
www.allitebooks.com

http://www.allitebooks.org

Scaling Apache Solr

Optimize your searches using high-performance
enterprise search repositories with Apache Solr

Hrishikesh Vijay Karambelkar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Scaling Apache Solr

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78398-174-8

www.packtpub.com

Cover image by Maria Cristina Caggiani (mariacristinacaggiani@virgilio.it)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Hrishikesh Vijay Karambelkar

Reviewers
Ramzi Alqrainy

Aamir Hussain

Ruben Teijeiro

Nick Veenhof

Commissioning Editor
Andrew Duckworth

Acquisition Editor
Neha Nagwekar

Content Development Editor
Neil Alexander

Technical Editors
Monica John

Shiny Poojary

Copy Editors
Sayanee Mukherjee

Karuna Narayanan

Adithi Shetty

Laxmi Subramanian

Project Coordinators
Sanchita Mandal

Kartik Vedam

Proofreaders
Mario Cecere

Paul Hindle

Jonathan Todd

Indexers
Hemangini Bari

Rekha Nair

Tejal Soni

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hrishikesh Vijay Karambelkar is an enterprise architect with a blend of
technical and entrepreneurial experience of more than 13 years. His core expertise
involves working with multiple topics that include J2EE, Big Data, Solr, Link
Analysis, and Analytics. He enjoys architecting solutions for the next generation of
product development for IT organizations. He spends most of his work time now
solving challenging problems faced by the software industry.

In the past, he has worked in the domains of graph databases; some of his work
has been published in international conferences, such as VLDB, ICDE, and so on.
He has recently published a book called Scaling Big Data with Hadoop and Solr,
Packt Publishing. He enjoys spending his leisure time traveling, trekking, and
photographing birds in the dense forests of India. He can be reached at
http://hrishikesh.karambelkar.co.in/.

I am thankful to Packt Publishing for providing me with the
opportunity to share my experiences on this topic. I would also like
to thank the reviewers of this book, especially Nick Veenhof from
Acquira for shaping it up; the Packt Publishing team, Kartik Vedam
and Neil Alexander, for their support during bad times; and my dear
wife Dhanashree, who stood by me all the time.

www.allitebooks.com

http://hrishikesh.karambelkar.co.in/
http://www.allitebooks.org

About the Reviewers

Ramzi Alqrainy is one of the most recognized experts within Artificial Intelligence
and Information Retrieval fields in the Middle East. He is an active researcher and
technology blogger, with a focus on information retrieval.

He is currently managing the search and reporting functions at OpenSooq.com where
he capitalizes on his solid experience in open source technologies in scaling up the
search engine and supportive systems.

His solid experience in Solr, ElasticSearch, Mahout, and Hadoop stack contributed
directly to the business growth through the implementations and projects that
helped the key people at OpenSooq to slice and dice information easily throughout
the dashboards and data visualization solutions.

By developing more than six full-stack search engines, he was able to solve many
complicated challenges about agglutination and stemming in the Arabic language.

He holds a Master's degree in Computer Science. He was among the top
three in his class and was listed on the honor roll. His website address is
http://ramzialqrainy.com. His LinkedIn profile is http://www.linkedin.com/
in/ramzialqrainy. He can be contacted at ramzi.alqrainy@gmail.com.

www.allitebooks.com

OpenSooq.com
http://ramzialqrainy.com
http://www.linkedin.com/in/ramzialqrainy
http://www.linkedin.com/in/ramzialqrainy
http://www.allitebooks.org

Aamir Hussain is a well-versed software design engineer with more than 5 years
of experience. He excels in solving problems that involve Breadth. He has gained
expert internal knowledge by developing software that are used by millions of
users. He developed complex software systems using Python, Django, Solr, MySQL,
mongoDB, HTML, JavaScript, CSS, and many more open source technologies. He is
determined to get a top-quality job done by continually learning new technologies.

His other experiences include analyzing and designing requirements, WEB2 and
new technologies, content management, service management that includes fixing
problems, change control and management, software release, software testing,
service design, service strategy, and continual service improvement. His specialties
include complex problem solving, web portal architecture, talent acquisition, team
building, and team management.

Ruben Teijeiro is an experienced frontend and backend web developer who has
worked with several PHP frameworks for more than a decade. He is now using
his expertise to focus on Drupal; in fact, he collaborated with them during the
development of several projects for some important companies, such as UNICEF and
Telefonica in Spain, and Ericsson in Sweden.

As an active member of the Drupal community, you can find him contributing to
Drupal core, helping and mentoring other contributors and speaking at Drupal
events around the world. He also loves to share all that he has learned through his
blog (http://drewpull.com).

I would like to thank my parents for their help and support, since I
had my first computer when I was eight. I would also like to thank
my lovely wife for her patience during all these years of geeking and
traveling.

www.allitebooks.com

http://www.allitebooks.org

Nick Veenhof is a Belgian inhabitant who has lived in a couple of different
countries, but has recently moved back home. He is currently employed at Acquia
as a Lead Search Engineer. He also helps in maintaining the Drupal Apache Solr
Integration module and also actively maintains and develops new infrastructure
tools for deploying Drupal sites on Acquia Cloud with Apache Solr.

He is also advocating open source and especially the open source project, Drupal.
This software crossed his path during his young university years and became
part of his career when he started to use it for professional purposes in several
Drupal-focused development shops.

As a logical step, he is also active in the Drupal community, as you can see in his
drupal.org profile (https://www.drupal.org/user/122682), and tries to help
people online with their first steps.

You can easily find out more about him by searching for his name, Nick Veenhof, or
his nickname, Nick_vh, on Google.

www.allitebooks.com

drupal.org
https://www.drupal.org/user/122682
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I dedicate my work to my mentors who inspired my life and made me what I am today: my
schoolteacher Mrs. Argade; Prof. S. Sudarshan from IIT Bombay; and Danesh Tarapore,

Postdoctoral Researcher at Lisbon, Portugal.

Table of Contents
Preface	 1
Chapter 1: Understanding Apache Solr	 7

Challenges in enterprise search	 8
Apache Solr – An overview	 12
Features of Apache Solr	 12

Solr for end users	 12
Powerful full text search	 13
Search through rich information	 13
Results ranking, pagination, and sorting	 13
Facets for better browsing experience	 14
Advanced search capabilities	 15

Administration	 17
Apache Solr architecture	 19

Storage	 20
Solr application	 21
Integration	 24

Client APIs and SolrJ client	 24
Other interfaces	 24

Practical use cases for Apache Solr	 25
Enterprise search for a job search agency	 25

Problem statement	 26
Approach	 26

Enterprise search for energy industry	 27
Problem statement	 28
Approach	 28

Summary	 30
Chapter 2: Getting Started with Apache Solr	 31

Setting up Apache Solr	 31
Prerequisites	 32
Running Solr on Jetty	 33

Table of Contents

[ii]

Running Solr on Tomcat	 36
Solr administration	 38
What's next?	 39
Common problems and solution	 40

Understanding the Solr structure	 43
The Solr home directory structure	 44
Solr navigation	 44

Configuring the Apache Solr for enterprise	 45
Defining a Solr schema	 45

Solr fields	 47
Dynamic Fields in Solr	 48
Copying the fields	 48
Field types	 49
Other important elements in the Solr schema	 50

Configuring Solr parameters	 50
solr.xml and Solr core	 51
solrconfig.xml	 51
The Solr plugin	 53

Other configurations	 53
Understanding SolrJ	 54
Summary	 56

Chapter 3: Analyzing Data with Apache Solr	 57
Understanding enterprise data	 58

Categorizing by characteristics	 58
Categorizing by access pattern	 59
Categorizing by data formats	 59

Loading data using native handlers	 60
Quick and simple data loading – post tool	 60
Working with JSON, XML, and CSV	 61

Handling JSON data	 63
Working with CSV data	 64
Working with XML data	 65

Working with rich documents	 66
Understanding Apache Tika	 66
Using Solr Cell (ExtractingRequestHandler)	 67
Adding metadata to your rich documents	 68

Importing structured data from the database	 69
Configuring the data source	 70
Importing data in Solr	 71

Full import	 71
Delta import	 72

Loading RDBMS tables in Solr	 73

Table of Contents

[iii]

Advanced topics with Solr	 76
Deduplication	 76
Extracting information from scanned documents	 77
Searching through images using LIRE	 78

Summary	 80
Chapter 4: Designing Enterprise Search	 81

Designing aspects for enterprise search	 82
Identifying requirements	 83
Matching user expectations through relevance	 84
Access to searched entities and user interface	 86
Improving search performance and ensuring instance scalability	 88
Working with applications through federated search	 89
Other differentiators – mobiles, linguistic search, and security	 90

Enterprise search data-processing patterns	 91
Standalone search engine server	 92
Distributed enterprise search pattern	 92
The replicated enterprise search pattern	 94
Distributed and replicated	 95

Data integrating pattern for search	 96
Data import by enterprise search	 96
Applications pushing data	 98
Middleware-based integration	 99

Case study – designing an enterprise knowledge repository
search for software IT services	 100

Gathering requirements	 101
Designing the solution	 102

Designing the schema	 102
Integrating subsystems with Apache Solr	 104
Working on end user interface	 106

Summary	 106
Chapter 5: Integrating Apache Solr	 107

Empowering the Java Enterprise application with Solr search	 108
Embedding Apache Solr as a module (web application) in an
enterprise application	 108

How to do it?	 110
Apache Solr in your web application	 111

How to do it?	 111
Integration with client technologies	 114

Integrating Apache Solr with PHP for web portals	 114
Interacting directly with Solr	 115
Using the Solr PHP client	 116
Advanced integration with Solarium	 118

Table of Contents

[iv]

Integrating Apache Solr with JavaScript	 119
Using simple XMLHTTPRequest	 120
Integrating Apache Solr using AJAX Solr	 121

Parsing Solr XML with the help of XSLT	 122
Case study – Apache Solr and Drupal	 123

How to do it?	 124
Summary	 127

Chapter 6: Distributed Search Using Apache Solr	 129
Need for distributed search	 130

Distributed search architecture	 131
Apache Solr and distributed search	 132

Understanding SolrCloud	 134
Why Zookeeper?	 134
SolrCloud architecture	 135

Building enterprise distributed search using SolrCloud	 138
Setting up a SolrCloud for development	 138
Setting up a SolrCloud for production	 141
Adding a document to SolrCloud	 144
Creating shards, collections, and replicas in SolrCloud	 145

Common problems and resolutions	 146
Case study – distributed enterprise search server for the
software industry	 148
Summary	 150

Chapter 7: Scaling Solr through Sharding, Fault Tolerance,
and Integration	 151

Enabling search result clustering with Carrot2	 152
Why Carrot2?	 153
Enabling Carrot2-based document clustering	 154
Understanding Carrot2 result clustering	 155
Viewing Solr results in the Carrot2 workbench	 157
FAQs and problems	 159

Sharding and fault tolerance	 159
Document routing and sharding	 160
Shard splitting	 162
Load balancing and fault tolerance in SolrCloud	 163

Searching Solr documents in near real time	 164
Strategies for near real-time search in Apache Solr	 164

Explicit call to commit from a client	 165
solrconfig.xml – autocommit	 166
CommitWithin – delegating the responsibility to Solr	 166
Real-time search in Apache Solr	 166

Table of Contents

[v]

Solr with MongoDB	 168
Understanding MongoDB	 168
Installing MongoDB	 169
Creating Solr indexes from MongoDB	 171

Scaling Solr through Storm	 174
Getting along with Apache Storm	 175
Solr and Apache Storm	 178

Summary	 178
Chapter 8: Scaling Solr through High Performance	 179

Monitoring performance of Apache Solr	 180
What should be monitored?	 180

Hardware and operating system	 180
Java virtual machine	 181
Apache Solr search runtime	 181
Apache Solr indexing time	 182
SolrCloud	 183

Tools for monitoring Solr performance	 183
Solr administration user interface	 183
JConsole	 184
SolrMeter	 187

Tuning Solr JVM and container	 188
Deciding heap size	 189
How can we optimize JVM?	 190
Optimizing JVM container	 190

Optimizing Solr schema and indexing	 192
Stored fields	 192
Indexed fields and field lengths	 192
Copy fields and dynamic fields	 193
Fields for range queries	 193
Index field updates	 194
Synonyms, stemming, and stopwords	 194
Tuning DataImportHandler	 195
Speeding up index generation	 196
Committing the change	 197

Limiting indexing buffer size	 198
SolrJ implementation classes	 198

Speeding Solr through Solr caching	 199
The filter cache	 200
The query result cache	 200
The document cache	 200
The field value cache	 201
The warming up cache	 201

Table of Contents

[vi]

Improving runtime search for Solr	 201
Pagination	 202
Reducing Solr response footprint	 202
Using filter queries	 202
Search query and the parsers	 203
Lazy field loading	 203

Optimizing SolrCloud	 204
Summary	 205

Chapter 9: Solr and Cloud Computing	 207
Enterprise search on Cloud	 207

Models of engagement	 208
Enterprise search Cloud deployment models	 209

Solr on Cloud strategies	 211
Scaling Solr with a dedicated application	 211

Advantages	 211
Disadvantages	 211

Scaling Solr horizontal as multiple applications	 212
Advantages	 214
Disadvantages	 214

Scaling horizontally through the Solr multicore	 214
Scaling horizontally with replication	 214
Scaling horizontally with Zookeeper	 216

Running Solr on Cloud (IaaS and PaaS)	 219
Running Solr with Amazon Cloud	 219
Running Solr on Windows Azure	 226

Running Solr on Cloud (SaaS) and enterprise search as a service	 227
Running Solr with OpenSolr Cloud	 227
Running Solr with SolrHQ Cloud	 229
Running Solr with Bitnami	 230
Working with Amazon CloudSearch	 231
Drupal-Solr SaaS with Acquia	 233

Summary	 233
Chapter 10: Scaling Solr Capabilities with Big Data	 235

Apache Solr and HDFS	 236
Big Data search on Katta	 240

How Katta works?	 240
Setting up Katta cluster	 241
Creating Katta indexes	 242

Using the Solr 1045 patch – map-side indexing	 243
Using the Solr 1301 patch – reduce-side indexing	 245
Apache Solr and Cassandra	 247

Table of Contents

[vii]

Working with Cassandra and Solr	 249
Single node configuration	 249
Integrating with multinode Cassandra	 251

Advanced analytics with Solr	 252
Integrating Solr and R	 252

Summary	 254
Appendix: Sample Configuration for Apache Solr	 255

schema.xml	 255
solrconfig.xml	 256
spellings.txt	 259
synonyms.txt	 260
protwords.txt	 260
stopwords.txt	 260

Index	 261

www.allitebooks.com

http://www.allitebooks.org

Preface
With the growth of information assets in enterprises, the need to build a rich,
scalable search application has becomes critical. Today, Apache Solr is one of the
most widely adapted, scalable, feature-rich, and high-performance open source
search application servers.

Scaling Apache Solr is intended to enable its users to transform Apache Solr from a
basic search server, to an enterprise-ready, high performance, and scalable search
application. This book is a comprehensive reference guide that starts with the
basic concepts of Solr; it takes users through the journey of how Solr can be used
in enterprise deployments, and it finally dives into building a highly efficient,
scalable enterprise search application using various techniques and numerous
practical chapters.

What this book covers
Chapter 1, Understanding Apache Solr, introduces readers to Apache Solr as a search
server. It discusses problems addressed by Apache Solr, its architecture, features,
and, finally, covers different use cases for Solr.

Chapter 2, Getting Started with Apache Solr, focuses on setting up the first Apache Solr
instance. It provides a detailed step-by-step guide for installing and configuring
Apache Solr. It also covers connecting to Solr through SolrJ libraries.

Chapter 3, Analyzing Data with Apache Solr, covers some of the common enterprise
search problems of bringing information from disparate sources and different
information flow patterns to Apache Solr with minimal losses. It also covers advanced
topics for Apache Solr such as deduplication, and searching through images.

Preface

[2]

Chapter 4, Designing Enterprise Search, introduces its readers to the various aspects
of designing a search for enterprises. It covers topics pertaining to different data
processing patterns of enterprises, integration patterns, and a case study of designing
a knowledge repository for the software IT industry.

Chapter 5, Integrating Apache Solr, focuses on the integration aspects of Apache Solr
with different applications that are commonly used in any enterprise. It also covers
different ways in which Apache Solr can be introduced by the enterprise to its users.

Chapter 6, Distributed Search Using Apache Solr, starts with the need for distributed
search for an enterprise, and it provides a deep dive to building distributed search
using Apache SolrCloud. Finally, the chapter covers common problems and a case
study of distributed search using Apache Solr for the software industry.

Chapter 7, Scaling Solr through Sharding, Fault Tolerance, and Integration, discusses
various aspects of enabling enterprise Solr search server to scaling by means of
sharding and search result clustering. It covers integration aspects of Solr with other
tools such as MongoDB, Carrot2, and Storm to achieve the scalable search solution
for an enterprise.

Chapter 8, Scaling Solr through High Performance, provides insights of how Apache Solr
can be transformed into a high-performance search engine for an enterprise. It starts
with monitoring for performance, and how the Solr application server can be tuned
for performing better with maximum utilization of the available sources.

Chapter 9, Solr and Cloud Computing, focuses on enabling Solr on cloud-based
infrastructure for scalability. It covers different Solr strategies for cloud, their
applications, and deep dive into using Solr in different types of cloud environment.

Chapter 10, Scaling Solr Capabilities with Big Data, covers aspects of working with a
very high volume of data (Big Data), and how Solr can be used to work with Big Data.
It discusses how Apache Hadoop and its ecosystem can be used to build and run
efficient Big Data enterprise search solutions.

Appendix, Sample Configuration for Apache Solr, provides a reference configuration for
different Solr configuration files with detailed explanations.

Preface

[3]

What you need for this book
This book discusses different approaches; each approach needs a different set of
software. Based on the requirement of building search applications, the respective
software can be used. However, to run a minimal Apache Solr instance, you need
the following software:

•	 Latest available JDK
•	 Latest Apache Solr (4.8 onwards)

Who this book is for
Scaling Apache Solr provides step-by-step guidance for any user who intends to
build high performance, scalable, enterprise-ready search application servers. This
book will appeal to developers, architects, and designers who wish to understand
Apache Solr, design the enterprise-ready application, and optimize it based on
the requirements. This book enables users to build a scalable search without prior
knowledge of Solr with practical examples and case studies.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can simply add the following dependency to your pom.xml file to use SolrJ."

A block of code is set as follows:

CloudSolrServer server = new CloudSolrServer("localhost:9983");
server.setDefaultCollection("collection1");
SolrQuery solrQuery = new SolrQuery("*.*");

Any command-line input or output is written as follows:

$tar –xvzf solr-<major-minor version>.tgz$tar –xvzf solr-<major-minor
version>.tgz

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The OK status explains that Solr is running fine on the server."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Understanding Apache Solr
The world of information technology revolves around transforming data into
information that we can understand. This data is generated every now and then, from
various sources, in various forms. To analyze such data, engineers must observe data
characteristics, such as the velocity with which the data is generated, volume of data,
veracity of data, and data variety. These four dimensions are widely used to recognize
whether the data falls into the category of Big Data. In an enterprise, the data may
come from its operations network which would involve plant assets, or it may even
come from an employee who is updating his information on the employee portal. The
sources for such data can be unlimited, and so is the format. To address the need for
storage and retrieval of data of a non-relational form, mechanisms such as NOSQL
(Not only SQL) are widely used, and they are gaining popularity.

The mechanism of NOSQL does not provide any standardized way of accessing
the data unlike SQL in the case of relational databases. This is because of the
unstructured data form that exists within NOSQL storage. Some NOSQL
implementations provide SQL-like querying, whereas some provide key-value based
storage and data access. It does not really address the problem of data retrieval.
Apache Solr uses the key-value-based storage as a means to search through text in a
more scalable and efficient way. Apache Solr enables enterprise applications to store
and access this data in an effective and efficient manner.

In this chapter, we will be trying to understand Apache Solr and we will go through
the following topics:

•	 Challenges in enterprise search
•	 Understanding Apache Solr
•	 Features of Apache Solr
•	 Apache Solr architecture
•	 Apache Solr case studies

Understanding Apache Solr

[8]

Challenges in enterprise search
The presence of a good enterprise search solution in any organization is an important
aspect of information availability. Absence of such a mechanism can possibly result
in poor decision making, duplicated efforts, and lost productivity due to the inability
to find the right information at any time. Any search engine typically comprises the
following components:

1.	 Crawlers or data collectors focus mainly on gathering the information on
which a search should run.

2.	 Once the data is collected, it needs to be parsed and indexed. So parsing and
indexing is another important component of any enterprise search.

3.	 The search component is responsible for runtime search on a
user-chosen dataset.

4.	 Additionally, many search engine vendors provide a plethora of components
around search engines, such as administration and monitoring, log
management, and customizations.

Today public web search engines have become mature. More than 90 percent of online
activities begin with search engines (http://searchengineland.com/top-internet-
activities-search-email-once-again-88964) and more than 100 billion
global searches are being made every month (http://searchenginewatch.com/
article/2051895/Global-Search-Market-Tops-Over-100-Billion-Searches-
a-Month). While the focus of web-based search is more on finding out content on the
Web, enterprise searches focus on helping employees find out the relevant information
stored in their corporate network in any form. Corporate information lacks useful
metadata that an enterprise search can use to relate, unlike web searches, which have
access to HTML pages that carry a lot of useful metadata for best results. Overall,
building an enterprise search engine becomes a big challenge.

Many enterprise web portals provide searches over their own data; however, they
do not really solve the problem of unified data access because most of the enterprise
data that is outside the purview of these portals largely remains invisible to these
search solutions. This data is mainly part of various sources such as external data
sources, other departmental data, individual desktops, secured data, proprietary
format data, and media files. Let's look at the challenges faced in the industry for
enterprise search as shown in the following figure:

http://searchengineland.com/top-internet-activities-search-email-once-again-88964
http://searchengineland.com/top-internet-activities-search-email-once-again-88964
http://searchenginewatch.com/article/2051895/Global-Search-Market-Tops-Over-100-Billion-Searches-a-Month
http://searchenginewatch.com/article/2051895/Global-Search-Market-Tops-Over-100-Billion-Searches-a-Month
http://searchenginewatch.com/article/2051895/Global-Search-Market-Tops-Over-100-Billion-Searches-a-Month

Chapter 1

[9]

Let's go through each challenge in the following list and try to understand what
they mean:

•	 Diverse repositories: The repositories for processing the information vary
from a simple web server to a complex content management system. The
enterprise search engine must be capable of dealing with diverse repositories.

•	 Security: Security in the enterprise has been one of the primary concerns
along with fine-grained access control while dealing with enterprise search.
Corporates expect data privacy from enterprise search solutions. This
means two users running the same search on enterprise search may get two
different sets of results based on the document-level access.

•	 Variety of information: The information in any enterprise is diverse and
has different dimensions, such as different types (including PDF, doc,
proprietary formats, and so on) of document or different locale (such as
English, French, and Hindi). An enterprise search would be required to
index this information and provide a search on top of it. This is one of the
challenging areas of enterprise searches.

www.allitebooks.com

http://www.allitebooks.org

Understanding Apache Solr

[10]

•	 Scalability: The information in any enterprise is always growing and
enterprise search has to support its growth without impacting its search
speed. This means the enterprise search has to be scalable to address the
growth of an enterprise.

•	 Relevance: Relevance is all about how closely the search results match the
user expectations. Public web searches can identify relevance from various
mechanisms such as links across web pages, whereas enterprise search
solutions differ completely in the relevance of entities. The relevance in case
of enterprise search involves understanding of current business functions
and their contributions in the relevance ranking calculations. For example,
a research paper publication would carry more prestige in an academic
institution search engine than an on-the-job recruitment search engine.

•	 Federation: Any large organization would have a plethora of applications.
Some of them carry technical limitations, such as proprietary formats and
inability to share the data for indexing. Many times, enterprise applications
such as content management systems provide inbuilt search capabilities
on their own data. Enterprise search has to consume these services and
it should provide a unified search mechanism for all applications in an
enterprise. A federated search plays an important role while searching
through various resources.

A federated search enables users to run their search queries on
various applications simultaneously in a delegated manner.
Participating applications in a federated search perform the
search operation using their own mechanism. The results are
then combined and ranked together and presented as a single
search result (unified search solution) to the user.

Chapter 1

[11]

Let's take a look at fictitious enterprise search implementation for a software product
development company called ITWorks Corporation. The following screenshot
depicts how a possible search interface would look:

A search should support basic keyword searching, as well as advanced searching
across various data sources directly or through a federated search. In this case,
the search is crawling through the source code, development documentation, and
resources capabilities, all at once. Given such diverse content, a search should
provide a unified browsing experience where the result shows up together, hiding
the underlying sources. To enable rich browsing, it may provide refinements based
on certain facets as shown in the screenshot. It may provide some interesting features
such as sorting, spell checking, pagination, and search result highlighting. These
features enhance the user experience while searching for information.

Understanding Apache Solr

[12]

Apache Solr – an overview
The need to resolve the problems of enterprise search has triggered interest in many
IT companies to come up with an enterprise search solution. This includes companies
such as Oracle, Microsoft, and Google who sell their solutions to customers. Doug
Cutting created the open source information retrieval library called Apache Lucene
during 1997. It became part of sourceforge.net (one of the sites hosting open
source projects and their development). Lucene was capable of providing powerful
full text search, and indexing capabilities on Java. Later in 2001, the Lucene project
became a member of the Apache software foundation. The open source community
contributed significantly to the development of Apache Lucene, which has led to
exponential growth until this point in time. Apache Lucene is widely used in many
organizations for information retrieval and search.

Since Apache Solr uses Apache Lucene for indexing and searching, Solr and Lucene
index are the same. That means Apache Solr can access indexes generated using
Lucene; although, we may just need to modify the Solr schema file to accommodate
all the attributes of the Lucene index. Additionally, if Apache Solr is using a different
Lucene library, we need to change <luceneMatchVersion> in solrconfig.xml.
This is particularly useful when the client would like to upgrade his custom Lucene
search engine to Solr without losing data.

Features of Apache Solr
Apache Solr comes with a rich set of features that can be utilized by enterprises to
make the search experience unique and effective. Let's take an overview of some
of these key features. We will understand how they can be configured in the next
chapter at deeper level.

Solr for end users
A search is effective when the searched information can be seen in different
dimensions. For example, if a visitor is interested in buying a camera and he
visits online shopping websites and searches for his model. When a user query is
executed on the search, a search would rank and return a huge number of results.
It would be nice, if he can filter out the results based on the resolution of the camera,
or the make of the camera. These are the dimensions that help the user improve
querying. Apache Solr offers a unique user experience that enables users to retrieve
information faster.

sourceforge.net

Chapter 1

[13]

Powerful full text search
Apache Solr provides a powerful full text search capability. Besides normal search,
Solr users can run a search for specific fields, for example, error_id:severe.
Apache Solr supports wildcards in the queries. A search pattern consisting only
of one or more asterisks will match all terms of the field in which it is used, for
example, book_title:*. A question mark can be used where there might be
variations for a single character. For example, a search for ?ar will match with
car, bar, jar and a search for c?t will match with cat, cot, cut. Overall, Apache
supports the following power expressions to enable the user to find information in
all possible ways as follows:

•	 Wildcards
•	 Phrase queries
•	 Regular expressions
•	 Conditional login (and, or, not)
•	 Range queries (date/integer)

Search through rich information
Apache Solr search can generate indexes out of different file types including many
rich documents such as HTML, Word, Excel, Presentations, PDF, RTF, E-mail, ePub
formats, the .zip files, and many more. It achieves this by integrating different
packages such as Lucene, and Apache Tika. These documents when uploaded to
Apache Solr get parsed and an index is generated by Solr for search. Additionally,
Solr can be extended to work with specific formats by creating customer handlers/
adapters for the same. This feature enables Apache Solr to work best for enterprises
dealing with different types of data.

Results ranking, pagination, and sorting
When searching for information, Apache Solr returns results page-by-page starting
with top K results. Each result row carries a certain score, and the results are
sorted based on the score. The result ranking in Solr can be customized as per
the application's requirements. This allows the user's flexibility to search more
specifically for relevant content. The size of the page can be configured in Apache
Solr configuration. Using pagination, Solr can compute and return the results faster
than otherwise. Sorting is a feature that enables Solr users to sort the results on
certain terms or attributes, for example, a user might consider sorting of results
based on increasing price order on an online shopping portal search.

Understanding Apache Solr

[14]

Facets for better browsing experience
Apache Solr facets do not only help users to refine their results using various
attributes, but they allow better browsing experience along with the search interface.
Apache Solr provides schema-driven, context-specific facets that help users discover
more information quickly. Solr facets can be created based on the attributes of the
schema that is designed before setting up the instance. Although Apache Solr works
on a schema defined for the user, it allows them to have flexibility in the schema by
means of dynamic fields, enabling users to work with content of a dynamic nature.

Based on the schema attributes, Apache Solr generates facet
information at the time of indexing instead of doing it on the
stored values. That means, if we introduce new attributes in
the schema after indexing of our information, Solr will not be
able to identify them. This may be solved by re-indexing the
information again.

Each of these facet elements contain the filter value, which carries a count of results
that match among the searched results. For the newly introduced schema attributes,
users need to recreate the indexes that are created before. There are different types
of facets supported by Solr. The following screenshot depicts the different types of
facets that are discussed:

The facets allow you to get aggregated view on your text data. These aggregations
can be based on different compositions such as count (number of appearances),
time based, and so on. The following table describes the facets and their description
supported by Apache Solr:

Facet Description
Field-value You can have your schema fields as facet components here. It shows the

count of top fields. For example, if a document has tags, a field-value
facet on the tag Solr field will show the top N tags, which are found in the
matched result as shown in the image.

Chapter 1

[15]

Facet Description
Range Range faceting is mostly used on date/numeric fields, and it supports

range queries. You can specify start and end dates, gap in the range and so
on. There is a facet called date facet for managing dates, but it has been
deprecated since Solr 3.2, and now the date is being handled in range
faceting itself. For example, if indexed, a Solr document has a creation
date and time; a range facet will provide filtering based on the time range.

Pivot A pivot gives Solr users the ability to perform simple math on the data.
With this facet, they can summarize results, and then get them sorted, take
an average, and so on. This gives you hierarchical results (also sometimes
called hierarchical faceting).

Multi-select Using this facet, the results can be refined with multiple selects on
attribute values. These facets can be used by the users to apply multiple
criteria on the search results.

Advanced search capabilities
Apache Solr provides various advanced search capabilities. Solr comes with a
more like this feature, which lets you find documents similar to one or more seed
documents. The similarity is calculated from one or more fields of your choice. When
the user selects similar results, it will take the current search result and try to find a
similar result in the complete index of Solr.

When the user passes a query, the search results can show the snippet among the
searched keywords highlighted. Highlighting in Solr allows fragments of documents
that match the user's query to be included with the query response. Highlighting
takes place only for the fields that are searched by the user. Solr provides a collection
of highlighting utilities, which allow a great deal of control over the field's fragments,
the size of fragments, and how they are formatted.

When a search query is passed to Solr, it is matched with the number of results. The
order in which the results are displayed on the UI is based on the relevance of each
result with the searched keyword(s), by default. Relevance is all about proximity
of the result set with the searched keyword that is returned by Solr when a query
is performed. This proximity can be measured in various ways. The relevance of
a response depends upon the context in which the query was performed. A single
search application may be used in different contexts by users with different needs
and expectations. Apache Solr provides the relevant score calculations based on
various factors such as the number of occurrences of searched keyword in the
document or the co-ordination factor, which relates to the maximum number of
terms matched among the searched keywords. Solr not only gives flexibility to users
to choose the scoring, but also allows users to customize the relevant ranking as per
the enterprise search expectations.

Understanding Apache Solr

[16]

Apache Solr allows spell checker based on the index proximity. There are multiple
options available under the label, in one case Solr provides suggestions for the
misplaced word when searched, in the other case Solr returns a suggestion to the
user with the Did you mean prompt The following screenshot shows an example of
how these features would look on Apache Solr's client side:

Additionally, Apache Solr has a suggest feature that suggests the query terms or
phrases based on incomplete user inputs. With the help of suggestions, users can
choose from the list of suggestions as they start typing a few characters. These
completions come from the Solr index generated at the time of data indexing from
the first top-k matches ranked based on relevance, popularity, or the order of
alphabets. Consider the following screenshot:

In many enterprises, location-based information along with text data brings value in
terms of visual representation. Apache Solr supports geospatial search. A Solr search
provides advanced geospatial capabilities in the search by which users can sort the
results based on geographical distances (longitude and latitude), or rank the results
based on proximity. This capability comes from the Lucene spatial module.

Chapter 1

[17]

Enterprises are not limited to any languages and often contain a landscape of
non-English applications used daily by the employees. Sometimes, the
documentation has local languages. In such cases, an enterprise search is required
to have the capability to work on various languages instead of limiting itself on
one. Apache Solr has built-in language detection and provides language specific
text analysis solutions for many languages. Many times, the implementers
need to customize the Solr instance to work for us as per their requirements for
multi-lingual support.

Administration
Like any other enterprise search operations, Apache Solr facilitates system
administrators with various capabilities. This section discusses different features
supported at the administration level for Apache Solr.

Apache Solr has built-in administration user interface for administrators and
Solr developers. Apache Solr has evolved its administration screen. Version 4.6
contains many advanced features. The administration screen in Solr looks like the
following screenshot:

The Admin UI provides a dashboard that provides information about the instance
and the system. The logging section provides Apache logging service (log4j) outputs
and various log levels such as warning, severe, and error. The core admin UI details
out management information about different cores. The thread dump screen shows
all threads with CPU time and thread time. The administrators can also see stack
trace for threads.

Understanding Apache Solr

[18]

A collection represents complete logical index, whereas a Solr core represents an
index with a Solr instance that includes configuration and runtime. Typically, the
configuration of Solr core is kept in the /conf directory. Once the user selects the
core, they get access to various core-specific functions such as current configuration
view, test UI for testing various handlers of Solr, and schema browser. Consider the
following features:

•	 JMX monitoring: The Java Management Extension (JMX) technology
provides the tools for managing and monitoring of web-based, distributed
system. Since Version 3.1, Apache Solr can expose the statistics of runtime
activities as dynamic Managed Beans (MBeans). The beans can be viewed
in any JMX client (for example, JConsole). With every release, MBeans
gets added, and administrators can see the collective list of these MBeans
using administration interface. (Typically, it can be seen by accessing:
http://localhost:8983/solr/admin/mbeans/).

•	 Near real time search: Unlike Google's lazy index update, based on crawler's
chance of visiting certain pages, the enterprise search at times requires fast
index updates based on the changes. It means, the user wants to search the
near real time databases. Apache Solr supports soft commit.

Whenever users upload documents to the Solr server, they
must run a commit operation, to ensure that the uploaded
documents are stored in the Solr repository. A soft commit
is a Solr 4.0 introduced feature that allows users to commit
fast, by passing costly commit procedures and making the
data available for near real-time search.

With soft commit, the information is available immediately for searching;
however, it requires normal commit to ensure the document is available on a
persistent store. Solr administrators can also enable autosoft commit through
Apache Solr configuration.

•	 Flexible query parsing: In Apache Solr, query parsers play an important
role for parsing the query and allowing the search to apply the outcome on
the indexes to identify whether the search keywords match. A parser may
enable Solr users to add search keywords customizations such as support
for regular expressions or enabling users with complex querying through
the search interface. Apache Solr, by default, supports several query parsers,
offering the enterprise architects to bring in flexibility in controlling how the
queries are getting parsed. We are going to understand them in detail in the
upcoming chapters.

Chapter 1

[19]

•	 Caching: Apache Solr is capable of searching on large datasets. When such
searches are performed, the cost of time and performance become important
factors for the scalability. Apache Solr does caching at various levels to ensure
that the users get optimal performance out of the running instance. The caching
can be performed at filter level (mainly used for filtering), field values (mainly
used in facets), query results (top-k results are cached in certain order), and
document level cache. Each cache implementation follows a different caching
strategy, such as least recently used or least frequently used. Administrators can
choose one of the available cache mechanisms for their search application.

•	 Integration: Typically, enterprise search user interfaces appear as a part of
the end user applications, as they only occupy limited screens. The open
source Apache Solr community provides client libraries for integrating
Solr with various technologies in the client-server model. Solr supports
integration through different languages such as Ruby, PHP, .NET, Java,
Scala, Perl, and JavaScript. Besides programming languages, Solr also
integrates with applications, such as Drupal, WordPress, and Alfresco CMS.

Apache Solr architecture
In the previous section, we have gone through various key features supported by
Apache Solr. In this section, we will look at the architecture of Apache Solr. Apache
Solr is a J2EE-based application that internally uses Apache Lucene libraries to
generate the indexes as well as to provide a user friendly search. Let's look at the Solr
architecture diagram as follows:

www.allitebooks.com

http://www.allitebooks.org

Understanding Apache Solr

[20]

The Apache Solr instance can run as a single core or multicore; it is a client-server
model. In case of a multicore, however, the search access pattern can differ. We are
going to look into this in the next chapter. Earlier, Apache Solr had a single core,
which in turn, limited the consumers to run Solr on one application through a single
schema and configuration file. Later, the support for creating multiple cores was
added. With this support, one can run one Solr instance for multiple schemas and
configurations with unified administrations. For high availability and scalability
requirements, Apache Solr can run in a distributed mode. We are going to look at
it in Chapter 6, Distributed Search Using Apache Solr. There are four logical layers in
which the overall Solr functionality can be divided. The storage layer is responsible
for management of indexes and configuration metadata. The container is the J2EE
container on which the instance will run, and Solr engine is the application package
that runs on top of the container, and, finally, the interaction talks about how
clients/browser can interact with Apache Solr server. Let's look at each of the
components in detail in the upcoming sections.

Storage
The storage of Apache Solr is mainly used for storing metadata and the actual index
information. It is typically a file store, locally configured in the configuration of
Apache Solr. The default Solr installation package comes with a Jetty servlet and
HTTP server, the respective configuration can be found in the $solr.home/conf
folder of Solr installation. An index contains a sequence of documents. Additionally,
external storage devices can be configured in Apache Solr, such as databases or Big
Data storage systems. The following are the components:

•	 A document is a collection of fields
•	 A field is a named sequence of terms
•	 A term is a string

The same string in two different fields is considered a different term. The index
stores statistics about terms in order to make term-based search more efficient.
Lucene's index falls into the family of indexes known as an inverted index. This is
because it can list, for a term, the documents that contain it. Apache Solr (underlying
Lucene) indexing is a specially designed data structure, stored in the filesystem as
a set of index files. The index is designed with a specific format in such a way to
maximize query performance.

Chapter 1

[21]

Inverted index is an index data structure for storing mapping
from data to actual words and numbers to its location on the
storage disk. The following are the strings:

Str[1] = "This is a game of team"
Str[2]="I do not like a game of cricket"
Str[3]="People play games everyday"

We have the following inverted file index:
This {1}
Game {1,2,3}
Of {1,2}

Solr application
There are two major functions that Solr supports—indexing and searching. Initially,
the data is uploaded to Apache Solr through various means; there are handlers to
handle data within specific category (XML, CSV, PDF, database, and so on). Once the
data is uploaded, it goes through a stage of cleanup called update processor chain. In
this chain, initially, the de-duplication phase can be used to remove duplicates in the
data to avoid them from appearing in the index unnecessarily. Each update handler
can have its own update processor chain that can do document-level operations
prior to indexing, or even redirect indexing to a different server or create multiple
documents (or zero) from a single one. The data is then transformed depending upon
the type.

Apache Solr can run in a master-slave mode. Index replicator is responsible for
distributing indexes across multiple slaves. The master server maintains index
update and the slaves are responsible for talking with the master to get them
replicated for high availability. Apache Lucene core gets packages as library with the
Apache Solr application. It provides core functionality for Solr such as index, query
processing, searching data, ranking matched results, and returning them back.

Apache Lucene comes with a variety of query implementations. Query parser is
responsible for parsing the queries passed by the end search as a search string.
Lucene provides TermQuery, BooleanQuery, PhraseQuery, PrefixQuery,
RangeQuery, MultiTermQuery, FilteredQuery, SpanQuery, and so on as
query implementations.

Understanding Apache Solr

[22]

Index searcher is a basic component of Solr searched with a default base searcher class.
This class is responsible for returning ordered match results of searched keyword
ranked as per the computed score. The index reader provides access to indexes stored
in the filesystem. It can be used to search for an index. Similar to the index searcher, an
index writer allows you to create and maintain indexes in Apache Lucene.

The analyzer is responsible for examining the fields and generating tokens.
Tokenizer breaks field data into lexical units or tokens. The filter examines the
field of tokens from the tokenizer and either it keeps them and transforms them, or
discards them and creates new ones. Tokenizers and filters together form a chain
or pipeline of analyzers. There can only be one tokenizer per analyzer. The output
of one chain is fed to another. Analyzing the process is used for indexing as well
as querying by Solr. They play an important role in speeding up the query as well
as index time; they also reduce the amount of data that gets generated out of these
operations. You can define your own customer analyzers depending upon your use
case. In addition to the analyzer, Apache Solr allows administrators to make the
search experience more effective by means of taking out common words such as is,
and, and are through the stopwords feature. Solr supports synonyms, thereby not
limiting search to purely text match. Through the processing of stemming, all words
such as played, playing, play can be transformed into the base form. We are going to
look at these features in the coming chapters and the appendix. Similar to stemming,
the user can search for multiterms of a single word as well (for example, play,
played, playing). When a user fires a search query on Solr, it actually gets passed on
to a request handler. By default, Apache Solr provides DisMaxRequestHandler. You
can visit http://wiki.apache.org/solr/DisMaxRequestHandler to find more
details about this handler. Based on the request, the request handler calls the query
parser. You can see an example of the filter in the following figure:

http://wiki.apache.org/solr/DisMaxRequestHandler

Chapter 1

[23]

The query parser is responsible for parsing the queries, and converting it to Lucene
query objects. There are different types of parsers available (Lucene, DisMax,
eDisMax, and so on). Each parser offers different functionalities and it can be used
based on the requirements. Once a query is parsed, it hands it over to the index
searcher. The job of the index reader is to run the queries on the index store and
gather the results to the response writer.

The response writer is responsible for responding back to the client; it formats the
query response based on the search outcomes from the Lucene engine. The following
figure displays the complete process flow when a search is fired from the client:

Apache Solr ships with an example schema that runs using Apache velocity.
Apache velocity is a fast open source templates engine, which quickly generates
HTML-based frontend. Users can customize these templates as per their
requirements, although it is not used for production in many cases.

Index handlers are a type of update handler, handling the task of add, update, and
delete function on documents for indexing. Apache Solr supports updates through
the index handler through JSON, XML, and text format.

Data Import Handler (DIH) provides a mechanism for integrating different
data sources with Apache Solr for indexing. The data sources could be relational
databases or web-based sources (for example, RSS, ATOM feeds, and e-mails).

Understanding Apache Solr

[24]

Although DIH is a part of Solr development, the default
installation does not include it in the Solr application; they
need to be included in the application explicitly.

Apache Tika, a project in itself extends capabilities of Apache Solr to run on top
of different types of files. When a document is assigned to Tika, it automatically
determines the type of file, that is, Word, Excel, PDF and extracts the content. Tika
also extracts document metadata such as author, title, and creation date, which if
provided in schema, go as text field in Apache Solr. This can later be used as facets
for the search interface.

Integration
Apache Solr, although a web-based application, can be integrated with different
technologies. So, if a company has Drupal-based e-commerce sites, they can integrate
the Apache Solr application and provide its rich-faceted search to the user. It can also
support advanced searches using the range search.

Client APIs and SolrJ client
The Apache Solr client provides different ways of talking with Apache Solr web
application. This enables Solr to easily get integrated with any application. Using
client APIs, consumers can run a search, and perform different operations on
indexes. The Solr Java (SolrJ) client is an interface of Apache Solr with Java.
The SolrJ client enables any Java application to talk directly with Solr through
its extensive library of APIs. Apache SolrJ is a part of the Apache Solr package.

Other interfaces
Apache Solr can be integrated with other various technologies using its API library
and standards-based interfacing. JavaScript-based clients can straightaway talk with
Solr using JSON-based messaging. Similarly, other technologies can simply connect
to the Apache Solr running instance through HTTP, and consume its services either
through JSON, XML, or text formats. Since Solr can be interacted through standard
ways, clients can always build their own pretty user interface to interact with the
Solr server.

Chapter 1

[25]

Practical use cases for Apache Solr
Publicly there are plenty of public sites who claim the use of Apache Solr as the
server. We are listing a few here, along with how Solr is used:

•	 Instagram: Instagram (a Facebook company) is one of the famous sites, and it
uses Solr to power its geosearch API

•	 WhiteHouse.gov: The Obama administration's website is inbuilt in Drupal
and Solr

•	 Netflix: Solr powers basic movie searching on this extremely busy site
•	 Internet archive: Search this vast repository of music, documents, and video

using Solr
•	 StubHub.com: This ticket reseller uses Solr to help visitors search for concerts

and sporting events.
•	 The Smithsonian Institution: Search the Smithsonian's collection of over 4

million items

You can find the complete list of Solr usage (although a bit outdated) at
http://wiki.apache.org/solr/PublicServers. You may also visit to understand
interesting case studies about Contextual Search for Volkswagen and the
Automotive Industry. The scope of this study is beyond Apache Solr, and talks
about semantic search (RDF-based) to empower your overall enterprise industry.

Let's look at how Apache Solr can be used as an enterprise search in two different
industries. We will look at one case study in detail, and we will understand how
Solr can play a role in the other case study in brief.

Now that we have understood Apache Solr architecture and the use cases, let's look
at how Apache Solr can be used as an enterprise search in two different industries.

Enterprise search for a job search agency
In this case, we will go through a case study for the job search agency, and how it can
benefit using Apache Solr as an enterprise search platform.

WhiteHouse.gov
StubHub.com
http://wiki.apache.org/solr/PublicServers

Understanding Apache Solr

[26]

Problem statement
In many job portal agencies, the enterprise search helps reduce the overall time
employees spend in matching the expectations from customers with the resumes.
Typically, for each vacancy, customers provide a job description. Many times, job
description is a lengthy affair, and given the limited time each employee gets, he has
to bridge the gap between these two. A job search agency has to deal with various
applications as follows:

•	 Internal CMS containing past information, resumes of candidates, and so on
•	 Access to market analysis to align the business with expectation
•	 Employer vacancies may come through e-mails or online vacancy portal
•	 Online job agencies are a major source for supplying new resumes
•	 An external public site of the agency where many applicants upload

their resumes

Since a job agency deals with multiple systems due to their interaction patterns,
having unified enterprise search on top of these systems is the objective to speed
up the overall business.

Approach
Here, we have taken a fictitious job search agency who would like to improve the
candidate identification time using enterprise search. Given the system landscape,
Apache Solr can play a major role here in helping them speed up the process.
The following screenshot depicts interaction between unified enterprise searches
powered by Apache Solr with other systems:

Chapter 1

[27]

The figure demonstrates how enterprise search powered by Apache Solr can interact
with different data sources. The job search agency interacts with various internal as
well as third-party applications. This serves as input for Apache Solr-based enterprise
search operations. It would require Solr to talk with these systems by means of
different technology-based interaction patterns such as web services, database access,
crawlers, and customized adapters as shown in the right-hand side. Apache Solr
provides support for database; for the rest, the agency has to build an event-based
or scheduled agent, which can pull information from these sources and feed them in
Solr. Many times, this information is raw, and the adapter should be able to extract
field information from this data, for example, technology expertise, role, salary, or
domain expertise. This can be done through various ways. One way is by applying
a simple regular expression-based pattern on each resume, and then extracting the
information. Alternatively, one can also let it run through the dictionary of verticals
and try matching it. Tag-based mechanism also can be used for tagging resumes
directly from information contained in the text.

Based on the requirements, now Apache Solr must provide rich facets for candidate
searches as well as job searches, which would have the following facets:

•	 Technology-based dimension
•	 Vertical- or domain-based dimension
•	 Financials for candidates
•	 Timeline of candidates' resume (upload date)
•	 Role-based dimension

Additionally, mapping similar words (J2EE—Java Enterprise Edition—Java2
Enterprise Edition) through Solr really helps ease the job of agency's employees for
automatically producing the proximity among these words, which have the same
meaning through the Apache Solr synonym feature. We are going to look at how
it can be done in the upcoming chapters.

Enterprise search for energy industry
In this case study, we will learn how enterprise search can be used within the
energy industry.

Understanding Apache Solr

[28]

Problem statement
In large cities, the energy distribution network is managed by companies, which are
responsible for laying underground cables, and setting up power grids at different
places, and transformers. Overall, it's a huge chunk of work that any industry will do
for a city. Although there are many bigger problems in this industry where Apache
Solr can play a major role, we will try to focus on this specific problem.

Many times, the land charts will show how the assets (for example, pipe, cable,
and so on) are placed under the roads and the information about lamps are drawn
and kept in a safe. This has been paper-based work for long time, and it's now
computerized. The field workers who work in the fields for repairs or maintenance
often need access to this information, such as assets, pipe locations, and so on.

The demand for this information is to locate a resource geographically. Additionally,
the MIS information is part of the documents lying on CMS, and it's difficult to locate
this information and link it with geospatial search. This in turn drives the need for
the presence of the enterprise search. Additionally, there is also a requirement for
identifying the closest field workers to the problematic area to ensure quick resolution.

Approach
For this problem, we are dealing with information coming in totally different
forms. The real challenge is to link this information together, and then apply a
search that can provide a unified access to information with rich query. We have
the following information:

•	 Land Charts: These are PDFs, paper-based documents, and so on, which are
fixed information

•	 GIS information: These are coordinates, which are fixed for assets such as
transformers, and cables

•	 Field engineers' information: This gives the current location and is
continuously flowing

•	 Problem/Complaints: This will be continuous, either through some portal, or
directly fed through the web interface

The challenges that we might face with this approach include:

•	 Loading and linking data in various formats
•	 Identifying assets on map
•	 Identifying the proximity between field workers and assets
•	 Providing better browsing experience on all this information

Chapter 1

[29]

Apache Solr supports geospatial search. It can bring a rich capacity by linking assets.

Information with geospatial world creates a confluence to enable the users to access
this information. It can bring a rich capacity by linking asset information with
the geospatial world and creating a confluence to enable the users to access this
information at their finger tips.

However, Solr has its own limitations in terms of geospatial capabilities. For
example, it supports only point data (latitude, longitude) directly; all the other
data types are supported through JTS.

Java Topology Suite (JTS) is a java-based API toolkit for
GIS. JTS provides a foundation for building further spatial
applications, such as viewers, spatial query processors, and
tools for performing data validation, cleaning, and integration.

For the given problem, GIS and land chart will feed information in the Solr server
once. This will include linking all assets with GIS information through the custom
adapter. The complaint history as well as the field engineers' data will be continuous,
and the old data will be overwritten; this can be a scheduled event or a custom
event, based on the new inputs received by the system. To meet the expectations,
the following application components will be required (minimum):

•	 Custom adapter with scheduler/event for field engineers' data and
complaint register information providing integration with gateways
(for tapping GIS information of field engineers) and portals (for the
complaint register)

•	 Lightweight client to scan the existing system (history, other documentation)
and load in Solr

•	 Client application to provide end user interface for enterprise search with
URL integration for maps

•	 Apache Solr with superset schema definition and configuration with support
for spatial data types

www.allitebooks.com

http://www.allitebooks.org

Understanding Apache Solr

[30]

The following screenshot provides one of the possible visualizations for this system.
This system can be extended to further provide more advanced capabilities such as
integration with Optical Character Recognition (OCR) software to search across
paper-based information, or even to generate dynamic reports based on filters using
Solr. Apache Solr also supports output in XML form, which can be applied with any
styling and the same can be used to develop nice reporting systems.

Summary
In this chapter, we have tried to understand problems faced by today's industry
with respect to enterprise search. We went through Apache Solr and its features to
understand its capabilities, followed by the Apache Solr architecture. At the end
of this chapter, we saw a use case about how Apache Solr can be applied in the job
search agency as an enterprise search.

In the next chapter, we will install and configure the Solr instance for our usage.

Getting Started with
Apache Solr

In the previous chapter, we went through the challenges in enterprise search; then,
we covered Apache Solr as an enterprise search solution, followed its architecture
and features, and finally, we also looked at practical use cases for Solr in different
industries. In this chapter, we will focus on starting work with Apache Solr and
cover the following points:

•	 Setting up the Apache Solr server
•	 Configuring the Solr instance for applications
•	 Consuming Apache Solr in end user applications

Setting up Apache Solr
Apache Solr is a J2EE-based web application, which runs on Apache Lucene, Tika,
and other open source libraries. This section focuses on setting up an Apache Solr
instance and running it. Existing users who have Solr instance running can skip this
section and move on to the next section.

Apache Solr ships with a demo Jetty server, so one can simply run it through
command line. This helps users run the Solr instance quickly. However, you can
choose to customize it and deploy it in your own environment. Apache Solr does
not ship with any installer; it has to run as part of J2EE.

Getting Started with Apache Solr

[32]

Prerequisites
Before the installation of Apache Solr, you need to make sure that you have the latest
JDK on your machines. You can test this by simply running the java –version
command on the command line, as shown in the following screenshot:

Once you have the correct Java version, you need a servlet container such as Tomcat,
Jetty, Resin, Glassfish, or Weblogic installed on your machine.

With the latest version of Apache Solr (4.0 or higher),
the JDK 1.5 is not supported anymore. Versions higher
than Apache Solr 4.0 run on JDK 1.6 and higher versions.
Instead of going for a preshipped JDK with your default
operating system, go for the full version of the JDK by
downloading it from http://www.oracle.com/
technetwork/java/javase/downloads/index.
html?ssSourceSiteId=otnjp; this will enable full
support for international charset. Apache Solr 4.8 requires
at least JDK 7.

Next, you need the Apache Solr distribution itself. You can download the stable
installer from http://lucene.apache.org/solr/ or from its nightly builds running
on the same site. To run Solr on Windows, download the zip file from the Apache
mirror site. For Linux, Unix, and other such flavors, you can download the .gzip or
.tgz version. In Windows, you can simply unzip your file; in Unix, try the following
command to unzip Solr:

$tar –xvzf solr-<major-minor version>.tgz

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://lucene.apache.org/solr/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[33]

If you are building Solr from source, then you need the Java SE 7 JDK, Apache
Ant distribution (1.8.2 or more), and Apache Ivy (2.2.0+). You can compile the
source by simply navigating to the Solr directory and running Ant from there.
For more information, refer to http://techblogs.razorthink.com/2013/10/
how-to-compile-solr-source-code.html.

When you unzip the Solr file, it extracts the following directories:

Directory Purpose
contrib/ This directory contains all the libraries that are additional to

Solr, and they can be included on demand. It provides libraries
for data import handler, MapReduce, Apache UIMA, velocity
template, and so on.

dist/ This directory provides the distributions of Solr and other
useful libraries such as SolrJ, UIMA, MapReduce, and so on.

docs/ This directory contains the documentation for Solr
example/ This directory provides Jetty-based Solr webapps that can be

directly used
Licenses/ This directory contains all the licenses of the underlying

libraries used by Solr

There are commercial versions of Apache Solr available from a company called
LucidWorks (http://www.lucidworks.com). As Solr is a web-based application,
it can run on many operating systems such as *nix and Windows. Additionally, you
may also need a command-line utility called curl to run your samples. You can also
use wget or any other HTTP request-based utility for interaction with Solr.

Some of the older versions of Solr have failed to run properly due to locale
differences on host systems. If your system default locale or character set is
non-English (that is en/en-US), for safety, you can override your system defaults
for Solr by passing –Duser.language=en –Duser.country=US in your Jetty to
ensure the smooth running of Solr.

Running Solr on Jetty
Apache Solr ships with the default small Jetty server along with its zip file; you can
directly use it for running your Solr instance in a single instance mode. Alternatively,
you can use the latest available Jetty server with full features to run Solr on Jetty. You
will find the Jetty server in the solr<version>/example directory. Once you unzip
the solr.zip file, all you need to do is go to solr<version>/example and run the
following command:

$ java –jar start.jar

http://techblogs.razorthink.com/2013/10/how-to-compile-solr-source-code.html
http://techblogs.razorthink.com/2013/10/how-to-compile-solr-source-code.html
http://www.lucidworks.com

Getting Started with Apache Solr

[34]

The default Jetty instance will run on port 8983, and you can access the Solr instance
by visiting http://localhost:8983/solr/browse. You will see a default search
screen, as shown in the following screenshot:

You can edit the solr-<VERSION>/example/etc/jetty.xml file to change the port
by changing the system property with the name jetty.port. By default, Jetty and
Solr will log in to the logs/solr.log console. This can be convenient when first
getting started, but eventually, you will want to log in just to a file. To configure
logging, edit the log4j.properties file in resources. The Log4j.properties file
contains the configuration information about the logging done for Apache Solr.

To get Solr on the latest available full Jetty installation, you need to first install the
respective JDK version by running the following command with the root user.

#apt-get install openjdk-7-jdk

You can use yum install for Red Hat-based Linux. Download the latest available
Jetty from the eclipse site (http://download.eclipse.org/jetty/stable-9/dist/)
and unpack it in some directory (such as /pkgs/jetty) using the following command:

$ tar -xvf jetty-distribution-<version>.tar.gz

Jetty 6.0 has a limited support for URL encoded with the
Unicode character; the problem has been fixed in Jetty 7.0
and higher versions, so it is always better to go for the
latest version of Jetty.

http://download.eclipse.org/jetty/stable-9/dist/

Chapter 2

[35]

Create a Jetty user and make it the owner of /opt/jetty, using the
following command:

$ useradd jetty -U -s /bin/false

$ chown -R jetty:jetty /pkgs/jetty

Alternatively, you may also choose to run as a service as the following:

$ cp /pkgs/jetty/bin/jetty.sh /etc/init.d/jetty

Download Solr from the Apache mirror site (http://lucene.apache.org/solr/
downloads.html), and unpack the example directory in /home/solr:

$ wget <apache-mirror site>

$ tar -xvzf apache-solr-<version>.tgz

$ cp apache-solr-<version>/dist/apache-solr-<version>.war /pkgs/jetty/
webapps/solr.war

$ cp -R apache-solr-<version>/example/solr /home

Open /etc/default/jetty to add the following settings:

JAVA_HOME=/usr/bin/java # Path to Java

NO_START=0 # Start on boot

JETTY_USER=jetty # Run as this user

JETTY_HOST=0.0.0.0 # Listen to all hosts

JETTY_ARGS=jetty.port=8983 # jetty port

JAVA_OPTIONS="-Dsolr.solr.home=/home/solr/example-schemaless/solr
$JAVA_OPTIONS"

In the Java options, you can start with Solr without schema. Apache Solr provides
the default /example-schemaless directory that you can use to run by default.
Alternatively, you can also use default collection1, which is part of the Solr release
inside the $SOLR_HOME/example/solr directory.

The schemaless mode is a set for Solr features that, when used
together, allow users to rapidly construct an effective schema
by simply indexing sample data, without having to manually
edit the schema.

http://lucene.apache.org/solr/downloads.html
http://lucene.apache.org/solr/downloads.html

Getting Started with Apache Solr

[36]

With the schemaless mode, you are not required to do any preconfiguration for
schema definition, and you can start using Solr in this mode. In this mode, Solr
defines two static fields (id and version) and the rest as dynamic fields, for
example, *_I as the int field and so on. To enable the schemaless mode, all you need
to do is point to this directory instead of example-schemaless. Now, you can start
the Jetty service using the following command:

$ service jetty start

jetty start/running, process 7299

Running Solr on Tomcat
Apache Tomcat is one of the most widely used J2EE containers to run different
applications. To start with Apache Tomcat, first download JDK 6 or higher versions
as described in the previous section. Now, download tomcat zip (Windows) or
tar.gz (*nix flavors) from http://tomcat.apache.org/ (avoid alpha and beta
versions) and unzip them in some folder. Start by defining the catalina.home
variable as follows:

$ export CATALINA_HOME=<path to tomcat folder>

Now, enable the Tomcat user login to access the administration UI by adding
the following entries in $CATALINA_HOME/conf/tomcat-users.xml as follows:

<role rolename="manager"/>

<role rolename="admin"/>

<user username="tomcat" password="tomcat" roles="manager,admin"/>

Set the Tomcat port appropriately by modifying the $CATALINA_HOME/conf/
server.xml file as follows:

<Connector port="8983" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="10443" />

http://tomcat.apache.org/

Chapter 2

[37]

Download and unzip Solr as described in the previous section. Now, copy the
solr.war file from the unzipped folder to $CATALINA_HOME/webapps/solr.war.
Then, you can choose one of the following options for the next step:

•	 Java options: You can set the Java options with the following command
so that the container will pick up the Solr collection information from the
appropriate location:
$ export JAVA_OPTS="$JAVA_OPTS -Dsolr.solr.home=/opt/solr/example"

Please look at the previous section to understand more on how to set
the solr.home location.

•	 JNDI Lookup: Alternatively, you can configure the JNDI lookup for the
java:comp/env/solr/home resource by pointing it to the Solr home
directory. This can be done by creating a context XML file with some
name (context.xml) in $CATALINA_HOME/conf/Catalina/localhost/
context.xml and adding the following entries:
<?xml version="1.0" encoding="utf-8"?>

<Context docBase="<solr-home>/example/solr/solr.war" debug="0"
crossContext="true">

 <Environment name="solr/home" type="java.lang.String"
value="<solr-home>/example/solr" override="true"/>

</Context>

Once this file is created, Apache Tomcat will automatically load it while starting it.
Now, start Tomcat by running $CATALINA_HOME/bin/startup.sh or startup.bat.
Once the server is started, you will find solr.war getting unpacked in the logs, and
automatically, a $CATALINA_HOME/webapps/solr directory gets created. Try to access
http://<host>:<port>/solr.

Apache Solr uses the UTF-8 file encoding which means that a container should be
enabled to work with Unicode. In the case of Tomcat, this can be done by simply
editing the startup.bat or startup.sh file with the following code snippet:

set "JAVA_OPTS=%JAVA_OPTS% -Dfile.encoding=UTF8"

Since Solr 4.1 Version, Solr now parses request
parameters (in URL or sent with POST using content-type
application/x-www-form-urlencoded) in its dispatcher
code. It no longer relies on special configuration settings
that are mandatory for correct Solr behavior.

Getting Started with Apache Solr

[38]

Apache Solr can be deployed on many open source J2EE containers such as
JBoss as well as commercial J2EE containers such as IBM Websphere, Oracle
WebLogic, and so on. You need to follow a similar step as explained in the
previous section.

Solr administration
In this section, we will understand the Solr administration user interface in brief.
Apache Solr provides an excellent user interface for the administrator of the
server. A collection in Apache Solr is a collection of Solr documents that represent
one complete index. Solr core is an execution unit of Solr that can run on its own
configuration and other metadata. Apache Solr collections can be created for each
index. Similarly, you can run Solr in multiple core modes. We will be understanding
more about these in the following chapters. The following table describes different
options available for Apache Solr administrations with the purpose:

Option Purpose
Dashboard You see information related to the version of Solr, memory

consumption, JVM, and so on
Logging This shows log outputs with latest logs on top
Logging >Level This shows the current log configuration for packages, that

is, for which package which logs are enabled
Core admin This shows information about the core and allows its

administration
Java properties This shows the different Java properties set during the run

of the Solr instance
Thread dump This describes the stack trace with information on CPU and

user time; it also enables a detailed stack trace
Collection This demonstrates different parameters of collection and all

the activities you can perform, such as running queries and
ping status

Chapter 2

[39]

Access http://localhost:8983/solr/#/~cores/collection1 to get your Solr
instance running. We have gone through the information about administration
user interface in Chapter 1, Understanding Apache Solr. You can add more cores by
navigating to Core Admin | Add Core in the administration UI, as shown in the
following screenshot:

What's next?
Once you are done with the installation of Apache Solr, you can simply run
examples by going to the examples/exampledocs directory and running the
following command:

java -jar post.jar solr.xml monitor.xml

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Apache Solr

[40]

The post.jar utility is provided by Solr to upload the data to Apache Solr for
indexing. When it is run, the post.jar file simply uploads all the files that are
passed as a parameter to Apache Solr for indexing, and Solr indexes these files
and stores them in its repository. Now, try to access your instance by typing
http://localhost:8983/solr/browse; you should find a sample search interface
with some information in it, as shown in the following screenshot:

Common problems and solution
Now, the installation is successful. Let's try to address some of the common
problems that you may face during the setup and their solution.

While running Solr, why do I get java.lang.OutOfMemoryError sometimes?

The OutOfMemory error is thrown by the Java Virtual Machine (JVM) that runs
Apache Solr, when there is not enough memory available for heap or for PermGen
(Permenant Generation Space holds metadata regarding user classes and methods).
When you get such an error, you need to restart the container. However, while
restarting the container, you must make sure that you increase the memory of JVM.
This can be done by adding the following JVM arguments for PermGen:

export JVM_ARGS="-Xmx1024m -XX:MaxPermSize=256m"

Chapter 2

[41]

For the Heap Space error, you can specify the following JVM arguments:

export JVM_ARGS="-Xms1024m -Xmx1024m"

The size of memory should be specified by the user. We
have covered this topic in more detail in Chapter 8, Scaling
Solr through High Performance.

When I modify the schema.xml file, I do not see any changes immediately

When schema.xml is modified, you need to restart the Solr instance to see the effect.
You also need to rebuild the indexes, because Solr indexed the data considering the
previous schema attributes, and it changed schema.xml, which is not incorporated.
You can also reload the schema.xml changes without restarting the server. Please
refer to the reload command as described in http://wiki.apache.org/solr/
CoreAdmin#RELOAD.

How do I run Solr Jetty in the background mode?

If you create Jetty as a service on Windows/Linux, the server will automatically
start at system startup and stop at shutdown. You can manually start the service
as a super user with following command:

$ service jetty start

Stop the service with the following command:

$ service jetty stop

If you are running it manually, you may try running it using the nohup command:

$ nohup java –jar start.jar > output.log 2>&1 &

The nohup command will prevent your command from being terminated in the event
you log out and will run it in the background. This command will send stdout to
output.log and redirect stderr to stdout.

http://wiki.apache.org/solr/CoreAdmin#RELOAD
http://wiki.apache.org/solr/CoreAdmin#RELOAD

Getting Started with Apache Solr

[42]

When I create a new core, it fails with the error "Can't find resource 'solrconfig.xml'
in classpath"

Apache Solr does not let you create a core unless you have the instance directory and
data directory created. So, if you are creating a new core with the instance directory
as demo_core and data directory as data, you need to copy the sample configuration
folder, conf to $SOLR_HOME/demo_core/conf and the data folder from your sample
collection to $SOLR_HOME/demo_core/data.

When copying the Solr configuration files, you should remember to include all the
files and the exact directory structure that Solr needs. So, in the directory specified
by the solr.solr.home variable, the solr.xml file should be available—the one that
describes the cores of your system. Once you have copied it, try creating the new
core from the Apache Solr administration user interface.

How to find out whether the Solr server is running or not?

There are multiple ways in which you can find out whether your server is running
or not. Typically, many containers provide a manager application to manage all
your deployments. In Tomcat, you can access it by calling http://<host>:<port>/
manager/html with a login and password, as shown in the following screenshot:

Chapter 2

[43]

Alternatively, Apache Solr provides you with a ping service that can be accessed
from Java clients as well as through the Web by accessing http://localhost:8983/
solr/admin/ping, as shown in the following screenshot:

The OK status explains that Solr is running fine on the server.

Understanding the Solr structure
Now that your Solr server is set and running, the next step will be to configure your
instance for your application. Most of the configuration for Apache Solr can be done
through XML configuration files, which go in the conf/ directory of your Solr core
home. Let's go through the configuration for the Solr instance.

When we do the deployments on the container, the solr.war file contains the actual
web application that can be accessed through the URL. Each container, when started
for the first time, unpacks this .war file in an internal directory (this is different for
each container).

The J2EE container picks up the home directory as specified by Java parameters
before starting the instance and looking for solr.xml. The solr.xml file defines
the context that contains information about the core.

Getting Started with Apache Solr

[44]

A collection in Solr is a combination of one or more indexes
spanning one or more cores of Apache Solr. A Solr core or
core in Apache Solr is a running instance of the Solr index,
along with its configuration.

After understanding solr.xml, the loader looks for the directory defined by
solr.solr.home as a system variable; it gets access to the configuration for
further processing. Let's look at the directory structure for Apache Solr.

The Solr home directory structure
The Apache Solr home directory mainly contains the configuration and index-related
data. The following are the major directories in a Solr collection:

Directory Purpose
conf/ This directory contains all the configuration files of Apache Solr, and

it's mandatory. Among them, solrconfig.xml and schema.xml are
important configuration files.

data/ This directory stores the data related to indexes generated by Solr. This
is a default location for Solr to store this information. This location can be
overridden by modifying conf/solrconfig.xml.

lib/ This directory is optional. If it exists, Solr will load any Jars found in this
directory and use them to resolve any plugins, if they are provided in
solrconfig.xml (Analyzers, RequestHandlers, and so on) Alternatively,
you can use the <lib> syntax in conf/solrconfig.xml to direct Solr to
your plugins.

Solr navigation
By default, there are some of the important URLs configured with Apache Solr that
are shown in the following screenshot:

URL Purpose
/select For processing search queries, the primary RequestHandler

provided with Solr is SearchHandler. It delegates to a sequence of
SearchComponents.

/query This SearchHandler is similar to the one we use for JSON-based requests.
/get This is the real-time get handler, which guarantees to return the latest

stored fields of any document, without the need to commit or open a
new searcher. Its current implementation relies on the updateLog feature
being enabled in the JSON format.

Chapter 2

[45]

URL Purpose
/browse This URL provides faceted web-based search and primary interface.
/update/
extract

Solr accepts posted XML messages that Add/Replace,
Commit, Delete, and Delete by query using the url /update
(ExtractingRequestHandler).

/update/csv This URL is specific for CSV messages and CSVRequestHandler.
/update/json This URL is specific for messages in the JSON format,

JsonUpdateRequestHandler.
/analysis/
field

This URL provides an interface for analyzing fields. It provides the
ability to specify multiple field types and field names in the same
request and outputs index-time and query-time analysis for each of
them. Uses FieldAnalysisRequestHandler internally.

/analysis/
document

This URL provides an interface for analyzing the documents.

/admin AdminHandler is used for providing administration to Solr.
AdminHandler has multiple subhandlers defined. For example,
/admin/ping is for health checkup.

/debug/dump DumpRequestHandler echoes the request content back to the client.
/replication This URL supports replicating indexes across different Solr servers used

by masters and slaves for data sharing. It uses ReplicationHandler.

Configuring the Apache Solr for
enterprise
Apache Solr allows extensive configuration to meet the needs of the consumer.
Configuring the instance revolves around the following:

•	 Defining a Solr schema
•	 Configuring Solr parameters

Let's look at all these steps to understand the configuration of Apache Solr.

Defining a Solr schema
In an enterprise, the data is generated from all the software systems that are
participating in the day-to day-operation. This data has different formats, and bringing
in this data for Big Data processing requires a storage system that is flexible enough to
accommodate data with varying data models. Traditional relational databases allow
users to define a strict data structure and SQL-based querying mechanism.

Getting Started with Apache Solr

[46]

Rather than confining users to define the data structures, NOSQL databases allow
an open database with which they can store any kind of data and retrieve it by
running queries that are not based on the SQL syntax. By its design, the NOSQL
database is best suited for this storage. One of the primary objectives of NOSQL is
horizontal scaling, that is, P in the CAP theorem at the cost of sacrificing consistency
or availability.

The CAP theorem or Brewer's theorem talks about distributed consistency. It states
that it is impossible to achieve all of the following in a distributed system:

•	 Consistency: Every client sees the most recently updated data state
•	 Availability: The distributed system functions as expected, even if there

are node failures
•	 Partition tolerance: Intermediate network failure among nodes does not

impact system functioning

Roughly, Solr ensures CP in the CAP theorem, and to some
extent, it also ensures high availability through no single point
of failure as per the new SolrCloud design (refer to http://
wiki.apache.org/solr/NewSolrCloudDesign) We will
look at how it's done in the following chapters.

By design, Solr supports any data to be loaded in a search engine through different
handlers, making it agnostic to data format. Solr can be scaled easily on top
of commodity hardware; hence, it becomes one of the most efficient eligible
NOSQL-based searches available today. The data can be stored in Solr indexes
and can be queried through Lucene's search APIs. Solr does perform joins because
of its denormalization of data. Overall, the schema file (schema.xml) is structured
in the following manner:

<schema>
 <types>
 <fields>
 <uniqueKey>
 <defaultSearchField>
 <solrQueryParser defaultOperator>
 <copyField>
</schema>

http://wiki.apache.org/solr/NewSolrCloudDesign
http://wiki.apache.org/solr/NewSolrCloudDesign

Chapter 2

[47]

Solr fields
Apache Solr's basic unit of information is a document, which is a set of data that
describes something. Each document in Solr composes fields for the Solr schema.
Apache Solr lets you define the structure of your data to extend support to search
across the traditional keywords searching. You can allow Solr to understand the
structure of your data (coming from various sources) by defining the fields in the
schema definition file. Once defined, these fields will be made available at the time
of data import or data upload. The schema is stored in the schema.xml file in the
conf/ folder of Apache Solr. Apache Solr ships with a default schema.xml, which
you have to change to fit your needs.

If you change schema.xml in a Solr instance running on some
data, the impact of this change requires a regeneration of Solr
index again with the new schema.

In schema configuration, you can define field types, (for example, string, integer, and
date) and map them to the respective Java classes.
<field name="id" type="integer" indexed="true" stored="true"
required="true"/>

This enables users to define the custom type if they wish to. Then, you can define the
fields with names and types pointing to one of the defined types. A field in Solr will
have the following major attributes:

Name Description
Default This sets the default value if it is not read while importing a document.
Indexed This is true, when it has to be indexed (i.e. can be searched, sorted,

facet creation).
Stored When this is true, a field is stored in the index store, and it will be

accessible while displaying results.
compressed When true, the field will be zipped (using gzip); it is applicable for

text-based fields.
multiValued This is a field that contains multiple values in the same import cycle of

the document/row.
omitNorms When true, it omits the norms associated with fields such as

length normalization and index boosting. Similarly, it has
omitTermFreqAndPositions (If this is true, it omits term frequency,
positions, and payloads from postings for this field. This can be a
performance boost for fields that don't require this information. It also
reduces the storage space required for the index) and omitPositions.

termVectors When this is true, it also persists metadata related to the document and
returns this when queried.

Getting Started with Apache Solr

[48]

With Solr 4.2, the team has introduced a new feature called DocValue for fields.
DocValues are a way of building the index that is more efficient for some purposes.
While Apache Solr relies on inverted index mechanism, the DocValue storage
focuses on efficiently indexing the document to index storage mechanism. This
approach results in a reduction in memory usage and the overall search speed.
DocValue can be enabled on specific fields in Solr in the following fashion:

<field name="test_outcome" type="string" indexed="false" stored="false"
docValues="true" />

If the data is indexed before applying DocValue, it has to be reindexed to utilize the
gains of DocValue indexing.

Dynamic Fields in Solr
In addition to static fields, you can also use Solr dynamic fields to get the flexibility
in case you do not know the schema affront. Use the <dynamicField> declaration
to create a field rule. Solr understands which datatype to be used. In the following
sample, any field imported and identified as *_no (for example, id_no and vehicle_no)
will in turn be read as an integer by Solr. In this case, * represents wildcard. The
following snippet shows how you can create a dynamic field:

<dynamicField name="*_no" type="integer" indexed="true" stored="true"/>

Although it is not a mandatory condition, it is recommended
for each Solr instance to have a unique identifier field for
the data. Similarly, ID name-specified uniqueKey cannot be
multivalued.

Copying the fields
You can also index the same data into multiple fields using the <copyField>
directive. This is typically needed when you want to have multi-indexing for the
same data type. For example, if you have data for the refrigerators of a company,
followed by the model number (WHIRLPOOL-1000LTR, SAMSUNG-980LTR), you
can have these indexed separately by applying your own tokenizers to different
fields. You might generate indexes for two different fields: Company Name and
Model Number. You can define tokenizers specific to your field types. Here is the
sample copyField from schema.xml:

<copyField source="cat" dest="text"/>
<copyField source="name" dest="text"/>
<copyField source="manu" dest="text"/>
<copyField source="features" dest="text"/>

Chapter 2

[49]

Field types
You can define your own field types in Apache Solr; they cater to your requirements
for data processing. A field type includes four types of information:

•	 Name
•	 An implementation class name (implemented on org.apache.solr.schema.

FieldType)
•	 If the field type is TextField, it will include a description of the field analysis

for the field type
•	 Field attributes

The following XML snippet shows a sample field type:

<fieldType name="text_ws" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 </analyzer>
</fieldType>

The class attribute indicates which Java class the given field type is associated
with. PositionIncrementGap determines the spacing between two words. It's
useful for multivalued fields where the space between multiple values of the fields is
determined. For example, if the author field has John Doe and Jack Williams as values,
when PositionIncrementGap is zero, a search for Doe Jack will match with these
fields. This is because Solr treats this field as John Doe Jack Williams. To separate these
multivalued fields, you can specify a high PositionIncrementGap value.

The name attribute indicates the name of the field type. Later, when a field is
defined, it uses the type attribute to denote the field type associated, as shown
in the following text:

<field name="name" type="text_ws" indexed="true" stored="true"/>

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Apache Solr

[50]

Other important elements in the Solr schema
The following table describes the different elements in schema.xml:

Name Description Example
UniqueKey The uniqueKey element specifies

which field is a unique identifier
for documents. For example,
uniqueKey should be used if
you ever update a document in
the index.

<uniqueKey>id</uniqueKey>

default
SearchField

If you are using the Lucene
query parser, queries that don't
specify a field name will use the
defaultSearchField. The use of
default search is deprecated from
Apache Solr 3.6 or higher versions.

<defaultSearchField></
defaultSearchField>

similarity similarity is a Lucene class
responsible for scoring the matched
results. Solr allows you to override
the default similarity behavior
through the <similarity>
declaration. Similarity can be
configured at the global level;
however, with Solr 4.0, it extends
similarity to be configured at the
field level.

<similarity class="solr.
DFRSimilarityFactory">

 <str
name="basicModel">P</str>

 <str
name="afterEffect">L</str>

 <str
name="normalization">H2</
str>

 <float name="c">7</
float>

</similarity>

Configuring Solr parameters
Once the schema is configured, the immediate next step is to configure the
instance itself to work with your enterprise. The configuration can take place
in the following manner:

•	 Understanding solrconfig.xml
•	 Understanding solr.xml and Solr cores
•	 Solr plugins

There are two major configurations that go in the Solr configuration:
solrconfig.xml and solr.xml. Let's look at them one by one.

Chapter 2

[51]

solr.xml and Solr core
The solr.xml configuration resides in the $SOLR_HOME directory, and it mainly focuses
on maintaining configuration for logging, cloud setup, and solr core. The Apache Solr
4.x code line uses solr.xml to identify the cores defined by the users. In the newer
versions of Solr 5.x (planned), the current solr.xml structure (which contains the
<core> element) will not be supported, and there will be an alternative structure
used by Solr.

solrconfig.xml
The solrconfig.xml configuration primarily provides you with an access to
RequestHandlers, listeners, and request dispatchers. Let's look at the solrconfig.xml
file and understand all the important declarations you'd be using frequently, from the
following table:

Directive Description
luceneMatchVersion This tells you which version of Lucene/Solr this configuration

file is set to. When upgrading your Solr instances, you need to
modify this attribute.

Lib If you create any plugins for Solr, you need to put a library
reference here so that it gets picked up. The libraries are loaded
in the same sequence as that of the configuration order. The
paths are relative; you can also specify regular expressions, for
example, <lib dir=".../../../contrib/velocity/
lib" regex=".*\.jar" />.

dataDir By default Solr uses the /data directory to store indexes.
However, this can be overridden by changing the directory
for data using this directive.

indexConfig This directive is of complexType, and it allows you to change the
settings of part of the internal indexing configuration of Solr.

Filter You can specify different filters to be run at the time of
index creation.

writeLockTimeout This directive denotes the maximum time to wait for
write Lock for IndexWriter.

maxIndexingThreads This denotes the maximum number of indexed threads that can
run in IndexWriter. If more threads arrive, they have to wait.
The default value is 8.

ramBufferSizeMB This denotes the maximum RAM you need in buffer during
index creation, before the files are flushed to the filesystem.

maxBufferedDocs This limits the number of documents buffered.

Getting Started with Apache Solr

[52]

Directive Description
lockType When indexes are generated and stored in the file, this

mechanism decides which file-locking mechanism should be
used to manage concurrent read-writes. There are three types:
single (one process at a time), native (native operating system
driven), and simple (based on locking using plain files).

unlockOnStartup When this is true, it will release all the write locks held in
the past.

Jmx Solr can expose the statistics of runtime through MBeans. It can
be enabled or disabled through this directive.

updateHandler UpdateHandler is responsible for managing the updates to Solr.
The entire configuration for updateHandler goes as a part of
this directive.

updateLog You can specify the directory and other configurations for
transaction logs during index updates.

autoCommit This enables automatic commit when updates are happening.
This could be based on documents or time.

Listener Using this directive, you can subscribe to update events when
IndexWriters are updating the index. The listeners can be run
either at the time of "postCommit" or "postOptimize".

Query This directive is mainly responsible for controlling different
parameters at the query time.

requestDispatcher By setting parameters in this directive, you can control how a
request will be processed by SolrDispatchFilter.

requestHandler RequestHandlers are responsible for handling different types
of requests with a specific logic for Apache Solr. These are
described in a separate section.

searchComponent SearchComponents in Solr enable additional logic that can
be used by the search handler to provide a better searching
experience. These are described in a separate section.

Update Request
ProcessorChain

This defines how update requests are processed; you can define
your own updateRequestProcessor to perform things such as
cleaning up data, optimizing text fields, and so on.

queryResponse
Writer

Each request for query is formatted and written back to the
user through queryResponseWriter. You can extend your Solr
instance to have responses for XML, JSON, PHP, Ruby, Python,
CSV, and so on by enabling the respective predefined writers. If
you have a custom requirement for a certain type of response, it
can easily be extended.

Chapter 2

[53]

Directive Description
queryParser The query parser directive tells Apache Solr which Query

parser should be used for parsing the query and creating
Lucene Query Objects. Apache Solr contains predefined query
parsers such as Lucene (the default one), DisMax (based on the
weights of fields), and eDismax (similar to DisMax, with some
additional features).

The Solr plugin
Apache Solr provides easy extensions to its current architecture through Solr
plugins. Using Solr plugins, you can load your own code to perform a variety of
tasks within Solr from custom RequestHandlers to process your searches, custom
analyzers, and token filters for the text field. Typically, the plugins can be developed
in Solr using any IDE by importing apache-solr*.jar as the library. The following
types of plugins can be created with Apache Solr:

Component Description
SearchComponents These plugins operate on a result set of a query. The results that

they produce typically appear at the end of the search request.

RequestHandler RequestHandlers are used to provide a REST endpoint from the
Solr instance to get some work done.

Filters Filters are the chain of agents which analyze the text for various
filtering criteria such as lower case and stemming. Now, you can
introduce your own filter and package it along with the plugin
JAR file

Once the plugin is developed, it has to be defined as part of solrconfig.xml by
pointing the library to your JAR.

Other configurations
RequestHandlers in Solr are responsible for handling requests. Each request
handler can be associated with one relative URL, for example, /search, /select.
A RequestHandler that provides a search capability is called a search handler. There
are more than 25 RequestHandlers available with Solr by default, and you can see
the complete list here:

http://lucene.apache.org/solr/api/org/apache/solr/request/
SolrRequestHandler.html

http://lucene.apache.org/solr/api/org/apache/solr/request/SolrRequestHandler.html
http://lucene.apache.org/solr/api/org/apache/solr/request/SolrRequestHandler.html

Getting Started with Apache Solr

[54]

There are search handlers that provide searching capabilities on Solr-based
indexes (for example, DisMaxRequestHandler and SearchHandler among others).
Similarly, there are update handlers that provide support to upload documents
to Solr (for example, DataImportHandler, CSVUpdateRequestHandler, and so
on). RealTimeGetHandler provides the latest stored fields of any document.
UpdateRequestHandlers are responsible for updating the index. Similarly,
CSVRequestHandler and JsonUpdateRequestHandler take the responsibility of
updating the indexes with CSV and JSON formats. ExtractingRequestHandler uses
Apache Tika to extract the text out of different file formats. Additionally, there are
other configuration files that appear in the configuration directory. We are listing
them in the following table with the description of each configuration:

Filename Description
protwords.txt In this file, you can specify protected words that you do not wish

to get stemmed. So, for example, a stemmer might stem the word
"catfish" to "cat" or "fish".

currency.txt This stores the exchange rates between different countries. This is
helpful when you have your application accessed by people from
different countries.

elevate.txt With this file, you can influence the search results and make
your own results among the top-ranked results. This overrides
Lucene's standard ranking scheme, taking into account elevations
from this file.

spellings.txt In this file, you can provide spelling suggestions to the end user.
synonyms.txt Using this file, you can specify your own synonyms, for example,

cost : money and money : dollars.
stopwords.txt Stopwords are those that will not be indexed and used by Solr in the

applications. This is particularly helpful when you really wish to get
rid of certain words. For example, in the string, "Jamie and joseph,"
the word "and" can be marked as a stopword.

Understanding SolrJ
Apache Solr is a web application; it can be used directly by its customers to search.
The search interface can be modified and enhanced to work as an end user search
tool to search in an enterprise. Solr clients can directly access Solr URL through
HTTP to search and read data through various formats such as JSON and XML.
Moreover, Apache Solr also allows administration through these HTTP-based
services. Queries are executed by generating the URL that Solr will understand.

Chapter 2

[55]

SolrJ is a tool that can be used by your Java-based application to connect to Apache
Solr for indexing. SolrJ provides Java wrappers and adaptors to communicate with Solr
and translate its results to Java objects. Using SolrJ is much more convenient than using
raw HTTP and JSON. Internally, SolrJ uses Apache HttpClient to send HTTP requests.
It provides a user-friendly interface, hiding connection details from the consumer
application. Using SolrJ, you can index your documents and perform your queries.

There are two major ways to do this. One way is by using the EmbeddedSolrServer
interface. If you are using Solr in an embedded application, this is the recommended
interface suited to you. It does not use an HTTP-based connection. Here is the
sample code:

System.setProperty("solr.solr.home", "/home/hrishi/work/scaling-solr/
example/solr");
CoreContainer.Initializer initializer = new CoreContainer.
Initializer();
CoreContainer coreContainer = initializer.initialize();
EmbeddedSolrServer server = new EmbeddedSolrServer(coreContainer, "");
ModifiableSolrParams params = new ModifiableSolrParams();
params.set("q", "Scaling");
QueryResponse response = server.query(params);
System.out.println("response = " + response);

The other way is to use the HTTPSolrServer interface, which talks with Solr server
through the HTTP protocol. This is suited if you have a remote client-server based
application. It uses the Apache Commons HTTP client to connect to Solr. Here is the
sample code for the same:

String url = "http://localhost:8983/solr";
SolrServer server = new HttpSolrServer(url);
ModifiableSolrParams params = new ModifiableSolrParams();
params.set("q", "Scaling");
QueryResponse response = server.query(params);
System.out.println("response = " + response);

You can use ConcurrentUpdateSolrServer for bulk uploads, whereas CloudSolrServer
communicates with Solr running in a cloud setup. SolrJ is available in the official
Maven repository. You can simply add the following dependency to your pom.xml
file to use SolrJ:

 <dependency>
 <artifactId>solr-solrj</artifactId>
 <groupId>org.apache.solr</groupId>
 <version>1.4.0</version>
 <type>jar</type>
 <scope>compile</scope>
 </dependency>

Getting Started with Apache Solr

[56]

To use the EmbeddedSolrServer, you need to add the solr-core dependency too:

 <dependency>
 <artifactId>solr-core</artifactId>
 <groupId>org.apache.solr</groupId>
 <version>1.4.0</version>
 <type>jar</type>
 <scope>compile</scope>
 </dependency>

Apache Solr also provides access to its services for different technologies such as
JavaScript, Python, and Ruby. The following table describes different interactions
with various technologies and Apache Solr:

Technology Interaction with Solr
JavaScript Apache Solr can work with JavaScript in the client-server model through

XMLHTTP / standard web interface; you can use libraries such as ajax-Solr
and SolrJS for interaction.

Ruby For Ruby, there is a project called sunspot (http://sunspot.github.
io/) that enables Solr-powered search for Ruby Objects. You can also use
DelRuby through APIs and SolrRuby libraries.

PHP PHP can talk with Solr in many ways. You will find more details on this in
Chapter 7, Scaling Solr through Sharding, Fault Tolerance, and Integration.

Java Java can directly talk with Solr through SolrJ APIs, or through standard
HTTP calls, as Solr supports HTTP interface.

Python Python can utilize the Solr-Python client API library to contact Solr
for searching.

Perl CPAN provides Solr libraries (http://search.cpan.org/~garafola/
Solr-0.03/) to utilize the Solr search. However, you can also use HTTP-
based lightweight client to talk with Solr

.NET There are many implementations available to consume Solr in .Net-based
applications such as SolrNET (https://github.com/mausch/SolrNet)
and Solr Contrib on CodePlex (http://solrcontrib.codeplex.com/).

Summary
In this chapter, we have set up the Apache Solr instance and tried to configure it
for the J2EE container. We went through various ways to configure the Apache Solr
instance in depth, finally ending and consuming the capabilities of Solr. In the next
section, we will see how to work with various applications and their dataset and
analyze their data using the capabilities of Apache.

http://sunspot.github.io/
http://sunspot.github.io/
http://search.cpan.org/~garafola/Solr-0.03/
http://search.cpan.org/~garafola/Solr-0.03/
https://github.com/mausch/SolrNet
http://solrcontrib.codeplex.com/

Analyzing Data with
Apache Solr

Many organizations suffer when dealing with huge amounts of data generated in
different formats, due to incremental IT enablement of their business processes.
Dealing with vast varieties of data becomes a challenge for any enterprise search
engine. This data may reside in a database, or would be streamed over HTTP
protocol. To address these problems, many companies provided tools to bring in
data from various sources into one form. These were Extract Transfer Load (ETL)
tools mainly used for business intelligence (BI) and analytics solutions. Luckily,
Apache Solr provides different ways of dealing with different data types, when
it comes down to information collection. We have already read about indexing
in Chapter 1, Understanding Apache Solr. In this chapter, we are going to look at
analyzing different types of data and how to deal with them. We will focus on the
following topics:

•	 Configuring handlers
•	 Apache Tika integration
•	 Importing data from the database
•	 Dealing with streaming data
•	 Customized indexing
•	 Advanced Text Analytics with Solr

While going through these topics, we will also look at adding content to Solr for
indexing, modifying, or deleting it.

Analyzing Data with Apache Solr

[58]

Understanding enterprise data
Many enterprise search applications consolidate data from various data sources. Each
separate system may also use a different method of data organization and/or format.
To use Apache Solr effectively in these systems, all the important data that is to be
searched must be fed to the Solr engine, and it goes through a complete process chain
(which is explained in brief in Chapter 1, Understanding Apache Solr). Interestingly,
since this data is fed only to generate indexing, we do not really have to worry
about the formatting, and other presentation aspects of this data. However, if the
expectation from enterprise search engines is also to provide an excellent browsing
experience, each data element should carry structure information. This information is
extracted by Apache Solr and is used to provide further dimensional navigation for a
better user experience, that is, facets.

Each unit of data objects is called a document in Solr. Each
document contains multiple fields; each field carries its name
and content. This content can be empty; however, each document
must have a unique ID (just like the primary key in relational
databases). The field names are defined in Apache Solr's
schema.xml file in the conf directory.

Most data warehousing projects consolidate data from different source systems.
Common data source formats are relational databases and flat files, but may include
non-relational database structures. Enterprise search deals with the different types of
data explained in the next section.

Categorizing by characteristics
Each document that enterprise search might deal with, has one important aspect—its
characteristics. Each data/document carries one of the characteristics listed in the
following table:

Name Description Example
Structured
data

A structured data carries a certain
structure or schema or definition
of its representation. This kind of
well-formed data provides a lot of
information to Solr, and it can be easily
indexed in Solr.

Relational databases (tables,
columns, and relations), XML
data with a predefined XSD
(schema), and APIs from various
enterprise applications, which
provide information in a
well-formed manner.

Chapter 3

[59]

Name Description Example
Semi-
structured
data

This data is not completely structured,
but you can definitely extract the
required information from it. It
requires extraction of certain properties
and their values. This requires
additional work on Apache Solr.

E-mails (with subject and
message), XML (without
schema), Word documents,
and PDFs.

Unstructured
data

This data carries no definite structures
and it becomes challenging for
Apache Solr to extract the necessary
information.

Audio files, video files, CLOBs
and BLOBs in databases, and
so on.

Many times, unstructured data and semi-structured data are combined together
while referring them.

Categorizing by access pattern
Another aspect while looking at data access is how the data is getting generated; this
means frequency of data generation and its availability to Apache Solr, as shown in
the following table.

Name Description Example
Streaming data /
sequential access

This data deals with real-time
information, and this information
should be made available in real-time
/ near real-time to Solr search. This
data is mainly associated with time.
This is mainly sequential access.

Sensor data, live
transmission of video/audio,
stock quotes, and server logs.

Random access /
direct access

This data is mainly stored in certain
storage and allows random access.

Databases, flat files, and csv.

Categorizing by data formats
In enterprise, data formats can differ from application to application. Many times,
the data resides in databases and can be queried using SQL, sometimes, data is
transmitted using wires over HTTP in JSON and XML format. The documents can be
in PDF/Word/Excel format. Apache Solr has to deal with data in different formats
including custom formats. Solr has built-in tools that understand many standard
formats, but when it comes down to custom format, it does not provide any tools for
extracting information from these formats in a structured manner.

Analyzing Data with Apache Solr

[60]

Since Solr uses this data to create one time indexes, the good news is that we do not
really have to bother about how to feed in a table from a word document to Apache
Solr. It's more focused on how one can extract attributes out of them as per schema.
xml. Interestingly, sometimes this information might even be coming from a different
application all together, and that information has to be fed together along with a
document. This information has to make logical sense. Let's look at the upcoming
example to understand this.

ABC Company has a content management system, which has different types of
documents; each document is associated with user IDs (ABC-12345). The content
management system does not maintain the usernames. However, one can find
usernames from the Corporate LDAP. The tricky part is that when these documents
are fed to enterprise search, association with user ID is not going to help anyone
here, because employees will never search on user IDs, they instead require a name,
maybe a role, and a department to understand which document belongs to which
department. This means, for each document, Apache Solr must be fed with the
author name, and a department. So, it requires additional metadata from LDAP to
be fed to Apache Solr while uploading documents for indexing. Such requirements
drive a need for custom adapters/agents, which can integrate information from
various sources to create sensible indexes.

Loading data using native handlers
Apache Solr supports add, delete, and update operations on its index store. It ships
with inbuilt native handers to work with JSON, XML, and CSV format. These
handlers can be called over HTTP by posting a message to them in one of these
formats through an update call. Apache Solr also provides an inbuilt posting tool
(client application), that can be used to upload data to an Apache Solr server.

Quick and simple data loading – post tool
Apache Solr provides a command-line tool by default for posting your XML
information directly to the Apache Solr server. Using this tool, one can upload a
document file/folder or it can also be provided through a standard input (STDIN),
that is, typed using your keyboard. $SOLR_HOME/example/exampledocs/post.jar
provides this data upload capability. There are some example files that you can use
to upload to Solr Server. You can run it using the following command:

$ java <arguments> –jar post.jar <filenames/raw data/URL>

Chapter 3

[61]

Let's look at the following table that lists some of the important arguments used in
this tool:

Name Description Examples
-Ddata=
<name>

<name> can be web, stdin, files, or
args; the default is files. Args mainly
provides instructions, such as delete
a document; web is a simple crawler
that crawls through a URL; stdin is
where you can provide your data
through the command line itself;
and files is where you can point to
your files to load. You may also use
a regular expression (*.xml).

•	 java -jar post.jar
*.xml

•	 Java –Ddata=web –
jar post.jar http://
www.packtpub.com

•	 java -Ddata=args
-jar post.jar
'<delete><id>42</
id></delete>'

-Dtype=
<mime-
type> and –
Dauto=<yes/
no>

The content type and auto go
together. When auto is true, the
tool determines the file type from its
extension; similarly, when auto is
no and the user specifies a content
type, the tool will assume the file in
that content type.

•	 java -Dtype=text/
csv -jar post.jar
*.csv

•	 java -Dauto=yes
-jar post.jar test.
pdf

Similarly, there are recurse=<yes/no> to enable recursive import of files in local
folders and subfolders, filetype=<pdf/xml/json….> to define the types of files.
You can also perform batch commit by passing –Dcommit=no, and finally committing
at once for an atomic operation.

Working with JSON, XML, and CSV
Apache Solr provides an inbuilt handler called UpdateRequestHandler to work with
JSON, XML, and CSV data. In solrconfig.xml, this information goes under the
<requestHandler> XML tag as shown in the following screenshot:

Analyzing Data with Apache Solr

[62]

It requires a data to pass its content type. All the handlers allow users to add new
data, update the existing data index in Solr, or to delete it. While updating and
deleting, indexes are matched with a certain unique ID, or query pattern. This is
one of the reasons why each record uploaded in Apache Solr must have one unique
identifier. Each of the handlers has the configuration and parameters associated
with it, you may refer to the Apache Solr reference guide (https://cwiki.apache.
org/confluence/display/solr/Apache+Solr+Reference+Guide) to look at the
configuration aspects in depth.

In earlier versions of Solr 3.x and so on, there were
separate handlers for CSV and JSON data, that is,
JsonUpdateRequestHandler for JSON requests,
CSVRequestHandler for CSV request. These are not
required in newer Solr releases, but they exist for backward
compatibility, as shown in the preceding screenshot. There
is a fixed content type parameter associated with the request
handler that is passed to Solr at the time of loading the
configuration. Hence, these handlers do not require any
content type to be passed unlike UpdateRequestHandler.

For JSON and XML request handlers, there is a newly introduced feature called
atomic updates. This feature allows you to update on a field level rather than on a
document level (in the previous versions). This feature allows users to just send the
delta (differences) to Apache Solr instead of sending the complete document.

If the document schema defines a unique key, then the /update operation to add a
document will by default overwrite (replace) any document in the index with the same
unique key. If no unique key has been defined, no replacement will take place. Unless
the field is marked with required=false, the field will be required to be present in
the Solr document. Whenever a handler is called through CURL to add a new data
element, Apache Solr returns a response that looks like the following screenshot:

When a document is uploaded in Apache Solr, a commit operation has to take place
to finalize the changes. A commit operation makes index changes visible to new
search requests.

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide

Chapter 3

[63]

A hard commit also runs synchronization on the index files to ensure
they have been flushed to stable storage and no data loss will result from
a power failure. A soft commit is much faster since it only makes index
changes visible and does not synchronize index files or write a new index
descriptor. If the JVM crashes or there is a loss of power, changes that
occurred after the last hard commit will be lost unless you have update
logs enabled. When Apache Solr is shut down with command instead
of crashing, it fires a hard commit on the documents to ensure that there
is no data loss. Search collections that have near-real-time requirements
(that want index changes to be quickly visible to searches), will want to
soft commit often but hard commit less frequently.

Many handlers support boosting of fields. To increase the scores for certain
documents that match a query, regardless of what that query may be, one can
use field-based boosting.

Handling JSON data
JavaScript Object Notation (JSON) is one of the most popular lightweight data
interchange formats. JSON is built on the following two structures:

•	 A collection of name/value pairs
•	 An ordered list of values, for example, array, vector, list, or sequence

JSON offers a smallest footprint of the message to be transmitted across the system;
hence, many applications prefer a JSON-based message-passing mechanism for
collaboration. The JSON content type is either marked with application/json or
text/json. Let's try this with an example as follows:

1.	 Use people.json from the dataset available in the book, as the initial dataset
to load in your Apache Solr system. First, copy the file in the exampledocs
directory under $SOLR_HOME/ example.

2.	 We need to enhance the existing Solr schema to support additional attributes
such as people.json, so add the following changes in the schema.xml file
under the <schema> tag:
<field name="gender" type="text_general" indexed="true"
stored="true"/>
<field name="company" type="text_general" indexed="true"
stored="true"/>

You will not require the name and ID field to be defined in schema.xml, as
it's seeded.

Analyzing Data with Apache Solr

[64]

3.	 Now, run the following command, this will load the data into Solr. The Solr
console will show uploaded information in the log files as follows:
curl 'http://localhost:8983/solr/update/json?commit=true' --data-
binary @people.json -H 'Content-type:application/json'

4.	 Access http://localhost:8983/solr/browse, and you can search for
relevant information. Similarly, you can call http://localhost:8983/
solr/get?id=1 if one does not wish to edit the schema, as shown in the
next screenshot:

In this manner, Solr includes the essential benefits of schemaless configuration as
explained in Chapter 2, Getting Started with Apache Solr.

Working with CSV data
Similar to the JSON format, CSV files can be uploaded to the Apache Solr instance
directly through UpdateRequestHandler using the standard HTTP post. For each
CSV file, the first row maps to Solr schema attributes defined in schema.xml in
configuration directories. This CSV data can be uploaded by running a curl command:

curl http://localhost:8983/solr/update/csv --data-binary @<csv file>
-H 'content-type:text/plain; charset=utf-8'

When the file is available locally, one can avoid going through the longer HTTP
route, and instead this file can be uploaded directly to the Solr server by enabling
remote streaming. Using remote streaming, a user can provide a direct path to the
file location, and the same can be uploaded without going through the HTTP route.
To enable remote streaming, one has to set enableRemoteStreaming to true in the
solrconfig.xml file:

<requestParsers enableRemoteStreaming="true"
 multipartUploadLimitInKB="2048000"
 formdataUploadLimitInKB="2048"
 addHttpRequestToContext="false"/>

Chapter 3

[65]

The enableRemoteStreaming=true parameter enables remote streaming. The
multipartUploadLimitInKB attribute sets an upper limit in kilobytes on the size
of a document that may be submitted in a multipart HTTP POST request and the
addHttpRequestToContext attribute adds the HttpServletRequest object to
SolrQueryRequest. Since it is not used by any of the Solr components, it can be
set to false. Once remote streaming is enabled, you can directly pass your CSV
file to Solr. You may use book.csv provided for CSV uploading, as shown in the
following snippet:

curl "http://localhost:8983/solr/update/csv?stream.file=exampledocs\
books.csv&stream.contentType=text/csv;charset=utf-8&commit=true

Working with XML data
XML data is the most widely used data across organizations. It carries various
formats. Apache Solr supports the upload of XML data, but in a certain format.
This is one of the biggest drawbacks of this handler, which means every XML
message/document you wish to push to Apache Solr needs to be transformed. There
are many transformation tools available to transform one type of XML into another.
One of the most common ways to do it is to simply apply XSLT Transformation.

To add a new document(s), the XML schema recognized by the update handler for
adding documents is very straightforward as follows:

•	 The <add> element introduces one or more documents to be added
•	 The <doc> element introduces the fields making up a document
•	 The <field> element presents the content for a specific field

An example of a sample document can be seen in the following snippet:

<add>
 <doc>
 <field name="Id">05991</field>
 <field name="name">Harry Potter</field>
 <field name="author">J. K. Rowling</field>
 </doc>
 [<doc> ... </doc>[<doc> ... </doc>]]
</add>

To understand how XML data can be transformed and uploaded, let's assume
that we have received a book's information from a store in a certain format
(please refer to books.xml from the book samples). This XML message can simply
be transformed using associated XSLT (visualize.xsl). By opening books.xml in
the web browser, the transformation takes place and you see the Solr understandable
books.xml file.

Analyzing Data with Apache Solr

[66]

Similar to add, the delete operation can also be performed with the <delete> tag.
A single delete message can contain multiple delete operations:

<delete>
 <id>1123</id>
 <id>1124</id>
 <query>title:Harry Potter</query>
</delete>

Working with rich documents
We have seen how Apache Solr has inbuilt handlers for CSV, JSON, and XML formats
in the last section. In any content management system of an organization, a data item
may be residing in documents which are in different formats, such as PDF, DOC, PPT,
XLS. The biggest challenge with these types is, they are all semi-structured forms.
Interestingly, Apache Solr handles many of these formats directly, and it is capable of
extracting the information from these types of data sources, thanks to Apache Tika!
Apache Solr uses code from the Apache Tika project to provide a framework for
incorporating many different file-format parsers such as Apache PDFBox and Apache
POI into Solr itself.

The framework to extract content from different data sources in
Apache Solr is also called Solr CEL, solr-cell or more commonly
Solr Cell.

Understanding Apache Tika
Apache Tika is a SAX-based parser for extracting the metadata from different types
of documents. Apache Tika uses the org.apache.tika.parser.Parser interface
for extracting metadata and structured text content from various documents using
the existing parser libraries. Apache Tika provides a single parse method with the
following signature.

void parse(InputStream stream, ContentHandler handler, Metadata
metadata)
 throws IOException, SAXException, TikaException;

This method takes the stream of the document as input and generates the XHTML
SAX event as the outcome. This way, the Tika provides a simple, yet powerful
interface to deal with different types of documents. Apache Tika supports the
following types of document format:

•	 Rich Text format (RTF)

Chapter 3

[67]

•	 HTML, XHTML
•	 All types of XML formats
•	 Microsoft office formats (Excel, Word, PowerPoint, Visio, Outlook)
•	 Open Office Formats
•	 Portable Document Format (PDFs)
•	 Electronic Publication Format (ePub)
•	 All types of text files
•	 Different types of compression formats (zip, gzip, bzip, bzip2, tarball,

and so on)
•	 Audio formats (mp3, MIDI, wave formats). The lyrics, title, subject can be

extracted from these formats
•	 Images: Support for only the metadata extraction is provided by Tika; it does

not support optical character recognition on scanned documents
•	 Source Code: Different source code such as Java, Jar, JSPs are supported

Apache Tika will automatically attempt to determine the input document type
(Word, pdf) and extract the content appropriately. Alternatively, you can specify
MIME type for Tika with stream.type parameter. Apache Tika generates XHTML
stream, through SAX parser. Apache Solr then reacts to SAX events by creating fields
for indexing. Tika produces metadata information such as Title, Subject, and Author
for the documents parsed.

Using Solr Cell (ExtractingRequestHandler)
Apache Solr supports Apache Tika for rich documents through Solr plugin. Apache
Solr's ExtractingRequestHandler uses Tika to allow users to upload binary files to
Solr and have Solr extract text from it and then index it optionally.

Solr allows you to load custom code to perform a variety of
tasks within Solr—from custom Request Handlers to process
your searches, to custom Analyzers and Token Filters for your
text field, even custom Field Types. These are called SolrPlugin.

Let's run a small example to load your HTML page using Tika to Apache Solr.
Although we use curl throughout this book for testing, the real production instance
has to rely on more robust mechanisms such as SolrJ, custom application, and adapter.

curl "http://localhost:8983/solr/update/extract?literal.
id=doc1&commit=true" -F "myfile=@<your page>.html"

Analyzing Data with Apache Solr

[68]

The literal.id=doc1 parameter provides the necessary unique ID for the
document being indexed. The commit=true parameter causes Solr to perform
a commit after indexing the document, making it immediately searchable. For
optimum performance when loading many documents, don't call the commit
command until you are done. This is because a hard commit causes time consuming
disk IO. The -F flag instructs curl to POST data using Content-Type multipart/
form-data and supports the uploading of binary files. The @ symbol instructs curl
to upload the attached file. The myfile=@page1.html argument needs a valid path,
which can be the absolute or relative location of $SOLR_HOME. You may look at
Apache Solr reference guide for configuration details.

Now, you should be able to execute a query and find that document. You may notice
that although you can search the text in the sample document, you may not be able
to see that text when the document is retrieved. This is simply because the content
field generated by Tika is mapped to the Solr field called text, which is indexed but
not stored. This is done via the default map rule in the /update/extract handler
in solrconfig.xml and can be easily changed or overridden. Similarly, mapping
of Tika fields with Solr fields can be provided through fmap. For example, fmap.
content=mytext will move the content generated by Apache Tika to be moved to
the mytext field. In solrconfig.xml, ExtractingRequestHandler can be found as
shown in the following snippet:

<requestHandler name="/update/extract"
 startup="lazy"
 class="solr.extraction.ExtractingRequestHandler" >
…………………………..
</requestHandler>

Adding metadata to your rich documents
Since Apache Tika takes complete control over what gets parsed using its own
parser, we are constrained to limiting ourselves to using Tika with its capabilities.
This works well for pure text searches, but when it comes down to adding different
dimensions to your search (faceted search), extracting the right fields is most
challenging. Tika provides an automated extraction, which in turn limits us to
extract fields based on the real-world requirements for enterprise search.

To deal with such cases, it may be required to build a wrapper on top of Tika to
extract additional metadata for a given document for indexing. This can be done
through SolrJ APIs.

Chapter 3

[69]

Look at the following example (from sample code CustomDocsManagerUploader.
java):

public void indexFile(String filePath, Map<String,String> metadata)
throws Exception {
 SolrServer solr = new CommonsHttpSolrServer(urlString);
 ContentStreamUpdateRequest up = new
ContentStreamUpdateRequest("/update/extract");
 for (String key : metadata.keySet()) {
 //set the literals
 up.setParam("literal." + key, metadata.get(key));
 }
 up.addFile(new File(filePath));
 up.setAction(AbstractUpdateRequest.ACTION.COMMIT, false,
false);
 solr.request(up);
 }

Each document must have a unique identifier. Any custom field that represents
uploaded metadata should be passed as literal.<field-name>, to make it appear
as the schema element. You can also use the simple post tool to post your rich
document to Apache Solr through ExtractingRequestHandler. For example,
refer to the following code:

java -Durl=http://localhost:8983/solr/update/extract -Dparams=literal.
id=myId1 -Dtype=text/html -jar post.jar home.html

Importing structured data from
the database
Many applications in the enterprise world store their important data in relational
databases. The databases become one of the important data sources for Apache Solr
for searching. Apache Solr provides DataImportHandler to deal with this type of
data source. With DataImportHandler, you can also load only the deltas instead
of the complete data set again and again. Many times, this can be set as off-time
scheduled job activity to minimize the impact of indexing on day-to-day work. In
case of real-time updates, this activity has to be scheduled with a fixed frequency.

Analyzing Data with Apache Solr

[70]

Traditionally, DataImportHandler supports pull mechanism, but in the newer
release of Apache Solr, DataImportHandler supports push operation as well. Some
of the interesting features of DataImportHandler are listed as follows:

•	 Imports data from RDBMS/XML/RSS/ATOM in Solr using configuration
across multiple tables

•	 Data is denormalized, and it supports full as well as incremental import
of data

•	 DataImportHandler is a separate library from Solr Core, and it is a plugin
of Apache Solr

•	 Allows extension of existing APIs with customizations
•	 Better error handling and rollback
•	 Event listeners
•	 Data push to Apache Solr
•	 Works on JDBC-based data connections. This means virtually any database

can be connected through DataImportHandler

Configuring the data source
One of the important steps before importing data from the database to Apache Solr is to
configure the data source. A data source is pointed to the location where data resides.
In this case, it could be a relational database such as Oracle, MySQL, SQL Server, and
HTTP URL. The data source configuration is required to define the following:

•	 Where to fetch the data from (database connection, URL, and so on)
•	 How to fetch data from a data source (query or other information)
•	 What to read (tables, SQL, resultset, columns, and so on)
•	 Mapping it with Solr Schema (database attributes to field mapping)

A data source can be defined in solrconfig.xml or it can simply point to another
file containing the configuration (in our case data-config.xml). Each data source
configuration has the <dataSource> and <document> elements. <dataSource>
focuses more on establishing contact to data through different protocols such as
JNDI, JDBC, and HTTP. Each <document> has <entity>. Each entity represents one
data set. An entity is processed to generate a set of documents, containing multiple
fields, which (after optionally being transformed in various ways) are sent to Solr
for indexing. For a RDBMS data source, an entity is a view or table, which would be
processed by one or more SQL statements to generate a set of rows (documents) with
one or more columns (fields). You can create a custom data source by writing a class
that extends org.apache.solr.handler.dataimport.DataSource.

Chapter 3

[71]

Apache Solr DataImportHandler supports the data source types, listed in the
following table, that can be used along with DataImportHandler:

Type Description
ContentStreamDataSource This mainly focuses on POST data and is useful for

HTTP-based stream data.
FieldReaderDataSource This can be used where a database field contains

XML, which you wish to process using the
XpathEntityProcessor. You would set up a
configuration with both JDBC and FieldReader
data sources, and two entities. One entity will be
placed under the other one to pass SQL output to
XPath resolver.

FileDataSource This can be used to fetch files from the disk.
JdbcDataSource This is the default data source that works with JDBC.
URLDataSource This supports HTTP, it can also be used with

file:// as of now.

Entity processors extract data, transform it, and add it to a Solr index. There are
different types of entity processors that work with different types of data sources,
starting with SQL Entity Processor, XPath-based entity processor, and Apache
Tika-based entity processor, file list entity processor, line entity processor and
plain text entity processor.

Transformers manipulate the fields in a document returned by an entity.
A transformer can create new fields or modify the existing ones. You may refer
to Apache Solr reference guide to understand various configuration parameters.

Importing data in Solr
Apache Solr supports two types of data imports possible with structured data
sources through DataImportHandler which are discussed in the following sections.

Full import
The full import mechanism is useful where it is required to read the data source
snapshots at any given point of time. The usage of this import varies from case to
case. Full import can be used when the underlying data is not changing frequently,
and the enterprise search demand is not for a near-real time search.

Analyzing Data with Apache Solr

[72]

When the full-import command is executed, Apache Solr notes different timings in a
dataimport.properties file under $SOLR_HOME/conf. From Apache Solr version 4.1
onwards, this file location can be changed by modifying data-config.xml:

<dataConfig>
…
<propertyWriter dateFormat="yyyy-MM-dd HH:mm:ss"
type="SimplePropertiesWriter" directory="data" filename="dataimport.
properties" locale="en_US"/>
…
</dataConfig>

The content of the $SOLR_HOME/conf/dataimport.properties file is as shown in
the following snippet:

#Tue Jan 14 19:14:07 IST 2014
last_index_time=2014-01-14 19\:14\:06
department.last_index_time=2014-01-14 19\:08\:55
id.last_index_time=2014-01-14 19\:14\:06

These timestamps are used with the delta-import mechanism that we will take a look
at in the next section. While performing full import of data, the Apache Solr search
does not block itself. Based on the commit pattern, the new imported data starts
appearing in the search results.

A full import operation can be started by hitting the URL http://<host>:<port>/
solr/dataimport?command=full-import.

Delta import
This import is similar to full import, but it offers to reflect the change of state of your
data source in Apache Solr. This import focuses on incremental updates and change
detection. This operation will be started in a new thread and the status attribute in
the response should be shown as busy now. Depending on the size of your data set,
this operation may take some time.

When the delta-import command is executed, it reads the start time stored in
conf/dataimport.properties. It uses that timestamp to run delta queries, and
after completion, updates the timestamp in conf/dataimport.properties. The
following example shows a sample delta-import data source configuration file:

Chapter 3

[73]

For delta import, a query is separately specified, and the entities are marked inside
the entity. The query gives the data needed to populate fields of the Solr document
in full-import. The deltaImportQuery gives the data needed to populate fields
when running a delta import. The deltaQuery gives the primary keys of the current
entity, which have changed since the last index time. This time is read from the
dataimport.properties file under conf.

One important point to note while working with delta import
is that it does not offer any smart tracking over what is changed
in the database from the last run; it is the responsibility of the
application to maintain a flag/column (last-modified-on) for
each table, and keep it updated as and when there is change.
Databases such as Oracle support such columns with default
values as SYSDATE to avoid inserting queries that pass
additional column name and values.

Delta import operation can be started by hitting the URL http://<host>:<port>/
solr/dataimport?command=delta-import.

Loading RDBMS tables in Solr
Let's go through the complete flow of how the overall configuration takes place
while configuring DataImportHandler. The following steps describe how the overall
import will take place:

1.	 Load data from the sample database provided (deptdb: create_db.sql).
This sample is built upon MySQL database.

Analyzing Data with Apache Solr

[74]

2.	 Since DataImportHandler is not part of Apache Solr core release, one has to
add its request handler in solrconfig.xml:

3.	 Create a data-config.xml file as follows (please change URL, user, and
the password attributes appropriately) and save it to the conf directory:
<dataConfig>
 <dataSource type="JdbcDataSource"
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/deptdb"
 user="<user>"
 password="<password>">
 </dataSource>
 <document name="departments">
 <entity name="id"
 query="select id,department_code,department_name from
department">
 <field column="id" name="id"/>
 <field column="department_code" name="department_code"/>
 <field column="department_name" name="department_name"/>
 </entity>
 </document>
</dataConfig>

4.	 Since DataImportHandler is not part of the Solr core, you need to package
the following two jars in solr.war (WEB-INF/lib), or put them in the
classpath of your container as follows:

°° solr-dataimporthandler-extras-<version>.jar

°° solr-dataimporthandler-<version>.jar

5.	 Similarly, you will also need to package your respective database JDBC
driver JAR file in the classpath or solr.war.

Chapter 3

[75]

6.	 Extend your schema file to incorporate additional attributes from your SQL
queries as follows; attribute ID is seeded in schema.xml, so you do not need
to add that:
<field name="department_name" type="text_general" indexed="true"
stored="true"/>
 <field name="department_code" type="text_general"
indexed="true" stored="true"/>

7.	 Access http://localhost:8983/solr/dataimport?command=full-import
and you will see an XML message in the following manner, which signified a
successful import:

It is recommended that users specify batchSize in the data-config.xml file when
the data in tables is huge, this is required due to DataImportHandler picking rows
one-by-one, and processing it.

Analyzing Data with Apache Solr

[76]

Advanced topics with Solr
We have dealt with various data and their types. Most of the cases in enterprise
search can be addressed by the different techniques we have gone through. In this
section, we will go through some advanced topics for analyzing your data with Solr.
We will also try to explore integration with NLP tools to make the incoming data
more sensible and effective.

Deduplication
Deduplication in Apache Solr is all about avoiding duplicate documents from
entering in the storage of Apache Solr. Apache Solr prevents these duplicates at the
document as well as the field level. This is a new feature of Apache Solr 4.x release.
The duplicates in the storage can be avoided by means of hashing techniques.
Apache Solr supports native de-duplication techniques through the <Signature>
class. As of now, Apache Solr 4.6 supports MD5 (MD5Signature), 64-bit hashing
(Lookup3Signature) and fuzzy hashing (comes from Nutch, TextProfileSignature).

To enable deduplication, users need to modify solrconfig.xml with the following
changes as a part of UpdateRequestProcessorChain:

<updateRequestProcessorChain name="dedupe">
 <processor class="solr.processor.SignatureUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <str name="signatureField">id</str>
 <bool name="overwriteDupes">false</bool>
 <str name="fields">category, author, name</str>
 <str name="signatureClass">solr.processor.Lookup3Signature</str>
 </processor>
</updateRequestProcessorChain>

Similarly, schema.xml can be modified with a new field for signature, and finally
the requestHandler should allow all the /update queries to go through the
deduplication layer. The code snippet will look like the following:

<requestHandler name="/update" >
 <lst name="defaults">
 <str name="update.chain">dedupe</str>
 </lst>
</requestHandler>

Chapter 3

[77]

Extracting information from scanned
documents
In a content management system, the documents are scanned and preserved in
image or PDF format. Although the information is preserved, it is not usable as the
information is not readable to human eyes. In such cases, enterprise search becomes
useless, and Apache Solr does not provide any direct support to such images/
scanned documents. To make the scanned documents readable, we primarily need
Apache Solr integration with Optical Character Recognition (OCR) software. The
overall architecture for this scenario looks like the following screenshot:

The overall integration with any OCR (in our case it is Tesseract OCR) can be
modeled as a custom adapter developed to interact with Apache Solr. A sample code
(ImageInformationExtractor.java) should be able to address some of the aspects
of it. In the sample implementation, the integration is done at the command level,
since Tesseract does not provide any API-level access.

Analyzing Data with Apache Solr

[78]

Searching through images using LIRE
Apache Solr allows a search over images through Lucene Image Retrieval (LIRE)
Library. (Visit http://demo-itec.uni-klu.ac.at/liredemo/) The LIRE library
allows users to enable a search through images, based on the properties of images.
The image histogram is used to calculate the relevancy of the image with the
searched image.

Today, LIRE supports the following five histogram algorithms:

•	 Color histogram layout (cl_ha)
•	 Pyramid histogram of oriented gradients or PHOG (ph_ha)
•	 Opponent histogram (oh_ha)
•	 Edge histogram (eh_ha)
•	 Jc_ha

LIRE configuration requires creation of additional filters in solrconfig.xml
(by default it is /lireq), and users are required to pass the URL of the image they
would like to search. The output of a filter provides users with a list of documents
when searched for an image (http://localhost:8983/solr/lireq?url=<image-
absolute-url>), as shown in the following screenshot:

http://demo-itec.uni-klu.ac.at/liredemo/

Chapter 3

[79]

The following screenshot demonstrates how effectively, LIRE can possibly match the
images using cl_ha:

Visit https://bitbucket.org/dermotte/liresolr to understand how it can be
used to query as well as configure LIRE. There are three primary changes required in
the configuration, which are as follows:

•	 Copying LIRE jars in the classpath of Solr
•	 Modifying schema.xml to incorporate new schema elements to store the

weights of each histogram
•	 Modifying solrconfig.xml to introduce a new filter for LIRE

With this book, we have provided the sample configuration files with changes
required for LIRE marked accordingly. Data loading can be done using
DataImportHandler; please refer to solr-data-config.xml.

https://bitbucket.org/dermotte/liresolr

Analyzing Data with Apache Solr

[80]

Summary
In this chapter, we have understood various ways of analyzing data while working
with Apache Solr. We also looked at different data types that Apache Solr might
encounter while working in the role of enterprise search, and how to deal with
them. We have looked at some practical examples of how users can load data from
different data sources.

Designing Enterprise Search
Finding the right information to make relevant decisions is an important aspect
in running a successful and effective business. This is the place where good
enterprise design comes into play. Enterprise search is used by different
organizations to capitalize on their internal knowledge by providing quick
access to all internal information.

Enterprise search not only helps users in discovering new information but also
collaborates across organizational and geographical boundaries by creating the
necessary conditions. Enterprises suffer from many problems due to poor design
of enterprise search for their organizations. These include issues such as:

•	 Amount of information tweaking required to work with search engines
•	 Time wasted by employees due to ineffective search, resulting in

lower productivity
•	 Cost of managing such ineffective search servers
•	 Unavailability of important information (lost value)
•	 Misleading and irrelevant information, resulting in losses by making

wrong decisions

Designing Enterprise Search

[82]

Not finding the right information or finding it too late, duplicated efforts, productivity
impacts, and missed opportunities make a huge cost impact to an organization. Many
times, this impact is further cascaded throughout the organization. The impact grows
as the organization needs are on a real-time/up-to-date search. In this chapter, we
will understand the aspects of designing a search solution for enterprise. We will look
at the following topics:

•	 Designing aspects for enterprise search
•	 Referencing enterprise search architecture
•	 Designing workflows to process data
•	 Integrating data sources
•	 Case study – designing enterprise search for the IT industry

Designing aspects for enterprise search
Every business day, employees need to access information stored in various
enterprise applications and databases. Employees want one entrance to all corporate
information. They often perceive the company intranet as one fuzzy cloud of
information, while in reality it is a set of highly isolated information silos. Enterprise
search is meant to address this need by providing access to relevant information,
consolidating all the results, and presenting it properly. How does one achieve this?
The larger the organization, the more divergent is its information access needs.
Implementing enterprise search in organizations must follow a well-established
process to build a mature, usable application. The process of implementation of
enterprise search requires the following aspects:

•	 Identifying and establishing the business requirement
•	 Identifying the right set of technologies
•	 Proof of Concept using the technologies
•	 Implementation of enterprise search solution
•	 Integrating search interfacing with the relevant client
•	 Testing and rollout
•	 Monitoring

Chapter 4

[83]

Identifying requirements
Identification of requirements is one of the key aspects of the enterprise search
implementation lifecycle. The first step in designing the enterprise search solution
will be to identify the relevant stakeholders who will use this search, and have a
discussion with them regarding the expectations. The intent will be to identify what
information they are really looking for from the existing systems, and what benefit
can they expect out of the solution once it's available for use.

To identify the requirements properly, one may have to find answers to the
following questions:

•	 What information is the customer looking for as part of search
implementation?

•	 What are the key benefits of implementing search engines in organizations?
•	 Which applications does a customer expect the search engine to find?
•	 How can data on these applications be accessed?
•	 Do applications support search using their APIs?
•	 What is the frequency of data generated by each application?
•	 What kind of delay can a customer live with in terms of indexing the data

from various applications? Is it real-time/near real-time search that has to
be performed?

•	 How and in what form is a customer expecting the search user interface
to appear?

•	 Is the customer looking for multilingual support?
•	 What kind of security over search is expected by the customer?

Designing Enterprise Search

[84]

Enterprise search provides a presentation/UI layer to all its end users; however,
underlying systems design aspects that are equally important, and they impact the
overall enterprise search usability and its value. We have gone through some of the
aspects in the first chapter. We will look at the rest now. We will consider Apache
Solr-based search as a reference model for these design discussions. The following
image illustrates different design aspects you should consider before implementing
an enterprise search solution:

Matching user expectations through
relevance
A relevance of results in enterprise search enables users to reach the information
they are looking for in the quickest possible way. The results in any search engine are
ordered by the relevancy score for the searched term. The topmost search elements
carry the highest scores, and it's based on the relative scoring of elements.

Chapter 4

[85]

Apache Solr uses the TF-IDF-based scoring model for the relevance scope of
documents. TF stands for Term Frequency, and IDF stands for Inverse Document
Frequency. Term frequency signifies the frequency of a searched term appearing in
the document. Higher term frequency means the document is more relevant to the
searched subject. Inverse document frequency represents the rareness of a searched
term in the document repository. If the term is rare, the score of the term is higher.
Together, the TF-IDF algorithm enables the search results to provide the order of
the document that has maximum occurrences and avoids common words by
inclusion of rareness.

Additionally, the Apache Solr scoring also involves coordination factor and field
length. The coordination factor identifies the number of query terms present in the
document, and based on that, the scoring is determined. The more the query terms in
the document, the higher the scores. For example, if a user searches for "black dog", a
document that will have both terms together will score relatively higher than the ones
with "black" or "dog". Similarly, the length of the field also impacts the scoring of each
document. A document that has fields with more words will carry a low score.

You can find more on Apache Solr scoring at the Javadoc of org.apache.lucene.
search.Similarity class:

http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/
search/Similarity.html

The problem arises when documents with a lot of common words get indexed,
and the overall search is influenced by them. For example, one organization has a
recruitment wing and they would like the search to work upon resumes. So, they
load resumes in the Apache Solr search engine. Every time a user searches for Java
+ JDBC, many of the resumes start appearing right on top of the result. This becomes
a problem for a user who is genuinely looking for Java projects in the organization.
Apache Solr resolves such problems by boosting the search results.

Boosting is a process that allows Apache Solr administrators
to modify the document scores, thereby enabling them to
influence the result ordering. Score boosting can be done at
indexing time or at query time. Boosting can either be positive
boosting or negative boosting.

http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html

Designing Enterprise Search

[86]

Index time boosting can be done by simply adding boost attributes to your
document/fields. The following XML snippet shows how it can be achieved:

<add>
 <doc boost="2.4">
 <field name="doc_id">223</field>
 <field name="department" boost="2.0">Information Technology</
field>
 <field name="person_name">Hrishikesh Karambelkar</field>
 </doc>
</add>

The default value of boost is 1.0. In our example, the document (boost value is 2.4)
is boosted by influencing the relevancy scores of the searched keyword. Similarly,
the field department with boost value 2.0 influences the search results for
field-related searches.

Access to searched entities and
user interface
Another aspect while designing the search solution is providing ease of access to
searched results. The enterprise landscape has a variety of applications that are to
be indexed and searched. Typically, documents/contents are huge and the search
solution cannot render a complete document in line. So, when a search matches
with a number of documents, it renders a snippet of a matched search on the results
screen/UI components.

Search engines are not designed to store user data and provide querying capabilities.
They do not only provide internal repositories to store data residing at different
application-specific storage systems but also involve unnecessary duplication
of information.

Chapter 4

[87]

It's more intuitive to provide a way for users to access the complete document or
content through a detailed link. The following screenshot demonstrates a sample log-
based search engine that points to a complete logfile:

When the information resides in a different application, it has to be linked with
search results and a user interface. The biggest problem lies with application
privacy and security. These applications do not allow the external world to access
information through web-based methodologies. Access to searched entities can be
achieved using the following different ways:

•	 Direct access to resource (through standard protocol files such as
HTTP/FTP/URL-based)

•	 Indirect access:

°° Through pluggable user interfaces (for example, portlets and web
toolkits by different vendors)

°° API level information access (this requires the UI to be rebuilt)
°° Web services or other such service-based approach
°° Application-specific adapters

Designing Enterprise Search

[88]

While preparing the design for enterprise search, different applications and their
user interface access patterns have to be studied upfront. Depending upon the
integration pattern, administrators might need to spend effort in getting access to
other applications from Solr UI. This might involve getting into authorization similar
to Single-Sign-On (SSO) or even building user interfaces that can be portable.
Sometimes, Apache Solr is also referred to as the NOSQL database because it allows
indexing for any kind of data. However, one point to note here is that the primary
objective of Apache Solr is to provide enterprise search application capabilities and
not to store the documents.

Improving search performance and ensuring
instance scalability
The performance of enterprise search is of the utmost importance. The search engine
should respond to user queries as soon as possible to keep users from abandonment.
With every second's delay in response time, the percentage of user abandonment
increases (reference: http://blog.kissmetrics.com/loading-time/). There are
other factors that impact the page load on the end user's browser interface; these
include network latency, Internet speed, page size and references, browser page
load time, and so on, besides search response. So, a simplistic page design with the
quickest page loading time enables users to save their time.

The optimization of enterprise search can be achieved at both the indexing and
querying levels. To maintain the same performance of enterprise search with growing
data, one should also review the density of the content that is getting generated
along with the current capabilities of search. Search performance can be measured in
different ways: it can be the time taken for search results to appear when queried, or it
can be the time to index and the indexing frequency. The performance of the search is
impacted due to one of the following reasons:

•	 Growing rate of data inflow to search application
•	 Increased refresh rates for indexing
•	 Demands for real-time/near real-time search
•	 Increased number of queries run per unit time
•	 Slow response of the underlying application that provides Enterprise

Search data
•	 High runtime response time of federated search
•	 Type of queries/complexity of query (such as wildcard search)

http://blog.kissmetrics.com/loading-time/

Chapter 4

[89]

Given the factors impacting the performance of the search, architects can look for
reducing data loading before the indexing phase by removing unnecessary information
and reduction in index creation with techniques such as stemming and synonyms. As
demand grows, the landscape can be transformed into clusters of search.

Every organization data grows day-by-day. Enterprise search solution should
provide a scalable search engine that can grow along with the data. We will look
at different patterns of enterprise search solutions in the next section. Apache Solr
provides a scalable high-performance search application that can be used for high-
performance requirements.

Working with applications through
federated search
Applications often provide their own search APIs, and unified search solutions
should utilize the capabilities of this application's search APIs to search and merge
the results in runtime. The following block diagram demonstrates how the federation
works in enterprise search:

Designing Enterprise Search

[90]

Although federated search works in the same fashion as enterprise search, it works
for a limited scope. Enterprise search, when working with federated search engines,
can directly integrate at a lower level and start consuming indexes generated by
federated searches; this association can be more lightweight when enterprise search
engines pass user queries to federated search, which in turn returns the results,
which are later merged in unified enterprise search. After federation, a step of
deduplication is required to remove data redundancy.

Other differentiators – mobiles, linguistic
search, and security
Enterprise search can provide a differentiator by enabling access over user mobiles.
This is very useful for customers to browse external content and employees to
access internal information. It also saves time and cost because of its availability to
respective stakeholders all the time. To address such requirements, one has to build
a mobile application that can talk with the enterprise search server dynamically.
Today's technology provides various options to architects.

Supporting mobile introduces its own challenges for design. Given that the mobile
screens are small, and only a limited content can be displayed, the UI is required
to be reworked or transformed for mobile apps. Enterprise search content can be
published as a web service and consumed in mobile applications directly. Many
times, customer implementation demands for mobile support.

Another design aspect to consider is linguistic support for the enterprise search
solution. Customers might have data defined in a non-English locale; in such cases,
the expectation is that the other locales used by customers should be supported by
the enterprise search implementation. When a document is processed, parsing and
tokenization of the module determine the language of that document and break up
the stream of input text into distinct units or tokens. The Apache Solr Multilingual
feature provides an out of the box solution to language-specific problems.
Additionally, Apache Solr Multilingual provides a way to offer language-specific
searches for different languages at once on multilingual websites. It supports a
non-English locale. However, there are specific configuration changes one needs
to do in different configuration files, which are:

•	 Protected words/stop words: This file requires locale-specific changes in
the word list of their respective configuration files (protwords.txt and
stopwords.txt).

•	 Word stemming: This has to go with locale-specific word stems.
Unfortunately, the stemming algorithm is different from language to
language, which means it requires a separate configuration for user locale.

Chapter 4

[91]

•	 Spell checking: This needs to work with newer locale for
spelling corrections.

Security is one of the design aspects to consider. This aspect talks about authorization
and authentication. Authentication demands only authenticated users can come for
enterprise search access, and authorization demands the enterprise search instance
should have fine-grained access control. It helps each user access only what he is
allowed to access. Security is more challenging because the data comes from various
applications. Now, each application holds authorization information for the data.

In case of Apache Solr, one can use the application server-based authentication
methodology. Apache Solr does not support any direct way of working with
document-level security. So, an intermediate proxy has to be built around Solr and
the client. This proxy can hide the Solr implementation from the outside world, and it
can also hold a security wrapper layer to provide document-level fine-grained access
control. Apache Solr allows users to run queries across multiple indexes; the proxy
can protect these types of queries and ensure they are limited to respective search
cores. You can find information on Solr security on the https://wiki.apache.org/
solr/SolrSecurity wiki page.

Enterprise search data-processing
patterns
Enterprise searching has evolved over time from a basic web-crawling document
search to a more sophisticated structured/unstructured content search providing a
lot of user interactions. As the data grows, there is a paradigm shift, and more focus
is shifting towards the effective use of distributed technology to handle such a high
volume of data. At the same time, the cost of enterprise storage needs to be controlled.
Enterprise-ready search also demands support for high availability and scalability.
By design, the enterprise search implementation should be capable of handling large
indexes. With more growth, single server capacity of handling index becomes
a limitation of the search server. In this case, sharding of index is most important.

Sharding is a process of breaking one index into multiple
logical units called "shards" across multiple records. In case
of Solr, the results will be aggregated and returned.

Let's look at different data processing workflows for an enterprise search application.

https://wiki.apache.org/solr/SolrSecurity
https://wiki.apache.org/solr/SolrSecurity

Designing Enterprise Search

[92]

Standalone search engine server
This configuration uses a single high-end server containing indexes. This type of
configuration is mostly suitable for development and in some cases for production,
where there is a control over data to be indexed. This is a single-node configuration.
We have already seen Apache Solr in a single-node configuration in previous
chapters. In this configuration, a server is responsible for managing the indexing
enterprise data and search on indexed data. The advantages of such a system are:

•	 Many enterprise search systems come with a single-node readymade
setup. This in turn enables developers to easily configure the instance
and manage them.

•	 During enterprise search implementation, such configuration can be part
of the development stage, where the validation of the search solution on
a small subset of data can take place. This kind of environment is best for
development stages.

•	 This pattern is well-suited for enterprises with a small/mid segment. With one
standalone search server, it is easy to back up/restore due to its simplicity.

The disadvantages of standalone search engine servers are:

•	 Although the standalone search provides an easily manageable instance,
it becomes difficult to scale the single node. As the indexing data grows, it
faces limitations in terms of memory and processor capabilities. The cost of
maintaining hardware with a higher data requirement becomes a challenge
and expensive affair.

•	 Standalone search servers are not failsafe, and they cannot ensure high
availability, unless you move them to a cluster. However, by ensuring
a proper backup and recovery strategy, certain levels of data loss can
definitely be prevented.

Distributed enterprise search pattern
This pattern is suitable for large-scale indexes, where the index is difficult to store on
one system. In a distributed pattern, the index is divided among various shards, and
they are stored locally on each node. Whenever a search query is fired by the user, the
load balancer effectively balances the load on each node, and the query is redirected
to a node that tried to get the results. Some distributed searches such as Apache Solr
do not use load balancer, and instead, each participating node handles load balancing
on its own by distributing the queries to respective shards. This pattern offers ample
flexibility in terms of processing due to multiple nodes participating in the cluster or
distributed search setup. The results are collected and merged. The following diagram
shows an example of distributed enterprise search with a load balancer:

Chapter 4

[93]

In case of Apache Solr, distributed search is supported but has its own limitations.
A lot of features of Apache Solr, such as MoreLikeThis and Joins, are not supported.
Note that the feature support for MoreLikeThis is introduced for distributed Solr
in Version 4.1. Check the reference website https://issues.apache.org/jira/
browse/SOLR-788.

The advantages of this system are:

•	 The distributed search approach provides excellent scalable capabilities to
search. With the facility to scale horizontally by adding more hardware,
distributed search becomes scalable.

•	 Compared to the previous approach, the cluster approach does not demand
high-end hardware; the overall cost of implementing such a cluster is
relatively cheaper.

The disadvantages of this system are:

•	 As the size of the cluster node grows, it becomes difficult for administrators
to manage such a configuration. Many search engine vendors provide
an administration console to manage the nodes and its configuration.
Sometimes, such configurations also require load balancing software to
handle the flow of request, and distribute them in an optimized manner to
ensure the maximum utilization of available resources. Such clusters are
difficult to manage by administrators.

https://issues.apache.org/jira/browse/SOLR-788
https://issues.apache.org/jira/browse/SOLR-788

Designing Enterprise Search

[94]

The replicated enterprise search pattern
In this mode, more than one enterprise search instances exist; among them, the master
instance provides shared access to its slaves to replicate the indexes across multiple
systems. The master instance continues to participate in index creation, search, and so
on. Slaves sync up the storage through various replication techniques such as rsync
utility. Using replication of the enterprise search index, one can ensure high availability
of instance. This kind of pattern is most suitable for situations where data size is finite
and predictable and the customer is looking for high-availability features.

In case of Apache Solr, a system includes a Java-based replication that uses HTTP
protocol for communication. This replication is recommended due to its benefits over
other external replication techniques.

The advantages of this system are:

•	 With the replication abilities, enterprise search achieves high availability
of the solution for end users. With index sync operation between multiple
servers, all the indexes are replicated, and whenever the master instance fails,
any slave can become a master.

Chapter 4

[95]

The disadvantages are:

•	 Although this configuration provides high availability to end customers, it
often requires an intermediate proxy between the search engine master and
the consumer. This proxy hides the master details from the end user. In case
of failure, the proxy redirects all the requests to another slave.

•	 Data upload operation is marked as complete only when the master and all
the slaves hold indexes for that data. This in turn slows the overall indexing
operation during real-time replication. Alternatively, if data sync is not in
real time, it runs periodically between the master and slaves. With periodic
sync, the possibility of losing the data whenever a failure happens during
the time between two data sync operations is high. In case of Apache Solr,
it replicates in real time, so the possibility of loss of data is minimal.

Distributed and replicated
This mode combines the best of both worlds and brings in the real value of a
distributed system with high availability. In this configuration, the system has multiple
masters, and each master holds multiple slaves where the replication has gone through.
A load balancer is used to handle the load on multiple nodes equally. The following
schematic shows a sample configuration with a distributed and replicated cluster:

Designing Enterprise Search

[96]

If Apache Solr is deployed on a Hadoop-like framework, it falls into this category.
Solr also provides SolrCloud for distributed Solr. We will look at different
approaches in the next section.

The advantages of this system are:

•	 This configuration combines the best of both worlds (that is, distributed
and replicated). It enables scalability and high availability for this kind
of configuration.

The disadvantages of this system are:

•	 Since the number of cluster nodes required for the distributed and replicated
approach is high compared to other approaches, the cost of managing such a
configuration is high

•	 With multiple nodes participating in the cluster activities with various roles
(replicated and distributed), the management of such clusters becomes a
bigger challenge for users

Data integrating pattern for search
Enterprise search solutions work on multiple data sources. Integration of these data
sources with a search engine is an important aspect of search solution design. The
data sources can vary from applications to databases and web crawlers. Like ETL
tools of data warehouse, the data loading in search solutions goes through similar
cycles. The important part here is how and which data should be loaded in the search
engine. In this section, we will look at different approaches while working with the
integration of data sources with a search engine. Many times, during the design of a
search engine, architects end up using one or more of these data integration patterns
for the design. Most application integrations fall under one of the following patterns.
Each of them offer unique benefits and drawbacks; the architects have to choose the
best-suited pattern based on the landscape.

Data import by enterprise search
This type of data integration is used for most cases. It is applicable for the cases
where the system landscape is already established, and those applications provide
access to their information through a standard interface or filesystem. Enterprise
search is capable of reading data that an application exposes through its interfaces.
This interface can be web service based, API based, or any other protocol based. The
following schematic shows the interaction between an application/database and
enterprise search:

Chapter 4

[97]

A data request is sent to the application's interface from enterprise search through
a trigger. This trigger can be a scheduled event, or it can be an event triggered from
applications itself, signifying the change in the state of data. When this data
is requested, it is important for enterprise search to remember the last state of
this data so that an incremental data request can be sent to interface, and the
same can be returned by the application. When data is received by Enterprise
Search, it is transformed into a format in which enterprise search can create a new
index for the given data and persist it in its own repository. This transformation is
generally predefined.

In Apache Solr search, a system provides predefined handlers to deal with various
such data types. For example, DataImportHandler can connect to a relational
database and collect data in either the full import or delta import form. This data is
then transformed into indexes and preserved in the Solr repository.

Data import by enterprise search provides the following advantages over
other approaches:

•	 No/minimum impact on the current system landscape due to applications
not being impacted by the introduction of enterprise search; all the
configuration is done on the enterprise search application and applications
do not require a change of code

•	 Enterprise search becomes a single entity to manage all the integration; such
configuration becomes easy to manage by administrators

Designing Enterprise Search

[98]

This approach offers the following challenges during implementation:

•	 Each application provides different ways of communication. Legacy
applications expose non-standard ways of integration, so this kind
of integration requires a complex event-based mechanism to work
with applications.

•	 While data can be read through integration, the state of the last data read
pointer has to be maintained by a search engine to ensure there are no
duplicate reads again.

•	 Sometimes, it becomes difficult to provide real-time search capabilities on
this system. This is applicable when the enterprise search solution-based data
integrators import data in between certain intervals (polling-schedule-based
approach). Search is always near-real time, in such cases.

Applications pushing data
In this integration pattern, the applications are capable of extending themselves to
work as agents to connect to an enterprise search solution. This pattern is applicable
when the enterprise system landscape is going through changes, and applications can
accommodate the additional logic of pushing data on their own to enterprise search.
Since this approach is followed as and when the new information arrives on the
application side, this does not require polling- or event-based mechanisms to work
with. Enterprise search hosts an interface where this information can be passed by the
application agents directly. The following schematic describes this integration pattern:

There are two major types of applications pushing data to enterprise search. The first
is where applications simply push data in some format, for example, XML, and the
data transformation takes place in enterprise search. Enterprise search then converts
data into indexes through its own transformation logic. Typically, such supported
configurations are published affront by search software and are part of its standard
documentation library.

Chapter 4

[99]

In the second approach, the application owns the responsibility of complete
transformation and pushes ready indexes/data to the search interface or directly to
the search repository. Apache Solr supports this approach by providing different
types of extractors for data. It provides extractors for the CSV, JSON, and XML
formats of information. This data integration pattern offers the following benefits:

•	 Since the data import part is out of enterprise search's objectives, the focus
remains on searching and managing the indexes. Enterprise search becomes
faster because data transformation is no longer managed by the search engine.

•	 A search engine does not require complex modules such as event-based data
reader or the scheduler, making the overall search much simpler to configure
and use.

•	 Enterprise search can provide real-time search abilities due to data sync
happening from the data source itself.

This approach has the following drawbacks:

•	 The characteristics and search schema are exposed to the outside world, and
applications carry the burden of keeping search engines in sync with the
changes done with the application data

•	 It is a huge impact on the system landscape; any system integrated with
enterprise search has to use search dependency

Middleware-based integration
The middleware-based integration pattern is a combination of the earlier patterns.
This is applicable when enterprise search does not provide any mechanism to pull
data of a certain type, and the application too does not provide any mechanism to
push data to the search engine. In such cases, architects end up creating their own
applications or agents that read information from applications on the trigger of an
event. This event can be a scheduled event, or it can be coming from the application
itself. The following schematic describes the interaction cycles between the
middleware, application, and search application:

Designing Enterprise Search

[100]

Once a request is sent to the application interface, it returns the required data. This
data is then transformed by the intermediate agent or mediator and passed to search
an application through another interface call.

Apache Solr provides an interface for applications or middleware to upload the
information onto the server. When a request is for a nonconventional data source
that does not provide any support for the previous two patterns, for example ERP
and CRM applications, this approach can be used.

The middleware-based integration approach has the following benefits:

•	 Due to the presence of middleware, the current system landscape can function
without awareness of the introduction of a new enterprise search engine.

•	 Similarly, applications and enterprise search do not carry any dependencies
as they never interact with one another.

•	 To achieve middleware-based integration, there are many middleware tools
available in the market, ranging from open source to commercial supported
products. The cost of development of such middleware can be utilized here.

This approach has the following drawbacks:

•	 Creation of mediators/middleware introduces more applications to manage
for administrators.

•	 Agents work with the store-forward methodology. By introducing agents,
there is the addition of one more stage between the source and target data.
This can impact when the data migrated is huge in size. It also increases the
point of failures in a complete landscape.

We will look at a case study where all these integration patterns are used in the
designing of a search engine in the next section.

Case study – designing an enterprise
knowledge repository search for software
IT services
We have now gone through various design aspects of building enterprise search.
Now, let's see how one can build an enterprise knowledge repository search. We
intend to create a unified search experience across all enterprises dealing in software
IT services. Since this is a case study, we will limit ourselves in terms of the definition
of the problem and design solution. In a real project, you will have more detailing
done for each aspect of it. So, let's try and identify the requirements first.

Chapter 4

[101]

Gathering requirements
Let's understand the requirements regarding search engines. We will now try
answering some of the questions that are described in the first section of this
chapter one by one, as they help us define a complete problem statement.

Problem Statement: What information is the customer looking for as part of the
search implementation?

The customer is looking for the following information:

•	 Tenders/contracts floated on the web on a specific site
•	 Rates of all the contractors
•	 Information from internal pre-sales repositories containing responses
•	 Information regarding projects successfully completed and delivered from

the project repositories
•	 Information on various resource capabilities available with organizations

from the HR portal

Additionally, customers want this information to be accessible at a single place,
with access to the original resource.

What are the key benefits of implementing search engines in organizations?

Today, it is difficult for a customer to access this information at one place; the
pre-sales bidding team often has to visit different websites or talk with different
teams to access this information. With a unified search in place, our organization
hopes to speed up the responses of bidding and also help them shortlist the bids
that can be effectively handled by this company.

What applications does a customer expect the search engine to index?

A customer intends to integrate the following:

•	 Internet-based websites for tender access and contractor rates
•	 Internal knowledge management repository for pre-sales
•	 Project management repository, that is, ERP
•	 Custom applications holding employee HR information
•	 How can data on these applications be accessed?

Designing Enterprise Search

[102]

Each of these applications has different ways of providing data:

•	 Typically, websites hold information in HTML tags, which has to be
extracted, cleansed, and converted into information. This work is beyond the
simple crawler. Another interesting option could be to identify if there are
any RSS or ATOM feeds posted by the site regularly, in which case RSS can
be accessed through RSS readers.

•	 The internal knowledge management repository provides access to its
information through APIs and the WebDAV protocol.

•	 ERP provides APIs and web services to access its information.
•	 Custom applications do not provide any way of accessing its data in a

straightforward manner. However, they do expose its database to end users.

Designing the solution
We have the clarity over user expectations. In terms of technology, Apache Solr
clearly covers all the expectations of the users for this problem. We will be looking
at various aspects of designing a complete Solr as enterprise search engine. To start
with, we will look at designing the overall schema and how data can be captured
and loaded for indexing with Apache Solr.

Designing the schema
It is important to have standardization of data definitions and data structures by
using a common conceptual schema across a collection of data sources. There are
multiple ways in which a schema can be designed; it mainly depends upon the
expectations from the customer. Let's go through one of the designs for a schema.
To design a schema, we need to understand the different types of attributes all
the information sources bring into Apache Solr. We have four different types of
information sources, and each of them bring a set of attributes/records. Each of the
recordings will carry a unique identifier. We simply list down attributes that are
required by search engines from information sources.

Information source Attributes
Tender sites Tender name, client name, technologies, bidding cost, contact

person, functional information, deadline, and time of upload.
Pre-sales repository Responses for RFP, efforts, technologies, estimated cost, client

name, tender name, outcome, reason for failure, timeline,
pre-sales, and contact person.

Project management Project name, technology, client name, tender name, start date,
end date, cost, efforts, project contact person, and status.

Chapter 4

[103]

Information source Attributes
Resource
capabilities/
information

Name, technologies, past experience, certifications, and current
status.

Although these attributes distinguish information, the information source will carry
a lot of unstructured data that will be difficult to separate out. However, that's never
a problem because Solr does not require well-formed information, the indexes can
be generated on text data, and the information can later be searched over Apache
Solr. Defining the attributes helps us build new faceting capabilities to provide better
browsing. Some of these attributes, for example client name and estimated efforts, are
common between multiple information sources. Few attributes carry different naming,
but they point to the same entity, that is, project contact person, pre-sales contact
person, and so on. A detailed analysis of each attribute is necessary before writing the
schema.xml file. The following table lists a sample subset of the overall listing:

Attribute Type Data source Is
mandatory

Storage
needed

Multi-valued
1 2 3 4

Id number y y y y y y n
tender_name text y n n n n y n
client_name text y y y n n y n
technologies text y y y y y y y
bidding_cost number y y y n n y n
contact_person text y y y y y y y
ending_date date y y y n n y n

The data sources are as follows:

Data Source Description
1 Tender information
2 Pre-sales repository

3
Project management
repository

4 HR information

Once this information is decided, we can easily go ahead and create a schema.xml
file to work on these types of data sources.

Designing Enterprise Search

[104]

Integrating subsystems with Apache Solr
However, the inputs to Solr are continuous as new data gets generated every day. So,
the following ways can be used for integration:

Resource How it can be integrated with Solr
RSS feeds/
ATOM

This can be done using DataImportHandler, as it supports RSS and
ATOM. This can be a scheduled event.

Internal KM
repository

There are various options, but let's say the KM repository mounted on Solr
Server using DAV, then even simple SolrJ APIs can be used to upload this
information through Solr Cell (ExtractingRequestHandler), that is,
Apache Tika Rich documents processing. This can be a scheduled event.

ERP Since there is no direct way to access ERP information, one can always
build a simple web service client to access ERP information and push it to
Apache Solr. Again, SolrJ can be used on the client side. This has to be a
scheduled event since it's a service access.

Custom
applications

Custom applications provide access to their database; a standard
DataImportHandler with delta/full import can possibly be a good
option to consider.

The overall enterprise search architecture may look like the following:

Chapter 4

[105]

In the development/sandbox instance, we will configure a single instance of
Solr—complete, configured, and ready to use. Based on the designs of each
information source, further detailing on each component can be done. For
example, for DataImportHandler, one may need to identify the tables and query
pattern, and also make a provision for delta imports. Similarly, for RSS feeds,
you will require HttpDataSource to connect, and a data-config.xml will look
like the following:

<dataConfig>
 <dataSource type="HttpDataSource" />
 <document>
 <entity name="My Tender Site"
 pk="link"
 url="<your site-name>"
 processor="XPathEntityProcessor"
 forEach="/RDF/channel | /RDF/item"
 transformer="RegexTransformer,DateFormatTransformer">

 <field column="id" xpath="/RDF/channel/link"/>
 <field column="tender_name" xpath="/RDF/item/tender"/>
 <field column="client_name" xpath="/RDF/channel/from"/>

 <field column="technologies" xpath="/RDF/item/skills" />
 <field column="link" xpath="/RDF/item/link" />
 <field column="bidding_cost" xpath="/RDF/item/cost" />
 <field column="contact_person" xpath="/RDF/item/floated by" />
 <field column="ending_date" xpath="/RDF/item/date"
 dateTimeFormat="yyyy-MM-dd'T'hh:mm:ss" />

 </entity>
 </document>
</dataConfig>

We have already seen an example of how DataImportHandler can be used with
relational databases. To connect with the knowledge management repository, a web
service client can be created; the information can be extracted and fed to Solr.

Designing Enterprise Search

[106]

Working on end user interface
Another aspect of designing the enterprise search solution is deciding upon the
browsing and search experience. Apache Solr gives users many features. The
following table lists some of the important features that can help us define the
configuration for Apache Solr.

Feature Description
Facets Users need to decide what kind of browsing experience they need

for their users. We have already seen facets and their configuration.
Based on the attribute type, a facet can be applied.

More like this
(similarity results)

More like this requires specific attributes on which it can perform
more like this for end users. You can specify boosts as well.

Text highlighting Highlighting can be performed on a common field that carries
all the information and the size of the snippet, along with the
highlighted text that can be defined.

Spell checking and
autocomplete

These components can be enabled with various parameters.

There are additional components, although they do not really impact the user
interface, but they do play a role in performance (for example, cache, size of buffer,
and so on). This has to be decided in the later phase. Based on the data size, its
growth, and the performance expectations, the clustering models can be applied. We
will look at them in more detail in the next chapter. Similarly, performance is another
aspect where one has to monitor instance performance and optimize it. Boosting
your relevance ranking by index level boosting is another aspect of designing the
Solr subsystem. In this case, possibly, HR-related recording will have lower boosts
compared to tender, pre-sales repository. Many of these aspects play a role during
development instance setup and testing. They can be configured accordingly.

Apache Solr provides its default application using Velocity templates. Its output
can be consumed in clients directly through JSON and XML. Depending upon a
customer's expectations, such UI design can take place.

Summary
In this chapter, we studied various aspects that need consideration while designing an
enterprise level search solution. We tried to understand how one can try to gather the
information regarding the current system landscape, and how a design can be carried
out. We also went through design workflows supported by Apache Solr. Finally, we
went through the case study of designing a search engine for software IT firms.

Integrating Apache Solr
The larger your IT landscapes, the more difficult it can be for its users to find what
they need, even with the best navigation mechanisms. A search engine should be
capable of integrating with multiple systems of this kind. In the last chapter, we
have seen the different data integration patterns that are possible with Apache Solr.
Apache Solr is capable of reading data from different data sources. The next level
of enterprise search demands deeper integration with Apache Solr. For example,
a search user interface in the application uses Apache Solr or the applications run
Apache Solr in an embedded mode. These are just different possibilities to explore
while moving into a deeper integration. Many organizations would like to retain
the user interface and usability of their existing application, while moving the
underlying processing layer on Apache Solr.

Apache Solr has an active development community, which means heavy usage of
Solr based across different subsystems, enabling people to add different ways of
integrating Solr with applications every day. To integrate Apache Solr with other
systems, there are various options available. For example, in this chapter, we intend
to understand various integration aspects of Apache Solr with other subsystems
and technologies. The Apache Solr-based search can be embedded within your
own application; it can also be used with other technologies, and most importantly,
the major use case of Apache Solr is through integration of a content management
system (CMS) with Solr. We will be looking at the following topics in more detail:

•	 Empowering Java Enterprise application with Solr search
•	 Integration with Content Management Systems (CMS)
•	 Integrating Apache Solr with client technologies
•	 Case study – Apache Solr with Drupal

Integrating Apache Solr

[108]

Empowering the Java Enterprise
application with Solr search
Since Apache Solr is a J2EE-based WAR file, it can be easily integrated with any
other application. We have already seen how Apache Solr can be used on different
J2EE application containers such as Tomcat and Jetty. For the applications that are
developed on the J2EE platform, Apache Solr can be used in the following ways in
your existing J2EE applications. While many Solr implementations go for HTML
APIs with an XML/JSON request-response model from the client, the approaches
discussed in the latter part of the chapter highlight a tighter integration with Apache
Solr. HTML-based integration of Apache Solr demands consumer application to send
HTTP requests to the Solr server, and accept responses in the XML/JSON format.

Embedding Apache Solr as a module (web
application) in an enterprise application
Application servers such as JBoss and Weblogic support Java EE-based projects and
the packaging. A typical enterprise archive (.ear) file contains many project-specific
modules with interdependencies and these files contain the deployment descriptor for
the complete enterprise archive. These modules can carry interdependencies, but each
module runs either as a separate web application or a library. Apache Solr comes with
a deployable web archive (solr.war) file. This WAR file can be combined with other
applications, and together users can create a single enterprise archive file (.ear).
The following screenshot depicts Oracle JDeveloper-based enterprise applications,
which contain a Solr web archive along with our own projects. The deployment
profile on the right-hand side depicts the enterprise deployment structure. Both the
applications can co-exist and this kind of integration is loosely coupled. Consider the
following screenshot:

Chapter 5

[109]

Apache Solr can be accessed directly from your own web application through
SolrJ (the HTTPSolrServer interface, ConcurrentUpdateSolrServer, or
EmbeddedSolrServer) or other means.

The EmbeddedSolrServer interface-based interaction does
not require a transporting data over a network, thus reducing
the additional overhead on data indexing and runtime queries.
As EmbeddedSolrServer uses solr.home based path as the
primary initialization parameter, its use in production-level
usage itself is a big question, as it may not be able to offer us
the flexibility and portability.

The following example shows a sample code on how EmbeddedSolrServer can be
used to query and display results:

CoreContainer coreContainer = new CoreContainer("<put solr.home
path>");

for (String coreName : coreContainer.getCoreNames()) {
 System.out.println(coreName);//printing it
}
//here collection1 is my core
EmbeddedSolrServer server = new EmbeddedSolrServer(coreContainer,
"collection1");
//Prepare Solr Query, and get the response
SolrQuery solrQuery = new SolrQuery("*.*");
QueryResponse response = server.query(solrQuery);
SolrDocumentList dList = response.getResults();
//Print the key-value results
for (int i = 0; i < dList.getNumFound(); i++) {
 for (Map.Entry mE : dList.get(i).entrySet()) {
 System.out.println(mE.getKey() + ":" + mE.getValue());
 }
}

The preceding program simply prints all the indexed Solr attributes on sysout
(your screen).

From Apache Solr Version 4.4 onwards, if you get
SolrException with the message No such core, you will be
required to add another step of initializing CoreContainer:
coreContainer.load(). This API loads the cores in the
core container.

Integrating Apache Solr

[110]

How to do it?
Once you have your IDE ready with your web application, follow the given steps.
We will start with the assumption that you have downloaded the latest Apache Solr:

1.	 Create a new project from the WAR file by importing the solr.war file, and
give it a name of your choice.

2.	 Create application.xml or weblogic-application.xml depending upon
the container describing it. Your application.xml file will have different
modules and their web URLs defined. Many times, the development studio
generates this file automatically. Please find the sample application.xml
file as follows:
<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd" version="5"
xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>solr-java-ee</display-name>
 <module>
 <web>
 <web-uri>SolrIntegratedApplication_
MyApplicationViewController_webapp.war</web-uri>
 <context-root>SolrIntegratedApplication-
MyApplicationViewController-context-root</context-root>
 </web>
 </module>
 <module>
 <web>
 <web-uri>solr.war</web-uri>
 <context-root>SolrIntegratedApplication-SolrWar-context-
root</context-root>
 </web>
 </module>
</application>

3.	 Package everything through Ant/build script or through your development
studio; create the EAR package and deploy it on the container. Please
remember that Solr requires a path to solr.home as we have seen in
Chapter 2, Getting Started with Apache Solr. This can be provided as a JVM
parameter as follows:
-Dsolr.solr.home=SOLR_PATH

SOLR_PATH gets the location on your filesystem where you copied the Solr
configuration folder.

Chapter 5

[111]

4.	 Now, you can use the same path with EmbeddedSolrServer while
initializing the CoreContainer class in your application. You can get all the
search results in your own bean/data-control/model layer, and render them
as per your web application.

5.	 Configure your Solr instance, schema, and other configuration as per
Chapter 2, Getting Started with Apache Solr, accordingly.

Running Solr with your application offers its own benefits and drawbacks. Since
Apache Solr is a part of your application, you do not require a separate lifecycle to
manage the instance and administer it; it can be done together. This works well with
a single node configuration; as the demand grows, it becomes difficult to manage this
configuration for clustered search.

Apache Solr in your web application
The previous approach works well when you intend to embed Apache Solr as a
completely separate web application. When you have a requirement of adding search
functionality in your existing application with a single deployment, the approach of
adding Apache Solr as a separate web application does not really work. For these
kinds of situations, Apache Solr runs as a part of the existing application. With this
configuration, the overall system offers ample benefits due to the availability of Solr
and Lucene APIs in the same code as a library import.

How to do it?
Apache Solr comes with its own web archive, with its entire configuration. Let's
assume that we have our application's context root at /myapplication, and we
would like to move all Solr components under /myapplication/search. Let's look
at how it can be achieved:

1.	 Download Apache Solr, extract it, and prepare schema.xml and
solrconfig.xml as per your requirements.

2.	 All the libraries that are part of $SOLR_WAR/WEB-INF/lib should be linked
to your project, in libraries, and they should also be a part of your packaging
depending upon your requirements.

Integrating Apache Solr

[112]

3.	 The other folders of the solr.war file (as shown in the following screenshot),
should be moved to your project's public_html folder or web folder. They
contain information such as styling, css, administration, and so on.

4.	 The next important task is to review the existing web.xml file. The default
SolrRequestFilter runs through all the URLs, that is, /*; this has to be
modified to specifics, which means /search is shown as follows:
….
 <filter>
 <filter-name>SolrRequestFilter</filter-name>
 <filter-class>org.apache.solr.servlet.SolrDispatchFilter</
filter-class>

 </filter>

 <filter-mapping>
 <filter-name>SolrRequestFilter</filter-name>
 <url-pattern>/search/*</url-pattern>
 </filter-mapping>
…..

Similarly, other URL patterns require to be modified appropriately. The
web.xml file is provided in the code section of this book.

Chapter 5

[113]

5.	 When a URL match is found, the Solr request / dispatch filter tries to perform
the match with request handlers of solrconfig.xml, and delegates the
response to the matched handler. However, since this URL pattern is out
of sync with the current scenario, the system will not be able to find the
matching request handler if it throws the Not Found error. So the next step
is to fix all the request handler's URLs to pick up from their new location.
To do that, we need to modify solrconfig.xml accordingly (please see the
following example). This file is also available in the code section for reference.
….
 <requestHandler name="/search/select" class="solr.
SearchHandler">
 <!-- default values for query parameters can be specified,
these will be overridden by parameters in the request -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 <str name="df">text</str>
 </lst>
……..

6.	 Put the solr.home path as explained in the previous section. Now, restart
the container.

Once these changes are done, Apache Solr can run independently in a separate
sub-URL of your application. With the current configuration, indexing and querying
capabilities of Apache Solr can be utilized through SolrJ or any other means. Your
application can run smoothly in a separate directory independently.

To use SolrJ, instead of copying the required JARs for usage, you
can put a Maven dependency in your pom.xml file as follows:

<dependency>
 <artifactId>solr-solrj</artifactId>
 <groupId>org.apache.solr</groupId>
 <version>1.4.0</version>
 <type>jar</type>
 <scope>compile</scope>
</dependency>

Integrating Apache Solr

[114]

This integration type offers unique benefits in terms of consumption of Apache Solr
services. Due to the availability of Solr/Lucene APIs directly in your application,
one can use these APIs directly, extend them, and provide more intuitive customized
application-based search. The biggest drawback with this approach is whenever you
upgrade Apache Solr, any changes that come from Solr's new release are required to
be implemented carefully (as it requires merging of files) in your existing application.
This adds overhead while upgrading your Solr-based solution.

Integration with client technologies
The typical IT landscape of any large-size organization comprises many different
technologies. Apache Solr provides excellent ways to gather information from
different types of sources; however, the business may demand integrating Apache
Solr with non-J2EE-based technology. Although there are various technologies
available in the market, the placement of an Apache Solr-like enterprise search
engine in the broader picture of the organization's IT topology is always targeted for
specific areas. This area is nothing but the end user web portals. Search engines are
designed to provide information to end users, and they are expected to respond as
fast as they can. Since they do not provide anything else beyond search, they always
go in embedded mode with the applications. These applications mainly use various
web-based technologies. In the previous section, we saw how Apache Solr can be
used with different Java- and J2EE-based technologies and different integration
techniques with J2EE-based applications. We will look at some other web-based
technologies and how Apache Solr can be integrated with them.

Integrating Apache Solr with PHP for
web portals
PHP (Hypertext Preprocessor) is one of the most widely used scripting languages
that enables developers to create dynamic web content. PHP-based sites/portals are
used by many; it is estimated that there are more than 32 million domains using PHP
(refer to http://news.netcraft.com/archives/2013/01/31/php-just-grows-
grows.html). Many of these sites are custom portals developed by organizations to
address their specific requirements. Since Apache Solr and PHP are two different
technologies, they have to run in different containers, and interact with each other.

http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html

Chapter 5

[115]

Interacting directly with Solr
There are various ways to integrate Apache Solr in PHP-based web portals. Apache
Solr provides PHP response directly through the wt parameter. You can simply try
searching for some string (in this example, test) on your browser by typing the URL
http://localhost:8983/solr/select?q=test&wt=php. The output of the search
can be seen in the following screenshot:

Apache Solr returns a PHP array of responseHeader and response. You can easily
extract content from this array directly. The following PHP code demonstrates the
extraction of the document from the array:

<html>
 <head>
 <title>My Company Search</title>
 </head>
 <body>
 <?php
$code = file_get_contents('http://localhost:8983/solr /
select?q=No&wt=php');
eval("\$result = " . $code . ";");
?>
 <?php
 foreach ($result['response'] as $response) {
 foreach ($response as $doc) {
 foreach ($doc as $key => $value) {
 print_r($key);
 print_r(' : ');
 print_r($value);
 print_r('
');
 }
 print_r('

');
 }
 }
 ?>
 </body>
</html>

Integrating Apache Solr

[116]

The sample PHP code simply reads arrays, and prints the results with the
name-value pair in each line. A more detailed PHP file is available in the code
section of this book.

Additionally, you can also use the JSON format for
interacting with your remote Apache Solr server. This can
be done by changing wt=json; the URL looks like http://
localhost:8983/solr/select?q=test&wt=json. The
JSON format can be extracted using json_decode() in PHP,
and convert the string into a PHP-based array. This is one of
the recommended ways of using Apache Solr with PHP.

Using the Solr PHP client
The Solr PHP client library provides rich APIs for indexing and searching in remote
Apache Solr. This was one of the robust and easiest implementations of APIs that
can be used for integration; however, its development is stalled from 2011 (visit its
Google code's home page at http://code.google.com/p/solr-php-client/ for
more details). The Solr PHP client has the following four classes:

Class Description
Apache_Solr_Document This class represents one Solr document. It holds key

and value pairs of the elements in the document. The
elements can be accessed by for each in PHP. This class
also contains methods to get the boost of the fields. While
indexing, one can add new field values and set boost on
the document.

Apache_Solr_Response This class represents the response from Apache Solr. It
provides APIs to parse raw responses. It also returns the
HTTP status.

Apache_Solr_Service This class provides access to the Solr server. All the major
functionalities, such as connecting to Solr, uploading the
document for indexing, committing changes, optimizing the
instance, and searching over the Solr instance are provided
by this class.

Apache_Solr_Service_
Balancer

This class provides you with a way to connect to
multiple Solr servers. It provides APIs to add documents,
delete them, commit, optimize, and search. It uses the
Apache_Solr_Service class internally. It also provides
APIs for reading and writing of services.

http://code.google.com/p/solr-php-client/

Chapter 5

[117]

How to do it?
The Apache Solr PHP client provides one of the simplest ways of integrating Solr
with PHP. To use the Solr PHP client, perform the following steps:

1.	 To work with the Solr PHP client, you need to download the latest ZIP file
from http://code.google.com/p/solr-php-client/downloads/list.

2.	 Unzip the file in the folder at web/php/html. Remember its path.
3.	 Assuming that the Apache Solr instance is set up and running, create a PHP

file and include Service.php from the Solr folder of the Solr PHP client.
Remember to put a relative HTTP path to this file.

4.	 Now you can create a form, and the results page will search the API from the
Solr PHP client directly. We have provided a sample code for reference, and
the following is the output of that code:

http://code.google.com/p/solr-php-client/downloads/list

Integrating Apache Solr

[118]

There is an enhanced solr-php client. It is based on this client that we work with the
Solr 4.X Version (https://github.com/Ramzi-Alqrainy/solr-php). This client
handles deprecated parameters.

Advanced integration with Solarium
Solarium is another open source initiative for integrating Apache Solr with PHP.
Solarium provides support for Apache Solr's advanced features such as Solr facets of
different types, indexing options with rich update queries, simple-advanced query
building APIs, and so on. Solarium has dependency on PHP, and it does not carry
any other dependencies, thereby making the installation of Solarium very easy.
Solarium provides a readily available framework, through which PHP developers
can build and customize enterprise search. Compared to other PHP integration
options, Solarium provides the maximum features of Apache Solr to the PHP
developers for consumption. Solarium is useful as a complete package for enterprises
looking for deeper integration with Apache Solr. More information about Solarium
can be read at http://www.solarium-project.org/.

How to do it?
Installation of Solarium is one of the easiest tasks. It ships with ample examples,
with detailed example pages for each case, making the life of a PHP developer easy.
All the examples can be found in the example directory of Solarium. Consider the
following steps:

1.	 Download Solarium from GitHub by the accessing the URL
https://github.com/basdenooijer/solarium. Before downloading,
it is important to validate your PHP version with Solarium. Do read the
requirements in the Solarium manual before deciding upon the version.
Solarium 3+ has a minimum PHP version requirement of 5.3. All Solarium
versions work with PHP5 and above.

2.	 Unzip the folder and include library/Solarium/Autoloader.php in your
PHP to start using Solarium APIs.

3.	 To run the examples, go to the examples directory, edit the config.dist.
php file, and enter the correct Solr instance information, that is, Solr instance
location, port, relative path, and so on.

4.	 Try running examples directly from the example directory.

https://github.com/Ramzi-Alqrainy/solr-php
http://www.solarium-project.org/
https://github.com/basdenooijer/solarium

Chapter 5

[119]

Here is a sample PHP file that runs on Apache Solr to get all indexes back to the
web server.

Integrating Apache Solr with JavaScript
JavaScript is used in many web technologies as the client-side script to interact with
the server. Today, JavaScript along with AJAX and JQuery provides rich client Web
2.0 interfaces for web applications. Apache Solr provides CSV, XML, and JSON
formats to interact with the clients. The developers can easily write the JavaScript-
based code to query and then parse the outcomes and render them on the user screen
in real time. Since JavaScript runs on client browsers, the access information to Solr
is visible to the client applications and the user. However, developers can apply
different code obfuscation techniques to make code readability difficult.

Integrating Apache Solr

[120]

Using simple XMLHTTPRequest
JavaScript Object Notation (JSON) format is a simple and lightweight format,
which provides much lesser message footprint while passing the data over a
wire. Due to these unique features of JSON, it's becoming more and more popular
for passing messages. To transfer search results between the Apache Solr server
and the JavaScript client, use of AJAX and JSON together makes it simple to
consume Solr information by modern Web 2.0 applications. Using the AJAX-based
XMLHttpRequest API, clients can directly contact http://localhost:8983/solr/
select?wt=json&q=No. The following code snippet shows how a request can be
sent to Apache Solr server through the get method of XMLHTTPRequest:

function xmlhttpPost(strURL) {
 var xmlHttpReq = false;
 if (window.XMLHttpRequest) { // Mozilla/Safari
 this.xmlHttpReq = new XMLHttpRequest();
 }
 else if (window.ActiveXObject) { // IE
 this.xmlHttpReq = new ActiveXObject("Microsoft.XMLHTTP");
 }
 this.xmlHttpReq.open('GET', strURL, true);
 this.xmlHttpReq.setRequestHeader('Content-Type', 'application/x-www-
form-urlencoded');
 this.xmlHttpReq.onreadystatechange = function() {
 if (this.xmlHttpReq.readyState == 4) { //Holds the status of the
XMLHttpRequest.
 updatepage(this.xmlHttpReq.responseText);
 }
 }

 var params = getstandardargs().concat(getquerystring());
 var strData = params.join('&');
 alert(strURL + strData);
 this.xmlHttpReq.send(strData);
}

The function simply opens a connection; it composes the complete URL and
sends the request to Apache Solr as a part of the request. The XMLHttpRequest
implementation does not require any setup; it can be embedded in any HTML
code. It is also supported by many applications.

Chapter 5

[121]

Integrating Apache Solr using AJAX Solr
AJAX-Solr is an open source JavaScript AJAX-based library that provides rich
APIs and widgets to bring Apache Solr's capabilities in the current application.
This library also provides support for JQuery-based server interactions through a
separate JQuery-based manager. Please access https://github.com/evolvingweb/
ajax-solr/wiki to read more about AJAX-Solr. It provides rich UI functionality
through UI widgets. The widget is nothing but small blocks of JavaScript that render
a specific UI component. AJAX-Solr provides a benefit of providing both the UI
component and straightforward API level access to process Solr requests. AJAX-Solr
provides the following three major components:

•	 Manager—controller
•	 Parameter store or core—model
•	 UI widgets—view

The default installation comes with a pre-build demo in the example folder of
AJAX-Solr and follows the same folder structure as the model-view-controller
we described earlier:

Although AJAX-Solr wins in terms of benefits with features such as API and
pre-built widget, the widgets are in pretty basic shape, and they often require
customizations to be built on top of it.

https://github.com/evolvingweb/ajax-solr/wiki
https://github.com/evolvingweb/ajax-solr/wiki

Integrating Apache Solr

[122]

Parsing Solr XML with the help of XSLT
One of the results of the Apache Solr is the XML format; this can be retrieved by
passing wt=xml. Traditionally, XML has been used at many places for data/message
passing. Many applications still understand XML-based messaging, and it has been
widely used in the service-oriented architecture. Applying XSLT (XML stylesheet)
can create wonders and it can transform the data by itself. This is very useful for
cases of legacy applications that do not use JSP- or PHP-based scripting language,
and work on HTML or other custom scripting. This approach is most simple, and
carries no library imports, or any other dependencies. The integration of Apache Solr
with your application through XML-XSLT can be achieved using two approaches,
which will be discussed shortly.

In the first approach, the stylesheet is uploaded on the Apache Solr server under
$SOLR.HOME/<corename>/conf/xsl. You can introduce new stylesheets, and you
can directly query them from your browser by passing the appropriate parameters.
For example, http://localhost:8983/solr/select/?q=apache&wt=xslt&tr=exa
mple.xsl request passes a parameter that allows clients to select the transformation.
When we choose, the transformation takes place and the final HTML output is
rendered back to the consumer. Apache Solr ships with some stylesheets, that
is, RSS, ATOM, and so on. Any custom stylesheets have to be added to $SOLR.
HOME/<core>/conf/xslt. The following screenshot shows the same data getting
rendered using the inbuilt Solr stylesheets:

Chapter 5

[123]

In the second approach, you can request the XML page from the remote location, and
apply the local stylesheet here. We have provided an example where you can parse
Solr results using local XSLT. It has two files mentioned in the following table:

File Description
mypage.html This page uses the MSXML2 DOM parser (works in Internet

Explorer). First edit this page, update the appropriate Solr URL,
and then open the mypage.html file in your browser.

example.xsl This is the stylesheet that will be read by mypage.html to
generate the XML + XSL outcome.

Case study – Apache Solr and Drupal
Apache Solr can be integrated with any subsystem given the technology integration
feasibility. However, some of the subsystems provide additional plugins/modules
through which such integration goes deeper. In this section, we will look at two
different subsystems as a case study.

For any CMS, search is an integral part of the system. CMS contains most of the
information that users are consistently updating every day. They also provide
different versions of the same document, and many other features. However, many
content management systems do not provide competitive search. This is mainly
because the development focus of many CMSes have been around providing
feature-rich, failsafe CMS for more practical usage. Besides web portal, CMSes are
also widespread and many organizations use them heavily. Integrating Apache
Solr Enterprise search with CMS brings the best of both worlds together. We will
primarily look at the most popular open source CMS systems in the world.

Drupal is one of the most popular CMSes used today. Integrating Drupal with
Apache Solr provides users with the access to a rich search interface. It also enables
users to search for content dynamically at high speeds on CMS data. The unique Solr
features such as facets and relevance ranking enable users to reach the information
they were looking for at the earliest time, thus saving some time in their day-to-day
work. Since Apache Solr never queries Drupal's database, it provides a scalable
environment for both Drupal and Solr to grow. Apache Solr can be integrated
with Drupal as a Drupal module. The integration between these two systems is
beyond the normal information demand-sharing way. Drupal does a smart thing of
performing batch indexing, keeping tracking of Solr server connectivity, and so on.
This integration is at a deeper level.

Integrating Apache Solr

[124]

How to do it?
Let's look at how Drupal and Apache Solr can be brought together to effectively use
the capabilities of both these applications together:

1.	 First download Apache Solr and install it.
2.	 The next step is to download Drupal and install it. You will find installation

instructions at https://drupal.org/documentation/install.
3.	 Once the two subsystems are available, the next step would be to make

the Apache Solr Search module available in Drupal. To do that, first
download the module from Drupal's site (https://drupal.org/project/
apachesolr). Unzip it and put it in your sites module directory at, sites/
all/modules or in the Drupal's module directory. You may also install the
facet API (https://drupal.org/project/facetapi) and the Apache Solr
framework modules along with this. If you use the Apache Solr framework,
the facet API is a part of it.

4.	 Now enable Apache Solr Modules from Drupal administration. The modules
are shown in the following screenshot:

5.	 Since Drupal requires its own Apache Solr schema and configuration, it
is recommended to create a separate domain (call it Drupal) and copy the
schema from $MODULE_HOME/solr-conf/<your-solr>/* to your new core.

6.	 Restart Apache Solr and ensure everything works fine.

https://drupal.org/documentation/install
https://drupal.org/project/apachesolr
https://drupal.org/project/apachesolr
https://drupal.org/project/facetapi

Chapter 5

[125]

7.	 After enabling the modules in Drupal, go to the configuration of that module
and click on the SETTINGS tab. Ensure the Solr URL is correct. You can also
test the Solr connection by clicking on the localhost server as shown in the
following screenshot:

8.	 Now create some data (pages) and add some content to them on Drupal.
9.	 Here, you have two options: either write a cron job (http://<drupal-site>/

cron.php) or perform indexing manually. Drupal entities are indexed during
a Drupal cron job. For now, visit the DEFAULT INDEX tab in the Configure
module of the Apache Solr search, and try to run the index. Refer to the
following screenshot:

The Apache Solr search module holds a pipeline of entities, which are
processed into one or more documents. Each document object is then
transformed into XML and sent to Solr for processing.

Integrating Apache Solr

[126]

10.	 Validate on your Solr server to see whether data indexing has taken
place. This can also be seen by simply running a search on Solr. Once this
is verified, enable search blocks on the Drupal site. You can do this by
navigating to Module configuration | Page/Block.

11.	 Verify the search results using the blocks.

On similar lines, you can extend the Apache Solr integration with Drupal in more
advanced ways. Drupal provides a lot of interesting modules as shown in the
following table:

Module Description
Apache Solr
attachment

This sends all the attachments to Tika and makes them searchable
through Drupal.

Apache Solr
multisite search

If you have multiple Drupal sites, they can be searched across a
single Solr core.

Apache Solr sort This adds support for the Solr grouping feature and adds a UI to
enable/disable sort fields.

Facet APIs This provides faceted search on top of the Drupal Solr basic search.

You can see a complete listing of these modules at https://drupal.org/project/
apachesolr. We have seen the Drupal module for Solr; additionally, Acquia provides
cloud-based Apache Solr search for Drupal customers. Similar to Drupal, many
portals such as WordPress and Typo3 provides some way of integration:

Subsystem Description
WordPress CMS This is used through the WordPress plugin and is PHP-based

(http://wordpress.org/plugins/solr-for-wordpress/).
OpenCMS Previously, OpenCMS used to work with the opencms-solr project.

From OpenCMS 8.0, it is integrated.
MongoDB Solr cannot run on top of MongoDB; they can be parallely run with

data sync. Sync can take place in the following ways:
Replication feature of MongoDB
Third-party MongoDB connectors
JDBC-Solr DataImportHandler (https://github.com/erh/
mongo-jdbc)

FOSWIKI (Free
and Open
Source Wiki)

It is used through the FOSWIKI Solr plugin (http://foswiki.org/
Extensions/SolrPlugin).

https://drupal.org/project/apachesolr
https://drupal.org/project/apachesolr
http://wordpress.org/plugins/solr-for-wordpress/
https://github.com/erh/mongo-jdbc
https://github.com/erh/mongo-jdbc
http://foswiki.org/Extensions/SolrPlugin
http://foswiki.org/Extensions/SolrPlugin

Chapter 5

[127]

Summary
In this section, we have understood how Apache Solr can be used for business, and
the different ways of integration with applications and technologies. We looked
at how Apache Solr can be integrated in enterprise and web-based applications.
For non-J2EE-based applications, we studied different technological integration
including PHP, JavaScript, and XSLT. Finally, we went through Apache Solr
integration with CMS where we covered Drupal CMS.

Distributed Search
Using Apache Solr

Traditionally, organizations have tried to optimize their business cost on information
processing by limiting the information to smaller subsets based on business priority.
This was mainly due to the exorbitant cost of storing and processing enterprise data
in data stores such as relational databases. Today's technology advancements have
reduced the overall cost of data processing through the use of low-cost hardware and
open source software. It has also enabled organizations to go beyond smaller data
subsets, demanding more data processing capabilities from these systems. Enterprise
searches were no exception.

Since enterprise search applications work across multiple applications with
different datasets across organizations, it requires lot of data storage and
exceptional computation capabilities from the underlying hardware systems.
Many organizations optimize cost by preferring to use low-cost distributed systems
instead of purchasing high-end servers. Apache Solr provides excellent distributed
processing capabilities for such consumers in many ways. In this chapter, we are
going to look at distributed search using Apache Solr. We will be covering the
following topics:

•	 Need for distributed search
•	 Distributed search and Apache Solr
•	 Setting up SolrCloud
•	 SolrCloud architecture
•	 Case study – distributed enterprise search server for ABC Corporation

Distributed Search Using Apache Solr

[130]

Need for distributed search
At the beginning of the chapter, we have already seen some of the reasons leading
to the need for distributed searches. Any search engine would have two important
functions: firstly to index the data, and secondly to provide a real-time search. As the
data grows, single node enterprise search applications face the following issues:

•	 There are times when an index on one machine is insufficient and it cannot
accommodate enterprise information. This is mainly applicable for enterprises
with growing data, which require the generation of large index sizes.

•	 As more and more users start using enterprise search, there is huge traffic for
search operations. Single node searches have a limitation on the number of
requests they can serve within a stipulated time, even if the data is not huge.

•	 For frequently changing data, the indexer has to index the data swiftly to
avoid lagging and further delays. Often, index generation time is one of the
primary expectations of enterprises. For example, many enterprises demand
real-time or near real-time searches on their data.

•	 When complex user queries are run across the search index, the search
response becomes slow at times. This slow response is the impact of multiple
disk reads, and the complex computations demanded by the user queries.

These issues drive the need for distributed search support to be available for
enterprise search applications. We have already seen different types of enterprise
search data processing patterns in Chapter 4, Designing Enterprise Search. Typically,
enterprises that go with distributed runtime search also generate indexes in a
distributed manner; however, sometimes when complex indexes are to be generated
on limited datasets, the distributed system is not required.

The decision to move to a distributed search from a standalone system should be
driven by the needs of enterprises, because distributed search applications are not
always efficient in terms of performance.

For smaller data sizes, standalone search architecture performances are better
compared to distributed searches due to single index availability. With the growth
in the data size, its performance degrades eventually. While designing a distributed
search system, solution architects must take the following goals into consideration:

•	 Faster response to user queries.
•	 Number of queries responded by distributed search within the stipulated time.
•	 Amount of time required for indexing; similarly, time required for index

updates across distributed search systems in case of document updation
or deletion.

Chapter 6

[131]

•	 High availability of distributed search. In case of failures of power, or nodes
participating in the distributed search, the availability of the distributed
search application is a must. The search must continue to perform as is with
a performance degradation.

•	 Replication/backup should be one of the goals. In case of failures of the node
holding shard, the replicated node (backup) must be able to recover in the
shortest amount of time.

•	 Balancing of load (shards) across various nodes, to ensure optimal
performance from the complete cluster.

•	 Query distribution across multiple nodes depending upon the availability.

Distributed search architecture
There are two important functions of any enterprise search: creation of indexes and
runtime searching on indexes. Any or either of these functions can run in distributed
mode, depending upon the requirements from an enterprise.

To utilize the distributed search, the indexing must be split into multiple shards
and should be kept across multiple nodes of a distributed system. The shard is a
complete index, and it can be queried independently. The search application has to
be smart enough to query multiple nodes, collect and combine the results, and return
to the client. The following architecture diagram depicts the overall scenario:

Distributed Search Using Apache Solr

[132]

Based on the distributed architecture requirements, the following types of enterprise
distributed search implementation scenarios can be found:

•	 Master/Slave: This is where there is one master and multiple slaves. The
master is responsible for routing, and the slaves perform the search on the
index shards.

•	 Multinodes: This is when all the nodes are masters, and the index is divided
among them. The search is assigned to any one of the nodes, based on the
load by balancer.

•	 Multitenant: This is used when multiple index/shards are part of the
enterprise search application. This is used by the service that provides
search capabilities to different tenants. This can use the multinode or
master-slave approach.

Apache Solr and distributed search
By design, Apache Lucene and Solr are designed to support large-scale
implementations. Apache Solr-based distributed environment is useful when:

•	 Speeding up the search: If Apache Solr is taking longer for the creation of
indexes from data or for searching on a keyword across the index store, it is
possibly the best candidate to run in a distributed environment.

•	 Index generation time: Incremental generation of indexes at faster speeds is
an important aspect during the lifecycle of enterprise search. Distributed Solr
can add faster performance.

•	 Large indexes: In cases when you have large indexes, a distribution of search
index by means of partitioning adds a lot of value in terms of performance.
An increase in index creates complexity.

At the same time, having your search distributed can address the following problems:

•	 No single point of failure for your search engine. With effective replication of
indexes, this can be achieved. This requires ensuring additional systems, such
as load balancer or DNS, to provide high availability on top of your search
application. Commercial Amazon ELB (Elastic Load Balancing) provides
such capabilities. More information is available at http://aws.amazon.com/
elasticloadbalancing/.

•	 High availability of the system in spite of multiple nodes failing due to a high
replication factor.

•	 Faster response time to searched data.

http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/

Chapter 6

[133]

Apache Solr started support for distributed search since the release of 1.3. This
approach had a straightforward way of creating shards and their replicas out of the
document index, keeping it on different nodes in the distributed system, and finally
running search with the parameter shards to run the search in a distributed manner.
This system had its own limitations in terms of functionalities and feature support.
We will not be covering the legacy distributed search support of Apache Solr here;
the information about it can be found on the Solr wiki (http://wiki.apache.org/
solr/DistributedSearch or https://cwiki.apache.org/confluence/display/
solr/Legacy+Scaling+and+Distribution).

There have been efforts made to enable Apache Solr to work with the Apache
Hadoop platform in the past. The integration between Hadoop and Solr is possible
in the following ways:

•	 Solr-1045 Patch: This is used for generating the index through Apache
Hadoop map task

•	 Solr-1301 Patch: This is used for generating the index through Apache
Hadoop reduce task

•	 Katta: This is the open source software for distributed Hadoop and Solr
•	 Solr on HDFS: Running Solr on HDFS as a filesystem
•	 SolBase: This uses Apache Solr and HBase together

The Katta project is an open source project that enables you to store your data in
a distributed manner without any failures. Although we do not see a lot of active
development happening in the project, a lot of organizations have taken Katta and
customized it to address their needs for distributed search. With Katta together
with Hadoop and Solr, one can achieve distributed and replicated configuration
of Apache Solr. There are two important tasks that can be deployed in the Hadoop
framework with the help of Katta: indexing and searching. More information about
Katta/Solr-1301 and Solr-1045 approaches can be found in the book Scaling Big Data
with Hadoop and Solr, Hrishikesh Karambelkar, Packt Publishing.

Later, in October 2012, the Apache Solr community released Solr with the SolrCloud
feature to enable direct support for distributed search from inside Solr. Many
consumers use the old as well as new approach of supporting distributed search.
Let's understand SolrCloud in more detail in the next section.

http://wiki.apache.org/solr/DistributedSearch
http://wiki.apache.org/solr/DistributedSearch
https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution
https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution

Distributed Search Using Apache Solr

[134]

Understanding SolrCloud
SolrCloud provides a new way to enable distributed enterprise search using Apache
Solr in enterprises. Previously, with the standard distributed Solr support, a lot of the
manual work has been automated by SolrCloud. With the introduction of SolrCloud,
the manual steps such as configuring solr-config.xml to talk with shards,
adding documents to the shards, and similar type of work is automatic. Unlike the
traditional approach of master- or slave-based distributed Solr, SolrCloud provides
a leader-replica-based approach as its implementation. SolrCloud runs on top of
Apache Zookeeper. First, let's understand Zookeeper.

Why Zookeeper?
SolrCloud contains a cluster of nodes, which talk with one another through Apache
Zookeeper. Apache Zookeeper is responsible for maintaining coordination among
various nodes. Besides coordinating among nodes, it also maintains configuration
information, and group services to the distributed system. Due to its in-memory
management of information, it offers distributed coordination at high speed.

Apache Zookeeper itself is replicated over a set of nodes
called ensemble. They all form a set called Zookeeper
service. Each node that runs Zookeeper and stores its
data is also called znode.

Each Zookeeper ensemble has one leader and many followers. The choice of the
leader is on the start of the Zookeeper cluster. The Apache Zookeeper nodes contain
information related to the distributed cluster, changes in the data, timestamp, ACL
(Access Control List), as well as client-uploaded information. Zookeeper maintains
a hierarchical metadata system unlike our conventional UNIX filesystem. The
following figure depicts the structure of the Zookeeper in a distributed environment:

Chapter 6

[135]

When the cluster is started, one of the nodes is elected as a leader. All others are
followers. Each follower preserves the read-only copy of the leader's metadata in
itself. The followers keep their metadata in sync with the leader by listening to
the leader's atomic broadcast messages. A leader once broadcasted ensures the
receipts by majority of the followers to commit the changes made and informs the
client about transaction completion. This means that Apache Zookeeper ensures
eventual consistency. The clients are allowed to upload their own information onto
the Zookeeper and distribute it across the cluster. The clients can collect followers
for reading the information. The Zookeeper maintains a sequential track of updates
through its transaction logs; hence, it guarantees the sequential updates as they are
received from different clients by the leader.

Running Zookeeper in standalone mode is convenient for
development and testing. But in production, you should
run Zookeeper in replication. A replicated group of servers
in the same application is called a quorum.

In case a leader fails, the next leader is chosen and the clients are expected to connect
to the new leader. Apache Solr utilizes Zookeeper to enable distributed capabilities.
By default, it provides the embedded Zookeeper along with its default installation.
Apache Zookeeper was being used by many distributed systems including Apache
Hadoop in the past.

SolrCloud architecture
We have already seen the concepts of shards and indexing in the earlier chapter. It
is important to understand some terminologies used in SolrCloud. Unlike Apache
Zookeeper, SolrCloud has a similar concept of leaders and replicas. Let's assume that
we have to create a SolrCloud for the document database. Right now, the document
database has a total of three documents, which are as follows:

Document [1] = "what are you eating"
Document [2] = "are you eating pie"
Document [3] = "I like apple pie"

The inverted index for these documents will be as follows:

what(1,1),are(1,2)(2,1),you(1,3)(2,2),eating(1,4)(2,3), pie(2,4)(3,4),
I(3,1),like(3,2), apple(3,3)

Distributed Search Using Apache Solr

[136]

A collection is a complete set of indices in the SolrCloud cluster of nodes; in this case,
it will be as follows:

what(1,1),are(1,2)(2,1),you(1,3)(2,2),eating(1,4)(2,3), pie(2,4)(3,4),
I(3,1),like(3,2), apple(3,3)

A shard leader in this case will be a piece of a complete index. A shard replica
contains a copy of the same shard. Together, the shard leader and the shard replica
form a complete shard index or slice. Let's say we divide the index into three shards;
they will look like the following code:

Shard1: what(1,1),are(1,2)(2,1),you(1,3)(2,2)
Shard2: eating (1,4)(2,3), pie(2,4)(3,4)
Shard3: I (3,1),like(3,2), apple(3,3)

If we assume that all shards are replicated on three machines, each node
participating in the SolrCloud will contain one or more shards / shard replicas
of the index; the setup will look similar to the setup shown in the following table:

Machine/VM Solr instance – Port*
M1 M1:8983/solr/: Solr Shard1

M1:9983: Zookeeper Leader
M1:8883/solr/: Solr Shard3-Replica

M1 M1:8883/solr/: Solr Shard2
M1:9983: Zookeeper Follower
M1:8883/solr/: Solr Shard1-Replica

M2 M1:8983/solr/: Solr Shard2-Replica
M1:9983/solr/: Solr Shard3

* The follower/replica is decided automatically by Apache Zookeeper and Solr,
by default.

A Solr core represents an instance of Apache Solr with complete configuration
(including files, such as solrconfig.xml, schema files, stop words, and other
essentials) that are required to run itself. In the preceding table, we can see a total
of six Solr cores with each machine running two different cores.

Chapter 6

[137]

The organization and interaction between multiple Solr cores and Zookeeper can be
seen in the following system context diagram:

SolrCloud lets you create a cluster of Solr nodes, each of them running one or more
collections. A collection holds one or more shards, which are hosted on one or more
(in case of replication) nodes. Any updates to any nodes participating in SolrCloud
can in turn sync with the rest of the nodes. It uses Apache Zookeeper to bring in
distributed coordination and configuration among multiple nodes. This in turn enables
near real-time searching on SolrCloud due to the active sync of indexes. Apache
Zookeeper loads all the configuration files of Apache Solr in its own repository from
the filesystem and allows nodes to access it in a distributed manner. With this, even
if the instance goes away, the configuration will still be accessible to all other nodes.
When a new core is introduced in SolrCloud, it registers with a Zookeeper server, by
sharing information regarding core. SolrCloud may run one or more collections.

Distributed Search Using Apache Solr

[138]

SolrCloud does index distribution to the appropriate shard; it also takes care of
distributing search across multiple shards. Search is possible with near real time,
after the document is committed. Zookeeper provides load balancing and failover to
the Solr cluster making the overall setup more robust. Index partitioning can be done
in the following ways using Apache Solr:

•	 Simple: This is done using the hashing function on a fixed number of shards.
•	 Prefix based: This involves partitioning based on the document ID, that is,

Red!12345, White!22321. Red and White are prefixes used for partitioning.
•	 Custom: This is based on custom-defined partitioning, such as document

creation time.

Building enterprise distributed search
using SolrCloud
In this section, we will try to build a Solr cluster using Apache Solr's SolrCloud.
SolrCloud can be built for development and for production. Development
would contain an easy, smaller version whereas production would have a
complex configuration.

Setting up a SolrCloud for development
The development environment typically does not require a fully fledged
production-level landscape. Developers can simply set up a single machine proxy
cluster of nodes on their development server. Each Solr instance can run on any J2EE
container such as Jetty, Tomcat, and JBoss. In this mode, SolrCloud runs along with
the internal Zookeeper provided by Solr installation. To start this, simply start your
Jetty server using the following steps:

1.	 Download the latest version of Apache Solr from http://lucene.apache.org
/solr/downloads.html.

2.	 Unzip the instance and go to $SOLR_HOME/example.
3.	 Now, run the following command:

$java –jar start.jar

4.	 Stop the server. This step of running Solr in a non-Cloud mode is required to
unpack the JAR files required for SolrCloud.

http://lucene.apache.org/solr/downloads.html
http://lucene.apache.org/solr/downloads.html

Chapter 6

[139]

5.	 Modify the schema and other configuration files as per your requirements.
6.	 Now, start the Solr in cluster configuration with the following command:

java -DzkRun -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/
conf -Dcollection.configName=solrconf -jar start.jar

Let's understand the different parameters in this process using the
following table:

Parameter Description
zkRun This runs an instance of the embedded Zookeeper

as a part of the Solr server. Run this on one of the
nodes, which will serve as a central node for all
the coordination.

collection.configName This is used to set the configuration to be used for
collection (optional).

bootstrap_
confdir=<dir-name>

The given directory name should contain the
complete configuration for SolrCloud, which
will include all the configuration files such as
solrconfig.xml, schema.xml. When Solr
runs, the configuration is loaded in Zookeeper as
the name given in collection.configName.

zkHost=<host>:<port> This parameter points to the instance of the
Zookeeper (Zookeeper ensemble) containing the
cluster state and configuration.

numShards=<number> Solr cloud can be run on one or multiple indexes;
the number of shards denote the number of
partitions to be carried out on these indexes.

You are required to run this command only for the first time, to push the
necessary configuration on Zookeeper. The next time onwards, you can
simply run the following:
java –DzkRun -jar start.jar

Distributed Search Using Apache Solr

[140]

7.	 You will find on the console the Zookeeper selection for a leader, followed by
all the configurations getting loaded in Zookeeper. Apache Zookeeper stores
the metadata at $SOLR_HOME/example/solr/zoo_data/. Consider
the following screenshot:

8.	 You can also validate the Solr configuration loaded in Zookeeper by going to
$SOLR_HOME\example\scripts\cloud-scripts and running the following
command to get schema.xml from the Zookeeper metadata store:
zkcli.bat -zkhost localhost:9983 -cmd get /configs/solrconf/
schema.xml

9.	 Now, create another Solr node, either by copying the example directory from
$SOLR_HOME to example1 under $SOLR_CORE, or creating another instance
from the downloaded file solr.zip. You can do it on the same machine or
on a different machine.

10.	 Now, run the following command:
java -Djetty.port=8888 -DzkHost=myhost:9983 -jar start.jar

Chapter 6

[141]

11.	 This will start another node with shard. Now access http://localhost:
8983/solr/#/~cloud and you will find the shards, with the collection and
the way they are linked, as shown in the following screenshot:

In the previous screenshot, Apache Solr administration user interface introspects
among the nodes participating in the Cloud, and provides a graphical representation
of leaders' active status. By default, the cluster continues in a round-robin
fashion and adds shards, followed by replicas as and when a node is added.
The round-robin algorithm ensures equal sharding for all the nodes that are
participating. (More information can be found at http://en.wikipedia.org/wiki/
Round-robin_scheduling.) Replicas are assigned automatically, unless their role is
stated specifically by passing the –DshardId=1 parameter.

Setting up a SolrCloud for production
To run a SolrCloud instance, with multinode, it is recommended to run it using
a separate Zookeeper instead of going with the embedded Zookeeper. A fully
distributed setup will require an Apache Zookeeper ensemble setup. Let's set
up an Apache Zookeeper ensemble first using the following steps:

1.	 Download the latest version of Apache Zookeeper from
http://zookeeper.apache.org/releases.html#download.

2.	 Copy and unzip it on all the nodes that are expected to participate in the
Zookeeper ensemble.

3.	 Create a directory zkdata under $ZK_HOME/, and run the following command:
$cat 1 > $ZK_HOME/zkdata/myid

The number here denotes the ID of the server. Similarly, all the participating
nodes should be assigned a unique identifier in this fashion.

http://en.wikipedia.org/wiki/Round-robin_scheduling
http://en.wikipedia.org/wiki/Round-robin_scheduling
http://zookeeper.apache.org/releases.html#download

Distributed Search Using Apache Solr

[142]

4.	 Now, create $ZK_HOME/conf/zoo.cfg with the following entries:
dataDir=$ZK_HOME/zkdata

server.1=node1:2888:3888

server.2=node2:2888:3888

clientPort=2181

tickTime=2000

syncLimit=5

initLimit=10

A list of servers that participate in the Zookeeper service is provided by
server.N. The ports 2888 and 3888 in case of server.1 denote the port for
communication with peers and the port for leader selection, respectively.
The initLimit variable is the maximum time in which Zookeeper in
quorum should connect to the leader. The syncLimit variable denotes the
maximum time of sync with the leader. While initLimit and syncLimit
are units of tick, tickTime denotes the time of tick. In this case, tickTime is
2000 milliseconds, which means the server will have sync every 10000 ms.
In this case, Zookeeper will run in a replicated mode, where node1 and
node2 are replicated.

5.	 You need to make sure the node1 and node2 entries are the names of the
nodes, and ensure your host or DNS resolves them to the appropriate IP
addresses. You can find the host file at /etc/host in Unix, and in Windows,
you will find it at %System Root%\system32\drivers\etc\hosts.

6.	 Run all Zookeeper nodes by running the following command:
$ZK_HOME/bin/zkServer.cmd or zkServer.sh

7.	 Check if the instance is available by connecting to the Zookeeper server.
You can do this by running the following command:
bin\zkCli.cmd -server node1:2181

8.	 Now, connect to Zookeeper by running the following command:
[zk:] connect node1:2181

…………………………

[zk: node1:2181(CONNECTED) 2]

Chapter 6

[143]

9.	 Run the Zookeeper client commands such as ls (list directory) to validate
the current metadata of Apache Zookeeper; you can do this in shell using the
following code:
[zk: node1:2181(CONNECTED) 2] ls

You can also choose to configure logger for Zookeeper. This will in
turn help you find out issues quickly for the initial start. Consider the
following screenshot:

Now that your Apache Zookeeper ensemble is set up, we can configure
Apache Solr in the recommended setup for production using Jetty. In case of
Apache Tomcat or any other container, the parameters should be passed as
per the container-specific parameter passing mechanism.

10.	 You need to follow steps similar to that of the development setup. Download
and unzip the instance at every node that is participating in the SolrCloud.

11.	 Now identify the number of shards and accordingly set the parameters. Start
with one of the nodes as follows:
java -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/conf
-Dcollection.configName=testconf -DzkHost=node1:2181,node2:2181
-jar start.jar

Please note that all the Zookeeper nodes in the replicated phase have to be
passed to the –DzkHost parameters in a comma-separated manner.

12.	 Once this server is up, the other nodes can be started using the
following command:
java -Djetty.port=<your-choice-of-port> -DzkHost=<zkeeper-
leader>:2183 -jar start.jar

Distributed Search Using Apache Solr

[144]

Once the nodes are started, you can validate it through the administration user
interface. The Solr admin provides additional information. The Tree view provides
directory browsing of Cloud-based configuration that is part of Zookeeper; you
can access it by browsing http://localhost:8983/solr/#/~cloud?view=tree.
Consider the following screenshot:

The admin UI shows information related to the cluster, the current shards along with
the leaders, the status of a cluster, and the Solr cluster configuration. You can also use
utility zkCLI (command line) to read/write the data to and from the Zookeeper store.

Adding a document to SolrCloud
To add a document in Solr, you can simply choose any node part of your cluster and
run the following command:

curl http://node1:8983/solr/update/json -H 'Content-type:application/
json' -d
'
[
{"id" : "1", "text" : "This is a test document"},
]'

Chapter 6

[145]

You can also load files from the example directory as shown in the
following command:

curl http://node1:8983/solr/update/csv --data-binary @books.csv -H
'Content-type:text/plain; charset=utf-8'

The preceding command uploads the CSV file. Once this is complete, validate the
uploaded document by running the query through the browser/administration
window, or simply by typing http://localhost:8983/solr/collection1/select
?q=*%3A*&wt=json&indent=true in the browser.

Then, node1 in the Solr cluster receives a request for indexing the document. If the
document is a replica, it forwards it to the leader of the shard. Each leader performs
hashing on the document ID, based on its prefix or automatically, and if the leader
does not own the responsibility of that shard, it has to forward it to the leader of the
shard. Once the correct leader receives the document, it updates its transactional
log, and forwards the document to its replica for replication. While the document
is received first, it is assigned the version ID. The leader first tries to see if it has a
higher version; if it does, the leader will simply ignore the uploaded document.

Solr transactional log is an append-only log of write
operations per node in a cluster. Solr records all the
write operations before the write commit, and marks
it post commit. If the indexing process is stopped for
some reason, the next time, Solr first reviews transaction
logs, and then completes the pending indexing.

Creating shards, collections, and replicas
in SolrCloud
You can create shards, collections, and their replicas on SolrCloud through the
web-based handlers provided by Solr by uploading them using the CURL utility.
Now, let us try an exercise of creating a distributed search index (shard) with
replicas on one collection for SolrCloud. First, we need to start with the creation of
a collection (that is, clusterCollection) assuming the replication of 3, and the
maximum shards per node is 2, as shown in the following command:

curl 'http://node1:8983/solr/admin/collections?action=CREATE&name=clus
terCollection&numShards=3&replicationFactor=3&maxShardsPerNode=2'

This will create a collection with the name clusterCollection on Solr. We have
already linked its configuration through Zookeeper earlier.

Distributed Search Using Apache Solr

[146]

Now, let's create replicas of the shards by running the following command; this
command has to run for each replica you intend to create in your Solr instance:

curl 'http://node1:8983/solr/admin/cores?action=CREATE&name=shardA-Replic
a1&collection=clusterCollection&shard=shardA'

curl 'http://node2:8983/solr/admin/cores?action=CREATE&name=shardB-Replic
a2&collection=clusterCollection&shard=shardA'

The following example shows how the admin UI will show the shard distribution of
your indexes:

Now, the documents can directly be posted to any of the nodes hosting Solr index.
The following example shows uploading of default documents shipped with Solr on
this Cloud instance:

cd $SOLR_HOME/example/exampledocs/
java -Durl=http://node1:8983/solr/clusterCollection/update -jar post.
jar ipod_video.xml
java -Durl=http://node2:8983/solr/clusterCollection/update -jar post.
jar monitor.xml

You can simply verify it by accessing the Solr instance with a wildcard query
as follows:

http://node1:8983/solr/clusterCollection/select?q=*:*

Common problems and resolutions
Now the installation is successful. Let's try to address some of the common problems
and their solutions you may face during setup.

Question: I have been using SolrCloud for a long time. Now when I run it, it shows
me some of the old nodes in the current cluster landscape. How do I fix it?

Chapter 6

[147]

Answer: This can be fixed by cleaning the Zookeeper metadata; however, first
you need to back up the existing Zookeeper metadata using the zkCLI command
(the get/getfile calls). Once you back up the Zookeeper, shut down all the
instances, and rename the zoo_data directory under $SOLR_HOME/example/solr to
some other name, and then restart SolrCloud and Zookeeper. This will recreate the
Zookeeper configuration again and add configuration directories. You can validate
the new cluster configuration of Apache Zookeeper by running zkCLI with the
following command:

[zk: node1:2181(CONNECTED) 4] get /clusterstate.json

This will show the complete details of the cluster. You can also validate this through
the administration console by browsing the /clusterstate.json file as shown in
the following screenshot:

Question: I am getting a lot of exceptions from Solr with connection timeout as the
error description. What should be done?

Answer: Since the connections are timing out, one possibility is that the leader himself
is going down or the responses are slow due to network latency. This can be fixed
by increasing the timeout of Apache Zookeeper. The Zoo.cfg file contains tick time
(usually 2 seconds); this should not be touched; instead modify the zkClientTimeout
property in solrconfig.xml to work with more ticks for Zookeeper.

Distributed Search Using Apache Solr

[148]

Question: I have a single node Solr instance with information indexed as of now.
Can I anyhow migrate this index to SolrCloud?

Answer: There is no support for this kind of problem in Apache Solr (Version 4.6),
so in this case, you need to re-parse all the documents, and re-index them one
more time.

Case study – distributed enterprise
search server for the software industry
Let's look at one of the cases for building a SolrCloud for ABC Corporation. The
company is multinational, and has offices in 10 different countries. The development
centre for this company is in two countries. ABC Corporation has many functions,
such as HR, accounting, project management, and so on. These functions exist at all
offices. Now the company would like to build highly optimized, high availability,
and reliable search for their organization. The company has the following data to be
searched and analyzed across the organization:

•	 Human resource data comes from all offices
°° Resumes
°° Employee information
°° Files store (coming from knowledge management applications)

•	 Source code and documents related to products produced by the
development centre

•	 Finance-related information comes from multiple software (all offices)

In this case, we will focus on the design aspects of the cluster, and skip the other
aspects, such as knowledge management. We can create two different collections
of data. This is because the development office requires access to additional
information, which every other office does not require. So, /devcollection can
focus on source code, and other development office specific artifacts, whereas /
hrcollection can focus on the more global aspects of ABC Corporation, which
covers HR and finance functions. A load balancer will be required to balance the
amount of requests that get flooded on SolrCloud. Many times, read requests can
be redirected to followers. Apache Zookeeper too can run in high availability
replicated mode. The following schematic diagram shows the example architecture
for a given problem:

Chapter 6

[149]

The figure also shows what a typical office setup would look like. Any single office
landscape would have its own management set of software, along with the instance of
the Zookeeper (depending upon how many are expected). This kind of configuration
will ensure high availability in the context of any disasters and natural calamities since
the setup is totally distributed across multiple offices. Since all offices are going to
access the Solr-based enterprise search, they can go for localized cached Solr instance
(replica) of the leader for all reads. So, a distributed load balancer can help detect the
current office from the request, and redirect it to the respective Apache Solr.

Distributed Search Using Apache Solr

[150]

Summary
In this chapter, we have gone through various aspects of distributed search. We
started with understanding the needs behind distributed search, and how Apache
Solr can enable your enterprise search with the distributed options that are available.
We also looked at different approaches that enable you to run Solr in a distributed
manner. We then focused on understanding the capabilities of Apache Zookeeper
and SolrCloud. We studied the SolrCloud architecture and how to build an
enterprise-distributed search system out of Apache Solr.

Scaling Solr through
Sharding, Fault Tolerance,

and Integration
In the previous chapters, we went through various aspects of Apache Solr, including
its capabilities, features, and different case studies. In Chapter 6, Distributed Search Using
Apache Solr, we looked at SolrCloud, which provides excellent scaling capabilities
with features such as distributed Solr instances with replication for high availability.
The capabilities of Apache Solr have enabled organizations to indulge themselves in
Apache Solr-based solution development. This demand in turn triggered the need to
integrate Apache Solr-based enterprise search to work with mature high-performance
open source software available today to achieve the best of both worlds.

There are many parallel tracks that are going on along with the Apache Solr open
source community. These tracks focus on enhancing the integration of Solr with
different tools to overall achieve objectives of high-scale Solr. We are going to look
at some of these aspects from this chapter onwards. This chapter does not only focus
on scaling aspects of Apache Solr, but it also provides readers access to some of the
advanced topics of Solr integration, such as result clustering. In this chapter, we will
look at how Apache Solr can be further scaled with the help of different open source
tools available today. In this chapter, we will be focusing on following aspects:

•	 Enable search result clustering through Carrot2
•	 Sharding and fault tolerance for SolrCloud
•	 Searching Solr documents in real time
•	 Solr and MongoDB
•	 Scaling Solr with Storm

Scaling Solr through Sharding, Fault Tolerance, and Integration

[152]

All the examples provided in this chapter are tested
on Apache Solr 4.7 releases.

Enabling search result clustering
with Carrot2
Carrot2 is an application suite to provide document cluster on top of your dataset.
It analyzes a set of documents and classifies them into multiple groups based on
similarity. The similarities between the documents on various aspects can be used to
cluster the documents in different groups. Cluster analysis is very useful, because it
provides automatic categorization of your information so that users can browse a flat
information model hierarchically.

Cluster analysis techniques are useful in organization
for statistical analysis. For example, a cluster analysis
over the customer database enables an organization to
classify the customers based on different patterns and
plan the future strategies to improve upon the sales. Such
analysis can be done using different algorithms research
done by many statisticians. Among the famous ones are
partitioning and hierarchy based.

Carrot2 is BSD licensed, and it can be utilized with any search engine such
as Apache Lucene and Apache Solr. More information on Carrot2 can be
found at http://project.carrot2.org/. There is also a live demo
available at http://search.carrot2.org/stable/search, as shown in
the following screenshot:

http://project.carrot2.org/
http://search.carrot2.org/stable/search

Chapter 7

[153]

Why Carrot2?
Apache Solr can search across millions of documents and provide a subset of
them as a matched search result to the end user. The results shown to end users
are ordered based on the search result relevancy, which depends upon the TF-IDF
algorithm used by Apache Solr. Besides these, Solr provides additional faceting for
better browsing experience. Although these features provide users with a simplified
manner of browsing, it is still questionable whether the results add a significant
value in terms of logical grouping of information.

Apache Solr Facets are mainly based on schema element, whereas relevancy focuses
on searched keywords and their occurrences in the results. The missing element here
is the semantic proximity of each of the matched documents with the other so as to
group them based on similarities.

Scaling Solr through Sharding, Fault Tolerance, and Integration

[154]

Let's look at an example: the search engine is built on top of a movie database, and
it's loaded with thousands of documents, including movie release, critics, ratings,
and actor information. With the diverse set of documents, faceting itself becomes
a challenging act. A user searches for "Nicholas Cage" and "John Travolta" on this
database. Apache Solr-based search will match with thousands of documents, and it
will parse them accordingly. Facets will provide static browsing experience based on
the predefined schema element, as we have seen in earlier chapters. The relevancy
scoring will render the documents based on the scoring of term frequency and inverse
document frequency. The add-on value to this outcome will be a dynamic classification
of search results, which will probably have classification types such as movies, award
functions, and television series. In our example, a search for "John Travolta" will match
with different database entities such as movies, videos, interviews, events, and films
directed. Carrot2 will provide this classification dynamically. Using Carrot2 is feasible
to get a dynamic classification with the help of clustering.

Enabling Carrot2-based document clustering
Apache Solr ships with Carrot2 libraries from Solr 4.0 onwards; however, due to
library-licensing concerns, they are not added directly into solr.war. To enable
Carrot2-based cluster for your Solr system, execute the following steps:

1.	 Download the latest version of Apache Solr from the Solr download page.
2.	 Unzip it, and run it once with the following command:

$java –jar solr.jar

3.	 Let the instance start and access the following URL:
http://localhost:8983/solr/browse.

4.	 Now, shutdown the instance, go to $SOLR_HOME/contrib/clustering/lib,
and copy all JAR files to $SOLR_HOME/example/solr-webapp/webapp/
WEB-INF/lib or to the container lib folder. In case you are running Tomcat
or any other application container, you can open solr.war, copy these JAR
files in WEB-INF/lib, and redeploy the application.

5.	 Now, add -Dsolr.clustering.enabled=true to your container startup file.
In case of Jetty, start with the following command:
$ java -Dsolr.clustering.enabled=true -jar start.jar

6.	 Once it is started, load your documents using either SolrJ, post utility,
or through dataImportHandler.

Chapter 7

[155]

7.	 Now, run the following query through the following browser:
http://localhost:8983/solr/clustering?q=*:*&rows=10. You
will find an additional XML component added to your response called
"clustering", as shown in the following snippet:

<response>
 <lst name="responseHeader">
 </lst>
 <result name="response" numFound="32" start="0" maxScore="1.0">
……………………………………<snipped/>…………………………………
 </result>
 <arr name="clusters">
 <lst>
 <arr name="labels">
 <str>Book</str>
 </arr>
 <double name="score">1.3174612693376382</double>
 <arr name="docs">
 <str>ISBN#1378</str><str>ISBN#1748</str><str>ISBN#1222</
str>
 </arr>
 </lst>
 </arr>
</response>

This additional element can be parsed, and the user interface can be enhanced to
support clustering-based facet in the user interface layer.

Understanding Carrot2 result clustering
The clustering component in Apache Solr was introduced as a part of JIRA
SOLR-769 (more information is available at https://issues.apache.org/jira/
browse/SOLR-769) to support Mahout- and Carrot2-based clustering for Solr results.
Carrot2 in Solr understands the document title, its URL/location, and content. Titles
carry more importance in terms of document clustering. Carrot2 analyzes each
document snippet carefully, not just a token of words but even the sentences
(for example, phrases). Hence, it can work on stored fields only.

https://issues.apache.org/jira/browse/SOLR-769
https://issues.apache.org/jira/browse/SOLR-769

Scaling Solr through Sharding, Fault Tolerance, and Integration

[156]

In solrconfig.xml, the following entries demonstrate its current placement in
default the Solr install:

If you intend to use clustering all the time, you can modify searchComponent of
your solrconfig.xml to enable=true, as shown in the following screenshot:

Carrot2 has a separate request handler defined which is /clustering, the
location where the clustered results can be accessed. More information on
different types of parameters can be seen at http://wiki.apache.org/solr/
ClusteringComponent#Parameters.

http://wiki.apache.org/solr/ClusteringComponent#Parameters
http://wiki.apache.org/solr/ClusteringComponent#Parameters

Chapter 7

[157]

Additionally, each algorithm has its own parameters; the configuration files for these
parameters can be found in the $SOLR_HOME/conf/clustering/carrot2 folder. The
results have to be fetched in advance to provide better clustering experience instead
of the usual set.

Although Solr and Carrot2 together provide effective
clustering through a uniform interaction, there is additional
cost in terms of performance incurred by additional
processing required by Carrot2. It also needs to pick up
the results in advance to provide effective clustering. The
performance impact can be minimized by reducing the
amount of processing done by Carrot2 in run-time. This
can be done by reducing the number of search results to
some minimal count. Additionally, applying standard
optimization techniques such as stop words and stemming,
the performance of the subsystem can be enhanced further.

More details can be read on Solr's clustering
wiki at http://wiki.apache.org/solr/
ClusteringComponent#Performance_impact.

Viewing Solr results in the Carrot2 workbench
The Carrot2 suite of applications comes with different subproducts. They are
as follows:

•	 Carrot2 document clustering workbench: This is mainly used to observe the
results that are GUI based

•	 Carrot2 APIs (C# and Java): This is used for integration; Solr uses these APIs
•	 Carrot2 document clustering server: The Carrot2 functionality can be

exposed as RESTful service through this server
•	 Carrot2 command line interface (CLI): It allows invoking Carrot2 clustering

from the command line directly
•	 Carrot2 web application: This provides rich web-based application for

end users

http://wiki.apache.org/solr/ClusteringComponent#Performance_impact
http://wiki.apache.org/solr/ClusteringComponent#Performance_impact

Scaling Solr through Sharding, Fault Tolerance, and Integration

[158]

To visualize the results in the Carrot2 workbench, you can download the Carrot2
workbench from the Carrot2 download page (described previously) and run it. Now,
provide the source as Solr, algorithm, the query string, title field name and click on the
process button. The following screenshot showcases the Solr clustering with Carrot2
rendered on the workbench with the default dataset shipped with Apache Solr:

In the previous screenshot, it can be observed that out of 10 documents, five different
clusters are created based on different document metadata. The placement of each
cluster and how they are linked can be seen in the cluster map. As the graph renders,
iPod and video are much closer as compared to system memory or canon.

Chapter 7

[159]

FAQs and problems
Let's try to address some of the common problems, which you may face during the
setup, and their solutions:

•	 I have followed the steps, and when I run my Solr server, I get
NoClassDefFoundException in my console. What can I do?
You need to make sure that all the JAR files are in the correct classpath
(/contrib/clustering) of your Solr container so that they can be picked up
by your container. In Apache Solr 3.X, the JAR files are different from 4.X.
It is recommended that you make it part of your solr.war, so as to make it
accessible only inside from Apache Solr.

•	 I am impressed by the Carrot2 clustered rendering; can I use it as my end
user interface to render Solr results?
It's possible to use Carrot2-based web application inside your web
application. Carrot2 provides a demo application by default. You can use
multiple integration strategies to integrate your Solr with Carrot2. To see the
strategies, you can also visit the following link: http://carrot2.github.
io/solr-integration-strategies/carrot2-3.6.3/index.html.

In this section, we have understood Carrot2 and how it can be worked with Apache
Solr effectively. We will be focusing on sharding in the next chapter.

Sharding and fault tolerance
We have already seen sharding, collection, and replicas in Chapter 6, Distributed
Search Using Apache Solr. In this section, we will look at some of the important
aspects of sharding and how it plays a role in scalability and high availability. The
strategy to create new shards is highly dependent upon the hardware and shard
size. Let's say, you have two machines, A and B, of the same configuration, each with
one shard. Shard A is loaded with 1 million index documents, and shard B is loaded
with 100 documents. When a query is fired, the query response to any Solr query is
determined by the query response of the slowest node (in this case, shard A). Hence,
a shard with near to equal shard sizes can perform better in this case.

http://carrot2.github.io/solr-integration-strategies/carrot2-3.6.3/index.html
http://carrot2.github.io/solr-integration-strategies/carrot2-3.6.3/index.html

Scaling Solr through Sharding, Fault Tolerance, and Integration

[160]

Document routing and sharding
We have seen the leader-selection process in Chapter 6, Distributed Search Using
Apache Solr. Typically, when any enterprise search is deployed, the size of documents
to be indexed keeps growing over time. As SolrCloud provides a way to create
a cluster of Solr nodes that run on index shards, it becomes feasible to scale the
enterprise search infrastructure with time. However, as the shard sizes grow, it
becomes difficult to manage them on a single shard. SolrCloud can be started with
numOfShards by controlling the number of shards that run in the cloud. To route the
newly indexed documents, take a look at the following flowchart:

Chapter 7

[161]

When a Solr instance is started, it first registers itself with Zookeeper, creating
Ephemeral Node or z nodes. A Zookeeper provides a shared hierarchical namespace
for processes to coordinate with each other. The namespace consists of registered
data called znodes. Apache Solr provides you with two ways to distribute the Solr
document across shards. Auto sharding distributes the documents automatically
through its own hashing algorithm. Each shard is allocated with a range for hashing,
and it can be seen in /clusterstate.json, as shown in the following screenshot:

Another way of distributing the document across a shard is to use custom sharding.
With custom sharding, client applications that pass documents for indexing to
Apache Solr are primarily responsible to place them in the shard. Each document
has a unique ID attribute, and a shard key can be prefixed to this ID, for example,
shard1!docId55. The ! operator acts as a separator. Custom sharding helps users
in influencing the storage for their document indexes.

Users can choose various strategies to distribute the shards across different
nodes for efficient usage. Similarly, a query can be performed on a specific shard
(instead of complete index) by passing shard.keys=shard1!,shard2! as a
query parameter. These features enable Apache Solr to work in a multitenancy
environment or as regional distributed search. You can also spread tenants across
multiple shards by introducing another prefix for the unique ID. The syntax for this
is Shard_key/number!doc_id.

Scaling Solr through Sharding, Fault Tolerance, and Integration

[162]

Shard splitting
The feature of Shard splitting was introduced in Apache Solr 4.3. It is designed
to work with Apache Solr's auto-sharding. It allows users to split shards without
breaking the search run-time or even the indexing. A shard can be split into two by
running the following URL on your browser:

http://localhost:8983/solr/admin/collections?collection=collection1&s
hard=[shard_name]&action=SPLITSHARD

As you split the shards, the average query performance tends to slow down. The call
to SPLITSHARD will create two new shards (shard1_1, and shard1_2 out of shard1),
as shown in the following screenshot:

The numbers of documents are divided equally across these two subshards; once
the split is complete, shard1 will be made inactive. The new subshards get created
in construction state, and the index updates on shard start getting forwarded to new
subshards. Once the splitting is complete, the parent shard becomes inactive. The old
shard can be deleted by calling DELETESHARD in the following way:

http://localhost:8983/solr/admin/
collections?collection=collection1&shard=shard1&action=DELETESHARD

Chapter 7

[163]

With large index sizes, the search performance can become slow. Auto-sharding in
Solr lets you start with a fixed number of shards, and shard splitting offers an easy
way to reduce the size of each shard across Solr cores as the index size grows.

Although the parent shard is inactive, the Solr Admin UI
does not become aware of the states and shows the parent
shard in green (active state)..

Load balancing and fault tolerance in
SolrCloud
SolrCloud provides built-in load-balancing capabilities to its clients. So, when a
request is sent to one of the servers, it is redirected to the respective leader to get all
the information. Fault tolerance in SolrCloud is the ability to continue in a degraded
form in case of failure of Solr nodes. If your client application is Java-based, you can
rely on the CloudSolrServer and LbHttpSolrServer (load-balanced HTTP server)
classes of SolrJ to perform indexing and search across SolrCloud. CloudSolrServer
will load balance queries across all operational servers automatically. The Java code
through SolrJ for search on SolrCloud looks like the following:

CloudSolrServer server = new CloudSolrServer("localhost:9983");
server.setDefaultCollection("collection1");
SolrQuery solrQuery = new SolrQuery("*.*");
QueryResponse response = server.query(solrQuery);
SolrDocumentList dList = response.getResults();
for (int i = 0; i < dList.getNumFound(); i++)
{
for (Map.Entry mE : dList.get(i).entrySet())
{
 System.out.println(mE.getKey() + ":" + mE.getValue());
 }
}

Fault tolerance is the ability to keep the system functions working with degraded
support, even in case of failure of system components. Fault tolerance in SolrCloud
is managed at different levels.

As SolrCloud performs its own load balancing, a call to any one of the nodes
participating in the cloud can be made. Applications that do not rely on Java-based
client may require a load balancer to fire queries. The intent of load balancer is not
to balance the load but to remove the single point of failure for the calling party. So,
in case of the failure of node1, load balancer can forward the query to node2, thus
enabling fault tolerance in Apache Solr.

Scaling Solr through Sharding, Fault Tolerance, and Integration

[164]

When a search request is fired on SolrCloud, the request gets executed on all leaders
of that shard (unless the user chooses shard in his query). If one of the nodes is
failing to respond to a Solr query due to some error, the wait for the final search
result can be avoided by enabling support for partial results. This support can be
enabled by passing shards.tolerant=true. This read-side fault tolerance ensures
that the system returns the results in spite of unavailability of the node.

Apache Solr also supports write-side fault tolerance, which makes the instance
durable even in case of power failures, restarts, JVM crash, and so on. Each node
participating in Solr maintains a transaction log that tracks all the changes to the
node. This logging helps a Solr node to recover in case of failures or interruption
during the indexing operation. We are going to look at write-side fault tolerance in
the next section.

Searching Solr documents in near
real time
Apache Solr performs indexing on the updated data, and the data is available for
search. In many cases, the index-generation job is run during offline hours (late nights,
weekends) to update the search with the newer data. Until this point, Apache Solr
cannot search for documents added in the customer document repository. Many times,
the demand is to make a document available for search as and when it is uploaded to
the customer repository. Apache Solr can perform search on these documents in near
real time. There is a delay to generate index for a document and to make it available for
search; hence, Apache Solr can support near real-time search on documents.

Strategies for near real-time search in
Apache Solr
In Apache Solr, a commit operation is required to enable the document to be made
available for searching. Commit operation in Apache Solr involves Solr access
transaction logs (or update logs), which pick the identifiers and sync the index
files on the storage system, thus making the index store available, even in case of
shutdown or restart. Considering the large index-loading scenario, the commit on
huge index takes a longer time. During this time, the documents that are getting
loaded on Apache Solr are not searchable.

Chapter 7

[165]

In near real-time search, Apache Solr provides a way to enable soft commit. A soft
commit in Apache Solr does not flush changes back to the underlying storage;
instead, it makes it available in memory and persists it to the disk in the next hard
commit. In case of a power failure or JVM crash, Apache Solr can remember the state
of last hard commit. Although, soft commit does not guarantee indexing changes
to be made persistent, they can be searched. Additionally, a transaction log in Solr
can be enabled to ensure that there is no loss of indexing data. As all the commit
operations are held in a queue waiting to be flushed to index files, soft commit offers
a limit through the following parameters:

•	 Maximum number of documents (also called maxDocs)
•	 Maximum time (maxTime in milliseconds)

Apache Solr offers different commit strategies for clients to persist the changes in
Solr repository. Let us look at these strategies.

Explicit call to commit from a client
A client can call explicit commit on its data changes, either soft or hard, directly
by passing a set of parameters. The following curl example shows the call with
explicit commit:

curl http://localhost:8983/solr/update?commit=true -H "Content-Type:
text/xml" --data-binary '<add><doc><field name="id">testdoc</field></
doc></add>'

In case of a soft commit, the command would be as follows:

curl "http://localhost:8983/solr/update?softCommit=true" -H
"Content-type:application/xml" --data-binary "<add><doc><field
name='id'>testcommit2</field><field name='name'>Hrishikesh
Karambelkar</field></doc></add>"

Similarly, in SolrJ, you can use ContentStreamUpdateRequest or UpdateRequest,
as shown in the following snippet:

 UpdateRequest req = new UpdateRequest();
 req.add(mySolrInputDocument);
 ……….
 req.setAction(AbstractUpdateRequest.ACTION.COMMIT, true, false,
true); //Parameters: ACTION, waitFlush, waitSearcher, softCommit
 req.process(server);

Scaling Solr through Sharding, Fault Tolerance, and Integration

[166]

solrconfig.xml – autocommit
Apache Solr provides automatic commit functionality to avoid clients from
running explicit commit calls. Auto commit can be based on maximum time or
maximum number of documents. To enable autocommit, you need to put entries
for autoCommit and/or autoSoftCommit in solrconfig.xml as follows:

 <autoCommit>
 <maxTime>10000</maxTime>
 </autoCommit>

 <autoSoftCommit>
 < maxDocs >1000</maxDocs>
 </autoSoftCommit>

CommitWithin – delegating the responsibility to Solr
CommitWithin allows users to rely on Apache Solr to perform time-bound commit
changes to every Solr document uploaded. CommitWithin offers an opportunity to
perform uploads without commit, and Apache Solr can handle bulk commits on its
own. The buffered document is committed before the minimum commitWithin time
is reached. CommitWithin provides a soft commit. The following curl call to Solr to
upload the data will ensure that commit happens within 20 seconds:

curl "http://localhost:8983/solr/update?commitWithin=20000" -H
"Content-type:application/xml" --data-binary "<add><doc><field
name='id'>testcommit2</field><field name='name'>Hrishikesh
Karambelkar</field></doc></add>"

Similarly, SolrJ provides the setCommitWithin call inside the UpdateRequest class
to put the timeline for document update.

Real-time search in Apache Solr
Interestingly, Apache Solr 4.0 and higher versions allow users to peek inside the
data that has been loaded in the Solr repository, but not yet committed. It works by
running search through the transaction logs that record all the updates happening
in Apache Solr. Although Solr supports real-time search, they cannot be used
inside facets or any other components of Solr. To enable a real-time search, users
must ensure that the update logging is enabled (by default, it's enabled in Solr) by
verifying the following lines in solrcloud.xml:

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
</updateLog>

Chapter 7

[167]

The logs are stored in the ${solr.ulog.dir:} directory. The real-time results
cannot be retrieved with traditional response handlers of Solr. It provides a
RealTimeGetHandler class to enable searching through the logfiles as well for the
potential search results. This can be verified by accessing solrconfig.xml and
looking for its handler, which looks like the following screenshot:

You can try out near real-time get by loading the information without any commit
through the curl utility. Run the following command on the default schema:

curl "http://localhost:8983/solr/update" -H "Content-type:application/
xml" --data-binary "<add><doc><field name='id'>scalingsolr</
field><field name='name'>Hrishikesh Karambelkar</field></doc></add>"

Once it runs successfully, you can access http://localhost:8983/solr/
get?id=scalingsolr from your browse to see the output, as shown in the
following screenshot:

Scaling Solr through Sharding, Fault Tolerance, and Integration

[168]

As the real time is based on update logs, even restarts of Apache Solr would provide
search over all the older uncommitted changes. Real-time get works seamlessly,
until the point where there are limited update operations taking place. Real-time Solr
is very useful in places where there is a search expectation on continuous data.

Solr with MongoDB
MongoDB is one of the popular NOSQL databases, just like Cassandra. It supports
the storage of any random schemas in the document-oriented storage of its own.
MongoDB supports JSON-based information pipe for any communication with
the server. This database is designed to work with heavy data. Today, many
organizations are focusing on utilizing MongoDB for various enterprise applications.

Understanding MongoDB
MongoDB provides high availability and load balancing. Each data unit is replicated,
and a combination of data with its copes is called replica set. Replicas in MongoDB
can be either primary or secondary. Primary is an active replica that is used for
direct read-write operation; the secondary replica works like a backup for primary.
MongoDB supports search by field, range queries, and regular expression searches.
Queries can return specific fields of documents and also include user-defined
JavaScript functions. Any field in a MongoDB document can be indexed. More
information about MongoDB can be read at https://www.mongodb.org/.

The data on MongoDB is eventually consistent. Apache Solr can be used to work
with MongoDB to enable database-searching capabilities on MongoDB-based data
store. Unlike Cassandra, where the Solr indexes are stored directly through Solandra,
MongoDB integration with Solr brings in the indexes in Solr-based optimized storage.

There are various ways in which the data residing in MongoDB can be analyzed
and searched. MongoDB's replication works by recording all operations done on a
database in a logfile, called the oplog. Many of the implementers suggest reading this
logfile using standard file IO program to push the data directly to Apache Solr using
CURL or SolrJ. As oplog is a collection of data with an upper limit on maximum
storage, such kind of querying is feasible to enable sync with Apache Solr. Oplog
also provides tailable cursors on the database. These cursors can provide a natural
order of the documents loaded in MongoDB, thus preserving the order. We are going
to look at a different approach. Let's look at the following schematic diagram:

https://www.mongodb.org/

Chapter 7

[169]

In this case, MongoDB is exposed as a database to Apache Solr through a custom
database driver. Apache Solr reads MongoDB data through DataImportHandler;
this in turn calls JDBC-based MongoDB driver to connect to MongoDB and run data
import utilities. As MongoDB supports replica sets, it manages the distribution of
data across nodes. It also supports sharding just like Apache Solr.

Installing MongoDB
To install MongoDB in your development environment, please follow the
ensuing steps:

1.	 Download the latest version of MongoDB from https://www.mongodb.org/
downloads for your supported operating system. Unzip the zipped folder at
some place. MongoDB comes up with a default set of different command-line
components and utilities. They are as follows:

°° bin/mongod: This is the database process
°° bin/mongos: This is the sharding controller
°° bin/mongo: This is the database shell (uses interactive JavaScript)

https://www.mongodb.org/downloads
https://www.mongodb.org/downloads

Scaling Solr through Sharding, Fault Tolerance, and Integration

[170]

2.	 Now, create a directory for MongoDB to use it for user-data creation and
management somewhere, and run the following command to start the single
node server:
$ bin/mongod –dbpath <path to your data directory> --rest

In this case, the --rest parameter enables support for simple rest APIs to get
the status.

3.	 Once the server is started, access http://localhost:28017 from your
favorite browser; you should be able to see the following administration
status page:

Now that you have successfully installed MongoDB, try loading a sample dataset
from the book on MongoDB by opening a new command-line interface, changing the
directory to $MONGODB_HOME, and then running the following command:

$ bin/mongoimport --db solr-test --collection zips --file "<file-dir>/
samples/zips.json"

Chapter 7

[171]

You can see the stored data using MongoDB-based CLI by running the following set
of commands from your shell:

$ bin/mongo

MongoDB shell version: 2.4.9

connecting to: test

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

> use test

Switched to db test

> show dbs

exampledb 0.203125GB

local 0.078125GB

test 0.203125GB

> db.zips.find({city:"ACMAR"})

{ "city" : "ACMAR", "loc" : [-86.51557, 33.584132], "pop" : 6055,
"state" :"AL", "_id" : "35004" }

Congratulations! MongoDB is installed successfully

Creating Solr indexes from MongoDB
To run MongoDB as a database, you will need a JDBC driver built for MongoDB.
However, Mongo-JDBC driver has certain limitations, and it does not work with
Apache Solr DataImportHandler. So, I have extended Mongo-JDBC to work under
Solr-based DataImportHandler. The project repository can be accessed with the
following URL:

https://github.com/hrishik/solr-mongodb-dih.

https://github.com/hrishik/solr-mongodb-dih

Scaling Solr through Sharding, Fault Tolerance, and Integration

[172]

Let's look at the setup steps to enable MongoDB-based Solr integration.

1.	 You may not require a complete package from the solr-mongodb-dih
repository but just the JAR file. It can be downloaded from https://github.
com/hrishik/solr-mongodb-dih/tree/master/sample-jar.
This compiled .jar file is also available with this book for easy access.
You will also need the following additional JAR files:

°° jsqlparser.jar

°° mongo.jar

These JAR files are made available with the book, and you will find them in
the lib directory of the solr-mongodb-dih repository.

2.	 In your Solr setup, copy these JAR files in the library path ($SOLR_WAR_
LOCATION/WEB-INF/lib folder). Alternatively, point your container
classpath variable to link them up.

3.	 Using simple Java source code, DataLoad.java (https://github.com/
hrishik/solr-mongodb-dih/blob/master/examples/DataLoad.java),
populate the database with some sample schema and tables that you will
use to load in Apache Solr.

4.	 Now, create a data source file (data-source-config.xml) as follows:
<dataConfig>
 <dataSource name="mongod" type="JdbcDataSource" driver="com.
mongodb.jdbc.MongoDriver" url="mongodb://localhost/exampledb"/>
 <document>
 <entity name="nameage" dataSource="mongod" query="select name,
price from grocery">
 <field column="name" name="name"/>
 <field column="name" name="id"/>
 <!-- other files -->
 </entity>
 </document>
</dataConfig>

5.	 Copy solr-dataimporthandler-*.jar from your contrib directory to
a container/application library path.

https:// github.com/hrishik/solr-mongodb-dih/tree/master/sample-jar
https:// github.com/hrishik/solr-mongodb-dih/tree/master/sample-jar
https://github.com/hrishik/solr-mongodb-dih/blob/master/examples/DataLoad.java
https://github.com/hrishik/solr-mongodb-dih/blob/master/examples/DataLoad.java

Chapter 7

[173]

6.	 Modify $SOLR_COLLECTION_ROOT/conf/solr-config.xml with the DIH
entry as follows:
 <!-- DIH Starts -->
 <requestHandler name="/dataimport" class="org.apache.solr.
handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config"><path to config>/data-source-config.xml</
str>
 </lst>
 </requestHandler>
 <!-- DIH ends -->

7.	 Once this configuration is done, you are ready to test it out; access
http://localhost:8983/solr/dataimport?command=full-import from
your browser to run the full import on Apache Solr. You will see that your
import handler has successfully ran and it has loaded the data in the Solr
store, as shown in the following screenshot:

Scaling Solr through Sharding, Fault Tolerance, and Integration

[174]

8.	 You can validate the content created by your new MongoDB DIH by accessing
the admin page and running a query, as shown in the following screenshot:

Using this connector, you can perform operations for full import on various data
elements. As MongoDB is not a relational database, it will not support joined queries.
However, it supports selects, order by, and so on.

Scaling Solr through Storm
Apache Storm is a real-time distributed computation framework. It processes with
humongous data in real time. Recently, Storm has been adapted by Apache as an
incubating project and for the development of Apache Storm. You can read more
information about Apache Storm features at http://storm.incubator.apache.org/.

Apache Storm can be used to process massive streams of data in a distributed manner.
So, it provides excellent batch-oriented processing capabilities for time-sensitive
analytics. With Apache Solr and Storm together, organizations can process Big Data
in real time. For example, Apache Solr and Storm can be used if industrial plants
would like to extract information from their plant systems that are emitting raw data
continuously and process it to facilitate real-time analytics such as identifying the top
problematic systems or look for recent errors/failures. Apache Solr and Storm can
work together to get this batch processing for Big Data in real time.

http://storm.incubator.apache.org/

Chapter 7

[175]

Apache Storm runs in a cluster mode where multiple nodes participate in
performing computation in real time. It supports two types of nodes: master node
(also called Nimbus) and a worker node (also called a slave). As the name describes,
Nimbus is responsible to distributing code around the cluster, assigning tasks
to machines, and monitoring for failures, whereas a supervisor listens for work
assigned to its machine and starts and stops worker processes as necessary, based
on what Nimbus has assigned to it. Apache Storm uses Zookeeper to perform all the
coordination between Nimbus and supervisor. The data in Apache Storm is ready as
a stream, which is nothing but a tuple of name value pairs as follows:

{id: 1748, author_name: "hrishi", full_name: "Hrishikesh Karambelkar"}

Apache Storm uses the concept of spout and bolts. Any work is executed in an
Apache Storm topology. The following diagram shows the Storm topology with
an example of word count:

Spouts are data inputs; this is where data arrives in the Storm cluster. Bolts process
the streams that get piped into it. They can be fed data from spouts or other bolts.
The bolts can form a chain of processing, with each bolt performing a unit task. This
concept is similar to map-reduce that we are going to look at in the following chapters.

Getting along with Apache Storm
Let's install Apache Storm and try out a simple word count example using the
following steps:

1.	 You will require Zookeeper to be downloaded first, as both Nimbus
and supervisor have dependencies on them. Download it from http://
zookeeper.apache.org/ and unzip it at some place. Copy zoo.cfg from
the book's codebase or rename zoo_sample.cfg to zoo.cfg in your code.

2.	 Start the zookeeper using the following command:
$ bin/zkServer.sh

3.	 Make sure Zookeeper is running. Now, download Apache Storm from
http://storm.incubator.apache.org/downloads.html.

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://storm.incubator.apache.org/downloads.html

Scaling Solr through Sharding, Fault Tolerance, and Integration

[176]

4.	 Unzip it, and go to the $STORM_HOME/conf folder. Edit storm.yaml and put
the correct Nimbus host. You can use the configuration file provided along
with the book. In case you are running it in a cluster environment, your
nimbus_host needs to point to the correct master. In this configuration, you
may also provide multiple Zookeeper servers for failsafe.

5.	 Now, set JAVA_HOME and STORM_HOME as follows:
$ export STORM_HOME=/home/hrishi/storm

$ export JAVA_HOME=/usr/share/jdk

6.	 Start master in a separate terminal by running the following command:
$ $STORM_HOME/bin/storm nimbus

7.	 Start workers on machines by calling the following command:
$ $STORM_HOME/bin/storm supervisor

8.	 Start the web interface by running the following command:
$ $STORM_HOME/bin/storm ui

9.	 Now, access the web user interface by typing http://localhost:8080 from
your browser. You should be able to see the following screenshot:

Chapter 7

[177]

10.	 Now, the Storm cluster is working fine; let's try a simple word count
example from https://github.com/nathanmarz/storm-starter. You can
download the source and compile or take a precompiled JAR from the book's
source code repository.

11.	 You also need to install Python on your instances where Apache Storm is
running, to run this example. You can download and install Python from
http:// www.python.org/. Once Python is installed and added in the path
environment, you can run the following command to start the word count task:
$ bin\storm jar storm-starter-0.0.1-SNAPSHOT-jar-with-
dependencies.jar storm.starter.WordCountTopology WordCount -c
nimbus.host=<host>

In the word count example, you will find different classes being mapped to
different roles, as shown in the following screenshot:

https://github.com/nathanmarz/storm-starter
http:// www.python.org/

Scaling Solr through Sharding, Fault Tolerance, and Integration

[178]

Solr and Apache Storm
Apache Solr can use the capabilities of Apache Storm to generate the indexes
for data stream that is getting populated in Storm. Using Storm, Apache Solr
can access data from real-time distributed applications for searching. The near
real-time indexing and searching can be made possible through Apache Storm.
There is already an initiative to provide extended implementation of the IRichBolt
interface of Storm (https://github.com/arianpasquali/storm-solr). It provides
a SimpleSolrBolt class that extracts tuples from Apache Storm inputs and pushes
them to Solr by connecting them, as shown in the following diagram:

It adds value if Apache Solr is working in a SolrCloud mode. Apache Storm together
with Apache Solr can help parse large index size. Besides indexing, Apache Storm can
play a role in querying the Apache Solr instance. The bolts in Storm allow users to put
their custom code, using the one that can fire a query on the Solr database directly.

Summary
In this chapter, we focused mainly on working with big databases that work on large
datasets for processing and how Apache Solr can add value to them. We also looked
at some of the implementations to integrate Apache Solr with MongoDB, Apache
Cassandra, and Apache Storm. We also looked at some of the advanced topics such
as clustering the outcomes/results from Apache Solr using Carrot2. In the next
chapter, we will be focusing on optimizing Apache Solr for high performance.

https://github.com/arianpasquali/storm-solr

Scaling Solr through
High Performance

In the last chapter, we looked at how effectively Apache Solr can be used with
advanced capabilities. Apache Solr can work on low-cost hardware, thereby making
it a strong candidate for adaption at various organizations looking at cutting costs.
Besides cutting costs, an important aspect of any enterprise search implementation
is to get optimal performance out of the existing hardware and search infrastructure.
This is one of the challenging domains, because with the inflow of more and more
data, the search indexing as well as real-time search on these indexes slows down.
In such cases, the need for distributed instances comes into the frame. At the same
time, the unit of performance does not scale linearly with the number of CPU cores
or memory; hence, at times, even if you increase the memory after certain limits,
the performance does not improve. Therefore, it makes sense to optimize the Solr
instance for high performance to ensure maximum utilization of available resources.

In this chapter, we will look at various ways of optimizing the Solr instance while
scaling the instance for higher capabilities. We will be covering the following topics:

•	 Monitoring the performance of Solr
•	 Tuning of Solr JVM and the container server
•	 Optimizing Solr schema and indexing
•	 Speeding Solr through Solr cache
•	 Improving search runtime of Solr
•	 Optimizing SolrCloud

Scaling Solr through High Performance

[180]

Monitoring performance of Apache Solr
An Apache Solr-based search runs on a J2EE container. Just like any other
application management, the requirement for monitoring search beyond the
standard application management is needed to ensure search is highly optimized
and running within the limits. Monitoring is a critical part of any enterprise
search production system. There are some interesting case studies of Spunk
implementations and monitoring available at http://www.splunk.com/view/
customer-case-studies/SP-CAAABB2#case_study.

What should be monitored?
Apache Solr is the application on top of the Java container, which has its own
database for storing indexes. Solr supports three major workflows (indexing, search,
and administration). At each layer, different parameters can be monitored for
performance metrics. Monitoring can happen at various levels, which could be at
the operating system, JVM, or at the Apache Solr search level. You can use various
tools for this purpose. While monitoring, it is important to first identify the different
variables you will be required to monitor on a continuous basis or periodically.

Hardware and operating system
Operating system and hardware play a major role in determining performance.
Apache Solr uses a standard filesystem to store its data/index and it relies on the
underlying operation system APIs for all operations through JVM. Many of these
parameters can be measured through standard operating system tools, and you do
not require anything specific for its measurement.

Measures Description
CPU load This parameter tells you the amount of CPU utilized by Apache

Solr. It would be better if a CPU core idle/load time can be
measured. Many operating systems do provide that. And the
average CPU time would reveal the load on the enterprise search
system. This has to be measured frequently.

IO waits Excess IO wait cycle reveals that the CPU is waiting for the disk
and as of now, the disk is the bottleneck. The IO wait cycle can be
reduced through various ways. This can be measured periodically.

RAM or
memory used/
free

If RAM is not available, the search becomes not scalable, and the
query cache of Apache Solr cannot grow; this means a poorer
performance. This can be measured periodically, based on the data
loading and searching frequency.

http://www.splunk.com/view/customer-case-studies/SP-CAAABB2#case_study
http://www.splunk.com/view/customer-case-studies/SP-CAAABB2#case_study

Chapter 8

[181]

Measures Description
Swap space
and OS paging

This parameter works in combination with the memory used. If
there is a lot of swapping happening, it's going to be because of the
disk slowing your search, and you may even consider adding some
memory. This can be measured if free memory is less.

Disk space If you are low on disk space, Apache Solr cannot scale. You would
be measuring this infrequently.

Java virtual machine
Apache Solr accesses hardware and software resources through JVM, so measuring
this becomes an important task. These parameters can be measured through
JConsole/SolrAdmin and other such tools that we are going to discuss in the next
section. Apache Solr exposes Java Management Extensions (JMX) beans. JMX is a
J2EE technology used in the Java application to expose different application control
parameters to the administrators in a standardized format. The following parameters
can be monitored through JVM:

Measures Description
Heap size This has to be optimal to ensure Java does not work hard to make

more memory available, or to unnecessarily hog the memory even if
it's not required.

Thread count Each thread takes certain memory, and wants to use some CPU
processing time. The greater the number of threads is a warning for
performance bottleneck due to a lack of hardware resource. This
should be monitored continuously.

Garbage
collection

Each GC, when executed, makes your search slow. It is because GC,
when run, eats most of your resources. The need for GC cleanup
is mainly due to the memory getting full. This has to be monitored
periodically based on the usage pattern and indexing pattern. There
are different parameters under GC that can be monitored such as GC
run timings, and full GC versus runtime percentage.

Apache Solr search runtime
Apache Solr search runtime is what many consumers are concerned with. It's mainly
because it relates to the performance of your search. Apache Solr specific parameter
monitoring can be done through JMX. If you have an existing MBeanServer, JMX
can be exposed to it via Apache Solr by modifying solrconfig.xml with the
following change:

<jmx agentId="myAgent" serviceUrl="service:jmx:rmi:///jndi/rmi://
localhost:9999/solrjmx" />

Scaling Solr through High Performance

[182]

The agentId parameter will match with your existing MBeanServer, and
serviceURL is where you can provide the specific URL directly. Now, you can
run your Jetty with the following code to enable the JMX server for remote access:

java -Dcom.sun.management.jmxremote -jar start.jar

All the Solr-specific JMX beans are available under solr/ as the root in the
JMX browser.

Measures Description
Response
time

This is one of the most important measurement parameters. It is the time
taken for Solr to search, rank, and return the results to the client. It can be
measured as average, or worst N responses for certain queries. It can be
found on the following JMX bean: "solr/<corename>:type=standa
rd,id=org.apache.solr.handler.StandardRequestHandler",
totalTime, requests.

Query rate This parameter identifies the number of queries that your instance is
running per unit time. It can be Queries Per Second (QPS).

Cache hit
ratio

Apache Solr uses an internal cache to avoid unnecessary computations for
queries that are rerun. The cache is at various levels, and we are going to
look at them in the next section. A higher cache ratio means faster responses.

Apache Solr indexing time
Apache Solr indexing is another aspect in which different parameters can be
monitored for ensuring speedy index creation.

Measures Description
Number of
document/
index size

The number of documents for indexing play an important role
when considering performance; as the documents grow, the
performance degrades.

Number of
updates

Similarly, the number of updates run on Solr indexing are also critical; too
many updates can potentially slow the instance, and you may be required
to identify a strategy for indexing.

Segment
merge

Apache Solr stores its index information in segments; when the segment
exceeds the count, it tries to merge the segments and enlarge them. This
is a significant time consumption process, and the maximum segment
count and time for merging can hog resources, thereby slowing the search
performance. We are going to look at it in more detail when understanding
Solr indexes.

Time taken
after running
the optimize
command

Solr provides you with a way to run merged over index segments through
an optimized call. This call is expensive and may slow your regular searches.

Chapter 8

[183]

SolrCloud
When run in the SolrCloud mode, you may need to observe additional parameters
for performance monitoring besides standard Apache Solr measures:

Measures Description
Network trace/
ping time

It is the time taken to ping the server when multiple nodes are run.

Zookeeper latency
and throughput

Since SolrCloud uses Apache Zookeeper, you may be required to
monitor its latency with different data loads. There are some sites that
publish these statistics, such as https://ramcloud.stanford.
edu/wiki/display/ramcloud/ZooKeeper+Performance and
http://wiki.apache.org/hadoop/ZooKeeper/Performance.

Tools for monitoring Solr performance
We have looked at different parameters that can be measured; let's look at different
tools that you would use to monitor your Solr instance.

Solr administration user interface
Apache Solr administration user interface provides a nice UI to monitor Solr
statistics over the Web. It supports Solr-based JMX MBeans, and provides a
browser for browsing the beans. The following screenshot demonstrates the
Solr admin user interface:

https://ramcloud.stanford.edu/wiki/display/ramcloud/ZooKeeper+Performance
https://ramcloud.stanford.edu/wiki/display/ramcloud/ZooKeeper+Performance
http://wiki.apache.org/hadoop/ZooKeeper/Performance

Scaling Solr through High Performance

[184]

It provides different parameters that can be observed through the web console.
The details of each page and what it reveals is listed in the following table:

Measures Description
Thread dump You can see a list of all threads in enterprise search at

http:// <host>:<port>/solr/#/~threads.
Logs access You can also access the log, the log level, and the detail of each log

message through the user interface at http:// <host>:<port>/
solr/#/~logging.

Heap/segment
information

Apache Solr provides information regarding the current configured
segment size and heap size at http://<host>:<port>/
solr/#/<collection-name>.
http:// /<host>:<port>/solr/#/ shows the dashboard with
the memory consumption graph.

JMX MBeans You can directly browse JMX MBeans through the MBean browser
of the Apache Solr administration user interface at http://
<host>:<port>/solr/#/<collection-name>/plugins/.

JConsole
JConsole is a tool that is shipped with the Java Development Kit, and it provides
instant access to primary monitoring parameters such as memory and CPU usage
consumed by JVM. JConsole that can be found at $JDK_HOME/bin $JDK_HOME is your
JDK installation directory:

$ jconsole <process-id optional>

Once you run JConsole, you can see the graphical user interface to select a JVM
process you wish to monitor. The process can be a local process or remote JMX URL
that can be specified. Once JConsole connects to the process, you will start seeing a
graphical user interface as shown in the following screenshot:

http:// <host>:<port>/solr/#/~threads
http:// <host>:<port>/solr/#/~logging
http:// <host>:<port>/solr/#/~logging
http://<host>:<port>/solr/#/<collection-name>
http://<host>:<port>/solr/#/<collection-name>
http:// /<host>:<port>/solr/#/
http:// <host>:<port>/solr/#/<collection-name>/plugins/
http:// <host>:<port>/solr/#/<collection-name>/plugins/

Chapter 8

[185]

It shows the Overview tab with the summary information of important attributes of
JVM such as thread count, heap memory, CPU, and a number of classes loaded with
the x axis showing time. JConsole provides different tabs; the Memory tab displays
information about the memory usage with different heap spaces (Eden Space,
Survivor Space, Tenured Generation, and so on), and you can also run a garbage
collector from here. The Threads tab shows the threads' chat with time, along with
active threads and their information. It also shows if there are any deadlocking
threads in JVM. The Classes tab shows information about classes loaded in memory
along with the total count. The VM Summary tab shows a summary of the existing
JVM with detailed information on threads (live, daemon, peak, and so on), JVM
details, memory (heap, GC, and so on.), classes, system uptime, operating system,
environment variables, and so on.

Scaling Solr through High Performance

[186]

The MBean tab displays information regarding registered MBeans. Apache Solr
MBeans are visible in this tab if you connect to Jetty through JConsole as shown in
the following screenshot:

MBeans in JConsole are displayed in a tree format, with name-value pairs. You can
also fire operations on MBean through a JConsole GUI. You can visit http://docs.
oracle.com/javase/6/docs/technotes/guides/management/jconsole.html for
JConsole documentation.

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

Chapter 8

[187]

SolrMeter
SolrMeter is a tool that allows users to perform stress testing of their Solr instance.
Besides running stress tests, SolrMeter provides statistics on the Solr instance for
different key performance indexes such as queries and the time taken to run them,
documents added, and commit and optimize measures. SolrMeter can be downloaded
from http://code.google.com/p/solrmeter/downloads/list/solrmeter-
<version>.jar on your machine. Now we will call the following command:

java -jar solrmeter-<version>.jar

After running the preceding command, the system opens a SolrMeter GUI, as shown
in the following screenshot:

By pressing the play button, SolrMeter starts monitoring your Solr process.
SolrMeter provides the following performance measurements:

•	 Query Console: This console shows information related to the total queries,
errors, average time per query, and intended/actual query comparison

•	 Update Console: This console provides information on documents updated
in the Solr instance; it also shows errors and intended/actual documents
per minute

http://code.google.com/p/solrmeter/downloads/list/solrmeter-<version>.jar
http://code.google.com/p/solrmeter/downloads/list/solrmeter-<version>.jar

Scaling Solr through High Performance

[188]

•	 Commit Console: This console talks about the commit made by the process
while loading the documents; it provides statistics related to the errors, last
commit, number of documents that are collected without commit, and so on

•	 Optimize Console: This console provides a way to run an optimize
command on Solr, it also shows statistics regarding the time taken by
Solr to complete optimize, last optimize runtime, and so on

The performances are displayed in a graphical manner with histogram, pie chart, and
so on. Through SolrCloud, error logs can be accessed directly. SolrMeter allows you to
replay the logs so you can perform a load testing to your application. You can visit the
SolrMeter tutorial at https://code.google.com/p/solrmeter/wiki/Tutorial.

Tuning Solr JVM and container
Apache Solr runs on the underlying JVM in the J2EE container. While scaling Solr
for processing more requests and indexing data, it becomes important that the
underlying JVM is capable of scaling and is optimized well. Choosing the right JVM
is an important factor. There are many JVMs available in the market today that can
be considered such as Oracle Java HotSpot, BEA JRockit, and Open JDK (the list is
available at http://en.wikipedia.org/wiki/List_of_Java_virtual_machines).

Some of these JVMs are commercially optimized for production usage; you may
find comparison studies at http://dior.ics.muni.cz/~makub/java/speed.html.
Some of the JVM implementations provide server versions, which would be more
appropriate than normal ones.

Since Solr runs in JVM, all the standard optimizations for applications are applicable
to it. It starts with choosing the right heap size for your JVM. The heap size depends
upon the following aspects:

•	 Use of facets and sorting options
•	 Size of the Solr index
•	 Update frequencies on Solr
•	 Solr cache

https://code.google.com/p/solrmeter/wiki/Tutorial
http://en.wikipedia.org/wiki/List_of_Java_virtual_machines
http://dior.ics.muni.cz/~makub/java/speed.html

Chapter 8

[189]

Heap size for JVM can be controlled by the following parameters:

Parameter Description
-Xms This is the minimum heap size required during JVM

initialization, that is, container
-Xmx This is the maximum heap size up to which the JVM or J2EE

container can consume

Deciding heap size
Heap in JVM contributes as a major factor while optimizing the performance of
any system. JVM uses heap to store its objects, as well as its own content. Poor
allocation of JVM heap results in Java heap space OutOfMemoryError thrown at
runtime crashing the application. When the heap is allocated with less memory, the
application takes a longer time to initialize, as well as slowing the execution speed
of the Java process during runtime. Similarly, higher heap size may underutilize
expensive memory, which otherwise could have been used by the other application.

JVM starts with initial heap size, and as the demand grows, it tries to resize the heap to
accommodate new space requirements. If a demand for memory crosses the maximum
limit, JVM throws an Out of Memory exception. We have already seen the parameters
in the previous section with which you can specify the heap size. The objects that
expire or are unused, unnecessarily consume memory in JVM. This memory can be
taken back by releasing these objects by a process called garbage collection. Although
it's tricky to find out whether you should increase or reduce the heap size, there are
simple ways that can help you out. In a memory graph, typically, when you start
the Solr server and run your first query, the memory usage increases, and based on
subsequent queries and memory size, the memory graph may increase or remain
constant. When garbage collection is run automatically by the JVM container, it
sharply brings down its usage. If it's difficult to trace GC execution from the memory
graph, you can run Solr with the following additional parameters:

-Xloggc:<some file> -verbose:gc
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails

If you are monitoring the heap usage continuously, you will find a graph that
increases and decreases (sawtooth); the increase is due to the querying that is going
on consistently demanding more memory by your Solr cache, and decrease is due
to GC execution. In a running environment, the average heap size should not grow
over time or the number of GC runs should be less than the number of queries
executed on Solr. If that's not the case, you will need more memory.

Scaling Solr through High Performance

[190]

Features such as Solr faceting and sorting requires more memory on top of
traditional search. If memory is unavailable, the operating system needs to perform
hot swapping with the storage media, thereby increasing the response time; thus,
users find huge latency while searching on large indexes. Many of the operating
systems allow users to control swapping of programs.

How can we optimize JVM?
Whenever a facet query is run in Solr, memory is used to store each unique element
in the index for each field. So, for example, a search over a small set of facet value
(an year from 1980 to 2014) will consume less memory than a search with larger set
of facet value, such as people's names (can vary from person to person). To reduce
the memory usage, you may set the term index divisor to 2 (default is 4) by setting
the following in solrconfig.xml:

<indexReaderFactory name="IndexReaderFactory"
 class="solr.StandardIndexReaderFactory">
 <int name="setTermIndexDivisor">2</int>
 </indexReaderFactory >

From Solr 4.x onwards, the ability to set the min, max (term index divisor) block size
ability is not available. This will reduce the memory usage for storing all the terms to
half; however, it will double the seek time for terms and will impact a little on your
search runtime.

One of the causes of large heap is the size of index, so one solution is to introduce
SolrCloud and the distributed large index into multiple shards. This will not reduce
your memory requirement, but will spread it across the cluster.

You can look at some of the optimized GC parameters described at http://wiki.
apache.org/solr/ShawnHeisey#GC_Tuning page. Similarly, Oracle provides a GC
tuning guide for advanced development stages, and it can be seen at http://www.
oracle.com/technetwork/java/javase/gc-tuning-6-140523.html. Additionally,
you can look at the Solr performance problems at http://wiki.apache.org/solr/
SolrPerformanceProblems.

Optimizing JVM container
JVM containers allow users to have their requests served in threads. This in turn
enables JVM to support concurrent sessions created for different users connecting at
the same time. The concurrency can, however, be controlled to reduce the load on the
search server.

http://wiki.apache.org/solr/ShawnHeisey#GC_Tuning page
http://wiki.apache.org/solr/ShawnHeisey#GC_Tuning page
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://wiki.apache.org/solr/SolrPerformanceProblems
http://wiki.apache.org/solr/SolrPerformanceProblems

Chapter 8

[191]

If you are using Apache Tomcat, you can modify the following entries in
server.xml for changing the number of concurrent connections:

Similarly, in Jetty, you can control the number of connections held by modifying
jetty.xml:

Similarly, for other containers, these files can change appropriately. Many containers
provide a cache on top of the application to avoid server hits. This cache can be
utilized for static pages such as the search page. Containers such as Weblogic provide
a development versus production mode. Typically, a development mode runs with
15 threads and a limited JDBC pool size by default, whereas, for a production mode,
this can be increased. For tuning containers, besides standard optimization, specific
performance-tuning guidelines should be followed, as shown in the following table:

Container Performance tuning guide
Jetty http://wiki.eclipse.org/Jetty/Howto/High_Load

Tomcat http://www.mulesoft.com/tcat/tomcat-performance and
http://javamaster.wordpress.com/2013/03/13/apache-
tomcat-tuning-guide/

JBoss https://access.redhat.com/site/documentation/en-
US/JBoss_Enterprise_Application_Platform/5/pdf/
Performance_Tuning_Guide/JBoss_Enterprise_Application_
Platform-5-Performance_Tuning_Guide-en-US.pdf

http://wiki.eclipse.org/Jetty/Howto/High_Load
http://www.mulesoft.com/tcat/tomcat-performance
http://javamaster.wordpress.com/2013/03/13/apache-tomcat-tuning-guide/
http://javamaster.wordpress.com/2013/03/13/apache-tomcat-tuning-guide/
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/5/pdf/Performance_Tuning_Guide/JBoss_Enterprise_Application_Platform-5-Performance_Tuning_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/5/pdf/Performance_Tuning_Guide/JBoss_Enterprise_Application_Platform-5-Performance_Tuning_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/5/pdf/Performance_Tuning_Guide/JBoss_Enterprise_Application_Platform-5-Performance_Tuning_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/5/pdf/Performance_Tuning_Guide/JBoss_Enterprise_Application_Platform-5-Performance_Tuning_Guide-en-US.pdf

Scaling Solr through High Performance

[192]

Container Performance tuning guide
Weblogic http://docs.oracle.com/cd/E13222_01/wls/docs92/

perform/WLSTuning.html

Websphere http://www.ibm.com/developerworks/websphere/
techjournal/0909_blythe/0909_blythe.html

Apache Solr works better with the default container it ships with, Jetty, since it offers
a small footprint compared to other containers such as JBoss and Tomcat for which
the memory required is a little higher.

Optimizing Solr schema and indexing
Apache Solr schema can also be optimized for reducing the overall footprint
of your index and to speed up the search. Let's take a look at some of the
possible optimizations.

Stored fields
The schema.xml file also provides a configuration to define whether a field needs
to be stored as an optional attribute (stored=true/false). Typically, the fields are
stored so that their values can be displayed as search results in the search results
page. However, if the size of the fields is large, it unnecessarily increases the size
of the index, eating up Solr's memory. For large fields, it is better to store their
identifiers and let the search client be responsible for rendering the result; fire a query
to another system (database or filesystem) to gather the required field information
as a part of the result. This will not only reduce the load on Solr but will also ease
the management of the field in another store (like relational databases) which are
optimized for standard querying.

Indexed fields and field lengths
The size of the index is being impacted by the number of fields that are marked
for indexing in schema.xml. So, it is always recommended to monitor and control
the schema fields that should be indexed by Solr. It can be done by specifying
indexed=true or indexed=false appropriately for each schema attribute. For
example, out of the five fields marked for indexing, if you reduce one field, it is
roughly a 20 percent reduction in the size of index, although it depends upon the
field type, size, and data. It is recommended to avoid indexing unnecessary fields
that you do not intend to use in search.

http://docs.oracle.com/cd/E13222_01/wls/docs92/perform/WLSTuning.html
http://docs.oracle.com/cd/E13222_01/wls/docs92/perform/WLSTuning.html
http://www.ibm.com/developerworks/websphere/techjournal/0909_blythe/0909_blythe.html
http://www.ibm.com/developerworks/websphere/techjournal/0909_blythe/0909_blythe.html

Chapter 8

[193]

Fields with a larger size take more memory and consume a sufficient block of
memory. Hence, if the fields are not truncated, it may impact the performance.
Apache Solr provides the maxFieldLength attribute, which allows users to specify
the maximum size of the field to help users reduce the size of the fields.

Copy fields and dynamic fields
A copyField declaration will take any field you tell it to and copy it into another
field. For example, look at the following code:

<copyField source="*_name" dest="all_names"/>

The preceding code will copy all the fields ending with _name to all_names. Apache
Solr also ships with default copyFields, which may not suit your requirements, so
it is better to get rid of as many copyFields as we can. This can offer major speed
improvements in your searches, especially for large index sizes.

For best index size and searching performance, set the index to false for all general
text fields. Use copyField to copy them to one text field, and use that for searching.

Dynamic fields allow users to run Solr in a schemaless mode. In schemaless, users do
not have to define a schema for application. For example, please look at the following
dynamic field definition:

<dynamicField name="*_integer" type="pint" indexed="true"
stored="true"/>

This means that the user can pass any document with fields ending with _integer,
and they will all be indexed under the given dynamic field. This feature provides
excellent schemaless capabilities to the end user. However, it adds an overhead. The
Apache Solr default schema ships with plenty of dynamic fields. So, the removal of
unused dynamic fields can reduce the overall index size.

Fields for range queries
Apache Solr provides optimized fields for range queries. These are tint, tlong,
tdate, tdouble, and tfloat and they index each value at various levels of precision.
Although it increases the index size, the range queries are faster than normal integer,
float, date, double, and long. The precisions and position increment gap can be
changed by the user by modifying the following fields in schema.xml:

<fieldType name="tint" class="solr.TrieIntField" precisionStep="8"
positionIncrementGap="0"/>
 <fieldType name="tfloat" class="solr.TrieFloatField"
precisionStep="8" positionIncrementGap="0"/>

Scaling Solr through High Performance

[194]

 <fieldType name="tlong" class="solr.TrieLongField"
precisionStep="8" positionIncrementGap="0"/>
 <fieldType name="tdouble" class="solr.TrieDoubleField"
precisionStep="8" positionIncrementGap="0"/>

Index field updates
Whenever Solr index requires an update, many users perform removal and insert
of the Index field. However, Apache Solr supports index updation, which includes
adding new attributes to the current data, modifying the existing attribute value, and
so on. This operation performs faster than the remove-create route. We will now look
at some examples about how it can be done. Load the data with some document to
be indexed as follows:

curl http://<host>:<port>/solr/update?commit=true -H "Content-Type:
text/xml" --data-binary "<add><doc><field name='id'>1748</field><field
name='name'>Scaling Solr</field><field name='features'>Apache Solr,
Lucene</field></doc></add>"

Now, modify the value of the field name using the following CURL command:

curl http://<host>:<port>/solr/update?commit=true -H "Content-Type:
text/xml" --data-binary "<add><doc><field name='id'>1748</field><field
name='name' update='set'>Scaling Solr by packtpub Karambelkar</
field></doc></add>"

You can add a new attribute as follows:

curl http://<host>:<port>/solr/update?commit=true -H "Content-Type:
text/xml" --data-binary "<add><doc><field name='id'>1748</field><field
name='popularity' update='set'>100</field></doc></add>"

The update also supports multivalued attributes, and they can be added as shown in
the following code:

curl http://<host>:<port>/solr/update?commit=true -H "Content-Type:
text/xml" --data-binary "<add><doc><field name='id'>1748</field><field
name='features' update='add'>Java, J2EE</field></doc></add>"

Synonyms, stemming, and stopwords
It is highly possible that enterprise search results get influenced by the number of
common words that appear in unstructured data. For example, the, a, an, may, and
more; these words not only distort the search result but also unnecessarily appear
on top of all the results (due to heavy occurrences). Apache Solr provides the user
with a way to stop indexing of these words by means of the stopwords feature. The
stopwords can be listed in the file, and schema.xml can point to this file.

Chapter 8

[195]

Stemming is a process of reducing any word into its shorter form. For example, talked,
talker, talks would reduce to a base form, talk. Similarly, a synonym would match
talk with chat, conversation, and so on. Apache Solr provides support for both. These
features not only save your search time but also improve search query performance.

There are different stemming algorithms supported by Apache Solr; it also allows
users to define their own algorithm. The following table describes different
algorithms for stemming:

Algorithm Description
Porter This is a rule-based algorithm that transforms any form of the word

in English into its original word (stem). For example, talking and
walked are marked as walk and awesome is marked as awe.

KStem This algorithm is similar to Porter, but it returns words instead of
truncated word forms. For example, amplification->amplify.

Snowball Snowball is a language for creating stemming (in the domains
of Information Retrieval or IR). Using Snowball, you can define
your own stemming algorithm. Please visit http://snowball.
tartarus.org/ for more details.

Hunspell Open Office dictionary-based algorithm. It works with all
languages. More information on Hunspell is available at
http://hunspell.sourceforge.net/

Overall, the workflow and the mandatory fields mapping is shown in the following
section. The true value indicates the presence of this attribute while defining the field.

Tuning DataImportHandler
DataImportHandler in Solr is often used to connect with a relational database
and to perform full/delta imports. It is designed to stream rows one by one. It also
supports other types of databases, hence, it becomes important to ensure it runs in an
optimized manner.

DataImportHandler allows users to create different entities for SQL queries. It
also supports inner entities to write complex SQL queries. Each entity can take
a SQL query as a parameter in case of a relational database. Inner entities should be
avoided wherever possible. It is because many times, SQL queries can be combined
resulting in the database performing faster joins than the Apache Solr JDBC layer
doing it.

http://snowball.tartarus.org/
http://snowball.tartarus.org/
http://hunspell.sourceforge.net/

Scaling Solr through High Performance

[196]

In database configuration for DataImportHandler, Solr allows you to write your
own transformers, which can be regular expressions, JavaScript, and so on. Each
transformer call will execute on each row of your resultset. Many of them can
directly be performed in the relational database query itself on the data. So, it is
effective to avoid them wherever possible, and move them in the database layer.
This way, the RDBMS query optimizer can provide an overall query plan in a more
optimized manner.

When you are running a complex query with multiple inner joins, it is often
found that the bottleneck for these inner joins stay with databases, such as Solr
DataImportHandler. If the joins are based on unique IDs recognized by Apache
Solr schema, these can be reduced to separate entities, and an index merge can
be performed.

For inner entities that are unavoidable, CachedSqlEntityProcessor can be used for
faster indexing. CachedSqlEntityProcessor caches SQL row and avoids running
SQL queries again.

In the DataImportHandler configuration, the default batch size for each fetch block
is 500; it can be tuned based on the database updates that are taking place in the
database. It can be defined as follows:

<dataSource type="JdbcDataSource" name="MyJDBC" driver="oracle.
jdbc.OracleDriver" url="jdbc:oracle:thin:@//myhost:1521/orcl"
batchSize="100" user="scott" password="tiger"/>

Speeding up index generation
Theoretically, Apache Solr does not have any limit on the maximum number of
documents that can be loaded on its search indexing while running in a distributed
mode. Apache Lucene has an upper cap on the size of index (approximately to 2
billion documents).

While indexing, Apache Solr pushes the newly generated index into a segment. Each
segment is equally sized. The solrconfig.xml provides the <mergeFactor>10</
mergeFactor> parameter to optimize the index storage on the filesystem. The
mergeFactor count represents the maximum number of segments Apache Solr can
have at any point in time. While indexing, if the Apache Solr segment count equals
the merge factor count, the segments are merged into one segment, and the process
continues. In addition to mergeFactor, there are other configuration parameters in
solrconfig.xml that can be set. The maxMergeDocument count indicates that all
segments containing more documents than its value won't be merged.

Chapter 8

[197]

Committing the change
When documents are getting indexed, the Apache Solr memory usage grows
until a commit operation. Commit in Solr ensures all the changes done with Solr
indexing are persisted on the disk. With Solr, you can perform commit in the
following different ways:

•	 Automatic commit (hard and soft)
•	 Manual commit

°° Soft commit
°° Hard commit

Apache Solr writes the Solr document automatically to the underlying storage when
the user enables the automatic commit option. Automatic commit provides hard
and soft options. A soft commit does not commit the changes, but they are made
available for searching, whereas a hard commit will replicate the indexes across
Solr nodes in case of a cluster. Users can specify a limit on soft commit with the
maximum time (maxTime) or maximum documents (maxDocs) after which a commit
should take place.

The value for maximum time/document should be decided cautiously because it
can potentially impact the performance of the Solr instance. Choosing these values
is driven by the actual Solr use case. For example, if the Solr instance is deployed at
a place where there are frequent update operations, the value can be low to avoid
large data waiting for the commit process to happen. When a commit is run on a
large document list, it slows the other processes by eating the CPU and memory of
Solr, resulting in the end users experiencing a slow response. Similarly, if the insert/
updates are not frequently done, these values can be higher, to avoid any overhead
of unnecessary insert/update run by the Solr instance. Solr writes an update log,
and the size of the update log can be specified in the Solr instance. Specifying the
hard commit size limit based on the size of the update log will enable maximum
utilization of the available resources in the Solr setup.

We have already seen soft commit and hard commit earlier in the context of
near-real-time search capabilities of Solr in the previous chapter.

Scaling Solr through High Performance

[198]

Limiting indexing buffer size
When a Solr document is indexed in a streaming manner, the commit does not take
place with every document. Solr holds it in its memory buffer also called the RAM
buffer. Once the size of the documents exceed the Solr buffer size, Apache Solr
creates a new segment if there is no existing segment with a smaller size, or merges
the current document into existing segments. The complete operation is run in the
batch mode. Apache Solr allows users to specify the size of the RAM buffer with the
following parameter in solrconfig.xml:

<ramBufferSizeMB>100</ramBufferSizeMB>

The default value of the RAM buffer size is 100 MB (Solr 1.4 onwards). Apache Solr
also provides the user with an option to specify the number of documents to buffer
during the indexing operation with the following parameter:

<maxBufferedDocs>1000</maxBufferedDocs>

At any point of time during the indexing operation, if Solr encounters the size
of memory in MB, or the number of documents exceeding the maximum size
specified in the configuration, the in-memory Solr documents are flushed to the
underlying storage.

Solr also provides an option to control the maximum number of threads that can be
used while indexing the document. Having a sufficient number of threads of Solr
processes, the underlying hardware can be effectively utilized as follows:

< maxIndexingThread>8</ maxIndexingThread >

The default value for indexing the thread is 8; however, based on the indexing
requirement, this can be changed. To utilize the threading effectively, Apache SolrJ
provides the ConcurrentUpdateSolrServer class, which utilizes the existing cloud
system to upload the data using threads.

SolrJ implementation classes
When working with SolrJ, the documents for indexing can be uploaded through the
following SolrServer class implementations:

•	 CloudSolrServer: This is meant to work with SolrCloud and internally uses
LBHttpSolrServer

•	 ConcurrentUpdateSolrServer: This buffers all the added documents and
writes them into open HTTP connections. This class is thread safe

•	 HttpSolrServer: This class is used to upload the content to Solr

Chapter 8

[199]

•	 LBHttpSolrServer: This is a load balancing wrapper around
HttpSolrServer

•	 EmbeddedSolrServer: This connects to the local Solr Core directly to
create indexes

Among these implementations, ConcurrentUpdateSolrServer allows a concurrent
update of documents for indexing in Solr over remote access.

Speeding Solr through Solr caching
Many times, the queries that are run on search are repetitive in nature. In such cases,
the presence of a cache brings down the average response time for search results.
Apache Solr provides a caching mechanism on top of the index data. This cache,
unlike a normal cache, does not carry any expiry (persistent cache). It is associated
with IndexWriter. The following are the three different types of cache supported
by Solr:

•	 LRUCache: This is Least Recently Used (based on synchronized
LinkedHashMap) (default)

•	 FastLRUCache: This is a newer form of cache and is expected to be faster
than all the others

•	 LFUCache: This is Least Frequently Used (based on ConcurrentHashMap)

The following are the common parameters for the cache in solrconfig.xml:

Parameter Description
class You can specify the type of cache you wish to attach, that is,

LRUCache, FastLRUCache, or LFUCache.
size This is the maximum size a cache can reach.
initialSize This is the initial size of the cache when it is initialized.
autowarmCount This is the number of entries to seed from the old cache. We will

look at this in the next section.
minSize This is applicable for FastLRUCache; after the cache reaches its

peak size, it tries to reduce the cache size to minSize. The default
value is 90 percent of the size.

acceptableSize If FastLRUCache cannot reduce to minSize when the cache
reaches its peak, it will at least touch to acceptableSize.

Scaling Solr through High Performance

[200]

The filter cache
The filter cache provides a caching layer on top of filter queries. For any query that
is fired as a filter query, Solr first looks into the cache for search results. If not found,
it gets fired on the repository, and the results are moved to the cache. Each filter
is cached separately; when queries are filtered, this cache returns the results and
eventually, based on the filtering criteria, the system performs an intersection of
them. If a search is using faceting, use of the filter cache provides better performance.
This cache stores the document IDs in an unordered state.

The query result cache
As the name suggests, this cache is responsible for caching the query results. This
way, repeated requests for similar searches does not require complete search, but
instead it can return the results from the cache. This cache will store the top N query
results for each query passed by the user. It stores an ordered set of document IDs.
This cache is useful where similar queries are passed again and again. You can
specify the maximum number of documents that can be cached by this cache in
solrconfig.xml. Consider the following snippet:

<queryResultMaxDocsCached>200</queryResultMaxDocsCached>

The document cache
The document cache is responsible for storing Solr documents into the cache. Once a
document is cached, it does not require a fetch request on the disk thereby reducing
the disk IOs. This cache is part of Apache Solr and it is different from the disk cache
that operating systems provide. This cache works on IDs of a document, so the
autowarming feature does not really seem to bring any impact, since the document
IDs keep changing as and when there is a change in index.

The size of the document cache should be based on your
size of results and size of the maximum number of queries
allowed to run; this will ensure there is no re-fetch of
documents by Solr.

Chapter 8

[201]

The field value cache
Field value cache provides caching of Solr fields. It can provide sorting on fields,
and it supports multivalued fields. This cache is useful when you have extensive use
of Solr faceting. Since faceting is a field-based caching of fields, this cache is used
mainly for faceting. You can monitor the status of the field value cache through the
Apache Solr Administration console, and it provides information pertaining to hit
ratio, number of hits, load on cache, and so on.

The warming up cache
Cache autowarming is a feature by which a cache can pre populate itself with objects
from old search instances/cache. This property can be set in solrconfig.xml.
Whenever the user commits new documents for Solr index, Apache Solr starts a new
searcher, and it copies the cache from the previous searcher. A cache can be preloaded
by explicitly running frequently run queries. This way Solr does not start with no
cache. Having a prepopulated cache helps in that any query run after Solr is up will
utilize the pre populated cache content. The following snippet from solrconfig.xml
shows an example of autowarming of Solr cache on a new search initialization:

<listener event="newSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <!-- seed common sort fields -->
 <lst> <str name="q">java books databases</str></lst>
 </arr>
</listener>

The autowarming count determines Solr startup time, so for frequently updated
indexes it is better to keep this count low. The count can be set by adding the attribute
to your cache element in solrconfig.xml. The following is an example of this:

<filterCache class="solr.FastLRUCache"
 size="512"
 initialSize="512"
 autowarmCount="0"/>

Improving runtime search for Solr
To speed up the querying and rendering of results, it is important to optimize the
runtime of Apache Solr. The optimization of Solr runtime can be achieved in various
ways, which will be discussed shortly.

Scaling Solr through High Performance

[202]

Pagination
A typical search screen provides results on a single page with pagination. Apache
Solr provides support for pagination at the search level, thereby enabling search
responses. When Solr fetches results for the queries passed by the user, Apache Solr
allows users to limit the fetching of the result to a certain number by specifying the
rows attribute in the search queries. For example, the following query will return 10
rows of results from 10 to 20:

q=Sudarshan&rows=10&start=10

The pagination parameters can also be specified in solrconfig.xml as
queryResultWindowSize. By having a minimum page size, the response of
a search over Apache Solr becomes fast, since it does not have to wait until
all results are captured.

Reducing Solr response footprint
Apache Solr can provide search results in different formats. The response can be a
simple .txt, .csv, .xml, or .json format. A Solr response contains information about
matched results. It also provides information-related facets, highlighted text, and
many other things that are used by the client (by default, a velocity-template-based
client provided by Solr). This in turn is heavy response and it can be optimized by
providing a compression over result. Standard JSON response has a smaller footprint
over other formats, and can be parsed easily using JSON APIs in different languages.

Using filter queries
The difference between normal query and filter query is that a normal query on
Solr will perform the search, and then it applies a complex scoring mechanism to
determine the relevance of the document with the search results, whereas a filter
query on Solr will perform the search and apply the filter; this does not apply any
scoring mechanism. So, filter queries provide faster responses compared to normal
queries because filter queries do not require additional processing time for scoring.
For higher speeds, it is recommended to go with filter queries. A normal query can
easily be converted into a filter query, as shown in the following code snippet:

Normally: q=publisher:packtpub AND tag:bigdata
Filter Query: q=*:*&fq=publisher:packtpub&fq=tag:bigdata

The scoring is no more applicable with filter queries; if the same query is passed
again and again, the results are returned from the filter cache directly.

Chapter 8

[203]

Search query and the parsers
A query parser is responsible for parsing the queries passed by users. Solr allows
different types of parsers, including custom parsers as well. Among them, the
DisMax parser is one of the simplified parsers. The parsers should be used based on
the requirements of search. Overall, some of the widely used parsers are explained in
the following table:

Parser Description
Standard
(Lucene)

This is the default parser that provides wildcard, math, range queries
support, and filter queries.

DisMax This parser supports plain searches without any additional field
required in search criteria or without heavy syntax, such as AND,
OR, boosting, and so on. The search is executed across fields.

NestedQuery This supports complex nested queries: {!query defType=func
v=$q1}; if the q1 parameter is price then the query would be a
function query on the price field.

Extended
DisMax

DisMax + features such as multiplicative boost function.

More information on parsers can be read at http://wiki.apache.org/solr/
QueryParser. At times while writing search queries, if you are using a DisMax
parser, it may end up searching across all the fields spending significant time to
match the search string. In such cases, you may consider using standard parser
filter queries to reduce the result returned by Solr.

Lazy field loading
By default, Apache Solr reads all stored fields and then filters the ones that are
not needed. This becomes a performance overhead if there are a large number of
fields defined by the user. Solr also provides lazy field loading with which users
can choose to delay the loading of the fields as and when it is needed, that is, lazily.
This lazy field loading feature in Solr can be enabled by setting the following flag in
solrconfig.xml:

<enableLazyFieldLoading>true</enableLazyFieldLoading>

This offers a significant improvement over speed of search. This can be done by
setting the following flag in solconfig.xml. In addition to these options, you can
also define your cache implementation.

http://wiki.apache.org/solr/QueryParser
http://wiki.apache.org/solr/QueryParser

Scaling Solr through High Performance

[204]

Optimizing SolrCloud
In any distributed system, if a user has fired a query across multiple nodes, the
waiting time will be dependent upon the average performance of the slowest nodes.
This concept is called "laggard problem" for indexes of your instance. This problem
states that the response to your search query, which is an aggregation of results from
all the shards, is controlled by the following formulae:

QueryResponse = avg(max(shardResponseTime))

If you have distributed search in shards, a shard node that has the slowest response
time will impact your query response time, and it will start increasing. Similar to
the laggard problem, a distributed search also faces limitations. For example, each
document uploaded on the distributed Big Data must have a unique key, and that
unique key must be stored in the Solr repository, To do that, Solr schema.xml should
have stored=true against the key attribute. This unique key has to be unique across
all shards. It enables Apache Solr to distribute the indexes across shards, and to
clearly identify each Solr document through unique IDs.

Another problem among Apache Solr is the issue of Distributed Deadlock. When a
query is passed to a shard, it can make subqueries to all the other shards. This is a
common problem of resources waiting for other resources to complete. In this case, it
is shard nodes. When the work is assigned to shards, and if they wait for each other
to complete the response, they will get stuck forever. For example, if there are two
shards and each of them has a job to process, now they create subtasks that are then
assigned to each other's threads. Both the requests are waiting for other shards to
complete the task.

SOLR-5216 JIRA was targeted to address this problem. If you
are using Apache Solr beyond 4.6, you may not face this issue.

Solr Cloud relies heavily on Apache Zookeeper. So, if there are any operations that
are taking a longer time than zkClientTimeout (default 15 seconds), it becomes
a concern. Since Zookeeper expects a faster read/write, the metadata stored in
Zookeeper's own database should effectively use OS level cache, and must be
on a high-speed disk. Sometimes even having a dedicated machine for multiple
Zookeeper nodes can help. A Zookeeper that is replicated requires a minimum of
three hosts, or two active hosts. Zookeeper requires a majority (n/2)+1 of hosts to
be active to maintain quorum.

Chapter 8

[205]

We have already seen Document Routing for SolrCloud in the previous chapter.
SolrCloud supports sharding based on automatic as well as user-defined document
routing. Similarly, the querying can be enhanced to search and return results from
one or more shards that are passed along with search query using the shard.keys
parameter. For higher optimization, instead of relying on SolrCloud-based sharding
and search queries, clients can understand their enterprise search requirements;
design optimized sharding and document routing strategy for efficient information
retrieval and optimal performance.

Summary
In this chapter, we started with different parameters that can be used to monitor the
health of the Solr system; we then looked at different open source tools available in
the market; and, finally, we have gone through different ways of optimizing your
Solr instance to perform high-speed data search and analysis.

Solr and Cloud Computing
In the last chapter, we have seen how Apache Solr can be optimized for better
performance on a single node as well as a cluster of nodes. Apache Solr can be scaled
horizontally or vertically. Horizontal scaling focuses on adding additional nodes for
better distribution of search over multiple machines. Vertical scaling involves adding
more resources to the current node setup, such as CPU cores, RAM, or other hardware
components. Solr can be scaled in both cases. The IT industry today is keen to look
for a way to increase capacity or add capabilities on the fly without investing in new
infrastructure, or licensing new software. This requirement highlights the importance
of Cloud computing, which provides a subscription-based or pay-for-usage-based
service to enable the IT industry to explore new horizons at minimal cost.

In this chapter, we are going to look at how Apache Solr can work with Cloud
computing in detail. We will cover the following topics:

•	 Understanding Cloud deployments for search
•	 Solr on Cloud strategies
•	 Running Solr on Cloud (IaaS and PaaS)
•	 Running Solr on Cloud (SaaS)

Enterprise search on Cloud
In this section, we are going to understand more about Cloud computing, and how it
can be used for deployment of an enterprise search, which is Apache Solr search.

Solr and Cloud Computing

[208]

Models of engagement
The Cloud computing service provides different models of engagement with
consumers, and together it forms a Cloud infrastructure. The following image
shows different ways of interacting with an enterprise search using Cloud:

The figure explains the following services:

•	 Infrastructure as a Service (IaaS): This model provides the complete
infrastructure of Cloud to its consumers, which covers CPU cores, RAM,
disk, cluster nodes, and so on. Amazon EC2 and other Cloud providers
provide IAAS-based services.

•	 Platform as a Service (PaaS): This model provides an underlying platform
along with hardware to its customer. The platform includes a preconfigured
operating system, database, container/server, programming environment,
and so on. Amazon EC2 Cloud provides a preconfigured environment for
different requirements.

Chapter 9

[209]

•	 Software as a Service (SaaS): This model provides application software to its
customers over Cloud. This covers underlying hardware, platform to run the
software, and preconfigured software. For example, Amazon EC2 ships with
elastic search VMs, which can be configured to work with the latest version
enterprises directly.

•	 Search solution as a service: In this service model, the ready-made solution
for an enterprise search is available for consumption readily and the
consumer does not really need to put any effort into building a solution on
top of an enterprise search for indexing and search. One of the most famous
examples of this is Loggly (https://www.loggly.com/). Loggly provides a
Cloud-based log management solution and searches for users directly.

Enterprise search Cloud deployment models
In the last section, we have seen different types of Cloud service models that can be
used by organizations. Enterprise search applications can be deployed on different
types of Cloud configuration. However, the most widely used are public Cloud and
private Cloud.

Private Cloud is mainly used by a single organization across multiple offices. This
type of deployment can be built on campus or off campus. Private Clouds are created
mainly due to security, better control, and utilization of on-campus resources. The
following diagram depicts what a private Cloud looks like:

https://www.loggly.com/

Solr and Cloud Computing

[210]

Public Clouds are hosted remotely and are managed by different vendors. The
organization can register and subscribe to their services. These Clouds provide all
three kinds of services and they are most commonly used for Cloud deployment.
There are different public Cloud providers, such as Amazon, A2, and so on. The
following diagram shows what the actual public Cloud system looks like:

It is also possible to deploy applications on public and private Clouds together.
It's called a hybrid Cloud. A hybrid Cloud consists of two or more Clouds.

Based on the needs of the system, the enterprise search can be deployed on a
private or public Cloud. The following factors play a role in considering the
Cloud infrastructure for usage:

•	 Many enterprises find it an expensive affair to set up the distributed search
infrastructure, and maintain it with a team of dedicated administrators

•	 The enterprise search on the Cloud provides a reusable, off-the-shelf
solution, which can be used with multiple clients based on the requirement

Chapter 9

[211]

•	 The cost of ownership is clearly defined and predictable, as compared to the
number of unknowns involved

•	 During the initial phase of setup, Cloud infrastructure provides the
try-and-use test bed for a minimum investment

•	 Professionally managed infrastructure and well-defined service level
agreements (SLA) can keep the enterprise at peace with respect to the
post-implementation phase

•	 Due to the support for virtualization, the Cloud-deployed applications are
portable to be migrated from one location to another, making them device
and location independent

The Cloud with search enabled has definitely proven to be beneficial for applications
and many search solution providers are prospering through it.

Solr on Cloud strategies
Solr provides its own distributed setup called SolrCloud. We have studied details
of SolrCloud in the past chapters. Before deployment of Solr on a Cloud computing
stack, a Cloud strategy must be decided to identify the right Solr-based search
support deployment in different forms. Cloud-based instances are meant to achieve
a high degree of multitenancy. We will look at some of the popular strategies.

Scaling Solr with a dedicated application
One of the simplest strategies is to have Apache Solr deployed as a separate
instance for each client. It is as good as Apache Solr instances running completely
independently. They can be managed independently. The installation steps for this
configuration are standard installation instructions of the Apache Solr installation,
as explained in the previous chapters. This approach, although naive, offers the
following advantages and disadvantages.

Advantages
It has completely independent instances, enabling each client to control its instance
separately from one another. Unlimited levels of customization are possible without
impacting the other instances.

Disadvantages
The cost of having a separate instance per client is too high. It is very difficult to
manage the upgrades, patching, and so on across instances for administrators.
We need to perform repetitive tasks for each client.

Solr and Cloud Computing

[212]

Scaling Solr horizontal as multiple
applications
Apache Solr can be deployed as an application on any standard J2EE container. One
of the strategies is to have a separate Solr-based application for each group of users/
clients so as to achieve multitenancy in a way. As Cloud supports virtualization, one
can build a virtual machine with high CPU and memory for this multi-application
scenario. With this strategy, Cloud will have a single container, with Apache Solr
being deployed as an application for each user. Since each application is independent
of one another, it can be customized in its own way, requiring separate storage and
configuration. These applications share resources such as CPU load, RAM, and so on
with one another. Let's try building the Solr multi-application on Tomcat. We will try
building two different Solr applications, that is, solr1 and solr2 for now. You need
to perform the following steps to achieve multiple Solr applications on a server:

1.	 Download the Tomcat server from http://tomcat.apache.org/.
2.	 Similarly, download the latest Apache Solr instance from

https://lucene.apache.org/solr/.
3.	 Extract the ZIPs in your preferred folder.

If you are going to use Tomcat in a service mode on Windows 64-bit machines,
you may need to follow the http://stackoverflow.com/questions/211446/
how-to-run-tomcat-6-on-winxp-64-bit page for workarounds.

4.	 Now, you need a separate configuration for each file, so you will need separate
configuration folders, that is, solr1 and solr2 to be created at some place.

5.	 Copy the content of $SOLR_HOME/example/solr to your solr1 and solr2
configuration storage locations. We will try with the basic configuration.
Based on your configuration, you may also be required to copy library JAR
files from $SOLR_HOME/contrib to the respective Solr application's WEB-INF/
lib folder or a common shared library folder in $TOMCAT_HOME/lib. You
may require files such as sl4j logger, velocity template library, and so on.

6.	 Now, you need to copy solr.war into the $TOMCAT_HOME/webapps folder as
solr1.war and solr2.war.

7.	 The next step is to point the respective Solr instances to the correct
configuration, so you need to create files with the same name as your
application, that is, solr1.xml and solr2.xml in the $TOMCAT_HOME/conf/
Catalina/localhost folder. You will be required to put the following
content to it:
<Context docBase="<path to solr1.war>/solr1.war" debug="0"
crossContext="true" >

http://tomcat.apache.org/
https://lucene.apache.org/solr/
http://stackoverflow.com/questions/211446/how-to-run-tomcat-6-on-winxp-64-bit
http://stackoverflow.com/questions/211446/how-to-run-tomcat-6-on-winxp-64-bit

Chapter 9

[213]

 <Environment name="solr/home" type="java.lang.String"
value="<path of solr1 configuration>\solr1" override="true" />
</Context>

8.	 Now, go to $TOMCAT_HOME/conf/tomcat-users.xml and provide access of
the Tomcat manager UI to user Tomcat:
<tomcat-users>
 <user username="tomcat" password="tomcat" roles="manager-gui"/>
</tomcat-users>

9.	 Once this is complete, you can start the Tomcat instance and try accessing
http://localhost:8080/solr1/admin and http://localhost:8080/
solr2/admin.

10.	 Now, go to the Tomcat manager UI by accessing http://localhost:8080/
manager/html, and you should see both the Solr applications listed, as
shown in the following screenshot:

This type of configuration has its own advantages and disadvantages.

Solr and Cloud Computing

[214]

Advantages
The advantages of scaling Solr horizontal as multiple applications are as follows:

•	 It is easy to upgrade the container since it's common; it requires less effort
and has less amount of server downtime

•	 It facilitates better utilization of resources among multiple Solr applications,
since the resources, specifically the CPU and memory, are shared
across applications

•	 It is easy to monitor, since it has one place for all the applications due to them
being deployed on a common container

Disadvantages
The disadvantages of scaling Solr horizontal as multiple applications are as follows:

•	 It is difficult to implement container-level memory optimizations, since there
is no guarantee that the correct application will get access to the memory

•	 It still requires a separate application for each client, which is unnecessary
•	 It cannot perform certain activities at will such as restarting the container for

any changes in the Solr configuration, and there needs to be an agreement
between multiple clients when the machine is restarted

Scaling horizontally through the Solr
multicore
Scaling horizontally with Apache Solr through the Solr multicore has two
approaches. The first approach allows a direct replication of Apache Solr in the
master-slave configuration, whereas the second approach provides multicore
capabilities through Apache Zookeeper.

Scaling horizontally with replication
Solr replication for multicore has been a traditional approach, which has existed
since the older versions of Apache Solr. In this approach, the Apache Solr nodes
participate in a master-slave manner. The master needs to define a replication
handler in solrconfig.xml. Consider the following code snippet:

<requestHandler name="/replication" class="solr.ReplicationHandler" >
 <lst name="master">
 <!--Replicate on 'startup' and 'commit'. 'optimize' is also a
valid value for replicateAfter. -->

Chapter 9

[215]

 <str name="replicateAfter">commit</str>
 <!--Create a backup after 'optimize'. Other values can be
'commit', 'startup'. It is possible to have multiple entries of this
config string. Note that this is just for backup, replication does
not require this. -->
 <!-- <str name="backupAfter">optimize</str> -->
 <!--If configuration files need to be replicated give the names
here, separated by comma -->
 <str name="confFiles"> schema.xml,mapping-ISOLatin1Accent.
txt,protwords.txt,stopwords.txt,synonyms.txt,elevate.xml</str>
 <!--The default value of reservation is 10 secs.See the
documentation below . Normally , you should not need to specify this
-->
 <str name="commitReserveDuration">00:00:10</str>
 </lst>
 <!-- keep only 1 backup. Using this parameter precludes using the
"numberToKeep" request parameter. (Solr3.6 / Solr4.0)-->
 <!-- (For this to work in conjunction with "backupAfter" with Solr
3.6.0, see bug fix https://issues.apache.org/jira/browse/SOLR-3361
)-->
 <str name="maxNumberOfBackups">1</str>
</requestHandler>

Slave, on the other hand, needs to point to the master URL in solrconfig.xml:

<requestHandler name="/replication" class="solr.ReplicationHandler" >
 <lst name="slave">
 <str name="masterUrl"> http://${MASTER_CORE_URL}/${solr.core.
name}</str>
 <str name="pollInterval">${POLL_TIME}</str>
 </lst>
</requestHandler>

Variables ($POLL_TIME $MASTER_CORE_URL) can be defined in a solrcore.
properties file for each core. The master can serve any number of slaves, but the
performance goes down as the number of slaves increases, so there may be a need
to set up the repeater. More information about the Solr replication approach is
available at http://wiki.apache.org/solr/SolrReplication. The site provides
information about performance statistics for replication using rsync, built-in
replication, and so on.

http://wiki.apache.org/solr/SolrReplication

Solr and Cloud Computing

[216]

Scaling horizontally with Zookeeper
Apache Solr supports multitenancy directly through the use of its unique composite ID
route. This feature was released in Apache Solr 4.1. When the Solr instance is started,
the numOfShards parameter determines how many shards Apache Solr is going to work
with. Since each document ID is unique in Apache Solr, the new functionality enables
users to use compositeId instead of a unique document ID. So if a document is a book
with the ISBN number 1748, you may specify it as book!isbn1748. The book! separator
acts as a scope or tenant. This tenant is used to hash the document for a particular shard,
and the routing is done accordingly. Documents with IDs sharing the same prefix/
tenantId/domain, will be routed to the same shard, allowing efficient querying. The
following screenshot of the /clusterstate.json file shows the hashing range for each
shard and default router set by Apache SolrCloud to be the composite ID:

Let's try to create a simple cluster of two nodes with multitenancy using Jetty.
Please perform the following steps:

1.	 Download the latest version of Apache Solr from the Solr distribution
(http://lucene.apache.org/solr/downloads.html).

2.	 Unzip the instance, and go to the $SOLR_HOME/example directory.
3.	 Now, run the following command:

$java –jar start.jar

http://lucene.apache.org/solr/downloads.html

Chapter 9

[217]

4.	 Stop the server. This step of running Solr in a non-Cloud mode is required to
unpack the JAR files required for SolrCloud.

5.	 Now, start Solr in a cluster configuration with the following command:
java -DzkRun -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/
conf -Dcollection.configName=solrconf -jar start.jar

6.	 Next, create another Solr node, either by copying the $SOLR_HOME/example
directory to $SOLR_CORE/example1, or by creating another instance from
the downloaded solr.zip file. You can do it on the same machine, or a
different machine.

7.	 Now, run the following command:
java -Djetty.port=8888 -DzkHost=myhost:9983 -jar start.jar

8.	 This will start another node with shard. Now, access http://
localhost:8983/solr/#/~cloud and you will find the shards with
the collection and see how they are linked.

9.	 Now, let's index simple documents to test the tenancy; execute the following
curl commands from the command prompt. This will load four sample
entries: two for books and two for movies:
curl http://localhost:8983/solr/update?commit=true -H
"Content-Type: text/xml" --data-binary "<add><doc><field
name='id'>book!gandhi</field></doc></add>"

curl http://localhost:8983/solr/update?commit=true -H
"Content-Type: text/xml" --data-binary "<add><doc><field
name='id'>book!predators</field></doc></add>"

curl http://localhost:8983/solr/update?commit=true -H
"Content-Type: text/xml" --data-binary "<add><doc><field
name='id'>movie!predators</field></doc></add>"

curl http://localhost:8983/solr/update?commit=true -H
"Content-Type: text/xml" --data-binary "<add><doc><field
name='id'>movie!maverick</field></doc></add>"

10.	 The tenants are created for books and movies. As you can see, the ID is
composite ID with tenant IDs.

Solr and Cloud Computing

[218]

11.	 A search can take place by calling the following URL from the browser:
http://localhost:8983/solr/collection1/select?q=id:predators&_
route_=movie!&wt=json&indent=true.

The additional _route parameter determines the scope of the search and redirects
them to specific shards. In the earlier versions, Solr supported the shard.keys
parameter; however, it has been deprecated. If _route is not specified, the search can
take place across all the prefix/tenants.

If you are using the SolrJ client, CloudSolrServer should be used to connect to
SolrCloud. CloudSolrServer also supports the client-side document routing by default.
Additionally, a Solr client application must take care of tenancy on its own, since
Apache Solr does not provide any straightforward way to refrain users from querying
information from other tenant IDs. Alternatively, the presence of a proxy between
client applications and the Apache Solr server can ensure limited access to each tenant.

Advantages
The advantages of scaling horizontally with Zookeeper are as follows:

•	 It enables the closest Cloud implementation in terms of offerings
and functionalities

•	 The multitenancy model is easily scalable due to the SolrCloud
implementation; similarly, collections can be created/destroyed at runtime

•	 It is relatively easy to maintain, upgrade, or patch the Solr instances

Disadvantages
The disadvantages of scaling horizontally with Zookeeper are as follows:

•	 It does not provide inbuilt security to ensure privacy across different tenants
•	 Need to build a proxy infrastructure to avoid mingling of search results

coming from different clients

Chapter 9

[219]

Running Solr on Cloud (IaaS and PaaS)
Apache Solr can be run as IaaS or PaaS on different Cloud providers. The difference
between IaaS and PaaS is that IaaS will require additional steps to install the
underlying platform (operating system). The setup of the operating system is out of
the scope of this book; however, many OS vendors provide excellent documentation
about how it can be set up. We will look at some of the implementations of Solr using
IaaS and PaaS providers. Among them, Amazon AWS is a well-established Cloud
provider, and Gartner has placed it in the top right in a magic quadrant for its richest
IaaS/PaaS product portfolio. It is constantly expanding its service offerings and
reducing its prices. In this section, we will be focusing on setting up Solr with AWS.

Running Solr with Amazon Cloud
Amazon Web Services Cloud can be accessed by typing http://aws.amazon.com/.
Amazon Elastic Compute Cloud (Amazon EC2) provides resizable computing
capacity in the Amazon Web Services (AWS) Cloud. To start, you will need to
register on AWS for EC2 access. Once signed in, you first need to create a virtual
machine for Apache Solr. Before we get into how to set up an instance, we first need
to understand certain terminologies used on AWS:

•	 Amazon Machine Images (AMIs): These are the templates or virtual images
on which you create your instance. For example, AMI for Windows 8 64 bit
or AMI for Ubuntu.

•	 Instance type: Instance type on Amazon represents the configuration of your
instance, that is, CPU, memory, and so on. It varies from m1.small (1.75
GB, 1EC2) to m2.4xlarge (68.4 GB, 26EC2). The cost of each instance varies
appropriately. Amazon also provides free usage tiers to new users for the
first year on the smallest instances.

•	 Elastic Block Store (EBS) Volume: It provides storage for EC2. EBS offers
high availability and durability capabilities and is replicated to handle
any failures.

•	 Key pairs: Key pairs on AWS are encrypted pairs of keys, which contain
login information to your instance. If they are lost, there is no way to recover
them. They can be used to log in to an instance using the administrator
rights, reset password, and so on.

•	 Security groups: Security groups are mainly associated with instance
accessibility with the outside world. So, a group allows you to enable access
to your instance through the Amazon firewall (inbound and outbound).
You can define a security group for your organization and reuse them for
all the instances. This is on top of your underlying operating system/
antivirus-based firewall.

http://aws.amazon.com/

Solr and Cloud Computing

[220]

You can read more about them here: http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/get-set-up-for-amazon-ec2.html. Let's create our first
Apache Solr instance on Amazon:

1.	 Access https://console.aws.amazon.com/console/home, and log in with
your credentials.

2.	 Click on EC2, as shown in the following screenshot:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://console.aws.amazon.com/console/home

Chapter 9

[221]

3.	 Once you visit the EC2 console, you will first be required to create a new
instance, so simply click on Launch Instance:

4.	 Choose AMI. You can choose your own operating system. We will use
Ubuntu for our instance creation:

Solr and Cloud Computing

[222]

5.	 The next step is to choose the configuration of your instance or instance
type; it should be decided based on the usage. Please remember that you
can change this instance type anytime you want:

6.	 Now, determine the number of instances and click on Next: Add Storage:

Chapter 9

[223]

7.	 AWS provides an instance with default storage that will be deleted after
deletion of the instance. You can add additional EBS volume that can persist
and be attached to any other instance in the future. Use this EBS volume to
create a Solr instance. To add, click on Add New Volume:

8.	 Choose Type as EBS, specify the size as per your requirements, and remove
the Delete on Termination check:

Solr and Cloud Computing

[224]

9.	 Now, put some tags for your instance so that it can be searched:

10.	 The next step is defining a security group, if you will require SSH access for
the instance. You will also need Solr instance accessibility through the Jetty
port (or whichever is applicable). If you are going to use Solr in the SolrCloud
mode, you may also specify the port for the Apache Zookeeper ensemble:

Chapter 9

[225]

11.	 The next step is to create a key-value pair for encryption, download the key,
and keep it safe so that it is not lost:

12.	 Now, launch the instance; the console shows you your instance. You can
connect to your instance through SSH. You can also enable VNC or other
desktop-sharing software:

Solr and Cloud Computing

[226]

13.	 The next step will be to set up Apache Solr. So, connect to your server
through SSH (or Putty in case of Windows).

14.	 You may be required to format the additional EBS volume, create a new
filesystem (XFS, Ext3/4, NTFS), and then mount it on your operating system
in case of Ubuntu. For Windows, you can simply add it as a drive.

15.	 Now, download Apache Solr from the Solr home page, and follow the
standard installation procedures explained in the previous chapter for setup.

Once the Amazon instance is up, you can create multiple instances in similar fashion.
The same setup can be used to create SolrCloud across multiple regions of Amazon
EC2. With the use of multiple regions, Amazon EC2 can mitigate risks associated
with territories. Amazon supports Elastic IPs that provides a static IP address, which
can be associated to any VM in Amazon. The use of elastic IPs will be best for the
Zookeeper ensemble, which will minimize the recovery time. With the Cloud setup,
it is best to go with the complete Zookeeper ensemble instead of the embedded
Zookeeper of SolrCloud.

AWS supports the concept of Virtual Private Cloud (VPC), so with Apache Solr, it
can create its own VPC network. There is an interesting study of Solr on AWS Cloud
at http://lucenerevolution.org/sites/default/files/Erickson_SOlron_
EC2_Eurocon2011.pdf.

Running Solr on Windows Azure
Apache Solr can also be set on Windows 7/8/2008R2 64-bit machines. The Windows
Azure platform provides hosting of virtual machines, websites, and so on. It can be
accessed at http://windows.azure.com/. To create a Solr instance on Azure, you
need to have an account on Windows Azure. Interoperability Bridges (the collaboration
portal between Microsoft and its partner) provides a step-by-step guide to set up Solr
on Windows Azure. It can be accessed at http://www.interoperabilitybridges.
com/azure/getting_started_guide_solr_lucene.asp.

http://lucenerevolution.org/sites/default/files/Erickson_SOlron_EC2_Eurocon2011.pdf
http://lucenerevolution.org/sites/default/files/Erickson_SOlron_EC2_Eurocon2011.pdf
http://windows.azure.com/
http://www.interoperabilitybridges.com/azure/getting_started_guide_solr_lucene.asp
http://www.interoperabilitybridges.com/azure/getting_started_guide_solr_lucene.asp

Chapter 9

[227]

Running Solr on Cloud (SaaS) and
enterprise search as a service
Another aspect to look at in the Apache Solr Cloud is SaaS. Many Solr vendors
provide ready-made preconfigured Solr instances for usage to its customers. In this
chapter, we will be looking at some of the Solr Cloud providers.

Running Solr with OpenSolr Cloud
OpenSolr provides a running Solr instance on Cloud. It provides preconfigured
templates for Drupal, Magento, Joomla, and so on. The pricing varies based on the
cores and the number of documents. But the good thing is that it allows creating free
Solr hosting for a limited amount of time. You can register yourself and access the
dashboard for Solr. Now, you can simply create a new collection, as follows. You get
a ready-made Solr instance in a short time:

Solr and Cloud Computing

[228]

The instance also allows you to change the configuration, access different errors,
browse data, and run data imports through a common collections manager, as
shown in the following screenshot:

It provides users with different analytics, such as top 20 queries, slowest 20
queries, and so on. You can take a backup of your instance. The default free Solr
server runs on port 8180. The new features are published in the OpenSolr blog
(https://www.opensolr.com/blog/).

https://www.opensolr.com/blog/

Chapter 9

[229]

Running Solr with SolrHQ Cloud
SolrHQ (http://www.solrhq.com/) provides Solr Cloud-based solutions for
CMS-based websites. A Solr instance can be created quickly in 5 minutes by first
registering with SolrHQ and then creating a new instance. The following screenshot
depicts a search instance created with sample data:

The instance provided by Solr HQ is outdated compared to newer instances (1.0); it's
focused on providing search capabilities on CMS and public websites and cannot be
used for an enterprise search.

http://www.solrhq.com/

Solr and Cloud Computing

[230]

Running Solr with Bitnami
Bitnami Apache Solr Stack (https://bitnami.com/stack/solr) provides a
one-click install solution for Apache Solr. Bitnami Cloud Images extend stack
appliances to run in a Cloud computing environment. Bitnami can be deployed
on AWS as well as Windows Azure. The following screenshot depicts the Amazon
AWS marketplace with Bitnami single-click VM creator:

Bitnami allows users to choose their own instance type and provides
a preconfigured Solr instance for them. This instance can directly be
consumed in enterprise applications.

https://bitnami.com/stack/solr

Chapter 9

[231]

Working with Amazon CloudSearch
Amazon CloudSearch is an enterprise search based on Cloud. It provides a complex
flexible Cloud offering for search with a rich set of features including language-specific
text processing for 33 languages, free text search, faceted search, geospatial search,
customizable relevance ranking, highlighting, autocomplete and user-configurable
scaling, and availability options. Recently (March 2014), Amazon CloudSearch
moved the underlying architecture to Solr (http://www.lucidworks.com/blog/
amazons-cloudsearch-gets-solr-powered/). Amazon CloudSearch allows you to
select the instance type you want to use when you set up your search domain. You
can simply create a CloudSearch-based instance in minutes. First, you need to have an
Amazon AWS account. Once you have it, please perform the following steps:

1.	 Visit https://console.aws.amazon.com/ and choose the CloudSearch
option. Then, you will see a screen as shown in the following screenshot.
Click on the new domain, and provide a domain name, instance type,
replication, and so on:

http://www.lucidworks.com/blog/amazons-cloudsearch-gets-solr-powered/
http://www.lucidworks.com/blog/amazons-cloudsearch-gets-solr-powered/
https://console.aws.amazon.com/

Solr and Cloud Computing

[232]

2.	 Now, you need to choose the document base on which the search feature
will function. Provide a sample document for search, as shown in the
following screenshot:

3.	 CloudSearch will automatically try extracting schema elements out of the
sample, and provide you with the schema. Modify the schema elements as
per your requirements:

4.	 Now, choose security policies. This is similar to the Amazon EC2 policies;
you may choose to go ahead with the recommended rules.

Chapter 9

[233]

5.	 In the next screen, you will see a summary of the entire configuration. Click
on the Confirm button to create a CloudSearch instance.

6.	 Now, the instance is ready to be used just like Amazon EC2. More information
is available at https://aws.amazon.com/cloudsearch/details/.

Drupal-Solr SaaS with Acquia
Acquia (http://www.acquia.com/) provides Apache Solr-based Cloud search with
easy integration of Drupal. It is an SaaS-based service on top of Amazon EC2. The
integration with Drupal can take place by enabling the extension in Drupal directly.
This service is particularly useful for online Drupal sites looking for enhancing search
capabilities beyond what Drupal offers. Acquia provides standard Apache Solr
3.5-based features, such as faceted search, result sorting, and weighting. Additionally,
it supports multisite search, advanced geospatial search, search relevancy-based
recommendations, as well as provides search statistics to its customers.

Summary
In this chapter, we have gone through the Apache Solr in Cloud capabilities. We
have understood the Cloud infrastructure and different models of engagement. We
also looked at different types of deployment profiles and Cloud strategies. Then, we
went through some examples of Solr with Cloud enabled through IaaS, PaaS, SaaS,
and finally the enterprise search on Cloud.

https://aws.amazon.com/cloudsearch/details/
http://www.acquia.com/

Scaling Solr Capabilities
with Big Data

In today's world, organizations produce gigabytes of information every day from
various applications that are actively utilized by employees for various purposes. The
data sources can vary from application software databases, online social media, mobile
devices, and system logs to factory-based operational subsystem sensors. With such
huge, heterogeneous data, it becomes a challenge for IT teams to process it together
and provide data analytics. In addition to this, the size of this information is growing
exponentially. With such variety and veracity, using standard data-processing
applications to deal with large datasets becomes a challenge and the traditional
distributed system cannot handle this Big Data. In this chapter, we intend to look at the
problem of handling Big Data using Apache Solr and other distributed systems.

We have already seen some information about NOSQL databases and CAP theorem
in Chapter 2, Getting Started with Apache Solr. NOSQL databases can be classified
into multiple types: key-value based stores or columnar storage, document-
oriented storage, graph databases, and so on. In key-value stores, the data gets
stored in terms of key and values. Key is a unique identifier that identifies each
data unit, and value is your actual data unit (document). There are further subtypes
to this store: hierarchical, tabular, volatile (in-memory) and persistent (storage).
NOSQL databases provide support for heavy data storage such as Big Data, unlike
standard relational database models. Recently, Gartner (http://www.gartner.
com/newsroom/id/2304615) published an executive program survey report, which
reveals that Big Data and analytics are among the top 10 business priorities for CIOs;
similarly, analytics and BI stand top priority for CIO's technical priorities.

http://www.gartner.com/newsroom/id/2304615
http://www.gartner.com/newsroom/id/2304615

Scaling Solr Capabilities with Big Data

[236]

Big Data presents three major concerns of any organization: the storage of Big Data,
data access or querying, and data analytics. Apache Hadoop provides an excellent
implementation framework for the organizations looking to solve these problems.
Similarly, there is other software that provides efficient storage and access to Big
Data, such as Apache Cassandra and R Statistical. In this chapter, we intend to
explore the possibilities of Apache Solr in working with Big Data. We have already
seen scaling search with SolrCloud in the previous chapters. In this chapter, we will
be focusing on the following topics:

•	 Apache Solr and HDFS
•	 Using Katta for Big Data search
•	 Solr 1045 patch: map-side indexing
•	 Solr 1301 patch: reduce-side indexing
•	 Apache Solr and Cassandra
•	 Advanced Analytics with Solr

Apache Hadoop is designed to work in a completely distributed manner. The
Apache Hadoop ecosystem comprises two major components, which are as follows:

•	 The MapReduce framework
•	 Hadoop Distributed File System (HDFS)

The MapReduce framework splits the input data into small chunks that are
forwarded to a mapper, followed by a reducer that reduces them and produces
the final outcome. Similarly, the HDFS filesystem manages how the datasets are
stored in the Hadoop cluster. Apache Hadoop can be set up in a single proxy node
or in a cluster node configuration. Apache Solr can be integrated with the Hadoop
ecosystem in different ways. Let's look at each of them.

Apache Solr and HDFS
Apache Solr can utilize HDFS to index and store its indices on the Hadoop system. It
does not utilize MapReduce-based framework for indexing. The following diagram
shows the interaction pattern between Solr and HDFS. You can read more details
about Apache Hadoop at http://hadoop.apache.org/docs/r2.4.0/.

http://hadoop.apache.org/docs/r2.4.0/

Chapter 10

[237]

Let's understand how this can be done:

1.	 To start with, the first and most important task is getting Apache
Hadoop set up on your machine (proxy node configuration) or setting up
a Hadoop cluster. You can download the latest Hadoop tarball or ZIP from
http://hadoop.apache.org. The newer generation Hadoop uses advanced
MapReduce (also known as yarn).

2.	 Based on the requirement, you can set up a single node (http://hadoop.
apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/
SingleCluster.html) or a cluster setup (http://hadoop.apache.org/docs/
r<version>/hadoop-project-dist/hadoop-common/ClusterSetup.html).

3.	 Typically, you will be required to set up the Hadoop environment and
modify different configurations (yarn-site.xml, hdfs-site.xml, master,
slaves, and so on). Once it is set up, restart the Hadoop cluster.

http://hadoop.apache.org
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/ClusterSetup.html

Scaling Solr Capabilities with Big Data

[238]

4.	 Once Hadoop is set up, verify the installation of Hadoop by accessing
http://host:port/cluster; you would see the Hadoop cluster status,
as shown in the following screenshot:

5.	 Now, using the following HDFS command, create a directory in HDFS to
keep your Solr index and Solr logs:
$ $HADOOP_HOME/bin/hdfs.sh dfs -mkdir /solr

$ $HADOOP_HOME/bin/hdfs.sh dfs -mkdir /solr-logs

This call will create directories on the / root folder on HDFS. You can verify
these by running the following command:
$ $HADOOP_HOME/bin/hdfs.sh dfs –ls /

Found 2 items

drwxr-xr-x - hrishi supergroup 0 2014-05-11 11:29 /solr

drwxr-xr-x - hrishi supergroup 0 2014-05-11 11:27 /
solr-logs

You may also browse the directory structure by accessing
http://<host>:50070/

http://host:port/cluster

Chapter 10

[239]

6.	 Once the directories are created, the next step will be to point Apache Solr
to run with Hadoop HDFS. This can be done by passing JVM arguments
for DirectoryFactory. If you are running Solr on Jetty, you can run the
following command:
java -Dsolr.directoryFactory=HdfsDirectoryFactory -Dsolr.lock.
type=hdfs -Dsolr.data.dir=hdfs://<host>:19000/solr -Dsolr.
updatelog=hdfs:// <host>:19000/solr-logs -jar start.jar

You can validate Solr on HDFS by accessing the Solr admin UI. Consider the
following screenshot:

7.	 In case you are using Apache SolrCloud, you can point solr.hdfs.home to
your HDFS directory and keep the data and logs on the local machine:
java -Dsolr.directoryFactory=HdfsDirectoryFactory -Dsolr.lock.
type=hdfs -Dsolr.hdfs.home=hdfs://<host>:19000/solrhdfs -jar
start.jar

Scaling Solr Capabilities with Big Data

[240]

Big Data search on Katta
Katta provides highly scalable, fault-tolerant information storage. It is an open
source project and uses the underlying Hadoop infrastructure (to be specific,
HDFS) to store its indices and provide access to it. Katta has been in the market for
the last few years. Recently, development on Katta has been stalled; yet, there are
many users who go with Solr-Katta-based integration for Big Data search. Some
organizations customize Katta as per their needs and utilize its capabilities for highly
scalable search. Katta brings Apache Hadoop and Solr together, enabling search
supported by distributed MapReduce cluster. You can read more information about
Katta on http://katta.sourceforge.net/.

How Katta works?
Katta can primarily be used with two different functions: first is to generate the Solr
index, and the second is to run search on the Hadoop cluster. The following diagram
depicts what the Katta architecture looks like:

Katta cluster has a master node called Katta master. All other nodes are participants
and are responsible for storing the data in their own local store using HDFS or any
other filesystem (if Katta is not used with Hadoop). Katta concepts are similar to
Hadoop; each index is divided into multiple shards, and these shards are stored on
participating nodes. Each node also contains a content server to determine which
type of shard is supported by a given Katta-participating node.

http://katta.sourceforge.net/

Chapter 10

[241]

Katta master is responsible for communicating with nodes. Apache Zookeeper
communicates a channel between Katta master and other participating nodes.
Now, all the nodes share a common directory (virtual directory) as supported by
Apache Zookeeper. This is where all the participating nodes keep updated status of
each node. This way, Katta cluster does not require heartbeats, which are typically
used by Zookeeper clients to keep the status of each node. Katta cluster provides
a blocking queue through which the overall work is divided among the nodes.
Each node holds one queue, and the work is pushed to this queue. When the node
completes a task, it looks at its own queue for the next assignment. Operations such
as shard deployment are supported by these queues.

Katta uses multicasting concept for search. Multicasting scope is determined by
Katta master based on the placement of shards, so when a search is requested, the
client multicasts the query to selected nodes, through the use of the Hadoop Remote
Procedure Calls (RPC) mechanism for faster direct communication. Each node
then runs the query on its own shard and provides results matched along with
scores. The scores are calculated across Katta cluster by each node and the results
are merged together across all nodes based on their ranks. They are then returned
to the client application.

Setting up Katta cluster
Setting up Katta cluster requires you to either download the distribution from
http://sourceforge.net/project/showfiles.php?group_id=225750 or build
the source available on http://katta.sourceforge.net/documentation/
build-katta/. If you are building the source, you need to run the following
commands once you untar the source on Apache Ant Version 1.6:

ant dist

The source will compile. Once it is completed, you will find the distribution created
at the $KATTA_ROOT/build directory. You need to untar and copy katta-core-
VERSION.tar.gz to all the participating nodes as well as to the master node. Once
copied, validate the deploy policy in the katta.master.properties file. Similarly,
update the katta.zk.properties file as per your Zookeeper configuration
(ensemble or embedded). For embedded Zookeeper, you will need to modify the
zookeeper.servers attribute for all nodes. You need to point to the master node.
Now, you can start the master by running the following command:

bin/katta startMaster

http://sourceforge.net/project/showfiles.php?group_id=225750
http://katta.sourceforge.net/documentation/build-katta/
http://katta.sourceforge.net/documentation/build-katta/

Scaling Solr Capabilities with Big Data

[242]

This will start the master at first. You should start the individual nodes on all
machines using the following command:

bin/katta startNode

Once all the nodes are started, you can start adding indexes to Katta.

Creating Katta indexes
Using Katta, you can create either a Hadoop map files-based index or use Lucene
index; you can also create your own type of shard. Lucene index can be loaded on
HDFS using the import of index in the Hadoop cluster. This is applicable for the
indexes that are already generated or exist.

You can alternatively use Hadoop's MapReduce capabilities to create an index
out of normal documents. This is feasible by first transforming your data into
Hadoop's sequential format with the help of the net.sf.katta.indexing.
SequenceFileCreator.java class. You can also use Katta's sample creator
script (http://katta.sourceforge.net/documentation/how-to-create-a-
katta-index). Note that Katta runs on older versions of Hadoop (0.20). Once the
index is created, you may deploy them using the addIndex call as follows:

bin/katta addIndex <index-name> hdfs://<location-of-index>

Once index is created, you can validate the availability of index by running a search
with the following command:

bin/katta search <index-name> <field:search-string>

Katta also provides a web-based interface for monitoring and administration
purpose. It can be started by running the following command:

bin/katta startGui

It provides masters, nodes' information, shards, and indexes on the administration
UI. This application is developed using the Grails technology.

Although Katta provides completely Hadoop-based distributed search, it lacks
the speed, and many times, users have to customize the Katta code as per their
requirements. Katta provides excellent failover for master and slaves nodes, which
are replicated, thereby making it eligible for enterprise-level Big Data search.
However, the search cannot be used in real time, due to limits on speed. Katta is also
not actively developed by the users. Apache Solr's development community initially
tried to incorporate Katta in Solr, but due to focus and advancements in SolrCloud, it
is not merged with Apache Solr. Apache Solr had created a JIRA to integrate Katta in
Solr (https://issues.apache.org/jira/browse/SOLR-1395).

http://katta.sourceforge.net/documentation/how-to-create-a-katta-index
http://katta.sourceforge.net/documentation/how-to-create-a-katta-index
https://issues.apache.org/jira/browse/SOLR-1395

Chapter 10

[243]

Using the Solr 1045 patch – map-side
indexing
The Apache Solr 1045 patch provides Solr users a way to build Solr indexes using the
MapReduce framework of Apache Hadoop. Once created, this index can be pushed
to Solr storage. The following diagram depicts the mapper and reducer in Hadoop:

Each Apache Hadoop mapper transforms input records into a set of (key-value)
pairs, which then gets transformed into SolrInputDocument. The Mapper task
ends up creating an index from SolrInputDocument.

The focus of reducer is to perform de-duplication of different indexes and merge
them if needed. Once the indexes are created, you can load them on your Solr
instance and use them to search. You can read more about this patch on
https://issues.apache.org/jira/browse/SOLR-1045.

The patch follows the standard process of patching up your label through SVN.
To apply a patch to your Solr instance, you first need to build your Solr instance
using source. The instance should be supported by the Solr 1045 patch. Now,
download the patch from the Apache JIRA site (https://issues.apache.org/
jira/secure/attachment/12401278/SOLR-1045.0.patch). Before running the
patch, first do a dry run, which does not actually apply the patch. You can do it
with the following command:

cd <solr-trunk-dir>

svn patch <name-of-patch> --dry-run

https://issues.apache.org/jira/browse/SOLR-1045
https://issues.apache.org/jira/secure/attachment/12401278/SOLR-1045.0.patch
https://issues.apache.org/jira/secure/attachment/12401278/SOLR-1045.0.patch

Scaling Solr Capabilities with Big Data

[244]

If dry-run works without any failure, you can apply the patch directly. You can also
perform dry-run using a simple patch command:

patch <name-of-patch> --dry-run

If it is successful, you can run the patch without the -dry-run option to apply the
patch. On Windows, you can apply the patch with a right-click:

On Linux, you can use the SVN path as shown in the previous example. Let's
look at some of the important classes in the patch. The SolrIndexUpdateMapper
class is responsible for creating create new indexes from the input document.
The SolrXMLDocRecordReader class reads Solr input XML files for indexing. The
SolrIndexUpdater class is responsible for creating a MapReduce job and running
it to read the document and for updating Solr instance.

Although Apache Solr patch 1045 provides an excellent
parallel mapper and reducer, when the indexing is
done at map side, all the <key, value> pairs received
by the reducer gain equal weight/importance. So,
it is difficult to use this patch with data that carries
ranking/weight information.

This patch also provides a way for users to merge the indexes in the reducer phase
of the patch. This patch is not yet part of the Solr label, but it is targeted for the Solr
4.9/5.0 label.

Chapter 10

[245]

Using the Solr 1301 patch – reduce-side
indexing
The Solr 1301 patch is again responsible for generating an index using the Apache
Hadoop MapReduce framework. This patch is merged in Solr Version 4.7 and is
available in the code line if you take Apache Solr with 4.7 and higher versions. This
patch is similar to the previous patch (SOLR-1045), but the difference is that the
indexes that are generated using Solr 1301 are in the reduce phase and not in the map
phase of Apache Hadoop's MapReduce. Once the indexes are generated, they can be
loaded on Solr and SolrCloud for further processing and application searching. The
following diagram depicts the overall flow:

In case of Solr 1301, a map task is responsible for converting input records to the pair
of <key, value>; later, they are passed to the reducer. The reducer is responsible
for converting and publishing SolrInputDocument, which is then transformed
into Solr indexes. The indexes are then persisted on HDFS directly, which can later
be exported on the Solr instance. In the latest Solr instance, this patch is part of the
contrib module under $SOLR_HOME\contrib\map-reduce folder. The patch/
contrib map-reduce parameter provides a MapReduce job that allows the user to
build Solr indexes and merge them in the Solr cluster optionally.

Scaling Solr Capabilities with Big Data

[246]

You require the Hadoop cluster to run the Solr 1301 patch. The Solr 1301 patch is
merged in Solr Version 4.7, and it is part of the Solr contrib already. Once Hadoop
is set, you can run the following command:

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR jar $SOLR_HOME/
contrib/dist/solr-map-reduce-*.jar -D 'mapred.child.java.opts=-Xmx500m'
--morphline-file readAvroContainer.conf --zk-host 127.0.0.1:9983
--output-dir hdfs://127.0.0.1:8020/outdir --collection collection1
--log4j log4j.properties --go-live --verbose "hdfs://127.0.0.1:8020/
indir"

In the preceding command, the config parameter requires the configuration
directory path of the Hadoop setup. The mapred.child.java.opts parameter
passes the parameters to MapReduce programs. The zk-host parameter points to
the Apache Zookeeper instance; output-dir is where the output of this program
should be stored; collection points to the collection in Apache Solr; log4j provides
pointers to log. The go-live option enables the merging of the output shards of the
previous phase into a set of live customer facing Solr servers, and morphline file
provides a configuration of Avro-based pipe.

This will run mapper and reducer to generate a Solr index. Once the index is created
through the Hadoop patch, it should then be provisioned to the Solr server. The patch
contains the default converter for CSV files. Let's look at some of the important classes
that are part of this patch. The CSVDocumentConverter class takes care of converting
the output of a mapper (key-value) to SolrInputDocument. The CSVReducer class
provides the reducer implementation of the Hadoop reduce cluster. The CSVIndexer
class should be called from the command line to run and create indexes using
MapReduce; similarly, the CSVMapper class provides an introspection of CSV and
extracts key-value pairs. It will require additional parameters such as paths to pint and
output to store shards. SolrDocumentConverter is responsible to transform custom
objects into SolrInputDocument. The class transforms (key-value) into data that
resides in HDFS or locally. The SolrRecordWriter class provides extension over the
MapReduce record writer. It divides the data into multiple pairs; these pairs are then
transformed into the SolrInputDocument form.

To run this patch, perform the following steps:

1.	 Create a local directory with configuration, conf, which contains Solr
configuration (solr-config.xml, schema.xml), and the library directory,
the lib folder, which contains library.

2.	 SolrDocumentConverter provides abstract class to write your
own converters. Create your own converter class that implements
SolrDocumentConverter; this will be used by SolrOutputFormat to
convert output records to the Solr document. If required, override the
OutputFormat class provided in Solr by your own extension.

Chapter 10

[247]

3.	 Write a simple Hadoop MapReduce job in the configuration writer, as shown
in the following code:
SolrOutputFormat.setupSolrHomeCache(new File(solrConfigDir),
conf);
conf.setOutputFormat(SolrOutputFormat.class);
SolrDocumentConverter.setSolrDocumentConverter(<your classname>.
class, conf);

4.	 Zip your configuration, and load it in HDFS. The ZIP file's name should be
solr.zip (unless you change the patch code).

5.	 Now, run the patch; each of the jobs will instantiate EmbeddedSolrInstance,
which will in turn do the conversion, and finally, SolrOutputDocument(s)
get stored in the output format.

With the generation of an index of smaller size, it is possible to preserve the weights
of documents, which can contribute while performing a prioritization during the
search query.

Merging of indexes is not possible like in Solr 1045; the indexes are created in the
reduce phase. Reducer becomes the crucial component of the system due to a major
task being performed in the reducer.

Apache Solr and Cassandra
Cassandra is one of the most widely used and distributed, fault-tolerant NOSQL
database. Cassandra is designed to handle Big Data workloads across multiple
nodes without a single point of failure. There are some interesting performance
benchmarks published at planet Cassandra (http://planetcassandra.org/
nosql-performance-benchmarks/), which places Apache Cassandra as one of
the fastest NOSQL database among its competitors in terms of throughput, load,
and so on. Apache Cassandra allows schemaless storage of user information in its
store called column families pattern. For example, look at the data model for sales
information, which is shown as follows:

http://planetcassandra.org/nosql-performance-benchmarks/
http://planetcassandra.org/nosql-performance-benchmarks/

Scaling Solr Capabilities with Big Data

[248]

When this model is transformed for the Cassandra store, it becomes columnar storage.
The following image shows how this model would look using Apache Cassandra:

As one can see, the key here is the customer ID, and value is a set of attributes/
columns, which vary for each row key. Further, columns can be compressed, so
reduce the size of your data footprint. The column compression is highly useful
when you have common columns with repetitive values (for example, year or color).
Cassandra partitions its data using multiple strategies. All the nodes participating
in the Cassandra cluster form a ring of nodes called Cassandra ring. Column family
data is partitioned across the nodes based on the row key. To determine the node
where the first replica of a row will live, the ring is walked clockwise until it locates
the node with a token value greater than that of the row key. The data is partitioned
based on hashing or ordered partitions, and it is distributed across a cluster of nodes.

With the heavy data, users cannot live with a single Solr node-based approach, and
they move to a cluster approach. While Apache Solr provides an inbuilt SolrCloud,
which seems to be capable of dealing with a huge dataset, many organizations still
consider going for other options. This is because Big Data processing has multiple
objectives beyond a pure search and querying. It is used for data analysis and
predictions. Apache SolrCloud provides highly optimized index storage, specifically
for search, and it cannot be easily used for any other purpose. Apache Cassandra is
an open store that supports Hadoop-based MapReduce programs to be run on its
datasets, and it can easily be integrated with any standard application in a much
easier way. The cases where there are data usages beyond search and basic analysis,
Apache Cassandra can server as a single data store for multiple applications.
Another reason to go ahead with Cassandra-Solr combination is Cassandra is
scalable and a high-performance database.

Chapter 10

[249]

Working with Cassandra and Solr
There are two major approaches one can go ahead with to integrate Cassandra with
Solr. The first one is based on an open source application called Solandra, and the
second one is based on DataStax Enterprise Search built using Cassandra and Solr.
There are differences between these two approaches in terms of integration with
Solr. Solandra uses Cassandra instead of flat file storage to store indexes in the
Lucene index format. The DSE allows users to have their data in Apache Cassandra
and generate index using Cassandra's secondary index API, thus enabling other
applications to consume the data for Big Data processing.

Solandra, on the other hand, uses legacy-distributed search support from Apache
Solr, and allows the usage of standard Apache Solr-based APIs, by hiding the
underlying Cassandra-based distributed data storage. All the queries are fired
through Apache Solr's distributed search support and Cassandra instead of a
flat file. Similarly, the indexing too goes through the same overridden APIs.

We will be looking at the open source approach primarily; for integration using
DataStax Enterprise (DSE), please visit http://www.datastax.com/download.

Single node configuration
Solandra comes with inbuilt Solr and Cassandra embedded, which can be used
for the purpose of development/evaluation. It also has a sample dataset that can
be loaded into Cassandra for initial testing. Although the active development of
Solandra was stopped almost 2 years back, it still can be used, and it can be extended
to work with the latest Apache Solr instance. Let's go through the steps:

1.	 Download Solandra from https://github.com/tjake/Solandra.
2.	 Unzip the ZIP file; you will require Java as well as Ant build scripting. You can

download and unzip Ant from https://ant.apache.org/bindownload.cgi.
3.	 Put a path of the $ANT_HOME/bin folder in your shell paths so that you would

be able to run Ant directly from the command line anywhere. Try running it
from any directory, and you will see something like this:
$ ant -v

Apache Ant version 1.7.1 compiled on June 27 2008

Buildfile: build.xml does not exist!

Build failed

4.	 You will also require Apache Ivy to resolve the Ivy dependency. You can
download Ivy from https://ant.apache.org/ivy/ and add it in PATH.

http://www.datastax.com/download
https://github.com/tjake/Solandra
https://ant.apache.org/bindownload.cgi
https://ant.apache.org/ivy/

Scaling Solr Capabilities with Big Data

[250]

5.	 Now, go to $SOLANDRA_HOME/solandra-app/conf and open the
cassandra.yaml file as shown in the following image. Modify the
paths to point to your temporary directory.
In the case of Windows, it will be the DRIVE:\tmp\cassandra-data folder.
DRIVE is the name of the drive your Solandra is installed in. The Cassandra.
yaml file is responsible for storing information on cluster of nodes. As you can
see, it uses random partitioning algorithm, which applies a hashing to each
data element and places it in the appropriate node in a Cassandra cluster.

Now, when Ant runs from $SOLANDRA_HOME, it will create
additional directories.

6.	 Once Ant is complete, go to Solandra-app and run the following command:
$ bin/solandra

7.	 This will start your server with Apache Solr and Cassandra together on
one JVM.

8.	 You can load a sample data for reuters by going to $SOLANDRA_HOME/
reuter-demo.

9.	 Download the sample dataset by executing the following command:
$ 1-download-data.sh

Chapter 10

[251]

10.	 Load it in Solandra (Solr) by executing the following command:
$ 2-import-data.sh

This script first loads reuter's schema using curl to access
http://localhost:8983/solandra/schema/reuters, followed by
data loading through Solandra's data loader (reutersimporter.jar).

Once this is done, you can run a select query on the router by calling
http://localhost:8983/solandra/reuters/select?q=*:* from your browser
to see the data coming from the embedded Solr-Cassandra-based single node
Solandra instance. On similar lines, you can load your own schema on Solandra and
use data importer to import the data onto the Apache Solr instance. You can access
the Solr configuration in the $SOLANDRA_HOME/solandra-app/conf folder.

The current Solandra version available for download uses Apache Solr 3.4, and it can
be upgraded by modifying the library files of your Solr instance in $SOLANDRA_HOME/
solandra-app/lib along with the configuration. In the configuration, Solandra uses
its own index reader, SolandraIndexReaderFactory, by overriding the default
index reader as well as a search component (SolandraQueryComponent).

Integrating with multinode Cassandra
To work with fully working Apache Cassandra, you will need to perform the
following steps:

1.	 First, download Apache Cassandra from http://cassandra.apache.org/;
if you already have a running Cassandra, you may skip the following steps.

2.	 Unzip Cassandra and copy the library files of Solandra in solandra-app/
lib to Cassandra's library folder ($CASSANDRA_HOME/lib), the /bin
folder to $CASSANDRA_HOME/bin, and Solr configuration core files to the
$CASSANDRA_HOME/conf folder. You can also run the following Ant task:
ant -Dcassandra={unzipped dir} cassandra-dist

3.	 You can now start Solr within Cassandra using the $CASSANDRA_HOME/
bin/solandra command. Cassandra now takes two optional properties:
-Dsolandra.context and -Dsolandra.port for the context path and the Jetty
port, respectively. With the latest Cassandra version, you may get incompatible
class exception, and you may have to compile the Solandra source against
newer libraries, or go back to an older Cassandra version (Version 1.1).

http://cassandra.apache.org/

Scaling Solr Capabilities with Big Data

[252]

Advanced analytics with Solr
Apache Solr provides excellent searching capabilities on the metadata. It is also
possible to go beyond a search and faceting through the integration space. As the
search industry grows to the next generation, the expectations to go beyond basic
search have led to Apache Solr-like software that is capable of providing excellent
browsing and filtering experience. It provides basic analytical capabilities. However,
for many organizations, this is not sufficient. They would like to bring in capabilities
of business intelligence and analytics on top of search engines. Today, it's possible
to compliment Apache Solr with such advanced analytical capabilities. We will be
looking at enabling Solr integration with R.

R is an open source language and environment for statistical computing and
graphics. More information about R can be found at http://www.r-project.
org/. Development of R started in 1994 as an alternative to SAS, SPSS, and other
proprietary statistical environments. R is an integrated suite of software facilities
for data manipulation, calculation, and graphical display. There are around 2
million R users worldwide, and it is widely taught in universities. Many Corporate
Analysts know and use R. R provides hundreds of open source packages to enhance
productivity. Some of the packages are as follows:

•	 Linear and nonlinear modeling
•	 Classical statistical tests
•	 Time-series analysis
•	 Spatial statistics
•	 Classification, clustering, and other capabilities
•	 Matrix arithmetic, with scalar, vector, matrices, list, and data frame

(table) structures
•	 Extensive library functions (more than 2000) for different graphs/charts

Integrating R with Solr provides organizations access to these extensive library
functions to perform data analysis on Solr outputs.

Integrating Solr and R
As R is analytical engine, it can work on top of Apache Solr to perform direct analysis
on the results of Apache Solr. R can be installed directly through executable installers
(.exe/.rpm/bin) that can be downloaded from cran mirrors (http://cran.r-
project.org/mirrors.html) for any *nix, Windows, or Mac OS. R can connect to
Apache Solr through the CURL utility built in as library RCURL in R packages. R also
provides a library called Solr to use Solr capabilities to search over user data, extract
content, and so on. To enable R with Solr, open the R console and run the following:

http://www.r-project.org/
http://www.r-project.org/

Chapter 10

[253]

Now, to test it, fire a search on your Solr server:

> library(solr)

To test analytics, let's take a simple use case. Assume that there is a multinational
recruitment firm, and they are using Apache Solr built on top of candidate resumes.
They provide facets such as technical capabilities, country, and so on. Now, using
Apache Solr, they would like to decide which countries to focus their business on
for a certain technology (let's say Solr). So, they would like to classify the countries
based on the current available resource pool for Apache Solr. R provides various
clustering algorithms, which can provide different clusters of data based on the
characteristics. One of the most widely used algorithms is K-Means clustering
(http://en.wikipedia.org/wiki/K-means_clustering). To use K-Means in R
and plot the graph, you will be required to install package cluster by calling the
following command:

> install.packages('cluster')

After the installation of the cluster package, get the facet information using Solr
package of R, and process it for K-Means. Run the following R script on the console
to get the cluster information:

> library(cluster)

> library(solr)

> url <- 'http://localhost:8983/solr/select'

> response1 <- solr_group(q='*:Solr', group.field='Country', rows=10,
group.limit=1, base=url)

http://en.wikipedia.org/wiki/K-means_clustering

Scaling Solr Capabilities with Big Data

[254]

> m2 <- matrix(response1$numFound,byrow=TRUE)

> rownames(m2) <- response1$groupValue

> colnames(m2) <- 'Available Workforce';

> fit <- kmeans(m2, 2)

> clusplot(m2, fit$cluster, color=TRUE, shade=TRUE,labels=2, lines=0,
xlab="Workforce", ylab="Cluster", main="K-Means Cluster")

Once you run a clusplot() function, you should be able to get a graphical
representation of cluster, as shown in the following screenshot:

The cluster plot in the preceding screenshot demonstrates how Apache Solr search
analytics can be used for further advanced analytics using the R statistical language.

Summary
In this chapter, we have understood the different ways in which Apache Solr can be
scaled to work with Big Data/large datasets. We looked at different implementations
of Solr Big Data such as Solr HDFS, Katta, Solr 1045, Solr 1301, Apache Solr with
Cassandra, and so on. We also looked at advanced analytics by integrating Apache
Solr with R.

Sample Configuration
for Apache Solr

Let's look at some of the real configuration files. We are only going to look at
additions or changes to these files.

schema.xml
Broadly, schema.xml contains the following information:

•	 Different types of field names of schema, and data types (<fields>…<field>)
•	 Definition of user/seeded defined data types (<types>…<fieldTypes>)
•	 Dynamic fields (<fields>….<dynamicField>)
•	 Information about unique key to define each document uniquely

(<uniqueKey>)
•	 Information regarding query parser for Solr (<solrQueryParser>)
•	 Default search field to be used when the user does not pass the field name

(<defaultSearchField>)
•	 Information about copying the field from one field to another (<copyField>)

Sample Configuration for Apache Solr

[256]

In the Configuring the Apache Solr for enterprise section of Chapter 2, Getting Started with
Apache Solr, we have already explained the important attributes of schema.xml. The
following is a sample of the schema.xml file; the fields will look like the ones shown
in the following screenshot:

You can remove all copy fields, if not needed. The unique key is used to determine
each document uniquely; this will be required unless it is marked as required=false.
The default search field provides a field name that Solr will use for searching when the
user does not specify any field. The specific unique key and the default search is shown
in the following screenshot:

solrconfig.xml
The Configuring the Apache Solr for enterprise section of Chapter 2, Getting Started with
Apache Solr, of this book explains solrconfig.xml in detail. We will look at the
sample configuration in this section for log management. In the Solr configuration,
the interesting part will be the introduction of facets. For log management, you may
consider the following facets to make the overall browsing experience interesting:

Facet Description
Timeline-based With this facet, users will be able to effectively filter their search based on

the time. For example, options such as the past 1 hour and the past 1 week.
Levels of log Levels of log provide you the severity. For example, SEVERE, ERROR,

and Information.

Appendix

[257]

Facet Description
Host Since this system provides a common search for multiple machines,

this facet can provide filtering criteria if an administrator is looking for
something specific.

User If the administrator knows about the user, extracting user information
from the log can add better filtering through the user facet.

Application Similar to the host, administrators can filter the logs based on the
application using this facet.

Severity Severity can be another filtering criterion. Most severe errors can be
filtered with this facet.

In addition to this, you will also use features for highlighting logs, spelling
correction, suggestions (more like this), master-slave, and so on. The following
screenshot shows a sample facet sidebar of Apache Solr to get us a better
understanding of how it may look:

Sample Configuration for Apache Solr

[258]

The following sample configuration for Solr shows different facets and other
information when you access/browse:

Appendix

[259]

Similarly, the following configuration shows timeline-based facets, and features such
as highlighting and spell check:

spellings.txt
This file provides a file-based spell check and can be enabled by specifying the
following code in solrconfig.xml:

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="name">file</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 <str name="spellcheckIndexDir">./spellcheckerFile</str>
 </lst>
</searchComponent>

In this file, you can write a list of correct words. This file is used to define a
dictionary for users. You need to enter each word on a new line as follows:

solr
solar

Sample Configuration for Apache Solr

[260]

Once the dictionary is created, it needs to be built by calling spellcheck.build
using the following URL:

http://<solr-url>/select?q=*:*&spellcheck=true&spellcheck.build=true

Then you can simply check spellchecker by calling the following code:

http://<solr-url>/select?q=solar&spellcheck=true

synonyms.txt
This file is used by synonym filter to replace the tokens with their synonyms. For
example, a search for "DVD" may expand to "DVD", "DVDs", "Digital Versatile Disk"
depending on your mapping in this file. The following is how you can specify
the synonyms:

•	 GB, gib, gigabyte, gigabytes
•	 MB, mib, megabyte, megabytes
•	 Television, Televisions, TV, TVs
•	 Incident_error, error

In this file, you can also make spelling corrections, for example, assasination can be
changed to assassination.

protwords.txt
You can protect the words that you do not want to be stemmed. For example, a
stemming would cut the word manager to manage. If you do not wish to protect
them, you can specify those words in this file line-by-line as follows:

manager
Exception
Accounting
……

stopwords.txt
Using this file, you can avoid the common words of your language that do not add
a significant value to your search. For example, a, an, the, you, I, and am. You can
specify them in this file line-by-line as follows:

a
an

Index
Symbols
.NET

interacting, with Solr 56

A
access pattern, enterprise data

random access / direct access 59
streaming data / sequential access 59

ACL (Access Control List) 134
Acquia

Drupal-Solr SaaS 233
URL 233

administration 17
AJAX-Solr

components 121
URL 121
using, for Apache Solr integration 121

Amazon CloudSearch
working with 231, 232

Amazon Elastic Compute Cloud
(Amazon EC2) 219

Amazon Machine Images (AMIs) 219
Amazon Web Services. See AWS
Apache Hadoop

about 236
installation verification, URL 238
URL 236

Apache Lucene 152
Apache Solr. See also Solr

about 7, 12, 31, 107, 152
architecture 19, 20
Cassandra, working with 247-249
configuring, for enterprise 45
deduplication 76

Drupal, working with 123-126
embedding, as module in enterprise

application 108-110
examples, running 39
features 12-18
HDFS, working with 236
horizontal scaling 207
images searching, LIRE used 78
information, extracting from scanned

documents 77
integrating, with JavaScript 119
integrating, with PHP 114-116
integrating, with R language 252-254
issues 40-42
performance, monitoring 180
running, as IaaS on Cloud 219
running, as PaaS on Cloud 219
running, on Windows Azure 226
running, with AWS 219-225
running, with OpenSolr Cloud 227, 228
scaling, with dedicated application 211
setting up 31
solutions, for issues 42, 43
URL, for JDK 32
used, for partitioning index 138
using 132
vertical scaling 207
working, in web application 111-114

Apache Solr 1045 patch
using 243, 244

Apache Solr 1301 patch
using 245-247

Apache Solr attachment module 126
Apache_Solr_Document class 116
Apache Solr Facets 153
Apache Solr indexing time 182

[262]

Apache Solr indexing time measures
number of document / index size 182
number of updates 182
segment merge 182
time taken after running the optimize

command 182
Apache Solr instance

creating, on Amazon 220-225
Apache Solr, integrating with PHP

wt parameter, using 115
Apache Solr integration, with JavaScript

AJAX Solr, using 121
simple XMLHTTPRequest, using 120

Apache Solr integration, with PHP
Solr PHP client, using 116-118

Apache Solr multisite search module 126
Apache_Solr_Response class 116
Apache Solr scoring, at Javadoc

URL 85
Apache Solr search

Java Enterprise application, empowering
with 108

Apache Solr search runtime 181
Apache Solr search runtime measures

cache hit ratio 182
query rate 182
response time 182

Apache_Solr_Service_Balancer class 116
Apache_Solr_Service class 116
Apache Solr setup

prerequisites 32, 33
Apache Solr sort module 126
Apache Storm. See also Storm

and Solr 178
installing 175-177

Apache Tika
about 24, 66
document formats 66

Apache Zookeeper
about 134
URL 141
using 135

Applications pushing data, to
enterprise search

about 98
benefits 99
drawbacks 99

architecture, Apache Solr
about 19, 20
integration 24
Solr application 21-23
storage 20

aspects
designing, for enterprise search 82

ATOM
integrating, with Solr 104

atomic updates 62
attributes, Solr fields

compressed 47
Default 47
Indexed 47
multiValued 47
omitNorms 47
Stored 47
termVectors 47

AWS
about 219
Amazon Machine Images (AMIs) 219
Elastic Block Store (EBS) Volume 219
Instance type 219
key pairs 219
security groups 219
used, for running Apache Solr 219-225

B
Big Data

overview 236
Bitnami

used, for running Apache Solr 230
Bitnami Apache Solr Stack

URL 230
boosting 85
bootstrap_confdir=<dir-name>

parameter 139
business intelligence (BI) 57

C
cache parameters, solrconfig.xml

acceptableSize 199
autowarmCount 199
class 199
initialSize 199
minSize 199

[263]

size 199
cache, Solr

FastLRUCache 199
LFUCache 199
LRUCache 199

caching 19
CAP theorem

about 46
availability 46
consistency 46
partition tolerance 46

Carrot2
about 152
FAQs 159
issues 159
need for 153
search result clustering, enabling with 152
URL, for information 152
URL, for live demo 152

Carrot2-based document clustering
enabling 154, 155

Carrot2 result clustering 155, 156
Carrot2 workbench

Solr results, viewing in 157, 158
case study

distributed enterprise search server, for
software industry 148, 149

Cassandra
integrating, with multinode Cassandra 251
working with Apache Solr 247-249

challenges, enterprise search
about 8
diverse repositories 9
federation 10
relevance 10
scalability 10
security 9
variety of information 9

characteristics, enterprise data
semi-structured data 59
structured data 58
unstructured data 59

Cloud Computing
engagement models 208
enterprise search, deploying 207

Cloud service models
Infrastructure as a Service (IaaS) 208

Platform as a Service (PaaS) 208
Search solution as a service 209
Software as a Service (SaaS) 209

CloudSolrServer class 198
cluster analysis techniques 152
clustering

URL 157
clustering components parameters

URL 156
collection.configName parameter 139
collections

about 44, 136
creating, in SolrCloud 145, 146

commit operation 197
CommitWithin 166
ConcurrentUpdateSolrServer class 198
conf/ directory 44
configuration files

currency.txt 54
elevate.txt 54
protwords.txt 54, 260
schema.xml 255, 256
solrconfig.xml 256-259
spellings.txt 54, 259, 260
stopwords.txt 54, 260
synonyms.txt 54, 260

configuration, Solr for enterprise
about 45
Solr schema, defining 45, 46

content management system (CMS) 107
Contextual Search for Volkswagen and the

Automotive Industry 25
contrib/ directory 33
cron job

URL 125
CSV data

working with 64
CSVReducer class 246
currency.txt file 54
custom applications

integrating, with Solr 104

D
data

loading, native handlers used 60, 62
loading, post tool used 60, 61

[264]

data/ directory 44
data formats, enterprise data 59, 60
Data import, by enterprise search

about 96
advantages 97
challenges 98

DataImportHandler
about 70
data source types 71
features 70
tuning 195, 196

Data Import Handler (DIH) 23
data import, in Solr

delta import 72
full import mechanism 71
RDBMS tables, loading 73, 75

data integrating pattern, for search
about 96
applications, pushing data to enterprise

search 98
Data import, by enterprise search 96-98
middleware-based integration 99, 100

data-processing patterns, enterprise search
distributed, and replicated 95, 96
distributed enterprise search pattern 92, 93
replicated enterprise search pattern 94, 95
standalone search engine server 92

data source types, DataImportHandler
ContentStreamDataSource 71
FieldReaderDataSource 71
FileDataSource 71
JdbcDataSource 71
URLDataSource 71

DataStax Enterprise (DSE)
URL 249

deduplication
about 76
enabling 76

delta import 72
deltaImportQuery 73
deltaQuery 73
development

SolrCloud, setting up for 138-141
directives, solrconfig.xml file

autoCommit 52
dataDir 51
Filter 51

indexConfig 51
Jmx 52
Lib 51
Listener 52
lockType 52
luceneMatchVersion 51
maxBufferedDocs 51
maxIndexingThreads 51
Query 52
queryParser 53
queryResponse Writer 52
ramBufferSizeMB 51
requestDispatcher 52
requestHandler 52
searchComponent 52
unlockOnStartup 52
updateHandler 52
updateLog 52
Update Request ProcessorChain 52
writeLockTimeout 51

directories, Solr
conf/ 44
contrib/ 33
data/ 44
dist/ 33
docs/ 33
example/ 33
lib/ 44
Licenses/ 33

DisMaxRequestHandler
about 22
URL, for information 22

dist/ directory 33
distributed enterprise search pattern

about 92
advantages 93
and replicated enterprise search

pattern 95, 96
disadvantages 93

distributed search
architecture 131
disadvantages 132
need for 130, 131

distributed search system
designing 130, 131

docs/ directory 33

[265]

document
adding, to SolrCloud 144

document cache 200
document clustering, Carrot2

enabling 154, 155
document routing

and sharding 160, 161
Drupal

and Apache Solr 123-126
URL 124

dynamic fields, Solr 48

E
Elastic Block Store (EBS) Volume 219
ELB (Elastic Load Balancing)

about 132
URL 132

elements, Solr schema
defaultSearchField 50
similarity 50
UniqueKey 50

elevate.txt file 54
EmbeddedSolrServer class 199
EmbeddedSolrServer interface-based

interaction 109
enterprise application

Apache Solr, embedding as
module in 108-111

enterprise archive (.ear) file
Java 108

enterprise data
about 58
categorizing, by access pattern 59
categorizing, by characteristics 58
categorizing, by data formats 59, 60

enterprise distributed search
building, SolrCloud used 138
Master/Slave 132
multinodes 132
multitenant 132

enterprise knowledge repository search,
designing for software IT services

about 100
requisites, gathering 101
solution, designing 102

enterprise search
aspects, designing for 82
challenges 8-10
data-processing patterns 91
deploying, factors 210, 211
implementation aspects 82
interaction ways, Cloud used 208

enterprise search Cloud deployment models
private Cloud 209
public Cloud 210

enterprise search, for energy industry
about 27
approach 28, 29
problem statement 28

enterprise search, for job search agency
about 25
approach 26, 27
problem statement 26

enterprise search implementation
for software product development

company 11
ERP

integrating, with Solr 104
ensemble 134
example/ directory 33
example.xsl file 123
ExtractingRequestHandler 67
Extract Transfer Load (ETL) tools 57

F
facet API

about 126
URL 124

facets, Apache Solr
about 106
field-value 14
multi-select 15
pivot 15
range 15

facets, log management
application 257
host 257
levels of log 256
severity 257
timeline-based 256
user 257

[266]

FastLRUCache 199
fault tolerance 159, 163
features, Admin UI

caching 19
flexible query parsing 18
integration 19
JMX monitoring 18
near real time search 18

features, Apache Solr
administration 17
for end users 12

federated search 10
fields, Solr

about 47
attributes 47
copying 48
dynamic fields 48
types 49

field value cache 201
field-value facet 14
filter cache 200
filter queries

using 202
filters 22, 53
flexible query parsing 18
FOSWIKI (Free and Open Source Wiki)

about 126
URL 126

full import mechanism 71

G
GIS information 28
go-live option 246

H
Hadoop

integrating, with Solr 133
Hadoop Distributed File System (HDFS)

and Apache Solr 236-239
Hadoop tarball

downloading 237
highlighting 15
histogram algorithms, LIRE

color histogram layout (cl_ha) 78
edge histogram (eh_ha) 78
Jc_ha 78

opponent histogram (oh_ha) 78
pyramid histogram of oriented gradients

or PHOG (ph_ha) 78
home directory structure, Solr 44
horizontal scaling, of Solr multicore

with Zookeeper, advantages 218
with Zookeeper, disadvantages 218
Zookeeper, using 216-218

HttpSolrServer class 198
Hunspell algorithm 195
hybrid Cloud 210
Hypertext Preprocessor. See PHP

I
IaaS

differentiating, with PaaS 219
implementation aspects, enterprise search

access, providing to searched entities 86-88
access, providing to user interface 86-88
instance scalability, ensuring 88, 89
linguistic support 90
mobile support 90
requisites, identifying 83, 84
search performance, improving 88, 89
security 91
user expectations, matching through

relevance 84-86
working with applications, through

federated search 89, 90
implementation classes, SolrJ

CloudSolrServer 198
ConcurrentUpdateSolrServer 198
EmbeddedSolrServer 199
HttpSolrServer 198
LBHttpSolrServer 199

index generation
speeding up 196

index handlers 23
indexing buffer size

limiting 198
index partitioning

performing, Apache Solr used 138
index searcher 22
index time boosting 86
Infrastructure as a Service (IaaS) model 208
initLimit variable 142

[267]

Instagram 25
installation, Apache Storm 175-177
installation, MongoDB 169, 170
instance type, Amazon 219
integration, Apache Solr

about 24
client APIs 24
SolrJ client 24
with other interfaces 24

Internal KM repository
integrating, with Solr 104

Internet archive 25
IRichBolt interface, of Storm

URL, for downloading 178

J
Java

interacting, with Solr 56
Java Enterprise application

empowering, with Apache Solr search 108
Java Management Extensions (JMX) 18, 181
JavaScript

Apache Solr, integrating with 119
interacting, with Solr 56

JavaScript Object Notation. See JSON
Java Topology Suite (JTS) 29
java -version command 32
Java Virtual Machine (JVM)

about 40, 181
optimizing 190
URL, for comparison studies 188
URL, for lists 188

JBoss 38
JConsole

about 184-186
URL, for documentation 186

Jetty
Solr, running on 33-35

Jetty 6.0 34
Jetty server

starting 138, 139
JIRA SOLR-769

URL 155
JMX monitoring 18
JSON 63, 120

JSON data
handling 63

JVM container
JBoss 191
Jetty 191
optimizing 190, 191
Tomcat 191
Weblogic 192
Websphere 192

JVM measures, Apache Solr
garbage collection 181
heap size 181
thread count 181

K
Katta

about 240
Big Data search 240
indexes, creating 242
URL 240
working 240, 241

Katta cluster
about 241
setting up 241

Katta indexes
creating 242

Katta master 241
Katta project 133
key 235
key pairs 219
K-Means clustering 253
KStem algorithm 195

L
laggard problem concept 204
Land Charts 28
lazy field loading 203
LBHttpSolrServer class 199
Least Frequently Used (LFUCache) 199
Least Recently Used cache (LRUCache) 199
lib/ directory 44
Licenses/ directory 33
linguistic support, enterprise search

protected words 90
spell checking 91

[268]

stop words 90
word stemming 90

LIRE
about 78
histogram algorithms 78
link, for configuration 79
URL 78
used, for searching images 78

load balancing, SolrCloud 163
Loggly

URL 209
Lucene Image Retrieval. See LIRE
LucidWorks

URL 33

M
Managed Beans (MBeans) 18, 186
Master/Slave 132
middleware-based integration pattern

about 99
benefits 100
drawbacks 100

MongoDB
about 126, 168
installing 169, 170
Solr indexes, creating from 171-174
Solr, using with 168
URL 168
URL, for downloading 169

MongoDB-based Solr integration
enabling 172-174

monitoring parameters, Apache Solr
about 180
Apache Solr indexing time 182
Apache Solr search runtime 181
hardware 180, 181
Java Virtual Machine 181
operating system 180, 181
SolrCloud 183

more like this feature 15, 106
multinodes 132
multi-select facet 15
multitenant 132
mypage.html file 123

N
Netflix 25
NOSQL databases

classifying 235
subtypes 235

Not only SQL (NOSQL) 7
numShards=<number> parameter 139

O
OpenCMS 126
OpenSolr Cloud

blog 228
used, for running Apache Solr 227, 228

operating system tools measures, Apache
Solr

CPU load 180
disk space 181
IO waits 180
RAM or memory used/free 180
swap space and OS paging 181

Optical Character Recognition Software
(OCR) 30, 77

optimizations, Solr indexing
copy fields 193
dynamic fields 193
field lengths 192
fields for range queries 193
indexed fields 192
index field updates 194

optimizations, Solr schema
about 192
stored fields 192

optimization ways, Solr
filter queries, using 202
lazy field loading 203
pagination 202
Solr response footprint, reducing 202

options, Solr administration
Collection 38
Core admin 38
Dashboard 38
Java properties 38
Logging 38
Logging >Level 38
Thread dump 38

OutOfMemory error 40

[269]

P
pagination 202
parameters, Solr

configuring 50
solrconfig.xml configuration 51
Solr core configuration 51
solr.xml configuration 51

parsers
DisMax 203
Extended DisMax 203
NestedQuery 203
standard (Lucene) 203
URL, for information 203

performance
monitoring, of Apache Solr 180

performance measurements, SolrMeter
Commit Console 188
Optimize Console 188
Query Console 187
Update Console 187

Perl
interacting, with Solr 56

PHP
Apache Solr, integrating with 114
interacting, with Solr 56

pivot facet 15
Platform as a Service (PaaS) model 208
plugins, with Solr

about 53
filters 53
RequestHandler 53
SearchComponents 53

Porter algorithm 195
post.jar utility 40
post tool

about 60
arguments 61

practical use cases, Apache Solr
Instagram 25
Internet archive 25
Netflix 25
Smithsonian Institution 25
StubHub.com 25
WhiteHouse.gov 25

prerequisites, Apache Solr 32, 33
private Cloud 209

problems, SolrCloud 146-148
production

SolrCloud, setting up for 141-144
protwords.txt file 54, 260
public Cloud 210
Python

interacting, with Solr 56
URL, for downloading 177

Q
Queries Per Second (QPS) 182
query parser 21, 23, 203
query result cache 200
quorum 135

R
range facet 15
RDBMS tables

loading, in Solr 73-75
real-time search, Apache Solr 166
reduce-side indexing 245-247
relevance 15
Remote Procedure Calls (RPC)

mechanism 241
replicas

creating, in SolrCloud 145, 146
replicated enterprise search pattern

about 94
advantages 94
and distributed enterprise search

pattern 95, 96
disadvantages 95

RequestHandlers 52, 53
resolutions, SolrCloud 146-148
response writer 23
result clustering, Carrot2 155, 156
rich documents

metadata, adding 68
working with 66

R language
about 252
integrating, with Apache Solr 252-254
packages 252
URL 252

round-robin algorithm
URL 141

[270]

RSS feeds
integrating, with Solr 104

Ruby
interacting, with Solr 56

runtime search
improving, for Solr 201

S
SaaS 209, 227
scanned documents

information, extracting from 77
schemaless mode 35
schema.xml file 255, 256
SearchComponents 52, 53
search engine

components 8
URLs, for research 8

search result clustering
enabling, with Carrot2 152

Search solution as service model 209
security groups 219
service level agreements (SLA) 211
sharding

about 91, 159
and document routing 160, 161

shards
about 91
creating, in SolrCloud 145, 146

Shard splitting feature
about 162
URL 162

single node enterprise search applications
issues 130

Single-Sign-On (SSO) 88
Smithsonian Institution 25
Snowball algorithm 195
Solandra

single node configuration 249-251
URL 249

Solarium
about 118
GitHub, URL 118
URL 118
using, for advanced integration 118

SolBase 133

Solr
.NET, interacting with 56
and Apache Storm 178
and Hadoop, integration between 133
ATOM, integrating with 104
custom applications, integrating with 104
directories 33
dynamic fields 48
ERP, integrating with 104
Internal KM repository, integrating

with 104
Java, interacting with 56
JavaScript, interacting with 56
optimizing 201
Perl, interacting with 56
PHP, interacting with 56
plugins 53
Python, interacting with 56
RSS feeds, integrating with 104
Ruby, interacting with 56
running, on Jetty 33-35
running, on Tomcat 36, 37
running, with Bitnami 230
running, with SolrHQ Cloud 229
scaling, through Storm 174, 175
speeding, through Solr caching 199
URL, for downloading from Apache

mirror site 35
URL, for usage 25
using, with MongoDB 168

Solr-1045 Patch 133
Solr-1301 Patch 133
Solr administration

about 38
options 38

Solr administration user interface 183, 184
Solr and Cassandra embedded. See

Solandra
Solr application 21-23
Solr caching

document cache 200
field value cache 201
filter cache 200
query result cache 200
Solr, speeding through 199
warming up cache 201

[271]

Solr Cell 67
SolrCloud

about 134, 183, 211
Apache Zookeeper 134, 135
architecture 135-138
collections, creating 145, 146
document, adding to 144
fault tolerance 163
load balancing 163
optimizing 204, 205
replicas, creating 145, 146
setting up, for development 138-141
setting up, for production 141-144
shards, creating 145, 146
used, for building enterprise distributed

search 138
SolrCloud design

URL 46
SolrCloud measures

network trace / ping time 183
Zookeeper latency and throughput 183

solrconfig.xml configuration 51
solrconfig.xml file 256-259
Solr core configuration 51
Solr documents

searching, in real time 164
Solr fields

about 47
attributes 47
copying 48
types 49

Solr, for end users
about 12
advanced search capabilities 15, 16
facets, for better browsing experience 14
pagination 13
powerful full text search 13
results ranking 13
search, through rich information 13
sorting 13

Solr horizontal, scaling as multiple
applications

about 212
advantages 214
disadvantages 214

SolrHQ Cloud
URL 229

used, for running Apache Solr 229
Solr indexes

creating, from MongoDB 171-174
SolrIndexUpdateMapper class 244
SolrIndexUpdater class 244
SolrJ

implementation classes 198
overview 55, 56
using 113

SolrJ client 24
Solr JVM and container, tuning

about 188
heap size, deciding 189, 190
JVM container, optimizing 190, 191
JVM, optimizing 190

SolrMeter
about 187
URL, for downloading 187
URL, for tutorial 188

Solr multicore
horizontal scaling, with Apache Solr 214
horizontal scaling, with replication 214, 215
horizontal scaling, with Zookeeper 216

Solr navigation, URLs
/admin 45
/analysis/document 45
/analysis/field 45
/browse 45
/debug/dump 45
/get 44
/query 44
/replication 45
/select 44
/update/csv 45
/update/extract 45
/update/json 45

Solr parameters
configuring 50

Solr performance
tools, for monitoring 183

Solr PHP client
Apache_Solr_Document class 116
Apache_Solr_Response class 116
Apache_Solr_Service_Balancer class 116
Apache_Solr_Service class 116
using 116

SolrRecordWriter class 246

[272]

Solr response footprint
reducing 202

Solr results
viewing, in Carrot2 workbench 157, 158

Solr, running on Tomcat
Java options, setting 37
JNDI Lookup, configuring 37

Solr, scaling dedicated application
advantages 211
disadvantages 211

Solr schema
defining 45, 46
elements 50

Solr security
URL, for information 91

Solr structure
about 43
home directory structure 44

solr.war file 43
Solr XML

parsing, with XSLT 122
solr.xml configuration 51
SolrXMLDocRecordReader class 244
solr.xml file 43
solution design, for enterprise knowledge

repository
schema, designing 102, 103
subsystems, integrating with

Apache Solr 104, 105
working, on end user interface 106

spell checker 16
spell checking and autocomplete

feature 106
spellings.txt file 54, 259, 260
Spunk implementations

URL, for case study 180
standalone search engine server

about 92
advantages 92
disadvantages 92

stemming 195
stemming algorithms

Hunspell 195
KStem 195
Porter 195
Snowball 195

stopwords 195
stopwords.txt file 54, 260
storage, of Apache Solr 20
Storm

Solr, scaling through 174, 175
strategies, for real-time search

about 164
automatic commit functionality 166
CommitWithin 166
explicit call, to commit from client 165
real-time search, in Apache Solr 166-168
solrconfig.xml 166

structured data
data source, configuring 70
importing, from database 69
importing, in Solr 71

StubHub.com 25
syncLimit variable 142
synonyms 194
synonyms.txt file 54, 260

T
text highlighting feature 106
TF-IDF algorithm 85
tokenizers 22
Tomcat

Solr, running on 36, 37
tools, for monitoring Solr performance

about 183
JConsole 184-186
Solr administration user interface 183, 184
SolrMeter 187, 188

U
UpdateHandler 52
UpdateRequestHandler

about 61
working 62

V
Virtual Private Cloud (VPC) 226

[273]

W
warming up cache 201
web application

Apache Solr, working 111-114
Weblogic 191
WhiteHouse.gov 25
Windows Azure

Apache Solr, running on 226
URL 226

WordPress CMS 126

X
XML data

working with 65
XML style sheets (XSLT)

about 122
used, for Solr XML parsing 122

Y
yum install command 34

Z
zkCLI command 147
zkHost=<host>:<port> parameter 139
zk-host parameter 246
zkRun parameter 139
znode 134
Zookeeper 161

URL, for downloading 175

Thank you for buying
Scaling Apache Solr

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1.	 Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable.

2.	 Solve performance, setup, configuration,
analysis, and query problems in no time.

3.	 Get to grips with, and master, the new exciting
features of Apache Solr 4.

Apache Solr High Performance
ISBN: 978-1-78216-482-1 Paperback: 124 pages

Boost the performance of Solr instances and
troubleshoot real-time problems

1.	 Achieve high scores by boosting query time
and index time, implementing boost queries
and functions using the Dismax query parser
and formulae.

2.	 Set up and use SolrCloud for distributed
indexing and searching, and implement
distributed search using Shards.

3.	 Use GeoSpatial search, handling homophones,
and ignoring listed words from being indexed
and searched.

Please check www.PacktPub.com for information on our titles

Scaling Big Data with Hadoop
and Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient, high
performance enterprise search repositories for Big
Data using Hadoop and Solr

1.	 Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks.

2.	 Learn from interesting, real-life use cases for
Big Data search along with sample code.

3.	 Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr.

Administrating Solr
ISBN: 978-1-78328-325-5 Paperback: 120 pages

Master the use of Drupal and associated scripts to
administrate, monitor, and optimize Solr

1.	 Learn how to work with monitoring tools like
OpsView, New Relic, and SPM.

2.	 Utilize Solr scripts and Collection Distribution
scripts to manage Solr.

3.	 Employ search features like querying,
categorizing, search based on location,
and distributed search.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Apache Solr
	Challenges in enterprise search
	Understanding Apache Solr
	Features of Apache Solr
	Solr for end users
	Powerful full text search
	Search through rich information
	Results ranking, pagination, and sorting
	Facets for better browsing experience
	Advanced search capabilities

	Administration

	Apache Solr architecture
	Storage
	Solr application
	Integration
	Client APIs and SolrJ client
	Other interfaces

	Practical use cases for Apache Solr
	Enterprise search for a job search agency
	Problem statement
	Approach

	Enterprise search for energy industry
	Problem statement
	Approach

	Summary

	Chapter 2: Getting Started with
Apache Solr
	Setting up Apache Solr
	Prerequisites
	Running Solr on Jetty
	Running Solr on Tomcat
	Solr administration
	What's next?
	Common problems and solution

	Understanding the Solr structure
	The Solr home directory structure
	Solr navigation

	Configuring the Apache Solr for enterprise
	Defining a Solr schema
	Solr fields
	Dynamic Fields in Solr
	Copying the fields
	Field types
	Other important elements in the Solr schema

	Configuring Solr parameters
	solr.xml and Solr core
	solrconfig.xml
	The Solr plugin

	Other configurations

	Understanding SolrJ
	Summary

	Chapter 3: Analyzing Data with
Apache Solr
	Understanding enterprise data
	Categorizing by characteristics
	Categorizing by access pattern
	Categorizing by data formats

	Loading data using native handlers
	Quick and simple data loading – post tool
	Working with JSON, XML, and CSV
	Handling JSON data
	Working with CSV data
	Working with XML data

	Working with rich documents
	Understanding Apache Tika
	Using Solr Cell (ExtractingRequestHandler)
	Adding metadata to your rich documents

	Importing structured data from
the database
	Configuring the data source
	Importing data in Solr
	Full import
	Delta import

	Loading RDBMS tables in Solr

	Advanced topics with Solr
	Deduplication
	Extracting information from scanned documents
	Searching through images using LIRE

	Summary

	Chapter 4: Designing Enterprise Search
	Designing aspects for enterprise search
	Identifying requirements
	Matching user expectations through relevance
	Access to searched entities and
user interface
	Improving search performance and ensuring instance scalability
	Working with applications through
federated search
	Other differentiators – mobiles, linguistic search, and security

	Enterprise search data-processing patterns
	Standalone search engine server
	Distributed enterprise search pattern
	The replicated enterprise search pattern
	Distributed and replicated

	Data integrating pattern for search
	Data import by enterprise search
	Applications pushing data
	Middleware-based integration

	Case study – designing an enterprise knowledge repository search for software IT services
	Gathering requirements
	Designing the solution
	Designing the schema
	Integrating subsystems with Apache Solr
	Working on end user interface

	Summary

	Chapter 5: Integrating Apache Solr
	Empowering the Java Enterprise application with Solr search
	Embedding Apache Solr as a module (web application) in an enterprise application
	How to do it?

	Apache Solr in your web application
	How to do it?

	Integration with client technologies
	Integrating Apache Solr with PHP for
web portals
	Interacting directly with Solr
	Using the Solr PHP client
	Advanced integration with Solarium

	Integrating Apache Solr with JavaScript
	Using simple XMLHTTPRequest
	Integrating Apache Solr using AJAX Solr

	Parsing Solr XML with the help of XSLT

	Case study – Apache Solr and Drupal
	How to do it?

	Summary

	Chapter 6: Distributed Search
Using Apache Solr
	Need for distributed search
	Distributed search architecture
	Apache Solr and distributed search

	Understanding SolrCloud
	Why Zookeeper?
	SolrCloud architecture

	Building enterprise distributed search using SolrCloud
	Setting up a SolrCloud for development
	Setting up a SolrCloud for production
	Adding a document to SolrCloud
	Creating shards, collections, and replicas
in SolrCloud

	Common problems and resolutions
	Case study – distributed enterprise search server for the software industry
	Summary

	Chapter 7: Scaling Solr through Sharding, Fault Tolerance, and Integration
	Enabling search result clustering with Carrot2
	Why Carrot2?
	Enabling Carrot2-based document clustering
	Understanding Carrot2 result clustering
	Viewing Solr results in the Carrot2 workbench
	FAQs and problems

	Sharding and fault tolerance
	Document routing and sharding
	Shard splitting
	Load balancing and fault tolerance in SolrCloud

	Searching Solr documents in near
real time
	Strategies for near real-time search in
Apache Solr
	Explicit call to commit from a client
	solrconfig.xml – autocommit
	CommitWithin – delegating the responsibility to Solr
	Real-time search in Apache Solr

	Solr with MongoDB
	Understanding MongoDB
	Installing MongoDB
	Creating Solr indexes from MongoDB

	Scaling Solr through Storm
	Getting along with Apache Storm
	Solr and Apache Storm

	Summary

	Chapter 8: Scaling Solr through
High Performance
	Monitoring performance of Apache Solr
	What should be monitored?
	Hardware and operating system
	Java virtual machine
	Apache Solr search runtime
	Apache Solr indexing time
	SolrCloud

	Tools for monitoring Solr performance
	Solr administration user interface
	JConsole
	SolrMeter

	Tuning Solr JVM and container
	Deciding heap size
	How can we optimize JVM?
	Optimizing JVM container

	Optimizing Solr schema and indexing
	Stored fields
	Indexed fields and field lengths
	Copy fields and dynamic fields
	Fields for range queries
	Index field updates

	Synonyms, stemming, and stopwords
	Tuning DataImportHandler
	Speeding up index generation
	Committing the change
	Limiting indexing buffer size

	SolrJ implementation classes

	Speeding Solr through Solr caching
	The filter cache
	The query result cache
	The document cache
	The field value cache
	The warming up cache

	Improving runtime search for Solr
	Pagination
	Reducing Solr response footprint
	Using filter queries
	Search query and the parsers
	Lazy field loading

	Optimizing SolrCloud
	Summary

	Chapter 9: Solr and Cloud Computing
	Enterprise search on Cloud
	Models of engagement
	Enterprise search Cloud deployment models

	Solr on Cloud strategies
	Scaling Solr with a dedicated application
	Advantages
	Disadvantages

	Scaling Solr horizontal as multiple applications
	Advantages
	Disadvantages

	Scaling horizontally through the Solr multicore
	Scaling horizontally with replication
	Scaling horizontally with Zookeeper

	Running Solr on Cloud (IaaS and PaaS)
	Running Solr with Amazon Cloud
	Running Solr on Windows Azure

	Running Solr on Cloud (SaaS) and enterprise search as a service
	Running Solr with OpenSolr Cloud
	Running Solr with SolrHQ Cloud
	Running Solr with Bitnami
	Working with Amazon CloudSearch
	Drupal-Solr SaaS with Acquia

	Summary

	Chapter 10: Scaling Solr Capabilities
with Big Data
	Apache Solr and HDFS
	Big Data search on Katta
	How Katta works?
	Setting up Katta cluster
	Creating Katta indexes

	Using the Solr 1045 patch – map-side indexing
	Using the Solr 1301 patch – reduce-side indexing
	Apache Solr and Cassandra
	Working with Cassandra and Solr
	Single node configuration
	Integrating with multinode Cassandra

	Advanced analytics with Solr
	Integrating Solr and R

	Summary

	Appendix: Sample Configuration
for Apache Solr
	schema.xml
	solrconfig.xml
	spellings.txt
	synonyms.txt
	protwords.txt
	stopwords.txt

	Index

