
Amelia Bellamy-Royds & Kurt Cagle

SVG Colors,
Patterns &
Gradients
PAINTING VECTOR GRAPHICS

www.allitebooks.com

http://www.allitebooks.org

XML / WEB DESIGN

SVG Colors, Patterns & Gradients

ISBN: 978-1-491-93374-9

US $29.99 CAN $34.99

“	Paint	like	never	
before!	A	deep	dive	
into	the	expressive	
new	possibilities	of	
SVG	gradients	and	
patterns.”

—Erik Dahlström
Co-Chair, SVG Working Group

Twitter: @oreillymedia
facebook.com/oreilly

As a vector graphics format, SVG uses precisely-
defined geometric shapes to build an image. But SVG
is not only useful for simple technical drawings. SVG
graphics can be shaded, textured, built from partially
transparent overlapping layers, or even filled with
photographic images.

This book takes a deep dive into a specific aspect of SVG:
painting. You won’t use oils or watercolors, but graphical
instructions that a computer can turn into detailed, full-
color images. The creative possibilities are endless, once
you know how to take advantage of all that SVG offers.

 ■ Learn how the SVG rendering model works
with strokes and fills

 ■ Apply standard colors, define custom
colors, or create a named color palette

 ■ Set transparency for objects, strokes, and fills

 ■ Define reusable painting instructions with
SVG paint servers

 ■ Create and use simple and repeating linear
and radial gradients, scaled to fit or with
absolute positions

 ■ Add tiles, textures, and background images
with patterns

 ■ Understand and avoid the quirks and
pitfalls of painting strokes and text

 ■ Animate fills and strokes or the paint server
elements they use

Includes reference sections on color keywords and syntax,
and paint server elements, attributes, and style properties.

Amelia Bellamy-Royds is a
freelance writer specializing
in scientific and technical
communication. Co-author
of the second edition of
SVG Essentials, she is also an
invited expert on the W3C’s
SVG Working Group and SVG
Accessibility Task Force.

Kurt Cagle was a member of the
SVG Working Group, and wrote
one of the first SVG books on
the market. He’s consulted for a
number of Fortune 500 media,
transportation, and publishing
companies, and was an architect
with the US National Archives
and the Affordable Care Act.
Kurt founded Semantical, LLC in
2015 to develop applications for
data visualization, virtualization,
and enrichment.

www.allitebooks.com

http://www.allitebooks.org

Amelia Bellamy-Royds
& Kurt Cagle

SVG Colors, Patterns
& Gradients

Painting Vector Graphics

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93374-9

[LSI]

SVG Colors, Patterns & Gradients
by Amelia Bellamy-Royds and Kurt Cagle

Copyright © 2016 Amelia Bellamy-Royds and Kurt Cagle. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Colleen Lobner
Copyeditor: Jasmine Kwityn
Proofreader: James Fraleigh

Indexer: Amelia Bellamy-Royds
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

October 2015: First Edition

Revision History for the First Edition
2015-10-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491933749 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SVG Colors, Pat‐
terns & Gradients, the cover image of a Tibetan blood pheasant, and related trade
dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491933749
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Things You Should Already Know. 1
SVG Is Drawing with Code 1
SVG Is Always Open Source 2
SVG Is XML (and Sometimes HTML) 2
SVG Is Squishable 2
Pictures Are a Collection of Shapes 3
Images Can Have Images Inside Them 3
Text Is Art 3
Art Is Math 4
An SVG Is a Limited View of an Infinite Canvas 4
SVG Has Structure 4
SVG Has Style 4
Behind All Good Markup Is a Great DOM 5
SVG Can Move 5
SVG Can Change 6

2. The Painter’s Model. 7
Fill ’Er Up with the fill Property 8
Stroke It with the stroke Property 12
Stroking the Fill and Filling the Stroke 17
Take a Hint with Rendering Properties 26

3. Creating Colors. 31
Misty Rose by Any Other Name 31
A Rainbow in Three Colors 36

iii

www.allitebooks.com

http://www.allitebooks.org

Custom Colors 40
Mixing and Matching 48

4. Becoming Transparent. 53
See-Through Styles 53
The Net Effect 58

5. Serving Paint. 63
Paint and Wallpaper 64
Identifying Your Assets 65
The Solid Gradient 68

6. Simple Gradients. 75
Gradiated Gradients 75
Transparency Gradients 78
Controlling the Color Transition 79

7. Gradients in All Shapes and Sizes. 85
The Gradient Vector 85
The Object Bounding Box 90
Drawing Outside the Box 94
Gradients, Transformed 100

8. And Repeat. 111
How to Spread Your Gradient 111
Reflections on Infinite Gradients 113
Repeating Without Reflecting 114
Using (and Reusing) Gradients in HTML 118

9. Radial Gradients. 133
Radial Gradient Basics 134
Filling the Box 135
Scaling the Circle 140
Adjusting the Focus 144
Transforming Radial Gradients 147
Grand Gradients 149

10. Tiles and Textures. 163
Building a Building Block 164
Stretching to Fit 171
Laying Tiles 175

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Transformed Tiles 181

11. Picture-Perfect Patterns. 189
The Layered Look 189
Preserved Patterns 193
Background Images, SVG-Style 197

12. Textured Text. 207
Bounding Text 208
Switching Styles Midstream 214

13. Painting Lines. 221
Beyond the Edges 221
The Empty Box 224
Using the Coordinate Space 231
Patterned Lines 235

14. Motion Pictures. 239
Animation Options 240
Coordinated Animation 247
Animated Interactions 251

A. Color Keywords and Syntax. 269

B. Elements, Attributes, and Style Properties. 277

Index. 285

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

This book takes a deep dive into a specific aspect of SVG: painting.
Painting not with oils or watercolors, but with graphical instructions
that a computer can transform into colored pixels. The book
explores the creative possibilities, and also the potential pitfalls. It
describes the basics, but also suggests how you can mix and match
the tools at your disposal to generate complex effects.

This book was born from another project, an introduction to using
SVG on the Web. In order to keep that book a manageable length—
and keep it suitable for introductory audiences—many details and
complexities had to be skimmed over. But those details and
complexities add up to the full, wonderful potential of SVG as a
graphics format. Once you understand the basics of SVG, you can
start thinking about creating more intricate drawings and more
nuanced effects.

What We’ll Cover
If you’re reading this, hopefully you’re already familiar with the
basics of SVG—how to define a graphic as a set of shapes, and how
to use that graphic either as a standalone image file or as markup in
an HTML page. If you’re not sure if you’re ready, Chapter 1 reviews
the basic concepts we’ll expect you to know.

The rest of the book focuses on the Colors, Patterns & Gradients
described in the title:

• Chapter 2 discusses the rendering model used to convert SVG
code into visual graphics, and introduces the basic properties

vii

www.allitebooks.com

http://www.allitebooks.org

you can set on your shapes and text to control how they are
painted to the screen.

• Chapter 3 focuses on color: how it works in nature, how it
works on the computer, and how it can be specified within your
SVG code.

• Chapter 4 discusses transparency, or more specifically, opacity;
it introduces the many ways you can control the opacity of your
graphics, and how these affect the end result.

• Chapter 5 introduces the concept of a paint server: complex
graphics content that defines how other SVG shapes and text
should be painted to the screen. It also introduces the solid
color paint server, which is actually more useful than it may
seem at first.

• Chapter 6 looks at gradients, with a particular focus on the dif‐
ferent color transition effects you can achieve by adjusting color
stop positions and properties.

• Chapter 7 explores the ways in which you can manipulate a lin‐
ear gradient to move it within the shape being painted.

• Chapter 8 covers repeating linear gradients and some of the
effects you can create with them. It also includes some practical
examples and tips on using gradients (and other paint servers)
for inline SVG icons in an HTML page.

• Chapter 9 looks at radial gradients, including repeated radial
gradients, and concludes with some examples of creating com‐
plex effects with multiple gradients.

• Chapter 10 introduces the <pattern> element, which creates
repeating tiles and textures.

• Chapter 11 shows how a pattern can be used to define a single
image or graphic that can be used to fill shapes or text.

• Chapter 12 examines in more detail how paint servers are
applied to text.

• Chapter 13 looks at some of the issues that come into play when
using paint servers to paint strokes instead of fill regions.

• Chapter 14 gives some examples of animated paint servers and
discusses the benefits and limitations of the different animation
methods available in SVG.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

At the end of the book, two appendixes provide a quick reference for
the basic syntax you’ll need in order to put this all to use:

• Appendix A recaps the many ways you can define colors,
including all the predefined color keywords.

• Appendix B summarizes all the paint server elements, their
attributes, and the related style properties.

About This Book
Whether you’re casually flipping through the book, or reading it
meticulously from cover to cover, you can get more from it by
understanding the following little extras used to provide additional
information.

About the Examples
SVG images are displayed and manipulated with many different
types of software, and each program interprets the SVG code slightly
differently. This is particularly an issue when graphics files are dis‐
tributed on the Web; you hope that the person on the other end sees
something fairly close to what you thought you created!

The examples in this book have therefore been tested on the latest
stable, desktop versions (as of July 2015) of Chrome, Firefox, Inter‐
net Explorer, and Safari browsers. Quirks, bugs, and lack of support
are noted in the text; in addition, expected changes in support for
the Microsoft Edge browser are mentioned.

Nearly every other browser uses a variation of one of the main open
source rendering libraries: Gecko (Firefox), WebKit (Safari and iOS
devices), or Chromium/Blink (a fork of WebKit, primarily devel‐
oped for Chrome). You can therefore use the major browsers’ sup‐
port levels as a guideline, but be aware that not all software updates
at the same time. For mobile browsers, there are also often practical
performance limitations even if features are technically supported.
Certain mobile browsers (e.g., Opera Mini) intentionally limit which
web features they support in order to improve performance.

SVG is also used in graphics programs such as Adobe Illustrator and
Inkscape. There are a number of tools, such as Apache Batik or
libRSVG, that convert SVG code into other vector graphics formats,

Preface | ix

such as for PDF documents. These all introduce whole new areas of
compatibility issues, which have not been detailed in this book. Test
carefully in any tool you need to use!

Using Code Examples
Supplemental material (code examples and figures) is available
online at the following URLs.

Download from:

https://github.com/oreillymedia/SVG_Colors_Patterns_Gradients

View live at:

http://oreillymedia.github.io/SVG_Colors_Patterns_Gradients/

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“SVG Colors, Patterns & Gradients by Amelia Bellamy-Royds and
Kurt Cagle (O’Reilly). Copyright 2016 Amelia Bellamy-Royds and
Kurt Cagle, 978-1-4919-3374-9.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at permis‐
sions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

x | Preface

https://github.com/oreillymedia/SVG_Colors_Patterns_Gradients
http://oreillymedia.github.io/SVG_Colors_Patterns_Gradients/
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

Tips like this will be used to highlight particu‐
larly tricky aspects of SVG, or simple shortcuts
that might not be obvious at first glance.

Notes like this will be used for more general
asides and interesting background information.

Warnings like this will highlight combatibility
problems between different web browsers (or
other software), or between SVG as an XML file
versus SVG in HTML pages.

In addition, sidebars like the following will introduce supplemental
information:

A Brief Aside
There are two types of sidebars used in this book. “Future Focus” asides will
look at proposed features that aren’t yet standardized, or new standards that
aren’t widely implemented. “CSS Versus SVG” asides compare an SVG graphical
effect with the CSS styles (if any) that could create a similar appearance.

Preface | xi

Although the sidebars are not absolutely essential for understanding
SVG colors, patterns, and gradients, they will hopefully add impor‐
tant context when planning a complete web project.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both
book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech‐
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xii | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/svg-colors-patterns-and-gradients.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book would never have come into being without the patience
and persistence of a series of editors at O’Reilly: Simon St. Laurent,
Meghan Blanchette, and (last but not least!) Meg Foley. Much appre‐
ciation goes to the technical reviewers, who did their best to mini‐
mize the number of errors and incomprehensible statements that
made it through to the final copy: David Eisenberg, Dudley Storey,
Robert Longson, and Sarah Drasner.

Appreciation is also due to the O’Reilly team who do their best to
make the final book elegant and professional. In particular, thanks
to Sanders Kleinfeld for adapting the Pygmentize syntax highlighters
to play nicely with SVG code, and to production editor Colleen Lob‐
ner for managing many custom requests.

Thanks also to the wider community of SVG developers, both those
of you creating with SVG and those of you building the underlying
software. Many of the tips, tricks, and warnings highlighted in this
book were collected from discoveries made by others and shared
through blog posts, live demos, Q&A forums, and mailing lists.

Preface | xiii

http://bit.ly/svg-colors-patterns-and-gradients
http://bit.ly/svg-colors-patterns-and-gradients
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Things You Should Already Know

This book is written with the assumption that you already know
something about SVG, web design in general, and maybe even a lit‐
tle JavaScript programming.

However, there are always little quirks of a language that some peo‐
ple think are straightforward while other, equally talented, develop‐
ers have never heard of. So this chapter gives a quick review of
topics that you might want to brush up on—if you don’t already
know them.

SVG Is Drawing with Code
An SVG is an image file. It is perfectly possible to only use it as an
image file, the same way you would use other image formats, such as
PNG or JPEG. You can create and edit an SVG in a visual editor. You
can embed it in web pages as an image.

But SVG is more than an image. It is a structured document con‐
taining markup elements, text, and style instructions. While other
image formats tell the computer which color to draw at which point
on the screen, SVG tells the computer how to rebuild the graphic
from its component parts. That has two main consequences:

• The final appearance of an SVG depends on how well the soft‐
ware displaying it follows the SVG instructions. Cross-browser
compatibility is often a concern.

1

• It is easy to edit parts of an SVG—to add, remove, or modify
particular pieces—without changing the rest. You can do this in
your editor, but you can also do it dynamically in your web
browser to create animated or interactive graphics.

SVG Is Always Open Source
Not only is an SVG a set of coded instructions for a computer, it is
also a human-readable text file. You can edit your SVG in a text edi‐
tor. Even better, you can edit SVG in a code editor with syntax high‐
lighting and autocomplete!

The examples in this book all focus on the basic SVG code. You can,
of course, use a visual editor to draw shapes, select colors, and
otherwise fuss with the appearance of your graphic. But for full con‐
trol, you will need to take a look at the actual code that the editor
creates.

SVG Is XML (and Sometimes HTML)
The SVG code you view in your text editor looks an awful lot like
HTML code—full of angle brackets and attributes—but a standalone
SVG file is parsed as an XML document. This means that your SVG
can be parsed and manipulated by tools meant for XML in general.
It also means that your web browser won’t display anything if you
forget to include the XML namespaces or mix up an important
detail of XML syntax.

Nonetheless, when you insert SVG code directly in HTML 5
markup, it is processed by the HTML parser. The HTML parser for‐
gives errors (like missing closing tags or unquoted attributes) that
would halt the XML parser (or most SVG-only graphics editors).
But it also ignores any custom namespaces, downcases any unrecog‐
nized attribute or tag names, and otherwise changes things up in
ways you might not expect.

SVG Is Squishable
The syntax for SVG was—for the most part—designed to make it
easy to read and understand, not to make it compact. This can make
certain SVG files seem rather verbose and redundant. However,
it also makes SVG very suitable for gzip compression, which should

2 | Chapter 1: Things You Should Already Know

always be used when serving SVG on the Web. It will usually reduce
file sizes by more than half, sometimes much more. If storing a
gzipped SVG on a regular file server, it is typical to use the .svgz
extension.

SVG is also bloatable, which makes it squishable in another way.
Most SVG editors add their own elements and attributes to an SVG
file by giving them unique XML namespaces. A class of optimiza‐
tion tools has developed that will strip out code that does not affect
the final result. Just be careful about the settings you use—optimiz‐
ers can remove attributes you might want later if you’re manipulat‐
ing the code yourself!

Pictures Are a Collection of Shapes
So what does all that code represent? Shapes, of course! (And text
and embedded images, but we’ll get to those in a moment…) SVG
has only a few different shape elements: <rect>, <circle>,
<ellipse>, <line>, <polyline>, <polygon>, and <path>. Nonethe‐
less, those last three can be extensively customized to represent any
shape you can imagine, to a certain degree of precision. The <path>,
in particular, contains its own coded language for describing the
curves and lines that create that shape.

Images Can Have Images Inside Them
Each SVG is an image, but it is also a document, and that document
can contain other images, using the <image> element. The embed‐
ded images could be other SVG files, or they could be raster images
such as PNG or JPEG. However, for security and performance rea‐
sons, some uses of SVG prevent those external images (and other
external resources such as stylesheets or fonts) from being downloa‐
ded. In particular, external files will not be used when an SVG is dis‐
played as an embedded image (element) or background image
in an HTML page.

Text Is Art
The final building block used in SVG is text. But text isn’t an alterna‐
tive to graphics—the letters that make up that text are treated like
another type of vector shape. Importantly for this book, text can be
painted using the exact same style properties as vector shapes.

Pictures Are a Collection of Shapes | 3

Art Is Math
The core of all vector graphics (shapes or text) is that the end result
can be defined using mathematical parameters (the XML attributes)
to the browser’s SVG rendering functions for each element. The
most pervasive mathematical concept in SVG is the coordinate sys‐
tem, used to define the position of every point in the graphic. You
can control the initial coordinate system by setting a viewBox
attribute, and you can use coordinate system transformations to
shift, stretch, rotate, and skew the grid for certain elements.

An SVG Is a Limited View of an Infinite Canvas
There are no limits on the coordinates you can give for your vector
shapes, except for the practical limits of computer number preci‐
sion. The only shapes displayed, however, are those that fit within
the particular range of coordinates established by the viewBox
attribute. This range of coordinates is scaled to fit the available area
(the “viewport”), with accommodations for mismatched aspect
ratios controlled by the preserveAspectRatio value.

You can create nested viewports with nested <svg> elements or
reused <symbol> elements; in addition to providing regions of
aspect ratio control, these redefine how percentage lengths are inter‐
preted for child content. Other elements use viewBox to create a
scale-to-fit effect (as we’ll see when we get to the <pattern> element
in Chapter 11), although without re-defining percentages.

SVG Has Structure
The structure of an SVG includes the basic shapes, text, and images
that are drawn to the screen, and the attributes that define their
geometry. But SVG can have more structure than that, with ele‐
ments grouped into logical clusters. Those groups can be styled and
their coordinate systems transformed. But they can also be given
accessible names and descriptions to help explain exactly what the
graphics represent.

SVG Has Style
SVG graphics can consist solely of XML, with all style information
indicated by presentation attributes. However, these presentation

4 | Chapter 1: Things You Should Already Know

www.allitebooks.com

http://www.allitebooks.org

styles can also be specified with CSS rules, allowing styles to be
assigned by class or element type. Using CSS also allows conditional
styles to depend on media features or transient states such as :hover
or :focus.

The strict separation between geometric structure (XML attributes)
and presentation style (presentation attributes or CSS style rules)
has always been a little arbitrary. As SVG moves forward, expect the
divide to collapse even more. The SVG 2 draft specifications
upgrade many layout attributes to become presentation attributes.
This opens these properties to all the syntactic flexibility CSS offers:
classes of similar elements can be given matching sizes with a single
style rule, and those sizes or layout can be modified with CSS pseu‐
doclasses or media queries.

Behind All Good Markup Is a Great DOM
The SVG markup and styles are translated into a document object
model (DOM) within a web browser. This DOM can then be
manipulated using JavaScript. All the core DOM methods defined
for all XML content apply, so you can create and re-order elements,
get and set attributes, and query the computed style values.

The SVG specifications define many unique properties and methods
for SVG DOM elements. These make it easier to manipulate the
geometry of a graphic mathematically. Support for SVG DOM in
web browsers is not as good as one might hope, but certain methods
—such as determining the length of a curved path—are indispensa‐
ble for SVG designs.

SVG Can Move
In a dynamic SVG viewer (e.g., a web browser) with scripting sup‐
port, you can use those scripts to create animated and interactive
graphics. However, SVG also supports declarative means of interac‐
tion, whereby you define the scope of an entire interaction and the
browser applies it with its own optimizations. There are two means
of doing this:

• Using animation elements in the markup, with a syntax bor‐
rowed from the Synchronized Multimedia Integration Language
(SMIL)

Behind All Good Markup Is a Great DOM | 5

• Using CSS animations and transitions of presentation styles

At the time of writing, scripted animation is supported in all web
browsers, but may be blocked for certain uses of SVG. Declarative
animation (SMIL and CSS) is supported in most browsers, but not
all (Internet Explorer being the most notable exception). In addi‐
tion, browsers are starting to implement the new Web Animations
API, which allows a script to define and trigger an animation that
will then be run independently, similar to a declarative animation.

SVG Can Change
Not only can individual SVG graphics change as you interact with
them, but the definition of SVG can change too. The established
standard (at the time this book was written) is SVG 1.1, but work is
ongoing to develop a level 2 SVG specification with new features
and clearer definitions of some existing features. Furthermore,
because SVG uses CSS and JavaScript, and because it is heavily inte‐
grated in HTML, it inherits changes to those languages as well.

6 | Chapter 1: Things You Should Already Know

CHAPTER 2

The Painter’s Model

If I asked you to draw a yellow circle with a blue outline, would
it look the same as if I asked you to draw a blue circle and fill it in
with yellow?

If I asked you to draw a red pentagon and a green square centered
on the same spot on a page, would most of the image be red or
green?

There are no hard-and-fast rules when you’re drawing things by
hand. If someone gives you ambiguous instructions, you can always
ask for clarification. But when you’re giving instructions to a com‐
puter, it only has one way to follow them. So you need to make sure
you’re saying exactly what you mean.

Even if you use SVG a lot (and we’re going to assume you use it at
least a little), you probably haven’t given much thought to how the
computer converts your SVG code into colored patterns on the
screen. If you’re going to really make the most of those colored pat‐
terns, however, you need to know how your instructions will
be interpreted.

This chapter discusses the basics of the SVG rendering model, the
process by which the computer generates a drawing from SVG
markup and styles. It reviews the basic fill and stroke properties
that define how you want shapes or text to be painted. The entire
rest of the book can really be summed up as different ways you can
specify fill or stroke values.

7

The SVG rendering model is known as a painter’s model. Like layers
of paint on a wall, content on top obscures content below. The SVG
specifications define which content gets put on top of which other
content. This chapter also discusses z-index and paint-order, two
properties that allow you to change up the rendering rules. These
properties are newly introduced in SVG 2, and are only just starting
to be supported in web browsers. We therefore also show how you
can achieve the same effect with SVG 1.1 code.

Fill ’Er Up with the fill Property
The basic elements and attributes in your SVG code define precise
geometric shapes. For example, a one-inch square, positioned with
its upper-left corner at the coordinate system origin, looks like this:

<rect width="1in" height="1in" />

A circle 10 centimeters in diameter, centered on the middle of the
coordinate system, is created with the following code:

<circle cx="50%" cy="50%" r="5cm" />

This book isn’t going to spend much time on the
geometry of the shapes you are painting. But as
a reminder, Scalable Vector Graphics are often,
well, scaled. Inches and centimeters will not nec‐
essarily match the distances on your real-world
ruler. They can be affected by the resolution of
your monitor, zoom level of your browser, and
of course any viewBox or transform attributes
on your SVG elements.
The scale affects all units equally, however; there
will always be the same number of centimeters
per inch (2.54) as on your ruler. In all except the
oldest web browsers, 1in will also always be
equal to 96px (CSS pixel units). It will also be
equal to 96 of SVG’s unitless user coordinate val‐
ues, which are always interchangeable with px.
Other SVG software is also switching over to
this standard, established by the CSS Values and
Units Module Level 3.

If you include either the circle or the rectangle markup (or any other
shape or text) in an SVG without any style information, it will be

8 | Chapter 2: The Painter’s Model

displayed as a solid black region exactly matching the dimensions
you specify. This is the default fill value: solid black.

The fill property tells the SVG-rendering software what to do with
that geometric shape. For every pixel on the screen—or ink spot on
the paper—the software determines if that point is inside or outside
of the shape. If it is inside, the software turns to the fill value to
find out what to do next.

In the simple case (like the default black), the fill value is a color and
all the points inside the shape get replaced by that color. In other
cases, the fill value is an instruction to look up more complicated
painting code. Where to look it up is indicated by a URL referencing
the id of an SVG element representing the instructions (a paint
server, which we’ll talk more about starting in Chapter 5).

If you don’t want the software to fill in the shape,
the fill property also takes a value of none.

A final option for fill (and also stroke) is to use the keyword
currentColor. This keyword always evaluates to the current value
of the CSS color property on any given element. The color prop‐
erty itself has no direct effect in SVG, but in combination with
currentColor, it has two main uses:

• To coordinate inline SVG icons with surrounding HTML text.
The color property’s primary use is for setting the color of CSS-
styled text. An inline SVG graphic that uses currentColor will
therefore inherit the text color from the surrounding HTML
markup.

• To provide an indirect inherited style value for reused content.
SVG graphics duplicated with a <use> element inherit styles,
including fill and stroke, from the context in which they are
used. By setting accent details on the reused graphics to use
currentColor, this can be manipulated separately from the
main fill and stroke when the graphic is reused by changing the
color value on the <use> element.

Fill ’Er Up with the fill Property | 9

By default, the fill is painted solid and opaque (unless there are dif‐
ferent instructions in the paint server). The fill-opacity property
can adjust this. It takes a decimal number as a value: values between
0 and 1 cause the shape’s paint to be blended with the colors of the
background. A value of 1 (the default) is opaque, while a value of 0
has much the same effect as fill: none. We’ll discuss opacity in
detail in Chapter 4.

When it is not clear which sections of the shape are inside versus
outside, the fill-rule property gives the computer exact instruc‐
tion. It affects <path> elements with donut holes inside them, as well
as paths, polygons, and polylines with crisscrossing edges.

The fill-rule property has two options:

• evenodd switches between inside and outside every time you
cross an edge.

• nonzero (the default) gets “more inside” when you cross an edge
that is drawn in the same direction as the last one, and only gets
back to outside again when you have canceled them all out by
crossing edges in the opposite direction.

Example 2-1 draws a crisscrossed <polygon>, first with the default
nonzero fill rule and then with an evenodd fill rule; Figure 2-1 shows
the result. The shapes have a thin stroke around the edges so you
can see them even when the shape is filled on both sides of the edge.

Figure 2-1. A polygon with nonzero fill rule (left) and with evenodd fill
rule (right)

10 | Chapter 2: The Painter’s Model

Example 2-1. Modifying the fill region with the fill-rule property

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 200" width="4in" height="2in">
 <title xml:lang="en">Fill-rule comparison</title>
 <rect fill="lightSkyBlue" height="100%" width="100%" />

 <polygon id="p"
 fill="blueViolet" stroke="navy"
 points="20,180 20,20 180,20 180,180 60,60 140,60" />
 <use xlink:href="#p" x="50%" fill-rule="evenodd" />
</svg>

The opening <svg> element establishes the coordinate system
and sets the default size of the printed figure. A <rect> element
adds a solid-color backdrop. For this simple SVG code, styles
are set with presentation attributes.

The basic polygon has fill and stroke styles, but the fill-
rule property will inherit the default nonzero value.

A duplicated copy of the same polygon is offset horizontally by
half the width of the SVG. The copied polygon will inherit the
fill-rule="evenodd" value set on the <use> element.

No matter how many times the edges or subpaths cross over each
other, each point is either inside or outside the shape. Areas are not
painted twice just because they are inside two different subpaths.
That may not seem like a relevant distinction when the fill is a solid
color, but it becomes important when the fill is partially transparent.

Future Focus
Filling in the Future

The discussion of the fill property in this section has focused on the way it is
currently defined in the stable SVG 1.1 specifications. The in-progress SVG 2
specifications will offer more flexibility to the way shapes are filled, most nota-
bly by allowing a single shape to have multiple fill layers. These proposed fea-
tures will be discussed in more detail elsewhere in the book, in “Future Focus”
sidebars such as this.

Fill ’Er Up with the fill Property | 11

Every shape in SVG, as well as text, can be filled—and will be filled
by default. This includes open-ended <path> elements and
<polyline> elements, which define a shape where the end of the
line does not connect with the beginning. The fill region of these
shapes is created by connecting the final point back to the beginning
in a straight line. If it ends up crossing other edges as it does so, the
fill-rule calculations apply.

Open segments within a <path> are closed by
connecting them back to the initial point on that
subpath: the last point created by a move-to
command.

Even a straight <line> element is technically filled in by default:
however, because the return line that connects the end point to the
beginning exactly overlaps the original line, the resulting shape does
not enclose any area. No points are inside the shape, and so no
points are affected by the fill value. You need to stroke the line if you
want to see it.

Stroke It with the stroke Property
In computer graphics, stroking a shape means drawing a line along
its edge. Different programs have different interpretations of what
that can mean.

In SVG (currently, anyway), stroking is implemented by generating
a secondary shape extending outward and inward from the edges of
the main shape. That stroke region is then painted using the same
approach as for filling the main shape: the software scans across,
and determines whether a point is inside or outside the stroke. If the
point is inside, the software uses the painting instructions from the
stroke property to assign a color.

Each section of the stroke shape is only painted
once, regardless of whether the strokes from dif‐
ferent edges of the shape overlap or cross each
other.

12 | Chapter 2: The Painter’s Model

The default for stroke is none, meaning don’t paint a stroke region
at all. Just like for fill, the other options are a color value or a refer‐
ence to a paint server element.

Just as fill-opacity can modify fill, there is a stroke-opacity
property to modify the stroke paint. Both fill-opacity and
stroke-opacity will be discussed in more detail in Chapter 4.

There are many other stroke-related properties. We’re not going to
talk about them much in this book, but they control the geometry of
the stroke region. As a quick reference, they are as follows:

stroke-width

The thickness of the stroke, as a length, number of user units, or
percentage of the weighted width and height of the coordinate
system. In SVG 1.1, the stroke region is always centered on the
edge of the shape, so half the stroke width extends outside it.

stroke-linecap

The approach to use for stroking around open ends of a path or
line; the default butt trims the stroke tight and perpendicular to
the endpoint. The other options, round and square, extend the
stroke by half the stroke width, in the specified shape.

stroke-linejoin

The approach to use for stroking around corners in the shape;
the default miter extends the strokes in straight lines until they
meet in a point. The other options are round (use a circular arc
to connect the two strokes) and bevel (connect the two strokes
with an additional straight line).

stroke-miterlimit

The maximum distance to extend a mitered line join beyond the
official edge of the shape, as a multiple of the stroke width
(default 4 times the width). If the stroke edges don’t meet in a
point within that distance, a beveled line join is used instead.

stroke-dasharray

A pattern of distances (dashes and gaps) for stroking and not
stroking the shape. The default, none, creates a continuous
stroke over the entire shape. The ends of each dash are affected
by the stroke-linecap setting.

Stroke It with the stroke Property | 13

Figure 2-2. A polyline with various stroke shapes—left to right: round,
beveled, and mitered line joins; top to bottom: round, butt, and square
line caps; bottom row: square line caps and a thicker stroke-width

stroke-dashoffset

The distance into the dasharray pattern at which to position the
beginning of the path. Default is 0.

Example 2-2 mixes and matches various stroke line join and line cap
options on copies of the same polyline, to generate the effects shown
in Figure 2-2.

Example 2-2. Controlling the geometry of the stroke region

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 400" width="4in" height="4in"
 xml:lang="en">

14 | Chapter 2: The Painter’s Model

www.allitebooks.com

http://www.allitebooks.org

 <title>Stroke join and cap styles compared</title>
 <style type="text/css">
 .backdrop {
 fill: peachPuff;
 }
 .shapes {
 fill: none;
 stroke: indigo;
 stroke-width: 8px;
 }
 .join-round {
 stroke-linejoin: round;
 }
 .join-bevel {
 stroke-linejoin: bevel;
 }
 .join-miter {
 stroke-linejoin: miter;
 stroke-miterlimit: 10;
 }
 .cap-round {
 stroke-linecap: round;
 }
 .cap-butt {
 stroke-linecap: butt;
 }
 .cap-square {
 stroke-linecap: square;
 }
 .wider {
 stroke-width: 14px;
 }
 </style>
 <defs>
 <polyline id="p2"
 points="20,20 20,80 100,80 40,20 100,20" />
 </defs>
 <rect class="backdrop" height="100%" width="100%" />

 <g class="shapes">
 <g class="cap-round">
 <title>Round line caps</title>
 <g id="row">
 <use xlink:href="#p2" x="0" class="join-round">
 <title>Round line joins</title>
 </use>
 <use xlink:href="#p2" x="35%" class="join-bevel">
 <title>Beveled line joins</title>
 </use>
 <use xlink:href="#p2" x="70%" class="join-miter">
 <title>Mitered line joins</title>

Stroke It with the stroke Property | 15

 </use>
 </g>
 </g>
 <g class="cap-butt">
 <title>Butt (cropped) line caps</title>
 <use xlink:href="#row" y="25%" />
 </g>
 <g class="cap-square">
 <title>Square line caps</title>
 <use xlink:href="#row" y="50%" />
 </g>
 <g class="cap-square wider">
 <title>Square line caps with a wider stroke</title>
 <use xlink:href="#row" y="75%" />
 </g>
 </g>
</svg>

For this more complex example, a <style> block of CSS rules is
used to set fill and stroke properties on the elements according
to their classes.

The basic shape, a <polyline>, is predefined in a <defs>
section.

Three copies of the polyline are arranged to form each row in
the comparison grid. Each one will have a different stroke-
linejoin style.

The row as a whole is then duplicated and shifted vertically,
assigning a new stroke-linecap style each time.

The final row also inherits a different value of stroke-width.

Unlike fill, the stroke region is affected by open-ended paths.
Stroked <polyline> elements look different from a <polygon> with
the same points. A <path> element (or subpath thereof) that is
closed with a Z command has a line join at the final point, while
open subpaths start and end with line caps.

16 | Chapter 2: The Painter’s Model

Future Focus
Next-Generation Strokes

Stroking will also change in SVG 2, by allowing a shape to have multiple
layered strokes. Many proposals for greater control of the stroke geometry are
also being considered; these will be developed in a separate SVG Strokes
module.

Stroking the Fill and Filling the Stroke
When a shape has both fill and stroke paint, some pixels are
included in both the fill area and the stroke region, and therefore
have two different colors specified. As with all of SVG, the painter’s
model applies: if both colors are opaque, the color of the layer on
top replaces the color of the layer below.

But which layer is “on top”?

By default, the stroke is painted on top of the fill. This means that
you can always see the full stroke width. It also means that if the
stroke is partially transparent, it will appear two-toned. The fill paint
color will be visible under the inner half of the stroke region but not
under the outer half.

Stroke markers—symbols that display on the
corners of custom shapes—are painted after the
fill and stroke, in order from start to end of
the path.

In SVG 1.1, the only way to draw a stroke underneath the fill is to
separate it into two shapes: one with stroke only, and then the same
shape duplicated in the same position (with a <use> element), filled
but not stroked:

<g stroke="blue" fill="red">
 <g fill="none">
 <path id="shape" d="..." />
 </g>
 <use xlink:href="#shape" stroke="none" />
</g>

Stroking the Fill and Filling the Stroke | 17

The preceding snippet makes extensive use of inherited styles. The
<path> itself does not have any fill or stroke values directly set; it
inherits from its surrounding. The overall stroke and fill values are
set on the containing <g>; one or the other is then canceled out on
the nested group and the <use> element.

SVG 2 introduces the paint-order property to make this effect
much easier to achieve. Its value is a list of whitespace-separated
keywords (fill, stroke, and markers) that indicate the order in
which the various parts of the shape should be painted. So the same
effect could be created with a single element:

<path id="shape" d="..." stroke="blue" fill="red"
 paint-order="stroke fill" />

Any paint layers you don’t specify in the paint-order property will
be painted later (markers, in this case), in the same order they nor‐
mally would be. This means that to swap fill and stroke, you only
need to specify the stroke:

<path id="shape" d="..." stroke="blue" fill="red"
 paint-order="stroke" />

The stroke will be painted first, then fill, and finally any markers.
The entire fill region will always be visible, even where it overlaps
the stroke.

The default value of paint-order (equivalent to fill stroke

markers) can be explicitly set with the normal keyword.

At the time of writing, paint-order is sup‐
ported in the latest Firefox (since version 31),
Blink (since Chromium version 35), and WebKit
(since March 2014) browsers. Internet Explorer/
Edge and older versions of the other browsers
use the default paint order.

The ability to control painting order is especially important with
text. Text in SVG can be stroked just like shapes can, to create an
outlined effect. However, all but the thinnest strokes tend to obscure
the details of the letters.

By painting the fill region overtop of the stroke—in a contrasting
color—you can reinforce the shape of the letters and restore legibil‐
ity. Example 2-3 uses paint-order and a thick stroke to create a

18 | Chapter 2: The Painter’s Model

crisp outline around heading text. Figure 2-3 shows the result in a
supporting browser.

Figure 2-3. Outlined text with strokes painted behind the fill

Example 2-3. Stroking without obscuring the finer details of text

<svg xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 400 80" width="4in" height="0.8in"
 xml:lang="en">
 <title>Outlined text, using paint-order</title>
 <rect fill="navy" height="100%" width="100%" />
 <text x="50%" y="70"
 text-anchor="middle"
 font-size="80"
 font-family="sans-serif"
 fill="mediumBlue"
 stroke="gold"
 stroke-width="7"
 paint-order="stroke"
 >Outlined</text>
</svg>

If you relied solely on paint-order to achieve this effect, your text
would be a blocky mess on unsupporting browsers, as shown in
Figure 2-4. Some fallback strategies are in order.

Figure 2-4. Outlined text with strokes painted using the default order

One solution is to use the CSS @supports conditional rule to only
apply the outline effect if paint-order is supported. In other cases,

Stroking the Fill and Filling the Stroke | 19

use different styling that provides legible text, if not the desired
effect.

Example 2-4 provides a modified version of the code from
Example 2-3; the styles have been moved from presentation
attributes to a <style> block so that conditional CSS can be applied.
The basic styles include a much narrower stroke when painting
order cannot be controlled; the @supports block replaces this with
the thick stroke and paint-order option.

Example 2-4. Testing support before using paint-order

<svg xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 400 80" width="4in" height="0.8in"
 xml:lang="en">
 <title>Using @supports to adjust paint-order effects</title>
 <style type="text/css">
 .outlined {
 text-anchor: middle;
 font-size: 80px;
 font-family: sans-serif;
 fill: mediumBlue;
 stroke: gold;

 /* fallback */
 stroke-width: 3;
 }

 @supports (paint-order: stroke) {
 .outlined {
 stroke-width: 7;
 paint-order: stroke;
 }
 }
 </style>
 <rect fill="navy" height="100%" width="100%" />
 <text x="50%" y="70" class="outlined"
 >Outlined</text>
</svg>

The result looks like Figure 2-3 in browsers that support paint-
order (all of which currently also support the @supports rule).
Figure 2-5 shows how the revised code looks in other browsers.

20 | Chapter 2: The Painter’s Model

Figure 2-5. Text with a narrower outline when paint-order is not
supported

The stroke-width has been cut by more than
half between Figures 2-3 and 2-5. However, the
stroke only appears slightly narrower, because
the inside half of the stroke is now visible on top
of the fill.

If changing the appearance with @supports is not acceptable to you,
the only alternative is to duplicate the elements to create one for
stroke and one for fill. Depending on the way you are using your
SVG, and how much control you have over its styling, you may be
able to use a script to perform the conversion for you when neces‐
sary. Because paint-order is a new style property in CSS, browsers
that do not support it will not include it within the style DOM
property of each element. You can therefore detect these browsers
and generate the extra <use> elements as required.

Example 2-5 provides a sample script that identifies elements by
class name and performs the manipulations if required.

Example 2-5. Simulating paint-order with multiple elements

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 80" width="4in" height="0.8in"
 xml:lang="en">
 <title>Faking paint-order with JavaScript</title>
 <style type="text/css">
 .outlined {
 text-anchor: middle;
 font-size: 80px;
 font-family: sans-serif;
 fill: mediumBlue;
 stroke: gold;
 stroke-width: 7;
 paint-order: stroke;

Stroking the Fill and Filling the Stroke | 21

 }
 </style>
 <rect fill="navy" height="100%" width="100%" />
 <text x="50%" y="70" class="outlined"
 >Outlined</text>
 <script><![CDATA[
(function(){
 var NS = {svg: "http://www.w3.org/2000/svg",
 xlink: "http://www.w3.org/1999/xlink"
 };
 var index = 10000;

 var t = document.getElementsByClassName("outlined");
 if (t &&
 (t[0].style["paint-order"] === undefined)){
 Array.prototype.forEach.call(t, fakeOutline);
 }

 function fakeOutline(el){
 el.id = el.id || "el-" + index++;

 var g1 = document.createElementNS(NS.svg, "g");
 g1.setAttribute("class", el.getAttribute("class"));
 el.removeAttribute("class");
 el.parentNode.insertBefore(g1, el);

 var g2 = document.createElementNS(NS.svg, "g");
 g2.style["fill"] = "none";
 g2.insertBefore(el, null);
 g1.insertBefore(g2, null);

 var u = document.createElementNS(NS.svg, "use");
 u.setAttributeNS(NS.xlink, "href", "#" + el.id);
 u.style["stroke"] = "none";
 g1.insertBefore(u, null);
 }
})();
]]> </script>
</svg>

The elements to modify are identified by a specific class name,
"outlined", for easy access in the script.

The style property of any element (here, the first element
selected) can be examined to determine if it supports the paint-
order property. A strict equality test (===) is used to distinguish
an empty value (no inline style was set on the element) from an
undefined value (the property name is not recognized).

22 | Chapter 2: The Painter’s Model

If the fallback is required, the fakeOutline() method is called
for each element that had the class name. The forEach() array
method is used to call the function as many times as needed.
However, the list returned by getElementsByClassName() is not
a true JavaScript Array object, so t.forEach(fakeOutline)
cannot be used. Instead, the forEach() function is extracted
from the Array prototype and is invoked using its own call()
method.

The fakeOutline() function will duplicate the outlined element
with a <use> element, so it will need a valid id value; if it doesn’t
already have one, an arbitrary value is added with a unique
index.

The element is replaced by a group that is transferred all of its
classes. This of course requires that all fill and stroke styles
are assigned via class, and not by tag name or via presentation
attributes. The insertBefore() method is used to ensure that
the new group will have the same position in the DOM tree as
the element it is replacing.

A nested group will hold the original element, but will prevent it
from inheriting the fill style.

Finally, a <use> element duplicates the element, but cancels out
the stroke style so that it only inherits fill styles. It is inserted
into the main group as the last child (“before” nothing), so that
it will be drawn on top of the version with no fill.

The result of running the script (in a browser that does not support
paint-order) is shown in Figure 2-6. Although it appears identical
to Figure 2-3, the underlying DOM structure is much more com‐
plex.

Figure 2-6. Text duplicated to mimic a stroke-first paint order

Stroking the Fill and Filling the Stroke | 23

As you can tell, the script is rather convoluted for such a simple
effect. Creating a more generic fallback script—a complete polyfill
for the property—is even more difficult, as you need to account for
all the different ways in which a style property can be applied to an
element. Effectively, you need to re-create the work of the CSS
parser, indentifying all the style rules it discarded as invalid.

In most cases, if the final appearance is essential in all browsers, it is
easier to create the layered stroke and fill copies of the object within
your markup, directly creating the structure that would be generated
by the script:

<g class="outlined">
 <g style="fill: none;">
 <text id="el-10000" x="50%" y="70">Outlined</text>
 </g>
 <use style="stroke: none;" xlink:href="#el-10000" />
</g>

Regardless of whether you are hard-coding the markup or dynami‐
cally generating it with a script, the more complex DOM structure
must be considered in any other scripts active in the document.

Future Focus
Additional Ordering Control with z-index

When different shapes (or other content) overlap, the painter’s model again
comes into effect: the graphic is painted element by element, and the last ele-
ment shows up on top.

The order of the layers in an SVG document is therefore defined by the order
of the elements in the code: shapes, text, and images are layered together in
the exact order they are specified in the markup. In SVG 1.1, the only way to
change the order in which elements are painted is to change the order of the
elements in the DOM.

There are two main problems with this:

• It forces you to break up logical groupings of your content. For example,
instead of using a <g> element to group a text label with the graphic it
describes, you often need to move all your text labels to the end of the
file so they aren’t obscured by other shapes.

24 | Chapter 2: The Painter’s Model

www.allitebooks.com

http://www.allitebooks.org

• You cannot change the visual layering of elements using SMIL or CSS ani-
mations; you must use JavaScript to manipulate the DOM—which can
have a negative impact on performance and interrupts user-input focus.

In contrast, CSS layout (since version 2) uses the z-index property. Elements
within the same CSS layout stacking context that overlap (due to fixed or rela-
tive positioning or negative margins) are ordered from bottom to top accord-
ing to the value of the z-index property. The exact values aren’t important,
only the order.

SVG 2 adopts z-index for rearranging SVG layers. The default value is 0, and
individual elements can be given positive integer values to pull them in front
of the rest of the graphic or negative integer values to drop them behind.

At the time of writing, none of the major browsers
have implemented z-index stacking for SVG elements.

The ability of z-index to reorder elements is constrained when certain style
properties are used on a parent element. Filters, masks, and opacity values
less than 1 all cause child content to be flattened into a single stack that is
then layered as a whole.

Unlike in CSS layout, a two-dimensional coordinate
system transformation would not create a new stack-
ing context for SVG. This reflects the fact that transfor-
mations are a normal part of SVG layout.

Again, replacing the functionality of z-index with JavaScript would require a
complex polyfill that scanned all stylesheets and calculated the final cascaded
value for each element. It only gets more complicated from there: because
most browsers do support the z-index property on elements controlled by
CSS layout, you cannot use the @supports rule or simple JavaScript checks to
determine whether it is supported for SVG.

Even with a working script, you would not be able to replace the most impor-
tant benefit of z-index: the ability to separate the logical organization of your
DOM from the painting order. Your markup might be written in a logical order,
but if you are using scripts to reorder it, the shuffled version will be used by
accessibility tools such as screen readers, or when copying and pasting text.

Stroking the Fill and Filling the Stroke | 25

Unfortunately, therefore, current best practice is to organize the code so that
elements are in the order you want them to be painted. For screen readers,
you can indicate the logical grouping and order of elements with ARIA
attributes: aria-owns to create a virtual parent-child relationship, and aria-
flowto to define the reading order. Dynamic changes to the painting order
of interactive elements are nonetheless likely to cause problems with user-
input focus.

Take a Hint with Rendering Properties
One final class of style properties helps control how the browser
applies paint data to graphics. After that, the rest of the book will
focus on what you are painting in those shapes.

These final properties are considered to be “hints” from you—the
author of the SVG—to the browser or other software converting
your code into colored pixels. They offer suggestions as to which
features you consider most important, if the browser has to compro‐
mise performance or appearance in some way. From most to least
likely to have a consistent impact, they are:

shape-rendering

How the browser should adjust the edges of the shape to accom‐
modate limitations in the screen resolution. There are four
options:

• auto, the default, which instructs the browser to select the
best optimization.

• optimizeSpeed, which indicates that fast rendering is the
most important feature (probably because the graphic is
being animated); the edges of the shape may not be drawn
precisely. However, the exact changes may vary by browser
and in many cases will be the same as auto.

• crispEdges, which indicates that the browser should maxi‐
mize contrast around the edges of the fill and stroke
regions. This usually means the edges will be aliased to the
nearest pixel boundary, instead of having edge-pixels parti‐
ally colored (anti-aliased). For vertical and horizontal lines,
this can create a sharper image, but results for curves and
diagonal lines are usually less satisfactory.

26 | Chapter 2: The Painter’s Model

Figure 2-7. Effect of the shape-rendering property on a thin-stroked
path: crispEdges (top) and geometricPrecision (bottom)

• geometricPrecision, which indicates that the browser
should represent the exact shape as precisely as possible,
and may use anti-aliasing to do so if required.

Figure 2-7 compares the crispEdges and geometricPrecision
values for both straight and curved sections. Each shape consists
of a single path with a 1px-wide stroke. The crisp-y straight
edges are sharp and clean, but uneven: the stroke rounds up or
down to either one or two full screen pixels depending on the
exact position of the line (narrower strokes may round down to
nothing). The curves are aliased into sharp steps. In contrast,
with geometrically precise rendering, the same amount of color
is allocated to each point in the path, but that color may be blur‐
red across multiple device pixels if required.

text-rendering

How the browser should adjust the shape and position of letters
within text. The four options are:

• auto (the default)
• optimizeSpeed, which is the same as auto in most brows‐

ers; for large text, this might turn off text layout adjust‐
ments (Firefox by default uses legibility adjustments for text
larger than 20px).

Take a Hint with Rendering Properties | 27

• optimizeLegibility, which indicates that the browser
should use all information at its disposal to adjust the ren‐
dering of individual letters and the layout of strings of text
to make it easier to read. In practice, some browsers adop‐
ted this as a suggestion to turn on letter kerning and non-
essential ligatures specified in the font file.

• geometricPrecision, which indicates that the browser
should treat the letters as if they were geometric shapes, and
draw them exactly without adjustments from resolution-
based font hinting.

In SVG 1.1, the exact impacts of text-rendering were not well
defined. It was not consistently implemented for SVG text; how‐
ever, the property was adopted by some browsers to apply to
non-SVG content for kerning and ligature control.

The exact impact of the different options will likely be clarified
in future specifications (SVG 2 or a CSS module). The introduc‐
tion of the font-variant-ligatures and font-kerning prop‐
erties should help separate those features from rendering quality
(although speed-optimized rendering may still cause those set‐
tings to be ignored). Figure 2-8 shows the effect of the settings
on common system fonts in Firefox 39 on a Windows com‐
puter; optimized speed and optimized legibility look the same,
but at small font sizes can be quite different from geometrically
precise rendering.

color-rendering

How precise the browser should be about calculating colors,
particularly when blending elements or generating gradients.
The options use the standard hint keywords:

• auto

• optimizeSpeed

• optimizeQuality

Browsers do not currently change any behavior in response to
this setting.

image-rendering

How the browser should calculate the appearance of raster
images when the displayed size of that image does not exactly

28 | Chapter 2: The Painter’s Model

Figure 2-8. Effect of the text-rendering property on text of different
sizes in Times New Roman (left) and Verdana-system fonts (right)—
top to bottom in each set: optimizeSpeed, optimizeLegibility, geome‐
tricPrecision

match the number of pixels defined in the image file. In SVG
1.1, the options were the standard auto, optimizeSpeed, and
optimizeQuality. However, in practice it became clear that
there was not always agreement on how to create a “quality”
scaled-up image. The algorithms that create the best results for
photographs can create a blurred effect when the image con‐
tains sharp edges.

The CSS Image Values and Replaced Content Module Level 3
has adopted the image-rendering property and deprecated
the optimizeSpeed and optimizeQuality values. The
optimizeSpeed option is replaced by a pixelated value (scale
up each pixel as a square). An additional option, crisp-edges,
would apply some smoothing but maintain high-contrast edges.

At the time of writing this book, the optimizeQuality option,
which had recommended smooth interpolation for photos, is
covered under the default auto setting, reflecting the practice in
existing browsers. There is some discussion of having a separate
smooth property, to allow alternative auto options.

A distinct but related set of properties are the color-interpolation
instructions, which we’ll discuss in more depth in Chapter 3. The
color-interpolation setting is not (supposed to be) a hint, but rather

Take a Hint with Rendering Properties | 29

a requirement. However, a value of optimizeSpeed for color-
rendering gives the browser permission to ignore the color-
interpolation mode if it would slow down the rendering. In practice,
however, low support for the color interpolation options makes this
distinction irrelevant.

30 | Chapter 2: The Painter’s Model

CHAPTER 3

Creating Colors

In this chapter, we more thoroughly examine the options for filling
your graphics with solid blocks of color. It starts by outlining how
color works on the Web, and describes the different ways in which
you can specify colors on the Web: from the very readable (but not
very rational) color keywords, to RGB and HSL color functions.

The color basics will be complemented by a discussion of partially
transparent colors in Chapter 4. Color concepts are also an essential
prerequisite for the colored gradients that will be introduced start‐
ing in Chapter 6.

Misty Rose by Any Other Name
When writing code for other people to read (for example, the exam‐
ples in this book!), it is nice to be able to use human-readable color
names like red or gold or aquamarine.

It is even nicer if a computer can read the same values. And with
SVG, they can. Web browsers and SVG editors should all under‐
stand red, gold, and aquamarine. They will also recognize more fan‐
ciful names like mistyRose, peachPuff, and mediumSeaGreen.

Where do these names come from? There are two sources: a very
simple set of color keywords that was introduced in early versions of
HTML and CSS, and a much more extensive set of keywords that
were adopted by SVG (and later CSS) from the X11 windowing sys‐

31

1 If you’re interested in how these keywords ended up as the standard for X11 in the first
place, Alex Sexton has dredged up the history from old Unix forums. His presentation
“Peachpuffs and Lemon Chiffons” from CSSConf 2014 can be watched online.

tem for Unix computers.1 Both sets of keywords are supported in all
major SVG viewers. In addition, all but the oldest browsers in use
also support them for other CSS properties.

As user-friendly as they are, the keyword system has a number of
limitations.

For starters, the 147 keywords only describe a small fraction of the
millions of possible color variations that a modern computer moni‐
tor can display.

The keyword choices are also rather inconsistent and arbitrary. The
original web colors and the X11 colors sometimes conflict. The col‐
ors cyan (from X11) and aqua (from CSS 1) are identical—but dif‐
ferent from aquamarine. The color darkGray (from X11) is actually
lighter than the color gray (from CSS 1).

All the gray keywords are also duplicated using
the spelling grey. But that’s a feature, not a bug!
Nonetheless, some older browsers only accepted
the American gray spelling, so use it for optimal
support.

The X11 color names themselves are not particularly systematic,
either: some have dark, medium, and light variants, while others
have pale variants. And the variations aren’t always logical:
darkSeaGreen is not really darker than seaGreen, lightSeaGreen,
and mediumSeaGreen; it’s just duller.

Nonetheless, if you enjoy the ease of using readable color names, all
the recognized keywords are listed in Appendix A along with their
numeric equivalents. Figure 3-1 shows the resulting colors as an
alphabetical patchwork from AliceBlue to yellowGreen.

The keyword names, like most CSS keywords, are case insensitive.
You could write them in all caps if you feel very strongly about your
colors. Most official references use all lowercase, but this book uses

32 | Chapter 3: Creating Colors

https://www.youtube.com/watch?v=HmStJQzclHc

camelCase (capitalizing the start of subsequent words) to make
them easier to read.

The code used to create Figure 3-1 is provided in Example 3-1. It
uses XMLHttpRequest to load a separate file with the list of color key‐
words in alphabetical order, and then creates rectangles filled with
each color. Each rectangle has a child <title> element containing
the color name; if you run the code in a browser, these will be avail‐
able as tooltips when you hover over each color swatch.

Example 3-1. Creating a color keyword patchwork

SVG MARKUP:

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="650px"
 xml:lang="en"
 viewBox="0 0 7 21" preserveAspectRatio="none" >
 <title>SVG Color Keywords</title>

 <script><![CDATA[
 /* script goes here */
]]> </script>
</svg>

There are 147 keywords in the SVG specification (including the
variant spellings for gray), which is conveniently 7×21. The
viewBox creates a grid of 7 columns and 21 rows, and uses
preserveAspectRatio="none" to make that grid stretch to fill
the entire <svg>.

The graphic is drawn entirely by the script. Because this is an
SVG file, an XML <!CDATA[…]]> block is required to contain
any special characters in the code.

JAVASCRIPT:

(function(){
 var svgNS = "http://www.w3.org/2000/svg";
 var xlinkNS = "http://www.w3.org/1999/xlink";
 var svg = document.documentElement;

 var dataFileURL = "color-names.csv"
 var request = new XMLHttpRequest();
 request.addEventListener("load", draw);
 request.overrideMimeType("text/csv");

Misty Rose by Any Other Name | 33

Figure 3-1. The colors associated with all the named color keywords

34 | Chapter 3: Creating Colors

www.allitebooks.com

http://www.allitebooks.org

 request.open("GET", dataFileURL);
 request.send();

 function draw() {
 var w = 7; //swatches per row

 var colors = request.responseText.split("\n");

 for (var i=0, n=colors.length; i<n; i++){
 var c = colors[i].trim();

 var swatch = document.createElementNS(svgNS, "rect");
 swatch.setAttribute("width", 1);
 swatch.setAttribute("height", 1);
 swatch.setAttribute("x", i % w);
 swatch.setAttribute("y", Math.floor(i / w));

 swatch.style.setProperty("fill", c);

 var tip = document.createElementNS(svgNS, "title");
 tip.textContent = c;
 swatch.insertBefore(tip, null);

 svg.insertBefore(swatch, null);
 }
 }
})();

The XMLHttpRequest object is used to load a separate datafile
with a list of color names. An event listener is used to call our
drawing function when the file has been loaded. The MIME
type, "text/csv", indicates that we’re expecting a delimited text
file; that way, the browser won’t try to parse it as XML.

The draw() function is called when the requested file has been
downloaded. The datafile has each keyword on a separate line; it
was created by making a spreadsheet with a single column, and
then saving that as a comma-separated values (CSV) file.

The request’s responseText property is used to get the entire
file as a single JavaScript string. The split(token) method cre‐
ates an array from a string, broken around that token—in this
case, the newline character, escaped in Javascript as \n.

Misty Rose by Any Other Name | 35

A for loop cycles through each string in the array (i.e., each line
from the datafile). The trim() method gets rid of any errant
whitespace.

Each rectangle is set to a width and height of 1 in the stretched
SVG coordinate system; the horizontal and vertical positions are
calculated from the index and the number of swatches per row.

The fill style property is set using the keyword name.

The keyword is also used as the text content of a <title> ele‐
ment, which is then added as a child of each <rect> to create
the tooltips.

Finally, the styled <rect> (with its tooltip) is added to the SVG.

Looking at Figure 3-1, it becomes clear that the color keywords are
not a representative sample of all possible colors. In addition to the
duplicated grays, there are quite a number of off-white colors, and
relatively few dark tones.

Sensibly, there are many more options for defining colors than the
147 keywords. To fully understand how custom colors work, how‐
ever, we’re going to first diverge into a little bit of physics and a little
bit of biology.

A Rainbow in Three Colors
In physics, color is a property of the wave frequency or energy level
of light. Visible light itself consists of a specific range of frequencies
within the much wider spectrum of electromagnetic radiation. At
lower energies, electromagnetic radiation creates radio waves; at
much higher energies, it becomes X-rays.

The spectrum of light is continuous. There are no clear distinctions
between colors, just a smooth rainbow from red through orange,
yellow, green, blue, and violet—and beyond, to the ultraviolet lights
that our eyes cannot see. Each color is associated with a specific fre‐
quency and energy level.

Just as you can tune your radio to be sensitive to one radio fre‐
quency and not others, so colored pigments are sensitive to specific
frequencies of light. They absorb energy from light of the correct

36 | Chapter 3: Creating Colors

Figure 3-2. The blue flame of a gas burner (public domain photograph
by Wikimedia Commons user Sapp)

frequencies—colors—and reflect other light. Similarly, chemical
reactions that emit light do so at specific frequencies—colors—based
on the energy released by the reaction. Heat-based light sources can
nonetheless be “tuned” to adjust the color. As the efficiency of a
flame’s combustion reaction increases with different fuel or oxygen
levels, the energy per photon (unit of light) increases and the color
changes from a dull red, like glowing coals, to yellow, to a bright
blue, like the gas flame shown in Figure 3-2.

The frequencies in light don’t mix any more than different radio sta‐
tions do. Each photon preserves its own energy level and color. You
can separate the many colors of sunlight into a rainbow, by shining
the light through a prism or a fine mist.

So why, then, does sunlight normally look white, and not techni‐
color? That’s where the biology comes in.

Your eye is sensitive to a certain range of the electromagnetic spec‐
trum—the part we call visible light—because of pigment molecules
that absorb the energy from that light and convert it to chemical sig‐
nals in your brain. Most human beings have four types of light-
sensitive pigments in their eyes: a very sensitive but not color-

A Rainbow in Three Colors | 37

specific pigment (responsible for night vision and some motion
detection), and three color pigments. Each color pigment is sensitive
to different but overlapping regions of the spectrum.

Our eyes, therefore, don’t see color as a continuous spectrum of
every possible frequency of light. They only see how much light is
absorbed by each of the three colored pigments. Your brain compiles
this information into the full range of colors that you see.

The pigments in our eyes are usually associated with the colors blue,
green, and red, but that’s an oversimplification: the green and red
pigments are sensitive to blue light as well, and all three are sensitive
to medium-green light. Another naming system describes them as S
(for short wavelength), M (medium), and L (long wavelength), as
the frequencies of light are usually defined by the light wavelength.

Because light has a fixed speed, the frequency
(number of waves per second) and the wave‐
length (distance between subsequent waves) are
directly interchangeable. Higher energy light has
a higher frequency and a shorter wavelength.

Because the eyes see color as a mixture of three different values, we
can “mix” colors in art if not in physics. Figure 3-3 outlines how it
works. When your eye is exposed to pure yellow light, both the M
and L pigments are triggered in equal measure, but the S pigment is
not. Your brain constructs the sensation of the color yellow from
this information.

If your eye is exposed to an equal mixture of bright green and bright
red light from the same location, the same pattern of pigment acti‐
vation is created, and your brain still thinks it is looking at yellow.

Nearly every form of color communication in use, both print and
screen, takes advantage of color mixing. The colors involved differ
between print and screen, however.

Printed pigments, like the pigments in our eyes, absorb specific fre‐
quencies of light. When a pigmented ink or paint absorbs part of the
light shining on it, it removes that frequency from the colors that
reflect back to your eyes. Mix in another pigment, and another color
is removed. This is called subtractive color mixing, and is the color
mixing you learned in kindergarten. Yellow paint absorbs most
blue-violet light, reflecting greens, yellows, and reds; blue paint

38 | Chapter 3: Creating Colors

Figure 3-3. How the three-color system fools our mind (clip art icons
from openclipart.org by users jhnri4, pnx, and benoitpetit)

absorbs the reds. Mix yellow and blue together, and the result
absorbs both red and blue, reflecting back the green that you see.

As you might remember from kindergarten, mixing deep-colored
paints often creates a muddy mess. Modern printers therefore use
bright pigments that reflect more light than they absorb: cyan (blue-
green), magenta (with both blue and red reflected) and yellow (red
through green reflected). Blend all three together and all colors
of light will be absorbed, creating a black ink; however, printers usu‐
ally include an intense black ink separately. Graphics intended for
high-quality printing use a CMYK (Cyan, Magenta, Yellow, and
blacK) color model that defines each color as the combination of the
four inks.

A computer screen, in contrast, shines light directly to your eyes.
Multiple colors combine to increase the total amount of light that
reaches your eyes. This is, therefore, an additive color model. Color
computer monitors—like color TVs before them—use red, green,
and blue light of frequencies that capitalize on the differences

A Rainbow in Three Colors | 39

http://openclipart.org

between the pigments in your eyes. The finely spaced red, green,
and blue lights that make up each pixel are modulated to re-create
nearly every pattern of activation in your eye that natural light could
simulate.

Because of the unevenly overlapping patterns of
color sensitivity between the different pigments
in your eye, there are some colors—certain satu‐
rated greens, intense blues, and deep reds—that
can never be accurately represented by RGB
light. Similarly, colored printing methods have
certain natural colors that they can never com‐
pletely re-create. The spectrum of possible col‐
ors that can be represented by a color system is
known as the gamut of that color system.

Digital graphics systems have a fixed number of brightness levels for
each color in a pixel. Early color computers had 4 levels for each
color—including off—resulting in 64 (=4×4×4) colors overall. The
original list of “web safe” color keywords used in HTML can all be
mapped to a 64-color monitor. However, most modern computer
displays support 256 levels (0–255) for each color, more than 16 mil‐
lion combinations. This is the basis of the color encoding used on
the Web.

Custom Colors
There are two ways, in CSS or SVG, to define a custom color as a set
of RGB values:

• Function notation, like rgb(red,green,blue)
• Hexadecimal notation, like #RRGGBB or #RGB

The values used in the function notation may be either integers
between 0 and 255 or percentages. You can’t mix integers and per‐
centages—all values must be the same type.

The values in a six-digit hexadecimal format also represent the
numbers from 0 to 255, but do so using hexadecimal numbers. In
hexadecimal, each digit can be a value between 0 and 15, instead of
only 0 to 9 (hexa is 6, deci is 10, so hexadecimal is a base-16 number
system). The extra digits are indicated by the letters A (10) to F (15).

40 | Chapter 3: Creating Colors

The three-digit hexadecimal format is a shorthand for colors where
both hexadecimal digits in each color are the same.

Hexadecimal digits are case-insensitive in CSS
and SVG; #ACE and #ace are equivalent (and
represent a light blue color that can also be writ‐
ten #AACCEE).

The following color definitions all specify the same RGB values:

• rgb(102, 51, 153)

• rgb(40%, 20%, 60%)

• #663399

• #639

In some of the latest web browsers, you can also
represent the color #639 with the keyword
RebeccaPurple. The name was added to the CSS
Color Module Level 4 in tribute to Rebecca
Meyer, who loved the color purple and who died
on her sixth birthday; her father, Eric Meyer, is a
former member of the W3C CSS working group
and the author of many books on CSS. It is the
only color keyword that has been added since
the SVG 1 specifications.

The CSS Color Module Level 3 introduced an alternative way of
describing colors, based on a more universal color theory instead of
the RGB computer monitor. The hue-saturation-lightness (HSL)
color model describes colors as a mixture of a “pure” color and
black, white, or gray. Specifically, the three values are as follows:

Hue
The pure color, defined as an angle on a color wheel where pure
red is 0°, pure yellow is 60°, intense green is 120°, and so on:
300° is magenta and 360° is red again.

Custom Colors | 41

Saturation
The intensity of the pure color (adjusted for lightness) in the
mixture, where 0% saturation is a shade of gray and 100% satu‐
ration is a vibrant color.

Lightness
The level of white or black in the mixture, where 0% lightness is
pure black, 100% lightness is pure white, and 50% lightness is
the most intense color.

Unlike RGB values, HSL values are not always unique; different
HSL combinations can create the same color. For example, any value
with 0% saturation will be a gray, regardless of the hue, and any
value with 100% lightness will be white, regardless of the hue or sat‐
uration.

Two other color models are confusingly similar
to HSL: the hue-saturation-value (HSV) model
and the hue-saturation-luminance (unfortu‐
nately, also abbreviated HSL) model. The defini‐
tions for hue and saturation are the same, but
the values for the third measure are not inter‐
changeable. If you’re trying to match colors
defined in other graphics software, be sure
you’re using the same color model.

Figure 3-4 uses circular color wheels to demonstrate the relationship
between hue angle and color, with different lightness values shown
at different radii and different saturation values shown in separate
wheels.

The brightest, most intense colors are created when saturation is
100% and lightness is 50%. In the RGB model, these colors have at
least one color channel at 100% and one channel at 0%. In general,
when converting from RGB to HSL:

• The saturation value is calculated as 100% minus the percentage
of the maximum channel made up by the minimum RGB
channel:

S = (1 − min/max) × 100%

42 | Chapter 3: Creating Colors

Figure 3-4. The hue-saturation-lightness (HSL) color model; hues
increase clockwise from 0° on the right; lightness levels are 25%, 50%,
and 75%, from the center; saturation values are as indicated

• The lightness value is the average between the minimum and
maximum color channels (as a percentage):

L = (min% + max%)/2

• The hue is determined from the ratio of the medium to the
maximum color channels, after subtracting the value from the
minimum channel from each:

H = 0 + 60 × ([G−B]/[R−min]), if max is R
H = 120 + 60 × ([B−R]/[G−min]), if max is G
H = 240 + 60 × ([R−G]/[B−min]), if max is B

Custom Colors | 43

The fraction returns a value between –1 and +1, depending on
which color is the minimum, which then increases or decreases
the hue relative to the pure hue of the dominant color channel.
The first formula returns negative hue angles for reddish-
purples; these can be converted to the equivalent positive values
by adding 360.

The conversion formulas work even if two color channels are tied
(you can arbitrarily select one for the maximum or minimum).
However, the hue values will be undefined for grays, and saturation
will be undefined for black; it is convention to set undefined values
to zero.

To specify a color as an HSL value in CSS, you use the hsl(h,s%,l%)
function. The hue value, although theoretically measured in degrees,
is given as a number without units. Saturation and lightness are
always expressed as percentages. Some examples:

• The color lime, rgb(0%, 100%, 0%), is hsl(120, 100%, 50%)
• The color green, rgb(0%, 50%, 0%), is hsl(120, 100%, 25%)
• The color purple, rgb(50%, 0%, 50%), is hsl(300, 100%,

25%)

• RebeccaPurple, rgb(40%, 20%, 60%), is hsl(270, 50%, 40%)

Although hsl() color functions are supported
in all modern browsers (Internet Explorer 8
being the only browser in common use without
support), they may not be supported in other
tools for editing, displaying, or converting SVG.
The same is true for the CSS 3 partially-
transparent color functions, which will be dis‐
cussed in Chapter 4.

Example 3-2 presents the SVG and JavaScript code used to create
Figure 3-4. It creates <use> elements for each colored pie segment,
and uses the style object to set the fill to an hsl() color value. Each
piece is also rotated into place using the hue value as the parameter
to a rotate() transformation function.

44 | Chapter 3: Creating Colors

www.allitebooks.com

http://www.allitebooks.org

Example 3-2. Building an HSL color wheel using scripted SVG

SVG MARKUP:

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 200 200" >
 <title>HSL Color Wheel</title>
 <defs>
 <circle id="center" r="1.5" fill="black"/>
 <path id="inner" transform="rotate(-15)"
 d="M0,0L15,0A15,15 0 0 1 12.99,7.5 L0,0Z" />
 <path id="middle" transform="rotate(-15)"
 d="M15,0L28,0A28,28 0 0 1 24.25,14
 L12.99,7.5 A15,15 0 0 0 15,0Z" />
 <path id="outer" transform="rotate(-15)"
 d="M28,0L40,0A40,40 0 0 1 34.64,20
 L24.25,14 A28,28 0 0 0 28,0Z" />
 <circle id="edge" r="39" fill="none"
 stroke="white" stroke-width="2"/>
 </defs>
 <style type="text/css">
 text {
 text-anchor: middle;
 font-size: 8px;
 font-family: sans-serif;
 }
 </style>
 <rect fill="#888" width="100%" height="100%"/>
 <svg class="wheel" width="100" height="100" x="0" y="0"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <svg class="wheel" width="100" height="100" x="100" y="0"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <svg class="wheel" width="100" height="100" x="0" y="100"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <svg class="wheel" width="100" height="100" x="100" y="100"
 viewBox="-40,-40 80,80">
 <use xlink:href="#center"/>
 <use xlink:href="#edge"/>
 </svg>
 <script><![CDATA[
 /* script goes here */

Custom Colors | 45

]]> </script>
</svg>

All the shapes are predefined to be reused many times. They are
encoded to be drawn within an 80×80 centered coordinate sys‐
tem—each complete wheel will be a circle with radius 40.

The wedge-segments are created using path notation and a little
bit of trigonometry. Each wedge will be a 30° segment, centered
on the x-axis. To reduce the trigonometry, the wedges are
defined with one edge flat against the x-axis and then are rota‐
ted back until they are centered over it. This way, the (x,y) coor‐
dinates of one end of each arc can be determined as (r,0), where
r is the radius. The coordinates of the other end are (r×cos(30°),
r×sin(30°)), which is equal to (r×0.866, r×0.5).

A rectangle filled with 50% gray (#888) provides a background
to the image.

Each color wheel is defined by an <svg> element that positions
it within the image and creates the correct 80×80 centered coor‐
dinate system using its viewBox attribute.

Each <svg> also contains the black center and white edges of the
wheel, as these do not need any special calculations.

JAVASCRIPT:

(function(){
 var svgNS = "http://www.w3.org/2000/svg";
 var xlinkNS = "http://www.w3.org/1999/xlink";

 var wedge = 30; //angle span of each pie piece, in degrees
 var saturation = ["100%", "75%", "50%", "25%"];
 var lightness = {outer:"75%", middle:"50%", inner:"25%"};

 var wheels = document.getElementsByClassName("wheel");
 var h,s,l,w,p,u;
 for (var i=0, n=wheels.length; i<n; i++){
 w = wheels[i];
 s = saturation[i];
 for (h=0; h < 360; h += wedge) {
 for (p in lightness){
 l = lightness[p];
 u = document.createElementNS(svgNS, "use");
 u.setAttributeNS(xlinkNS, "href", "#"+p);

46 | Chapter 3: Creating Colors

 u.setAttribute("transform", "rotate("+h+")");
 u.style.setProperty("fill", "hsl("+[h,s,l]+")");
 w.insertBefore(u, w.firstChild);
 }
 }
 var t = document.createElementNS(svgNS, "text");
 t.textContent = "s = "+s;
 t.setAttribute("y", "35");
 w.insertBefore(t, null);
 }
})();

The saturation values for each wheel are stored in an array,
ready to be assigned to the individual <svg> elements. Because
we don’t need to do any mathematical calculations on these val‐
ues, they are stored as strings including the % marker.

Rather than using two separate arrays to hold the lightness val‐
ues and the id values for the different wedge segments, they are
paired up using a key-value data object.

The nested <svg> elements are selected by class name.

A for loop cycles through each <svg> and each saturation value
by index. A nested for loop is then used to cycle through the
hue values, incrementing them at each cycle by the 30° angle
span of each wedge.

Finally, a different type of for loop is used to traverse through
all the data keys in the lightness object. The p variable gets set
to the key string at each cycle (e.g., "outer", "middle", or
"inner"). The key can then be used to access the value from the
object, but it is also used directly to set the xlink:href
attribute.

The hue value is used to rotate the wedge into place; because the
wheels use a centered coordinate system, a simple rotation piv‐
ots the path around the center of the wheel. The value of the
transform attribute is a string representation of the transforma‐
tion function, rotate(h); the parentheses are part of the string,
not part of a JavaScript function!

Custom Colors | 47

The fill is set, as an inline style property, by creating a Java‐
Script string that contains the CSS hsl() function—again,
including the parentheses. The comma-separated list of param‐
eters is created by grouping the values into an array; when an
array is concatenated to a string, the string equivalent of each
value is printed out, separated with commas.

The wedge piece is then added to the <svg> before the existing
first child element, so that it will be drawn underneath the black
center and white rim declared in the markup.

The final block of code runs once per <svg> and creates the text
labels. They are inserted after all the other elements (“before”
nothing, or null) so that the text is visible on top of the color
wheel.

The introduction of HSL color functions was intended to make it
easier to create sets of matching colors: the same hue in different
lightness or saturation values, or the same lightness and saturation
but opposite hues. Nonetheless, the HSL model was also chosen
because browsers can rapidly convert between HSL and RGB values,
and it has its limitations. The hue color wheel does not correspond
well with the red-yellow-blue color wheels we know from mixing
paint as a child. More importantly, the lightness model doesn’t
reflect the perceived differences in brightness between equally
intense colors of different hues.

For these reasons, and because the history of computer hardware led
to certain optimizations being standard in every graphical processor,
a more complex color model is used in gradients and color blending.

Mixing and Matching
Your eye’s sensitivity to light does not correspond directly with the
brightness of the pixels on your computer monitor. You can detect
changes between black and dark gray more easily than the equiva‐
lent change between white and light gray. With colors, a fully satura‐
ted blue light seems much darker than the same intensity of red, and
neither is as bright—from your mind’s perspective—as the full
intensity of the green pixel components.

48 | Chapter 3: Creating Colors

As a result, mixing equal proportions of red and blue (or blue and
green) light doesn’t create a color that matches what our brain con‐
siders to be halfway in-between. The same is true for nearly every
other color combination, and also for shades of gray.

Computer monitors—especially the CRT monitors used when the
Web first became popular—add their own distortion to the effective
brightness of every color value. Without standardization, the same
colors could look very different on different displays.

When blending between colors in computer graphics, most modern
computer displays use the sRGB (sometimes called the standard
RGB) model. It defines functions to convert RGB display colors into
a standardized scale that reflects the perceived differences in bright‐
ness on an sRGB-compatible computer monitor.

The use of sRGB primarily affects the blending of colors. Figure 3-5
compares the results when using the sRGB model to blend colors
or shades of gray, versus calculating the intermediary colors as based
on simple linear arithmetic (shown in the bottom gradient in each
pair).

The sRGB model makes numerous assumptions about the type
of equipment and lighting that will be used to view the image. In
addition, there is considerable variation from person to person in
how colors are perceived—even before you factor in color blindness,
a shortage of one or more of the light-sensitive pigments in the eyes.
You may not agree that the sRGB color blend is better than the lin‐
ear model, let alone that it is the best possible blend. But it has
become the standard for computer graphics, particularly on
the Web.

The sRGB model—and RGB color spaces in
general—are less popular in print graphics
because they cannot encode all colors that can
be created on high-quality printers. The SVG
specifications include ways in which alternative
color definitions may be used to ensure high-
fidelity printed color results. These alternative
definitions use color profiles as defined by the
International Color Consortium (ICC), a part‐
nership of major digital graphics companies.
ICC color profiles for SVG are not implemented
in web browsers.

Mixing and Matching | 49

Figure 3-5. Color blending with sRGB color space (top gradient in each
pair) versus the linear RGB blending (bottom gradient in each pair),
for fully saturated colors and for grayscale

The sRGB color model is used by default for CSS and most of SVG.
The SVG specifications define a property, color-interpolation,
which could allow authors to switch to the mathematically simpler
linear blending of colors (linearRGB mode). This might be prefera‐
ble if your graphic consists of many very bright, high-saturation col‐
ors of contrasting hues. The sRGB blending model can generate
unpleasantly dark in-between colors when blending contrasting
bright colors, as can be seen in the topmost gradient in Figure 3-5.

50 | Chapter 3: Creating Colors

None of the major web browsers support
linearRGB color blending at the time of writing.
Figure 3-5 was generated in the Apache Batik
SVG viewer. Even Batik only supports linear
blending for gradients, and not for blending lay‐
ered, partially transparent colors.

The exception to the sRGB dominance is for filter calculations. SVG
filters allow you to directly manipulate the RGB color channels, and
by default these calculations run in linearRGB mode. There is much
better browser support for setting the color-interpolation-

filters property to sRGB, to turn on sRGB adjustments in filters.

Both of the color interpolation options are style properties that can
be set on individual elements or the SVG as a whole, using presenta‐
tion attributes or CSS rules. For gradients and filters, the property
used is the one set on the gradient/filter element, not on the element
being painted.

Certain filter operations, as well as SVG masking, use their own
explicit means of compensating for the relative brightness of differ‐
ent colors. These operations are based on the luminance of colors.
Luminance is a measure of brightness, and is distinct from the light‐
ness value used in the HSL color functions. Instead, luminance is
adjusted based on the fact that a fully saturated green or yellow is
perceived as brighter than a fully saturated red, which is nonetheless
brighter than a fully saturated blue.

The color-interpolation property does affect
the conversion from color to luminance for
masking in some browsers and is therefore dif‐
ferent by default from luminance-based filters.

The luminance adjustments used in these tools have a similar pur‐
pose to the sRGB adjustments, but they are not equivalent. sRGB
affects the scaling of grays, or of colors with different lightness val‐
ues. The luminance weighting only affects differences in hue. Fur‐
thermore, the luminance factors create a linear scaling of each color
channel, while sRGB defines a curved (gamma-adjusted) relation‐
ship between the color value and perceived intensity.

What does all this matter to you? Mostly, it is a warning. If calculat‐
ing colors yourself as part of a script, or manipulating them with fil‐

Mixing and Matching | 51

2 Thanks to Noah Blon for bringing my attention to the discrepancies between hsl()
color functions and hue-rotate filter operations.

ters, be aware that simple mathematical averaging of R, G, and B
values will create different results from colors created by the
browser when blending gradients or combining partially transpar‐
ent colors. Similarly, changing color hues using filters (luminance-
adjusted, and sometimes sRGB-adjusted) will result in different
colors than changing the hue value in the hsl() color function.2

This section has been mostly theoretical. The visible impact of the
way colors are blended comes when working with transparency (the
subject of Chapter 4) and with gradients (Chapters 6 through 9).

52 | Chapter 3: Creating Colors

CHAPTER 4

Becoming Transparent

Solid regions of color have their place, but for many graphics, you
want to add a little bit of subtlety. Transparency is one way to do so,
allowing you to paint a shape without completely obscuring the con‐
tent from previous layers of the drawing.

Transparency is in some ways another facet of color, and in some
ways a distinct and much more complex topic. This is reflected in
the different ways you can define transparency, which we’ll compare
and contrast in this chapter.

One thing is constant when talking about transparency and web
design: you don’t talk about transparency, you talk about opacity.
The two concepts are direct opposites: when something is fully opa‐
que, it is not at all transparent, and when something has zero opac‐
ity, it is fully transparent and therefore invisible.

See-Through Styles
SVG uses three distinct properties to control opacity of basic shapes
and text: opacity, fill-opacity, and stroke-opacity. All of these
can be set with presentation attributes or with CSS style rules.

CSS Color Module Level 3 extended the opacity property to apply
to all content. In addition, rather than introduce *-opacity proper‐
ties for every facet of CSS painting, this module introduced new
color functions. Partially transparent color can be defined using the
rgba() and hsla() color functions, and then used anywhere in CSS
where a color value is needed.

53

Opacity on the Web is always expressed as a decimal number
between 0.0 (invisible) and 1.0 (solid, no transparency). These num‐
bers are also known as alpha values, particularly when discussing
opacity as an intrinsic part of colors or images. The a in rgba() and
hsla() refers to the alpha channel. These functions take four values,
instead of the usual three, with the fourth being the alpha value
between 0 and 1.

The keyword transparent, which formerly had
a special meaning for CSS backgrounds, has
been redefined as a named color. Equivalent to
rgba(0,0,0,0), it can be used like any other
color keyword in browsers that support CSS 3
colors.

The final effect of modifying a graphic’s alpha value depends on the
method you use. In particular, the overall opacity property works
in a significantly different way compared to the other options.

The opacity property applies to the element it is set on—even if that
is a <g> group, <svg>, or <use> element—and is not inherited. It
takes the final drawn result for that element, including all its child
content, and makes it uniformly more transparent.

The opacity value is applied after determining
the final color at every point where two shapes—
or fill and stroke of the same shape—overlap.

Setting opacity to less than 1 creates a stacking context, flattening
and containing all child content. In CSS layout, this can significantly
affect the position of elements. It has no similar effect in SVG 1.1
content, but in SVG 2 it will affect z-index stacking and will flatten
all 3D transformations.

In contrast, when you set stroke-opacity or fill-opacity, or
when you use rgba or hsla color functions, the transparent effect is
applied at the time each shape is drawn, to that colored section only.
The stroke-opacity and fill-opacity properties are both inher‐
ited by default.

54 | Chapter 4: Becoming Transparent

www.allitebooks.com

http://www.allitebooks.org

Figure 4-1. A green and yellow shape at full opacity and made parti‐
ally transparent in three different ways

Figure 4-1 demonstrates the difference, using a figure-8 path with a
thick green stroke and a yellow fill, partially overlapping a blue-and-
purple ellipse whose opacity does not change. The green and yellow
shape is shown at full opacity (top left) and set to half opacity using
stroke-opacity and fill-opacity (top right), opacity on a <use>
element (bottom left), or rgba colors for the stroke and fill (bottom
right). Example 4-1 gives the code.

Example 4-1. Using different opacity options to control the
transparency of your graphics

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 200 200"

See-Through Styles | 55

 xml:lang="en">
 <title>Opacity Adjustments</title>
 <defs>
 <ellipse id="background"
 ry="15" rx="35" transform="rotate(20)"
 stroke="purple" fill="lightSkyBlue"
 stroke-width="5" />
 <path id="foreground" stroke-width="10"
 d="M0,0C0,-60 60,0 0,0 S 0,60 0,0Z" />
 </defs>
 <style type="text/css">
 svg svg {
 overflow: visible;
 }
 text {
 text-anchor: middle;
 font-size: 7px;
 font-family: sans-serif;
 }
 </style>
 <rect fill="#888" width="100%" height="100%"/>
 <svg width="100" height="100" x="0" y="0"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="yellow" stroke="green" />
 <text y="-35">solid</text>
 </svg>
 <svg width="100" height="100" x="100" y="0"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="yellow" stroke="green"
 fill-opacity="0.5" stroke-opacity="0.5" />
 <text y="-35" dy="-0.3em"> stroke-opacity="0.5"
 <tspan x="0" dy="1em">fill-opacity="0.5"</tspan>
 </text>
 </svg>
 <svg width="100" height="100" x="0" y="100"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="yellow" stroke="green" opacity="0.5" />
 <text y="-35">opacity="0.5"</text>
 </svg>
 <svg width="100" height="100" x="100" y="100"
 viewBox="-40,-45 80,80">
 <use xlink:href="#background"/>
 <use xlink:href="#foreground"
 fill="rgba(100%, 100%, 0%, 0.5)"
 stroke="rgba(0%, 50%, 0%, 0.5)" />

56 | Chapter 4: Becoming Transparent

 <text y="-35">rgba(r,g,b,0.5) colors</text>
 </svg>
</svg>

The reused shapes are predefined in a <defs> section. The back‐
ground ellipse has all its painting properties defined as presen‐
tation attributes.

The foreground <path> has a specified stroke-width but will
otherwise inherit its painting styles.

A CSS <style> block is used to style the text labels and prevent
cropping of the nested <svg> elements. Note that the 7px font-
size will be interpreted within the local coordinate system, and
so will not create unusually small type.

Each nested <svg> re-creates the same local coordinate system
in a different quadrant of the main graphic, so that the reused
graphics can be positioned in the same way.

The background element is reused as is within each sample, and
then the foreground layered on top. In this first example, the
foreground is given solid fill and stroke colors.

The following <svg> elements position the content in the other
quadrants of the graphic, and use different presentation
attributes on the foreground <use> elements.

For the opacity setting, it will apply directly on the <use> ele‐
ment as a combined group, instead of inheriting to the reused
graphic.

Figure 4-1 also demonstrates some of the concepts we discussed in
Chapter 2. The strokes are centered over the edge of each shape.
When the stroke is partially transparent (due to stroke-opacity or
an rgba color), this creates a two-toned color effect, with the fill visi‐
ble under the inside part of the stroke.

Another feature to note is that the overlapping sections of stroke do
not have a different color tone, compared to areas where the stroke
only passes once. Conceptually, we like to think of strokes as if they
were made by a marker or paint brush tracing out the lines. If that
were true, these double-stroked regions would have twice as intense

See-Through Styles | 57

color, the way it would if you used translucent watercolor paint and
passed your brush over the same region twice. However, the com‐
puter works by caculating out the total area of the stroke and then
applying the coloring evenly, as if it was cut out of a sheet of semi‐
transparent plastic.

With all these different ways of controlling opacity, what happens
when you combine them? The effect is multiplied. For example, the
following circle has its fill made partially transparent in two differ‐
ent ways:

<circle r="10" fill="hsla(240,100%,75%, 0.5)"
 fill-opacity="0.6">

The effect would be exactly the same with the following code,
because 0.5×0.6=0.3:

<circle r="10" fill="hsl(240,100%,75%)"
 fill-opacity="0.3">

It gets a little more complicated with opacity, because the transpar‐
ency is applied after combining the other colors. Nonetheless, an
opacity: 0.5 property still causes the alpha value of each pixel in
the shape to be cut in half (multiplied by 0.5), after applying the
opacity levels from all other properties.

Because the opacity property is applied using a simple mathemati‐
cal adjustment of each pixel value, it can be efficiently implemented
by the graphical processing unit (GPU) of most video cards.
Changes in opacity can often be animated quite smoothly as a result,
although not all browsers take advantage of this for SVG content.

Partially transparent colors, fill-opacity, and stroke-opacity do
not create the same optimization, because they only affect parts of
an element. However, if you are not animating the opacity, these
properties can be more performant because they do not force the
creation of a stacking context.

The Net Effect
As mentioned in Chapter 3 (“Mixing and Matching” on page 48),
the color created by a partially opaque object is calculated using the
sRGB model. According to the specifications, it should be affected
by the color-interpolation mode, but sRGB is the default and the
only mode supported in most software used to view SVG.

58 | Chapter 4: Becoming Transparent

The final color displayed when layers overlap is generated by, first,
scaling both colors according to the sRGB model, then taking a
weighted average between the background and foreground—where
the alpha value is the weight of the foreground—and finally revers‐
ing the sRGB scale. This calculation works regardless of whether the
background color was created from a single element or from blend‐
ing multiple partially transparent ones.

This method of blending colors is known as simple alpha composit‐
ing. In many graphics programs, it is also known as the “normal”
blending mode.

Future Focus
Beyond Simple Alpha Blending

Many graphics programs define alternative blending modes that control how
the colors from two different layers or objects are combined together.

In SVG 1.1, many of these blending modes are available, but only through fil-
ters. A new Compositing and Blending Specification created by the W3C
standardizes the definitions of these blending modes for use by CSS and HTML
5 canvas as well. Two of the new CSS properties it introduces can apply to SVG:
mix-blend-mode and isolation.

The mix-blend-mode on an element controls how that element is blended
into the colors behind it. There are 16 different modes (including the default,
normal) that define equations for combining the RGBA or HSLA values of the
element with the equivalent values for the blended background content.

The isolation property on a grouping element or <use> element limits how
far the blending continues. Child content of an isolated element is blended
together, but then that element uses its own blending mode to blend the
result into the background. You explicitly isolate an element using
isolation: isolate, but various other CSS properties will cause isolation,
including setting opacity other than 1, using filters or masks, setting a blend-
ing mode other than normal on the group itself, or using 3D transformations.
An inline <svg> element in HTML will by default be isolated.

At the time of writing, blending modes are supported in the latest versions of
Firefox, Chrome, Opera, and Safari. They are not supported yet in many mobile

The Net Effect | 59

browsers or in Internet Explorer, although they are “under consideration” for
Microsoft Edge.

The colors created when using simple alpha blending directly corre‐
spond to colors in an sRGB gradient between the background color
and the solid color of the object. The alpha value determines the dis‐
tance along the gradient. If alpha is zero, and the object is com‐
pletely transparent, the initial value of the gradient is used—in other
words, the background color. If alpha is 0.5, the midpoint of the gra‐
dient is used. If alpha is 1 (the object is completely opaque), the dis‐
played color is the same as the end point of the gradient—the
foreground object’s own color.

Figure 4-2 demonstrates this relationship by comparing a smooth
gradient from red (#F00) to blue (#00F) with the result of layering
blue squares overtop of a solid red rectangle, where the squares vary
in their fill-opacity values.

It may appear to you as if the squares in
Figure 4-2 were also filled with gradients, transi‐
tioning in the opposite direction. This is a well-
recognized optical illusion. Your eyes and brain
enhance the contrast between colors on either
side of an edge. When a solid-colored element
has different contrasting colors on each side—or
a gradient on one side—the contrast enhance‐
ment is perceived as a gradient.
To confirm that you really are looking at a solid
color, use pieces of paper (all the same color) to
cover up the adjacent sections of the figure, until
you only see a single, solid-color square.

Example 4-2 presents the code used to generate Figure 4-2.

Example 4-2. Using opacity to create blended colors that match
gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="200px" viewBox="0 0 400 200"
 xml:lang="en">
 <title>Blending with opacity and gradients</title>

60 | Chapter 4: Becoming Transparent

Figure 4-2. Blending colors with gradients and with opacity; the
squares consist of a solid red rectangle underneath blue squares with
fill-opacity of 0, 0.25, 0.5, 0.75, and 1

 <defs>
 <linearGradient id="gradient">
 <stop offset="0" stop-color="#F00"/>
 <stop offset="1" stop-color="#00F"/>
 </linearGradient>
 <rect id="square" width="100" height="100" y="100"/>
 </defs>

 <rect fill="url(#gradient)" width="400" height="100"/>
 <rect fill="#F00" width="400" height="100" y="100"/>
 <g fill="#00F">
 <use xlink:href="#square" x="-50" fill-opacity="0" />
 <use xlink:href="#square" x="50" fill-opacity="0.25" />
 <use xlink:href="#square" x="150" fill-opacity="0.5" />
 <use xlink:href="#square" x="250" fill-opacity="0.75" />
 <use xlink:href="#square" x="350" fill-opacity="1" />
 </g>
</svg>

Chapter 6 will introduce the <linearGradient> and <stop> ele‐
ments used in Example 4-2 and describe how they can be adjusted
to create different gradient effects. But first, Chapter 5 will explore
what it means in SVG to fill one element with a URL reference to
another.

The Net Effect | 61

CHAPTER 5

Serving Paint

When the fill or stroke is more complicated than a single color
(transparent or otherwise), SVG uses a concept called a paint server
to describe how the graphic is rendered.

The paint servers are defined using their own SVG elements. Those
elements—gradients and patterns—do not directly create any visible
graphics. They are only used through the fill and stroke proper‐
ties of shapes and text. However, by using XML markup to define
the paint server, it can be infinitely variable: any SVG graphics can
be used to generate an SVG pattern, including other patterns!

In contrast, when using CSS to style HTML content, all the informa‐
tion about how to paint an element must be contained within the
CSS style rules. In CSS 2.1, the only way to create patterns was to
reference external image files. Since then, CSS has introduced many
graphical effects that were previously only possible with SVG, such
as gradients and improved image positioning. Although the end
result may look similar, the all-CSS syntax for these properties is
quite different from their SVG equivalent. Throughout the rest of
the book, the two approaches will be compared in “CSS Versus SVG”
sidebars.

This chapter introduces the basic paint server model, and then dem‐
onstrates how it can be used in the simplest case, to serve up a single
color of paint.

63

Paint and Wallpaper
A key feature of all SVG paint servers is that they generate a rectan‐
gular region of graphical content. This can be limiting at times, but
it allows for underlying performance optimizations.

An SVG paint server doesn’t need to know anything about the shape
it is told to fill—it just slops on paint indiscriminately all over the
wall. The shape itself acts as a mask or stencil that blocks off which
parts of the paint actually reach the drawing, in the same way that a
wall painter covers (masks) floorboards, ceilings, light fixtures, etc.,
so that only the wall gets painted.

Another way of thinking about paint servers—particularly when
talking about gradients and patterns—is to picture the paint content
as a large sheet of wallpaper. The shape is cut out from that sheet, as
imagined in Figure 5-1.

Figure 5-1. A filled shape can be thought of as a shape cut out of a rec‐
tangular sheet of patterned paper

The computer doesn’t use paper and scissors, of course; instead, as it
rasterizes (scans across) the shape, for every point that is “inside” the
filled region, the computer looks up the corresponding (x,y) point
from the paint server. A paint server can therefore be any object that
can assign a specific color value to each (x,y) value.

In theory, the “paint” could be anything: a single color, one or more
gradients, repeating patterns, bitmap graphics, text, even other SVG
files. In practice, SVG 1.1 has two types of paint servers, gradients
and repeating patterns. However, those core elements can be used
to create all of the options just mentioned, as the rest of the book
will demonstrate.

64 | Chapter 5: Serving Paint

Identifying Your Assets
The name “server” suggests an external source for multiple resour‐
ces. Theoretically, you can create a separate asset file containing
all your paint servers and reference it from the fill or stroke prop‐
erty, but this currently has poor browser support. More generally,
the name paint server refers to the fact that each gradient or pattern
object can serve paint (rendering instructions) to multiple SVG
shapes.

At the time of writing, external paint servers are
only supported in Firefox and in pre-Blink ver‐
sions of Opera that use the Presto rendering
engine.

In order to use a paint server, you reference the paint server element
using URL syntax, wrapped in the CSS url() functional notation.
Because of the browser support limitation, this URL is nearly always
an internal reference like url(#myReference). The hash mark (#)
indicates that what follows is a target toward a specific element; the
fact that there is nothing before the hash mark indicates that the
browser should look for that element in the current document.
Specifically, it should look for an element with an id attribute that
matches the target fragment (i.e., <pattern id="myReference">).

Thus, referencing a paint server with an ID of "customBlue" as a fill
could look something like:

<rect fill="url(#customBlue)" width="100" height="100"/>

Because fill is a presentation attribute, you could also use a
<style> block elsewhere in the document to set the value:

rect {
 fill: url(#customBlue);
}

The preceding rule would set all rectangles in the document to use
that paint server, provided that the style wasn’t overridden by more
specific CSS rules.

Relative URLs in external stylesheets are always relative to the CSS
file location, not the location of the document using those styles.
This includes local URL fragments like #customBlue, which will

Identifying Your Assets | 65

never match anything if specified in an external CSS file. In combi‐
nation with the lack of support for external paint servers, this
unfortunately means that you cannot effectively use external style‐
sheets to set paint server references.

Relative URLs are also affected by the xml:base
attribute or the HTML <base> element; using
either can cause your paint server references
to fail.

In theory (or if you only need to support Firefox), if you had a set of
colors that are predefined in a file called brand.svg, you could pro‐
vide the relative path to that resource, then use the target fragment
to point to the specific element:

<rect fill="url(brand.svg#customBlue)"
 width="100" height="100"/>

Or you could even provide the absolute URI to that same resource—
assuming the external file could be securely accessed from your web
domain:

<rect fill="url(//example.com/assets/brand.svg#customBlue)"
 width="100" height="100"/>

The lack of support for this option is unfortunate, because the server
concept can be thought of as being just another form of asset library,
a way of storing commonly used colors, gradients, patterns, masks,
and other resources in a single file. For now, if you have paint
servers that are used by multiple SVGs, you need to incorporate
them directly in each document, either by using some pre-
processing on your server or by using AJAX techniques to import
them with client-side JavaScript.

Because numerous things might interfere with the ability to load an
external resource—even separate from browser support—the SVG
fill and stroke properties allow you to specify a fallback color
value. The color is given after the url() reference, separated by
whitespace, like the following:

rect {
 fill: url(brandColors.svg#customBlue) mediumBlue;
}

66 | Chapter 5: Serving Paint

Or, using presentation attributes and hex color syntax:

<rect fill="url(brandColors.svg#customBlue) #0000CD"
 width="100" height="100"/>

If the referenced paint server cannot be loaded, the rectangles will
be painted with the specified solid blue color.

Future Focus
Layered Fill Paint and Fallbacks

SVG 2 introduces layered fills or layered strokes, similar to how CSS box layout
supports layered background images.

As with multiple background images, the multiple paint options will be speci-
fied using a comma-separated list of layers from top to bottom. A fallback
color will still be allowed, at the end of the list, separated by whitespace.

Unlike with the CSS background shorthand—which sets both the list of
background-image values and the single background-color value—that
final color would not normally be drawn underneath the other layers.

A sample declaration would look something like the following:

.typeA {
 fill: url(#pattern1), url(#gradient) mediumBlue;
}
.typeB {
 fill: url(#pattern2), url(#gradient) darkSeaGreen;
}

If the paint servers are loaded correctly, the typeA and typeB graphics would
be distinguished by different patterns layered overtop of the same gradient. If
the paint servers could not be found (perhaps your AJAX script did not run
successfully), then the two classes would be drawn with different solid colors.

If you did want a solid color to be drawn underneath a pattern or gradient, you
would separate the color into its own layer using a comma:

.typeA {
 fill: url(#pattern), mediumBlue;
}
.typeB {
 fill: url(#pattern), darkSeaGreen;
}

Identifying Your Assets | 67

In this case, both classes of graphics use the same pattern (which maybe adds
a textured effect), but layered over different solid colors.

The Solid Gradient
Oftentimes, especially when working with commercial uses of color,
a designer will give that color a specific name. The same color may
show up in many graphics related to the brand: different versions of
the company logo, heading text, product labels, and so on. Rather
than having to keep a list of RGB values for each color, it is much
easier to define them once, give them a name, and then use that
name in the content. This also makes it much easier if you decide to
change one of the colors later on in the design process!

An SVG paint server is ideally suited for this task. It can be refer‐
enced by ID in the fill or stroke properties of multiple graphics,
but the actual color value is only specified once and can be easily
updated (or animated, as we’ll show in Chapter 14).

The original SVG specifications did not explicitly include a solid
color paint server, but all browsers allow you to use a gradient with a
single, un-changing color to this effect. Example 5-1 demonstrates
this strategy; it uses <linearGradient> elements to define four
named colors that are used in the branding strategy for the fictional
company ACME. The colors are then used to draw a company logo,
which is shown in Figure 5-2.

Example 5-1. Defining named colors for consistent branding using
single-color gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="100mm" height="50mm">
 <title>ACME Logo</title>
 <defs>
 <linearGradient id="AcmeRed">
 <stop stop-color="#FF4022" />
 </linearGradient>
 <linearGradient id="AcmeMaroon">
 <stop stop-color="#80201C" />
 </linearGradient>
 <linearGradient id="AcmeGold">
 <stop stop-color="#FFFC32" />

68 | Chapter 5: Serving Paint

Figure 5-2. ACME Logo using named colors

 </linearGradient>
 <linearGradient id="AcmeWhiteGold">
 <stop stop-color="#FFFCE0" />
 </linearGradient>
 <symbol id="AcmeLogo" viewBox="0,-40 160,80" >
 <path d="M0,0 L40,-40 L40,-20 L160,-20
 L160,20 L40,20 L40,40z"
 fill="url(#AcmeRed)"/>
 <path d="M16,-10 L35,-29 L35,-15 L155,-15 L155,-10 z"
 fill="url(#AcmeGold)"/>
 <path d="M13,-7 L16,-10 L155,-10 L155,-7 z"
 fill="url(#AcmeMaroon)"/>
 <text x="40" y="15"
 style="font-family:Arial; font-weight:bold;
 font-size:20pt;"
 fill="url(#AcmeWhiteGold)">ACME</text>
 </symbol>
 </defs>
 <use xlink:href="#AcmeLogo" />
</svg>

The SVG does not have a viewBox; scaling is controlled by the
<symbol> element that contains the logo. However, default
width and height values ensure that the image has the correct
intrinsic aspect ratio and a reasonable default size when embed‐
ded in other web pages.

The company has four brand colors, AcmeRed, AcmeMaroon,
AcmeGold, and AcmeWhiteGold. Each color is defined as a

The Solid Gradient | 69

paint-server using a <linearGradient> with a single <stop>
element.

The logo itself is defined inside a <symbol> element for easy re-
use in other graphics. The viewBox creates a coordinate system
that is centered on the vertical axis.

Each shape within the symbol uses one of the predefined paint
servers to set the fill color.

The logo is drawn within the SVG with a <use> element. The
<use> element does not have any positioning or sizing
attributes, so the reused <symbol> will scale to fill the entire
SVG area.

Examining the gradients more closely, each consists of two elements,
<linearGradient> and <stop>:

<linearGradient id="AcmeRed">
 <stop stop-color="#FF4022" />
</linearGradient>

The <linearGradient> defines the paint server, and gives it the id
value that will be used to reference it. This gradient element is also a
container for the <stop> element that defines the color. For a nor‐
mal gradient, there would be multiple stops defining the initial,
final, and intermediary colors.

The color is specified using the stop-color presentation attribute.
There is also a stop-opacity presentation attribute, similar to fill-
opacity or stroke-opacity; by default, colors are fully opaque.

Although Example 5-1 works as intended in
every web browser tested, it fails in Apache
Batik, which is more strict on syntax. To make it
work, the <stop> elements also require an
offset attribute, which we’ll discuss in “Gradi‐
ated Gradients” on page 75.

Because the colors are defined in a single location, they can be
changed easily and consistently, or animated uniformly. Because
stop-color is a presentation attribute, you don’t even need to edit
the XML to change the color; you can override it with CSS rules.

70 | Chapter 5: Serving Paint

Figure 5-3. ACME Logo using named colors, converted to mono‐
chrome

As a result, you can use conditional CSS rules to change the color. A
stylesheet with media queries can be used to assign print colors for
high-quality printers, or for grayscale printing. Because the color is
used by reference in the rest of the graphic, the stylesheet does not
need to identify all the elements that use each color, nor does it need
to distinguish between fill and stroke values.

Although stop-color is a presentation attribute,
it is not inherited by default. It must be explicitly
set on the <stop> element, either directly or by
using the inherit keyword.

Example 5-2 gives a sample set of print styles. For color printing, it
redefines the colors using HSL notation, which can then be mapped
to the full color gamut used on the print device. For monochrome
printing, it assigns each color to a shade of gray that will create
stronger contrast than if the colors were converted to gray automati‐
cally. The grayscale version is shown in Figure 5-3.

Example 5-2. Redefining named colors for print graphics

@media print AND (color) {
 #AcmeRed stop { stop-color: hsl(10, 100%, 60%); }
 #AcmeMaroon stop { stop-color: hsl(0, 65%, 30%); }
 #AcmeGold stop { stop-color: hsl(60, 100%, 60%); }
 #AcmeWhiteGold stop { stop-color: hsl(55, 100%, 90%); }

The Solid Gradient | 71

}
@media print AND (monochrome) {
 #AcmeRed stop { stop-color: #555; }
 #AcmeMaroon stop { stop-color: #222; }
 #AcmeGold stop { stop-color: #DDD; }
 #AcmeWhiteGold stop { stop-color: #FFF; }
}

Although most browsers correctly apply CSS
print styles when printing a web page, they do
not always apply monochrome styles when the
user chooses to print in black and white on a
color printer.

Using paint servers to name nonstandard colors in this way has the
additional advantage that it makes your code easier for others to
read. By using meaningful id values, the color and purpose of each
element becomes apparent to any programmer who has to adapt
your work in the future.

Future Focus
The <solidcolor> Paint Server

Named color paint servers have many benefits. However, using a single-color
gradient to create a named color is a bit of a hack; it certainly was not the orig-
inal purpose of these elements.

SVG 2 therefore uses the <solidcolor> element to create a single-color paint
server with no hackery. It uses the solid-color and solid-opacity presen-
tation attributes to set the color value.

Using <solidcolor> elements, the four brand colors from Example 5-1 could
be defined as follows:

<solidcolor id="AcmeRed" solid-color="#FF4022" />
<solidcolor id="AcmeMaroon" solid-color="#80201C" />
<solidcolor id="AcmeGold" solid-color="#FFFC32" />
<solidcolor id="AcmeWhiteGold" solid-color="#FFFCE0" />

This not only reduces the amount of markup, it also makes the purpose of your
code more readily apparent.

The <solidColor> element (note the capital C!) was included in the SVG Tiny
1.2 specification, so it is supported in some graphics programs; you would

72 | Chapter 5: Serving Paint

need to explicitly set the version="1.2" attribute on the root <svg> element.
(In contrast, web browsers ignore version and use the latest spec for all SVG
content.) The latest draft SVG 2 specification changes the capitalization to
make the element more HTML-friendly, which unfortunately breaks compati-
bility in case-sensitive XML viewers.

At the time of writing, neither <solidColor> nor <solidcolor> are sup-
ported in the stable version of any major web browser. However, an imple-
mentation is under development in Firefox.

The Solid Gradient | 73

CHAPTER 6

Simple Gradients

Vector graphics are often thought of as “line drawings,” with sharp
edges and consistent blocks of color. That clean, minimalist style can
often be just what your design needs. But a complete graphics lan‐
guage should also have the option to create soft edges and color
transitions. Gradients are the simplest way to create these effects
in SVG.

Gradients consist of smooth transitions from one color or opacity
state to another. SVG currently supports two types of gradients: lin‐
ear gradients, where each color in the transition is stretched out
along parallel lines, and radial gradients, where each color makes a
circular shape.

This chapter introduces the basic structure of the SVG gradient
elements, and the different color transitions they can create. The
SVG syntax will be contrasted with the CSS syntax to create similar
effects. For now, the examples will use the default orientation
and scale of each gradient, and will use them to fill simple rectan‐
gles. The following chapters will explore the full flexibility of SVG
gradients.

Gradiated Gradients
The single-color gradients from Example 5-1 demonstrated the
bare-minimum markup for a gradient. However, they didn’t use any
of the features that create a gradiated result. For that, we’ll need at
least two color stops so that a color transition can be displayed.

75

The basic structure of a two-color linear gradient is as follows:

<linearGradient id="red-blue">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
</linearGradient>

The two <stop> elements define the colors that should be blended
together to create the gradient; the result is displayed in Figure 6-1,
used to fill a rectangle. Each <stop> has a new attribute, offset, that
positions that color along the distance of the gradient. The offset
value is expressed either as a number between 0.0 and 1.0 or as a
percentage; here, the very beginning of the gradient is pure red and
the very end is light blue.

Figure 6-1. Gradient with two stop colors

When you have more than two color stops, the spacing between the
offsets controls the rate of change in the color, as shown in
Figure 6-2, which uses the following asymmetrical gradient:

<linearGradient id="red-blue-2">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="red" offset="1"/>
</linearGradient>

Figure 6-2. Gradient with three stops at uneven offsets

76 | Chapter 6: Simple Gradients

If the first offset is greater than zero, or the last offset is less than 1,
there will be blocks of solid color on either side of the gradiated sec‐
tion, as in the following gradient, displayed in Figure 6-3:

<linearGradient id="red-blue-3">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
</linearGradient>

Figure 6-3. Gradient with two stops, offset from the edges

This is effectively what happens when you only have one <stop>, as
in the solid-colored gradients (Example 5-1): the offset on both sides
is filled in with the same solid color.

Offsets outside the range of 0 to 1 (or 0% to
100%) will be clamped to that interval.

The order of XML elements matters, and <stop> elements must be
given in order from start to end of the gradient. If you specify an
offset that is less than the offset for a previous stop, it will be adjus‐
ted to exactly match the previous maximum offset.

If consecutive stops have the same offset, you can create a sharp
edge or stripe, as in the following code used to draw Figure 6-4:

<linearGradient id="red-blue-4">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 <stop stop-color="red" offset="0.7"/>
</linearGradient>

Gradiated Gradients | 77

Figure 6-4. Stripes created using a gradient

Transparency Gradients
The previous examples are all fully opaque color gradients, but we
mentioned that gradients can control opacity as well. One way
would be to use rgba() and hsla() semitransparent color values for
stop-color. However, SVG has an easier solution, which allows
opacity to be manipulated independently of color.

The opacity of each gradient stop is controlled by the stop-opacity
property. As with all the opacity properties, the value is a number
between 0 and 1. As with stop-color, the value is not inherited
by default.

Using stop-opacity, you can create a gradient with a single color
transitioning from opaque to transparent, or you can transition both
color and opacity, as in the following gradient:

<linearGradient id="red-blue-5">
 <stop stop-color="red" stop-opacity="0" offset="0"/>
 <stop stop-color="lightSkyBlue" stop-opacity="1" offset="1"/>
</linearGradient>

This semitransparent gradient is displayed in Figure 6-5 as a filled
rectangle superimposed over top of the text “Gradients…”. On the
far left, the color is pure red, but it is completely transparent. As the
gradient progresses to the right, it both changes color and becomes
more opaque, obscuring the text more and more.

78 | Chapter 6: Simple Gradients

Figure 6-5. Semitransparent colored gradient

The only required attribute here is offset; stop-color automati‐
cally defaults to black and stop-opacity to 1 (100% opaque, or no
transparency). We’ve been using the defaults to skip the opacity
value in most of the colored gradients, but you could also skip the
color, as in this gradient which transitions from transparent black to
opaque black:

<linearGradient id="brightness">
 <stop offset="0" stop-opacity="0"/>
 <stop offset="1" />
</linearGradient>

This gradient is displayed in Figure 6-6, again using text drawn
behind the gradient-filled rectangle to emphasize the opacity
change.

Figure 6-6. Single-color opacity gradient

Controlling the Color Transition
More complex gradients can be created with more stops. For
instance, the following will create a rainbow gradient, cycling
through fully saturated colors from magenta to blue to cyan to
green, yellow, red, and back to magenta again:

<linearGradient id="rainbow">
 <stop stop-color="#F0F" offset="0"/>

Controlling the Color Transition | 79

 <stop stop-color="#00F" offset="0.1667"/>
 <stop stop-color="#0FF" offset="0.3333"/>
 <stop stop-color="#0F0" offset="0.5"/>
 <stop stop-color="#FF0" offset="0.6667"/>
 <stop stop-color="#F00" offset="0.8333"/>
 <stop stop-color="#F0F" offset="1"/>
</linearGradient>

The resulting rainbow is shown in Figure 6-7.

Figure 6-7. Rainbow gradient using seven stops

The color stops were specifically chosen so that at least one color
channel would remain maximized at all times, maintaining the
fully saturated effect. The following snippet defines the exact same
gradient, using HSL notation for the colors and percentages for the
offsets:

<linearGradient id="rainbow">
 <stop stop-color="hsl(300, 100%, 50%)" offset="0%"/>
 <stop stop-color="hsl(240, 100%, 50%)" offset="16.67%"/>
 <stop stop-color="hsl(180, 100%, 50%)" offset="33.33%"/>
 <stop stop-color="hsl(120, 100%, 50%)" offset="50%"/>
 <stop stop-color="hsl(60, 100%, 50%)" offset="66.67%"/>
 <stop stop-color="hsl(0, 100%, 50%)" offset="83.33%"/>
 <stop stop-color="hsl(-60, 100%, 50%)" offset="100%"/>
</linearGradient>

The color magenta—also known as fuchsia—is
defined using both a hue of 300° (the start of the
gradient) and a hue of –60° (the end of the gra‐
dient). Just as these are the same angle on a cir‐
cle, they are the same hue on the color wheel.

Although the colors can be specified using HSL values, the colors
are blended in straight lines through RGB color space, not by cir‐
cling around the HSL color wheel. As mentioned in “Mixing and
Matching” on page 48, the intermediary colors are affected by the

80 | Chapter 6: Simple Gradients

Figure 6-8. Rainbow gradients using red, blue, and green stops (top),
and using magenta, cyan, and yellow stops (bottom)

sRGB model’s weighting of color brightness. Once adjusted to the
sRGB model, each channel (red, green, and blue) is then increased
or decreased independently.

If we had not specified both primary and secondary colors, the mid-
point between magenta (#F0F) and cyan (#0FF) would not normally
be fully saturated blue (#00F). Instead, it would be a much lighter
blue, with both the red and green channels partially lit. If you were
to blend pure red (#F00) with saturated blue (#00F), the result would
be a dark purple—with both color channels halfway between fully lit
and off—not a fully saturated magenta.

Figure 6-8 compares the deep, muddy blends generated from the
primary colors with the much lighter, spring-toned gradient from
the secondary colors. The complete code for the figure is presented
in Example 6-1.

Example 6-1. Comparing two multicolored gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2in">
 <title xml:lang="en">Dark and Light Rainbow Gradients</title>
 <linearGradient id="primary">
 <stop stop-color="#F00" offset="0"/>
 <stop stop-color="#00F" offset="0.3333"/>
 <stop stop-color="#0F0" offset="0.6667"/>
 <stop stop-color="#F00" offset="1"/>

Controlling the Color Transition | 81

 </linearGradient>
 <linearGradient id="secondary">
 <stop stop-color="#F0F" offset="0"/>
 <stop stop-color="#0FF" offset="0.3333"/>
 <stop stop-color="#FF0" offset="0.6667"/>
 <stop stop-color="#F0F" offset="1"/>
 </linearGradient>
 <rect width="85.714%" height="1in" x="0" y="0"
 fill="url(#primary)" />
 <rect width="85.714%" height="1in" x="14.286%" y="1in"
 fill="url(#secondary)" />
</svg>

Although the <linearGradient> elements could be contained
within a <defs> block, it is not necessary—a gradient is never
drawn directly regardless.

Each of these gradients uses three colors, but four stops, in
order to cycle back to the starting color at the end.

The two rectangles are each six-sevenths of the figure wide
(85.714%), offset by one-seventh (14.286%) of the width of the
figure (one-sixth of the rectangle width), in order to align the
parts of the gradient with approximately the same hue. Note
that the hues do not perfectly align because of the adjustments
from the sRGB model; for example, halfway between magenta
and cyan, the color is still slightly purplish.

As Figure 6-8 demonstrates, the markup to define paint servers can
sometimes be longer than the markup to define the shapes being
painted. For better organization, the reusable content is usually
placed at the top of the file, and is often grouped together within a
<defs> (definitions) element. Alternatively, if a gradient is only
being used once, you may wish to define it immediately before the
shape it will be used with.

For optimal browser support, always define your
gradients earlier in the document than the ele‐
ments that use them. Many versions of Safari
will not correctly apply content defined later in
the file.

82 | Chapter 6: Simple Gradients

CSS Versus SVG
Defining Gradients with CSS Functions

Gradients were introduced to CSS 3 with the Image Values and Replaced Con-
tent Module; the specification is a W3C candidate recommendation and CSS
gradients are supported in all the latest web browsers. Support for older
browsers can be extended by duplicating your style declarations with older,
experimental prefixed syntax; there is no support in Internet Explorer versions
prior to 10, or in the Opera Mini browser.

Although the final appearance of CSS and SVG gradients are much the same,
there are fundamental differences in the way they are defined and used. In
addition, there are more easy-to-overlook differences in the details, which we’ll
highlight over the course of the next few chapters.

The most obvious difference is in the way they are defined: SVG gradients are
created with XML markup elements, while CSS gradients are created using
functional notation within a stylesheet.

A simple linear gradient is defined in CSS with the linear-gradient function,
the parameters of which are a comma-separated list of color stop values. Each
stop consists of the color value and then the offset value, separated by white-
space, as follows:

background: linear-gradient(red 0%, lightSkyBlue 100%);
background: linear-gradient(#F0F 0%, #0FF 33.33%,
 #FF0 66.67%, #F0F 100%);

The default direction of a CSS linear gradient is from top to bottom, in contrast
to the default for SVG which is left to right. (We’ll show how you can change
the orientation of both types of gradients in Chapter 7.)

If the offset values are omitted, the stops are distributed evenly from 0% to
100%. The following declarations are therefore equivalent to the previous gra-
dients:

background: linear-gradient(red, lightSkyBlue);
background: linear-gradient(#F0F, #0FF, #FF0, #F0F);

If you specify some—but not all—of the offsets, then the unspecified values
will be distributed evenly between the fixed points.

You cannot specify CSS gradient offsets using decimal numbers in place of
percentages, but you can specify them using lengths with units or calc()
functions. For example, the following CSS creates a background gradient that

Controlling the Color Transition | 83

fades from black to white over the padding region and then stays plain white
for the height of the element, no matter how tall that is:

padding: 1em;
background: linear-gradient(black, white 1em,
 white calc(100% - 1em), black);

You can also use offsets greater than 100% or less than zero, and the colors will
be adjusted as if the visible gradient was part of a larger one.

There is no direct way to set a stop-opacity value with CSS gradients, but
you can use the rgba() and hsla() color functions to define semitransparent
colors.

A more subtle difference between CSS and SVG gradients is that CSS does not
treat paint servers as a unique resource type; instead, CSS gradients are
defined as a standalone vector image with no fixed dimensions or aspect ratio.

CSS gradient functions are therefore used in place of url() references to
image files, primarily within background-image lists (or the background
shorthand). They can also be used within list-style-image or border-
image properties, although browser support for these properties lagged
behind support for background gradients.

CSS gradients cannot currently be used to replace a paint server reference in
the fill or stroke property of SVG elements, although this will almost cer-
tainly change in SVG 2.

84 | Chapter 6: Simple Gradients

CHAPTER 7

Gradients in All Shapes and Sizes

So far, we’ve discussed how to create gradients, and how to position
color and opacity stops in between the beginning (left) and end
(right) of the gradient. Now, if all of your graphical needs involved
gradients that went from left to right, then you’d be set. However, it’s
likely that you might want gradients that go from top to bottom, or
perhaps at a 60° angle, or otherwise transformed.

This chapter discusses the two ways in which you can control the
position of a linear gradient, and also how you can control its scale.
We’re going to assume you’re already comfortable with basic SVG
shape elements (particularly <line>), coordinate systems, and trans‐
formations. There are a number of tricky little distinctions to be
aware of, and once again there are details that differ between SVG
and CSS, so we’ll be highlighting those as well.

One thing we can’t do much about is the significant quality differ‐
ences between web browsers when it comes to how smoothly gradi‐
ents are rendered. Particularly when using sharp color transitions,
be sure to test your code to see if the results are acceptable.

The Gradient Vector
The first approach to positioning a gradient uses x1, y1, x2, and y2
attributes to position the start and end of the gradient, similar to
drawing a line. By default, x2 is 100% and the other attributes are 0.
If you drew a line with these attributes, it would go from left to right
across the top of the drawing:

85

<line x1="0" y1="0" x2="100%" y2="0" />

In contrast, if you wanted a diagonal line from the top left to the
bottom right, you would use the following:

<line x1="0" y1="0" x2="100%" y2="100%" />

What do the same attributes mean for a linear gradient? The line
they define is known as the gradient vector. Stop offsets—and the
blended values in between them—are measured according to the
distance along that line. The colors are then extended infinitely to
either side of the line. So for the following gradient, the blue stop is
in the top left corner (the point defined by x1 and y1), while the
green stop is in the bottom right corner (defined by x2 and y2):

<linearGradient id="blue-green"
 x1="0" y1="0" x2="100%" y2="100%" >
 <stop stop-color="blue" offset="0"/>
 <stop stop-color="darkSeaGreen" offset="1"/>
</linearGradient>

You can of course take advantage of the default values for the
attributes, and write the same gradient using only the following
attributes:

<linearGradient id="blue-green" y2="100%" >

Figure 7-1 shows rectangles filled with linear gradients using all pos‐
sible combinations of 0% and 100% for the gradient vector
attributes, except for the combinations that would make the start
and end points the same. Each column starts the vector in a differ‐
ent corner—defined by the (x1,y1) values—and then each row uses a
different end point.

If the start and end points of the gradient vector
are the same, the shape will be filled with a solid
color. Which solid color, however, is currently
dependent on the browser. The SVG specifica‐
tions say that the entire area should be painted
with the color of the last gradient stop, but at the
time of writing, Blink and WebKit browsers and
Internet Explorer use the first gradient stop.

Example 7-1 presents part of the code used to draw Figure 7-1. The
code makes use of a convenient shorthand for gradients: if you use
the xlink:href attribute of one gradient to reference another, the
new gradient is built by starting from the old one and then changing

86 | Chapter 7: Gradients in All Shapes and Sizes

Figure 7-1. Gradients defined with different gradient vectors

it to match any new attributes. If the new gradient does not have any
<stop> elements—as in the example—the stops from the referenced
gradient are used.

The xlink:href value is a URL, but according
to the SVG 1.1 specifications should point to an
element in the same document. Firefox, how‐
ever, supports links to gradients defined in
external files.

The example then redraws each gradient vector as a line overtop the
gradient; line markers are used to draw arrows at the end of the line
so you can tell which way it is pointing.

Example 7-1. Using attributes to position the gradient vector

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="300px" viewBox="0 0 400 300">
 <title>Same Gradient, Different Vectors</title>
 <style type="text/css">

The Gradient Vector | 87

 line {
 stroke: darkMagenta;
 stroke-width: 2;
 marker-start: url(#start);
 marker-end: url(#end);
 }
 marker {
 fill: darkMagenta;
 stroke: none;
 }
 svg {
 overflow: visible;
 }
 </style>
 <defs>
 <linearGradient id="blue-green" >
 <stop stop-color="blue" offset="0"/>
 <stop stop-color="darkSeaGreen" offset="1"/>
 </linearGradient>
 <marker id="start" viewBox="-2 -2 4 4">
 <circle r="1.5"/>
 </marker>
 <marker id="end" viewBox="-4 -2 4 4" orient="auto">
 <polygon points="-4,-2 0,0 -4,2"/>
 </marker>
 </defs>

 <g transform="translate(2,2)">
 <svg width="1in" height="1in">
 <linearGradient id="blue-green-1" xlink:href="#blue-green"/>
 <rect width="100%" height="100%" fill="url(#blue-green-1)"/>
 <line x1="0" y1="0" x2="100%" y2="0"/>
 </svg>

 <svg width="1in" height="1in" x="0" y="100">
 <linearGradient id="blue-green-2" xlink:href="#blue-green"
 x2="100%" y2="100%"/>
 <rect width="100%" height="100%" fill="url(#blue-green-2)"/>
 <line x1="0" y1="0" x2="100%" y2="100%"/>
 </svg>

 <!-- 9 more samples omitted for length -->

 <svg width="1in" height="1in" x="300" y="200">
 <linearGradient id="blue-green-12" xlink:href="#blue-green"
 x1="100%" y1="100%" x2="0" y2="100%"/>
 <rect width="100%" height="100%" fill="url(#blue-green-12)"/>
 <line x1="100%" y1="100%" x2="0" y2="100%"/>
 </svg>
 </g>
</svg>

88 | Chapter 7: Gradients in All Shapes and Sizes

The stroke property must be set in order for a <line> to be
visible; the two marker properties create the arrow effect.

The markers are filled to match the color of the line stroke; the
stroke is explicitly set to none to deal with an Internet Explorer
bug, where markers inherit styles from the lines they mark.

The first linear gradient is never used directly; instead, it defines
the gradient stops for all the other gradients.

The <marker> elements draw the arrowhead and the pivot point
for the vectors.

Each swatch is drawn as a 1-inch square (96px); to give a little
padding, the swatches are positioned at 100px intervals, starting
at a 2px offset from the top left.

Each <linearGradient> uses the xlink:href attribute to dupli‐
cate the stops from the master gradient; the blue-green-1 gra‐
dient uses the default positioning attributes to create a left-to-
right gradient.

The <line> explicitly declares the same positioning attributes to
display the vector.

For the second (and subsequent) swatches, the gradient vector
must be defined using explicit values for some or all of the posi‐
tioning attributes.

You should be able to figure out the rest of the code from the
arrows displayed in Figure 7-1; it’s much too repetitive to print
it all in the book. If you wanted to go for bonus points, you
could write JavaScript to generate all the elements instead of
repeating the markup.

For the final gradient, all of the positioning attributes are set
explicitly to create a gradient vector the runs from right-to-left
across the bottom of the rectangle. Note, however, that the final
gradient looks exactly the same as the one with a vector from
right-to-left across the top of the rectangle.

The Gradient Vector | 89

All of the gradient samples in Figure 7-1 extend across the entire
square, from one corner to another. This is not required. If the vec‐
tor does not cover the entire shape, the solid color will (by default)
be extended on either side. This effect is similar to that created by
offsetting the first and last stop away from the start and end of the
gradient vector.

Changing the gradient vector length and chang‐
ing the offsets have different effects when using
repeating gradients, which we’ll discuss in Chap‐
ter 8.

The start and end points of the gradient vector can also extend out‐
side the 0% to 100% range; unlike with stop offsets, there is no
clamping. However, at this point you may be asking “100% of what?”

The Object Bounding Box
In Example 7-1, we used nested <svg> elements to create local
coordinate systems in which each rectangle—and therefore each
gradient—took up 100% height and width. This meant that we could
use percentages for the coordinates of the <line> elements and have
them directly match the percentages used for the gradient vector.

In general, however, the shape that you are filling with the gradient
will not take up the entire coordinate system. So it’s important to
understand that the values used in the gradient vector attributes
are not, by default, measured in the local coordinate system that is
used when drawing a <line>. Instead, they are defined in a new
coordinate system based on the object bounding box of the shape
being filled.

What’s an object bounding box? For a rectangle like the ones used in
Example 7-1 it’s, well, the rectangle. Specifically, the geometric area
of the rectangle itself, without any strokes. For any other shape, it’s
the tightest rectangle that can enclose that shape within its (possibly
transformed) coordinate system. Again, the bounding box does not
include any strokes or markers.

90 | Chapter 7: Gradients in All Shapes and Sizes

Figure 7-2. Gradients defined with different gradient vectors, used to
fill circles

If the shape has a height or width of zero after
excluding strokes or markers, the bounding box
will be empty and the gradient will be treated as
if it was in error (the fallback color will be used).
This can be a problem when stroking straight
lines; we’ll discuss workarounds in Chapter 13.

For non-rectangular shapes, the gradient vector might start and end
outside the shape even if the vector start and end points are all
within the 0% to 100% range. Figure 7-2 shows what happens if you
replace all the rectangles from Example 7-1 with circles of the form:

<circle cx="50%" cy="50%" r="50%" fill="url(#gradient-id)"/>

Each circle fills up its local coordinate system as much as it can,
but it doesn’t reach to the corners. The gradient definitions haven’t
changed, so the gradient vectors do reach to the corners. The result
for the diagonal vectors is that the stop colors at the start and end of
the gradient are clipped out. To revisit our paint server analogies,
the painted effect is scaled to fit the entire object bounding box

The Object Bounding Box | 91

and only later is the masking tape removed to reveal the shape
underneath.

As mentioned, the object bounding box is an entire new coordinate
system. Not only are percentages scaled to fit the box, but so are
basic user units. One unit in the horizontal direction equals 100% of
the bounding box width, and one unit in the vertical direction
equals 100% of the height. In other words, you can use decimals
between 0 and 1 in place of the percentages.

You can even use lengths with units, but—as with every other form
of scaling in SVG—the length units scale with the user units. A 1px
length equals 1 user unit equals 100% of the width or height under
this new coordinate system. Every other length unit would equal
many times the width or height of the shape.

Because units scale to match the width and height of the bounding
box, a horizontal unit may no longer match a vertical unit. They did
in Example 7-1, because the shapes being filled were square. As a
result, the diagonal gradient vectors were perfect 45° lines. It also
means that lines perpendicular to (i.e., at right angles to) the gradient
vector were perfect 45° lines in the opposite direction, the same
angle as a diagonal between the opposite corners.

This is important, because these perpendicular lines equate to parts
of the gradient that have the same color. The stop color values are
extended on either side of the gradient vector following perpendicu‐
lar lines. When the gradient vector connects opposite corners of the
box on a diagonal, the perpendicular line to the midpoint of the gra‐
dient—equivalent to a stop offset of 50%—stretches along the diago‐
nal between the other corners of the box. Example 7-2 constructs a
gradient with a sharp color transition at a 50% offset to emphasize
this relationship.

Example 7-2. Creating a diagonal stripe from a diagonal gradient

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="100%" height="100%">
 <title xml:lang="en">Stretched Object Bounding Box gradients
 </title>
 <style type='text/css'>
 </style>
 <linearGradient id="diagonal" y2="100%">
 <stop offset="0" stop-color="white"/>

92 | Chapter 7: Gradients in All Shapes and Sizes

Figure 7-3. A diagonal gradient with a sharp transition at 50% offset,
drawn in a square

 <stop offset="0.5" stop-color="red"/>
 <stop offset="0.5" stop-color="blue"/>
 <stop offset="1" stop-color="white"/>
 </linearGradient>
 <rect height="100%" width="100%" fill="url(#diagonal)"/>
</svg>

In Example 7-2, both the SVG as a whole and the gradient-filled rec‐
tangle are set to fill 100% of the width and height of the browser
window or image area the SVG is drawn into. Figure 7-3 shows how
it looks when drawn into a square region. The gradient vector is the
45° diagonal from the top left to bottom right, and the stripe at the
50% gradient offset makes a perfect diagonal from the top right to
the bottom left.

If the shape (or more to the point, the object bounding box) that
you’re filling is not a perfect square, what happens? A diagonal is no
longer a 45° angle. However, thanks to the stretched effect of the
object bounding box coordinate system, the midpoint of the gradi‐
ent still follows a diagonal line between the opposite corners, as
shown in Figure 7-4.

The lines of equal color are no longer perpendicular to the gradient
vector in the normal sense of the word—or at least, not in the out‐
side coordinate system. In the stretched coordinate system, they
have the same mathematical relationship between x and y coordi‐
nates as perpendicular lines normally have. In mathematics, this

The Object Bounding Box | 93

Figure 7-4. A diagonal gradient with a sharp transition at 50% offset,
drawn in an oblong rectangle

“officially perpendicular” line is actually called a normal vector, but
mathematicians have strange ideas about what is normal.

Object bounding box coordinate systems therefore create a non-
uniform scale, similar to a two-parameter scale(sx,sy) transfor‐
mation or a preserveAspectRatio="none" setting.

Drawing Outside the Box
If you were reading carefully, you would have noticed those sneaky
little words “by default” not that long ago. Object bounding box
units are the default for defining a gradient vector, but they aren’t
the only option. You can use the gradientUnits attribute on the
<linearGradient> element to change things up.

Setting gradientUnits to the keyword userSpaceOnUse makes the
browser interpret your x1, y1, x2, and y2 attributes within the coor‐
dinate system used to draw the shape that is being filled.

If you wanted to explicitly set the default behav‐
ior, the other value for gradientUnits is
objectBoundingBox.

94 | Chapter 7: Gradients in All Shapes and Sizes

Figure 7-5. A user-space diagonal gradient with a sharp transition at
50% offset, drawn in an oblong rectangle that completely fills the coor‐
dinate system

Figure 7-5 shows the result of modifying Example 7-2 to change the
gradientUnits value:

<linearGradient id="diagonal" y2="100%"
 gradientUnits="userSpaceOnUse">

Because the rectangle completely fills the coordinate system, the gra‐
dient vector still goes from the top left corner of the rectangle to the
bottom right. However, because the coordinate system itself has not
been distorted, the 50% stop is drawn at a real-world right angle to
this diagonal, and no longer connects the other corners.

Avoiding distorted coordinates is only one reason why you might
use userSpaceOnUse. With userSpaceOnUse units, you can create a
single gradient that continues from one shape to another. This is
demonstrated in Example 7-3, with the results shown in Figure 7-6.

Example 7-3. Using userSpaceOnUse gradient units to fill multiple
shapes

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="300px" viewBox="0 0 400 300">
 <title xml:lang="en">Tropical Sunset User-Space Gradient</title>
 <linearGradient id="sunset" gradientUnits="userSpaceOnUse"
 y1="1em" x2="0" y2="250px">
 <stop stop-color="midnightBlue" offset="0"/>
 <stop stop-color="deepSkyBlue" offset="0.25"/>

Drawing Outside the Box | 95

Figure 7-6. Gradients that continue across multiple shapes

 <stop stop-color="yellow" offset="0.5"/>
 <stop stop-color="lightPink" offset="0.8"/>
 <stop stop-color="darkMagenta" offset="0.99"/>
 <stop stop-color="#046" offset="0.99"/>
 </linearGradient>

 <rect height="100%" width="100%" fill="dimGray" />

 <g fill="url(#sunset)">
 <rect x="20" y="20" width="100" height="120" />
 <rect x="280" y="20" width="100" height="120" />
 <rect x="20" y="160" width="100" height="120" />
 <rect x="280" y="160" width="100" height="120" />
 </g>
 <rect x="140" y="0" width="120" height="300"
 fill="url(#sunset)" />
</svg>

The userSpaceOnUse value for gradientUnits allows us to use
lengths such as 1em or 250px to position the gradient vector.
The x1 attribute isn’t specified, so defaults to 0, while the x2
attribute (100% by default) is reset to 0 to create a straight verti‐
cal gradient.

96 | Chapter 7: Gradients in All Shapes and Sizes

The final two gradient stops have the same offset value, creat‐
ing a sharp stripe for the line between the sunset sky and the
still water; all points in the gradient beyond the end of the gra‐
dient vector will be painted with the dark blue-green color #046.

A gray rectangle fills the entire SVG, behind the elements that
will be filled with the gradient.

As always, you can specify a fill value on a grouping element,
and it will be inherited by the child shapes. However, the gradi‐
ent is still calculated for each shape individually; if they used an
objectBoundingBox gradient, each shape would have a gradient
based on its own bounding box, not on the group.

To confirm that the continuous nature of the gradient has noth‐
ing to do with the group, the central rectangle is drawn sepa‐
rately. It is the full height of the SVG so you can see the entire
gradient, including the solid-colored parts beyond the ends of
the gradient vector.

The initial code for Example 7-3 placed the final,
sharp gradient transition (between the sky and
the sea) at offset="1". According to the specifi‐
cations, when multiple stops have the same off‐
set, the final color value should be used for that
point, and any padded colors beyond. However,
Blink and WebKit browsers ignored the final
stop with that offset value and filled in the
remaining space with dark magenta.
For consistent results between browsers, avoid
using sharp transitions at 0% or 100% offset.

The image in Figure 7-6 could have been drawn by filling the back‐
ground with a single continuous gradient, and then creating com‐
plex paths to re-create the shapes of the patio doors opening onto
that tropical sunset. Instead, the gray door frames are actually the
only places where the backdrop is visible, and the windows and
opening are actually rectangles drawn on top. They appear continu‐
ous because they are all filled with the same continuous gradient.
However, keep in mind that the “user space” is still not an absolute

Drawing Outside the Box | 97

coordinate system—it is affected by any transformations or nested
coordinate systems that apply to the shape being filled.

Although all browsers apply transformations to
user-space paint servers, nested coordinate
systems are more buggy. WebKit, Blink, and
Internet Explorer use the parent SVG of the gra‐
dient, not the shape, to convert percentages to
user units.

CSS Versus SVG
Positioning CSS Gradients with Keywords

The default direction for a CSS linear gradient is top to bottom, as mentioned
in Chapter 6. You can, of course, change this default. The syntax is, of course,
completely different from SVG. The syntax is also rather different from earlier
experimental CSS gradients; to maximize support for earlier browsers, you may
want to use a CSS preprocessor or script that will re-create your gradients in
the older syntaxes.

You specify the direction of a CSS gradient by adding an extra parameter to
the function, before the list of color stops. To create gradients that fit neatly
from side to side, or corner to corner, you use keywords: first the keyword to
and then one of left, right, top, or bottom for sides, or a combination of
those keywords (like top right) for corners. The keyword describes the end-
point of the gradient (where the gradient is going to); the start point is the
opposite side or corner.

When using the corner notation, the angle of the gradient transition is adjus-
ted so that the 50% point of the gradient connects up the other corners.
Although the implementation instructions in the specifications are different,
the effect is the same as a corner-to-corner SVG gradient in object bounding
box units.

Example 7-4 directly compares the SVG diagonal gradient from Example 7-2 (as
an embedded image) with a similar CSS gradient (on the body of the web
page). The CSS gradient is to bottom left, meaning that it is from the top
right. Figure 7-7 shows the result, including the inset SVG gradient.

98 | Chapter 7: Gradients in All Shapes and Sizes

Example 7-4. Creating a diagonal striped gradient in CSS

<!DOCTYPE html>
<html xml:lang="en">
<head>
 <meta charset="utf-8" />
 <title>Positioning CSS gradients using keywords</title>
 <style type='text/css'>
 html, body {
 height: 100%;
 margin: 0; padding: 0;
 }
 body {
 background: linear-gradient(to bottom left,
 white, red 50%, blue 50%, white);
 }
 img {
 position: absolute;
 width: 50%; height: 50%;
 left: 25%; top: 25%;
 }
 </style>
</head>
<body>

</body>
</html>

Figure 7-7. A CSS gradient as a background to an SVG gradient

Drawing Outside the Box | 99

The screenshots for these and other CSS gradients are
from Firefox. At the time of writing, Blink browsers per-
form very poorly when rendering sharp transitions
along diagonal lines in CSS gradients, particularly on
large backgrounds like this; the diagonal line is very
jagged. The problem is reduced, though not elimina-
ted, on SVG gradients.

For smaller images, acceptable results can often be
achieved by separating the stop offsets by a percent-
age point or two, creating a forced anti-aliasing effect.
On a full-page gradient like this, that only created jag-
ged purple lines.

You cannot control the length of the gradient vector in CSS; a linear gradient is
always adjusted to just fit within the image area, from corner to corner. To cre-
ate blocks of solid content on either end, or to extend the gradient beyond the
box, you can adjust the offsets of the first and last stop. As mentioned in the
discusion of SVG gradients, the difference between adjusting the gradient vec-
tor length and adjusting the offsets is only important for repeating gradients.

Gradients in CSS always create rectangular images, so there is no object
bounding box complication; however, if you use border radius or clipping to
reduce the amount of the image visible, this will clip off the corners of the gra-
dient similar to circles and other shapes in SVG.

There is no direct equivalent in CSS to a user-space gradient definition. For
background images, you can achieve a similar effect with background-
attachment: fixed.

Gradients, Transformed
We mentioned at the start of the chapter that there were two ways to
control the direction of a linear gradient in SVG. The second
approach uses the gradientTransform attribute.

The value of the gradientTransform attribute is a list of the same
transformation functions you can use to manipulate the position
and orientation of shapes:

• translate(tx,ty) to shift without distorting

100 | Chapter 7: Gradients in All Shapes and Sizes

• scale(s) or scale(sx,sy) to zoom in or out, stretch, or flip
into a mirror image

• rotate(a) or rotate(a,cx,cy) to rotate, around the origin or
the specified centerpoint

• skewX(a) or skewY(a) to tilt one axis or the other

Any number of these functions can be listed in series.

Future Focus
Using CSS Rules to Transform Gradients

The CSS Transforms Module makes gradientTransform a presentation
attribute that maps to the new transform CSS style property. Although it is
not yet supported in browsers, in the future, you will be able to set transform
styles on the gradient element and they would have the same effect as a
gradientTransform attribute.

The syntax of CSS transformations are slightly different from that used in SVG:
length and angle values require units in CSS, where in SVG 1.1 they are always
specified as numbers. The new module introduces new shorthand transforma-
tion functions, such as translateY and scaleX. It also deprecates the three-
value rotate function (which cannot be used in CSS rules), replacing it with a
separate transform-origin property, which would affect gradient transfor-
mations.

The CSS Transforms Module also introduces three-dimensional transformation
functions. These will not apply to paint servers and would invalidate the trans-
formation list entirely.

The effects you can create by transforming a linear gradient are sim‐
ilar to the effects you create by manipulating the gradient vector. For
any given graphic, one or the other may be easier to calculate.

You can combine transformations with position‐
ing attributes. Just as when transforming shapes,
the positioning attributes are calculated in the
transformed coordinate system.

Gradients, Transformed | 101

What does it mean to transform a gradient? It means that the wall‐
paper created by the paint server is transformed, before cutting out
the shape being filled. In contrast, when you transform a shape that
is filled with a gradient, both the shape and the gradient are trans‐
formed.

Figure 7-8 compares the two effects, using transformed and un-
transformed gradients in transformed and un-transformed shapes.
Example 7-5 provides the code.

Example 7-5. Transforming shapes and gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="500" viewBox="0,0 400,500">
 <title xml:lang="en">Transforming shapes, gradients, or both
 </title>

 <linearGradient id="stripe" x2="0" y2="100%">
 <stop offset="0" stop-color="yellow"/>
 <stop offset="0.1" stop-color="gold"/>
 <stop offset="0.5" stop-color="tomato"/>
 <stop offset="0.5" stop-color="blueViolet"/>
 <stop offset="0.9" stop-color="indigo"/>
 <stop offset="1" stop-color="midnightblue"/>
 </linearGradient>
 <linearGradient id="stripe-transformed" xlink:href="#stripe"
 gradientTransform="skewY(25)" />

 <g fill="url(#stripe)" >
 <rect height="190" width="190" x="5" y="5" />
 <rect height="190" width="190" x="5" y="5"
 transform="translate(200,0) skewY(25)"/>
 </g>
 <g transform="translate(0,200)"
 fill="url(#stripe-transformed)">
 <rect height="190" width="190" x="5" y="5" />
 <rect height="190" width="190" x="5" y="5"
 transform="translate(200,0) skewY(25)"/>
 </g>
</svg>

The basic gradient is oriented top to bottom, as defined by the
positioning attributes: the start point is the default (0,0) and the
end point is (0,100%).

102 | Chapter 7: Gradients in All Shapes and Sizes

Figure 7-8. Skewed gradients and skewed squares: the untransformed
gradients (top) and the skewed gradients (bottom)

The second gradient uses xlink:href to duplicate the same pat‐
tern of color stops; the gradientTransform attribute applies a
skew transformation to the pattern.

The first two <rect> elements are grouped together to apply the
fill value; each will be filled with the un-transformed gradient.

Gradients, Transformed | 103

The second square is translated horizontally into the top right of
the graphic and then skewed. However, the gradient used to fill
it was not skewed separately, so the color stops still align exactly
with the top and bottom edges of the square.

The squares on the bottom row use the transformed gradients.
On the left, the square itself has not been skewed, only the gra‐
dient.

The final square is both skewed itself and filled with the skewed
gradient; the effect on the final gradient angle is therefore com‐
pounded.

The transformation on the shape maintains the relationship between
the gradient colors and the edges of the shape: squares in the same
row of Figure 7-8 have the same colors in the corners, regardless of
whether or not the shape as a whole is skewed. In contrast, when the
gradient is transformed, it moves separately from the shape, chang‐
ing which parts of the gradient are visible. The deep midnight-blue
color is almost completely cut off, while large sections of solid yel‐
low are visible.

There is no direct way to transform a shape but not the paint server
content used to fill it. Even userSpaceOnUse gradients will reflect the
coordinate system transformations on the shape using the gradient.

If you want un-transformed paint server content
inside a transformed shape, you can use a clip‐
ping path to apply the transformed shape
boundaries to a larger, untransformed rectangle
filled with the paint.

Skewing, clearly, is one way gradient transformations can be used to
create a diagonal gradient. Rotating is another. Example 7-6 creates
rainbow gradients rotated at 45° angle-intervals, and then uses these
to fill ellipses arranged around the edges and corners of the SVG.
Figure 7-9 shows the result.

Example 7-6. Transforming gradients using rotations

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="300" viewBox="-200,-150 400,300">

104 | Chapter 7: Gradients in All Shapes and Sizes

 <title xml:lang="en">Rotated Gradients</title>
 <defs>
 <linearGradient id="rainbow" >
 <stop stop-color="darkViolet" offset="0"/>
 <stop stop-color="blue" offset="0.143"/>
 <stop stop-color="cyan" offset="0.286"/>
 <stop stop-color="limeGreen" offset="0.429"/>
 <stop stop-color="yellow" offset="0.572"/>
 <stop stop-color="orange" offset="0.715"/>
 <stop stop-color="red" offset="0.857"/>
 <stop stop-color="maroon" offset="1"/>
 </linearGradient>
 <linearGradient id="rainbow45" xlink:href="#rainbow"
 gradientTransform="rotate(45)"/>
 <linearGradient id="rainbow90" xlink:href="#rainbow"
 gradientTransform="rotate(90)"/>
 <linearGradient id="rainbow135" xlink:href="#rainbow"
 gradientTransform="rotate(135)"/>
 <linearGradient id="rainbow180" xlink:href="#rainbow"
 gradientTransform="rotate(180)"/>
 <linearGradient id="rainbow225" xlink:href="#rainbow"
 gradientTransform="rotate(225)"/>
 <linearGradient id="rainbow270" xlink:href="#rainbow"
 gradientTransform="rotate(270)"/>
 <linearGradient id="rainbow315" xlink:href="#rainbow"
 gradientTransform="rotate(315)"/>
 </defs>

 <ellipse rx="60" ry="40" cx="130" cy="0"
 fill="url(#rainbow)"/>
 <ellipse rx="60" ry="40" cx="130" cy="100"
 fill="url(#rainbow45)"/>
 <ellipse rx="60" ry="40" cx="0" cy="100"
 fill="url(#rainbow90)"/>
 <ellipse rx="60" ry="40" cx="-130" cy="100"
 fill="url(#rainbow135)"/>
 <ellipse rx="60" ry="40" cx="-130" cy="0"
 fill="url(#rainbow180)"/>
 <ellipse rx="60" ry="40" cx="-130" cy="-100"
 fill="url(#rainbow225)"/>
 <ellipse rx="60" ry="40" cx="0" cy="-100"
 fill="url(#rainbow270)"/>
 <ellipse rx="60" ry="40" cx="130" cy="-100"
 fill="url(#rainbow315)"/>
</svg>

The SVG uses a centered coordinate system.

The rainbow gradient has eight stops, so the offsets are multi‐
ples of 1/7 (0.143).

Gradients, Transformed | 105

Figure 7-9. Ellipses filled with rotated gradients

Again, the almost-identical gradients are created by using
xlink:href to link the original gradient, and then adding the
new attributes: in this case, the gradientTransform.

The original gradient is arranged in the default left-to-right ori‐
entation; the ellipse filled with that gradient is positioned on the
right edge of the SVG. The remaining ellipses are positioned in
a clockwise manner around the SVG, to match the increasing
clockwise rotation in the gradient transform angle.

Wait—why are some of the shapes filled with solid violet instead of a
gradient? Because, while the ellipse may have been arranged around
the center of the SVG coordinate system, the gradients are rotated
around the center of their coordinate system: the object bounding
box coordinates for each shape. As with all SVG coordinate systems,
the default origin is the top left corner—and for gradients, there’s no
viewBox attribute to allow you to change that.

The gradient vector (initially pointing left to right along the top of
each shape’s bounding box) is rotated around the origin of each box
(the top left corner). Rotating the vector by 90° (as in the bottom

106 | Chapter 7: Gradients in All Shapes and Sizes

center ellipse) will shift it so that the gradient changes from top to
bottom. However, rotate any further and the vector is pointing out‐
side of the shape’s bounding box. Most or all of the shape is in the
region before the start of the gradient, and is therefore painted solid
with the color of the first gradient stop (the aforementioned
darkViolet).

To effectively use rotational transformations of linear gradients in
object bounding box space, you’ll need additional manipulations.
Some options:

• Use translations within the gradientTransform attribute to
reposition the gradient into the shape.

• Use the three-value rotate(a, 0.5, 0.5) function to rotate
around the coordinate system’s center point (or use transform-
origin if using CSS rules).

• Change the vector’s positioning attributes so that it will be on
the correct side of the origin after the rotation.

There are further complications. Although you’ve transformed the
gradient’s direction, a rotation does not change its length; the stop
offsets will still be judged relative to the horizontal length of the vec‐
tor. Because of the distorted object bounding box coordinates, the
default length of a horizontal gradient (1 horizontal unit) will still
fill the box vertically (1 vertical unit) after a 90° rotation. However, it
won’t match the diagonal length (1.141 stretched units) after a 45°
rotation, so a 50% offset will not neatly connect the other corners of
the box.

In other words, the gradient stretches and shrinks as it rotates, but
not quite the way you might expect.

If you were to use userSpaceOnUse units for the gradient, it would
be rotated around the origin of the entire SVG’s coordinate system—
which in this case, is centered in the middle of the image.
Figure 7-10 shows this effect; the only change in the code, relative to
Example 7-6, is in the attributes for the main gradient element:

<linearGradient id="rainbow" gradientUnits="userSpaceOnUse"
 x1="20%" x2="50%">

The change in x1 and x2 values is required because the percentages
will now be calculated relative to the SVG’s width instead of the
width of each shape. These new attributes only need to be set once;

Gradients, Transformed | 107

Figure 7-10. Ellipses filled with gradients rotated in the user space

they are automatically duplicated to all the other gradients that ref‐
erence this one.

If you look closely, there is another difference between Figures 7-9
and 7-10. To make it easier to see, Figure 7-11 extracts the bottom-
right ellipse from each figure—the one with a gradient transform of
rotate(45). The ellipse on the left uses the object bounding box
gradient, while the ellipse on the right uses user space coordinates.
The angles aren’t the same. With the object bounding box gradient,
45° looks more like 60°.

The reason is that the transformation angles are calculated in the
stretched coordinate system created by the object bounding box. If
the bounding rectangle is roughly square, the final angle will match
the angle you specify. If not—as with these ellipses—the angles will
be squished or stretched accordingly. A 45° angle in object bounding
box space always matches the diagonal of the box, but it won’t neces‐
sarily match the same angle in any other coordinate system.

108 | Chapter 7: Gradients in All Shapes and Sizes

Figure 7-11. Comparing gradients rotated (left) in object bounding box
space and (right) the user coordinate space

CSS Versus SVG
Positioning CSS Gradients with Angles

CSS gradients can also be positioned using rotational angles, although the
result is somewhat different than in SVG.

You specify an angle—with units—as the first parameter to the linear-
gradient function, as an alternative to using directional keywords. Because
the default direction is top to bottom, the angles are calculated relative to a
vertical vector pointing down; a -90deg setting is required to create the SVG
default of a gradient pointing to the right.

Example 7-7 is an adaptation of Example 7-4; instead of comparing a CSS gradi-
ent with an SVG gradient, it compares two CSS gradients. The gradient on the
<body> is angled using the to corner syntax, while the gradient on the inset
<div> element is angled using degrees. The final web page is displayed in
Figure 7-12.

Example 7-7. Using angles instead of keywords to control CSS gradients

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Angling CSS gradients versus using corners</title>

 <style type='text/css'>
 html, body {
 height: 100%;
 margin: 0; padding: 0;

Gradients, Transformed | 109

 }
 body {
 background: linear-gradient(to bottom left,
 white, red 50%, blue 50%, white);
 }
 div {
 background: linear-gradient(-45deg,
 white, red 50%, blue 50%, white);
 position: absolute;
 width: 50%; height: 50%;
 left: 25%; top: 25%;
 }
 </style>
</head>
<body>
 <div></div>
</body>
</html>

Figure 7-12. A fixed-angle gradient on top of a corner-to-corner CSS
gradient

The gradient that is specified using an angle is drawn with exactly that angle,
even though it means that the 50% stop no longer lines up with the bottom
left and top right corners of the element. The length and position of the gradi-
ent vector, however, is automatically adjusted so that the gradient still starts
and ends on the top left and bottom right corners. Again, the only way to cre-
ate a CSS gradient that doesn’t start and end in the corners is to adjust the
offsets of individual color stops.

110 | Chapter 7: Gradients in All Shapes and Sizes

CHAPTER 8

And Repeat

As we manipulated the gradient vector and the gradient transform
in Chapter 7, we pointed out a few times how areas beyond the end
of the gradient vector are filled in with solid color. We’ve also men‐
tioned how this is only the default behavior.

This chapter examines the alternative: repeating gradients that con‐
tinue to transition for as long as required to fill the shape. Again,
there are both SVG and CSS ways of achieving this, and we’ll com‐
pare the two.

With all the features of linear gradients now introduced, the chapter
concludes with some examples of one of the more common—but,
unfortunately, more problematic—uses of SVG gradients: to style
re-usable SVG icons within an HTML page. There are a number of
web browser bugs you’ll need to avoid to get everything working
as intended.

How to Spread Your Gradient
The appearance of a gradient beyond the ends of the gradient vector
is set by the spreadMethod attribute on the <linearGradient> ele‐
ment. It controls how the gradient spreads out toward infinity.

The default value for this attribute is pad. With it, everything before
the start of the vector is padded with the first stop-color, while
everything beyond the end point is padded with the last stop-color.
The examples we’ve seen so far have all used the padding behavior
by default, but Example 8-1 does so explicitly; the x1 and x2

111

attributes limit the gradient to the middle 10% of the object bound‐
ing box, but the rest of the shape will be padded in blue and pink.
The resulting gradient is shown in Figure 8-1.

Figure 8-1. A narrow gradient padded with solid colors

Example 8-1. Using padded gradients to fill a shape

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Padded Gradient</title>
 <linearGradient id="divider" spreadMethod="pad"
 x1="45%" x2="55%" >
 <stop stop-color="lightSteelBlue" offset="0%"/>
 <stop stop-color="darkRed" offset="50%"/>
 <stop stop-color="salmon" offset="100%"/>
 </linearGradient>
 <rect width="100%" height="100%" fill="url(#divider)" />
</svg>

You don’t really need to specify spreadMethod, because pad is
the default value; it is included here for emphasis.

Note that the stop offsets are a percentage of the gradient vector
length, not of the object bounding box or user space.

The other options for spreadMethod are repeat and reflect. Both
of these settings cause the gradient to be repeated as many times as
necessary to fill the shape.

112 | Chapter 8: And Repeat

WebKit (Safari browser and older Chrome) does
not support the repeat and reflect values of
spreadMethod. Firefox temporarily dropped
support for repeated and reflected gradients
when changing underlying code; they were rein‐
troduced in 2014 with version 32. Where not
supported, all gradients are rendered with pad‐
ded colors.
If the repeated effect is essential to your graphic,
you have two workarounds:

• Manually repeat the gradient stops (and
adjust the size of the gradient vector) as
many times as required to fill your shape.

• Use a <pattern> element (as described in
Chapter 10) to create repeating gradient
tiles.

Reflections on Infinite Gradients
The reflect method reverses the order of stops on each repeat
cycle. This creates a smooth transition at the start and end points,
alternating between the specified colors without any sharp disconti‐
nuities. The colors alternate in peaks and troughs.

Taking the same code from Example 8-1 and adding the
spreadMethod="reflect" attribute results in Figure 8-2.

Figure 8-2. A narrow gradient reflected on either side

Although the central gradient is the same as in Figure 8-1, the visual
effect is quite different when that gradient region is repeated and
reflected, creating an appearance of metallic tubes of alternating col‐

Reflections on Infinite Gradients | 113

ors. Note that the repetitions happen in both directions, before and
after the gradient vector you specify.

The effect of a reflected gradient is strongly influenced by the length
of the gradient vector and the level of contrast in the colors.
Example 8-2 creates a more subtle, wave-like reflected gradient,
shown in Figure 8-3.

Figure 8-3. A reflected three-color gradient

Example 8-2. Using reflected gradients to create a smooth repeating
pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Reflecting Gradient</title>
 <linearGradient id="waves" spreadMethod="reflect"
 x2="10%" y2="10%">
 <stop stop-color="darkGreen" offset="0"/>
 <stop stop-color="mediumSeaGreen" offset="50%"/>
 <stop stop-color="skyBlue" offset="100%"/>
 </linearGradient>
 <rect width="100%" height="100%" fill="url(#waves)" />
</svg>

The gradient vector runs from the top left corner (default x1 and y1
values) to the point 10% along the diagonal. This is the distance for
a single, uni-directional cycle of the gradient. The resulting shape
therefore has five pairs (10 cycles total) of alternating gradients,
green to blue and back again, along the diagonal.

Repeating Without Reflecting
Reflected gradients create smooth effects, shifting to one color and
then back to the other. In contrast, when spreadMethod is repeat,
the gradient stops repeat in the same order from beginning to end.

114 | Chapter 8: And Repeat

Unless the start and end colors are identical, this will result in a dis‐
continuity in the gradient.

The sharp difference can be shown by once again adapting the code
from Example 8-1, to now use spreadMethod="repeat". The result
is Figure 8-4.

Figure 8-4. A narrow gradient repeated on either side

A “sharp” difference, indeed—the edges of each gradient cycle now
create sharp lines, as if you’re looking at the creases of an accordion,
each side lit differently.

Repeated gradients are useful when creating striped effects.
Example 8-3 takes advantage of them to create a striped wallpaper
effect, as shown in Figure 8-5.

Figure 8-5. Striped wallpaper created with a repeating gradient

Example 8-3. Using repeating gradients to create a striped pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Repeating Gradient</title>
 <linearGradient id="wallpaper" spreadMethod="repeat"
 gradientUnits="userSpaceOnUse"
 x1="5px" x2="45px">
 <stop stop-color="indigo" offset="50%"/>
 <stop stop-color="deepSkyBlue" offset="50%"/>
 <stop stop-color="lightSkyBlue" offset="90%"/>

Repeating Without Reflecting | 115

 </linearGradient>
 <rect width="100%" height="100%" fill="url(#wallpaper)" />
</svg>

The gradient is sized using user-space units, so the width of
each gradient cycle can be specified in absolute units instead of
as a percentage of the referencing shape. The gradient vector is
horizontal (y1 and y2 are left as the default 0), and each cycle
will be 40px wide—the difference between the x1 and x2 values.

The first stop is positioned halfway into the cycle (50% offset);
the space between the start of each repeat cycle and the offset
will continue to be padded with that first stop color. In other
words, the first half of each repeat will be a solid stripe in
indigo.

After a sharp transition to blue at 50% offset, there is a subtle
gradient to a lighter blue at 90% offset; the remainder of the
repeat cycle will be filled in with the light blue.

Example 8-3 also demonstrates something we mentioned in Chap‐
ter 7: off-setting stops from the start or end of the gradient vector is
not the same (in repeated or reflected gradients) as changing the
length of the vector. The color is padded in between the <stop> and
the end of the vector; the repetition applies to the vector itself.

CSS Versus SVG
Repeating CSS Gradients

The repeating-linear-gradient() function is used to create repeating lin-
ear gradients in CSS. The parameters are the exact same as for a regular linear
gradient: a direction parameter (as keywords or an angle) followed by a list of
color stops.

Repeating CSS gradients were adopted later than reg-
ular gradients in many browsers. However, they are
now supported in the latest versions of all the major
browsers, including Safari (which does not support
repeating SVG gradients).

116 | Chapter 8: And Repeat

The repeated section exactly matches the distance between the first and last
stop. To see the repeats, you need to explicitly set offsets for at least one of
these stops; otherwise, a single cycle will fill up the entire CSS layout box.

To create a block of solid color in between repeats, you would need to provide
two stops with the same color. For example, to create the vertical blue and
indigo wallpaper stripes, the code would be as follows:

background: repeating-linear-gradient(to right,
 indigo 5px, indigo 25px,
 deepSkyBlue 25px,
 lightSkyBlue 41px, lightSkyBlue 45px);

The repeating block is still 40px wide, the difference between the first and last
stop. The in-between stops have also been converted to px values. If we had
used percentage values, they would be calculated relative to the CSS layout
box, not the gradient repeat distance; a 50% offset would be much larger than
the 45px final offset, throwing off the scale completely.

There is no shorthand to create a reflecting gradient in CSS. To create a reflec-
ted pattern, you duplicate the stops yourself to create a complete repeating
block, as in the following code:

background: repeating-linear-gradient(to bottom right,
 darkGreen, mediumSeaGreen 5%,
 skyBlue 10%,
 mediumSeaGreen 15%, darkGreen 20%);

In this case, the offset of the first stop is 0 by default; the repeating pattern is
therefore 20% of the length of the diagonal, the same as a back-and-forth
cycle in Example 8-2.

For horizontal and vertical gradients in CSS backgrounds, you can also create
repeating gradients by using background-size to define a background
image just large enough for one repeat, and tiling it with the background-
repeat property to fill the element.

The tiled approach approach has two conveniences compared to repeating-
linear-gradient. You can use percentages for distance along the gradient,
independent of the repeat size, and you do not have to explicitly include extra
stops for solid colors at the start and end of the repeat. For example, you could
create the wallpaper effect with the following shorthand style rule:

background: linear-gradient(to right,
 indigo 50%,
 deepSkyBlue 50%,

Repeating Without Reflecting | 117

 lightSkyBlue 90%)
 5px 0/40px 100% repeat-x;

If you wanted to change the width or offset of the stripes, you would now only
have to adjust one value (the 40px 100% background-size value for total
width, or the 5px 0 background-position value for the offset), instead of
having to adjust each stop offset.

With a little trigonometry, you can also repeat diagonal gradients this way, by
carefully figuring out the correct background-size to create a repeating tile;
however, rounding effects may create visible edges between tiles.

Using (and Reusing) Gradients in HTML
The gradient examples so far have used the gradients to fill simple
shapes within an SVG file; most have simply filled a rectangle the
full size of the graphic. The use case for a simple SVG gradient back‐
drop is dwindling, however, with widespread support for CSS gradi‐
ents. At the same time, the use cases for other SVG graphics have
been increasing with improved browser support. This includes
inline SVG code, markup within the HTML file that is styled with
the main document’s stylesheets.

Gradients can be used with icons, charts, or other SVG code within
an HTML page. For the most part, it works the same as in a stand-
alone SVG document, but there are a few complications, most of
which can be traced to browser bugs.

For a single large SVG (e.g., a data visualization), all the SVG code,
including gradient definitions, is usually included together.

For an SVG icon system, in contrast, the icons are usually defined
once and then reused with <use> elements. This keeps your web
page organized and allows the main inline markup to be clear and
concise. In the simplest form, each icon instance can be written with
only slightly more markup than an embedded image:

<svg class="icon"><use xlink:href="#star" /></svg>

Elsewhere in the same document, a <symbol> element with
id="star" would define the actual graphic that will scale to fit the
size you assign (in CSS) to an <svg> element of class icon.

118 | Chapter 8: And Repeat

Depending on the use, you may need to include a title tooltip, acces‐
sible name, and fallback text:

<svg class="icon" role="img" aria-labelledby="icon-0001">
 <use xlink:href="#star">
 <title>Tooltip</title>
 <desc id="icon-0001">Alternative Text</desc>
 </use>
</svg>

The <title> content will be used as a tooltip in modern browsers.
The <desc> content will be used as the accessible name (because of
the aria-labelledby attribute) and will also be visible in older
browsers that do not support SVG.

The original graphics in each <symbol> generally have minimal style
rules assigned, so that they can inherit the styles set on the <use>
instances, including interactive styles such as hover or focus effects.
Those styles can include fill or stroke references to a gradient ele‐
ment. However, as previously mentioned in Chapter 5, URL parsing
rules and poor support for external SVG resources prevent those
styles from being assigned in an external stylesheet.

In all browsers except Firefox, paint servers
must be in the same document as the graphics;
style rules therefore also must be defined in that
document, not an external stylesheet.

Theoretically, an external stylesheet could be used with url() refer‐
ences that link back to the main document. In practice, this contra‐
dicts the main purpose of having an external stylesheet that you can
reuse for many documents.

Because they cannot be collected in an external asset file, the gradi‐
ents themselves are normally collected with the icon definitions in
their own <svg> element that does not draw anything to the screen.
(They must be inside an <svg> element to be correctly parsed as
SVG content.)

Using (and Reusing) Gradients in HTML | 119

As mentioned when we introduced user-space
gradients, all browsers except Firefox use the
parent <svg> of the gradient element to scale
userSpaceOnUse gradients, instead of the coor‐
dinate system for the shape being painted. User-
space gradients therefore break when using a
separate definitions SVG.

For optimal browser support and easy to maintain markup, this
SVG is usually placed at the top of the HTML <body>.

Older WebKit browsers will not correctly locate
symbols and other reusable content defined later
in the document than the elements that reuse
them.

Ideally, you would place that definitions SVG inside your HTML
<head> with other non-displayed content. At the very least, you
would use display: none to ensure that extra SVG did not affect
your web page. Unfortunately, neither approach can be used in
practice.

All browsers tested do not render gradients (or
patterns) when an ancestor element of the gradi‐
ent has display set to none, despite very clear
statements in the SVG specifications that
display should not have an effect. This is the
most frustrating example of cross-browser con‐
sistency in SVG.

As a result, you need to use alternative CSS to ensure that the defini‐
tions SVG does not affect your web page, and ARIA attributes to
ensure that assitive technologies do not process it. Furthermore, to
avoid problems if the CSS takes too long to load, you will want to
also use SVG attributes to collapse the size of the definitions ele‐
ment. Finally, because Internet Explorer implements the never-
finalized SVG 1.2 proposal for keyboard control of SVG, you need to
use the focusable attribute to explicitly tell it that the SVG should
not receive keyboard focus.

120 | Chapter 8: And Repeat

Figure 8-6. Gradient-filled and stroked icons in an HTML page

In Internet Explorer, all <svg> elements in
HTML are keyboard-focusable by default, and
are only removed from the tab index with
focusable="false". In the latest versions of
WebKit/Blink browsers, <svg> elements are not
keyboard focusable by default, but can be made
so by setting the tabindex attribute to a positive
integer. Firefox has not yet implemented either
form of focus control.

With all those warnings out of the way, what does it look like to use
gradients for SVG icons in an HTML file? Example 8-4 presents the
core markup and styles for a web page that uses SVG as icons in the
navigation menu. Different-colored gradients are used to distinguish
the current site from navigation options, and to indicate hover/focus
states; Figure 8-6 show the appearance when the first navigation link
is focused.

Using (and Reusing) Gradients in HTML | 121

Example 8-4. Using gradients within SVG icons in an HTML page

HTML MARKUP:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Re-using Symbols with Gradients</title>
 <style type='text/css'>
 /* styles must be included in the same document */
 </style>
</head>
<body>
 <svg class="defs-only" aria-hidden="true" focusable="false"
 width="0" height="0">
 <linearGradient id="silver-shine" spreadMethod="repeat"
 gradientTransform="rotate(40) scale(0.8)" >
 <stop offset="0" stop-color="gray" />
 <stop offset="0.35" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </linearGradient>
 <linearGradient id="gold-shine"
 xlink:href="#silver-shine" >
 <stop offset="0" stop-color="gold" />
 <stop offset="0.35" stop-color="lightYellow" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>
 <symbol id="home" viewBox="0 0 200 200">
 <path d="M30,180 V80 H10 L100,10 190,80 H170 V180
 H90 V100 H60 V180 H30 Z
 M110,100 H150 V140 H110 Z"
 fill-rule="evenodd" />
 </symbol>
 <symbol id="star" viewBox="10 10 170 150">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 <symbol id="magnify" viewBox="0 0 200 200">
 <path d="M10,170 L70,110 A60,60 0 1,1 90,130 L30,190Z
 M85,104 A44,44 0 1,1 96,116 Z"
 fill-rule="evenodd" />
 <path d="M85,104 A44,44 0 1,1 96,116 Z" fill-opacity="0.7" />
 </symbol>
 </svg>
 Skip to Main Content
 <header>
 <h1>Gradients Gone Wild</h1>
 <nav>

 HOME
 <svg class="nav-icon" role="presentation">

122 | Chapter 8: And Repeat

 <use xlink:href="#home" />
 </svg>

 Favorites
 <svg class="nav-icon" role="presentation">
 <use xlink:href="#star" />
 </svg>

 Search
 <svg class="nav-icon" role="presentation">
 <use xlink:href="#magnify" />
 </svg>

 </nav>
 </header>
 <main id="main">
 <h1>Search the Site</h1>
 <form>
 <input type="search" name="q"
 aria-label="Enter Search Terms"/>
 <button type="submit" aria-label="Search">
 <svg>
 <use xlink:href="#magnify" />
 GO
 </svg>
 </button>
 </form>
 </main>
</body>
</html>

The initial <svg> contains the definitions of reusable content. In
addition to the defs-only class that triggers CSS hiding, it has
an aria-hidden="true" attribute and width and height set to 0
in the markup, as well as focusable="false" so that Internet
Explorer does not give it keyboard focus.

The two gradients use the same geometry, so the spreadMethod
and gradientTransform attributes are copied from one to the
other with an xlink:href reference. The colors are different,
however, and the <stop> elements included in the second gradi‐
ent completely replace those from the first.

Using (and Reusing) Gradients in HTML | 123

There are three <symbol> elements defining the icons, each with
a viewBox attribute so they will scale to fit the context in which
they are used.

In the main web page markup, each navigation icon is its own
<svg> nested within the <a> element within the navigation list.
A single <use> element references the symbol; with no position‐
ing attributes on the <use> element, the reused symbol stretches
to fit the size set on the <svg>.

The current page will be represented in the navigation list by an
anchor element (<a>) that does not have an href attribute, and
is therefore not a valid hyperlink.

The markup for the button icon is similar to that for the naviga‐
tion; the difference in appearance stems from the different
inherited styles and scale of the SVG. In modern browsers, there
is no visible text for the button, so an aria-label attribute is
added for an accessible name. The plain-text content (“GO”)
within the SVG provides a fallback for old browsers.

RELEVANT CSS STYLES:

svg.defs-only {
 display: block;
 position: absolute;
 height: 0; width: 0;
 overflow: hidden;
}
svg.nav-icon {
 display: block;
 width: 3em;
 height: 3em;
 margin: auto;
 fill: url(#silver-shine);
}
a:not(:link) > .nav-icon {
 fill: url(#gold-shine);
}
nav a:link:focus, nav a:link:hover {
 stroke: url(#gold-shine);
 stroke-width: 10px;
}
input, button {
 display: inline-block;
 height: 2em;

124 | Chapter 8: And Repeat

 padding: 0 0.5em;
}
input[type="search"] {
 width: calc(100% - 5em);
}
button {
 display: inline-block;
 width: 3em;
 vertical-align: top;
 color: inherit;
}
button svg {
 height: 100%;
 width: 100%;
 fill: currentColor;
}

The defs-only class complements the attributes in the markup,
to ensure that the definitions-only <svg> element does not
affect the layout or visual appearance in any way.

The <svg> elements used as navigation icons have a fixed height
and width. A fill setting referencing one of the gradients is set
on the SVG; it will be inherited by the <use> element and then
by the reused symbol.

The :link pseudoclass is used to distinguish between <a> ele‐
ments with and without valid hyperlinks. When the class does
not match, the SVG within is restyled to use the brighter gold
gradient, to emphasize that this is the active page.

For the other icons, a gold stroke is added to indicate interactiv‐
ity when the user hovers or focuses the link. To prove that they
can be, the styles are set on the <a> element directly. They will
still be inherited by the SVG and its content, because none of
the SVG elements set an alternative stroke style. Nonetheless,
the 10px stroke width will be applied in the final coordinate sys‐
tem of the stroked graphics, which in this case is the coordinate
system defined within each symbol.

Because the styles are all inherited when used, they can be
changed when the graphics are used in a different context on
the same page. The search icon used within a form button will

Using (and Reusing) Gradients in HTML | 125

be styled using the current text color inherited from the
<button>.

Because the SVG markup definitions and styles would be the same
in every page on the web site, it would normally be compiled using
some form of server-side processing. Alternatively, if the SVG code
was extensive, and if most users visit multiple pages on the website,
a client-side AJAX script could be used, allowing the SVG asset file
to be cached on the browser.

Many popular SVG icon systems only use AJAX
to import SVG symbols if external file references
for <use> elements are not supported. WebKit
and Blink browsers currently support these
external symbol references, but not gradients
and other paint servers. Ensure your script has
specific rules for importing gradients and pat‐
terns if required.

Because the main graphical definitions are contained in a separate
block of markup, it is easy to dynamically generate new instances of
each icon, or switch those instances to use different gradients.

Example 8-5 uses the same gradients as Example 8-4, and one of the
same icons, to dynamically generate a star-rating graphic based on a
data attribute included in the HTML code. The gradient and symbol
definitions are static markup, but the <use> instances are generated
as required based on the data.

Because each SVG now contains multiple copies of each icon, a
viewBox on the <svg> and positioning attributes on the <use> ele‐
ments are required to scale everything correctly. In addition, ARIA
attributes are used to convey the rating scale to assistive technolo‐
gies, using the markup for a read-only range slider in a form. The
visual appearance of each rating—how many stars are highlighted in
the graphic—is derived directly from the aria-valuenow attribute,
using CSS rules based on the nth-of-type selector. Figure 8-7
shows the final web page.

126 | Chapter 8: And Repeat

Figure 8-7. Dynamically generated SVG star-rating icons with gradient
effects

Example 8-5. Using gradients with dynamically inserted SVG icons

HTML MARKUP:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Reusing Symbols with Gradients</title>
 <style type='text/css'>
 /* styles must be in the same document */
 </style>
</head>
<body>
 <svg class="defs-only" aria-hidden="true" focusable="false"
 width="0" height="0">
 <linearGradient id="silver-shine" spreadMethod="repeat"
 gradientTransform="rotate(40) scale(0.8)" >
 <stop offset="0" stop-color="gray" />
 <stop offset="0.35" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </linearGradient>
 <linearGradient id="gold-shine" xlink:href="#silver-shine">
 <stop offset="0" stop-color="gold" />

Using (and Reusing) Gradients in HTML | 127

 <stop offset="0.35" stop-color="lightYellow" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 </svg>
 <h1>Image Format Awesomeness:</h1>

 <li id="svg" data-rating="5">
 <abbr title="Scalable Vector Graphics">SVG</abbr>

 <li id="png" data-rating="4">
 <abbr title="Portable Network Graphics">PNG</abbr>

 <li id="gif" data-rating="3">
 <abbr title="Graphics Interchange Format">GIF</abbr>

 <li id="bmp" data-rating="1">
 <abbr title="Bitmap (Windows)">BMP</abbr>

 <script>
 /* script could be loaded as a separate file */
 </script>
</body>
</html>

The graphics definitions are the same as for Example 8-4, except
that only one <symbol> is required.

The main web page markup does not initially have any SVG
content; instead, each item in the list is distinguished by the
data-rating attribute.

CSS STYLES:

html {
 background-color: #222;
 color: lightSkyBlue;
}
svg.defs-only {
 display: block;
 position: absolute;
 height: 0; width: 0;
 overflow: hidden;
}
ol {
 padding: 0;
}

128 | Chapter 8: And Repeat

li {
 display: block;
 text-align: center;
 list-style: none;
 font-size: larger;
}
svg.star-rating {
 display: block;
 margin: auto;
 width: 10em;
 max-width: 100%;
 height: auto;
 max-height: 2em;
}
.star {
 fill: url(#silver-shine);
}
[aria-valuenow="1"] .star:nth-of-type(-n+1),
[aria-valuenow="2"] .star:nth-of-type(-n+2),
[aria-valuenow="3"] .star:nth-of-type(-n+3),
[aria-valuenow="4"] .star:nth-of-type(-n+4),
[aria-valuenow="5"] .star:nth-of-type(-n+5)
{
 fill: url(#gold-shine);
}
[data-rating]:not(.initialized)::after {
 display: block;
 color: darkgoldenrod;
 text-shadow: black 1px 1px 1px,
 gold 0 0 3px;
 content: attr(data-rating);
}

The same svg.defs-only styles from Example 8-4 are used to
hide the element containing all the graphics definitions.

The SVG elements that will contain the star-ratings are given a
fixed width that will scale down if required; a max-height set‐
ting ensures a reasonable height in browsers that do not support
auto-scaling of SVG proportions based on the viewBox.

The star icons are by default set to use the silver-gray gradient.

The correct number of stars are turned gold using a series of
selectors tied to the aria-valuenow attribute. For example,
the :nth-of-type(-n+3) selects the first three <use> icons in

Using (and Reusing) Gradients in HTML | 129

the group; these are the only icons for which a positive integer
value of n will match the index of that element.

If the script does not run—and the SVG stars are therefore not
generated—a CSS pseudo-element will print the value of the
data-rating attribute to the screen.

JAVASCRIPT:

(function(){
 var ns = {svg:"http://www.w3.org/2000/svg",
 xlink:"http://www.w3.org/1999/xlink"};
 var maxRating = 5;
 var index = 0;

 var ratings = document.querySelectorAll("[data-rating]");
 for (var i=0, n=ratings.length; i<n; i++){
 var r = ratings[i];
 //add an `id` value if it doesn't exist
 r.id = r.id || "rating-" + (index++);

 //parse the rating
 var value = parseInt(r.getAttribute("data-rating"),10);

 //create and insert an SVG to represent the rating
 var s = document.createElementNS(ns.svg, "svg");
 s.setAttribute("viewBox", "0 0 " + maxRating + " 1");
 s.setAttribute("class", "star-rating");
 s.setAttribute("role", "slider");
 s.setAttribute("aria-labelledby", r.id);
 s.setAttribute("aria-valuemin", 0);
 s.setAttribute("aria-valuemax", maxRating);
 s.setAttribute("aria-valuenow", value);
 s.setAttribute("aria-readonly", true);

 //create a group and give it a tooltip title
 var g = document.createElementNS(ns.svg, "g");
 s.insertBefore(g, null);
 var t = document.createElementNS(ns.svg, "title");
 t.textContent = value + " out of " + maxRating;
 g.insertBefore(t, g.firstChild);

 //create and insert the stars into the group
 for (var j=0; j<maxRating; j++) {
 var u = document.createElementNS(ns.svg, "use");
 u.setAttribute("class", "star");
 u.setAttributeNS(ns.xlink, "href", "#star");
 u.setAttribute("width", "1");
 u.setAttribute("x", j);
 g.insertBefore(u, null);

130 | Chapter 8: And Repeat

 }

 r.insertBefore(s, null);
 r.classList.add("initialized");
 }
})();

The script selects all elements with the data-rating attribute,
and then loops through them. Each one is assigned an arbitrary
id if one does not already exist; these will be needed for the
ARIA references.

An SVG element is created and customized with viewBox,
class, and ARIA attributes, incorporating the rating value
parsed from the data attribute as well as the maximum rating
stored as a constant in the script.

A <title> element is used to translate the rating into tooltip
text. Because many browsers do not display tooltips for a
<title> element that is a direct child of <svg>, an extra group
(<g>) element is created to hold the title and the star icons.

The star icons themselves (<use> elements) are all identical
except for the x attribute which spaces them out across the
SVG’s width. The icons are added to the <g>.

The entire graphic is inserted at the end of the element that had
the data-rating attribute. That element is then updated with
the initialized class, to turn off the fallback CSS.

The dynamically generated content for each SVG is the same
except for the aria-valuenow and aria-labelledby attributes and
the <title> content. Written as markup, it would look like the fol‐
lowing:

<svg viewBox="0 0 5 1"
 role="slider" aria-labelledby="png"
 aria-valuemin="0" aria-valuemax="5"
 aria-valuenow="4" aria-readonly="true">
 <g>
 <title>4 out of 5</title>
 <use class="star" xlink:href="#star" width="1"/>
 <use class="star" xlink:href="#star" width="1" x="1"/>
 <use class="star" xlink:href="#star" width="1" x="2"/>
 <use class="star" xlink:href="#star" width="1" x="3"/>

Using (and Reusing) Gradients in HTML | 131

 <use class="star" xlink:href="#star" width="1" x="4"/>
 </g>
</svg>

This structure lends itself well to JavaScript libraries that use
markup templates to generate dynamic content. However, be sure to
confirm that the templating tool you are using properly recognizes
SVG elements and assigns them to the SVG namespace; otherwise,
you may end up generating a dynamic DOM with all the correct tag
names and attributes, but no SVG graphics.

132 | Chapter 8: And Repeat

CHAPTER 9

Radial Gradients

Linear gradients, as we have seen, are defined by the coordinates of a
line (the gradient vector). The color stops are positions along this
line. Each color value is then extended to infinity in a straight line
on either side. By adjusting the stops and manipulating the vector,
linear gradients can create many effects. But they aren’t the only gra‐
dient option in SVG.

A radial gradient is one in which color changes radiate outward
from a central point. These gradients can create the appearance of a
glowing light, or can be used to represent the shading on spheres
and similar rounded structures.

In its simplest form, a radial gradient is defined by a circle, with the
colors changing from the circle’s center to its edge. This is the
default behavior for SVG’s <radialGradient> element. As usual, the
default behavior is not the only option, and you can create a number
of effects with SVG radial gradients—including effects you cannot
yet create with CSS gradients.

This chapter looks at all the possibilities, skimming through the
areas where radial gradients are similar to linear gradients and
focusing on the differences. The final section looks at the big pic‐
ture, showing how you can combine many different gradients to cre‐
ate a complex scene.

133

Radial Gradient Basics
Radial gradients are similar to linear gradients in structure, at least
in the markup. As with <linearGradient>, a <radialGradient> is a
container for <stop> elements, each of which have an offset
attribute with values between 0 and 1 (or 0% and 100%). The value
at each stop is still specified with stop-color and stop-opacity
styles or presentation attributes.

The difference is in how those stop offsets are mapped to the two-
dimensional space being filled.

For radial gradients, the offset is a proportion of the distance
between the starting point and the ending circle. You can modify
both the position of the starting point (known as the focal point) and
the size and position of the ending circle.

By default—when a <radialGradient> does not have any position‐
ing attributes—the ending circle is the largest circle that will fill the
object bounding box, and the focal point is its center.

Example 9-1 adapts four of the basic red-blue gradients that were
used to introduce stops and offsets in Chapter 6; the stops are the
same, except now they are inside <radialGradient> elements.

If the radial gradients used in Example 9-1 were
in the same file as their linear counterparts, we
could have used xlink:href to copy the stops,
even though they are different gradient types.

The gradients in Example 9-1 are used to fill circles, with the result
shown in Figure 9-1.

Figure 9-1. Radial gradients with various stop patterns

134 | Chapter 9: Radial Gradients

Example 9-1. Creating radial gradients to fill circles

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1in">
 <title xml:lang="en">Radial Gradients</title>
 <radialGradient id="red-blue">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </radialGradient>
 <radialGradient id="red-blue-2">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="red" offset="1"/>
 </radialGradient>
 <radialGradient id="red-blue-3">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 </radialGradient>
 <radialGradient id="red-blue-4">
 <stop stop-color="red" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.3"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 <stop stop-color="red" offset="0.7"/>
 </radialGradient>
 <circle r="0.5in" cy="50%" cx="12.5%" fill="url(#red-blue)" />
 <circle r="0.5in" cy="50%" cx="37.5%" fill="url(#red-blue-2)" />
 <circle r="0.5in" cy="50%" cx="62.5%" fill="url(#red-blue-3)" />
 <circle r="0.5in" cy="50%" cx="87.5%" fill="url(#red-blue-4)" />
</svg>

Instead of the color stops being drawn as parallel lines, they are
drawn as concentric circles. When the color transitions are sharp, as
in the last sample, this creates a bull’s-eye effect.

Filling the Box
When filling a circle with a radial gradient, the ending circle of the
gradient—the largest circle that will fill the object bounding box—is
the circle itself. The gradient therefore fits the shape perfectly. In
cases where it doesn’t, the extra space is filled according to the
spreadMethod property, which means that, by default, they are pad‐
ded with the final stop color.

Figure 9-2 shows the gradients from Example 9-1 used to fill 1-inch-
square rectangles.

Filling the Box | 135

Figure 9-2. Squares filled with radial gradients

Radial gradients also neatly fill <ellipse> elements, as demon‐
strated in Figure 9-3; each stop now represents a concentric ellipse.

Figure 9-3. Ellipses filled with radial gradients

The same elliptical pattern is also seen when the gradients fill rec‐
tangles that are the same size as the ellipse’s bounding box, as shown
in Figure 9-4.

Figure 9-4. Non-square rectangles filled with radial gradients

136 | Chapter 9: Radial Gradients

Again, the results in Figures 9-3 and 9-4 use the exact same gradi‐
ents that were defined in Example 9-1; there are no attributes on the
gradient elements that indicate an elliptical pattern should be used.
Instead, the elliptical pattern is a direct result of the stretched coor‐
dinate system created by object bounding box units. The stop pat‐
terns are still mathematically “circles,” in that each point with that
stop’s color is the same distance from the center point—but only
when you measure it in the stretched coordinates.

The only way to create a radial SVG gradient
that always follows a perfect circular shape,
regardless of the bounding box dimensions,
is to use gradientUnits="userSpaceOnUse".
You will then need to use other properties to size
and position the gradient to match the shape it
will fill.

When filling squares or rectangles, the 100% stop offset is posi‐
tioned around the (possibly stretched) circle that just touches each
side. In the figures, however, the solid-color padding camouflages
this boundary. The spreadMethod attribute can again be used to
change the padding effect, and again the other options are repeat
and reflect.

As mentioned in Chapter 8, WebKit browsers do
not support repeating or reflecting gradients at
the time of writing. Older versions of other
browsers (pre-2014 Firefox and pre-2013
Chrome) will also pad the gradient irrespective
of the spreadMethod.

When you repeat or reflect a radial gradient, you do not end up with
a dotted pattern of repeating circles. Instead, the color pattern along
each ray—radiating outward from the central point—is extended,
repeating or reflecting, until it reaches the edge of the shape. This
dramatically changes the look of the corners when a radial gradient
is used to fill a rectangle. The different options are used in
Example 9-2; the effects are shown in Figure 9-5.

Filling the Box | 137

Figure 9-5. Radial gradients with different spread methods: pad (left),
repeat (center), and reflect (right)

Example 9-2. Changing the corner effect using spreadMethod

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="1in">
 <title xml:lang="en">Repeating Radial Gradients</title>
 <radialGradient id="red-blue" spreadMethod="pad">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </radialGradient>
 <radialGradient id="repeat" spreadMethod="repeat"
 xlink:href="#red-blue" />
 <radialGradient id="reflect" spreadMethod="reflect"
 xlink:href="#red-blue" />

 <rect height="1in" width="32%" x="0" fill="url(#red-blue)" />
 <rect height="1in" width="32%" x="34%" fill="url(#repeat)" />
 <rect height="1in" width="32%" x="68%" fill="url(#reflect)" />
</svg>

With a repeating gradient, the color switches instantaneously along
the edge of the circle/ellipse, to restart at the first color stop. With a
reflected gradient, the edge is shown as a peak before the color shifts
back. To really see these effects, however, we will first need to create
a radial gradient where the gradient circle doesn’t fill up the entire
bounding box.

CSS Versus SVG
Radial Gradients in CSS

CSS also has radial gradients, defined using the radial-gradient function. As
with linear gradients, the syntax and options are similar but not identical to
SVG gradients.

138 | Chapter 9: Radial Gradients

One important feature of CSS radial gradients—not currently supported in
SVG—is the ability to select between circular and elliptical gradient shapes.
The optional first parameter to the radial-gradient function is a description
of the final shape. It can include the keyword circle to force the gradient to
follow a perfect circle, regardless of the aspect ratio of the image being gener-
ated, or the keyword ellipse to stretch to fit the box.

A perfect circle inside a non-square box cannot just touch all sides of the box.
The shape parameter therefore also contains sizing information, which can be
used for both circles and ellipses. The simplest way to specify the size is to use
one of the four sizing keywords: closest-side, farthest-side, closest-
corner, or farthest-corner.

The information about the ending shape and size of the gradient is followed
by a comma and then a comma-separated list of color stops. For example, the
following background style rule produces the gradient in Figure 9-6:

background: radial-gradient(circle closest-side,
 red, lightSkyBlue);

Figure 9-6. Circular CSS gradient

The default shape is ellipse and the default size is farthest-corner, so the
following gradients are all equivalent:

background: radial-gradient(red, lightSkyBlue);
background: radial-gradient(ellipse,
 red 0%, lightSkyBlue);
background: radial-gradient(farthest-corner,
 red, lightSkyBlue 100%);
background: radial-gradient(farthest-corner ellipse,
 red 0%, lightSkyBlue 100%);

Using farthest-corner means that there are no empty corners to pad, but it
also means that the final color stop will only be visible in the corners, as shown
in Figure 9-7:

Filling the Box | 139

Figure 9-7. Elliptical CSS gradient

The positions of individual color stops can be defined using lengths with units
or as percentages. When percentages are used, they are a percentage of the
circle/ellipse radius. When lengths are used for elliptical gradients, they are
measured along the horizontal radius of the ellipse. If an offset is not specified,
the colors are distributed evenly in the space available.

As with linear gradients, CSS has a separate repeating-radial-gradient
function. The parameters are the same as for the normal radial gradient; the
size of each cycle of the gradient will be calculated from the difference
between the first and last offset.

When the first offset is non-zero, Blink and WebKit
browsers currently fill in the center of the circle with
that solid color. Firefox and Internet Explorer repeat the
gradient inward as well as out, following the specifica-
tion’s generic instructions (for all types of gradients) to
repeat the cycle “in both directions.”

Again, to create a reflected gradient, you must make the gradient circle twice
as large and then double the color stops yourself.

Scaling the Circle
You know by now that the default position and size of a linear gradi‐
ent can be changed with attributes on the gradient element. The
same is true for radial gradients. Just as the positioning attributes for
<linearGradient> looked much like the attributes for a <line>, so
the positioning attributes for a <radialGradient> look much like
those of a <circle>.

140 | Chapter 9: Radial Gradients

Figure 9-8. A reflecting radial gradient with a fixed circle size

The attributes cx, cy, and r on a <radialGradient> define the size
and position of the 100% offset circle. They are all equal to 50% by
default, which creates a circle centered in the coordinate system and
filling its full width and height. The focal point (the point with the
0% offset color) by default shifts to match the (cx,cy) point.

Example 9-3 modifies these attributes to create a small circular
gradient off-center in userSpaceOnUse coordinate system. This pro‐
vides enough space, between the edge of the gradient circle and the
edge of the shape, that a reflect spread method can create a nice
ripple effect, like the waves from a raindrop in a puddle, as shown in
Figure 9-8.

Example 9-3. Controlling the size and position of a radial gradient

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="2in">
 <title xml:lang="en">Repeating Radial Ripples</title>
 <radialGradient id="raindrop" spreadMethod="reflect"
 gradientUnits="userSpaceOnUse"
 cx="30%" cy="70%" r="15px">
 <stop stop-color="lightSteelBlue" offset="0.4"/>
 <stop stop-color="darkSlateGray" offset="0.8"/>
 <stop stop-color="darkSlateBlue" offset="1"/>
 </radialGradient>
 <rect height="100%" width="100%" fill="url(#raindrop)" />
</svg>

Scaling the Circle | 141

The radius of the base circle is 15px, so for every 15px distance,
the gradient cycles through the list of stops—in one direction or the
other. The dark rings in the figure are spaced 30px apart, the
distance required to cycle through the reflected gradient in both
directions.

In contrast, with spreadMethod="repeat", you see the individual
repetitions (and 15px spacing) more clearly, as shown in Figure 9-9.

Figure 9-9. A repeating radial gradient with a fixed circle size

CSS Versus SVG
Controlling the Size and Position of

CSS Radial Gradients
You can control the size and position of the gradient circle in CSS by adding
more information to the first parameter of the radial-gradient or
repeating-radial-gradient function.

The full syntax for that first parameter is given as follows:

[<ending-shape> || <size>]? [at <position>]?

Translated into English that means: optionally, the shape and/or the size, in
either order, optionally followed by the keyword at and the position.

The shape is one of the keywords circle or ellipse. The size can be given
as a closest/farthest-side/corner keyword or it can be given as explicit radius
lengths. Circles have one radius length, ellipses have two: horizontal radius

142 | Chapter 9: Radial Gradients

first, then vertical radius. The shape keyword is not required when you use
lengths for the size, because it can be determined from the number of length
values.

For elliptical gradients, the two radius values can also be specified as percen-
tages of the image width and height, respectively. You cannot currently spec-
ify the size of a circular CSS gradient using percentages. Future versions of CSS
gradients may adopt SVG’s method of calculating circular radius percentages
proportional to the diagonal length; this is now used in the CSS Shapes Mod-
ule for circles.

The position of a CSS radial gradient is equivalent to the cx and cy attributes
for SVG. It may be given as lengths or percentages, or as a combination of the
keywords used for specifying CSS background position. The keyword at must
be included in order to distinguish position information from sizing informa-
tion. The default position is at center, or at 50% 50%.

When positioning a gradient at a side or corner (e.g., at
right top), the distance to the closest-side or
closest-corner may be zero, collapsing circular gradi-
ents into a point and elliptical gradients into linear gra-
dients.

With all that information—and remembering that CSS does not have reflected
gradients, only simple repeating ones—the ripples in a puddle gradient from
Example 9-3 can be re-created in CSS with the following code:

background: repeating-radial-gradient(
 30px at 30% 70%,
 lightSteelBlue 0%, lightSteelBlue 20%,
 darkSlateGray 40%, darkSlateBlue 50%,
 darkSlateGray 60%,
 lightSteelBlue 80%, lightSteelBlue 100%);

The circle’s radius has been doubled (from 15px to 30px) to make room for
both reflections of the gradient; similarly, the percentage offsets have been cut
in half (so that 100% in the SVG gradient becomes 50% of the CSS gradient
cycle) and the stops have been duplicated to fill in the rest of the cycle. Unlike
with repeating linear gradients, you do not have to worry about percentage
offsets upsetting your gradient scale—they are always percentages of the
shape radius you specify.

Scaling the Circle | 143

Adjusting the Focus
There are two other positioning attributes for a radial gradient: fx
and fy. These are the coordinates of the focal point of the gradient.
While the gradient circle describes the position of the 100% offset
stop, the focal point describes the position of the 0% stop.

The gradients we’ve seen have used the default focal point, which
coincides with the circle’s center; the default value of fx is the value
of cx and the default for fy is the value of cy. Any other values cre‐
ate an asymmetrical gradient.

What does it mean to have a focal point other than the center of the
circle? It means that the length of the gradient cycle will be different
in every direction. Every ray radiating out from that point will
pass through all the stop colors by the time it reaches the edge of
the circle.

The focal point should be inside the gradient cir‐
cle; if it isn’t, according to SVG 1.1, it would be
shifted to exactly meet the nearest edge of the
circle. SVG 2 proposes a different behavior,
based on what is currently used in HTML can‐
vas gradient functions. In other words, don’t
expect a consistent appearance cross-browser if
the focal point is outside the circle!

What does it look like to have a focal point other than the center of
the circle? The effect is to compress the gradient in one direction
while expanding it in the other. It’s probably easiest just to show you.

Example 9-4 constructs a grid of gradients, shifting the focal point
to left and right of center using fx, and shifting the center of the gra‐
dient circle up and down using cy. The resulting combinations are
shown in Figure 9-10.

The example uses a spreadMethod of reflect to show how the
repeat distance in any given direction matches the original distance
between the focal point and the circle’s edge. It also just looks really
cool!

144 | Chapter 9: Radial Gradients

Figure 9-10. Comparison of changes in the center of radial gradients
(rows) and changes in the focal point position (columns)

Example 9-4. Controlling the size and position of a radial gradient

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in">
 <title xml:lang="en">Focus Point Versus Center Point</title>
 <defs>
 <radialGradient id="center" spreadMethod="reflect"
 r="30%">
 <stop stop-color="darkRed" offset="0"/>
 <stop stop-color="lightYellow" offset="1"/>
 </radialGradient>
 <radialGradient id="left" xlink:href="#center"
 fx="25%"/>
 <radialGradient id="right" xlink:href="#center"
 fx="75%"/>

 <radialGradient id="left-up" xlink:href="#left"
 cy="25%"/>
 <radialGradient id="left-down" xlink:href="#left"
 cy="75%"/>
 <radialGradient id="center-up" xlink:href="#center"
 cy="25%"/>
 <radialGradient id="center-down" xlink:href="#center"

Adjusting the Focus | 145

 cy="75%"/>
 <radialGradient id="right-up" xlink:href="#right"
 cy="25%"/>
 <radialGradient id="right-down" xlink:href="#right"
 cy="75%"/>

 <rect id="r" width="30%" height="30%" />
 </defs>

 <use xlink:href="#r" x="0%" y="0%" fill="url(#left-up)"/>
 <use xlink:href="#r" x="35%" y="0%" fill="url(#center-up)"/>
 <use xlink:href="#r" x="70%" y="0%" fill="url(#right-up)"/>
 <use xlink:href="#r" x="0%" y="35%" fill="url(#left)"/>
 <use xlink:href="#r" x="35%" y="35%" fill="url(#center)"/>
 <use xlink:href="#r" x="70%" y="35%" fill="url(#right)"/>
 <use xlink:href="#r" x="0%" y="70%" fill="url(#left-down)"/>
 <use xlink:href="#r" x="35%" y="70%" fill="url(#center-down)"/>
 <use xlink:href="#r" x="70%" y="70%" fill="url(#right-down)"/>
</svg>

The gradient that will be used for the center block uses the
default, centered, circle and focal point. The radius is set at 30%
of the object bounding box, to leave room for the repeat effects.

The other gradients for the center row are created by adjusting
the fx to left or right of center, after duplicating the color stops
and radius from the first gradient using xlink:href.

The remaining gradients duplicate the color stops, radius, and
focal point from one of the previous gradients, and then adjust
the cy value.

Because there will be nine rectangles with the same width and
height, a predefined shape is created and then duplicated with
<use> elements.

As you can see, changing the center point of the gradient circle has
the effect of translating the entire gradient pattern. Changing the
focal point, in contrast, significantly changes the overall pattern of
the gradient, particularly in the repeats.

146 | Chapter 9: Radial Gradients

If you changed the center point without chang‐
ing the focal point, that would change the look
of the gradient considerably, of course. In
Example 9-4, the fy vertical position of the gra‐
dient isn’t set, so it automatically adjusts to
match the change in cy.

Future Focus
Widening the Focus Beyond a Point

SVG 2 adds a new fr attribute to radial gradients. It would define a circle
around the focus point that would represent the 0% offset for the gradient. A
similar parameter is already available in HTML canvas drawing functions.

When the focal point is the center of the main circle, the resulting gradient is
the same as having a non-zero first stop offset, except that the extra spacing
would not be included in the repeat cycles. For asymmetrical gradients, the
geometry would be distinct from anything that can currently be generated
in SVG.

Transforming Radial Gradients
The gradientTransform attribute applies to <radialGradient>, and
functions in the same way that it does for linear gradients—it
changes the underlying coordinate system of the gradient, translat‐
ing, rotating, scaling, or skewing not only the center point but the
entire gradient.

Once again, you have to watch out for the effects of the stretched
object bounding box coordinate system. No matter how you rotate
an objectBoundingBox radial gradient, it will always be stretched
out along the longer axis of the shape.

You can, however, create an ellipse stretched along a different axis
by using a skew transformation. Example 9-5 uses the same skew
transformation on three versions of a gradient which differ accord‐
ing to their focal point, as shown in Figure 9-11.

Transforming Radial Gradients | 147

Figure 9-11. Skewed radial gradients, with different focal points

Example 9-5. Skewing radial gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="1in">
 <title xml:lang="en">Skewed Radial Gradients</title>
 <defs>
 <radialGradient id="center" spreadMethod="repeat" r="40%"
 gradientTransform="translate(-0.3,0) skewX(30)">
 <stop stop-color="indigo" offset="0"/>
 <stop stop-color="lightPink" offset="0.5"/>
 <stop stop-color="lightSkyBlue" offset="0.7"/>
 <stop stop-color="indigo" offset="1"/>
 </radialGradient>
 <radialGradient id="left" xlink:href="#center"
 fx="25%"/>
 <radialGradient id="right" xlink:href="#center"
 fx="75%"/>

 <rect id="r" width="30%" height="100%" />
 </defs>

 <use xlink:href="#r" x="0%" y="0%" fill="url(#left)"/>
 <use xlink:href="#r" x="35%" y="0%" fill="url(#center)"/>
 <use xlink:href="#r" x="70%" y="0%" fill="url(#right)"/>
</svg>

The skewX(30) transformation will shift points on the gradient
to the right to an increasing amount as the y-position increases.

The gradient uses the repeat spread method, so the order of
stops will not alternate. However, the first and last stop have the
same color, avoiding a sharp transition.

As in Example 9-4, the alternative gradients are created by shift‐
ing the focal point left and right.

148 | Chapter 9: Radial Gradients

The gradientTransform used in Example 9-5 also includes a hori‐
zontal translation to reposition the center of the gradient, which will
also be affected by the skew.

Transformations on a <radialGradient> are
calculated relative to the origin (top-left corner)
of the coordinate system, not the center of the
gradient.

Skews and off-center focal points allow radial gradients to go
beyond perfect geometric symmetry and provide a sense of three-
dimensionality. They are therefore one way in which gradients can
be used as part of realistic drawings.

Grand Gradients
To create nuanced representations of real objects, you need to factor
in the variation in color created by light and shadow. SVG includes
filter functions expressly intended to simulate lighting effects, but
these add extra processing time. If you can use gradients to achieve
the same effect, it will often be much more efficient—particularly if
you are going to animate the image later.

Figure 9-12 compares the two effects. One shape uses an asymmetri‐
cal radial gradient to simulate a yellow light shining on a red ball,
the other uses lighting filters to achieve a similar effect. The gradient
does not create quite the same three-dimensional curve as the filter,
but it is close. The complete code is presented in Example 9-6.

Example 9-6. Creating lighting effects with gradients or filters

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="2in" >
 <title xml:lang="en">Simulated Lighting Versus
 Lighting Filters</title>

 <radialGradient id="faux-lighting"
 cx="45%" cy="45%" r="60%"
 fx="30%" fy="30%" >
 <stop offset="0.1" stop-color="lightYellow" />
 <stop offset="0.9" stop-color="darkRed" />
 </radialGradient>
 <circle cx="25%" cy="50%" r="0.9in"
 fill="url(#faux-lighting)"/>

Grand Gradients | 149

Figure 9-12. A spotlit ball, approximated with gradients (left) or calcu‐
lated with lighting filters (right)

 <filter id="yellow-glow" primitiveUnits="objectBoundingBox">
 <feGaussianBlur in="SourceAlpha" stdDeviation="0.3" />
 <feComposite in2="SourceAlpha" operator="in" />
 <feSpecularLighting surfaceScale="0.1"
 specularConstant="1"
 specularExponent="20"
 lighting-color="lightYellow"
 result="highlight">
 <fePointLight x="0.35" y="0.35" z="0.7"/>
 </feSpecularLighting>
 <feComposite in="SourceGraphic" in2="highlight"
 operator="arithmetic"
 k1="0" k2="1" k3="0.9" k4="0" />
 <feComposite in2="SourceAlpha" operator="in" />
 </filter>
 <circle cx="75%" cy="50%" r="0.9in"
 fill="darkRed" filter="url(#yellow-glow)" />
</svg>

The <radialGradient> defines a circle that is slightly larger
than the bounding box, and off-center towards the upper left.
The focal point is shifted even further to the upper left. This
side of the shape will therefore be more strongly influenced by
the initial color stops, while the bottom right will be dominated
by the final color stop.

The stops are offset slightly from the start and end of the gradi‐
ent rays, creating a small circle of solid light yellow around the

150 | Chapter 9: Radial Gradients

focal point and revealing the final red at the far edge of the gra‐
dient circle.

The effect is applied simply as the fill property of the first
circle.

The filter starts by generating a blurred version of the alpha
channel of the shape, then clipping it to the original shape
edges. This creates a layer whose alpha value decreases as it gets
closer to the shape’s edges.

The lighting filter uses the alpha channel from the previous step
as a bump map to define the three-dimensional shape of an
object. It then calculates the amount of light that would be
added to the shape, using the various attributes to define the
reflectiveness of the shape and using the <fePointLight> ele‐
ment to define the position and pattern of incident light. The
lighting-color property specifies the same light yellow color
for the light.

The final steps combine the lighting effect with the underlying
colored graphic, again clipping it so the light is only visible on
the parts of the shape that were originally opaque.

The second circle is filled in solid with darkRed, and then has
the lighting glow applied via the filter property.

One strong justification for using gradients instead of lighting fil‐
ters, currently, is cross-browser consistency. The lighting filters are
inconsistenly implemented between browsers, if they are imple‐
mented at all.

WebKit does not currently implement the light‐
ing effect filters; these filter elements return a
transparent layer. Given the way the layers are
combined in Example 9-6, this results in the
original flat red circle being displayed; for other
filter combinations, the graphic could disappear
completely.

Even in browsers that support filter lighting effects, the exact imple‐
mentations vary considerably. Figure 9-12 showed the result in Fire‐

Grand Gradients | 151

Figure 9-13. A different browser’s rendering of the spotlit ball, with
gradients (left) and with filters (right)

fox; Figure 9-13 is the same code rendered by Chrome, with a much
stronger washed-out effect of the light. Internet Explorer generates
an image in-between the two.

The other reason to opt for gradients over filters is performance, for
two reasons. First, the lighting-filter is a many-step computation
while gradient generation is a single function. Second, filters are cal‐
culated on the rendered, rasterized image, and therefore need to be
recalculated any time the underlying shape changes or moves.

CSS Versus SVG
Mimicking a Focal Point with CSS Radial Gradients

There is currently no way in CSS to adjust the focal point of the gradient. In
some cases—for non-repeating gradients—you can mimic the effect of an
asymmetrical focal point by using layered background images. The focal point
color is drawn as a color-to-transparent gradient or gradients, overtop of
another gradient representing the ending shape.

Using this approach, Example 9-7 re-creates the spotlit red ball with CSS gradi-
ents. Figure 9-14 shows the result beside the original SVG gradient version.

152 | Chapter 9: Radial Gradients

Figure 9-14. Generating a focal point gradient effect, with a single SVG
gradient (left) and with layered CSS gradients (right)

Example 9-7. Simulating off-center radial lighting with layered CSS
gradients

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>CSS and SVG Simulated Lighting Gradients</title>
 <style type='text/css'>
 html, body {
 height: 2in;
 width: 4in;
 margin: 0; padding: 0;
 text-align: center;
 }
 svg, div.sphere {
 height: 1.8in;
 width: 1.8in;
 display: block;
 float: left;
 margin: 0.1in;
 }
 div.sphere {
 border-radius: 50%;
 background:
 radial-gradient(ellipse 40% 40% at 32% 32%,
 lightYellow 15%,
 rgba(100%, 100%, 88%, 0.5) 40%,

Grand Gradients | 153

 transparent),
 radial-gradient(ellipse 55% 55% at 40% 40%,
 rgba(100%, 100%, 88%, 0.4) 20%,
 transparent),
 radial-gradient(ellipse 60% 60% at 45% 45%,
 rgb(100%,55%,45%), darkRed 90%);
 }
 </style>
</head>
<body>
 <svg>
 <radialGradient id="faux-lighting"
 cx="45%" cy="45%" r="60%"
 fx="30%" fy="30%" >
 <stop offset="0.1" stop-color="lightYellow" />
 <stop offset="0.9" stop-color="darkRed" />
 </radialGradient>
 <circle cx="50%" cy="50%" r="50%"
 fill="url(#faux-lighting)"/>
 </svg>
 <div class="sphere"></div>
</body>
</html>

The first two CSS rules layout the overall web page to match the SVG lay-
out from Example 9-6, including the (not usually recommended) absolute
dimensions for the entire page.

The gradient effect is applied as layered background images, with three
separate radial-gradient functions combining to create the shift from
the focal point to the ending circle. The in-between stops use a partially
transparent version of the lightYellow color, created with the rgba
color function.

The SVG gradient is included for comparison as inline SVG code.

The HTML markup for the CSS gradient is a single <div> element to dis-
play the background content.

154 | Chapter 9: Radial Gradients

For optimal results on all browsers, the transparent
keyword used in Example 9-7 should be replaced with
another rgba function that matches the light yellow
highlight color. Some older versions of Firefox will shift
colors toward black when transitioning to the
transparent keyword (which is officially transparent
black). The specifications now provide explicit guid-
ance that avoids this problem.

There are currently proposals to add focal point parameters (including a focal
radius) to CSS gradients to make this effect easier, but the exact syntax has not
yet been finalized.

SVG gradients are a deceptively simple topic. There may only be two
types of gradients, linear and radial, but there are numerous possible
variations to create different effect. Using all these variations, gradi‐
ents can add considerable nuance and detail to simple vector shapes.

Gradients are a major part of the SVG developer’s toolkit, and they
can be used to create remarkably complex and sophisticated images.
In most cases, these images do not consist of a single, geometrically
exact gradient, but rather multiple, overlapping elements with parti‐
ally transparent gradients.

A good exercise is to consider something like a theatrical stage,
complete with red velvet side and top curtains and a stage with a
spotlight. As a graphic, it’s handy for highlighting a given object—a
picture, slide, video or block of text—and because it is SVG, the cur‐
tains can even be directly manipulated to open and close.

When curtain fabric folds in and out, it is caught by the available
light to show areas of brightness and shadow, which can be repre‐
sented well with a shaded red gradient. One of us (Amelia) had
previously created a poor approximation of this scene using simple
rectangles filled with repeating gradients. The version displayed in
Figure 9-15 was created by Kurt, carefully shading the curtains by
positioning the stops in the gradients to match the curves in the
paths.

The image is made up of three distinct layers.

Grand Gradients | 155

Figure 9-15. A curtain-draped stage, built from SVG gradients

At the back, covering the full width, is the stage, which is simply a
rectangle the width of the graphic starting about 350 units from the
top, with multiple gradient overlays on it to create the appearance of
a spotlight on a brown wooden floor. The lip of the stage is actually
part of one of the gradients, and illustrates how you can use such
gradients to “draw” hard boundaries. The light, in turn, is mostly
transparent, with the opacity increasing toward the center and the
focal point offset to create the effect of a spotlight hitting the stage
at an angle. This is a soft spotlight, where the edges are not clearly
delineated but instead appear to spill over into the surrounding
darkness.

The next layer consists of the left and right side curtains, which use
the same core path shape and a reasonably complex red/maroon
pattern that corresponds to highlights and shadows in the folds
themselves. The right curtain is the same as the left curtain, but flip‐
ped and translated to align with the right side of the screen. Each
side curtain has a shadow curtain behind it, created from the same
path but displaced slightly, and with an opacity of 50%.

Finally, the top curtain overlays the other curtains, and like the side
curtains features a very elaborate linear gradient with 40 stops,
determined primarily by trial and error. It also has an offset shadow.

156 | Chapter 9: Radial Gradients

The complete code for the image is presented as Example 9-8.

Example 9-8. Using complex and layered gradients to create a stage

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="100%" height="100%" viewBox="0 0 1000 650"
 id="curtains" >
 <title xml:lang="en">Stage Curtains</title>
 <style type="text/css">
 .curtain-shadow {
 fill: black;
 fill-opacity: 0.5;
 }
 .side-curtain {
 fill: url(#side-curtain-gradient);
 }
 .ceiling-curtain {
 fill: url(#ceiling-curtain-gradient);
 }
 </style>
 <defs>
 <path id="curtain" transform="scale(0.55)"
 d="m 0.319,0 0.252,1000 c 0,0 -2.761,40 44.129,30
46.9,-10 38.6,-20 46.9,-10 8.3,0 27.4,10 47.4,0 19,-21 63,10 63,10
0,0 11,10 44,0 33,-10 58,0 58,0 0,0 19,40 52,20 33,-30 34,-30
34,-30 L 390,-0.53 z"/>
 <path id="ceiling-curtain" transform="scale(1,0.5)"
 d="m 0,0 1000,0 0,180 c 0,0 -26,17 -49,9 -22,-9
-48,-32 -57,-18 -8,15 -31,3 -54,-5 -23,-9 -20,45 -49,23 -28,-23
-11,11 -34,0 -23,-12 -23,-32 -46,-18 -22,15 -17,-8 -37,-8 -20,0
-25,23 -54,11 -29,-11 -43,-25 -49,-3 -5,23 -5,23 -28,0 -23,-22
-46,6 -46,6 0,0 -28,12 -43,-3 -14,-14 -54,-8 -54,6 0,14 -23,20
-31,3 -9,-17 8,26 -29,8 -37,-17 -11,-34 -40,-17 -29,17 -49,-3
-63,-5 -14,-3 -14,37 -28,25 -15,-11 -9,-14 -32,-17 -23,-3 -28,37
-46,23 C 114,186 120,157 106,169 91.4,180 85.7,214 74.3,203
62.9,191 60,171 48.6,177 37.1,183 25.7,203 25.7,203 L 2.86,177
C 0,171 0,0 0,0 z"/>
 <linearGradient id="side-curtain-gradient">
 <stop stop-color="#800000" offset="0"/>
 <stop stop-color="#c00000" offset="0.08"/>
 <stop stop-color="#e00000" offset=".15"/>
 <stop stop-color="#800000" offset="0.24"/>
 <stop stop-color="#400000" offset="0.26"/>
 <stop stop-color="#600000" offset="0.28"/>
 <stop stop-color="#800000" offset="0.30"/>
 <stop stop-color="#c00000" offset="0.33"/>
 <stop stop-color="#800000" offset="0.41"/>
 <stop stop-color="#c00000" offset="0.56"/>
 <stop stop-color="#800000" offset="0.75"/>

Grand Gradients | 157

 <stop stop-color="#400000" offset="0.82"/>
 <stop stop-color="#800000" offset="0.89"/>
 <stop stop-color="#C00000" offset="0.94"/>
 <stop stop-color="#800000" offset="1"/>
 </linearGradient>
 <linearGradient id="ceiling-curtain-gradient">
 <stop stop-color="#400000" offset="0"/>
 <stop stop-color="#700000" offset="0.013"/>
 <stop stop-color="#800000" offset="0.013"/>
 <stop stop-color="#C00000" offset="0.03"/>
 <stop stop-color="#D00000" offset="0.04"/>
 <stop stop-color="#C00000" offset="0.05"/>
 <stop stop-color="#600000" offset="0.065"/>
 <stop stop-color="#B00000" offset="0.078"/>
 <stop stop-color="#D00000" offset="0.09"/>
 <stop stop-color="#800000" offset="0.12"/>
 <stop stop-color="#A00000" offset="0.135"/>
 <stop stop-color="#D00000" offset="0.145"/>
 <stop stop-color="#C00000" offset="0.16"/>
 <stop stop-color="#600000" offset="0.19"/>
 <stop stop-color="#D00000" offset="0.21"/>
 <stop stop-color="#800000" offset="0.24"/>
 <stop stop-color="#C00000" offset="0.28"/>
 <stop stop-color="#600000" offset="0.32"/>
 <stop stop-color="#800000" offset="0.33"/>
 <stop stop-color="#C00000" offset="0.34"/>
 <stop stop-color="#800000" offset="0.37"/>
 <stop stop-color="#D00000" offset="0.39"/>
 <stop stop-color="#800000" offset="0.42"/>
 <stop stop-color="#E00000" offset="0.46"/>
 <stop stop-color="#A00000" offset="0.51"/>
 <stop stop-color="#D00000" offset="0.55"/>
 <stop stop-color="#800000" offset="0.57"/>
 <stop stop-color="#D00000" offset="0.61"/>
 <stop stop-color="#800000" offset="0.67"/>
 <stop stop-color="#D00000" offset="0.69"/>
 <stop stop-color="#800000" offset="0.71"/>
 <stop stop-color="#C00000" offset="0.74"/>
 <stop stop-color="#D00000" offset="0.76"/>
 <stop stop-color="#800000" offset="0.78"/>
 <stop stop-color="#C00000" offset="0.80"/>
 <stop stop-color="#E00000" offset="0.83"/>
 <stop stop-color="#800000" offset="0.86"/>
 <stop stop-color="#C00000" offset="0.88"/>
 <stop stop-color="#E00000" offset="0.91"/>
 <stop stop-color="#800000" offset="0.94"/>
 <stop stop-color="#C00000" offset="1"/>
 </linearGradient>
 <linearGradient id="stageGradient" x2="0" y2="1">
 <stop stop-color="#100800" offset="0"/>
 <stop stop-color="saddleBrown" offset="0.97"/>

158 | Chapter 9: Radial Gradients

 <stop stop-color="#A06020" offset="0.97"/>
 <stop stop-color="saddleBrown" offset="1"/>
 </linearGradient>
 <linearGradient id="shadowGradient" x2="0" y2="1">
 <stop stop-opacity="0.6" offset="0" />
 <stop stop-opacity="0" offset="0.97"/>
 </linearGradient>
 <radialGradient id="spotlightGradient" cy="0.9" fy="0.6">
 <stop stop-color="#FFFFFF" offset="0"
 stop-opacity="0.4"/>
 <stop stop-color="#FFFFFF" offset="0.35"
 stop-opacity="0.1"/>
 <stop stop-color="#000000" offset="1"
 stop-opacity="0"/>
 </radialGradient>

 <rect id="stage" width="1000" height="330" y="260" />
 </defs>

 <rect id="background" width="100%" height="100%"
 fill="black"/>

 <g id="stage-illuminated">
 <use xlink:href="#stage" fill="url(#stageGradient)"/>
 <use xlink:href="#stage" fill="url(#shadowGradient)"/>
 <use xlink:href="#stage" fill="url(#spotlightGradient)"/>
 </g>

 <g id="side-curtain-left" >
 <use xlink:href="#curtain" class="curtain-shadow"
 x="-1" y="3"/>
 <use xlink:href="#curtain" class="side-curtain"/>
 </g>
 <g id="side-curtain-right"
 transform="translate(1000,0) scale(-1,1)">
 <use xlink:href="#side-curtain-left"/>
 </g>
 <g id="ceiling-curtain">
 <use xlink:href="#ceiling-curtain" class="curtain-shadow"
 x="5" y="5" />
 <use xlink:href="#ceiling-curtain"
 class="ceiling-curtain"/>
 </g>
</svg>

An id on the <svg> element makes the entire scene available for
reuse within another graphic (although you would have to
import the markup into the other file to get all the styles to work
correctly in web browsers).

Grand Gradients | 159

The fill values for the curtains are set using CSS rules. In par‐
ticular, the shadows for the curtains are created simply by sub‐
stituting the gradient fills with half-transparent black.

There are two complex path elements, one for the side curtains
and one for the fringe across the ceiling. Neither has any styling
attributes set directly; they will be styled when they are duplica‐
ted with <use> elements.

The first two <linearGradient> objects for the curtains have
been carefully designed to match the corresponding <path> ele‐
ments. Many SVG graphics editors have visual tools that can
make this easier, although some fussing is inevitable.

The remaining gradients are used for the stage; the first one fills
in the color of the wood from top to bottom, including a sharp
transition near the bottom to draw the edge of the stage.

The shadowGradient uses the default black stop-color, adjust‐
ing stop-opacity instead to create an extra layer of dark shad‐
ing from the back to front of the stage (top to bottom of the
rectangle). Applying this as a separate layer makes it easier to
later adjust the brightness separately from the color hue.

The <radialGradient> that creates the spotlight will also be
layered on top of the stage, so it also makes use of the stop-
opacity property to allow the other layers to show through.

After drawing a solid black backdrop, the stage is drawn using
the same rectangle three times, to layer together the three differ‐
ent gradients. This is, of course, a perfect example of why lay‐
ered fills are an eagerly anticipated feature of SVG 2—they
would allow the stage to be drawn as a single shape filled with
all three gradients stacked together.

The left curtain is drawn by layering two versions of the curtain
shape together, one with the shadow styles and one with the
main curtain styles.

The right curtain is drawn by duplicating and transforming the
left curtain.

160 | Chapter 9: Radial Gradients

Finally, the ceiling curtain is drawn using the same layered
approach.

Although Example 9-8 contains a lot of code compared to most of
the examples in the book, it is still relatively small for an image file:
7KB as editable text, 1.4KB when compressed with gzip. In compari‐
son, a PNG version of the same image, large enough to fill most
desktop displays, is over 80KB in size.

Future Focus
Mesh Gradients for Flexible Color Transitions

Although the stage-and-curtains example is elegant, it is also conveniently
well suited for SVG gradients. The folds of hanging curtains are nicely parallel
and so can be effectively matched to a linear gradient. In general, this is not
always true. The colors and shadows of objects transition in all sorts of direc-
tions, not only as parallel lines or ellipses. Currently, to re-create any sort of
complex shading pattern, you must layer together many different partially
transparent gradients.

SVG 2 introduces a means of describing complex two-dimensional color tran-
sitions, using what are known as mesh gradients. The mesh is a grid of intersect-
ing paths that may be straight or curved. Gradient color stops are then
assigned to the intersection points of these paths, and the colors in each patch
of the gradient (a region bound by four curves) is interpolated from them.
Although mesh gradients are probably not something you would be coding
by hand, Adobe Illustrator and Inkscape already support the creation of gradi-
ent meshes, and the SVG proposal is designed to be compatible.

Mesh gradients are too complex to be a likely candidate for CSS gradient func-
tions. However, the CSS Image Values and Replaced Content Module Level 4
introduces a more manageable new gradient function, conic-gradient(),
and its variant, repeating-conic-gradient().

A conic gradient is one in which colors change as you move in a circle around
a center point; each color is then extended as far as required along a straight
line radiating out from the center point. This is in contrast to a radial gradient,
in which the colors change as they radiate away from the focal point, and stay
the same in each concentric circle. The stops in a conic gradient are defined
not by a fixed distance, but by a fixed angle.

Grand Gradients | 161

The proposed CSS syntax would use the at keyword to optionally describe the
position of the center point (by default, the center of the image) using the
same syntax as for radial gradients. The list of stops would then follow, with
offsets described either using angle units or as percentages of the full circle.
The zero-angle would be the vertical line pointing up from the center point.
Angles outside of the range 0°–360° would be cropped off. As with the other
CSS gradients, color stops without specified offsets would be distributed
evenly.

Some valid conic gradient syntaxes include:

/* a hue color wheel */
conic-gradient(red,yellow,lime,cyan,blue,magenta,red);

/* oscillating orange rays */
repeating-conic-gradient(at top left,
 tomato, gold 10deg);

/* checkerboard */
conic-gradient(black 0 25%, white 25% 50%,
 black 50% 75%, white 75% 100%);

The final example makes use of another shorthand introduced by the Level 4
specification, which will apply to all CSS gradient functions. When a gradient
includes a region of solid color, instead of having to define two consecutive
stops with the same color value, you could instead list two offsets for a single
color value.

Conic gradients are not directly supported in any browsers at the time of writ-
ing. Lea Verou, a member of the CSS working group, has created a JavaScript
polyfill that uses HTML canvas to convert conic-gradient declarations into
static images.

Because CSS gradient functions will be directly usable in SVG 2, there are cur-
rently no plans to create dedicated SVG conic-gradient elements. However, the
same effect (or a close approximation, anyway) could also be created using
the mesh gradient structure.

162 | Chapter 9: Radial Gradients

CHAPTER 10

Tiles and Textures

While introducing paint servers in Chapter 5, we mentioned that
there were a number of different sources you might wish to use to
paint a shape: a single color, one or more gradients, repeating
patterns, bitmap graphics, text, even other SVG files. So far, we have
described how to use a solid color or a single gradient. All
the remaining possibilites will use a single paint server element:
<pattern>.

An SVG pattern defines a block of SVG graphics that will be used as
a paint server for other shapes. Any SVG content can be used,
including images, text, and shapes filled with gradients. A pattern is
repeated in a rectangular (or transformed rectangular) tiled layout.
You can, however, make one tile the full size of the shape to create a
non-repeating fill; that opens so many possibilities it will be dis‐
cussed separately, in Chapter 11.

There are a number of options for sizing both the tiles and the pat‐
tern content. This make many different designs possible—but others
remain difficult. This chapter tries to emphasize both what can and
what can’t be done, and offers some workaround suggestions for the
more frustrating situations. We also compare SVG patterns with a
type of repeating pattern most web designers are familiar with:
repeating CSS background images.

163

Figure 10-1. Shapes filled with a simple repeating stripes pattern

Building a Building Block
In many ways, the <pattern> element is similar to the gradient ele‐
ments introduced in previous chapters. The attributes on the ele‐
ment itself define the shape and size of the pattern tile (repeating
unit). The child content of the <pattern> makes up the graphics
that are drawn to the screen.

The attributes on <linearGradient> and <radialGradient>

matched those of a <line> and <circle>. The geometrical attributes
on a <pattern> are like those of a <rect> or <image>: x, y, width,
and height. All are zero by default, and as usual, a width or height
of zero prevents the content from being drawn.

To understand how patterns work, it’s usually best to see one in
action. Example 10-1 presents the code for a simple striped pattern,
and then uses it to fill two shapes. Figure 10-1 shows the result.

Example 10-1. Filling shapes with a simple repeating stripes pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"

164 | Chapter 10: Tiles and Textures

 width="4in" height="3in" >
 <title xml:lang="en">Striped Pattern</title>
 <style type="text/css">
 svg {
 stroke-width: 6px;
 }
 </style>
 <pattern id="stripes" x="5%" width="10%" height="100%">
 <line x1="3" x2="3" y2="100%" stroke="maroon" />
 <line x1="9" x2="9" y2="100%" stroke="gold" />
 <line x1="15" x2="15" y2="100%" stroke="tomato" />
 </pattern>

 <g stroke="royalBlue" fill="url(#stripes)">
 <rect x="0.1in" y="0.1in" width="3.8in" height="1in" />
 <ellipse cx="50%" cy="2.1in" rx="1.2in" ry="0.8in" />
 </g>
</svg>

The pattern itself is declared with the following code:

<pattern id="stripes" x="5%" width="10%" height="100%">

The id attribute, as with other paint servers, is required so that the
pattern can be used. The width and height attributes define the size
of each repeating tile. The tiles are arranged starting from the point
defined by the x horizontal offset and y vertical offset (here left as
the default 0). The (x,y) point defines the position of the top left cor‐
ner of the reference tile; additional tiles are then placed above,
below, left, and right for as many repeats as required to fill the shape.

But how are width, height, x, and y measured? Look at Figure 10-1
again, paying attention to the differences between the two shapes.
The stripes are the same width in both shapes, but are much closer
together in the ellipse. The width is clearly not an absolute value.

By default, the attributes that control the size of the pattern tile are
calculated in objectBoundingBox units. Each tile extends the full
height (100%) of the bounding box, but only 10% of its width. No
matter how wide the shape is, there will be exactly 10 sets of stripes
spaced out across it.

As you might have guessed from your experience with gradients, the
default object bounding box dimensions for tiles can be changed to
userSpaceOnUse.

Building a Building Block | 165

The relevant attribute is called patternUnits,
and “Stretching to Fit” on page 171 will examine
the effects of changing it.

The x and y offsets are also measured relative to the bounding box.
For Example 10-1, the 5% horizontal offset is half of the 10% tile
width. This positions the first complete stripe shifted over that dis‐
tance from the top left corner of the bounding box. However, the
pattern still repeats in all directions: in the ellipse, you can just see
the edge of another stripe on the left side, because the stripes extend
farther across the tile width than the 5% offset.

The stripes themselves, therefore, are not scaled proportionate to the
object bounding box. By default, the contents of a pattern are meas‐
ured in the userSpaceOnUse coordinate system (i.e., the coordinate
system in effect for the shape being filled). The origin of that coordi‐
nate system, however, is translated to the top left corner of each pat‐
tern tile.

This scaling of the pattern graphics is controlled
by a patternContentUnits attribute on the
<pattern> element. userSpaceOnUse is the
default; and the alternative option is
objectBoundingBox.

The stripes—the three <line> elements—are much longer than they
need to be, extending to 100% of the full height of the SVG. Accord‐
ing to the SVG 1.1 specifications, the pattern should use the value of
100% in effect for the shape being filled. However, as mentioned in
Chapter 7, user space units are not consistently implemented
by browsers when the shape is nested in a different SVG from the
paint server.

For many pattern designs, it is necessary to over-size the graphics to
be sure that the entire tile is filled, no matter the size of the shape. A
pattern element has overflow: hidden set by default, which causes
the graphics will be clipped to the tile.

166 | Chapter 10: Tiles and Textures

Visible overflow is intentionally left undefined
for patterns in SVG 1.1 and 2, in response to
inconsistent implementations in SVG 1. This
means that each browser can handle it however
they choose. Changing this setting is therefore
not recommended.

A more practical example of using pattern tiles that scale with the
bounding box, but stripes that don’t, is given in Example 10-2.
It uses a pattern to divide a rectangle into a fixed number of equal
pieces, each one outlined with a thin grid line. This type of overlay
grid is a common tool in image editing software; it is shown here
within a super-simplified web application, overlaid on top of a pho‐
tograph.

To demonstrate the scaling effect of the pattern tiles, a thumbnail
version of the photo is also included with its own grid; the grid
squares are smaller on the thumbnail, but the grid lines stay the
same thickness. In both cases, the lines are actually drawn much
larger than required, and trimmed to fit with hidden overflow. The
complete page is shown in Figure 10-2.

Example 10-2. A resizable grid pattern within a photo-editing
application

HTML MARKUP & JAVASCRIPT:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Photo Grid Overlay</title>
 <style type='text/css'>
 /* styles must be in the same document */
 </style>
</head>
<body>
 <fieldset id="grid-options"
 role="radiogroup" aria-controls="graphics">
 <legend>Show Grid:</legend>
 <label>
 <input type="radio" name="grid" value="none" checked>
 None</label>
 <label><input type="radio" name="grid" value="grid4">
 2×2</label>
 <label><input type="radio" name="grid" value="grid9">

Building a Building Block | 167

Figure 10-2. The same 3×3 pattern grid filling rectangles of different
sizes

 3×3</label>
 </fieldset>

 <svg id="graphics" viewBox="0 0 400 400">
 <title>Photo View</title>
 <pattern id="grid4" width="50%" height="50%" >
 <g stroke="gold" stroke-width="4px">
 <line x2="100%" />
 <line y2="100%" />
 </g>

168 | Chapter 10: Tiles and Textures

 </pattern>
 <pattern id="grid9" xlink:href="#grid4"
 width="33.33333%" height="33.33333%" />

 <g>
 <title>Full image</title>
 <image width="400" height="300"
 xlink:href="cat.jpeg" />
 <rect width="400" height="300" class="grid" />
 </g>
 <g transform="translate(140,310)">
 <title>Thumbnail</title>
 <image width="120" height="90"
 xlink:href="cat.jpeg" />
 <rect width="120" height="90" class="grid" />
 </g>
 </svg>
 <script>
 document.getElementById("grid-options")
 .addEventListener("change", updateGrid);

 function updateGrid(e) {
 var svg = document.getElementById("graphics"),
 radio = e.target;
 if (radio.checked) {
 svg.setAttribute("class", radio.value);
 }
 }
 </script>
</body>
</html>

The initial HTML markup sets up a small form field with
options for turning on the grid.

The inline SVG code defines the <pattern> elements. The pat‐
terns use the default patternUnits setting: width and height of
the pattern tiles are percentages of the bounding box.

The content, however, is drawn in the user space coordinate sys‐
tem. It consists of two lines (grouped together to apply common
styles), each of which starts at the origin and extends in either
the horizontal or vertical direction, up to the width or height of
the SVG—which will usually be beyond the pattern tile edge.

The second pattern is written shorthand, using an xlink:href
reference to the first pattern, but then overriding the width and

Building a Building Block | 169

height attributes. Just as with gradients, the xlink:href

attribute allows one <pattern> element to become the template
for another.

The rest of the SVG code describes the visible content: <image>
elements with matching <rect> elements to contain the grid.

The short JavaScript snippet listens for changes to the radio-
button selection.

A simple function responds by changing the class on the <svg>
element, which will trigger appropriate CSS changes. For this
simple demo, the setAttribute method is used to cancel out
previous class settings and apply new ones in a single step. For a
more complex application, you would probably need to be more
careful about not affecting other classes.

CSS STYLES:

body {
 padding: 0.5em 0.25em;
 background-color: lightGray;
}
fieldset {
 display: block;
 background-color: white;
 margin-bottom: 1em;
}
legend {
 background-color: inherit;
 border-radius: 0.25em;
 padding: 0 0.2em;
}
svg {
 width: 100%;
 min-height: 300px;
 max-height: 100vh;
 shape-rendering: crispEdges;
}
.grid {
 fill: none;
 pointer-events: none;
}
.grid4 .grid {
 fill: url(#grid4);
}
.grid9 .grid {

170 | Chapter 10: Tiles and Textures

 fill: url(#grid9);
}

The first few CSS rules control the overall layout of the web
page and form elements.

The <svg> element is given minimum and maximum height
values, but in the latest browsers it will auto-size according to
the aspect ratio set in the viewBox attribute. The shape-
rendering: crispEdges setting turns off anti-aliasing of vector
graphics, which otherwise could make the grid lines appear
blurred.

The rectangles with class grid will by default have no fill.
Thanks to the pointer-events setting, they will not be interac‐
tive, whether filled or not.

When the grid4 or grid9 classes are set on a parent element,
the grid rectangle is set to be filled with the appropriate pattern,
identified with a matching id.

The end result is functional, but it is not ideal. The grid lines use a
4px stroke width, but half of that width is always cropped off,
because they are centered over the edge of the pattern tiles. This
means that the grid lines are visible on the top and left sides of the
rectangle, but not on the bottom right. The intersections therefore
don’t quite match the geometric halves or thirds of the photograph’s
width or height.

There is no simple way to fix this with SVG patterns. When using
object bounding box units for the tile size, you cannot offset the tile
by a fixed number of pixels to compensate for the imbalance,
because x and y are also interpreted in bounding box units. And
because the grid lines are drawn in user-space units, there is no way
to position additional lines on the opposite sides of each tile.

Stretching to Fit
There are very few pattern designs that work well with the default of
objectBoundingBox units for the pattern tile and userSpaceOnUse
units for the content. For patterns other than thin stripes or grids,
you usually want the graphics to scale to match the pattern tile.

Stretching to Fit | 171

In other words, you want both attributes, patternUnits and
patternContentUnits, to have the same value, either
objectBoundingBox or userSpaceOnUse.

Due to the mismatched defaults, you normally
only need to declare one or the other, not both.
Either set patternUnits = "userSpaceOnUse"
or else set patternContentUnits =

"objectBoundingBox".

When both the pattern tile and its contents scale relative to the
object bounding box, you create a pattern that adjusts to fit the
shape being filled. There are always the same number of tiles in each
box, but the entire tiled pattern scales up and down together.

When using object bounding box units like this, keep in mind the
lessons from Chapter 7 about the distorting effect of the coordinate
system. If the box is not square, the coordinate system will be non-
uniform with horizontal and vertical units of different lengths. Cir‐
cles, text, and images will all be stretched and rotational angles will
be uneven. Also note that everything is scaled according to the new
units, including stroke widths and font size.

Furthermore, for patternContentUnits, unlike for the pattern tile
dimensions, percentages are not interchangeable with decimals.
Instead, the definition of 100% from the user space coordinate sys‐
tem is scaled up proportional to the scaling effect on all other units.

No matter what scaling method you use, percen‐
tages in the pattern content do not refer to the
pattern tile.

If the main viewport was 200 units wide (1% is 2 horizontal units)
and 150 units high (1% is 1.5 vertical units), 1% will now be twice
the box width and 1.5 times the box height in the scaled coordinate
system. Inside a different SVG, the ratios would be different.

This is not particularly useful, so percentages are best avoided when
using object bounding box units for pattern contents.

What you can use are decimal numbers, knowing that they are
always a proportion of the bounding box’s height or width.

172 | Chapter 10: Tiles and Textures

Figure 10-3. Shapes filled with a bounding box scaled repeating stripes
pattern

Example 10-3 uses this approach to adapt Example 10-1. The col‐
ored stripes now scale in width as well as spacing to fit in the differ‐
ent shapes, as shown in Figure 10-3.

Example 10-3. Filling shapes with a scaled repeating stripes pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">Bounding Box Striped Pattern</title>
 <style type="text/css">
 svg {
 stroke-width: 6px;
 }
 </style>
 <pattern id="stripes2" x="5%" width="10%" height="100%"
 patternContentUnits="objectBoundingBox"
 stroke-width="0.025px" >
 <line x1="0.0125" x2="0.0125" y2="1" stroke="maroon" />
 <line x1="0.0375" x2="0.0375" y2="1" stroke="gold" />
 <line x1="0.0625" x2="0.0625" y2="1" stroke="tomato" />
 </pattern>

Stretching to Fit | 173

 <g stroke="royalBlue" fill="url(#stripes2)">
 <rect x="0.1in" y="0.1in" width="3.8in" height="1in" />
 <ellipse cx="50%" cy="2.1in" rx="1.2in" ry="0.8in" />
 </g>
</svg>

The pattern explicitly sets patternContentUnits to match the
default for patternUnits. The pattern contents will inherit a
stroke-width of 0.025px, which will be interpreted in the
objectBoundingBox scale.

The coordinates of the lines have similarly been transformed
into object bounding box units. The lines are spaced 0.025 units
apart, with the first line centered half that width from the edge
of the pattern tile. The three lines plus an equal-sized gap there‐
fore add up to 0.1 units, or 10% of the bounding box width, the
exact width of each pattern tile.

When using decimal bounding box units, it is usually easiest to
work solely within the mathematical user units, and not bother with
units, which will be divorced from their real-world meaning. How‐
ever, you can use units, and they will be measured proportional to
user unit scale, as demonstrated by the stroke-width value.

Although px units should always be inter‐
changeable with SVG user units—in any coordi‐
nate system—Firefox (version 40) rounds up the
stroke-width when it is specified as 0.025px, to
0.03 units. It renders the stroke correctly if
specified as 0.025, without units.

There is an alternative to using progressively smaller decimal num‐
bers for coordinates. The <pattern> element can take a viewBox
attribute to define your own coordinate system for each tile. We will
explore viewBox patterns—and more uses of object bounding box
patterns—in Chapter 11, which focuses on creating fill content that
fills up the entire bounding box in a single tile.

For repeating tiles, however, it’s more likely that you will use
userSpaceOnUse units.

174 | Chapter 10: Tiles and Textures

Figure 10-4. Shapes filled with a user-space repeating stripes pattern

Laying Tiles
With userSpaceOnUse units for both patternUnits and (by default)
patternContentUnits, you create fixed-size tiles with a fixed-size
graphic in each one. The result is something closer to the real-world
concept of tiles, such as you might use to cover a floor or wall. The
tiles don’t change between larger or smaller floor areas, only the
number of tiles that can fit in that room.

Example 10-4 adapts the same striped pattern from Example 10-1,
but this time keeps the fixed-size lines and adapts the tiles to match.
Figure 10-4 shows the result.

Example 10-4. Filling shapes with a user-space repeating stripes
pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">UserSpace Striped Pattern</title>
 <style type="text/css">
 svg {

Laying Tiles | 175

 stroke-width: 6px;
 }
 </style>
 <pattern id="stripes3" x="12px" width="24px" height="10px"
 patternUnits="userSpaceOnUse">
 <line x1="3" x2="3" y2="10" stroke="maroon" />
 <line x1="9" x2="9" y2="10" stroke="gold" />
 <line x1="15" x2="15" y2="10" stroke="tomato" />
 </pattern>

 <g stroke="royalBlue" fill="url(#stripes3)">
 <rect x="0.1in" y="0.1in" width="3.8in" height="1in" />
 <ellipse cx="50%" cy="2.1in" rx="1.2in" ry="0.8in" />
 </g>
</svg>

This time, the pattern explicitly sets patternUnits to match the
default for patternContentUnits. The pattern tile attributes
have all been redefined in px units.

The lines no longer have to stretch until 100% of the SVG
height; because we know the tile size, we can draw the lines
exactly to match.

The stripes in the rectangle and ellipse are not only the same size;
they are also perfectly aligned. The x and y offsets for a user-space
pattern tile are calculated relative to the main coordinate system’s
origin, not the corner of the shape’s bounding box. Similar to the
user-space gradients we explored in Chapter 7, this creates a contin‐
uous flow of paint from one shape to another—unless the shapes
themselves are transformed!

With a consistent coordinate system for both the pattern tiles and
pattern contents, it becomes possible to create patterns more com‐
plex than straight lines stretching to infinity. A circle can be cen‐
tered in the tile, an icon can be sized to fit, or an <image> can be
used to exactly fill the tile.

Nonetheless, when you want the pattern to continue smoothly from
one tile to the next, like the vertical stripes in Figure 10-4, it is usu‐
ally best to draw the graphics slightly larger than the pattern tile. In
some SVG viewers, you can see the edges of each pattern tiles cre‐
ated by the code in Example 10-4 as either a too-dark or too-light
edge, caused by the browser rounding the shapes to the pixel grid.
Making each stripe extend from y1="-1" to y2="11" (instead of 0 to

176 | Chapter 10: Tiles and Textures

10) can usually fix this; the ends of the lines are clipped at the point
where they would overlap.

You can take advantage of this clipping effect to create patterns that
do not, at first glance, follow a rectangular repeating tile. You can
repeat shapes yourself, overlapping opposite sides of the tile, in such
a way that when the tiles are placed side by side, the shapes appear
to flow from one to the next.

Figure 10-5 shows a pattern of overlapping scales, like the scales of a
tropical fish. Although the smallest repeating unit is a staggered,
overlapping circle, you can create a simple rectangular repeating
pattern by drawing a square from the center of one scale to the cen‐
ter of the next one directly to the side and directly below, as shown
in the bottom half of the figure. Example 10-5 provides the code for
the pattern, including the scaled up (if you’ll pardon the pun) ver‐
sion of the repeated unit.

Example 10-5. Creating a complex pattern with overlapping shapes

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Fish Scale Pattern</title>
 <style type="text/css"><![CDATA[
 .scale {
 fill: url(#scale-gradient);
 stroke: black;
 }
]]> </style>
 <defs>
 <radialGradient id="scale-gradient">
 <stop stop-color="#004000" offset="0"/>
 <stop stop-color="green" offset="0.85"/>
 <stop stop-color="yellow" offset="1"/>
 </radialGradient>
 <pattern id="scales-pattern" width="20" height="20"
 patternUnits="userSpaceOnUse" >
 <g id="scales">
 <circle class="scale" cx="0" cy="19" r="10"/>
 <circle class="scale" cx="20" cy="19" r="10"/>
 <circle class="scale" cx="10" cy="9" r="10"/>
 <circle class="scale" cx="0" cy="-1" r="10"/>
 <circle class="scale" cx="20" cy="-1" r="10"/>
 </g>
 </pattern>
 </defs>
 <rect width="400" height="400" fill="url(#scales-pattern)"/>

Laying Tiles | 177

Figure 10-5. A scale pattern used to fill a rectangle (top) and its repeat‐
ing tile unit (bottom)

178 | Chapter 10: Tiles and Textures

 <g transform="translate(200,525) scale(5) translate(-10,-10)">
 <use xlink:href="#scales" />
 <rect width="20" height="20" fill="none"
 stroke="deepSkyBlue" stroke-width="0.5"/>
 </g>
</svg>

A <radialGradient> is used to fill each scale in the pattern.

The pattern itself uses userSpaceOnUse values for the
patternUnits, meaning that the pattern tile will be 20px square
regardless of the size of the shape being filled.

The first two scales are centered almost at the bottom corners of
the pattern tile.

The next scale, which will be drawn overtop of the previous two,
is nearly centered in the tile. However—to avoid clipping the
edge of its stroke—it is shifted up by one unit, along with all the
other circles.

The final two scales are centered just above the top corners of
the tile. They will overlap the middle tile, and will appear to be
continuous with the bottom row of scales on the tile above them
—and with each other on left and right.

The rectangle in the upper half of the figure displays the scales
as a continuous fill pattern.

At the bottom of the figure, a <use> element duplicates the
group of five scales. Thanks to the transform attribute on the
<g> element, the scales are scaled up, by a factor of 5, and then
offset so the tile is centered in the available space.

The blue 20×20 rectangle, drawn in the same scaled-up coordi‐
nate system, outlines the boundaries of the pattern tile.

Most patterns can be constructed in this way, but it may require a
little extra math to figure out the dimensions. It helps to sketch out
the final appearance of a block of pattern, from which you can
identify the positions at which the pattern repeats in exact horizon‐
tal and vertical shifts. This then becomes the bounds of your pattern
tile.

Laying Tiles | 179

CSS Versus SVG
Repeating Background Images

In CSS layout, repeating patterns can be created using background images.
The pattern contents can therefore be created from any valid CSS image data-
type: a raster image, an SVG image, or a CSS gradient. By default, the image
is repeated horizontally and vertically to create a tiled effect similar to an
SVG pattern.

Originally, CSS background images were always drawn at the intrinsic size
of the image. Similar to a user-space pattern, changing the size of the element
with the background would change the number of repeats, not their scale.
This wasn’t particularly useful for large image backgrounds which should scale
to fit the element, and it wasn’t useful at all for gradients (and some SVG
images) that do not have an intrinsic size. The CSS Backgrounds and Borders
Module Level 3 introduced the background-size property that allows each
background image to be scaled to either a fixed size or a percentage of
the element.

There are a few advantages to CSS backgrounds compared to SVG patterns:

• Backgrounds can be set to only repeat in one direction or the other (or
not at all) using the background-repeat property.

• The background-size property accepts auto values to allow the height
or width of the pattern tile to scale to match the other value and the con-
tent’s intrinsic aspect ratio.

• Backgrounds can be layered, with each layer having its own size and
repeat options.

As mentioned a few times already, layered paint server fills will become an
option for SVG 2. We’ll show how they can be imitated, with composite pat-
terns, in Chapter 11. Controlled repeat can be imitated by creating pattern tiles
that are taller or wider than the object bounding box.

The main disadvantage of using CSS backgrounds to create a patterned effect
is that the pattern contents must be in a separate image file (or encoded as a
data URI), unless they can be represented as gradients. Although gradients can
be used to create blocks and stripes, the rendering quality on some browsers
is significantly poorer than SVG shapes.

180 | Chapter 10: Tiles and Textures

Transformed Tiles
In the previous section, we showed how you can create non-
rectangular patterns by including intricate repeats within each pat‐
tern tile. For certain geometric patterns, however, you can simplify
your code by using coordinate system transformations to achieve
the same effect.

The patternTransform attribute allows you to rotate, skew, scale,
and translate a pattern. The transformation does not only apply to
the pattern’s contents, however: it applies to the entire pattern tile,
and to the repeating pattern of tiles laid end to end.

As with gradientTransform, the CSS Transfor‐
mations Module redefines patternTransform as
a presentation attribute synonym for the
transform style property—although it isn’t yet
supported in browsers.

Pattern transformations make it easy to create diagonal lines and
other angled patterns, without having to use trigonometry to figure
out the exact horizontal or vertical distance between the line repeats.
Example 10-6 uses a 45° rotation to create bias-cut pinstripe and
grid patterns. The example also demonstrates more ways to use one
pattern as a template for another. Figure 10-6 shows the result.

Example 10-6. Creating diagonal patterns with patternTransform

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="4in" viewBox="0 0 400 400">
 <title xml:lang="en">Pinstripe Patterns</title>
 <defs fill="#444" stroke="lightSkyBlue">
 <pattern id="pinstripe" patternUnits="userSpaceOnUse"
 width="30" height="30">
 <rect id="r" width="30" height="30"
 stroke="none" />
 <line id="l" x1="15" y="0" x2="15" y2="30"
 fill="none" />
 </pattern>
 <pattern id="diagonals" xlink:href="#pinstripe"
 patternTransform="rotate(45)" />
 <pattern id="grid" xlink:href="#pinstripe">
 <use xlink:href="#r" />
 <use xlink:href="#l" />

Transformed Tiles | 181

Figure 10-6. Pinstriped patterns, before and after rotational transfor‐
mations

 <use xlink:href="#l" transform="rotate(90, 15, 15)"/>
 </pattern>
 <pattern id="diagonal-grid" xlink:href="#grid"
 patternTransform="rotate(45)" />
 </defs>

 <rect width="200" height="200"
 fill="url(#pinstripe)" />
 <rect width="200" height="200" x="200"
 fill="url(#diagonals)" />
 <rect width="200" height="200" y="200"
 fill="url(#diagonal-grid)" />
 <rect width="200" height="200" x="200" y="200"
 fill="url(#grid)" />
</svg>

182 | Chapter 10: Tiles and Textures

The four patterns use the same color scheme, here set on the
<defs> element. Patterns and other paint servers inherit styles
from their surroundings, the same as shapes do.

The core pinstripe pattern tile consists of a solid-filled square,
with a vertical line stroked down its center. The tile will be a
fixed size relative to the user-space coordinate system.

The diagonals pattern duplicates the first pinstripe pattern, but
rotates it by 45° to create diagonal lines.

The grid pattern also uses the pinstripe pattern element as a
template for the attributes on the pattern element, but it repla‐
ces the pattern contents with a copy of the solid rectangle and
two copies of the line, rotated at 90° to each other. As with gra‐
dients, if the <pattern> has any child content, it replaces all the
content from the template.

The final pattern duplicates and rotates the grid pattern.

Example 10-6 also emphasizes how patterns and their contents
inherit styles as normal based on their position in the document
tree. Patterns do not inherit styles from the element being filled by
the pattern.

The combination of xlink:href pattern tem‐
plating and pattern style inheritance suggests
that you can create color variations of a pattern
by changing the inherited styles, similar to how
you can create color variations of an icon by set‐
ting styles on a <use> element. Unfortunately,
the drafters of the SVG specifications did not
consider this possibility, and no browsers tested
have implemented it this way.
However, neither do the specifications specifi‐
cally say that duplicated pattern content
shouldn’t inherit from the new pattern, so it
might change in the future. For now, ensure that
all inherited styles are the same on both the
original and duplicate pattern elements.

Transformed Tiles | 183

Diagonal lines such as these could also be created with object
bounding box pattern tiles, although the lessons from the section
“Gradients, Transformed” on page 100 still apply. Object bounding
box units add their own transformation, which distorts rotational
angles. A 45° rotation would create lines that follow the diagonal
of the bounding box, whether or not that is a 45° angle in an abso‐
lute sense.

Future Focus
Shorthand Hatch Patterns

SVG 2 introduces a new type of paint server element that will greatly simplify
the creation of stripe patterns like those from Example 10-6. Called hatches,
they are also intended to remove the possibility of having discontinuities
(caused by rounding errors) at the edges of pattern tiles. Instead of tiles
repeated in both directions, hatches would consist of strips. The strips would
tile like patterns in one direction, but they would consist of a continuous path,
infinitely long, in the other. Each path would have repeating segments, but it
would be painted smoothly as a single element.

A hatch pattern would be defined by a <hatch> element, which takes the fol-
lowing attributes:

• x and y (offsets defining the position of the first strip)

• pitch (the spacing between strips)

• rotate (the angle of the strips)

• hatchUnits and hatchContentUnits (one of userSpaceOnUse or
objectBoundingBox, with defaults the same as patterns)

• transform (equivalent to patternTransform)

• xlink:href (a reference to another <hatch> element to use as a tem-
plate)

The hatch element would contain <hatchPath> elements, each of which
defines a line or path to be drawn. By default, the path would be a straight
vertical line (subject to any transformation on the parent <hatch>). However,
you could also use a d attribute to provide a segment of a path definition: the
path instructions you specify would be concatenated indefinitely. The follow-
ing would therefore create a pattern of infinite wavy lines:

184 | Chapter 10: Tiles and Textures

<hatch hatchUnits="userSpaceOnUse" pitch="6">
 <hatchPath stroke-width="1"
 d="c 0,4 8,6 8,10 8,14 0,16 0,20"/>
</hatch>

There is no option to create a background color for a hatch pattern; because of
the new layered fill syntax, a background color can be specified when the
hatch is used.

Using transformations, you can create pattern tile layouts where the
tiles are parallelograms or diamonds instead of simple rectangles.
For the most predicatable results, these patterns usually work best
with userSpaceOnUse patterns. The uneven scale of object bounding
box units might not play nice with the patternTransform values.

Figure 10-7 shows two geometric patterns that can be created
through transformations of rectangular tiles. The code to create
them is presented in Example 10-7.

Example 10-7. Creating triangular and diamond patterns with
patternTransform

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Transformed Patterns</title>
 <pattern id="triangles" patternUnits="userSpaceOnUse"
 width="20" height="17.32"
 patternTransform="skewX(30)">
 <rect width="30" height="20" fill="lightGreen" />
 <polygon points="0,0 20,0 0,17.32" fill="forestgreen" />
 </pattern>
 <pattern id="argyle" patternUnits="userSpaceOnUse"
 width="20" height="20"
 patternTransform="scale(2,4) rotate(45)">
 <rect fill="mediumPurple" width="20" height="20"/>
 <rect fill="indigo" width="10" height="10"/>
 <rect fill="navy" width="10" height="10"
 x="10" y="10"/>
 <path stroke="lavender" stroke-width="0.25" fill="none"
 d="M0,5 L20,5 M5,0 L5,20
 M0,15 L20,15 M15,0 L15,20" />
 </pattern>

 <rect width="400" height="325" fill="url(#triangles)" />

Transformed Tiles | 185

Figure 10-7. Triangular and argyle patterns created using transformed
pattern tiles

186 | Chapter 10: Tiles and Textures

 <rect width="400" height="325" y="325"
 fill="url(#argyle)" />
</svg>

The first pattern uses a 30° skew to turn the pattern tiles into
parallelograms. The height of each tile is scaled to equal the
height of an equilateral triangle that has a base equal to the
width of the pattern tile.

As a result, the <polygon> triangle that fills the top left corner of
the untransformed tile becomes a perfect equilateral triangle
after the 30° skew.

The second pattern uses a nonuniform scale and a 45° rotation
to create diamond-shaped pattern tiles.

A checked pattern is created by using two rectangles, each half
the width and height of the tile, in opposite corners. The checks
will be transformed along with the pattern tile, to create
checked diamond shapes.

The final element of the argyle pattern is a <path> that draws
four separate straight lines, bisecting each of the diamond
checks.

Both of the patterns in Example 10-7 do repeat horizontally and ver‐
tically, and could have been created without transformations. How‐
ever, the pattern contents would have been more complex. More
coordinates would need to be calculated with trigonometry, and
there would be greater risk that rounding errors would introduce
discontinuities between adjacent tiles.

CSS Versus SVG
Complex Repeating Patterns

CSS background images cannot be transformed separately from the shape to
which they are attached. To create patterns like those in Figures 10-6 or 10-7,
you have two options:

• Use a pseudoelement to contain the repeating background, setting its z-
index so that it is behind the main content, and then giving it a

Transformed Tiles | 187

transform property to apply the rotations, skew, or scale. Be sure that
the pseudoelement is set to block display and is larger than its parent (so
that the transformation does not reveal any empty spots), and also be
sure that the parent is set to hide any overflow.

• Draw a larger section of the background, calculated to exactly match the
amount of repetition in the horizontal and vertical directions, and include
the transformation effects in each background tile. This is similar to the
approach used to create the overlapping fish scales pattern in
Example 10-5.

188 | Chapter 10: Tiles and Textures

CHAPTER 11

Picture-Perfect Patterns

The word pattern evokes the repeating designs we explored in Chap‐
ter 10. However, the SVG <pattern> element is more flexible than
this. By defining a pattern tile that fits the object bounding box, you
can create a pattern that fills the entire shape without repeating.

Why would you want to do that? One reason is to be able to layer
together multiple paint servers. Another is to fill a shape with an
image, similar to a CSS background image.

As we have already mentioned briefly, SVG 2 will allow you to layer
multiple paint servers in a single fill declaration, and use an image
as a fill value directly, making these types of pattern redundant.
Until those features are available, however, these techniques are
essential to create many effects.

This chapter also examines the use of the viewBox and
preserveAspectRatio attributes on the <pattern> element. These
attributes are particularly important with full-image fills, but they
can also be used with repeated patterns.

The Layered Look
In Example 9-8 at the end of Chapter 9, we created the effect of a
spotlight on a stage by drawing three separate rectangles, each filled
with a different gradient. This approach is fine for a single shape,
but isn’t very useful if you want to use the same layering effect on
multiple shapes. That’s where patterns come in. A pattern can con‐

189

tain all the layers, turning them into a single paint server for use by
other shapes.

Example 11-1 uses three gradients combined in a <pattern> to
make a circle and an ellipse appear as unevenly lit colored globes.
The same pattern is also used to fill a text heading, as shown in
Figure 11-1.

Example 11-1. Layering gradients using a non-repeating pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Multiple gradients</title>
 <defs>
 <linearGradient id="red-blue" y2="1">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="blue" offset="1"/>
 </linearGradient>
 <linearGradient id="yellow-violet" y1="1" y2="0">
 <stop stop-color="yellow"
 stop-opacity="0.9" offset="0.1"/>
 <stop stop-color="darkMagenta"
 stop-opacity="0" offset="0.5"/>
 <stop stop-color="violet"
 stop-opacity="0.9" offset="0.9"/>
 </linearGradient>
 <radialGradient id="flare" fx="0.2" fy="0.2"
 stop-color="white" >
 <stop stop-color="inherit"
 stop-opacity="0" offset="0.75"/>
 <stop stop-color="inherit"
 stop-opacity="0.05" offset="0.85"/>
 <stop stop-color="inherit"
 stop-opacity="0.2" offset="1"/>
 </radialGradient>
 <pattern id="gradient-pattern" width="1" height="1"
 patternContentUnits="objectBoundingBox" >
 <rect width="1" height="1" fill="url(#red-blue)"/>
 <rect width="1" height="1" fill="url(#yellow-violet)"/>
 <rect width="1" height="1" fill="url(#flare)"/>
 </pattern>
 </defs>
 <g fill="url(#gradient-pattern)">
 <circle cx="200" cy="180" r="180" />
 <ellipse cx="110" cy="500" rx="110" ry="145" />
 <text x="400" y="525" text-anchor="end"
 font-size="100px" font-family="serif"
 stroke="indigo">Layers</text>

190 | Chapter 11: Picture-Perfect Patterns

Figure 11-1. Shapes and text filled with a layered gradient pattern

The Layered Look | 191

 </g>
</svg>

The red-blue gradient stretches from the top left to bottom right
(remember, x2 is 100% by default) of the bounding box. It uses
solid colors and will be at the bottom of the layers.

The yellow-violet gradient stretches from the bottom left to the
top right of the bounding box.

This gradient is partially transparent, transitioning to complete
transparency (stop-opacity="0") at the mid point, to allow the
other layer to show through. The transparent stop still needs a
stop-color, otherwise it will default to black and the colors on
either side will be given a dark gray tint.

The white radial gradient is mostly transparent, only transition‐
ing to 20% opacity at the very edges. To make it easy to edit or
animate, the single color is specified on the gradient element
and then explicitly inherited by each stop. Unfortunately, stop-
color does not inherit by default.

The <pattern> uses objectBoundingBox units for both the pat‐
tern tile (by default) and the content (explicitly). The tile width
and height set it to fill the entire box without repeating.

The gradient layers are drawn by filling <rect> elements, which
are also scaled to fill the entire bounding box, 1 unit each for
width and height.

The layered pattern is assigned to fill the shapes and text by set‐
ting the fill presentation attribute on a group. However, each
element inherits the fill property independently, and uses its
own bounding box to define the gradient layers.

The pattern—and component gradients—in Figure 11-1 stretches to
fit each shape (or text element) according to the object bounding
box dimensions. For abstract gradients, that isn’t a problem. For
other pattern contents, the distortion is unacceptable.

One option to avoid distortion would be to use userSpaceOnUse
units for the pattern contents. However, the pattern will no longer
scale to fit the shape. Furthermore, the positioning of the coordi‐

192 | Chapter 11: Picture-Perfect Patterns

nates are relative to the overall space for the graphic, not the object
itself. If you move the object so that its coordinates change, the pat‐
tern will remain fixed relative to the background.

You could address the positioning problem by always defining your
shapes relative to a fixed point in the coordinate system, and then
moving them into place with transformations or the x and y
attributes on a <use> element (which have the same effect as a trans‐
lation). To address the scaling problem, however, you would have to
use <symbol> elements or nested SVGs to create a separate coordi‐
nate system for each shape, in which it fills the entire width or
height. Of course, this all sounds like a lot of extra work and compli‐
cation.

Luckily, there is one more option for scaling the contents of a
<pattern>: define a viewBox and use preserveAspectRatio to
ensure that it is not distorted.

Preserved Patterns
You cannot work with SVG—particularly on the Web—without run‐
ning into the viewBox attribute. On your root <svg> element, it
establishes the basic coordinate system and aspect ratio, allowing
your graphics to scale to fit any region you set for them. It can also
be used on nested <svg> elements and for reused symbols to create
local scaling effects.

The viewBox is specified with four numbers: the first two specify the
(x,y) coordinate of the minimum point you want to include in the
graphic, while the third and fourth number specify the number of
units to include in the width and height, respectively. Usually, either
the first two numbers are zero (so the origin is in the top left corner
and all coordinates in the graphic are positive) or they are negative
values designed to position the origin in the center of the graphic.

The preserveAspectRatio attribute is easier to overlook, simply
because the default value is often all you need. It sets one of three
scaling modes:

• meet to scale down your entire viewBox region to just fit in
(meet the edges of) the available space without distortion

• slice to scale up the viewBox to cover the available space (slic‐
ing off the extra)

Preserved Patterns | 193

• none to stretch or squish the viewBox as required to exactly fill
the available space in both directions.

For the meet and slice options, you must also specify an alignment
value of the form xMinYMax that controls which point in the viewBox
region is aligned with the equivalent point in the drawing rectangle.

On a <pattern> element, a viewBox attribute overrides the
patternContentUnits setting and creates your own coordinate sys‐
tem for the pattern. The coordinate system created by the viewBox
will scale to fit the pattern tile, respecting any preserveAspectRatio
attribute value.

In Firefox versions prior to 40 (which was
released in mid-2015), the viewBox and any
preserveAspectRatio values are applied after
converting to object bounding box units
(regardless of the patternContentUnits value).
This results in a distorted pattern for non-
square bounding boxes, even if the pattern’s
aspect ratio perfectly matches the shape.

Because a meet option for preserving aspect ratio scales the content
down to fit the entire width and height in the available space, this
can leave blank space around the pattern contents. This includes the
default xMidYMid meet value that applies when a viewBox is speci‐
fied but not preserveAspectRatio.

One option is to intentionally draw a backdrop element, within your
pattern, that is much larger than the viewBox. This backdrop will be
clipped to the pattern tile, while the viewBox is scaled to fit. This is
used in Example 11-2 to create a padded circular gradient that
maintains its circular shape, regardless of the aspect ratio of
the shape it fills. The gradient’s shape is maintained by drawing it
within a square shape (a circle could also be used). That square fills
the entire viewBox, but the viewBox will not always fill the entire
pattern tile.

Figure 11-2 shows the resulting gradient pattern, filling an oblong
rectangle.

194 | Chapter 11: Picture-Perfect Patterns

Figure 11-2. A circular gradient in a rectangular box, via a fixed-
aspect-ratio pattern

Example 11-2. Creating an always-circular gradient using a fixed-
aspect-ratio pattern

<svg xmlns="http://www.w3.org/2000/svg"
 width="100%" height="100%">
 <title xml:lang="en">Always-Circular Gradient</title>
 <defs>
 <radialGradient id="radial">
 <stop stop-color="lightYellow" offset="0"/>
 <stop stop-color="yellow" offset="0.2"/>
 <stop stop-color="gold" offset="0.8"/>
 <stop stop-color="orangeRed" offset="1"/>
 </radialGradient>
 <pattern id="circular-gradient" width="1" height="1"
 viewBox="0 0 1 1">
 <rect width="5" height="5" x="-2" y="-2"
 fill="orangeRed"/>
 <rect width="1" height="1"
 fill="url(#radial)"/>
 </pattern>
 </defs>
 <rect height="100%" width="100%" fill="url(#circular-gradient)"/>
</svg>

The SVG (and the rectangle it contains) scale to 100% of the
available space, so you can test different aspect ratios by re-
scaling the browser window.

The radial gradient uses default values for positioning and siz‐
ing, so it will be centered in the shape in which it is drawn and
scale to fit the bounding box.

Preserved Patterns | 195

The pattern also fills the entire bounding box (width and
height of 1, with the default patternUnits setting). The
viewBox defines the content units, creating an explicit 1:1 aspect
ratio, regardless of bounding box dimensions.

A backdrop rectangle is drawn five times the size of the square
created by the viewBox, centered around it. The backdrop is fil‐
led with the same color as the last (padded) gradient stop.

The gradient itself is drawn within a square that just fits to the
width and height defined by the viewBox.

An important thing to note is that the shapes within the pattern are
specified in the scaled user units, not in percentages. Although the
viewBox creates both a new coordinate system origin and a new
scale, it does not create a new viewport for the purposes of defining
percentage lengths. Within a pattern, percentage lengths are scaled
proportional to the change in scale of individual units, regardless of
any viewBox values.

As mentioned for object bounding box units,
this is not generally useful or predictable, and
percentages should be avoided except for
userSpaceOnUse patterns.

The use of a viewBox instead of object bounding box units also
removes the codependency between the pattern tile scale and the
pattern content scale. A viewBox on a pattern is always scaled to fit
each individual pattern tile, not the bounding box as a whole.
Figure 11-3 shows how the pattern appears after scaling down each
pattern tile to 10% of the box width and 25% of its height, using the
following attributes:

<pattern id="circular-gradient" width="0.1" height="0.25"
 viewBox="0 0 1 1">

The width and height used for the <rect> elements in the pattern
contents have not changed at all.

The oversized-backdrop approach used in Example 11-2 is not ideal.
If the aspect ratio of the pattern tile is more extreme than 5:1, the
backdrop will not be big enough to fill it. If it’s more important

196 | Chapter 11: Picture-Perfect Patterns

Figure 11-3. A repeating circular gradient pattern

to have the entire tile covered by your pattern than to have your
entire pattern content visible, you can use a slice value for
preserveAspectRatio. This ensures that the pattern contents always
completely cover the tile.

Background Images, SVG-Style
When a slice approach to preserving aspect ratio is combined with
a single-tile bounding box pattern, the net effect is very similar to a
CSS background images set to background-size: cover. A single
graphic fills the entire shape.

Example 11-3 uses a pattern to contain a fanciful SVG graphic of a
sunny sky graphic, such as might be used for a backdrop in a slide or
poster. The slice effect is demonstrated by using the pattern to fill a
series of rectangles of different aspect ratios, with the results shown
in Figure 11-4.

Example 11-3. Reusing an SVG graphic as a non-repeating image fill

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="6.5in" viewBox="0 0 400 650">
 <title xml:lang="en">Sliced Image Pattern</title>
 <defs>
 <linearGradient id="sky" x2="0" y2="1">
 <stop stop-color="lightSkyBlue" offset="0"/>
 <stop stop-color="deepSkyBlue" offset="1"/>
 </linearGradient>
 <radialGradient id="sunlight" cx="0" cy="0" >

Background Images, SVG-Style | 197

Figure 11-4. Rectangles of different aspect ratios, and text, filled with
the same graphic backdrop

198 | Chapter 11: Picture-Perfect Patterns

 <stop stop-color="yellow"
 stop-opacity="0.9" offset="0.2"/>
 <stop stop-color="lightYellow"
 stop-opacity="0" offset="1"/>
 </radialGradient>
 <radialGradient id="cloud" fx="0.5" fy="0.15" r="0.6">
 <stop stop-color="oldLace" offset="0.75"/>
 <stop stop-color="lightGray" offset="0.9"/>
 <stop stop-color="darkGray" offset="1"/>
 </radialGradient>
 <pattern id="sky-pattern" width="1" height="1"
 viewBox="0 0 100 50"
 preserveAspectRatio="xMinYMin slice" >
 <rect width="100" height="50" fill="url(#sky)"/>
 <g fill="url(#cloud)">
 <g>
 <circle cx="10" cy="42" r="5" />
 <circle cx="6" cy="42" r="3" />
 <circle cx="16" cy="43" r="3" />
 <circle cx="14" cy="41" r="4" />
 </g>
 <g>
 <circle cx="20" cy="22" r="7" />
 <circle cx="50" cy="22" r="10" />
 <circle cx="40" cy="18" r="7" />
 <circle cx="45" cy="25" r="9" />
 <circle cx="30" cy="25" r="12" />
 </g>
 <g>
 <circle cx="72" cy="39" r="5" />
 <circle cx="77" cy="40" r="3" />
 <circle cx="83" cy="41" r="4" />
 <circle cx="80" cy="36" r="5" />
 <circle cx="76" cy="35" r="3" />
 <circle cx="86" cy="39" r="3" />
 </g>
 </g>
 <rect width="50" height="50" fill="url(#sunlight)"/>
 </pattern>
 </defs>
 <g fill="url(#sky-pattern)">
 <rect width="400" height="175" />
 <text x="200" y="280" textLength="390"
 text-anchor="middle" font-family="sans-serif"
 font-size="124px" font-weight="bold"
 stroke-width="2" stroke="deepSkyBlue"
 >Clouds</text>
 <rect y="290" width="250" height="250" />
 <rect x="270" y="290"
 width="130" height="250" />
 <rect x="0" y="550"

Background Images, SVG-Style | 199

 width="400" height="100" />
 </g>
</svg>

The code includes a number of gradient definitions that will be
used by the graphics within the pattern.

The pattern itself has a 2:1 (100×50) aspect ratio defined in its
viewBox. No patternUnits or patternContentUnits attribute
are required: the patternUnits are the default, and the width
and height fill the entire bounding box. Again, content units
are not required, as they are replaced by the viewBox. Finally,
the preserveAspectRatio sets the slice scale and the align‐
ment.

The pattern contents consists of a rectangle filled with a blue
gradient, a collection of gradient-filled circles to create the
clouds, and finally another rectangle filled with the gold-to-
transparent radial gradient for the sun.

The <rect> elements and text that actually draw the graphic
inherit the fill setting from a group. As usual, the bounding box
for each fill layer is calculated per element, not for the group.

The pattern uses an xMinYMin alignment option, in addition to the
slice scaling mode, so that the top left corner of the graphic is
always included within the bounding box—although not necessarily
within the shape itself, as demonstrated when the fill is used for
the text.

Future Focus
Filling SVG Shapes and Text with Image Files

As mentioned briefly in Chapter 6, SVG 2 will allow CSS image types to be used
directly as fill values for SVG shapes and text. This includes the CSS gradient
functions, but also URL references to separate image files, whether those files
are SVG or raster.

For example, you could create a separate graphic file with your reused back-
drop, and apply it to your shapes with a rule like:

200 | Chapter 11: Picture-Perfect Patterns

.slide {
 fill: url(clouds.svg);
}

The exact syntax for declaring the size and position of each fill layer has not
been finalized at the time of writing, but will likely be similar to the syntax
used for CSS background images.

Although you cannot yet use a separate image file instead of an SVG
paint server, you can use an image file within a paint server, using
the SVG <image> element.

Example 11-4 creates a pattern out of a photographic image (a com‐
posite image of the Earth from space by NASA). The image is scaled
up to fill the pattern tile, with the extra sliced off. Figure 11-5 shows
the result.

Example 11-4. Filling text with a photographic image inside a pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="250" viewBox="0 0 800 500">
 <title xml:lang="en">Earth in Space</title>
 <style type="text/css">
 .earth {
 font-family: sans-serif;
 font-weight: bold;
 font-size: 148pt;

 text-anchor: middle;
 fill: url('#photoFill');
 stroke: #205334;
 stroke-width: 3;
 text-decoration: overline underline;
 text-shadow: white 0 0 8px ;
 }
 .background {
 fill: url(#background);
 }
 </style>
 <defs>
 <pattern id="photoFill" width="1" height="1"
 viewBox="0 0 1 1"
 preserveAspectRatio="xMidYMid slice">
 <image x="-0.1" y="-0.1" width="1.2" height="1.2"
 xlink:href="globe_west_1024.jpg" />

Background Images, SVG-Style | 201

 </pattern>
 <linearGradient id="background"
 gradientTransform="rotate(90)">
 <stop stop-color="black" offset="0"/>
 <stop stop-color="black" offset="0.5"/>
 <stop stop-color="navy" offset="0.80"/>
 <stop stop-color="blue" offset="0.9"/>
 <stop stop-color="lightBlue" offset="0.95"/>
 <stop stop-color="green" offset="0.95"/>
 <stop stop-color="brown" offset="1.2"/>
 </linearGradient>
 </defs>

 <rect width="100%" height="100%" class="background"/>
 <text class="earth" x="400" y="60%">EARTH</text>

 <metadata>
Image Source: http://visibleearth.nasa.gov/view.php?id=57723
 </metadata>
</svg>

Both the font-styles and the SVG styles are set using a CSS class.
A text-shadow adds a slight glow around the letters in browsers
that support this property, while paired underline and overline
decorations add a border effect.

The height and width attributes create a single pattern tile that
fits the bounding box. The viewBox creates a square aspect ratio
that will expand to cover the tile, with excess sliced off accord‐
ing to preserveAspectRatio.

The image itself is drawn slightly larger than the viewBox, so
that the black space around the globe will not be included.

A <linearGradient> provides a horizon-like backdrop effect.

The text is positioned in the middle of the SVG viewBox, with
the size, font, and text-anchor set by the CSS class.

The <metadata> element holds extra information about the file
that is neither part of the image nor its alternative text.

The example demonstrates how text-decoration marks (under‐
lines, overlines, and strike-throughs) are treated as an intrinsic part
of the text content, and are both filled and stroked with the same

202 | Chapter 11: Picture-Perfect Patterns

Figure 11-5. Image-filled text using a sliced pattern

styles as the letters. An extra text-specific painting effect is added
with text-shadow to improve contrast around the letters.

Although most browsers support text-shadow
for text laid out with CSS, Internet Explorer
does not support it for SVG, nor do many other
tools based on the SVG 1.1 specifications. Even
web browsers that do support it can be buggy:
Chrome does not scale shadows when text is
scaled; Firefox does not draw the shadow if the
text uses paint servers to fill the text; and Safari
creates a shadow around each em-box instead of
following the shapes of the letters when using
paint servers.
In other words, use text-shadow for non-
essential decoration only. If you do use it, it
must be specified using CSS, not as a presenta‐
tion attribute.

The source image used in Example 11-4 is shown in Figure 11-6
for comparison. It is square, exactly matching the aspect ratio cre‐
ated by the height and width attributes on the <image> element. If
it did not match, by default it would scale down to fit, ruining the

Background Images, SVG-Style | 203

Figure 11-6. The image used to fill the SVG text (photo by NASA God‐
dard Space Flight Center/Reto Stöckli with enhancements by Robert
Simmon)

slice effect on the pattern. For a different image, you would need to
change the image elements dimensions and also the aspect ratio in
the viewBox so that the image would still fill it completely.

If you do not know the aspect ratio of the photo‐
graph you’re going to use, you can specify a
slice value for preserveAspectRatio on the
<image> element itself. The two slice settings
might slice off more than really necessary, but
that’s better than having empty space show
through!

204 | Chapter 11: Picture-Perfect Patterns

http://visibleearth.nasa.gov/view.php?id=57723
http://visibleearth.nasa.gov/view.php?id=57723
http://visibleearth.nasa.gov/view.php?id=57723

You could describe the effect from Example 11-4 as clipping the
image to text. You can, in fact, create a very similar effect (minus the
strokes and shadow), by including the text inside a <clipPath> ele‐
ment and referencing it in the clip-path property of an <image>
element. In that case, however, the <image> would be the element
on the screen, and the text would be a graphical effect. By using an
image fill to a <text> element, the text remains selectable
and accessible.

Future Focus
Painting Text Decorations

The CSS Text Decoration Module Level 3 extends the text-decoration prop-
erty, making it a shorthand for a series of subproperties. The extended syntax
not only allows you to set the type of line (under, over, or through) but also its
color and its style, such as dashed or wavy lines.

Most of the new options will apply to SVG, but the color option is complicated
by the fact that SVG text has fill and stroke paint, not a single text color. As a
result, SVG 2 introduces coordinating text-decoration-fill and text-
decoration-stroke properties.

Browsers have started to implement support for the new text decoration
options. However, at the time of writing, none have implemented the SVG-
specific control over fill and stroke paint.

The text-shadow effect used in Example 11-4 was initially proposed for CSS 2,
but did not make it to the final specification; it is now included in the draft CSS
Text Decoration Module Level 3. At the time of writing, it has not officially
been adopted into SVG as a presentation attribute.

Background Images, SVG-Style | 205

CHAPTER 12

Textured Text

We’ve now shown a few examples of using patterns to fill text, and
we highlighted some other text styling options at the end of Chap‐
ter 11. We also used stroked text to demonstrate the paint-order
property back in Chapter 2.

Throughout, we’ve emphasized that filling and stroking text in SVG
is similar to filling shapes.

For the most part, that’s true. However, there are a few differences
with respect to paint servers, which stem from the way object
bounding boxes are calculated for text. This chapter looks at paint
servers and text more closely.

The differences between painting text and painting shapes are espe‐
cially important if you are considering replacing text with shapes.
Most graphics programs offer a text-to-path conversion that can
preserve the visual appearance of text in a particular font, without
the complications of having to distribute that font with your graphic
on the Web, and without the unreliability of many browsers’ text
rendering bugs (particularly on mobile devices). Depending on how
it is implemented, this conversion may create subtle differences or
quite significant changes in the way the letterforms are painted.

Converting text to path also makes it inaccessi‐
ble to screen readers, or to regular users who
want to search for, copy, or translate the text
content. Be sure to provide machine-readable
alternatives for any text as shapes.

207

1 Specifically, SVG Text Layout, by the same authors and publisher as the book you are
reading.

The SVG specifications include numerous options for controlling
the layout of text, some of which are borrowed from the original
CSS 2 specifications, some of which were new to SVG but have since
been adopted by CSS 3, and some of which are uniquely SVG. Some
of these options are even reliably implemented in web browsers!
Discussing all the text layout options is a book in itself,1 so the
examples in this chapter don’t go into too much detail about how
the layouts are created, except to indicate when features are poorly
supported.

Bounding Text
Every element in SVG that is drawn to the screen has a bounding
box. Although they aren’t used in painting, bounding boxes are also
defined for groups and other container elements such as <use> and
<svg>; these container bounding boxes are used for clipping, mask‐
ing, and filters. The bounding box is always a rectangle aligned with
the axes of the coordinate system for that element (including any
transformations).

For shapes, the box is always the tightest rectangle that can control
the basic geometry of the shape. For containers, it is the tightest rec‐
tangle that can contain all the child components. For text, it is the
tightest rectangle that can contain the em boxes for each character.

The em box in typography is the region in which each character is
drawn. It is always the full em height for the font, and the full width
determined by the normal spacing of the letters. In many cases, the
actual letter only takes up a small part of this rectangle. For other
characters, the letter might extend outside of the rectangle, with
swooshes that extend under or over other characters in the row of
text. As a result, the region of text that you’re filling may not match
the object bounding box used to scale your paint server.

Example 12-1 defines a simple striped pattern, scaled to the object
bounding box, and uses it to fill four different text elements. Each
element takes up a different amount of space within the drawing.
Figure 12-1 shows how they are painted.

208 | Chapter 12: Textured Text

http://shop.oreilly.com/product/0636920043072.do

Figure 12-1. Four text elements filled with the same striped pattern

Example 12-1. Filling text with an object bounding box pattern

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="300px" viewBox="0 0 400 300"
 xml:lang="en">
 <title>Text Bounding Box</title>
 <style type="text/css">
 text {
 font-size: 50px;
 font-family: sans-serif;
 font-weight: bold;
 }
 </style>
 <pattern id="stripes" width="100%" height="20%"
 patternContentUnits="objectBoundingBox">
 <rect width="1" height="0.1" fill="indigo" />
 <rect width="1" height="0.1" y="0.1"
 fill="royalBlue" />
 </pattern>
 <defs>
 <path id="p" d="M250,150 L350,200 250,270" />
 </defs>

 <g fill="url(#stripes)">

Bounding Text | 209

 <text x="50%" y="1em" dx="-10"
 text-anchor="end">Mixing</text>
 <text x="50%" y="1em" dx="10"
 text-anchor="start">BLOCK</text>
 <text x="10%" y="3em"
 >Three <tspan x="10%" dy="1.2em"
 >line </tspan><tspan x="10%" dy="1.2em"
 >text</tspan></text>
 <text><textPath xlink:href="#p"
 >TextPath</textPath></text>
 </g>
</svg>

Each pattern tile extends the width of the bounding box and
one-fifth (20%) of its height.

The pattern contents are also scaled to the bounding box. Each
stripe is one-tenth (0.1) of the bounding box height.

A group applies the pattern fill to all of the <text> elements.
As usual, each element will be filled based on its own bounding
box.

The first two elements are aligned horizontally. One has mixed-
case letters, the other is all block capitals.

The next element uses positioned <tspan> segments to break it
across three lines.

The final text element is arranged along a <textPath> that takes
up approximately the same height on the page as the three-line
text.

The first thing to notice in Figure 12-1 is that the stripes are differ‐
ent sizes in the multiline and <textPath> text than in the single-line
text elements. These elements have larger bounding boxes, which
create larger pattern tiles.

If you look specifically at the top row (the two single-line elements),
you’ll notice that you can’t count a full five pairs of stripes from top
to bottom of the letters. You’ll also notice that the stripes are the
same size for both words, despite the fact that the block capitals do
not descend below the baseline. This is a consequence of calculating
the bounding box based on the full em-height of each character,
even if the characters used do not fill that space.

210 | Chapter 12: Textured Text

Figure 12-2. Individual letterform paths filled with the same striped
pattern

The larger elements are likewise slightly smaller than their bounding
boxes, although the unused parts make up a smaller proportion of
the larger bounding box.

For <textPath> and other text elements with
rotated characters, many browsers (Blink, Web‐
Kit, and Internet Explorer at the time of writing)
rotate the pattern along with the letter. For
Example 12-1, this results in patchy, discontinu‐
ous stripes. Figure 12-1 is based on the render‐
ing in Firefox (v37).

In contrast, if you were to convert the text to paths, the bounding
box would be the tight individual bounding box for each <path>
element. Figure 12-2 shows the result after using the Convert Object
to Path feature in the Inkscape editor. Each letter becomes its own
<path> element; the stripes are therefore scaled and aligned to fit
five pairs of blue and indigo stripes from top to bottom within that
shape.

Bounding Text | 211

Before converting text to path, the SVG code
from Example 12-1 first had to be modified to
replace all the percentage lengths and em-based
units in user coordinates, as neither of these are
currently supported natively in Inkscape (ver‐
sion 0.91).

The appearance can be made closer to the original by merging all
the individual paths into a single, multipart path for each text block
(in Inkscape, this is done by selecting the groups created for each
former <text> element and using the Combine Path option). How‐
ever, the pattern scale would still not be identical to the original
<text>. The bounding box of the text extends beyond the bounds of
the letters, and therefore of the resulting path.

With all these factors that can affect the scale of your bounding box
pattern, it would be convenient to be able to easily adjust the size of
each pattern tile. Unfortunately, with the code in Example 12-1, the
pattern contents, also measured in object bounding box units,
directly depend on the pattern tile size.

A viewBox can be used to define a complete coordinate system for
the contents independent of the tile size, even if you do not need the
pattern to maintain a fixed aspect ratio. A none setting for
preserveAspectRatio stretches that square to fill the full tile,
regardless of any changes to the tile size. Like bounding box units,
the lack of aspect ratio control creates a distorted coordinate system,
but for rectangular stripes that isn’t a problem.

As mentioned in Chapter 11, Firefox prior to
version 40 does not render patterns with a
viewBox correctly.

Example 12-2 shows how this would work for the stripe pattern.
To demonstrate the independence between pattern content and pat‐
tern tile, two variations of the pattern are created—one with thick
stripes and one with thin stripes—by duplicating the pattern content
with an xlink:href reference. Figure 12-3 shows the two versions
of the pattern.

212 | Chapter 12: Textured Text

Example 12-2. Creating scalable bounding box patterns with viewBox,
without preserving aspect ratio

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="70px" viewBox="0 0 400 70"
 xml:lang="en">
 <title>Adjustable Stripes</title>
 <style type="text/css">
 text {
 font-size: 50px;
 font-family: sans-serif;
 font-weight: bold;
 }
 </style>
 <pattern id="thick-stripes" width="100%" height="40%"
 viewBox="0 0 2 2" preserveAspectRatio="none">
 <rect width="2" height="1" fill="indigo" />
 <rect width="2" height="1" y="1"
 fill="royalBlue" />
 </pattern>
 <pattern id="thin-stripes" height="12.5%"
 xlink:href="#thick-stripes" />

 <text x="50%" y="1em" dx="-10" fill="url(#thick-stripes)"
 text-anchor="end">Stripy</text>
 <text x="50%" y="1em" dx="10" fill="url(#thin-stripes)"
 text-anchor="start">Stripy</text>
</svg>

Figure 12-3. Text elements filled with different-sized variations of a
striped pattern

Each rectangle within the pattern is half the height of the viewBox
and its full width. The number of horizontal stripes that fit within
the bounding box height is therefore controlled only by the single
height attribute on the pattern, and can easily be overridden in a
second <pattern> element referencing the first.

Bounding Text | 213

Figure 12-4. Patterned and gradient-filled multiline text

Switching Styles Midstream
Although each <text> element in Example 12-1 creates its own
object bounding box for painting, the individual <tspan> elements
in the multiline text do not. This is always true despite the fact that
individual <tspan> elements can have different fill settings from
the rest of the text.

If the fill for a <tspan> uses an object bounding
box scale, it is based on the scale of the entire
<text> element, not the individual span.

Example 12-3 demonstrates this effect by using a bounding box gra‐
dient to fill three separate <tspan> elements within a larger <text>
element. It also provides a slightly more readable example of using a
pattern to fill text; instead of bold stripes, it uses a more subtle tex‐
ture to re-create the effect of chalk on a blackboard. Figure 12-4
shows the result.

Example 12-3. Filling text with object bounding box patterns and
gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="10cm" height="5cm"
 xml:lang="en">
 <title>Chalkboard Text</title>

214 | Chapter 12: Textured Text

 <style>
 text {
 font-family: cursive;
 font-weight: bold;
 font-size: 9mm;
 font-size-adjust: 0.54;
 }
 .chalk {
 fill: url(#chalk-texture);
 }
 .chalk-marks {
 fill: white;
 fill-opacity: 0.8;
 stroke: silver;
 stroke-width: 0.2px;
 }
 .highlight {
 fill: url(#highlight-gradient);
 }
 .blackboard {
 fill: black;
 }
 </style>
 <pattern id="chalk1" class="chalk-marks"
 patternUnits="userSpaceOnUse"
 width="9" height="6">
 <circle r="1" cx="0" cy="3" />
 <circle r="1" cx="1" cy="5" />
 <circle r="1" cx="2" cy="1" />
 <circle r="1" cx="3" cy="2" />
 <circle r="1" cx="4" cy="5" />
 <circle r="1" cx="5" cy="4" />
 <circle r="1" cx="6" cy="0" />
 <circle r="1" cx="7" cy="6" />
 <circle r="1" cx="8" cy="3" />
 </pattern>
 <pattern id="chalk2" xlink:href="#chalk1"
 x="2" width="5" height="5"/>
 <pattern id="chalk3" xlink:href="#chalk1"
 y="4" width="7" height="7"/>
 <pattern id="chalk-texture" patternUnits="userSpaceOnUse"
 width="315" height="210">
 <rect fill="url(#chalk1)" width="315" height="210"/>
 <rect fill="url(#chalk2)" width="315" height="210"/>
 <rect fill="url(#chalk3)" width="315" height="210"/>
 </pattern>

 <linearGradient id="highlight-gradient" x2="0" y2="1">
 <stop stop-color="gold" offset="0.3" />
 <stop stop-color="deeppink" offset="0.7" />
 </linearGradient>

Switching Styles Midstream | 215

 <rect class="blackboard" width="100%" height="100%" />
 <text y="5mm" class="chalk" textLength="29cm">
 <tspan x="3mm" dy="1em"><tspan
 class="highlight">Textured</tspan>
 Text Effects</tspan>
 <tspan x="3mm" dy="1.6em">Textured
 <tspan class="highlight">Text</tspan> Effects</tspan>
 <tspan x="3mm" dy="1.6em">Textured
 Text <tspan class="highlight">Effects</tspan></tspan>
 </text>
</svg>

You don’t have to use px or pt to size text: the SVG is scaled to
use metric units, so the text is as well. A font-size-adjust set‐
ting ensures that the apparent font size will remain approxi‐
mately the same regardless of the actual font used; the 0.54
value is based on Comic Sans MS, the default cursive font for
most browsers on a Windows computer.

The basic chalk pattern is created from nine erratically posi‐
tioned white and gray dots within a small pattern tile. The styl‐
ing for the circles is set by the chalk-marks class on the
<pattern> itself.

To make the pattern denser and more irregular, it is duplicated
twice, but with different pattern tile sizes and offsets.

A composite pattern is then created by layering the three chalk
mark patterns together. The composite pattern uses
userSpaceOnUse units to define a large pattern tile that is just
large enough to contain an even number of repeats of each of
the layered patterns.

The gradient used for the highlighted spans is a simple vertical
linear gradient scaled to the object bounding box (default
gradientUnits). Approximately the first third (to offset 0.3) is
solid gold—in color, if not in value—and the last third (after off‐
set 0.7) is solid pink, with a transition in between.

The text is contained within a single <text> element. A
textLength attribute ensures that the total length of three lines
of text is adjusted to slightly less than three times the width of
the SVG.

216 | Chapter 12: Textured Text

Figure 12-5. Close-up view of the pseudorandom textured pattern

Three <tspan> elements break the text into separate lines.
Within each line, a <tspan> with class highlight changes the
fill of a single word.

The gradient-filled words within Figure 12-4 most obviously show
how the entire <text> element is a single bounding box. However, it
is also evident in the chalk texture. If each row of text were its own
element, filled with the same pattern, the cracks and irregularities in
the fill would be positioned at the exact same points. Instead,
because each of the component patterns repeats on its own scale—
and none of those exactly match the height of a line of text—the
result looks appropriately random, as shown in Figure 12-5, which
zooms in on the final word in the first two lines.

Example 12-3 uses the browser’s default cursive font. In general,
that isn’t recommended, as they can vary so much from one browser
or operating system to another. Normally, you would give a list of
specific font-family names, or use web fonts to be sure that the cor‐
rect font was available. However, sometimes those strategies fail, so
it is worth paying attention to the other code attributes that encour‐
age a consistent rendering: the textLength attribute and the font-
size-adjust style.

Switching Styles Midstream | 217

The textLength attribute—which squeezes or
stretches text to the given length—is very buggy
in browsers, and not supported at all in older
SVG tools. The way it is used here (defined on
the parent <text> element) is supported in Fire‐
fox and Internet Explorer; Blink and WebKit
browsers, on the other hand, will not adjust the
content in the <tspan> unless a textLength
attribute is set on each child element. Firefox
ignores textLength on <tspan>, and Internet
Explorer does not correctly center or end-justify
text with length adjustments.
The font-size-adjust property, which tells the
browser to preserve the ex-height of the font
instead of the em-height (by specifying the ratio
between the two), is currently only supported in
Firefox.

In a conforming web browser, these settings ensure that the overall
layout is preserved even if a completely different font is used, as
shown in Figure 12-6. In other browsers, the text may not fill the full
width, or may creep too close to the far edge.

Figure 12-6. Patterned and gradient-filled multiline text, in a different
font adjusted to fit

218 | Chapter 12: Textured Text

CSS Versus SVG
Filling Text with Graphics

The image-filled text from Example 11-4 and the textured text in Example 12-3
are nice effects for headings and other large text. To create it for non-SVG text,
WebKit-based browsers (including Safari, Chrome, and recent Opera versions)
support the nonstandard property -webkit-background-clip that can be
used to create a similar effect.

The standard background-clip property allows you to clip backgrounds to
the content box, the padding box, or the border box of an element. The exper-
imental WebKit option also supports clipping to the text content of the ele-
ment. In combination with transparent text (set using the WebKit-specific -
webkit-text-fill-color so as not to affect other browsers), this creates
image-filled text.

At the time of writing, there is no existing or draft web standard to set a fill
image or pattern for text outside of SVG. However, there have been repeated
discussions in the past about adopting fill and stroke for all CSS-styled text.
It is also possible to achieve similar effects with new options for blending and
compositing of elements and background images.

Switching Styles Midstream | 219

CHAPTER 13

Painting Lines

The gradient and pattern examples so far have nearly all used the
fill property to apply that paint to a shape. However, we men‐
tioned early on in the book that paint servers can also be used for
the stroke property.

Applying paint servers to strokes introduces new complexities,
which is why we have separated the topic into its own chapter.
We cover the difficulties here, but also give some examples of
unique effects you can create with painted strokes. And we include
teasers about some new features proposed for SVG 2 that will make
this easier.

Beyond the Edges
Strokes, as we’ve briefly mentioned, do not have to use solid colors.
The stroke property, like the fill property, can use a url() func‐
tion to reference a paint server—a gradient or pattern—by its id
value. You can also include a fallback color in case there is a problem
with that paint server, and—as you’ll soon see—those fallback colors
do get used.

It is when using paint servers that you are most strongly reminded
that the stroke is really a secondary shape, built upon the element
that defines it, and not a line drawn with a pen or brush. Patterns
and gradients currently cannot be painted along the path; similar to
when painting the fill of a shape, the stroke is cut out of wallpaper-
like paint server content.

221

Figure 13-1. A rectangle stroked with a linear gradient

There are two main areas where designers tend to get frustrated
when using paint servers for strokes:

• The objectBoundingBox units used by paint servers do not
include the stroke region.

• All paint servers create a rectangle region of paint that is unaf‐
fected by the shape or direction of the stroke.

These complications aren’t always impenetrable obstacles. For many
shapes, a gradient or patterned stroke works just fine. Example 13-1
uses the basic horizontal red-blue gradient from Chapter 6 to paint a
thick-stroked rectangle, as displayed in Figure 13-1.

Example 13-1. Using gradients as stroke paint on a rectangle

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="1.5in" >
 <title xml:lang="en">Gradient on a Stroke</title>
 <linearGradient id="red-blue" >
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <rect width="80%" height="50%" x="10%" y="25%"
 stroke-width="20%" stroke="url(#red-blue)"
 fill="none" />
</svg>

The gradient vector may be sized based on the rectangle’s geometric
dimensions, rather than the stroke’s dimensions, but with a smooth
gradient such as this it is hard to tell. If you change the
spreadMethod to repeat, it becomes much more obvious, as shown

222 | Chapter 13: Painting Lines

Figure 13-2. A rectangle stroked with a repeating linear gradient

in Figure 13-2. Half of the stroke on each side is beyond the gradient
vector, in the repeat region.

Future Focus
Multiple Strokes

We have mentioned how SVG will allow you to layer multiple fills, to create
multiple stacked gradients or patterns that accent an independently set solid
color. The same possibility will also be supported with strokes, but with even
greater potential. Because each stroke can have a different width or dash pat-
terns, even solid-colored strokes can be effectively layered.

The exact details have not all been finalized at the time of writing, but SVG 2
will likely adopt a syntax similar to that used for CSS layered backgrounds. Any
of the properties would be specifiable as a list of values, and if the list for one
property was not as long as the list for the main (stroke) property, it would be
repeated as necessary. So, if you wanted all the layers to have 0.5 opacity, you
would only need to specify that value once.

Another new addition for strokes, similar to fill, would be to support CSS
image data types—gradient functions and references to other image files—
directly within the stroke property. As with SVG gradients, the result would
be as if the stroke region was cut from a rectangle filled with the gradient, not
a gradient that followed the direction of the stroke.

The sharp repeat edges in Figure 13-2 are not something you’re
likely to create by accident. You therefore might assume that

Beyond the Edges | 223

objectBoundingBox units are not a big obstacle after all. They aren’t,
until you start stroking lines instead of shapes.

The Empty Box
Example 13-2 uses the same red-blue linear gradient to stroke a
series of straight lines in different orientations. Because a straight
line cannot be filled, using a thick gradient stroke is often a desired
effect.

Example 13-2. Using gradients as stroke paint on straight lines

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="3in" >
 <title xml:lang="en">Gradient on Straight Lines</title>
 <linearGradient id="red-blue" >
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <g fill="none" stroke-width="0.5in"
 stroke="url(#red-blue) purple" >
 <line x1="10%" x2="90%" y1="10%" y2="10%" />
 <line x1="90%" x2="90%" y1="25%" y2="75%" />
 <line x1="90%" x2="10%" y1="90%" y2="90%" />
 <line x1="10%" x2="10%" y1="75%" y2="25%" />
 <line x1="30%" x2="70%" y1="25%" y2="75%" />
 <line x1="70%" x2="30%" y1="25%" y2="75%" />
 </g>
</svg>

Style properties are applied as presentation attributes on a
group containing the individual lines. The stroke value
includes both the reference to the gradient and a fallback solid
color.

The first four lines outline the drawing region: straight across
the top, down the right side, back horizontally across the bot‐
tom, then vertically up the left.

The final two lines are diagonal, one going down left to right
and the other angled down right to left.

The code seems simple, but as Figure 13-3 shows, the result isn’t
often what is desired.

224 | Chapter 13: Painting Lines

Figure 13-3. Lines stroked with a linear gradient—or its fallback color

Why are so many of the lines stroked in solid purple? Because pure
horizontal or vertical lines have no bounding box region. And no
bounding box region means no bounding box gradient. If we had
not specified a fallback color, the strokes would not have been visi‐
ble at all.

Instinctively, this seems rather extreme for gradients. After all, even
if the horizontal lines do not have any height, they still have width.
Shouldn’t that be enough for a horizontal linear gradient? And the
vertical lines, couldn’t they at least be padded red on one side and
blue on the other?

The difficulty comes from the way paint servers are implemented, as
rectangular sheets of paint that are transformed to fit the bounding
box. Transformations that result in any dimension collapsing to zero
cause division-by-zero errors in the browser’s internal math. To
avoid them, the SVG specifications treat zero-width or zero-height
bounding boxes as an error for bounding box paint servers. The
browser responds to the error the same way it would if it couldn’t
find the paint server at all—by using the fallback color.

The Empty Box | 225

Figure 13-4. Lines stroked with linear gradients that match the line
direction

In contrast, the diagonal lines are painted with the gradient—even
though the lines still have no fill region—because the bounding box
is the tightest rectangle that can contain the object aligned with the
coordinate system axes. For an angled line, that is the rectangle of
which it is the diagonal. Although the two diagonal lines are drawn
in opposite directions, they have the same bounding box, and so the
gradient is continuous between the two.

When most people think of a gradient on a line, they are usually
thinking of something more like Figure 13-4. Each gradient goes
from one end of the line to the other, in the direction that the line
is drawn.

As you probably guessed, Figure 13-4 can be created with SVG.
However, it requires considerably more markup than Example 13-2.
You cannot use gradients with object bounding box units, so you
need to use a userSpaceOnUse gradient. Then you need to match the
gradient vector to the position, direction, and length of the line.

There are two ways to do this. Example 13-3 shows the code used
for Figure 13-4. It creates a separate <linearGradient> element for

226 | Chapter 13: Painting Lines

each <line>, and sets all the gradient vector positioning attributes to
match the line’s positioning attributes.

Example 13-3. Matching linear gradients with straight lines

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" >
 <title xml:lang="en">Gradients Made to Measure
 for Straight Lines</title>
 <linearGradient id="red-blue"
 gradientUnits="userSpaceOnUse">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <g fill="none" stroke-width="0.5in" >
 <linearGradient xlink:href="#red-blue" id="g1"
 x1="10%" x2="90%" y1="10%" y2="10%" />
 <line x1="10%" x2="90%" y1="10%" y2="10%"
 stroke="url(#g1) purple"/>
 <linearGradient xlink:href="#red-blue" id="g2"
 x1="90%" x2="90%" y1="25%" y2="75%" />
 <line x1="90%" x2="90%" y1="25%" y2="75%"
 stroke="url(#g2) purple"/>
 <linearGradient xlink:href="#red-blue" id="g3"
 x1="90%" x2="10%" y1="90%" y2="90%" />
 <line x1="90%" x2="10%" y1="90%" y2="90%"
 stroke="url(#g3) purple"/>
 <linearGradient xlink:href="#red-blue" id="g4"
 x1="10%" x2="10%" y1="75%" y2="25%" />
 <line x1="10%" x2="10%" y1="75%" y2="25%"
 stroke="url(#g4) purple"/>
 <linearGradient xlink:href="#red-blue" id="g5"
 x1="30%" x2="70%" y1="25%" y2="75%" />
 <line x1="30%" x2="70%" y1="25%" y2="75%"
 stroke="url(#g5) purple"/>
 <linearGradient xlink:href="#red-blue" id="g6"
 x1="70%" x2="30%" y1="25%" y2="75%" />
 <line x1="70%" x2="30%" y1="25%" y2="75%"
 stroke="url(#g6) purple"/>
 </g>
</svg>

The basic gradient containing the color stops is used as a tem‐
plate. It has userSpaceOnUse set for gradientUnits, which will
be inherited by the gradients that reference it.

The Empty Box | 227

There’s no use setting the stroke value on the group; each ele‐
ment will need a separate stroke property referencing its
custom-made gradient.

The <linearGradient> elements each have an xlink:href
attribute referencing the template gradient, a unique id, and x1,
x2, y1, and y2 attributes that directly match those on the corre‐
sponding <line>.

The lines each have the correct stroke gradient set as a presen‐
tation attribute. The fallback color is included just in case, but
won’t be used unless we made a typo!

The main downside of the code in Example 13-3 is that it is rather
repetitive. For example, the duplicated attributes between the
<line> and <linearGradient> elements mean that you have to
update everything twice if you want to reposition anything. How‐
ever, this structure is quite effective if you’re using a data-based
script to generate the lines in the first place. You could create a func‐
tion that sets these attributes on an element based on the data, and
then run it twice, once for the line and once for the gradient.

If your <line> elements make use of default val‐
ues for some positioning attributes, remember
that <linearGradient> has a different default
for x2 (100% instead of 0).

Another limitation of the approach used in Example 13-3 is that it
significantly increases the number of elements in your DOM. If you
have a very large number of lines and gradients in a dynamic
graphic, this could slow down your web page.

An alternative approach to aligning gradients and lines is to use a
single gradient, and draw all your lines along it; then, use transfor‐
mations to size and position the lines where you want them. We use
this approach in Example 13-4. Because SVG 1.1 transformations
must be specified in user units, not percentages, the drawing has
been redefined with a viewBox and the numbers have been adjusted.
As a result, the final SVG shown in Figure 13-5 is not an exact
match for Figure 13-4, but it is close.

228 | Chapter 13: Painting Lines

Figure 13-5. Lines stroked with a gradient, then transformed into place

Example 13-4. Transforming lines drawn to match a linear gradient

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="4in" height="3in" viewBox="0 0 100 75">
 <title xml:lang="en">Userspace Gradient on
 Transformed Straight Lines</title>
 <linearGradient id="red-blue" gradientUnits="userSpaceOnUse">
 <stop stop-color="red" offset="0"/>
 <stop stop-color="lightSkyBlue" offset="1"/>
 </linearGradient>
 <g fill="none" stroke-width="12"
 stroke="url(#red-blue) purple" >
 <line x2="100%"
 transform="translate(10,7.5) scale(0.8,1)" />
 <line x2="100%"
 transform="translate(90,18.75)
 rotate(90) scale(0.375,1)" />
 <line x2="100%"
 transform="translate(90,67.5) scale(-0.8,1)" />
 <line x2="100%"
 transform="translate(10,56.25)
 rotate(-90) scale(0.375,1)" />
 <line x2="100%"
 transform="translate(30,18.75)
 rotate(45) scale(0.5315,1)" />

The Empty Box | 229

 <line x2="100%"
 transform="translate(70,18.75)
 rotate(135) scale(0.5315,1)" />
 </g>
</svg>

The viewBox uses a 100-unit width, so that the horizontal per‐
centages can be directly converted to user unit values. However,
vertical percentages will need to be scaled to the 70-unit height.

There is only one gradient, which uses userSpaceOnUse units.
The gradient vector uses the default arrangement: horizontally
from 0 to 100%.

A single stroke value is applied to the group containing all the
lines. Again, the fallback color is only just-in-case; the user-
space gradient should always provide valid results.

Each <line> element has the exact same positioning attributes:
a single x2="100%" to match the default attributes on the
<linearGradient>. The actual size and position of the line is
controlled by the transform attribute.

The transformations are arranged in a particular order that
ensures they do not interact in unexpected ways: first, the origin
(and start of the line) is translated into place, then it is rotated
into the correct orientation, and finally it is scaled along its
length (which is the x-axis in its transformed coordinate sys‐
tem).

As an alternative to a 180° rotation, the right-to-left gradient is
created with a negative x-scaling factor.

With this approach, you do not create any extra elements. However,
you must completely redefine the geometry of the graphic. If you
know in advance that the gradients are an essential part of your
graphic, and can plan ahead, this might not be a big obstacle.
In contrast, rewriting a graphic like this—converting code that was
defined with positioning attributes to use transformations instead—
is usually more hassle than it’s worth.

230 | Chapter 13: Painting Lines

Future Focus
Creating a Stroke Bounding Box

As you have surely gathered by now, one of the greatest limitations of using
paint servers for strokes is that the object bounding box does not contain the
stroke. One of the most anticipated changes in SVG 2 is the ability to specify a
different bounding box that includes the stroke region.

The bounding box to use would be specified at the time the paint server is
used, rather than on the pattern or gradient element. This would allow the
same gradient or pattern to be used such that it exactly fit the fill bounding
box, the stroke bounding box, or even the user space. However, these would
still be “box” regions: rectangles aligned with the horizontal and vertical axes
of the coordinate system. To create gradients that followed the direction of a
line, you would still need the approaches in Examples 13-3 or 13-4. Gradients
that actually follow the curvature of a line will require much deeper changes
to the way SVG paint currently works, and aren’t expected in the short term.

The exact syntax for defining paint server reference boxes has not been final-
ized at the time of writing. However, it is expected to be definable either
directly in the stroke (or fill) shorthand property or as a separate style
property.

Using the Coordinate Space
User-space stroke gradients have more applications than as imper‐
fect substitutes for gradients along a line. In data visualizations, they
can be used to change the appearance of a data line according to its
value. Example 13-5 demonstrates this effect. It creates a generic sta‐
tus monitor dashboard, with a line that marks a changing value that
should not reach 100%: as the line gets closer to maximum, it turns
from green to yellow to red.

The basic framework for the graphic—including the gradient—is
defined in the markup, while the data is inserted via a script. In
practice, the data would come from a web server of some sort; in the
example, the data is randomly generated. Figure 13-6 shows one
possible data pattern.

Using the Coordinate Space | 231

Figure 13-6. A data chart using a stroked gradient to emphasize
changing values

Example 13-5. Using a gradient to add information to a line chart

<svg xmlns="http://www.w3.org/2000/svg"
 width="4in" height="3in"
 xml:lang="en">
 <title>Stroked Gradient as Status Indicator</title>
 <svg x="0.6in" y="0.5in" width="3.6in" height="2in"
 viewBox="0 0 180 100"
 style="overflow: visible; font: 10px sans-serif;">
 <linearGradient id="status" y1="100%" y2="0%" x2="0%"
 gradientUnits="userSpaceOnUse">
 <stop stop-color="limegreen" offset="0.4"/>
 <stop stop-color="yellow" offset="0.8"/>
 <stop stop-color="red" offset="0.95"/>
 </linearGradient>

 <rect stroke="black" fill="dimGray"
 width="100%" height="100%" />
 <g text-anchor="end" dominant-baseline="middle"
 transform="translate(-2,0)">
 <desc>Y-axis tick labels</desc>
 <text y="100">0%</text>
 <text y="80">20%</text>
 <text y="60">40%</text>
 <text y="40">60%</text>
 <text y="20">80%</text>
 <text y="0">100%</text>

232 | Chapter 13: Painting Lines

 </g>
 <g text-anchor="middle">
 <text x="50%" dy="-1em" font-size="12px"
 text-decoration="underline"
 >Status monitor</text>
 <text x="50%" y="100%" dy="1em">Time</text>
 </g>

 <polyline id="dataline" stroke="url(#status)"
 stroke-linejoin="bevel"
 stroke-width="2.5" fill="none" />
 </svg>
 <script><![CDATA[
(function(){
 var n = 19,
 dx = 10,
 maxY = 100;

 var data = new Array(n),
 points = new Array(n);
 for (var i=0; i<n; i++) {
 data[i] = [i, Math.random()];
 points[i] = [i*dx, maxY * (1 - data[i][1])];
 }

 var dataline = document.getElementById("dataline");
 dataline.setAttribute("points", points.toString());
})()
]]> </script>
</svg>

A nested <svg> is used to create a user-space coordinate system
that exactly matches the size of the data region in the chart. A
viewBox applies a custom coordinate system, including a 100-
unit height that will convert easily to percentage values.

The <linearGradient> is drawn within a user-space coordinate
system, with a vector that goes from bottom to top.

The first 40% of the gradient is solid green; it then transitions
through yellow until being solid red after 95%.

A solid background fills the data region, while text labels are
offset outside of the data region (which has visible overflow). By
including the labels inside the nested SVG, they can be posi‐
tioned using the viewBox coordinate system, even though they
are printed outside of its width and height region.

Using the Coordinate Space | 233

The data line is a <polyline> element. Its presentation styles—
including the gradient stroke—are specified in the markup, but
it does not have a points attribute, so will not be drawn until
the script runs. An id attribute makes it easy to access from the
script.

Inside the script, a set of initialization variables control the scale
between the data and the coordinate system: n is the number of
data values that will fit in the graphic, dx is the horizontal spac‐
ing (in user units) between them, maxY is the number of vertical
units into which the range (0%–100%) should be scaled to fit.

The data array contains the raw data (here, an index number
followed by a random value between 0 and 1). The points array
contains the scaled coordinates for those data points, using the
control variables to scale the data and invert the y-coordinates,
so that 0% is at the bottom and 100% is at the top.

The points array-of-arrays is converted to a comma-separated
string with its default toString() method, and used as the
points attribute of the polyline.

The key to effectively using a userSpaceOnUse gradient to convey
data was to precisely control the user-space coordinate system to
match the data region. Nested coordinate systems allowed the
viewBox to exactly match the data region, while still leaving room
outside it for the labels.

To correctly scale the gradient to the data region
in Internet Explorer and WebKit/Blink brows‐
ers, the <linearGradient> must be a child of the
nested SVG. As already mentioned, these brows‐
ers use the paint server’s parent coordinate sys‐
tem as the userSpaceOnUse instead of the one
associated with the painted shape.

The visual effect of the user-space painted stroke is similar to having
a continous rectangular gradient that is then masked by the line, to
only show those regions. However, just as with the image-filled text
we discussed in Chapter 11, there is an important structural differ‐
ence between a gradient clipped to a line and a line painted with a

234 | Chapter 13: Painting Lines

gradient. If you have any interactive effects in your data graph, you
want the line to be the object they interact with, not a mostly invisi‐
ble rectangle.

Nonetheless, the effect need not be restricted to practical data
graphics. You could also use a textured pattern or an image as the
revealed content that shines through the stroked areas.

Patterned Lines
Patterned strokes work much the same way as gradient strokes.
However, because patterns repeat in strict vertical and horizontal
tiles, it can become even more obvious when the stroke orientation
does not align with the paint server’s.

As with gradients, a userSpaceOnUse approach is recommended to
avoid problems with objectBoundingBox units. You can still use
bounding box patterns if your shape is sure to have a valid bounding
box (i.e., it isn’t a horizontal or vertical straight line), but the scale of
the pattern will be based on the scale of the fill region, not the scale
of the stroke.

Example 13-6 uses various patterns from Chapters 10 and 11 to
stroke some basic shapes—with varying degrees of effectiveness, as
shown in Figure 13-7.

Example 13-6. Using a gradient to add information to a line chart

<svg xmlns="http://www.w3.org/2000/svg"
 width="4.3in" height="4.3in" viewBox="0 0 400 400">
 <title>Patterned Strokes</title>
 <defs>
 <!-- pattern definitions clipped -->
 </defs>
 <g style="stroke-width: 40px; fill: lightSkyBlue;" >
 <rect x="20" y="20" width="360" height="360"
 stroke="url(#pinstripe) gray" />
 <polygon points="200,30 370,200 200,370 30,200"
 stroke="url(#scales-pattern) green"/>
 <circle cx="200" cy="200" r="90"
 stroke="url(#gradient-pattern) peachPuff"/>
 </g>
</svg>

Patterned Lines | 235

Figure 13-7. Shapes stroked with various patterns

The patterns (and their constituent gradients) are copied
directly from Examples 10-5, 10-6, and 11-1, so they are not
reprinted here.

All the shapes will have a thick, 40px-wide stroke over top of a
light blue fill.

The rectangle uses the pinstripe pattern from Example 10-6.

The diamond-shaped <polygon> uses the fish scale pattern from
Example 10-5.

The circle uses the layered gradients from Example 11-1. Along
with the other shapes, it is given an appropriate fallback color,
just in case.

236 | Chapter 13: Painting Lines

The small, repeated pattern of the fish scales looks quite effective on
the wide strokes. The pinstripes may or may not have the effect you
want: the vertical stripes go across the horizontal strokes of the
square, but down the length of the vertical strokes. The layered gra‐
dients create quite an unusual effect. The gradients were compiled
using a bounding box pattern; because that bounding box doesn’t fill
up the entire stroke region, it is tiled on each side, creating sharp
changes in color.

As with gradients, there are ways to work around the problems. For
example, some striped stroke effects can be created with dashed
strokes. To avoid tiling when using an object bounding box pattern
for stroke, you can set the x, y, width, and height attributes to
define a pattern tile that is large enough to include the stroke region
(i.e., x and y are negative, while width and height are greater than
100%). All of this will become easier in the future with multiple
strokes and stroke bounding boxes.

Patterned Lines | 237

CHAPTER 14

Motion Pictures

SVG colors, gradients, and patterns may be collectively referred to as
paint, but there is one important difference from oils or watercolors:
SVG paint can move.

SVG within a web browser is dynamic. It can be animated, either on
a continuous loop or in response to user interactions.

Animation complicates the discussion of SVG painting properties
and paint servers in a few ways. This chapter sums up the major
issues and approaches to address them. It starts with a review of
the different ways in which SVG can be animated, using animated
fill colors as an example. It then addresses the animation of paint
servers under two situations: synchronized animations of many
painted elements, or animation of a single element without affecting
others.

Screenshots have been included for the animation examples, but a
full appreciation will require running the code in a web browser.

A complete discussion of SVG animation is worth several books on
its own, so this chapter does not attempt to exhaustively describe all
the options and syntax. Instead, it focuses on the aspects that are
unique to working with colors and paint servers. If you’re not
already comfortable with CSS, SMIL, and JavaScript animations, you
may need to consult other references to fully understand how the
code creates the final effect.

239

Animation Options
There are three different methods you can use to animate SVG
graphics:

• Including animation elements within the markup (<animate>,
<set>, <animateTransform>, and <animateMotion>) to modify
other elements.

• Adding CSS animation or transition properties to your graphics’
styles.

• Using JavaScript to sequentially manipulate the styles or
attributes of your graphics.

All three methods offer at least a limited potential for interactive
animations. Animation elements can be triggered or modified to
start or end on user events such as click or mouseover. CSS anima‐
tions and transitions can be triggered by interactive pseudoclasses
(:hover, :focus, :active). And JavaScript can of course be used for
all sorts of user interactions and programming.

Which strategy you use to animate the SVG will depend a lot on
how you plan to use that SVG. JavaScript will not run if the SVG is
embedded in another web page as an image, either with the
tag or using CSS background-image or similar properties; the SVG
code must either be included inline or embedded as an interactive
<object>. JavaScript may also be intentionally disabled by the user
for security or performance reasons.

The declarative methods (animation defined with markup or CSS
properties) will run in SVG used as an image, provided all the styles
are defined in the same SVG file. The animation will not be interac‐
tive, however, as no user events will be passed to the SVG document.

Browser support for the declarative animation methods is currently
poorer than for scripted animation, although support for CSS ani‐
mation is increasing. For scripted animation, most limitations in
browser support can be patched over with additional code (with
compromises in performance); there are also various code libraries
that can make designing efficient animations easier.

Finally, when it comes to animating fill and stroke, the type of
paint content will affect your animation options. Colors can be ani‐
mated by directly changing the style property on the element using

240 | Chapter 14: Motion Pictures

the style. Paint servers, however, must be animated by modifying
styles and attributes on the pattern, gradient, or stop elements.

The examples in this chapter will show multiple ways of coding the
same effect, and emphasize the benefits and limitations of each—
including both limitations in the specifications and limitations in
browser support.

For animation elements, the following factors should affect your
decision:

• Limited browser support, which is currently expected to
decline.

• Ability to animate nearly any style property or attribute
(although there are important browser support limitations).

• Interaction uses DOM events to start and stop animations. The
animation runs until it completes or is explicitly ended by
another event; the end state can also be “frozen,” but it will
immediately revert if the animation restarts.

• For interaction, the element being animated and the element
receiving user input can be completely independent.

• Animations can be chained together or staggered by using the
begin and end events of one animation element to trigger
another.

• Multiple animations on the same property and element can
be set to add together (for most properties) or to replace one
another.

• Timed animation (noninteractive) will run in an SVG used as
an image.

For CSS animation, consider these factors:

• Limited browser support is expected to improve.
• Restricted to animating style properties only.
• Limited interaction tied to pseudoclasses. The animation will be

cut off if the pseudoclass no longer applies, although transitions
can smooth out the effect.

• For interaction, the element with the pseudoclass must be able
to influence the target element using descendent or sibling CSS

Animation Options | 241

selectors. This is particularly problematic when animating paint
servers.

• Chained animations are difficult; either a single keyframes
sequence must include all the stages, or multiple animations
must have delay values hardcoded to match the duration of the
previous animations.

• Multiple animations on the same property and element always
replace one another.

• Timed animation (noninteractive) will run in an SVG used as
image.

Finally, for JavaScript animation, the relevant factors are as follows:

• Optimal browser support, particularly with polyfills for older
browsers. However, users may disable JavaScript.

• Ability to animate any style property, attribute, text content, or
even DOM structure.

• Interaction is possible using any information passed through
DOM events, affecting any element in the document.

• Multistage and chained animations can be difficult to code, but
JavaScript libraries are available to simplify your work (at the
cost of extra downloads for users).

• Will not run in images; external SVG files must be embedded
with <object>.

The options are not always exclusive. In particular, you can use
JavaScript to trigger CSS animations (by changing element classes)
or animation elements (using the animation ele‐
ment’s .beginElement() method). This allows you to integrate the
logic and control of scripted animation with the simplicity of declar‐
ative animations.

242 | Chapter 14: Motion Pictures

Future Focus
A Unified Web Animations Model

The Web Animations specification provides an overarching description of all
timed animations in web pages. Its unified model describes the implementa-
tion of both SVG animation elements and CSS animation features. It also
defines a script API for dynamically creating animation effects. These effects
would be created by specifying the start and end values and timing parame-
ters, without having to directly set the intermediary values at each frame your-
self. This will combine the control of scripted animation with the simplicity and
performance benefits of declarative animation syntaxes.

The web animation API is in the process of being implemented in most brows-
ers at the time of writing. There are JavaScript polyfills for other browsers,
which convert API instructions into frame-by-frame animations. However, the
polyfills are generally not as performance-optimized as other JavaScript ani-
mation libraries.

Regardless of how you animate your SVG, it is usually straightfor‐
ward to manipulate simple color values for fill and stroke. The same
is true for most other presentation attributes including fill-
opacity or stroke-opacity.

Example 14-1 showcases the basic syntax of animation elements,
used to cycle through different fill colors in an image of three stars.
The color cycle lasts 3 seconds, but repeats indefinitely. The same
sequence of colors is used for each star, but offset to start at different
times. Figure 14-1 shows a single instant in the cycle.

Example 14-1. Animating fill colors with animation elements

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2in" viewBox="0 0 200 100">
 <title xml:lang="en">Simple SMIL Animation</title>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 <rect height="100%" width="100%" fill="#222"/>
 <g fill="gold">
 <use xlink:href="#star" width="50" height="50"
 transform="translate(10,20) rotate(-10)">

Animation Options | 243

Figure 14-1. Still from an animation sequence of color-changing stars

 <animate attributeName="fill"
 values="gold;lightYellow;gold;tomato;gold"
 dur="3s" repeatDur="indefinite" />
 </use>
 <use xlink:href="#star" width="40" height="40"
 transform="translate(140,10) rotate(20)">
 <animate attributeName="fill" begin="-1s"
 values="gold;lightYellow;gold;tomato;gold"
 dur="3s" repeatDur="indefinite" />
 </use>
 <use xlink:href="#star" width="35" height="35"
 transform="translate(80,60) rotate(-5)">
 <animate attributeName="fill" begin="-2s"
 values="gold;lightYellow;gold;tomato;gold"
 dur="3s" repeatDur="indefinite" />
 </use>
 </g>
</svg>

The colors transition according to their RGB values. The intermedi‐
ary values are calculated using the same rules as for gradients. The
only difference is that the transition happens in time, instead of
across space.

The color animation should be affected by the
color-interpolation property. However, as
mentioned in Chapter 3, this property is not
well supported in web browsers.

244 | Chapter 14: Motion Pictures

The SVG animation elements use a syntax developed for the
Synchronized Multimedia Integration Language (SMIL), which was
intended for coordinating audio, video, and XHTML content. As
you can imagine, the syntax includes a number of options for syn‐
chronizing one animation with another, either simultaneously or
one after the other. It can therefore be used to schedule complicated
sequences of animation. However, these complicated animation
sequences do not combine well with the interactive features. The
declarative format of SMIL animations does not have any way to
include decision logic that would alter the response to a user event
based on the current state of the animation.

Another limitation of the animation element syntax is its verbosity.
Each element being animated requires its own animation element.
There is no way to quickly apply variations on the same animation
to many graphical components, such as the three stars in
Example 14-1.

Nonetheless, the most significant limitation to widespread use of
SVG animation elements is poor browser support.

Internet Explorer has no support for animation
elements. The Chromium team has, at the time
of writing, announced plans to deprecate the
feature. In the short term, that means printing
warnings to the developer’s console for web
pages that use the animation syntax. In the long
term, the animations may cease to work.

For simple animations of presentation styles, CSS animations pro‐
vide a more concise and flexible syntax. Example 14-2 creates the
exact same twinkling star effect, but with CSS animation keyframes.
A class is used to apply the same animation sequence to all three
stars, and then nth-of-type selectors are used to alter the start time
on individual shapes.

Example 14-2. Animating fill colors with CSS keyframes

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2in" viewBox="0 0 200 100">
 <title xml:lang="en">Simple CSS Animation</title>
 <style type="text/css">
 .star {

Animation Options | 245

 fill: gold;
 animation: twinkle 3s infinite;
 }
 .star:nth-of-type(3n+2){
 animation-delay: -1s;
 }
 .star:nth-of-type(3n+3){
 animation-delay: -2s;
 }
 @keyframes twinkle {
 25% {fill: lightYellow;}
 50% {fill: gold; }
 75% {fill: tomato;}
 }
 </style>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 <rect height="100%" width="100%" fill="#222"/>
 <use xlink:href="#star" width="50" height="50" class="star"
 transform="translate(10,20) rotate(-10)"/>
 <use xlink:href="#star" width="40" height="40" class="star"
 transform="translate(140,10) rotate(20)"/>
 <use xlink:href="#star" width="35" height="35" class="star"
 transform="translate(80,60) rotate(-5)"/>
</svg>

The main limitation of CSS animations of SVG are that only presen‐
tation attributes can be manipulated. Geometric attributes (that are
only specificied in the XML) cannot be animated with CSS rules.
The SVG 2 specifications are redefining a number of layout
attributes as presentation attributes, but many features of SVG will
remain inaccessible to CSS animation.

CSS animations are also not well suited to long sequences of consec‐
utive animations, and can only respond to a limited set of user
actions.

CSS animations are not supported in some older
browsers that are still in use. In all but the latest
WebKit browsers, CSS animations require the
‑webkit‑ experimental prefix, which means
you’ll need to duplicate your animation proper‐
ties and your keyframe rules. Internet Explorer
does not support CSS animation of SVG ele‐
ments; however, support is expected to be added
in the Edge browser.

246 | Chapter 14: Motion Pictures

For more universal support of animation, you can manipulate your
DOM with JavaScript. For simple linear animations, it is fairly
straightforward to cycle through all the intermediary values, using
the requestAnimationFrame method to only update the graphic
when the browser is able to update the display. For more complex,
multistage animations (e.g., the staggered color changes), you may
want to use a dedicated JavaScript animation library, which converts
your declarative statements (of which attributes to animate and by
how much) into optimized frame-by-frame adjustments.

Coordinated Animation
Animating color values for fill and stroke is straightforward.
With either animation elements or CSS animations, the browser
transitions between the colors for you. But what about paint servers?
That gets more complicated. The actual value used in the fill and
stroke properties is a URL. The browser cannot generate interme‐
diary values in between two URLs.

The specifications do allow URL values to be
modified by animations, in discrete steps. How‐
ever, browser support is poor, restricted to SMIL
animations in Firefox at the time of writing.

What can be animated, however, are the paint server elements them‐
selves. Gradient stop colors and opacity values can be animated with
CSS, as can presentation styles on the contents of a pattern. In the
future, gradient and pattern transformations will also be affected
by CSS animations of the transform property. These and many
more structural attributes can be animated with SVG markup or
with JavaScript.

Animating a paint server has an important difference from animat‐
ing a fill or stroke paint property. The animation automatically
affects all elements using that paint server, changing them all simul‐
taneously.

Whether this feature is desired or not really depends on the particu‐
lars of your graphic. “Animated Interactions” on page 251 will
explore alternative approaches for when you don’t want every ele‐
ment to change simultaneously. In particular, that section will focus
on using animation to highlight a particular element the user is

Coordinated Animation | 247

interacting with. In contrast, for many decorative animations, it is
acceptable or even desirable to have synchronized animations.

Example 14-3 uses synchronized animations in an adaptation of the
twinkling stars animation. Now, instead of animating the fill col‐
ors on the stars themselves, the animation is applied to the stop-
color values in a series of <stop> elements. Otherwise, the
animation code looks quite similar. Figure 14-2 shows a screenshot
of the gradient-filled stars, but you’ll need to run the code to get the
full twinkling effect.

Example 14-3. Animating gradient stop colors with CSS

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2in" viewBox="0 0 200 100">
 <title xml:lang="en">CSS-Animated Gradient</title>
 <style type="text/css">
 .star {
 fill: url(#shine);
 }
 #shine stop {
 stop-color: gold;
 animation: twinkle 3s infinite;
 }
 #shine stop:nth-of-type(3n+2){
 animation-delay: -1s;
 }
 #shine stop:nth-of-type(3n+3){
 animation-delay: -2s;
 }
 @keyframes twinkle {
 25% {stop-color: lightYellow;}
 50% {stop-color: gold; }
 75% {stop-color: tomato;}
 }
 </style>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 <linearGradient id="shine" gradientTransform="rotate(20)">
 <stop offset="0" />
 <stop offset="0.25" />
 <stop offset="0.5" />
 <stop offset="0.75" />
 <stop offset="1" />
 </linearGradient>
 <rect height="100%" width="100%" fill="#222"/>
 <use xlink:href="#star" width="50" height="50" class="star"

248 | Chapter 14: Motion Pictures

Figure 14-2. Still from an animation sequence of stars with oscillating
gradients

 transform="translate(10,20) rotate(-10)"/>
 <use xlink:href="#star" width="40" height="40" class="star"
 transform="translate(140,10) rotate(20)"/>
 <use xlink:href="#star" width="35" height="35" class="star"
 transform="translate(80,60) rotate(-5)"/>
</svg>

The oscillating color stops could also be created with SMIL-style
animation elements, by adding an <animate> element within each
<stop>. However, it is more useful to use animation elements for
something that CSS animations cannot do: modifying the geometric
attributes.

Example 14-4 uses two animations to modify the x1 and y2
attributes of the <linearGradient> element. A still screenshot of the
graphic would look quite similar to Figure 14-2, but the dynamic
effect is quite different: instead of having each color twinkle in place,
they stretch and shift like gentle waves.

Example 14-4. Animating the gradient vector with animation elements

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2in" viewBox="0 0 200 100">
 <title xml:lang="en">SMIL-Animated Gradient</title>
 <style type="text/css">
 .star {
 fill: url(#shine);

Coordinated Animation | 249

 }
 </style>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 <linearGradient id="shine" spreadMethod="repeat"
 gradientTransform="rotate(20)" >
 <animate attributeName="y2" values="1;1.5;1;0.75;1"
 dur="2s" repeatDur="indefinite" />
 <animate attributeName="x1" values="0;0.5;0"
 dur="3s" repeatDur="indefinite" />
 <stop offset="0" stop-color="gold" />
 <stop offset="0.25" stop-color="lightYellow" />
 <stop offset="0.5" stop-color="gold" />
 <stop offset="0.75" stop-color="tomato" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>
 <rect height="100%" width="100%" fill="#222"/>
 <use xlink:href="#star" width="50" height="50" class="star"
 transform="translate(10,20) rotate(-10)"/>
 <use xlink:href="#star" width="40" height="40" class="star"
 transform="translate(140,10) rotate(20)"/>
 <use xlink:href="#star" width="35" height="35" class="star"
 transform="translate(80,60) rotate(-5)"/>
</svg>

Neither Firefox nor WebKit browsers currently
update the painted graphics when the gradient is
animated with SMIL (i.e., it only works in Blink
browsers).

Greater browser support for this effect could be created by using
JavaScript instead of SMIL to modify the gradient attributes. How‐
ever, all three stars would still animate in perfect synchronization,
because they all use the same gradient.

For some graphics, you may be able to disrupt the repetition by
using a repeating userSpaceOnUse graphic that is slightly different
under each shape. For the three stars, that approach does not have
an effect: each star is drawn in the same position within its own
<symbol> coordinate system, so each star would be drawn at the
exact same point of a user-space gradient.

250 | Chapter 14: Motion Pictures

Future Focus
Transitioning Between Gradients

CSS gradient functions can be animated (with CSS animations) in some brows-
ers, following the latest draft versions of the CSS Image Values and Replaced
Content Module Level 3. To transition in between two gradients, they must
be of the same type (e.g., repeating-linear-gradient) and must have
the same number of stops. The stop offsets and colors are then transitioned
individually.

Browsers that do not support the interpolation of gra-
dients will ignore any values set within an @keyframes
rule, and will apply other changes immediately
without transitions.

A proposed version of the CSS transitions specification would recommend
that URL references to SVG gradients be transitioned in the same way. In other
words, if both gradients are of the same type and have the same number of
stops, the browser would generate all the in-between values when switching
between paint servers with CSS animations or transitions. At the time of writ-
ing, this has not been implemented in browsers, and there is opposition to
including it in the final specification. The Level 4 specification includes an alter-
native transition mode, cross-fading, which would allow any image to dissolve
into another; this is more easily adapted to SVG paint server content.

Animated Interactions
One of the most important uses of animation in modern websites is
to provide user feedback and continuity. Content should visibly
change when users interact with it, but it should do so in a smooth
way so the user can intuitively understand the connection between
the old and new states.

If you are using animations to represent the user’s interaction with a
particular element, you clearly cannot have the same animation hap‐
pening simultaneously on all similar elements in the web page. One
solution is to have a dedicated paint server element (or elements)
that applies the animation effects and is only used when needed.
Other paint servers render the static states of the element.

Animated Interactions | 251

Animating one element (a paint server) when the user interacts with
another (a graphical icon) is difficult-to-impossible with CSS anima‐
tions. It can sometimes be done with sibling and child selectors, but
only if you rearrange your markup into a rather messy structure!
Therefore, we’ll start with a SMIL-based approach to describe what
we are trying to achieve, then show how to create the same effect—
with more work but more flexibility and good browser support—in
JavaScript.

The SMIL animation approach takes advantage of timing attributes
for synchronizing multiple animations. It uses the <set> element to
switch the paint server from the shared, static gradient to an animat‐
able paint server, and then uses <animate> elements to implement
the effect. Finally, another <set> element switches the graphic to the
final state, which is again a shared paint server.

Blink and WebKit browsers will not correctly
animate URL references to paint servers, even
with a <set> element; the fill is replaced with
transparent (WebKit) or solid (Blink) black.
Given the Chromium project’s plan to deprecate
SMIL support, this is not expected to be fixed.
The example therefore only works on Firefox.

Example 14-5 uses this method to implement a click effect on star
icons, such as might be used to indicate favorite or bookmarked ele‐
ments. It uses the silver and gold linear gradients we saw previously
in the star-rating icon example from Chapter 8, plus an additional
radial gradient for the transition effect.

The stars begin filled with the silver-gray gradient. Upon activation,
a gold fill radiates out from the center of the element, before fading
into a gold-shine linear gradient. The animated effect involves all
three gradients, layered within a <pattern> element; in addition to
animating the radius of the radial gradient, the opacity of the pat‐
tern layers are modified for smooth transitions.

Figure 14-3 shows a screenshot in which one icon is in the final gold
state, one is in the initial silver state, and the other has just been
clicked and is partway through the radiating animation.

252 | Chapter 14: Motion Pictures

Figure 14-3. Screenshot of an interactive animated web page, shortly
after the final icon has been selected

Example 14-5. Animating a single element’s paint upon user
interaction, with animation elements

HTML MARKUP:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Interactive Animated Gradient with SMIL</title>
 <style type='text/css'>
 /* styles must be in the same document */
 </style>
</head>
<body>
 <svg class="defs-only"
 aria-hidden="true" focusable="false" width="0" height="0" >
 <linearGradient id="silver-shine" spreadMethod="repeat"
 gradientTransform="rotate(20)" >
 <stop offset="0" stop-color="gray" />
 <stop offset="0.35" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </linearGradient>
 <linearGradient id="gold-shine" spreadMethod="repeat"
 gradientTransform="rotate(20)" >
 <stop offset="0" stop-color="gold" />
 <stop offset="0.35" stop-color="lightYellow" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>

Animated Interactions | 253

 <radialGradient id="gold-ripple" r="0.2">
 <animate id="ripple"
 attributeName="r" from="0.1" to="1"
 dur="0.7s" fill="freeze"
 begin="reaction.begin + 0.1s" />
 <stop offset="0" stop-color="gold" />
 <stop offset="0.5" stop-color="lightYellow" />
 <stop offset="0.75" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </radialGradient>
 <pattern id="turn-gold" width="1" height="1"
 patternContentUnits="objectBoundingBox">
 <rect fill="url(#gold-shine)" width="1" height="1" />
 <rect fill="url(#silver-shine)" width="1" height="1" >
 <set attributeName="opacity" to="0"
 begin="reaction.begin + 0.5s" />
 </rect>
 <rect fill="url(#gold-ripple)" width="1" height="1" >
 <animate id="reaction"
 attributeName="opacity"
 values="0;1;1;0"
 keyTimes="0;0.2;0.8;1"
 dur="1s"
 begin="switch1.begin;
 switch2.begin; switch3.begin" />
 </rect>
 </pattern>

 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />
 </symbol>
 </svg>
 <h1>Pick your favorites:</h1>
 <div>
 <figure id="opt1" role="checkbox" tabindex="0">
 <figcaption>Option 1</figcaption>
 <svg><use class="star" xlink:href="#star">
 <set id="switch1"
 attributeName="fill" to="url(#turn-gold)"
 dur="1s" begin="opt1.click; opt1.activate"/>
 <set attributeName="fill" to="url(#gold-shine)"
 dur="indefinite" begin="switch1.end" />
 </use></svg>
 </figure>
 <figure id="opt2" role="checkbox" tabindex="0">
 <figcaption>Option 2</figcaption>
 <svg><use class="star" xlink:href="#star">
 <set id="switch2"
 attributeName="fill" to="url(#turn-gold)"
 dur="1s" begin="opt2.click; opt2.activate"/>
 <set attributeName="fill" to="url(#gold-shine)"

254 | Chapter 14: Motion Pictures

 dur="indefinite" begin="switch2.end" />
 </use></svg>
 </figure>
 <figure id="opt3" role="checkbox" tabindex="0">
 <figcaption>Option 3</figcaption>
 <svg><use class="star" xlink:href="#star">
 <set id="switch3"
 attributeName="fill" to="url(#turn-gold)"
 dur="1s" begin="opt3.click; opt3.activate"/>
 <set attributeName="fill" to="url(#gold-shine)"
 dur="indefinite" begin="switch3.end" />
 </use></svg>
 </figure>
 </div>
 <script>
 /* do something based on the selected options */
 </script>
</body>
</html>

The first two linear gradients are unremarkable. The new radial
gradient, however, has an <animate> element that will manipu‐
late the r attribute. The animation is timed to begin one-tenth
of a second after another animation with id reaction begins.

A <pattern> element contains all the layers that will need to be
animated for the transition, as a single tile that completely fills
the shape bounding box.

Two more animation elements are nested within the pattern: a
<set> element that switches the underlying layer from silver to
gold, and an <animate> element that first increases then decrea‐
ses the opacity of the radiating gradient. This latter animation
has the reaction ID value, and is used to drive the other two
transition animations. The reaction animation itself is started
any time one of the three switch animations begins.

In the main web-page markup, the <figure> elements that con‐
tain the animated SVG are the functional equivalent of a check‐
box, so they are identified by the ARIA role="checkbox"
attribute. Each SVG contains a <use> element, as usual for
inline icons. However, each <use> element then contains two
animation elements.

Animated Interactions | 255

The switch1 animation is a <set> element that responds to a
click or activation event on the checkbox <figure>, switching
the relevant icon from the silver gradient to the transition pat‐
tern, which will then begin to animate. A second <set> element
switches the fill again to the final gold state after the animation
completes.

The other icons use the same animation structure, but with
unique ID values.

CSS STYLES:

html {
 background-color: #222;
 color: lightSkyBlue;
}
svg.defs-only {
 display: block;
 position: absolute;
 height: 0; width: 0;
 overflow: hidden;
}

figure[role="checkbox"] {
 display: inline-block;
 max-width: 33%;
 min-width: 5em;
 padding: 0; margin: 0;
 font-size: larger;
}
figcaption {
 display: block;
 text-align: center;
}
figure[role="checkbox"] > svg {
 display: block;
 margin: auto;
 width: 4em;
 height: 4em;
}
.star {
 fill: url(#silver-shine);
 cursor: pointer;
}

The checkbox role is used instead of a class in the CSS selectors
that control the layout.

256 | Chapter 14: Motion Pictures

1 If you are interested in creating toggled SMIL animations (for other types of animation,
such as shape morphing, that have better browser support), Michael J. Harris has writ‐
ten a good tutorial.

The CSS also sets the default fill for the star icons, using the
silver-gray gradient. The pointer cursor will let mouse users
know the content is interactive.

There are other limitations to this approach beyond the poor
browser support:

• If the user selects two items less than 1 second apart, the first
animation will be reset, synchronizing with the second one.

• The animation element that drives the main reaction must ref‐
erence all events that could trigger it in its begin attribute.
Example 14-5 simplifies it somewhat by having that animation
respond to the <set> animations, rather than the original user
events. However, adding new interactive icons to the web page
would still require new values in the begin attribute.

• The selection does not toggle and the animation does not
reverse the next time the icon is clicked; subsequent clicks
restart the same animation sequence, but do not de-select the
item. If you wanted to implement a reverse animation, you
would need to add a separate transparent SVG element that
appears overtop of the main icon when it is selected (using
another <set> animation) and catches all user events (using
pointer-events:all). This element would then be used to trig‐
ger the de-selection.1 You would also need new <animate> and
<set> elements to control the reverse animation sequence.

• Although the icons have been given the ARIA role of checkbox,
so that screen reader users can activate them, the checked state
of that element is not currently updated when the icon is
selected. This would need to be implemented within the script,
as SMIL animations cannot modify attributes on HTML ele‐
ments in any browser.

These issues are solved by Example 14-6, which uses JavaScript to
control the animations with sensible logic for the checkboxes. It also
integrates keyboard support and adds a new feature: when an icon is
activated based on a mouse click or tap, the radial gradient spreads

Animated Interactions | 257

http://codepen.io/mikemjharris/blog/svg-toggling
http://codepen.io/mikemjharris/blog/svg-toggling

outward from the touch point. This type of subtle reaction to user
events is recommended by many interaction design guidelines,
including Google’s Material Design style guide.

Example 14-6. Animating a single element’s paint upon user
interaction, with JavaScript

HTML MARKUP:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Interactive Animated Gradient with JavaScript</title>
 <style type='text/css'>
 /* styles unchanged */
 </style>
</head>
<body>
 <svg class="defs-only"
 aria-hidden="true" focusable="false" width="0" height="0" >
 <linearGradient id="silver-shine" spreadMethod="repeat"
 gradientTransform="rotate(20)" >
 <stop offset="0" stop-color="gray" />
 <stop offset="0.25" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </linearGradient>
 <linearGradient id="gold-shine" spreadMethod="repeat"
 gradientTransform="rotate(20)" >
 <stop offset="0" stop-color="gold" />
 <stop offset="0.25" stop-color="lightYellow" />
 <stop offset="1" stop-color="gold" />
 </linearGradient>
 <radialGradient id="gold-ripple" r="0.2">
 <stop offset="0" stop-color="gold" />
 <stop offset="0.5" stop-color="lightYellow" />
 <stop offset="0.75" stop-color="silver" />
 <stop offset="1" stop-color="gray" />
 </radialGradient>
 <pattern id="turn-gold" width="1" height="1"
 patternContentUnits="objectBoundingBox">
 <rect class="transition"
 fill="url(#gold-ripple)" width="1" height="1" />
 <rect class="on"
 fill="url(#gold-shine)" width="1" height="1" />
 <rect class="off"
 fill="url(#silver-shine)" width="1" height="1" />
 </pattern>
 <symbol id="star" viewBox="0 0 200 200">
 <path d="M100,10 L150,140 20,50 180,50 50,140 Z" />

258 | Chapter 14: Motion Pictures

 </symbol>
 </svg>
 <h1>Pick your favorite:</h1>
 <div>
 <figure id="opt1" role="checkbox">
 <figcaption>Option 1</figcaption>
 <svg><use xlink:href="#star"/></svg>
 </figure>
 <figure id="opt2" role="checkbox">
 <figcaption>Option 2</figcaption>
 <svg><use xlink:href="#star"/></svg>
 </figure>
 <figure id="opt3" role="checkbox">
 <figcaption>Option 3</figcaption>
 <svg><use xlink:href="#star"/></svg>
 </figure>
 </div>
 <script>
 /* Script included at end of file
 or as an async-loaded external resource */
 </script>
</body>
</html>

The basic style rules are the same as in Example 14-5.

The gradients and pattern are almost the same. The animation
elements have been removed, and the pattern layers reshuffled
to make the animation code simpler.

The web page markup is also the same, except for the removal
of the animation elements.

JAVASCRIPT:

(function(){
 var toggles = document.querySelectorAll("[role='checkbox']");
 var selectGraphic = ".star";
 var svg = document.querySelector("svg");
 //arbitrary <svg> element so that
 //we can access SVG dom methods
 var paint = {
 off: "url(#silver-shine)",
 animate: "url(#turn-gold)",
 on: "url(#gold-shine)"
 };
 var animating = false,
 animatingOption,
 nextFrame;

Animated Interactions | 259

 for (var i=0, n=toggles.length; i<n; i++){
 toggles[i].setAttribute("aria-checked", false);
 toggles[i].querySelector(selectGraphic).style.fill
 = paint.off;
 toggles[i].addEventListener("click", toggleState);
 toggles[i].addEventListener("keyup", checkKey);

 //tell Internet Explorer not to focus <svg>
 toggles[i].querySelector("svg")
 .setAttribute("focusable", false);
 }
 function checkKey(e) {
 //check for spacebar or Enter key,
 //using both the new standard syntax
 //and the old keycode syntax
 if ((e.key == " ")||(e.key == "Enter") ||
 (e.keyCode == 32)||(e.keyCode == 13))
 toggleState.apply(this, arguments);
 }
 function toggleState(e){
 var currentlyChecked =
 (this.getAttribute("aria-checked")
 === true.toString());

 //update the actual state
 this.setAttribute("aria-checked", !currentlyChecked);
 /* maybe do something based on the selected options */

 if (currentlyChecked) {
 //animate turning off quickly
 animateStar(this, e, 300, true);
 }
 else {
 //animate turning on, more slowly
 animateStar(this, e, 1000);
 }
 }

 function animateStar(option, event, dur, reverse) {
 if ((!dur)||isNaN(dur)) return;
 //must have a valid animation duration

 /* animation parameters */
 var effects = [
 {selector:"#gold-ripple", attr:"r",
 from:0.1, to:1, t1:0.1, t2:0.8},
 {selector:"#turn-gold .on", attr:"opacity",
 from:0, to:1, t1:0.8, t2:1},
 {selector:"#turn-gold .off", attr:"opacity",
 from:1, to:0, t1:0, t2:0.2}

260 | Chapter 14: Motion Pictures

];
 var selectTracker = "#gold-ripple";
 var star = option.querySelector(selectGraphic);
 var startTime = 0;

 if (reverse) {
 //swap the order of each effect
 effects.forEach(function(effect){
 var swap = effect.from;
 effect.from = effect.to;
 effect.to = swap;

 swap = effect.t1;
 effect.t1 = 1 - effect.t2;
 effect.t2 = 1 - swap;
 });
 }

 if (animating){
 //abort current animation
 cancelAnimationFrame(nextFrame);

 if (animatingOption != option) {
 //tidy up the current animation by setting
 //it to the correct end state
 animatingOption.querySelector(selectGraphic)
 .style.fill =
 (animatingOption.getAttribute("aria-checked")
 === true.toString()) ?
 paint.on : paint.off;
 }
 else {
 //set the new animation to start
 //from the current state
 effects.forEach(function(effect){
 effect.from = parseFloat(
 document.querySelector(effect.selector)
 .getAttribute(effect.attr));
 });
 }
 }

 var track = document.querySelector(selectTracker);
 if (event instanceof MouseEvent) {
 //recenter the radial gradient
 //to track the mouse event
 //by converting mouse coordinates first to
 //userSpace coordinates for the star,
 //and then to bounding box coordinates
 var bbox = star.getBBox(),
 CTM = star.getScreenCTM().inverse(),

Animated Interactions | 261

 p = svg.createSVGPoint(),
 p2, newCx, newCy;
 p.x = event.clientX; //NOT screenX and screenY
 p.y = event.clientY;
 p2 = p.matrixTransform(CTM);
 newCx = (p2.x - bbox.x)/bbox.width;
 newCy = (p2.y - bbox.y)/bbox.height;
 if (!animating ||(animatingOption != option)) {
 //start immediately at the mouse point
 track.setAttribute("cx", newCx);
 track.setAttribute("cy", newCy);
 }
 else {
 //create an animated shift in the gradient center
 var oldCx = parseFloat(track.getAttribute("cx"));
 var oldCy = parseFloat(track.getAttribute("cy"));
 effects.push(
 {selector: selectTracker, attr:"cx",
 from: oldCx, to: newCx,
 t1: 0, t2: 0.2
 });
 effects.push(
 {selector: selectTracker, attr:"cy",
 from: oldCy, to: newCy,
 t1: 0, t2: 0.2
 });
 }
 }
 else {
 //center gradient if triggered by keyboard event
 track.setAttribute("cx", 0.5);
 track.setAttribute("cy", 0.5);
 }

 //set overall animation parameters and initialize
 animating = true;
 animatingOption = option;
 requestAnimationFrame(function(t){
 startTime = t;
 star.style.fill = paint.animate;
 });

 //create a function to transform a time point
 //into a position in the animation effects
 var getProgress = function(t){ return (t-startTime)/dur; };

 //determine which element will be animated for each effect
 //and the total amount of change
 effects.forEach(function(effect){
 effect.node = document.querySelector(effect.selector);

262 | Chapter 14: Motion Pictures

 effect.by = effect.to - effect.from;
 });

 function applyEffects(t){
 var a = getProgress(t),
 val;
 effects.forEach(function(effect){
 if(a <= effect.t1) {
 val = effect.from;
 }
 else if (a >= effect.t2) {
 val = effect.to;
 }
 else {
 val = effect.from + effect.by*(
 (a - effect.t1)/(effect.t2 - effect.t1));
 }
 effect.node.setAttribute(effect.attr, val);
 });

 if (a < 1) {
 //loop
 nextFrame = requestAnimationFrame(applyEffects);
 }
 else {
 //animation is complete
 star.style.fill = reverse? paint.off : paint.on;
 animating = false;
 }
 }
 //start updating
 nextFrame = requestAnimationFrame(applyEffects);
 }
})();

The script starts by declaring constants and variables that will
be persistent between function calls. This includes the set of
checkbox-like elements, the selector to identify the graphic we
will change, a random <svg> element that we’ll need for some
SVG utility methods, and the references to the specific fill val‐
ues that will be used, so they can be easily updated.

The for loop initializes each toggle (checkbox-like element) to
the unchecked state, and adds the event listeners.

The checkKey helper function responds to keyboard events, and
determines whether or not the state of the toggle should be

Animated Interactions | 263

changed; if so, it calls the main event handler function with the
current context and arguments.

The toggleState function is either triggered directly by a click
event or indirectly by a keyboard event; it updates the current
state of the aria-checked attribute, and starts the transition
animation.

The animateStar function does all the calculations required to
start the animation; parameters indicate how long the anima‐
tion should last and whether the animation should run back‐
ward from checked to unchecked.

The overall animation is defined as an array of distinct effects;
each effect object describes which element will be modified (as a
CSS selector value), which attribute will be changed (attr),
what the initial (from) and final (to) values should be, and when
the animation should start (t1) and end (t2) as a proportion of
the overall animation duration. The hardcoded values describe
the forward animation; the values are then swapped if the ani‐
mation should run in reverse.

The if(animating) block contains cleanup code required to
prevent two animations from conflicting, as they modify the
same paint server elements.

The next block tests whether the animation was triggered by a
pointer click on screen, and if so adjusts the radiating or col‐
lapsing gradient to center around the touch point.

A one-time call to requestAnimationFrame is used to save a
timestamp for the beginning of the animation, and to swap the
paint server to the animated pattern.

The rest of the animation uses requestAnimationFrame to
repeatedly call the applyEffects function, which updates all the
transitioning attributes without a lot of extra calculations to
slow it down.

The markup is almost the same as Example 14-5, minus the anima‐
tion elements. The one change is to the ordering of the layers within
the <pattern>—this change allows each animation effect to be

264 | Chapter 14: Motion Pictures

described by a single-direction animation, from one value to
another. Instead of having the animated radial gradient layer fade in
and then out, it is drawn as the bottom layer and the two linear gra‐
dient layers are faded in or out over top.

The overall pattern of actions after a user event is as follows:

1. Determine whether the action is toggling on or off, and update
the ARIA state (the toggleState function). This would also be
where any other behavior related to checking and unchecking
options would be added.

2. Call the animation set-up function (animateStar), to either run
a 1,000ms turn-on animation or a 300ms turn-off animation.
Times are in milliseconds because most JavaScript and DOM
timing methods use milliseconds. The turn-off animation runs
more quickly because we want to very clearly respond to the
user’s dismissal of the selection.

3. Check if another animation is running, and if so cancel the
pending animation request. If the running animation was on a
different star, immediately switch that star to its final state.
Otherwise, if it was on the same star, adjust the parameters for
the current animation so that it smoothly continues from the
current state.

4. If this was a mouse event (which includes clicks created by taps
on a touch screen), center the radial gradient on the mouse
point. This section uses a number of methods unique to the
SVG DOM:

• element.getBBox() returns the bounding box of an object in
its local coordinate system as an object with properties x, y,
width, and height.

• element.getScreenCTM() returns the cumulative transfor‐
mation matrix (CTM) between that element’s coordinate sys‐
tem and the root coordinate system for the page. Despite the
unfortunate name, this is not the screen coordinates used in
mouse events, but instead the client coordinate system.

• matrix.inverse() returns a new transformation matrix that
exactly reverses the transformation created by the original
matrix.

Animated Interactions | 265

• svg.createSVGPoint() generates an SVG data object that
can hold x and y numerical values. SVGPoint objects are used
when accessing the points of a polygon or polyline. The only
reason to create your own is for the next method.

• point.matrixTransform(matrix) calculates the position of
the given point after applying the specified matrix transfor‐
mation.

Using these methods, the mouse coordinates from the event are
converted to the coordinate system used for the star, and then
the star’s bounding box is used to convert to object bounding
box coordinates for the gradient’s cx and cy attributes. If alter‐
ing an in-progress animation, the shift in center is applied as
additional animation effects, by adding new objects to the
effects array. In contrast, if the toggle was triggered by a key‐
board event, cx and cy are reset to the center of the element.

5. Call a one-time animation function to initialize the animation,
changing the fill property of the star to the animating pattern,
and recording the start time for the animation loop.

6. Define a function (getProgress) to convert document time‐
stamps into a fraction of the time between the start and end of
the animation effect. If you wanted to use an easing function to
slow down or speed up the animation as it progresses, this
would be the place to incorporate it.

7. Identify which element will be animated for each effect, and
store it in a variable for quick access. Also convert the from-to
animation syntax into from-by format for faster math at each
frame of the animation.

8. Finally, apply the changing effects at each stage of the anima‐
tion, according to the timestamp passed to the callback function
(applyEffects) by the browser in response to an animation
frame request. The effects are defined using an array of data
objects; each object has the same structure so that it can be
applied using a single function that calculates the current value
and updates the corresponding attribute of a specified element.
The method used here only supports the interpolation of simple
numerical values, and only supports changes to attributes
(including presentation attributes). If you wanted to animate

266 | Chapter 14: Motion Pictures

colors, complex lists of data, or animate style values, additional
code would be required.

9. Within the animation callback, check whether the animation is
complete. If it hasn’t yet completed, request another animation
frame; if it has, switch the star to its final gradient state.

The only limitation remaining is that the animation on one star is
aborted if another star is interacted with. This is necessary to avoid
conflict, as there is only a single paint server used to draw the ani‐
mation states of all the stars. In order to work around this, you
would need to dynamically create separate copies of the paint
servers (the <radialGradient> and the <pattern> that references
it) for each element being animated. These DOM manipulations
would have performance impacts, so you would need to decide if
they were worth the small chance of overlapping interactions. Of
course, the likelihood of two interactions overlapping will depend
on how long each animation lasts. A 1-second animation is actually
considered quite long for user interaction animations.

This is all a lot of code for a subtle interaction effect. For this reason,
it is rare to write a complete custom animation script for each
project. JavaScript libraries such as Snap.svg, D3.js, or the Green‐
Sock Animation Platform, GSAP provide methods to efficiently
control the timing of animation and interpolation of values. As
browser support increases for the Web Animations API, that will
become the preferred method of defining specific animation effects.

Nonetheless, the overall strategy of creating an animation by switch‐
ing between paint servers and animating the paint server compo‐
nents would still apply when using those tools. That said, this
particular effect will get much easier when there is good browser
support for layered fills, CSS gradients as a fill value, and CSS transi‐
tions of gradient functions.

Animated Interactions | 267

http://snapsvg.io/
http://d3js.org/
https://greensock.com/
https://greensock.com/

APPENDIX A

Color Keywords and Syntax

Colors within SVG and CSS may be specified either as exact numeri‐
cal values or by using predefined color keywords.

Custom solid colors can be specified in any of the following formats:

• #RRGGBB, six hexidecimal digits, with each pair representing a
value between 0 (00) and 255 (FF) for each color channel

• #RGB, three hexadecimal digits, equivalent to the six-digit ver‐
sion with every digit duplicated

• rgb(r,g,b), with either three integers between 0 and 255, or
three percentage values

• hsl(h,s,l), where the first (hue) parameter is a number repre‐
senting an angle in degrees on the color wheel (relative to red),
and the saturation and lightness values are percentages

Custom partially transparent colors can be specified with one of two
functions:

• rgba(r,g,b,a), where the first three values may either be per‐
centages or integers and the a value is a decimal between 0
and 1

• hsla(h,s,l,a), where the parameters are a number, two per‐
centages, then a decimal alpha value between 0 and 1

The named solid colors are listed in Table A-1 along with their
equivalents in hexadecimal, RGB, and HSL formats. The percentage

269

RGB values and HSL values have been rounded to whole numbers.
In addition, the keyword transparent represents rgba(0,0,0,0) or
hsla(0,0%,0%,0).

Table A-1. Named colors in SVG and CSS

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

AliceBlue #f0f8ff 240 248 255 94% 97% 100% 208 6% 97%

antiqueWhite #faebd7 250 235 215 98% 92% 84% 34 14% 91%

aqua #00ffff 0 255 255 0% 100% 100% 180 100% 50%

aquamarine #7fffd4 127 255 212 50% 100% 83% 160 50% 75%

azure #f0ffff 240 255 255 94% 100% 100% 180 6% 97%

beige #f5f5dc 245 245 220 96% 96% 86% 60 10% 91%

bisque #ffe4c4 255 228 196 100% 89% 77% 33 23% 88%

black #000000 0 0 0 0% 0% 0% 0 0% 0%

blanchedAlmond #ffebcd 255 235 205 100% 92% 80% 36 20% 90%

blue #0000ff 0 0 255 0% 0% 100% 240 100% 50%

blueViolet #8a2be2 138 43 226 54% 17% 89% 271 81% 53%

brown #a52a2a 165 42 42 65% 16% 16% 0 75% 41%

burlywood #deb887 222 184 135 87% 72% 53% 34 39% 70%

cadetBlue #5f9ea0 95 158 160 37% 62% 63% 182 41% 50%

chartreuse #7fff00 127 255 0 50% 100% 0% 90 100% 50%

chocolate #d2691e 210 105 30 82% 41% 12% 25 86% 47%

coral #ff7f50 255 127 80 100% 50% 31% 16 69% 66%

cornflowerBlue #6495ed 100 149 237 39% 58% 93% 219 58% 66%

cornsilk #fff8dc 255 248 220 100% 97% 86% 48 14% 93%

crimson #dc143c 220 20 60 86% 8% 24% 348 91% 47%

270 | Appendix A: Color Keywords and Syntax

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

cyan #00ffff 0 255 255 0% 100% 100% 180 100% 50%

darkBlue #00008b 0 0 139 0% 0% 55% 240 100% 27%

darkCyan #008b8b 0 139 139 0% 55% 55% 180 100% 27%

darkGoldenrod #b8860b 184 134 11 72% 53% 4% 43 94% 38%

darkGray #a9a9a9 169 169 169 66% 66% 66% 0 0% 66%

darkGreen #006400 0 100 0 0% 39% 0% 120 100% 20%

darkGrey #a9a9a9 169 169 169 66% 66% 66% 0 0% 66%

darkKhaki #bdb76b 189 183 107 74% 72% 42% 56 43% 58%

darkMagenta #8b008b 139 0 139 55% 0% 55% 300 100% 27%

darkOliveGreen #556b2f 85 107 47 33% 42% 18% 82 56% 30%

darkOrange #ff8c00 255 140 0 100% 55% 0% 33 100% 50%

darkOrchid #9932cc 153 50 204 60% 20% 80% 280 75% 50%

darkRed #8b0000 139 0 0 55% 0% 0% 0 100% 27%

darkSalmon #e9967a 233 150 122 91% 59% 48% 15 48% 70%

darkSeaGreen #8fbc8f 143 188 143 56% 74% 56% 120 24% 65%

darkSlateBlue #483d8b 72 61 139 28% 24% 55% 248 56% 39%

darkSlateGray #2f4f4f 47 79 79 18% 31% 31% 180 41% 25%

darkSlateGrey #2f4f4f 47 79 79 18% 31% 31% 180 41% 25%

darkTurquoise #00ced1 0 206 209 0% 81% 82% 181 100% 41%

darkViolet #9400d3 148 0 211 58% 0% 83% 282 100% 41%

deepPink #ff1493 255 20 147 100% 8% 58% 328 92% 54%

deepSkyBlue #00bfff 0 191 255 0% 75% 100% 195 100% 50%

dimGray #696969 105 105 105 41% 41% 41% 0 0% 41%

Color Keywords and Syntax | 271

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

dimGrey #696969 105 105 105 41% 41% 41% 0 0% 41%

dodgerBlue #1e90ff 30 144 255 12% 56% 100% 210 88% 56%

firebrick #b22222 178 34 34 70% 13% 13% 0 81% 42%

floralWhite #fffaf0 255 250 240 100% 98% 94% 40 6% 97%

forestGreen #228b22 34 139 34 13% 55% 13% 120 76% 34%

fuchsia #ff00ff 255 0 255 100% 0% 100% 300 100% 50%

gainsboro #dcdcdc 220 220 220 86% 86% 86% 0 0% 86%

ghostWhite #f8f8ff 248 248 255 97% 97% 100% 240 3% 99%

gold #ffd700 255 215 0 100% 84% 0% 51 100% 50%

goldenrod #daa520 218 165 32 85% 65% 13% 43 85% 49%

gray #808080 128 128 128 50% 50% 50% 0 0% 50%

green #008000 0 128 0 0% 50% 0% 120 100% 25%

greenYellow #adff2f 173 255 47 68% 100% 18% 84 82% 59%

grey #808080 128 128 128 50% 50% 50% 0 0% 50%

honeydew #f0fff0 240 255 240 94% 100% 94% 120 6% 97%

hotPink #ff69b4 255 105 180 100% 41% 71% 330 59% 71%

indianRed #cd5c5c 205 92 92 80% 36% 36% 0 55% 58%

indigo #4b0082 75 0 130 29% 0% 51% 275 100% 25%

ivory #fffff0 255 255 240 100% 100% 94% 60 6% 97%

khaki #f0e68c 240 230 140 94% 90% 55% 54 42% 75%

lavender #e6e6fa 230 230 250 90% 90% 98% 240 8% 94%

lavenderBlush #fff0f5 255 240 245 100% 94% 96% 340 6% 97%

lawnGreen #7cfc00 124 252 0 49% 99% 0% 90 100% 49%

272 | Appendix A: Color Keywords and Syntax

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

lemonChiffon #fffacd 255 250 205 100% 98% 80% 54 20% 90%

lightBlue #add8e6 173 216 230 68% 85% 90% 195 25% 79%

lightCoral #f08080 240 128 128 94% 50% 50% 0 47% 72%

lightCyan #e0ffff 224 255 255 88% 100% 100% 180 12% 94%

lightGoldenrodYellow #fafad2 250 250 210 98% 98% 82% 60 16% 90%

lightGray #d3d3d3 211 211 211 83% 83% 83% 0 0% 83%

lightGreen #90ee90 144 238 144 56% 93% 56% 120 39% 75%

lightGrey #d3d3d3 211 211 211 83% 83% 83% 0 0% 83%

lightPink #ffb6c1 255 182 193 100% 71% 76% 351 29% 86%

lightSalmon #ffa07a 255 160 122 100% 63% 48% 17 52% 74%

lightSeaGreen #20b2aa 32 178 170 13% 70% 67% 177 82% 41%

lightSkyBlue #87cefa 135 206 250 53% 81% 98% 203 46% 75%

lightSlateGray #778899 119 136 153 47% 53% 60% 210 22% 53%

lightSlateGrey #778899 119 136 153 47% 53% 60% 210 22% 53%

lightSteelBlue #b0c4de 176 196 222 69% 77% 87% 214 21% 78%

lightYellow #ffffe0 255 255 224 100% 100% 88% 60 12% 94%

lime #00ff00 0 255 0 0% 100% 0% 120 100% 50%

limeGreen #32cd32 50 205 50 20% 80% 20% 120 76% 50%

linen #faf0e6 250 240 230 98% 94% 90% 30 8% 94%

magenta #ff00ff 255 0 255 100% 0% 100% 300 100% 50%

maroon #800000 128 0 0 50% 0% 0% 0 100% 25%

mediumAquamarine #66cdaa 102 205 170 40% 80% 67% 160 50% 60%

mediumBlue #0000cd 0 0 205 0% 0% 80% 240 100% 40%

Color Keywords and Syntax | 273

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

mediumOrchid #ba55d3 186 85 211 73% 33% 83% 288 60% 58%

mediumPurple #9370db 147 112 219 58% 44% 86% 260 49% 65%

mediumSeaGreen #3cb371 60 179 113 24% 70% 44% 147 66% 47%

mediumSlateBlue #7b68ee 123 104 238 48% 41% 93% 249 56% 67%

mediumSpringGreen #00fa9a 0 250 154 0% 98% 60% 157 100% 49%

mediumTurquoise #48d1cc 72 209 204 28% 82% 80% 178 66% 55%

mediumVioletRed #c71585 199 21 133 78% 8% 52% 322 89% 43%

midnightBlue #191970 25 25 112 10% 10% 44% 240 78% 27%

mintCream #f5fffa 245 255 250 96% 100% 98% 150 4% 98%

mistyRose #ffe4e1 255 228 225 100% 89% 88% 6 12% 94%

moccasin #ffe4b5 255 228 181 100% 89% 71% 38 29% 85%

navajoWhite #ffdead 255 222 173 100% 87% 68% 36 32% 84%

navy #000080 0 0 128 0% 0% 50% 240 100% 25%

oldLace #fdf5e6 253 245 230 99% 96% 90% 39 9% 95%

olive #808000 128 128 0 50% 50% 0% 60 100% 25%

oliveDrab #6b8e23 107 142 35 42% 56% 14% 80 75% 35%

orange #ffa500 255 165 0 100% 65% 0% 39 100% 50%

orangeRed #ff4500 255 69 0 100% 27% 0% 16 100% 50%

orchid #da70d6 218 112 214 85% 44% 84% 302 49% 65%

paleGoldenrod #eee8aa 238 232 170 93% 91% 67% 55 29% 80%

paleGreen #98fb98 152 251 152 60% 98% 60% 120 39% 79%

paleTurquoise #afeeee 175 238 238 69% 93% 93% 180 26% 81%

paleVioletRed #db7093 219 112 147 86% 44% 58% 340 49% 65%

274 | Appendix A: Color Keywords and Syntax

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

papayaWhip #ffefd5 255 239 213 100% 94% 84% 37 16% 92%

peachPuff #ffdab9 255 218 185 100% 85% 73% 28 27% 86%

peru #cd853f 205 133 63 80% 52% 25% 30 69% 53%

pink #ffc0cb 255 192 203 100% 75% 80% 350 25% 88%

plum #dda0dd 221 160 221 87% 63% 87% 300 28% 75%

powderBlue #b0e0e6 176 224 230 69% 88% 90% 187 23% 80%

purple #800080 128 0 128 50% 0% 50% 300 100% 25%

rebeccaPurple #663399 102 51 153 40% 20% 60% 270 67% 40%

red #ff0000 255 0 0 100% 0% 0% 0 100% 50%

rosyBrown #bc8f8f 188 143 143 74% 56% 56% 0 24% 65%

royalBlue #4169e1 65 105 225 25% 41% 88% 225 71% 57%

saddleBrown #8b4513 139 69 19 55% 27% 7% 25 86% 31%

salmon #fa8072 250 128 114 98% 50% 45% 6 54% 71%

sandyBrown #f4a460 244 164 96 96% 64% 38% 28 61% 67%

seaGreen #2e8b57 46 139 87 18% 55% 34% 146 67% 36%

seashell #fff5ee 255 245 238 100% 96% 93% 25 7% 97%

sienna #a0522d 160 82 45 63% 32% 18% 19 72% 40%

silver #c0c0c0 192 192 192 75% 75% 75% 0 0% 75%

skyBlue #87ceeb 135 206 235 53% 81% 92% 197 43% 73%

slateBlue #6a5acd 106 90 205 42% 35% 80% 248 56% 58%

slateGray #708090 112 128 144 44% 50% 56% 210 22% 50%

slateGrey #708090 112 128 144 44% 50% 56% 210 22% 50%

snow #fffafa 255 250 250 100% 98% 98% 0 2% 99%

Color Keywords and Syntax | 275

Keyword Hex
value

RGB
decimal

RGB percent HSL

R G B R G B H S L

springGreen #00ff7f 0 255 127 0% 100% 50% 150 100% 50%

steelBlue #4682b4 70 130 180 27% 51% 71% 207 61% 49%

tan #d2b48c 210 180 140 82% 71% 55% 34 33% 69%

teal #008080 0 128 128 0% 50% 50% 180 100% 25%

thistle #d8bfd8 216 191 216 85% 75% 85% 300 12% 80%

tomato #ff6347 255 99 71 100% 39% 28% 9 72% 64%

turquoise #40e0d0 64 224 208 25% 88% 82% 174 71% 56%

violet #ee82ee 238 130 238 93% 51% 93% 300 45% 72%

wheat #f5deb3 245 222 179 96% 87% 70% 39 27% 83%

white #ffffff 255 255 255 100% 100% 100% 0 0% 100%

whiteSmoke #f5f5f5 245 245 245 96% 96% 96% 0 0% 96%

yellow #ffff00 255 255 0 100% 100% 0% 60 100% 50%

yellowGreen #9acd32 154 205 50 60% 80% 20% 80 76% 50%

276 | Appendix A: Color Keywords and Syntax

APPENDIX B

Elements, Attributes, and Style
Properties

This guide to SVG paint server elements provides a quick reference
to the available attributes, with their default and allowed values.

<linearGradient>
A gradient in which color stops are drawn as parallel lines, extend‐
ing perpendicularly (in the gradient’s coordinate system) from a gra‐
dient vector.

id

the value used to reference this gradient

• same restrictions as for any other element id

x1

horizontal position of the gradient vector’s start point

• a length (in user coordinates or with units) or percentage
(of coordinate system width)

• default 0.

y1

vertical position of the gradient vector’s start point

277

• a length (in user coordinates or with units) or percentage
(of coordinate system height)

• default 0.

x2

horizontal position of the gradient vector’s end point

• a length (in user coordinates or with units) or percentage
(of coordinate system width)

• default 100%.

y2

vertical position of the gradient vector’s end point

• a length (in user coordinates or with units) or percentage
(of coordinate system height)

• default 0.

gradientUnits

the coordinate system to use

• either userSpaceOnUse or objectBoundingBox
• default objectBoundingBox

gradientTransform

transformations to apply to the gradient content, independent
of the shape it fills

• a list of whitespace-separated transformation functions:
translate(tx,ty), scale(s), scale(sx,sy), rotate(a),
rotate(a,cx,cy), skewX(a), and skewY(a)

• each transformation parameter is specified as a number
without units (in the SVG 1 syntax); lengths are interpret‐
ted as user units (px), angles are interpretted as degrees

• default is no transformation

spreadMethod

the strategy to use for filling content beyond the start and end of
the gradient vector

278 | Appendix B: Elements, Attributes, and Style Properties

• one of pad, reflect or repeat
• default pad

xlink:href

a reference to another gradient that should be used as a template
for this one

• a URL with a target fragment which must match the ID of a
<linearGradient> or <radialGradient> element in the
same document

• all attributes on the referenced element become the default
values for the current element

• if the current element does not contain any <stop> ele‐
ments, then the stops from the referenced element will be
used

• in XML documents (including SVG), the xlink prefix must
be attached to the XLink namespace, http://www.w3.org/
1999/xlink, using an xmlns:xlink attribute

<radialGradient>
A gradient in which color stops are drawn along rays from a starting
point to an ending circle.

id

the value used to reference this gradient

• same restrictions as for any other element id

cx

horizontal position of the center point

• a length (in user coordinates or with units) or percentage
(of coordinate system width)

• default 50%

cy

vertical position of the center point

Elements, Attributes, and Style Properties | 279

http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink

• a length (in user coordinates or with units) or percentage
(of coordinate system height)

• default 50%

r

radius of the circle

• a length (in user coordinates or with units) or percentage
(proportional to the coordinate system diagonal length,
such that the diagonal is always √2×100%)

• default 50%
• negative values are an error.

fx

horizontal position of the focal point

• a length (in user coordinates or with units) or percentage
(of coordinate system width)

• default is to match cx

fy

vertical position of the focal point

• a length (in user coordinates or with units) or percentage
(of coordinate system height)

• default is to match cy

gradientUnits

the coordinate system to use

• either userSpaceOnUse or objectBoundingBox
• default objectBoundingBox

gradientTransform

transformations to apply to the gradient content, independent
of the shape it fills

• syntax and options are the same as for <linearGradient>

280 | Appendix B: Elements, Attributes, and Style Properties

spreadMethod

the strategy to use for filling content beyond the ending circle

• syntax and options are the same as for <linearGradient>

xlink:href

a reference to another gradient that should be used as a template
for this one

• syntax and options are the same as <linearGradient>

<stop>
A fixed value within a gradient.

offset

The distance along the gradient vector or ray at which to posi‐
tion this value

• a number between 0 and 1, or a percentage
• values will be clamped to the range [0–1] or [0%–100%]
• stops must be listed in order of increasing offsets; if not, the

offset will be adjusted to match the previous maximum
value

• no official default in SVG 1.1; default 0 in SVG 2 and in
most web browsers

stop-color (presentation attribute)
The color to use at this stop point

• any valid color definition supported by the browser
• default black

stop-opacity (presentation attribute)
The alpha value to use at this stop point

• a number between 0 and 1
• default 1

Elements, Attributes, and Style Properties | 281

<pattern>
A paint server that defines a region of custom SVG content that
should be used to fill other elements, repeating it as necessary in a
rectangular grid.

id

the value used to reference this gradient

• same restrictions as for any other element id

x

horizontal offset of the top left corner of the reference pattern
tile

• a length (in user coordinates or with units) or percentage
(of coordinate system width)

• default 0

y

vertical offset of the top left corner of the reference pattern tile

• a length (in user coordinates or with units) or percentage
(of coordinate system height)

• default 0

width

width of each pattern tile

• a length (in user coordinates or with units) or percentage
(of coordinate system width)

• default 0, which disables rendering of the pattern
• negative values are an error

height

height of each pattern tile

• a length (in user coordinates or with units) or percentage
(of coordinate system height)

• default 0, which disables rendering of the pattern
• negative values are an error

282 | Appendix B: Elements, Attributes, and Style Properties

patternUnits

the coordinate system to use for x, y, width, and height

• either userSpaceOnUse or objectBoundingBox
• default objectBoundingBox

patternContentUnits

the coordinate system to use for drawing the child content of
the pattern

• either userSpaceOnUse or objectBoundingBox
• default userSpaceOnUse
• has no effect if a viewBox is specified
• a value of objectBoundingBox is implemented as a non-

uniform scale to the user units; it does not create a new ref‐
erence definition for percentage lengths

viewBox

declaration of a custom coordinate system to use for the pattern
contents

• a list of four numbers, separated by whitespace or commas
• the numbers represent, in order: minimum x, minimum y,

width, and height
• the width and height values must be positive
• by default, the coordinate system is controlled by
patternContentUnits

• the viewBox is implemented as a scaling transformation,
and does not create a new reference definition for percent‐
age lengths

preserveAspectRatio

the scaling and alignment strategy that should be used when the
aspect ratio defined by the viewBox does not match the aspect
ratio of the pattern tile

• Either none or an alignment value followed by meet or
slice

Elements, Attributes, and Style Properties | 283

• The alignment value is a single word of the form xMxxYMxx
where Mxx is one of Min, Mid, or Max

• default is xMidYMid meet
• has no effect unless a viewBox attribute is specified

patternTransform

transformations to apply to the pattern tiles and their content,
independent of the shape it fills

• syntax and options are the same as for the
gradientTransform attribute for <linearGradient>

• default is no transformation

xlink:href

a reference to another pattern that should be used as a template
for this one

• a URL with a target fragment which must match the ID of a
<pattern> element in the same document

• all attributes on the referenced element become the default
values for the current element

• if the current element does not contain any child elements,
then the pattern content from the referenced element will
be used

• in XML documents (including SVG), the xlink prefix must
be attached to the XLink namespace, http://www.w3.org/
1999/xlink, using an xmlns:xlink attribute

284 | Appendix B: Elements, Attributes, and Style Properties

http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink

Index

A
Adobe Illustrator, ix, 161
AJAX (Asynchronous JavaScript and

XML), 66, 126
alpha, 54

(see also opacity)
blending compared with gradi‐

ents, 60
compositing, 58

animate element, 240
(see also animation)

animateMotion element, 240
(see also animation)

animateTransfrom element, 240
(see also animation)

animation, 5, 239-267
CSS, 241, 245, 248
elements, 241, 245, 249, 252
scripted, 242, 257

common libraries, 267
user interaction, 251

animation style properties, 240, 245
(see also animation)

Apache Batik SVG viewer, ix, 51, 70
ARIA attributes

aria-checked, 257, 265
aria-hidden, 120
aria-labelledby, 119, 126
aria-owns and aria-flowto, 26
aria-readonly, 126
aria-valuenow, aria-valuemin, and

aria-valuemax, 126

B
background style properties

fixed attachment versus user-
space gradients, 100

for pattern effects, 180
for repeated gradients effects, 117
simulating transformed patterns,

187
base element (HTML), impact on rel‐

ative URLs, 66
Batik (see Apache Batik SVG viewer)
blending, 58

comparison with gradients, 60
mix-blend-mode, 59
sRGB color model and, 49

Blink rendering engine (see Chrome)
bump map, 151

(see also filter elements)

C
calc CSS function, for gradient stops,

83
Chrome web browser and Chromium

project, ix
color-interpolation support, 51
CSS gradient rendering quality,

100
CSS repeating gradients appear‐

ance, 140
display:none for paint servers, 120
external asset support, 65, 119,

126
focus control, 121

285

font-size-adjust support, 218
gradient transitions at 0 or 1 off‐

set, 97
paint-order support, 18
rotated text paint appearance, 211
SMIL animation of paint servers,

250, 252
SMIL animation support, 245
spreadMethod support, 137
text-shadow on SVG text, 203
textLength support, 218
userSpaceOnUse errors, 98, 120,

234
zero-length linear gradient vector

appearance, 86
clipping paths, versus image fills, 205
CMYK color model, 39
color, 31-52

additive versus subtractive mix‐
ing, 38

alpha component of, 53
custom values, 40
hexadecimal notation, 40
hsl CSS function, 44
HSL model, 41

(see also HSL color model)
hsla CSS function, 53
keywords, 31

capitalization, 32
perception of, 37, 48
physics of, 36
reference, 269
rgb CSS function, 40
RGB model, 39, 49

(see also RGB color model)
(see also sRGB color model)

rgba CSS function, 53
web safe, 40

color style property, 9
color-interpolation style property, 50,

58
for animation, 244
interaction with color-rendering

hint, 29
color-interpolation-filters style prop‐

erty, 51
color-rendering style property, 28
conic gradients, 161

createSVGPoint method, 266
crisp-edges keyword, image-

rendering, 29
crispEdges keyword, shape-

rendering, 26
CSS (Cascading Style Sheets), 4, 65
CSS 3 modules

Colors, 53
Compositing and Blending, 59
Image Values and Replaced Con‐

tent Level 3
gradient functions, 83
image-rendering hint, 29
transitioning gradients, 251

Image Values and Replaced Con‐
tent Level 4, 161, 251

Text Decoration, 205
Transforms, 101

currentColor keyword, 9
cx and cy attributes, radialGradient

element, 141, 279

D
desc element, 119, 119

E
Edge web browser (see Internet

Explorer/Edge)
evenodd keyword, for fill-rule, 10

F
fallback colors, for fill and stroke, 66
fill style property, 9

fallback colors, 66
fill-opacity style property, 10, 53
fill-rule style property, 10
filter elements, 51, 59, 149-152
Firefox web browser, ix

color-interpolation support, 51
CSS gradients with transparent

stops, 155
CSS repeating gradients appear‐

ance, 140
display:none for paint servers, 120
external asset support, 65, 119
focus control, 121
font-size-adjust support, 218

286 | Index

paint-order support, 18
rotated text paint appearance, 211
rounding fractional units, 174
SMIL animation of paint servers,

250, 252
spreadMethod support, 113, 137
text-shadow on SVG text, 203
textLength support, 218
viewBox and pattern errors, 194,

212
focal point, in radial gradients, 134,

141, 144
simulating with CSS gradients,

152
focusable attribute, 120
font-size-adjust style property, 217
fr attribute, in SVG 2, 147
fx and fy attributes, radialGradient

element, 144, 280

G
gamut, of color model, 40
Gecko rendering engine (see Firefox)
geometricPrecision keyword

shape-rendering, 26
text-rendering, 27

getBBox method, 265
getScreenCTM method, 265
gradient vector, 85

in CSS gradients, 100, 110
normal (perpendicular) vectors,

92
reflected/repeated gradients, 111,

114, 116
transformations of, 106
zero length, 86

gradients, 75-82
comparison with blending, 60
layering with a pattern, 189
linear, 85-108

(see also linearGradient ele‐
ment)

radial, 133-152
(see also radialGradient ele‐

ment)
repeating/reflecting, 111-116
as a solid color paint server, 68

gradientTransform attribute, 100, 278

comparison with shape transfor‐
mations, 102

interaction with object bounding
box units, 106

for linear gradients, 101
for radial gradients, 147

gradientUnits attribute, 94, 278
gzip compression, 2, 161

H
hatch and hatchPath elements, SVG

2, 184
height attribute, pattern element, 164,

282
hexadecimal color notation, 40
HSL color model, 41

conversion from RGB, 42
gradient interpolation and, 80
hsl CSS function, 44
hsla CSS function, 53, 84

HTML
SVG within, 2, 9, 59, 118-132
XML versus, 2

I
ICC (International Color Consor‐

tium) color profiles, 49
Illustrator, software by Adobe, ix
image element, 3, 167, 201
image-rendering style property, 28
images, SVG embedded as, 3, 240
Inkscape, ix, 161, 211, 212
Internet Explorer/Edge web brows‐

ers, ix
color-interpolation support, 51
CSS 3 color support, 44
CSS animation support, 246
CSS repeating gradients appear‐

ance, 140
display:none for paint servers, 120
external asset support, 65, 119
focus control, 121
font-size-adjust support, 218
paint-order support, 18
rotated text paint appearance, 211
SMIL animation support, 245
text-shadow on SVG text, 203

Index | 287

textLength support, 218
userSpaceOnUse errors, 98, 120,

234
zero-length linear gradient vector

appearance, 86
inverse method, matrix object, 265
iOS (see WebKit)
isolation style property, 59

L
line element

comparison with linearGradient,
85

default styles, 12
linear-gradient CSS function, 83

angle parameters, 109
animations and transitions, 251
position keywords, 98

linearGradient element, 70, 76,
85-108
positioning attributes, 85
reference, 277
reflected/repeated gradients,

111-116
linearRGB keyword, for color-

interpolation hints, 50
luminance

in filters and masking, 51
versus lightness, 42

M
matrixTransform method, 266
media queries, for print color pro‐

files, 71
meet keyword, for preserveAspectRa‐

tio, 193
Microsoft Edge (see Internet

Explorer/Edge)
mix-blend-mode style property, 59

N
nonzero keyword, for fill-rule, 10
normal vector, 93

(see also gradient vector)
nth-of-type CSS selector, 126, 245

O
objectBoundingBox units, 90

distorted scale, 92, 184
for linear gradients, 91
for pattern contents, 166, 172
for pattern tile dimensions, 165
for radial gradients, 137
in stroke paint, 222, 224
text element bounding box, 208,

214
and transformations, 106, 147

offset attribute, 76, 281
creating stripes with, 77
for radial gradients, 134
reflected/repeated gradients, 116
sharp transitions at 0 or 1, 97
valid range and order, 77

opacity, 53-61
in CSS gradients, 84
in gradient stops, 78
multiplicative effect, 58

opacity style property, 53
comparison with other forms of

transparency, 54
hardware-accelerated animation,

58
impact on isolation, 59
stacking context created by, 54

optimizeLegibility keyword, text-
rendering, 27

optimizeQuality keyword
color-rendering, 28
image-rendering, 28

optimizeSpeed keyword
color-rendering, 28
image-rendering, 28
shape-rendering, 26
text-rendering, 27

overflow style property, for patterns,
166

P
pad keyword, for spreadMethod, 111
paint servers, 9, 63-72

external file assets, 65, 87, 119
versus CSS image data type, 84

paint-order style property, 18-24
painter’s model

288 | Index

for fill and stroke, 17
for overlapping elements, 24
strokes as a single shape, 57

pattern element, 163-187, 189-205
reference, 282
for strokes, 235
style inheritance, 183

patternContentUnits attribute, 166,
171, 283

patternTransform attribute, 181, 284
patternUnits attribute, 165, 171, 283
pigments

printing, 38
retinal, 37

pixelated keyword, image-rendering,
29

polyline element, 14
default fill behavior, 12

presentation attribute
new geometric presentation

attributes for CSS control, 5,
101, 246

presentation attributes, 4
overriding with CSS, 65, 70

preserveAspectRatio attribute, 4, 33,
193, 283
image element, 204
pattern element, 212

pseudoclasses (CSS), for animation,
240

px unit, 8, 92

R
r attribute, radialGradient element,

141, 280
radial-gradient CSS function, 139,

142
animations and transitions, 251

radialGradient element, 133-152
comparison with filter effects, 149
reference, 279

reflect keyword, for spreadMethod,
112, 113

repeat keyword, for spreadMethod,
112, 114

repeating-linear-gradient CSS func‐
tion, 116
animations and transitions, 251

repeating-radial-gradient CSS func‐
tion, 140, 142
animations and transitions, 251

RGB color model, 39
(see also sRGB color model)
conversion to HSL, 42
rgb CSS function or hexadecimal

notation, 40
rgba CSS function, 53, 84

rotate transformation function, 100

S
Safari web browser (see WebKit)
scale transformation function, 100
set element, 240

(see also animation)
shape-rendering style property, 26,

171
skewX and skewY transformation

functions, 100
slice keyword, for preserveAspectRa‐

tio, 193
SMIL (Synchronized Multimedia

Integration Language), 245
(see also animation)

solidcolor element and solid-color
style property, 72

spreadMethod attribute, 111, 278
for radial gradients, 137

sRGB color model, 49
color-interpolation options, 50
gradient interpolation and, 80
and opacity, 58

stop element, 70, 76, 134
duplicated with xlink:href, 87
reference, 281

stop-color style property, 70, 281
stop-opacity style property, 70, 78,

281
stroke style property, 12, 221

(see also strokes)
fallback colors, 66

stroke-dasharray style property, 13
stroke-dashoffset style property, 14
stroke-linecap style property, 13
stroke-linejoin style property, 13
stroke-miterlimit style property, 13
stroke-opacity style property, 13, 53

Index | 289

stroke-width style property, 13
strokes, 221-237

as a secondary shape, 12
default paint order, 17
geometry, 12, 57
impact on text legibility, 18
line-joins versus caps, 16
and object bounding boxes, 90

style element, 65
(see also CSS)

@supports CSS rule, 19, 25
SVG 2 specification

changes to fill options, 11
changes to stroke options, 17, 223
CSS gradients in fill or stroke, 84
fr attribute, radialGradient ele‐

ment, 147
hatches, 184
images in fill or stroke, 200
layered fill and stroke, 67, 189
mesh gradients, 161
new geometric presentation

attributes for CSS control, 5,
246

paint-order style property, 18
solidcolor element, 72
stroke bounding boxes, 231
text decoration fill and stroke, 205
z-index style property, 25

SVGPoint object, 266
svgz (file extension), 2

(see also gzip compression)
symbol element, 4, 118, 250

T
tabindex attribute, 121
text, 207-218

converting to paths, 207, 211
filling with image, 201
strokes and paint-order, 18

text element, 208
text-decoration style property, 202

new features in CSS 3 and SVG 2,
205

text-rendering style property, 27
text-shadow style property, 203
textLength attribute, 217
textPath element, 211

title element, 33, 119, 119, 131
in inline SVG, 131

transformation functions, 47, 100
repositioning a user-space gradi‐

ent, 228
transformation matrix, 265
transition style properties, 240

(see also animation)
translate transformation function,

100
transparency (see opacity)
transparent color keyword, 54, 155
tspan element, 214

U
units, for defining lengths, 8

objectBoundingBox scaling
effects, 92

url CSS function, 65
relative URLs and CSS files, 65

use element, 118
userSpaceOnUse units

coloring by value in a data chart,
231

for gradients, 94
for pattern contents, 166, 175
for pattern tile dimensions, 165
percentages in pattern contents,

172
to stroke gradients on straight

lines, 226
with SVG icon systems, 120
and transformations, 107

V
viewBox attribute, 4, 193, 283

pattern element, 174, 194, 212
percentage units and patterns, 196

W
Web Animations API, 6, 243
web safe colors, 40

(see also color)
WebKit project, ix

color-interpolation support, 51
CSS animation support, 246

290 | Index

CSS repeating gradients imple‐
mentation, 116, 140

display:none for paint servers, 120
DOM order limitations on reused

content, 82, 120
external asset support, 65, 119,

126
focus control, 121
font-size-adjust support, 218
gradient transitions at 0 or 1 off‐

set, 97
lighting filter support, 151
paint-order support, 18
rotated text paint appearance, 211
SMIL animation of paint servers,

250, 252
spreadMethod support, 113, 137
text-shadow on SVG text, 203
textLength support, 218
userSpaceOnUse errors, 98, 120,

234
zero-length linear gradient vector

appearance, 86
-webkit-background-clip, to simulate

image-filled text, 219
width attribute, pattern element, 164,

282

X
x attribute, pattern element, 164, 282
x1 and x2 attributes, linearGradient

element, 85, 277
X11, as source of color keywords, 31
xlink:href attribute, 279, 284

for gradients, 86
linking radial and linear gradients,

134
pattern element, 183

XML
HTML versus, 2
SVG as, 2

xml:base attribute, impact on relative
URLs, 66

XMLHttpRequest, 33
(see also AJAX)

Y
y attribute, pattern element, 164, 282
y1 and y2 attributes, linearGradient

element, 85, 277

Z
z-index style property, 25

Index | 291

About the Authors
Amelia Bellamy-Royds is a freelance writer specializing in scientific
and technical communication. She is best known in web design cir‐
cles for her writings about SVG. Amelia is an Invited Expert on the
W3C’s SVG Working Group, and is also active in the SVG Accessi‐
bility Task Force. She helps promote web standards and design
through participation in online communities such as Web Platform
Docs, Stack Exchange, and Codepen.

Amelia’s interest in SVG stems from work in data visualization, and
builds upon the programming fundamentals she learned while earn‐
ing a B.Sc. in bioinformatics. From there, she moved to work in
science, health, and environment policy research, and then to a mas‐
ter’s degree in journalism. Amelia currently lives in Edmonton,
Alberta. If she isn’t at a computer, she’s probably digging in her vege‐
table garden or out enjoying live music.

Kurt Cagle worked as a member of the SVG Working Group, and
wrote one of the first SVG books on the market in 2004. Currently
an Invited Expert with the W3C Xforms working group, Kurt is also
an XML Data Architect for the Library of Congress, after having
worked in that role for the US National Archives. He has been a reg‐
ular contributor to O’Reilly Media since 2003, and was an online
editor in 2008–2009.

Colophon
The animal on the cover of SVG Colors, Patterns & Gradients is a
Tibetan blood pheasant (Ithaginis cruentus tibetanus). These small,
partridge-like pheasants maintain a stable population in forest areas
throughout the mountains of eastern Bhutan and southern Tibet.
During the summer they can be found at high elevations, retreating
to the valleys in fall and winter when the snowfall increases.

The blood pheasant’s upper body plumage is blue-gray, with apple-
green feathers underneath. The species’ common name refers to the
feathers on their breast, which are tipped in bright crimson and
resemble specks of blood. These birds are also distinguished by their
red feet and red-ringed eyes.

Males typically measure 1.5 feet long; females are slightly smaller,
with more muted, uniform coloring. Their strong bills are used to

snatch up food—mostly green plants such as moss, ferns, and pine
shoots.

Not particularly adept at flying, blood pheasants build their nests on
the ground beginning in late April and early May. The male stands
guard while the female incubates the eggs (usually six or seven in
number). If the clutch is thought to be at risk, the nest will be moved
to a new location, or possibly deserted. The chicks appear in mid-
June and remain with their mother until winter.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover animal art is by Karen Montgomery based on an engrav‐
ing from Wood’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dal‐
ton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	What We’ll Cover
	About This Book
	About the Examples
	Using Code Examples
	Conventions Used in This Book

	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Things You Should Already Know
	SVG Is Drawing with Code
	SVG Is Always Open Source
	SVG Is XML (and Sometimes HTML)
	SVG Is Squishable
	Pictures Are a Collection of Shapes
	Images Can Have Images Inside Them
	Text Is Art
	Art Is Math
	An SVG Is a Limited View of an Infinite Canvas
	SVG Has Structure
	SVG Has Style
	Behind All Good Markup Is a Great DOM
	SVG Can Move
	SVG Can Change

	Chapter 2. The Painter’s Model
	Fill ’Er Up with the fill Property
	Stroke It with the stroke Property
	Stroking the Fill and Filling the Stroke
	Take a Hint with Rendering Properties

	Chapter 3. Creating Colors
	Misty Rose by Any Other Name
	A Rainbow in Three Colors
	Custom Colors
	Mixing and Matching

	Chapter 4. Becoming Transparent
	See-Through Styles
	The Net Effect

	Chapter 5. Serving Paint
	Paint and Wallpaper
	Identifying Your Assets
	The Solid Gradient

	Chapter 6. Simple Gradients
	Gradiated Gradients
	Transparency Gradients
	Controlling the Color Transition

	Chapter 7. Gradients in All Shapes and Sizes
	The Gradient Vector
	The Object Bounding Box
	Drawing Outside the Box
	Gradients, Transformed

	Chapter 8. And Repeat
	How to Spread Your Gradient
	Reflections on Infinite Gradients
	Repeating Without Reflecting
	Using (and Reusing) Gradients in HTML

	Chapter 9. Radial Gradients
	Radial Gradient Basics
	Filling the Box
	Scaling the Circle
	Adjusting the Focus
	Transforming Radial Gradients
	Grand Gradients

	Chapter 10. Tiles and Textures
	Building a Building Block
	Stretching to Fit
	Laying Tiles
	Transformed Tiles

	Chapter 11. Picture-Perfect Patterns
	The Layered Look
	Preserved Patterns
	Background Images, SVG-Style

	Chapter 12. Textured Text
	Bounding Text
	Switching Styles Midstream

	Chapter 13. Painting Lines
	Beyond the Edges
	The Empty Box
	Using the Coordinate Space
	Patterned Lines

	Chapter 14. Motion Pictures
	Animation Options
	Coordinated Animation
	Animated Interactions

	Appendix A. Color Keywords and Syntax
	Appendix B. Elements, Attributes, and Style Properties
	<linearGradient>
	<radialGradient>
	<stop>
	<pattern>

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

