes the new parent rule in the second
iteration of search phase. Therefore, rules 1.1 and 1.2 need to be checked with
regard to their values of J-measure but the other child rules for rule 2 and 3 are
skipped as specified in Fig. 4.3. On the basis of the above illustration, SQUEEZE
has been proven to be able to achieve a divide and conquer search, which makes it
unnecessary to examine all of the child rules to find the optimal point and thus
reduces the computational cost. However, this method is only able to get a decision
tree or rule set locally optimal in most cases. In the above example, the child rules
for rule 2 and rule 3 are skipped since the J-measure for the parent rule is higher
than that of rule 2 and 3. However, it is possible that at least one of the child rules
for rule 2 and rule 3 gets higher J-measure than the parent rule. In other words, the
highest J-measure may be found from one of the skipped rules. On the basis of the
above description, ITRULE inspired pruning method is most effective in searching
for the global maximum of J-measure as all of the child rules need to be examined.
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However, as illustrated in Fig. 4.4, this method involves a recursive search for the
globally optimal point and thus is computationally more expensive. Therefore, it is
necessary to find some appropriate data structures to manage the parent rule and all
its child rules by means of storing and searching their corresponding values of
J-measure efficiently.

On the other hand, Jmid-pruning mentioned in Sect. 4.2 shows a bias that any
one of the rule terms in a rule can be removed if and only if all its subsequent rule
terms in the rule are already removed. This is based on the assumption that any one
of the rule terms is more important than all its subsequent rule terms in the same
rule. If the assumption is not set up in practice, it usually results in bias by means of
errors originating from learning algorithms.
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Chapter 5
Representation of Classification Rules

As mentioned in Chap. 1, appropriate rule representation is necessary in order to
improve model efficiency and interpretability. This chapter introduces three tech-
niques for representation of classification rules namely, decision trees, linear lists
and rule based networks. In particular, these representations are illustrated using
examples in terms of searching for firing rules. These techniques are also discussed
comparatively in terms of computational complexity and interpretability.

5.1 Decision Trees

As mentioned in Chap. 1, decision tree is an automatic representation for classifi-
cation rules that are generated by a ‘divide and conquer’ approach. This indicates
that if a rule based method that follows the above-named approach is adopted to
generate rules, then the rules are automatically represented in a tree structure. As
introduced in Chap. 2, appropriate representation of rules is significant for the
purpose of both knowledge discovery and predictive modelling.

Decision tree representation is criticized by Cendrowska and identified as a
major cause of overfitting in [1] due to the replicated sub-tree problem as illustrated
in Fig. 3.5 (See Sect. 3.1). It can be seen from the Fig. 3.5 that the four sub-trees
which have node C as their roots are identical. Cendrowska justified in [1] that
those rules which have no common attributes are not able to fit in a tree structure
and that replicated sub-tree problem would arise if such rules are forced to fit in a
tree structure. It is also argued in [1, 2] that it is required to examine the entire tree
in order to extract rules about a single classification in the worst case. This
drawback on representation makes it difficult to manipulate it for expert systems
and thus seriously lowers the computational efficiency in predicting unseen
instances. Computational efficiency in testing stage is significant especially when
the expert systems to be constructed are time critical [3] if the purpose of using such
systems is for predictive modelling.
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On the other hand, decision trees are often quite complex and difficult to
understand [4]. Even if decision trees are simplified by using pruning algorithms, it
is still difficult to avoid that the decision trees become too cumbersome, complex
and inscrutable to provide insight into a domain for knowledge usage [4, 5]. This
undoubtedly lowers interpretability of decision trees and is thus a serious drawback
for the purpose of knowledge discovery.

The direct use of if-then rules that are represented by a linear list structure has
been motivated due to the limitations mentioned above. More details about linear
lists are presented in Sect. 5.2.

5.2 Linear Lists

As mentioned in Sect. 5.1, decision tree representation has serious limitations for
knowledge discovery and predictive modelling. Therefore, the direct use of if-then
rules is motivated. In contrast to decision trees, linear lists do not need to have the
constraint that all rules must have at least one common attribute and thus the
presence of redundant terms is reduced in a rule set.

However, as if-then rules are represented in a linear list structure, predicting
unseen instances in this representation is demonstrated in linear search with the time
complexity of O(n), where the total number of rule terms is used as the input size
(n). This is because linear list representation follows a linear search by going
through the whole set rule by rule in an outer loop; and by going through term by
term in an inner loop. The process of linear search can be illustrated by using the
example rule set below:

Rule 1: if x1 = 0 and x2 = 0 then y = 0;
Rule 2: if x1 = 0 and x2 = 1 then y = 0;
Rule 3: if x1 = 1 and x2 = 0 then y = 0;
Rule 4: if x1 = 1 and x2 = 1 then y = 1;

On the basis of above rule set, if an instance with two inputs (x1 = 1 and x2 = 1),
then it needs to first go through Rule 1 checking the values of x1 and x2 and then
move onto Rule 2 taking the same check again until Rule 4 is checked and found
firing.

The above description implies that it may have to go through the whole rule set
to find the first rule firing in the worst case. This would lead to huge computational
costs when the representation is used to represent a rule set generated by learning
from large training data. As mentioned in Chap. 2, a rule representation technique is
expected to identify the firing rules without the need to examine the whole rule set.
Therefore, for the purpose of predictive modelling, linear lists still cannot fulfil the
goal with regard to efficient search of firing rules. In this sense, it is necessary to
develop another technique of rule representation which demonstrates a level of
computational efficiency higher than linear time.
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In addition, a large training data would usually result in the generation of a large
number of complex rules. In this case, the set of rules represented in a linear list
structure would become very cumbersome and difficult to interpret for knowledge
usage. In other words, a large number of complex rules represented in a linear list is
like a large number of long paragraphs in an article, which would be very difficult
for people to read and understand. Instead, people would prefer to look at diagrams
to gain information. In this sense, graphical representation of rules would be
expected to improve the interpretability of knowledge discovered from data.

Section 5.3 will introduce network based rule representation in terms of both
knowledge discovery and predictive modelling purposes.

5.3 Rule Based Networks

Both decision trees and linear lists have limitations in terms of knowledge dis-
covery and predictive modelling purposes. Therefore, it is necessary to develop new
techniques for representation of rules. This is in order to achieve a more efficient
search of firing rules than linear search as well as to deliver a more interpretable
representation of knowledge than decision trees and linear lists do. The rest of this
subsection introduces network based rule representations.

In order to improve the computational efficiency in comparison with decision
trees and linear lists for the same rule set in the prediction stage, the attribute-value
oriented rule based network topology is developed as illustrated in Fig. 5.1.

The above rule based network representation is based on the relationship
between attribute values and class labels and is thus referred to as attribute-value
oriented rule based network.

In general, this is an n + 2 layer network for classification problems. The first n
layers represent n input attributes. In each of the layers, each node represents a
value of the corresponding attribute. Therefore, the number of nodes in each of the
n layers is dependent on the number of values for the corresponding attribute. The
last second layer represents the rule index which is equal to the order of this rule
minus one. For example, if the rule index is 0, it indicates that this is the first rule in
the rule set. The number of nodes in this layer is dependent on the number of rules.
The last layer in the network represents the class output and the number of nodes is
dependent on the number of classes. There are also connections between different
layers, which are to be explained further using specific examples. However, in
general, the connections could be between two layers which are not adjacent to each
other. For example, the nodes in the first layer could have connections with other
nodes in the third layer. This is very like a travel route which includes a number of
cities. In this context, each city is like a rule term and each route is like a rule. It is
possible that there are cities which are not adjacent to each other but included in the
same travel route. In addition, any two nodes may have more than one connection.
This is because the same part of conjunction of rule terms may be in two or more
rules as illustrated by the rules below:
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If a = 0 and b = 0 and c = 0 then class = 0;
If a = 0 and b = 0 then class = 1;

In the context of travel route as mentioned above, this is like that there could be
common cities included in different routes. In other words, there could be more than
one path to reach between two cities.

The rule based network representation that is illustrated in Fig. 5.1 would
demonstrate a divide and conquer search for firing rules. It could be justified by the
example rule set used in Sect. 5.2 for analysis of time complexity for linear lists.
The rule set represented by the network representation is illustrated in Fig. 5.2 and
the values of the two inputs (x1 and x2) are both 1. Therefore, the two input layers
(x1 and x2) both have the nodes labelled 1 and become green as illustrated in
Fig. 5.2.

For Rule Based Networks, the prediction on an unseen instance is undertaken by
going through rule terms in divide and conquer search (i.e. only going through
those terms that fire). The total number of terms is used as the input size of data(n),
which is the same as in linear list representation and thus the efficiency is O(log
(n)). As it can be seen from Fig. 5.2, it only takes three steps (going through
connections ‘31’, ‘41’ and ‘42’) to find the first rule firing (the rule index is 3). This
is because the input value of x1 is 1 and thus the connections ‘11’ and ‘21’ can be
ignored. In the second layer, only connection ‘42’ is checked since the input value
of x2 is 1 and thus the connections ‘12’ and ‘32’ can be ignored. In addition, the
connection ‘22’ is ignored as well because the connection ‘21’ is already discarded
and thus it is not worth to go through the connection ‘22’ any more.

Fig. 5.1 Rule based network (version 1) [8]
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On the other hand, Higgins has developed a representation called rule based
network as illustrated in Fig. 5.3. This type of network based representation is based
on the relationship between input attributes and class labels and is thus referred to
as attribute oriented rule based network, which is fundamentally different from the
network topology illustrated in Fig. 5.1.

The network topology illustrated in Fig. 5.3 could be seen as a special type of
rule based network representation based on the relationship between input attributes
and class labels. This is because of the possibility that there are two or more rules
that fire with different classifications as rule consequences. This issue needs to be
resolved by conflict resolution strategies as introduced in [6]. Higgins’s network
topology actually takes into account this conflict and deals with it by the
‘Winner-Take-All strategy’ [7]. Therefore, the network topology could be seen as a
type of non-deterministic rule based network with certain inputs but uncertain
outputs. However, the conflict mentioned above would never arise with the rule sets
that are generated by adopting the divide and conquer approach. In this context, if
the rule generation is based on deterministic logic, both inputs and outputs would be
deterministic. As it is, the networked topology is modified to become a determin-
istic rule based network that is illustrated by Fig. 5.4.

In general, this is a three layer network. In the first layer, each node represents an
input attribute and this layer is referred to as input layer. The number of nodes in
this layer is dependent on the number of attributes in a data set. In the middle layer,
each node represents a rule to make the conjunction among inputs and provide
outputs for the node in the last layer and thus the middle layer is referred to as
conjunction layer. The number of nodes in this layer is dependent on the number of
rules generated. The only node in the last layer represents the class output and thus

Fig. 5.2 Rule based network example (version 1) [9]
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this layer is referred to as output layer. In addition, the nodes in input layer usually
have connections to other nodes in the conjunction layer. Each of the connections
represents a condition judgment which is explained further using specific examples.
However, a node in the input layer may not necessarily have connections to other
nodes in the conjunction layer. This is due to a special case that an attribute may be
totally irrelevant to making a classification, which is described in more depth in
Sect. 5.4.

The example rule set that is used in Sect. 5.2 and represented by this network
topology is illustrated in Fig. 5.5. In this diagram, both input values are supposed to
be 1 (shown as green) and each node in input layer represents an input attribute;
each node in the middle layer represents a rule and the layer is referred to as
conjunction layer due to the fact that each rule actually reflects the mapping
between inputs and outputs and that the output values strongly depends on the
conjunction of input values; finally, the node in the output layer represents the class
attribute. On the other hand, each of the connections between input layer and
conjunction layer represents a condition judgment. If the condition is met, then the
connection is coloured by green. Otherwise, it is coloured by red. In addition, each
of the connections between the conjunction layer and the output layer represents an
output value from the corresponding rule. In other words, if all of the conditions in
a rule are met, then the corresponding node in the conjunction layer becomes green.

Fig. 5.3 Higgins’s non-deterministic rule based network for classification [7]
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Fig. 5.4 Deterministic rule based network (version 2) [8]

Fig. 5.5 Deterministic rule based network example (version 2) [8]
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Otherwise, the corresponding node becomes red. The former case would result in
that a node representing a rule becomes green and that the output value from the
rule is assigned to the class attribute in the output layer. In the meantime, the
connection between the node representing the rule and another node representing
the class attribute becomes green, which means the class attribute would be
assigned the output value from the rule. In contrast, the latter case would result in
that the node in conjunction layer becomes red and that the output value from the
corresponding rule cannot be assigned to the class attribute.

As mentioned earlier in this subsection, a rule set may have some or all rules
non-deterministic in terms of relationships between rule antecedents and conse-
quents due to the presence of uncertainty in datasets. In this context, the rule set
would be used to predict classes based on probabilistic or fuzzy logic. Therefore, a
unified topology for rule based networks, which could fulfil being based on dif-
ferent logics such as deterministic, probabilistic and fuzzy logic, is developed and
illustrated in Fig. 5.6.

In this network topology, the modifications are made to the one illustrated in
Fig. 5.6 by adding a new layer called disjunction and assigning a weight to each of
the connections between nodes. The disjunction layer is similar to the output layer
in Higgins’s network topology illustrated in Fig. 5.3. In this layer, each node
represents a class label and the number of nodes is dependent on the number of
classes. However, the final prediction is not necessarily made by choosing the most
common class which has the highest posteriori probability in total. In contrast to
Figs. 5.4 and 5.5, the topology also allows representing inconsistent rules, which
means that the same rule antecedent could be mapped to different classes (conse-
quents). For example, the first node in the conjunction layer is mapped to both the
first and the second node in the disjunction layer as illustrated in Fig. 5.6. With

Fig. 5.6 Unified rule based network [8]
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regard to the weights assigned to the connections between nodes, they would
represent the truth values if the computation is based on deterministic or fuzzy
logic. The truth value would be crisp (0 or 1) for deterministic logic whereas it
would be continuous (between 0 and 1) for fuzzy logic. If the computation is based
on probabilistic logic, the weights would represent the probabilities of the corre-
sponding cases.

In the context of deterministic logic, each of the connections between the nodes
in the input layer and the nodes in the conjunction layer would be labelled 1 for its
weight, i.e. tij = 1 where i is the index of the attribute and j is the index of the rule, if
the corresponding condition as part of the rule antecedent is met. A rule would have
its antecedent satisfied if and only if all of the conditions are met. In this case, the
rule is firing to indicate its consequent (as the class predicted) which is represented
by a node in the disjunction layer. If the rule is consistent, the corresponding node
should have a single connection to another node in the disjunction layer. The
connection would be labelled 1 as its weight denoted by wjk, where k is the index of
the class. In this case, if there is only one rule firing or more rules firing without
conflict of classification, then the output would be deterministic. This is because
there is only one node in the disjunction layer providing a weight greater than or
equal to 1 for its connection to the node in the output layer. For all other nodes, the
weight provided for the corresponding connection would be equal to 0.

However, as mentioned earlier, a rule may be inconsistent, which means that the
same rule antecedent may be mapped to different classes as its consequent. In this
case, the corresponding node would have multiple connections to different nodes in
the disjunction layer. For each of the connections, the weight would be equal to a
value between 0 and 1. Nevertheless, the sum of weights for the connections would
be equal to 1. With regard to each of classes, it may be mapped from different rule
antecedents. Therefore, each class would have a summative weight denoted by ck,
which is equal to the sum of the weights for the rule antecedents mapped to the
class. Finally, the node in the output layer makes the weighted majority voting for
the final prediction.

In the context of probabilistic logic, the tij would be equal to a value between 0
and 1 as a conditional probability. Similar to deterministic logic, a rule is firing if
and only if all of the conditions are met. However, the rule antecedent would be
assigned a firing probability computed in the corresponding node in the conjunction
layer. The firing probability is simply equal to the product of the conditional
probabilities for the rule terms (if corresponding attributes are independent) and
also to the posterior probability of the rule consequent given the rule antecedent. If
the rule is inconsistent, the sum of posterior probabilities for the possible classes
(wjk) would also be equal to the firing probability above. This is because the rule
consequent is the disjunction of the output terms, each of which has a different class
as the output value. In the disjunction layer, each class is assigned a weight which is
equal to the sum of its posterior probabilities given different rule antecedents. The
final prediction is made by weighted voting in the same way as based on deter-
ministic logic.
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In the context of fuzzy logic, in contrast to probabilistic logic, in the conjunction
layer, the tij would be equal to a value between 0 and 1 as a fuzzy truth value for
each corresponding condition. Similar to the other two types of logic, a rule is firing
if and only if all of the conditions are met. However, the rule antecedent would be
assigned a firing strength computed in the corresponding node in the conjunction
layer. The firing strength is simply computed by choosing the minimum among the
fuzzy truth values of the conditions (that are assumed independent). The fuzzy truth
value for the rule consequent is equal to the firing strength. If the rule is incon-
sistent, the fuzzy truth value (wjk) for having each possible class as the consequent
would be derived by getting the minimum between the firing strength and the
original fuzzy truth value assigned to this class for this rule. In the disjunction layer,
the weight for each class is computed by getting the maximum among the fuzzy
truth values (wjk) of the rules having the class as the consequents. The final pre-
diction is made by weighted majority voting in the same way as the above two types
of logic.

5.4 Discussion

The descriptions on attribute-value oriented rule based network in Sect. 5.3 indi-
cates that finding the rules that fire by using this network representation does not
involve examining the whole network. This makes the efficiency of the rule based
network higher than that of linear lists, the latter of which is O (n) as mentioned in
Sect. 5.3 and Table 5.1.

In practice, the advantage of rule based networks mentioned above would sig-
nificantly speed up the process of prediction making when the corresponding rule
set is generated through learning from large training data.

As mentioned in Chap. 2, rule representation is also significant in fulfilling the
requirement of interpretable representation of knowledge. In this context, the
attribute-value oriented rule based network topology, which is illustrated in
Fig. 5.1, would also demonstrate a good interpretability with respect to correlation
between inputs and outputs. A correlation could be interpreted by connections
nodes in different layers. For example, it can be seen from Fig. 5.2 that node 1 in the
first layer (x1) is firstly connected to node 1 in the second layer (x2) and finally to

Table 5.1 Comparison in efficiency [8]

Decision tree Linear list Rule based network

O(log(n)), which indicates it is
not required to examine a whole
tree but the value of n is likely to
be higher than that in the other
two representations due to the
presence of redundant terms

O(n), which indicates it is
required to examine a
whole list in the worst case

O(log(n)), which
indicates it is not required
to examine a whole
network
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node 1 in the last layer (Class) via node 3 in the third layer (Rule Index). These
connections make up a path that interprets a correlation between the two input
attributes (x1 and x2) and the class attribute. In comparison with linear list, the
network representation only needs each attribute and its corresponding values to
appear once as a layer and a node in the layer respectively. This also reduces the
structure complexity and thus improves the interpretability of knowledge.

Section 5.3 also introduced another type of network topology, which is referred
to as attribute oriented rule based network. As mentioned in Sect. 5.3, a node in the
input layer of the network topology illustrated in Fig. 5.4 may not necessarily have
connections to the nodes in the conjunction layer. This is due to the possibility that
an input attribute may be totally irrelevant to making a classification. In other
words, this attribute is not involved in any rules in the form of rule terms. From this
point of view, this topology of rule based network can be used to identify the
relevance of attributes for feature selection tasks which is listed in Table 5.2.

On the other hand, this type of network representation is based on the rela-
tionship between input attributes and class labels as mentioned in Sect. 5.3.
Therefore, this representation can be used to reflect correlations between input
attributes and class labels, i.e. it enables the identification of the input attributes that
have the highest impact on determining each of the class labels.

As illustrated in Table 5.2, this type of networked rule representation also shows
the relationship between attributes and rules explicitly as shown connections
between nodes in input layer and nodes in conjunction layer. In addition, the
network topology also introduces a ranking for both input attributes and rules based
on their importance. The importance of an input attribute is measured by the
weighted average of ranks for those rules that relate to the input attribute. For
example, an attribute A relates to two rules namely rule 1 and rule 2. If the ranks for
rule 1 and rule 2 are 4 and 8 respectively, then the average of ranks would be
6 = ((4 + 8)/2). In real applications, this characteristic about ranking of attributes
may significantly contribute to both knowledge discovery and feature selection with
respect to feature importance. Besides, the strength of the representation also lies in
the strong interpretability on mapping relationship between inputs and outputs,
which is significantly useful for knowledge discovery. On the basis of the above
descriptions, the rule based network representation illustrated in Fig. 5.4 is thus a
practically significant technique in data mining tasks.

Table 5.2 Comparison in interpretability [8]

Criteria DT LL RBN

Correlation between attributes and classes Poor Implicit Explicit

Relationship between attributes and rules Implicit Implicit Explicit

Ranking of attributes Poor Poor Explicit

Ranking of rules Poor Implicit Explicit

Attribute relevance Poor Poor Explicit

Overall Low Medium High

NB DT = Decision tree, LL = Linear list and RBN = Rule based network
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As introduced in Sect. 5.3, a unified network topology, which is illustrated in
Fig. 5.6, is developed in order to fulfil the requirement that the representation can be
used based any types of logic, such as deterministic logic, probabilistic logic and
fuzzy logic.

The unified network topology has some advantages. In particular, the repre-
sentation does not only show which input attributes are most significant for each
class label in terms of determining the class label of an unseen instance, but also
measure the corresponding degree of likelihood. It is important especially for fuzzy
rule based systems, which is required to assign a weight to each of the connections
between nodes. This is because each of the connections is only involved in one rule
in this representation. In contrast, decision tree representation may have the same
connection shared by different rules with the need that different weights are
assigned to the same connection for different rules, which results in confusions. On
the other hand, if a linear list representation has each single rule term assigned a
weight, it is likely to make the rules less readable. The similar problems also arise
when decision trees and linear lists are used to represent probabilistic rule based
systems that contain inconsistency in terms of mapping between rule antecedents
and rule consequents. However, the above limitations can be effectively overcome
by using the unified rule based network topology. Overall, the above description
demonstrates a significant advantage of using the unified rule based network
topology for knowledge discovery in real applications due to the presence of
uncertainty.
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Chapter 6
Ensemble Learning Approaches

As mentioned in Chap. 1, ensemble learning is helpful to improve overall accuracy
of classification. This chapter introduces three approaches of ensemble learning
namely, parallel learning, sequential learning and hybrid learning. In particular,
some popular methods for ensemble learning, such as Bagging and Boosting, are
illustrated in detail. These methods are also discussed comparatively with respects
to their advantages and disadvantages.

6.1 Parallel Learning

As mentioned in Chap. 1, parallel ensemble learning approach can be achieved
through a combination of different learning algorithms, each of which generates a
model independently on the same training set. In this way, the predictions of the
models generated by these algorithms are combined to predict unseen instances.
This way belongs to scaling up algorithms because different algorithms are com-
bined in order to generate a stronger hypothesis. In addition, the parallel ensemble
learning approach can also be achieved by using a single base learning algorithm to
generate models independently on different sample sets of training instances. In this
context, the sample set of training instances can be provided through horizontal
selection of the instances with replacement or vertical selection of the attributes
without replacement. This way belongs to scaling down data because the training
data is preprocessed to reduce the variance that exists on the basis of the
attribute-values. Some popular approaches of parallel learning include Bagging and
Random Forests.

The term Bagging stands for bootstrap aggregating. It is a popular method
developed by Breiman in [1] and the basic procedures of this method are illustrated
in Fig. 6.1. This method follows the parallel ensemble learning approach as men-
tioned above. Bagging involves sampling of data with replacement. In detail, the
Bagging method is to draw a sample with the size n, where n is the size of
the training set, and to randomly select instances from the training set to be put into
the sample set. This indicates that some instances in the training set may appear
more than once in the sample set and some other instances may never appear in the
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sample set. On average, a sample is expected to contain 63.2 % of the training
instances [1–3]. In the training stage, the generation of classifiers, each of which
results from a particular sample set mentioned above, are parallel to each other. In
testing stage, the combination of their independent predictions is made to predict
the final classification based on equal voting. As concluded in the literatures [2, 3],
Bagging is robust and does not lead to overfitting due to the increase of the number
of generated models, and thus is useful especially for those non-stable learning
methods such as neural networks, decision trees and rule based learning methods.

Random forests is another popular method introduced in [4], which can be seen
as a special case of bagging as illustrated in Fig. 6.2. In particular, decision trees
must be the base classifiers generated on each sample of training data. In addition,
the attribute selection at each node of a decision tree is random to some extents.
Otherwise, this ensemble learning method only belongs to Bagging. In this sense, at
each node, there is a subset of attributes randomly chosen from the training set and
the one which can provide the best split for the node is finally chosen [5]. In the

Fig. 6.1 Bagging method

Fig. 6.2 Random forests
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training stage, the chosen algorithm of decision tree learning is used to generate
classifiers independently on the samples of the training data. In the testing stage, the
classifiers make the independent predictions that are combined to make the final
prediction based on equal voting. As concluded in the literature [2], the random
forests algorithm is robust because of the reduction of the variance for decision tree
learning algorithms.

The CCRDR approach of ensemble learning has been developed by Liu and
Gegov in [6], in order to fill the gap that exists in Random Forests and other similar
methods. The basic idea of this approach is illustrated in Fig. 6.3.

CCRDR stands for Collaborative and Competitive Random Decision Rules,
which indicates that the ensemble learning framework includes both cooperative
learning and competitive learning. Therefore, the above approach is designed
partially to overcome the limitation that there is only a single base learning algo-
rithm involved in the training stage, which cannot always generate robust rule sets
due to the absence of competition in this stage. In order to overcome the above
limitation, the CCRDR approach is designed in a way that includes multiple base
algorithms for training. On the basis of the design, there is thus competition among
the rule sets generated on a same sample of training data. In other words, there are
multiple learning algorithms applied to each sample of the training data, which
results in the generation of multiple rule sets on each sample. In this context, it
becomes achievable to find better rule sets to be involved in testing stage and worse
ones to be absent through competition among these rule sets. The competition is
based upon the weight (confidence) of each of the rule sets by means of overall
accuracy estimated using validation data. In the CCRDR framework, only the rule
set with the highest weight (confidence) is eligible to be involved in the testing
stage. The development of the CCRDR aims to enable that on each sample of data
the hypothesis constructed becomes much stronger.

Fig. 6.3 CCRDR ensemble learning [6]
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On the other hand, the CCRDR framework is also designed to address the issues
relating to voting. As mentioned in Chap. 2, voting can be based on different criteria
such as equal voting and weighted voting. For the two popular methods introduced
above, Bagging and Random Forests are based on equal voting. In addition,
Boosting, which is introduced in Sect. 6.2, is based on weighted voting. In clas-
sification tasks, the weighted voting is preferred to the equal voting. This is due to
the possibility that some classifiers are highly reliable whereas the others are less
reliable. For example, there are three base classifiers: A, B and C. A predicts the
classification X with the weight 0.8, and B and C predict the classification Y with
the weights 0.55 and 0.2 respectively so the final classification is X if using
weighted voting (weight for X: 0.8 > 0.55 + 0.2 = 0.75) but is Y if using equal
voting (frequency for Y: 2 > 1). Liu and Gegov also discussed in [6] several
possible ways for determining the weight for weighted voting. These ways are
based on overall accuracy, precision and recall respectively, all of which are
popularly used for evaluating the quality of a classifier. These ways are also
compared experimentally in terms of their effectiveness for evaluating the reliability
of a classifier in ensemble learning tasks. The experimental results indicate that
precision is more effective than the other two. In addition, the justifications
described in the following paragraphs also strongly support the above indication
from the experimental results.

The strategy based on overall accuracy is not reliable enough in determining the
weight, especially for unbalanced data sets. This is due to the high possibility that a
classifier performs better on predicting positive instances but worse on negative
instances if it is a two class classification task. The similar cases can also happen in
multi-class classification tasks. Therefore, it is necessary to adopt the individual
accuracy (recall) for a single classification as the weight [6].

Precision would be more reliable than recall in determining the weight of a
classifier. For example, there are 5 positive instances out of 20 in a test set and a
classifier correctly predicts the 5 instances as positive but incorrectly predicts other
5 instances as positive as well. In this case, the recall/true positive rate is 100 % as
all of the five positive instances are correctly classified. However, the precision on
positive class is only 50 %. This is because the classifier predicts 10 instances as
positive and only five of them are correct. This case indicates the possibility that
high recall could result from coincidence due to low frequency of a particular
classification. Therefore, precision is more reliable in determining the weight of a
classifier on a particular prediction from this point of view [6].

The CCRDR framework still has limitations. One of them is due to the absence
of collaboration among different learning algorithms in the training stage.
Therefore, this framework only follows the parallel ensemble learning approach and
has no connection to sequential ensemble learning. In particular, these learning
algorithms do not collaborate with each other. For separate and conquer rule
learning, collaboration can be achieved in the way that different rule learning
algorithms are combined to generate a single rule set on each sample of training
data. More details on this are justified in Sect. 6.3.
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6.2 Sequential Learning

In sequential ensemble learning approach, accuracy can also be improved through
scaling up algorithms or scaling down data. In the former way, different algorithms
are combined in the way that the first algorithm learns to generate a model and then
the second algorithm learns to correct the model and so on. In this way, there is
nothing changed to training data. In the latter way, in contrast, the same algorithm is
used iteratively on different versions of the training data. In each iteration, there is a
model generated and the model is then evaluated using the validation data.
According to the estimated quality of the model, the training instances are weighted
to different extents and then used for the next iteration. In the testing stage, these
models generated at different iterations make predictions independently and their
predictions are then combined to predict unseen instances.

The term Boosting stands for Adaboost. It is introduced in [7–9] and follows
sequential ensemble learning approach as illustrated in Fig. 6.4. In other words, the
generation of a single classifier depends on the experience gained from its former
classifier [5]. Each single classifier is assigned a weight depending on its accuracy
estimated by using validation data. The stopping criteria are satisfied while the error
is equal to 0 or greater than 0.5 [5]. In the testing stage, each single classifier makes
an independent prediction as similar to Bagging but the final prediction is made

Fig. 6.4 The boosting algorithm AdaBoost [7]
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based on weighted voting among these independent predictions. As concluded in
the literature [2], Boosting frequently outperforms Bagging, and can also be applied
with those stable learning algorithms with low variance in addition to unstable ones,
in contrast to Bagging. However, the Boosting may generate an ensemble learner
that overfits training data. In this case, the performance of the ensemble learner is
worse than that of a single learner.

On the other hand, sequential learning can be achieved through the combination
of methods in rule generation and rule simplification. In other words, rule gener-
ation methods aim to learn a set of rules, each of which is corrected by rule
simplification methods. As mentioned in Chap. 1, rule simplification can be
achieved through pre-pruning and post-pruning. In addition, rule generation may be
in the form of decision trees or if-then rules. In the former way, each of the single
rules is corrected by pruning methods when it is being learned. In particular, if a
decision tree is being generated, the correction by pruning methods is to stop
growing a branch of the decision tree. Otherwise, the correction aims to stop
specializing the left hand side of a single rule. In the latter way, each of the rules is
corrected after the rule learning has been completed. In particular, if a decision tree
is being generated, the tree should be converted to a set of if-then rules, each of
which is then simplified on its left hand side by pruning methods, after the complete
tree has been generated. Otherwise, each single rule need to be simplified imme-
diately after the completion of generation for the current rule and before the start of
generation for the next rule.

On the basis of above description, the approach described above can be seen as a
new way to achieve sequential ensemble learning that involves collaborations
among different algorithms. However, this approach is only applied to the con-
struction of rule based systems due to the nature of rule learning.

6.3 Hybrid Learning

As mentioned in Sect. 6.1, separate and conquer rule learning can be enhanced
through the way that different algorithms collaborate to generate a single rule set on
a given data set. Therefore, the CCRDR framework still has gaps to be filled. The
modified framework is illustrated in Fig. 6.5. The new framework is referred to as
hybrid ensemble rule based classification [10], due to the involvement of data
sampling and algorithms collaborations for reduction of bias and variance
respectively.

The modified framework for ensemble rule based classification differs from the
CCRDR illustrated in Fig. 6.3 in two aspects.

The first aspect is on the number of generated rule based classifiers learning from
each sample of training data, i.e. there is only one classifier generated from each
sample data.

The second aspect is on the removal of the competition stage illustrated in
Fig. 6.3. In other words, after the completion of training and validation, all the
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classifiers are not involved in competition with regard to their reliabilities but are
combined straightaway to predict unseen instances.

The two aspects for modification made to the CCRDR framework are due to the
change in the strategy for combination of different learning algorithms. In the
modified framework, the learning algorithms are combined to generate only a single
classifier on each sample of training data in the way as illustrated in Fig. 6.6.
Therefore, there is no competition necessary.

The combination of learning algorithms involves collaborations in a Macro
vision but competitions in a Micro vision. This is because these algorithms are
combined to generate a rule set (a set of rules), but each of these rules is actually
generated through competitions among rules generated by different algorithms at
each iteration of rule learning. In other words, at each iteration, each of the chosen
algorithms generates a rule that is compared with the other rules generated by other
algorithms in terms of rule quality. The competitions mentioned above aim to have
each single rule with a quality as high as possible for each rule set generated from a
sample of training data. The quality of a single rule can be estimated by some
statistical measures, such as confidence, J-measure, lift and leverage, as introduced
in Chap. 1.

The hybrid ensemble rule based classification framework can fill the gaps that
exist in Random Forests and CCRDR to a large extent.

In comparison with Random Forests, the new framework illustrated in Fig. 6.5
employs algorithms that follow separate and conquer rule learning. This rule
learning approach has a higher flexibility than divide and conquer rule learning.

Divide and conquer approach involves generating a set of rules, all of which are
strongly connected with each other to fit in a tree structure. In this context, changing
even one rule is likely to destroy the whole tree as a result of that the rules cannot fit
in a tree any more. This is because each rule is represented as a branch of the tree

Fig. 6.5 Hybrid ensemble rule based classification framework [10]
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that has some common parts with other branches. On the other hand, each of the
branches is grown parallel to all the others.

In contrast, separate and conquer approach involves generating a set of modular
rules. These rules are not connected each other in terms of rule representation. On
the other hand, the rules are generated sequentially, i.e. the completion of the
generation for one rule is followed by the start of the generation for another rule.

On the basis of above comparison, separate and conquer approach enables
collaborations involved in the training stage of ensemble rule learning whereas
divide and conquer approach cannot. This is because the former approach enables
the evaluation of each single rule once the rule is generated due to the sequential
rule generation, whereas the latter approach cannot achieve it due to parallel rule
generation. Therefore, the hybrid ensemble rule based classification framework can
fill the gap that exists in Random Forest.

In comparison with the CCRDR framework, the improvement is on the quality
of the classifiers, each of which is generated from a particular sample of training
data. This is because of the possibility originating from CCRDR that some of the
rules are of higher quality but the others are of lower quality, while there is only one
rule learning algorithm involved in the training stage. CCRDR involves a com-
petition between algorithms per rule set. In other words, the competition is made
after each of the algorithms has generated a rule set, in order to compare the quality
of a whole rule set. In contrast, the hybrid ensemble approach involves such a
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Fig. 6.6 Collaborative rule generation framework

70 6 Ensemble Learning Approaches



competition per rule generated. In other words, the competition is made once each
of the algorithms has generated a rule in order to compare the quality of each single
rule generated by a particular algorithm.

Overall, in the context of ensemble rule based classification, the new framework
illustrated in Fig. 6.5 shows a greater robustness and flexibility than Random
Forests and CCRDR.

6.4 Discussion

As mentioned in [2], Bagging, Boosting and Random Forests all have the disad-
vantage of incomprehensibility of the predictions made by different models. The
same disadvantage also arises with the CCRDR approach. This is a serious
drawback that arises with most existing ensemble learning approaches for data
mining tasks. As mentioned in Chap. 1, data mining is aimed at knowledge dis-
covery. Therefore, it is necessary for the models to allow explicit interpretation of
the way that the prediction is made. The approach by combining methods in rule
generation and rule simplification respectively, which is introduced in Sect. 6.2,
would be able to fill the gap to some extent as it only generates a single rule set that
is used for prediction. In addition, rule based models are highly interpretable as
mentioned in Sect. 1; consequently, the above approach would fit well the purpose
of knowledge discovery especially on interpretability.

With regard to accuracy, Bagging, Boosting and Random Forests all aim to
improve it on the data side (scaling down data) for reduction of variance. However,
there is nothing done on the algorithms side (scaling up algorithms) for reduction of
bias. As mentioned in Chap. 1, it is necessary to deal with issues through reduction
of both bias and variance in order to comprehensively improve the accuracy.
The CCRDR can fulfil the need to a large extent. As justified in [6], each algorithm
may have a different level of suitability to different data sets. On the same data set,
different algorithms may also demonstrate different levels of performance. From
this point of view, the CCRDR approach is designed in the way that after the
training data is scaled down by drawing different samples, a group of learning
algorithms are combined to generate a model on each of the samples. In this
context, the CCRDR approach does not only scale down the data but also scale up
the algorithms. However, as mentioned in Sect. 6.3, this approach does not involve
any collaborations among different algorithms in the training stage. For rule based
learning algorithms, it is very likely to generate a rule set that has some rules with a
high quality but also others with a low quality. In other words, it is difficult to
guarantee that each single rule generated by a particular algorithm is of high quality.
In this sense, the CCRDR approach is only able to select the rule sets, each of which
is generated on a particular sample set and has the highest quality on average
compared with the others generated on the same sample set. In the testing stage, a
rule set usually makes a prediction using a single rule that fires. If the single rule has
a low quality, it is very likely to make an incorrect prediction although most of the
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other rules have high quality. On the other hand, for data mining tasks, each of the
rules is used to provide knowledge insight for domain experts. Therefore, the
reliability of each single rule is particularly significant.

On the basis of the above description, the approach that involves combination of
rule learning algorithms and pruning algorithms would be useful and effective to
help the CCRDR fill the gap relating to the quality of each single rule as well as the
incomprehensibility of predictions, and it thus also complements the other three
popular methods mentioned earlier. Therefore, the above approach would be
strongly motivated for further investigation to advance rule learning algorithms.

On the other hand, a hybrid rule based classification framework, which is
introduced in Sect. 6.3, involves reduction of bias and variance through scaling up
algorithms and scaling down data respectively. The results reported in [10] indicate
that it is necessary to take both scaling up algorithms and scaling down data in order
to comprehensively improve classification accuracy like the hybrid ensemble rule
based classification framework. In this way, overall classification accuracy can be
improved more comprehensively. In contrast, random forests only involve scaling
down data and nothing on scaling up algorithms. Therefore, random forests only
enable the reduction of variance on data side, but are biased on the decision tree
learning algorithm employed. CCRDR enables the reduction of both bias and
variance. However, on algorithms side, the chosen algorithms do not collaborate
with each other and thus the reduction of bias is not sufficient. This could be
explained by the assumption that each algorithm may generate a rule set that has
some rules of high quality but the others of low quality. In other words, it cannot
ensure that each single rule is generated to have a high quality and thus may result
in incorrect classifications by low quality rules.

On the basis of above discussion, the hybrid ensemble rule based classification
framework is strongly motivated due to its flexibility in employing rule learning
algorithms and rule quality measures, as well as its involvement that different rule
learning algorithms collaborate to complement each other. In particular, this
framework will be investigated further with respect to the employment of rule
learning algorithms and measures of rule quality. In this way, any bias originating
from the employed learning algorithms or statistical measures will be avoided to a
larger extent and thus accuracy will be improved further.
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Chapter 7
Interpretability Analysis

Chapter 1 stressed the significance of interpretability for the purpose of knowledge
discovery. This chapter introduces theoretical aspects of interpretability on rule
based systems. In particular, some impact factors are identified and how these
factors have an impact on interpretability is also analyzed. In addition, some criteria
for evaluation on interpretability are also listed.

7.1 Learning Strategy

As mentioned earlier, different machine learning algorithms usually involve dif-
ferent strategies of learning. This would usually result in differences in two aspects
namely, transparency and model complexity.

In terms of transparency, a rule learning method aims to generate a rule set
typically in the form of either a decision tree or if-then rules. As mentioned in
Chap. 1, rule based knowledge representation is able to explain the reason explicitly
with regard to providing an output and, thus, it is well transparent. This is a
significant advantage compared with some other popular machine learning methods
such as neural networks and k nearest neighbor. Neural network learning aims to
construct a network topology that consists of a number of layers and that has a
number of nodes, each of which represents a perceptron. As a neural network is
working in a black box manner with regard to providing an output, the transparency
is poor, i.e. people cannot see in an explicit way the reason why the output is given.
On the basis of the above description, neural networks have been judged poorly
interpretable in [1]. K nearest neighbor involves lazy learning. In other words, the
learning algorithm does not aim to learn in depth to gain some pattern from data but
just to make as many correct predictions as possible. In the training stage, there is
no actual learning but just some data loaded into computer memory. In this sense,
there is no model built in the training stage so there is nothing to be visible for
people to gain some useful patterns.

In terms of model complexity, as mentioned in Chap. 1, rule learning methods
can be divided into two categories namely, ‘divide and conquer’ and ‘separate and
conquer’, due to the difference in their strategy of rule generation. As mentioned in
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[2], the latter approach usually generates fewer and more general rules than the
former approach. The above phenomenon is due mainly to the strategy of rule
learning. As mentioned in Chap. 3, the rule set generated by TDIDT needs to have
at least one common attribute to be in the form of decision trees. The same also
applies to each of the subtrees of a decision tree, which requires to have at least one
common attribute represented as the root of the subtree. Due to this requirement,
TDIDT is likely to generate a large number of complex rules with many redundant
terms similarly to the replicated subtree problem illustrated in Chap. 3 and thus
results in a model with high complexity. On the other hand, as mentioned above, k
nearest neighbor does not build a model in the training stage. From this point of
view, the model complexity is 0 as there is no model built.

On the basis of the above description relating to transparency and complexity,
the strategies of learning involved in learning algorithms are an impact factor that
affects interpretability.

7.2 Data Size

As mentioned in Sect. 7.1, different learning algorithms involve different strategies
of learning and thus generate models with different level of complexity. In this
sense, when the same data set is used, different learning algorithms would usually
lead to different model complexity. However, for the same algorithm, data in dif-
ferent sizes would also usually result in the generation of models with different
levels of complexity. The rest of this subsection justifies the potential correlation
between data size and model complexity using rule based methods as examples.

As mentioned earlier, rule learning methods involve the generation of rule sets.
The complexity of a rule set is determined by the total number of rule terms, which
is dependent upon the number of rules and the average number of terms per rule.
However, the total number of rule terms is also affected by the data size in terms of
both dimensionality (number of attributes) and sample size (number of instances).
For example, a data set has n attributes, each of which has t values, and its sample
contains m instances and covers all possible values for each of the attributes. In this
example, the model complexity would be equal to Σ ti, while i = 0, 1, 2, …, n, but
no greater than m × n in the worst case. This indicates that a rule set consists of a
default rule, which is also referred to as ‘else’ rule, and ti rules, each of which has
i terms, for i = 0, 1, 2, …, n respectively. However, each rule usually covers more
than one instance and the rule set is expected to cover all instances. Therefore, the
number of rules from a rule set is usually less than the number of instances from a
data set. As also justified above, each rule would have up to n (the number of
attributes) terms due to the requirement that each attribute can only appear once
comprising one of its possible values in any of the rules.

On the basis of above description, the complexity of a rule set is up to the
product of dimensionality and sample size of a data set.

76 7 Interpretability Analysis

http://dx.doi.org/10.1007/978-3-319-23696-4_3
http://dx.doi.org/10.1007/978-3-319-23696-4_3


7.3 Model Representation

As mentioned in Chap. 5, different types of machine learning algorithms may
generate models represented in different forms. For example, as mentioned in
Chap. 1, the ‘divide and conquer’ approach generates a rule set in the form of a
decision tree whereas the ‘separate and conquer’ approach would generate if-then
rules represented in a linear list. In addition, neural network learning algorithm
would generate a multi-layer network with a number of interconnected nodes, each
of which represents a perceptron. As described in Sect. 7.1, models generated by
rule based learning methods are in white box and thus well transparent whereas
models constructed by neural network learning methods are in black box and thus
poorly transparent. As justified in Sect. 7.1, the level of transparency can affect the
level of interpretability. However, models that demonstrate the same level of
transparency may also have different level of interpretability due to their differences
in terms of representation. The rest of this subsection justifies why and how the
nature of model representation can affect the level of interpretability of rule based
systems.

As argued in Chap. 5, decision trees suffer from the replicated subtree problem
and thus are often difficult for people to read and understand to gain knowledge. In
contrast to decision trees, linear lists do not have the constraint that all rules must
have common attributes and thus reduces the presence of redundant terms in a rule
set. However, redundancy may still arise with this representation, as the same
attribute may repetitively appear in different rules as illustrated by the example
below:

Rule 1: If x = 0 and y = 0 Then class = 0;
Rule 2: If x = 0 and y = 1 Then class = 1;
Rule 3: If x = 1 and y = 0 Then class = 1;
Rule 2: If x = 1 and y = 1 Then class = 0;

When a training set is large, there would be a large number of complex rules
generated. In this case, the presence of redundancy would make the rule set (rep-
resented in a linear list) become very cumbersome and difficult to interpret for
knowledge usage. In other words, a large number of complex rules represented in
this way is quite like a large number of long paragraphs in an article that would be
very difficult for people to read and understand. Instead, people prefer to look at
diagrams to gain information. In this sense, graphical representation of rules would
be expected to improve the interpretability of a model. More details about the
improvement will be introduced in Chap. 8.
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7.4 Human Characteristics

As mentioned in Chap. 1, different people may have different level of expertise and
preferences and thus different level of cognitive capability to understand the
knowledge extracted from a particular rule based system. The rest of this subsection
justifies why and how human expertise and characteristics may affect the inter-
pretability of rule based systems.

In terms of expertise, due to the fact that an expert system is used to act as a
domain expert to extract knowledge or make predictions, people need to have the
relevant expertise in order to be able to understand the context. From this point of
view, the exactly same model may demonstrate different level of interpretability for
different people due to their different level of expertise in this domain.

In terms of preferences, due to the fact that different people may have different
preferences with respect to the way of reading, the exactly same model may also
demonstrate different level of interpretability for different people due to their dif-
ferent preferences. From this point of view, human characteristics are also an
impact factor that may affect the interpretability of model.

As mentioned in Sect. 7.3, model representation can affect the interpretability
with respect to level of redundancy. In other words, the same model can have
different level of interpretability depending on its representation. However, due to
the difference in expertise and preferences, a particular representation may be
understandable to some people but not to others. For example, some people in
nature science/engineering would prefer to read diagrams/mathematical formulas
whereas others may dislike them. From this point of view, model representation,
human expertise and characteristics may jointly determine the cognitive capability
for people to read and understand the knowledge extracted from a model.

7.5 Discussion

On the basis of above description in this section, the list of identified impact factors
have the causal relationship to the interpretability as illustrated in Fig. 7.1.

Figure 7.1 indicates that the evaluation on interpretability could be based some
criteria, namely model transparency, model complexity, model redundancy and
cognitive capability, due to their direct relationships to interpretability.

In terms of model transparency, as mentioned in Sect. 7.1, the evaluation is
based on information visualization. In other words, in what percentage the infor-
mation is visible or hidden to people. For example, a neural network learning
method generates a model in black box, which means that the information in the
model is mostly hidden to people and thus poorly transparent. In contrast, a rule
based learning method generates a model in white box, which means the infor-
mation in the model is totally visible to people and thus well transparent.
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In terms of model complexity, the evaluation is subject to the type of learning
algorithms to some extent. In particular, with regard to rule based methods, the
model complexity could be measured by checking the total number of rule terms in
a rule set, which is referred to as rule set complexity. For the rule set given below,
the complexity would be 8.

Rule 1: If x = 0 and y = 0 Then class = 1;
Rule 2: If x = 0 and y = 1 Then class = 0;
Rule 3: If x = 1 and y = 0 Then class = 0;
Rule 2: If x = 1 and y = 1 Then class = 1;

In terms of model redundancy, the evaluation could be based on the extent of
information duplication. In particular, a rule set may be represented in different
forms namely, decision tree, linear list and rule based network. As mentioned in
Sect. 7.3, the first two representations both may include duplicated information. For
decision tree, the replicated subtree problem is a typical example to indicate that
redundancy is a principal problem that arises with the representation. As can be
seen from Fig. 3.2 in Chap. 3, there are four identical subtrees. For a linear list, as
can be seen from the rule set given earlier in this section, all of the four rules have
two common attributes, namely ‘x’ and ‘y’, which are repeated. The authors have
developed two types of network topologies in order to reduce the redundancy as
introduced in Chap. 5. In particular, one is attribute-value-oriented and the other
one is attribute oriented. More details on the improvements have been described in
Chap. 5.

In terms of cognitive capability, the evaluation would be based on empirical
analysis following machine learning approaches. This is in order to analyze to what
extent the model representation is understandable to particular people. In detail, this
could be designed as a classification task to predict the cognitive capability in
qualitative aspects or as a regression task to predict in quantitative aspects. Briefly
speaking, the analysis could be done by collecting the data records on expertise and
preferences from previous people who have high similarities to the current people
and then taking the majority voting (if designed as a classification task) or

Fig. 7.1 Causal relationship between impact factors and interpretability
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averaging (if designed as a regression task) with respect to the cognitive capability.
The above task can be done effectively using k nearest neighbor algorithm.

References

1. Stahl, F., Jordanov, I.: An overview on the use of neural networks for data mining. WIREs Data
Min. Knowl. Disc. 3(2), 193–208 (2012)

2. Furnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13, 3–54 (1999)

80 7 Interpretability Analysis



Chapter 8
Case Studies

This chapter introduces three case studies of big data. In particular, the methods and
techniques introduced in Chaps. 3, 4, 5 and 6 are evaluated through theoretical
analysis and empirical validation using large data sets in terms of accuracy, effi-
ciency and interpretability.

8.1 Overview of Big Data

As stated in [1], “Big Data is a popular term used to describe the exponential
growth and availability of data, both structured and unstructured. And Big Data
may be as important to business—and society—as the Internet has become.” The
above statement is due to the reasons identified in [1] as follows:

• More data may lead to more accurate analysis.
• More accurate analysis may lead to more confident decision making.
• Better decisions can mean greater operational efficiencies, cost reductions and

reduced risk.

IBM defines in [2] that Big Data is characterized by four Vs:

• Volume—terabytes, petabytes, or more
• Velocity—data in motion or streaming data
• Variety—structured and unstructured data of all types—text, sensor data, audio,

video, click streams, log files and more
• Veracity—the degree to which data can be trusted

As introduced in [3], big data and machine learning have been treated as con-
nected activities. In particular, the relationship between big data and machine
learning is very similar to that between life experience and human learning. In this
context, people learn from their past experiences to deal with unfamiliar matters.
Similarly, machines learn from big data to resolve newly challenging issues.

In the context of machine learning, learning algorithms are typically evaluated in
terms of accuracy, efficiency and interpretability. These three dimensions can be
strongly related to veracity, volume and variety respectively.
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Veracity reflects the degree to which data can be trusted as mentioned above. In
practice, the degree of trust is strongly dependent on the information/knowledge
discovered from the data. This is because data usually needs to be transformed to
information/knowledge prior to its actual use. Therefore, evaluation of the degree of
trust for particular data can be done through estimation of the accuracy of the
models built on the data.

Volume reflects the size of data. In machine learning and similar areas, the data
size can be measured by the product of data dimensionality and sample size, i.e. the
higher the data dimensionality/sample size the larger the data. Therefore, evaluation
of the volume for particular data can be done through checking the data dimen-
sionality and its sample size.

Variety reflects the format of data. In machine learning, the data format can be
related to data types and presentation. In particular, data types include nominal,
ordinary, string, Boolean, integer and real etc. More details on data types can be
seen in [4]. In practice, data types are simply divided into two categories: discrete
and continuous, in machine learning tasks. On the other hand, data can be repre-
sented in different forms such as text, graph and tables. This strongly relates to
model representation since model is a form of information/knowledge that is
transformed from data and can be represented in different forms.

Both data types and representation can impact on interpretability due to human
characteristics. In particular, with regard to data types, people in some areas such as
engineering and mathematics mostly deal with quantitative data so they normally
prefer to see data with continuous values that reflect quantitative aspects. With
regard to data representation, these people would prefer to see data in the form of
diagrams or mathematical notations. In contrast, people in other areas such as
humanities and social science mostly deal with qualitative data so they normally
prefer to see data with discrete values that reflect qualitative aspects. With regard to
data representation, these people would prefer to see data in the form of text.

8.2 Impact on Machine Learning

As mentioned in Sect. 8.3, machine learning algorithms are usually evaluated
against accuracy, efficiency and interpretability. The presence of big data has deeply
affected machine learning tasks in the three aspects mentioned above.

In terms of accuracy, overfitting of training data can be significantly reduced in
general as the size of data is greatly increased. There is an evidence reported in [5]
that learning from large training sets can significantly improve the performance in
predictive modelling. The evidence is illustrated in Fig. 8.1, which was provided
with an illustration by Banko and Brill in [6] that the complex problem of learning
on automated word disambiguation would keep improving after the size of training
data is beyond billion in words. The improvement in learning performance is due to
the fact that the increase in data size can usually improve the completeness of the
pattern covered. In other words, small data may be supposed to cover only a small
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part of pattern in a hypothesis space. Therefore, overfitting of training data is likely
to result in the case that a learning algorithm may build a model that performs
greatly on training data but poorly on test data. This case occurs especially while
the training data covers the pattern that is very different from that in test data. When
the size of data is increased, the training data is likely to cover the pattern that is
more similar to that exists in test data.

On the other hand, the increase in data size may also increase the chance to have
noise and coincidental pattern present in the data. This is due to the fact that the
biased improvement in the quantity of data may result in the loss of quality. In
addition, large training data may cover some patterns which occur in very low
frequencies. This could mean that the pattern covered by the training data is purely
coincidental rather than scientifically confident.

The above issues regarding accuracy can be solved through scaling up algo-
rithms or scaling down data. As introduced in Chap. 1, the former way is to reduce
the bias on algorithms side. In particular, the algorithms can be designed to be more
robust to noise and avoid being confused by coincidental patterns. In the context of
rule learning, the reduction of bias can be achieved through direct advancement of
rule generation methods or employment of rule simplification algorithms. The latter
way is to reduce the variance on data side. In particular, data can be pre-processed
through removal of irrelevant attributes by feature selection techniques or merge of
redundant attributes by feature extraction techniques. In addition, data can also be
resampled by selecting only those instances that are more representative.

In terms of efficiency, the increase in the size of data usually increases the
computational costs in both training and testing stages. In the training stage, it may
take much longer to build a predictive model by learning from big data. In the
testing stage, the model is likely to be built to have a high level of complexity,
which significantly slows down the process of predicting on unseen instances. In
particular to rule based systems, big data may result in the generation of large
number of complex rules.

Fig. 8.1 Improvement of
words disambiguation by
learning from big data [6]
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As pointed out in [5], processing of big data needs decomposition, parallelism,
modularity and recurrence. In this case, some machine learning algorithms, which
are inflexible and work in black box manners, would be failed in dealing with big
data. This case would immediately happen to those algorithms that are quadratically
complex (O (n2)), when encountering data with millions of points (instances).

The above issues regarding efficiency can also be solved through scaling up
algorithms or scaling down data. In the former way, the algorithms can be designed
to have a low computational complexity in training stage and thus much less
affected by the increase in the size of training data. In addition, the improvement of
efficiency can also be achieved through the employment of rule simplification
methods as some of such methods can stop the process of rule learning earlier. In
the latter way, the data size can be reduced through dimensionality reduction and
data sampling. This not only reduces the computational costs in the training stage
but also results in the generation of simpler models and thus speeds up the process
of predicting on unseen instances in the testing stage.

In terms of interpretability, the increase in the size of data usually decreases the
interpretability. As introduced in Chap. 7, interpretability can be affected by the size
of training data in terms of model complexity. In the context of rule based systems,
as mentioned above, big data may result in the generation of large number of
complex rules, which would make it difficult for people to read and understand.

The above issues regarding interpretability can also be solved through scaling up
algorithms or scaling down data. In the former way, the algorithms can be designed
to be robust to noise and irrelevant/redundant attributes. In particular, the presence
of noise and irrelevant/redundant attributes cannot make these algorithms learn
irrelevant patterns. In the context of rule learning, rule generation algorithms may
decide to skip some attributes/attribute-value pairs for generation of decision trees
or if-then rules due to irrelevance. In addition, the employment of rule simplifi-
cation methods also helps improve the interpretability since the employment usually
results in the generation of smaller number of simpler rules. In the latter way, the
data size is reduced through dimensionality reduction and data sampling as men-
tioned above. In particular, as already discussed in Chap. 7, the reduction of
dimensionality decreases the maximum length (the maximum number of rule terms)
of each single rule. The data sampling also reduces the maximum number of rules.
In this way, the interpretability can be improved if the dimensionality reduction and
data sampling are effectively done.

The rest of this chapter introduces three case studies using some relatively large
data sets to show the significance of the approaches introduced in Chaps. 3, 4 and 6
in the processing and analysis of big data. In particular, the case studies will address
the three Vs: veracity, volume and variety, through the analysis of accuracy, effi-
ciency and interpretability.
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8.3 Case Study I-Rule Generation

This case study is designed to test the significance of rule generation methods in big
data processing. In particular, 15 data sets, which are retrieved from the medical
repository [7], are used for the experimental study. The characteristics of these data
sets are described in Table 8.1.

It can be seen from Table 8.1 that all the data sets chosen have high dimen-
sionality. In particular, 14 out of 15 data sets have many thousands of attributes,
including 9 data sets with the dimensionality higher than 12,000. In addition, all of
the data sets contain continuous attributes only and involve two-class classification
problems except for MLL_Leukemia data set.

In this experimental study, Prism and IEBRG are used as the rule generation
methods. In general, cross-validation [4] is used to test the above data sets in terms
of accuracy. However, some of the data sets are provided with additional test sets.
In this case, the training data is used to build the rule sets that are then tested using
the additional test data. In particular, the following data sets are provided with
additional test data: ALL-AML, LungCancer-Harvard2, MLL_Leukemia,
prostatetumorVSNormal, BCR-ABL, E2A-PBX1, Hyperdip50, MLL, T-ALL and
TEL-AML1 (Table 8.2).

In addition, the accuracies achieved by the above two algorithms are also
compared with that achieved by the random classifier, which predicts classification
by random guess. The corresponding accuracy depends on the number of classi-
fications and distribution of these classifications. For example, if the objective
function is a two class classification problem and the distribution is 50:50, then the
accuracy performed by random guess would be 50 %. Otherwise, the accuracy must

Table 8.1 Medical data sets

Name Attribute types #Attributes #Instances #Classes

ALL-AML Continuous 7130 72 2

colonTumor Continuous 2001 62 2

DLBCLTumor Continuous 7130 77 2

DLBCL-Stanford Continuous 4027 47 2

LungCancer-Harvard2 Continuous 12,534 32 2

lung-Michigan Continuous 7130 96 2

MLL_Leukemia Continuous 12,583 72 3

prostatetumorVSNormal Continuous 12,601 136 2

BCR-ABL Continuous 12,559 327 2

E2A-PBX1 Continuous 12,559 327 2

Hyperdip50 Continuous 12,559 327 2

MLL Continuous 12,559 327 2

T-ALL Continuous 12,559 327 2

TEL-AML1 Continuous 12,559 327 2

pos_neg_100 Continuous 928 13,375 2
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be higher than 50 % in all other cases. This setup of experimental study is in order
to indicate the lower bound of accuracy to judge if an algorithm really works on a
particular data set.

On the other hand, efficiency in the training stage for the two algorithms men-
tioned above is tested using the criteria that include summative time complexity and
runtime as illustrated in Table 8.3.

Besides, efficiency in test stage and interpretability of a rule set are tested by
checking the number of rules and average number of terms per rule as illustrated in
Table 8.4. With regard to the experimental setup on the efficiency testing, the whole
data set is used to train the rule set and then the same data set is used for testing,
where there is no additional test data supplied. In particular, the following data sets
are actually tested using the supplied training data in terms of efficiency:
ALL-AML, LungCancer-Harvard2, MLL_Leukemia, prostatetumorVSNormal,
BCR-ABL, E2A-PBX1, Hyperdip50, MLL, T-ALL and TEL-AML1. For the rest
of the data sets, the testing is done on the whole data set since there is no additional
test data provided.

The results shown in Table 8.2 indicate that both Prism and IEBRG outperform
the random classifier in terms of classification accuracy, which means that both of
the two methods really work on the chosen data sets. In the comparison between
Prism and IEBRG, the results show that IEBRG outperforms Prism in 8 out of 15
cases. In addition, there are three cases that IEBRG performs the same as Prism. For
the rest of the cases, IEBRG still performs a similar level of accuracy to Prism.

The results shown in Table 8.3 indicate that IEBRG is computationally more
efficient than Prism in the training stage in all of the above cases. In particular, the

Table 8.2 Accuracy (case study I)

Dataset Prism (%) IEBRG (%) Random classifier (%)

ALL-AML 91 91 47

colonTumor 82 73 52

DLBCLTumor 76 79 61

DLBCL-Stanford 80 92 49

LungCancer-Harvard2 80 99 50

lung-Michigan 94 94 80

MLL_Leukemia 66 60 33

prostate_tumorVSNormal 73 74 59

BCR-ABL 96 98 89

E2A-PBX1 100 98 84

Hyperdip50 93 96 68

MLL 95 99 89

T-ALL 100 100 77

TEL-AML1 95 88 63

pos_neg_100 61 73 50
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comparison between the two algorithms is in terms of both complexity analysis and
runtime. The time complexity analysis for the two algorithms is taken based on
illustration as follows:

Table 8.3 Summative time complexity and runtime in milliseconds (Case Study I)

Dataset Prism IEBRG

Complexity Runtime Complexity Runtime

ALL-AML 56,025,578 64,233 30,814,476 2765
colonTumor 49,158,150 43,156 25,302,352 1469
DLBCLTumor 243,886,464 181,326 121,819,458 5203
DLBCL-Stanford 49,369,213 55,024 25,828,555 1750
LungCancerHavard2 72,102,050 97,247 784,113,515 19,829
Lung-Michigan 349,954,962 123,101 190,617,697 5406
MLL_Leukemia 339,788,577 248,095 128,112,977 9672
prostatetumorVSNormal 486,178,307 323,069 245,281,839 12,688
BCR-ABL 1,617,079,658 196,057 852,781,399 14,797
E2A-PBX1 1,515,159,180 128,348 885,092,190 11,970
Hyperdip50 1,606,220,569 297,173 808,234,024 18,064
MLL 1,597,425,152 256,229 252,699,246 6688
T-ALL 1,515,159,180 158,918 873,995,424 12,891
TEL-AML1 807,152,929 43,643 817,671,423 15,532
pos_neg_100 827,367,228 21,936 44,855,292 8422

Table 8.4 Number of rules and average number of terms (case study I)

Dataset Prism IEBRG

Count(rules) Ave(terms) Count(rules) Ave(terms)

ALL-AML 2 1.0 2 1.0

colonTumor 5 1.0 4 1.0

DLBCLTumor 4 1.0 3 1.0

DLBCL-Stanford 4 1.0 3 1.0

LungCancerHavard2 2 1.0 2 1.0

Lung-Michigan 2 1.0 2 1.0

MLL_Leukemia 4 1.0 3 1.0

ProatetmorVSNomal 6 1.0 4 1.0

BCR-ABL 4 1.0 3 1.0

E2A-PBX1 2 1.0 2 1.0

Hyperdip50 6 1.0 4 1.0

MLL 5 1.0 2 1.0

T-ALL 2 1.0 2 1.0

TEL-AML1 4 1.0 3 1.0

pos_neg_100 22 1.0 12 1.0
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Time complexity analysis for IEBRG regarding the generation of each rule term:
Suppose a data set has i instances and a attributes so the size is i × a as well as
v attribute-value pairs and c classifications
Step 1: create a frequency table
Time complexity: i × v + i × a × c
Step 2: calculate conditional entropy for each attribute-value pair
Time complexity: v × c
Step 3: rank the conditional entropy for all attribute values
Time complexity: v + a
Step 4: split the dataset by deleting the instances that don’t comprise the
attribute-value pair
Time complexity: i
Therefore, the time complexity is: O (i × v + i × a × c + v × c + v + a + i), for the
generation of each rule term while the input size (n) is the total number of rule
terms.

Time complexity analysis for Prism regarding the generation of each rule term:
Suppose a data set has i instances and a attributes so the size is m × n as well as
v attribute-value pairs and c classifications
Step 1: create a frequency table
Time complexity: i × v + i × a
Step 2: calculate posterior probability of a target class given an attribute-value pair
as the condition
Time complexity: v
Step 3: rank the posterior probability for all attribute values
Time complexity: v + a
Step 4: split the dataset by deleting the instances that don’t comprise the
attribute-value pair
Time complexity: i
Therefore, the time complexity is: O (i × v + i × a + v + v + a + i), for the generation
of each rule term while the input size (n) is the total number of rule terms.

The results shown in Table 8.5 indicate that both Prism and IEBRG generate
simple rule sets on all of the large data sets. In particular, on each of the data sets,
both algorithms generate a small number of first order rules, which are not just
efficient in predicting unseen instances, but also interpretable to people for
knowledge representation. In addition, IEBRG generates a fewer number of rules
than Prism in 12 out of 15 cases and the same number of rules as Prism in the other
three cases.
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8.4 Case Study II-Rule Simplification

This case study is designed to test the significance of rule simplification methods
with respect to the impact on accuracy, efficiency and interpretability in the context
of big data processing. In particular, 15 data sets, which are retrieved from the UCI
repository [8] and statLib repository [9]. The characteristics of these data sets are
described in Table 8.5.

It can be seen from Table 8.5 that all the data sets chosen are relatively small in
comparison with those ones used in Case Study I. In particular, all of the data sets
except for shuttle contain hundreds or thousands of instances. However, as can be
seen from Table 8.6, Prism is chosen as the rule generation method for testing the
effectiveness of rule simplification. Due to the nature of the Prism algorithm, the
actual sample size of the data being processed in training stage is n times the size of
the original data, where n is the number of classes in the data set. For example, the
actual sample size of the optdigits data processed by Prism is 56,200 (5620 × 10)
since this data set has 10 classes. On the basis of above discussion, the actual
processed sample would be considered as big data.

In this experimental study, Prism is used as the rule generation method as
mentioned above and Jmid-pruning is employed as the rule simplification method.
Therefore, the two methods involved in the testing are referred to as Prism without
pruning and Prism with Jmid-pruning. In general, cross-validation [4] is used to test
the above data sets in terms of accuracy. However, some of the data sets are
provided with additional test sets. In this case, the training data is used to build the
rule sets that are then tested using the additional test data. In particular, the two data
sets, namely yeast and shuttle, are provided with additional test data.

Table 8.5 Data sets

Name Attribute type #Attributes #Instances #Classes References

cmc Discrete, continuous 10 1473 3 [10]

Vote Discrete 16 435 2 [11]

kr-vs-kp Discrete 36 3196 2 [12–14]

Ecoli Continuous 23 336 2 [15]

Anneal.ORIG Discrete, continuous 39 898 6

Audiology Discrete 69 226 24 [16]

Car Discrete 6 1728 4 [17, 18]

Optdigits Continuous 64 5620 10 [19, 20]

Glass Continuous 10 214 7 [21]

Lympth Discrete, continuous 19 148 4 [22–24]

Yeast Discrete 8 1484 2 [25–27]

Shuttle Continuous 9 58,000 7

Asbestos Discrete, continuous 4 83 3 [28]

Irish Discrete, continuous 5 500 2 [29–31]

Breast-cancer Discrete 9 286 2 [22–24]
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In addition, the accuracies achieved by the above two methods are also com-
pared with that achieved by the random classifier in order to indicate the lower
bound of accuracy to judge if an algorithm really works on a particular data set as
already mentioned in Case Study I.

On the other hand, efficiency in the training stage for the two methods as
mentioned above is tested using the runtime in milliseconds as the criteria as
illustrated in Table 8.3.

Besides, efficiency in test stage and interpretability of a rule set are tested by
checking the number of rules and average number of terms per rule as illustrated in
Table 8.4. With regard to the experimental setup on the testing of efficiency and
interpretability, the whole data set is used to train the rule set and then the same data
set is used for testing, while there is no additional test data supplied. In particular,
the two data sets, namely yeast and shuttle, are actually tested using the supplied
training data in terms of efficiency. For the rest of the data sets, the testing is done
on the whole data set since there is no additional test data provided.

The results shown in Table 8.6 indicate that Prism outperforms the random
classifier in terms of classification accuracy no matter if pruning is taken. This
means that the Prism algorithm really works on the chosen data sets in both cases
(with and without pruning). On the other hand, the results show that Jmid-pruning
successfully helps improve the accuracy in 9 out of 15 cases. In addition, in five out
of the other 6 cases, Jmid-pruning either makes no difference or decreases the
accuracy slightly in comparison with Prism without pruning. On the basis of above
discussion, Jmid-pruning is able to help improve accuracy for Prism when pruning

Table 8.6 Accuracy (Case study II)

Dataset Prism without
pruning (%)

Prism with
Jmid-pruning (%)

Random
classifier (%)

cmc 38 40 35

Vote 91 95 52

kr-vs-kp 64 54 50

Ecoli 60 62 27

Anneal.ORIG 80 78 60

Audiology 46 47 13

Car 70 75 33

Optdigits 39 51 10

Glass 54 54 24

Lymph 76 76 47

Yeast 37 36 21

Shuttle 84 85 65

Analcatdata_asbestos 58 60 43

Irish 99 99 50

Breast-cancer 68 69 58
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is required. Even when Prism does not need help from pruning methods at all, the
use of Jmid-pruning only has a slight effect on the classification accuracy.

The results shown in Table 8.7 indicate that the use of Jmid-pruning has only a
slight impact on computational costs and may also even help improve the efficiency
in training in some cases. In general, for the generation of each single rule term, the
computational complexity is normally increased since J-measure and Jmax need to
be calculated in addition to the posterior probability of a target class given a
particular attribute-value pair. In this context, if the Jmid-pruning can stop rule
generation very early, then the number of iterations for generation of single rule
terms is obviously reduced, which results in the reduction of runtime. However, if
the Jmid-pruning stop the rule generation very late, then the number of iterations is
not reduced a lot. In this case, the runtime may be even longer than when no
pruning is taken.

The results shown in Table 8.8 indicate that Jmid-pruning helps reduce the
complexity of the rule set generated by Prism in most cases. In particular, the
complexity of a rule set can be measured by checking the total number of rule terms
generated for the rule set, which is approximately equal to the product of the
number of rules and average number of rule terms per rule. In this context,
Jmid-pruning successfully help reduces the complexity in 11 out of 15 cases. The
reduction of complexity for a rule set not only improves the computational effi-
ciency in predicting unseen instances for predictive modelling, but also makes the
rule set more interpretable to people for knowledge discovery and representation.

On the basis of the above discussion, Jmid-pruning is effective in improving the
quality of a rule set generated by rule learning algorithms in terms of accuracy,
efficiency and interpretability.

Table 8.7 Runtime in milliseconds

Dataset Prism without pruning Prism with Jmid-pruning

cmc 3611 4042

Vote 638 632
kr-vs-kp 4130 5721

Ecoli 794 1174

Anneal.ORIG 9615 13,991

Audiology 36,509 35,056
Car 886 1009

Optdigits 165,525 294,394

Glass 1509 1531

Lymph 62 63

Yeast 3508 1465
Shuttle 270,547 260,799
Analcatdata_asbestos 79 91

Irish 76 65
Breast-cancer 16 31
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8.5 Case Study III-Ensemble Learning

This case study is designed to test the significance of ensemble rule learning
methods in improving the overall accuracy of classification in the context of big
data processing. In particular, 10 data sets, which are retrieved from the UCI
repository, are used for the experimental study. The characteristics of these data sets
are described in Table 8.9.

It can be seen from Table 8.9 that all of the data sets chosen are not large. In
particular, all of them have no more than 1000 instances. However, as introduced in
Chap. 6, ensemble learning approaches are usually computationally more expensive
in comparison with standard learning approaches, due to the nature of this kind of
approaches. In this experimental study, the hybrid ensemble rule based classifica-
tion framework introduced in Sect. 6.3 is adopted for processing the above data
sets. This approach involves resampling of data, which means that the actual sample
size of the data being processed in the training stage is n times the size of the
original data, where n is the number of samples. In this study, the n is set to be 10 as
this is the commonly used setting. In addition, as introduced in Chap. 6, the hybrid
ensemble rule based classification framework also involves a combination of dif-
ferent rule learning algorithms for the generation of a rule set on each sample of
training data. In this context, each sample is approximately processed m times,
where m is the number of rule learning algorithms. In this study, Prism and IEBRG
are employed as the rule learning algorithms for collaborative rule generation on
each sample. On the basis of above discussion, the actual processed sample would
be considered as big data.

Table 8.8 Number of rules and average number of terms (case study II)

Dataset Prism without pruning Prism with Jmid-pruning

Count(rules) Ave(terms) Count(rules) Ave(terms)

cmc 36 4.67 25 4.48
Vote 25 6.28 15 5.13
kr-vs-kp 63 5.84 21 5.52
Ecoli 24 1.88 17 1.94

Anneal.ORIG 16 1.56 12 3.67

Audiology 48 3.60 38 2.79
Car 2 1.0 3 2.0

Optdigits 431 7.46 197 6.53
Glass 26 2.85 24 3.29

Lymph 10 1.3 10 1.11
Yeast 37 1.68 20 1.5
Shuttle 30 3.87 12 1.0
Analcatdataasbestos 5 1.6 5 1.4
Irish 10 1.5 11 1.27
Breast-cancer 11 1.09 11 1.0
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The experiments are conducted by splitting a data set into a training set and a test
set in the ratio of 70:30. For each data set, the experiment is done 10 times and the
average of the accuracies is taken for quantitative analysis. As mentioned earlier,
ensemble learning approaches are usually computationally more expensive.
Therefore, cross validation is not adopted in this study. In addition, the ensemble
learning approaches are also compared with the random classifier in terms of
classification accuracy. This is in order to indicate the lower bound of accuracy to
judge if an approach really works on a particular data set as already mentioned in
Case Study I. The results are presented in Table 8.10.

The results shown in Table 8.10 show that the three employed approaches
outperform the random classifier in terms of classification accuracy in all the cases.
This indicates that all of the approaches properly work on the chosen data set. On
the other hand, the hybrid ensemble rule based classification framework outper-
forms random forests and CCRDR in 8 out of 10 cases. On ‘breast-w’ and ‘labor’
data sets, the newly developed framework performs a bit worse than random forests

Table 8.9 UCI data sets

Name Attribute types #Attributes #Instances #Classes References

Credit-a Discrete, continuous 15 690 2 [31, 32]

Credit-g Discrete, continuous 20 1000 2

Vote Discrete 16 435 2 [11]

Hepatitis Discrete, continuous 20 155 2 [22, 33]

Lung-cancer Discrete 32 57 3 [34]

Lymph Discrete, continuous 19 148 4 [22–24]

Breast-cancer Discrete 9 286 2 [22–24]

Breast-w Continuous 10 699 2 [35, 36]

Labor Discrete, continuous 17 57 2 [37, 38]

Heart-h Discrete, continuous 76 920 4 [39]

Table 8.10 Accuracy (Case Study III) [40]

Data set Random forests
(%)

CCRDR
(%)

Hybrid
(%)

Random classifier
(%)

Credit-a 85 70 87 50

Credit-g 72 71 74 58

Vote 97 93 98 52

Hepatitis 85 84 92 66

Lung-cancer 70 86 93 56

Lymph 86 70 90 47

Breast-cancer 65 78 81 58

Breast-w 97 85 91 55

Labor 88 90 88 54

Heart-h 83 79 85 54
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and CCRDR. This indicates the necessity pointed out in Chap. 6 to take both
scaling up algorithms and scaling down data in order to achieve comprehensive
improvement of overall classification accuracy.

On the basis of the above discussion, the hybrid ensemble rule based classifi-
cation approach is effective in reduction of both bias and variance towards the
improvement of overall accuracy of classification. In particular, the reduction of
bias prevents that noise and coincidental patterns are learned from big data whereas
the reduction of variance decreases the chance that noise and coincidental patterns
are present in the training sample.
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Chapter 9
Conclusion

This chapter summaries the contributions of this book in terms of theoretical sig-
nificance, practical importance, methodological impact and philosophical aspects.
This chapter also identifies and highlights further directions of this research area
towards improvement of the research methodologies presented in this book.

9.1 Theoretical Significance

The focus of the book is to introduce a theoretical unified framework for con-
struction of rule based classification systems. The framework includes three main
operations namely, rule generation, rule simplification and rule representation as
mentioned in Chap. 2. The experimental results shown in Chap. 8 prove that the
incorporation of rule simplification is relevant and can generally make rule gen-
eration more effective and efficient. In addition, the theoretical results on rule
representation has shown that different structure of rule set can lead to different
level of efficiency in prediction stage. This indicates it is important to represent a
rule set in a suitable structure.

This book also introduced an advanced framework of ensemble learning for
construction of ensemble rule based classification systems in Chap. 6. In this
framework, competitive learning is incorporated in the training stage in order to find
better classifiers and ignore worse classifiers for the prediction stage. From theo-
retical point of view, this incorporation can improve the flexibility of the con-
struction framework. This is because different learning algorithms may have
different level of fitness to a particular data set due to its characteristics. In addition,
a new strategy in determining the weight for weighted voting, which is based on
precision for each individual classification, has been introduced in the book to
increase the reliability of a classifier for making a particular classification. This is
because of the fact that the overall accuracy cannot well represent the capability of a
classifier in making predictions on instances of a particular classification, especially

© Springer International Publishing Switzerland 2016
H. Liu et al., Rule Based Systems for Big Data,
Studies in Big Data 13, DOI 10.1007/978-3-319-23696-4_9

97

http://dx.doi.org/10.1007/978-3-319-23696-4_2
http://dx.doi.org/10.1007/978-3-319-23696-4_8
http://dx.doi.org/10.1007/978-3-319-23696-4_6


on extremely unbalanced data sets. The empirical results shown in Chap. 8 indicate
that the two above modifications to the ensemble learning framework can improve
the overall classification accuracy.

The book also brings in a novel application of graph theory [1, 2] in Chap. 5 for
the development of networked rule representation as well as a novel application of
BigO notation [3] in Chap. 5 for the theoretical validation of the representation with
respect to computational efficiency in the prediction stage. Both concepts are widely
used in discrete mathematics [4] and complexity theory [5].

The theoretical framework for constructing rule based classification systems
introduced in Chap. 2 can also be illustrated in the context of system theory in
addition to machine learning. In other words, in the past research, rule based system
is conceptually referred to as a special type of expert system but the construction of
such systems mainly follows traditional engineering approach rather than machine
learning approach. Although there is a special type of classification referred to as
rule based classification in machine learning, it is usually in the context of rules or
rule sets rather than system theory. In the book, the conceptual connection is made
between rule based systems and machine learning as follows. In machine learning
context, the objective of rule based classification is the induction of rule sets.
Therefore, a rule based classifier is usually referred to as a rule set. In system theory
context, the classifier can also be regarded as a rule based classification system. On
the other hand, if the induction of classification rules is done through the ensemble
learning approach, there would be multiple classifiers constructed as an ensemble
learner. In system theory context, this can be seen as construction of an ensemble
rule based classification system which has each single classifier as a subsystem of
the ensemble rule based classification system. Therefore, the basis of above
descriptions brings new concepts to system engineering [6, 7] with respect to
methodological differences in comparison with existing methodologies [8, 9].

9.2 Practical Importance

The theoretical framework introduced in the book is generally domain independent
in real applications because almost all domains usually follow similar approaches in
problem solving in the machine learning context. This is a significant difference to
knowledge based construction, which is generally domain dependent and needs to
have expert knowledge acquired as the main task in the process of constructing a
rule based system [10–13]. The framework can contribute to the development of
expert systems for the purpose of knowledge discovery and predictive modelling
such as medical applications as reported in [14–16].

In the aspect of knowledge discovery, rule based systems can be used by domain
experts to find interesting, useful and previously unknown patterns such as causal
relationships. This can help the experts further identify new research directions as
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well as make necessary validations on their hypothesis by using real data. In
classification, as mentioned in Chap. 2, one purpose of rule representation is to
present the knowledge in different ways in accordance with specific commercial
requirements. From this point of view, the networked representation can effectively
reflect the importance of input attributes and provide a ranking of the attributes
according to their importance. In practice, each input attribute can be seen as an
impact factor to which a decision outcome is subject. And the ranking of attributes
can help domain experts identify which ones are more important, less important or
irrelevant to the decision outcome.

In the aspect of predictive modelling, rule based systems can be used to help
with prediction problems such as recommendations, decision making and stock
price prediction. In classification, it can help make categorical prediction in qual-
itative aspects on a single variable such as weather prediction, degree classification
and faults classification. In this context, each classifier constructed in training stage
actually plays the role in a decision maker to make a decision/prediction. If the
ensemble learning approach is adopted, it means that multiple classifiers con-
structed in training stage play the role in a group of decision makers to achieve
collaborative decision making. In addition, as part of construction framework for
rule based classification systems, rule simplification can help speed up the process
of modelling and rule representation can help make quicker decisions/predictions.

Besides, as mentioned in Chap. 2, ensemble learning could be done in parallel,
which means that each single machine learner is constructed independently and that
only their predictions are combined for final decision making. This indicates that
the ensemble learning could be done by a parallel computer to improve the com-
putational efficiency in both training and testing stages. In addition, each company
or organization may have branches in different cities or countries so the databases
for the companies or organizations are actually distributed over the world. As the
existence of high performance cloud and mobile computing technologies, the
ensemble learning framework can be easily transplanted into distributed or mobile
computing environments such as multi-agent systems [17].

The rule based systems described in the book are based on deterministic logic. In
other words, this kind of systems is usually referred to as deterministic rule based
systems which make decisions under certainty in practice. However, rule based
systems can also be constructed based on probabilistic logic or fuzzy logic in real
applications for decision making under probabilistic or non-probabilistic uncer-
tainty. In this context, the theoretical framework introduced in the book can also be
extended for construction of probabilistic and fuzzy rule based systems when the
two kinds of rule based systems are required in practice. In addition, the book also
focuses on rule based systems for classification such as qualitative diagnostics.
However, this kind of systems can also be used for regression and association in
machine learning context so the theoretical framework can also be extended for
construction of rule based regression/association systems for other practical
purposes.
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9.3 Methodological Impact

This book introduces some novel methods and techniques in rule based classifi-
cation and ensemble learning in Chaps. 3, 4, 5 and 6 namely information entropy
based rule generation (IEBRG), Jmid-pruning, rule based networks, collaborative
and competitive decision rules and hybrid ensemble rule based classification.

IEBRG is developed by making modifications to the Prism algorithm in order to
overcome the limitations of Prism as mentioned in Chap. 3. IEBRG represents a
so-called ‘from causes to effects approach’ for rule generation which has been
proven empirically more effective and efficient than the so-called ‘from effects to
causes approach’ represented by Prism in Chap. 3. For example, in comparison with
the latter approach, the former approach can generate more general and fewer rules
than the latter approach and make the machine learning tasks more effective and
efficient. In most cases, IEBRG outperforms Prism in both classification accuracy
and computational efficiency on large data sets as shown by the experimental results
in Chap. 8, Case study I.

Rule based network is a networked representation of rules or rule sets, which
means a rule based system is represented in a networked structure. In this context, a
special type of rule based systems can be referred to as rule based networks if the
rule based systems are in the form of networks. In addition, in the context of
complexity theory, it is proven theoretically in Chap. 5 that the networked rule
representation is computationally more efficient than decision tree and linear list
representations in term of time complexity for predicting unseen instances. In the
context of knowledge representation, rule based network can also provide a better
interpretability to reflect the relationships between inputs and outputs as well as the
importance of input attributes as justified in Chap. 5.

Collaborative and competitive random decision rules (CCRDR) is an advanced
framework of ensemble learning based on the modifications to Bagging based
methods such as Random Forests as mentioned in Chap. 6. The incorporation of
competitive learning can bring flexibilities into training stage in order to find as
better fitness as possible between chosen learning algorithms and data samples. In
other words, each algorithm may have different levels of fitness to different samples
of data. Also, different algorithms may perform to a different level of accuracy on
the same sample. In this context, competitive learning is useful to find the best
potential candidate on each particular sample. In addition, appropriate employment
on the criteria in weighted voting is relevant to measure more accurately the reli-
ability of a classifier in making a particular decision/prediction. The empirical
results shown in Chap. 8 prove that the appropriate employment mentioned above
usually improves the overall classification accuracy. In addition, the development of
another framework of ensemble learning called hybrid ensemble rule based clas-
sification also helps improve the quality of each single rule generated by learning
from training set.
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In comparison with other popular machine learning methods such as neural
networks, support vector machine and k nearest neighbor, rule learning methods
have significant advantages in terms of model transparency and depth of learning.

In terms of model transparency, neural network is in black box and thus poorly
transparent. This would usually make it difficult for a general audience to understand
the principles of making predictions. In data mining tasks, a general audience would
only know themapping between problems (inputs) and solutions (outputs), but would
not be aware of the reason for the mapping. In data mining tasks, it is more important
to find the reason between problems and solutions for knowledge discovery.

Support vector machine is not in black box, but it is still less transparent to a
general audience. This is because the model built by using this algorithm is function
lines as decision boundaries in geometric form or a piecewise function in algebraic
form. This type of model representation would usually be less interpretable to a
non-technical audience who does not know mathematics well.

K nearest neighbor does not aim to build a model but just to memorize all data
instances in the training stage. Therefore, it is less transparent about what it has
learned due to the absence of transformation from data to information/knowledge.
In other words, the audience would usually be not interested in pure data but the
pattern that is hidden inside the data. In contrast to the three methods above, rule
based methods are in white box as the models built by using this type of methods
are a set of if-then rules. Most audiences would easily understand the logical
relationship between causes (inputs) and effects (outputs). Therefore, such models
are highly interpretable so that it could be clearly known by a general audience in
what way the predictions are made. This advantage would usually make rule based
methods more popular than other machine learning methods for data mining tasks
to extract the knowledge discovered from data.

In terms of depth of learning, a neural network does not involve a sound theory
in learning strategy. In contrast, it practically starts from random construction of the
network with regards to the neurons, connections and weights for inputs and then
makes corrections to the network topology through experience. It indicates that a
neural network does not have a clear learning outcome. A support vector machine
involves a sound theory in learning strategy but the learning by this method is not in
depth. This is because this method does not go through all data instances but just
takes a look at a few instances that are selected as support vectors. The k nearest
neighbor just involves a simple memorized learning in training stage as mentioned
earlier. Therefore, the depth of learning using this method is quite insufficient. On
the basis of above descriptions on support vector machine and k nearest neighbor,
both methods are seen as lazy learning. The types of learning would just aim to
identify ways to solve a specific problem rather than to pay attention to the essence
of the solution in depth.

In contrast to the three above methods, rule learning methods aim to discover the
causal relationship between problems and solutions by going through the whole
data sets and to represent the causal relationship in the form of decision trees or
if-then rules. In this way, the method does not only find the way to solve a problem
but also brings out the essence of the solution in depth.

9.3 Methodological Impact 101



In addition, rule based learning methods are capable of dealing with both dis-
crete and continuous attributes. In contrast, neural networks and support vector
machines are less effective in dealing with discrete attributes. The k nearest
neighbor is capable of dealing with ordinary attributes according to the rank of
values such as ‘very large’, ‘large’, ‘medium’, ‘small’ and ‘very small’. However, it
is still less effective to deal with other types of discrete attributes for this method.
Overall, the above description indicates that rule based learning methods would be
useful and popular in both data mining and machine learning tasks due to their good
transparency and depth of learning.

9.4 Philosophical Aspects

This book mainly focuses on scientific concepts. However, the concepts also have
some philosophical aspects, which are discussed below.

One of the aspects is about the understanding of data mining and machine
learning as well as the difference between them from conceptual point of view.

A criticism that has been put forward and that is still currently used is that a
machine is neither able to learn nor to get beyond people scientifically. The
argument is that a machine is developed by people and the performance and actions
of the machine is totally dependent on the design and implementation by engineers
and programmers. It is true that a machine is controlled by a program in executing
anything. However, what if the program is about a learning method? The answer
would be obviously that the machine executes the program to learn something. On
the other hand, if a machine is thought to be never beyond people, it would be
equivalent to imply in human learning that a student would never get beyond
his/her teacher. It is not really true especially if the student has the strong capability
to learn independently without being taught by teachers. Therefore, this should also
be valid in machine learning if the machine holds a good learning method.

On the other hand, machine learning needs to be given an agreed definition, as
currently there is still no unified definition of machine learning.

Langley defined in [18] that “Machine learning is a science of the artificial. The
field’s main objects of study are artifacts, specifically algorithms that improve their
performance with experience.”

Mitchell defined in [19] that “Machine Learning is the study of computer
algorithms that improve automatically through experience.”

Alpaydin defined in [20] that “Machine learning is programming computers to
optimize a performance criterion using example data or past experience.”

All of the three definitions would not be sufficient. The first one points out the
field and objects of the study. The second one mentions the expected outcome of
the research in the context of computer algorithms. The third one specifies the way
to improve the performance of computer programs. However, none of them makes a
strong relationship to ‘learning theory’. Generally speaking, machine learning
would be inspired by human learning in order to simulate the process of learning in
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computer software. In other words, in the name of machine learning, it would tell
people that machine is capable of learning. Therefore, the definition of machine
learning would be in relation to learning methods, learning outcome and depth of
learning.

In connection to data mining, there are some subtle misconceptions. Firstly,
people think that data mining is an application of machine learning, which is not
really true. Machine learning methods are usually just involved in the key stage for
knowledge discovery in data mining tasks. In other words, it is required to do data
collection and pre-processing prior to knowledge discovery in data mining tasks.
For knowledge discovery, the methods adopted do not have to be machine learning
methods. In principle, it could be done by experts manually walking through data or
other statistical methods without actual learning. However, data mining is defined
as a branch of artificial intelligence. Therefore, machine learning would be obvi-
ously one of the most popular approaches. On the other hand, data mining also
involves some other tasks that are not done by machine learning techniques. For
example, data mining needs to pre-process data such as feature selection/extraction
and sampling by using statistical methods. In the past research, these types of
methods are misclassified as machine learning methods. Strictly speaking, it is not
really true because there is no learning done when these methods are used. For
example, Principle Component Analysis (PCA) is just a statistical method to cal-
culate the eigenvalues for a feature set and to make a judgment on principle
components and their rankings according to their corresponding eigenvalues. These
methods can be defined as tools to support learning methods in machine learning
tasks. In other words, machine learning also needs methods relating to data
pre-processing to improve the performance of learning algorithms. On the basis of
above description, machine learning strongly overlaps with data mining in scientific
research.

In scientific aspects, data mining and machine learning incorporate almost the
same theoretical concepts and most methods, such as decision trees, Naive Bayes
and k nearest neighbor, belong to both areas. Therefore, it seems that there is no
obvious difference between data mining and machine learning from this point of
view. However, the two subjects actually have very different practical purposes.
Data mining is aimed at knowledge discovery, which means it is working in white
box so that the pattern discovered can be visible to people and will be further used
as knowledge or information. In contrast, machine learning is aimed at predictive
modelling, which means it is working in black box and the model actually repre-
sents the knowledge learned from data but is only used further to help make
predictions. From this point of view, people are not interested in the model contents
but only in the model outputs. This is very similar to that students do not pay
attention to principles of knowledge in depth but just want to know how to apply
the knowledge they learned. On the basis of above descriptions, data mining and
machine learning thus have different significance in validation. In detail, data
mining is generally processing large volume of data in order to discover as correct a
pattern as possible. On this point, the efficiency in training stage is critical as it can
reflect if the chosen algorithm is computationally feasible in practice. The efficiency
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in testing stage is not critical as the testing aims to check the reliability of the model
for further use as knowledge or information. However, machine learning may
generally process relatively small data in real applications. Therefore, the efficiency
is not critical in training stage but is in testing stage. This is because training could
be done offline and aims to learn knowledge from data but testing aims not only to
check how accurately a prediction is made by the model but also how quickly the
prediction is made due to the fact that prediction needs to be not only right but also
quick. On the other hand, with regard to accuracy, data mining aims to measure to
what extent the model can be trusted if it is further used as knowledge. In contrast,
machine learning aims to measure how accurately the model can make predictions.

From another point of view, the difference between data mining and machine
learning is also like the difference between human research and learning. As
mentioned above, the purpose of data mining is for knowledge discovery. In other
words, data mining acts as a researcher in order to discover something new which is
previously unknown. Therefore, it is similar to research tasks and thus significant
for researchers to guarantee the correctness of the pattern discovered from data.
Machine learning is like human learning tasks. In other words, machine learning
acts as a learner/student to learn something new which is previously known. To
what extent the learning outcomes are achieved is typically measured by assess-
ments such as examination or coursework. From this point of view, it is more
important to achieve a high level of predictive accuracy on unseen instances in
comparison with the correctness of the model built. This is because predictive
accuracy is like marks awarded from assessments whereas model correctness is like
the correctness of knowledge learned. In fact, it is possible that students do not
understand the principles of knowledge in depth but can correctly answer exam
questions to gain marks. Similarly, a model built by a machine learning algorithm
may have bias and defects but can correctly make predictions. For example, some
strategies in machine learning, such as conflict resolutions and assigning a default
classification mentioned in Chap. 3, are like some examination skills in human
learning. From this point of view, it indicates that not all of machine learning
methods could be well used in data mining tasks. This is just like that not all of the
learning methods could be evolved to a research method. In human learning,
learning methods could be classified according to education level such as funda-
mental education, higher education and training education. Generally speaking,
probably only the learning methods applied in higher education are more likely to
be evolved to research methods. This is because this type of methods could usually
better help learners develop the understanding of principles in depth. For example, a
learning method may help students gain skills for practical applications but not
develop understanding of principles in depth. This would usually result in a case
that student can well apply what they learned in depth but cannot make other people
understand what they learned. It is equivalent to that a model built by using a
machine learning method has a good predictive accuracy but is poorly interpretable.
Therefore, some machine learning methods that do not aim to learn in depth would
not become good data mining methods.
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The second philosophical aspect is on the understanding of ensemble learning in
the context of learning theory. As mentioned in Chap. 2, ensemble learning can be
done in parallel or sequentially. In the former way, there is no collaboration among
different learning algorithms in the training stage and only their predictions are
combined. In academic learning theory, this is like team working, which means
students learn knowledge independently and only work on group works together
using their knowledge. Their ways of making collaborations in the group work are
just like the strategies in making final predictions in ensemble learning. In another
way of ensemble learning, there are collaborations involved in the training stage in
the way that the first algorithm aims to learn models and then the latter one learns to
correct the models etc. In academic learning theory, this is like group learning with
interactions among students in order to improve the learning skills and to gain
knowledge more effectively.

The third philosophical aspect is on the understanding of ensemble rule based
systems in the context of system theory [21]. As mentioned earlier, an ensemble
rule based system consists of a group of single rule based systems in general, each
of which is a subsystem of the ensemble system. In other words, it is a system of
systems like a set of sets in set theory [22]. In addition, an ensemble rule based
system can also be a subsystem of another ensemble system in theory. In other
words, a super ensemble rule based system contains a number of clusters, each of
which represents a subsystem that consists of a group of single rule based systems.

The fourth philosophical aspect is on the understanding of rule based systems in
the context of discrete mathematics such as mathematical logic and relations. With
respect to mathematical logic, rule based systems theory has connections to con-
junction, disjunction and implication. In machine learning, each rule in a rule set
has disjunctive connections to the others. In addition, each rule consists of a number
of rule terms, each of which typically has conjunctive connections to the others. In
rule based systems, each rule is typically in the form of if-then rules. In this context,
it can represent an implication from the left hand side (if part) to the right hand side
(then part) for logical reasoning. With respect to relations, rule based systems can
reflect a functional mapping relationship between input space and output space. In
other words, the if-then rules in the system must not reflect any one-to-many
relationship, which means the same inputs must not be mapped to different outputs,
which is a restriction similar to functions. In rule based systems, this is usually
referred to as consistency.

The fifth philosophical aspect is on the novel application of mathematical theory
and object oriented programming concepts. As introduced in Chap. 2, a rule base is
used to manage rules that have common attributes for both inputs and outputs.
A rule base can be seen as a component of a rule set.

In connection to functions as part of mathematical theory, a rule base can be seen
as an abstract function, denoted as f (x1, x2, …, xn), without a specific expression. In
this context, a rule can be seen as a specific function with a specific expression and
domain constrains for its inputs such as the notation below:
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f x1; x2ð Þ ¼ 1; if x1 ¼ 1 ^ x2 ¼ 1
0; if x1 ¼ 0 _ x2 ¼ 0

�

In the notation above, there are two rules: if x1 = 1 and x2 = 1 then f (x1, x2) = 1;
if x1 = 0 and x2 = 0 then f (x1, x2) = 0. In other words, each of rules in a rule base is
corresponding to a branch of a function that is corresponded from the rule base.

In connection to object oriented programming concepts, a rule set can be seen as
a subclass of abstract rule based systems. This is because a rule based system
consists of a set of rules as mentioned in Chap. 1. In this context, a rule based
system can be defined as a class and a rule set as an object of the system in the
concept of object oriented programming. As it is unknown with respect to what
rules a rule set consists of, the class that is defined to represent a rule based system
would be abstract, which relates to abstraction as a part of object oriented tech-
niques. As mentioned above, a rule base can be seen as an abstract function, which
is actually corresponding to an abstract method in object oriented programming.
A rule set consists of a number of rule bases which would have different input and
output attributes, which is corresponding to another object oriented technique
known as polymorphism. This is because it is achievable that different functions
(methods) have the same name but different input parameters and type of return
values. Therefore, rule bases in a rule set could be seen as abstract (functions)
methods, which have the same name but different input parameters and type of
return values, in a class defined for a type of rule based systems to which the rule set
belongs. In addition, each of the rules in a rule base is corresponding to a branch in
an if-then-else statement.

In practice, when a training set is given, an abstract class is defined for rule based
systems with a number of rule bases. This is because all of possible rule bases could
be derived from attribute information of the dataset. Each of the rule bases is
defined by an abstract function (method). For each abstract function, its input
parameters and type of return values are specified according to the input and output
attributes related to the corresponding rule base. Once a particular rule based
learning algorithm is chosen, a subclass of the abstract class, which is corre-
sponding to a rule set generated using this algorithm, is created. All abstract
functions, each of which represent a rule base, are overridden and overloaded in the
subclass. This indicates that each of rule bases is filled by rules if the rules belong to
the rule base or defined as null if none of the generated rules fits the rule base. In
programming, it is equivalent to implement a function which is originally abstract
by providing a specific program statement or leaving the body of the function blank.
Once a test instance is given, an object of the subclass is specified to call the
functions, each of which is corresponding to a rule base, in order to make
predictions.

The last philosophical aspect is on the relationship of the research methodology
to three main theories namely information theory, system theory and control theory.
From philosophical point of view, the three main theories mentioned above could
be understood by the following context:
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Information theory generally means passing information from one property to
another one. In the process of information passing, it actually happens to have
interactions between the two properties. This could be seen as a relationship to
system theory. In other words, the two properties are supposed to be two compo-
nents of a system. However, it is necessary to ensure that the information passing is
effective and efficient with a high quality. This is because in the process of infor-
mation passing there may be noise that is present and interferes the transmission. In
addition, there may be some information that is confidential to third parties. In this
case, the information usually needs to be encrypted on senders’ side and then
decrypted on receivers’ side. The context described above would belong to control
theory.

In many other subject areas, the three main theories are also highly significant.
A typical example would be in humanities and social science. This world consists
of humans, animals, plants and all other non-biological individuals/systems. From
this point of view, no one is living alone in the world. Therefore, everyone needs to
have interactions with others. This indicates the involvement of system theory to
identify the way to interact among individuals/groups. However, the way to achieve
interactions would typically be through information passing. The way of passing
information could be in many different forms such as oral, written and body lan-
guages and some other actions. This brings in control theory in order to effectively
control the way of information passing. This is because inappropriate ways may
result in serious accidents due to misunderstanding of information or unaccepted
actions on receivers’ side. Therefore, the three main theories would composite an
organized entirety in real applications for most types of problem solving.

In this book, the research methodology is developed along all of the three main
theories. In detail, the research methodology includes a unified framework for
construction of single rule based systems. As introduced in Chap. 2, this framework
consists of three modules namely rule generation, rule simplification and rule
representation. This could be seen as an application of system theory. In rule
generation, a newly developed method referred to as IEBRG is based on entropy
which is a technique of information theory. In rule simplification, a newly devel-
oped pruning algorithm called Jmid-pruning is based on J-measure which is also an
information theoretical technique. On the other hand, both rule simplification and
rule representation are incorporated into the framework in order to control machine
learning tasks in training stage and testing stage respectively. In detail, rule sim-
plification aims to effectively control the generation of rules towards reduction of
overfitting and rule complexity, as well as efficiency in training stage. Rule rep-
resentation aims to effectively control the process of prediction towards improve-
ment of efficiency in testing stage.

This book also has two frameworks of ensemble learning introduced. As
introduced in Chap. 6, ensemble learning generally aims to combine different
models that are generated by a single or multiple algorithm(s) in order to achieve
collaborative predictions. In the two frameworks, there are both collaborations and
competitions involved. Multiple algorithms make up an ensemble learning systems
and multiple generated rule sets compose an ensemble rule based classifier.
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Therefore, the development of the two frameworks involves the application of
system theory. However, competitions among classifiers aim to choose the ones
with higher quality. The way to measure the quality of each classifier is significant
and critical and thus control theory needs to be involved. In addition, in prediction
stage, each individual classifier would provide a prediction with its confidence to
the final prediction maker. It indicates there is information passing between indi-
viduals and thus the application of information theory is also involved in this
environment.

9.5 Further Directions

As mentioned in Chap. 2, two theoretical frameworks are introduced in the book for
construction of rule based classification systems and ensemble learning. The two
frameworks can be combined for construction of ensemble rule based systems. In
this context, the combined framework will further be transformed into another
framework referred to as networked rule bases [23–25]. A networked rule base
consists of a number of single rule bases as illustrated in Fig. 9.1.

In this network, each node represents a rule base. The nodes can be connected
sequentially or in parallel. In detail, each of variables labelled xm−1, while m
represents the number of layer in which the node locates, represents an input and y
represents the output. In addition, each of these labels labelled zm−2 represents an
intermediate variable, which means this kind of variable is used as output for a
former rule base and then again as inputs for a latter rule base as illustrated in
Fig. 9.1. On the other hand, there are two kinds of nodes representing rule bases as
illustrated in Fig. 9.1, one of which is a type of standard rule bases and labelled
RBm−1. This kind of nodes is used to transform the input(s) to output(s). The other
type of nodes, in addition to the standard type, represents identities. It can be seen
from the Fig. 9.1 that this type of nodes does not make changes between inputs and
outputs. This indicates the functionality of an identity is just like an email trans-
mission, which means the inputs are exactly the same as outputs.

In practice, a complex problem could be subdivided into a number of smaller
sub-problems. The sub-problems may need to be solved sequentially in some cases.

Fig. 9.1 Rule based network
(modular rule bases) from
[23–25]
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They can also be solved in parallel in other cases. In connection to machine learning
context, each sub-problem could be solved by using a machine learning approach.
In other words, the solver to each particular sub-problem could be a single machine
learner or an ensemble learner consisting of a single rule base.

On the other hand, a unified rule based network topology is introduced in
Chap. 5. However, this topology can be generalized to fit any type of networks
which are used to do computation such as neural networks, Bayesian networks and
digital circuits. The topology is illustrated in Fig. 9.2.

In this network, the middle layers represent computation layers, which means
that each node in this kind of layers represents a special type of computation such as
conjunction, disjunction, weighted majority voting, weighted averaging and logical
AND, OR and NOT. These operations can also be used in a same network rep-
resenting a hybrid computational network topology. In such a type of network,
there can be either a single computation layer or multiple computation layers as
illustrated in Fig. 9.2. This is very similar to neural network topology which could
be of either single layer perception or multi-layer perception. Similar to the rule
based network topology introduced in Chap. 5 as well as neural networks, each
input is assigned a weight when its corresponding value is used for computation.
An output from a node in a computation layer is used again as an input with a
weight to another node in a latter computation layer if applicable. In practice, this
network topology can potentially fulfil the requirement that multiple types of
computation must be combined to solve a particular problem.

So far, ensemble learning concepts introduced in machine learning literature
mostly lie in single learning tasks. In other words, all algorithms involved in
ensemble learning need to achieve the same learning outcomes in different strate-
gies. This is defined as local learning by the authors of this book. In this context, the

Fig. 9.2 Generic computational network
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further direction would be to extend the ensemble learning framework to achieve
global learning by means of different learning outcomes. The different learning
outcomes are actually not independent of each other but have interconnections. For
example, the first learning outcome is a prerequisite for achieving the second
learning outcome such as deep learning [26]. This direction of extension is towards
evolving machine learning approach in a universal vision. To fulfil this objective,
the networked rule bases can actually provide this kind of environment for dis-
covering and solving problems in a global way. In military process modelling and
simulation, each networked rule base can be seen as a chain of commands (chained
rule bases) with radio transmissions (identities). In a large scale raid, there may be
more than one chain of commands. From this point of view, the networked
topology should have more than one networked rule bases parallel to each other. All
these networked rule bases should finally connect to a single rule base which
represents the Centre of command.

As mentioned in Chap. 1, the main focus of the book is on rule based systems for
classification. However, rule based systems can also be used for regression [27, 28]
and association [29, 30]. Therefore, all of the completed and future work mentioned
in the book can also be extended to regression and association subject areas for
construction of rule based systems. On the other hand, the research methodology
introduced in Chap. 3 is mainly based on deterministic logic. In the future, the
methodology can also be extended to be based on probabilistic and fuzzy logic in
practical applications.

Chapter 7 lists some impact factors for interpretability of rule based systems as
well as some criteria for evaluation of the interpretability. In general, it applies to
any types of expert systems. Therefore, in order to improve the interpretability of
expert systems, it is necessary to address the four aspects namely, scaling up
algorithms, scaling down data, selection of rule representation and assessment of
cognitive capability, in accordance with the criteria for evaluation of the
interpretability.

Scaling up algorithms can improve the transparency in terms of depth of
learning. For example, rule based methods usually generate models with good
transparency because this type of learning is in a great depth and on an inductive
basis. On the other hand, the performance of a learning algorithm would also affect
the model complexity as mentioned in Chap. 7. In this case, the model complexity
could be reduced by scaling up algorithms. In the context of rule based models,
complexity could be reduced through proper selection of rule generation approa-
ches. As mentioned in Chap. 3, the separate and conquer approach is usually likely
to generate less complex rule sets than the divide and conquer approach. In addi-
tion, it is also helpful to employ pruning algorithms to simplify rule sets as intro-
duced in Chap. 5. In this way, some redundant or irrelevant information is removed
and thus the interpretability is improved.

Scaling down data usually results in the reduction of model complexity. This is
because model complexity is usually affected by the size of data. In other words, if a
data set has a large number of attributes with various values and instances, the
generated model is very likely to be complex. As introduced in Chap. 1, the
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dimensionality issue can be resolved by using feature selection techniques, such as
entropy [31] and information gain [32], both of which are based on information
theory pre-measuring uncertainty present in the data. In other words, the aim is to
remove those irrelevant attributes and thus make a model simpler. In addition, the
issue can also be resolved through feature extraction methods, such as Principal
Component Analysis (PCA) [33] and Linear Discriminant Analysis (LDA) [34]. On
the other hand, when a dataset contains a large number of instances, it is usually
required to take advantage of sampling methods to choose the most representative
instances. Some popular methods comprise simple random sampling [35], proba-
bilistic sampling [36] and cluster sampling [37]. Besides, it is also necessary to
remove attribute values due to the presence of irrelevant attribute values. For
example, in a rule based method, an attribute-value pair may be never involved in
any rules as a rule term. In this case, the value of this attribute can be judged
irrelevant and thus removed. In some cases, it is also necessary to merge some
values for an attribute in order to reduce the attribute complexity especially when
the attribute is continuous with a large interval. There are some ways to deal with
continuous attributes such as kerber [38] and use of fuzzy linguistic terms [39].

As introduced in Chap. 5, a change of model representation would usually result
in the change of model interpretability. As also introduced, rule based models could
be represented in different forms such as decision tree and linear list. These two
representations usually have redundancy present. For example, a decision tree may
have the replicated subtree problem and a linear list may have the attribute appear in
different rules on a repetitive basis. This kind of problem could be resolved by
converting to a rule based network representation as argued in Chap. 5.

However, due to the difference in level of expertise and personal preferences
from different people, the same model representation may demonstrate different
level of comprehensibility for different people. For example, people who do not
have a good background in mathematics may not like to read information in
mathematical notations. In addition, people in social sciences may not understand
technical diagrams that are usually used in engineering fields. On the basis of above
description, cognitive capability needs to be assessed to make the knowledge
extracted from rule based systems more interpretable to people in different domains.
This can be resolved by using expert knowledge in cognitive psychology and
human-machine engineering, or by following machine learning approaches to
predict the capability as mentioned in Chap. 7.

The above discussion recommends that the four ways, namely, scaling up
algorithms, scaling down data, selection of model representation and assessment of
cognitive capability, can be adopted towards potential improvement of interpret-
ability of rule based systems in the future.

Finally, a unified framework for control of machine learning tasks is proposed as
illustrated in Fig. 9.3. This is in order to effectively control the pre-processing of
data and to empirically employ learning algorithms and models generated. As
mentioned in Chap. 1, it is also relevant to scale down data in addition to scaling up
algorithms for improvement of classification performance. In fact, a database is
daily updated in real applications, which results in the gradual increase of data size
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and in changes to patterns existing in the database. In order to avoid the decrease of
computational efficiency, the size of sample needs to be determined in an optimal
way. In addition, it is also required to avoid the loss of accuracy. From this point of
view, the sampling is critical not only in the size of sample but also in the repre-
sentativeness of the sample. Feature selection/extraction is another critical task with
regard to pre-processing of data. As mentioned in Chap. 1, high dimensional data
would usually results in high computational costs. In addition, it is also very likely
to contain irrelevant attributes which result in noise and coincidental patterns. In
some cases, it is also necessary to effectively detect noise if the noise is introduced
artificially. For example, noise may be introduced in a dataset due to mistakes in
typing or illegal modifications from hackers. A potential solution would be using
association rules to detect that the value of an attribute is incorrect on the basis of
the other attribute-value pairs in the data instance. Appropriate employment of
learning algorithms and models are highly required because of the fact that there are
many machine learning algorithms existing but no effective ways to determine
which of them are suitable to work on a particular data set. Traditionally, the
decision is made by experts based on their knowledge and experience. However, it
is very difficult to judge the correctness of the decision prior to empirical validation.
In real applications, it is not realistic to frequently change decisions after confirming
that the chosen algorithms are not suitable.

The above description motivates the development of the framework for control
of machine learning tasks. In other words, this framework aims to use machine
learning techniques to control machine learning tasks. In this framework, the
employment of both algorithms and models follows machine learning approach.

Fig. 9.3 Unified framework for control of machine learning tasks
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The suitability of an algorithm and the reliability of a model are measured by
statistical analysis on the basis of historical records. In detail, each algorithm in the
algorithms base, as illustrated in Fig. 9.3, is assigned a weight which is based on its
performance in previous machine learning tasks. The weight of an algorithm is very
similar to the impact factor of a journal which is based on its overall citation rate. In
addition, each model generated is also assigned a weight which is based on its
performance on latest version of validation data in a database. After the two iter-
ations of employment, a knowledge base is finalized and deployed for real appli-
cations as illustrated in Fig. 9.3.

This unified framework actually includes the three main theories involved
namely, information theory, system theory and control theory as introduced in
Sect. 9.4. In this framework, there are four modules namely, data pre-processing,
algorithms employment, training and validation, and four bases namely, database,
algorithm base, model base and knowledge base. The four bases are used to store
and manage information in different forms which is in relation to information
theory. The four modules are established to control machine learning tasks with
respect to decision making in data sampling, use of algorithms and build and
validation of models, which relates to control theory. There are also interactions
between modules such as passing of chosen data, algorithms and models. What is
passing between modules would be a special form of information, which could be
seen as a kind of communication and thus relates to information theory. In addition,
the interactions between modules would be seen as behavior of coordination
between systems, which relates to system theory.

The unified framework illustrated in Fig. 9.3 provides a Macro vision for
research in data mining and machine learning. This would fit the situations in real
applications of machine learning. This is because in reality machine learning tasks
are usually undertaken in complex environments unlike in laboratories. In the latter
environment, research is usually undertaken in a Micro vision and in a
pre-processed environment which ignores or eliminates all other impact factors with
regard to performance of machine learning tasks. In the future, the approaches
introduced in Chaps. 3, 4, 5 and 6 together with other existing approaches will be
integrated into the framework for simulation of the control process.
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Appendix 1
List of Acronyms

Bagging Bootstrap aggregating
Boosting Adaboost
CCRDR Collaborative and competitive decision rules
CART Classification and regression trees
DT Decision trees
KNN K nearest neighbors
IEBRG Information entropy based rule generation
LDA Linear discriminant analysis
LL Linear lists
NN Neural networks
PCA Principal component analysis
RBN Rule based networks
RF Random forests
SVM Support vector machines
TDIDT Top-down induction of decision trees
UCI University of California, Irvine
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Appendix 2
Glossary

Terms in machine Learning Terms in other related areas

Attribute, feature Variable, field, column

Instance Record, data point, tuple, row

Training, learning Modelling, building, construction

Testing, prediction Verification, validation, checking

Classifier, learner Model, expert system, hypothesis

Inconsistency Overlapping

Missing value Unknown value

Dimensionality Number of attributes/variables

Data size Number of instances/data points

Classification Categorical prediction, decision

Regression Numerical prediction

Association Correlation

Clustering Grouping

Noise Incorrect record

Classification/regression/association rules If-then rules, decision rules

Classification/regression trees Decision trees

Efficiency in training stage Modelling speed

Efficiency in testing stage Prediction speed

Computational complexity Time complexity

Rule based classifier Rule set

Rule based learner Rule based model, rule based system

Rule based ensemble learner Ensemble rule based system

Class, label Output

Attribute value Input/output
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Appendix 3
UML Diagrams

See Figs. A.1, A.2, A.3, A.4

Fig. A.1 UML use case diagram for machine learning scenarios
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Fig. A.2 UML class diagram for research framework of rule based systems

Fig. A.3 UML instance diagram for generation, simplification and representation of rules

Fig. A.4 UML sequence diagram for machine learning systems
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Appendix 4
Data Flow Diagram

See Fig. A.5

Fig. A.5 Chained relationship between data mining and machine learning
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