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 For decades, visual recognition has been studied with objects rather than with 
scenes: single, clean, clear, and isolated objects presented to subjects at the center 
of the screen. This is the type of display you only see in a laboratory. In our real 
environment, objects do not appear so neatly. Our visual world is a stimulating 
scenery mess. Fragments, colors, occlusions, motion, eye movements, context, and 
distraction all have profound effects on perception. But except for a few brave 
researchers (with the seminal work of Irving Biederman from the 1960s and 1970s 
standing out), most have made the implicit or explicit decision that starting with 
objects, in spite of their meaningful lack of ecological validity, is complicated 
enough and will provide a good start. 

 This volume represents the collective contribution of modern pioneers of visual 
cognition, those who managed to build on solid foundations of past research to make 
the leap closer to real-world vision. Spanning issues of spatial vision to the study of 
context, from rapid perception to emotion, from attention to memory, from psychol-
ogy to computational neuroscience, and from single neurons to the human brain, this 
book is expected to give the reader a reliable and stimulating snapshot of cutting-edge 
ideas on how we understand scenes and the visual world around us. 

 The problem begins with defi ning what constitutes a scene. Is a single object with 
background (a bird in the sky) a scene? Are two objects (a princess on a unicorn) a 
scene? As anyone who has tried to build a scene out of individual objects on a com-
puter screen could attest, something is missing. Place ten objects in a circle, or even 
in realistic spatial relations to each other, and it does not feel right. But show a broken 
glass on the fl oor, and you know it is real. Real scenes have a  “ glue ”  that holds their 
elements together yet escapes defi nition.  

 A second problem is how to generalize what we have learned from rigorous and 
extensive research on individual object recognition to the realm of realistic, whole 
scenes. Those who had been following the literature may have strong views, for 
example, on whether individual objects are represented as a collection of 2D templates 
or as 3D structural descriptions, but those views seem to evaporate once we think of 
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scenes, as if  we are dealing with completely different topics. Similarly, size and view-
point invariances have been central issues in object recognition but are hardly dis-
cussed, if  at all, in the context of scenes. And the cortical pathways implicated in 
object recognition are generally treated as isolated from those that mediate scene 
understanding. The corresponding bodies of literature may give one the impression 
that scene perception and object recognition are nonoverlapping fi elds of research, 
although they are expected to be tightly related. There may be a gold mine of over-
arching links that could be made between what we know, and would like to know, 
about object and scene recognition, once we fi nd the way. 

 One more concept whose discussion seems asymmetrical in that it is emphasized in 
one (scene understanding) but not the other (object recognition) is  gist , a fascinating 
concept that also eludes defi nition. A glimpse at a scene is suffi cient to extract so much 
information. Context, locations, presence of threat, and more are identifi able from 
mere tens of milliseconds of exposure. We can view a scene very briefl y and, although 
we are not able to recognize its individual elements, we are left with a high-level con-
ceptual gist impression such as  “ people having fun at a pool party. ”  Although gist can 
also be defi ned for individual objects (e.g., by the use of low spatial frequencies), a 
gist of a scene tends to be richer and more complex. A scene ’ s gist appears to involve 
more than information about the physical elements of the scene: it provides the basis 
for effi ciently encapsulated memory (while sometimes giving rise to false recall), and 
it provides a powerful platform for the generation of predictions.  

 In addition to highlighting such important open questions, recent research on scene 
understanding has resulted in many interesting, and sometimes surprising, insights, 
as the chapters of this book demonstrate. Consider the following examples.  

 We know by now the speed limit on scene understanding and the minimal duration 
required for maintaining in memory what we have glimpsed, both for short and for 
long term. We know that observers extrapolate their memory of a scene beyond its 
presented boundaries, and this peculiar phenomenon tells us a lot about the spatial 
nature of scene representation. We also know that in spite of impressively quick and 
accurate scene understanding, we can miss information and not notice central changes 
made to the scene, and that those aspects that we are prone to miss typically do not 
affect the gist that is extracted from scenes.  

 The category of a scene (e.g., a street, a beach, an offi ce) can be gleaned rapidly 
from selective spatial frequency bands in the image. Such sampling of spatial frequen-
cies can be determined top-down and is modulated by task and the rudimentary 
diagnostics of the scene. This impressive ability may be based on relatively low-level 
visual characteristics that are common to members of each scene category. The accu-
mulating evidence shows that in addition to the spatial layout of scenes, which is 
usually conveyed by the low spatial frequencies, a great deal of knowledge about 
content and category can be inferred from other statistics embedded in natural scenes. 
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 Signifi cant progress has also been made in recent years in charting the neural 
mechanisms subserving scene representation and processing. It has been shown 
repeatedly that scenes and contextual associations are represented and processed by 
a network that includes the parahippocampal cortex (in the medial temporal lobe), 
the retrosplenial complex, and parts of the medial prefrontal cortex. Scenes contain 
both spatial layout and information about contextual associations and, indeed, 
this network seems to mediate both such spatial and nonspatial information. Interest-
ingly, this network shows a remarkable overlap with the brain ’ s  “ default ”  network, 
an overlap that is taken to indicate that a lot of our thinking involves scenes and 
associations. This fi ts well with our subjective feeling of the extent to which our mental 
simulations, mind wandering, episodic memory, planning, and predictions rely on 
visual scenes and associations at their core.  

 We store our memories of scenes and their regularities in memory structures (e.g., 
 “ context frames ” ) that are developed and fi ne-tuned with experience. These context 
frames are used not only for effi cient memory storage but also for rapid recognition 
and for the generation of predictions about expected co-occurrences. Behavioral 
measures as well as physiological recordings (magnetoencephalography and electro-
encephalography) indicate that the benefi ts that context confers to recognition are 
exerted surprisingly early. 

 By now we know a great deal (although not enough) about the way the brain inte-
grates multiple scene views across eye movements and differing levels of detail. Addi-
tionally, one of the main functions we deploy on scenes is searching for something 
(e.g., car keys, a friend). There are informative fi ndings and insights on how search is 
guided by attention and depends on task requirements and stimulus characteristics. 
Search in scenes seems to be an iterative process that combines bottom-up and top-
down processes regularly and rapidly. Many of these fi ndings have also been reported 
in macaques and thus are supported by a wealth of neurophysiological data. 

 Finally, as creatures that seek to survive, we extract emotion and threat readily 
and continuously as an inherent part of our scene understanding. It turns out that 
we can discern different types of threats and for this rely on minute spatial and tem-
poral properties in the scene. Furthermore, like many aspects of our environment, 
scenes are evaluated aesthetically. There have already been reports of some thought-
provoking fi ndings about what we fi nd visually pleasing.  

 You can read about all this exciting research, and the fascinating questions that 
await, in the pages ahead. Enjoy.  
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 Traditionally, scene perception has been conceptualized within the modality-centric 
framework of visual cognition. However, in the world, observers are spatially 
embedded within the scenes they perceive. Scenes are sampled through eye move-
ments but also through movements of the head and body, guided by expectations 
about surrounding space. In this chapter, I will address the idea that scene repre-
sentation is, at its core, a spatio-centric representation that incorporates multiple 
sources of information: sensory input, but also several sources of top-down infor-
mation. Boundary extension (false memory beyond the edges of a view; Intraub 
2010; Intraub  &  Richardson, 1989) provides a novel window onto the nature 
of scene representation because the remembered  “ extended ”  region has no corre-
sponding sensory correlate. I will discuss behavioral, neuroimaging and neuropsy-
chological research on boundary extension that supports a spatio-centric alternative 
to the traditional description of scene representation as a  visual  representation. 
I will suggest that this alternative view bears a relation to theories about memory 
and future planning.  

 The traditional modality-centric approach to scene representation continues to 
generate interesting questions and valuable research, but may unnecessarily constrain 
the way we think about scene perception and memory. A key motivation underlying 
much of the research on visual scene perception has been the mismatch between the 
phenomenology of vision (perception of a coherent, continuous visual world) and the 
striking limitations on visual input imposed by the physiology of vision ( O ’ Regan, 
1992 ). Put simply, the world is continuous, but visual sensory input is not. The visual 
fi eld is spatially limited. To perceive our surroundings we must sample the world 
through successive eye fi xations and movements of the head and body. Ballistic eye 
movements (saccades) shift the eyes ’  position between fi xations, and during these eye 
movements, vision is suppressed ( Volkmann, 1986 ). Thus, the currently available 
information during scene perception switches between visual sensory perception and 
transsaccadic memory ( Irwin, 1991 ) as frequently as three times per second. Finally, 
each time the eyes land, our best visual acuity is limited to the tiny foveal region 
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(1 o  of visual angle) of each eye and declines outward into the large low-acuity periph-
ery of vision ( Rayner, 2009 ;  Rayner  &  Pollatsek, 1992 ). How this piecemeal, inhomo-
geneous input comes to support the experience of a coherent visual world has been 
one of the classic mysteries of visual scene perception ( Hochberg, 1986 ;  Intraub, 1997 ; 
 Irwin, 1991 ). 

 Rather than thinking of this problem in terms of the visual modality alone, an 
alternative approach is to consider that visual scene perception, even in the case of a 
2D photograph, may be organized within the observer ’ s spatial framework of sur-
rounding space (the multisource model:  Intraub, 2010, 2012 ;  Intraub  &  Dickinson, 
2008 ). Here, the underlying framework for scene perception is the observer ’ s sense 
of space (e.g.,  “ in front of me, ”   “ to the sides, ”   “ above, ”   “ below, ”  and  “ behind me ” ; 
 Tversky, 2009 ). This spatial framework acts as scaffolding that organizes not only the 
visual input but also rapidly available sources of information about the likely world 
from which the view was taken. These other sources of information include amodal 
completion of objects ( Kanizsa, 1979 ) and amodal continuation of surfaces ( Fantoni, 
Hilger, Gerbino,  &  Kellman, 2008 ;  Yin, Kellman,  &  Shipley, 2000 ) that are cropped 
by the boundaries of the photograph; knowledge based on rapid scene classifi cation 
(occurring within 100 – 150 ms of stimulus onset;  Greene  &  Oliva, 2009 ;  Potter, 1976 ; 
 Thorpe, Fize,  &  Marlot, 1996 ); as well as object-to-context associations ( Bar, 2004 ). 
The ability to rapidly identify objects and scenes provides early access to expectations 
(and constraints) about the likely layout and content of the surrounding world that 
a single view only partially reveals. 

 During day-to-day interactions with the world, the observer is embedded within 
a surrounding scene (e.g., standing in a kitchen) with online access to one view at 
a time. Scene representation, in this conceptualization, captures this fundamental 
reality. A single view (e.g., the fi rst view on a scene, or the frozen view presented 
in a photograph) is thought to activate multiple brain areas that support a simula-
tion ( Barsalou, Kyle Simmons, Barbey,  &  Wilson, 2003 ) of the likely surrounding 
world that the view only partially reveals. In real-world perception as visual sam-
pling continues, the representation increasingly refl ects the specifi c details of the 
surrounding scene. What is suggested here is that the fi rst fi xation on a scene is 
suffi cient to initiate a simulation that subsequent views can confi rm or correct and 
embellish. According to the multisource model, just as the visual fi eld itself  is 
inhomogeneous, scene simulation too is inhomogeneous, shading from the highly 
detailed visual information in the current view to the periphery of vision, to amodal 
perception just beyond the boundaries, and to increasingly general and schematic 
expectations. A key impetus for my colleagues and me in considering this alterna-
tive conceptualization of scene perception has been  boundary extension , a construc-
tive error in memory for views of the world that was fi rst reported in  Intraub and 
Richardson (1989) . 
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 Boundary Extension 

    Boundary extension ( Intraub, 2010, 2012 ) is an error in which the observer remembers 
having seen beyond the physical boundaries of a view.   Figure 1.1  shows an example 
of boundary extension in participants ’  drawings of photographs from memory 
( Intraub  &  Richardson, 1989 ). As shown in the fi gure, their drawings included more 
of the scene than was shown in the photograph. When the close-up view (panel A) 
was drawn from memory, not only did participants remember seeing complete garbage 
cans, but they remembered seeing a continuation of the fence beyond each one as well 
as more of the world beyond the upper and lower boundaries (as shown in the example 
in panel C). Although this overinclusive memory was an error with respect to the 
stimulus view, a comparison of this drawing with the wider-angle photograph of the 
same scene (panel B) shows that this error was also a good prediction of the world 
just beyond the boundaries of the original view. This effect was fi rst discovered in the 
context of long-term memory (retention intervals of minutes to days:  Intraub, Bender, 
 &  Mangels, 1992 ;  Intraub  &  Richardson, 1989 ), but subsequent research has shown 
that boundary extension can occur across a masked retention interval as brief  as 42 

A

C

B

D

 Figure 1.1 
 A pair of photographs (close-up and more wide-angle view) and a drawing of each one made by different 
participants. Note the content at the edges of the photographs and the edges of the drawings; participants 
remembered seeing more of the world than was shown (boundary extension). Based on   figure 1.1  in 
 Intraub and Richardson (1989) ,  Journal of Experimental Psychology: Learning, Memory  &  Cognition.  
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ms (commensurate with a saccade) as well as across an actual saccade when the 
stimulus and test picture fall on different sides of the screen ( Dickinson  &  Intraub, 
2008 ;  Intraub  &  Dickinson, 2008 ). The rapid presence of extrastimulus scene layout 
is challenging to explain in terms of visual memory alone. 

 Boundary extension may not occur for all types visual stimuli (e.g., an object on a 
blank background) or at least not to the same degree ( Gottesman  &  Intraub, 2002 ; 
 Intraub, Gottesman,  &  Bills, 1998 ). It appears to be strongly associated with perceiv-
ing or thinking about scenes. For example,  Intraub et al. (1998)  presented line draw-
ings of single objects on blank backgrounds. Participants were instructed to remember 
the objects and their sizes, but one group was induced to imagine a specifi c real-world 
location in the blank background. Although the visual information was the same, 
boundary extension occurred only in the scene imagination condition. An imagery 
control condition revealed that it was not imagery per se that had caused boundary 
extension in the  “ imagine-background ”  condition because when participants were 
instructed to imagine the colors of the objects during presentation, again boundary 
extension did not occur. When, in another condition, a simple background was added 
to each line drawing (consistent with the imagery inducement descriptions), again 
boundary extension occurred. In fact, performance was virtually identical when the 
background was imagined as when it was perceived. This, and related observations 
( Gottesman  &  Intraub, 2002 ) suggested that boundary extension is associated with 
the recruitment of processes associated with perceiving or thinking about spatial 
layout and meaningful locations (i.e., scenes). 

 Different aspects of spatial layout have been shown to affect boundary extension. 
The scope of the view is one such factor. Boundary extension is greatest in the case 
of tight close-ups and decreases, ultimately disappearing, as the view widens ( Intraub 
et al., 1992 ). Close-ups yield the largest error even when there is a clear marker for 
boundary placement such as when a boundary slightly crops the main object in a 
picture. In an eye-tracking study,  Gagnier, Dickinson, and Intraub (2013)  presented 
participants with close-up photographs of single-object scenes either with or without 
a cropped object. Participants fi xated the picture boundaries and, in the case of the 
cropped objects, fi xated the place where the boundary cut across the object, and they 
refi xated those areas, minutes later, at test. Yet, when participants adjusted the bound-
aries using the mouse to reveal more or less of the background at each picture bound-
ary, they moved the boundaries outward to reveal unseen surrounding space in spite 
of their well-placed eye fi xations. 

 To determine if  knowing what would be tested in advance would infl uence oculo-
motor activity and eliminate boundary extension, another group of participants 
was forewarned about the nature of the test at the start of the experiment. Fixations 
to the boundary region and to the cropped region increased for this group, indicating 
that participants were attending to these critical areas. However, at test, although the 
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size of the boundary error was reduced, boundary extension again occurred. In spite 
of numerous fi xations to the location where the boundary had cropped the object, 
participants moved the cropping boundary outward such that they not only com-
pleted the object, but showed additional background beyond. Thus, knowing what 
would be tested in advance, increasing eye fi xations to the most informative areas 
during encoding (including a clear marker of boundary placement) and then fi xating 
those regions again at test were not suffi cient to overcome boundary extension. 
Memory was not constrained to the high-acuity visual information available during 
multiple fi xations but also included additional nonvisual information consistent with 
representation of the view within a larger spatial context. 

 Spatial factors such as the distance of an object to a boundary ( Bertamini, Jones, 
Spooner,  &  Hecht, 2005 ;  Intraub et al., 1992 ) impact boundary extension. But in the 
context of the current discussion, it is important to note that this effect is not tied 
solely to distance  within  the picture space (e.g.,  “ the object is 1 cm from the picture ’ s 
left boundary ” ) but refl ects how much of the real world scene is depicted within that 
distance in the picture (e.g., how much of the background can be seen in that 1-cm 
space).  Gagnier, Intraub, Oliva, and Wolfe (2011)  kept the distance between the main 
object and the edges of the picture constant, but across conditions they changed the 
camera ’ s viewpoint (0 o  degrees, straight ahead; or 45 o  angle, at an angle) so that the 
picture would include more or less of the scene ’ s background within the space between 
the object and the picture ’ s boundaries. Results showed that in this case, although the 
distance between the object and the picture ’ s boundaries was the same, boundary 
extension was affected by how much of the world could be seen within that space. 
They found that at a 45 o  angle, with more of the background space visible than at the 
0 o  angle (straight ahead), boundary extension was attenuated (similar to the reduction 
in boundary extension between more wide-angle and more close-up views). 

 The observations described to this point demonstrate that scene representation is 
not simply a visual representation of the photographs presented in these experiments 
but instead draws upon other sources of information about the likely surrounding 
scene that the photograph only partially revealed. Further support for this point is 
the observation that boundary extension occurs even in the absence of vision, when 
blindfolded participants use haptic exploration to perceive and remember objects that 
are meaningfully arranged on a natural surface (e.g., a place setting on a table: 
 Intraub, 2004 ; also see  Intraub, 2010 ). In  Intraub (2004)  each stimulus region was 
bounded by a wooden frame that limited the haptic participants ’  exploration. The 
frame was removed, and minutes later participants reconstructed the boundaries. 
Results revealed that these participants remembered having felt the  “ unfelt ”  world just 
beyond the edges of the original stimulus. To determine if  this  “ haptic ”  boundary 
extension may have been mediated by visual imagery, in the same study a  “ haptic 
expert, ”  a woman who had been deaf and blind since early life, explored the same 
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scenes. She too increased the area of the regions to include more of the background 
than she had actually touched. 

 In closing this section I should point out that although most research on boundary 
extension has been conducted with young adults, research thus far indicates that it 
occurs throughout the life span. Boundary extension has been reported in children ’ s 
memory (4 – 10 years of age;  Candel, Merckelbach, Houben,  &  Vandyck, 2004 ;  Krein-
del  &  Intraub, 2012 ;  Seamon, Schlegel, Hiester, Landau,  &  Blumenthal, 2002 ), in 
older adults ( Seamon et al., 2002 ), and in infants as young as 3 months of age ( Quinn 
 &  Intraub, 2007 ). In sum, participants remembered having seen, felt, and imagined 
more of a view than was physically presented, even when they fi xated the region near 
the boundary (visual exploration) or touched it (haptic exploration). In vision, they 
failed to recognize the identical view across a retention interval lasting less than 1/20th 
of a second.  Intraub and Dickinson (2008)  proposed a framework they referred to 
as the  multisource model  of  scene perception that offers an explanation for these 
observations. 

 A Multisource Model of Scene Perception 

    As discussed earlier, Intraub and Dickinson (2008;  Intraub, 2010, 2012 ) proposed that 
visual scene representation draws on multiple sources of top-down information in 
addition to the visual input. A depiction of the model is presented in   fi gure 1.2 . The 
construction of a multisource scene representation is depicted in the top panel of 
  fi gure 1.2 . The visual input is organized within the observer ’ s spatial framework along 
with amodal perception beyond the boundaries and expectations and constraints 
based on rapidly available scene knowledge. In the case of a photograph, the observer 
takes the viewpoint of the camera (e.g.,  “ in front of me ”  in typical photographs; 
 “ below me ”  in the case of a bird ’ s-eye view). In fact, in photography, viewpoints such 
as low-angle, eye-level, and high-angle have been shown to infl uence the observer ’ s 
interpretation of characters and events ( Kraft, 1987 ). This organized multisource 
representation can be thought of as a mental  simulation  of  the world that the visual 
information only partially reveals ( Barsalou et al., 2003 ). 

 The top panel of   fi gure 1.2  shows that this occurs while the sensory information is 
available. The presentation of a view elicits top-down sources of information about 
the larger scene (the likely surrounding world associated with the current view). All 
sources of information are available. While the sensory information is present, the 
dividing line between the sensory input and the top-down continuation of the scene 
is very clear. The observer can readily  see  the boundary of the view, even while think-
ing about the surrounding context. However, once the sensory input is gone, as in the 
lower panel of   fi gure 1.2 , what is now available is a remembered scene representation 
in which different parts were originally derived from different sources. Following the 
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   memory       memory    

Perception 

Memory 

 Figure 1.2 
 An illustration of how the multisource model accounts for boundary extension. In stage 1 (top panel), 
the sensory input, along with multiple top-down sources of information, creates a simulation of the 
likely surrounding world; the dividing line (designated by the arrow) between visible information in a 
photograph and the top-down continuation of the scene is easy to discern. In stage 2 (bottom panel), 
after the sensory input is gone, there are no tags to specify source; the dividing line (designated by the 
arrow) between visual memory for the once-visible information and memory for top-down generated 
information just outside the view is no longer clear. Information from just beyond the original 
boundaries was so well constrained by the visual input that in memory it is misattributed to a visual 
source, resulting in boundary extension. 
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key insight raised by Marcia Johnson and her colleagues ( Johnson, Hashtroudi,  &  
Lindsay, 1993 ;  Johnson  &  Raye, 1981 ), the representation does not contain  “ tags ”  to 
indicate which parts were derived from which source (vision, amodal perception, and 
so forth). Now the dividing line between what was originally visual sensory input and 
originally the top-down continuation of the scene is no longer distinct. The observer 
may falsely misattribute to vision, the highly constrained expected information from 
just beyond the boundaries, and boundary extension is the result. 

 The idea that during the fi rst stage several sources of top-down information con-
tribute to scene perception can be thought of as follows. In the close-up photograph 
in   fi gure 1.1A , note that while viewing the picture one can see that the garbage cans 
are cropped by the boundaries of the view on the left and right of the picture yet at 
the same time (through amodal perception and object knowledge) perceive the pails 
as whole. The pails are not perceived as  “ broken ”  pails. They are perceived to be whole 
pails that are just not fully visible in the current view. Furthermore, identifi cation of 
the view as an  “ outdoor scene ”  carries with it clear implications that there must be a 
sky above and a ground plane below (even if  these are not visible), and if  the observer 
lives in the United States, the type of fence and type of pails may further specify an 
 “ outside area ”  that is  “ a suburban neighborhood ”  rather than  “ a city scene. ”  

 The simulation includes not only the studied view but an understanding of the likely 
surrounding scene, which differs across observers based on experience and world 
knowledge. The boundary extension error does not include the entire simulation; it 
involves only a relatively small expanse of space just beyond the edges of the view. 
Only the region that is tightly constrained by the visual information just inside the 
boundary is likely to be misattributed to vision. Again, like the visual fi eld itself, this 
scene representation should be thought of as being graded, with relatively highly 
detailed visual memory shading into increasingly less well-specifi ed expectations 
about the layout and content of the larger surrounding scene. Bar and colleagues ( Bar, 
Aminoff,  &  Schacter, 2008 ) have demonstrated that some objects elicit a very specifi c 
surrounding context whereas others do not (and instead can be tied to multiple pos-
sible locations). Thus, different views of the world may yield very specifi c or very 
vague expectations about the surrounding world (including expectations about what 
one is most likely to see if  one  could  turn one ’ s head to see it). 

 In this account, boundary extension occurs very rapidly because the simulation is 
not generated  after  the stimulus is gone. What will become the boundary-extended 
region in memory is part of the scene simulation that becomes active within the fi rst 
fi xation. Once the stimulus is gone, even for a fraction of a second ( Dickinson  &  
Intraub, 2008 ;  Intraub  &  Dickinson, 2008 ), the observer may misattribute to vision 
a small swath of surrounding space just beyond the original boundaries. The mistaken 
region is misattributed only because it so closely resembles the remembered visual 
information just inside the view. In the example in   fi gure 1.1 , completion of the 
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garbage pails and continuation of the fence are so highly constrained by the visual 
information that they are readily misattributed to having been seen. This, of course, 
is a theoretical hypothesis, but there are some observations in the literature that are 
consistent with this possibility.. 

 In the source-monitoring framework ( Johnson et al., 1993 ), the decision about 
the source of a memory is affected by the qualities of the remembered information. 
In the case of boundary extension, factors that increase the similarity between 
memory for the visually presented information just inside the boundary and the 
imagined continuation of that information just outside the boundary should there-
fore affect how much imagined space will be misattributed to vision. Consistent 
with this idea,  Intraub, Daniels, Horowitz, and Wolfe (2008)  found that when par-
ticipants viewed 750-ms photographs under conditions of divided attention, which 
would be expected to compromise the quality of the visual input, they experienced 
 greater  boundary extension than when attention was not divided.  Gagnier and 
Intraub (2012)  found that memory for line drawings of complex scenes led to 
greater boundary extension than memory of color photographs of the same scenes. 
They suggested that the mental representation was more similar across the bound-
ary for the simple lines in the line drawing than for the more complex visual 
information in the photograph. It is diffi cult to argue that divided attention would 
cause greater computation of surrounding space or that line drawings would evoke 
a greater sense of a specifi c surrounding world than would naturalistic photo-
graphs. Instead, the authors proposed that in all cases, the view rapidly activated 
a representation of the likely surrounding spatial layout, but that the attribution 
of source (seen vs. imagined) differed. Divided attention and simple line stimuli in 
the two examples just described may have helped to increase that similarity and 
thus led to more of the imagined surrounding space being misattributed to vision 
(i.e., a greater boundary extension error). 

 The boundary extension error itself  has been described as an adaptive error in 
that predicting upcoming layout might facilitate view integration as we sample the 
world ( Intraub, 1997 ). Evidence for its presence across a saccade ( Dickinson  &  
Intraub, 2008 ;  Intraub  &  Dickinson, 2008 ) suggests that it is at least available to 
support integration of successive views. More direct evidence of its potential impact 
has been provided by  Gottesman (2011)  in a priming task. Using a modifi ed version 
of  Sanocki and Epstein ’ s (1997)  layout-priming paradigm, she demonstrated that, 
when boundary extension occurs, the falsely remembered region beyond the bound-
ary can prime visual perception of that region when it is visually presented 
later. Perhaps similar priming occurs in the haptic modality, but as yet this has not 
been tested. 

 In evaluating the fi rst stage of the model (generation of the multisource scene 
representation), is there any evidence to support the idea that a view elicits a 
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representation of surrounding space? In the next sections I describe behavioral evi-
dence (descriptions of remembered views) and neuropsychological evidence for this 
proposition, and then I describe neuroimaging studies that suggest the neural archi-
tecture that may underlie both scene representation and boundary extension. 

 Scene Simulation: Evidence from Scene Descriptions 

 In day-to-day scene perception we are embedded within the scenes we perceive. What 
is suggested here is that the mental representation of a scene may refl ect this physical 
reality (see  Shepard, 1984 , for a discussion of internalized constraints in perception). 
In  Intraub (2010)  I described an anecdotal illustration of scene simulation in which 
observers ’  interpretation of a scene had clearly drawn on expectations that went well 
beyond the visual information in the picture. The picture that elicited this simulation 
was the mundane photograph of garbage cans from  Intraub and Richardson (1989)  
shown in   fi gure 1.1 . I had always interpreted this photograph as depicting garbage 
awaiting pickup on the street. I thought that my co-author, Mike Richardson, had set 
the tripod in a suburban street with another neighbor ’ s house behind him. In fact, for 
years, I admonished students not to stand in the street when taking pictures, for 
safety ’ s sake. When more recently I asked a colleague if  from memory he had a sense 
of the camera ’ s location and what was behind the photographer, he quickly reported 
that the garbage was in a backyard and that the photographer was standing with his 
back to the owner ’ s house. To my surprise, another colleague, when asked, immedi-
ately said that the photographer was in an alley with the other side of the alley behind 
him and added,  “ Where else would he be? ”  After some confusion (for me,  “ alley ”  
brought to mind a dark New York City – style alley between large buildings), she 
explained that in the southwestern United States where she had spent most of her life, 
suburban streets are aligned such that backyards on adjacent streets abut a street that 
serves as an alleyway behind the houses for garbage pickup. 

 Recently I contacted six researchers  1   in different regions of the United States and 
one from the United Kingdom who I thought would have long-term memory for this 
photograph, and asked them the same questions. Their responses are shown in   table 
1.1 . Respondents 1 – 5 are from the United States (respondent 2 is from the Southwest). 
Of interest is the very different response offered by respondent 6, who remembered 
the picture but clearly had no sense of a locale. He offered only that the camera was 
positioned in front of the garbage cans. Further inquiry revealed that where he lives, 
these types of receptacles (particularly the metal can) are atypical and that he associ-
ates them mostly with old U.S. cartoons. Thus, the context for him was  weak  without 
a strong sense of locale. This may be an example of the observation by  Bar et al. 
(2008)  that different objects can elicit either strong or weak contexts, in this case 
specifi cally tied to this respondent ’ s experience with the objects.   
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 These reports are anecdotal, but they suggest that even a view as mundane as in the 
photos in   fi gure 1.1  can evoke a representation of a coherent surrounding world — 
especially when familiar objects are presented. Unbidden, specifi c surroundings came 
to mind and appear to have been part of the interpretation of the view (e.g., garbage 
awaiting pickup on the street or garbage in a backyard or garbage in an alleyway). An 
interesting aspect of the reports is the commitment to a particular locale in the partici-
pant ’ s mind that the view evoked. Those who were queried claimed to have always 
 “ thought of the picture this way. ”  There is no reason to think that any of these different 
mental scenarios would impact boundary extension (how much extrastimulus informa-
tion they later attributed to vision) as, in all scenarios, immediately beyond the edges 
of the view there is likely to be more of the fence and a continuation of the background 
above and below the given view. However, the commitment to a locale and an imagined 
surrounding world raise the question of whether observers who have a defi cit in imag-
ining a surrounding world might also be prone to little or no boundary extension. 

 A Neuropsychological Approach to Scene Simulation and Boundary Extension  

 Hassabis and colleagues ( Hassabis, Kumaran, Vann,  &  Maguire, 2007)  reported an 
interesting, previously unknown defi cit associated with bilateral hippocampal lesions. 
In addition to the expected memory defi cit of anterograde amnesia, all but one of the 
patients tested (a patient with some spared hippocampal tissue) also exhibited a mark-
edly impaired ability to imagine a coherent surrounding scene that they were asked 
to create in response to a verbal cue (e.g.,  “ Imagine you are lying on a white sandy 
beach in a beautiful tropical bay ” ). Ten such scenarios (referring to common locales, 

  Table 1.1 
 Answers to where the camera was and what was behind it based on six researchers ’  long-term memory 
for the photograph of garbage cans by a fence (see   figure 1.1 )   

 Respondent  Response to location of the camera and what was behind the photographer. 

 1  I ’ ve always thought of it as a scene at the side fence of a house accessible to the front (so 
that the garbage collectors can get to the cans) but not in plain view when you ’ re out in 
the backyard. 

 2  Photographer was standing in an alley (extending to the left and right). Behind him/her 
was another fence, and beyond that, another house. 

 3  [The camera is] in front of the fence, as if  the photographer was standing at the back of 
a house looking into the backyard. 

 4  The cans were against a wooden picket fence, so I assumed that the photographer was on 
the far side of a driveway or possibly a small parking area. 

 5  The photographer was probably standing on the street. 
 6  [After providing description of objects in the picture]  …  I guess the photographer must 

have been straight in front of the fence. No idea what was behind him. 

   Note:  Respondents 1 – 5 are based in the United States; respondent 6 is based in the United Kingdom 
(see text).    
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such as visiting an art museum or market, or self-referential future scenarios, such as 
imagining a possible event over the next weekend) were presented, and both the 
patients and the matched controls were encouraged to  “ give free reign to their imagi-
nations and create something new. ”  They were encouraged to think of themselves as 
physically present in the surroundings and were asked to describe as many sensory 
details and feelings as they could. 

 Patients ’  descriptions seemed to lack spatial coherence. Their imagined worlds were 
fragmented and lacking in detail. It is important to note that the patients could report 
appropriate objects that matched the semantic context of the specifi ed scenario, but 
spatial references that were apparent in the control participants ’  descriptions (e.g., 
 “ behind me is a row of palm trees … . ” ) were lacking in the patients ’  descriptions. The 
content of their descriptions and their subjective reports about the problems they 
encountered in trying to imagine a coherent world differed markedly from that of the 
matched control participants.  Hassabis, Kumaran, Vann ,  et al. (2007 ; see also  Hass-
abis, Kumaran,  &  Maguire, 2007 ) suggested that underlying the ability either to 
reconstruct a scenario from one ’ s past or to imagine a new one (in one ’ s future, or 
simply a new event based on one ’ s general knowledge) relies on the ability to maintain 
a coherent, multimodal spatial representation of the event. 

 If  we consider the multisource model depicted in   fi gure 1.2 , how might a lack of a 
spatially coherent scene simulation in the fi rst stage impact boundary memory later? 
 Mullally, Intraub, and Maguire (2012)  sought to determine if  patients with bilateral 
hippocampal lesions would be more resistant to boundary extension than their 
matched control participants. In terms of the multisource model, if  the surrounding 
context lacks spatial coherence and detail, then very little if  any of that imagined 
representation will be misattributed to vision after the stimulus is gone. Paradoxically, 
this hypothesis predicts that patients who suffer from severe memory defi cits would 
actually have a more veridical memory for views of the world than would their 
matched controls. To test this hypothesis,  Mullally, Intraub, and Maguire (2012)  chose 
three different protocols for assessing boundary extension that would fall within 
the patients ’  memory span. The fi rst was a brief  presentation paradigm ( Intraub  &  
Dickinson, 2008 ), the second was an immediate drawing task ( Kreindel  &  Intraub, 
2012 ;  Seamon et al., 2002 ), and the third was a haptic border reconstruction task 
( Intraub, 2004 ). 

 To ascertain if  this group of patients showed the same scene construction defi cits 
as in  Hassabis, Kumaran, Vann ,  et al. (2007),  a similar set of scene construction tasks 
was also administered. As in that study, the assessment revealed a defi cient ability to 
construct a spatially coherent imagined world. Patients offered such comments as the 
imagined space being  “ squashed, ”  and they provided fragmented descriptions. A new 
scene probe task was developed in which the patients looked at photographs and 
were asked to describe what they thought would be likely to exist just beyond the 
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boundaries of the view. They did not differ from the controls in naming semantically 
appropriate objects, sensory description, or thoughts, emotions, or actions. However, 
they produced signifi cantly fewer spatial references in describing the content. Given 
these problems, how did they fare on the boundary extension tasks?    

 In the brief  presentation task, on each trial they were presented with a photograph 
for 250 ms. The view was interrupted by a 250-ms mask and then reappeared and 
stayed on the screen. The participant then rated the test view as being the same, closer 
up (bigger object, less surrounding space) or farther away (smaller object, more sur-
rounding space) than before on a fi ve-point scale. In all cases, the picture following 
the 250-ms masked retention interval was identical to the stimulus view. Boundary 
extension occurred in both groups, but was greater in the control group.   Figure 1.3  
shows the number of times participants in each group classifi ed the same view as 
 “ more close up, ”   “ the same, ”  and  “ farther away. ”  As the fi gure shows, control partici-
pants were more likely to erroneously rate the identical test view as looking  “ too close 
up ”  (indicating that they remembered the view before the mask as having shown more 
of the scene). Patients were more accurate in recognizing that the views were actually 
the same. Classifying the test views as  “ farther away ”  (smaller object, more surround-
ing space) was relatively rare and did not differ between groups. Thus, patients did 
not appear to be randomly selecting responses. They appeared to be more accurate 
in recognizing identical views after a 250-ms masked retention interval. This better 
accuracy was mirrored in the pattern of confi dence ratings. Control participants were 
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 Figure 1.3 
 The proportion of trials classified as either  ‘  ‘ closer up, ’  ’   ‘  ‘ the same ’  ’  (correct answer), or  ‘  ‘ farther away ’  ’  
was calculated and represented as a percentage response distribution score for the patients (bilateral 
hippocampal lesions) and their matched control participants. Reproduction of a panel presented in 
  figure 1.2  of  Mullally, Intraub, and Maguire (2012) ,  Current Biology . 
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more confi dent in their erroneous boundary extension responses than in their correct 
 “ same ”  responses, whereas patients were more confi dent of their same responses than 
their erroneous boundary extension responses.    

 In the drawing task participants viewed a photograph for 15 seconds and then 
immediately drew it from memory. Both the patients and their matched control par-
ticipants drew boundary-extended pictures. They reduced the size of the main object 
and included more surrounding background in their drawings than was shown in the 
photograph they had just studied. However, again, patients exhibited less boundary 
extension than did their matched control participants. Their drawings more accurately 
captured the view. The three photographs that served as stimuli and the drawings 
made by one patient and her matched control participants are shown in the upper 
panel of   fi gure 1.4 . In the lower panel the graph shows the reduction in size of the 
main object in the drawing (as compared with the object in the photograph) for the 
patient and her control participants. The patients ’  objects and the amount of visible 
background drawn were more similar to the view in the original photograph than were 
those of their matched control participants. A group of independent judges rated all 
the drawings in the study and found no difference in detail or quality between the 
pictures drawn by patients and those drawn by control participants. A separate group 
of independent judges could not discriminate which pictures were drawn by patients 
versus control participants. The patients simply appeared to be more resistant to the 
boundary extension error. 

 In the third task haptic exploration of objects in settings similar to those in  Intraub 
(2004)  was undertaken by both groups. Participants were blindfolded and felt the 
objects and backgrounds of small scenarios bounded by a wooden frame. After they 
had explored each scenario, the frame was removed, and the participants immediately 
reexplored the region, indicating where each boundary had been located. In this case 
the control participants showed signifi cant boundary extension, setting the boundar-
ies outward; on average they increased the total area by about 12%. No reliable change 
in position was observed for the patients, the  N  was small, but the direction of the 
mean area remembered did not suggest boundary extension (it was reduced by about 
5%). In sum, across all three tasks, patients who showed poor spatial coherence in 
scene construction and imagination tasks were also more resistant to boundary exten-
sion than were their matched controls. 

 Neuroimaging and Boundary Extension 

 The fi rst report of the parahippocampal place area (PPA) ( Epstein  &  Kanwisher, 
1998 ) was published the same year as  Intraub et al. (1998) . What was striking to us 
was that Epstein and Kanwisher had found that pictures of locations (e.g., the corner 
of a room) caused heightened activation in PPA, whereas objects without scene 
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 Figure 1.4 
 The left panel displays the three scene stimuli. Sample drawings by a patient and her two matched 
control participants are displayed in the middle and left panels. The graph shows that the control 
subjects reduced the size of the main object, incorporating more background in their drawings than did 
the patients. Data are presented as means +1 SEM; * p   <  0.05. Reproduction of   figure 1.3  of  Mullally, 
Intraub, and Maguire (2012) ,  Current Biology . 
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context did not, and we had found that outline drawings of objects in a scene location 
elicited boundary extension, whereas the same outline drawing of objects on a blank 
background did not.  O ’ Craven and Kanwisher (2000)  reported that simply imagining 
a location was suffi cient to increase PPA activation, and  Intraub et al. (1998)  found 
that drawings of outline objects on blank backgrounds would result in boundary 
extension if  the observer imagined a real-world location fi lling the blank background. 
Because both boundary extension and activation in PPA seemed to be tied in some 
way to layout and scene representation, we wondered if  boundary extension might be 
associated in some way with the PPA. 

 This possibility was subsequently explored in an fMRI experiment ( Park, Intraub, 
Yi, Widders,  &  Chun, 2007 ) in which a behavioral pattern of errors that is diagnostic 
of boundary extension was exploited. Pairs of closer-up and wider-angle views of 
single object scenes were used in the experiment. Each picture was presented for a few 
seconds at a time in a series. At various lags, the scene repeated, either as the identical 
view or as a mismatched view (i.e., the other member of the pair). Repetitions that 
were mismatched were of particular interest because the same pair of pictures 
was presented in both cases, just in a different order (the closer-up view followed later 
by the wider-angled view or the wider-angled view followed later by the closer-up 
view). In behavioral studies (beginning with  Intraub  &  Richardson, 1989 ), when par-
ticipants rated a mismatched test picture on the fi ve-point boundary scale described 
earlier, a marked asymmetry was observed. When the order was  close-then-wide , par-
ticipants rated the mismatched view as being more similar to the original view than 
when the order was  wide-then-close . Presumably this is because boundary extension 
in memory for the fi rst picture caused it to more closely match perception of the 
second picture in the  close-wide  case, whereas it exaggerated the difference between 
pictures in the  wide-close  case. 

 When fMRI data were recorded, the participants simply watched the stimuli, 
making no behavioral responses at all. They were instructed to try to remember the 
pictures in as much detail as possible (focusing on both the object and the back-
ground) and were informed that the same scenes would sometimes repeat. Analysis 
of adaption responses in both PPA and the retrosplenial complex (RSC) revealed the 
diagnostic asymmetry. The neural response to the second picture was attenuated in 
the  close-wide  case (suggesting that to these regions the stimuli were very similar), 
whereas the neural response to the second picture showed no attenuation in the  wide-
close  case (suggesting that to these regions the stimuli were quite different). However, 
in lateral occipital cortex (associated with object recognition, but not the size of the 
object) attenuation occurred in both cases (to this region the stimuli were the same 
regardless of the view). The pattern of neural attenuation in PPA and RSC suggested 
that both areas were sensitive to the boundary-extended representations of the 
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pictures rather than to the physical views that were presented. Following the fMRI 
study, the same participants took part in a behavioral boundary extension experiment, 
and their explicit boundary ratings also revealed the typical asymmetry. 

  Epstein (2008 ,  2011 ;  Epstein  &  Higgins, 2007 ) has proposed that PPA and RSC are 
part of the neural architecture that underlies navigation and integration of views 
within larger contexts (although  Bar et al., 2008,  have suggested that these regions 
may also be involved in conceptual processing of contextual associations; please see 
chapter 6 by Epstein and chapter 7 by Aminoff in this volume). Most research on 
scene representation that explores these ROIs has made use of visual stimuli, but 
research contrasting neural responses in PPA and RSC to haptic exploration of Lego 
scenes in contrast to Lego objects (no scene context) by blindfolded participants, as 
well as by congenitally blind participants, supports the idea that these areas may be 
responding to the spatial structure that underlies both visual and haptic exploration 
( Wolbers, Klatzky, Loomis, Wutte,  &  Giudice, 2011 ).  Epstein (2011),  in a discussion 
of the implications of the Wolbers et al. fi nding, drew the comparison to boundary 
extension, which, as described earlier, occurs whether exploration is visual or haptic 
(when the latter condition included either sighted participants who were blindfolded 
or a woman who had been deaf and blind since early life;  Intraub, 2004 ). These results 
provide support for the value of moving from a modality-centric view of scene percep-
tion to a spatio-centric conceptualization. 

 The  Park et al. (2007)  study addressed attenuation of responses in PPA and RSC, 
thereby focusing on memory (the second stage of the multisource model). It cannot 
provide insight into brain activity associated with the fi rst stage of the model — gen-
eration of a scene simulation. The  Mullally et al. (2012)  study of boundary extension 
in patients with bilateral hippocampal lesions suggested a possible role of hippocam-
pus in developing a coherent spatial representation of a scene.  Chadwick, Mullally, 
and Maguire (2013)  conducted an fMRI experiment to test this possibility. They used 
a modifi ed version of  Intraub and Dickinson ’ s (2008)  brief  presentation task but on 
all trials presented a close-up tested by the identical close-up (timing was similar 
to that in the brief  presentation Experiment in  Mullally et al., 2012 ). In brief-
presentation boundary extension experiments (unlike those using longer multisecond 
presentation), although boundary extension occurs overall, on many trials ratings 
suggest no boundary extension; for example, in  Intraub and Dickinson (2008)  bound-
ary extension occurred for the majority of pictures (64%) but not for all pictures. 
 Chadwick et al. (2013)  cleverly exploited this and compared the neural response in 
hippocampus in trials in which boundary extension occurred and trials in which it 
did not (based on the participants ’  behavioral rating in each trial). 

 In line with Chadwick et al. ’ s hypothesis, greater hippocampal activation was asso-
ciated with stimuli in trials in which the behavioral response to the test picture was 
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consistent with boundary extension than in those in which it was not. They reported 
that this neural response occurred before the onset of the test stimulus (the retention 
interval ranged from 1.2 to 3.2 seconds), so this response could not be attributed to 
the memory error at test. 

 Chadwick et al. also analyzed habituation responses in PPA (here referring to 
specifi c regions of PHC), RSC, and visual cortex. PHC and RSC were sensitive to 
the boundary extension error (as in the  Park et al., 2007,  study). Greater adapta-
tion occurred in trials during which participants had correctly identifi ed the views 
as being the same, and less adaptation occurred in trials during which they did 
not, and a similar adaptation effect was observed in visual cortex. What is impor-
tant to remember is that the stimulus and test pictures in the experiment were 
always identical, so the differences observed were not mediated by any visual dif-
ferences between stimulus and test. Chadwick et al. conducted DCM connectivity 
analyses that suggested that the hippocampus was driving the responses in the 
other regions of interest (no habituation effects were observed in the hippocampus). 
They concluded by suggesting that the neural responses observed are consistent 
with the two-stage model of boundary extension in which the fi rst stage involves 
computation of a spatially coherent scene representation and the second stage 
involves the boundary error (PHC and RSC are sensitive to that  boundary-extended  
representation). 

 The early hippocampal response (putatively tied to the fi rst stage) in conjunction 
with the adaptation responses (in PHC and RSC) led Chadwick et al. to suggest that 
the hippocampus plays a fundamental role in supporting construction of a spatially 
coherent scene representation that is  “ channeled backwards through the processing 
hierarchy via PHC and as far as early visual cortex ”  to provide predictions about the 
likely surrounding world. This parallels the fi rst stage of processing described earlier 
in   fi gure 1.2 . Subsequently, adaptation responses arise in response to a representation 
that now includes extended boundaries. The neuroimaging data in combination with 
the neuropsychological data suggest that the hippocampus might be involved in scene 
construction when the observer is presented with a view of the world. It is interesting 
that other research has suggested a role for the hippocampus not only in supporting 
episodic memory (and reconstruction of past events) but in supporting simulation of 
future events (e.g., future planning:  Addis, Cheng, Roberts,  &  Schacter, 2011 ;  Hassabis 
 &  Maguire, 2007 ). It is suggested here that scene perception itself  (within the present 
moment as we sample the world around us) may involve many of the same simulation 
processes. The behavioral and neuroimaging research on boundary extension reviewed 
here suggests that the traditional modality-centric approach to scene perception does 
not capture the complexity of what it means to understand a scene and that a spatio-
centric approach provides a viable alternative that would incorporate the visual input 
within a multisource cognitive representation of surrounding space. 
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 Conclusion 

 Boundary extension provides an unusual means for exploring scene representation 
because people remember having seen beyond the boundaries of the physical view. 
They remember experiencing a region of space in the absence of any corresponding 
sensory input. Participants include this unseen region in their drawings, they move 
the boundaries outward to reveal this space in interactive border adjustment tasks, 
and they rate the scope of the view incorrectly, indicating that they remember seeing 
more of the scene than was actually presented ( Intraub, 2010 ). Neural responses in 
PPA and RSC refl ect this same overinclusive memory for recently presented views 
( Chadwick et al., 2013 ;  Park et al., 2007 ) in tasks that elicit boundary extension. The 
multisource model ( Intraub, 2010, 2012 ;  Intraub  &  Dickinson, 2008 ) can account for 
these observations by replacing a modality-specifi c framework of scene representation 
(e.g., a visual representation) with a multisource representation organized around the 
observer ’ s sense of surrounding space. Recent neuropsychological and neuroimaging 
evidence have suggested that the hippocampus may play a role in the mental con-
struction of this surrounding space ( Chadwick et al., 2013 ;  Mullally et al., 2012 ). This 
provides a potential bridge between research on scene perception and research on 
mental constructions (and their associated neural structures) that are thought to be 
involved in remembering past scenarios and in generating representations of future 
scenarios ( Addis et al., 2011 ;  Addis, Wong,  &  Schacter, 2007 ;  Hassabis  &  Maguire, 
2007 ;  Johnson  &  Sherman, 1990 ). In the case of scene perception, the brain ’ s ongoing 
constructive activity is focused not only on long-term memory or on distant future 
projections, but on the present, as we perceive and interact with our immediate 
surrounding world.   

 Note 

 1.   Many thanks to Marco Bertamini, Tim Hubbard, Geoff Loftus, Greta Munger, Dan Reisberg, and 
Dan Simons for their descriptions.   
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 Imagine fl ipping through a friend ’ s holiday photos. In one you see a number of build-
ings and streets and realize that she had been in a city. But if  you knew she was visiting 
several cities during her trip and wanted to know which particular one this photo was 
taken in, you might recognize the castle on the hilltop in the background and conclude 
that your friend went to Edinburgh. Or maybe you are less concerned with the city 
she visited and more by the weather during the trip. On the same photo you notice 
that the sky is dark and that there are umbrellas out, and you infer that your friend 
had the misfortune to suffer a rainy day. 

 Complex images such as scenes contain a wealth of information that can be selected 
and processed in different ways to satisfy a viewer ’ s ongoing task demands (e.g., iden-
tify the city, determine weather conditions). The visual information that allows these 
conceptual judgments is processed in less than a second from the time when light hits 
the retina, allowing viewers to interact with their environment in a timely and appro-
priate manner. Scene processing can thus be seen as a gateway process that informs 
subsequent behaviors and, in many ways, represents an ultimate goal in visual cogni-
tion research. However, despite its importance, investigations into the topic have been 
surprisingly sparse. 

 Mary Potter ’ s seminal research in the 1960s and 1970s introduced the idea that the 
general meaning of scenes can be recognized within the duration of a single glance. 
Her participants identifi ed a cued scene (e.g., a boat on a beach) from a series of 
rapidly presented scene images, even when presented for as little as 125 ms each. Criti-
cally, participants could recognize target scenes when cued with only a semantic 
description. Thus, even when none of the exact visual features were available, partici-
pants were able to rapidly process briefl y fl ashed scenes to an abstract level of meaning 
( Potter, 1975 ). 

 In these studies, object-centric terms (e.g., a woman on the phone) were used to 
describe target scenes, suggesting that very fast object processing was taking place. 
Numerous studies have since corroborated the incredible speed with which objects 
embedded in natural environments can be categorized ( Kirchner  &  Thorpe, 2006 ; 
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 Rousselet, Mac é ,  &  Fabre-Thorpe, 2003 ;  Thorpe, Fize,  &  Marlot, 1996 ;  VanRullen 
 &  Thorpe, 2001b ). The ability to quickly process scenes based on object-centric 
terms harmonized with research suggesting that recognizing objects ( Friedman, 1979 ) 
and spatial relationships between objects ( De Graef, Christiaens,  &  d ’ Ydewalle, 
1990 ) predicates scene categorization (see also  Biederman, 1987 ). Likewise this 
object-centric approach fi t with serial, bottom-up integration models in which scene 
categorization was the endpoint, preceded by object recognition and before that by 
edge detection processes that indicated boundaries and surfaces ( B ü llthoff  &  Mallot, 
1988 ;  Hildreth  &  Ullman, 1990 ;  Marr, 1982 ). 

 However, these theories are inconsistent with various studies demonstrating that 
scenes can be categorized accurately even when displayed too briefl y to allow exhaus-
tive object processing. For instance,  Biederman (1972)  found that the ability to rec-
ognize an object embedded in a scene declined when the surrounding scene was 
jumbled. Furthermore,  Rousselet et al. (2005)  found that when viewers had to catego-
rize briefl y presented complex scenes (sea, mountain, urban, and indoor), early 
response latencies were around 260 – 300 ms. When compared with the 210 ms it takes 
to detect the appearance of a scene ( VanRullen  &  Thorpe, 2001a ), this suggests that 
the extra time needed to make a complex scene judgment can be as low as 30 – 70 ms. 
Although the exact nature of what is categorized about a stimulus over such very brief  
durations must still be established, the strict bottom-up, objects-before-scenes hypoth-
esis is now challenged. Within these time frames, both spatial and object information 
could be accessed to inform the scene schema ( Biederman, Mezzanotte,  &  Rabinowitz, 
1982 ). The question has thus evolved into how is perceptual information accrued to 
form a semantically informative representation of the external environment. 

 Schyns and Oliva (1994; Oliva  &  Schyns, 1997) investigated this problem from a 
spatial-scale approach. In reference to Fourier ’ s theorem, the authors noted that sinu-
soids of varying amplitudes, phases, and angles could characterize two-dimensional 
signals across multiple spatial scales. In vision these signals are referred to as spatial 
frequencies (SF) and are expressed by the number of cycles per degree of visual angle 
(or sometimes cycles per image). A SF channel is tuned to fi lter incoming visual signals, 
so it allows a subset of the full SF spectrum of information to pass through ( De Valois 
 &  De Valois, 1990 ). Three types of SF channels exist: low-pass, which selects all visual 
information below a set spatial frequency threshold; high-pass, which selects all visual 
information above a set spatial frequency threshold; and band-pass, which selects 
spatial frequency information between an outlying pair of thresholds. 

 Humans have evolved to utilize these spatial scales with the visual system consisting 
of four to six overlapping, quasilinear band-pass fi lters ( Campbell  &  Robson, 1968 ; 
 Ginsburg, 1986 ;  Marr  &  Hildreth, 1980 ;  Wilson  &  Bergen, 1979 ;  Wilson  &  Wilkinson, 
1997 ), each tuned to a specifi c SF band. These channels act early in the visual system, 
transmitting fi ltered signals prior to many critical visual processes such as motion 
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( Morgan, 1992 ), stereopsis ( Legge  &  Gu, 1989 ;  Schor, Wood,  &  Ogawa, 1994 ), depth 
perception ( Marshall, Burbeck, Ariely, Rolland,  &  Martin, 1996 ), as well as saccade 
programming ( Findlay, Brogan,  &  Wenban-Smith, 1993 ), meaning that these fi lters 
act as a conduit to information that becomes part of our conscious experience. 

 Critically, from a scene perception standpoint, different channels provide the viewer 
with different properties of a scene image: low-spatial-frequency (LSF) information 
indicates size, lightness, and spatial layout of blobs, revealing the general spatial rela-
tionship within the image; high-spatial-frequency information (HSF) provides detailed 
information about edges and boundaries, often relating to object and texture process-
ing ( Biederman  &  Ju, 1988 ). The construction of an internal representation of a scene 
could potentially be built from a multiscaled integration of information passing 
through these channels, with the selection of scales depending on task demands — 
e.g., categorizing a scene as a city from the overall layout of buildings at a coarse 
scale or as New York City from the distinctive fi ne-scale tiles on the roof of the 
Chrysler building. 

 To begin with,  Schyns and Oliva (1994)  noted that scenes can often be characterized 
by their spatial properties. For instance, the spatial properties of a mountainous 
terrain are very different from those of a forest, which are very different from those 
of a city, and so forth. The authors therefore hypothesized that the regularities of 
these spatial properties within basic scene categories are exploited by the visual system 
early on to inform the viewer of a scene ’ s schema. The fact that spatial properties can 
be established through coarse, LSF information suggests that there is a coarse-to-fi ne 
(CtF) preference for extracting features. Relying initially on the coarse spatial proper-
ties would offer three potential benefi ts for activating an early scene schema: (1) utiliz-
ing LSF information bypasses a potentially time-consuming object recognition 
bottleneck (particularly if  a diagnostic object is not present near the fovea); (2) psy-
chophysical and physiological evidence indicates that LSF is processed more quickly 
than HSF information ( De Valois  &  De Valois, 1990 ;  Navon, 1977 ); and (3) LSF is 
less prone to noise and can coerce HSF processing ( Marr, 1982 ). 

 It should be noted that there is a distinct difference between CtF processing being 
discussed here and global-to-local processing made popular by the now famous Navon 
stimuli (e.g., a large F made up of small Ls;  Navon, 1977 ). Viewers prefer processing 
the global structure (the F in   fi gure 2.1 ) before its respective local components (the 
Ls). The explanation for this global precedence is based on CtF order for extracting 
image information; however the global precedence operates in a two-dimensional 
plane (the viewed image) while CtF processing operates in  n -dimensional scale space, 
where an orthogonal axis contains two-dimensional images from each scale (or  n  
scales) ( Oliva  &  Schyns, 1997 ).  Oliva and Schyns (1997)  elegantly demonstrated this 
by creating an image with two Navon stimuli, one high-pass fi ltered and the other 
low-pass fi ltered. Despite the different fi ltering, both the global structure and local 
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components for each Navon letter were evident (  fi gure 2.1 ), thus demonstrating that 
CtF processing can occur across various spatial scales.    

  Schyns and Oliva (1994)  investigated this CtF hypothesis by providing viewers with 
scenes in either full resolution, HSF, LSF, or, critically, hybrid images (see   fi gure 2.2 ) 
that contained information pertaining to one scene in HSF (e.g., a highway,   fi gure 
2.2 , top image) and information pertaining to a completely different scene in LSF 
(e.g., a city,   fi gure 2.2 , top image), followed by a test scene in full resolution for which 
participants had to make a yes/no matching decision. The fi ltered images were pre-
sented for either 30 or 150 ms. Participants could accurately match scene images from 
either the HSF or LSF stimuli at both durations, meaning that both sets of visual 
information were available to viewers. Therefore, any bias to either SF band in a hybrid 
image would be a result of a preference inherent within the visual system. When scenes 
were presented for only 30 ms, participants performed better at matching the test scene 
to the LSF scene within the hybrid image, but at 150 ms, participants responded more 
accurately to the HSF scene.    

 The results suggest that during fast scene analysis the visual system teases apart 
coarse and fi ne information, relying initially on spatial relationships of blobs while 
downplaying distinct boundary edges when beginning to construct a conceptual 
representation. However, over extended viewing, boundary edges become more diag-
nostic. Collectively, this pattern of results supported the CtF processing hypothesis 

 Figure 2.1 
 Two Navon stimuli are present within the image, the global F (for Fine) made up of local Ls and the 
global C (for Coarse) also made up of locals Ls. Critically, the first stimulus was high-pass filtered, 
whereas the second was low-pass filtered. The ability to read both the C and F at the global level as well 
as both sets of Ls at the local level demonstrates the orthogonal relationship between coarse-to-fine and 
global-to-local processing. Image taken from Oliva and Schyns (1997). 



More Than Meets the Eye 31

 Figure 2.2 
 Examples of the hybrid stimuli used. Hybrids combined LSF components from one scene (a city in the 
top image, a highway in the bottom one) and HSF components of another scene (a highway in the top 
image, a city in the bottom one). Image taken from Schyns and Oliva (1994). 
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and, furthermore, demonstrated that coarse LSF features carry enough information 
for the initial scene schema activation. 

 In order to determine whether this CtF result generalizes from a simple matching 
task to a categorization process, the authors expanded the methodology to include 
two hybrid images with reciprocating information. For example, the fi rst hybrid image 
would show one scene in LSF (e.g., a city) and another in HSF (e.g., a highway), while 
the second image would contain the same scenes but with interchanged SF bands 
(now the city information is in HSF and the highway information in LSF). This meant 
that a CtF and FtC approach would lead to two different scenes. Each hybrid was 
presented for 45 ms in succession, and participants responded after the presentation 
by naming the scene category they saw. 

 If  there is a CtF preference, viewers would encode the LSF blobs in the fi rst hybrid, 
then add the reciprocal HSF boundary edges in the second image, and report the 
respective scene; if  there is an FtC preference, however, viewers would fi rst encode 
HSF edges in the initial hybrid and then the reciprocal LSF blobs in the second image. 
If  no bias exists in the visual system, then viewers should name either scene compris-
ing the respective hybrid image with equal probability. However, in support of the 
previous experiment, viewers were found to prefer a CtF presentation, selecting the 
CtF possibility 67% of the time compared to the FtC 29% of the time. 

 Cumulatively, these results suggest that the scene recognition process is time and 
spatial-scale dependent: the initial stage utilizes coarser spatial information, whereas 
later stages utilize fi ner detail. This interpretation is consistent with subsequent 
research demonstrating that spatial organization information ( Castelhano  &  Heaven, 
2011 ;  Greene  &  Oliva, 2009 ) is activated initially, allowing for initial superordinate 
categorizations ( Kadar  &  Ben-Shahar, 2012 ;  Loschky  &  Larson, 2010 ). From such 
LSF-engendered schemas, feedback processes facilitating object recognition can be 
activated ( Bar et al., 2006 ). 

 However, it is important to bear in mind that these experiments did not test for any 
potential relationship between the categorization task and the information available 
within disparate spatial scales. Thus, the study could not comment on whether the 
selection of spatial scales was perceptually or diagnostically driven. Although the fi rst 
experiment indicated that both LSF and HSF information were perceptually available 
at short durations, suggesting that any difference in processing was the result of a 
top-down bias within the visual system, the resulting CtF preference in experiment 2 
could still have been perceptually driven. LSF, with its high contrast, could have 
interfered with HSF registration and created a perceptual bias that coerced a favored 
coarse-to-fi ne recognition scheme (the fi xed-usage scenario). 

 On the other hand, the low-level bias could act independently of the observed CtF 
preference. Converging evidence suggests that there might be a diagnostically driven 
process for selecting task-relevant information that includes specifi c spatial scales. 
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 Schyns and Rodet (1997)  demonstrated that the nature of a categorization task affects 
low-level perceptual processes. By varying the order of category learning between 
participant groups, the authors induced orthogonal perceptions of identical stimuli. 
And although that particular study did not directly investigate the use of varying 
spatial scales, other studies have demonstrated that the visual system can selec -
tively attend different SF bands within an image ( Miellet, Caldara,  &  Schyns, 2011 ; 
 Rothstein, Schofi eld, Funes,  &  Humphreys, 2010 ;  Schyns  &  Oliva, 1999 ;  Shulman  &  
Wilson, 1987 ;  Wong  &  Weisstein, 1983 ). 

 The collective evidence thus suggests the possibility that viewers could potentially 
select diagnostically driven spatial scales to facilitate timely scene recognition that 
befi ts the viewer ’ s immediate task demands. Coarse-scale information might be 
suffi cient for an express categorization (e.g., a room, a fi eld), but more precise 
categorization (e.g., a restaurant, a cricket pitch) might require the active selection of 
comparatively fi ner SF information ( Archambault, Gosselin,  &  Schyns, 2000 ;  Collin 
 &  McMullen, 2005 ;  Oliva, 2005 ;  Schyns, 1998 ;  Malcolm, Nuthmann, & Schyns, 2014 ). 

 In order to test the hypothesis that scale selection in complex scene images is fl exible 
and determined by diagnostic informational needs,  Oliva and Schyns (1997)  ran 
another study with hybrid images and assigned diagnostic information to a single 
spatial scale. In an initial sensitization phase, two groups of participants were shown 
hybrids that were only meaningful at one scale. Either they saw scenes that contained 
LSF information of a scene along with HSF noise, or else HSF information of a scene 
along with LSF noise, depending on their assigned group. Participants were thus 
trained to extract diagnostic information at a set spatial scale. Participants viewed six 
of these hybrid images, reporting the category to which the scene image belonged as 
quickly and accurately as possible. Then, without pause, the hybrids changed from 
showing category/noise hybrids to showing hybrids from two different scene categories 
(e.g., LSF city and HSF of a highway). If  scene recognition involves the strategic 
selection of a diagnostic spatial scale, then the participants should categorize the test 
phase hybrids according to which sensitization group they were assigned to. However, 
if  CtF processing is fi xed, participants should revert to the LSF information when it 
portrays scene information. 

 The results found mutually exclusive categorization that aligned with the partici-
pant ’ s sensitizing group. That is, if  they were sensitized to the HSF/noise scenes, 
participants kept reporting the HSF scenes in the test phase; on the other hand, if  
they were sensitized to the LSF/noise scenes, they kept reporting the LSF scenes in 
the test phase. Furthermore, in a debriefi ng stage, all but one participant reported that 
they did not notice a second scene in the test hybrids, ruling out the possibility that 
the results were due to strategic reporting. The results therefore suggest that responses 
were motivated by a continued reliance on information that was diagnostic in the 
sensitization phase, supporting a fl exible processing explanation. 
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 The results suggest that despite participants in each condition being shown the 
exact same bottom-up input, viewers extract the spatial scale they determine to be 
diagnostic. This, however, then begs the question as to what happened to the unre-
ported spatial scale that participants claimed not to notice. The diagnostic selection 
process could have perceptually inhibited the unreported scale, or it might have reg-
istered but simply ignored this information. If  the unreported scale were indeed 
registered at some level, could its properties affect the categorization process? 

 To test this, Oliva and Schyns (1997, experiment 3) again presented hybrid images 
whose category participants had to report in their response. Hybrid scenes were shown 
in groups of three: scene  n   –    1 was a LSF/noise hybrid, scene  n  was a LSF/HSF hybrid 
whose respective spatial scales came from different scene categories; and scene  n  +   1 
again showed a LSF/noise hybrid, although, critically, the LSF information came 
from the same scene as the HSF in scene  n . These triplets were interleaved into a string 
of LSF/noise stimuli. 

 After screening out participants who became aware of the HSF information in the 
hybrids during testing as well as trial sequences where the HSF scene was inadver-
tently reported, the authors found that LSF/noise hybrids on trials  n  + 1 were reported 
faster when the previous scene contained priming HSF information. Thus, while 
subjects were unaware of HSF information while categorizing scenes at LSF, 
this information facilitated categorization of the subsequent scene. So although 
participants selected spatial scales that were diagnostic for the categorization task, 
this did not result in the perceptual inhibition of the nondiagnostic information at 
other scales. 

 A follow-up experiment attempted to characterize this priming process. The 
priming could be perceptual or semantic in nature. If  the priming of scene  n  + 1 by 
scene  n  ’ s HSF information was perceptual, this would suggest that the LSF informa-
tion was simply being mapped onto the stored perceptual HSF information from the 
previous trial. However, if  the priming of scene  n  + 1 was semantic in nature, this 
would suggest that both scenes in the LSF/HSF hybrids were categorized at some 
level (although only one explicitly) before the unused scene was used to facilitate the 
subsequent trial. 

 The previously described priming experiment was repeated, except now the primes 
and targets were taken from different scenes that were still in the same category. For 
example, if  scene  n  was a LSF valley/HSF highway, scene  n  + 1 would contain the 
LSF information from a different highway along with HSF noise. Critically, the scenes 
belonging to the same category were organized along two orthogonal measures: (1) 
the subjective similarity of the two scenes as judged by humans and (2) the objective 
similarity as judged by a perceptually based, translation-invariant metric that com-
pared energies at different angles across multiple scales. In this way the prime and 
target scene could be subjectively and objectively correlated, subjectively similar but 
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objectively uncorrelated, subjectively dissimilar and objectively correlated, or, fi nally, 
semantically dissimilar and objectively uncorrelated. If  priming is conceptual in 
nature, then it should prime regardless of the subjective and objective similarity 
between the two scenes; even when they are subjectively and objectively dissimilar, the 
fact that they come from the same recognized category would promote faster RTs. 
However, if  priming is restricted to when the two scenes are similar but does not occur 
when they are dissimilar, this would suggest that the covert processing that led to 
priming of the following trial was perceptual in nature only. 

  Oliva and Schyns (1997)  found evidence for this latter interpretation. When scenes 
were similar subjectively and correlated objectively, priming was observed to occur 
with signifi cantly shorter RTs; however, when scenes were subjectively dissimilar and 
objectively uncorrelated, no priming was observed to occur. Thus, while viewers can 
fl exibly select a diagnostic scale that facilitates an ongoing task, the unattended scales 
are processed at a perceptual, but not a conceptual, level. 

 These collective fi ndings have a broad impact on our understanding of scene 
processing. Research has tended to assume that coarse blobs that result from LSF 
information should be recognized and processed before fi ne boundary edges from 
HSF information. Empirical research has supported this hypothesis with studies 
demonstrating that the nature of semantic properties that can be gleaned from very 
short durations unfolds in a superordinate-to-basic level progression ( Fei-Fei, Iyer, 
Koch,  &  Perona, 2007 ;  Kadar  &  Ben-Shahar, 2012 ;  Loschky  &  Larson, 2010 ) and 
then, presumably, from basic to subordinate level (although to the authors ’  knowl-
edge, this has not explicitly been tested; however, see Malcolm, Nuthmann,  &  
Schyns, 2014). 

 However, these studies do not consider the information demands of the recognition 
task. When multiple spatial scales are perceptually available, the visual system can 
select which scale(s) to continue processing from a perceptual to a conceptual level 
of understanding based on the needs of the observer. This suggests that rather than 
this analysis being a fi xed process, there exists a dynamic bidirectional interplay 
between available features and the ongoing task. When scenes are viewed under 
normal conditions with a full resolution of scales available, the task can bias informa-
tion demands to process the most informative scale(s) available, affecting the recogni-
tion process — and thereby conscious experience — accordingly. 

 Sampling Diagnostic Spatial Regions 

 The research summarized above has demonstrated that the human visual system does 
not passively accrue spatial frequency information in order to form a categorical scene 
judgment but actively selects band-pass information that facilitates task-related cat-
egorical discrimination. 
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 However, even when categorical processing actively samples particular SF bands, 
there is still potentially too much information within the scene image for the visual 
system to process and integrate into a semantic representation. In order to work 
around the potential restriction of information, an effi cient visual system would pri-
oritize not only sampling of diagnostic SF bands but also information from discrete 
spatial locations within each SF band. Recall   fi gure 2.1 , which demonstrated the 
orthogonal relationship between the  n  spatial scales that comprises an image and the 
 “ fl attened ”  two-dimensional global and local spatial layout of that image. In other 
words, the diagnostic value of information may vary not just across SF bands but 
also orthogonally within these two-dimensional SF bands. 

 The sampling of information across both two-dimensional spaces and SF scales 
within an image has been previously demonstrated during facial expression process-
ing. For instance,  Smith, Cottrell, Sowden, and Schyns (2005)  presented observers 
with face stimuli wearing different expressions (the six universally recognized fear, 
happiness, sadness, disgust, anger, and surprise as well as neutral;  Ekman  &  Friesen, 
1975 ;  Izard, 1971 ). Each image was segmented into fi ve SF bands, wherein scale-
adjusted Gaussian windows revealed a subset of the image from each band. Based on 
the information revealed across all fi ve SF bands, participants categorized the facial 
expression. The amount of information shown in each band was adjusted over the 
experiment to maintain 75% accuracy. For each image, each band was analyzed sepa-
rately, with pixels that occurred at a greater than chance rate on correctly identifi ed 
face images being considered diagnostic for that particular SF. If  the human brain 
evolved to decode facial expressions effi ciently, then its decoding routines should seek 
to minimize ambiguities by selecting subspaces of the input across SF bands that yield 
the greatest task-relevant information. The authors found supportive evidence (see 
  fi gure 2.3 ); as an example, fearful and happy relied on diagnostic information from 
completely different regions of the face as well as across SF bands. Furthermore, 
evidence of coding of these diagnostic regions was found as early as the peak of the 
occipitotemporal evoked potential N170 (i.e., about 170 ms following stimulus onset) 

 Figure 2.3 
 Diagnostic information for expressions (from left to right): happy, surprised, fearful, angry disgusted, 
sad and neutral. The diagnostic information for each expression represents a localized subspace of the 
image with information coming from a range of independent SF bands. Image taken from Smith, 
Cottrell, Gosselin, and Schyns (2005). 



More Than Meets the Eye 37

( Schyns, Petro,  &  Smith, 2007 ;  Schyns, Thut,  &  Gross, 2011 ), with a trimming of the 
spatial frequency content of the representations, keeping only high scale details, 
between the N170 endpoint and the parietal P300 evoked potential subtending per-
ceptual decisions ( van Rijsbergen  &  Schyns, 2009 ).    

 These fi ndings can be extended to ask the question whether viewers strategically 
extract diagnostic scene features from discrete locations within separable SF bands. 
Unlike faces, scenes do not dynamically adjust their visage in order to facilitate cat-
egorical decoding by a viewer (no matter how solipsistic that viewer may be!). However, 
as suggested above, an effi cient visual system would have evolved to quickly locate 
potentially diagnostic information before integrating the localized information into a 
category representation. 

 Recall the example in the beginning of this chapter in which you fl ipped through 
your friend ’ s photos. If  you categorized your friend ’ s photo as a city, information from 
the buildings and cars will be more diagnostic than those belonging to trees, clouds, 
people, and so forth, even if  all these spatially distinct objects contain information 
within diagnostic SF bands. When the same image is categorized more specifi cally as 
Edinburgh, the spatial location of diagnostic information should change again: the 
location in the visual fi eld correlating with the castle on the hill for instance or the 
Georgian windows on the buildings in the foreground may be critical in recognizing 
the Scottish capital but provide comparatively less information that would indicate 
that this is a city. 

 An effi cient visual system would have evolved to minimize sampled information to 
a few select locations within a scene that would still yield enough diagnostic informa-
tion to construct a semantic representation. Moreover, the research described above 
demonstrated that the human visual system could select specifi c SF bands of a scene 
image to process in a top-down manner. It should therefore follow that the visual 
system should also be able to sample two-dimensional locations within the different 
SF bands of a scene image in a top-down manner, reinforcing a bidirectional interplay 
between the incoming perceptual information and the viewer ’ s goals. 

 Recent research by Malcolm, Nuthmann, and Schyns (2014) addressed both of 
these points. The authors wanted to investigate whether diagnostic information varied 
as a function of how specifi cally a scene was categorized and, if  so, whether there was 
evidence of a top-down extraction that complemented bottom-up visual information. 
In an initial experiment participants were presented with scene images and asked 
to categorize them at either the basic (e.g., restaurant) or subordinate level (e.g., 
cafeteria) with the bottom-up information held constant while the top-down task 
varied. Critically, scenes were low-pass fi ltered to varying degrees. Participants 
could accurately categorize scenes at the basic level when presented with information 
low-pass fi ltered to 25  ×  18.75 cycles/image  1   (viewing distance 90 cm), while accu  -
rate subordinate judgments required viewers being given more information with a 
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less-low-pass-fi ltered image (50  ×  37.5 cycles/image). Thus, more specifi c scene cate-
gory judgments require the availability of comparatively fi ner SF information, extend-
ing previous object categorization fi ndings from  Collin and McMullen (2005)  to 
scene images. 

 The authors then presented all the scenes again, low-pass fi ltered at the 25  ×  18.75 
cycles/image level, which was found to reduce categorization accuracy at the basic 
level to 78% and the subordinate level to 23% (in other words, chance level, as it was 
a four-alternative forced choice task), and a new set of participants had to again 
categorize the images. However, in addition to the low-pass-fi ltered scene images, 
participants were given a gaze-contingent window, 2.5 °  in diameter, which provided 
full resolution information to the fovea (  fi gure 2.4 , plate 1, top left). This foveal 
window allowed participants to supplement their view of the ever-present scene spatial 
layout (that is, the low-passed scene information) with HSF visual details to make a 

 Figure 2.4 (plate 1) 
 Counterclockwise from top left. Top left, an example of what a participant might see during fixation 
with full resolution information at the fovea and low-passed information in the periphery. Bottom left, 
the low-pass-filtered scene with diagnostic objects for a subordinate categorization in red coloring and 
full resolution (cafeteria). Bottom right, the low-pass-filtered scene with diagnostic objects for a basic 
categorization in blue coloring and full resolution (restaurant). Top right, the low-pass-filtered scene 
with fixated regions from all participants shown in full resolution. Regions in red represent objects 
fixated at a greater-than-chance rate during subordinate categorization, blue during basic categorization, 
and purple (red + blue) during both. All potential objects are outlined. 
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categorical judgment. By recording fi xation locations, the authors could track which 
objects were fi xated at a greater than chance rate when a scene was correctly catego-
rized at either the basic or subordinate level of specifi city. These objects were consid-
ered to be diagnostic at that particular level of category specifi city.    

 Viewers took longer to make subordinate than basic-level judgments and made more 
fi xations in the process. However, further analysis revealed that eye movements were 
not made randomly but showed evidence of strategic deployment: participants in the 
subordinate condition directed their gaze progressively further from the center of the 
image and more into the periphery as the trial went on, whereas in the basic condition 
viewers stayed closer to the middle of the image over the same epoch. This differing 
gaze strategy suggests that participants were deploying gaze actively to sample infor-
mation from discrete spatial locations within the image as a function of task. 

 Corroborating this strategic search, each scene was found to contain diagnostic 
objects (objects fi xated at a greater than chance rate) for both the basic and subordi-
nate conditions as well as at least one object (and usually many more) that was diag-
nostic at one categorization level but not the other (see   fi gure 2.4  (plate 1), top right). 
The results suggest that objects diagnostic to the needed categorization level were 
sought, located, and integrated with the low-passed gist representation in order to 
facilitate an accurate basic or subordinate judgment. Within this framework, objects 
provide easily recognizable, semantically informative distal units of information whose 
semantic properties can facilitate ( Malcolm, Nuthmann,  &  Schyns, 2014 ) or hinder 
( Joubert, Rousselet, Fize,  &  Fabre-Thorpe, 2007 ) categorization depending on their 
relation to the rest of the image. 

 However, although this result suggests that category judgment uses active sampling 
to locate diagnostic objects, it still leaves open the question as to why there was a 
diverging gaze pattern. Participants could not guide gaze by the semantic properties 
of objects before they were fi xated as the low-pass fi ltering masked their identities. 
Instead a likely situation was that the set size of diagnostic objects in an image varied 
as a function of categorization specifi city. For example, a table and chair and menu 
might be diagnostic in suggesting that a scene is, at the basic level, a restaurant, but 
it is likely that it is not those specifi c tables, chairs, and menus in the image that were 
diagnostic, simply that those fi xated provided enough information. On the contrary, 
to make a subordinate judgment that the image is a cafeteria, the buffet might need 
to be recognized. In other words, the range of objects needed to indicate that an image 
was a restaurant could be comparatively larger than the range of objects needed to 
identify what specifi c type of restaurant it is. The progressive exploration stretching 
into the periphery of the scene image during subordinate judgments suggests a search 
for a smaller set of less-prevalent diagnostic objects; the comparatively moderate 
exploration during basic judgments suggests a search for a larger, readily available set 
of diagnostic objects. 
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 To test this hypothesis Malcolm, Nuthmann, and Schyns (2014) had participants 
again categorize scenes at either the basic or subordinate levels, but instead of provid-
ing a gaze-contingent window to allow participants to sample information anywhere 
in the image, scenes appeared for only 150 ms before being masked. In addition, each 
scene image was low-pass fi ltered apart from the objects previously identifi ed as diag-
nostic at either the basic or subordinate level, and these were shown in full resolution 
(meaning there were two separate versions of each scene: LSF with basic diagnostic 
objects in full resolution and LSF with subordinate diagnostic objects in full resolu-
tion; see the bottom two images of   fi gure 2.4,  plate 1). If  categorizing a scene involves 
identifying one of a potentially large set of objects, then manipulating which 
objects are revealed at full resolution should have a minimal effect on accuracy. 
However, if  the range of objects that reveal a scene ’ s category is relatively small, then 
manipulating which objects are identifi able should have a signifi cantly larger effect on 
categorization accuracy. 

 The results confi rmed this hypothesis. Subordinate judgments were affected by 
which diagnostic objects were shown (with better accuracy when subordinate rather 
than basic level objects were available). However, basic-level judgments were not 
affected by which set of diagnostic objects was shown, suggesting that the objects that 
had been identifi ed as diagnostic for basic judgments made up only a subset of poten-
tial diagnostic objects available in the images and presenting an explanation as to why 
participants did not need to spread their search so widely over the scenes. 

 Conclusions 

 Scene categorization plays an integral role in our ability to interact with the world 
around us in an appropriate manner. Yet studies examining how scenes are categorized 
are relatively few and tend to employ an implicit framework that categorization is 
the end result of a passive, structured accrual of information — the  “ one scale fi ts 
all ”  approach. 

 Here we have summarized evidence from several studies that suggest that although 
scene categorization involves the accrual of information, this process involves a task-
driven selection of visual information by the viewer that complements the incoming 
feedforward information to create a bidirectional cycle. The results revealed that par-
ticipants have the ability to sample high-spatial-frequency information, providing 
detailed object information just as quickly as low-spatial-frequency scene layout infor-
mation. Furthermore, observers can sample the specifi c spatial frequency band to 
process depending on its diagnosticity, contradicting a fi xed process. Finally, these 
spatial frequency bands can be orthogonally accessed with viewers actively seeking 
information depending on the category task needs. However, although the presented 
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research highlights the existence of the feedback component to this bidirectional cycle, 
further research is needed to identify the properties of this function. 

 We close this chapter with a few questions that we believe could articulate future 
research in the fi eld. The fi rst concerns the future of the  “ one scale fi ts all gist process-
ing ”  as defi ned by the LSF of an image. Although the results from these studies have 
greatly added to our knowledge of scene representation, it is our view that focusing 
on gist limits research to investigating specifi c image information (e.g., the blobs that 
are revealed when a scene is low-pass fi ltered) even when we know that other image 
properties are routinely used (e.g., the HSF of an image). Even if  we focus on how 
SFs from any band combine to form a scene representation, this focus still limits our 
ability to understand the scene categorization process. Collective results suggest that 
scene categorization should be considered even beyond the limits of SF. For example, 
it is easy to demonstrate (cf.   fi gure 2.3 , with faces) that a more suitable visual informa-
tion framework would embrace multiscale, localized information afforded by wavelets 
(in   fi gure 2.3 , it is clear that different components of the face require full resolution, 
such as the eyes in the  “ fear ”  condition, whereas others do not, such as the cheeks). 
Scenes are similarly likely to require simultaneous accrual of local and global informa-
tion from the same image at different levels of spatial resolution. And looking into 
the future, real scenes are three-dimensional events, not two-dimensional images. 
Multiscale generative models of 3D scenes will need to be developed to test for more 
complex representations that are not restricted by the 2D image space. 

 The second research question stems from the observation that  “ one scale fi ts all gist 
processing ”  has so far restricted the conceptual framework of scene recognition to 
the type of scene categorizations that can be performed with this limited information. 
It remains an empirical question precisely what categorizations LSF information 
affords. Our view is that the answer might not be the expected one. Undoubtedly, 
some categories can be inferred from sparse LSF cues, but for those categories that 
can be recognized (e.g., mountains vs. forests), it is not clear whether processing of 
stripped-down spatial information represents the actual scene categorization mecha-
nism or whether participants have simply been able to deduce the correct scene from 
the available experimental choices based on limited information provided to the visual 
system. The real questions in psychology (as opposed to, say, pattern classifi cation in 
engineering or AI) are (1) what scene categories can be inferred from these cues and 
which ones cannot, and (2) whether those categories that can be inferred correspond 
to a psychological reality — for example, are they basic level categories, superordinate 
categories, or do they cut across all levels? Considerable research has so far embraced 
gist processing without a validation of its psychological reality. To reiterate, the point 
is not whether some categories can be inferred from LSF because this is undoubtedly 
true. The point is whether the interaction between scene categories in memory and 
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LSF information represents a psychologically meaningful interaction, such as the sort 
of interaction posited by Biederman between a geometric description of objects and 
the basic level of their categorization ( Biederman, 1987 ). 

 It is clear to us that it is now critical to go beyond  “ one size fi ts all gist processing ”  
because the conceptual framework is too restrictive to account for the variety of 
hierarchical scene categorizations humans perform. Research should focus on for-
malizing the visual information that is diagnostic for hierarchically organized visual 
categorization tasks and accept that the hierarchy of spatial frequencies, although 
providing a tempting visual analogue to the hierarchy of scene categories, limits more 
than it informs the process.   

 Note 

 1.   The smallest unit for which a light-dark transition can be represented on a screen is two pixels (e.g., 
one black, the other white). This means that in an 800  ×  600 screen, the greatest number of transitions is 
400  ×  300 cycles/image in the width and height directions, respectively. These two unit transitions contain 
the finest details of an image (boundaries, textures, etc.). If  we peel away these fine transitions, we are left 
with light-dark transitions represented every four pixels and greater (or 200  ×  150 cycles/image). When we 
say something is low-passed to 25  ×  18.75 cycles/image, this refers to the greatest number of transitions (or 
overall level of detail) that can be displayed in a screen image in the width and height directions.   
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 Humans have the remarkable ability to recognize complex, real-world scenes in a 
single, brief  glance. The  gist , the essential meaning of a scene, can be recognized in a 
fraction of a second. Such recognition is sophisticated, in that people can accurately 
detect whether an animal is present in a scene or not, what kind of event is occurring 
in a scene, as well as the scene category, all in as little as 150 ms ( Potter, 1976 ;  Schyns 
 &  Oliva, 1994 ;  Thorpe, Fize,  &  Marlot, 1996 ;  VanRullen  &  Thorpe, 2001 ). With this 
remarkable ability, the experience of scene perception feels effortless. It is ubiquitous 
as it is fundamental — after all, every image that comes into our brain is a scene. Scene 
perception directly impacts our actions in a 3D world by providing information about 
where we are as well as where we should navigate. This requires the integration of 
views across eye movements and across time to connect the present view with past 
memory. Thus, as effortless as it seems, scene perception involves many different levels 
of computation that integrate space, time, and memory. In this chapter we demon-
strate the constructive nature of scene perception involving different brain regions to 
achieve a meaningful experience of the visual world. 

 The human visual system has three overarching goals in processing the visual envi-
ronment. First, at the moment of physical input, the visual system must rapidly 
compute diagnostic properties of space and objects contained in the scene. Aside from 
recognizing faces and communicating with people, our daily activities require com-
prehension of the environment ’ s spatial layout for the purposes of navigation as well 
as recognition of objects contained within that environment. As you view a particular 
scene, you are rapidly computing its spatial structure: determining where buildings 
are located and identifying paths through which you might navigate. At the same time, 
you can recognize a scene as a part of the broader environment and as a familiar 
scene in your memory. Visual scene understanding thus involves integrating a series 
of computations to enable coherent and meaningful scene perception. 

 Spatial structure, landmarks, and navigational paths are the major structural prop-
erties that defi ne a scene. Recognizing these different structural properties is central 
to scene perception. Scenes with similar sets of structural properties will be grouped 
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into similar scene categories. For example, if  two scenes both have an open spatial 
layout, natural content, and strong navigability, they will both be categorized as fi elds. 
On the other hand, if  two scenes have some overlapping structural properties but 
differ largely in other properties, they will be categorized differently. For example, if  
both scenes have an open spatial layout, but one has urban content and the other has 
natural content, they will be categorized differently (e.g., a highway vs. a fi eld). Thus, 
a scene category is defi ned by combinations of different structural features (e.g., 
spatial layout and objects), and these structural features dictate how the viewer will 
recognize the space and function within it. In the fi rst part of the chapter we examine 
how the brain represents structural property dimensions of scenes. 

 If  the initial problem of scene recognition involves integrating multiple structural 
properties into a representation of a single view of a scene, then the second major chal-
lenge for the visual system is the problem of perceptual integration. To describe this 
problem, we should defi ne the following terms —  view, scene,  and  place  — which depend 
on the observer ’ s interactions with the environment ( Oliva, Park,  &  Konkle, 2011 ). 
When an observer navigates in the real world, the observer is embedded in a space of 
a given  “ place, ”  which is a location or landmark in the environment and often carries 
semantic meaning (e.g., the Yale campus, my kitchen). A  “ view ”  refers to a particular 
viewpoint that the observer adopts at a particular moment in one fi xation (e.g., a view 
of the kitchen island counter when standing in front of the refrigerator), and a  “ scene ”  
refers to the broader extension of space that encompasses multiple viewpoints. For 
example, a scene can be composed of multiple viewpoints taken by an observer ’ s head 
or eye movements (e.g., looking around your kitchen will reveal many views of one 
scene). Visual input is often dynamic, as the viewer moves through space and time in 
the real environment. In addition, our visual fi eld is spatially limited, causing the viewer 
to sample the world through constant eye and head movement. Yet, in spite of this 
succession of discrete sensory inputs, we perceive a continuous and stable perceptual 
representation of our surroundings. Thus, the second challenge for scene recognition 
is to establish coherent perceptual scene representations from discrete sensory inputs. 
Specifi cally, this involves the balancing of two opposing needs: each view of a scene 
should be distinguished separately to infer the viewer ’ s precise position and direction 
in a given space, but these disparate views must be linked to surmise that these scenes 
are part of the same broader environment or  “ place. ”  In the second part of this chapter 
we discuss how the human visual system represents an integrated visual world from 
multiple discrete views that change over time. In particular, we focus on different func-
tions of the parahippocampal place area (PPA) and retrosplenial complex (RSC) in 
representing and integrating multiple views of the same place. 

 A third challenge for the visual system is to mentally represent a scene in memory 
after the viewer moves away from a scene and the perceptual view of the scene has 
disappeared. We often bring back to our mind what we just saw seconds ago, or need 
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to match the current view with those in memory that refl ect past experience. Such 
memory representations can closely refl ect the original visual input, or they may be 
systematically distorted in some way. In the last part of the chapter we describe studies 
that test the precise nature of scene memory. In particular, we show that the scene 
memory is systematically distorted to refl ect a greater expanse than the original retinal 
input, a phenomenon called  boundary extension . 

 These complex visual and memory functions are accomplished by a network of 
specialized cortical regions devoted to processing visual scene information (  fi gure 3.1, 
plate 2 ). Neuroimaging studies of scene recognition have provided insight about the 
functioning of these specialized cortical regions. Among them, the most well-known 
region is the parahippocampal place area (PPA) near the medial temporal region, 
which responds preferentially to pictures of scenes, landmarks, and spatial layouts 
depicting 3D space ( Aguirre, Zarahn,  &  D ’ Esposito, 1998 ;  Epstein, Harris, Stanley, 
 &  Kanwisher, 1999 ;  Epstein  &  Kanwisher, 1998 ;  Janzen  &  Van Turennout, 2004 ). The 
PPA is most sensitive to the spatial layout or 3D structure of an individual scene, 
although some recent work suggests that the PPA also responds to object information 
such as the presence of objects in a scene ( Harel, Kravitz,  &  Baker, 2013 ), large real-
world objects ( Konkle  &  Oliva, 2012 ), and objects with strong context ( Aminoff, 
Kveraga,  &  Bar, 2013 ). The complexity and richness of the PPA representation are 
discussed further under Representing Structural Properties of a Scene.  

 The PPA has been one of the most studied regions to represent  “ scene category-
specifi c ”  information; however, more recent fi ndings suggest that there is a family of 
regions that respond to scenes beyond the PPA, including the retrosplenial cortex and 
the transverse occipital sulcus. The retrosplenial complex (RSC), a region superior to 
the PPA and near the posterior cingulate, responds strongly to scenes compared to 
other objects (just as the PPA does). Yet, the RSC shows unique properties that may 
be important for spatial navigation rather than visual analysis of individual scenes 
( Epstein, 2008 ;  Park  &  Chun, 2009 ;  Vann, Aggleton,  &  Maguire, 2009 ). For example, 
the RSC shows relatively greater activations than the PPA for route learning in a 
virtual environment, mentally navigating in a familiar space, and recognizing whether 
a scene is a familiar one in memory ( Epstein, 2008 ;  Ino et al., 2002 ;  Maguire, 2001 ). 
The section on Integrating a View to a Scene focuses on comparing the different func-
tions of the PPA and RSC. The transverse occipital sulcus (TOS) also responds 
selectively to scenes compared to other visual stimuli. Recent fi ndings suggest that the 
TOS is causally involved in scene recognition and is sensitive to mirror-reversal 
changes in scene orientation, whereas the PPA is not ( Dilks, Julian, Kubilius, Spelke, 
 &  Kanwisher, 2011 ;  Dilks, Julian, Paunov,  &  Kanwisher, 2013 ). Finally, in contrast 
to the regions above that prefer scenes over objects, the lateral occipital complex 
(LOC) represents object shape and category ( Eger, Ashburner, Haynes, Dolan,  &  
Rees, 2008 ;  Grill-Spector, Kushnir, Edelman, Itzchak,  &  Malach, 1998 ;  Kourtzi  &  
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Kanwisher, 2000 ;  Malach et al., 1995 ;  Vinberg  &  Grill-Spector, 2008 ). Because scenes 
contain objects, we also consider the role of the LOC in representing the object con-
tents and object interactions in a scene.    

 The goal of this chapter is to review studies that characterize the nature of scene 
representation within each of these scene-sensitive regions. In addition, we address 
how the functions of scene-specifi c cortical regions are linked at different stages 
of scene integration: structural construction, perceptual integration, and memory 
construction.  

 We propose a theoretical framework showing distinct but complementary levels of 
scene representation across scene-selective regions ( Park  &  Chun, 2009 ;  Park, Chun, 
 &  Johnson, 2010 ;  Park, Intraub, Yi, Widders,  &  Chun, 2007 ), illustrated in   fi gure 3.1 
(plate 2) . During navigation and visual exploration different physical views are per-
ceived, and the PPA represents the visuostructural property of each view separately 
( Epstein  &  Higgins, 2007 ;  Epstein  &  Kanwisher, 1998 ;  Goh et al., 2004 ;  Park, Brady, 
Greene,  &  Oliva, 2011 ;  Park  &  Chun, 2009 ), encoding the geometric properties of 
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 Figure 3.1 (plate 2) 
 A schematic illustration of three levels of scene processing. As the viewer navigates in the world, 
different views of scenes enter the visual system (view 1, view 2, view 3). The PPA treats each view of 
scenes as different from the others and is involved in analyzing the spatial properties of each specific 
view, such as the spatial layout and structure. The LOC processes object content properties in a scene, 
such as whether scenes have natural or urban content. The RSC and TOS analyze the navigationally 
relevant functional properties of a scene, creating an integrated representation of a scene across views. 
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scenes such as perspective, volume, and open/closed spatial layout, regardless of what 
types of objects fi ll in the space ( Kravitz, Peng,  &  Baker, 2011 ;  Park, Brady, et al., 
2011 ;  Park, Konkle,  &  Oliva, 2014 ). In parallel, the LOC represents the object proper-
ties in a scene, such as whether the scene has natural content (e.g., trees and vegetation) 
or whether the scene has urban content (e.g., buildings and cars;  Park, Brady, et al., 
2011 ). None of these regions represents scenes solely based on semantic category; for 
example, a city street and a forest will be represented similarly in the PPA as long as 
they have similar spatial layout, regardless of their differing semantic categories 
( Kravitz et al., 2011 ;  Park, Brady, et al., 2011 ). The RSC represents scenes in an inte-
grated/view-independent manner, treating different views that are spatiotemporally 
related as the same scene ( Epstein  &  Higgins, 2007 ;  Park  &  Chun, 2009 ). Given its 
involvement in spatial navigation in humans and rodents ( Kumaran  &  Maguire, 2006 ), 
the RSC may also represent a scene ’ s functional properties, such as how navigable 
a scene is, how many possible paths there are, or what actions the observer should 
take within the environment. The TOS may also represent the navigability of a scene, 
given that this region is sensitive to mirror-reversal changes of scenes, which alter the 
direction of a path (e.g., a path originally going to the left now will become a path 
going to right;  Dilks et al., 2011 ). This pattern of response is similar to that of the 
RSC but different from that of the PPA, which does not show any sensitivity to 
mirror-reversal changes. 

 In the current chapter we present evidence that demonstrates how the distinct 
regions illustrated in   fi gure 3.1 (plate 2)  play a complementary role in representing 
the scene at the visuostructural level, perceptual integration level, and memory level. 

 Representing Structural Properties of a Scene 

 People are good at recognizing scenes, even when these scenes are presented very 
rapidly ( Potter, 1975 ; also see chapter 9 by Potter in this volume). For example, when 
a stream of images is presented at a rapid serial visual presentation rate of around 
100 ms per item, people can readily distinguish if  a natural forest scene appeared 
among a stream of urban street images ( Potter, 1975 ;  Potter, Staub,  &  O ’ Connor, 
2004 ). Even though people are able to recognize objects in rapidly presented scenes 
such as  “ trees, ”  what subjects often report is in the basic-level category of a scene, 
such as a forest, beach, or a fi eld ( Rosch, 1978 ). Thus, one might assume that scenes 
are organized in the brain according to basic-level categories, with groups of neurons 
representing forest scenes, fi eld scenes, and so on. However, recent computational 
models and neuroimaging studies suggest that the visual system does not classify 
scenes as belonging to a specifi c category per se but rather according to their global 
properties, that is, their spatial structure ( Hoiem, Efros,  &  Hebert, 2006 ;  Torralba  &  
Oliva, 2003 ;  Torralba, Oliva, Castelhano,  &  Henderson, 2006 ).  
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 Object information and the spatial structure of a scene are extracted separately but 
in parallel (Oliva  &  Torralba, 2001) and then are later integrated to arrive at a decision 
about the identity of the scene or where to search for a particular object. In other 
words, when the visual system confronts a scene, it fi rst decomposes the input into 
multiple layers of information, such as naturalness of object contents, density of 
texture, and spatial layout. This information is later combined to give rise to a mean-
ingful scene category (in this example, a forest). Behavioral studies also suggest that 
object and scene recognition take place in an integrated manner ( Davenport  &  Potter, 
2004 ;  Joubert, Rousselet, Fize,  &  Fabre-Thorpe, 2007 ). Target objects embedded in 
scenes are more accurately identifi ed in a consistent than an inconsistent background, 
and scene backgrounds are identifi ed more accurately when they contain a consistent 
rather than inconsistent object ( Davenport  &  Potter, 2004 ;  Loftus  &  Mackworth, 
1978 ;  Palmer, 1975 ). We also almost never see objects devoid of background context, 
and many scenes are in fact defi ned by the kinds of objects they contain — a pool table 
is what makes a room a pool hall, and recognizing a pool hall thus involves the rec-
ognition of the pool table in it, in addition to the indoor space around it. Taken 
together, these facts indicate that objects and scenes usefully constrain one another 
and that any complete representation of a visual scene must integrate multiple levels 
of these separable properties of spatial layout and object content. 

 Natural scenes can be well described on the basis of global properties such as dif-
ferent degrees of openness, expansion, mean depth, navigability, and others ( Greene 
 &  Oliva, 2009b ;  Oliva  &  Torralba, 2006 ). For example, a typical  “ fi eld ”  scene has an 
open spatial layout with little wall structure, whereas a typical  “ forest ”  scene has an 
enclosed spatial layout with strong perspective of depth (  fi gure 3.2, plate 3 ). In addi-
tion, a fi eld has natural objects or textures such as grass and trees, and a forest scene 
typically has natural objects such as trees, rocks, and grass. Similarly, urban scenes 
such as a street or highway can also be decomposed according to whether the scene ’ s 
horizon line is open and visible (e.g., highway) or enclosed (e.g., street), in addition 
to its manmade contents (e.g., cars, buildings). We recognize a fi eld as belonging to 
fi eld category and a street as belonging to a street category because the visual system 
immediately computes the combination of structural scene properties (e.g., spatial 
layout and object content). The combination of such scene properties thus constrains 
how we interact with scenes or navigate within them. 

 In the example above we mentioned the spatial and object dimensions of a scene, 
but it is worth noting that real-world scenes have much higher degrees of complexity 
and dimensionality of structural information ( Greene  &  Oliva, 2009a ,  2009b ;  Oliva 
 &  Torralba, 2006 ). In a complex real-world scene these numerous properties are 
often entangled and are diffi cult to examine separately. Indeed, most investigations 
concerning the neural coding of scenes have focused on whether brain regions respond 
to one type of category-specifi c stimulus compared to others (e.g., whether the PPA 
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responds to a fi eld vs. forest or whether LOC responds to a cut-out tree on a blank 
background). However, such category-specifi c representation may be a product of 
how the visual system reduces the complex dimensionality of a visual scene into a 
tractable set of scene categories. Thus, it is important to identify the precise dimen-
sions in which neurons in scene-selective visual areas encode scene information.    

 An initial step to study scene processing in the brain should involve examining if  
scene categories are even represented to start with. After all, scenes in the same cat-
egory (e.g., two scenes in the fi eld category) are the scenes that share the most similar 
spatial and object properties (e.g., both scenes have open spatial layout, similar expan-
sion, and natural contents and textures). Research has demonstrated that scene-
responsive cortical regions such as the PPA and RSC represent the semantic category 
of scenes.  Walther, Caddigan, Fei-Fei, and Beck (2009)  used multivoxel analysis to 
test if  patterns of fMRI activity in scene-selective cortices could classify six different 
natural scene categories (beach, buildings, forests, highways, industry, and moun-
tains). Analysis of patterns of neural activity can offer more precise information about 
representation in a particular brain region compared to conventional methods, which 
average activity across voxels ( Cox  &  Savoy, 2003 ;  Kamitani  &  Tong, 2005 ). Machine 
learning methods, such as support-vector machine (SVM) classifi cation, enable clas-
sifi cation of different patterns of activity associated with different categories of scenes. 
 Walther et al. (2009)  found high classifi cation performance in the PPA and RSC 
for distinguishing scene categories. Interestingly, they ran a separate behavioral study 
to measure errors in categorizing these scenes when presented very briefl y (e.g., 

NATURAL content

NATURAL content URBAN content

URBAN contentCLOSED spatial layout

OPEN spatial layout

 Figure 3.2 (plate 3) 
 A schematic illustration of spatial layout and content properties of scenes. Note that the spatial layout 
can correspond between natural and urban scenes. If  we keep the closed spatial layout and fill in the 
space with natural contents, the scene becomes a forest, whereas if  we fill in the space with urban 
contents, the scene becomes an urban street scene. Likewise, if  we keep the open spatial layout and fill in 
the space with natural contents, the scene becomes a field; if  we fill in the space with urban contents, the 
scene becomes a highway scene. Figure adapted from  Park et al. (2011).  
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miscategorizing a highway scene as a beach). These behavioral error patterns were 
then compared to fMRI multivoxel classifi cation error patterns, and a strong correla-
tion was found between the two. In other words, scenes that had similar patterns of 
brain activity (e.g., beaches and highways) were scenes that were often confused in 
the behavioral scene categorization task. This elegant study showed that scene repre-
sentations in the PPA refl ect semantic categories and that scenes that are behaviorally 
confusable have similar patterns of voxel activity in this region. 

 What are the similarities across scene categories that made particular scenes highly 
confusable both behaviorally and at the neural level? The confusability between scene 
categories may be due to similarity in their spatial layouts (e.g., open spaces with a 
horizontal plane), similarity among the types of objects contained in these scenes (e.g., 
trees, cars, etc.), or similarity in the everyday function of scenes (e.g., spaces for trans-
portation, spaces for social gatherings). Determining what types of scenes are system-
atically confused with one other can reveal whether a brain region represents spatial 
properties or object properties.  Park et al. (2011)  directly tested for such confusion 
errors using multivoxel pattern analysis. They asked whether two different properties 
of a scene, such as its spatial layout and its object content, could be dissociated within 
a single set of images. Instead of asking whether the PPA and LOC could accurately 
represent different categories of scenes, they focused on the confusion errors of a 
multivoxel classifi er to examine whether scenes were confused based on similarity in 
spatial layout or object contents. There were four types of scene groups defi ned by 
spatial layout and object content (  fi gure 3.3, plate 4 : open natural scenes, open urban 
scenes, closed natural scenes, and closed urban scenes). Open versus closed defi ned 
whether the scene had an open spatial layout or a closed spatial layout. The natural 
versus urban distinction defi ned whether the scene had natural or urban object con-
tents. Although both the PPA and LOC had similar levels of accurate classifi cation 
performance, the patterns of confusion errors were strikingly different. The PPA made 
more confusion errors across images that shared the same spatial layout, regardless 
of object contents, whereas the LOC made more confusion errors across images that 
shared similar objects, regardless of spatial layout. Thus, we may conclude that a street 
and a forest will be represented similarly in the PPA as long as they have similar spatial 
layout, even though a street is an urban scene and a forest is a natural scene. On the 
other hand, a forest and fi eld scene will be represented similarly in the LOC because 
they have similar natural contents.    

 Another study computed a similarity matrix of 96 scenes and also found that PPA 
representations are primarily based on spatial properties (whether scenes have open 
spatial layout vs. closed spatial layout), whereas representations in early visual cortex 
(EVC) are primarily based on the relative distance to the central object in a scene 
(near vs. far;  Kravitz et al., 2011 ). Using a data-driven approach, the authors mea-
sured multivoxel patterns for each of 96 individual scenes. They then cross-correlated 
these response patterns to establish a similarity matrix between each pair of scenes. 
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When the matrix was reorganized according to dimensions of space (open vs. closed), 
objects (natural vs. urban) and distance (near vs. far), there was a high correlation in 
the PPA for scenes that shared dimensions of space (  fi gure 3.4A, plate 5 ), and high 
correlation in EVC for scenes that shared the dimension of distance. These results 
highly converge with those of  Park et al. (2011) , together suggesting that scene rep-
resentations in the PPA and RSC are primarily based on spatial layout information 
and not scene category per se.    

  Park et al. (2011)  and  Kravitz et al. (2011)  indicate that the PPA and LOC have 
relatively specialized involvement in representing spatial or object information. 
However, one should be careful in drawing conclusions about orthogonal or categori-
cal scene representations across the PPA and LOC. The PPA does not exclusively 
represent spatial information, and the LOC does not solely represent object informa-
tion. For example,  Park, Brady et al. (2011)  found above-chance levels of classifi cation 
accuracy for four groups of scene types (open natural, open urban, closed natural, 
and closed urban) in both the PPA and LOC. To accurately classify these four groups 
of scenes, the PPA and LOC must encode both spatial layout (open vs. closed) and 
object information (natural vs. urban). Thus, even though the confusion error patterns 
suggest a preference for information concerning spatial layout in the PPA and a pref-
erence for object content information in the LOC, these functions are not exclusively 
specialized. In fact, scene information spans a gradient across ventral visual regions. 
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 Figure 3.3 (plate 4) 
 (A) Hypothetical patterns of confusion errors based on the spatial layout or object content similarity. The 
rows represent the scene image conditions as presented to the participants, and the columns represent the 
scene condition that the classifier predicted from the fMRI patterns of activity. If  spatial layout properties 
of scenes are represented in a particular brain area, we expect confusion within scenes that share the same 
spatial layout (marked in light gray). If  content properties of scenes are important for classification, we 
expect confusion within scenes that share the same content (dark gray cells). (B) Confusion errors 
(percentage) are shown for the PPA and the LOC. Figure adapted from  Park et al. (2011).  
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 Harel, Kravitz, and Baker (2013)  manipulated spatial layout (e.g., open spatial layout, 
closed spatial layout, or no spatial layout) and object content (furniture present or 
absent;   fi gure 3.4B, plate 5 ). They tested if  the PPA, LOC, and RSC could correctly 
decode whether a scene background contained spatial layout information (space 
absence decoding) and whether a scene contained an object (object absence decoding). 
Multivoxel pattern analysis showed that RSC was able to decode whether a scene 
included spatial layout information but not whether a scene contained objects. In 
contrast, the LOC was able to decode whether a scene contained objects but not 
whether a scene ’ s background included spatial layout information. The PPA was able 
to decode both whether the scene contained spatial layout information or object 
information. These results suggest that there is a gradient of representation: strong 
spatial representation with little object representation in the RSC; some spatial and 
some object representation in the PPA; and strong object representation with little 
spatial representation in the LOC. 

A. Kravitz et al. (2011) B. Harel et al. (2013)

C. Walther et al. (2011)

Space present 
(closed)

Space present 
(open)

Space absent 
(gradient)

OpenClosed

 Figure 3.4 (plate 5) 
 (A) Multidimensional scaling plot for the PPA. Scenes are shown in a two-dimensional plane with the 
distance between pairs of scenes reflecting the correlation between their response patterns. Pairs of 
images that had higher correlations are shown closer together. Here, you can see that scenes that had 
similar spatial layout (closed or open) are clustered closely together ( Kravitz, Peng,  &  Baker, 2011 ). 
(B) Stimuli used in  Harel et al. (2013) . Participants saw minimal scene stimuli that are composed of 
objects (e.g., furniture) combined with three different types of background stimuli (closed-space present, 
open-space present, and gradient-space absent). (C) Examples of line drawing images used in  Walther 
et al. (2011) . A corresponding line drawing is shown (D) for a photograph of a scene (A). This line 
drawing scene was degraded by either removing 50% of its pixels by removing local contours (short 
lines) (B) or global contours (long lines) (E); or by removing 75% of pixels by removing short (C) or 
long contours (F). The category identification performance was significantly impaired when global 
contours were removed (E and F) compared to when local contours were removed (B and C), suggesting 
that global spatial layout information is important. Figures adopted from Kravitz, Peng, and Baker 
(2011), Harel, Kravitz, and Balker (2013), and Walther et al. (2011). 
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 Other studies have tested whether different cues for defi ning spatial layout informa-
tion matter for scene categorization.  Walther et al. (2011)  suggests that scene catego-
rization is largely based on the global structure of a scene, such as its global contours. 
To test whether global or local contours have different degrees of impact,  Walther et 
al. (2011)  selectively removed equal pixel amounts of global (long) or local (short) 
contours from a line drawing scene (  fi gure 3.4C, plate 5 ). Participants performed 
signifi cantly worse in identifying the categories of scenes that had global contours 
removed compared to scenes that had local contours removed, suggesting that global 
spatial layout information is more important for scene identifi cation. 

 Although the studies described above have investigated spatial representation, other 
studies have focused on the representation of object properties in scenes.  MacEvoy 
and Epstein (2011)  were able to predict a scene category from multiple objects in the 
lateral occipital cortex (LO) but not in the PPA. That is, multivoxel patterns in the 
LO for a scene category (e.g., kitchen) were highly correlated with the average of the 
patterns elicited by signature objects (e.g., stove or refrigerator). These results support 
earlier views of scene perception, which held that real-world scene identifi cation 
emerges by identifying a set of objects in it ( Biederman, 1981 ;  Friedman, 1979 ). 
However, a scene is not just a bag of objects or linear combinations of them but 
refl ects the semantic co-occurrence or spatial composition between these objects. 
Objects often appear in meaningful spatial arrangements based on the functional or 
semantic relationship between them (e.g., a cup on a table; a pot pouring water into 
a cup). This interacting relationship enhances the identifi cation of individual objects 
( Green  &  Hummel, 2006 ) and scenes ( Biederman, 1981 ).  Kim and Biederman (2011)  
tested how a collection of objects may be processed together as a scene. They asked 
whether a particular brain region encodes meaningful relationships among multiple 
objects. They showed that the LOC responds strongly to a pair of objects presented 
in an interacting position (e.g., a bird in front of a bird house) compared to a pair of 
objects presented side by side and not interacting in a semantically meaningful way. 
They did not fi nd any preference for interacting objects in the PPA, consistent with 
the idea that the PPA does not care about object information ( MacEvoy  &  Epstein, 
2011 ). These studies suggest that the LO represents more than simple object shape 
and should be considered a scene-processing region, representing multiple objects and 
their relationships to one another. On the other hand, the PPA seems to represent 
geometric space beyond an object or multiple objects consistent with recent compu-
tational fi ndings that suggest parallel processing of objects and spatial information 
( Fei-Fei  &  Perona, 2005 ;  Lazebnik, Schmid,  &  Ponce, 2006 ;  Oliva  &  Torralba, 2001 ). 

 Thus, both the PPA and LO contribute to scene processing: the PPA represents 
geometric aspects of space, and the LO represents multiple objects and their relation-
ships. Although this suggests that the spatial and object properties of scenes are 
represented differently in distinctive brain regions, defi ning what constitutes an object 
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property or spatial property can be ambiguous. Objects sometimes defi ne a scene ’ s 
spatial layout — for example, a fountain can be categorized as an object or as a land-
mark. Size, permanence, and prior experience with a particular object modulate 
whether it is treated as an object or a scene. When objects gain navigational (land-
mark) signifi cance, they may be treated as scenes and activate the PPA.  Janzen and 
Van Turennout (2004)  had subjects view a route through a virtual museum while 
target objects were placed at either an intersection of a route (decision point relevant 
for navigation) or at simple turns (nondecision point). High PPA activity was found 
for objects at intersections, which were critical for navigation, compared to objects at 
simple turns, which were equally familiar but did not have navigational value. This 
fi nding suggests that prior experience with an object in a navigationally relevant situ-
ation transforms these objects to relevant landmarks, which activates the PPA.  Konkle 
and Oliva (2012)  also showed that large objects such as houses activate the PPA region 
more than small objects. 

 One can also ask whether the PPA and RSC differentiate landmark properties. 
 Auger, Mullally, and Maguire (2012)  characterized individual landmarks by multiple 
properties such as size, visual salience, navigational utility, and permanence. They 
found that the RSC responded specifi cally to the landmarks that were consistently 
rated as permanent, whereas the PPA responded equally to all types of landmarks. 
In addition, they showed that poor navigators, compared to good navigators, were 
less reliable and less consistent in their ratings of a landmark ’ s permanence. Thus, the 
primary function of the RSC may be processing the most stable or permanent feature 
of landmarks, which is critical for navigation. Altogether, the above studies suggest 
that object and scene representations are fl exible and largely modulated by object 
properties or prior interactions with an object, especially when the objects may serve 
a navigational function, which we discuss further in the next section. 

 Integrating a View to a Scene 

 Once an immediate view is perceived and a viewer moves through the environment, 
the visual system must now confront the problem of integration. There are two seem-
ingly contradictory computational problems that characterize this process. First, the 
visual system has to represent each individual view of a scene as unique in order to 
maintain a record of the viewer ’ s precise position and heading direction. At the same 
time, however, the visual system must recognize that the current view is a part of a 
broader scene that extends beyond the narrow aperture of the current view. Construct-
ing such an integrated representation of the environment guides navigation, action, 
and recognition from different views. How does the brain construct such stable per-
cepts of the world? In this section, we discuss how the human visual system perceives 
an integrated visual world from multiple specifi c views that change over time. 
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 For this purpose, we focus on two scene-specifi c areas in the brain, the PPA and 
the RSC. Both of these regions may be located by using a scene localizer, exhibiting 
strong preference to scenes over other visual stimuli. However neurological studies 
with patients suggest that the PPA and the RSC may play different roles in scene 
perception and navigation. Patients who have damage to the parahippocampal area 
cannot identify scenes such as streets or intersections and often rely on identifi cation 
of small details in a scene such as street signs ( Landis, Cummings, Benson,  &  Palmer, 
1986 ;  Mendez  &  Cherrier, 2003 ). However, these patients are able to draw a map or 
a route that they would take in order to navigate around these landmarks ( Takahashi 
 &  Kawamura, 2002 ). Another patient with PPA damage showed diffi culty learning 
the structure of new environments but had spared spatial knowledge of familiar 
environments ( Epstein, DeYoe, Press, Rosen,  &  Kanwisher, 2001 ). This contrasts with 
patients with RSC damage, who were able to identify scenes or landmarks but had 
lost the ability to use these landmarks to orient themselves or to navigate through a 
larger environment ( Aguirre  &  D ’ Esposito, 1999 ;  Maguire, 2001 ;  Valenstein et al., 
1987 ). For example, when patients with RSC damage saw a picture of a distinctive 
landmark near their own home, they would recognize the landmark but could not use 
this landmark to fi nd their way to their house. These neurological cases suggest that 
the parahippocampal and retrosplenial areas encode different kinds of scene repre-
sentations: the parahippocampal area may represent physical details of the view of a 
scene, and the retrosplenial area may represent navigationally relevant properties such 
as the association of the current view to other views of the same scene in memory. 
These functional differences in the PPA and RSC may account for two different 
approaches taken to explain visual integration across views. The PPA, with higher 
sensitivity to perceptual details of a scene, may encode specifi c features of each view 
individually. On the other hand, the RSC, with its involvement in navigationally rel-
evant analysis of a scene, may encode spatial regularities that are common across 
views, representing the scene in a view-invariant way.    

  Park and Chun (2009)  directly tested viewpoint specifi city and invariance across 
the PPA and RSC. When the same stimulus is repeated over time, the amount of 
neural activation for the repeated stimulus is signifi cantly suppressed in comparison 
to the activity elicited when it was fi rst shown. This robust phenomenon, called repeti-
tion suppression, may be used as a tool to measure whether a particular brain region 
represents two slightly different views of scenes as the same or different (see  Grill-
Spector, Henson,  &  Martin, 2006 ).  Park and Chun (2009)  presented three different 
views from a single panoramic scene to mimic the viewpoint change that may occur 
during natural scanning (for example, when you move your eyes from the left to the 
right corner of a room;   fi gure 3.5, plate 6 ). If  scene representations in the brain 
are view specifi c, then physically different views of the same room will be treated 
differently, so that no repetition suppression will be observed. Conversely, if  scene 
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representations in the brain are view invariant, then these views will be integrated into 
the representation of a single continuous room, yielding repetition suppression for 
different views from the same scene. The results revealed that the PPA exhibits view 
specifi city, suggesting that this area focuses on selective discrimination of different 
views, whereas the RSC shows view-invariance, suggesting that RSC focuses on the 
integration of scenes under the same visual continuity. Viewpoint specifi city in the 
PPA is supported by previous literature ( Epstein, Graham,  &  Downing, 2003 ;  Epstein 
 &  Higgins, 2007 ), and viewpoint integration in RSC fi ts with its characterization as 
an area that is important in navigation and route learning in humans and rodents 
( Burgess, Becker, King,  &  O ’ Keefe, 2001 ;  Aguirre  &  D ’ Esposito, 1999 ; see also  Vann 
et al., 2009  for review). This fi nding of two distinct but complementary regions in 
scene perception suggests that the brain develops ways to construct our perception 
with both specifi city and stability from fragmented visual input. In addition, the 
experiment showed that spatiotemporal continuity across multiple views is critical to 
build an integrated scene representation RSC. When different views of panoramic 
scenes were presented with a long lag and intervening items, the RSC no longer 
showed patterns of neural attenuation consistent with scene integration. Thus, the 

View 1 View 2 View 3

PPA RSC

A.

B.

 Figure 3.5 (plate 6) 
 (A) Example of panoramic first, second, and third images. These views were taken from a single 
panoramic scene. These panoramic scenes were presented in order at fixation. The PPA panoramic third 
image was taken from a single panoramic view. Panoramic first, second, and third images were 
sequentially presented one at a time at fixation. (B) Mean peak hemodynamic responses for panoramic 
first, second, and third in the PPA and RSC. The PPA showed no repetition suppression from the first 
to the third panoramic image, suggesting view specificity, whereas the RSC showed a significant 
repetition suppression, suggesting scene integration. Figure adapted from Park and Chun (2009). 
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continuous percept of time and space across changing views provides important cues 
for building a coherent visual world. 

 Other researchers have also found that the PPA and RSC distinctively represent 
individual scenes as components of broader unseen spaces.  Epstein, Parker, and Feiler 
(2007)  tested whether a specifi c view of a scene (e.g., a view of school library) is rep-
resented neurally as part of a broader real-world environment beyond the viewer ’ s 
current location (e.g., the whole campus). In their study they presented participants 
from the University of Pennsylvania community with views of familiar places around 
the campus or views from a different, unfamiliar campus. Participants judged either 
the location of the view (e.g., whether the view of a scene is on the west or east of a 
central artery road through campus) or its orientation (e.g., whether the view is facing 
west or east of the campus). The PPA responded equally to all conditions regardless 
of the task, but the RSC showed stronger activation to location judgments compared 
to orientation judgments. The location judgment required information about the 
viewer ’ s current location as well as the location of the current scene within the larger 
environment. The RSC also showed much higher activity for familiar scenes than for 
unfamiliar scenes. Thus, the RSC is involved in the retrieval of specifi c location infor-
mation of a view and how this view is situated relative to the surrounding familiar 
environment. 

 In a related vein, researchers found different levels of specifi city and invariance 
across other scene selective areas including the transverse occipital sulcus (TOS). The 
TOS specifi cally responds to scenes compared to objects and often shows up along 
with the PPA and RSC in scene localizers. It is more posterior and lateral and is also 
often referred to as an occipital place area.  Dilks et al. (2011)  tested mirror-viewpoint 
change sensitivity in object- and scene-specifi c brain areas. When a scene image is 
mirror-reversed, the navigability of the depicted scene changes fundamentally as a 
path in the scene will reverse direction (e.g., a path originally going to the left now 
will become a path going to the right). Using repetition suppression they found that 
the RSC and the TOS were sensitive to mirror-reversals of scenes, treating two mirror-
reversed scenes as different from each other. On the other hand, they found that the 
PPA was invariant to mirror-reversal manipulations, which challenges the idea that 
the PPA is involved in navigation and reorientation. Although these results seemingly 
contradict other fi ndings showing viewpoint specifi city in the PPA, they fi t with the 
idea that the PPA represents the overall spatial layout of a given view, which is 
unchanged by mirror-reversal, as an image that has a closed spatial layout will remain 
as a closed scene; an open spatial layout will remain the same. What the mirror reversal 
changes is the functional navigability or affordance within a scene, such as in which 
direction the viewer should navigate. Thus, it makes sense that mirror-reversals did 
not affect the PPA, which represents visuospatial layout, but they affected the RSC, 
which represents the navigational properties of a scene. The function of the TOS is 
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still not well known, although recent research with transcranial magnetic stimulation 
(TMS) over the TOS suggests that the TOS is causally involved in scene perception 
( Dilks et al., 2013 ). Dilks et al. delivered TMS to the TOS and to the nearby face-
selective occipital face area (OFA) while participants performed discrimination tasks 
involving either scenes or faces. Dilks et al. found a double dissociation, in that TMS 
to the TOS impaired discrimination of scenes but not faces, whereas TMS to the OFA 
impaired discrimination of faces but not scenes. This fi nding suggests that the TOS 
is causally involved in scene processing, although the precise involvement of TOS is 
still under investigation. 

 Another related question is whether scene representations in the PPA, RSC, and 
TOS are specifi c to retinal input.  MacEvoy and Epstein (2007)  presented scenes to 
either the left or right visual hemifi elds. Using repetition suppression, they tested if  
identical scenes repeated across different hemifi elds are treated as the same or differ-
ently in the brain. They found position invariance in the PPA, RSC, and TOS, sug-
gesting that these scene-selective regions contain large-scale features of the scene that 
are insensitive to changes of retinal position. In addition,  Ward et al. (2010)  found 
that when stimuli are presented at different screen positions while fi xation of the eyes 
is permitted to vary, the PPA and TOS respond equally to scenes that are presented 
at the same position relative to the point of fi xation but not to scenes that are pre-
sented at the same position relative to the screen. This suggests an eye-centered frame 
of reference in these regions. In another study that controlled fi xations within a scene, 
 Golomb et al. (2011)  showed that active eye movements by the viewer play an impor-
tant role in scene integration. Stimuli similar to those depicted in   fi gure 3.5A (plate 
6)  were used. The PPA showed repetition suppression to successive views when par-
ticipants actively made saccades across a stationary scene (e.g., moving their eyes from 
left, middle, and right fi xation points embedded in a scene) but not when the eyes 
remained fi xed and a scene scrolled in the background across fi xation, controlling for 
local retinal input between the two manipulations. These results suggest that active 
saccades may play an important role in scene integration, perhaps providing cues for 
retinotopic overlap across different views of the same scene. 

 So far in this chapter, we have focused on the parahippocampal and retrosplenial 
cortices. However, it is important to mention the role of the hippocampus in scene 
and space perception. Functional connectivity analysis suggests that parahippocam-
pal and retrosplenial regions have strong functional connectivity with the hippocam-
pus and other medial temporal regions such as the entorhinal and perirhinal cortices 
( Rauchs et al., 2008 ;  Summerfi eld, Hassabis,  &  Maguire, 2010 ). A long history of 
rodent work has demonstrated hippocampal involvement in spatial cognition, such as 
maze learning and construction of a  “ cognitive map, ”  a mental representation of one ’ s 
spatial environment, in the hippocampus ( Knierim  &  Hamilton, 2010 ;  O ’ Keefe  &  
Nadel, 1979 ). In particular, hippocampal neurons provide information about both the 
rat ’ s external and internal coordinate systems. Place cells are one type of hippocampal 
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neuron that fi res when a rat is at a specifi c location defi ned by an external coordinate 
system. Head-direction cells fi re when the rat ’ s head is oriented at a certain direction 
in the rat ’ s internal coordinate system. The hippocampus also contains boundary cells, 
which respond to the rat ’ s relative distance to an environmental boundary ( Bird  &  
Burgess, 2008 ;  O ’ Keefe  &  Burgess, 1996 ). These fi ndings suggest that the hippocam-
pus is a critical region that represents the viewer ’ s position in the external world. In 
addition, the division of labor described above for the PPA and RSC is interesting to 
think about in relation to computational models of hippocampal function in rats. 
Recent studies suggest that pattern separation, which amplifi es differences in input, 
and pattern completion, which reconstructs stored patterns to match with current 
input, occur in different parts of the hippocampus: CA3/DG is involved in pattern 
separation, whereas CA1 is involved in pattern completion (see  Yassa  &  Stark, 2011 , 
for review). Even though it is diffi cult to make a direct comparison between hippo-
campal subregions and outer cortical regions such as the parahippocampal and ret-
rosplenial regions, these complementary functions found in the rodent hippocampus 
seem to correspond to the complementary functions found in the PPA and RSC. For 
example, the PPA may rely on pattern separation to achieve view specifi city, and the 
RSC may perform pattern completion to enable view integration. 

 Recently, fMRI studies have probed for cognitive map-like representations in human 
hippocampus.  Morgan et al. (2011)  scanned participants while viewing photographs 
of familiar campus landmarks. They measured the real-world (absolute) distance 
between pairs of landmarks and tested whether responses in the hippocampus, the 
PPA, and the RSC were modulated by the real-world distance between landmarks. 
They found a signifi cantly attenuated response in the left hippocampus for a pair of 
landmarks that are closer in the real world compared to a pair of landmarks that are 
farther from one another in the real world. In contrast, the PPA and RSC encoded 
the landmark identity but not the real-world distance relationship between landmarks 
( Morgan et al., 2011 ). These results suggest that the hippocampus encodes landmarks 
in a map-like representation, refl ecting relative location and distance between land-
marks. Another study using multivoxel pattern analysis with high-spatial-resolution 
fMRI found that the position of an individual within an environment was predictable 
based on the patterns of multivoxel activity in the hippocampus ( Hassabis et al., 
2009 ). In this experiment participants navigated in an artifi cially created room that 
had four different corners (corners A – D). In each trial the participants navigated to 
an instructed target position (e.g., go to the corner A). When they reached the corner, 
they pressed a button to adopt a viewpoint looking down, which revealed a rug on 
the fl oor. This rug view visually looked the same across four corners; thus, the multi-
voxel activity collected during this period was based on the viewer ’ s position in a room 
and not on any visual differences between the four corners. Multivoxel patterns in the 
hippocampus enabled classifi cation of which of the four corners the participant was 
positioned. These results are similar to the rat ’ s place cells, which fi re in response to 
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the specifi c location of the rat within an environment. With high-resolution fMRI 
techniques and computational models that enable segmentation of hippocampal sub-
regions, future research should be aimed at identifying whether the human hippocam-
pus, like that of the rat, also contains both external and internal coordinate systems 
facilitated by place cells and head direction cells as well as boundary cells that encode 
the viewer ’ s distance to environmental boundaries. 

 Representing Scenes in Memory 

 We sample the world through a narrow aperture that is further constrained by limited 
peripheral acuity, but we can easily extrapolate beyond this confi ned window to per-
ceive a continuous world. The previous section reviewed evidence that coherent scene 
perception is constructed by integrating multiple continuous views. Such construction 
can occur online but can also occur as we represent scene information in memory that 
is no longer in view. In this section we discuss how single views are remembered and 
how the visual system constructs information beyond the current view. Traditionally, 
the constructive nature of vision has been tested in low-level physiological studies, 
such as fi lling in of the retinal blind spot or contour completion. However, less is 
known about what type of transformations or computations are performed in higher-
level scene-processing regions. Yet, expectations about the visual world beyond the 
aperture-like input can systematically distort visual perception and memory of scenes. 
Specifi cally, when people are asked to reconstruct a scene from memory, they often 
include additional information beyond the initial boundaries of the scene, in a phe-
nomenon called  boundary extension  ( Intraub, 1997, 2002 ; also see chapter 1 by Intraub 
in this volume). The boundary-extension effect is robust across various testing condi-
tions and various populations, such as recognition, free recall, or directly adjusting 
borders of the boundary both visually and haptically ( Intraub, 2004, 2012 ). Boundary 
extension occurs in children and infants as well ( Candel, Merckelbach, Houben, 
 &  Vandyck, 2004 ;  Quinn  &  Intraub, 2007 ;  Seamon, Schlegel, Hiester, Landau,  &  
Blumenthal, 2002 ). Interestingly, boundary extension occurs for scenes with back-
ground information but not for scenes comprising cutout objects on a black screen 
( Gottesman  &  Intraub, 2002 ). This systemic boundary extension error suggests that 
our visual system is constantly extrapolating the boundary of a view beyond the 
original sensory input (  fi gure 3.6 ).    

 Boundary extension is a memory illusion, but this phenomenon has adaptive value 
in our everyday visual experience. It provides an anticipatory representation of the 
upcoming layout that may be fundamental to the integration of successive views. 
Using boundary extension, we can test whether a scene is represented in the brain as 
it is presented in the physical input or as an extended view that observers spatially 
extrapolated in memory. Are there neural processes in memory that signal the spatial 
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extrapolation of physically absent but mentally represented regions of a scene? If  so, 
this would demonstrate that higher-level scene-processing areas such as the PPA and 
RSC facilitate the perception of a broader continuous world through the construction 
of visual scene information beyond the limits of the aperture-like input. 

  Park et al. (2007)  tested for such effects of boundary extension. They used fMRI 
repetition suppression for close views and wide views of scenes to reveal which scene 
pairs were treated as similar in scene regions of the brain. When the original view of 
a scene is a close-up view, boundary extension predicts that this scene will be extended 
in memory and represented as a wider view than the original. Thus, if  the same 
scene is presented with a slightly wider view than the original, this should match the 
boundary-extended scene representation in scene-selective areas and should result in 
repetition suppression. On the other hand, if  a wide view of a scene is presented fi rst, 
followed by a close view (wide-close condition), there should be no repetition sup-
pression even though the perceptual similarity between close-wide and wide-close 
repetitions is identical. This asymmetry in neural suppression for close-wide and wide-
close repetition was exactly what  Park et al. (2007)  observed (  fi gure 3.7 ). Scene-
processing regions such as the PPA and RSC showed boundary extension in the form 
of repetition suppression for close-wide scene pairs but not for wide-close scene pairs. 
In contrast, there were no such asymmetries in the LOC. This reveals that the brain ’ s 
scene-processing regions refl ect a distorted memory representation, and such bound-
ary extension is specifi c to background scene information and not to foreground 
objects. Such extended scene representations may refl ect an adaptive mechanism that 
allows the visual system to perceive a broader world beyond the sensory input.    

 Another fMRI study on boundary extension points to further involvement of the 
hippocampus ( Chadwick, Mullally,  &  Maguire, 2013 ). Online behavioral boundary 

Close view Wide view

A B

 Figure 3.6 
 Example of boundary extension. After viewing a close-up view of a scene (A), observers tend to report 
an extended representation (B). 
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 Figure 3.7 
 Peaks of the hemodynamic responses for close-wide and wide-close conditions are shown for the PPA 
and LOC. Examples of close-wide and wide-close condition are presented at the bottom. An interaction 
between the close-wide and wide-close condition activation, representing boundary extension asymmetry, 
was observed in the PPA but not in the LOC. Figure adapted from Park et al. (2007). 
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effects were measured for individual scenes as participants viewed scenes in the 
scanner. When scenes that showed the boundary extension effect were compared to 
scenes that did not show it, there was a signifi cant difference in activity in the hip-
pocampus. Moreover, functional connectivity analysis showed that scenes with bound-
ary extension had high connectivity between the hippocampus and the parahippocampal 
cortex, whereas scenes without boundary extension effect did not. A neurological 
study with patients who have hippocampal damage also found that these patients had 
less or no boundary extension compared to a control group ( Mullally, Intraub,  &  
Maguire, 2012 ). For example, when the same close view of a scene was repeated fol-
lowing a close view, normal controls would respond that the second close view was 
different from the original, showing the usual boundary extension distortion. However, 
patients with hippocampal damage were more accurate at rating the second close view 
as identical to the original, showing no distortion from boundary extension. These 
are intriguing results because patients with hippocampal damage actually showed 
more accurate scene memory than controls, immune from the boundary extension 
error. These results suggest that the hippocampus may play a central role in boundary 
extension, and hence, the boundary extension effect found in the parahippocampal 
cortex in Park et al. ( 2007 ) may refl ect such feedback input from the hippocampus. 
Because boundary extension is an example of constructive representations of scenes 
in memory, these results further support the role of the hippocampus in the anticipa-
tion and construction of memory ( Addis, Wong,  &  Schacter, 2007 ;  Buckner  &  Carroll, 
2007 ;  Turk-Browne, Scholl, Johnson,  &  Chun, 2010 ). In addition, the boundary exten-
sion distortion should not simply be viewed as a memory error but rather as a suc-
cessful adaptive mechanism that enables anticipation of a broader perceptual world 
from limited input. 

 Because the amount of visual information a human can see at one time is limited, 
we have also evolved mechanisms for bringing to mind recent visual information that 
is no longer present in the current environment. Such acts are called  refreshing  and 
occur when one briefl y thinks back to a stimulus one just saw. The act of refreshing 
may facilitate scene integration by foregrounding the information to facilitate the 
binding of the previous and the current views. Given the potential role of refreshing 
in scene integration,  Park, Chun, and Johnson (2010)  asked whether discrete views of 
scenes are integrated during refreshing of these views. Similar to results found with 
physical scenes, when participants refreshed different views of scenes, the PPA showed 
view-specifi c representations, and the RSC showed view-invariant representations. 
Research directly comparing cortical activity for perception and refreshing showed 
that activity observed in the RSC and precuneus for refreshing closely mirrored the 
activity for perceiving in these regions ( Johnson, Mitchell, Raye, D’Esposito,  &  
Johnson, 2007 ). Thus, the act of refreshing in these high-level regions might play an 
important role during perceptual integration by mirroring the activity of perceiving 
panoramic views of scenes in continuation. 
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 Conclusion 

 Constructing a rich and coherent percept of our surroundings is essential for navigat-
ing and interacting with our environment. How do we recognize scenes? In this 
chapter we reviewed key studies in cognitive neuroscience that investigated how 
we construct a meaningful scene representation at the structural, perceptual, and 
memory levels. Multiple brain regions play distinctive functions in representing dif-
ferent properties of scenes, and the PPA, RSC, and LOC areas represent a continuum 
of specialized processing for spatial properties, from navigational features (RSC and 
PPA) to that of diagnostic objects (LOC). 

 However, even the useful distinction between spatial and object representation may 
be an oversimplifi cation. Real-world objects or scenes have enormous complexity and 
vary along an exceptionally high number of dimensions such as layout, texture, color, 
depth, density, and so on. The next major goal in the fi eld will be to understand the 
precise neural processing mechanisms in the PPA, RSC, and LOC areas. An essential 
fi rst step is to identify the dimensions in which neurons encode scene information. 
The enormous, megapixel dimensionality of a visual scene must be reduced by the 
ventral pathway to a tractable set of dimensions for encoding scene information. 
These coding dimensions must be fl exible enough to support robust categorization 
but also sensitive to parametric variations necessary for discriminating different exam-
plars and specifi c views. 

 Scene research lags behind that for faces and objects. Electrophysiological recordings 
reveal neurons in the face-selective cortex that encode specifi c and parametric compo-
nents of face parts, geometry, and confi guration ( Freiwald  &  Tsao, 2010;  Freiwald, 
Tsao,  &  Livingstone, 2009) and object-selective regions that encode parametric 
dimensions of 2D contour, 3D surface orientation, and curvature of objects ( Hung, 
Carlson,  &  Connor, 2012 ). Research in human IT cortex has also begun to show not 
only categorical but continuous representations of individual objects ( Kriegeskorte et 
al., 2008 ). Similarly detailed representations at the neuronal level have yet to be discov-
ered for scene perception. Hence, one of the next goals in the fi eld of scene perception 
should be to test precise coding dimensions of scene-selective neurons refl ecting con-
tinuous and parametric changes in the coding dimension (e.g., varying degrees of the 
size of space; varying degrees of openness in spatial layout). For example, do the PPA 
and RSC discriminate the size of space independent of the clutter or density of objects 
within a given space? Estimating the size of space and the level of clutter in a scene is 
central to our interactions with scenes — for example, when deciding whether or not to 
take a crowded elevator or when driving through downtown traffi c.  Park et al. (2011)  
varied both the size of space and levels of object clutter depicted within scenes and 
discovered that the anterior portions of the PPA and RSC responded parametrically to 
different sizes of space in a way that generalized across scene categories. 
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 Another major goal in the fi eld of scene understanding is to describe how informa-
tion from multiple scene-selective regions, representing different properties of scenes, 
is synthesized. Scene categorization and scene gist recognition are so rapid and effi -
cient, some of this information must be combined at very early stages of visual pro-
cessing. How and where are these properties weighted and combined to enable scene 
categorization that rapidly occurs within 200 ms? Future research should aim to reveal 
the interaction across the family of scene-selective regions within the rapid time course 
of scene recognition. 

 How do we represent a coherent scene from constantly changing visual input? 
Converging evidence throughout this chapter suggests that the brain overcomes mul-
tiple constraints of our visual input by constructing an anticipatory representation 
beyond the frame of the current view. The visual system assumes what may exist just 
beyond the boundaries of a scene or what may exist when our eyes are successively 
moved to the next visual frame. Such assumptions are represented in high-level visual 
areas and produce a rich and coherent perceptual experience of the world. Is there a 
functional architecture in the brain that enables such extrapolation of scene informa-
tion? The PPA represents scenes not just based on the current visual stimulus but 
within the temporal context in which these scenes were presented ( Turk-Browne, 
Simon,  &  Sederberg, 2012 ). A scene that was embedded in a predictable temporal 
context had greater PPA repetition suppression than a scene that did not have any 
predictable temporal context preceding it. These results show that the PPA not only 
represents the present input but integrates predictable contexts created from the past. 
Such predictive coding found in high-level visual cortex may support navigation by 
integrating past and present input. Related to this, an important future direction for 
scene perception research would be to show how real-world scene perception unfolds 
over time. In many real-world circumstances, information at the current moment 
becomes meaningful only in the context of a past event. For example, if  you present 
frames of a movie trailer in a randomized order, the whole trailer will be incompre-
hensible. Indeed, our brain is sensitive to sequences of visual information across dif-
ferent time scales ( Hasson, Yang, Vallines, Heeger,  &  Rubin, 2008 ;  Honey et al., 2012 ). 
When a meaningful visual event is presented over time (e.g., a movie clip), early visual 
areas such as V1 are involved in frame-by-frame analysis of single snapshots; midlevel 
areas such as the FFA and the PPA are involved in integration over a short time scale 
(e.g., a few seconds); and higher-order areas such as the temporoparietal junction 
(TPJ) are involved in integration and reasoning of an event over a longer time scale, 
creating a hierarchy of temporal receptive fi elds in the brain. Although these studies 
tested higher-level understanding of the meaning of complex event sequences, one 
can imagine a similar hierarchy of temporal receptive fi elds in daily navigation. For 
example, recognizing that the current view is continuous from the previous view (e.g., 
integrating panoramic views over time) might require integration over a short time 
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scale, whereas recognizing where you are in a city may require integration of the route 
you took over a longer time scale. More research on scene and spatial navigation 
should integrate how our brain combines scene information presented over different 
temporal contexts and scales. 

 Altogether, the rich and meaningful visual experience that we take for granted relies 
on the brain ’ s elegant functional architecture of multiple brain regions with comple-
mentary functions for scene perception. Research in the fi eld of scene understanding 
has grown rapidly over the past few years, and the fi eld has just begun to distinguish 
which structural and conceptual properties of visual scenes are processed at different 
stages of the visual pathway. In combination with fMRI multivoxel pattern analysis 
and computational models of low-level visual systems, we are at the stage of being 
able to roughly reconstruct what the viewer is currently seeing (akin to  “ mind reading ” ) 
( Kay, Naselaris, Prenger,  &  Gallant, 2008 ). The next major goal in the fi eld is to 
discover the precise dimensions of scenes that are encoded in multiple scene-selective 
regions, to fi gure out how these dimensions are synthesized to give rise to the percep-
tion of a complete scene, and to understand how these representations change or 
integrate over time as the viewer navigates in the world. 
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 In high-order object-processing areas of the ventral visual pathway, discrete clusters 
of neurons ( “ modules ” ) respond selectively to specifi c categories of complex images 
such as faces ( Kanwisher, McDermott,  &  Chun, 1997 ;  Tsao, Freiwald, Knutsen, 
Mandeville,  &  Tootell, 2003 ;  Tsao, Moeller,  &  Freiwald, 2008 ), places/scenes ( Aguirre, 
Zarahn,  &  D ’ Esposito, 1998 ;  Epstein  &  Kanwisher, 1998 ), body parts ( Downing, 
Jiang, Shuman,  &  Kanwisher, 2001 ;  Grossman  &  Blake, 2002 ), and word forms 
( Cohen et al., 2000 ). On the other hand, stimuli of a common category often also 
share low-level visual cues, and correspondingly, it has been reported that many 
neurons in the inferior temporal (IT) cortex (which is the fi nal stage of the ventral 
visual pathway) are selective for specifi c low-level properties, including surface curva-
ture ( Janssen, Vogels, Liu,  &  Orban, 2001 ;  Kayaert, Biederman,  &  Vogels, 2005 ), 
Fourier descriptor shapes ( Schwartz, Desimone, Albright,  &  Gross, 1983 ), simple 
geometry ( Brincat  &  Connor, 2004 ;  Kobatake  &  Tanaka, 1994 ), nonaccidental fea-
tures (geons;  Vogels, Biederman, Bar,  &  Lorincz, 2001 ), diagnostic features ( Sigala  &  
Logothetis, 2002 ), and color ( Koida  &  Komatsu, 2007 ). Thus, any given category-
selective response might be deconstructed into multiple low-level feature selectivities. 
In fact a recent theory suggests that overlapping continuous maps of simple features 
give rise to discrete modules that are selective for complex stimuli ( Op de Beeck, 
Haushofer,  &  Kanwisher, 2008 ). Selectivity for low-level visual features may be par-
ticularly crucial in the processing of scene images. Scenes encompass a virtually 
infi nite range of possible visual stimuli. Selectivity for such a wide range of stimuli 
may be constructed only by considering some low-level features that are common to 
images from the scene category. Here we review recent fMRI studies that have reported 
certain low-level preferences/biases in the scene-responsive areas of visual cortex. 

 Organization of Scene-Responsive Cortical Areas in Human and Nonhuman Primates 

 In humans, fMRI studies have described three visual cortical regions that are more 
active during the presentation of  “ places ”  (images of scenes or isolated houses) than 
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during the presentation of other visual stimuli such as faces, objects, body parts, or 
scrambled scenes ( Aguirre et al., 1998 ;  Bar  &  Aminoff, 2003 ;  Epstein  &  Kanwisher, 
1998 ;  Hasson, Harel, Levy,  &  Malach, 2003 ;  Maguire, 2001 ) (  fi gure 4.1, plate 7 ). 
These regions have been named for nearby anatomical landmarks as follows: (1) 
parahippocampal place area (PPA), (2) transverse occipital sulcus (TOS), and 
(3) retrosplenial cortex (RSC). A recent meta-analysis and comprehensive mapping 
of scene-related activations suggest that the three scene-responsive regions are actually 
centered near — but distinct from — the gyri/sulci for which they were originally named 
( Nasr et al., 2011 ). 

 The scene-responsive PPA is typically centered on the lips of the collateral sulcus 
and adjacent medial fusiform gyrus rather than on the parahippocampal gyrus per se. 
Although the size of the PPA varies when it is localized with different localizer stimuli, 
the peak activity is consistently located on the medial fusiform gyrus. More specifi cally, 
the fusiform gyrus is subdivided by a shallow sulcus (the middle fusiform sulcus) into 
a scene-responsive region on the medial fusiform gyrus (PPA) and a face-responsive 
region on the lateral fusiform gyrus (fusiform face area [FFA]) ( Nasr et al., 2011 ). 

 The scene-responsive TOS (renamed the occipital place area by  Dilks, Julian, 
Paunov,  &  Kanwisher, 2013 ) is typically centered on the nearby lateral occipital gyrus 
rather than within its namesake, the transverse occipital sulcus. This scene-responsive 
region lies immediately anterior and ventral to the retinotopically defi ned area V3A, 
in/near retinotopic areas V7, V3B, and/or LO-1 ( Nasr et al., 2011 ). 

 The scene-responsive RSC is a discrete region consistently located in the fundus 
of the parieto-occipital sulcus, approximately 1 cm from the RSC as defi ned by 
Brodmann areas 26, 29, and 30. This scene-responsive region is located immediately 
adjacent to V1 in what would otherwise be the peripheral representation of dorsal V2 
( Nasr et al., 2011 ). 

 The functional connectivity of these scene areas has been tested during the resting-
state fMRI ( Baldassano, Beck,  &  Fei-Fei, 2013 ). The RSC and TOS show differen-
tiable functional connections with the anterior-medial and posterior-lateral parts of 
the PPA, respectively. Each of these areas is also functionally connected with specifi c 
parts of the cortex. The RSC shows connections with the superior frontal sulcus (Brod-
mann areas 8/9) and the peripheral representation of early visual areas V1 and V2. The 
TOS shows connections with the intraparietal sulcus, the lateral occipital complex, and 
retinotopic early visual areas. The PPA shows connections with the lateral occipital 
complex and the peripheral representation of early visual areas V1 and V2. 

 Corresponding (presumptively homologous) scene-responsive regions have been 
identifi ed by use of fMRI in awake macaque monkeys ( Nasr et al., 2011 ;  Rajimehr, 
Devaney, Bilenko, Young,  &  Tootell, 2011 ) (  fi gure 4.1, plate 7 ). These studies used 
identical stimuli and largely overlapping fMRI procedures in human and monkey 
scans so that a relatively direct comparison between human and monkey maps was 
possible. Mirroring the arrangement of the human FFA and PPA (which are adjacent 
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to each other in cortex), the presumptive monkey homologue of the human PPA 
(mPPA) is located adjacent to the most prominent face patch in the IT cortex. This 
location is immediately anterior to area TEO. The monkey TOS (mTOS) includes the 
region predicted from the human maps (macaque V4d), extending posteriorly into 
V3A. A possible monkey homologue of the human RSC lies in the medial bank, near 
the peripheral V1.    

 In addition to mPPA, a recent study has reported two other  “ place patches ”  in 
macaque ventral temporal cortex ( Kornblith, Cheng, Ohayon,  &  Tsao, 2013 ). These 
patches, the lateral place patch (LPP) and the medial place patch (MPP), are located 
in the occipitotemporal sulcus and the parahippocampal gyrus, respectively. The LPP 
contains a large concentration of scene-selective single units, with individual units 
coding specifi c scene parts. Based on microstimulation, the LPP is connected with the 
MPP and with extrastriate visual areas V4v and DP. 

 Retinotopic Selectivity in Scene-Responsive Areas 

 Early electrophysiological studies suggested that neurons in the IT cortex have large 
receptive fi elds ( > 20 o ) ( Desimone  &  Gross, 1979 ;  Richmond, Wurtz,  &  Sato, 1983 ). 
Those studies emphasized that the positional information is lost at progressively higher 
stages of the ventral visual pathway, and neurons become selective for visual features 
and objects independent of their locations in the visual fi eld ( Ito, Tamura, Fujita,  &  
Tanaka, 1995 ;  Lueschow, Miller,  &  Desimone, 1994 ). However, more recent studies of 
the IT cortex have reported the presence of small receptive fi elds ( < 5 o ) even in the 
anterior IT cortex ( DiCarlo  &  Maunsell, 2003 ;  Op De Beeck  &  Vogels, 2000 ). In fact 
there is a wide distribution of receptive fi eld sizes in the IT cortex, ranging from 3 o  to 
25 o  with a mean size of 10 o  ( Op De Beeck  &  Vogels, 2000 ). These data are consistent 
with the idea that representations in the IT cortex are position dependent. This position 
sensitivity could be considered a low-level selectivity for object-selective IT neurons. 

 Analogously, early human fMRI studies distinguished between retinotopic and 
nonretinotopic cortex (e.g.,  Grill-Spector et al., 1998 ;  Halgren et al., 1999 ). Those 
studies described retinotopic maps in occipital visual areas such as V1, V2, V3, 
V3A/B, hV4, and V5/hMT+ (e.g.,  Brewer, Liu, Wade,  &  Wandell, 2005 ;  DeYoe et al., 
1996 ;  Engel, Rumelhart, Wandell,  &  Lee, 1994 ;  Huk, Dougherty,  &  Heeger, 2002 ; 
 Sereno et al., 1995 ;  Tootell et al., 1997 ) but failed to fi nd consistent retinotopy in 
higher-level areas of the ventral visual pathway — perhaps due to technical limitations. 
With technical advancements in neuroimaging and better stimulus designs, recent 
fMRI studies have reported retinotopic maps located beyond (anterior to) V4. Such 
maps have been identifi ed in object-selective lateral occipital cortex ( Larsson  &  Heeger, 
2006 ;  Sayres  &  Grill-Spector, 2008 ) and within regions selective for object categories 
such as body parts ( Weiner  &  Grill-Spector, 2011 ). Distributed positional information 
from multivoxel pattern analysis has also been reported in almost all category-selective 
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 Figure 4.1 (plate 7) 
 Overall view of scene-responsive areas in human and monkey visual cortex. Both species fixated the 
center of a screen during block-designed presentation of identical scene versus face-localizing stimuli. In 
the human data (panels A – E), relatively higher activity to scenes versus faces is shown in red/yellow 
versus blue/cyan, respectively (minimum =  p   <  10 -10 ; maximum =  p   <  10 -30 ). The human map is a group 
average of both the functional and the anatomical data ( n  = 10) in cortical surface format. The right 
hemisphere is illustrated. Panels A and B show the medial and lateral-posterior views of folded cortex, 
respectively. Panels C and D show corresponding views of inflated cortex, and panel E shows the 
flattened view. For comparison, panel F shows the flattened activity map from a macaque monkey 
viewing the same stimuli (minimum =  p   <  10 -5 ; maximum =  p   <  10 -10 ). In both species presumptive 
corresponding scene-responsive areas are named in white (preceded by  “ m ”  in the macaque map). 
Adapted from Nasr et al. (2011). 
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areas ( Carlson, Hogendoorn, Fonteijn,  &  Verstraten, 2011 ;  Cichy, Chen,  &  Haynes, 
2011 ;  Kravitz, Kriegeskorte,  &  Baker, 2010 ;  Schwarzlose, Swisher, Dang,  &  Kan-
wisher, 2008 ). Thus, low-level selectivity for the retinotopic location of visual stimuli 
is preserved in higher-level areas in human IT cortex. 

 Using retinotopic mapping combined with an attentional tracking paradigm, 
Arcaro and colleagues reported two new retinotopic maps anterior to the VO cluster 
within the posterior parahippocampal cortex (PHC), referred to as PHC-1 and PHC-2 
( Arcaro, McMains, Singer,  &  Kastner, 2009 ). Each PHC area contains a complete 
representation of the contralateral visual fi eld with a bias for stimuli in the upper 
visual fi eld (see also  Schwarzlose et al., 2008 ). Both areas are heavily overlapped with 
the functionally defi ned area PPA ( Arcaro et al., 2009 ); this suggests a position-
dependent coding of scenes in the PPA. The scene-responsive TOS also has retino-
topic selectivity because it is located within the retinotopic extrastriate cortex in both 
humans and macaques ( Nasr et al., 2011 ). 

 Scene-related areas, including the PPA and TOS, also show a strong preference for 
stimuli presented in the peripheral visual fi eld. In a series of experiments Malach and 
colleagues reported an association between category selectivity and eccentricity bias 
in high-order object areas; face areas were associated with central visual-fi eld bias, 
whereas scene areas were associated with peripheral visual-fi eld bias ( Hasson et al., 
2003 ;  Levy, Hasson, Avidan, Hendler,  &  Malach, 2001 ;  Malach, Levy,  &  Hasson, 
2002 ). Retinotopic eccentricity might be an organizing principle of object representa-
tions in these areas, and it can be tightly linked to acuity demands ( Hasson, Levy, 
Behrmann, Hendler,  &  Malach, 2002 ). It is conceivable that scene-related processes 
such as spatial navigation and texture segregation depend crucially on large-scale 
integration, and thus, these functions might be better served by a strong association 
with peripheral, low-magnifi cation representations. 

 A Preference for High Spatial Frequencies in Scene-Responsive Areas 

 In the lower-tier (occipital) visual cortex (e.g., in V1, V2, and V3), the sensitivity to 
spatial frequency covaries systematically with the retinotopic representation of visual 
fi eld eccentricity. That is, the foveal/parafoveal cortex in these areas shows a preference 
for higher spatial frequencies ( Henriksson, Nurminen, Hyv ä rinen,  &  Vanni, 2008 ; 
 Sasaki et al., 2001 ). Recently, the sensitivity to spatial frequency has been tested in 
the higher-tier areas of the ventral visual pathway ( Awasthi, Sowman, Friedman,  &  
Williams, 2013 ;  Rajimehr et al., 2011 ;  Zeidman, Mullally, Schwarzkopf,  &  Maguire, 
2012 ). One study ( Rajimehr et al., 2011 ) manipulated the spatial frequency in a variety 
of stimuli and found a signifi cant preference for high spatial frequencies in the scene-
responsive area PPA. The high-spatial-frequency bias in the PPA was demonstrated 
using high-pass-fi ltered scene, face, and even checkerboard stimuli (  fi gure 4.2, plate 



 Figure 4.2 (plate 8) 
 High-pass-filtered checkerboard images selectively activate the PPA. Panels A and B show examples of 
low-spatial-frequency (low-SF) and high-spatial-frequency (high-SF) checkerboards. Panels C and D 
show the FFT amplitude spectra of low-SF and high-SF checkerboards. Panel E shows the FFA 
(indicated by white border) and PPA (indicated by black border), localized based on a comparison 
between faces and places, in the averaged map of four human subjects. The group-averaged activity map 
is displayed on a flattened view of the right occipitotemporal cortex. Panel F shows the comparison of 
activity between high-SF (yellow/red) and low-SF (cyan/blue) checkerboards. This comparison revealed a 
high-SF bias within the PPA. If  anything, the opposite bias was found in parts of the FFA. The maps 
are significant at the threshold of  p   <  10 -2 . Adapted from Rajimehr et al. (2011). 
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8 ). This bias was more prominent in the posterior-lateral part of the PPA. The PPA 
also showed a higher response to unfi ltered natural scenes that were dominated by 
high spatial frequencies. This study ( Rajimehr et al., 2011 ) used identical stimuli in 
monkeys and found that the mPPA (the apparent homologue of PPA in monkeys) 
also has a preference for high spatial frequencies.    

 An image analysis suggests that scenes have more spatial discontinuities (in the 
form of high-spatial-frequency components) compared to other object categories, 
such as faces ( Rajimehr et al., 2011 ). Thus, a low-level sensitivity to high spatial fre-
quencies in the PPA can be particularly useful for detecting edges, object borders, 
and scene details during spatial perception and navigation. Furthermore, there 
may be an evolutionary advantage for the PPA to be preferentially tuned for high 
spatial frequencies (e.g., in facilitating the detection of food/predators in visually 
complex environments). 

 A Cardinal Orientation Bias in Scene-Responsive Areas 

 Human vision is more sensitive to contours at cardinal (horizontal and vertical) ori-
entations compared to oblique orientations, a phenomenon called the  “ oblique effect ”  
( Appelle, 1972 ;  Mach, 1861 ). Because the oblique effect is linked to stimulus orienta-
tion, and orientation-selective cells are common in V1, prior psychophysical and 
physiological experiments have often hypothesized a neural correlate of the perceptual 
oblique effect in lower-level retinotopic visual cortex ( Vogels  &  Orban, 1985 ). However, 
fMRI studies in humans have not reported a consistent activity bias for cardinal 
orientations in V1 ( Freeman, Brouwer, Heeger,  &  Merriam, 2011 ; but see  Furmanski 
 &  Engel, 2000 ;  Swisher et al., 2010 ). 

 A recent study suggests that the oblique effect may be related to scene processing 
( Nasr  &  Tootell, 2012 ). The link between the oblique effect and scene processing is 
supported by ecological evidence. Image statistics confi rm that many scenes are domi-
nated by cardinal orientations ( Torralba  &  Oliva, 2003 ). Such a statistical bias is 
present not only in carpentered environments (such as cityscapes, buildings, and 
indoor scenes) but also in some natural scenes, often due to the orthogonal infl uences 
of gravity and/or phototropism. Consistent with this idea, the scene-responsive area 
PPA shows a stronger fMRI response to cardinal (compared to oblique) orientations 
( Nasr  &  Tootell, 2012 ) (  fi gure 4.3, plate 9 ). This low-level orientation bias in the PPA 
can be observed even for simple geometrical stimuli such as arrays of overlapping 
squares or arrays of line segments ( Nasr  &  Tootell, 2012 ).    

 Conclusion 

 Here we reviewed evidence for selectivity to low-level visual features in the scene-
responsive areas, particularly in the PPA. It is important to defi ne such features for 
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 Figure 4.3 (plate 9) 
 Scenes with dominant power at cardinal orientations selectively activate the PPA. Panel A shows 
group-averaged fMRI activity ( n  = 13; random-effects analysis) for spatially filtered scenes with 
dominant power at cardinal versus oblique orientations. The map shows a ventral view of the inflated 
(panel A) and flattened (panel B) cortical surfaces. The borders of the PPA, TOS, RSC, and V1 are 
shown using black, green, blue, and white lines, respectively. White dashed lines indicate the peripheral 
visual field representation, and white asterisks indicate the foveal representation. Panel C shows the 
region-of-interest analysis in the PPA and V1. Orientation differences were significant only in the PPA 
(* p   <  0.05; ** p   <  0.01). Adapted from Nasr et al. (2012). 
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both practical and conceptual reasons. At a practical level it is important to defi ne 
such variables to avoid uncontrolled stimulus infl uences on otherwise carefully con-
trolled tests of higher-order variables. More conceptually, such lower-level variables 
may well serve as intermediate  “ building blocks ”  for higher-order selectivity and thus 
clarify the nature of further higher-order variables. The latter is particularly important 
because after its initial characterization as a scene-selective area, the PPA has been 
reinterpreted as selective for a wide range of other higher-order categories, including 
tools ( Chao, Haxby,  &  Martin, 1999 ), single houses ( Tootell et al., 2008 ), inanimate 
objects ( Kriegeskorte et al., 2008 ), big objects ( Konkle  &  Oliva, 2012 ;  Troiani, Stigli-
ani, Smith,  &  Epstein, 2014 ), object ensembles, and surface textures ( Cant  &  Xu, 
2012 ). Due to this wide range of stimulus selectivities in the PPA, we have used the 
term  “ scene-responsive ”  (rather than  “ scene-selective ” ) when referring to the PPA and 
other scene areas. 

 Evidence to date demonstrates that multiple lower-level variables infl uence the 
fMRI response properties in the PPA. Retinotopically, studies have reported that this 
area shows a bias for stimuli in the peripheral (as opposed to foveal) visual fi eld (e.g., 
 Levy et al., 2001 ) and a bias for upper visual fi eld ( Arcaro et al., 2009 ). It can be 
argued that to the extent that a response is specifi c to portions of the visual fi eld, it 
cannot be strictly selective for a given visual category per se. 

 More globally, it has been shown that the PPA is also selective for high spatial 
frequencies and cardinal orientations. It is possible that PPA and other scene-respon-
sive areas also show selectivity to other low-level features such as specifi c line junctions 
or specifi c shapes. For instance, the fact that the PPA responds more strongly to cubes 
than to spheres ( Rajimehr et al., 2011 ) may be partly due to the presence of right 
angles in the  “ cube ”  stimuli. Future studies would be needed to test this and other 
low-level feature selectivities in these areas. Demonstration of low-level selectivity in 
the scene areas makes the single-cell studies of scene processing more tractable, as 
these low-level features can be parametrically manipulated in well-defi ned stimulus 
spaces. 

 Acknowledgments 

 This research was supported by National Institutes of Health (NIH) Grants R01 
MH67529 and R01 EY017081 to R.B.H.T., the Martinos Center for Biomedical 
Imaging, the NCRR, and the MIND Institute. 

 References 

   Aguirre ,  G. K. ,  Zarahn ,  E. ,  &   D ’ Esposito ,  M.  ( 1998 ).  An area within human ventral cortex sensitive to 
 ‘  ‘ building ’  ’  stimuli: Evidence and implications.    Neuron  ,   21  ,  373  –  383 .  



82 Reza Rajimehr, Shahin Nasr, and Roger Tootell 

   Appelle ,  S.  ( 1972 ).  Perception and discrimination as a function of stimulus orientation: The oblique 
effect in man and animals.    Psychological Bulletin  ,   78  ,  266  –  278 .  

   Arcaro ,  M. J. ,  McMains ,  S. A. ,  Singer ,  B. D. ,  &   Kastner ,  S.  ( 2009 ).  Retinotopic organization of human 
ventral visual cortex.    Journal of Neuroscience  ,   29  ( 34 ),  10638  –  10652 .  

   Awasthi ,  B. ,  Sowman ,  P. F. ,  Friedman ,  J. ,  &   Williams ,  M. A.  ( 2013 ).  Distinct spatial scale sensitivities for 
early categorization of faces and places: Neuromagnetic and behavioral findings.    Frontiers in Human 
Neuroscience  ,   7  ( 91 ).  

   Baldassano ,  C. ,  Beck ,  D. M. ,  &   Fei-Fei ,  L.  ( 2013 ).  Differential connectivity within the parahippocampal 
place area.    NeuroImage  ,   75  ,  228  –  237 .  

   Bar ,  M. ,  &   Aminoff ,  E. M.  ( 2003 ).  Cortical analysis of visual context.    Neuron  ,   38  ,  347  –  358 .  

   Brewer ,  A. A. ,  Liu ,  J. ,  Wade ,  A. R. ,  &   Wandell ,  B. A.  ( 2005 ).  Visual field maps and stimulus selectivity 
in human ventral occipital cortex.    Nature Neuroscience  ,   8  ( 8 ),  1102  –  1109 .  

   Brincat ,  S. L. ,  &   Connor ,  C. E.  ( 2004 ).  Underlying principles of visual shape selectivity in posterior 
inferotemporal cortex.    Nature Neuroscience  ,   7  ( 8 ),  880  –  886 .  

   Cant ,  J. S. ,  &   Xu ,  Y.  ( 2012 ).  Object ensemble processing in human anterior-medial ventral visual cortex.  
  Journal of Neuroscience  ,   32  ( 22 ),  7685  –  7700 .  

   Carlson ,  T. ,  Hogendoorn ,  H. ,  Fonteijn ,  H. ,  &   Verstraten ,  F. A.  ( 2011 ).  Spatial coding and invariance in 
object-selective cortex.    Cortex  ,   47  ( 1 ),  14  –  22 .  

   Chao ,  L. L. ,  Haxby ,  J. V. ,  &   Martin ,  A.  ( 1999 ).  Attribute-based neural substrates in temporal cortex for 
perceiving and knowing about objects.    Nature Neuroscience  ,   2  ( 10 ),  913  –  919 .  

   Cichy ,  R. M. ,  Chen ,  Y. ,  &   Haynes ,  J. D.  ( 2011 ).  Encoding the identity and location of objects in human 
LOC.    NeuroImage  ,   54  ( 3 ),  2297  –  2307 .  

   Cohen ,  L. ,  Dehaene ,  S. ,  Naccache ,  L. ,  Leh é ricy ,  S. ,  Dehaene-Lambertz ,  G. ,  H é naff ,  M. A. ,  et al.  ( 2000 ). 
 The visual word form area: Spatial and temporal characterization of an initial stage of reading in 
normal subjects and posterior split-brain patients.    Brain  ,   123  ( 2 ),  291  –  307 .  

   Desimone ,  R. ,  &   Gross ,  C. G.  ( 1979 ).  Visual areas in the temporal cortex of the macaque.    Brain 
Research  ,   178  ( 2 ),  363  –  380 .  

   DeYoe ,  E. A. ,  Carman ,  G. J. ,  Bandettini ,  P. ,  Glickman ,  S. ,  Wieser ,  J. ,  Cox ,  R. ,  et al.  ( 1996 ).  Mapping 
striate and extrastriate visual areas in human cerebral cortex.    Proceedings of the National Academy of 
Sciences of the United States of America  ,   93  ( 2 ),  2382  –  2386 .  

   DiCarlo ,  J. J. ,  &   Maunsell ,  J. H.  ( 2003 ).  Anterior inferotemporal neurons of monkeys engaged in object 
recognition can be highly sensitive to object retinal position.    Journal of Neurophysiology  ,   89  ( 6 ), 
 3264  –  3278 .  

   Dilks ,  D. D. ,  Julian ,  J. B. ,  Paunov ,  A. M. ,  &   Kanwisher ,  N.  ( 2013 ).  The occipital place area (OPA) is 
causally and selectively involved in scene perception.    Journal of Neuroscience  ,   33  ( 4 ),  1331  –  1336 .  

   Downing ,  P. E. ,  Jiang ,  Y. ,  Shuman ,  M. ,  &   Kanwisher ,  N.  ( 2001 ).  A cortical area selective for visual 
processing of the human body.    Science  ,   293  ( 5539 ),  2470  –  2473 .  

   Engel ,  S. A. ,  Rumelhart ,  D. E. ,  Wandell ,  B. A. ,  &   Lee ,  A. T.  ( 1994 ).  fMRI of human visual cortex.  
  Nature  ,   369  ,  525 .  

   Epstein ,  R. A. ,  &   Kanwisher ,  N.  ( 1998 ).  A cortical representation of the local visual environment.  
  Nature  ,   392  ( 6676 ),  598  –  601 .  

   Freeman ,  J. ,  Brouwer ,  G. J. ,  Heeger ,  D. J. ,  &   Merriam ,  E. P.  ( 2011 ).  Orientation decoding depends on 
maps, not columns.    Journal of Neuroscience  ,   31  ( 13 ),  4792  –  4804 .  

   Furmanski ,  C. S. ,  &   Engel ,  S. A.  ( 2000 ).  An oblique effect in human primary visual cortex.    Nature 
Neuroscience  ,   3  ( 6 ),  535  –  536 .  

   Grill-Spector ,  K. ,  Kushnir ,  T. ,  Hendler ,  T. ,  Edelman ,  S. ,  Itzchak ,  Y. ,  &   Malach ,  R.  ( 1998 ).  A sequence of 
object-processing stages revealed by fMRI in the human occipital lobe.    Human Brain Mapping  ,   6  ( 4 ), 
 316  –  328 .  

   Grossman ,  E. D. ,  &   Blake ,  R.  ( 2002 ).  Brain areas active during visual perception of biological motion.  
  Neuron  ,   35  ( 6 ),  1167  –  1175 .  



Deconstructing Scene Selectivity in Visual Cortex 83

   Halgren ,  E. ,  Dale ,  A. M. ,  Sereno ,  M. I. ,  Tootell ,  R. B. H. ,  Marinkovic ,  K. ,  &   Rosen ,  B. R.  ( 1999 ). 
 Location of human face-selective cortex with respect to retinotopic areas.    Human Brain Mapping  ,   7  ( 1 ), 
 29  –  37 .  

   Hasson ,  U. ,  Harel ,  M. ,  Levy ,  I. ,  &   Malach ,  R.  ( 2003 ).  Large-scale mirror-symmetry organization of 
human occipito-temporal object areas.    Neuron  ,   37  ,  1027  –  1041 .  

   Hasson ,  U. ,  Levy ,  I. ,  Behrmann ,  M. ,  Hendler ,  T. ,  &   Malach ,  R.  ( 2002 ).  Eccentricity bias as an 
organizing principle for human high-order object areas.    Neuron  ,   34  ( 3 ),  479  –  490 .  

   Henriksson ,  L. ,  Nurminen ,  L. ,  Hyv ä rinen ,  A. ,  &   Vanni ,  S.  ( 2008 ).  Spatial frequency tuning in human 
retinotopic visual areas.    Journal of Vision,     8  ( 10 ),  1  –  13 .  

   Huk ,  A. C. ,  Dougherty ,  R. F. ,  &   Heeger ,  D. J.  ( 2002 ).  Retinotopy and functional subdivision of human 
areas MT and MST.    Journal of Neuroscience  ,   22  ( 16 ),  7195  –  7205 .  

   Ito ,  M. ,  Tamura ,  H. ,  Fujita ,  I. ,  &   Tanaka ,  K.  ( 1995 ).  Size and position invariance of neuronal responses 
in monkey inferotemporal cortex.    Journal of Neurophysiology  ,   73  ( 1 ),  218  –  226 .  

   Janssen ,  P. ,  Vogels ,  R. ,  Liu ,  Y. ,  &   Orban ,  G. A.  ( 2001 ).  Macaque inferior temporal neurons are selective 
for three-dimensional boundaries and surfaces.    Journal of Neuroscience  ,   21  ( 23 ),  9419  –  9429 .  

   Kanwisher ,  N. ,  McDermott ,  J. ,  &   Chun ,  M. M.  ( 1997 ).  The fusiform face area: A module in human 
extrastriate cortex specialized for face perception.    Journal of Neuroscience  ,   17  ( 11 ),  4302  –  4311 .  

   Kayaert ,  G. ,  Biederman ,  I. ,  &   Vogels ,  R.  ( 2005 ).  Representation of regular and irregular shapes in 
macaque inferotemporal cortex.    Cerebral Cortex  ,   15  ( 9 ),  1308  –  1321 .  

   Kobatake ,  E. ,  &   Tanaka ,  K.  ( 1994 ).  Neuronal selectivities to complex object features in the ventral 
visual pathway of the macaque cerebral cortex.    Journal of Neurophysiology  ,   71  ( 3 ),  856  –  867 .  

   Koida ,  K. ,  &   Komatsu ,  H.  ( 2007 ).  Effects of task demands on the responses of color-selective neurons 
in the inferior temporal cortex.    Nature Neuroscience  ,   10  ,  108  –  116 .  

   Konkle ,  T. ,  &   Oliva ,  A.  ( 2012 ).  A real-world size organization of object responses in occipito-temporal 
cortex.    Neuron  ,   74  ( 6 ),  1114  –  1124 .  

   Kornblith ,  S. ,  Cheng ,  X. ,  Ohayon ,  S. ,  &   Tsao ,  D. Y.  ( 2013 ).  A network for scene processing in the 
macaque temporal lobe.    Neuron  ,   79  ( 4 ),  766  –  781 .  

   Kravitz ,  D. J. ,  Kriegeskorte ,  N. ,  &   Baker ,  C. I.  ( 2010 ).  High-level visual object representations are 
constrained by position.    Cerebral Cortex  ,   20  ( 12 ),  2916  –  2925 .  

   Kriegeskorte ,  N. ,  Mur ,  M. ,  Ruff ,  D. ,  Kiani ,  R. ,  Bodurka ,  J. ,  Esteky ,  H. ,  et al.  ( 2008 ).  Matching 
categorical object representations in inferior temporal cortex of man and monkey.    Neuron  ,   60  ( 6 ), 
 1126  –  1141 .  

   Larsson ,  J. ,  &   Heeger ,  D. J.  ( 2006 ).  Two retinotopic visual areas in human lateral occipital cortex.  
  Journal of Neuroscience  ,   26  ( 51 ),  13128  –  13142 .  

   Levy ,  I. ,  Hasson ,  U. ,  Avidan ,  G. ,  Hendler ,  T. ,  &   Malach ,  R.  ( 2001 ).  Center-periphery organization of 
human object areas.    Nature Neuroscience  ,   4  ( 5 ),  533  –  539 .  

   Lueschow ,  A. ,  Miller ,  E. K. ,  &   Desimone ,  R.  ( 1994 ).  Inferior temporal mechanisms for invariant object 
recognition.    Cerebral Cortex  ,   4  ( 5 ),  523  –  531 .  

   Mach ,  E.  ( 1861 ).   Ü ber das Sehen von Lagen und Winkeln durch die Bewegung des Auges.  
  Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften  ,   43  ( 2 ),  215  –  224 .  

   Maguire ,  E. A.  ( 2001 ).  The retrosplenial contribution to human navigation: A review of lesion and 
neuroimaging findings.    Scandinavian Journal of Psychology  ,   42  ,  225  –  238 .  

   Malach ,  R. ,  Levy ,  I. ,  &   Hasson ,  U.  ( 2002 ).  The topography of high-order human object areas.    Trends in 
Cognitive Sciences  ,   6  ( 4 ),  176  –  184 .  

   Nasr ,  S. ,  Liu ,  N. ,  Devaney ,  K. J. ,  Yue ,  X. ,  Rajimehr ,  R. ,  Ungerleider ,  L. G. ,  et al.  ( 2011 ).  Scene-selective 
cortical regions in human and non-human primates.    Journal of Neuroscience  ,   31  ( 39 ),  13771  –  13785 .  

   Nasr ,  S. ,  &   Tootell ,  R. B. H.  ( 2012 ).  A cardinal orientation bias in scene-selective visual cortex.    Journal 
of Neuroscience  ,   32  ( 43 ),  14921  –  14926 .  

   Op de Beeck ,  H. ,  Haushofer ,  J. ,  &   Kanwisher ,  N. G.  ( 2008 ).  Interpreting fMRI data: Maps, modules and 
dimensions.    Nature Reviews Neuroscience  ,   9  ( 2 ),  123  –  135 .  



84 Reza Rajimehr, Shahin Nasr, and Roger Tootell 

   Op De Beeck ,  H. ,  &   Vogels ,  R.  ( 2000 ).  Spatial sensitivity of macaque inferior temporal neurons.    Journal 
of Comparative Neurology  ,   426  ( 4 ),  505  –  518 .  

   Rajimehr ,  R. ,  Devaney ,  K. J. ,  Bilenko ,  N. Y. ,  Young ,  J. C. ,  &   Tootell ,  R. B. H.  ( 2011 ).  The 
parahippocampal place area responds preferentially to high spatial frequencies in humans and monkeys.  
  PLoS Biology  ,   9  ( 4 ),  e1000608 .  

   Richmond ,  B. J. ,  Wurtz ,  R. H. ,  &   Sato ,  T.  ( 1983 ).  Visual responses of inferior temporal neurons in 
awake rhesus monkey.    Journal of Neurophysiology  ,   50  ( 6 ),  1415  –  1432 .  

   Sasaki ,  Y. ,  Hadjikhani ,  N. ,  Fischl ,  B. ,  Liu ,  A. K. ,  Marret ,  S. ,  Dale ,  A. M. ,  et al.  ( 2001 ).  Local and 
global attention are mapped retinotopically in human occipital cortex.    Proceedings of the National 
Academy of Sciences of the United States of America  ,   98  ( 4 ),  2077  –  2082 .  

   Sayres ,  R. ,  &   Grill-Spector ,  K.  ( 2008 ).  Relating retinotopic and object-selective responses in human 
lateral occipital cortex.    Journal of Neurophysiology  ,   100  ( 1 ),  249  –  267 .  

   Schwartz ,  E. L. ,  Desimone ,  R. ,  Albright ,  T. D. ,  &   Gross ,  C. G.  ( 1983 ).  Shape recognition and inferior 
temporal neurons.    Proceedings of the National Academy of Sciences of the United States of America  , 
  80  ( 18 ),  5776  –  5778 .  

   Schwarzlose ,  R. F. ,  Swisher ,  J. D. ,  Dang ,  S. ,  &   Kanwisher ,  N.  ( 2008 ).  The distribution of category and 
location information across object-selective regions of visual cortex.    Proceedings of the National 
Academy of Sciences of the United States of America  ,   105  ( 11 ),  4447  –  4452 .  

   Sereno ,  M. I. ,  Dale ,  A. M. ,  Reppas ,  J. B. ,  Kwong ,  K. K. ,  Belliveau ,  J. W. ,  Brady ,  T. J. ,  et al.  ( 1995 ). 
 Borders of multiple visual areas in human revealed by functional magnetic resonance imaging.    Science  , 
  268  ,  889  –  893 .  

   Sigala ,  N. ,  &   Logothetis ,  N. K.  ( 2002 ).  Visual categorization shapes feature selectivity in the primate 
temporal cortex.    Nature  ,   415  ( 6869 ),  318  –  320 .  

   Swisher ,  J. D. ,  Gatenby ,  J. C. ,  Gore ,  J. C. ,  Wolfe ,  B. A. ,  Moon ,  C. H. ,  Kim ,  S. G. ,  et al.  ( 2010 ). 
 Multiscale pattern analysis of orientation-selective activity in the primary visual cortex.    Journal of 
Neuroscience  ,   30  ( 1 ),  325  –  330 .  

   Tootell ,  R. B. H. ,  Devaney ,  K. J. ,  Young ,  J. C. ,  Postelnicu ,  G. ,  Rajimehr ,  R. ,  &   Ungerleider ,  L. G.  ( 2008 ). 
 fMRI mapping of a morphed continuum of 3D shapes within inferior temporal cortex.    Proceedings of 
the National Academy of Sciences of the United States of America  ,   105  ( 9 ),  3605  –  3609 .  

   Tootell ,  R. B. H. ,  Mendola ,  J. D. ,  Hadjikhani ,  N. ,  Ledden ,  P. J. ,  Liu ,  A. K. ,  Reppas ,  J. B. ,  et al.  ( 1997 ). 
 Functional analysis of V3A and related areas in human visual cortex.    Journal of Neuroscience  ,   17  ( 18 ), 
 7060  –  7078 .  

   Torralba ,  A. ,  &   Oliva ,  A.  ( 2003 ).  Statistics of natural image categories.    Network (Bristol, England)  , 
  14  ( 3 ),  391  –  412 .  

   Troiani ,  V. ,  Stigliani ,  A. ,  Smith ,  M. E. ,  &   Epstein ,  R. A.  ( 2014 ).  Multiple object properties drive 
scene-selective regions.    Cerebral Cortex  ,   24  ( 4 ),  883  –  897 .  

   Tsao ,  D. Y. ,  Freiwald ,  W. A. ,  Knutsen ,  T. A. ,  Mandeville ,  J. B. ,  &   Tootell ,  R. B. H.  ( 2003 ).  The 
representation of faces and objects in macaque cerebral cortex.    Nature Neuroscience  ,   6  ,  989  –  995 .  

   Tsao ,  D. Y. ,  Moeller ,  S. ,  &   Freiwald ,  W. A.  ( 2008 ).  Comparing face patch systems in macaques and 
humans.    Proceedings of the National Academy of Sciences of the United States of America  ,   105  ( 49 ), 
 19514  –  19519 .  

   Vogels ,  R. ,  Biederman ,  I. ,  Bar ,  M. ,  &   Lorincz ,  A.  ( 2001 ).  Inferior temporal neurons show greater 
sensitivity to nonaccidental than to metric shape differences.    Journal of Cognitive Neuroscience  ,   13  ( 4 ), 
 444  –  453 .  

   Vogels ,  R. ,  &   Orban ,  G. A.  ( 1985 ).  The effect of practice on the oblique effect in line orientation 
judgments.    Vision Research  ,   25  ( 11 ),  1679  –  1687 .  

   Weiner ,  K. S. ,  &   Grill-Spector ,  K.  ( 2011 ).  Not one extrastriate body area: Using anatomical landmarks, 
hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal 
cortex.    NeuroImage  ,   56  ( 4 ),  2183  –  2199 .  

   Zeidman ,  P. ,  Mullally ,  S. L. ,  Schwarzkopf ,  D. S. ,  &   Maguire ,  E. A.  ( 2012 ).  Exploring the 
parahippocampal cortex response to high and low spatial frequency spaces.    Neuroreport  ,   23  ( 8 ),  503  –  507 .  

 

 
 



 If  you are like most academics and scholars, you start your day with a cup of coffee. 
This task ( Land  &  Hayhoe, 2001 ), among other things, requires you to locate the 
correct cupboard in the kitchen, open it, search for the can of coffee grounds among 
the surrounding clutter, and operate the coffee brewer by fi nding and pushing the 
correct buttons on the coffee maker. Depending on your view and current goal, the 
kitchen with its furniture and appliances, the cupboard full of miscellaneous objects, 
and the coffee brewer with its all too many buttons can be thought of as scenes in 
which you are searching for and recognizing a particular target object among other 
irrelevant and distracting ones. 

 Everyone knows what a scene is, to twist a famous quote by William James, but the 
concept is nonetheless surprisingly hard to defi ne. When talking about scenes, it is 
often implied that they depict real-world environments consisting of a background 
and several objects in a particular spatial arrangement ( Henderson  &  Hollingworth, 
1999 ). Whereas there exists a long list of reports on human scene perception in the 
aforementioned sense, visual stimuli traditionally used in neurophysiology are rather 
sparse and artifi cial in comparison. When reviewing some of the literature on the 
neurophysiology of searching through and recognizing objects in visual scenes, we 
have therefore stretched the scene concept to include not only naturalistic environ-
ments but also simplifi ed arrays of two or more visual elements. 

 The evidence presented here will be drawn mostly, although not exclusively, from 
the visual system of the macaque, one of the animal models most anatomically 
and functionally comparable with the human visual system (for a detailed overview 
of the macaque visual system, see, e.g.,  Van Essen, Anderson,  &  Felleman, 1992 ). 
Monkeys rarely search for coffee, but they nonetheless are often given the task of 
searching for particular things in visual scenes in order to gain other liquid rewards, 
such as drops of juice. Even though this can be considered rather unusual behavior, 
macaques in the wild take on many analogous tasks in their everyday environments, 
such as foraging for food and fi nding shelter, that require fi nding objects of interest 
in a complex scene. 
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 Here, we review some of the neural processing that a scene image likely undergoes 
as it passes through the visual system, leading to the identifi cation of an object in the 
scene. Our attempt, no doubt, is oversimplifi ed; we focus on only particular processing 
steps and brain regions, but in reality the steps taken are likely to be both stimulus 
and task dependent and might involve several iterations where information is sent 
back and forth between low- and high-level visual regions (see, e.g.,  Hochstein  &  
Ahissar, 2002 ;  Peters  &  Payne, 1993 ;  Tsotsos, 2008 ). Much is yet to be learned about 
the electrophysiology of searching for and recognizing objects in scenes. 

 Researchers often go to great lengths to eliminate any temporal and spatial correla-
tions in the stimuli that they use in experiments because they do not want participants 
to be able to guess what they are going to be shown based either on what they just 
saw or the surrounding visual elements. The natural viewing of scenes, on the other 
hand, imposes all sorts of contingencies in both space and time ( Attneave, 1954 ;  Field, 
1987 ;  Kersten, 1987 ). If  you are at the beach now, you are going to be at the beach 
one second later as well (probably even seeing almost the same view as before), and 
one grain of sand is most likely going to be next to another grain of sand. Change 
in the real world is slow. Similarly, the spectrum of naturalistic visual input is not 
white — that is, not all frequencies are equally presented in natural scenes; low tempo-
ral and spatial frequencies are more abundant than high frequencies ( Dong  &  Atick, 
1995 ;  Field, 1987 ). 

 What this means is that natural scenes are full of redundancies. It might not be a 
particularly good strategy to use a large part of your computational resources to 
essentially code for the same information over and over again ( Attneave, 1954 ;  Simon-
celli  &  Olshausen, 2001 ). Computer scientists know this and have developed methods 
that make use of the correlational structure of images to compress them into a more 
easily transferable format. The primate visual system, apparently, also makes use of 
such contingencies to more effi ciently code visual information (but see, e.g.,  Barlow, 
2001 , for a critical look at the idea that redundancy in natural viewing is used mainly 
for compressive coding in perceptual systems). 

 This apparently happens before light even enters the eye. Primates have eyes that 
can move and thus possess the ability to infl uence their own visual input. The eyes 
are never completely still, even when an attempt is made to keep them fi xated at a 
single spot ( Ratliff   &  Riggs, 1950 ). Computational modeling work indicates that such 
fi xational instability changes the statistics of neuronal fi ring in the retina, where the 
responses of retinal ganglion cells with nonoverlapping receptive fi elds become uncor-
related when images with spectral densities like those of natural images are fi xated 
( Rucci, 2008 ). Most retinal ganglion cells project to the lateral geniculate nucleus 
(LGN), a subcortical structure in the thalamus, which then projects mainly to the 
primary visual cortex (V1) (see   fi gure 5.1, plate 10 ). Electrophysiological recordings 
have shown that the linear fi ltering properties of neurons in the LGN also lead to a 
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similar temporal decorrelation or whitening of visual information in natural scenes 
( Dan, Atick,  &  Reid, 1996 ).    

 The whitening of the signal reduces redundancies found in real-world scenes, but 
it might also have an even more important effect. Because low temporal and spatial 
frequencies are abundant in natural scenes, the whitening of this input effectively 
emphasizes the throughput of high-frequency information — fast changes — while 
deemphasizing low-frequency information — slow changes. A quick change over time 
can often signify the appearance of a new object in the scene, and a quick change 
over space is quite likely to happen at object boundaries. Visual information from a 
scene that reaches the primary visual cortex is therefore already preprocessed in a 

 Figure 5.1 (plate 10) 
 The macaque brain. Neurons in the primary visual cortex (V1) were mainly thought to detect simple 
features, such as lines of particular orientations, within a very small part of visual space but are now 
known to integrate visual information from a much larger area ( Allman et al., 1985 ;  Hubel  &  Wiesel, 
1959 ,  1968 ). Visual information originating from V1 reaches both a frontoparietal network, including 
the lateral intraparietal area (LIP) and the frontal eye fields (FEF), and the ventral visual stream, 
including the fourth visual area (V4) and the inferior temporal cortex (IT). Cells in LIP can respond to 
visual information, have memory-related responses, respond before, during, or after a saccadic eye 
movement, or have complex combinations of these types of responses ( Barash, Bracewell, Fogassi, 
Gnadt,  &  Andersen, 1991 ). These neurons have a spatial receptive or response field, so in order to evoke 
a neural response, the thing that is visually presented, attended, looked at, or memorized, needs to have 
been within a particular spatial location ( Barash et al., 1991 ;  Blatt et al., 1990 ). Similar to LIP, the FEF 
also contain neurons with visual responses, oculomotor responses, and a combination of the two ( Bruce 
 &  Goldberg, 1985 ). V4 and especially IT likely represent the final output stages of object processing in 
the primate brain. Unlike the frontoparietal system, IT neurons often have very large receptive fields 
( Gross, Bender,  &  Rocha-Miranda, 1969 ; but see  Rolls et al., 2003 ). These cells might therefore not carry 
as much information on the location of an object, but instead they selectively respond to the complex 
features of objects of interest ( Logothetis  &  Sheinberg, 1996 ). 
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manner that accentuates features that are important for fi nding and segmenting 
objects in scenes. 

 It is good to keep in mind that just because a brain region, such as the LGN, appears 
to behave differently under natural conditions than when artifi cial reduced visual 
stimuli are used, that does not necessarily indicate that it  “ knows ”  anything about the 
naturalness of its visual inputs. Even in the primary visual cortex (V1), local fi eld 
potentials and multiunit fi ring rates are not detectably different for natural movies 
and noise stimuli with a frequency distribution similar to that of natural scenes 
( Kayser, Salazar,  &  Konig, 2003 ). Neural activity in V1 for simple stimuli such as bars 
and gratings, on the other hand, signifi cantly differs from several more complex or 
naturalistic inputs such as natural movies ( Kayser et al., 2003 ), pink noise ( Kayser 
et al., 2003 ), random textures ( Lehky, Sejnowski,  &  Desimone, 1992 ), and three-
dimensional surfaces ( Lehky et al., 1992 ). The V1 might therefore not be adapted to 
processing natural scenes as such but to visual input with temporal and spatial statis-
tics or complexities similar to those of real-world environments. 

 One aspect of real-world environments to which V1 might be adapted is that natural 
input is not confi ned to a small spot, as it often is in visual experiments, but encom-
passes the entire visual fi eld. Natural scenes are therefore bound to stimulate both the 
classical receptive fi eld of a V1 neuron, a small region within the visual fi eld where 
stimuli can directly drive the neuron, and the nonclassical receptive fi eld, a region that 
does not evoke a neural response when stimulated alone but can selectively modulate 
the neuron ’ s responses to other stimuli within the classical receptive fi eld ( Allman, 
Miezin,  &  McGuinness, 1985 ). 

 Under such more naturalistic viewing conditions the nonlinear interactions between 
the classical and nonclassical receptive fi elds of V1 neurons not only produce a sparse 
code that is energy effi cient and minimizes redundancy ( Vinje  &  Gallant, 2000 ) but 
can also be sensitive to scene structure such as whether the classical and nonclassical 
receptive fi elds are part of a continuous contour ( Guo, Robertson, Mahmoodi,  &  
Young, 2005 ). Such interactions are thought to facilitate contour integration ( Guo et 
al., 2005 ), which again is important for segmenting objects from the background and 
from each other. Contours also serve as cues for visual object recognition, as attested 
by the fact that people can recognize line drawings of objects with relative ease. 

 In general, neurons in V1 might respond to the greatest extent when the visual 
features within the classical and nonclassical receptive fi elds are dissimilar, such as 
when there are orthogonal orientations inside and outside the classical receptive fi eld 
( Guo et al., 2005 ;  Knierim  &  van Essen, 1992 ;  Sillito, Grieve, Jones, Cudeiro,  &  Davis, 
1995 ). Again, this would emphasize the throughput of fast changes in visual scenes 
more than slow changes. Such contrast between visual features, like a yellow beach 
ball in a sea of blue, is salient to a human observer and an important cue for fi nding 
objects in scenes. We turn next to higher-level brain regions that might use information 
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from V1 about feature contrast as well as other relevant data such as reward history 
or the goal of the current task to prioritize spatial locations in a visual scene. This 
task is thought to be accomplished mainly by regions within the so-called dorsal visual 
stream and its interconnectivity with areas of frontal cortex involved in the allocation 
of attention. 

 The classic characterization of the primate visual system includes a broad segrega-
tion into two main processing streams, both of which get input from the V1. (For a 
detailed review on parallel visual processing, see  Goodale  &  Milner, 1992 ;  Nassi  &  
Callaway, 2009 ;  Ungerleider  &  Haxby, 1994 ;  Ungerleider  &  Mishkin, 1982. ) The 
ventral ( “ what ” ) stream is theorized to accomplish the recognition of complex 
forms and, ultimately, objects, whereas the dorsal ( “ where ”  or  “ how ” ) stream has been 
implicated in the control of visual attention and spatial guidance of appropriate 
actions. These streams are at least partially anatomically and functionally separable, 
but they can be viewed as forming a widely interconnected system that guides the eyes 
and attention to visually salient or otherwise potentially important features/objects 
that then can be further scrutinized, recognized, and categorized. 

 As the dorsal stream projecting from V1 enters the parietal lobe, information is 
integrated into a frontoparietal network including the lateral intraparietal area (LIP) 
in the intraparietal sulcus and the frontal eye fi elds (FEF) in the prearcuate sulcus of 
the prefrontal cortex (  fi gure 5.1, plate 10 ). These two regions, as well as a subcortical 
midbrain structure called the superior colliculus (SC), have been the focus of most 
research on the neuroanatomical substrates of visual search because each of them is 
thought to participate in guiding the eyes and attention to important objects or loca-
tions within visual scenes ( Baluch  &  Itti, 2011 ;  Bisley  &  Goldberg, 2010 ;  Fecteau  &  
Munoz, 2006 ). 

 One conceptual framework for this network of structures is that together they form 
a priority map of visual space in which each location in a scene is weighed or priori-
tized according to both its visual salience and probable task relevance ( Baluch  &  Itti, 
2011 ;  Bisley  &  Goldberg, 2010 ;  Fecteau  &  Munoz, 2006 ;  Goldberg, Bisley, Powell,  &  
Gottlieb, 2006 ;  Itti  &  Koch, 2001 ;  Thompson  &  Bichot, 2005 ). A saliency map, 
inspired by the psychological work of Treisman and Gelade (1980), was originally 
proposed as a computational model that uses the distribution of features such as 
color, brightness, and orientation to make a single representation of visual conspicuity 
( Itti  &  Koch, 2000; Itti, Koch,  &  Niebur, 1998; Wolfe, 1994 ). 

 As an example of this phenomenon, consider the results of Thomas and Par é  
( 2007 ). In that study monkeys were required to make an eye movement to an oddball 
stimulus (a red target in an array of green distracters or a green target among red 
distracters). Cells in the lateral intraparietal area initially responded indiscriminately 
to a target and a distracter (i.e., whether the object was green or red, or whether it 
was task relevant or irrelevant), but the response of cells shifted to signal whether or 
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not the oddball target was in or out of their receptive fi elds. Thus, neural activity in 
the lateral intraparietal area might gradually develop to represent the visual priority 
of the location occupied by an object in a scene. Similar effects can be observed 
in the frontal eye fi elds and the superior colliculus (for reviews on these regions 
acting as priority maps, see  Baluch  &  Itti, 2011 ;  Bisley  &  Goldberg, 2010 ;  Fecteau  &  
Munoz, 2006 ). 

 It is a good guess that something that stands out from the background — because 
it is brighter, darker, of a different color, or differently oriented than the surrounding 
elements — is a candidate object that might need to be recognized and is thus worth 
scrutinizing further. However, it is also likely that in a complex environment, dozens 
of relatively unimportant objects will stand out from the background while a single 
object (with certain features) is the only behaviorally relevant object. If  you are 
looking for something in particular, such as a red parasol in our hypothetical beach 
scene, your visual system can prioritize this type of object over objects with different 
features (green things, square things, etc.) because they are not immediately relevant 
(see, e.g.,  Wolfe, 2007 ;  Wolfe  &  Horowitz, 2004 ). This integration of top-down infor-
mation with bottom-up saliency likely also happens in the aforementioned brain 
regions. Because a priority map weights locations based on such information, it can, 
at least theoretically, be used to select potential objects to which attention and eye 
gaze should be directed. 

 For an example of visual selection after attentional prioritization, let us consider 
the frontal eye fi elds. The frontal eye fi elds bear this name because electrical micro-
stimulation within the region readily evokes saccadic eye movements, the endpoints 
of which depend on which subregion within the frontal eye fi elds is stimulated ( Bruce, 
Goldberg, Bushnell,  &  Stanton, 1985 ). When the frontal eye fi elds are stimulated at 
a subthreshold current level — too low to cause eye movements — this modulated activ-
ity can nonetheless have a measurable effect on behavior.  Moore and Fallah (2004)  
trained monkeys to detect a change in a small peripheral target in the presence of a 
continuously fl ashing distracting stimulus. The researchers then stimulated a subre-
gion of the monkeys ’  frontal eye fi elds that at higher current levels would have evoked 
saccades to the target location. When this was done at the time of the target change, 
it improved the monkeys ’  target detection to a degree comparable with removing the 
distracter altogether. The frontal eye fi elds therefore causally contribute to the distri-
bution of visuospatial attention. 

 A single target and a single distracter make a poor scene, if  such a display can be 
considered a scene at all. It is nonetheless likely that activity in the frontal eye fi elds 
and the lateral intraparietal area aids target detection in complex and cluttered scenes 
by giving priority and guiding attention to the location of a potentially important 
object. Attending to a location means, among other things, that fi ner visual details 
can be sampled from an object that occupies that location ( Montagna, Pestilli,  &  
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Carrasco, 2009 ), details that might be relevant for their successful recognition. Further, 
it is likely that prioritizing a location directly affects the selection of visual features 
or candidate objects in the ventral visual pathway. In cluttered scenes multiple visual 
objects might compete for detailed representation in the ventral visual pathway. 
Signals from the frontal eye fi elds and the lateral intraparietal area could bias this 
competition ( Desimone  &  Duncan, 1995 ) in favor of an object that occupies a high-
priority location. 

 In order for this to be plausible, brain areas that implement a priority map must 
somehow communicate with ventral regions that are known to be important for object 
recognition. In other words, attentional selection should affect neural responses to 
objects in the ventral stream, and the prioritizing of the locations of candidate objects 
should precede object recognition. 

 There are now quite a lot of data that confi rm that regions such as the lateral 
intraparietal area and the frontal eye fi eld have reciprocal structural connections to 
some regions in the ventral visual stream, such as V4 and parts of the inferior tem-
poral cortex (see   fi gure 5.1, plate 10 ;  Blatt, Andersen,  &  Stoner, 1990 ;  Distler, Bouss-
aoud, Desimone,  &  Ungerleider, 1993 ;  Lewis  &  Van Essen, 2000 ;  Schall, Morel, King, 
 &  Bullier, 1995 ;  Stanton, Bruce,  &  Goldberg, 1995 ;  Webster, Bachevalier,  &  Unger-
leider, 1994 ) that respond selectively to moderately or highly complex visual features 
or even whole objects and are thought important for visual object recognition ( Logo-
thetis  &  Sheinberg, 1996 ). Because these connections exist, the lateral intraparietal 
area and the frontal eye fi elds must, at least under some circumstances, exchange 
information with regions in the ventral visual stream. It is plausible that this happens 
when the situation requires attentional selection. 

 Attentional selection strongly modulates object responses in the ventral stream. 
This is demonstrated by the work of  Chelazzi and colleagues (1993 ;  1998 ;  2001 ), who 
presented monkeys with visual search displays containing two or more objects while 
they recorded neural activity in lower-level (V4) and higher-level (inferior temporal 
cortex) regions of the ventral visual stream (see also, e.g.,  Moran  &  Desimone, 1985 ; 
 Reynolds, Chelazzi,  &  Desimone, 1999 ). One of the objects was known to elicit a 
strong response from the neuron being recorded from (an effective stimulus), whereas 
another one of the objects tended to elicit a poor or even no response from the same 
neuron (an ineffective stimulus); note that each neuron can have a unique stimulus 
preference, so an object that effectively drives one neuron is not necessarily an effective 
stimulus for another neuron. The monkey was shown one of the two objects, had 
to keep it in memory, and was then required to fi nd it again in a following stimulus 
array or scene. 

 When both objects were present in the scene, the activity of the neuron nonetheless 
changed to refl ect which object the monkey had to attend to, so its activity tended to 
be greater if  the searched-for target was the effective stimulus, and neural activity was 
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lower if  the target was the ineffective stimulus. This observation supports the idea that 
visual attention biases the responses of these object-selective neurons to process 
mainly one object even when many other objects are present in the neurons ’  receptive 
fi elds ( Desimone  &  Duncan, 1995 ;  Reynolds et al., 1999 ), a situation that often arises 
in real-world visual scenes. 

 The supposition is that biasing signals from spatial priority maps (in the lateral 
intraparietal area and the frontal eye fi elds) guide the initial selection of the object 
that then gets primary representation in brain regions that partake in object recogni-
tion (the ventral visual stream). In order for this to be feasible it is quite important 
that these priority maps can be computed quickly so that object processing and rec-
ognition will be little delayed, even in cluttered scenes with many objects. Electrophysi-
ological work has indeed shown that visual response latency of neurons in the lateral 
intraparietal area ( Tanaka, Nishida, Aso,  &  Ogawa, 2013 ) and the frontal eye fi elds 
( Schmolesky et al., 1998 ) can be very short (e.g., frontal eye fi elds ~50 ms to ~100 ms), 
whereas latencies in several areas within the ventral stream tend to be longer (e.g., V4 
~70 ms to ~160 ms, TE1 80 ms to 200 ms) ( Baylis, Rolls,  &  Leonard, 1987 ;  Kiani, 
Esteky,  &  Tanaka, 2005 ;  Schmolesky et al., 1998 ;  Tamura  &  Tanaka, 2001 ). 

 The response latency of neurons associated with object recognition or spatial atten-
tion is nonetheless somewhat variable and might depend on the task, the stimuli being 
shown (see, e.g.,  Tanaka et al., 2013 ), and can even vary from trial to trial. In addi-
tion, the fact that one event precedes another does not imply that the former has a 
causal effect on the latter. Dual-area studies, in which neural activity is either simul-
taneously recorded from two brain regions or manipulated in one region but recorded 
in another, have the potential of eliminating these concerns. These challenging experi-
ments can answer critical questions related to the timing of visual selection processes 
and more closely map the interaction between different processing systems. 

  Armstrong, Fitzgerald, and Moore (2006)  electrically stimulated neurons in the 
frontal eye fi elds at current levels not strong enough to evoke a saccade but nonethe-
less known to affect the distribution of covert attention ( Moore  &  Fallah, 2004 ). At 
the same time, they recorded neural activity in the ventral stream region V4. When 
they stimulated in this way, Armstrong and colleagues were able to enhance the V4 
representation of an object if  it was located at the endpoint of the saccade that the 
stimulation would have evoked at higher current levels. This was true even when 
another object was present in the scene and also occupied a nearby location within a 
V4 neuron ’ s receptive fi eld, as had previously been demonstrated by manipulating the 
distribution of attention ( Chelazzi et al., 1993, 1998, 2001 ;  Moran  &  Desimone, 1985 ; 
 Reynolds et al., 1999 ). This indicates that neural activity in the frontal eye fi elds can 
have a causal effect on visual representations in the ventral stream and might work 
by prioritizing object processing in a particular location in the visual fi eld. 

 Despite the apparent causality between the stimulation of the frontal eye fi elds 
and ventral stream processing, it was still unclear if  activity in the frontal eye fi elds 
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necessarily preceded that of the ventral stream during active visual search through 
more complex multiobject scenes. By simultaneously recording from the frontal eye 
fi elds and the inferior temporal cortex,  Monosov, Sheinberg, and Thompson (2010)  
attempted to distinguish between an early selection process, in which spatial selection 
precedes object identifi cation, and a late selection process, in which object identifi ca-
tion precedes spatial selection. 

 In their experiment, monkeys were rewarded for identifying a target object pre-
sented with an array of several distracter objects while the monkey maintained central 
fi xation. The target on each trial was known to be either effective or ineffective at 
driving the responses of an inferior temporal neuron being recorded from. The 
monkeys were not allowed to look directly to any of the objects, but the target loca-
tion was presumably assigned a high priority, leading to a covert attentional shift. In 
this task information on visuospatial selection related to target location could be read 
out from neurons in the frontal eye fi elds before information about object identity 
useful for recognition was available in inferior temporal neurons. 

 These results are in agreement with those of  Zhou and Desimone (2011),  who 
simultaneously recorded from both the frontal eye fi elds and V4. In their task, monkeys 
were presented with a scene that contained a single searched-for target object and 
several distracter objects, some of which matched the target in color or shape. Neurons 
in both the frontal eye fi elds and V4 tended to respond more to objects that shared 
features with the target object (and were thus potentially task-relevant), but this 
feature-based attentional enhancement developed faster in the frontal eye fi elds than 
in V4. Feature-based attentional effects in V4 could therefore be caused by top-down 
selection from the frontal eye fi elds. 

 What about the lateral intraparietal area?  Buschman and Miller (2007)  recorded 
the activity of neurons in the lateral intraparietal area and the frontal eye fi elds while 
monkeys searched for a target within a visual scene. In some cases the target was not 
particularly conspicuous because it shared some features with the distracters (similar 
to the experiment by  Zhou  &  Desimone, 2011 ); the monkeys therefore needed to fi nd 
and identify the target based on its remembered appearance. In other cases the target 
was of a color different from that of the distracters and was therefore almost imme-
diately noticeable based on bottom-up feature contrast.  Buschman and Miller (2007)  
found that, in the former case, neurons of the frontal eye fi elds signaled the location 
of the target at an earlier time point than neurons in the lateral intraparietal area. In 
the latter case, when the target was visually salient, neurons in the lateral intraparietal 
area  “ found ”  the target faster than neurons in the frontal eye fi elds. 

 The results of the experiments described above are consistent with the idea that 
visual recognition mechanisms in the ventral stream are biased toward certain objects 
in visual scenes because they occupy a location that has already been assigned a high 
priority by regions such as the lateral intraparietal area and the frontal eye fi elds. The 
two regions might both implement a priority map, and these priority maps might very 
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well update each other through the strong connections that exist between these corti-
cal areas ( Ferraina, Pare,  &  Wurtz, 2002 ;  Lewis  &  Van Essen, 2000 ;  Stanton et al., 
1995 ). They might nonetheless also divide some of their responsibilities, so that prior-
ity signals based on bottom-up saliency could possibly arrive fi rst to the ventral stream 
from the lateral intraparietal area, whereas priority based on task-relevant yet incon-
spicuous features might initially be sent from the frontal eye fi elds. If  objects compete 
for representation in the ventral visual stream when complex multiobject scenes are 
viewed, then weighing them by their assigned priority can bias this competition in 
favor of those likely to be behaviorally important. 

 So far we have talked about how locations of objects might be prioritized so that 
neural machinery in the ventral stream is mostly used to process objects that are 
deemed most important at any given time. But how does the ventral stream actually 
behave when objects need to be found and recognized in realistic scenes? 

 When objects are presented alone, selectivity of inferior temporal neurons is remark-
ably insensitive to retinal location ( Rolls, Aggelopoulos,  &  Zheng, 2003 ). Individual 
neurons, however, do tend to respond to several different objects, so if  these objects 
were all presented to such a neuron at once, the resulting neural activity might be 
expected to end in a total cacophony. 

 This, however, does not actually seem to occur.  Rolls and colleagues (2003)  visually 
presented an effective object (known to drive the neuron) at various eccentricities away 
from the center of the visual fi eld. Inferior temporal neurons tended to respond 
robustly to the object when it was shown at the center of gaze, regardless of whether 
it was presented alone on a blank background or as part of a scene. The neural fi ring 
rate, however, sharply fell off  with increased object eccentricity in the complex scene 
but stayed relatively high even when the effective object was shown in the periphery 
of the visual fi eld on a blank background. 

 The interpretation of  Rolls and colleagues (2003)  is that receptive fi elds of inferior 
temporal neurons shrink in complex natural scenes and that neural output is weighted 
toward objects closest to the fovea. However, the center of gaze often, but not always, 
coincides with the center of visuospatial attention. Although a central location might 
always be given a relatively high attentional priority, the priority given to a single 
object on a blank background, even a peripheral one, is also likely to be high because 
there are no other potential objects that compete with it. It is quite likely that a single 
object on a blank background will immediately attract the monkey ’ s attention, and 
under most normal circumstances, the object would also become the target of the 
monkey ’ s next saccade. In a complex scene the priority given to the object in question 
is likely to be comparatively lower because multiple other stimuli are present and are 
also given some weight. 

 Another possible way of thinking about this phenomenon, therefore, is that inferior 
temporal neurons process mainly the object that is at the center of attention. This is 
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in alignment with the results of  Sheinberg and Logothetis (2001),  who found that 
inferior temporal neurons represent an object in a complex scene before it is actually 
fi xated, as long as it is the target of the next fi xation and has thus presumably become 
the center of attention. 

  Sheinberg and Logothetis (2001)  recorded from inferior temporal neurons while 
monkeys searched for and identifi ed objects in a complex visual scene (  fi gure 5.2A, 
plate 11 ). One of dozens of possible target objects was either presented alone on a 
blank background or blended into a complex realistic scene. In the latter case the 
monkey had to make several saccades within the scene before he would fi nd and 
recognize the target, just as one would have to do when searching for an object in a 
cluttered real-world environment. 

 Under these conditions, Sheinberg and Logothetis (2001) found that responses of 
inferior temporal neurons appeared to be linked to the monkeys ’  recognition 
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 Figure 5.2 (plate 11) 
 Paradigms for studying visual search in neurophysiological studies. The range of tasks used to 
understand the physiological contributions of particular neural areas involved in visual search 
constitutes a large class of related, but distinct, experimental paradigms. Many of these focus on the 
ability to select a region of space in the context of a simple environment: the subject is presented with 
arrays of simple stimuli, such as colored patches or lines in various orientations, that form the basis for 
either pop-out or conjunctive search displays ( Treisman  &  Gelade, 1980 ). Here, the recognition of an 
object is not a critical component of the task. This broad class of experimental studies has primarily 
investigated the contributions of the frontoparietal network with the objective of understanding the 
physiological process of attentional selection. Some other tasks are designed to investigate object 
recognition in a scene with other distracting objects or complex backgrounds. These tasks can be used to 
investigate either the dorsal or ventral visual streams and, sometimes, directly look at the interaction of 
these two pathways. The visual search for a realistic object embedded within a natural scene is very little 
used because of the complexities involved in teaching such a task to nonhuman primates and the 
difficulty of analyzing neural responses from an animal engaged in an active search through a complex 
scene. Two examples of this kind are depicted. (A)  Sheinberg and Logothetis (2001)  trained monkeys to 
search for and then categorize objects embedded in real-world scenes. Each category of possible objects 
was arbitrarily assigned to either a left or a right lever press (e.g., pull the left lever whenever you find a 
monkey in the scene). A saccadic scan path from a single trial is shown; the search target in this case 
was an image of a monkey. (B) In the experiment by  Mruczek and Sheinberg (2007)  monkeys had 
to search for any one of a number of possible target objects among either familiar or unfamiliar 
task-irrelevant objects. Once the target object was found, the monkey pushed one of two buttons, only 
one of which had been arbitrarily deemed to be the correct choice for that particular object. 
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performance, even in the complex scenes. They also saw that the object selectivity 
of inferior temporal neurons was similar, regardless of whether a target object was 
presented alone or in a complex scene. In both cases the neurons often responded 
vigorously to a few objects and almost not at all to many others, and the objects 
that effectively drove the neurons when presented on the blank background also 
tended to be the preferred objects in the complex scene. This object selectivity did 
not unfold until just before the monkey made a saccadic eye movement to the target 
object in a scene, presumably because this was the time when the monkey noticed 
that the object was there and could recognize it. Once the monkeys seemingly 
attended to the target ’ s location, these neurons behaved almost as if  the rest of the 
complex environment had been fi ltered out. In the complex scene condition it was 
not unusual for the eyes to be within a few degrees of an effective target object 
without eliciting a response from a neuron if  the monkey ’ s search behavior indicated 
that it was not actually noticed.    

 Effectively fi ltering out several salient objects that nonetheless happen to be irrel-
evant for one ’ s current goal might require some learning. Visual object representations 
in the inferior temporal cortex do appear to be plastic and develop as a function of 
experience with particular objects. In this region neural representations for familiar 
objects appear to be more selective than neural representations for unfamiliar objects 
( Freedman, Riesenhuber, Poggio,  &  Miller, 2006 ;  Kobatake, Wang,  &  Tanaka, 1998 ; 
 Woloszyn  &  Sheinberg, 2012 ), which is likely related to the increased ability to recog-
nize objects that one has encountered many times before. 

 However, these studies were conducted by presenting isolated objects at fi xation. In 
real-world scenes a task-relevant object often needs to be found and recognized even 
in the presence of several unimportant objects that are best left ignored, such as when 
you need to fi nd the key to your house among your car key, your offi ce key, and the 
key to your garage. Familiarity with such irrelevant and distracting objects appears 
to promote more effi cient visual search through an environment. For example, 
 Mruczek and Sheinberg (2005)  found that people search more effectively through 
scenes with familiar distracting objects than through scenes with distracting objects 
that are unfamiliar to them. 

 Mruczek and Sheinberg ( 2007 ) then tested whether such familiarity with the con-
tents of a scene affected object processing in the inferior temporal cortex. They trained 
monkeys to search for a particular object, effective at driving neural responses, hidden 
among either familiar objects (which had been seen hundreds of times) or novel 
objects (which were new for each particular testing session; see   fi gure 5.2B, plate 11 ). 
 Mruczek and Sheinberg (2007)  found that effective target objects could be detected 
by individual inferior temporal cortical neurons at greater eccentricities when the 
distracting objects were familiar than when they were unfamiliar. Furthermore, this 
enlarged functional visual receptive fi eld was predictive of the monkeys ’  performance, 
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which showed greater effi ciency at fi nding objects among familiar distracters com-
pared to novel ones, just as had been shown for human observers ( Mruczek  &  
Sheinberg, 2005 ). 

 Interestingly, the largest differences in fi ring rate for the target object in the presence 
of novel and familiar distracting objects were found when the target was shown in 
the periphery, not in the center of the visual fi eld. This is reminiscent of the results 
by  Rolls et al. (2003),  who found that objects in the visual periphery were less effective 
for driving the responses of inferior temporal neurons when presented in a scene than 
when presented alone, whereas the difference between object responses with and 
without a scenic background was not as apparent when the object was at the center 
of gaze. It is possible that top-down priority signals are used to down-weight familiar 
distracters so that a peripheral target object becomes more noticeable, attracts more 
attention, and is thus more likely to be processed by inferior temporal neurons. A 
relevant object in a familiar scene might be treated by inferior temporal neurons 
almost as if  the object were the only thing present. 

 The inferior temporal cortex likely plays a role in object recognition in visual scenes, 
but it might not always be crucial for this task.  Meyers et al. (2010)  recorded neural 
activity in the anterior part of the inferior temporal cortex while monkeys viewed 
natural scenes, some of which contained animals and some that did not.  Meyers and 
colleagues (2010)  then looked to see if  the neural data contained enough information 
to judge whether the monkey had been looking at a scene with or without an animal. 
Although decoding accuracy was above what would have been expected by mere 
chance, the information useful for this classifi cation appeared quite late in the responses 
of inferior temporal neurons (around 125 ms after the visual onset of a scene). When 
given the choice of two scenes only one of which contains an animal, both people 
( Kirchner  &  Thorpe, 2006 ) and monkeys ( Girard, Jouffrais,  &  Kirchner, 2008 ) can 
reliably make a saccade to the animal scene before any information about object 
category is present in inferior temporal neural responses to similar scenes. Such rapid 
object recognition in natural scenes seems to rely on regions other than the inferior 
temporal cortex. 

 This kind of object recognition in visual scenes might not even depend on selective 
attention. Current theories of visual search ( Wolfe, Vo, Evans,  &  Greene, 2011 ) have 
now begun to acknowledge that searching through scenes might involve both a selec-
tive and a nonselective path. Whereas the former requires the selection of individual 
objects, the latter makes use of summary statistics from the whole scene. This global 
information might in some cases suffi ce for simple categorization, such as distinguish-
ing between an animal and a nonanimal and could provide the basis for a scene-based 
guidance of visual search. 

 Last, we must consider the identifi cation and processing of spatial contexts them-
selves.  Kornblith and colleagues (2013)  recently reported electrophysiological data 
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from two newly identifi ed ventral stream areas termed the lateral place patch (LPP) 
and the medial place patch (MPP), a possible macaque homologue to the human 
parahippocampal place area (PPA). These scene-processing regions contain cells that 
are strongly responsive not just to individual objects (as are neurons in the inferior 
temporal cortex) or the spatial distribution of object salience or priority (as are 
neurons in the frontoparietal attention systems) but instead respond to the environ-
mental structure and texture of both familiar and unfamiliar scenes. Stimulation 
studies done in concert with the neural recordings suggest that these regions lie within 
a neural network that feeds back to other regions that process visual information, 
such as V4. Interestingly, these scene-based responses were observed even while the 
monkey engaged in a passive fi xation task, suggesting that active search or exploration 
through the environment was not necessary to activate brain regions that process scene 
stimuli. Performing recordings in these scene-selective areas while animals engage in 
active behavioral tasks may further elucidate the contribution of this processing to 
search and recognition. 

 This chapter has attempted to follow a scene as it passes through the visual hierar-
chy until an object in the scene is found and successfully recognized. We have focused 
on two divergent yet highly interactive neural systems, a frontoparietal network and 
the ventral visual stream, one of which allocates and directs visual attention to impor-
tant features of the environment while the other processes and identifi es the objects 
in that environment. This division of labor by the two systems is supported by the 
work reviewed here as well as by behavioral work that indicates that spatial selection 
and target identifi cation are separable parts of fi nding objects in visual scenes 
( Ghorashi, Enns, Klein,  &  Di Lollo, 2010 ). 

 Although some progress has recently been made in understanding how the visual 
system fi nds and identifi es objects in complex environments, several aspects of this 
work make it diffi cult to generalize from these experimental results to the more human 
undertaking of  “ scene processing. ”  

 First, because of the diffi culty of analyzing data from experiments with suffi ciently 
complex stimuli, a large majority of electrophysiological work makes use of simplifi ed 
stimuli that are easier to control but are quite impoverished in comparison to the 
richness of visual input we encounter in our everyday lives. Because neural responses 
can be highly nonlinear, it is almost impossible to know how well experimental results 
derived from highly artifi cial conditions translate to the types of environments that 
the visual system actually evolved, developed, and learned to process. 

 Second, although most human observers no doubt recognize a high-resolution 
photograph of a  “ beach scene ”  as a real-world place with three-dimensional structure 
and individuated objects, and as a setting for particular memories consistent 
with individual experiences, the animals studied in the research lab arguably lack 
the former of these abilities and defi nitely lack the latter. How this translation 
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of a two-dimensional photographic representation into a three-dimensional environ-
ment with shared experiences changes the outcome or process of neural activity is 
diffi cult to say. 

 Last, even pictures of real-world scenes are in many cases a poor approximation of 
the genuine thing because the real world is ever changing. When searching for a 
friendly face while walking through a crowd of people, we are not only moving within 
the environment but the environment is also moving, in chaotic ways, around us. How 
the visual system keeps track of contexts with many moving objects and still manages 
to search in an effi cient and effective manner — and how what has been discovered 
about searching for and recognizing objects in static scenes translates into dynamic 
scenes — is for the most part still an open question. It is also the case that we often 
search in service of some larger behavioral goal (e.g.,  “ make a cup of coffee ” ), but it 
is rarer to search per se with no larger goal in mind (e.g.,  “ locate the sugar on the 
shelf  ” ). How these priority maps dynamically change and update to refl ect the nature 
of our shifting behavioral goals is still challenging to explain. 

 These open issues deal mainly with the interpretative diffi culty in studying the very 
human experience of  “ scene perception ”  in nonhuman animals. In some ways a com-
parative psychology and neurobiology of scene perception will always suffer from the 
diffi culty of translating naturalistic vision into the laboratory. But despite this issue, 
the last decade has seen enormous progress in understanding how the brain makes 
sense of complex environments and the objects within them and has seen the discovery 
of multiple homologous human and animal pathways. 

 Thus, by designing experiments that require animals to search through complex 
environments, we can better understand how visual processing occurs through the 
dynamic interaction between multiple brain regions within the more naturalistic 
context of a visual scene. 
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 What Is a Scene? 

 If  you were to look out my offi ce window at this moment, you would see a campus 
vista that includes a number of trees, a few academic buildings, and a small green 
pond. Turning your gaze the other direction, you would see a room with a desk, a 
bookshelf, a rug, and a couch. Although the objects are of interest in both cases, what 
you see in each view is more than just a collection of disconnected objects — it is a 
coherent entity that we colloquially label a  “ scene. ”  In this chapter I describe the 
neural systems involved in the perception and recognition of scenes. I focus in par-
ticular on the parahippocampal place area (PPA), a brain region that plays a central 
role in scene processing, emphasizing the many new studies that have expanded our 
understanding of its function in recent years. 

 Let me fi rst take a moment to defi ne some terms. By a  “ scene ”  I mean a section of 
a real-world environment (or an artifi cial equivalent) that typically includes both 
foreground objects and fi xed background elements (such as walls and a ground plane) 
and that can be ascertained in a single view ( Epstein  &  MacEvoy, 2011 ). For example, 
a photograph of a room, a landscape, or a city street is a scene — or, more precisely, 
an image of a scene. In this conceptualization  “ scenes ”  are contrasted with  “ objects, ”  
such as shoes and bottles, hawks and hacksaws, which are discrete, potentially movable 
entities without background elements that are bounded by a single contour. This 
defi nition follows closely on the one offered by  Henderson and Hollingworth (1999) , 
who emphasized the same distinction between scenes and objects and who made the 
point that scenes are often semantically coherent and even nameable. As a simple 
heuristic, one could say that objects are spatially compact entities one acts upon, 
whereas scenes are spatially distributed entities one acts within ( Epstein, 2005 ). 

 Why should the visual system care about scenes? First and foremost, because scenes 
are places in the world. The fact that I can glance out at a scene and quickly identify 
it as  “ Locust Walk ”  or  “ Rittenhouse Square ”  means that I have an easy way to 
determine my current location, for example, if  I were to become lost while taking a 
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walk around Philadelphia. Of course, I could also fi gure this out by identifying indi-
vidual objects, but the scene as a whole provides a much more stable and discrimina-
tive constellation of place-related cues. Second, because scenes provide important 
information about the objects that are likely to occur in a place and the actions that 
one should perform there ( Bar, 2004 ). If  I am hungry, for example, it makes more 
sense to look for something to eat in a kitchen than in a classroom. For this function 
it may be more important to recognize the scene as a member of a general scene 
category rather than as a specifi c unique place as one typically wants to do during 
spatial navigation. Finally, one might want to evaluate qualities of the scene that are 
independent of its category or identity, for example, whether a city street looks safe 
or dangerous, or whether travel along a path in the woods seems likely to bring 
one to food or shelter. I use the term  scene recognition  to encompass all three of these 
tasks (identifi cation as a specifi c exemplar, classifi cation as a member of a general 
category, evaluation of reward-related or aesthetic properties). 

 Previous behavioral work has shown that human observers have an impressive 
ability to recognize even briefl y presented real-world scenes. In a classic series of 
studies Potter and colleagues (Potter, 1975, 1976;  Potter  &  Levy, 1969 ) reported that 
subjects could detect a target scene within a sequence of scene distracters with 75% 
accuracy when the visual system was blitzed by scenes at a rate of 8 per second. The 
phenomenology of this effect is quite striking: although the scenes go by so quickly 
that most seem little more than a blur, the target scene jumps into awareness — even 
when it is cued by nothing more than a verbal label that provides almost no informa-
tion about its exact appearance (e.g.,  “ picnic ” ). The fact that we can select the target 
from the distracters implies that every scene in the sequence must have been processed 
up to the level of meaning (or  gist ). Related results were obtained by  Biederman 
(1972) , who reported that recognition of a single object within a briefl y fl ashed 
(300 – 700 ms) scene was more accurate when the scene was coherent than when it was 
jumbled up into pieces. This result indicates that the human visual system can extract 
the meaning of a complex visual scene within a few hundred milliseconds and can 
use it to facilitate object recognition (for similar results, see  Antes, Penland,  &  Metzger, 
1981 ;  Biederman, Rabinowitz, Glass,  &  Stacy, 1974 ;  Fei-Fei, Iyer, Koch,  &  Perona, 
2007 ;  Thorpe, Fize,  &  Marlot, 1996 ). 

 Although one might argue that scene recognition in these earlier studies reduces 
simply to recognition of one or two critical objects, subsequent work has provided 
evidence that this is not the complete story. Scenes can also be identifi ed based on 
their whole-scene characteristics, such as their overall spatial layout.  Schyns and Oliva 
(1994)  demonstrated that subjects could classify briefl y fl ashed (30 ms) scenes into 
categories even if  the images were fi ltered to remove all high-spatial-frequency infor-
mation, leaving only the overall layout of coarse blobs, which conveyed little informa-
tion about individual objects. More recently  Greene and Oliva (2009b)  developed a 



Neural Systems for Visual Scene Recognition 107

scene recognition model that operated on seven global properties: openness, expan-
sion, mean depth, temperature, transience, concealment, and navigability. These prop-
erties predicted the performance of human observers insofar as scenes that were more 
similar in the property space were more often misclassifi ed by the observers. Indeed, 
observers ascertained these global properties of outdoor scenes  prior to  identifying 
their basic-level category, suggesting that categorization may rely on these global 
properties ( Greene  &  Oliva, 2009a ). Computational modeling work has given further 
credence to the idea that scenes can be categorized based on whole-scene information 
by showing that human recognition of briefl y presented scenes can be simulated 
by machine recognition systems that operate solely on the texture statistics of the 
image ( Renninger  &  Malik, 2004 ). 

 In sum, both theoretical considerations and experimental data suggest that the 
visual system contains dedicated systems for scene recognition. In the following sec-
tions I describe the neuroscientifi c evidence that supports this proposition. 

 Scene-Responsive Brain Areas 

 Functional magnetic resonance imaging (fMRI) studies have identifi ed several brain 
regions that respond preferentially to scenes (  fi gure 6.1, plate 12 ). Of these, the fi rst 
discovered, and the most studied, is the parahippocampal place area (PPA). This 
ventral occipitotemporal region responds much more strongly when people view 
scenes (landscapes, cityscapes, rooms) than when they view isolated single objects, and 
does not respond at all when people view faces ( Epstein  &  Kanwisher, 1998 ). The 
scene-related response in the PPA is extremely reliable ( Julian, Fedorenko, Webster, 
 &  Kanwisher, 2012 ): in my lab we have scanned hundreds of subjects, and we almost 
never encounter a person without a PPA. 

    The PPA is a functionally defi ned, rather than an anatomically defi ned region. This 
can lead to some confusion, as there is a tendency to confl ate the PPA with parahip-
pocampal cortex (PHC), its anatomical namesake. Although they are partially over-
lapping, these two regions are not the same. The PPA includes the posterior end of 
the PHC but extends beyond it posteriorly into the lingual gyrus and laterally across 
the collateral sulcus into the fusiform gyrus. Indeed, a recent study suggested that the 
most reliable locus of PPA activity may be on the fusiform (lateral) rather than the 
parahippocampal (medial) side of the collateral sulcus ( Nasr et al., 2011 ). Some 
earlier studies reported activation in the lingual gyrus in response to houses and build-
ings ( Aguirre, Zarahn,  &  D ’ Esposito, 1998 ). It seems likely that this  “ lingual landmark 
area ”  is equivalent to the PPA or at least the posterior portion of it. As we will see, 
the notion that the PPA is a  “ landmark ”  area turns out to be fairly accurate. 

 The PPA is not the only brain region that responds more strongly to scenes than 
to other visual stimuli. A large locus of scene-evoked activation is commonly observed 
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in the retrosplenial region extending posteriorly into the parietal-occipital sulcus. 
This has been labeled the retrosplenial complex (RSC) ( Bar  &  Aminoff, 2003 ). Once 
again there is a possibility of confusion here because the functionally defi ned RSC is 
not equivalent to the retrosplenial cortex, which is defi ned based on cytoarchitecture 
and anatomy rather than fMRI response ( Vann, Aggleton,  &  Maguire, 2009 ). A third 
region of scene-evoked activity is frequently observed near the transverse occipital 
sulcus (TOS) ( Hasson, Levy, Behrmann, Hendler,  &  Malach, 2002 ); this has also been 
labeled the occipital place area (OPA) ( Dilks, Julian, Paunov,  &  Kanwisher, 2013 ). 
Scene-responsive  “ patches ”  have been observed in similar areas in macaque monkeys, 
although the precise homologies still need to be established ( Kornblith, Cheng, 
Ohayon,  &  Tsao, 2013 ;  Nasr et al., 2011 ). 

 The PPA and RSC appear to play distinct but complementary roles in scene recog-
nition. Whereas the PPA seems to be primarily involved in perceptual analysis of the 
scene, the RSC seems to play a more mnemonic role, which is best characterized as 

 Figure 6.1 (plate 12) 
 Three regions of the human brain — the PPA, RSC, and TOS/OPA — respond preferentially to visual 
scenes. Shown here are voxels for which  > 80% of subjects ( n  = 42) have significant scenes  >  objects 
activation. Regions were defined using the algorithmic group-constrained subject-specific (GSS) method 
( Julian et al., 2012 ). 
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connecting the local scene to the broader spatial environment ( Epstein  &  Higgins, 
2007 ;  Park  &  Chun, 2009 ). This putative division of labor is supported by several 
lines of evidence. The RSC is more sensitive than the PPA to place familiarity ( Epstein, 
Higgins, Jablonski,  &  Feiler, 2007 ). That is, response in the RSC to photographs of 
familiar places is much greater than response to unfamiliar places. In contrast the 
PPA responds about equally to both (with a slight but signifi cant advantage for the 
familiar places). The familiarity effect in the RSC suggests that it may be involved in 
situating the scene relative to other locations, since this operation can be performed 
only for places that are known. The minimal familiarity effect in the PPA, on the other 
hand, suggests that it supports perceptual analysis of the local (i.e., currently visible) 
scene that does not depend on long-term knowledge about the depicted place. When 
subjects are explicitly asked to retrieve spatial information about a scene, such as 
where the scene was located within the larger environment or which compass direction 
the camera was facing when the photograph was taken, activity is increased in the 
RSC but not in the PPA ( Epstein, Parker,  &  Feiler, 2007 ). This suggests that the RSC 
(but not the PPA) supports spatial operations that can extend beyond the scene ’ s 
boundaries ( Park, Intraub, Yi, Widders,  &  Chun, 2007 ). A number of other studies 
have demonstrated RSC involvement in spatial memory, which I do not review here 
( Epstein, 2008 ;  Vann et al., 2009 ;  Wolbers  &  Buchel, 2005 ). 

 This division of labor between the PPA and the RSC is also supported by neuro-
psychological data ( Aguirre  &  D’Esposito, 1999 ;  Epstein, 2008 ). When the PPA is 
damaged due to stroke, patients have diffi culty identifying places and landmarks, 
and they report that their sense of a scene as a coherent whole has been lost. Their 
ability to identify discrete objects within the scene, on the other hand, is largely 
unimpaired. This can lead to some remarkable behavior during navigation, such as 
attempting to recognize a house based on a small detail such as a mailbox or a door 
knocker rather than its overall appearance. Notably, some of these patients still retain 
long-term spatial knowledge — for example, they can sometimes draw maps showing 
the spatial relationships between the places that they cannot visually recognize. 
Patients with damage to RSC, on the other hand, display a very different problem. 
They can visually recognize places and buildings without diffi culty, but they cannot 
use these landmarks to orient themselves in large-scale space. For example, they can 
look at a building and name it without hesitation, but they cannot tell from this 
whether they are facing north, south, east, or west, and they cannot point to any other 
location that is not immediately visible. It is as if  they can perceive the scenes around 
them normally, but these scenes are  “ lost in space ”  — unmoored from their broader 
spatial context. 

 The idea that the PPA is involved in perceptual analysis of the currently visible 
scene gains further support from the discovery of retinotopic organization in this 
region ( Arcaro, McMains, Singer,  &  Kastner, 2009 ). Somewhat unexpectedly, the PPA 
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appears to contain not one but two retinotopic maps, both of which respond more 
strongly to scenes than to objects. This fi nding suggests that the PPA might in fact be 
a compound of two visual subregions whose individual functions are yet to be dif-
ferentiated. Both of these subregions respond especially strongly to stimulation in the 
periphery ( Arcaro et al., 2009 ;  Levy, Hasson, Avidan, Hendler,  &  Malach, 2001 ;  Levy, 
Hasson, Harel,  &  Malach, 2004 ), a pattern that contrasts with object-preferring 
regions such as the lateral occipital complex, which respond more strongly to visual 
stimulation near the fovea. This relative bias for peripheral information makes sense 
given that information about scene identity is likely to be obtainable from across the 
visual fi eld. In contrast, objects are more visually compact and are usually foveated 
when they are of interest. Other studies have further confi rmed the existence of 
retinotopic organization in the PPA by showing that its response is affected by the 
location of the stimulus relative to the fi xation point but not by the location of 
the stimulus on the screen when these two quantities are dissociated by varying the 
fi xation position ( Golomb  &  Kanwisher, 2012 ;  Ward, MacEvoy,  &  Epstein, 2010 ). 

 Thus, the overall organization of the PPA appears to be retinotopic. However, reti-
notopic organization does not preclude the possibility that the region might encode 
information about stimulus identity that is invariant to retinal position ( DiCarlo, 
Zoccolan,  &  Rust, 2012 ;  Schwarzlose, Swisher, Dang,  &  Kanwisher, 2008 ). Indeed, 
Sean MacEvoy and I observed that fMRI adaptation when scenes were repeated at 
different retinal locations was almost as great as adaptation when scenes were repeated 
at the same retinal location, consistent with position invariance ( MacEvoy  &  Epstein, 
2007 ).  Golomb and colleagues (2011)  similarly observed adaptation when subjects 
moved their eyes over a stationary scene image, thus varying retinotopic input. Inter-
estingly, adaptation was also observed in this study when subjects moved their eyes 
in tandem with a moving scene, a manipulation that kept retinal input constant. Thus, 
PPA appears to represent scenes in an intermediate format that is neither fully depen-
dent on the exact retinal image nor fully independent of it. 

 The observation that the PPA appears to act as a visual region, with retinotopic 
organization, seems at fi rst glance to confl ict with the traditional view that the PHC is 
part of the medial temporal lobe memory system. However, once again, we must be 
careful to distinguish between the PPA and the PHC. Although the PHC in monkeys 
is usually divided into two subregions, TF and TH, some neuroanatomical studies have 
indicated the existence of a posterior subregion that has been labeled TFO ( Saleem, 
Price,  &  Hashikawa, 2007 ). Notably, the TFO has a prominent layer IV, making it 
cytoarchitechtonically more similar to the adjoining visual region V4 than to either TF 
or TH. This suggests that the TFO may be a visually responsive region. The PPA may 
be an amalgam of the TFO and other visually responsive territory. TF and TH, on the 
other hand, may be more directly involved in spatial memory. As we will see, a key 
function of the PPA may be extracting spatial information from visual scenes. 



Neural Systems for Visual Scene Recognition 111

 Beyond the PPA, RSC, and TOS, a fourth region that has been implicated in scene 
processing is the hippocampus. Although this region does not typically activate above 
baseline during scene perception or during mental imagery of familiar places ( O ’ Craven 
 &  Kanwisher, 2000 ), it does activate when subjects are asked to construct detailed 
imaginations of novel scenes ( Hassabis, Kumaran,  &  Maguire, 2007 ). Furthermore, 
patients with damage to the hippocampus are impaired on this scene construction 
task, insofar as their imaginations have fewer details and far less spatial coherence 
than those offered by normal subjects ( Hassabis et al., 2007 ; but see  Squire et al., 
2010 ). Other neuropsychological studies have found that hippocampally damaged 
patients are impaired at remembering the spatial relationships between scene elements 
when these relationships must be accessed from multiple points of view ( Hartley et 
al., 2007 ;  King, Burgess, Hartley, Vargha-Khadem,  &  O ’ Keefe, 2002 ). These results 
suggest that the hippocampus forms an allocentric  “ map ”  of a scene that allows dif-
ferent scene elements to be assigned to different within-scene locations. However, it is 
unclear how important this map is for scene recognition under normal circumstances, 
as perceptual defi cits after hippocampal damage are subtle ( Lee et al., 2005 ;  Lee, 
Yeung,  &  Barense, 2012 ). Thus, I focus here on the role of occipitotemporal visual 
regions in scene recognition, especially the PPA. 

 What Does the PPA Do? 

 We turn now to the central question of this chapter:  how  does the PPA represent scenes 
in order to recognize them? I fi rst consider the representational level encoded by the 
PPA — that is, whether the PPA represents scene categories, individual scene/place 
exemplars, or specifi c views. Then I discuss the content of the information encoded 
in the PPA — whether it encodes the geometric structure of scenes, nongeometric 
visual quantities, or information about objects. As we will see, recent investigations 
of these issues lead us to a more nuanced view of the PPA under which it represents 
more than just scenes. 

 Categories versus Places versus Views 
 As noted in the beginning of this chapter, scenes can be recognized in several different 
ways. They can be identifi ed as a member of a general scene category ( “ kitchen ” ), as 
a specifi c place ( “ the kitchen on the fi fth fl oor of the Center for Cognitive Neurosci-
ence ” ), or even as a distinct view of a place ( “ the CCN kitchen, observed from the 
south ” ). Which of these representational distinctions, if  any, are made by the PPA? 

 The ideal way to answer this question would be to insert electrodes into the 
PPA and record from individual neurons. This would allow us to determine whether 
individual units — or multiunit activity patterns — code categories, places, or views 
( DiCarlo et al., 2012 ). Although some single-unit recordings have been made from 
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medial temporal lobe regions — including PHC — in presurgical epilepsy patients 
( Ekstrom et al., 2003 ;  Kreiman, Koch,  &  Fried, 2000 ;  Mormann et al., 2008 ), no 
study has explicitly targeted the tuning of neurons in the PPA. Thus, we turn instead 
to neuroimaging data. 

 There are two neuroimaging techniques that can be used to probe the representa-
tional distinctions made by a brain region: multivoxel pattern analysis (MVPA) and 
fMRI adaptation (fMRIa). In MVPA one examines the multivoxel activity patterns 
elicited by different stimuli to determine which stimuli elicit patterns that are similar 
and which stimuli elicit patterns that are distinct ( Cox  &  Savoy, 2003 ;  Haxby et al., 
2001 ). In fMRIa one examines the response to items presented sequentially under 
the hypothesis that response to an item will be reduced if  it is preceded by an identi-
cal or representationally similar item ( Grill-Spector, Henson,  &  Martin, 2006 ;  Grill-
Spector  &  Malach, 2001 ). 

 MVPA studies have shown that activity patterns in the PPA contain information 
about the scene category being viewed. These patterns can be used to reliably distin-
guish among beaches, forests, highways, and the like ( Walther, Caddigan, Fei-Fei,  &  
Beck, 2009 ). The information in these patterns does not appear to be epiphenomenal —
 when scenes are presented very briefl y and masked to make recognition diffi cult, the 
categories confused by the subjects are the ones that are  “ confused ”  by the PPA. Thus, 
the representational distinctions made by the PPA seem to be closely related to the 
representational distinctions made by human observers. It is also possible to classify 
scene category based on activity patterns in a number of other brain regions, including 
RSC, early visual cortex, and (in some studies but not others) object-sensitive regions 
such as lateral occipital complex (LOC). However, activation patterns in these regions 
are not as tightly coupled to behavioral performance as activation patterns in the PPA 
( Walther et al., 2009 ;  Walther, Chai, Caddigan, Beck,  &  Fei-Fei, 2011 ). 

 These MVPA results suggest that the PPA might represent scenes in terms of cat-
egorical distinctions — or at least, in such a way that categories are easily distinguish-
able. But what about more fi ne-grained distinctions? In the studies described above, 
each image of a  “ beach ”  or a  “ forest ”  depicted a different place, yet they were grouped 
together for analysis to fi nd a common pattern for each category. To determine if  the 
PPA represents individual places, we scanned University of Pennsylvania students 
while they viewed many different images of familiar landmarks (buildings and statues) 
that signify unique locations on the Penn campus ( Morgan, MacEvoy, Aguirre,  &  
Epstein, 2011 ). We were able to decode landmark identity from PPA activity patterns 
with high accuracy (  fi gure 6.2 ). Moreover, accuracy for decoding of Penn landmarks 
was equivalent to accuracy for decoding of scene categories, as revealed by results 
from a contemporaneous experiment performed on the same subjects in the same scan 
session ( Epstein  &  Morgan, 2012 ). Thus, the PPA appears to encode information that 
allows both scene categories and individual scenes (or at least, individual familiar 
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landmarks) to be distinguished. But — as we discuss in the next section — the precise 
nature of that information, and how it differs from the information that allows such 
discriminations to be made in other areas such as early visual cortex and RSC, still 
needs to be determined.    

 Findings from fMRI adaptation studies are only partially consistent with these 
MVPA results. On one hand, fMRIa studies support the idea that the PPA distin-
guishes between different scenes ( Ewbank, Schluppeck,  &  Andrews, 2005 ;  Xu, Turk-
Browne,  &  Chun, 2007 ). For example, in the  Morgan et al. (2011)  study described 
above, we observed reduced PPA response (i.e., adaptation) when images of the same 
landmark were shown sequentially, indicating that it considered the two images of the 
same landmark to be representationally similar (  fi gure 6.2 ). However, we did  not  
observe adaptation when scene category was repeated — for example, when images of 
two different beaches were shown in succession ( Epstein  &  Morgan, 2012 ). Thus, if  
one only had the adaptation results, one would conclude that the PPA represents 
individual landmarks or scenes but does not group those scenes into categories. 

 Indeed, other fMRIa studies from my laboratory have suggested that scene repre-
sentations in the PPA can be even more stimulus specifi c. When we present two views 
of the same scene in sequence — for example, an image of a building viewed from the 
southeast followed by an image of the same building viewed from the southwest — the 
two images only partially cross-adapt each other ( Epstein, Graham,  &  Downing, 
2003 ;  Epstein, Higgins, et al., 2007 ;  Epstein, Parker,  &  Feiler, 2008 ). This indicates 
that the PPA treats these different views as representationally distinct items, even 
though they may depict many of the same details (e.g., the same front door, the same 
building facade, the same statue in front of the building). Strikingly, even overlapping 
images that are cut out from a larger scene panorama are treated as distinct items by 
the PPA ( Park  &  Chun, 2009 ). 

 What are we to make of this apparent discrepancy between the fMRIa and MVPA 
results? The most likely explanation is that MVPA and fMRIa interrogate different 
aspects of the PPA neural code ( Epstein  &  Morgan, 2012 ). For example, fMRIa may 
refl ect processes that operate at the level of the single unit ( Drucker  &  Aguirre, 2009 ), 
whereas MVPA might reveal coarser topographical organization along the cortical 
surface ( Freeman, Brouwer, Heeger,  &  Merriam, 2011 ;  Sasaki et al., 2006 ). In this 
scenario PPA neurons would encode viewpoint-specifi c representations of individual 
scenes, which are then grouped together on the cortical surface according to place 
and category. Insofar as fMRIa indexes the neurons, it would reveal coding of views, 
with some degree of cross-adaptation between similar views. MVPA, on the other 
hand, would reveal the coarser coding by places and categories. However, other sce-
narios are also possible.  1   A full resolution of this topic will require a more thorough 
understanding of the neural mechanisms underlying MVPA and fMRIa. Neverthe-
less, we can make the preliminary conclusion that the PPA encodes information that 
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 Figure 6.2 
 Coding of scene categories and landmarks in the PPA, RSC, and TOS/OPA. Subjects were scanned with 
fMRI while viewing a variety of images of 10 scene categories and 10 familiar campus landmarks (four 
examples shown). Multivoxel pattern analysis (MVPA) revealed coding of both category and landmark 
identity in all three regions (bottom left). In contrast, adaptation effects were observed only when 
landmarks were repeated — repetition of scene category had no effect (bottom right). One interpretation 
is that fine-grain organization within scene regions reflects coding of features that are specific to 
individual landmarks and scenes, whereas coarse-grain organization reflects grouping by category. 
However, other interpretations are possible. Adapted from Epstein and Morgan (2012). 
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allows it to make distinctions at all three representational levels: category, scene/place 
identity, and view. 

 But how does the PPA do it? What kind of information about the scene does the 
PPA extract in order to distinguish among scene categories, scene exemplars, and 
views? It is this question we turn to next. 

 Coding of Scene Geometry 
 Scenes contain fi xed background elements such as walls, building facades, streets, and 
natural topography. These elements constrain movement within a scene and thus are 
relevant for navigation. Moreover, because these elements are fi xed and durable, 
they are likely to be very useful cues for scene recognition. In fact behavioral studies 
suggest that both humans and animals preferentially use information about the geo-
metric layout of the local environment to reorient themselves after disorientation 
( Cheng, 1986 ;  Cheng  &  Newcombe, 2005 ;  Gallistel, 1990 ;  Hermer  &  Spelke, 1994 ). 
Thus, an appealing hypothesis is that the PPA represents information about the geo-
metric structure of the local scene as defi ned by the spatial layout of these fi xed 
background elements. 

 Consistent with this view, the original report on the PPA obtained evidence that 
the region was especially sensitive to these fi xed background cues ( Epstein  &  Kan-
wisher, 1998 ). The response of the PPA to scenes was not appreciably reduced when 
all the movable objects were removed from the scene — specifi cally, when all the fur-
niture was removed from a room, leaving just bare walls. In contrast the PPA responded 
only weakly to the objects alone when the background elements were not present. 
When scene images were fractured into surface elements that were then rearranged so 
that they no longer depicted a three-dimensional space, response in the PPA was 
signifi cantly reduced. In a follow-up study the PPA was shown to respond strongly 
even to  “ scenes ”  made out of Lego blocks, which were clearly not real-world places 
but had a similar geometric organization ( Epstein, Harris, Stanley,  &  Kanwisher, 
1999 ). From these results, we concluded that the PPA responds to stimuli that have a 
scene-like but not an object-like geometry. 

 Two recent contemporaneous studies have taken these fi ndings a step further by 
showing that multivoxel activity patterns in the PPA distinguish between scenes based 
on their geometry. The fi rst study, by  Park and colleagues (2011) , looked at activity 
patterns elicited during viewing of scenes that were grouped according to either spatial 
expanse (open vs. closed) or content (urban vs. natural). These  “ supercategories ”  were 
distinguishable from each other; furthermore, when patterns were misclassifi ed by the 
PPA, it was more likely that the content than the spatial expanse was classifi ed wrong, 
suggesting that the representation of spatial expanse was more salient than the rep-
resentation of scene content. The second study, by  Kravitz and colleagues (2011) , 
looked at multivoxel patterns elicited by 96 scenes drawn from 16 categories, this time 
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grouped by three factors: expanse (open vs. closed), content (natural vs. man-made), 
and distance to scene elements (near vs. far). These PPA activity patterns were distin-
guishable on the basis of expanse and distance but not on the basis of content. 
Moreover, scene categories could not be reliably distinguished when the two spatial 
factors (expanse and distance) were controlled for, suggesting that previous demon-
strations of category decoding may have been leveraging the spatial differences 
between categories — for example, the fact that highway scenes tend to be open whereas 
forest scenes tend to be closed. 

 Thus, the PPA does seem to encode information about scene geometry. Moreover, 
it seems unlikely that this geometric coding can be explained by low-level visual dif-
ferences that tend to correlate with geometry. When the images in the Park et al. (2011) 
experiment were phase scrambled so that spatial frequency differences were retained 
but geometric and content information was eliminated, PPA classifi cation fell to 
chance levels. Furthermore,  Walther and colleagues (2011)  demonstrated cross catego-
rization between photographs and line drawings, a manipulation that preserves geom-
etry and content while changing many low-level visual features. 

 Can this be taken a step further by showing that the PPA encodes something more 
detailed than whether a scene is open or closed? In a fascinating study  Dilks and col-
leagues (2011)  used fMRI adaptation to test whether the PPA was sensitive to mirror-
reversal of a scene. Strikingly, the PPA showed almost as much adaptation to a 
mirror-reversed version of a scene as it did to the original version. In contrast, the 
RSC and TOS treated mirror-reversed scenes as new items. This result could indicate 
that the PPA primarily encodes nonspatial aspects of the scene such as its spatial 
frequency distribution, color, and objects, all of which are unchanged by mirror 
reversal. Indeed, as we see in the next two sections, the PPA is in fact sensitive to these 
properties. However, an equally good account of the Dilks result is that the PPA 
represents spatial information, but in a way that is invariant to left-right reversal. For 
example, the PPA could encode distances and angles between scene elements in an 
unsigned manner — mirror reversal leaves the magnitudes of these quantities unchanged 
while changing the direction of angles (clockwise becomes counterclockwise) and the 
 x -coordinate (left becomes right). 

 In any case the  Dilks et al. (2011)  results suggest that the PPA may encode quanti-
ties that are useful for identifying a scene but are less useful for calculating one ’ s 
orientation relative to the scene. To see this, imagine the simplest case, a scene consist-
ing of an array of discrete identifi able points in the frontoparallel plane. Mirror-
reversal changes the implied viewing direction 180 °  (i.e., if  the original image depicts 
the array viewed from the south, so that one sees the points A-B-C in order from 
left to right, the mirror-reversed image depicts the array viewed from the north, 
so that one sees the points C-B-A from left to right). A brain region involved in 
calculating one ’ s orientation relative to the scene (e.g., RSC) should be sensitive to 
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this manipulation; a brain region involved in identifying the scene (e.g., PPA) should 
not be. This observation is consistent with the neuropsychological evidence reviewed 
earlier that suggests that the PPA is more involved in place recognition, whereas the 
RSC is more involved in using scene information to orient oneself  within the world. 

 Perhaps the strongest evidence that the PPA encodes geometric information comes 
from a study that showed PPA activation during haptic exploration of  “ scenes ”  made 
out of Lego blocks ( Wolbers, Klatzky, Loomis, Wutte,  &  Giudice, 2011 ). As noted 
above, we previously observed that the PPA responds more strongly when subjects 
view Lego scenes than when they view  “ objects ”  made out of the same materials. 
Wolbers and colleagues observed the same scene advantage during haptic exploration. 
Moreover, they observed this scene-versus-object difference both in normal sighted 
subjects and also in subjects who were blind from an early age. This is an important 
control because it shows that PPA activity during haptic exploration cannot be 
explained by visual imagery. These results suggest that the PPA extracts geometric 
representations of scenes that can be accessed through either vision or touch. 

 Coding of Visual Properties 
 The strongest version of the spatial layout hypothesis is that the PPA  only  represents 
geometric information — a  “ shrink-wrapped ”  representation of scene surfaces that 
eschews any information about the color, texture, or material properties of these 
surfaces. However, recent studies have shown that the story is more complicated: in 
addition to coding geometry, the PPA also seems to encode purely visual (i.e., nongeo-
metric) qualities of a scene. 

 A series of studies from Tootell and colleagues has shown that the PPA is sensitive 
to low-level visual properties of an image. The fi rst study in the series showed that 
the PPA responds more strongly to high-spatial-frequency (HSF) images than to low-
spatial-frequency (LSF) images ( Rajimehr, Devaney, Bilenko, Young,  &  Tootell, 
2011 ). This HSF preference is found not only for scenes but also for simpler stimuli 
such as checkerboards. The second study found that the PPA exhibits a cardinal ori-
entation bias, responding more strongly to stimuli that have the majority of their edges 
oriented vertically/horizontally than to stimuli that have the majority of their edges 
oriented obliquely ( Nasr  &  Tootell, 2012 ). As with the HSF preference, this cardinal-
orientation bias can be observed both for natural scenes (by tilting them to different 
degrees) and for simpler stimuli such as arrays of squares and line segments. As the 
authors of these studies note, these biases might refl ect PPA tuning for low-level visual 
features that are typically found in scenes. For example, scene images usually contain 
more HSF information than images of faces or objects; the ability to process this HSF 
information would be useful for localizing spatial discontinuities caused by boundar-
ies between scene surfaces. The cardinal orientation bias might relate to the fact 
that scenes typically contain a large number of vertical and horizontal edges, both in 
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natural and man-made environments, because surfaces in scenes are typically oriented 
by reference to gravity. 

 The PPA has also been shown to be sensitive to higher-level visual properties.  Cant 
and Goodale (2007)  found that it responded more strongly to objects when subjects 
attend to the material properties of the objects (e.g., whether it is made out of metal 
or wood, whether it is hard or soft) than when they attend to the shape of the objects. 
Although the strongest differential activation in the studies is in a collateral sulcus 
region posterior to the PPA, the preference for material properties extends anteriorly 
into the PPA ( Cant, Arnott,  &  Goodale, 2009 ;  Cant  &  Goodale, 2007 ). This may 
indicate sensitivity in the collateral sulcus generally and the PPA in particular to color 
and texture information, the processing of which can be a fi rst step toward scene 
recognition ( Gegenfurtner  &  Rieger, 2000 ;  Goffaux et al., 2005 ;  Oliva  &  Schyns, 
2000 ). In addition material properties might provide important cues for scene recogni-
tion ( Arnott, Cant, Dutton,  &  Goodale, 2008 ): buildings can be distinguished based 
on whether they are made of brick or wood; forests are  “ soft, ”  whereas urban scenes 
are  “ hard. ”  

 In a recent study  Cant and Xu (2012)  took this line of inquiry a step further by 
showing that the PPA is sensitive not just to texture and material properties but also 
to the visual summary statistics of images ( Ariely, 2001 ;  Chong  &  Treisman, 2003 ). 
To show this they used an fMRI adaptation paradigm in which subjects viewed images 
of object ensembles — for example, an array of strawberries or baseballs viewed from 
above. Adaptation was observed in the PPA (and in other collateral sulcus regions) 
when ensemble statistics were repeated — for example, when one image of a pile of 
baseballs was followed by another image of a similar pile. Adaptation was also 
observed for repetition of surface textures that were not decomposable into individual 
objects. In both cases the stimulus might be considered a type of scene, but viewed 
from close-up, so that only the pattern created by the surface or repeated objects is 
visible, without background elements or depth. The fact that the PPA adapts to repeti-
tions of these  “ scenes ”  without geometry strongly suggests that it codes nongeometric 
properties in addition to geometry. 

 Coding of Objects 
 Now we turn to the fi nal kind of information that the PPA might extract from visual 
scenes: information about individual objects. At fi rst glance the idea that the PPA is 
concerned with individual objects may seem like a bit of a contradiction. After all, 
the PPA is typically defi ned based on greater response to scenes than to objects. Fur-
thermore, as discussed above, the magnitude of the PPA response to scenes does 
not seem to be affected by the presence or absence of individual objects within the 
scene ( Epstein  &  Kanwisher, 1998 ). Nevertheless, a number of recent studies have 
shown that the PPA is sensitive to spatial qualities of objects when the objects are 
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presented not as part of a scene, but in isolation. As we will see, this suggests that the 
division between scene and object is a bit less than absolute, at least as far as the PPA 
is concerned. 

 Indeed, there is evidence for a graded boundary between scenes and objects in the 
original paper on the PPA, which examined response to four stimulus categories: 
scenes, houses, common everyday objects, and faces ( Epstein  &  Kanwisher, 1998 ). The 
response to scenes in the PPA was signifi cantly greater than the response to the next-
best stimulus, which was houses (see also  Mur et al., 2012 ). However, the response to 
houses (shown without background) was numerically greater than the response to 
objects, and the response to objects was numerically greater than the response to faces. 
Low-level visual differences between the categories might explain some of these 
effects — for example, the fact that face images tend to have less power in the high 
spatial frequencies, or the fact that images of houses tend to have more horizontal 
and vertical edges than images of objects and faces. However, it is also possible that 
the PPA really does care about the categorical differences between houses, objects, 
and faces. One way of interpreting this ordering of responses is to posit that the PPA 
responds more strongly to stimuli that are more useful as landmarks. A building is a 
good landmark because it is never going to move, whereas faces are terrible landmarks 
because people almost always change their positions. 

 Even within the catchall category of common everyday objects, we can observe 
reliable differences in PPA responses that may relate to landmark suitability.  Konkle 
and Oliva (2012)  showed that a region of posterior parahippocampal cortex that 
partially overlaps with the PPA responds more strongly to large objects (e.g., car, 
piano) than to small objects (e.g., strawberry, calculator), even when the stimuli have 
equivalent retinal size. Similarly,  Amit and colleagues (2012)  and  Cate and colleagues 
(2011)  observed greater PPA activity to objects that were perceived as being larger or 
more distant, where size and distance were implied by the presence of Ponzo lines 
defi ning a minimal scene. 

 The response in the PPA to objects can even be modulated by their navigational 
history. Janzen and Van Turennout (2004) familiarized subjects with a large number 
of objects during navigation through a virtual museum. Some of the objects were 
placed at navigational decision points (intersections), and others were placed at less 
navigationally relevant locations (simple turns). The subjects later viewed the same 
objects in the scanner along with previously unseen foils, and were asked to judge 
whether each item had been in the museum or not. Objects that were previously 
encountered at navigational decision points elicited greater response in the PPA than 
objects previously encountered at other locations within the maze. Interestingly, 
this decision point advantage was found even for objects that subjects did not explic-
itly remember seeing. A later study found that this decision-point advantage was 
reduced for objects appearing at two different decision points ( Janzen  &  Jansen, 2010 ), 
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consistent with the idea that the PPA responds to the decision-point objects because 
they uniquely specify a navigationally relevant location. In other words the decision-
point objects have become landmarks. We subsequently replicated these results in an 
experiment that examined response to buildings at decision points and nondecision 
points along a real-world route ( Schinazi  &  Epstein, 2010 ). 

 Observations such as these suggest that the PPA is in fact sensitive to the spatial 
qualities of objects. Two groups have advanced theories about the functions of the 
PPA under which scene-based and object-based responses are explained by a single 
mechanism. First, Bar and colleagues have proposed that the PPA is a subcompo-
nent of a parahippocampal mechanism for processing contextual associations, by 
which they mean associations between items that typically occur together in the 
same place or situation. For example, a toaster and a coffee maker are contextually 
associated because they typically co-occur in a kitchen, and a picnic basket and a 
blanket are contextually associated because they typically co-occur at a picnic. 
According to the theory, the PPA represents spatial contextual associations whereas 
the portion of parahippocampal cortex anterior to the PPA represents nonspatial 
contextual associations ( Aminoff, Gronau,  &  Bar, 2007 ). Because scenes are fi lled 
with spatial relationships, the PPA responds strongly to scenes. Evidence for this 
idea comes from a series of studies that observed greater parahippocampal activity 
when subjects were viewing objects that are strongly associated with a given context 
(for example, a beach ball or a stove) than when viewing objects that are not 
strongly associated to any context (for example, an apple or a Rubik ’ s cube) ( Bar, 
2004 ;  Bar  &  Aminoff, 2003 ;  Bar, Aminoff,  &  Schacter, 2008 ). A second theory has 
been advanced by  Mullally and Maguire (2011) , who suggest that the PPA responds 
strongly to stimuli that convey a sense of surrounding space. Evidence in support 
of this theory comes from the fact that the PPA activates more strongly when 
subjects imagine objects that convey a strong sense of surrounding space than when 
they imagine objects that have weak  “ spatial defi nition. ”  Objects with high spatial 
defi nition tend to be large and fi xed whereas low-spatial-defi nition objects tend to 
be small and movable. In this view, a scene is merely the kind of object with the 
highest spatial defi nition of all. 

 Is either of these theories correct? It has been diffi cult to determine which object 
property is the essential driver of PPA response, in part because the properties of 
interest tend to covary with each other: large objects tend to be fi xed in space, have 
strong contextual associations, and defi ne the space around them and are typically 
viewed at greater distances. Furthermore, the aforementioned studies did not directly 
compare the categorical advantage for scenes over objects to the effect of object-based 
properties. Finally, the robustness of object-based effects has been unclear. The 
context effect, for example, is quite fragile: it can be eliminated by simply changing 
the presentation rate and controlling for low-level differences ( Epstein  &  Ward, 2010 ), 
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and it has failed to replicate under other conditions as well ( Mullally  &  Maguire, 2011 ; 
 Yue, Vessel,  &  Biederman, 2007 ). 

 To clarify these issues we ran a study in which subjects viewed 200 different objects, 
each of which had been previously rated along six different stimulus dimensions: 
physical size, distance, fi xedness, spatial defi nition, contextual associations, and place-
ness (i.e., the extent to which the object was  “ a place ”  instead of  “ a thing ” ) ( Troiani, 
Stigliani, Smith,  &  Epstein, 2014 ; see   fi gure 6.3 ). The objects were either shown in 
isolation or immersed in a scene with background elements. The results indicated that 
the PPA was sensitive to all six object properties (and, in addition, to retinotopic 
extent); however, we could not identify a unique contribution from any one of them. 
In other words all of the properties seemed to relate to a single underlying factor that 
drives the PPA, which we labeled the  “ landmark suitability ”  of the object. Notably, 
this object-based factor was not suffi cient to explain all of the PPA response on its 
own because there was an additional categorical difference between scenes and objects: 
response was greater when the objects were shown as part of a scene than when they 
were shown in isolation, over and above the response to the spatial properties of the 
objects. This  “ categorical ”  difference between scenes and objects might refl ect differ-
ence in visual properties — for example, the fact that the scenes afford statistical 
summary information over a wider portion of the visual fi eld.    

 Thus, the PPA does seem to be sensitive to spatial properties of objects, responding 
more strongly to objects that are more suitable as landmarks. The fact that the PPA 
encodes this information might explain the fact that previous multivoxel pattern 
analysis (MVPA) studies have found it possible to decode object identity within the 

 Figure 6.3 
 Sensitivity of the PPA to object characteristics. Subjects were scanned with fMRI while viewing 200 
objects, shown either on a scenic background or in isolation. Response in the PPA depended on object 
properties that reflect the landmark suitability of the item; however, there was also a categorical offset 
for objects within scenes (squares) compared to isolated objects (circles). For purposes of display, items 
are grouped into sets of 20 based on their property scores. Solid trend lines indicate a significant effect; 
dashed lines are nonsignificant. Adapted from Troiani, Stigliani, Smith, and Epstein (2014). 
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PPA. Interestingly, the studies that have done this successfully have generally used 
large fi xed objects as stimuli ( Diana, Yonelinas,  &  Ranganath, 2008 ;  Harel, Kravitz, 
 &  Baker, 2013 ;  MacEvoy  &  Epstein, 2011 ), whereas a study that failed to fi nd this 
decoding used objects that were small and manipulable ( Spiridon  &  Kanwisher, 2002 ). 
This is consistent with the idea that the PPA does not encode object identity per se 
but rather encodes spatial information that inheres to some objects but not others. 
Also, it is of note that all of the studies that have examined object coding in the PPA 
have either looked at the response to these objects in isolation or when shown as the 
central, clearly dominant object within a scene ( Bar et al., 2008 ;  Harel et al., 2013 ; 
 Troiani et al., 2012 ). Thus, it remains unclear whether the PPA encodes information 
about objects when they form just a small part of a larger scene. Indeed, as we see 
below, recent evidence tends to argue against this idea. 

 Putting It All Together 
 The research reviewed above suggests that the PPA represents geometric information 
from scenes, nonspatial visual information from scenes, and spatial information that 
can be extracted from both scenes and objects. How do we put this all together in 
order to understand the function of the PPA? My current view is that it is not possible 
to explain all of these results using a single cognitive mechanism. In particular, the 
fact that the PPA represents both spatial and nonspatial information suggests the 
existence of two mechanisms within the PPA: one for processing spatial information 
and one for processing the visual properties of the stimulus. 

 One possibility is that these two mechanisms are anatomically separated. Recall 
that Arcaro and colleagues (2009) found two distinct visual maps in the PPA. Recent 
work examining the anatomical connectivity within the PPA has found an anterior-
posterior gradient whereby the posterior PPA connects more strongly to visual corti-
ces and the anterior PPA connects more strongly to the RSC and the parietal lobe 
( Baldassano, Beck,  &  Fei-Fei, 2013 ). In other words the posterior PPA gets more 
visual input, and the anterior PPA gets more spatial input. This gradient is reminiscent 
of a division reported in the neuropsychological literature: patients with damage to 
the posterior portion of the lingual-parahippocampal region have a defi cit in land-
mark recognition that is observed in both familiar and unfamiliar environments, 
whereas patients with damage located more anteriorly in the parahippocampal cortex 
proper have a defi cit in topographical learning that mostly impacts navigation in novel 
environments ( Aguirre  &  D’Esposito, 1999 ). Thus, it is possible that the posterior 
PPA processes the visual properties of scenes, whereas the anterior PPA incorporates 
spatial information about scene geometry (and also objects, if  they have such spatial 
information associated with them). The two parts of the PPA might work together to 
allow recognition of scenes (and other landmarks) based on both visual and spatial 
properties. Interestingly, a recent fMRI study in the macaque found two distinct 
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scene-responsive regions in the general vicinity of the PPA, which were labeled the 
medial place patch (MPP) and the lateral place patch (LPP) ( Kornblith et al., 2013 ). 
These might correspond to the anterior and posterior PPA in humans ( Epstein  &  
Julian, 2013 ). 

 Another possibility is that the PPA supports two recognition mechanisms that are 
temporally rather than spatially separated. In this scenario, the PPA fi rst encodes the 
visual properties of the scene and then later extracts information about scene geom-
etry. Some evidence for this idea comes from two intracranial EEG (i.e., electrocorti-
cography) studies that recorded from the parahippocampal region in presurgical 
epilepsy patients. The fi rst study ( Bastin, Committeri, et al., 2013 ) was motivated by 
earlier fMRI work examining response in the PPA when subjects make different kinds 
of spatial judgments. In these earlier studies the PPA and RSC responded more 
strongly when subjects reported which of two small objects was closer to the wing of 
a building than when they reported which was closer to a third small object or to 
themselves. That is, the PPA and RSC were more active when the task required the 
use of an environment-centered rather than an object- or viewer-centered reference 
frame ( Committeri et al., 2004 ;  Galati, Pelle, Berthoz,  &  Committeri, 2010 ). When 
presurgical epilepsy patients were run on this paradigm, increased power in the 
gamma oscillation band was observed at parahippocampal contacts for landmark-
centered compared to the viewer-centered judgments, consistent with the previous 
fMRI results. Notably, this increased power occurred at 600 – 800 ms poststimulus, 
suggesting that information about the environmental reference frame was activated 
quite late, after perceptual processing of the scene had been completed. The second 
study ( Bastin, Vidal, et al., 2013 ) was motivated by previous fMRI results indicating 
that the PPA responds more strongly to buildings than to other kinds of objects 
( Aguirre et al., 1998 ). Buildings have an interesting intermediate status halfway 
between objects and scenes. In terms of visual properties they are more similar to 
objects (i.e., discrete convex entities with a defi nite boundary), but in terms of spatial 
properties, they are more similar to scenes (i.e., large, fi xed entities that defi ne the 
space around them). If  the PPA responds to visual properties early but spatial proper-
ties late, then it should treat buildings as objects initially but as scenes later on. Indeed, 
this was exactly what was found: in the earliest components of the response, scenes 
were distinguishable from buildings and objects, but buildings and objects were not 
distinguishable from each other. A differential response to buildings versus nonbuild-
ing objects was not observed until signifi cantly later. 

 These results suggest the existence of two stages of processing in the PPA. The 
earlier stage may involve processing of purely visual information — for example, the 
analysis of visual features that are unique to scenes or the calculation of statistical 
summaries across the image, which would require more processing and hence more 
activity for scenes than for objects. The later stage may involve processing of spatial 
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information and possibly also conceptual information about the meaning of the 
stimulus as a place. In this scenario the early stage processes the appearance of the 
scene from the current point of view, whereas the later stage abstracts geometric 
information about the scene, which allows it to be represented in either egocentric or 
allocentric coordinates. The viewpoint-specifi c snapshot extracted in the fi rst stage 
may suffi ce for scene recognition, whereas the spatial information extracted in the 
second stage may facilitate cross talk between the PPA representation of the local 
scene and spatial representations in the RSC and hippocampus ( Kuipers, Modayil, 
Beeson, MacMahon,  &  Savelli, 2004 ). This dual role for the PPA could explain its 
involvement in both scene recognition and spatial learning ( Aguirre  &  D’Esposito, 
1999 ;  Bohbot et al., 1998 ;  Epstein, DeYoe, Press, Rosen,  &  Kanwisher, 2001 ;  Ploner 
et al., 2000 ). 

 Object-Based Scene Recognition 

 A central theme of the preceding section is that the PPA represents scenes in terms 
of whole-scene characteristics, such as geometric layout or visual summary statistics. 
Even when the PPA responds to objects, it is typically because the object is acting as 
a landmark or potential landmark — in other words, because the object is a signifi er 
for a place and thus has become a kind of  “ scene ”  in its own right. There is little 
evidence that the PPA uses information about the objects within a scene for scene 
recognition. This neuroscientifi c observation dovetails nicely with behavioral and 
computational work that suggest that such whole-scene characteristics are used for 
scene recognition ( Fei-Fei  &  Perona, 2005 ;  Greene  &  Oliva, 2009b ;  Oliva  &  Torralba, 
2001 ;  Renninger  &  Malik, 2004 ). 

 However, there are certain circumstances in which the objects within a scene might 
provide important information about its identity or category. For example, a living 
room and a bedroom are primarily distinguishable on the basis of their furniture — a 
living room contains a sofa whereas a bedroom contains a bed — rather than on the 
basis of their overall geometry ( Quattoni  &  Torralba, 2009 ). This observation suggests 
that there might be a second, object-based route to scene recognition, which might 
exploit information about the identities of the objects with a scene or their spatial 
relationships ( Biederman, 1981 ;  Davenport  &  Potter, 2004 ). 

 MacEvoy and I obtained evidence for such an object-based scene recognition 
mechanism in an fMRI study (MacEvoy  &  Epstein, 2011; see   fi gure 6.4, plate 13 ). We 
reasoned that a brain region involved in object-based scene recognition should encode 
information about within-scene objects when subjects view scenes. To test this we 
examined the multivoxel activity patterns elicited by four different scene categories 
(kitchens, bathrooms, intersections, and playgrounds) and eight different objects that 
were present in these scenes (stoves and refrigerators; bathtubs and toilets; cars and 
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 Figure 6.4 (plate 13) 
 Evidence for an object-based scene recognition mechanism in the lateral occipital (LO) cortex. 
Multivoxel activity patterns elicited during scene viewing (four categories: kitchen, bathroom, 
intersection, playground) were classified based on activity patterns elicited by two objects characteristic 
of the scenes (e.g., stove and refrigerator for kitchen). Although objects could be classified from object 
patterns and scenes from scene patterns in both the LO and the PPA, only LO showed above-chance 
scene-from-object classification. This suggests that scenes are represented in LO (but not in the PPA) in 
terms of their constituent objects. Adapted from MacEvoy and Epstein (2011). 
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traffi c lights; slides and swing sets). We then looked for similarities between the scene-
evoked and object-evoked patterns. Strikingly, we found that scene patterns were 
predictable on the basis of the object-evoked patterns; however, this relationship 
was not observed in the PPA but in the object-sensitive lateral occipital (LO) cortex 
( Grill-Spector, Kourtzi,  &  Kanwisher, 2001 ;  Malach et al., 1995 ). More specifi cally, 
the patterns evoked by the scenes in this region were close to the averages of the pat-
terns evoked by the objects characteristic of the scenes. Simply put, LO represents 
kitchens as the average of stoves and refrigerators, bathrooms as the average of toilets 
and bathtubs.    

 We hypothesized that by averaging the object-evoked patterns, LO might be creating 
a code that allows scene identity (or  gist ) to be extracted when subjects attend broadly 
to the scene as a whole but still retains information about the individual objects that 
can be used if  any one of them is singled out for attention. Indeed, in a related study, 
when subjects looked at briefl y presented scenes with the goal of fi nding a target object 
(in this case, a person or an automobile), LO activity patterns refl ected the target 
object but not the nontarget object, even when the nontarget object was present 
( Peelen, Fei-Fei,  &  Kastner, 2009 ). Thus, LO can represent either multiple objects 
within the scene or just a single object, depending on how attention is allocated as a 
consequence of the behavioral task ( Treisman, 2006 ). 

 A very different fi nding was observed in the PPA in our experiment. The multivoxel 
patterns in this region contained information about the scenes and also about the 
objects when the objects were presented in isolation. That is, the scene patterns were 
distinguishable from each other, as were the object patterns. However, in contrast to 
LO, where the scene patterns were well predicted by the average of the object patterns, 
here there was no relationship between the scene and object patterns. That is, the PPA 
had a pattern for kitchen and a pattern for refrigerator, but there was no similarity 
between these two patterns. (Nor, for that matter, was there similarity between con-
textually related patterns: stoves and refrigerators were no more similar than stoves 
and traffi c lights.) Whereas LO seems to construct scenes from their constituent 
objects, the PPA considers scenes and their constituent objects to be unrelated items. 
Although at fi rst this may seem surprising, it makes sense if  the PPA represents global 
properties of the stimulus. The spatial layout of a kitchen is unlikely to be strongly 
related to the spatial axes defi ned by a stove that constitutes only a small part of a 
whole. Similarly, the visual properties of individual objects are likely to be swamped 
when they are seen as part of a real-world scene. 

 Thus, it is feasible that LO might support a second pathway for scene recognition 
based on the objects within the scene. But is this object-based information used to 
guide recognition behavior? The evidence on this point is unclear. In a behavioral 
version of our fMRI experiment, we asked subjects to make category judgments on 
briefl y presented and masked versions of the kitchen, bathroom, intersection, and 
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playground scenes. To determine the infl uence of the objects on recognition, images 
were either presented in their original versions, or with one or both of the objects 
obscured by a noise mask. Recognition performance was impaired by obscuring the 
objects, with greater decrement when both objects were obscured than when only one 
object was obscured. Furthermore, the effect of obscuring the objects could not be 
entirely explained by the fact that this manipulation degraded the image as a whole. 
Rather, the results suggested the parallel operation of object-based and image-based 
pathways for scene recognition. 

 Additional evidence on this point comes from studies that have examined scene 
recognition after LO is damaged, or interrupted with transcranial magnetic stimula-
tion (TMS).  Steeves and colleagues (2004)  looked at the scene recognition abilities of 
patient D.F., who sustained bilateral damage to her LO subsequent to carbon mon-
oxide poisoning. Although this patient was almost completely unable to recognize 
objects on the basis of their shape, she was able to classify scenes into six different 
categories when they were presented in color (although performance was abnormal 
for grayscale images). Furthermore, her PPA was active when performing this task. 
A TMS study on normal subjects found a similar result ( Mullin  &  Steeves, 2011 ): 
stimulation to LO disrupted classifi cation of objects into natural and manmade but 
actually  increased  performance on the same task for scenes. Another study found no 
impairment on two scene discrimination tasks after TMS stimulation to LO but sig-
nifi cant impairment after stimulation to the TOS ( Dilks et al., 2013 ). In sum, the 
evidence thus far suggests that LO might not be necessary for scene recognition 
under many circumstances. This does not necessarily contradict the two-pathways 
view, but it does suggest that the whole-scene pathway through the PPA is primary. 
Future experiments should attempt to determine what scene recognition tasks, if  any, 
require LO. 

 Conclusions 

 The evidence reviewed above suggests that our brains contain specialized neural 
machinery for visual scene recognition, with the PPA in particular playing a central 
role. Recent neuroimaging studies have signifi cantly expanded our understanding of 
the function of the PPA. Not only does the PPA encode the spatial layout of scenes, 
it also encodes visual properties of scenes and spatial information that can potentially 
be extracted from both scenes and objects. This work leads us to a more nuanced 
understanding of the PPA ’ s function under which it represents scenes but also other 
stimuli that can act as navigational landmarks. It also suggests the possibility that the 
PPA may not be a unifi ed entity but might be fractionable into two functionally or 
anatomically distinct parts. Complementing this PPA work are studies indicating that 
there might be a second pathway for scene recognition that passes through the lateral 
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occipital cortex. Whereas the PPA represents scenes based on whole-scene character-
istics, LO represents scenes based on the identities of within-scene objects. 

 The study of scene perception is a rapidly advancing fi eld, and it is likely that new 
discoveries will require us to further refi ne our understanding of its neural basis. 
In particular, as noted above, very recent reports have identifi ed scene-responsive 
regions in the macaque monkey ( Nasr et al., 2011 ), and neuronal recordings from 
these regions have already begun to expand on the results obtained by fMRI studies 
( Kornblith et al., 2013 ; see  Epstein  &  Julian, 2013,  for discussion). Thus, we must be 
cautious about drawing conclusions that are too defi nitive. Nevertheless, these caveats 
aside, it is remarkable how well the different strands of research into the neural basis 
of scene recognition have converged into a common story. A central goal of cognitive 
neuroscience is to understand the neural systems that underlie different cognitive 
abilities. Within the realm of scene recognition, I believe the fi eld can claim some 
modicum of success. 
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 Note 

 1.   In  Epstein and Morgan (2012)  we consider two other possible scenarios. Under the first scenario 
fMRIa operates at the synaptic input to each unit ( Epstein et al., 2008 ;  Sawamura, Orban,  &  Vogels, 
2006 ), whereas MVPA indexes neuronal or columnar tuning ( Kamitani  &  Tong, 2005 ;  Swisher et al., 
2010 ). If  this scenario is correct, the PPA might be conceptualized as taking viewpoint-specific inputs 
and converting them into representations of place identity and scene category. Under the second 
scenario, fMRIa reflects the operation of a dynamic mechanism that incorporates information about 
moment-to-moment expectations ( Summerfield, Trittschuh, Monti, Mesulam,  &  Egner, 2008 ), whereas 
MVPA reflects more stable representational distinctions, coded at the level of the neuron, column, or 
cortical map ( Kriegeskorte, Goebel,  &  Bandettini, 2006 ).   
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 Human vision can understand an image of a scene extremely quickly and effortlessly. 
However, the mechanisms mediating scene understanding are still being explored. This 
chapter proposes that scene understanding is not derived from a unique, isolated cogni-
tive process but rather is part of a more general mechanism of associative processing. 
When a person is understanding a scene, it is the collection of associations, meaning 
the co-occurrence of objects, the spatial relations among these objects, and other sta-
tistical regularities associated with scene categories that are processed. The object-to-
object relations and spatial relations defi ne the scene and signify a scene category. 
Framing scene understanding as associative processing provides a framework for not 
only a bottom-up fl ow of information in which the visual stimulus is analyzed but also 
a top-down fl ow of information. Associative processing is used to generate predica-
tions and expectations about what is likely to appear in the environment (Bar, 2007), 
which facilitates additional scene processing. Without this facilitation, scene under-
standing would be extremely slow. This chapter discusses an associative processing 
approach to scene understanding that provides a testable model for future research.    

 Scenes are rich stimuli that carry vast amounts of information in a wide variety 
of domains. For example, if  you look at   fi gure 7.1A , you can quickly identify the 
scene as a pier and predict the water likely extends beyond the boundaries of the 
picture presented; if  you were there, you would be able to walk out on the pier for 
some distance; and given the pier lights are on, it is likely close to evening time. 
Most theories explaining the mechanisms underlying scene understanding concen-
trate within a single dimension of the spatial domain (e.g., three-dimentionality, or 
geometric layout, or spatial boundary), which may be plausible given   fi gure 7.1A . 
However, in regard to   fi gure 7.1B,  it quickly becomes apparent that scene under-
standing involves more than spatial processing of a single dimension because it is 
quickly understood that this scene is bizarre given that a giant size rubber duck is 
in a city river. In the case of this image there are many associative violations: a 
rubber duck in a river and the size of the duck compared with the size of the 
people. This exemplifi es how the relations within the scene create a meaningful 

 Elissa M. Aminoff 

 Putting Scenes in Context 

 7 



136 Elissa M. Aminoff

whole stimulus. Along these same lines, the description of   fi gure 7.1A  included 
characteristics derived from associative processing: predicting the water extended 
beyond the boundaries of the scene and that the picture was taken close to evening. 
The scene was also characterized by the joint presence of the boardwalk and the 
water underneath, which are strongly associated together. Moreover, if  scene under-
standing could be reduced to a single spatial dimension, then understanding the 
differences between   fi gure 7.1C , a dining room, and   fi gure 7.1D , a conference 
room, would be very diffi cult given the similar spatial structure of these two scenes. 
These provide clear examples of how mechanisms mediating scene understanding 
should include processing the associations among the elements of a scene, both the 
object-to-object relations and the spatial relations. 

 This chapter proposes a mechanism of scene understanding by which properties of 
a scene that have high associative strength (e.g., objects, such as a place setting, and 
the spatial layout, a large central surface surrounded by items) are extracted fi rst and 
used to access long-term representations of contexts and scene categories. These long-
term representations are then used to generate predictions and expectations about the 
environment, facilitating information processing. This theory provides a parsimonious 
explanation of scene understanding that incorporates the elegant theories previously 
proposed in scene understanding into a more comprehensive mechanism. 

A B

C D

 Figure 7.1 
 Examples of scenes. 
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 Existing Theories of Scene Understanding 

 Previous theories of scene understanding, many inspired by fMRI results, concentrate 
on trying to describe a single dimension of a scene that provides the most meaningful 
information. This earlier research revealed valuable steps in our understanding of 
scene perception and of the type of scene information that is represented in the cortex. 
For example, scene categories can be characterized by global properties that take 
into account overall spatial layout (e.g.,  “ spatial envelope ” ) ( Oliva  &  Torralba, 2001 ; 
 Torralba  &  Oliva, 2003 ), which has been shown to predict behavioral performance in 
scene categorization ( Greene  &  Oliva, 2009 ). Moreover, the neural pattern of scene 
representation carries meaningful information in this regard as well. Spatial boundary 
(e.g., an open or closed expanse) ( Kravitz, Peng,  &  Baker, 2011 ;  Park, Brady, Greene, 
 &  Oliva, 2011 ), geometric layout ( Epstein  &  Ward, 2010 ), and three-dimensionality 
( Mullally  &  Maguire, 2011 ) are all encoded within the activity related to processing 
scenes. However, there is a problem with each of these theories. First, the different 
theories are mutually exclusive. Studies providing evidence for each theory indepen-
dently demonstrate that their proposed spatial dimension is the property refl ected in 
the neural activity related to processing scenes, without including a role for the other 
dimensions to play a role as well.  Each  of  the dimensions listed above is an important 
aspect of a scene, and all should be refl ected in the accompanying neural signal, which 
is not accounted for in these theoretical accounts. Second, the previous discussion of 
scene understanding accounts exclusively for spatial dimensions of a scene, which 
misses both the spatial relations within the scene and information on the scene within 
nonspatial domains. For example, each of the theories mentioned above treats both 
  fi gure 7.1A  and   fi gure 7.1B  with the same validity, which is obviously missing an 
important dimension of differences between these scenes. 

 A third problem with existing theories of the mechanisms underlying scene under-
standing is that scene perception engages regions of the brain that are not exclusive 
to scenes or even to spatial processing. To fi nd  “ scene-selective ”  regions of the brain, 
typically fMRI signal is measured when the participant is viewing scenes compared 
with viewing objects, faces, and phase-scrambled images. This contrast reveals three 
main sites of activity: the parahippocampal cortex (which may also extend into more 
posterior lingual regions; PHC; also known as the parahippocampal place area; PPA), 
the retrosplenial complex (which includes the retrosplenial cortex, and regions of the 
posterior cingulate and precuneus; RSC), and a lateral region near the parietal-
occipital junction (LPC) (e.g.,  Aguirre, Detre, Alsop,  &  D’Esposito, 1996 ;  Dilks, 
Julian, Paunov,  &  Kanwisher, 2013 ;  Epstein  &  Kanwisher, 1998 ;  Henderson, Larson, 
 &  Zhu, 2008 ). Both the PHC and the RSC are also implicated in episodic memory 
(e.g.,  Addis, Wong,  &  Schacter, 2007 ;  Davachi, Mitchell,  &  Wagner, 2003 ;  Diana, 
Yonelinas,  &  Ranganath, 2010 ;  Ranganath, 2010 ), even when nonspatial stimuli are 
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used ( Kirwan  &  Stark, 2004 ). And the PHC and RSC are also part of the default 
mode ( Buckner, Andrews-Hanna,  &  Schacter, 2008 ;  Raichle et al., 2001 ), which is 
typically more active at rest than while on task. How can these rather disparate func-
tions all activate the same regions of the brain? If  the processing had been only spatial, 
than episodic memory regarding nonspatial content should not engage these regions. 
And moreover, why would it be part of the default network? This chapter proposes 
the reason for this overlap of functional activity is related to a fundamental cognitive 
process involved in scene understanding, episodic memory, and default mode: associa-
tive processing ( Aminoff, Kveraga,  &  Bar, 2013 ;  Bar, Aminoff, Mason,  &  Fenske, 
2007 ). Associative processing is critical in scene understanding in order to examine 
the relations among the units of a scene and to understand the scene with respect to 
a larger context. Along these lines, a scene can be thought of as a collection of asso-
ciative elements that are repeatedly encountered together. This provides a mechanism 
for defi ning the differences in the validity between   fi gure 7.1A  and B. Associative 
processing is also critical in episodic memory by forming a memory of an event by 
creating associations among the different elements of the episode and using long-term 
contextual associations to fi ll in details. Last, associative processing can explain what 
is occurring during the  “ rest ”  periods that defi ne the default network. These are times 
in which an individual is not devoid of thought but rather is engaged in free associa-
tive thought or mind wandering, which engages associative processing ( Mason et al., 
2007 ). Thus, associative processing can explain why each of these processes engages 
overlapping regions of the cortex. 

 Associative Processing Explanation of Scene Understanding 

 An associative processing approach to scene understanding addresses each of the 
concerns listed above. First, it includes processing of information along different 
dimensions — the only requirement is to have associative relevance. For example, 
spatial boundary, such as expanse, is strongly associated with outdoor landscapes, and 
thus, activity related to scene understanding may refl ect the processing of spatial 
boundary because it is highly associative to a type of scene. Second, associative pro-
cessing designates the relations among elements in a scene in both spatial (e.g., the 
size of the duck compared to the size of the people) and nonspatial domains (e.g., a 
duck in a river and not in a bathtub) as mediating scene understanding. Third, scene 
understanding is not explained through an isolated process, which should have special 
neural regions dedicated only to scene understanding, but rather as part of a more 
general mechanism of associative processing, which is involved in other cognitive 
domains such as episodic memory and mind wandering. 

 If  associative processing is the underlying mechanism involved in scene understand-
ing, then the associations within a scene should modulate neural activity related to 
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scene processing. To test this, scene processing in the brain was compared for scenes 
with a foreground object that had strong contextual associations (e.g., a scene with a 
tennis racket in the center) versus scenes with a foreground object that had weak 
contextual associations (e.g., a scene with a vase in the center;   fi gure 7.2A, plate 14) 
 ( Bar, Aminoff,  &  Schacter, 2008 ). More associative processing would occur if  the 
foreground object were strongly associated with a specifi c context (e.g., a tennis 
racket — tennis court) because the stimulus would elicit activation of related associa-
tions (e.g., tennis net, the lines of the court, sounds of tennis balls being hit). In 
comparison, a scene with a foreground object that had weak contextual associations 
(e.g., a vase, which can be found anywhere) would not elicit any additional associa-
tions. Results demonstrated, more fMRI signal was associated with processing the 
scenes with the strong contextual foreground object than with the scenes with a weak 
contextual foreground object. This differential activity was found within the  “ scene-
selective ”  regions, the RSC, PHC, and LPC, and an additional region within the 
medial prefrontal cortex (MPFC). These two conditions of scenes were matched for 
spatial information; for example, both sets of scenes are three-dimensional and contain 
geometric layout, and thus, the differential activity could not be attributed to process-
ing of the spatial properties of the scene. In contrast, this differential activity sup-
ported the proposal that associative processing was mediating scene understanding 
because the stimuli with more associative information activated scene-selective regions 
to a greater extent.    

 If  associative processing was modulating the activity within these scene-selective 
regions, then these regions should be active for nonscene stimuli that are also highly 
associative. This was tested in a number of ways. First, activity in these regions elicited 
for single objects was investigated. As mentioned above, some objects are strongly 
associated with a context (e.g., shower curtain — bathroom), and some objects are 
weakly associated with many contexts and have no specifi c context strongly associated 
with them (e.g., folding chair). Moreover, some objects are strongly associated with 
contexts that are not tied to a specifi c place but are still strongly associated with a 
clustering of objects, such as a cake at birthday party, referred to as a nonspatial 
context. When the fMRI activity elicited for viewing objects that were strongly associ-
ated with either a spatial context or a nonspatial context was compared with that 
evoked by viewing objects that were weakly associated with many contexts, differential 
activity was found within the scene-selective regions — the RSC, PHC, and LPC — and 
again an additional region within the MPFC   (fi gure 7.2B, plate 14)  ( Aminoff, Schacter, 
 &  Bar, 2008 ;  Bar  &  Aminoff, 2003 ;  Kveraga et al., 2011 ;  Shenhav, Barrett,  &  Bar, 
2012 ). This supported the proposal that these regions are processing associations at 
large and that the mechanism mediating scene understanding is part of this more 
general mechanism and is not unique to scenes. However, scenes typically activate 
these regions to a much larger extent than individual objects due to the richness of 
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 Figure 7.2 (plate 14) 
 Associative processing in the brain. (A) Differential activity related to processing scenes with a 
foreground object with strong contextual associations compared with processing scenes with a 
foreground object with weak contextual associations. Three main sites of activity are the scene-selective 
regions of the parahippocampal cortex and retrosplenial complex and the medial prefrontal cortex. 
(B) Differential activity related to processing single objects in isolation, comparing activity elicited for 
objects with strong contextual associations (e.g., roulette wheel) with objects that were weakly associated 
with many contexts (e.g., plants). Results were seen in the retrosplenial complex, the parahippocampal 
cortex, and the medial prefrontal cortex. (C) Associative processing of meaningless shapes. Participants 
were trained to learn associations between the shapes and locations, and some shapes that were trained 
had no associations. Using fMRI we compared activity elicited for just single shapes that only differed 
based on the associations learned during training. Comparing activity elicited for shapes with strong 
associations with shapes with no associations yielded differential activity within the parahippocampal 
cortex (zoomed-in view). This activation was divided with anterior regions of the PHC processing 
nonspatial associations and posterior regions of the PHC processing spatial associations. 
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the associations within a scene. A scene reveals many more associations to process 
than a single object and thus elicits these regions to a greater amount. 

 Objects are always encountered embedded within a scene, and therefore, an alterna-
tive interpretation of the differential activity related to object processing was that 
instead of associative processing it was an indirect activation of scene processing in 
which spatial processing along a single dimension may not be disputed (e.g.,  Mullally 
 &  Maguire, 2011) . To address this issue, associative processing in extremely minimal 
stimuli (associations between meaningless shapes within a grid trained over a 2-week 
period) was examined in comparison to scene processing   (fi gure 7.2C, plate 14;  
 Aminoff, Gronau,  &  Bar, 2007 ). Thus, this was the second method for examining the 
neural signal related to associative processing in nonscene stimuli. In this study the 
specifi c hypothesis addressed the parahippocampal region alone, targeting whether 
the  “ parahippocampal place area ”  may not be specifi c for places but rather for stimuli 
with strong associations. If  overlapping activity within the PHC were found for pro-
cessing scenes and for processing the associations for the meaningless shapes, this 
would provide strong evidence that associative processing is the mechanism that 
underlies scene understanding. Indeed, this is what was found. When the fMRI signal 
elicited for shapes that had strong contextual associations was compared with that 
for shapes that had no associations, differential activity was found within the 
PHC, overlapping with activity elicited for scenes. Even with such minimal stimuli 
(meaningless shapes), these highly controlled associations elicited activity within the 
scene-selective parahippocampal region, supporting an associative processing inter-
pretation of the functional role of this region. 

 This collection of studies provides evidence supporting the proposal that associative 
processing should be attributed to these regions previously thought to be selective for 
scene processing, and thus, scene understanding should be considered a product of 
associative processing. So far, in this discussion all brain regions (RSC, PHC, LPC, 
and MPFC) have been investigated together without consideration of the unique 
contribution of each region to scene understanding and to associative processing in 
general. To elaborate on a potential mechanism mediating scene understanding and 
associative processing, it requires an explanation that accounts for the  network  of  
brain regions sensitive to scenes rather than focusing on just one region or a single 
function. This chapter proposes a mechanism (  fi gure 7.3 ) that attributes the RSC as 
storing and processing a long-term representation of a context, or scene category, that 
is built up over a lifetime in which regularities are extracted and represented within a 
prototypical representation of the context — a  “ context frame ”  ( Aminoff et al., 2008 ; 
 Bar  &  Ullman, 1996 ). The PHC, on the other hand, acts as a liaison between the 
context frames stored in the RSC and the current environment. And fi nally, the MPFC 
uses the associations stored in the context frames of the RSC to make predictions 
about what will next occur in the environment, facilitating subsequent cognition ( Bar, 
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2007 ). Not as much work has been dedicated to exploring the role of the LPC in 
associative processing, and thus, no concrete proposal of the functional role of the 
LPC is being made at this time.    

 Context Frames in the Retrosplenial Cortex 

 Throughout a lifetime we repeatedly experience certain contexts and categories of 
scenes. This allows us to step into a kitchen that we have never been in before and 
still easily identify the room as a kitchen, know that the sink is for washing dishes 
and not brushing teeth, and expect to fi nd a refrigerator with food inside. Matching 
the perception of a scene with a long-term memory representation of the related scene 
category or context is a critical aspect to scene understanding. It provides heuristics 
and shortcuts to facilitate and guide perception of the scene. These long-term memory 
representations, termed  context frames  ( Bar  &  Ullman, 1996 ), contain prototypical 
information about a scene category or a context defi ned by the regularities extracted 
over repeated exposure to different exemplars, which is similar to concepts such as 
 schema  ( Bartlett, 1932 ). For example, a context frame of a bathroom would include 
a shower, toilet, sink, toothbrush, and so on. It would also include spatial relations 
such as the toilet paper being next to the toilet and the sink placed in front of a mirror. 
However, the information within a context frame is general enough to apply to any 

 Figure 7.3  
 A proposed psychological and neural mechanism underlying scene understanding. Information with 
contextual significance is first extracted and processed in the PHC. This contextual information is then 
used to activate the relevant context frame in the RSC. The associations within the context frame are 
then used to generate expectations and predictions about future interactions in the environment within 
the MPFC. 
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exemplar (e.g., a bathtub would be represented, but whether the tub was a claw-foot 
bathtub would not necessarily be included). The prototypical nature of this represen-
tation allows it to be applicable to all different exemplars of the context and to be 
applied to new instances of the context to help guide behavior, expectations, and 
interaction with the environment ( Bar, 2007 ). To ascribe a role to the RSC in process-
ing context frames, the RSC should exhibit the ability to (1) integrate across multiple 
stimuli to create a network of associations inherent to a context frame; (2) abstract 
across multiple exemplars to a combined, prototypical representation; and, last, (3) 
relate specifi c instances to the greater context. Previous research on the RSC provides 
strong evidence to delegate this region as storing and processing these context frames. 

 1.  Integrating across multiple stimuli    The RSC is located in a highly integrative region 
of the brain. It has reciprocal connections with the hippocampal formation, the para-
hippocampal region, thalamic nuclei, prefrontal cortex, superior temporal sulcus, 
areas V4, and other cingulate regions ( Kobayashi  &  Amaral, 2003 ,  2007 ). Therefore, 
it receives many inputs both in modal and amodal regions of the cortex. This provides 
a key environment to integrate over multiple signals to develop a context frame. 
Studies of RSC-lesioned rats have shown a direct link between integrating across 
multiple stimuli and RSC function. RSC-lesioned rats are impaired in learning 
associations among multiple stimuli when they are presented simultaneously or 
serially ( Keene  &  Bucci, 2008 ;  Robinson, Keene, Iaccarino, Duan,  &  Bucci, 2011 ). 
This impairment was specifi c to learning the associations among multiple stimuli, not 
in learning single stimulus-stimulus associations. This impairment in RSC-lesioned 
rats suggests a direct link between the ability to integrate across many associations 
and RSC function. Thus, providing evidence that the RSC is involved in integrating 
across multiple stimuli — a critical condition necessary for processing and storing a 
context frame, which contains a network of associations. 
 2.  Integrating across multiple exemplars    Within spatial memory, the RSC has been 
shown to process a representation that integrates across multiple exemplars. For 
example, the RSC processes an allocentric perspective of space ( Committeri et al., 
2004 ;  Vann  &  Aggleton, 2002 ). This allocentric perspective has also been shown to 
correlate with map learning ( Wolbers  &  Buchel, 2005 ). In order to develop an allo-
centric map it is necessary to integrate across multiple egocentric maps. Once multiple 
egocentric maps of different heading directions can be integrated, the allocentric map 
can be extracted. An analogous process can be involved in developing and accessing 
context frames in contextual associative processing. The multiple exemplars of a 
dining room (e.g., your dining room, your parents ’  dining room) are integrated 
together to provide a representation of the dining room context (i.e., analogous to the 
allocentric map) not associated with any specifi c exemplar (i.e., analogous to separate 
egocentric maps of the same area). 
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 3.  Relate specifi c instances to a broader context        Another requirement in processing 
context frames is to extrapolate a stimulus to its broader context. This is critical for 
understanding a scene; for example, in   fi gure 7.1A  it is understood that the entrance 
of the pier is on land and extends out to the portion we see over the water. Without 
linking a scene to the broader context, processes related to scene understanding, such 
as navigation, would be nearly impossible. Previous research supports a role for the 
RSC in this type of extrapolation. Park and colleagues ( Park  &  Chun, 2009 ;  Park, 
Intraub, Yi, Widders,  &  Chun, 2007 ) have shown an integral role of the RSC in relat-
ing a single picture of a scene to a larger context. For example, panoramic scenes were 
divided into three different sections. Using a repetition paradigm, the RSC treated 
three different, but continuous, views of a panoramic scene in the same way it would 
respond to three identical scene representations ( Park  &  Chun, 2009 ). By treating each 
scene as the same, the RSC appears to have extrapolated all three views into the same 
broader context. This extraction of the stimulus to a larger context was also shown 
when fMRI was used to examine the phenomenon of boundary extension — a false 
memory of a scene with wider boundaries then was actually presented (see chapter 1 
by Intraub). In this study, Park et al. found that the RSC responded to a picture of 
a scene and a picture of the same scene with a wide angle view in the same way, sug-
gesting that on fi rst presentation of a scene the RSC extracts it to the larger view (i.e., 
extending the boundaries) ( Park et al., 2007 ). Epstein and colleagues have also shown 
that the RSC is involved in processing a single scene (e.g., a specifi c location on 
campus) within a larger context (e.g., the whole campus) ( Epstein, 2008 ;  Epstein  &  
Higgins, 2007 ). These sets of studies reveal a role of the RSC in taking a single stimu-
lus and relating it to the broader context with which it is associated. This is an analo-
gous process used in contextual associative processing in which a specifi c exemplar of 
a context (e.g.,  my  bedroom) is related to the broader, prototypical, representation of 
context (i.e., context frame of a bedroom). 

 If  context frames are the representations that mediate contextual processing, and 
if  the RSC is involved in processing context frames, one could infer that the neural 
signal elicited in the RSC refl ects a process in which a highly contextual object (e.g., 
an oven) activates a relevant context frame (e.g., kitchen), which leads to the activation 
of related associations (e.g., refrigerator, pots, the smell of freshly baked cookies) 
within the context frame. By this mechanism seeing an oven can activate related asso-
ciations such as a refrigerator. This leads to the hypothesis that seeing one object will 
lead to activation of other objects related to the context but not necessarily present 
in the scene, and this will be refl ected in the neural signal of the RSC. If  these related 
objects are activated at the same time the original object was fi rst perceived, it may 
subsequently be diffi cult to remember which object was actually present in the scene 
and lead to false recognition of related objects. To test this, a false recognition para-
digm was used to investigate whether, on seeing a strong contextual object (e.g., a 
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bed), the processing related to accessing the related context frame, refl ected in the 
activity elicited from the RSC, would predict subsequent false recognition for a related 
object (e.g., thinking one also saw a dresser) ( Aminoff et al., 2008 ). The prediction 
was that the more the context frame was processed, the more likely related objects 
were processed, which increases the likelihood of subsequent false memory of the 
related object. The less a context frame was processed, the less likely related objects 
were processed, and thus, a smaller chance of false recognition of the related object. 
This false recognition would be predicted by increased BOLD signal in the RSC 
during encoding at study. We tested this hypothesis using fMRI to look at activity 
within the context brain network at encoding and found that increased BOLD signal 
in the RSC predicted subsequent false recognition of the related item ( Aminoff et al., 
2008 ). This study supported the proposal that context frames are stored and processed 
in the RSC and can be activated by the process of relating a presented object into its 
greater context, which in turn activates related objects. 

 Although this may be considered a fault of cognition ( Schacter, 1999 ), it illustrates 
a critical aspect to scene understanding: that a scene is not processed as an indivis-
ible unit in isolation but rather is processed by being related to the context most 
strongly associated with it, and this is the function of the RSC. When processing a 
scene the perception does not just include the bottom-up analysis of the stimulus 
but also includes top-down infl uences generated from the activation of related asso-
ciations in a context frame. This false recognition result exposes this mechanism, 
which, instead of resulting in weaknesses, typically results in facilitation of cogni-
tion. For example, quickly activating the related context frame can prime objects, 
yielding faster recognition of related objects. Scenes are rich stimuli that carry a lot 
of information, and activation of the related context frame can reduce the load of 
information processed based on expectations built from previous experiences within 
that scene category or context. But a critical aspect in this mechanism is fi nding the 
aspects of a scene that carry strong contextual associations, to access the related 
context frame. For this step in the mechanism, we turn to the functional role of 
the PHC. 

 The Parahippocampal Cortex: Liaison from Context Frames to the Current Environment 

 Linking the current environment to stored representations of context is critical for 
fl uid cognition. For example, walking into a room and seeing a desk chair on wheels 
we can quickly identify the room as an offi ce based on our previous experience. This 
is the result of the current stimulus, the desk chair, linking to the stored context 
frame of an offi ce. Similarly, in navigation, a current location is relayed to the stored 
representation of the town in order to create a path to the goal destination. Research 
suggests that this functional role can be attributed to the PHC. To provide evidence, 
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two assumptions need to be verifi ed: (1) sensitivity to contextually relevant informa-
tion and (2) sensitivity to the current environment. 

 1.  Sensitivity to contextual information    As previously discussed, the PHC was sensitive 
to processing the contextual associations of scenes ( Bar et al., 2008 ), objects ( Aminoff 
et al., 2008 ;  Bar  &  Aminoff, 2003 ;  Kveraga et al., 2011 ;  Shenhav et al., 2012 ), and 
learned contextual associations with novel shapes ( Aminoff, Bar,  &  Schacter, 2007 ). 
This has been shown through a number of methods and paradigms ( Diana, Yonelinas, 
 &  Ranganath, 2008 ;  Peters, Daum, Gizewski, Forsting,  &  Suchan, 2009 ). The PHC 
also has been shown to selectively process properties of an environment that have 
strong associations. For example, Janzen and Van Turennout (2004) have demon-
strated that the PHC elicits more activation for objects that are relevant for navigation 
(i.e., at decision points) compared with objects that are not ( Janzen  &  Van Turennout, 
2004 ). Moreover, familiarity, which provides a rich context, also modulated activity 
within the PHC during navigation (well-learned vs. novel routes) and landmark pro-
cessing (famous vs. unfamiliar buildings) ( Brown, Ross, Keller, Hasselmo,  &  Stern, 
2010 ;  Leveroni et al., 2000 ;  Rauchs et al., 2008 ). In addition, chess boards presented 
with a confi guration of pieces in legitimate positions compared with chess boards 
presented with a random confi guration elicited activity in the parahippocampal cortex 
( Bilali ć , Langner, Erb,  &  Grodd, 2010 ). The PHC was also sensitive to contextual 
information in a social-cognitive domain. Contextually relevant information, such as 
social hierarchical information (e.g., superior and inferior ranking), was found to 
modulate PHC activity ( Zink et al., 2008 ). In addition, action perception of meaning-
ful movement compared with meaningless movement yielded differential activity 
within the PHC ( Rumiati et al., 2005 ;  Schubotz, Korb, Schiffer, Stadler,  &  von 
Cramon, 2012 ). And within the auditory domain the PHC responded to highly con-
textual sounds (e.g., the sound of a fax machine) over weak contextual (e.g., rain) or 
meaningless sounds ( Arnott, Cant, Dutton,  &  Goodale, 2008 ;  Engel, Frum, Puce, 
Walker,  &  Lewis, 2009 ;  Engelien et al., 2006 ). Thus, through a wide array of stimuli, 
in many different domains of information, the PHC has a clear role in processing 
highly contextual stimuli. The PHC is not just processing any stimuli but in fact 
processes only stimuli that have contextual relevance, which presumably are used to 
activate the relevant context frames. Therefore, when it is involved in scene under-
standing, it does not process the entire scene but processes parts of a scene that have 
contextual relevance. 
 2.  Sensitivity to the current environment    To assume a functional role for the PHC as 
the liaison between the current environment and the stored context frame, it is impor-
tant to show that the PHC not only is sensitive to contextual information (as is the 
RSC) but is modulated by and interacts with the current environment. The PHC 
activity refl ects the current environment by exhibiting sensitivity to the current stimu-
lus specifi cally rather than extracting just the gist or abstracting it from present 



Putting Scenes in Context 147

physical form. For example, the PHC has been sensitive to specifi c exemplars. The 
PHC is typically characterized as viewpoint specifi c and showing individuation of 
exemplars from the same category ( Epstein  &  Higgins, 2007 ;  Park  &  Chun, 2009 ; 
 Sung, Kamba,  &  Ogawa, 2008 ), but see  Stevens, Kahn, Wig, and Schacter (2012)  for 
important hemispheric differences. In addition, the PHC is sensitive to whether a 
strong contextual object is presented within a background and elicits more activity 
when the object is embedded within a background; in contrast, the RSC does not 
show this sensitivity and elicits similar activity for a strong contextual object in isola-
tion or embedded within a background ( Bar  &  Aminoff, 2003 ), presumably because 
both stimuli activate the same context frame. Moreover, the number of contextual 
associations can modulate the signal in the PHC. This was demonstrated by showing 
increased PHC activity for the more complex scenes ( Bar et al., 2008 ;  Chai, Ofen, 
Jacobs,  &  Gabrieli, 2010 ;  Qin, van Marle, Hermans,  &  Fern á ndez, 2011 ). Complexity 
can be reinterpreted as an increase in the number of associations present. It was also 
demonstrated in the number of contextual associations in memory encoding and 
retrieval ( Tendolkar et al., 2007 ,  2008 ). Thus, when more associations are visible in 
the present stimulus, more contextual information is processed by the PHC, which 
then presumably activates the relevant context frame in the RSC. The RSC thus shows 
activity relating to abstracting the stimulus from the specifi c episode, whereas the PHC 
shows sensitivity to the current experience of the stimulus. 

 Altogether, the PHC is found to be sensitive to the current environment and selec-
tively processes information that has strong contextual associations. Therefore, in this 
mechanism, a scene is fi rst perceived within the PHC, with the intention to extract 
meaningful contextual associations. This extracted information is then used to access 
the relevant context frame, which is stored in the RSC. This suggests that in scene 
understanding, the visual system is constantly trying to link the current environment 
with our prior experience, which can help facilitate subsequent cognition. Facilitating 
cognition describes the last stage in this mechanism, which is suggested to occur in 
the MPFC. 

 Contextual Predictions and the Medial Prefrontal Cortex 

 Contextual processing can facilitate cognition by generating expectations and predic-
tions about the next events to occur in the environment. This is the role attributed to 
the MPFC. Associations of a context frame can be used to anticipate what is not 
directly perceived in the current environment. This is critical for understanding pic-
tures of scenes, such as anticipating that the pier in   fi gure 7.1A  eventually leads to 
land, and the water extends beyond the boundaries of the photograph presented. This 
is also critical for navigation; for example, when I open the door to my offi ce, I know 
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what to expect and know how to navigate to reach the elevators. Contextual processing 
is the proposed mechanism that yields these expectations. 

 To attribute this role to the MPFC there should be evidence that the MPFC is 
involved in generating expectations and predictions. To directly test this we examined 
a memory phenomenon, boundary extension, introduced earlier in the chapter. This 
phenomenon is a distortion of memory for scenes that are remembered with extended 
boundaries. In order to extend the boundaries of the scene, it is necessary to create 
expectations of what occurs beyond the boundaries presented, and those expectations 
are necessarily derived through contextual associations. We found activity in the 
MPFC, which overlaps the contextual processing regions, predicted subsequent 
boundary extension for scenes ( Aminoff, Bar,  &  Schacter, 2007 ). Thus, the scenes that 
were remembered with extended boundaries were encoded in conjunction with 
increased MPFC activity. We interpret this result to indicate that the MPFC created 
context-based expectations of what occurred beyond the boundaries of the scene 
presented, confi rming the role of the MPFC. 

 A core process of these contextually related predictions is to use an already estab-
lished knowledge base (i.e., a context frame) to make predictions about the future. 
The MPFC has been linked to various cognitive processes, which at fi rst may seem 
confusing; however, they all share this common core process. For example, the 
MPFC is strongly implicated in social cognition and understanding the minds of 
others ( Mitchell, Macrae,  &  Banaji, 2006 ). In order to do this one uses past experi-
ences to predict the thoughts of another person ’ s mind. The MPFC, especially within 
the ventral regions, has also been strongly linked to reward and outcome processing 
in humans and in nonhuman primates ( Buckley et al., 2009 ;  Luk  &  Wallis, 2009 ; 
 Noonan et al., 2010 ;  Ridderinkhof, van den Wildenberg, Segalowitz,  &  Carter, 
2004 ). This processing of expected outcome and reward can be derived from past 
experiences and established context frames, which help guide decision making. The 
MPFC has also been implicated in a number of forms of memory-related processing. 
Autobiographical memory relies heavily on this region, both in recalling the past 
and in the ability to simulate future events, which relies on the library of autobio-
graphical past to construct the future ( Addis et al., 2007 ). Confi dence in memory 
and the act of judging whether a memory is retrievable are also found to activate 
this region ( Schnyer, Nicholls,  &  Verfaellie, 2005 ). Similarly, memory formation and 
retrieval related to schema congruency, and thus expectation congruency, have been 
linked to the MPFC ( Maguire, Frith,  &  Morris, 1999 ;  van Kesteren, Fern á ndez, 
Norris,  &  Hermans, 2010 ;  van Kesteren, Ruiter, Fern á ndez,  &  Henson, 2012 ). In 
addition, Summerfi eld and Koechlin (2008) demonstrated that the MPFC was 
involved in matching outcomes with perceptual expectations. As seen in this litera-
ture, the MPFC is related to many different cognitive processes; however, a common 
link across them is the accessing of memory to generate predictions. Thus, a natural 
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extension of this is to demonstrate a role for the MPFC in generating contextual 
predictions to facilitate scene understanding. 

 Putting the Pieces Together: A Neural Mechanism Underlying Contextual Associative 
Processing and Scene Understanding 

 Throughout this chapter, scenes are not discussed as a unique class of visual stimuli 
that are processed in isolation; rather, scenes are found to be processed via their asso-
ciations in both bottom-up and top-down information streams. It is proposed that 
when a scene is processed, its information including contextual relevance is extracted 
via processing within the PHC. This information is then used to access the relevant 
context frame to place the scene into a larger and more meaningful context via pro-
cessing by the RSC, which provides input to generate expectations and predictions 
about what is next to occur in the environment or what is occurring beyond the cur-
rently visible scene via processing in the MPFC (  fi gure 7.3 ). 

 In the sections above evidence has linked a functional role to each region; however, 
critical evidence for this neural mechanism requires a demonstration of structural and 
functional communication among these regions. 

 Structural anatomical connections among the MPFC, RSC, and PHC have been 
documented in both humans and monkeys. By use of tracer methods, extensive bidi-
rectional anatomical connections have been shown between the PHC and RSC, 
between the RSC and MPFC, and to a lesser extent between the PHC and MPFC 
( Barbas, Ghashghaei, Dombrowski,  &  Rempel-Clower, 1999 ;  Kobayashi  &  Amaral, 
2003 ,  2007 ;  Kondo, Saleem,  &  Price, 2005 ;  Lavenex, Suzuki,  &  Amaral, 2004 ). In 
humans, to investigate anatomical connections, diffusion tensor imaging (DTI) is used 
to infer white matter tracts between different regions. DTI enabled anatomical con-
nections to be found between the PHC and the RSC (focused in the caudal regions) 
and between the MPFC and RSC (focused in rostral regions) ( Greicius, Supekar, 
Menon,  &  Dougherty, 2009 ;  Qi et al., 2012 ). Thus, the neural architecture does indeed 
support a network of communication among these three regions ( Kravitz, Saleem, 
Baker,  &  Mishkin, 2011 ). 

 Although there is neural architecture supporting a network linking these three dif-
ferent regions, it does not elucidate how the MPFC, RSC, and PHC functionally 
communicate while processing the contextual associations that are fundamental to 
scene understanding. To examine this, the spatiotemporal dynamics and cross com-
munication of these regions were investigated using magnetoencephalography (MEG) 
( Kveraga et al., 2011 ). In this investigation, examining the phase synchrony among 
the MPFC, RSC, PHC, and early visual areas assessed functional connectivity. 
Participants were asked to recognize pictures of objects, which, unknown to the 
participants, included stimuli with strong or weak contextual associations. MEG 
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phase synchrony analyses demonstrated that there was signifi cantly more phase 
locking in the neural signal across the context cortical network (PHC, RSC, and 
MPFC) for the strong contextual objects than for the weak contextual objects. The 
onset of the synchronous activity among the regions revealed the time course of 
contextual processing in the visual domain. Differential neural signals related to con-
textual processing began early (~150 – 220 ms from stimulus onset) between the early 
visual areas and the PHC and was followed by signifi cant phase locking between the 
PHC and RSC (~170 – 240 ms). The RSC continued contextually related processing 
with synchronous activity with the early visual areas (~310 – 360 ms), which was 
followed by a period of synchronous activity between the RSC and MPFC (~370 – 
400 ms) ( Kveraga et al., 2011 ). These results elucidate the time course of information 
fl ow within the cortical network processing contextual associations. 

 The time course of contextual processing revealed by this MEG study provides 
evidence for the proposed psychological and neural mechanism underlying contextual 
processing and scene understanding (  fi gure 7.3 ). Early in visual processing the PHC 
extracts the relevant contextual information for the stimuli, demonstrated by the 
signifi cant phase locking with the early visual regions. This information is then fed to 
the RSC, activating the relevant context frame. The associations within the context 
frame are proposed to provide important feedback information to the early visual 
areas. And fi nally, the MPFC responds to the context frame selection in the RSC by 
generating contextually relevant expectations. 

 Conclusions 

 The goal of this chapter was to elucidate a mechanism of scene understanding that 
takes into account that scenes are not simply a class of visual stimuli with a particular 
geometric layout but rather are laden with rich contextual associations. The overlap 
between regions of the brain that process context, scenes, episodic memory, and 
stimulus-independent thought is not a coincidence and indicates an inherent com-
monality of relying on experience-based associations. The roles of the PHC, RSC, 
and MPFC in scene understanding were investigated and discussed within a frame-
work of contextual associative processing. This mechanism includes the extracting of 
contextual associative information from the environment in the PHC, which activates 
the relevant context frame in the RSC. The associations within the context frame 
provide the source for the MPFC to generate predictions, which facilitate cognition 
and our interaction with the environment. Associative processing provides an account 
of scene understanding that explains the complexity and diversity of the information 
processed in a scene. Scene processing is not just a bottom-up perception but rather 
is extrapolated into the context it is associated with that has been learned over a 
lifetime, providing top-down feedback to guide further processing. 
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 Summary 

 Isolated objects do not exist in the natural world because they are virtually always 
embedded in contextual scenes. Despite such complexity, object recognition within 
scenes appears both effortless and virtually instantaneous for humans, whereas coping 
with natural scenes is still a major challenge for computer vision systems. Even in 
categorization tasks with briefl y fl ashed (20 ms) natural scenes, humans can respond 
with short latencies (250 – 280 ms) to any exemplar from a wide range of categories 
(animal, human, vehicles, urban or natural scenes). 

 In daily life, online contextual information can facilitate the processing of all objects 
that can be expected in such a context. But the situation is different in fast visual 
categorization tasks in which subjects have to process a succession of unrelated briefl y 
fl ashed scenes and therefore cannot make any predictions about the photograph that 
will be presented next. In such cases, context and embedded objects have to be pro-
cessed at the same time in an ascending fl ow of visual processing. In the present 
chapter we discuss a series of experiments showing that even in rapid go/no-go manual 
categorization tasks such object/context interactions can be observed. Thus, even with 
briefl y fl ashed stimuli, the context in which objects are presented can induce a perfor-
mance benefi t (or cost) depending on whether it is congruent or not with the object 
category assigned as target. This  “ contextual effect ”  is strengthened with increasing 
age and is not specifi c to humans in that monkeys ’  performance in the same tasks also 
shows the same effects. 

 A major point is that the  “ contextual effect ”  can be observed very early during 
processing, from the very fi rst short-latency manual responses. To investigate the 
latency of the earliest object/context interactions we discuss a second series of experi-
ments based on a forced saccadic choice task. In saccadic tasks, behavioral responses 
can be obtained at even shorter latencies, opening up a temporal window for studying 
contextual effects well before any manual responses have occurred. In such tasks some 
target categories (such as animals but not vehicles) can be detected before scene 
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categorization occurs. This result rules out one hypothesis often made to account for 
fast categorization response speed, the claim that subjects would base their decision 
on a prediction made from global scene statistics without real processing of the target 
object. Moreover, the earliest infl uence of context on animal detection was seen at a 
latency that matches the earliest saccades performed to global contextual scene targets. 
Object/context interactions are discussed in terms of facilitatory or inhibitory network 
connections set up by experience between populations of selective neurons that are 
used (or not) to coactivate in daily life. 

 Introduction 

 When zapping from one TV channel to another, you can make sense of a scene and 
recognize objects in a fraction of a second; moreover, this complex processing appears 
both very fast and effortless. 

 This striking effi ciency of the biological visual system is the result of innate predis-
positions combined with the shaping of the selectivity of the visual system by years 
of visual experience. When you are cooking a dinner in your kitchen or jogging across 
country on a Sunday morning, the continuous processing of the surrounding environ-
ment presets your sensory systems so that processing effi ciency for different kinds of 
objects can be modulated. Indeed, in our world, objects can be strongly associated 
with particular environments or appear in redundant sequences so that you will be 
more likely to come across a frying pan in a kitchen and a cow in the fi elds than the 
reverse association. Because of such repetitive associations in daily life, visual process-
ing of an object could be under strong modulations by the contextual environment 
in which the object appears. 

 The fact that the contextual information can facilitate or interfere in the domain 
of word or object recognition is not a new idea (e.g.,  Bruner, 1957 ;  Morton, 1969 ; 
 Norman, 1968 ). The recognition of a word is greatly facilitated or even infl uenced by 
the prior description of a context. In the sentence  “ I saw the bank, ”  the word  “ bank ”  
will have very different meanings in the context of navigating canal boats in locks and 
in the context of drawing money from a bank teller. In object perception the fi rst 
evidence dates from the 1970s. Objects were recognized more effi ciently when pre-
sented in coherent real-scene photographs than in jumbled scenes ( Biederman, 1972 ), 
when primed by a semantically consistent (vs. inconsistent) scene ( Palmer, 1975 ), 
or when presented in a consistent (vs. inconsistent) drawing of a scene ( Boyce  &  
Pollatsek, 1992 ;  Boyce, Pollatsek,  &  Rayner, 1989 ). Not only were objects identifi ed 
more accurately, they were also expected in specifi c locations and specifi c sizes. Indeed, 
in the early 1980s,  Biederman, Mezzanotte, and Rabinowitz (1982)  showed that when 
subjects were required to detect a target object specifi ed by its name, their performance 
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was impaired when the object embedded in the scene was violating a range of rules 
such as position, support, size, and probability of appearing in a given scene context. 
A sofa is not expected to be seen fl oating in the sky, and the artist Magritte, for 
example, has played with our expectations in many of his paintings. 

 The infl uence of scene frame on object processing was later challenged by 
Hollingworth and Henderson ( Henderson  &  Hollingworth, 1999 ; Hollingworth  &  
Henderson, 1998), who reported that after elimination of guesses and response biases, 
no advantage was found for the detection of consistent objects over inconsistent ones. 
They proposed a functional isolation model in which object identifi cation processes 
are isolated from knowledge about the world. However, using a memory task,  
Hollingworth (2006)  provided evidence that object representation and location were 
bound in memory to the scene context in which the object was seen. The author clearly 
restricted possible contextual effects to the exemplar-level recognition of objects in 
scenes (a toaster in a kitchen) and still challenged the possibility of contextual effect 
on the processing of object categories. 

 In most of these experiments the stimuli used were line drawings, but the infl uence 
of context on object processing has also been shown with manipulated color photo-
graphs that were shown only once to avoid any learning ( Davenport  &  Potter, 2004 ). 
Object/background interactions were broadened to include object/object interactions 
that depended on whether objects were likely to appear (or not) in the same settings 
( Davenport, 2007 ); two objects embedded in a context are more accurately reported 
if  they are related to each other. 

 Although there now seems to be a large consensus on the infl uence of contextual 
information on object perception ( Bar, 2004 ;  Bar  &  Aminoff, 2003 ;  Goh et al., 2004 ; 
 Gronau, Neta,  &  Bar, 2008 ;  Joubert, Fize, Rousselet,  &  Fabre-Thorpe, 2008 ), the 
question of the temporal dynamics of such interactions is still wide open. 

 The infl uence of context is often seen as a top-down infl uence. When immersed in 
a given context, the representations of objects that are likely to appear might be pre-
activated by expectation ( Bar  &  Ullman, 1996 ). However, when subjects are required 
to process briefl y fl ashed scenes depicting varied and unrelated scenes, no predictions 
can be made about the next photograph that will be presented. Context and embedded 
objects have to be processed from scratch in an ascending fl ow of visual processing. 

 In the priming task used by  Palmer (1975),  a scene prime was shown for 2 seconds, 
leaving ample time for analysis and contextual effects to develop and infl uence the 
processing of the following object, but in most other experiments scenes were pre-
sented for a brief  duration. Drawings were shown for 150 ms and masked in the 
studies by  Biederman et al. (1982)  and  Boyce et al. (1989) . In  Davenport and Potter 
(2004)  photographs were displayed for only 80 ms and masked. With such short 
stimulus durations, the fact that object perception was shown to be infl uenced 
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by contextual congruence demonstrated that the pertinent contextual information 
able to infl uence object processing could be picked up very fast, with only a glance 
at the scene. 

 Although it is clear that the pertinent contextual information can be extracted very 
quickly, little is known about the time needed to process this information and the 
minimum latency at which contextual information can interact with object processing. 
Reaction times are very rarely reported, and when reported, as in the study by 
 Biederman et al. (1982) , they were over 900 ms for object detection, leaving ample 
time for long-latency interactions. Along with others ( Boyce  &  Pollatsek, 1992 ;  Boyce 
et al., 1989 ),  Biederman et al. (1982)  made the assumption that the scene schema was 
computed fi rst. Indeed, natural image statistics could be used in scene processing 
( Fiser  &  Aslin, 2001 ;  Torralba  &  Oliva, 2003 ). The gist of a scene can be extracted 
on the basis of global image features, and this could provide early contextual informa-
tion that could potentially infl uence object processing ( Oliva  &  Torralba, 2006 ,  2007 ) 
or set constraints on possible object interpretations. In the model proposed by Bar 
and collaborators, a coarse  “ blurred ”  representation of a contextual frame might be 
suffi cient to guide object processing by activating the most likely possible object(s) in 
such a contextual frame ( Bar, 2004 ;  Bar et al., 2006 ). In addition to the models based 
on the assumption that scenes are processed before objects in order to infl uence object 
perception, Davenport and Potter (2004) proposed an interactive model with mutual 
interactions between object and background. In agreement with such reciprocal infl u-
ences,  Joubert et al. (2007)  found that scene categorization was impaired when a 
foreground object was present, especially when this object was incongruent. 

 In contrast with experiments suggesting very fast interactions between object- and 
context-processing streams, other data suggest a late effect that would depend on the 
activation of semantic information. Recording EEGs when subjects are processing 
objects embedded in a congruent or incongruent context,  Ganis and Kutas (2003)  
reported the earliest signs of cerebral activity related to congruity versus incongruity 
in a late 300- to 500-ms window. 

 So far, the latency at which the earliest infl uences of context on object processing can 
be evidenced still remains to be determined. In the past few years we have investigated 
the temporal dynamics of object/context interactions with the animal/nonanimal rapid 
visual categorization task introduced by  Thorpe, Fize, and Marlot (1996) . Using a go/
no-go manual response (go on animal, no-go otherwise), subjects are required to cat-
egorize natural photographs that are briefl y fl ashed on the basis of whether or not they 
contain an animal. Human subjects are extremely effi cient in such tasks despite the fact 
that they have no a priori knowledge about the next photograph they will have to 
process, and, if  the photograph contains an animal, they have no prior information 
about its species, size, view angle or location. Moreover, the 20-ms stimulus presenta-
tion does not allow them to explore the photographs. Following the request to respond 
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 “ as fast and as accurately as possible, ”  they score 94% correct with a mean reaction 
time (RT) of about 380 – 400 ms. Disregarding anticipations, the earliest responses are 
observed at very short latencies (250 – 280 ms). Such fast responses might not even 
require conscious representations ( Thorpe, Gegenfurtner, Fabre-Thorpe,  &  B ü lthoff, 
2001 ). This task appears very appropriate to test for contextual effects on object cate-
gories, and the RT distribution including very short RT response should allow the 
latency timing at which object processing is modulated by contextual information. 

 A Contextual Effect on Object Category 

 The temporal dynamics of contextual infl uence on object processing was investigated 
using the go/no-go rapid visual categorization task introduced by  Thorpe et al. (1996) . 
The stimuli were natural scenes that were manipulated so that animal and man-made 
distractor objects were cropped and pasted on new congruent or incongruent contexts 
( Joubert et al., 2008 ). Progressive transparency was used on the object contours to 
avoid sharp edges and to allow good integration of objects with their new back-
ground. Stimulus manipulation was done with great care: adjusting for scene and 
object luminance, checking for object saliency, and taking into account object loca-
tion, orientation, and coherence (support, interposition, scale) ( Biederman et al., 
1982 ). But such manipulations are far from trivial. Despite careful manipulations, the 
comparison of rapid visual categorization using original versus manipulated but 
congruent scenes showed that, for most subjects (9 of 12), performance was slightly 
(2% in average) but signifi cantly impaired in accuracy with an increase of about 15 
ms in reaction time. Thus, manipulation of natural stimuli is not easy, and modulation 
of object processing by context was done using congruent and incongruent scenes 
that were all manipulated. 

 Scenes were considered congruent when an animal was presented in a natural 
context and a man-made object was presented in a man-made environment. Why 
did we choose the level of superordinate categories to test object/context congru-
ency? It might be semantically very incongruent to see a polar bear in the jungle or 
a deer on an ice fl ow. However, in our experiments such manipulated scenes were 
considered  “ congruent. ”  This choice was guided by preceding experiments ( Joubert 
et al., 2007 ;  Rousselet, Joubert,  &  Fabre-Thorpe, 2005 ) showing that processing scene 
gist at the superordinate level (natural vs. man-made) is faster than at more detailed 
categorization levels (sea or mountain scenes; indoor or outdoor scenes). In the same 
line, processing animals at the superordinate level is faster than processing them at 
the basic level, for example, categorizing animals as dogs or birds ( Mac é , Joubert, 
Nespoulous,  &  Fabre-Thorpe, 2009 ). To be very schematic, one knows it is an animal 
in a natural context before knowing that it is a bird fl ying over a lake. On average, 
processing at the superordinate level is faster by at least 50 ms, and thus, by using 



160 M. Fabre-Thorpe

congruent object/context association at the superordinate level, we could investigate 
the modulation of object processing on responses with latencies ranging from 250 
to 600 ms and hope to determine the earliest latency at which such modulation 
can be found. 

 The results ( Joubert et al., 2008 ) showed a robust effect of contextual information 
on object processing with an overall signifi cant drop of accuracy and increase of mean 
reaction time (RT) with incongruent stimuli (  fi gure 8.1, plate 15 ). With a natural scene 
as background, subjects were more likely to produce a correct go response when an 
animal was present and less likely to be able to withhold their go response (correct 
no-go response) when the scene contained a man-made object. Thus, a natural back-
ground induced a bias toward responding that an animal was present. At the indi-
vidual level the performance impairment was very consistent: the drop of accuracy 
induced by incongruent images was individually signifi cant in all subjects, and the 
increase of mean reaction times was present in all subjects and reached signifi cance 
in about half  of them. This effect was not specifi c to the set of stimuli, as it was 
replicated using different object/background associations. It also did not depend on 
object saliency: when the most salient point of each stimulus was determined using 
the saliency toolbox ( Walther  &  Koch, 2006 ) inspired by  Itti and Koch (2001) , the 
effect was always present regardless of whether the most salient point of the photo-
graph was found on, close to, or far from the foreground object.    

 The most interesting observation concerned the temporal dynamics of object/
context interactions. No minimum delay was necessary to observe a contextual 

 Figure 8.1 (plate 15) 
 Performance in the animal/nonanimal rapid visual categorization task. In A and B performance levels 
are shown in light gray for congruent stimuli and in dark gray for incongruent stimuli (see text). Note 
that for correct go responses congruent stimuli are animals in a natural context and that for correct 
no-go responses congruent photographs are man-made objects on man-made contexts. (A) Global 
accuracy, accuracy of correct go response on animal target, accuracy of correct no-go response on 
distractor, and median reaction time of correct go responses. (B) d-prime ( d ’), showing the shift toward 
longer latencies in the incongruent condition (in dark gray) relatively to the congruent condition (in light 
gray). Adapted from Joubert et al. (2008). 
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infl uence on object categorization, as even the earliest responses produced by the 
subjects were modulated by scene context (as shown by the d’ curve for the noncon-
gruent condition that was shifted toward longer latencies by about 20 – 30 ms; see   fi gure 
8.1B, plate 15 ). 

 This experiment showed a clear effect of contextual information on object process-
ing at the level of superordinate categories. Moreover, incongruent object/context 
associations affect the information accumulation rate even for responses with the 
shortest latencies, those around 250 ms, suggesting that such interactions happen very 
early in visual processing 

 Getting Rid of Biases Using Natural Images 

 Because the biological visual system has been optimized through years of experience 
to deal with our complex surrounding world, the use of natural photographs is essen-
tial to study its functioning. However, such stimuli are very diffi cult to manipulate 
and can induce many biases, as shown by the drop of human performance on original 
images compared with congruent photographs that have been manipulated ( Joubert 
et al., 2008 ). 

 A main objective is to ensure that the effect of incongruent object/context associa-
tions is not the result of uncontrolled low-level features that would bias performance 
without any relation with stimulus congruence. Indeed, such low-level features could 
be processed much faster by the system and could bias results in terms of temporal 
dynamics of object/context interactions. 

 In order to get rid of such biases we built a set of 768 stimuli composed of 192  “ qua-
drets. ”  For each quadret (  fi gure 8.2 ) four achromatic scenes were created associating an 
exemplar of the two superordinate contextual categories (man-made or natural) and an 
exemplar of the two superordinate object categories (animal or man-made object). For 
each object/background association the man-made and natural backgrounds had equal 
average luminance and RMS contrast, and the animal and man-made object vignettes 
had equal surface, center-of-mass location, luminance, and RMS contrast. Objects 
were pasted using progressive transparency as in the preceding experiment. A wide 
variety of animals (mammals, birds, insects, reptiles, amphibians, fi sh, and crustaceans) 
and man-made objects (means of transport, urban and house furniture, kitchen uten-
sils, water containers, tools, toys, and various other objects) were used. Counterbalanc-
ing objects and backgrounds, removing colors, and controlling for object size and 
location, luminance, and contrast were employed to minimize all possible low-level 
features that could interfere and bias the effect of context on object processing.    

 With this carefully built set of stimuli we showed a similar modulation (in strength 
and timing) of object perception by the scene in which it is presented ( Fize, Cauchoix, 
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 &  Fabre-Thorpe, 2011 ). Not unexpectedly, this effect is maximal when objects are 
small ( < 3% of the scene). But whereas one could think that the repetition of the same 
stimuli would make incongruence less striking, the very same impact on performance 
was observed between congruent and incongruent stimuli after three repetitions of 
the same stimuli. 

 The results clearly show that even when low-level cues are controlled and categories 
with a large variety of exemplars are used, there is a clear effect of context on 
the processing of object categories. This effect supports very early interactions 
between object- and context-processing fl ows ( Biederman, 1972 ;  Biederman et al., 

 Figure 8.2 
 Top row, one example of the 192 sets of four stimuli used in Fize et al. (2011). With two backgrounds 
(natural and man-made) and two objects from different categories (animal targets and man-made object 
distracters), four black and white stimuli were built: two congruent (outlined in dark gray) and two 
incongruent stimuli (outlined in light gray). Below each stimulus example, the mean power spectrum 
averaged on the set of stimuli is illustrated, showing that the task cannot be solved using the stimuli ’ s 
spectral signatures. The bottom row illustrates the accuracy performance and mean reaction times as a 
function of object/scene size ratio (from very small vS,  > 3%), to small (S), intermediate (Int), and large 
(L,  > 8%). Performance on congruent stimuli (in dark gray) and on incongruent stimuli (in light gray). 
Human performance is illustrated with full lines. The dotted lines (dark and light gray) illustrate the 
performance of computer simulations with congruent and incongruent stimuli, to which we refer later in 
the chapter. 
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1982 ;  Davenport  &  Potter, 2004 ). On the other hand, it goes against the claim made 
by  Hollingworth (2006)  that contextual information plays little or no role in object 
categorization. For Hollingworth, although contextual information might be retained 
in the image of an object, such contextual features would be lost when activation of 
large numbers of exemplar representations is combined, as needed in categorization. 
Our results clearly show that this is not the case. 

 A Contextual Effect Strengthened by Aging 

 In daily life, objects tend to appear in the same environment repetitively and in pre-
dictable locations. Over our lifetime some associations will slowly be lost (boats are 
not pulled by horses along canals any more), and we might have to learn new ones 
(computers in offi ces were not very common 30 years ago). But most object/context 
associations will be continuously reinforced, especially in terms of object categories: 
wild animals still appear in natural setting, whereas pieces of furniture will mainly be 
associated with indoor scenes. With aging, numerous repetitions of such associations 
should reinforce the memories of contextual rules and strengthen the learning of what 
objects are likely to occur in which environment. What would be the size of contextual 
modulations in healthy old adults performing this fast categorization task? Old adults 
have to deal with age-related cognitive decline, but, on the other hand, they could 
benefi t from years of experience and strong object/context association rules that could 
help object perception. Such benefi ts have been shown recently in old adults involved 
in air traffi c control ( Nunes  &  Kramer, 2009 ) and in visual search using natural scenes 
and testing for contextual cuing ( Neider  &  Kramer, 2011 ). Although subject to con-
troversy ( Smyth  &  Shanks, 2008 ), the implicit use of spatial confi guration in perform-
ing visual search tasks has been reported in humans ( Chun  &  Jiang, 1998 ,  2003 ). Chun 
and Jiang used a visual search task (T among Ls) in which certain displays were 
repeated so that the target systematically appeared in specifi c location within a given 
global confi guration. Such targets were detected faster than others embedded in new 
confi gurations, but the global confi guration was learned implicitly, as subjects were 
unable to explicitly discriminate new from repeated stimulus confi gurations ( Chun  &  
Jiang, 1998 ) or to predict the location of a missing target ( Chun  &  Jiang, 2003 ). 
Contextual cuing was extended to natural scenes and shown to rely on global rather 
than local information ( Brockmole, Castelhano,  &  Henderson, 2006 ;  Brockmole  &  
Henderson, 2006 ). Compared to the nonscene displays used by Chun and Jiang, the 
effect on search time is substantially larger, and the learning with natural scenes 
appears much faster. Moreover, memory of scene/target associations with natural 
scenes was shown to be explicit as subjects could recognize repeated scenes and recall 
target position. Comparing the effect of contextual cuing in old adults performing 
visual search in natural scenes where the target location is constrained or not in the 



164 M. Fabre-Thorpe

scene,  Neider and Kramer (2011)  showed that target search in old adults (mean age 
of about 70 years) heavily relied on global context. Whereas young adults can shorten 
their mean RT by 320 ms when the location of the target is scene-constrained, the 
benefi t for older adults is more than doubled! Spatial context information allows both 
young and old adults to restrict their search time in scene locations where the target 
is more likely to appear, but the benefi t is much larger for old adults. 

 In a recent experiment ( R é my et al., 2013 ) we investigated the effect of incongruent 
versus congruent object/background associations through aging. We used a fast visual 
categorization task because the gathering of visual information is constrained by a 
brief  presentation of the stimuli (100 ms) and RTs are constrained to  < 1 second to 
force fast responses. To test old and very old human subjects, a new set of quadret 
stimuli was built that used only color stimuli with uncluttered backgrounds and large 
foreground objects. The two object categories were strongly related to outdoor natural 
scenes (animals) or indoor urban scenes (pieces of furniture). An alternative forced-
choice response (animal vs. furniture) was required. Four age groups were tested 
(young, mature, old, and very old subjects aged  > 75). In agreement with  Fize et al. 
(2011)  the use of large foreground objects necessary to test very old subjects induced 
only a minimal — but still present — contextual modulation in the group of young 
adults in terms of both accuracy and speed (  fi gure 8.3, plate 16 ). With increasing age, 
the drop of accuracy and the RT increase induced by incongruent stimuli became 
progressively larger from about 2% and 13 ms in young adults to over 7% and 29 ms 
in very old adults. The effect was again shown to be very robust at the individual level, 
as 82 of the 92 subjects tested showed both a drop of accuracy and an increase in RT.    

 In this fast categorization task scene context thus has more infl uence on the 
responses produced by old than by young adults. Because aging is also associated with 
an increase of mean RT, the larger performance impairment for incongruent scene 
stimuli could simply be the result of an increased time window for context to infl uence 
object processing, but regardless of the group, the impairment size was not positively 
correlated with mean RT. 

 With aging, global scene processing would be preserved and could play an increased 
role in object perception, whereas object processing might be impaired. These results 
are in agreement with recent studies using an fMRI adaptation task ( Goh et al., 2004 ) 
that showed a lack of adaptation to repeated objects in the context of a changing 
background, whereas adaptation could be evidenced with repeated backgrounds and 
changing foreground objects. 

 Given the temporal constraints of the fast visual categorization task — briefl y 
fl ashed photographs (100 ms) and response times limited to 1s from stimulus onset —
 the large drop of performance with incongruent stimuli suggests that old adults are 
biased toward the processing of contextual information. However, very old adults 
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 Figure 8.3 (plate 16) 
 On the left, two examples of the sets of four stimuli that were used by  R é my et al. (2013) . With two 
backgrounds (natural and man-made) and two objects from different categories (animal and furniture), 
four stimuli were built: two congruent (first and third rows) and two incongruent stimuli (second and 
fourth rows). On the right, the drop of performance in accuracy and the increased response latencies 
observed when performance on incongruent stimuli is compared to performance on congruent stimuli. 
This  “ congruence ”  effect increases with age from young adult (Y) to mature adults (M), old (O), and 
very old adults (vO). 

are still very good at performing the task despite the temporal constraints, scoring 
94% correct with congruent scenes (95% correct for the young group), a robust 
performance that could depend on the strength of encoded object-context associa-
tions in the parahippocampal cortex ( Aminoff, Gronau,  &  Bar, 2007 ;  Bar  &  Aminoff, 
2003 ;  Goh et al., 2004 ). 

 The delayed response with incongruent object/context associations could also be 
explained in terms of accumulation of information without making any assumptions 
about the strength of high-level encoded associations. The visual system is very good 
at extracting and using regularities, and such regularities could be picked up from both 
objects and backgrounds. The speed at which an object representation will be accessed 
when presented in a given context would refl ect the learned probability of occurrence 
of a set of features. In a congruent context the animal or furniture response would rely 
on a number of features provided by both the object and the context. In an incongruent 
context features from the object and from the context would be in confl ict, and more 
information would be needed from object processing, resulting in a delayed response. 
All along the ventral visual pathway the weight of synaptic connections between 
selective populations of neurons to various features would be reinforced with their 
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repetitive coactivation. Strengthening versus depressing these functional connections 
would induce behavioral facilitation versus interference. This alternative hypothesis 
( Fabre-Thorpe, 2011 ;  Joubert et al., 2008 ) is developed later in this chapter and relies 
on the shaping of each step of the ventral visual pathway by repeated experience of 
object/object or object/context associations during ones ’  entire lifetime. 

 Contextual Effects in Nonhuman Primates 

 Fast visual categorization is not unique to human beings; nonhuman primates are also 
able to perform animal versus nonanimal or food versus nonfood fast visual categori-
zations of natural photographs ( Fabre-Thorpe, Richard,  &  Thorpe, 1998 ), with sur-
prisingly similar effects in both species even when stimuli are presented without color 
information and with extreme reductions in image contrast ( Delorme, Richard,  &  
Fabre-Thorpe, 2000 ;  Mac é , Delorme, Richard,  &  Fabre-Thorpe, 2010 ). However, as 
mentioned above, the visual system is very good at extracting and using regularities. 
Animals are much more common in natural environments, and the use of image sta-
tistics allows the introduction of contextual information in object detection. In fact, 
the processing of simple image statistics has been shown to predict the presence or 
absence of object categories in a photograph and different scene categories evidence 
very specifi c  “ spectral signatures ”  ( Torralba  &  Oliva, 2003 ). Using 1000 training 
images and 1000 new images for testing, Torralba and Oliva showed that the presence/
absence of animals, people, and vehicles in real-world images could be done with sur-
prisingly good accuracy (around 80%). Note, however, that performance is close to 
chance when the animal size in the image is small relative to the surrounding context. 
The best results were obtained with images of large to very large animals. The perfor-
mance of fast visual categorization could thus rely on the fast processing of global 
statistics rather than on abstract representations of a superordinate  “ animal ”  category. 
In such a case, the fact that monkeys can perform fast categorization of object is not 
enough to conclude that they have abstract representations of object categories but 
simply that their visual system is very good at using stimulus regularities. 

 Monkeys raised in the laboratory will have seen only a very small number of real 
animals. They have presumably learned to perform the task using the thousands of 
photographs (mainly from commercial databases) in which animals are presented in 
natural contexts. This means that they could use contextual regularities and implicit 
contextual learning as described above to perform the task. However, if  monkeys base 
their response on global scene analysis rather than using a representation of  “ animal ”  
objects, their performance should be totally disrupted by manipulation of object/
context associations. To avoid a low-level bias as much as possible, monkeys were 
tested using the 768 stimuli organized in quadrets as shown in   fi gure 8.2  with the 
corresponding spectral signatures calculated on each image set using the mean power 
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spectrum ( Torralba  &  Oliva, 2003 ). The results ( Fize et al., 2011 ) clearly showed that 
monkeys base their responses on the presence or absence of the animal-object and 
not on the  “ spectral signature ”  of the stimuli. From the very fi rst response toward 
these new unusual stimuli, their performance was around 70% correct — not just in 
terms of overall performance but also when separately analyzing performance with 
natural and urban contexts. The set of stimuli was especially diffi cult for the monkeys, 
as the 70% correct for monkeys has to be compared with a score of 80% correct in 
humans. The performance of computer simulations based on global statistics and run 
on the same stimuli ( Oliva  &  Torralba, 2001 ) was at random (see   fi gure 8.2 ). 

 However, as with humans, monkeys were biased by the nature of the context, and 
also as with humans, the effect of contextual incongruence on accuracy was much 
larger (around 10% drop of correct responses) with small objects (3% of the image) 
than with large objects (2% drop of accuracy for object  > 8% of the image). 

 Monkeys are much faster than humans in performing the task ( Fabre-Thorpe et 
al., 1998 ), as their earliest responses (discarding anticipations) are observed at around 
170 ms. Because the functional organization of their ventral visual pathway is much 
better known than that of humans, it was possible to evaluate the number of steps 
the visual information had to travel through. This evaluation ( Fabre-Thorpe, 2011 ; 
 Thorpe  &  Fabre-Thorpe, 2001 ) showed that there was effectively no time for time-
consuming interactive loops and that it was diffi cult to avoid the conclusion that visual 
processing was mainly feedforward and largely parallel (  fi gure 8.4 ).    

 Although faster than humans when performing on the manipulated stimuli, 
monkeys were not as fast as in preceding experiments using only original nonmanipu-
lated photographs, and the latency of the earliest responses was observed at about 
200 ms. However, for monkeys again, the interference effect due to incongruent object/
background association was seen from the very fi rst responses with a shift of 30 ms 
toward longer latencies when responses were produced with incongruent stimuli. 
Object/context interactions presumably have to be implemented in a feedforward 
model of visual processing. Scene background and object visual features are processed 
in parallel with early interactions and competition for accumulation of evidence to 
perform the task. Interestingly, this latency shift was identical (30 ms) for monkeys 
and humans, and we made the hypothesis ( Fize et al., 2011 ) that the highly similar 
temporal dynamics of object/context interactions observed behaviorally are the sig-
nature of analogous fast visual mechanisms that locally process features for object 
and scene category. 

 Object/Context Interactions in a Feedforward Model of Visual Processing 

 In the model proposed by Bar and his group ( Bar, 2004 ;  Bar et al., 2006 ), a coarse 
processing of the context performed through the magnocellular dorsal visual pathway 
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can infl uence object recognition (see also  Bullier, 2001 ). Global low-spatial-frequency 
information about the context frame provides predictions about the set of objects 
that usually appear in such context. In parallel, the coarse processing of an object 
activates a set of possible shape-based candidate objects. Object interpretation is 
constrained by the interaction of the two parallel fl ows of information and is com-
pleted by high-spatial-frequency information. 

 This model can well account for the infl uence of context on object perception but 
would have more diffi culty accounting for the infl uence of a foreground object on the 
processing of scene gist perception. Indeed, whereas the emphasis has been focused 
on the modulation of object processing by its surrounding background, a reciprocal 
infl uence has also been reported ( Davenport  &  Potter, 2004 ;  Joubert et al., 2007 ;  Mack 
 &  Palmeri, 2010 ). Backgrounds were named more accurately when they contained a 
congruent, rather than an incongruent, object ( Davenport  &  Potter, 2004 ), and in a 
fast visual categorization task using scene gists as targets,  Joubert et al. (2007)  showed 
that the presence of a foreground object in the scene delays gist categorization. This 

 Figure 8.4 
 A feedforward progression of visual inputs along the ventral visual pathway in monkeys can explain fast 
response latencies. At each processing step (retina, lateral geniculate nucleus (LGN) up to posterior 
(PIT) and anterior (AIT) inferotemporal cortex), the shortest latency of recorded neuronal responses is 
indicated together with the usual response latency. From the anterior inferotemporal cortex (AIT) 
processing could continue through prefrontal (PFC), premotor (PMC) and motor cortex (MC) to trigger 
the hand movement; latencies are more speculative. From Thorpe and Fabre-Thorpe (2001), Seeking 
categories in the brain,  Science ,  291 , 260 – 263. Reprinted with permission from AAAS. Illustration: 
Carin Cain.  
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drop of performance is already signifi cant when the object is congruent, but with an 
incongruent object, the temporal cost can reach 80 ms with an accuracy drop of about 
14% relative to scenes that do not contain any foreground object. 

 In the model proposed by Bar the two low-spatial-frequency processing streams 
dealing with scene gist and objects are completely separated until they reach a high 
level of representation and then converge at the level of the inferotemporal cortex. 
An alternative possibility suggested by our group ( Fabre-Thorpe, 2011 ;  Mac é , Thorpe, 
 &  Fabre-Thorpe, 2005 ) considers the low-spatial-frequency information processed 
within the ventral stream by the magnocellular pathway. At each processing stage of 
the ventral visual stream, the magnocellular pathway can feed back information to 
guide the processing of the slower parvocellular information in the preceding stages, 
allowing very early interactions between scene and object features. Interactions can 
take place between features of intermediate or even low complexity. According to this 
view, high-level representations of scenes or objects do not have to be accessed before 
interactions take place. 

 When performing a visual categorization task under strong temporal constraints, 
the visual system is presumably preset optimally by top-down infl uences, and pertinent 
familiar associations will be activated at each step of the visual pathways. The parallel 
processing of the scene-stimulus activates multiple populations of neurons selective 
for visual objects, object parts, or features. When the scene is congruent, such popula-
tions of selective neurons are used in coactivating together. On the other hand, a scene 
that contains an incongruent object will generate confl icting responses. Several popu-
lations of neurons that very seldom fi re together would be active. The more incongru-
ent the features in the scene, the greater the competition between these populations 
of neurons, and hence, the greater the competition between the go and the no-go 
motor output. The fi nal perceptual decision would rely on an  “ accumulation of evi-
dence ”  ( Perrett, Oram,  &  Ashbridge, 1998 ). More features about the target (target 
object or target scene) will need to be processed in order to win the competition over 
the neuronal populations responding to the nonpertinent features. This additional 
processing will result in a delay to reach decision threshold about the nature of the 
object or the nature of the scene designed as target. 

 The model we propose is compatible with a feedforward processing wave within the 
ventral pathway. The pattern of connectivity in the visual pathway would be shaped 
by experience-dependent synaptic weight modifi cations ( Masquelier  &  Thorpe, 2007 ). 
When selective populations of neurons are often coactivated, their interconnections 
will be reinforced, and the activation of one population will lower the threshold of 
the others. On the other hand, when populations of selective neurons hardly ever fi re 
simultaneously, their interactions will be reduced, and when one of them fi res, the 
threshold of the others will be increased, inducing delayed visual processing (  fi gure 
8.5 , plate 17). With such a model the processing streams dealing with objects and 
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context can interact implicitly very early, and there is no need to make the assumption 
that scene gist should be extracted fi rst in order to infl uence object perception ( Dav-
enport  &  Potter, 2004 ;  Joubert et al., 2007 ).    

 Fast categorization could be based on the processing of key features of intermediate 
complexity ( Crouzet  &  Serre, 2011 ;  Delorme, Richard,  &  Fabre-Thorpe, 2010 ;  Ullman, 
Vidal-Naquet,  &  Sali, 2002 ), and such interactions could thus be already present in 
early visual cortical areas such as V4, for example ( Mirabella et al., 2007 ). 

 Exploring an Earlier Temporal Window of Visual Processing 

 Using the go/no-go rapid visual categorization task, we were never able to show major 
differences in processing time for scene targets versus object targets. In the case of 
object categories we found that the accuracy and distribution of reaction times for 
processing various object-categories at the superordinate level such as animals, vehi-
cles, and human beings were remarkably similar ( Rousselet, Mac é ,  &  Fabre-Thorpe, 

 Figure 8.5 (plate 17) 
 Along the ventral visual pathways the weight of connections could increase or decrease when 
populations of neurons selective for objects, object parts, or object features are often or seldom 
coactivated in daily life. From Fabre-Thorpe (2011). 
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2003 ;  Thorpe et al., 1996 ;  VanRullen  &  Thorpe, 2001 ). Even when using human faces 
as targets in an attempt to shift reactions times toward shorter values ( Rousselet 
et al., 2003 ), we reported substantially higher accuracy (around 99%) than for other 
categories, but reaction time distributions were similar to those for other object cat-
egories. Reaction times might have reached a limit in categorization tasks requiring 
manual responses. Indeed, when comparing response latencies to the very fi rst pre-
sentation of an image to response latency to the same image after repeated processing, 
we observed that the repeated training on a given image did not induce any RT 
decrease except for long latency responses ( Fabre-Thorpe, Delorme, Marlot,  &  Thorpe, 
2001 ). In the case of tasks requiring processing of scene categories, the accuracy scores 
and distribution of reaction times for scene target at the superordinate level (natural 
vs. urban) were extremely similar to those observed for object categories (for a review 
see  Joubert et al., 2007 ). The virtually complete overlap of the RT distributions of 
the responses produced for three types of targets — animals, natural scenes, and urban 
scenes — leaves ample time for object/context interactions even in regard to the earliest 
responses produced. 

 In recent years we have been using a new task involving saccadic responses that 
gives access to an even earlier temporal window of visual processing ( Crouzet, 
Kirchner,  &  Thorpe, 2010 ;  Kirchner  &  Thorpe, 2006 ). In this forced-choice saccadic 
categorization task a fi xation cross is displayed, and after a random duration (800 –
 1600 ms), two natural scenes (a target and a distracter) are presented for 400 ms in 
the left and right hemifi elds at about 8.5 °  eccentricity. Subjects are asked to make a 
saccade as fast as possible to the side of the target. In the original experiment  Kirchner 
and Thorpe (2006)  reported that reliable saccades to images containing animals could 
be initiated as early as 120 – 130 ms after images onset. If  20 ms is allowed for motor 
preparation, the latency of these early saccades suggests that the underlying visual 
processing may need only 100 ms. This result was extended to vehicles and human 
faces by  Crouzet, Kirchner, and Thorpe (2010) ; moreover, the authors showed a clear 
ordering of object categories for both accuracy and saccade mean latency. The best 
performance in accuracy and mean RT was found for face targets (about 94% correct 
and 150 ms mean RT), and the worst performance for vehicle targets (about 75% 
correct and 190 ms mean RT); performance on animal targets was intermediate. 

 Unlike the manual go/no-go visual categorization task, the forced-choice saccadic 
categorization task was able to rank perceptual category diffi culty and provides an 
opportunity both to investigate an earlier temporal window and to compare the 
latency of scene versus object categorization. Moreover, it also gives us access to a 
very early window of processing in order to investigate the earliest latency at which 
contextual modulation could affect object processing ( Crouzet, Joubert, Thorpe,  &  
Fabre-Thorpe, 2012 ). For the contextual discrimination tasks each trial involved the 
simultaneous presentation of one natural and one man-made environment (all neutral 
without foreground objects); thus, with the same stimuli, subjects can be given the 
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task of saccading either toward the natural or toward the man-made environment. 
To compare object and scene interactions in this forced-choice categorization task, a 
new stimulus databank was built that contained only unmodifi ed photographs to 
avoid the effect of stimulus manipulation demonstrated by  Joubert et al. (2008) . For 
the object discrimination tasks we used the animal and vehicle object categories as in 
the study by  Crouzet et al. (2010) . The animal and vehicle images were selected so 
that, for each object category, exemplars were extremely varied (mammals, birds, 
reptiles, fi sh . . . vs. cars, ships, planes, trains, bikes . . .), with half  of the objects 
presented embedded in a man-made environment and half  in a natural environment 
(  fi gure 8.6,  plate 18, 1). Whereas animals are strongly associated with a natural 
context, the association of vehicles with a given context is much weaker. 

1
 

2 

 Figure 8.6 (plate 18) 
 (1) The top row shows examples of the stimuli used in  Crouzet et al. (2012) . On the left, vehicle objects 
in natural (top) and man-made (bottom) environments; in the middle, natural scenes (green) and 
man-made scenes (blue) without foreground objects; on the right, animal in natural congruent (top) and 
man-made incongruent (bottom) environments. (2) Performance (median RT and percentage correct) 
and RT distributions of saccadic responses. Adapted from  Crouzet et al. (2012 ). (A) For animals 
(brown) and vehicles (gray). (B) For man-made (blue) and natural (green) environments. (C) For animal 
targets when animals are presented in a natural (congruent) background (light trace) or in a man-made 
(incongruent) environment (dark trace). For A, B, and C, the percentage of correct saccades (thick trace) 
and incorrect saccades (thin trace) are given as a function of saccade latency (10-ms time bins). The 
vertical bars indicate the minimal saccadic RT (the first time bin in which correct saccades significantly 
outnumber incorrect saccades). 
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 A clear ordering appeared again in processing those varied categories. As reported 
by  Crouzet et al. (2010) , performance was better for animal targets than for vehicle 
targets (  fi gure 8.6,  plate 18, 2A) for both accuracy and saccade latency (animal, 81% 
correct, median RT 181 ms; vehicle, 63% correct, median RT 207 ms). It is worth 
noticing that the very fast saccades toward animals were not completely under top-
down control; indeed, the RT distribution shows that, when subjects are instructed to 
target vehicles, early saccades can be incorrectly made toward animals. The same 
response bias had been observed with human faces when subjects were instructed to 
target vehicles ( Crouzet et al., 2010 ). Because animals (and faces) are pertinent bio-
logical stimuli — unlike artifactual object categories such as vehicles — they might rely 
on faster hard-wired neural mechanisms possibly tuned by ancestral priorities ( New, 
Cosmides,  &  Tooby, 2007 ).    

 In the forced-choice saccadic tasks with natural or man-made environments as 
targets, performance level was similar regardless of the environment category (about 
73% correct, median RT 215 ms) and intermediate between animal and vehicle per-
formance (  fi gure 8.6,  plate 18, 2A, 2B). This is the fi rst psychophysical experiment 
that has provided clear evidence for different temporal dynamics in object and gist 
processing. However, even if  scene gist can be accessed using fast processing of global 
image statistics, it is clear that specifi c object categories that are biologically pertinent —
 such as animals (and probably faces when considering the results from  Kirchner and 
Thorpe, 2006 ) — can be accessed before scene gist. 

 An analysis of contextual effects failed to reveal any effects on vehicle categoriza-
tion, which is perhaps not surprising because cars, boats, and planes could be consid-
ered to be congruent in both man-made and natural contexts. On the other hand, 
there was a clear contextual effect with animal targets (  fi gure 8.6,  plate 18, 2C), and 
this effect became statistically signifi cant from 160 ms on. Importantly, with animal 
targets, saccades with latencies  < 160 ms were unaffected by contextual cues. This value 
corresponds also to the minimum latency at which the earliest saccades toward scene 
targets are observed (  fi gure 8.6,  plate 18, 2B). The earliest infl uence of context on 
animal detection was thus seen at a latency that matches the earliest saccades per-
formed to global contextual scene targets. 

 This is an important result because it sheds light on the temporal dynamics of scene 
processing: 

  •    It fi rst argues against the claim that in fast animal categorization tasks the rapid 
behavioral responses could rely on global scene statistics. The role of global statistics 
was also questioned by the fact that computer simulations were at chance for catego-
rizing animals with the manipulated scenes used by  Fize et al. (2011) . 
  •    It gives a minimal behavioral latency (160 ms) at which scene gist can be accessed 
and can affect behavior. Note that we have no evidence to conclude whether scene 
gist is accessed through global scene statistics or via the accumulation of evidence 
from key features. 
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  •    It shows that superordinate categories may not all have the same perceptual saliency 
and suggests a ranking of object categories in perceptual diffi culty from human faces 
to animals, and then to artifactual targets such as vehicles, scenes gist being of inter-
mediate diffi culty between animals and vehicles. 

 The global results from this series of experiments do not support the strict func-
tional isolation model proposed by Hollingworth and Henderson ( Henderson  &  
Hollingworth, 1999 ; Hollingworth  &  Henderson, 1998) in that object and context 
processing clearly interact with each other. However, their model may apply in the 
initial phase of processing for which we provide clear evidence that at least for some 
object categories, such as animals, object processing can occur without any effect of 
context. This context-free processing ends at around 160 ms, the latency at which the 
earliest saccadic responses to scene gist can be observed. After this latency, object- and 
context-processing streams can interact in the processing of superordinate object 
categories. Finally, it appears that the strength of the interactions is signifi cant for 
object categories such as animals that are strongly associated to certain specifi c con-
texts but can be negligible for other object categories such as vehicles. 
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 During our waking hours we take a new mental snapshot — a fi xation — about three 
times a second. What do we pick up from each glimpse, and for how long do we 
remember what we saw? What is the form of our memory representation — visual, 
conceptual, or both — and does it change over time? One method for addressing these 
questions in the laboratory is to simulate continual shifts of fi xation by using rapid 
serial visual presentation (RSVP) of sequences of unrelated pictures. When viewers 
are given a target name such as  picnic  or  smiling couple , they are able to detect a 
picture in a stream presented for 100 ms per picture, and they do better than chance 
even at 13 ms/picture. Remarkably, detection is possible even when the name is given 
only after the sequence has been viewed. These results indicate that understanding 
may be based initially on feedforward processing, without feedback and without 
requiring advance information about the target. In contrast to our very rapid com-
prehension of pictures, we have poor memory for pictures presented for the duration 
of an average fi xation (250 ms). We need 500 ms to view or think about a scene in 
order to remember it later. Yet long-term memory for pictures viewed for 1 second or 
more is excellent. The evidence suggests that conceptual information is extracted early 
and shapes what we remember later. 

 The paradox of vision is that we make three or four eye fi xations each second, all 
day long, but each glimpse of 250 or 300 ms is too brief  to remember later. We need 
some form of visual short-term memory that spans several fi xations to integrate 
information about the immediate environment, but what we carry over from the pre-
ceding fi xation lacks detail (e.g.,  Henderson  &  Hollingworth, 1999 ;  Irwin, 1992 ;  Irwin 
 &  Andrews, 1996 ). Moreover, studies of change blindness and boundary extension 
show that we overlook major changes in a scene if  the scene is interrupted for as little 
as 80 ms (e.g.,  Intraub  &  Richardson, 1989; Rensink, O ’ Regan,  &  Clark, 1997, 2000 ), 
suggesting that our immediate memory is incomplete. We do notice changes that affect 
gist or changes to objects that we are attending or are about to fi xate. Thus, the infor-
mation that we carry over from the previous fi xation seems to be meaningful rather 
than purely visual. However, when unrelated pictures are presented in a continuous 
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sequence at rates in the range of eye fi xations ( Potter  &  Levy, 1969 ), our memory for 
pictures is poor, implying that one glimpse is not suffi cient for later memory. 

 In contrast, we have good long-term memory for pictures viewed for 1 – 10 seconds 
( Nickerson, 1965 ;  Potter  &  Levy, 1969 ;  Shepard, 1967 ;  Standing, 1973 ). Pictures 
viewed for 3 seconds are remembered in detail, whether they represent single objects 
( Brady, Konkle, Alvarez,  &  Oliva, 2008 ) or complex scenes ( Konkle, Brady, Alvarez, 
 &  Oliva, 2010 ). 

 Just How Quickly Do We Understand a Pictured Object or Scene? 

 Reaction Time 
 One answer to the question of how quickly a picture is understood is the reaction 
time (RT) to make a recognition response to a picture. Naming the picture is one such 
response, but that includes time to retrieve the name after one has already recognized 
what the object is, and even well-known names take time to retrieve: average RT for 
naming a familiar object is over 900 ms. A measure of understanding that does not 
require name retrieval is the time to decide whether the scene or object is a member 
of a category such as  animal . This yes-no category detection task turns out to be 
considerably faster (a mean of about 600 ms) than the time to name a picture ( Potter 
 &  Faulconer, 1975 ). These RT measures include the time for the information to pass 
from the retina to the visual cortex as well as decision and response processes that 
occur after identifi cation (e.g.,  Potter, 1983 ). Research using a go/no-go response gives 
shorter responses in such category-detection tasks (see the review by  Fabre-Thorpe, 
2011) . Of particular interest is the minimum RT at which performance is above 
chance, which has been shown to be as short as 150 ms. A still faster response is the 
initiation of an eye movement to a specifi ed target (e.g.,  animal  or  face ) when two 
pictures are presented simultaneously (e.g.,  Crouzet, Kirchner,  &  Thorpe, 2010 ;  Kirch-
ner  &  Thorpe, 2006 ): the shortest RT at which performance is above chance can be 
as little as 100 ms for faces, with a mean time of 140 ms. Another approach is to use 
measures of brain responses such as event-related potentials (ERPs) that occur before 
any overt response. In an early go/no-go study in which observers detected animals, 
the relevant ERP signal was signifi cantly above chance beginning about 150 ms after 
picture onset (e.g.,  Thorpe, Fize,  &  Marlot, 1996 ). 

 Masked Stimuli 
 A different approach to measuring the time to understand a picture is to control 
the time available for processing the stimulus, measuring the minimum presentation 
time required to identify it.  1   However, the duration of the physical stimulus is not the 
same as the effective duration of the stimulus because of visual persistence: a picture 
presented for only 20 ms followed by a blank screen will persist for 80 ms or more. 
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A common method to solve that problem is to use a backward pattern mask at a 
variable delay after the picture (the stimulus onset asynchrony, SOA). Such a mask 
interrupts processing of the picture, allowing one to determine the minimal viewing 
time required for identifi cation. For example, in one study ( Potter, 1976 ; see   fi gure 9.1 , 
discussed below), 16 single pictures were each followed by a visual mask with an SOA 
varying from 50 to 120 ms. In a subsequent yes-no test of recognition memory about 
half  the pictures were remembered at an SOA of 50 ms, rising to 80% at 120 ms. 

 Questions about Masking 
 A continuing problem with the logic of the masking procedure, however, is that the 
neural basis for the effect is not well understood: does the masked stimulus continue 
to be processed, perhaps unconsciously, after the mask appears, or does processing 
instantly stop?  Macknik and Martinez-Conde (2007)  have argued that the mask has 
an immediate feedforward effect that interrupts processing. But because the extent of 
masking depends not only on the SOA but also on the stimulus termination asyn-
chrony and the perceptual relation of the mask to the stimulus of interest, the minimal 
SOA required for identifi cation may not directly measure the time to understand a 
picture. Moreover, the effect of a following mask also depends on its semantic (con-
ceptual) relation to the target picture. With very short SOAs the visual relation may 
be the major determinant of the mask ’ s effectiveness, but as the SOA increases, the 
conceptual relation may be more important, as discussed below. 

 Context Effects: Perception of Objects and Settings 
 The role of visual context in perception of objects has long been a topic of interest. 
A similar question is whether our experience of co-occurrences between objects and 
settings infl uences the initial perception of a scene or whether (as suggested by 
 Hollingworth  &  Henderson, 1998 ,  1999 ) objects and settings in a given picture are 
fi rst understood independently. In one set of studies by  Davenport and Potter (2004 ) 
pictured objects such as a football player or a priest were superimposed, either con-
gruently or incongruently, on background settings such as a football fi eld or the 
interior of a cathedral. The pictures were presented for 80 ms with a backward noise 
mask of the whole picture; the participant was instructed to report the foreground 
object, the background setting, or both. In each case performance was better in the 
congruent than the incongruent condition, suggesting that objects and background 
are processed interactively. When there were two objects in a scene, the likelihood that 
the two objects would be found together also infl uenced the report of the objects, 
an effect that was additive with the effect of congruency with the background 
( Davenport, 2007 ). Joubert and colleagues carried out similar studies, fi nding that 
objects in congruent contexts were responded to faster than those in incongruous 
contexts (J oubert, Rousselet, Fize,  &  Fabre-Thorpe, 2007 ; Joubert, Fize, Rousselet,  &  
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Fabre-Thorpe, 2008; see also  Munneke, Brentari,  &  Peelen, 2013 ). These results indi-
cate that objects and settings are processed together. 

 Rapid Serial Visual Presentation 

 In studies that use backward masking to limit processing time, each trial typically 
consists of a single stimulus, such as a picture, followed by a mask. Although the 
glimpse of the stimulus may be of the same duration as a fi xation, in normal vision 
the eyes make a continuous sequence of fi xations, with each fi xation presumably 
masking the previous one. To mimic this effect  Potter and Levy (1969)  used a method 
called rapid serial visual presentation (RSVP) ( Forster, 1970 ) to present pictures in a 
continuous stream at durations in the range of eye fi xations, 125 – 2000 ms/picture. 
Participants were instructed to attend to and remember all the 16 pictures in a 
sequence. The pictures were unrelated to each other to enable us to measure memory 
for information equivalent to that in a single fi xation. To test recognition memory 
following the presentation, the pictures were shown one at a time intermixed with 16 
new pictures (distractors). Participants responded yes, maybe, or no.   Figure 9.1  shows 
the proportion of yes responses, corrected for guessing.  2   When the pictures had been 
shown for the duration of an average fi xation, 250 ms, fewer than half  the pictures 
were correctly recognized a minute or two later. With a presentation of 2 seconds, 
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 Figure 9.1 
 Proportion of pictures recognized following single masked presentations (solid curve,  Potter, 1976 , 
experiment 3) and proportion recognized after RSVP (dashed curves, two groups with different ranges 
of presentation durations;  Potter  &  Levy, 1969 ). Data are corrected for guessing (see note 2). From 
Potter (1976). 
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more than 90% of the pictures were remembered, consistent with studies showing 
that long-term memory for pictures viewed for a few seconds is excellent (e.g.,  Konkle 
et al., 2010 ;  Nickerson, 1965 ;  Shepard, 1967 ;  Standing, 1973 ).    

 Visual versus Conceptual Masking 
 Strikingly, however, as shown in the left-hand function in   fi gure 9.1  ( Potter, 1976 ), a 
single masked picture may be remembered after it is viewed for as little as 50 ms (about 
50% were remembered, rising to 80% at 120 ms). It takes four or fi ve times as long, 
per picture, to process pictures to the same level of accuracy when they are presented 
in a continuous stream in which all the pictures are to be attended. Pictures in an 
RSVP sequence are hard to remember not only because of their briefness but also 
because each picture is immediately followed by another. With a single masked picture, 
viewers can continue to think about what they saw after the mask appears; that is not 
possible with a continuous sequence in which all the pictures are potentially relevant. 
In a study by  Intraub (1980)  pictures were presented for 110 ms in an RSVP sequence, 
and only 20% were remembered later, whereas when a blank interstimulus interval 
(ISI) was added after each picture, the percentage remembered increased steadily as 
the ISI increased, to 84% with an ISI of 1390 ms. Thus, a viewer can voluntarily 
continue to process and code into memory a brief  picture after it is no longer in view, 
just as one can continue to think about what one just saw in a brief  glimpse. Similarly, 
another study showed that pictures presented for 173 ms in an RSVP sequence were 
poorly remembered, but if  a blank of 827 ms was added after each picture, memory 
was almost as good as if  the pictures remained in view for the full 1000 ms ( Potter, 
Staub,  &  O ’ Connor, 2004 ). 

 Voluntary Attention 
 In a study of the effect of voluntary attention on picture encoding,  Intraub (1984)  
showed a sequence of pictures that alternated between a short duration of 112 ms 
and a long duration of 1500 ms. When viewers were instructed to attend to all pictures, 
they remembered about 54% of the short pictures and 73% of the long ones, whereas 
when instructed to attend only to the brief  pictures, they remembered about 63% of 
the brief  pictures and only 54% of the long ones. Altogether, these studies suggest 
that once the SOA between the picture and the following visual mask is 100 ms 
or more, memory depends little on the actual duration of presentation but instead 
on the total time the viewer continues to think about the picture. These results 
reinforce the distinction between visual and conceptual masking. Visual masking 
occurs primarily with short SOAs (under 100 ms), whereas conceptual masking (due 
to attention to a following stimulus) occurs with SOAs up to 500 ms or more ( Potter, 
1976 ; see also  Intraub, 1980 ,  1981 ;  Loftus  &  Ginn, 1984 ;  Loftus, Hanna,  &  Lester, 
1988 ;  Loschky, Hansen, Sethi,  &  Pydimarri, 2010 ). 
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 Rapid Memory Loss for Pictures Seen Briefly in RSVP: Serial Position Effects in Memory 
Testing 

 People can understand pictures presented briefl y but forget most of them a few 
minutes later. When the recognition test begins immediately, the fi rst one or two pic-
tures tested are likely to be remembered well, but there is rapid loss over the next 
several seconds of testing ( Endress  &  Potter, 2012 ;  Potter et al., 2004 ;  Potter, Staub, 
Rado,  &  O ’ Connor, 2002 ); that is, there is a strong serial position effect in the memory 
test. There is also some loss if  there is an unfi lled delay of 5 seconds in the start of 
the memory test, showing that the loss is partly due to the passage of time and partly 
to interference from testing. Surprisingly, there is no serial position effect in presenta-
tion, apart from the known benefi t to the fi nal picture, which is unmasked and is not 
tested. Even with sequences as long as 20 items, there were no primacy or recency 
effects ( Potter et al., 2002 ). Increasing the memory set size did decrease the extra 
benefi t of early testing somewhat, but not by causing selective forgetting of pictures 
early in the list. 

 What Is the Nature of This Short-Lasting Memory for Pictures? 

 Change Blindness 
 The time course of forgetting after viewing an RSVP sequence of pictures contrasts 
with that of  change blindness , the apparently immediate loss of detailed information 
about a single picture once it is no longer in view. Change blindness is the inability 
of viewers to detect a change in one feature of a picture, and the effect has been 
observed when a blank interval as short as 80 ms intervenes between the initial 
and changed versions; at longer intervals, the problem is even more acute (see 
 Rensink et al., 1997; 2000 ;  Simons  &  Levin, 1997 ). (Imposing a short blank between 
views is necessary to obscure the transient that would mark the location of the 
change if  there were no interval.) Change blindness can be explained in several 
ways: the changed details were not perceived in the fi rst place; many specifi cs 
of a picture are forgotten immediately; or the next picture updates the similar 
preceding picture without leaving a record of the changed details. Change blindness 
is, however, a very different phenomenon than the forgetting observed after an 
RSVP sequence. Whereas on a change blindness trial there is no question that 
the picture remains the same in most respects and is thus seen as the same picture, 
in the RSVP experiments considered here the question is whether a given test 
picture is one you have ever seen before. Thus, change blindness studies assess the 
level of detail in immediate memory for a picture, whereas here we are interested 
in the persistence of a representation suffi cient to make the picture as a whole 
seem familiar. 
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 Other Forms of Brief Visual Memory 
 Could the short-lasting memory for pictures be  iconic memory  (e.g.,  Sperling, 1960 ) 
or  visual short-term memory  (VSTM) as described by Phillips and his colleagues 
( Phillips, 1983 ;  Potter  &  Jiang, 2009 )? The answer is, no. Iconic memory is a very brief  
form of relatively literal perceptual memory (although see  Coltheart, 1983 , for a 
somewhat different characterization), but it cannot account for the fl eeting picture 
memory found with an immediate recognition test after an RSVP sequence because 
iconic memory is eliminated by noise masking, and under photopic conditions it lasts 
no longer than about 300 ms. VSTM is a form of short-lasting visual memory 
observed in experiments such as those of  Phillips and Christie (1977) , who presented 
viewers briefl y with a 4  ×  4 matrix in which an average of eight random squares were 
white and then tested memory by presenting a second matrix that was either identical 
to the preceding one or had one white cell added or deleted. VSTM, unlike iconic 
memory, is capacity limited, with an estimated capacity of three or four items. In 
Phillips and Christie ’ s study the most recent matrix could be maintained for several 
seconds in VSTM provided that no other such matrices were presented in the interval 
and the participant continued to attend to the remembered matrix. In contrast, in 
RSVP studies multiple pictures are presented, and one or more to-be-attended pic-
tures intervene between presentation and testing. 

 A likely contributor to short-term memory for pictures is  conceptual short-term 
memory  (CSTM), a short-lasting memory component proposed by  Potter (1993 ,  1999 , 
 2010 ) that represents conceptual information about current stimuli, such as the 
meaning of a picture or meanings of words and sentences computed as one reads or 
listens. The reasons for regarding this brief  memory representation as conceptual 
rather than (say) perceptual include its apparent role in rapid selection between two 
words on the basis of meaning in relation to context ( Potter, Moryadas, Abrams,  &  
Noel, 1993 ;  Potter, Stiefbold,  &  Moryadas, 1998 ) and its putative role in sequential 
visual search tasks like those considered here in which the targets are defi ned by 
meaning or category rather than by physical form. During the brief  time that informa-
tion about stimuli is in CSTM, associative links enable extraction of whatever struc-
ture is present (such as sentence structure or the gist of a picture) or allow the stimulus 
to be compared to a target specifi cation in a search task. Any momentarily active 
information that does not become incorporated into such a structure (such as the 
irrelevant meaning of an ambiguous word or a nontarget picture) will be quickly 
forgotten. 

 Conceptual versus Visual-Perceptual Memory 
 A critical question is whether the picture representation that persists for several 
seconds in the studies we have reviewed here is suffi ciently abstract to be considered 
conceptual rather than wholly or partly perceptual. Do viewers remember only the 
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picture ’ s conceptual content or gist, or do they also remember visual features such as 
color, shape, and layout? Work of  Irwin and Andrews (1996) ,  Gordon and Irwin 
(2000) , and  Henderson (1997)  suggests that the representation of the previous fi xation 
may be at least partially conceptual rather than literal inasmuch as viewers may not 
notice literal changes that are conceptually consistent with the earlier fi xation. Studies 
of detection to be reviewed below show that the gist of a scene is understood quickly 
even though the scene may then be forgotten (fairly) rapidly (e.g.,  Intraub, 1980 ,  1981 ; 
 Potter, 1976 ), which is consistent with the assumption that conceptual information is 
abstracted rapidly.  Intraub (1981)  showed, however, that viewers can remember some 
specifi c pictorial information, such as the colors and layout, along with the gist. 

 The relative roles of such specifi c pictorial information and more abstract concep-
tual information were explored by  Potter et al. (2004) . They contrasted a conceptual 
and a pictorial recognition test of picture memory. In the pictorial test participants 
made yes-no decisions to fi ve pictures they had just seen (excluding a sixth fi nal picture 
that was not masked), mixed with fi ve new pictures. In the conceptual test they made 
yes-no decisions to descriptive verbal titles of the pictures, mixed with titles of unseen 
pictures. The presentation duration was 173 ms/picture; the 10-item recognition test 
after each trial took about 8 seconds. The assumption was that test pictures provide 
both visual and conceptual information, whereas titles provide only conceptual infor-
mation. If  the benefi t of immediate testing is that viewers only briefl y preserve purely 
pictorial information, then the title test should reduce the benefi t of early testing but 
should be fairly equivalent to the picture test later in testing. That was just what they 
found. In a more recent study ( Endress  &  Potter, 2012 ) the advantage of testing rec-
ognition with pictures rather than titles was maintained throughout the test, suggest-
ing that some more detailed information (perceptual or conceptual) beyond that 
captured by a title does persist over the 8-second test even though memory for both 
forms of information continues to decline. 

 In a further test of the conceptual basis of memory,  Potter et al. (2004)  included 
in the recognition test occasional  decoy  pictures that matched the title — the gist — of 
one of the old pictures, replacing that picture in the test. The decoy looked visually 
different from the old picture it replaced. If  viewers rely on a conceptual or gist rep-
resentation of the presented pictures, they should make more false yeses to decoys 
than to unrelated new pictures (distractors). Overall, participants recognized 52% of 
the old pictures, falsely recognized 30% of the decoys, and falsely recognized 15% 
of the other distractors, showing some susceptibility to conceptual decoys. 

 Short-Lasting Memory: Summary 

 Initial memory for a glimpsed picture (seen for the equivalent of a single fi xation) is 
fairly accurate but declines markedly over the fi rst few recognition tests (or across an 
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unfi lled delay of 5 seconds). The initial stronger memory may include specifi cally 
visual information, whereas after a delay the memory is primarily conceptual. Accu-
rate visual information may be important for maintaining and updating scene repre-
sentations from one fi xation to the next, but conceptual memory seems to be the basis 
for longer-term organized knowledge. Unlike the rapid forgetting of briefl y glimpsed 
pictures, memory for pictures viewed for a second or more can be highly accurate, at 
least when viewers are paying attention. 

 Detecting Pictures to Test Comprehension 

 Are RSVP Pictures Understood? 
 The studies of picture memory that I have just reviewed show that pictures presented 
for durations in the range of typical eye fi xations are not well remembered. How do 
we know whether the forgotten pictures were even understood momentarily? Subjec-
tively, one has the impression that one understands all the pictures when presented 
up to 10/second, but perhaps that is an illusion. Does it take longer than a single fi xa-
tion to understand a novel scene? Perhaps viewers fail to remember briefl y presented 
pictures because they did not comprehend them. To discover whether brief  pictures 
are identifi ed but then forgotten, we asked participants to detect target pictures that 
were shown to them (or named) before the sequence ( Potter, 1975 ,  1976 ). We used 
names that captured the conceptual gist of the picture in one to fi ve words but did 
not give explicit visual information about the picture. Detection was surprisingly good 
with either kind of cue, even at durations as short as 113 ms/picture (  fi gure 9.2 ). The 
results can be compared with the recognition memory results from another group who 
viewed the same sequences without looking for a target and whose members were 
tested after each sequence for their recognition memory. That group, also shown in 
  fi gure 9.2 , remembered far fewer pictures than the fi rst group had detected, suggesting 
that viewers can momentarily understand most of these brief  pictures but will then 
forget many of them as testing begins. A question arises, however, about whether the 
difference between the two groups in   fi gure 9.2  simply refl ects attentional set: having 
a name presets the visual system to process the scene, which would not be understood 
otherwise.  Intraub (1981)  addressed that question by showing that viewers could 
detect a picture described by a negative category such as  “ not an animal, ”  although 
performance was not as good as when given the name. The role of attentional set is 
considered again below, when we consider the difference between naming a picture 
before versus immediately after the sequence.    

 Detecting Two Targets 
 In another detection study ( Potter, Wyble, Pandav,  &  Olejarczyk, 2010 ), participants 
looked for two targets in a category such as  “ bird ”  and reported the specifi c identity 
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of each instance (e.g.,  swan  and  eagle ). The RSVP sequence was shown at 107 ms/
picture.   Figure 9.3  illustrates a trial in which the category was  “ dinner food. ”  Report 
of the specifi c names of both targets (e.g., hamburger, spaghetti) was often successful 
even when the two targets were presented in immediate succession, although there was 
an attentional blink (reduced performance) for the second target when the SOA 
between targets was 213 ms, an effect typically observed in search tasks. Thus, even 
when given a general name for the target, viewers could detect and retain the specifi c 
identities of two targets presented briefl y in a sequence.    

 Detection and Memory when Multiple Pictures Are Presented Simultaneously 
  Potter and Fox (2009)  presented eight successive four-item arrays (  fi gure 9.4 ) in which 
each array included none to four pictures, with meaningless texture masks fi lling the 
nonpicture locations. The RSVP sequence was presented at 240, 400, or 720 ms per 
array. When the task was to detect a named target (e.g.,  balloons ), detection was rela-
tively successful with up to four simultaneous pictures. Even at 240 ms per array with 
four simultaneous pictures, 59% of the targets were detected, with 9% false yeses (cf. 
 Rousselet, Fabre-Thorpe,  &  Thorpe, 2002 ;  Rousselet, Thorpe,  &  Fabre-Thorpe, 2004a,  
 2004b ). This suggests that detection occurs in parallel with up to four pictures, or 
detection is extremely fast, or both. When viewers simply tried to remember the 

 Figure 9.2 
 Detection of a target picture in an RSVP sequence of 16 pictures, given a picture of the target or a 
name for the target, as a function of the presentation time per picture. Also shown is later recognition 
performance in a group that simply viewed the sequence and then was tested for recognition. Results are 
corrected for guessing (see note 2). From Potter (1976). 
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pictures, later recognition accuracy was much lower overall, particularly when there 
was more than one picture in the array. We speculate that detection may occur in 
parallel over the whole array, whether it consists of one picture or up to four. In 
contrast, memory may require separate attention to each picture.    

 Detection and Memory with Occlusion, Inversion, and Grayscale Pictures 
  Meng and Potter (2008)  used RSVP to present pictures with or without 30% of the 
surface randomly occluded by small disks and found that detection (given a name) 
was well above chance and minimally affected by the disks, even with a duration as 
brief  as 53 ms. When the task was to recognize a picture shown after the sequence, 
performance was lower than with detection, and the disks signifi cantly interfered. 
When the pictures were inverted, the disks interfered with detection as well as rec-
ognition. Showing the pictures in grayscale did not change performance in the detec-
tion condition, and again the occluding disks did not affect performance. When 
the number of disks was increased to cover 40% of the picture, however, detection 
did show interference. The results suggest that rapid retrieval of the gist of a picture 
is based on a global perception of the scene that is robust against local loss of 
information. 

 Figure 9.3 
 An example of an RSVP sequence in a search experiment in which participants reported the specific 
names of two exemplars of the search category. Here the exemplars are  hamburger  and  spaghetti . From 
Potter, Wyble, Pandav, and Olejarczyk (2010). 
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 Detecting Pictures at Ultrahigh Rates: Evidence for Feedforward Processing? 

 Feedforward Processing 
 In feedforward models of the visual system ( Serre, Kreiman, et al., 2007 ;  Serre, Oliva, 
 &  Poggio, 2007 ), units that process the stimulus are hierarchically arranged. Units 
representing small regions of space (receptive fi elds) in the retina converge to represent 
larger and larger receptive fi elds and more abstract information along a series of 
pathways from V1 to inferotemporal cortex (IT) and further on to prefrontal cortex 
(PFC). Visual experience tunes this hierarchical structure, which acts as a fi lter that 
permits recognition of a huge range of objects and scenes in a single forward pass of 
processing. Yet, there is little direct evidence that the feedforward process is able to 
identify objects and scenes accurately, without feedback. Under normal viewing con-
ditions perception is generally assumed to result from a combination of feedforward 
and feedback connections ( DiLollo, Enns,  &  Rensink, 2000 ;  Enns  &  Di Lollo, 2000 ; 
 Hochstein  &  Ahissar, 2002 ;  Lamme  &  Roelfsema, 2000 ). Feedback from higher to 
lower levels in the visual system takes time, however. At presentation durations of 

 Figure 9.4  
 Schematic representation of an RSVP sequence in which up to four pictures were presented 
simultaneously for detection of one named target. From Potter and Fox (2009). 
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about 50 ms or less with masking, some have proposed that there would not be time 
for feedback to arrive before the lower-level activity has been interrupted by the mask, 
so that perception, if  any, would be restricted to the information in the forward pass 
of neural activity from the retina through the visual system ( Hung, Kreiman, Poggio, 
 &  DiCarlo, 2005 ;  Liu, Agam, Madsen,  &  Kreiman, 2009 ;  Perrett, Hietanen, Oram, 
 &  Benson, 1992 ;  Thorpe  &  Fabre-Thorpe, 2001 ). 

 Conscious Perception 
 The ability to identify or remember a stimulus is commonly taken to mean that the 
viewer was conscious of the stimulus, and here I make the assumption that conscious-
ness is shown by the ability to report on the stimulus by responding to a target picture 
or by recognizing its title or the picture itself  in a memory test. (See, however, evidence 
for unconscious effects, discussed below.) There is a debate about whether a single 
forward pass is suffi cient for conscious perception. A reentrant process providing 
feedback may be necessary to achieve understanding and conscious awareness 
( Dehaene  &  Naccache, 2001 ;  Hochstein  &  Ahissar, 2002 ;  Lamme  &  Roelfsema, 2000 ). 
As mentioned above it has been suggested that a threshold duration of about 50 ms 
must be exceeded if  there is a backward mask, or the stimulus will not be consciously 
perceived. Consciousness of a stimulus may require suffi cient time  “ to establish sus-
tained activity in recurrent cortical loops ”  ( Del Cul, Baillet,  &  Dehaene, 2007 ) or to 
ignite a network required for conscious perception ( Deheane, Kergsberg,  &  Changeux, 
1998 ). These authors thus hypothesize that viewers cannot become conscious of a 
stimulus on the basis of a single feedforward sweep, without time for any feedback. 
Detection in RSVP at durations of 50 ms per picture or less should be impossible if  
there is such a threshold because there is too little time to establish a long-range corti-
cal loop before a picture has been overwritten by subsequent pictures. As reviewed in 
the next section, however, there is evidence that perception is sometimes possible with 
very brief  masked stimuli, a result that suggests that feedforward processing may be 
suffi cient for conscious perception under some conditions. 

 Evidence for Processing of Very Brief Stimuli: RSVP Responses by Monkey Neurons and 
Humans 
 Recordings of individual neurons in the cortex of the anterior superior temporal 
sulcus (STSa) of monkeys that viewed a set of pictures of monkey faces and other 
objects via RSVP at various rates up to 72 per second (14 ms) showed that neurons 
respond to a preferred picture above chance, even at 14 ms ( Keysers, Xiao, F ö ldi á k, 
 &  Perrett, 2001, 2005 ). In a detection study with human observers using the same set 
of pictures but presenting them in seven-picture RSVP sequences, the participants 
were shown a target picture before each sequence. They detected the target above 
chance at 14 ms per picture, although detection improved as the duration per picture 
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was increased. In another condition in the same study, recognition of a target picture 
was tested immediately after the sequence, instead of being shown before the sequence. 
Participants were still above chance at 14 ms per picture, but performance was not as 
good as when they saw the target picture in advance. A possible problem with the 
human study is that the pictures were repeated across trials and hence became familiar, 
which might have allowed participants to focus on simple features in order to spot 
the target. 

 Detection and Immediate Memory for Conceptually Defined Targets 

 A study by Potter, Wyble, Hagmann, and McCourt (2014) replicated some of the 
behavioral conditions of  Keysers et al. (2001) , but crucially, instead of showing the 
picture target, they gave only a descriptive name for the target (e.g.,  smiling couple ), 
before or immediately after an RSVP sequence of six pictured scenes (  fi gure 9.5  shows 
the method). Moreover, each picture was presented only once, and none of the 
pictures was familiar to the participants. Thus, participants had only a conceptual 
representation of the target they were to detect or recollect. The RSVP sequence was 
presented at durations between 13 and 80 ms. Even at a presentation duration of 13 

 Figure 9.5 
 Illustration of a six-picture sequence in which the target is named in advance and a yes-no decision is 
followed by a forced choice between two pictures, both of which match the target name. See Potter, 
Wyble, Hagmann, and McCourt (2014). 
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ms, the targets were detected or recognized above chance: that is, the probability of 
a correct detection on target-present trials was signifi cantly higher than the probability 
of a false detection response on target-absent trials. In addition, at the end of each 
trial participants were shown two pictures, both matching the target name, and asked 
to indicate which one they had seen. They were above chance in selecting the right 
picture only if  they had correctly detected the target; if  they missed the target, their 
forced choice was at chance. Thus, viewers could detect and retain at least briefl y 
information about named targets they had never seen before at an RSVP duration as 
short as 13 ms. A second experiment replicated those results with sequences of 12 
rather than 6 pictures: again, detection and recognition were above chance at all dura-
tions, including 13 ms.    

 These results are consistent with the claim of the feedforward model that pictures 
can be understood in a single feedforward sweep even when attention has not been 
directed to a specifi c category in advance. In the name-after condition the participant 
had no knowledge of the target at the time he/she viewed the picture sequence, so the 
pictures had to be processed bottom-up and encoded. Only after the target was named 
could the participant search recent memory for the target — there was no top-down 
infl uence on perception, only on memory search. Performance was somewhat lower 
when the target name came after the sequence, rather than before, showing that 
advance information did make detection more likely. 

 Feedforward Processing and Masked Priming 

 In masked priming studies a brief  presentation of a word becomes invisible when it 
is followed by a second unmasked word to which the participant must respond 
( Dehaene et al., 2001 ;  Forster  &  Davis, 1984 ). If  the prime word is related in some 
way to the following word, it may increase the accuracy or speed of response to the 
latter, showing that the prime must have been unconsciously identifi ed. Given that the 
prime may have been presented for 50 ms or more in typical masked priming experi-
ments (above the threshold for perception with a noise mask), why is the participant 
not conscious of the prime? In such studies the focus of attention is on the second 
stimulus, and its longer duration permits it to receive full, recurrent processing that 
may interfere with retention of the more vulnerable information from the prime that 
was extracted during the feedforward sweep. When, as in Potter et al. (2014) the 
masking stimulus has the same duration as the preceding target stimulus and is 
another picture that is to be attended, a duration of 13 ms is clearly suffi cient, on a 
signifi cant proportion of trials, to drive detection, identifi cation, and (at least briefl y) 
recognition memory for the pictures. It seems likely, however, that the reportable 
detection observed with RSVP tasks such as those described here has the same neural 
basis as masked priming. 
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 Discussion 

  Why are eye fi xations so brief?  It is clear from the research reviewed here that a 
typical single fi xation of 250 ms is long enough to make it highly likely that the 
viewer will understand what he or she has looked at, at least momentarily. Yet, 
normal eye fi xations are too brief  to guarantee good memory. Why don ’ t we fi xate 
for longer? It appears that the rate at which we move our eyes is just slow enough 
to allow momentary understanding and to initiate appropriate action if  needed 
(including taking a second look) but still fast enough to keep up with rapid changes 
in the scene around us, allowing us to dodge a bicycle or catch a ball. If  something 
is important enough to need to be remembered, we can keep looking or keep 
thinking about it. 

  How long does it take to understand a pictured scene?  To return to a question con-
sidered at the beginning of the chapter, what can be concluded about the time required 
to identify a scene? If  the question is the minimum exposure duration (prior to a 
mask) that is required, 13 ms is sometimes enough when the mask is another scene. 
But if  the question is the time from arrival at the retina to correct categorization, then 
the most reliable measures available at present are reaction time measures, the most 
sensitive of which is an eye movement to the appropriate target in a choice situation. 
For detection of a face (when a picture with a face is presented together with another 
picture), that time can be as short as 100 ms, with a mean time of 140 ms ( Crouzet 
et al., 2010 ); detection of a vehicle takes somewhat longer. Momentary comprehen-
sion is no guarantee of subsequent memory, however, even seconds later. We compre-
hend rapidly, but then we forget selectively on the basis of what is relevant to our 
current goals and needs. 

 Ultrarapid Presentations and Feedforward Processing 

 Both the results of  Keysers et al. (200 1,  2005 ) with monkey neurons and with 
humans and those of Potter et al. (2014) with humans show that pictures can be 
detected and briefl y remembered when presented in a short sequence at a rate as 
high as 75 pictures per second. Even when no target is specifi ed in advance, a name 
presented immediately after the sequence can prompt memory for the corresponding 
picture. These results support a feedforward model that can extract a picture ’ s con-
ceptual meaning in a single forward sweep of information with an input as brief  as 
13 ms without requiring feedback loops from higher to lower levels and back and 
without requiring a selective attentional set. However, a longer feedforward viewing 
time of up to 80 ms may be required to grasp the gist of many scenes. When a scene 
is complex or its components are unfamiliar, we may need more than a single fi xa-
tion to comprehend it. 
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 Although the results reviewed here indicate that feedforward processing is capable 
of activating the conceptual identity of a picture even when the picture is briefl y 
presented and is then masked by immediately following pictures, they leave open the 
possibility that top-down or reentrant loops facilitate processing and may be essential 
to comprehend details. For example, there is evidence that a rapid but coarse fi rst pass 
of low-frequency information may provide global category information that is subse-
quently refi ned by top-down processing (e.g.,  Bar et al., 2006 ). Other work has shown 
that monkey neurons that are selective for particular faces at a latency of about 90 
ms give further information about facial features beginning about 50 ms later ( Sugase, 
Yamane, Ueno,  &  Kawano, 1999 ), suggesting reentrant processing ( DiLollo, 2012 ). 
In any case such reentrant theories rely on feedforward processing to generate tenta-
tive interpretations of a picture that are fed back and compared with the representa-
tions in earlier levels of processing, suggesting that feedforward processing initiates 
visual understanding. 

 But are there other explanations for successful detection when the presentation 
duration is brief  and masked by successive pictures? One possibility is that subsequent 
pictures do not interrupt processing immediately. As mentioned earlier the neural 
basis for masking is not well understood. Studies of the monkey visual system using 
single-cell recordings show that multiple cortical neurons that are selective for differ-
ent objects can be activated at the same time, suggesting that multiple objects may be 
 “ recognized ”  in parallel at levels as high as the inferior temporal cortex. Something 
similar in human perception might account for the ability to perceive rapidly pre-
sented pictures. In monkeys this initial parallel process is followed within 150 ms by 
competitive inhibition of all neurons other than those responding to the relevant 
object in a given receptive fi eld, at least when there is a task that defi nes the relevant 
stimulus (e.g.,  Chelazzi, Duncan, Miller,  &  Desimone, 1998 ; see  Rousselet et al., 
2004a , for a review). The large and overlapping receptive fi elds found in the inferior 
temporal cortex may allow for temporary representation in parallel of several succes-
sive pictures presented at a high rate, followed by competitive suppression that favors 
the most salient picture. That could account for the ability on some trials to detect a 
target by name immediately after the presentation of 6 pictures (although with 12 
pictures one would have expected a larger decrement than we observed). If  high-level 
representations of several of the pictures in the sequence were activated, however, it 
is likely that mutual competition would soon decrease their activation well before the 
target name was presented. In further experiments with RSVP using very rapid 
sequences (Potter, Wyble,  &  Hagmann, unpublished data) a delay of 5 seconds in 
providing the target name after the sequence did decrease accuracy. 

 Thus, the feedforward hypothesis remains a strong contender as an explanation of 
picture identifi cation with very brief  presentation durations. In the absence of a spe-
cifi c model for how feedback might assist reportable detection of brief  targets, the 
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feedforward hypothesis seems the most plausible account. A lifetime of experience of 
the world that is built into our visual system appears to allow immediate understand-
ing of most scenes, based on the initial sweep of visual information when the scene 
is presented. 
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 Notes 

 1.   A measure of the minimal time required for successful processing does not include the time for the 
retinal signal to arrive at the part of the brain doing the processing, which may take 60 – 80 ms, or 
the time to generate an overt response to the stimulus once it is understood (e.g., Potter, 1984). 

 2.   A one-high-threshold formula was used to correct for guessing, P corr  = [P(TY)  –  P(FY)]/[1  –  P(FY)], 
where TY is a correct yes response and FY is a false yes response. This guessing correction is used in all 
data figures.   
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 Although the ability of the human visual system to process complex natural scenes 
is very impressive, the state of the art in computer vision is starting to catch up. 
Interestingly, the best artifi cial systems use processing architectures built on simple 
feedforward mechanisms that look remarkably similar to those used in the primate 
visual system. However, the procedures used for training these artifi cial systems are 
very different from the mechanisms used in biological vision. In this chapter I discuss 
the possibility that spike-based processing and learning mechanisms may allow future 
models to combine the remarkable effi ciency of the latest computer vision systems 
with the fl exible and rapid learning seen in human scene processing. 

 This chapter discusses how spiking neural networks may provide key insights for 
understanding how the brain makes sense of the visual world. I start by briefl y review-
ing some of the experimental fi ndings that demonstrate the remarkable effi ciency of 
scene processing in humans, and I then argue that the speed of processing argues 
strongly for the use of a largely feedforward processing mode. In a second section, I 
look at the current state of the art in computer vision, and note the remarkable con-
vergence between the processing architectures employed by the best systems and those 
used in the primate ventral processing stream. The fact that the state of the art systems 
use an entirely feedforward architecture provides another argument for the idea that 
feedforward processing has the power needed to account for a substantial part of 
image processing. Indeed, the level of performance obtained with the latest systems 
is so impressive that you might be tempted to say that the problem of rapid scene 
processing has effectively been solved. However, I argue that the main problem with 
such models is that the training scheme used is unrealistic in that it requires literally 
hundreds of millions of training examples using a supervised learning scheme —
 something that would be out of the question in the case of human vision. In later 
sections, I sketch a model for learning that could provide a real alternative to the 
backpropagation learning schemes used in the state-of-the-art computer vision 
schemes. The proposal uses a simple Spike-based learning scheme based on spike-
time-dependent plasticity (STDP) that will naturally generate neurons selective for 
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spatiotemporal spike patterns that occur repeatedly. This means that the visual system 
will naturally adapt to the statistics of the visual environment by generating selective 
responses to those objects and confi gurations that occur most frequently. I will argue 
that together, feedforward processing architectures coupled with spike-based coding 
and learning mechanisms can go a long way toward providing an explanation for our 
remarkable ability to make sense of complex natural scenes. 

 Performance of the Human Visual System 

 Everyday experience tells us that the human visual system can understand many 
complex natural scenes in a fraction of a second. The process is so rapid and effortless 
that we may be tempted to think that it really is instantaneous. But of course, in 
reality, it has to take time. In 1996, we published a study that used differential event-
related potentials (ERPs) to show that the brain can effectively determine whether a 
previously unseen natural image contains an animal in around 150 ms ( Thorpe, Fize, 
 &  Marlot, 1996 ). This value is already quite short and imposes serious temporal 
constraints on the underlying hardware. However, more recent work implies that the 
underlying processing must be even faster. When two images are fl ashed left and right 
of fi xation, subjects can initiate saccades to the side where an animal is present at 
latencies that start at just 120 – 130 ms ( Kirchner  &  Thorpe, 2006 ). Because this 
includes the time required to trigger the eye movement, it seems likely that the under-
lying processing can be done in only 100 ms. The situation is even more remarkable 
in the case of human faces, which can trigger saccades at latencies of just 100 – 110 
ms ( Crouzet, Kirchner,  &  Thorpe, 2010 ), implying that the underlying visual process-
ing may take only 80 – 90 ms. 

 What sort of mechanisms could allow processing to be done so quickly? For well 
over two decades, I have been arguing that such fast processing may allow only enough 
time for a single feedforward pass through the different processing stages involved in 
scene processing ( Thorpe  &  Imbert, 1989 ). Although there are large numbers of 
feedback connections at every level of the visual system ( Bullier, Hupe, James,  &  
Girard, 2001 ;  Callaway, 2004 ), it is clear that every time a computation requires the 
use of feedback from a later processing stage, this will add signifi cantly to overall 
computation time. We know, for example, that onset latencies for neuronal responses 
increase by roughly 10 ms at each level of the cortical processing hierarchy. Thus, 
onset latencies in primate V1 start at around 40 – 60 ms, whereas V2 neurons typically 
need 50 – 70 ms (see   fi gure 10.3, plate 21,  for more details). It follows that if, following 
a fl ashed image presentation, processing in V1 depended on the feedback of informa-
tion computed in V2, this would add roughly 10 ms to overall processing time. If  such 
delays can be avoided by getting as much processing done on the feedforward pass as 
possible, this would naturally provide a strong selective advantage because any reduc-
tion in processing time will naturally increase the speed of behavioral responses. 



Making Sense of Scenes with Spike-Based Processing 201

 There are other neurophysiological results that reinforce the view that feedforward 
processing is at work. First, by analyzing the precise time course of face selectivity in 
face-selective neurons in primate inferotemporal cortex, Mike Oram and Dave Perrett 
showed that strong selectivity is already present from the very start of the neural 
response ( Oram  &  Perrett, 1992 ). This is not what would be expected if  the selectivity 
depended on the use of feedback loops along the processing hierarchy. A similar point 
was made by studies demonstrating that it is possible to read out information about 
object identity using just the very beginning of the neural response in monkey IT 
( Hung, Kreiman, Poggio,  &  DiCarlo, 2005 ) as well as by using intracerebral record-
ings made in humans (H.  Liu, Agam, Madsen,  &  Kreiman, 2009 ) and data obtained 
using magnetoencephalography (MEG;  Carlson, Tovar, Alink,  &  Kriegeskorte, 2013 ; 
 J. Liu, Harris,  &  Kanwisher, 2002 ). 

 A second neurophysiological argument for feedforward processing comes from a 
study of neuronal responses to rapid sequential visual presentation (RSVP) sequences 
at varying rates ( Keysers, Xiao, F ö ldi á k,  &  Perrett, 2001 ). Neurons in the inferotem-
poral cortex can respond to their preferred stimulus in a selective manner, even when 
the frame rate was increased to 72 images per second, that is to say, when the duration 
of each image was only about 14 ms. Given that the response latencies of such neurons 
were around 100 ms (a value typical for inferotemporal cortex), this implies that as 
many as seven different images are simultaneously being processed by the visual 
system in a pipeline. This fi ts nicely with the number of processing areas involved in 
the primate ventral stream, which involves a total of seven stages if  we include retina, 
LGN, V1, V2, V4, Posterior inferotemporal cortex, and central inferotemporal cortex 
en route (see   fi gure 10.3 ). Again, this result would be very diffi cult to explain in a 
model in which feedback from later processing stages was essential. 

 It is important to note that although feedback from one processing stage to an 
earlier one would appear to be diffi cult, given the temporal constraints, it is neverthe-
less possible that lateral connectivity within a particular cortical stage may operate 
suffi ciently rapidly to infl uence the initial processing sequence ( Panzeri, Rolls, Batta-
glia,  &  Lavis, 2001 ). 

 Yet another argument for the power of the feedforward pass comes from work in 
computer vision, where nearly all the state-of-the-art object- and scene-processing 
systems use architectures that rely almost entirely on a feedforward strategy. This is 
examined in the next section. 

 Computer Vision and Biological Vision 

 Over 30 years ago, David Marr argued that research in computer vision and biological 
vision was closely related and that it should be possible to build a research community 
at the interface between the two domains ( Marr, 1982 ). Marr died in 1981, and so we 
will never know what he thought of the evolution of the fi eld over the last three 
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decades. However, it is likely that he would have been relatively disappointed because 
in many respects research in computer vision and biological vision has advanced sepa-
rately. A few researchers attend conferences in both areas, but such people are rela-
tively rare. Most people working in computer vision have little interest in knowing 
how brains do it — after all,  “ aircraft don ’ t have to fl ap their wings to fl y. ”  Likewise, 
researchers working on biological vision often know little about how computer scien-
tists go about trying to recognize objects and process scenes. 

 Nevertheless, in recent years, there are clear signs that the two areas are starting to 
converge ( Poggio  &  Ullman, 2013 ). In particular, the solutions adopted by state-of-
the-art vision systems look more and more like the strategies at work in biological 
vision systems. In 2007, it was reported that a feedforward hierarchical model inspired 
by the primate visual system could perform a basic animal/nonanimal classifi cation 
task at a level similar to humans, at least when processing is limited by using strong 
backward masking ( Serre, Oliva,  &  Poggio, 2007 ). The specifi c model used in that 
work was a development of Riesenhuber and Poggio ’ s HMax model, which had been 
introduced some years previously ( Riesenhuber  &  Poggio, 1999 ) but had been devel-
oped to take into account a considerable amount of detail concerning the anatomical 
organization of the primate visual system ( Serre, Kreiman, et al., 2007 ). 

 Other work in computer vision was less directly concerned with following the blue-
prints provided by biological vision but nevertheless shared some of the basic design 
principles. Thus, many successful systems have been based on an essentially feedfor-
ward processing sequence ( Mel, 1997 ;  Mutch  &  Lowe, 2008 ). Many of the most 
impressive artifi cial vision systems are based on processing architectures based on 
 “ convolutional nets ”  that involve nothing more than a series of feedforward process-
ing stages one after another, coupled with a fi nal classifi cation stage ( Lecun, Kavuk-
cuoglu,  &  Farabet, 2010 ). For example, in 2012, the ImageNet Large-scale Visual 
Recognition Challenge (ILSVRC) was won by a system called SuperVision ( Kri-
zhevsky, Sutskever,  &  Hinton, 2012 ) that is essentially a feedforward convolutional 
net very similar to the sort of architectures proposed by researchers such as Fuku-
shima in the 1970s ( Fukushima, 1975 ). The challenge involves training a system with 
1.2 million images with roughly 1000 images from each of 1000 different categories. 
The system then has to correctly label new images that have never been seen before. 
The SuperVision system achieved an error rate of just 13%, half  that of alternative 
systems. The following fi gures illustrate the sorts of levels of performance that were 
obtained with the system.   Figure 10.1  (plate 19) shows the labels generated in response 
to 18 randomly selected animal pictures,   fi gure 10.2  (plate 20) shows the results for 
21 randomly selected images of plants, and   fi gure 10.3  (plate 21) shows examples for 
randomly selected images of means of transport, clothes, and general scenes.          

 The quality of the labels generated by SuperVision is impressive, as is clear from a 
cursory inspection of the fi ve labels produced for each image and their relative 
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 Figure 10.1 (plate 19) 
 Examples of the sorts of labels generated by  “ SuperVision, ”  a state-of-the-art computer vision system 
( Krizhevsky et al., 2012 ), in response to 18 randomly selected photographs of animal targets from the 
ILSVRC-2010 test image set. The correct label is written under each image, and the probability assigned 
to the correct label is also shown with a red bar (if  it happens to be in the top five). The images have 
been ordered with the strongest and most unambiguous matches first. For 12 of the 18 images the most 
strongly activated label was the  “ correct ”  one. For four others the  “ correct ”  label came second or third. 
For the final image SuperVision missed the  “ correct ”  label but successfully generated a highly 
appropriate label —  “ dalmatian. ”  Images courtesy of Alex Krihzevksy. 
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 Figure 10.2 (plate 20) 
 Performance of SuperVision on 21 randomly selected photographs of plants. The images have been 
ordered with respect to the quality of the labels. For 13 images the  “ correct ”  label had the highest 
activation level. For five others the  “ correct ”  label had a lower level of activation. Only two images failed 
to generate the  “ correct ”  label. Images courtesy of Alex Krihzevksy. 

activation levels. In some cases the labels appear to be even better than the  “ correct ”  
response — see, for example, the label  “ Dalmatian ”  produced in response to the image 
for which the  “ correct ”  response was  “ cherry ”  (  fi gure 10.1, plate 19 ). Furthermore, 
there can be little doubt that many humans would fi nd some of these distinctions 
relatively tricky (consider  “ leopard ”  vs.  “ jaguar ”  vs.  “ cheetah, ”  for example). 

 This level of performance was achieved with a system containing the equivalent of 
roughly 650,000 neurons arranged in fi ve main layers, and around 60 million parame-
ters, which are roughly equivalent to synaptic weight strengths. The fact that such a 
straightforward architecture can achieve such high levels of performance is very infor-
mative. For example, given the debate about the relative importance of feedforward 
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 Figure 10.3 (plate 21) 
 Performance of SuperVision on 21 randomly selected photographs from three general categories —
 transport, clothes, and scenes. In all three categories the most strongly activated image corresponded to 
the  “ correct ”  label for the majority of the images. Images courtesy of Alex Krihzevksy. 
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and feedback mechanisms in visual processing, it is striking to note that the processing 
architecture used in SuperVision is entirely feedforward. Each of the fi ve main process-
ing stages receives information from the previous structure and sends its outputs to the 
next stage. There are no connections allowing information to be sent from higher-order 
structures to earlier stages. And there are no horizontal connections within each pro-
cessing stage that could be used to implement local feedback-like mechanisms. This 
fi nding may seem surprising because we know very well that the primate visual system 
has very extensive feedback connections. Why do these connections exist if  complex 
and challenging tasks such as labeling the objects in complex natural scenes can be 
achieved using a purely feedforward architecture? One possibility is that the feedback 
connections may serve other functions. For example, they might be important for scene 
segmentation, as has been suggested by a number of computational studies ( Boren-
stein  &  Ullman, 2002 ;  Epshtein, Lifshitz,  &  Ullman, 2008 ;  Roelfsema, Lamme, Spe-
kreijse,  &  Bosch, 2002 ), although even here feedforward mechanisms can be suffi cient 
in some cases ( Super, Romeo,  &  Keil, 2010 ). Thus, although SuperVision can effec-
tively determine that a given image contains a leopard, determining the borders of the 
leopard would not be possible simply using the label alone. 

 Nevertheless, it seems clear that the state of the art really does correspond to a 
feedforward neural network with an architecture that is essentially very compatible 
with what we know about the architecture of the human visual system. Indeed, it is 
particularly interesting to compare the architecture of SuperVision with what is 
known about the primate visual system.   Figure 10.4  (plate 22) compares the two 
systems, using the numbers for processing units in SuperVision ( Krizhevsky et al., 
2012 ) and the numbers of neurons in the different stages of the primate visual system 
based on a recent review paper ( DiCarlo, Zoccolan,  &  Rust, 2012 ).    

 The similarities between the two architectures are striking. Both use a series of hier-
archically organized processing stages, and the number of stages is actually very 
similar. If  we ignore the lateral geniculate nucleus, the primate ventral stream has 
approximately fi ve processing stages on the way to the anterior inferotemporal cortex 
(AIT), namely V1, V2, V4, posterior inferotemporal cortex (PIT), and central infero-
temporal cortex (CIT). Likewise, SuperVision also uses fi ve stages of convolutional 
networks. The fi nal three stages of SuperVision are somewhat different in that they 
involve two layers of fully connected nodes that fi nally give rise to the set of 1000 labels. 

 Although the number of layers used by each system is similar, the total numbers 
of neurons used are very different — the  “ cortical ”  processing performance by Super-
Vision involves roughly 650,000  “ neurons, ”  whereas the primate ventral stream 
involves around 478 million neurons, roughly 750 times more. But much of this scaling 
difference can be simply explained by the fact that the input to SuperVision is a rela-
tively small image that is just 228 pixels across with three different color channels per 
pixel. Furthermore, those pixels are represented by a fi rst processing stage in which 
the number of  “ columns ”  has been further reduced relative to the original resolution. 
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Specifi cally, there are 55  × * 55 columns, each with 96 different processing fi lters. In 
the primate visual system, the reduction in resolution going from the retina to V1 is 
much less, meaning that V1 in the primate has a substantially higher resolution than 
SuperVision ’ s fi rst stage. 

 We can even give a rough ballpark estimate of the effective size of the retinal input 
array in the primate. We have roughly 1 million fi bers in each optic nerve. In principle 
this could correspond to an image with 1000 by 1000 pixels if  each pixel gave rise to 
one optic nerve fi ber. However, we know that the optic nerve uses a coding scheme 
with parallel ON- and OFF-center channels for each point in the image ( Schiller, 
1992 ), which already cuts down the effective resolution of the image by a factor of 
two. Furthermore, we also know that the optic nerve also handles color information 
that presumably produces further reductions in the number of points that can be 
handled. Add to that the fact that there may be as many as 12 different functionally 
independent channels in the output of the retina ( Werblin  &  Roska, 2007 ;  Werblin, 
2011 ), and it seems that the effective resolution of the retina may be little more than 
the 640  ×  480 pixels used by a standard VGA webcam. Given these constraints it 
seems remarkable that we can extract a meaningful impression of the entire visual 
scene with such a limited number of fi bers in each optic nerve. But it does imply that 

 Figure 10.4 (plate 22) 
 A comparison between the architecture used by SuperVision, a state-of-the-art computer vision system 
( Krizhevsky et al., 2012 ), and the ventral stream of the macaque monkey ( DiCarlo et al., 2012 ). 
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the fi rst stage of cortical processing in the primate visual system may be considerably 
more detailed than SuperVision ’ s fi rst stage. With 190 million neurons in V1 for 1 
million input fi bers, we could effectively have 190 fi lters for each incoming fi ber and 
several hundred fi lters for each effective point in the retinal image. 

 Of course, the primate visual system does not use a uniform resolution across the 
visual fi eld, and a direct comparison with the resolution of a webcam is problematic. 
There is a great deal of inhomogeneity, with far more resources devoted to processing 
the foveal region, where there is at least one retinal ganglion cell for every photorecep-
tor and relatively little neural hardware is used to process higher eccentricities. Nev-
ertheless, it is interesting to note that the 96 fi lters per  “ column ”  used in SuperVision 
may not be so different from the sorts of processing used in the primate visual system 
once the higher resolution of processing in the primate has been taken into account. 

 The other obvious difference between SuperVision and the primate visual system 
is that the current implementation of SuperVision uses just 1000 output labels, whereas 
it is likely that humans use a much larger set of labels to describe the content of 
images. Note, however, that the choice of 1000 output labels was determined by the 
ImageNet competition. Alex Krizhevsky (personal communication) has successfully 
extended the system to work with the full 20,000 labels that are available in the original 
set of training images. Furthermore, other computer vision systems have already been 
designed that can handle far more output labels. Thus, researchers at Google have 
recently claimed to be able to run a system capable of generating as many as 100,000 
labels on a single machine ( Dean et al., 2013 ). It may be that once the basic processing 
hierarchy has been established, adding additional labels to the fi nal output stages 
could be relatively inexpensive because the same underlying processing mechanisms 
could potentially be reexploited with the new labels. 

 In this respect it is interesting to consider how many  “ labels ”  might be used for scene 
labeling in the primate visual system. For humans, one way to estimate this would be 
use the number of nonabstract words in the WordNet lexical database that can be 
associated with a visual category. This fi gure is around 75,000 English words ( Torralba, 
Fergus,  &  Freeman, 2008 ), but we clearly need to add a substantial number of more 
personal labels that would be specifi c for each individual. For example, I can probably 
recognize and label a few thousand individual people, not including the famous people 
who would be recognized by many people. I could also recognize a fairly large number 
of specifi c geographical locations as well as the exterior and interior of many buildings 
including the places where I have worked, lived, shopped, eaten, and so forth. Estimat-
ing precisely how many such labels we have is clearly not easy, but it is likely that the 
combined total (when including the 75,000 labels used by Torralba et al.) could be well 
over 100,000 and potentially several hundred thousand or even a million. 

 Computer vision may not yet have reached these levels of performance, but the 
gap is clearly narrowing. If  1000 labels can be successfully handled by a system that 
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effectively has around 650,000 neurons, what would we expect to be able to achieve 
with the 478 million neurons in the primate ventral stream, a number roughly 750 
times larger? 

 Currently, SuperVision runs on a computer equipped with two powerful graphics 
processor boards. Training with tens of millions of images takes several days, but this 
involved using huge numbers of variations for each image in which the image is 
shifted, zoomed, and rotated to increase the level of invariance. In fact the current 
implementation of SuperVision is able to process a 24-bit 228  ×  228 pixel image and 
generate the output vector using 1000 labels in about 1 ms per image (Alex Krizhevsky, 
personal communication). Note that this 1-ms value does not refer to the input –
 output time. Specifi cally, it means that you can load up 100 images and process them 
all in 100 ms. This is because of the way the graphics processors break up the task. 
It is not possible to process a single image so effectively because the various processing 
cores are used optimally only when multiple images are processed in a batch. 

 The latest graphics processor boards used by systems such as SuperVision have 
phenomenal amounts of computational power. For example, the Nvidia GeForce 
GTX Titan board achieves 4.5 Terafl ops (where a terafl op means 10 12  fl oating-point 
operations per second), has 2668 processing cores, and a memory bandwidth of 288 
Gbytes/second. Given that today ’ s fastest supercomputers, such as the Tianhe-2 
system, which is capable of nearly 55 Petafl ops (5.5  ×  10 16  fl oating-point operations 
per second), are essentially built around tens of thousands of graphic boards linked 
together, it seems that it may be feasible to imagine building a scaled-up SuperVision-
like system that could have performance characteristics that are close to those of the 
primate ventral stream. 

 Given this very impressive levels of performance achieved with SuperVision, it is 
tempting to conclude that the problem of how the human visual system can under-
stand complex natural scenes is close to being solved. After all, we effectively already 
have artifi cial systems that can perform the very challenging task of labeling a wide 
range of objects in complex natural scenes. Furthermore, such systems achieve this 
using architectures that look remarkably similar to those found in the human visual 
system. In this respect it is interesting to note that when the SuperVision team 
designed their processing architecture, they were not using the primate visual system 
as a blueprint (Alex Krizhevsky, personal communication). The remarkable similarity 
between the two architectures really does seem to be a beautiful example of convergent 
evolution. Computer scientists and natural selection seem to have come up with the 
same basic solution to the same basic problem, namely the need to identify and label 
objects in natural scenes as fast as possible and with the minimum error rate. 

 But there are some very major differences between the way in which these sorts of 
systems work and the way the human visual system operates. The fi rst major difference 
lies in the fact that in biological systems, the processing units transmit information in 
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the form of all-or-nothing events — spikes — whereas in a system like SuperVision, each 
of the 650,000  “ neurons ”  transmits a fl oating-point number that corresponds to its 
activation level to the  “ neurons ”  in the next level. In the next section I discuss how this 
difference may be functionally very important because there are certain types of com-
putation that can be done much more effi ciently using a time-coded spiking architec-
ture than with the continuously variable coding used by convolutional nets. 

 The second major difference concerns the way in which the system learns. The 
SuperVision system requires colossal amounts of training: each of the 10 million 
images is paired with the appropriate label several hundred times, and a modifi ed 
backpropagation algorithm is used to train representations at the intermediate levels. 
Few scientists believe that the human brain uses anything directly related to back-
propagation. Furthermore, human infants clearly do not have to be given millions of 
labeled images in order to make sense of the world. For example, a child may learn 
about dogs and cats over many learning experiences, but it is likely that he or she will 
need to be told only a few times that  “ this is a dog ”  and  “ this is a cat ”  for these labels 
to be extended to a full range of possible viewing angles and breeds of animal. In a 
later section I discuss how introducing a spike-based learning scheme can radically 
transform the way the system can learn. 

 Before moving on to these questions, I would like to stress one important point. 
The impressive levels of performance achieved by SuperVision do not actually depend 
specifi cally on the use of backpropagation and hundreds of millions of training trials 
with labeled image data. Once the system has been trained, you could deactivate the 
learning mechanism, and the system will still be able to perform the labeling task with 
exactly the same level of precision. What are critical are the precise patterns of weights 
used and the response properties of  “ neurons ”  at each level of the system. Quite how 
those weights were learned is not actually critical. It could be backpropagation. But 
it could also use some other learning algorithm, perhaps one that has yet to be dis-
covered. Once those weight sets have been learned, you can in principle extract the 
weight values and use them to program an alternative system that would not have to 
do the learning. In the most extreme case you could even argue that the weight sets 
could be learned using natural selection and genetic wiring rules. Indeed, this may 
even be the case for some biological visual systems, particularly in the case of animals 
with short life spans, where the opportunities for learning online may be limited. After 
all, many insects have to be able to correctly label key visual stimuli such as a sexual 
partner on the very fi rst encounter. 

 Spike-Based Image Processing 

 SuperVision uses continuously variable fl oating-point numbers to represent the activa-
tion levels of each of its processing units. Indeed, it is the phenomenal fl oating-point 
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computational power of the latest generation graphics processors that have made the 
training feasible in a reasonable amount of time. In fact, the basic architecture used 
by SuperVision is fairly similar to the sorts of processing architectures that were being 
proposed in the 1970s and 1980s — it is the availability of systems that achieve 4.5 
Terafl ops that has made it possible to do the massive amounts of training needed to 
get such systems to work on challenging real-world problems. In contrast, real neurons 
do not send fl oating-point numbers — they send spikes. Is this signifi cant? In this 
section, I discuss why using spikes could radically transform the way in which com-
putations are performed by the visual system. 

 For some neurophysiologists, even though neurons send spikes, this fact can be 
ignored because of the belief  that the underlying coding scheme uses fi ring rates. 
According to this view all the interesting information can be obtained by measuring 
the fi ring rate of each neuron. These fi ring rates typically vary between 0 and around 
200 spikes per second, although for very brief  periods, neurons have been described 
with instantaneous fi ring rates as high as 700 Hz ( Nowak, Azouz, Sanchez-Vives, 
Gray,  &  McCormick, 2003 ). This underlying belief  has led to the widespread use of 
post stimulus time histograms (PSTH) to analyze neuronal response, a technique that 
averages neuronal responses over large numbers of trials in order to get an estimate 
of instantaneous fi ring rate. Another idea commonly seen in the modeling community 
assumes that once the neuron has integrated its synaptic inputs to generate an activa-
tion level, it then proceeds to convert this activation value into a fi ring pattern using 
a Poisson process in which the decision about whether to fi re is made using a random 
procedure. Although it is true that the fi ring of an individual neuron can look roughly 
Poisson in nature, it seems likely that this apparent variability has more to do with 
the inability of neurophysiologists to control all the different inputs to the neuron 
rather than intrinsic noisiness in the spike-initiation process at the level of individual 
neurons. Indeed, there is evidence that the reliability of the initial part of the response 
of cortical neurons is actually very high — much higher than would be predicted 
by a Poisson process ( Amarasingham, Chen, Geman, Harrison,  &  Sheinberg, 2006 ; 
 Maimon  &  Assad, 2009 ). Furthermore, this reliability is much higher for natural 
movies than for the sorts of bar and grating stimuli conventionally used by neuro-
physiologists to study visual neurons ( Herikstad, Baker, Lachaux, Gray,  &  Yen, 2011 ). 

 Other arguments against the idea that neural fi ring can be modeled as a time-
varying Poisson process come from theoretical studies. Jacques Gautrais used a math-
ematical analysis to investigate the ability of a Poisson process to transmit information 
over short periods ( Gautrais  &  Thorpe, 1998 ). The results were problematic for pro-
ponents of Poisson rate coding because the number of neurons required to send even 
the simplest information in a short period of time was excessive. For example, to be 
able to determine that the underlying fi ring rate of a population of identical, redun-
dant neurons was 100  ±  10 Hz in 10 ms with a 90% chance of being correct would 
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require no less than 281 neurons in parallel. Similarly, if  you wanted to know which 
one of two populations of neurons was the more active, and assuming that one popu-
lation was fi ring at 100 Hz and the other at 75 Hz, you would need to have 76 neurons 
in each population to be able to make a choice with a 90% chance of being correct 
in 10 ms. Such values are clearly incompatible with the ability of the retina to send 
enough information to the brain in a few tens of milliseconds to allow the scene to 
be processed with 1 million different channels. 

 Fortunately, the brain does not have to use Poisson rate coding to send information 
effi ciently. An alternative strategy makes use of the well-known fact that the time taken 
for a sensory neuron to reach its threshold for fi ring depends on the strength of the 
input. As a consequence retinal ganglion cells will fi re at a shorter latency when they 
are stimulated at higher intensities, an effect that was already visible in Lord Adrian ’ s 
original studies in the 1920s and 1930s but has been largely ignored in most neurophysi-
ological studies until remarkably recently ( Gollisch, 2009 ;  Gollisch  &  Meister, 2008 ). 
But, as pointed out as early as 1990, using the relative timing of spikes provides an 
extremely simple way to perform one of the most vital operations in neural computing, 
much more simply than would be possible with conventional rate coding ( Thorpe, 
1990 ). That operation is the winner-take-all function that compares the activation 
levels of a set of neurons and recovers the one with the highest value. A related func-
tion, namely the MAX operator, is a key element of one of the most popular models 
of visual processing, the HMAX model (Riesenhuber  &  Poggio, 1999). In a conven-
tional rate-coded system it is in fact quite diffi cult to fi nd the most active neuron 
because typically this would require using inhibitory lateral connections and letting the 
neurons compete with each other. Because the neuron that initially has the highest 
fi ring rate will inhibit its neighbors more effectively, if  you leave the system long enough 
only that neuron will be left fi ring at the end. However, there is no way of knowing in 
advance how long this selection process will take to complete because it depends on the 
relative strengths of activation in the different neurons. In contrast, in a system where 
the strength of the input is encoded in the latency of fi ring, fi nding the most strongly 
activated neuron can be done by simply picking off  the fi rst neuron that fi res. To take 
a particularly extreme example, imagine that you open your eyes and fi nd that you are 
looking at the thousands of stars in the night sky. To fi nd where the brightest star is 
would simply involve fi nding the retinal ganglion cell with the shortest latency response. 

   Figure 10.5  shows how a relatively simple circuit mechanism based on spike timing 
can be used to perform some surprisingly sophisticated computations. The left panel 
(A) shows the basic arrangement in which an output neuron receives connections from 
40 different input neurons. However, only 4 of the 40 inputs have an effective synapse 
(as indicated by the small triangles); the others have weights that are effectively zero. 
Suppose that we now apply an activation pattern to the input neurons (illustrated by 
the line on the left) that progressively pushes the input neurons over their threshold. 
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The neurons will fi re in an order that depends on the local intensity, with the most 
strongly activated neurons fi ring fi rst. In addition there is an inhibitory neuron (Inh) 
that receives strong monosynaptic inputs from each of the input units and provides 
strong feedback inhibition to all the inputs. If  the inhibitory neuron has a threshold 
of 4, this would mean only the four inputs that fi re fi rst will get through because all 
the other input neurons will be blocked by the feedback inhibition. The right panel 
of the fi gure (B) shows the state of the circuit once the four input neurons with the 
highest activations have fi red and where the inhibitory feedback circuit has kicked in 
to prevent any additional input neurons fi ring. If  we suppose that the output neuron 
has a threshold of just under 4, it follows that the particular activation pattern will 
be able to push the neuron over threshold. The remarkable point is that such a circuit 
will be very selective because it would fi re an output spike only if  all four of the neu-
ron ’ s  “ favorite ”  inputs fi red together. But this would occur only if  the four highest 
values in the activation profi le happened to be the four with the strong weights. This 
is effectively the equivalent of putting your hand into a hat containing 36 white balls 

 Figure 10.5 
 A simple neural circuit that allows an output neuron to respond to a specific pattern of activation (see 
text for details). 
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and 4 black ones, drawing out 4 balls, and discovering that you have only black ones. 
This would be exceedingly unlikely to occur by chance — specifi cally once every 91,390 
times [= (4/40)  ×  (3/39)  ×  (2/38)  ×  (1/37)].    

 Although the circuit illustrated in this example is only relatively small scale, the 
same sort of strategy works with neurons that have much larger numbers of inputs. 
Suppose that, instead of having 4 strong synapses out of 40, we had the more realistic 
situation in which a neuron might have 50 strong synapses out of 1000 (i.e., 5% of its 
inputs). Again, the trick is to use the feedback inhibition circuit to keep the number 
of simultaneously active inputs under strict control, effectively implementing a  k -WTA 
(winner-take-all) operation. If  we suppose that no more than 100 of the 1000 inputs 
can be activated (i.e., 10%), and there are 50 fully potentiated input synapses, the 
probability of hitting more than a given number of the neuron ’ s  “ favorite ”  synapses 
by chance drops off  extremely rapidly, as can be demonstrated using a simple calcula-
tion using a binomial distribution. It corresponds to the situation in which you are 
drawing balls from a hat containing 950 white balls and 50 black ones. If  you pick 
out 100 balls, you would expect to get 5 black ones on average (because 5% of the 
balls are black). But the probabilities drop off  very rapidly. There is a roughly a 1 in 
10 chance of getting 10 or more hits, less than a one in a million chance of getting 
more than 17 hits, and less than a one in a hundred billion chance of getting more 
than 23 hits. Thus, if  the threshold of the neuron were set at 23 (of 50) the chances 
of it responding to a random input would be effectively zero. The input pattern would 
have to have an activity profi le remarkably similar to the pattern of high weights to 
have any chance of getting the neuron over threshold. 

 The use of spike-based coding schemes thus allows neurons to achieve levels of 
selectivity that would be impossible to obtain in a more conventional neural network 
architecture in which each neuron has a continuously variable activation level, effec-
tively corresponding to the sorts of fl oating-point numbers used in systems such as 
SuperVision. This selectivity may seem remarkable, but it is a natural consequence of 
the fact that controlling the number of active inputs is simple to do with spiking 
neurons yet next to impossible to achieve with continuously graded inputs. To see why, 
consider how diffi cult it would be to take 1000 neurons coded by fl oating-point 
numbers between 0 and 1 and fi nd the 5% with the largest values. Algorithmically, 
this would normally require scanning though all the values sequentially and maintain-
ing a sorted list of the 50 largest values. In a spiking network using temporal coding, 
the same operation can be achieved by simply blocking further activation once the 
fi rst 50 neurons have fi red. 

 Spike-Time-Dependent Plasticity 

 The simple circuit in   fi gure 10.5  showed how a neuron that has a relatively small 
number of fully potentiated synapses can be remarkably selective if  the proportion 
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of active inputs is kept strictly under control. But how could a neuron end up with 
just a small number of fully potentiated synapses? In this section I argue that a simple 
learning mechanism based on STDP will produce precisely this effect. 

 STDP-based learning was fi rst demonstrated in the late 1990s and has since been 
the subject of intense experimental and theoretical studies ( Bi  &  Poo, 2001 ;  Feldman, 
2012 ;  Markram, Gerstner,  &  Sjostrom, 2011 ). But one very interesting feature of this 
form of learning has remained relatively neglected: this is the fact that STDP will 
naturally concentrate high synaptic weights on inputs that fi re early ( Guyonneau, 
Vanrullen,  &  Thorpe, 2005 ). Specifi cally, if  the same pattern of spikes is presented 
repeatedly, we found that neurons will naturally become selective to that repeating 
pattern. The reason this occurs can be understood by looking at   fi gure 10.6 , which 
illustrates how a neuron with 12 inputs can rapidly learn to respond to the fi rst 3 
inputs of a repeating pattern.    

 The example illustrated in the fi gure is clearly very simple, but it is relatively easy 
to see that the same principle can be extended to much larger problems. Indeed, we 

 Figure 10.6 
 A simple illustration of why a simple STDP learning rule will concentrate high weights on the earliest-
firing inputs of a repeated pattern. Suppose that a neuron initially has 12 synaptic inputs, each with a 
weight of 0.25, and that the neuron ’ s threshold is 3.0. When a specific pattern of spikes involving all 12 
inputs is repeatedly presented, the neuron will end up with fully potentiated synapses for the 3 inputs 
that fire first. This happens progressively. On the first presentation (panel 1), the neuron fires only when 
all the inputs have fired. The STDP rule will potentiate all of them because they all fired before the 
output neuron. On presentation 2, only the first nine get potentiated, and the last three start dropping 
out. After presentation 3, only the first six inputs are potentiated, whereas with presentation 4, it is just 
the first three that are reinforced. After a few more presentations, the first three inputs in the pattern are 
fully potentiated, and all the others have dropped back to minimal levels. 
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have used computer simulations to demonstrate that the effect scales up to arbitrarily 
large numbers of inputs. In one study, we studied the case of a neuron receiving 
random patterns of activity from 2000 afferents but where a 50-ms segment of activity 
in a randomly chosen subset of those afferents is copied and then pasted at random 
intervals throughout the pattern. Remarkably, the receiving neuron can become selec-
tive to this repeating pattern after only a few tens of presentations, and within a few 
minutes the neuron becomes selective to the very beginning of the repeating pattern 
( Masquelier, Guyonneau,  &  Thorpe, 2008 ). 

 In those original studies we deliberately chose to use totally meaningless patterns 
of activity. But in other studies we found that a simple hierarchical neural network 
can learn to create receptive fi elds to face-like stimuli simply by presenting images 
from the Caltech face database ( Masquelier  &  Thorpe, 2007 ). Importantly, this 
sort of learning occurs without any supervision: at no point is the system told 
that it has to learn about faces. It learns about faces simply because faces are the 
most likely stimuli in the inputs. If  the same network is trained with photographs 
of motorcycles, then neurons in the output layer become selective to parts of 
motorcycles. 

 In other experiments we simulated a layer of 60 spiking neurons that received inputs 
from a dynamic vision sensor chip ( Bichler, Querlioz, Thorpe, Bourgoin,  &  Gamrat, 
2012 ;  Roclin, Bichler, Gamrat, Thorpe,  &  Klein, 2013 ). The dynamic vision sensor 
developed by Tobi Delbruck ’ s group in Zurich ( Lichtsteiner, Posch,  &  Delbruck, 2008 ) 
has an array of 128  ×  128 pixels. Each pixel can generate two types of spiking events: 
one event signals that the local luminance has increased by a fi xed percentage (for 
example, 10%), whereas the other type of event signals that there has been a decrease 
in luminance. The generation of spikes is completely asynchronous and follows the 
events in the outside world with microsecond precision. For our simulations we down-
loaded a set of data obtained with the camera viewing traffi c on a six-lane freeway in 
Pasadena. The data set contains several million spikes generated over a period of 
roughly 90 seconds. We found that following roughly 3 minutes of presentation (two 
runs through the complete data set), the 60 neurons in the fi rst layer had developed 
receptive fi elds that corresponded to cars at particular positions on the freeway. But 
we had a second layer of 10 neurons that received connections from the neurons in 
the fi rst layer. Remarkably, these neurons were found to have learned that there were 
particular sequences of fi ring in the fi rst layer and that these sequences correspond 
to cars going by on each of the six lanes of the freeway. Although simple, the network 
had effectively learned about the signifi cant events that were occurring in the outside 
world. Again, it is important to realize that this learning was done in a completely 
unsupervised way: the system was given no information whatsoever about the environ-
ment in which it was placed. It effectively worked out on its own that there were 
particular events in the environment that were signifi cant simply because they recurred 
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over and over again. This ability could be reasonably thought to correspond to a 
simple form of intelligence. 

 The simulations that I have been talking about so far concern artifi cial neural 
network systems. So a natural question to ask would be whether or not similar mecha-
nisms exist in the human brain. In a study with my colleagues Trevor Agus and Daniel 
Pressnitzer in Paris we were able to show that human subjects are capable of forming 
robust memory traces for meaningless auditory noise stimuli ( Agus, Thorpe,  &  Press-
nitzer, 2010 ). The participants listened to 1-second-long fragments of Gaussian noise 
and were required to determine whether the fi rst and second halves of the stimulus 
were identical. It is a diffi cult task to perform, but we discovered that if  the same 
auditory fragments were repeated during the experiment, the subjects became much 
more accurate later in the experiment for stimuli that were heard repeatedly. This 
improvement of performance developed very rapidly, within a few tens of presenta-
tions, and was all or none; the subject either was able to learn the stimulus or not. 
Furthermore, we found that if  subjects went away for 2 or 3 weeks and then came 
back into the lab, their performance on the very fi rst trial with the original stimulus 
was virtually as good as it had been during the original testing session. It appeared 
that the subject had developed robust memories for the auditory noise patterns that 
could last for at least 2 or 3 weeks. One of the striking aspects of this result is that 
the subjects were able to remember the sensory stimulus even though it was presum-
ably impossible for them to rehearse the pattern in the intervening period. 

 Normally, with the sorts of material generally used in memory research (such as 
lists of words), it is usually possible for people to recall the material during the inter-
vening period. But in the particular case of Gaussian auditory noise, this option seems 
extremely unlikely. It would appear that the memory traces must have been formed 
during the original experiment. Consolidation during, for example, dream sleep may 
be involved, but there is effectively no way that the particular pattern of sensory input 
could be reproduced outside the original learning situation. 

 Where might this sort of learning be occurring? In a further simulation study, my 
former student Olivier Bichler looked to see whether a neuron directly connected to 
the auditory nerve could learn this sort of auditory noise pattern (O. Bichler, unpub-
lished data). Specifi cally, we modeled the auditory periphery as a set of simple 
frequency-tuned fi lters directly connected to a set of leaky integrate-and-fi re neurons 
that correspond approximately to the axons in the auditory nerve. In the simulation 
there were just 64 channels of frequency-tuned axons connected to a single output 
neuron. The neuron was initially stimulated with continuous Gaussian noise and was 
found to fi re at approximately 2 spikes per second. Because of the specifi c learning 
rule that we used that strengthened synapses that were active just before the neuron 
fi red while depressing all the other ones, the total amount of synaptic input to the 
neuron remained roughly constant. And, because of this, if  the Gaussian noise pattern 
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is continuously renewed, the neuron would continue to fi re at roughly 2 spikes a 
second indefi nitely. We then introduced a particular segment of auditory noise that 
was repeated over and over again, very much like the way in which repeating noise 
patterns were used in the human psychophysics experiments. Within a few seconds 
the neuron had started to respond selectively to the repeating noise segment, and 
within a minute or so the neuron was fi ring only when the repeating noise pattern was 
present. Finally, when we switched back to the original continuous noise stimulus, we 
found that the neuron no longer fi red at all, meaning that the cell had become highly 
selective to the stimuli used for training. 

 Intriguingly, because the neuron was now extremely unlikely to be activated by the 
continuous Gaussian noise, it could effectively be considered to be a sort of  grand-
mother cell  because only stimuli that were very similar to the originally presented 
stimulus would be capable of driving the cell to threshold. Remember that this pattern 
of responding was seen for a neuron that was connected directly to just 64 fi bers in 
a simulated auditory nerve. Imagine what would happen with a more complicated 
input corresponding to the 30,000 fi bers in the auditory nerve. And imagine that there 
was not just one cell listening to the fi bers in the auditory nerve but many hundreds 
or even thousands of cells. If  those cells were connected to each other via inhibitory 
connections, the system would form a sort of competitive learning mechanism in 
which each cell will effectively learn to respond to any stimulus that has not already 
been learned by one of the other neurons. Thus, if  the auditory system is stimulated 
with sounds corresponding to English, the neurons would presumably learn to respond 
to the basic sounds of the English language. In contrast, if  the system is stimulated 
with sounds corresponding to French, the response properties of each neuron would 
correspond to the acoustic patterns that are most frequently heard in French. 

 Now consider what would happen if  there was not just one layer of neurons but a 
whole hierarchy of layers. Imagine also that the time constants of neurons in different 
layers vary with the neurons in the most peripheral layers with those closest to audi-
tory input having very short time constants, whereas those in more central structures 
might have longer time constants. Under these conditions the neurons in the periph-
eral structures would learn about very short acoustic features, whereas more centrally 
located cells would become increasingly selective to longer acoustic events such as 
phonemes, words, and even word sequences or phrases. 

 Although this digression into the fi eld of auditory noise learning may seem remote 
from the general issue of visual scene processing, it is important to stress that the 
same sorts of principles could easily be applied in the case of visual input. 

 Relevance to Visual Scene Processing 

 In the last two sections we have seen how some simple mechanisms based on spike-
based processing can provide some remarkably powerful computational features. 
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First, we saw how a simple mechanism for controlling the percentage of neurons that 
can fi re in an array of input neurons can allow the receiving neuron to show remark-
able selectivity. This selectivity would only require the output neuron to select a subset 
of inputs from the wide range of potential inputs and assign high weights to a rela-
tively small number of them. The precise numbers are not critical, but values of 5% 
or 10% work well for the numbers of inputs with potentiated weights, and values of 
5% to 20% for the percentage of inputs that are allowed to fi re are also suitable. 

 We then saw that a simple STDP learning rule can provide a way for neurons to 
become selective to patterns of input activation that repeat by concentrating high 
synaptic weights on the specifi c set of inputs that fi res fi rst during the repeating 
pattern. In this fi nal section we consider how these mechanisms could be involved in 
the way in which our visual systems handle complex scenes. 

 Earlier in the chapter we saw how a state-of-the-art computer vision system could 
generate thousands of meaningful labels in response to complex natural scenes, and 
we noted that the basic architecture of the system, namely a pure feedforward network 
composed of roughly fi ve layers of neurons, is surprisingly similar to the basic design 
of the primate visual system. We argued that although the performance of such 
systems implies that a similarly designed system built from real biological neurons 
should be able to achieve similar feats, the precise learning algorithm and the training 
procedures used by SuperVision seem unlikely to refl ect what happens in our own 
visual systems. Wiring up the connections in SuperVision requires literally billions of 
training examples in which a training image is shown together with its labels. Such a 
learning mechanism seems implausible for humans. 

 However, there are reasons to believe that the spike-based selectivity and learning 
mechanisms presented in subsequent sections could provide a biologically plausible 
way to set up the wiring. According to this view the visual system would naturally 
develop neurons with selectivity for those input patterns that occur repeatedly, with 
a natural tendency to allocate more neurons to those stimuli that occur most often. 
We saw both modeling and experimental studies that imply that this development of 
selectivity can occur with just a few tens of repetitions. 

 But there is another difference between SuperVision and the sorts of spike-based 
learning mechanisms proposed here. SuperVision is a convolutional network, which 
means that there are  “ neurons ”  that perform the same operation for every part of the 
image. There is thus no specialization for particular parts of the visual fi eld, at least 
in the fi rst fi ve layers of processing. If  there is a  “ neuron ”  that is selective for a par-
ticular type of visual feature in the top left of the image, there has to be the very same 
type of unit for every other part of the image — that is indeed the defi nition of a 
convolutional network. 

 In contrast, the spike-based learning scheme would not allow a particular  “ convolu-
tion ”  to be applied to every point in the image, and indeed, there is no way that a set 
of weights learned by one location could be copied to all other locations — there can 
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be no  “ weight sharing ”  of the type seen in convolutional networks. Neurons with 
particular patterns of selectivity would occur only if  they had actually received the 
same specifi c pattern of inputs repeatedly. This fact is clear from the example of the 
system that was trained using a spiking retina pointed at a six-lane freeway in Pasa-
dena. Because the viewing angle of the camera was fi xed, the receptive fi elds of the 
neurons and their selectivities matched perfectly the specifi c scene characteristics that 
were used during the training period. Indeed, if  there is any change to the angle of 
view or to the zoom factor of the camera, none of the neurons in the system would 
be able to respond. Each neuron would only be interested in a very specifi c  “ car ” -like 
stimulus located in a very specifi c location — a sort of  “ grandmother cell ”  for that 
specifi c input. Indeed, it is amusing to imagine trying to work out what the system 
was interested in if  the original training conditions were unknown. Think of a neu-
rophysiologist recording the activity of one of the car-selective neurons and trying to 
work out the best way to activate the neuron by randomly presenting a wide range of 
different visual stimuli. Unless the  “ neurophysiologist ”  was lucky enough to try a 
small car-shaped stimulus, moving in the right direction in just the right point of the 
image, he or she would probably conclude that the neurons were not visually respon-
sive at all. 

 This simple illustration shows that under normal conditions, neurons in the visual 
system will learn about the things that reoccur in their particular part of the visual 
fi eld. If  you train the system in a typical natural environment, you might fi nd that the 
neurons close to the top of the visual fi eld are more likely to respond to blue, because 
of the higher probability of fi nding a blue sky in the upper visual fi eld. Likewise dense 
textures may be more likely to occur toward the lower part of the visual fi eld. Of 
course, these differences will only be statistical because you may still encounter sky 
blue objects in the lower part of the visual fi eld and dense textures near the top. 
However, there is plenty of experimental evidence showing that humans are sensitive 
to where particular objects occur within the visual fi eld ( Chun  &  Jiang, 1998 ). 

 Furthermore, there are both psychophysical data and computational models that 
show how the confi guration of a scene can help identify which particular objects are 
present ( Oliva  &  Torralba, 2007 ;  Torralba, Oliva, Castelhano,  &  Henderson, 2006 ). 
These sorts of infl uences are to be expected in a system in which the selectivity of the 
neural mechanisms is strongly dependent on image statistics and the probability of 
fi nding specifi c combinations of features in particular locations within an image. 

 Object and Scene Processing 

 A fi nal comment concerns the question of whether there is really a clear distinction 
between the processing of objects and scenes. In the literature, object vision and scene 
vision are often presented as if  they are fundamentally different. However, it could 
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be that the underlying mechanisms are essentially identical but simply apply to regions 
of the visual fi eld that have different sizes. For example, in the real world, we may see 
a mountain scene that fi lls up the entire visual fi eld, spanning 180 °  of horizontal 
extent. However, we could also take a panoramic image of the same scene and present 
it on the screen of a smartphone, in which case it might only occupy a horizontal 
extent of 20 °  or less. Does the scene become an object because it is being presented 
to a smaller part of the visual fi eld? Likewise, we can easily recognize an object such 
as a face presented within an image that takes up 20 °  of central vision, but we could 
also blow up the scale so that the face fi lled virtually the entire visual fi eld. Does it 
become a scene in that case? 

 One way to think about the problem would be to consider that the difference 
between  “ scenes ”  and  “ objects ”  is somewhat arbitrary and that it may be more useful 
to talk about those visual patterns that are most likely to occur at different scales. 
Faces tend to be seen with sizes up to a few tens of degrees at most, simply because 
it is relatively rare to be very close to a face. Likewise, we normally see entire scenes 
that include visual features right out to the edge of the visual fi eld, and this sort of 
information will presumably also contribute to processing of the objects within the 
visual fi eld. 

 At the implementation level there may not be any fundamental differences between 
the neural mechanisms that we use to learn about objects and scenes. Indeed, some 
of the earliest systems for categorizing scenes simply took the outputs of a 4  ×  4 array 
of oriented fi lter banks that covered the entire image ( Oliva  &  Torralba, 2001 ). This 
remarkably simple architecture was already capable of making quite subtle distinc-
tions between natural and man-made scenes as well as a number of other judgments 
including whether or not the scene was navigable, whether it was a long way away, 
and so forth. In a sense the latest object recognition and labeling systems such as 
SuperVision are essentially applying the same sort of strategy but with far more detail 
and with a wider range of intermediate representations. 

 We are probably approaching a time where it may be possible to implement a com-
plete model of the human visual system that includes the multiple resolutions and 
organizational features of biological vision. Such a system would have the same sort 
of hierarchical architecture used by systems such as SuperVision but would develop 
selectivities at the neuronal level that depended directly on the statistics of the input 
without simply copying the patterns of weights across the image. Furthermore, it 
would develop those selectivities without the need for labeling using a mechanism that 
simply generates selectivities to the most frequently occurring input. 
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 An overarching goal of visual neuroscience is to understand how the visual system 
processes natural scenes. Natural scenes possess statistical structure, and computa-
tional models based on this structure have provided numerous insights into the 
processing mechanisms implemented in the early visual system ( Barlow, 1961 ; 
 Field, 1987 ;  Geisler, Perry, Super,  &  Gallogly, 2001 ;  Simoncelli  &  Olshausen, 2001 ). 
Despite the success of modeling early visual processing based on natural scene statis-
tics, there are still few studies that take this approach when modeling later stages of 
visual processing. 

 In this chapter we present a simple but powerful framework for developing models 
of visual processing that are based on natural scene statistics. First, we describe a 
modeling approach that can be used to test a wide range of hypotheses concerning 
the neural basis of natural scene processing. Next, we discuss how statistical analyses 
of natural scene properties can generate new hypotheses regarding visual processing. 
We then show how these two approaches are easily combined into a general frame-
work for investigating natural scene processing throughout the brain. Finally, we use 
this general framework to study the representation of natural scene categories in later 
stages of the human visual system. 

 Linearized Models 

 A primary goal of visual neuroscience is to develop quantitative models that accu-
rately characterize the computations performed by the visual system during natural 
operation ( Wu, David,  &  Gallant, 2006 ). However, many of these computations 
appear to be quite complex, making modeling efforts diffi cult. Neurons in early stages 
of visual processing exhibit nonlinear contrast gain control ( Carandini, Heeger,  &  
Movshon, 1997 ), center-surround interactions ( Gilbert  &  Wiesel, 1990 ), and temporal 
summation ( Tolhurst, Walker, Thompson,  &  Dean, 1980 ). Neurons at later stages of 
visual processing are even more nonlinear ( Carandini et al., 2005 ;  Ito, Tamura, Fujita, 
 &  Tanaka, 1995 ) and are heavily affected by top-down mechanisms such as attention, 
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learning, and memory ( Reynolds  &  Chelazzi, 2004 ). Consequently, it has been diffi cult 
to develop valid models of visual scene processing, particularly at later stages of 
computation ( Marmarelis, 2004 ;  Victor, 2005 ;  Wu et al., 2006 ). A general framework 
to facilitate the development and testing of nonlinear models of visual processing is 
thus in great need. 

 To address this need, our laboratory has developed a modeling approach adapted 
from  system identifi cation . System identifi cation is a set of techniques used in engi-
neering and signal processing to characterize nonlinear input-output systems ( Mar-
marelis, 2004 ;  Wu et al., 2006 ). Under the system identifi cation approach a (generally 
nonlinear) parametric function is used to describe the relationship between stimuli 
and evoked brain responses ( David  &  Gallant, 2005 ;  Theunissen et al., 2001 ;  Wu et 
al., 2006 ). The function parameter values are fi t by observing  N  stimulus-response 
pairs, { s   i  ,  r i  }, where  i  = 1, 2,  …   N.  The parameters are adjusted to minimize the dif-
ference between the measured brain responses and the responses  ̂r s( )  predicted by the 
model. We refer to the stimulus-response function as an  encoding model  because it 
describes how stimuli are encoded in evoked brain activity. Once the parameters are 
fi t, the encoding model is evaluated in terms of its ability to predict responses evoked 
by novel stimuli (i.e., stimuli not used in parameter fi tting). 

 The encoding model can take many functional forms ( Marmarelis, 2004 ;  Wu et al., 
2006 ). The most common class of encoding models used in sensory and motor neu-
roscience is the  polynomial encoding model  (PEM). The functional form of the PEM 
is a linear combination of polynomial functionals applied to the stimulus dimensions. 
For example, a PEM of order 2 generates predicted responses  ̂r sPEM2 ( )  to a set of 
stimuli  s  with the following stimulus-response function: 

  ̂r s s s B sPEM
T T

2 0 1 2( ) = β + +b   (11.1) 

 The fi rst term in    equation 11.1   is a scalar offset; the second term captures linear 
relationships between the stimulus dimensions and the responses (the parameter   β   1  is 
a weight vector); the third term captures pairwise interactions between the stimulus 
dimensions and the responses (the parameter  B  2  is a weight matrix). The PEM is a 
general function estimator that makes few assumptions about the shape of the 
stimulus-response function. By adding higher-order terms, a PEM can capture rela-
tively more complicated nonlinear relationships. Many studies have used linear PEMs 
(consisting of the fi rst two terms in    equation 11.1  ) to describe the responses of simple 
cells in primary visual cortex (e.g.,  Alonso  &  Usrey, 2001 ;  Jones  &  Palmer, 1987 ;  Rust, 
Schwartz, Movshon,  &  Simoncelli, 2005 ;  Touryan, Lau,  &  Dan, 2002 ). Second-order 
PEMs (   equation 11.1  ) have been used to characterize the properties of complex cells 
in primary visual cortex ( Rust et al., 2005 ;  Touryan, Felsen,  &  Dan, 2005 ). 

 Although PEMs provide good models of low-order stimulus-response functions, 
they are limited in their usefulness as general nonlinear models of visual processing. 
One limitation is that PEMs do not scale well and require exponentially more data to 
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fi t each higher-order term ( Marmarelis, 2004 ). Thus, it is generally not feasible to fi t a 
PEM beyond second order (but see  Oliver, Nishimoto, Naselaris,  &  Gallant, 2012 ). 
Additionally, PEMs generally assume that the stimuli have spherical Gaussian statistics 
( Chichilnisky, 2001 ;  Paninski, 2003 ). This makes the PEM unsuitable for modeling how 
the brain processes natural scenes, which have non-Gaussian statistics ( Field, 1987 ). 

 To overcome the limitations of PEMs, we have used a linearized modeling approach 
to capture higher-order nonlinearities ( Wu et al., 2006 ). Linearized modeling breaks 
the system identifi cation problem into two steps. First, stimuli are transformed (often 
nonlinearly) into an intermediate feature space   Φ  ( s ). The feature space is chosen to 
ensure that the relationship between the features and evoked brain activity is as linear 
as possible. The feature space can thus be interpreted as an instantiation of an explicit 
hypothesis regarding the information encoded in evoked brain activity ( Naselaris, Kay, 
Nishimoto,  &  Gallant, 2011 ;  Wu et al., 2006 ). In the second step, linear regression is 
used to fi t a set of weights  B  E  that best map the intermediate features onto the measured 
brain activity (  fi gure 11.1A ). The resulting  linearized encoding model  (LEM) describes 
how the intermediate features are explicitly (i.e., linearly) encoded in evoked brain 
activity ( Naselaris et al., 2011 ;  Wu et al., 2006 ). A fi t LEM generates predicted 
responses  ̂r sLEM ( )  to a set of stimuli  s  with the following stimulus-response function: 

  ̂r s s BLEM
T

E( ) = ( )F   (11.2) 

 Although the LEM is less general than the PEM, it offers several important benefi ts. 
First, LEM parameters are fi t by linear regression, a simple, well-established technique 
whose theoretical properties are fi rmly understood. For example, a variety of regu-
larization techniques have been developed for linear regression ( Friedman, Hastie,  &  
Tibshirani, 2010 ). Regularization is important for several reasons: it allows the experi-
menter to add prior knowledge to the parameter-fi tting procedure, it reduces the 
tendency to overfi t the model to noise, and it ensures stable parameter estimates for 
ill-conditioned problems (i.e., when the number of stimulus-response pairs is fewer 
than the number of model parameters). Thus, a LEM can generally be fi t with fewer 
data than are required to fi t a PEM. 

 The LEM facilitates model interpretation as well. It is often diffi cult to interpret or 
visualize a PEM ( Wu et al., 2006 ), but the linear weights  B  E  of a LEM can be viewed 
directly. One can interpret the weights of an encoding model as estimates of the tuning 
curve for the set of features under investigation. This tuning curve interpretation can 
be a signifi cant advantage in functional magnetic resonance imaging (fMRI) studies 
of higher-order scene processing ( Huth, Nishimoto, Vu,  &  Gallant, 2012 ;  Stansbury, 
Naselaris,  &  Gallant, 2013 ), which have taken little advantage of the tuning curve 
formalism thus far. 

 LEMs also do not require stimuli to have spherical Gaussian statistics, so stimuli 
can be sampled from natural scenes. Using natural scene stimuli is important for a 
number of reasons. First, the visual system exhibits an array of nonlinear response 
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properties that are absent in the presence of synthetic or noise stimuli ( Dan, Atick, 
 &  Reid, 1996 ;  David, Vinje,  &  Gallant, 2004 ;  Wu et al., 2006 ). Second, natural scenes 
contain stimulus features that range from low-level pixel structure to high-level seman-
tic concepts. Consequently, natural scenes elicit activity from neurons that represent 
stimuli at various levels of complexity. If  it is possible to record multiple regions of 
the brain simultaneously (as is the case in fMRI experiments), then natural scene 
stimuli offer the opportunity to investigate multiple stages of visual processing with 
a single experiment. 

 Finally, LEMs can be used to directly compare multiple competing hypotheses on 
the same data. For example, a classic hypothesis is that neurons (or voxels) in primary 
visual cortex (area V1) represent spatially localized image structure, such as orienta-
tion and spatial frequency ( Adelson  &  Bergen, 1985 ;  Carandini et al., 2005 ;  Jones  &  
Palmer, 1987 ). This hypothesis can be tested with a LEM by transforming stimuli into 
a feature space that represents local image structure. One such transformation is a 
decomposition of visual stimuli using a set of oriented bandpass fi lters known as 
Gabor wavelets ( Daugman, 1985 ;   fi gure 11.1 ). Following stimulus transformation, a 
set of LEM weights is estimated using linear regression, and model predictions are 
assessed on a testing set of novel stimuli. The LEMs based on wavelet decomposition 
provide remarkably accurate predictions of brain activity measured in single neurons 
(Willmore, Prenger,  &  Gallant, 2010) and in single voxels ( Kay, Naselaris, Prenger,  &  
Gallant, 2008 ;  Nishimoto  &  Gallant, 2011 ) in area V1. 

 A large body of recent work has demonstrated the effectiveness of using LEMs for 
studying natural scene processing. Neurophysiology studies from our laboratory have 
used the 2D Fourier power spectrum of images as a feature space to fi t LEMs for single 
neurons in V1 ( David et al., 2004 ) and area V4 ( David, Hayden,  &  Gallant, 2006 ). The 
Fourier power spectrum is a spatially global representation of the stimulus. Thus, this 
class of LEM captures position-invariant properties of these neurons. A neurophysiol-
ogy study of area MT ( Nishimoto et al., 2011 ) used a feature space consisting of a 
pyramid of motion-energy fi lters (i.e., spatiotemporal Gabor wavelets). The motion-
energy pyramid describes how spatially localized orientation, spatial frequency, tem-
poral frequency, and direction information represented in area V1 are pooled and 
encoded in the activity of single MT neurons. This class of LEM accurately predicts 
responses of individual MT neurons to arbitrary stimuli, including natural movies. 

 Functional MRI studies from our laboratory have also used feature spaces provided 
by the Gabor wavelet pyramid ( Kay et al., 2008 ) and the motion-energy pyramid 
( Nishimoto et al., 2011 ) to fi t LEMs to single voxels in early visual cortex. These 
LEMs provide a concise account of a wide range of phenomena that have been 
reported previously in fMRI studies of early visual cortex. 

 Higher visual areas such as the fusiform face area (FFA) ( Kanwisher, McDermott, 
 &  Chun, 1997 ) and the parahippocampal place area (PPA) ( Epstein  &  Kanwisher, 
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1998 ) appear to represent more abstract, semantic content of natural scenes. Thus, 
voxels in these higher visual areas are not well characterized by models based on simple 
image features. A better approach is to model these areas in terms of semantic features. 
For example one option is to represent stimuli in terms of the objects (nouns) and 
actions (verbs) that appear in each scene (  Ç ukur, Nishimoto, Huth,  &  Gallant, 2013 ; 
 Huth et al., 2012 ). These LEMs reveal that semantic information in natural scenes is 
widely distributed in broad gradients that extend across the higher visual cortex. Fur-
thermore, results from these studies suggest that classically defi ned regions of interest 
(ROIs) such as the FFA and PPA are nodal points within these gradients. 

 Another option is to represent stimuli in terms of abstract scene categories ( Nas-
elaris, Prenger, Kay, Oliver,  &  Gallant, 2009 ;  Naselaris, Stansbury,  &  Gallant, 2012 ; 
 Stansbury et al., 2013 ). Linearized models based on scene category provide an accu-
rate account of semantic tuning in many higher-order visual areas. Results from these 
studies reveal that the correspondence between selectivity for objects, actions, and 
scene categories in the human brain likely refl ects statistical relationships among 
objects, actions, and categories that exist in the natural world ( Naselaris et al., 2012 ; 
 Stansbury et al., 2013 ). 

 The  linearized decoding model  (LDM) provides a complementary approach to the 
LEM for studying natural scene processing. As in the LEM approach, the LDM is 
constructed by mapping stimuli into an intermediate feature space. However, linear 
regression is performed in the opposite direction, fi tting a set of weights  B  D  that 
optimally map brain activity  r  onto the intermediate features ( Naselaris et al., 2011 ). 
Thus, an LDM describes how stimulus features are predicted from brain activity 
( Naselaris et al., 2009 ;  Nishimoto  &  Gallant, 2011 ;  Thirion et al., 2006 ). Given a set 
of responses, an LDM generates a predicted set of stimulus features  F( )r   using the 
following response-stimulus function: 

  ˆ ;F s r r s B( ) = ( )T
D   (11.3) 

 Note that it is also possible to transform a fi t LEM into a LDM by using a proba-
bilistic formulation based on Bayes ’  theorem ( Naselaris et al., 2011 ;  Naselaris et al., 
2009 ;  Thirion et al., 2006 ). However, we focus on the formulation in    equation 11.3   
without loss of generality. We have shown that LDMs are able to decode the structural 
content of natural images ( Kay et al., 2008 ), movies ( Nishimoto et al., 2011 ), and the 
semantic content of natural scenes ( Naselaris et al., 2009 ;  Naselaris et al., 2012 ; 
 Stansbury et al., 2013 ) with unprecedented accuracy.    

 Linearized models require a linearizing transformation that maps stimuli into an 
intermediate feature space ( Naselaris et al., 2011 ). Thus, a primary goal when using 
linearized models is to develop new feature spaces (and the associated linearizing 
transformations) that capture novel hypotheses about brain function. To date most 
linearized models have used feature spaces developed by hand. Some of these feature 



230 Dustin E. Stansbury and Jack L. Gallant

 Figure 11.1 
 A framework combining statistical analysis of natural scenes and linearized modeling. (A) A linearized 
encoding model maps a stimulus (left box) into an intermediate feature representation that captures 
specific properties of the stimulus (center box). The feature-mapping transformation is usually nonlinear. 
In the example shown here the stimulus image is transformed by projecting each spatial location onto a 
set of filters that capture local orientation and spatial frequency. This transformation linearizes the 
relationship between the feature representation and evoked brain activity (right box). Brain activity can 
be measured using many different methods, such as neurophysiology (top), functional MRI (middle), or 
reaction times (bottom). Whereas the linearized encoding model maps stimulus features onto brain 
activity, the linearized decoding model works in the opposite direction, mapping activity onto features. 
(B) Natural scenes (left box) have a specific statistical structure that can be analyzed using quantitative 
techniques (center box). These statistical analyses can identify latent features in natural scenes that are 
theoretically important for neural representation. For example, oriented bandpass filters emerge from 
analysis of the pixel intensity distributions of small image patches extracted from natural scenes (right 
box). When these filters are used as a basis for the feature transformation in the linearized modeling 
framework, the resulting models accurately account for brain activity measured in early stages of the 
primate visual system. 
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spaces refl ect documented fi ltering computations associated with the neural popula-
tion under investigation ( Kay et al., 2008 ;  Nishimoto et al., 2011 ). Others capture 
intuitive linguistic or cognitive labels ( Huth et al., 2012 ;  Naselaris et al., 2009 ). 
However, it would be preferable to develop new feature spaces in an objective, prin-
cipled manner. Here we propose that statistical analysis of natural scenes provides a 
principled means to generate novel feature spaces and thus new hypotheses regarding 
visual scene processing. 

 Statistical Analysis of Natural Scenes 

 It is widely accepted that the brain is specialized to represent the statistical structure 
of natural scenes ( Barlow, 1961 ;  Field, 1987 ;  Simoncelli  &  Olshausen, 2001 ). This 
claim is supported by numerous predictions provided by models based on s tatistical 
analysis of natural scenes  (SANS). One simple SANS approach is to compile a series 
of empirical measurements of some specifi c property of natural scenes. The descrip-
tive statistics of the resulting distribution of measurements (e.g., mean, variance, 
mode, shape) often provide accurate predictions of sensory and perceptual phenom-
ena. For example, the distribution of local contrasts in natural images predicts the 
shape of the contrast response function observed in the retina ( Laughlin, 1981 ), the 
lateral geniculate nucleus (LGN) ( Tadmor  &  Tolhurst, 2000 ), and area V1 ( Brady  &  
Field, 2000 ;  Clatworthy, Chirimuuta, Lauritzen,  &  Tolhurst, 2003 ). Disparity tuning 
in area MT is predicted by the distribution of binocular disparities in natural scenes 
( Liu, Bovik,  &  Cormack, 2008 ;  DeAngelis  &  Uka, 2003 ). The distribution of colors 
in natural scenes predicts human performance in segmentation tasks ( Fine, MacLeod, 
 &  Boynton, 2003 ), and the distribution of trichromatic photoreceptors in the primate 
retina (L-M cones) appears to facilitate object segmentation in natural scenes ( P á rraga, 
Troscianko,  &  Tolhurst, 2002 ). Furthermore, human performance in contour group-
ing ( Geisler et al., 2001 ) and contour completion tasks ( Geisler  &  Perry, 2009 ) is 
predicted by the distribution of contours in natural scenes. 

 A second SANS approach is to develop explicit statistical models whose parameters 
are optimized by analyzing natural scenes under the constraints of some plausible 
neural coding criterion. Such models are capable of identifying emergent features in 
natural scenes that are theoretically important for neural computation. For example, 
primary visual cortex contains a highly overcomplete representation of the visual 
input, consisting of hundreds of V1 neurons for each retinal ganglion cell ( Olshausen 
 &  Field, 1997 ). It has also been observed that V1 neurons are sparsely activated in 
the presence of natural scenes ( Daugman, 1985 ;  Field, 1987 ).  Olshausen and Field 
(1996)  developed a statistical model of local regions in natural scenes based on these 
two observations. Specifi cally, the model incorporates an overcomplete representation 
in which the number of units that code for the visual input is larger than the number 
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of inputs. Additionally, the model includes a sparseness constraint on the number of 
coding units that are active at one time. The resulting  “ sparse coding ”  model identifi es 
latent features with properties that are strikingly similar to the response profi les of 
 “ simple ”  cells observed in V1 (  fi gure 11.1B ). Similar models have also identifi ed fea-
tures that accurately account for neuronal response properties in early stages of visual 
processing, including the retina ( Atick  &  Redlich, 1992 ;  Srinivasan, Laughlin,  &  
Dubs, 1982 ) and the LGN ( Dong  &  Atick, 1995 ). 

 Although the early stages of visual processing appear to be optimized to process 
the low-level statistical structure of natural scenes, there is less evidence that this 
optimization persists at later stages of processing. However, the visual system is 
organized hierarchically and later visual areas receive substantial input from early 
areas ( Felleman  &  Van Essen, 1991 ). Therefore, it seems reasonable to assume that 
later areas are also affected by low-level scene statistics ( Hebb, 1949 ). 

 Additionally, natural scenes have statistical structure at relatively higher levels of 
abstraction. For example, natural scenes consist of collections of objects that interact 
in regular ways. Cars are usually found on streets, and fi sh are usually found under-
water. Thus, when one is crossing the street it is more likely that one will encounter 
a car than a shark. Of course, these relationships are not absolute, but probabilistic. 
Cars can be found in showrooms, in museums, or in a garage. Fish sometimes jump 
out of the water or are found on a dinner plate. It is likely that the brain represents 
these higher-order statistical relationships and that it exploits this information during 
natural vision. Thus, statistical analyses of natural scenes may also provide a means 
for developing models of processing in later stages of the visual system. 

 A General Framework Combining Linearized Modeling and Statistical Analyses of Natural 
Scenes 

 Thus far we have discussed two complementary approaches for studying visual scene 
processing: linearized modeling and statistical analyses of natural scenes. These two 
approaches can be combined in order to study natural scene processing across the 
entire visual system. To do this, SANS is used to model the distribution of some 
specifi c natural scene property. The resulting model is then used to implement the 
transformation required for linearized modeling. 

 For example, if  the SANS method involves compiling a distribution of empirical 
measurements, the resulting (normalized) histogram can be used as a lookup table 
that implements the required linearizing transformation (the corresponding feature 
space thus represents the likelihood of a stimulus, conditioned on the distribution of 
the natural scene property modeled). For SANS methods that use an explicit statistical 
model, the emergent features identifi ed by the model can be used as a basis for the 
linearizing transformation. Consider, for example, the sparse coding model discussed 
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earlier. The features identifi ed by the sparse coding model are strikingly similar to V1 
neuron spatial response profi les. These features are local, oriented bandpass fi lters 
akin to Gabor wavelets (  fi gure 11.1B ). (However, whereas Gabor wavelets are hand-
crafted mathematical objects, the features identifi ed by SANS are entirely data driven.) 
Projecting stimuli onto the identifi ed features thus provides a linearizing transforma-
tion that is comparable to that provided by the Gabor wavelet decomposition. Con-
sequently, an LEM based on these emergent features provides very accurate predictions 
of neural activity in V1 ( Vu et al., 2011 ). 

 Although it is apparent that this framework is effective for modeling processing in 
V1, it is unclear if  this approach will be effective for modeling processing in later 
visual areas. Below we summarize the results of one study demonstrating how this 
framework can be used to model the representation of natural scene categories in 
human anterior visual cortex. 

 Scene Category Representation in Anterior Visual Cortex 

 During natural vision, humans categorize the scenes they encounter:  “ an offi ce, ”   “ the 
beach, ”  and so on. We hypothesized that the visual system exploits the co-occurrence 
statistics of objects in natural scenes in order to represent scene categories. To test 
this hypothesis we fi rst used SANS to analyze the co-occurrences of objects in natural 
scenes in order to recover a set of latent scene categories. We then used LEMs to 
determine if  and where these latent categories are represented in the human visual 
system (  fi gure 11.2 ). 

 We fi rst labeled the objects in a large collection of natural scenes. We then analyzed 
the frequency counts of the object labels using a statistical model called  latent Dirich-
let allocation  (LDA) ( Blei, Ng,  &  Jordan, 2003 ;   fi gure 11.2A ). LDA was originally 
developed to identify latent topics in large corpora of text from word frequency data. 
When applied to the frequency counts of labeled objects in natural scenes, LDA 
identifi es a set of latent scene categories. Each latent category is defi ned as a probabil-
ity distribution over all the objects in an available vocabulary. Objects that are more 
likely to occur in a given category are assigned high probability, and unlikely objects 
are assigned low probability (examples of the latent categories are shown in the right 
of   fi gure 11.2B ).    

 Next, we used a set of natural scene photographs as stimuli in an fMRI experiment 
conducted on four human subjects. We then used the trained LDA model to calculate 
the probability that each stimulus scene belonged to each of the latent categories, 
conditioned on the objects occurring in the scene (  fi gure 11.2B , center box). This 
procedure produced a set of category probability features for each stimulus scene. 
Finally, we fi t LEMs based on the categorical features to the blood-oxygen-level-
dependent (BOLD) activity measured within each voxel. 
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 Figure 11.2 
 Modeling the representation of natural scene categories in the human brain. (A) The framework consists 
of using SANS to identify the latent categorical structure of natural scenes and then using these 
categories as the feature space for LEMs fit to recorded fMRI brain activity. First, the objects in a series 
of scenes are labeled by hand (left boxes). These are submitted to LDA (panel B) in order to calculate a 
set of probabilistic features (center box), which describe the probability that each scene belongs to each 
member in a set of latent scene categories. The LEMs predict BOLD responses evoked by each scene 
from the category features associated with the scene. The LDMs predict scene category membership 
from evoked BOLD responses. (B) The latent categories are identified by latent Dirichlet allocation 
(LDA, center box), a statistical model developed originally to identify latent topics in large text corpora. 
The latent scene categories (right box) are represented as a set of probabilities assigned to the objects in 
an available vocabulary. Here each list of object labels represents a latent category; label saturation 
indicates an object ’ s probability for the category. LDA also provides a Bayesian inference algorithm that 
probabilistically assigns a new scene to each of the latent scene categories, conditioned on the objects in 
the scene. Here, this inference procedure is used as the nonlinear feature transformation for the 
linearized models in panel A (dashed black line). 
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 The accuracy with which each model predicted responses to novel scenes (using a 
separate data set reserved for this purpose) is summarized in   fi gure 11.3 (plate 23) . 
Evoked BOLD activity across much of anterior visual cortex is accurately predicted 
by the latent scene categories (  fi gure 11.3A, plate 23 ). Thus, voxels in these regions of 
the visual system represent information about the latent categories. Voxels located in 
several visual areas identifi ed using standard functional localizers ( Spiridon, Fischl, 
 &  Kanwisher, 2006 ) are accurately characterized by the model. However, the model 
does a poor job at predicting activity in early visual areas. These areas are known to 
be selective for low-level image structure. Thus, the failure to predict activity in early 
visual area voxels confi rms that the model does not simply capture low-level structure 
that is correlated with scene categories. 

 As mentioned earlier, one advantage of using LEMs is that the model weights can 
be interpreted as tuning curves for the intermediate features. Typical tuning curves 
for the latent scene categories are shown in   fi gure 11.3B  (plate 23; here they are aver-
aged across voxels within specifi c functional areas). These tuning curves are generally 
consistent with tuning reported in previous studies ( Spiridon et al., 2006 ). However, 
tuning also appears to be more complicated than suggested by previous functional 
localizer studies. This fi nding is consistent with recent results from our group (  Ç ukur 
et al., 2013 ;  Huth et al., 2012 ;  Naselaris et al., 2012 ).    

 We also constructed an LDM to predict the category probabilities of novel scenes 
from BOLD responses evoked by those scenes. As shown in   fi gure 11.3C (plate 23) , 
the LDM accurately predicts the category probabilities from brain activity evoked by 
viewing a diversity of novel natural scenes. Remarkably, the LDM can also recover 
the likely objects in each scene, even though the intermediate feature space does not 
contain any explicit information about objects. During the identifi cation of the latent 
scene categories, the LDA model establishes the statistical relationship between objects 
and the latent scene categories. Therefore, the decoded scene categories can be mapped 
directly into object probabilities, as shown in   fi gure 11.3C (plate 23) . Taken together, 
these results suggest that the human brain represents scene categories that capture the 
co-occurrence statistics of objects in the natural world. 

 Conclusions 

 In this chapter we present a general framework for developing, testing, and comparing 
nonlinear models of visual processing. The linearized modeling component of this 
framework offers several benefi ts over traditional nonlinear modeling methods: exper-
iments are simple to design and can even include complex, naturalistic stimuli; fi tting 
model parameters is straightforward and requires relatively little data; and the fi t 
models are simple to interpret. Incorporating SANS into the framework provides an 
objective method for developing hypothetical feature spaces that complement linear-
ized modeling. 



 Figure 11.3 (plate 23) 
 Representation of natural scene categories in the human brain. (A) Prediction accuracy of voxelwise 
LEMs based on categorical features for one representative subject (S1). Both left (LH) and right (RH) 
cortical surfaces are shown; flat gray indicates areas outside of the scan window. Bright locations 
indicate voxels that are predicted accurately by the LEM. The color bar highlights prediction accuracy at 
two levels of statistical significance:  p   <  0.01 (0.21) and  p   <  0.001 (0.28). Standard ROIs identified using 
functional localizers are outlined in white. The bright regions overlap with several ROIs in the anterior 
visual cortex that have been implicated in scene representation. However, the models do not predict 
activity in retinotopic visual areas (V1, V2, V3, V4, V3a, and V3b). ROI abbreviations: retinotopic visual 
areas 1 – 4 (V1 – V4); parahippocampal place area (PPA); fusiform face area (FFA); parahippocampal 
place area (PPA); extrastriate body area (EBA); occipital face area (OFA); retrosplenial cortex (RSC); 
transverse occipital sulcus (TOS). Center key: A, anterior; P, posterior; S, superior; I, inferior. (B) LEM 
weights for voxels within distinct functional ROIs. Weights have been averaged within ROIs and across 
the four subjects. Each row shows the average LEM weights for the scene category feature listed along 
the left margin. Each column shows average weights for an individual ROI. The color and saturation of 
each square reflect the magnitude and sign of the weight for the corresponding category. Large positive 
weights are given by saturated red squares; large negative weights by saturated blue squares. The size of 
each square is proportional to the confidence. Standard errors are scaled according to the data within 
each ROI (columns). (C) Examples of scene category membership and object probabilities predicted by 
LDMs from the LEMs fit to the same four subjects as shown in panels A and B. Rows 1 – 4 show data 
for subjects 1 – 4, respectively. Columns 1 and 4 (blue boxes) show the novel scenes used as stimuli. 
Columns 2 and 5 (red boxes) show category membership probabilities predicted by the decoding model 
for the corresponding scenes. The saturation of each category represents the predicted probability that 
the observed scene belongs to the corresponding category. Columns 3 and 6 (black boxes) show the 
objects with the highest estimated probability of occurring in each scene. The saturation of each label 
represents the estimated probability that the corresponding object occurs in the scene. 
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 Developing predictive models of brain systems requires quantitative measurements 
of both stimulus and response. There are many different ways to measure brain activ-
ity (e.g., fMRI BOLD responses, spike rates, reaction times) (  fi gure 11.1A ). Likewise, 
there are many ways to measure low-level stimulus statistics (e.g., pixel intensity, 
contrast, etc.). However, measuring high-level scene statistics is more diffi cult. The 
range of objects, events, and contexts that might occur in a scene is enormous, and it 
is unclear how these properties and their relationships should be quantifi ed. For these 
reasons there have been few serious attempts to develop predictive models of high-
level scene processing. 

 Two successful models of high-level scene processing were proposed previously. 
The  gist  model ( Oliva  &  Torralba, 2001 ) accounts for scene categorization, and the 
 saliency  model ( Itti, Koch,  &  Niebur, 1998 ) accounts for bottom-up attention mech-
anisms. These two models provide good predictions of human behavioral data, 
including performance on scene classifi cation tasks ( Greene  &  Oliva, 2009 ) and the 
direction of eye movements when one is viewing natural scenes ( Itti, 2005 ). However, 
both models are based on low-level scene properties, so it is unclear whether they 
really capture high-level processing mechanisms or merely correlations between low-
level image structure and behavior. The framework proposed in this chapter pro-
vides a straightforward way to test this important issue. For example, the gist and 
saliency image descriptors associated with each model could be used as feature 
spaces for LEMs. The predictions of these competing LEMs could then be com-
pared directly. 

 Our proposed framework provides a data-driven approach for developing, testing, 
and comparing models of visual scene processing. However, several technical issues 
must be addressed when using these techniques. For example, the choice of SANS 
method will depend on the domain of the scene properties in question ( Field, 1987 ). 
The LDA model discussed above requires discrete (i.e., multinomial-distributed) data 
and is thus an appropriate choice for analyzing categorical features. However, LDA 
would be a poor choice for analyzing continuous (i.e., Gaussian-distributed) quanti-
ties such as pixel luminance. Thus, domain knowledge of the scene properties under 
investigation is important for applying SANS methods. 

 Other factors must be considered when using linearized models. Linear regression 
often requires additional preprocessing, such as centering and rescaling the intermedi-
ate features and responses. The likelihood function of the linear regression must also 
be chosen appropriately ( Friedman et al., 2010 ). For example, in the case study 
described earlier, a multinomial likelihood was chosen to enforce categorical predic-
tions when fi tting the LDM. If  we had desired predictions of continuous-valued 
BOLD responses rather than categorical predictions, then a Gaussian likelihood 
function would have been more appropriate. To ensure optimal results, exploratory 
data analyses are generally required prior to using this framework. 
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 Our framework leverages two exciting new approaches used in computational neu-
roscience: SANS and LEM. As methods for measuring neural function, performing 
statistical learning, and solving parameter optimization problems improve, so will the 
power of this framework. Thus, this approach is likely to become more common in 
future studies of sensory and cognitive processing in the human brain. 
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 In this chapter we discuss the problem of computational inference of aesthetics and 
emotions from images. We draw inspiration from diverse disciplines such as philosophy, 
photography, art, and psychology to defi ne and understand the key concepts of aesthet-
ics and emotions. We introduce the primary computational problems that the research 
community has been striving to solve and the computational framework required for 
solving them. We also describe data sets available for performing assessment and outline 
several real-world applications for which research in this domain can be employed. This 
chapter discusses the contributions of a signifi cant number of research articles that have 
attempted to solve problems in aesthetics and emotion inference in the last several years. 
We conclude the chapter with directions for future research. 

 The image-processing community together with vision and computer scientists has, 
for a long time, attempted to solve image quality assessment ( Daly, 1993 ;  Ke, Tang, 
 &  Jing, 2006 ;  Sheikh, Bovik,  &  Cormack, 2005 ;  Watson, 1998 ) and image semantics 
inference ( Datta, Joshi, Li,  &  Wang, 2008 ). More recently researchers have drawn 
ideas from the aforementioned to address yet more challenging problems such as 
associating pictures with aesthetics and emotions that they arouse in humans, with 
low-level image composition ( Datta, Joshi, Li,  &  Wang, 2006 ;  Datta, Li,  &  Wang, 
2007 ;  Valenti, Jaimes,  &  Sebe, 2010 ;  Valenti, Sebe,  &  Gevers, 2007 ).   Figure 12.1  (plate 
24) shows an example of state-of-the-art automatic aesthetics assessment. Because 
emotions and aesthetics also bear high-level semantics, it is not a surprise that research 
in these areas is heavily intertwined. Besides, researchers in aesthetic quality inference 
also need to understand and consider human subjectivity and the context in which 
the emotion or aesthetics is perceived. As a result, ties between computational image 
analysis and psychology, study of beauty ( Lang, Greenwald, Bradley,  &  Hamm, 1993 ; 
 Perrett, May,  &  Yoshikawa, 1994 ), and aesthetics in visual art, including photography, 
are also natural and essential.    

 Despite the challenges, various research attempts have been made and are increas-
ingly being made to address basic understanding and solve various subproblems under 
the umbrella of aesthetics, mood, and emotion inference in pictures. The potential 
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benefi ciaries of this research include general consumers, media management vendors, 
photographers, and people who work with art. Good shots or photo opportunities 
may be recommended to consumers; media personnel can be assisted with good 
images for illustration, and interior and healthcare designers can be helped with more 
appropriate visual design items. Picture editors and photographers can make use of 
automated aesthetics feedback when selecting photos for photo clubs, competitions, 
portfolio reviews, or workshops. Similarly, from a publication perspective, a museum 
curator may be interested in assessing if  an artwork is enjoyable by a majority of the 
people. Techniques that study similarities and differences among artists and artwork 
at the aesthetic level could be of value to art historians. 

 We strongly believe that computational models of aesthetics and emotions may be 
able to assist in such expert decision making and perhaps, with time and feedback, 
learn to adapt to expert opinion better.   Figure 12.2 ( plate 25) shows user-rated emo-
tions under the framework of web image search that can potentially be used for 
learning emotional models. Computational aesthetics does not intend to obviate the 
need for expert opinion. On the other hand, automated methods would strive toward 

High score Medium score Low score

 Figure 12.1 (plate 24) 
 Pictures with high, medium, and low aesthetics scores from ACQUINE, an online automatic photo 
aesthetics engine. 
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becoming useful suggestion systems for experts, systems that can be personalized 
(to one or few experts) and improved with feedback over time (as also expressed in 
 Stork, 2009 ).    

 In this chapter we have attempted to introduce components that are essential for 
the broader research community to get involved and excited about this fi eld of study. 
We next discuss aesthetics with respect to philosophy, photography, art, and psychol-
ogy. The following section introduces a wide spectrum of research problems that have 
been attempted in computational aesthetics and emotions. The computational frame-
work in the form of feature extraction, representation, and modeling is the topic of 
the next section. Data sets and other resources available for aesthetics and emotions 
research are then reviewed, and the last section takes a futuristic stance and discusses 
potential research directions and applications. 

 Figure 12.2 (plate 25) 
 Pictures and emotions rated by users from ALIPR.com, a research site for machine-assisted image 
tagging. 
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 Background 

 The word  “ aesthetics ”  originates from the Greek word  aisth ē tikos,  sensitive, derived 
from  aisthanesthai,   “ to perceive, to feel. ”  The  American Heritage Dictionary of the 
English Language  provides the following currently used defi nitions of aesthetics: 

 1.   The branch of philosophy that deals with the nature and expression of beauty, as 
in the fi ne arts. In Kantian philosophy, the branch of metaphysics concerned with the 
laws of perception. 
 2.   The study of the psychological responses to beauty and artistic experiences. 
 3.   A conception of what is artistically valid or beautiful. 
 4.   An artistically beautiful or pleasing appearance. 

 Philosophical studies have resulted in formation of two views on beauty and aes-
thetics: the fi rst view considers aesthetic values to exist objectively and be universal, 
and the second position treats beauty as a subjective phenomenon, depending on the 
attitude of the observer. 

 A Perspective on Photographs 
 Although aesthetics can be colloquially interpreted as a seemingly simple matter 
determining what is beautiful, few can meaningfully articulate the defi nition of aes-
thetics or how to achieve a high level of aesthetic quality in photographs. For several 
years  Photo.net  has been a place for photographers to rate the photos of peers. Here 
a photo is rated along two dimensions, aesthetics and originality, each with a score 
between 1 and 7. Sample reasons for a high rating include  “ looks good, attracts/holds 
attention, interesting composition, great use of color, (if  photo journalism) drama, 
humor, and impact, and (if  sports) peak moment, struggle of athlete. ”  

 Ideas of aesthetics emerged in photography around the late nineteenth century with 
a movement called Pictorialism. Because photography was a relatively new art at that 
time, the Pictorialist photographers drew inspiration from paintings and etchings to 
the extent of emulating them directly. Photographers used techniques such as soft 
focus, special fi lters, lens coatings, special darkroom processing, and printing to 
achieve desired artistic effects in their pictures. By around 1915 the widespread 
cultural movement of Modernism had begun to infl uence photographic circles. In 
Modernism, ideas such as formal purity, medium specifi city, and originality of art 
became paramount. Postmodernism rejected ideas of objective truth in art. Sharp 
classifi cations into high art and low art became defunct. 

 In spite of these differing factors certain patterns stand out with respect to photo-
graphic aesthetics. This is especially true in specifi c domains of photography. For 
example, in nature photography it can be demonstrated that the appreciation of strik-
ing scenery is universal. Nature photographers often share common techniques or 
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rules of thumb in their choices of colors, tonality, lighting, focus, content, vantage 
point, and composition. One such accepted rule is that the purer the primary colors, 
red (sunset, fl owers), green (trees, grass), and blue (sky), the more striking the scenery 
is to viewers. In terms of composition there are again common and not so common 
theories or rules. The  rule of thirds  is the most widely known and states that the most 
important part of the image is not the exact center of the image but rather at the one 
third and two third lines (both horizontal and vertical) and their four intersections. 
A less common rule in nature photography is to use diagonal lines (such as a railway, 
a line of trees, a river, or a trail) or converging lines for the main objects of interest 
to draw the attention of the human eye. Another composition rule is to frame the 
shot so that there are interesting objects in both the close-up foreground and the far-
away background. However, great photographers often have the talents to know when 
to break these rules to be more creative. Ansel Adams said,  “ There are no rules for 
good photographs, there are only good photographs. ”  

 A Perspective on Paintings 
 Painters in general have a much greater freedom to play with the palette, the canvas, 
and the brush to capture the world and its various seasons, cultures, and moods. 
Photographs at large represent true physical constructs of nature (although fi lm pho-
tographers sometimes aesthetically enhanced their photos by dodging and burning). 
Artists, on the other hand, have always used nature as a base or as a  “ teacher ”  to 
create works that refl ected their feelings, emotions, and beliefs. 

 History abounds with many infl uential art movements that dominated the world 
art scene for certain periods of time and then faded away, making room for newer 
ideas. It would not be incorrect to say that most art movements (and sometimes 
individual artists) defi ned characteristic painting styles that became the primary 
determinants of art aesthetics of the time. One of the key movements of Western art, 
Impressionism, started in the late nineteenth century with Claude Monet ’ s master-
piece  Impression, Sunrise, 1872 . Impressionist artists focused on ordinary subject 
matter, painted outdoors, used boldly visible brushstrokes, and employed colors to 
emphasize light and its effect on their subjects. A derivative movement, Pointillism, 
was pioneered by Georges Seurat, who mastered the art of using colored dots as 
building blocks for paintings. Early twentieth-century Post-impressionist artists 
digressed from the past and introduced a personal touch to their world depictions, 
giving expressive effects to their paintings. Van Gogh is especially known for his bold 
and forceful use of colors in order to express his artistic ideas (  fi gure 12.3,  plate 26). 
Van Gogh also developed a bold style of brush strokes, an analysis of which can 
perhaps offer newer perspectives into understanding his work and that of his contem-
poraries.   Figure 12.3,  plate 26, shows an example of automatic brushstroke extraction 
research presented by  Johnson et al. (2008 ).    
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 Figure 12.3 (plate 26) 
 Paintings by Vincent Van Gogh (1853 – 1890): (Top left)  Avenue of Poplars in Autumn , 1884 Nuenen. (Top 
right)  Still Life: Vase with Gladioli and Chinese Asters , 1886 Paris. (Bottom left)  Willows at Sunset , 1888 
Arles. (Bottom right) Automatically extracted brushstrokes for  Willows at Sunset . Notice the widely 
different nature and use of colors in the paintings. Top images courtesy of Van Gogh Museum 
Amsterdam (Vincent van Gogh Foundation). Bottom images courtesy of Collection Kr ö ller-M ü ller 
Museum, Otterlo, The Netherlands (left) and James Z. Wang Research Group at Penn State (right). 
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 With the rise of Expressionism, the blending of reality and artists ’  emotions became 
vogue. Expressionist artists freely distorted reality into a personal emotional expres-
sion. Abstract expressionism, a post – World War II phenomenon, put the United States 
in the center stage of art for the fi rst time in history. Intense personal expression com-
bined with spontaneity and hints of subconscious and surreal emotion gave a strikingly 
new meaning to art, and possibilities of creation became virtually unbounded. 
Although there has recently been some work on analyzing aesthetics in paintings 
( C. C. Li  &  Chen, 2009 ;  Taylor, 2004 ;  Taylor, Micolich,  &  Jones, 1999 ), such work is 
usually limited to a small-scale specifi c experimental setup. One such work ( Taylor, 
2004 ) scientifi cally examines the works of Mondrian and Pollock, two stalwarts of 
modern art with drastically distinct styles (the former attempted to achieve spiritual 
harmony in art via geometrics and the latter became known for his mixing of sand and 
broken glass with paint as well as for his unconventional paint drip technique). 

 Aesthetics, Emotions, and Psychology 
 There are several main areas and directions of experimental research related to psy-
chology that focus on art and aesthetics:  experimental aesthetics  (psychology of aes-
thetics),  psychology of art , and  neuroaesthetics . These fi elds are interdisciplinary and 
draw on knowledge in other related disciplines and branches of psychology. 

 Experimental aesthetics is one of the oldest branches of experimental psychology, 
which offi cially begins with the publishing of Fechner ’ s  “ Zur experimentalen  Ä sthe-
tik ”  in 1871, and  Vorschule der Aesthetik  in 1876 ( Fechner, 1871 ,  1876 ). Fechner sug-
gested three methods for use in experimental aesthetics, (1) including the method of 
choice, where subjects are asked to compare objects with respect to their  “ pleasing-
ness ” ; (2) the method of production, where subjects are required to produce an object 
that conforms to their tastes by drawing or other actions; and (3) the method of use, 
which analyzes works of art and other objects on the assumption that their common 
characteristics are those that are most approved in society. 

 Developments in other areas of psychology of the early decades of the twentieth 
century contributed to the psychology of aesthetics. Gestalt psychology produced 
infl uential ideas such as the concept of goodness of patterns and confi gurations 
emphasizing regularity, symmetry, simplicity, and closure ( Koffka, 1935 ). In the 1970s 
Berlyne revolutionized the fi eld of experimental aesthetics by bringing to the forefront 
of investigation psychophysiological factors and mechanisms underlying aesthetic 
behavior. In his seminal book  Aesthetics and Psychobiology  ( Berlyne, 1971 ), Berlyne 
formulated several theoretically and experimentally substantiated ideas that helped 
shape modern experimental research in aesthetics into the science of aesthetics 
( Palmer, 2009 ). 

 Berlyne ’ s ideas and research directions together with the advances in understanding 
of neural mechanisms of perception, cognition, and emotion in psychology ( Solso, 
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2003 ), psychophysiology, and neuroscience and facilitated by modern imaging tech-
niques led to the emergence of neuroaesthetics in the 1990s ( Kawabata  &  Zeki, 2004 ; 
 Kirk, Skov, Hulme, Christensen,  &  Zeki, 2009 ;  Ramachandran  &  Hirstein, 1999 ;  Zeki, 
1999 ). Recent studies associated with the processing fl uency theory by  Reber et al. 
(2004)  suggest that aesthetic experience is a function of the perceiver ’ s processing 
dynamics: the more fl uently the perceiver can process an image, the more positive is 
her or his aesthetic response. 

 Key Problems in Aesthetics and Emotions Inference 

 Many different problems have been studied under the umbrella of aesthetics and 
emotions evoked from pictures and paintings. Although different problem formula-
tions are focused on achieving different high-level goals, the underlying process is 
always aimed at modeling an appeal, aesthetics, or emotional response that a picture, 
a collection of pictures, or a piece of art evokes in people. We divide this discussion 
into two sections. The fi rst section is devoted to mathematically formulating the core 
aesthetics and emotions prediction problems. In the second section we discuss some 
problems that are directly or indirectly derived from the core aesthetics or emotions 
prediction problems in their scope or application. 

 Core Problems 

 Aesthetics Prediction 
 We assume that an image  I   has associated with it a true aesthetics measure,  q I( ) , 
which is the asymptotic average if  the entire population rated it. The average over 

the size  n  sample of ratings, given by  ̂q I
n

r Ii
i

n

( ) = ( )
=
∑1

1

 , is an estimator for the 

population parameter  q I( )  where  r Ii ( )  is the  i th rating given to image  I . Intuitively, 
a larger  n  gives a better estimate. A formulation for aesthetics score prediction is 
therefore to infer the value of  ̂q I( )  by analyzing the content of image  I , which is a 
direct emulation of humans in the photo-rating process. This lends itself  naturally to 
a regression setting whereby some abstractions of visual features act as predictor 
variables and the estimator for  ̂q I( )  is the dependent variable. An attempt at regression-
based score prediction has been reported by  Datta et al. (2006),  where the quality of 
score prediction is assessed in the form of rate or distribution of error. 

 It has been observed by both  Datta et al. (2006 ) and  Ke et al. (2006 ) that score 
prediction is a highly challenging problem, mainly due to noise in user ratings. To 
make the problem more solvable, the regression problem is changed to one of clas-
sifi cation by thresholding the average scores to create high- versus low-quality image 
classes ( Datta et al., 2006 ) or professional versus snapshot image classes ( Ke et al., 
2006 ). An easier problem, but one of practical signifi cance, is that of selecting a few 
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representative high-quality or highly aesthetic photographs from a large collection. In 
this case it is important to ensure that most of the selected images are of high quality 
even though many of those not selected may be of high quality as well. An attempt 
at this problem ( Datta et al., 2007 ) has proven to be more successful than the general 
classifi cation problem. The classifi cation problem solutions can be evaluated by stan-
dard accuracy measures ( Datta et al., 2006 ;  Ke et al., 2006 ). Conversely, the selection 
of high-quality photos needs only to maximize the precision in high quality within 
the top few photos, with recall being less critical. 

 An aesthetics score can potentially capture fi ner gradations of aesthetics values, 
and hence a score predictor would be more valuable than an aesthetics class predictor. 
However, score prediction requires training examples from all spectrums of scores in 
the desired range, and hence the learning problem is much more complex than the 
class prediction (which can typically be translated into a multiclass classifi cation 
problem well known in machine learning). Opportunities lie in learning and predicting 
 “ distributions of aesthetics values ”  instead of singular aesthetics classes or scores. 
Scores or values, being ordinal rather than categorical in nature, can be mapped to 
the real number space. Learning distribution of aesthetics on a per-image basis can 
throw useful light on human perception and help algorithmically to segment people 
into  “ perception categories. ”  Such research can also help characterize various grada-
tions of  “ artist aesthetics ”  and  “ consumer aesthetics ”  and study how they infl uence 
one another, perhaps over time. An effort in this direction has been made by  Wu, Hu, 
and Gao (2011 ). 

 Emotion Prediction 
 If  we group emotions that natural images arouse into categories such as  “ pleasing, ”  
 “ boring, ”  and  “ irritating, ”  then emotion prediction can be conceived as a multiclass 
classifi cation problem ( Yanulevskaya et al., 2008 ). Consider that there are  K   emotion 
categories, and people select one or more of these categories for each image. If  an 
image  I   receives votes in the proportion,  Π Π1 I IK( ) … ( ), .,  , then two possible ques-
tions arise: 

  Most dominant emotion : We wish to predict, for an image  I , the most voted emotion 
category  k I( )  as given by  k I armax Ii i( ) = ( )Π  . The problem is meaningful only when 
there is clear dominance of  k I( )  over others. 
  Emotion distribution : We wish to predict the distribution of votes (or an approxima-
tion) that an image receives from users, that is,  Π Π1 I IK( ) … ( ), .,  , which is well suited 
when images are fuzzily associated with multiple emotions. 

 The  “ most dominant emotion ”  problem is assessed as a standard multiclass clas-
sifi cation problem. For  “ emotion distribution, ”  assessment requires a measure of 
similarity between discrete distributions, for which Kullback-Leibler (KL) divergence 
is a possible choice. 
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 Whereas the most dominant emotion prediction translates the problem into a mul-
ticlass classifi cation problem that has successfully been attempted in machine learning, 
emotion distribution would be more realistic from a human standpoint. Human 
beings rarely associate defi nitive emotions with pictures. In fact, it is believed that 
great works of art evoke a  “ mix of emotions, ”  leaving little space for emotional purity, 
clarity, or consistency. However, learning a distribution of emotions from pictures 
requires a large and reliable emotion ground truth data set. At the same time, emo-
tional categories are not completely independent (e.g., there may be correlations 
between  “ boring ”  and  “ irritating ” ). One of the key open issues in this problem is set-
tling on a set of plausible emotions that are experienced by human beings. Opportuni-
ties also lie in attempting to explore the relationships (both causal and semantic) 
between human emotions and leveraging them for prediction. 

 Associated Problems 

 Image Appeal, Interestingness, and Personal Value 
 Often, the appeal that a picture makes on a person or a group of people may depend 
on factors not easily describable by low-level features or even image content as a 
whole. Such factors could be sociocultural, demographic, purely personal (e.g.,  “ a 
grandfather ’ s last picture ” ), or infl uenced by important events, vogues, fads, or popular 
culture (e.g.,  “ a celebrity wedding picture ” ). In the age of ever-evolving social net-
works,  “ appeal ”  can also be thought of as being continually reinforced within a social 
media framework. Facebook allows users to  “ like ”  pictures, and it is not unusual to 
fi nd  “ liking ”  patterns governed by one ’ s friends and network (e.g., a person is likely 
to  “ like ”  a picture in Facebook if  many of her friends have done so). Flickr ’ s inter-
estingness attribute is another example of a community-driven measure of appeal 
based on user-judged content and community reinforcement. 

 A user study to determine factors that would prevent people from including a 
picture in their albums was reported by  Savakis, Etz, and Loui (2000 ). Factors such 
as  “ not an interesting subject, ”   “ a duplicate picture, ”   “ occlusion, ”  or  “ unpleasant 
expression ”  were found to dominate the list. Attributing multidimensional image 
value indices (IVI) to pictures based on their technical and aesthetic qualities and 
social relevance has been proposed by  Louis, Wood, Scalise, and Birkelund (2008 ). 
While technical and aesthetic IVIs are driven by learned models based on low-level 
image information, an intuitive social IVI methodology can be adherence to social 
rules learned jointly from users ’  personal collections and social structure. An example 
could be to give higher weights to immediate family members than to cousins, friends, 
and neighbors in judging a picture ’ s worth ( Louis et al., 2008 ). 

 Although a personal or situational appeal or value would be of greater interest to 
a nonspecialist user, generic models for appeal may be even more short-lived than 
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those for aesthetics. In order to make an impact the problems within this category 
must be carefully tailored toward learning personal or situational preferences. From 
an algorithmic perspective, total dependence on visual characteristics for modeling 
and predicting consumer appeal is a poor choice, and it is desirable to employ image 
metadata such as tags, geographical information, time, and date. Inferring relation-
ships between people based on the faces and their relative geometric arrangements in 
photos could also be a very useful exercise ( Gallagher  &  Chen, 2009 ). 

 Aesthetics and Emotions in Artwork Characterization 
 Artistic use of paint and brush can evoke a myriad of emotions among people. These 
are tools that artists employ to convey their ideas and feelings visually, semantically, 
or symbolically. Thus, they form an important part of the study of aesthetics and 
emotions as a whole. Painting styles and brushstrokes are best understood and 
explained by art connoisseurs. However, research in the last decade has shown that 
models built using low-level visual features can be useful aids to characterize genres 
and painting styles or for retrieval from large digitized art galleries ( Berezhnoy, 
Postma,  &  van den Herik, 2005 ,  2007 ;  Falco, 2007 ;  Kroner  &  Lattner, 1998 ;  Kushki, 
Androutsos, Plataniotis,  &  Venetsanopoulos, 2004 ;  Rockmore, Lyu,  &  Farid, 2006 ). 
In an effort to encourage computational efforts to analyze artwork, the Van Gogh 
and Kr ö ller-M ü ller museums in the Netherlands have made 101 high-resolution gray-
scale scans of paintings available to several research groups ( Johnson et al., 2008 ). 

 Brushstrokes provide reliable modeling information for certain types of paintings 
that do not have colors. In  J. Li and Wang (2004 ), mixtures of stochastic models have 
been used to model an artist ’ s signature brushstrokes and painting styles. The research 
provides a useful methodology for art historians who study connections among artists 
or periods in the history of art. Another important formulation of this characteriza-
tion problem has been discussed by  Bressan, Cifarelli, and Perronnin (2008 ). The work 
constructs an artists ’  graph wherein the edges between two nodes are representative 
of some measure of collective similarities between paintings of the two artists (and 
in turn infl uence of artists on one another). A valuable problem to the commercial 
art community is to model and predict a common man ’ s perception and appreciation 
of art as opposed to that of art connoisseurs ( C. C. Li  &  Chen, 2009 ). 

 An interesting application of facial expression recognition technology has been 
shown to be the decoding of the expression of portraits such as the Mona Lisa to get 
an insight into the artist ’ s mind ( Lupsa, 2006 ). Understanding the emotions that 
paintings arouse in humans is yet another aspect of this research. A method that 
categorizes emotions in art based on ground truth from psychological studies has 
been described by  Yanulevskaya et al. (2008 ), wherein training was performed using 
a well-known image data set in psychology with the approach demonstrated on art 
masterpieces. 
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 Problems discussed within this category range from learning nuances of brush-
strokes to analyzing emotions that artworks arouse in humans and even emotions 
depicted in the artworks themselves. This is a challenging area, and the research is 
expected to be helpful to curators of art as well as to commercial art vendors. 
However, contribution here would in most scenarios benefi t from direct inputs of art 
experts or artists themselves. Because most of the paintings that are available in 
museums today were done before the twentieth century, obtaining fi rst-hand inputs 
from artists is impossible. However, such research aims to build healthy collaborations 
between the art and computer science research communities, some of which are 
already evident today ( Johnson et al., 2008 ). 

 Aesthetics, Emotions, and Attractiveness 
 Another manifestation of emotional response is attraction among human beings, 
especially to members of the opposite sex. The psychology of attraction may be mul-
tidimensional, but an important aspect of attraction is the perception of a human 
face as beautiful. Understanding beauty has been an important discipline in experi-
mental psychology ( Valentine, 1962 ). Traditionally, beauty was synonymous with 
perfection and hence, symmetric or perfectly formed faces were considered attractive. 
In later years psychologists conducted studies that indicated subtle asymmetry in faces 
is perceived as beautiful ( Scheib, Gangestad,  &  Thornhill, 1999 ;  Swaddle  &  Cuthill, 
1995 ;  Zaidel  &  Cohen, 2005 ). Therefore, it seems that computer vision research on 
asymmetry in faces (such as that of  Liu, Schmidt, Cohn,  &  Mitra, 2003 ) can be inte-
grated with psychological theories to computationally understand the dynamics of 
attractiveness. Another perspective is the theory that facial expression can affect the 
degree of attractiveness of a face ( Doherty et al., 2003 ). The cited work uses advanced 
MRI techniques to study the neural response of the human brain to a smile. The 
current availability of Web resources has been leveraged to formulate judging facial 
attractiveness as a machine learning problem ( Davis  &  Lazebnik, 2008 ). 

 Research in this area is tied to work in face and facial expression recognition. There 
are controversial aspects of this research in that it tries to prototype attraction or 
beauty by visual features. Although the problem is approached here purely from a 
research perspective, the overtones of the research may not be well accepted by the 
community at large. Beauty and attraction are personal things, and many people 
would dislike having these attributes rated on a scale. It should also be noted that 
beauty contests also assess the complete personality of participants and do not judge 
merely by visual aspects. 

 Aesthetics, Emotions, and Image Retrieval 
 Although image retrieval largely involves generic semantics modeling, certain interest-
ing offshoots that involve feedback, personalization, and emotions in image retrieval 
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have also been studied ( Wang  &  He, 2008 ). Human factors such as those mentioned 
above largely provide a way to rerank images or search among equals for matches 
closer to the heart of a user.  Bianchi-Berthouze (2003 ) describe an image-fi ltering 
system that uses the Kansei methodology to associate low-level image features with 
human feelings and impressions. Another work ( Fang, Geman,  &  Boujemaa, 2005 ) 
attempts to model the target image within the mind of a user using relevance feedback 
to learn a distribution over the image database. In a recent work the attractiveness of 
images was used to enhance the performance of a Web image search engine in terms 
of online ranking, interactive reranking, and offl ine index selection ( Geng, Yang, Xu, 
Hua,  &  Li, 2011 ). Along similar lines,  Redi and Merialdo (2012 ) integrated semantic, 
aesthetic, and affective features to achieve a signifi cant improvement in the task of 
scene recognition on various diverse and large-scale datasets. 

 Of late there is emphasis on human-centered multimedia information processing, 
which also touches aspects of retrieval. However, such research is not easily evaluable 
or verifi able because, again, the level of subjectivity is very high. One potential 
research direction is to assess the tradeoff between personalization of results and 
speed of retrieval. 

 Computational Framework 

 From a computational perspective, we need to consider steps that are necessary to 
obtain a prediction (some function of the aesthetics or emotional response) from an 
input image. We divide this discussion into two distinct sections, feature representation 
and modeling and learning, and elucidate how researchers have approached each of 
these computational aspects with respect to the current fi eld. However, before we move 
forward, it is important that we understand and appreciate certain inherent  gaps  when 
any image-understanding problem is addressed in a computational way. Smeulders et 
al. introduced the term  semantic gap  in their pioneering survey of image retrieval to 
summarize the technical limitations of image understanding ( Smeulders, Worring, 
Santini, Gupta,  &  Jain, 2000 ). In an analogous fashion the technical challenge in 
automatic inference of aesthetics is defi ned by  Datta, Li, and Wang (2008 ) as the 
 aesthetics gap , as follows: the aesthetics gap is the lack of coincidence between the 
information that one can extract from low-level visual data (i.e., pixels in digital 
images) and the aesthetics response or interpretation of emotions that the visual data 
may arouse in a particular user in a given situation. 

 Features and Representation 
 In the last decade and a half  there have been signifi cant contributions to the fi eld of 
feature extraction and image representation for semantics and image understanding 
( Datta et al., 2007 ). Aesthetics and emotional values of images have bearings on their 
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semantics, and so it is not surprising that feature extraction methods are borrowed or 
inspired from the existing literature. There are psychological studies that show that 
aesthetic response to a picture may depend on several dimensions such as composi-
tion, colorfulness, spatial organization, emphasis, motion, depth, or presence of 
humans ( Axelsson, 2007 ;  Freeman, 2007 ;  Peters, 2007 ). Conceiving meaningful visual 
properties that may have a correlation with perceived aesthetics or an emotion is itself  
a challenging problem. In literature we notice a spectrum from very generic color, 
texture, and shape features to specifi cally designed feature descriptors to model the 
aesthetic or emotional value of a picture or artwork. We do not intend to provide an 
exhaustive list of feature descriptors here but rather attempt to discuss signifi cant 
feature usage patterns. 

 Photographers generally follow certain principles that can distinguish professional 
shots from amateur ones. A few such principles are the rule of thirds, use of comple-
mentary colors, and close-up shots with high dynamic ranges. The rule of thirds is a 
popular one in photography. It specifi es that the main element or the center of interest 
in a photograph should lie at one of the four intersections (  fi gure 12.4, plate 27 ).  Datta 
et al. (2006 ) defi ned the degree of adherence to this rule as the average hue, saturation, 
and intensities within the inner third region of a photograph. They also noted that 
pictures with simplistic composition and a well-focused center of interest are more 
pleasing than pictures with many different objects. Professional photographers often 
reduce the  depth of fi eld  (DOF) to shoot single objects by using larger aperture settings, 
macro lenses, or telephoto lenses. DOF is the range of distance from a camera that is 
acceptably sharp in a photograph (  fi gure 12.4, plate 27 ).  Datta et al. (2006 ) used wave-
lets to detect a picture with a low DOF. However, a low DOF has a positive aesthetic 

 Figure 12.4 (plate 27) 
 (Left) The rule of thirds in photography. (Right) A low-depth-of-field picture. 
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appeal only in an appropriate context and may not always be desirable (e.g., in photog-
raphy, landscapes with narrow DOF are not considered pleasing; instead, photogra-
phers prefer to have the foreground, middle ground, and background all in focus).    

 A mix of global and local features has been used by  C. C. Li and Chen (2009 ) to 
model the aesthetics problem for paintings. Feature selection is based on the belief  
that people use a top-down approach to appreciate art. Prominent factors that deter-
mine the choice of features include measuring blur, which is seen as an important 
artistic effect, and presence and distribution of edges because edges are used by artists 
for emphasis. The perceptual qualities that differentiate professional pictures from 
snapshots based on input from professional and amateur photographers are identifi ed 
by  Ke et al. (2006 ), who found that professional shots are distinguished by (1) a clear 
distinction between subject and background brought about by choice of complemen-
tary colors, higher contrast between subject and background, or a small depth of fi eld, 
and (2) a surrealism created by the proper choice of camera parameters and appropri-
ate lighting conditions. 

 While low-level color and texture features capture useful information, modeling 
spatial characteristics of pixels or regions and spatial relationships among regions in 
images has also been shown to be very helpful. A computational visual attention 
model using a face-sensitive saliency map has been proposed by  Sun and Yao (2009 ). 
A rate of focused attention measure (using the saliency map and the main subject of 
the image) is proposed as an indicator of aesthetics. The method employs a subject 
mask generated using several hundreds of manually annotated photos for computa-
tion of attention.  Yang et al. (2010)  propose an interesting pseudogravitational fi eld-
based visual attention model in which each pixel is assigned a mass based on its luma 
and chroma values (YCbCr space) and pixels exert a gravity-like mutual force. 

 Some recent papers focus on enhancement of images or suggestion of ideal com-
position based on aesthetically learned rules ( Bhattacharya, Sukthankar,  &  Shah, 
2010 ;  Cheng, Ni, Yan,  &  Tian, 2010 ). Two distinct recomposition techniques based 
on key aesthetic principles (rule of thirds and the golden ratio) have been proposed 
( Bhattacharya et al., 2010 ). The algorithm performs segmentation of single-subject 
images into  “ sky, ”   “ support, ”  and  “ foreground ”  regions. Two key aesthetically relevant 
segment-based features are introduced in this work: the fi rst computes the position 
of the visual attention center with respect to focal stress points in the image (rule of 
thirds), and the second feature measures the ratio of weights of support and sky 
regions (expected to be close to the golden ratio). Another interesting work ( Cheng 
et al., 2010 ) models local and far contexts from aesthetically pleasing pictures to 
determine rules that are later applied to suggest good composition to new photogra-
phers. According to the authors, whereas local context represents visual continuity, 
far context models the arrangement of objects/regions as desirable by expert photog-
raphers. Contextual modeling involves learning a spatial Gaussian mixture model for 
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pairwise visual words. A recent work ( Luo, Wang,  &  Tang, 2011 ) explores the role of 
content in image aesthetics by designing specifi c visual features for different categories 
(e.g., landscape, plant, animal, night, human, static, and architecture). The work 
focuses on detecting and extracting local features from the most attractive image 
region (from among region of focus, vertical standing objects, or human faces). 

 Several recent papers have emphasized the usability of generic descriptors con-
structed by local features for image aesthetics. Along this line bag of visual words and 
Fisher vectors (which encode more local information) have been explored to improve 
the accuracy of image aesthetics assessment ( Marchesotti, Perronnin, Larlus,  &  
Csurka, 2011 ). Gradient information is extracted through SIFT, and color features 
and signifi cant improvements (over previous works) have been reported. The infl uence 
of the color harmony of photos on their aesthetic quality has been investigated 
( Nishiyama, Okabe, Sato,  &  Sato, 2011 ). By representing photos as a collection of 
local regions, the work models the color harmony (as predictor of aesthetic quality) 
of photos through bags of color patterns. Patchwise bag-of-aesthetics-preserving 
features that encode contrast information have been explored ( Su, Chen, Kao, Hsu, 
 &  Chien, 2011 ). Donovan and colleagues model the quality of color themes that refer 
to a fi ve-color palette by learning from a large-scale data set with a regression method 
( Donovan, Agarwala,  &  Hertzmann, 2011 ). 

 Although there exists some concrete rationalization for feature design with respect 
to the aesthetics inference problem, the design of features that capture emotions is 
still a challenge.  Yanulevskaya et al. (2008 ) diverge from the common codebook 
approach to a methodology in which similarity to all vocabulary elements is preserved 
for emotion category modeling.  Bressan et al. (2008 ) extract low-level local visual 
features including SIFT and color histograms, and a Fisher kernel-based image simi-
larity is used to construct a graph of artists to discover mutual and collective artistic 
infl uence. Associating low-level image features with human feelings and impressions 
can also be achieved by using ideas from Kansei engineering ( Bianchi-Berthouze, 
2003 ) with sets of neural networks to learn mappings between low-level image features 
and high-level impression words. 

 Concepts from psychological studies and art theory are used to extract image fea-
tures for emotion recognition in images and art ( Machajdik  &  Hanbury, 2010 ). 
Among other features,  Machajdik and Hanbury (2010)  adopt the standardized 
pleasure-arousal-dominance transform color space, composition features such as low-
depth-of-fi eld indicators, and rule of thirds (which have been found to be useful for 
aesthetics), and proportion of skin pixels in images. Eye gaze analysis yields an affec-
tive model for objects or concepts in images ( Ramanathan, Katti, Huang, Chua,  &  
Kankanhalli, 2009 ). More specifi cally, eye fi xation and movement patterns learned 
from labeled images are used to localize affective regions in unlabeled images. Affec-
tive responses in the form of facial expressions have also been explored by  Arapakis, 
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Konstas, and Jose (2009 ) to understand and predict topical relevance. This work 
models neurological signals and facial expressions of users looking at images as 
implicit relevance feedback. In order to classify emotions  Arapakis et al. (2009 ) 
employ a 3D wire-frame model of faces and track the presence and degrees of changes 
in different facial regions. Similarly,  Valenti et al. (2010)  also employ face tracking to 
extract facial motion features for emotion classifi cation. 

 In recent work  Lu et al. (2012)  explored the relationship between shape character-
istics (such as roundness, angularity, simplicity, and complexity) and emotions. Shape 
features constitute line segments, continuous lines, angles, and curves to refl ect such 
characteristics. In an interesting diversion, inferring aroused emotions from images in 
social networks has been studied by  Jia et al. (2012 ). The work represents the emotion 
by 16 discrete categories that cover the affective space. Color features (e.g., saturation, 
brightness, and HSV) and social features (e.g., uploading time and user ID) were 
extracted as image descriptors. 

 Finally, psychological theories of perception of beauty (discussed previously) also 
aid researchers who design features for facial attractiveness modeling using a mix of 
facial geometry features ( Davis  &  Lazebnik, 2008 ;  Eisenthal, Dror,  &  Ruppin, 2006 ) 
as well as nongeometric ones such as hair color and skin smoothness ( Eisenthal 
et al., 2006 ). 

 Modeling and Learning 
 Aesthetics and emotion modeling literature reports use of both discriminative learn-
ing methods such as SVM and CART ( Datta et al., 2006 ;  C. C. Li  &  Chen, 2009 ; 
 Louis et al., 2008 ;  Yanulevskaya et al., 2008 ) and generative learning techniques such 
as naive Bayes, Bayesian networks, and Gaussian mixture models ( Cheng et al., 2010 ; 
 J. Luo, Savakis, Etz,  &  Singhal, 2000 ;  Machajdik  &  Hanbury, 2010 ;  Valenti et al., 
2010 ). Although two-class or multiclass classifi cation paradigms seem to be the norm, 
support vector and kernel regression methods have also been explored ( Bhattacharya 
et al., 2010 ;  Davis  &  Lazebnik, 2008 ). An adapted regression approach to map visual 
features extracted from photos to a distribution has been presented ( Wu et al., 2011 ). 
A dimensional approach to represent emotions (to capture correlations between emo-
tional words) has been explored ( Lu et al., 2012 ).  Jia et al. (2012)  present a partially 
labeled factor graph model to infer the emotions aroused from images within a social 
network setting. A bilayer sparse representation is proposed to encode similarities 
among global images, local regions, and the regions ’  co-occurrence property ( B. Li, 
Xiong, Hu,  &  Ding, 2012 ). The proposed context-aware classifi cation model with the 
bilayer sparse representation shows a higher accuracy in predicting categorized emo-
tions on the IAPS data set. In conclusion we can state that although learning lies at 
the heart of every computational inference problem that we consider here, choices of 
the modeling and learning strategies vary with the nature of the task and features. 
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 Data Resources 

 Data from Controlled Studies 
 Methods for experimental investigation of aesthetic perception and preferences and 
associated emotional experience vary from traditional collection of verbal judgments 
along aesthetic dimensions, to multidimensional scaling of aesthetic value and other 
related attributes, to measuring behavioral, psychophysiological, and neurophysiolog-
ical responses to art pieces and images in controlled and free viewing conditions. The 
arsenal of measured response is vast, a few instances being reaction time, various 
electrophysiological responses that capture activity of the central and autonomic 
nervous systems, such as an electroencephalogram (EEG), electrooculogram, heart 
rhythm, pupillary reactions, and, more recently, neural activity in various brain areas 
obtained using functional magnetic resonance imaging (fMRI) ( Doherty et al., 2003 ; 
 Kirk et al., 2009 ). Recording eye movements is also a valuable technique that helps 
detect where the viewers are looking when evaluating aesthetic attributes of art com-
positions ( Nodien, Locher,  &  Krupinski, 1993 ). 

 Certain efforts have resulted in the creation of a specialized database for emotion 
studies known as the International Affective Picture Systems (IAPS) database (  fi gure 
12.5 ;  Lang, Bradley,  &  Cuthbert, 1997 ). This collection contains a diverse set of pic-
tures that depict animals, people, activities, and nature and has been categorized 
mainly in valences (positive, negative, no emotions) along various emotional dimen-
sions ( Yanulevskaya et al., 2008 ).    

 Data from Community-Contributed Resources 
 Obtaining controlled experimental data is expensive in time and cost. At the same 
time, converting user response (captured as described above) to categorical or numeri-
cal aesthetics or emotional parameters is another challenge. One should also note that 
controlled studies are not scalable in nature and can yield only limited human response 
in a given time. Researchers increasingly turn to the Web, a potentially boundless 
resource for information. In the last few years a growing phenomenon called  crowd 
sourcing  has hit the Web. By defi nition, crowd sourcing is the process by which Web 
users contribute collectively to the useful information on the Web ( Howe, 2006 ). 
Several Web photo resources take advantage of these contributions to make their 
content more visible, searchable, and open to public discussions and feedback. Tapping 
such resources has proven useful for research in our discussion domain. Here we 
briefl y describe some Web-based data resources. 

 Flickr (www.fl ickr.com) is one of the largest online photo-sharing sites in the world. 
Besides being a platform for photography, tagging, and blogging, Flickr captures 
contemporary community interest in the form of an interestingness feature. According 
to Flickr, interestingness of a picture is dynamic and depends on a plurality of criteria 
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 Figure 12.5 
 (Top) Pictures of Yosemite National Park from Terragalleria.com. (Bottom) Example images from the 
International Affective Picture System (IAPS) data set. Images with a more positive affect from left to 
right and higher arousal from bottom to top. 
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including its photographer, who marks it as a favorite, comments, and tags given by 
the community. 

 Photo.Net (www.photo.net) is a platform for photography enthusiasts to share and 
have their pictures peer-rated on a 1 – 7 scale of aesthetics. The photography commu-
nity also provides discussion forums, reviews on photos and photography products, 
and galleries for members and casual surfers. 

 DPChallenge (www.dpchallenge.com) allows users to participate and contest in 
theme-based photography on diverse themes such as life and death, portraits, animals, 
geology, street photography. Peer-rating on overall quality, on a 1 – 10 scale, determines 
the contest winners. 

 Terragalleria (www.terragalleria.com) showcases travel photography of Quang-
Tuan Luong (a scientist and a photographer) and is one of the fi nest resources for 
U.S. national park photography on the Web (  Figure 12.5 ). All photographs here have 
been taken by one person (unlike Photo.Net), but multiple users have rated them on 
overall quality on a 1 – 10 scale. 

 ALIPR – Automatic Photo Tagging and Visual Image Search (www.alipr.com) is a 
Web-based image search and tagging system that also allows users to rate photographs 
along 10 different emotional categories such as surprising, amusing, pleasing, exciting, 
and adorable. 

 Besides this, certain research efforts have created their own collections of data from 
the above sources, notably (1) a manually labeled data set with over 17,000 photos 
covering seven semantic categories ( J. Luo, Boutell,  &  Brown, 2006 ), and (2) the AVA 
data set to facilitate aesthetics visual analysis ( Murray, Marchesotti,  &  Perronnin, 
2012 ), consisting of about 250,000 images from DPChallenge. 

 Data Analysis 

 Feature Plots of Aesthetics Ratings 
 We performed a preliminary analysis of the above data sources to compare and con-
trast the different rating patterns. A collection of images (14,839 images from Photo.
net, 16,509 images from DPChallenge, 14,449 images from Terragalleria, and 13,010 
emotion-tagged images from ALIPR) was formed, drawing at random, to create real-
world data sets. These can be used to compare competing algorithms in the future. 
Here we present plots of features of the data sets, in particular the nature of user 
ratings received in each case (not necessarily comparable across the data sets).    

   We fi rst describe the nature of the plots. Figure 12.6  shows the distribution of mean 
aesthetics.   Figure 12.7  shows the distribution of the number of ratings each photo 
received. In   fi gure 12.8 , the number of ratings per photo is plotted against the 
average score received by it in an attempt to visualize possible correlation between the 
number of ratings and the average ratings each photo received. In   fi gure 12.9 , we plot 
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 Figure 12.6 
 Distributions of average aesthetics scores from three different data collections. 

the distribution of the fraction of ratings received by each photo within  ±  0.5 of its 
own average. In other words we examine every score received by a photo, fi nd the 
average, count the number of ratings that are within  ±  0.5 of this average, and take 
the ratio of this count to the total number of ratings this photo received. This is the 
ratio whose distribution we plot. Each of the aforementioned fi gures comprises this 
analysis separately for each collection (Photo.net, Terragalleria, and DPChallenge). 
Finally, in   fi gure 12.10  we plot the distribution of emotions votes in the dataset 
sampled from ALIPR. In the following section we analyze each of these plots sepa-
rately and share with readers the insights drawn from them. 

 Analysis of Feature Plots 
 When we look closely at each of the plots in   fi gures 12.6 – 12.10 , we obtain insights 
about the nature of human ratings of aesthetics. Broadly speaking, we note that this 
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 Figure 12.7 
 Distributions of number of ratings from three different data collections. 
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analysis pertains to the overall social phenomenon of peer rating of photographs 
rather than the true perception of photographic aesthetic quality by individuals. In 
Photo.net, for example, users (at least at the time of data collection) could see who 
rated their photographs. This naturally makes the rating process a social rather a true 
scientifi cally unbiased test or process. Another side effect of the rating process is that 
the photos that people upload for others to rate are generally not drawn at random 
from a person ’ s broad picture collection. Rather, it is more likely that users select 
to share what they consider their best shots. This introduces another kind of bias. 
Models and systems trained on these data therefore learn how people rate each other ’ s 
photos in a largely nonblind social setting and learn this for only a subset of the 
images that users consider worthy of being posted publicly, which helps to explain the 
inherent bias found in the distributions. Conversely, the bias corroborates the assump-
tion that collection of aesthetics ratings in public social forums is primarily a social 
experiment rather than a principled scientifi c one. 

 In   fi gure 12.6  we see that for each data set the peak of the average score distribution 
lies to the right of the mean position in the rating scale. For example, the peak for 
Photo.net is approximately 5, which is a full point above the midpoint 4. There are 
two possible explanations for this phenomenon: 

  •    Users tend to post only those pictures that they consider to be their best shots. 
  •    Because public photo rating is a social process, peers tend to be lenient or generous 
by infl ating the scores that they assign to others ’  photos as a means of encouragement 
and also particularly when the Web site reveals the rater ’ s identity.     

 Another observation we make from   fi gure 12.6  is that the distribution is smoother 
for DPChallenge than for the other two. This may simply be because this data set has 
the largest sample size. In   fi gure 12.7 , we consider the distribution of the number of 
ratings each photo received. This graph looks dramatically different for each source. 
This feature almost entirely refl ects the social nature of public ratings rather than 
anything intrinsic to photographic aesthetics. The most well-balanced distribution is 
found in DPChallenge, in part because of the incentive structure (it is a time-critical, 
peer-rated competitive platform). The distribution almost resembles a mixture of 
Gaussians with means at well-spaced locations. The nature of the social phenomenon 
on DPChallenge.com that these peaks might be associated with is unclear to the 
authors. Photos on Photo.net are much rarer, mainly because the process is noncom-
petitive and voluntary, and the system of soliciting ratings is not designed to attract 
many ratings per photo. The distribution looks heavy-tailed in the case of Terragal-
leria, which much more resembles typical rating distribution plots.     

 The purpose of the plots in   fi gure 12.8  is to determine if  there exists a correlation 
between the number of ratings a photo receives and the average of those ratings. The 
plots for Photo.net as well as Terragalleria most clearly demonstrate what can be 
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anticipated about social peer-rating systems: people rate inherently positively, and 
they tend to highly rate photos that they like, and not rate at all those they consider 
to be poor. This phenomenon is not peculiar to photo-rating systems or even social 
systems: we also observe this clearly in movie-rating systems found in Web sites such 
as IMDb. Associated with the issue that people tend to explicitly rate mainly things 
they like is the fact that the Web sites also tend to surface highly rated entities to 
newer audiences (through top- k  lists and recommendations). Together, these two 
forces help generate much data on good-quality entities while other candidates are 
left with sparse amounts of feedback and rating. Conversely, DPChallenge, because 
it is a competitive site, attempts to gather feedback from all candidate photos fairly. 
Therefore, we see a less biased distribution of its scores, making it unclear whether 
the correlation is at all signifi cant or not.    

 In   fi gure 12.9  we plot the distribution of the fraction of ratings received by each 
photo within  ±  0.5 of its own average. What we expect to see is whether or not most 
ratings are closer to the average score. In other words do most raters roughly agree 
with each other for a given photo, or is the variance per photo high for most photos? 
The observation for Photo.net is that there is a wide and healthy distribution of the 
fraction of rater agreement, and then there are the boundary conditions. A small but 
signifi cant fraction of the photos had everyone essentially give the photo the same 
rating  ±  0.5 (this corresponds to  x  = 1 in the plot). These photos have high consensus 
or rater agreement. However, three times larger is the fraction of photos to which 
nearly no one has given a rating close to the average (this corresponds to  x  = 0 in the 
plot). This occurs primarily when there are two groups of raters: one group that likes 
the photo and another group that does not. This way, the average lies somewhere 
between the sets of scores given by the two camps of raters. The distribution looks 
quite different for DPChallenge: roughly one third of the ratings tend to lie close to 
the average value while the rest of the ratings lie further apart on either side of average. 
For Terragalleria, users tend to be less in agreement with each other on ratings. Nearly 
all of the raters are in agreement on only a small fraction of the photos (correspond-
ing to  x  = 1 in the plot). 

 Note than the graphs in   fi gure 12.9  are particularly unfi t for an apples-to-apples 
comparison: an absolute difference of 0.5 implies different things for the different Web 
sites, especially when the score ranges are different. Furthermore, DPChallenge 
receives so many ratings per photo that it is improbable that all raters would agree on 
the same score (hence  y  = 0 at  x  = 1 in that graph). Finally, in   fi gure 12.10 , we observe 
that the dominant emotion expressed by Web users while viewing pictures is  “ pleas-
ing, ”  followed by  “ boring ”  and  “ no feeling. ”  Conversely,  “ irritating ”  and  “ scary ”  are 
relatively rare responses. The reason for this may well be what emotions people fi nd 
easy to attribute to the process of looking at a picture. On the Web we are accustomed 
to expressing ourselves on like-dislike scales of various kinds. Hence, it is convenient 
to refer to what one likes as  “ pleasing ”  and what one does not like as  “ boring. ”  
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 Future Research Directions 

 Understanding Sociocultural, Personal, and Psychology-Induced Preferences from Data 
 Social and cultural backgrounds can affect one ’ s judgment of aesthetics or infl uence 
one ’ s emotions in a particular scenario. An important future research direction would 
be to incorporate cultural, social, and personal differences into the learning method-
ologies. An important starting point can be to determine how many distinct  “ prefer-
ence groups ”  (cultural or social) there are in a population. This could be followed by 
discovering characteristic rating distributions of scores that differ across different 
preference groups. Additional personalization can be achieved by understanding 
tastes of individuals, which will, however, require a signifi cant amount of personalized 
data for model building. 

 The emotional and aesthetic impact of art and visual imagery is also linked to the 
emotional state of the viewer, who, according to the  emotional congruence theory , 
perceives his or her environment in a manner congruent with his/her current emo-
tional state ( Bower, 1981 ). Studies have also shown that art preferences and art judg-
ment can vary signifi cantly across expert and nonexpert subjects ( Hekkert, 1997 ). 
Artists and experienced art viewers tend to prefer artworks that are challenging and 
emotionally provocative ( Winston  &  Cupchik, 1992 ), which is in contrast to the 
majority of people who prefer art that makes them happy and feel relaxed ( Wypijew-
ski, 1997 ). The results reported by  Axelsson (2007 ),  Cerosaletti and Loui (2009 ), and 
 Fedorovskaya, Neustaedter, and Hao (2008 ) demonstrate that such differences are 
signifi cant and can be explained on the basis of common mechanisms, as suggested 
by Berlyne (1971). 

 Understanding and Modeling Context 
 Context plays an important role in semantic image understanding ( Luo et al., 2006 ). 
Context within the purview of images has been explored as spatial context (leveraging 
spatial arrangement of objects in images), temporal context (leveraging the time 
and date information when pictures were taken), geographical context (leveraging 
information about geographical location of pictures) ( Kennedy  &  Naaman, 2007 , 
 2008 ), and social context (leveraging information about the social circle of a person 
or social relationship refl ected in pictures)  (Gallagher  &  Chen, 2009 ;  Shevade  &  Sun-
daram, 2007 ;  Zunjarwad  &  Sundaram, 2007 ). For example, people may well associate 
special emotions with pictures taken on special occasions or about special people in 
their lives. Similarly, pictures taken during one ’ s trip to a national park may be aes-
thetically more pleasing than pictures taken in a local park, purely because of their 
content and opportunities for high-quality shots. Determining the extent to which 
such factors affect the aesthetic or emotional value of pictures will be a potent future 
research direction. 
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 Developing Real-World Usable Research Prototypes 
 Perhaps one of the most important steps in the life cycle of a research idea is its 
incorporation into a usable and testable system open to the scrutiny of common 
people. This is important for two reasons: (1) it provides a realistic test bed for evalu-
ating the research machinery, and (2) user reaction and feedback can be very useful 
in helping the design of future prototypes. In light of this a key future direction could 
be to take some of the proposed ideas in the current research domain to the next level 
in their life cycle. We briefl y describe Aesthetic Quality Inference Engine (ACQUINE), 
www.acquine.alipr.com), an attempt in this direction. ACQUINE is a machine-
learning-based online system that showcases computer-based prediction of aesthetic 
quality for color natural photographic pictures (  fi gure 12.1,  plate 24). Labeled images 
from Photo.net have been obtained to achieve supervised learning of aesthetic quality 
rating models. A number of visual features that are assumed to be correlated with 
aesthetic quality are extracted from images, and an SVM-based classifi er is used to 
obtain the aesthetic rating of a given picture. Users can upload their own images, use 
links to images that exist on the Web, or simply browse photographs uploaded by 
others. They are also able to look at the ratings that were machine given and option-
ally add their own ratings. This is a valuable source of feedback and labeled data for 
future iterations of the system. As of May 2011, nearly 250,000 images from nearly 
32,000 different users have been uploaded to ACQUINE for automatic rating. Over 
65,000 user ratings of photos have also been provided. Another recently developed 
system, On-Site Composition and Aesthetics Feedback (OSCAR), aims at helping 
photographers to generate high-quality photos ( Yao, Suryanarayan, Qiao, Wang,  &  
Li, 2012 ). OSCAR provides on-site analyses of photos in terms of the composition 
and aesthetics quality and generates feedback through high-quality examples. 

 We envision a future where consumer cameras and smartphones are equipped with 
an automated personal assistant that can provide aesthetics judgment so that only the 
highest quality photos are taken and stored. Such a module can be a post-photography 
fi lter or a real-time fi lter (such as a real-time aesthetics meter). A recent effort in this 
direction is the Nadia camera, which uses ACQUINE to offer a real-time aesthetics 
score (Nadia Camera, n.d.). Real-time photography feedback is not a stranger to 
today ’ s photographers (face detection, smile detection, etc.). Hence, the dream of 
aesthetics feedback in cameras may not be that distant. 

 Conclusion 

 In this chapter we have looked at key aspects of aesthetics, emotions, and associated 
computational problems with respect to natural images and artwork. We discussed 
these problems in relation to philosophy, photography, paintings, visual arts, and 
psychology. Computational frameworks and representative approaches proposed to 
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address problems in this domain were outlined, followed by a discussion of available 
data sets for research use. An analysis of the nature of data and ratings among the 
available resources was also presented. In conclusion, we laid out a few intriguing 
directions for future research in this area. We hope that this tutorial signifi cantly 
increases the visibility of this research area and serves to foster dialogue and collabo-
ration among artists, photographers, and researchers in signal processing, computer 
vision, pattern recognition, and psychology. 
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 Because human cognition, including perception, has evolved in the context of a fun-
damental drive to survive, it is useful to consider the role of motivation in perceptual 
processing. In this chapter, we focus on perceptual processing of natural scenes that 
humans describe as emotionally arousing — both pleasant and unpleasant scenes. It is 
proposed that these scenes engage motivational circuits that have evolved in the mam-
malian brain to promote the survival of individuals and their progeny. Motive circuit 
activation prompts enhanced perceptual processing and information intake in the 
service of selecting and implementing effective coping actions in both appetitive and 
defensive contexts. 

 We begin with a brief  description of this survival circuitry as it has been elucidated 
in research with animals. Evidence for motive circuit activation in humans and its 
effects on perceptual processing during natural scene viewing is then presented, based 
on research with a large set of picture stimuli defi ned by standardized evaluative 
ratings and varying widely in arousal and pleasant/unpleasant affect. Studies monitor-
ing eye movements provide evidence of enhanced information intake for emotionally 
arousing scenes, and both functional neural imaging (fMRI) and electroencephalo-
graphic recording of event-related potentials (ERP) confi rm defensive and appetitive 
circuit engagement and illuminate timing and activation patterns in the visual cortex. 
Subsequent studies explore the hypothesis that motivational engagement facilitates 
recognition in rapid serial visual processing (RSVP). Overall, the data strongly support 
the view that the perceptual processing of natural scenes is signifi cantly enhanced 
when the array includes a motivationally signifi cant (emotional) cue, independent of 
the contributions of perceptual complexity, familiarity, color, and other perceptual 
characteristics of the scene. 

 Motivational Circuits in the Brain 

 To begin simply it is useful to consider the brain ’ s survival circuit as comprised of two 
fundamental motive systems, defensive and appetitive, that are evolutionarily old and 
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shared across mammalian species (e.g.,  Lang, Bradley,  &  Cuthbert, 1990 ). The defense 
system is primitively activated in contexts involving physical threat, with a potential 
output repertoire of withdrawal, escape, and counterattack. Conversely, the appetitive 
system is activated in contexts that promote survival and well-being, including suste-
nance, procreation, and nurturance, with a basic behavioral repertoire of ingestion, 
copulation, and caregiving. Perceptual and learned memorial cues activate these 
motivational circuits through existing associations to the subcortical and cortical 
structures that mediate the expressive, autonomic, and somatic changes in emotion. 

 Our understanding of survival networks owes much to the study of animal subjects 
(e.g.,  Davis, 2000 ;  Fanselow  &  Poulos, 2005 ;  Kapp, Supple,  &  Whalen, 1994 ;  LeDoux, 
2003 ). Key regions implicated in both the appetitive and defensive circuits include the 
bilateral amygdalae — two small, almond shaped bundles of nuclei in the temporal 
lobe. The basolateral nucleus of each amygdala receives input from the thalamus 
(sensory), hippocampus (memory), and other regions, subsequently engaging, via the 
central nucleus and extended amygdala (basal nucleus of the stria terminalis), down-
stream outputs that include regions that modulate sensory processing (vigilance), 
facilitate associated information processing, and activate the autonomic and somatic 
structures that mobilize the organism for defensive or appetitive action (see  Davis  &  
Lang, 2003 ;  Lang  &  Bradley, 2010 ;  Lang  &  Davis, 2006 ). 

 Importantly, when an animal perceives a motivationally signifi cant cue, the fi rst 
output of the survival circuit includes activities whose goal is to enhance sensory 
processing. Thus, for example, if  a foraging prey animal perceives a predator in the 
distance, its fi rst response is to orient toward the predator, immobile ( “ freezing ” ), 
fi xedly regarding the potential attacker, with a slowing pulse rate (sometimes called 
 “ fear bradycardia ” :  Campbell, Wood,  &  McBride, 1997 ). Although the motivational 
aim differs, a similar information-gathering response characterizes the predator ’ s 
initial reaction on fi rst espying potential prey. A secondary response, mobilization for 
action (sympathetic arousal), is tuned to the prey ’ s perception of the imminence 
(increasing danger) of attack and the necessity of fi ght or fl ight, and, for the predator, 
the optimal probability of a successful strike. In the investigations of scene processing 
we describe, the human research participant is considered, metaphorically, to be at an 
early stage of motivational activation — in a predominantly observational posture, 
viewing a series of natural scenes that may contain aversive or appetitive cues that 
activate mammalian circuitry similar to that previously elucidated in animal research. 

 The International Affective Picture System 

 Photographs of natural scenes are particularly good cues for associative activation in 
humans, as they share perceptual features with the actual object. For example, a picture 
of an attacking animal vividly portrays its staring eyes, snarling mouth, teeth, among 
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other signs, all increasing the probability that this highly symbolic cue will activate 
(through feature matching) the aggressor animal ’ s mental representation, which 
includes associative connections to the neural circuit mediating defensive behavior. 
Other media cues, such as narrative language ( “ the dog growls menacingly ” ), also 
engage the survival circuit. However, activation is less immediate, as words do not share 
the sensory/perceptual features with the objects they represent. Indeed, because pri-
mates in general are highly visual creatures, many subspecies are known to respond 
meaningfully to motivationally signifi cant pictures of natural scenes (e.g.,  Fagot, 2000; 
Itakura, 1994 ). In consideration of these factors we developed a standardized set of 
photographic pictures to be used as a research tool. Our aims were (1) to include images 
representing a wide range of emotional events experienced in the natural world by 
human participants and (2) to make them available to the larger research community 
with the goal of improving the reliability of research fi ndings in the study of emotion 
and to provide for better replication of test results between laboratories. 

 Thus, the  International Affective Picture System  (IAPS) ( Bradley  &  Lang, 2007 ; 
Lang, Bradley,  &  Cuthbert, 1997a;  Lang, Bradley,  &  Cuthbert, 2008 ) was developed 
as a catalog of natural scenes that vary in emotional valence and arousal and are 
freely available to not-for-profi t researchers studying emotion and cognition. The 
IAPS includes over 1000 scenes depicting a wide range of events in human experience —
 threatening, attractive, dressed and undressed people, art objects, household objects, 
housing projects, funerals, pollution, dirty toilets, cityscapes, seascapes, landscapes, 
sports events, photojournalism from wars and disasters, medical treatments, sick 
patients, mutilated bodies, baby animals, attacking animals, insects, loving families, 
waterfalls, children playing — a virtual world of pictures. 

 The IAPS pictures are initially standardized with a large sample of participants 
who provide evaluative ratings using two pictographic (nonlinguistic) scales whose 
emotional anchors range from pleasant to unpleasant and from calm to aroused — two 
dimensions consistently identifi ed as fundamental in factor analyses of language judg-
ments (e.g.,  Bradley  &  Lang, 1994 ;  Osgood, Suci,  &  Tannenbaum, 1957; Russell  &  
Mehrabian, 1977 ). For instance, dimensions of pleasure and arousal reliably organize 
judgments of words rated on 50 different bipolar scales (e.g., hot-cold, white-black, 
fast-slow) and hold equally well for judgments of nonverbal stimuli that range from 
sonar signals to aesthetic paintings ( Osgood et al., 1957 ).  Mehrabian (1970)  found 
that the same dimensions underlie judgments of facial expressions, hand and body 
movements, and postural position. The fact that these two dimensions, pleasure and 
arousal, account for signifi cant variance in human judgments of so many different 
signal stimuli suggests their primacy in organizing human experience, both semantic 
and affective. It is of further signifi cance that they mirror the two factors that defi ne 
the concept of motivation, which includes the  direction  of  behavior (e.g., approach/
avoidance) and behavioral  intensity  ( Hebb, 1949 ).    
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   Figure 13.1  illustrates individual IAPS pictures in a two-dimensional  affective space  
defi ned by their pleasure and arousal ratings. The distribution of these images is 
consistent with an underlying motivational organization — appetitive and defensive —
 varying in the intensity of activation. Signifi cant support for this view is provided by 
research that assesses the somatic and autonomic refl ex responses measured during 
picture viewing (e.g.,  Cuthbert, Schupp, Bradley, Birbaumer,  &  Lang, 2000 ). In these 
studies physiological measures are combined with evaluative judgments in a principal 
components analysis. Again, two primary factors of hedonic valence and arousal 
organize the pattern of reactivity with (1) pleasure ratings, facial muscle activity —
 zygomatic (smiling) and corrugator EMG (frowning) — and a decelerative heart rate 
response loading on a fi rst factor, identifying the scene as defensively (unpleasantly) 
or appetitively (pleasantly) engaging, and (2) heightened skin conductance activity, 
increased viewing time, and degree of interest ratings together with ratings of  affective 
arousal , loading on a second factor refl ecting the intensity of motivational activation 
in each system. 

 Figure 13.1 
 When each picture is plotted in a two-dimensional space defined by its mean pleasure and arousal 
rating, the resulting scatterplot is consistent with a biphasic organization of emotion in appetitive and 
defensive systems that varies in the intensity of activation. 
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 Scanning Natural Scenes: Motivated Behavior 

 When processing natural scenes the eye is the initial organ that gathers information 
regarding threat and safety, sexual opportunity and successful foraging. Visual infor-
mation is initially processed by neuroectodermal photoreceptors at the back of the 
eye, and the optical system as a whole — lenses, receptor bed, and pupillary and orient-
ing musculature — is under fi ne nervous control. Studies measuring eye movements 
therefore provide a sensitive measure of initial orienting and information intake 
during visual scene processing, as the information available for further neural process-
ing is determined almost solely by eye fi xations, their duration, and their extent. 

 In general, eye movements during scene perception follow stereotypical patterns 
with periods of repose (fi xations) interspersed with rapid movement (saccades). 
However, eye movements are affected by the stimulus, the task, and, importantly, by 
semantic relevance. For example,  Henderson and Hollingworth (1998)  found longer 
fi xation durations as well as greater saccade lengths during free-viewing of scenes 
compared to when reading text. Not surprisingly, eye movements are also infl uenced 
by characteristics of a visual array, including contrast, edges, complexity, and other 
sensory features (e.g.,  Itti  &  Koch, 2001 ;  Parkhust, Law,  &  Niebur, 2002 ;  Peters, Iyer, 
Itti,  &  Koch, 2005 ). Nonetheless, information relevant to scene interpretation 
(meaning) is salient and also strongly affects eye movement behavior (e.g.,  Loftus  &  
Mackworth, 1978 ), with informative cues receiving more fi xations than those that are 
semantically irrelevant ( Henderson, Weeks,  &  Hollingworth, 1999 ). 

 Considering these factors, we undertook research assessing the effects of both 
perceptual composition and hedonic content on scanning behavior ( Bradley, Houbova, 
Miccoli, Costa,  &  Lang, 2011 ). Participants viewed 192 color photographs selected 
from the IAPS that varied systematically in ratings of affect and compositional com-
plexity. Pictures were presented for several seconds with no other instruction than to 
look at the picture. This free viewing context is similar to the way scenes are scanned 
in natural environments, without either a specifi c task or explicit a priori goal driving 
perceptual processing (e.g., see  Einh ä user, Rutishauser,  &  Koch, 2008 ). As   fi gure 13.2  
illustrates, the resulting scan pattern included fi xations that were initially brief  but 
then lengthened in duration across the viewing interval, with saccade amplitude fi rst 
rapidly increasing and then decreasing, suggesting an initial rapid, broad scan of the 
scene, followed by an increasing focus or zeroing in on the most interesting or infor-
mative information (see also  Castelhano, Wieth,  &  Henderson, 2007 ).    

 Specifi c scan parameters were affected by both perceptual complexity and the emo-
tional intensity of the picture stimuli. Viewing complex scenes prompted more fi xa-
tions of briefer duration and overall longer scan paths than simple fi gure-ground 
compositions, regardless of hedonic content. And emotionally engaging cues (whether 
pleasant or unpleasant) also prompted more fi xations of briefer duration and a longer 
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total scan path compared to neutral pictures. Thus, for either emotional or complex 
scenes, an initial fl urry of brief  fi xations covered a larger portion of the scene, sug-
gesting enhanced information intake. For perceptually complex scenes enhanced 
information seeking refl ects the demands of the sensory array, and previous research 
has shown that fi xations rarely land on spatial locations in which the information is 
constant or uniform (e.g.,  Henderson, 2003 ), which was a defi ning feature of the 
simple, fi gure-ground compositions in our studies. 

 Information seeking is otherwise determined for emotional scenes. When perceptual 
differences between pictures, including brightness, contrast, spatial frequency, and 
rated picture composition were excluded using stepwise regression, analysis of the 
residuals continued to show highly signifi cant modulation by emotional arousal of 
both fi xation duration and scan path length. This fi nding is consistent with the view 
that enhanced information seeking and intake are consequent on activation of the 
evolved appetitive/defensive motivational systems, as suggested by the animal model 
( Bradley, 2009 ;  Lang, Bradley,  &  Cuthbert, 1997b ). Interestingly, effects of motiva-
tional arousal on scanning behavior are found even when emotional scenes are simple 
in perceptual composition. The sensory array is repeatedly and broadly scanned:  Is a 
predator attack imminent? Is prey approaching or receding?  Despite both the perceptual 
simplicity and the symbolic nature of these cues, the evolved heightened attention and 
information intake to motivational cues persist in human perception of natural scenes 
that are emotionally evocative. 

 Figure 13.2 
 Fixation duration (left panel) and saccade amplitude (right panel) when viewing novel pleasant, neutral, 
and unpleasant scenes suggest a general scan pattern in which fixations are initially brief  and spatially 
broad but lengthen in duration and spatially focus over the course of the viewing interval. 
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 A further question addressed in this research concerns whether the scan patterns 
elicited by emotional arousal are based on stimulus novelty; that is, do they refl ect 
initial orienting that would be absent if  the scene were familiar? To address this issue 
scenes were repeated four times either massed (contiguous) or distributed across the 
experimental session. As expected, novel pictures elicited more discrete fi xations and 
longer scan paths than repeated pictures. Despite increased familiarity, however, 
repeated emotional pictures continued to prompt more fi xations and longer scan paths 
than repeated neutral pictures. Interestingly, there were very few differences in eye 
movement indices as a function of whether repetitions were massed or distributed. 

 These data reaffi rm the view that formal properties of the images (brightness, com-
plexity, etc.) are not the only determinant of enhanced scanning for emotionally 
evocative scenes. After the same picture is viewed four times in a row, effects of physi-
cal features on scanning patterns should be attenuated, given that recent memory will 
dampen effects primarily due to sensory differences ( Hollingworth, 2004 ). Rather, the 
data suggest that emotional cues continue to reactivate the brain ’ s motive system, 
refl exively persisting in information-seeking behavior, even though the scene offers no 
new input. 

 Neuroimaging of Emotional Scenes 

 The view that emotional scenes activate the brain ’ s motivational circuits, appetitive 
and defensive, is strongly supported by functional magnetic resonance imaging (fMRI) 
research. Thus, it has been shown repeatedly that both pleasant and unpleasant IAPS 
pictures prompt enhanced activation in the amygdala and that reactivity is greatest 
for those scenes rated most arousing (e.g.,  Sabatinelli, Bradley, Fitzsimmons,  &  Lang, 
2005 ). Furthermore, signifi cant increases in amygdala activity are accompanied by 
enhanced, more widespread activation in visual cortex (e.g.,  Lang et al., 1998 ;  Saba-
tinelli et al., 2005 ). A recent meta-analysis ( Sabatinelli et al., 2011 ) found that, com-
pared to the viewing of neutral scenes, viewing emotionally evocative scenes — whether 
pleasant or unpleasant — is associated specifi cally with greater amplitude and more 
extensive changes in the extrastriate visual cortex, particularly the fusiform and 
inferotemporal (TE) regions, as well as in the lateral occipital and posterior parietal 
cortex — all regions that are critical to the perceptual processing of natural scenes (see 
  fi gure 13.3A , plate 28).    

 Detailed studies with nonhuman primates ( Amaral, Price, Pitkanen,  &  Carmichael, 
1992 ) suggest that enhanced activation of the posterior visual system for motivational 
cues may result from reentrant projections from the amygdala. That is, initially, 
visual information proceeds from the eye to the posterior, striate cortex. It is then 
passed forward in a hierarchical fashion along the ventral temporal lobe to succes-
sively higher-level processing areas, fi nally proceeding from the inferotemporal area 
to the lateral nucleus of the amygdala. Subsequently, the amygdala ’ s basal nucleus 



 Figure 13.3 (plate 28) 
 (A) A functional network in which enhanced activation is found when viewing emotionally arousing 
(pleasant or unpleasant), compared to neutral, scenes includes cortical and subcortical regions. (B) 
Enhanced activation levels in the amygdala and fusiform cortex covary closely when emotional scenes 
are viewed, and coactivation when pictures of snakes are viewed is enhanced only for participants 
reporting high snake fear. 
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back-projects  “ to virtually all levels of the visual cortex ”  ( Amaral et al., 1992, p. 44 ). 
In this way, cues signaling threat or reward could receive heightened, more sustained 
perceptual processing mediated by a positive feedback loop that is specifi cally enhanced 
for motivationally relevant scenes. 

 Functional MRI research suggests that this hierarchical path is also activated in 
humans. To examine this hypothesis we rapidly sampled (500 ms) neural activity in a 
single axial brain slice, strategically located to assess activation in both the amygdala and 
critical regions of the TE cortex, including the fusiform and extrastriate occipital cortex 
( Sabatinelli, Lang, Bradley, Costa,  &  Keil, 2009 ). Restricting the functional sampling to 
a single slice with fast sampling allowed us to determine the relative timing of functional 
activity in relevant regions. The resulting data were consistent with a hypothesis of 
reentrant processing based on the animal data ( Amaral et al., 1992 ). Thus, enhanced 
functional activity when viewing emotionally arousing, compared to neutral, pictures 
was fi rst apparent in the amygdala and then in the proximal TE cortex and only later in 
more distant, posterior regions of the visual system (e.g., the medial occipital cortex). 
Findings based on a Granger causality source analysis of steady-state visual potentials 
evoked during emotional perception ( Keil et al., 2009 ) are also consistent with this analy-
sis, suggesting, furthermore, a broader reentrant connectivity to the visual processing 
system from anterior neural structures, both subcortical and cortical. 

 Individual differences in response to emotional scenes have also indicated that, 
depending on the participant, the same scene can be either an emotional or a neutral 
cue, ruling out potential differences due to specifi c picture characteristics. For example, 
we presented pictures of snakes to individuals reporting high or low snake fear, as 
well as pictures of neutral people and objects, nonthreatening animals, erotica, and 
mutilated human bodies ( Sabatinelli et al., 2005 ). As illustrated in   fi gure 13.3B  (plate 
28), when people viewed pictures that most people report as highly arousing (e.g., 
erotica and mutilations), heightened functional brain reactivity was found in the 
bilateral amygdala and TE cortex for both groups of participants. Only highly fearful 
individuals viewing pictures of snakes, however, showed enhanced functional activity 
in these regions that was similar in magnitude to the activity when other highly arous-
ing scenes were viewed. For low-fear participants viewing snake scenes, amygdala 
activation and activation of its reentrant target, the TE cortex, did not differ from 
that evoked by pictures with neutral content. 

 Because enhanced neural activation in the amygdalae and the visual cortex is found 
when people view either highly arousing unpleasant or pleasant cues, these regions 
can be considered integral structures in both the defensive and appetitive motivational 
circuits. Research with animals suggests, however, that reward-seeking behavior 
uniquely involves heightened activity in the medial prefrontal cortex and the 
nucleus accumbens (e.g.,  Ishikawa, Ambroggi, Nicola,  &  Fields, 2008 ), which interface 
with motor areas ( Mogenson, 1977 ). Furthermore, imaging research with human 
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participants has implicated these regions in the perception of positive scenes (e.g., 
pictures of loved ones:  Aron et al., 2005 ; Bartels  &  Zeki, 2004; addictive drug cues: 
 David et al., 2005 ). Another body of research, however, suggests that the striatum 
(which includes the nucleus accumbens) is activated when one is perceiving any salient 
stimulus that arouses and prompts attention ( Zink, Pagnoni, Chappelow, Martin-
Skurski,  &  Berns, 2006 ). 

 We used fMRI to assess whether these mesolimbic circuits are specifi cally activated 
when one is perceiving pleasant visual scenes or, alternatively, if  activation is deter-
mined by stimulus salience (arousal). Participants viewed a variety of different pleasant 
and unpleasant contents, including erotica, romance, mutilations, threat, as well as 
pictures of neutral people ( Sabatinelli, Bradley, Lang, Costa,  &  Versace, 2007 ). Repli-
cating previous data, the response in the bilateral amygdala was signifi cantly enhanced 
when participants viewed erotic or mutilation pictures compared to quotidian pictures 
of neutral people, again indicating that the amygdala is equivalently activated by emo-
tionally arousing stimuli, whether appetitive or aversive. In contrast, only pleasant 
scenes signifi cantly activated medial prefrontal cortex and the nucleus accumbens. 
Neither unpleasant nor neutral scenes prompted activation of these regions, and acti-
vation when subjects were viewing these scenes was often below baseline, particularly 
for medial prefrontal cortex. These data do not support the hypothesis that the nucleus 
accumbens and medial prefrontal cortex sites react to any scene that arouses or cap-
tures attention. Rather, unlike amygdala and TE cortex, which are activated when 
subjects view all emotionally arousing scenes, these specifi c regions in the appetitive 
subcircuit are silent for aversive cues, perhaps even deactivated. 

 The Late Positive Potential and Motivational Relevance 

 When changes in the brain ’ s electrical activity are measured with an EEG during scene 
viewing, a centroparietal late positive potential is elicited that is a reliable, replicable 
index of motivational relevance. As recorded from scalp electrodes, the centroparietal 
positive slow wave begins around 300 ms after the onset of an emotional picture and 
can persist (using the appropriate fi lters) for almost the entire duration of a 6-second 
viewing interval ( Cuthbert et al., 2000 ). The late positive potential is most enhanced 
for the natural scenes rated highest in emotional arousal, regardless of whether these 
depict appetitive (e.g., erotica) or aversive (e.g., mutilated bodies) hedonic contents 
( Schupp et al., 2004 ). 

 We originally entertained the hypothesis that sustained positive potentials during 
emotional scene perception refl ected enhanced orienting and attention allocation as a 
function of motivational activation. Other fi ndings seemed consistent with this early 
interpretation: emotional scene perception reduced the amplitude of the P3 compo-
nent of a secondary event-related potential (elicited not by the picture but by a brief  
acoustic probe) and also slowed probe reaction times ( Bradley, Cuthbert,  &  Lang, 
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1996 ;  Schupp, Cuthbert, Bradley, Birbaumer,  &  Lang, 1997 ). These fi ndings suggested 
that fewer resources were available for processing the irrelevant cue (i.e., the secondary 
probe) when subjects are viewing emotional scenes. The fi nding that later incidental 
memory performance is reliably enhanced for emotional, compared to neutral, scenes 
also suggested greater attention to the picture stimulus and, thus, better initial encod-
ing ( Bradley, Greenwald, Petry,  &  Lang, 1992 ). A more recent series of studies that 
investigated effects of picture repetition on event-related potentials during scene per-
ception, however, suggest that an attention-capture interpretation may be too narrow. 
In these studies the same scene was repeatedly presented throughout the experiment —
 up to as many as 90 repetitions in the same session ( Codispoti, Ferrari,  &  Bradley, 
2006 ,  2007 ;  Ferrari, Bradley, Codispoti, Karlsson,  &  Lang, 2013 ). In these experiments 
the amplitude of the P3 component to the secondary probe was attenuated when the 
subject was viewing novel scenes but not when viewing repeated, emotional scenes, 
which is consistent with a resource allocation account of probe P3 modulation. 

 In contrast, signifi cant modulation of the late positive potential when subjects were 
viewing emotional, compared to neutral, scenes was found regardless of repetition. 
Because of the persisting effect of emotion on the LPP, despite massive repetition, 
the late positive potential of the ERP has been interpreted as a broad index of moti-
vational  “ signifi cance ”  — that is, that an eliciting perceptual cue has activated, through 
existing associations, the defensive or appetitive motivation system ( Bradley, 2009 ). 
Because the measuring electrodes lay on the surface of the scalp distant from the 
subcortical regions mediating motivational activation, the LPP presumably refl ects 
enhanced cortical activity that may partially refl ect reentrant processing from subcor-
tical regions. Indeed, when the amplitudes of the electrocortical LPP and fMRI 
estimates of neural reactivity are correlated either within or between participants, the 
amplitude of the cortical late positive potential correlates highly with fMRI activation 
not only in inferotemporal and lateral occipital regions of the visual cortex ( Sabati-
nelli et al., 2009 ) but in the amygdala as well ( Sabatinelli, Keil, Frank,  &  Lang, 2013 ). 

 Attributing differences in LPP amplitude (or any measure) between scenes to the 
emotion-evoking properties of the cue raises a critical question: Could the presumed 
differences between emotional and neutral scenes be determined by confounding 
physical differences in the array, such as color, brightness, familiarity, or complexity? 
Color is not a confounding variable because IAPS pictures, whether presented in color 
or grayscale, prompt similar differences between emotional and neutral picture con-
tents in measured autonomic (skin conductance) and somatic (startle potentiation) 
physiological responses ( Bradley, Codispoti, Cuthbert,  &  Lang, 2001 ), in enhanced 
activation in sensory cortex ( Bradley et al., 2003 ), and in the amplitude of the LPP 
during scene perception ( Codispoti, De Cesarei,  &  Ferrari, 2012 ). 

 When emotional and neutral pictures are presented that depict either simple fi gure-
ground compositions or more complex scenes, perceptual composition does impact 
the resulting event-related potential ( Bradley, Hamby, L ö w,  &  Lang, 2007 ). These 
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effects, however, are earlier in time (150 – 250 ms) than the late positive potential, are 
maximal over occipital-temporal rather than centroparietal, sensors, and, impor-
tantly, are the same for both emotional and neutral scenes. The late positive potential, 
on the other hand, is signifi cantly enhanced when one is viewing emotional (pleasant 
or unpleasant), compared to neutral, pictures regardless of perceptual composition. 
Interestingly, effects of emotion on the late positive potential are somewhat larger for 
simple fi gure-ground compositions, contrary to a hypothesis that the late positive 
potential might refl ect the complexity of information processing. Rather, simple 
fi gure-ground compositions appear to be better cues for activating motivational 
systems, a fi nding consistent with previous data indicating stronger affective modula-
tion of the startle refl ex for simple, compared to complex, scenes ( Bradley et al., 2007 ). 

 Rapid Serial Visual Presentation 

 Thus far we have considered scene perception in the context of a relatively leisurely 
(6-second) free viewing interval. A number of studies, however, explore natural scene 
processing in the context of RSVP, in which scenes are presented at extremely rapid 
rates without blank intervals, resulting in a perceptual array consisting of fl eeting 
images. RSVP research has determined that natural scenes presented at such rapid 
rates are indeed perceived but quickly forgotten ( Potter, 1976 ;  Potter, Staub, Rado,  &  
O ’ Connor, 2002 ; see chapter 9 by Potter in this volume). We have used ERP method-
ology to investigate the electrophysiological correlates of RSVP as well as to deter-
mine whether emotion has an impact on perceptual processing during RSVP. 

 In an initial study we presented pictures that alternated between those rated high 
and low in emotional arousal at a rate of either 3 or 5 Hz ( Jungh ö fer, Bradley, Elbert, 
 &  Lang, 2001 ). A pronounced difference was found in which emotional, compared to 
neutral, scenes prompted an enhanced negative defl ection over occipital sensors that 
was maximal around 250 ms after picture onset. One hypothesis is that this occipital 
negative defl ection refl ects the success of perceptual recognition for individual images 
presented in this rapid stream. If  so, one prediction is that these pictures will be 
remembered better in a subsequent memory test. We tested this hypothesis in a second 
experiment in which an array of eight pictures was presented, alternating between 
those rated high and low in emotional arousal at a rate of 5.4 Hz ( Versace, Bradley, 
 &  Lang, 2010 ). Because memory performance following RSVP rapidly declines as the 
number of items tested increases, presumably refl ecting interference (e.g.,  Potter et al., 
2002 ), we tested recognition of a single picture following each brief  RSVP sequence, 
expecting that the hit rate would be above chance but not perfect, permitting assess-
ment of the effect of emotional arousal on recognition performance. 

 As noted by  Potter and Fox (2004) , recognition of a briefl y glimpsed scene could 
be due to a match in perceptual information, conceptual information, or both. To 
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evaluate these possible contributions we covaried both the perceptual and conceptual 
similarity between a picture presented during RSVP and its subsequent test item. 
 Perceptual similarity  was manipulated by presenting the natural scenes in color during 
RSVP and varying whether the test picture was presented in color (matching its pre-
sentation in the RSVP sequence) or in grayscale (mismatch) during recognition. 
 Conceptual similarity  was manipulated by varying whether a critical picture and a test 
item were semantically similar (e.g., both babies) or unrelated in semantic content 
(e.g., a baby and shoe). These two variables were crossed to produce four different 
conditions in the immediate recognition test; each participant was tested with only 
one version of the test picture. 

 Replicating  Jungh ö fer et al. (2001) , during the RSVP encoding phase, emotionally 
arousing pictures prompted a more negative-going potential over occipital sites 
compared to less arousing pictures in a window approximately 250 ms after picture 
onset ( Jungh ö fer et al., 2001 ;  Peyk, Schupp, Keil, Elbert,  &  Jungh ö fer, 2009 ). More 
importantly, emotionally arousing pictures were also better recognized than low-
arousal scenes on the immediate recognition test, with a signifi cantly greater propor-
tion of hits for emotionally engaging pictures following RSVP as well as better 
discrimination performance. Drawing on research by  Irwin and Andrews (1996) , 
 Henderson (1997) , and others,  Potter (2012)  has concluded that the memory repre-
sentation resulting from RSVP is at least partially conceptual. Consistent with this, 
better discrimination performance for emotionally arousing pictures was dependent, 
to some extent, on whether a new test picture was similar in semantic content to the 
RSVP scene. When a new test picture was similar (e.g., both were pictures of erotica), 
participants were more likely to wrongly classify a  “ new ”  picture as  “ old. ”  When the 
new test picture was not semantically confusable, however, a clear effect of emotional 
arousal was found, with better memory discrimination for emotional, compared to 
neutral, pictures. 

 Whether a test picture was perceptually similar (i.e., in color) or different (i.e., 
grayscale) did not affect memory performance, suggesting that color, at least, is not 
a critical factor in mediating recognition of RSVP stimuli. Visual images of natural 
scenes, of course, vary widely in other perceptual properties that could affect the ease 
of processing, especially when presented at rapid speeds. For instance, according to 
Gestalt psychologists, one of the major principles in perceptual organization is seg-
mentation of a scene into fi gure and ground ( Palmer, 1999 ). When people process the 
high perceptual loads imposed by the rapidly changing visual scenes in RSVP, simple 
fi gure-ground pictures may seem to pop out of the fl eeting array. In addition, because 
of the social signifi cance of faces ( Adolphs, 1999 ) as well as human expertise in pro-
cessing faces and people ( Gauthier et al., 2000 ), face processing might also be facili-
tated at rapid speeds of presentation. It is possible that differences attributed to 
emotional arousal during RSVP are instead mediated by differences in perceptual 
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composition or the presence of people, which both may pop out of the rapid stream 
enhancing the early occipital potential. 

 Thus, in a third experiment (L ö w, Bradley,  &  Lang, 2013) using RSVP we presented 
emotional and neutral pictures that were either simple fi gure-ground compositions or 
more complex scenes that either did or did not include people to assess the contribu-
tion of these three factors to the ease of perceptual processing. All three factors 
infl uenced perceptual processing as indexed by ERPs: enhanced occipital negativity 
was found for perceptually simple fi gure-ground compositions compared to more 
complex scenes; for pictures depicting people, compared to those that did not; and 
for emotionally arousing compared to neutral scenes. When occipital negativity was 
computed individually for each picture presented using RSVP, regression analysis 
indicated that perceptual composition accounted for the most variance, with enhanced 
negativity for fi gure-ground compositions compared to more complex scenes regard-
less of whether these depicted emotional or neutral content or included people or did 
not, confi rming that fi gure-ground composition is a key variable that facilitates the 
ease of perceptual processing during RSVP of natural scenes. 

 Whether a picture included people (or not) also accounted for signifi cant variance, 
consistent with hypotheses and data documenting that humans, experts at face detec-
tion, show facilitated processing for these salient stimuli ( Bentin, Allison, Puce, Perez, 
 &  McCarthy, 1996 ;  Kanwisher  &  Yovel, 2006 ). Interestingly, however, the presence of 
people affected occipital negativity only when scenes were simple fi gure-ground in 
composition and therefore tended to depict faces; for perceptually complex scenes that 
included a variety of people and objects, the mere presence of a person did not facili-
tate perceptual processing. 

 Whether a scene depicted emotionally arousing or neutral content affected early 
occipital negativity most for scenes that included people, whether these were simple 
or complex in perceptual composition. Previous studies have clearly determined that 
viewers ’  emotional engagement when viewing pictures of natural scenes is strongest 
for pictures that depict people in sexual, violent, and other affective contexts ( Bradley 
et al., 2001 ;  Lang  &  Bradley, 2010 ;  Schupp et al., 2004 ;  Weinberg  &  Hajcak, 2010 ), 
with pictures of objects less able to strongly engage emotional reactions. 

 Taken together, the data suggest that in the rapid visual processing stream of 
natural scenes, simple fi gure-ground segmentation, the presence of faces, and emo-
tional features facilitate perceptual recognition.  Intraub (1984)  reported that the 
probability of correctly recognizing an item within a rapid stream is enhanced when 
the viewer is intentionally looking for it. We have suggested that in the absence of 
specifi c tasks or explicit instructions, emotional stimuli  naturally  engage attention by 
activation of appetitive or defensive motivational circuits that are the foundation of 
human emotion ( Bradley, 2009 ;  Lang, Bradley,  &  Cuthbert, 1997b ). Both the height-
ened occipital negativity in the ERP found for emotional pictures during RSVP and 
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enhanced postviewing memory performance support the view that emotional features 
draw attention and facilitate perception, even when scenes are presented at rapid rates. 

 Summary 

 The data reviewed in this chapter are consistent with the hypothesis that perceptual 
processing of emotionally arousing scenes activates motivational circuits in the mam-
malian brain that originally promoted the organism ’ s survival. Our studies of eye 
movements during picture processing indicate enhanced scanning and information 
intake for emotional pictures that is independent of physical features in the scene ’ s 
visual array. ERP studies suggest that heightened attention and enhanced recognition 
and memory are hallmarks of emotional scene processing at both slow and rapid rates 
of presentation. Animal studies and human neuroimaging research provide a detailed 
picture of the neural circuits that might mediate enhanced perceptual processing. 
Taken together, studying the perception of scenes that activate the fundamental moti-
vational systems of appetite and defense highlights critical information-processing 
mechanisms that operate during natural scene recognition. 
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 Effi cient recognition of threat is necessary for survival. Identifying threats in natural 
environments can be a diffi cult task for which humans have evolved a fi nely tuned visual 
recognition and action system. Although threat is a type of negative stimulus that typi-
cally initiates defensive reactions and mobilizes fi ght-or-fl ight systems in the brain, 
nonthreatening negative stimuli can produce exploratory behavior and engage associa-
tive processing. In this chapter I describe a number of studies that have explored visual 
discrimination of different types of negative stimuli in real-world scene images. I discuss 
the role of spatial and temporal properties of threat, the neural systems mediating the 
processing of different types of negative stimuli, and the visual pathways that may 
subserve them. In addition, I go over some fi ndings of the latency and connectivity in 
the brain networks involved in threat assessment. I fi nish by discussing how our brain 
may deal with natural versus culturally learned sources of threat from other humans. 

 I put my face close to the thick glass-plate in front of a puff-adder in the Zoological Gardens, 
with the firm determination of not starting back if the snake struck at me; but, as soon as the 
blow was struck, my resolution went for nothing, and I jumped a yard or two backwards with 
astonishing rapidity. My will and reason were powerless against the imagination of a danger 
which had never been experienced. 
  — Charles Darwin,  The Expression of the Emotions in Man and Animals  (1872) 

 Picture yourself  slogging through thick jungle on some ill-considered tropical 
adventure. The region in which you are traveling is remote, lawless, and is rife with 
natural and human predators. Big cats with a taste for human fl esh are known to 
roam here, and venomous snakes slither underfoot. Even worse, this area is swarming 
with various rebel factions who make their living by kidnapping tourists and demand-
ing a ransom for their release. Although everyone in your group is carrying a machete 
and your guide has a hunting rifl e slung across his back, these weapons are helpful 
only against the natural predators — if  you spot them quickly enough. If  confronted 
by rebels armed with AK-47s, the guide warns, it is best to cooperate fully. The gueril-
las are ruthless, and any signs of resistance will have consequences far worse than 
being taken hostage. 

 Kestutis Kveraga 

 Threat Perception in Visual Scenes:   Dimensions, Action, and Neural 
Dynamics 
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 The forest is alive with sounds of the local fauna and the crackling of twigs broken 
by feet, hands, and machetes, so your sense of hearing is of little use. Constantly 
scanning the dense foliage for signs of potential predators has kicked your visual 
system into overdrive. You are mulling alternate responses in your mind — hacking at 
four-legged or legless attackers with your machete, immediately surrendering to the 
two-legged ones, or perhaps freezing on sight of predators and blending into the 
brush. Selecting the correct response could literally save your life. After a while your 
guide spies a half-torn-apart carcass of some unfortunate ungulate. Your group feels 
impelled to investigate it for any signs of what might have happened to the poor 
creature. Did this happen recently? Had it been attacked by a leopard? Or did some 
rebels shoot the animal and then hack away the edible parts for roasting? 

 While the situation I describe here is perhaps overly dramatized, it provides several 
examples of the decisions our visual brain is tasked with in appropriately responding 
to negative stimuli. The brain must react rapidly to imminent danger because to delay 
action can be deadly. Therefore, it evolved to be sensitive to things that appear suddenly 
and/or are highly salient. Camoufl age employed by many predators loses its effective-
ness as soon as they move quickly because certain types of visual neurons are very 
sensitive to sharp transitions evoked by movement. However, not all negative or sud-
denly appearing stimuli represent threats. Automatically treating the latter as threat 
can also be extremely costly, both in high metabolic costs of initiating survival-related 
responses and in consequences for nearby conspecifi cs, who are likely to be close kin. 
For example, you do not want to strike out at close genetic relatives who suddenly 
appear in your peripheral view or immediately fl ee the area if  they are seeking your 
help. Merely negative stimuli that do not present current danger, such as a dead animal 
or an accident site, can offer valuable clues about what events caused their present state, 
whether they present potential threats to you and, if  so, how to stay out of danger. 

 Therefore, the brain must have mechanisms for both identifying imminent threats 
and quickly suppressing potentially harmful threat-related responses when the stimuli 
that are initially perceived as threats turn out to be innocuous. Although, aside from 
risky jungle adventures, most of us face such life-and-death decisions fairly rarely, law 
enforcement and military personnel in war zones are expected to make such snap judg-
ments quickly and accurately, lest they kill an innocent person or be killed themselves. 
What information does the brain use to make decisions about what is and is not a threat? 
The studies reviewed in this chapter represent some of the initial attempts at answering 
this question using ecologically realistic images — photographs of scenes as well as deri-
vations of these images to delve more deeply into the processing mechanisms. 

 Spatial and Temporal Dimensions of Threat 

 Negative stimuli can be classifi ed along certain threat properties, both spatial and 
temporal. The most salient of different types of negative stimuli is a direct, immediate 



Threat Perception in Visual Scenes 293

threat to one ’ s person. This can be a wild animal, a human attacker, or something far 
more common (though still deadly) such as an impending crash. A  direct threat , as 
the term implies, is harm aimed toward you, and it is about to happen or happening 
right now. Therefore, its spatial orientation (defi ned in egocentric coordinates) is  direct  
or toward the observer, and its temporal direction is current or in the very near future. 
Moreover, in most cases, direct threat tends to be located in close proximity to you 
(effective long-range weapons are a relatively recent invention). Another type of nega-
tive stimulus is  indirect threat,  which involves an impending or in-progress attack on 
another human or animal. Therefore, its spatial orientation is averted, or away from 
the observer, and it has the temporal property of happening currently or in the very 
near future. Yet another type of negative stimulus is one in which harm has already 
occurred and no extant threat is visible, which I call a  merely negative  stimulus. In 
these stimuli, the threat direction is averted from the observer, and its temporal arrow 
points back in time. Negative stimuli can be classifi ed on other grounds, such as by 
presence or absence of intent, whether the stimuli evoke feelings of disgust, even 
whether the potential harm is physical or  “ only ”  mental, but in this chapter I focus 
on the types of negative stimuli described above. Likewise, there are other, more 
complex types of negative stimuli — think of images of someone about to commit 
suicide (self-infl icted current, direct threat), images of harm done to you in the past 
(direct, past threat), or even viewing the very morally fraught images of your own 
(obviously unsuccessful) suicide attempt. However, we have not yet studied the latter 
classes of negative stimuli and therefore focus on impending direct and indirect 
threats, and merely negative (past threat) stimuli. These three types of stimuli cover 
the most common negative situations that humans have encountered during their 
evolutionary history and which many still live with in their daily lives. 

 How Well Do We Discriminate Different Types of Negative Stimuli? 

 Dimensional theories of affective perception (those mapping all stimuli along the axes 
of valence and arousal) predict that all negative stimuli should be perceived as aversive 
and threatening ( Barrett  &  Russell, 1999 ;  Larsen  &  Diener, 1992 ;  Russell, 1980 ; 
 Watson  &  Tellegen, 1985 ; see  Barrett  &  Bliss-Moreau, 2009,  for a review). 

 However, the introductory example and even our everyday experiences suggest that 
perhaps not all negative stimuli are perceived the same way. Imminent danger from a 
predator in the jungle or from an out-of-control car careening toward us on the street 
will cause us to act immediately, either to avoid the threat or to brace for the inevitable 
encounter. But seeing the carcass of an animal or an auto accident by the side of the 
road evokes the desire to know what happened, to search for clues that may be relevant 
to our own survival, or perhaps to help if  it is not too late. If  the attack or an accident 
is unfolding nearby but does not involve us, we are torn among fl eeing for safety, 
watching it to learn its causes and outcome, or perhaps rushing to someone ’ s aid. 
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Given these experiences, we predicted that observers would have sharply different 
reactions to different types of negative images. 

 We wanted to test this hypothesis by presenting photographs of natural and urban 
scenes and asking observers to rate the amount of harm depicted in the images that 
(1) the observer might suffer personally, were he or she in that situation; (2) someone 
else might suffer; or (3) someone else has already suffered. These questions were 
designed to elicit ratings corresponding to direct threat, indirect threat, and merely 
negative situations, respectively. We employed over 500 photographic scene images 
that we had obtained from the web and a priori classifi ed as direct threat, indirect 
threat, merely negative, or neutral (  fi gure 14.1A, plate 29 ). We found that subjects 
discriminated the different types of negative stimuli quickly and accurately (  fi gure 
14.1B, plate 29 ). In a follow-up experiment in which participants had to detect the 
presence or absence of a threat rather than explicitly make a decision about the pres-
ence and direction of harm, we found that direct threats were responded to most 
quickly and merely negative stimuli most slowly, slower than even the neutral scene 
images we employed as control stimuli (  fi gure 14.1C, plate 29 ). These fi ndings reveal 
evidence about different responses to visual stimuli that are negative  and  threatening 
versus those that are merely negative. Moreover, they show that merely negative scene 
images engage exploration processes that take longer than those of neutral or threat-
ening scene images.    

 Brain Networks Engaged by Threat and Merely Negative Stimuli 

 Threat has been shown to activate brain structures whose functions include detection 
of salient and potentially aversive stimuli, evaluating their proximity and appraisal of 
threat potential. These regions include the periaqueductal gray (PAG) (e.g.,  Bandler 
 &  Shipley, 1994 ;  Mobbs et al., 2007 ;  Zhang, Bandler,  &  Carrive, 1990 ), locus coeruleus 
( Berridge  &  Waterhouse, 2003 ;  Isbell, 2006 ), and the amygdala (e.g.,  Bliss-Moreau, 
Toscano, Bauman, Mason,  &  Amaral, 2011 ;  Fanselow, 1994 ;  Feinstein, Adolphs, 
Damasio,  &  Tranel, 2011 ;  Larson et al., 2006 ;  LeDoux, 2000, 2012 ;  Sabatinelli, Lang, 
Bradley, Costa,  &  Keil, 2009 ;  Whalen, 2007 ). But what brain networks differentiate 
among different types of negative stimuli — direct and indirect threat and merely nega-
tive stimuli? To answer this question, we employed a subset of the photographic scene 
images from our initial studies that did not differ in their low-level qualities (such as 
spatial frequency, average brightness) in an event-related fMRI experiment. We asked 
the participants to pay close attention to the scene images and report whether the 
scene repeated on a subsequent trial (a one-back task). Thus, they were not required 
to detect or report threats explicitly. 

 What we found was that direct threat, indirect threat, and merely negative images 
engaged distinct, although somewhat overlapping, sets of regions. The direct threat 
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 Figure 14.1 (plate 29) 
 Stimuli and behavioral results. (A) Four types of color photographic scene stimuli. From left to right: 
direct threat, indirect threat, merely negative, and neutral. (B) Behavioral rating results. Three groups 
rated the scene stimuli on questions designed to elicit measures of the scenes ’  direct threat (first bar in 
each subpanel), indirect threat (second bar), and past threat (third bar). Neutral control scenes (fourth 
bar) were rated implicitly. (C) Behavioral responses from an experiment in which participants had to 
make a  “ threat present or absent ”  decision as quickly and accurately as possible and report via a key 
press. Bars with solid borders are  “ yes-threat ”  responses; bars with dotted borders (second bar in each 
subgrouping) are  “ no-threat ”  responses. 
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images activated a set of regions associated with fear: subcortical regions (periaque-
ductal gray, locus coeruleus, pulvinar, hippocampus, and amygdala) and cortical 
regions in the orbital and ventrolateral prefrontal cortices (premotor cortex, fusiform 
and posterior cingulate cortex) ( Kveraga et al., 2014 ). Direct threat stimuli activated 
these regions most strongly, followed by activations evoked by indirect threat stimuli. 
Direct threat orientation has been found to affect behavioral (e.g., electrodermal) 
responses to threat stimuli ( Flykt, Esteves,  &   Ö hman, 2007 ), and our fi ndings dem-
onstrate that the difference in spatial threat orientation is refl ected in the brain regions 
associated with threat perception and fear responses. This difference, interestingly, was 
not driven by more negative valence and higher evoked arousal of the direct threat 
stimuli, as the indirect threat stimuli were actually rated as slightly more negative and 
more arousing than direct threat stimuli ( Kveraga et al., 2014 ). Therefore, the essence 
of threat is not fully captured by the valence and arousal dimensions but rather 
involves factors such as spatial and temporal threat directions. 

 Compared with the direct and indirect threat stimuli, the merely negative scenes 
evoked strongest activations in a different set of regions (although they still evoked 
activations in many of the same regions as the threat scenes, but with a delayed peak). 
Merely negative scene images strongly activated the parahippocampal and retrosple-
nial cortices (PHC and RSC), and parts of the medial prefrontal cortex (MPFC) 
(  fi gure 14.2 , plate 30). Note that PHC and RSC are consistently implicated in scene 
perception ( Aguirre, Detre, Alsop,  &  D ’ Esposito, 1996 ;  Epstein  &  Kanwisher, 1998 ; 
also see chapter 6 by Epstein, chapter 3 by Park and Chun, chapter 1 by Intraub, and 
chapter 4 by Rajimehr, Nasr, and Tootell in this volume), and these regions along with 
the MPFC are also heavily involved in contextual association processing ( Aminoff, 
Kveraga,  &  Bar, 2013 ; also see chapter 7 by Aminoff in this volume;  Bar  &  Aminoff, 
2003 ;  Bar, Aminoff,  &  Schacter, 2008 ;  Davachi, 2006 ;  Kveraga et al., 2011 ;  Peters, 
Daum, Gizewski, Forsting,  &  Suchan, 2009 ) and default-mode mentation ( Buckner, 
Andrews-Hanna,  &  Schacter, 2008 ;  Buckner  &  Carroll, 2007 ). This, along with behav-
ioral results described in the previous section, suggests that when scene images are 
merely negative without an obvious current threat, observers may engage in extraction 
and processing of the context of the events depicted therein. During poststudy debrief-
ing, observers uniformly noted that the scene images classifi ed (unknown to them) as 
merely negative required more thought  “ to fi gure out what is going on ”  than the clear 
(direct threat) images. It is important to note that these activation differences were 
not due to low-level differences such as luminance or spatial frequency spectra, which 
were not different between the conditions ( Kveraga et al., 2014 ). Furthermore, they 
were compared with neutral control scenes, which were matched on general context 
but different in affective content. Last, activation differences between the conditions 
were generally observed only in higher-level visual, affective, and associative regions, 
and no differences were found in low-level visual regions. Thus, the activation of quite 
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 Figure 14.2 (plate 30) 
 fMRI activations evoked by photographic scene stimuli. (A) Statistical parametric maps for the direct 
threat, indirect threat, and merely negative conditions shown on the inflated group average brain. The 
BOLD activations evoked by the direct threat  >  neutral images contrast (top row), indirect threat  >  
neutral images contrast (middle row), and merely negative  >  neutral images contrast (bottom row). The 
arrows indicate some of the ROIs with notable activation differences for the different scene categories: 
PHC (blue), RSC (magenta), PCC (red), OFC/vmPFC (white), vlPFC (cyan). (B) Subcortical activations 
and time courses in the amygdala (left panels) and periaqueductal gray (right panels). 
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different networks for the threat and merely negative scenes must be ascribed to affec-
tive content conveyed by threat cues. These cues would be conveyed by the face, body, 
and posture of human or animal threats, presence and use of weapons or weapon-like 
objects, as well as presence of signs of tissue damage, such as blood, wounds, or 
unnatural body positions.    

 Cortical Dynamics Mediating Perception of Threat and Merely Negative Scenes 

 Decisions about threat stimuli must be made quickly, and rapid brain dynamics are 
not well captured by hemodynamics-based techniques such as fMRI. To investigate 
rapidly changing neurodynamics during threat perception, we thus employed magne-
toencephalography (MEG) using the same stimuli as in the previous fMRI study. 
Although MEG is not well suited for recording subcortical activity, particularly in 
the amygdala, it also does not suffer from tissue-air interaction artifacts that result in 
signifi cant fMRI signal dropout in certain regions, such as OFC, particularly in pos-
teromedial OFC ( Deichmann, Gottfried, Hutton,  &  Turner, 2003 ). OFC is involved 
in resolving ambiguity ( Kringelbach  &  Rolls, 2004 ), including ambiguous visual 
stimuli ( Chaumon, Kveraga, Barrett,  &  Bar, 2013 ) early during perception ( Bar et al., 
2006 ), likely using magnocellular projections ( Kveraga, Boshyan,  &  Bar, 2007 ). We 
thus wanted to investigate its activity with MEG and characterize its interactions with 
the cortical prefrontal and temporal regions that were activated in our fMRI study 
( Kveraga et al., 2014 ). We recorded data from 20 participants viewing our affective 
and neutral scene stimuli and found that posterior OFC was activated earlier (at 
around 130 ms) and more strongly for direct threat than for merely negative stimuli. 
However, ventrolateral prefrontal cortex (VLPFC), which is involved in threat 
appraisal and reassessment (Wager et al., 2008), was activated more strongly by the 
merely negative scenes at the later processing stage beginning at around 220 ms. Given 
the evident lack of current threat in merely negative scenes, this VLPFC activity might 
be involved in suppression of threat-related response during the refl ective, reiterative-
stage processing of negative stimuli ( Cunningham  &  Zelazo, 2007 ;  Lieberman, Gaunt, 
Gilbert,  &  Trope, 2002 ;  Lieberman, 2003 ). 

 Strong bilateral connections between OFC and anterior temporal cortex ( Barbas 
 &  De Olmos, 1990 ;  Ghashghaei  &  Barbas, 2002 ;  Kondo, Saleem,  &  Price, 2003 ), and 
between OFC and VLPFC ( Barbas, 1995 ) are thought to mediate emotional process-
ing. Therefore, given our MEG latency fi ndings, we wanted to investigate functional 
connectivity between these regions. Furthermore, our earlier studies had shown early 
functional interactions between PHC and RSC during contextual association process-
ing ( Kveraga et al., 2011 ), the same regions that were strongly activated by the merely 
negative scene images. To accomplish these goals, we computed phase locking, a 
measure of communication between neural regions ( Lachaux, Rodriguez, Martinerie, 
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 &  Varela, 1999 ), of MEG activity evoked by direct threat and merely negative scenes 
in those regions. We found greater early phase locking in the theta band (4 – 7 Hz) 
between anterior temporal cortex and OFC, beginning at around 130 ms for the direct 
threat versus merely negative scenes. Between OFC and VLPFC, there was stronger 
phase locking for merely negative versus direct threat scenes, which began at around 
150 ms in the theta band and intensifi ed at around 220 ms. Last, between PHC and 
RSC we found stronger phase locking in the alpha (8 – 12 Hz) for direct threat versus 
merely negative stimuli. Increases in the alpha band are usually indicative of active 
blocking or suppression of regional activity when resources are needed elsewhere 
( Haegens, N á cher, Luna, Romo,  &  Jensen, 2011 ;  Klimesch, Sauseng,  &  Hanslmayr, 
2007 ). Therefore, this fi nding suggests that activity in the association processing 
regions PHC and RSC is attenuated during threat perception. This makes sense in 
terms of dealing with direct, imminent threats — the brain needs to engage rapid 
threat-related response, not time-consuming deliberations. 

 Visual Pathways Mediating Threat and Merely Negative Scene Processing 

 Detecting threat rapidly confers a signifi cant evolutionary advantage. This ability 
serves us well to this day even in environments (e.g., avoiding being hit by a car on 
the street) that are quite far removed from the ones in which humans evolved. But 
how does the brain implement visual threat detection? Our visual system comprises 
several parallel but strongly interacting visual pathways ( Ungerleider  &  Mishkin, 
1982 ). The two major, most extensively studied pathways are the magnocellular (M) 
pathway, whose outputs predominantly form the so-called dorsal visual stream 
( Goodale  &  Milner, 1992 ), and the parvocellular (P) pathway, which comprises much, 
though not all, of the ventral visual pathway (for reviews, see Nassi  &  Callaway, 2009). 
The faster M pathway is involved in action guidance, ambiguity resolution based on 
low spatial frequencies ( Chaumon et al., 2013 ), and triggering top-down facilitation 
by the orbitofrontal (OCFC) cortex in the slower P pathway in the ventral temporal 
cortex ( Kveraga et al., 2007 ). The slower P pathway is involved in processing color 
and fi ne details but, contrary to conventional wisdom, is also able to process low 
spatial frequencies in the color dimension and global shape ( Thomas, Kveraga, 
Huberle, Karnath,  &  Bar, 2012 ). Extensive connections between the dorsal and ventral 
streams regions ( Kravitz, Saleem, Baker,  &  Mishkin, 2011 ) enable interactions that 
shape scene perception in ways that are thus far little understood. 

 In this study we wanted to determine how the M and P pathways contribute to 
scene perception and how those contributions may vary depending on scene content. 
To accomplish this, the color photographs employed in the previous studies 
were converted to line drawings, and M-biased (low-luminance-contrast grayscale 
stimuli) and P-biased (isoluminant, chromatic contrast) scene stimuli were created 
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dynamically, based on individual calibration procedures described by  Kveraga et al. 
(2007)  and  Thomas et al. (2012 ). We also presented the intact line drawings (black 
and white;   fi gure 14.3A , plate 31) as the control condition that engaged both M and 
P pathways. Scene line drawings in direct threat, indirect threat, merely negative, and 
neutral conditions were randomly assigned to M, P, or unbiased conditions and 
created  “ on the fl y, ”  based on individual pretest values obtained inside the scanner 
from each participant. The task was to report the presence or absence of a threat.    

 The contrast of M  >  P scene images (of all affective types) revealed activations in 
OFC, whereas P  >  M contrast yielded activations in the ventral occipital and temporal 
cortex. This was consistent with the M and P results obtained by  Kveraga et al. (2007) , 
which used line drawings of single objects rather than scenes. Moreover, the direct 
threat  >  merely negative contrast also revealed activations in OFC that were adjacent 
and overlapping with those evoked by M  >  P contrast (  fi gure 14.2, plate 30 ). Focusing 
further on only M-biased direct threat  >  P-biased merely negative comparison (and 
the reverse contrast) revealed the same pattern. Thus, it seems that threat scene images 
may preferentially engage M pathways to trigger OFC activation, whereas merely 
negative scene images activate the ventral stream P pathway and activate PHC more 
strongly. These results also replicate the main activation patterns of the fMRI study 
with photographic scene images ( Kveraga et al., 2014 ) with line-drawing stimuli, a 
different (explicit recognition) paradigm, and a new cohort of participants scanned 
in a different (1.5 T vs. 3 T) scanner ( Kveraga, Boshyan, Ward, Adams, Barrett, Bar, 
unpublished data ). Finally, it suggests that our fi ndings of fMRI activations during 
threat and merely negative stimuli are quite robust (Kveraga et al., 2014). 

 How Does Threat Information Reach OFC? 
 These fi ndings raise a question: How is threat information identifi ed, and by which 
route is it sent to the OFC? We know that the OFC is activated quite early in visual 
perception, on the order of 100 ms ( Thorpe, Rolls,  &  Maddison, 1983 ;  Tomita, 
Ohbayashi, Nakahara, Hasegawa,  &  Miyashita, 1999 ). The earliest activation is likely 
due to low-spatial-frequency information carried by the M pathway ( Bar et al., 2006 ). 
The exact path by which M-biased information reaches the OFC has not been resolved. 
One possibility is a cortical projection through the dorsal stream, perhaps involving 
the parietal lobe and the frontal eye fi elds, regions that mediate spatial attention and 
identifi cation of objects of interest in visual scenes (see chapter 5 by Brooks, Sigurdar-
dottir, and Sheinberg in this volume). Another possibility is a magnocellular projec-
tion through the ventral stream, although regions in the ventral stream mediating 
scene (PHC) (e.g.,  Kveraga et al., 2011 ) or face perception (including angry or fearful 
faces) typically have longer activation latencies than the OFC ( Hadjikhani, Kveraga, 
Naik,  &  Ahlfors, 2009 ). Yet another intriguing possibility is a projection through the 
pulvinar nucleus of the thalamus, either via cortical projections from the primary 
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 Figure 14.3 (plate 31) 
 Line drawing scenes and fMRI activations evoked by those images. (A) Line drawing scene stimuli 
depicting human and animal contexts: from left to right, direct threat, indirect threat, merely negative, 
and neutral scenes. (B) Comparison of results from two fMRI studies using color photo scenes and line 
drawing scenes. (Left panel) Direct threat  >  merely negative scene activations in fMRI study with color 
photo scenes (lighter color map) and study with line drawings (darker color map). (Middle and right 
panels) Negative  >  direct threat activations for color photo images (darker color map) and study line 
drawings (lighter color map). 
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visual cortex or from subcortical structures such as the superior colliculus or the 
lateral geniculate nucleus. 

 A recent study by  Van Le et al. (2013 ) recorded from medial and dorsolateral pul-
vinar neurons in monkeys and found that pulvinar neurons were very responsive to 
natural threat stimuli — particularly images of snakes. However, the neurons were 
responsive to threat images only when they contained LSFs (i.e., intact and low-
pass-fi ltered images). The pulvinar receives input from the superior colliculus and has 
heavy projections to the prefrontal cortex, including the OFC. It also has undergone 
dramatic expansion in nonhuman primates and hominids. Therefore, it is a good 
candidate to serve as an intermediate processing stage of coarse (that is, M/LSF) 
visual information. This stage may include phylogenetic templates for certain natural 
threats, which play a role in initiating survival-related responses before passing the 
information on to the prefrontal cortex for further disambiguation. 

 Are Some Threats Innate? 
 Responses to some types of threat stimuli may be innate and shaped by evolution. 
The so-called snake detection hypothesis ( Isbell, 2006 ) proposes that particular visual 
regions of the brain unique to primates evolved in the early primates because of the 
need to detect snakes. Both constrictor and venomous species of snakes are the oldest 
predator of small primates ( Isbell, 2006 ;  Ohman, 2007 ), predating big cats and other 
natural predators. The very earliest drawings by hominids discovered in caves consist 
of diagonal cross-hatch and ladder-like patterns, which occur in nature only on dorsal 
and ventral body surfaces of snakes ( Henshilwood et al., 2002 ;  Van Le et al., 2013 ). 
Naive infant monkeys raised in artifi cial environments and never exposed to snakes 
nonetheless show fear of snake stimuli unless critical regions of their threat detection 
network are damaged. One of these regions is the superior colliculus, whose lesions 
disrupt normal fear reactions in infant monkeys ( Maior et al., 2011 ). The superior 
colliculus is a laminar midbrain structure involved in coarse perception of visual 
stimulation and programming of automatic saccades; it projects to the pulvinar 
nucleus of the thalamus. The pulvinar neurons in the  Van Le et al. (2013)  study were 
particularly responsive to snakes, which evoked higher fi ring rates and lower latencies 
than other threat stimuli relevant to monkeys (such as threatening monkey faces) and 
neutral stimuli. 

 Although some phylogenetic threat stimuli (snakes, perhaps also spiders, carniv-
orans, raptors) may indeed be recognized more effi ciently because of selective pres-
sures on early primates during evolution, this can not be the case for so-called cultural 
or ontogenetically learned threats, such as guns. A study by  Flykt, Esteves, and 
 Ö hman (2007)  investigated skin conductance responses (SCRs) evoked by snakes and 
guns in human participants. The stimuli were conditioned with electrical shock (for 
phylogenetic stimuli) or noise bursts (ontogenetic stimuli) and were backward masked 
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to prevent conscious recognition. SCRs for both snakes and guns were preserved (that 
is, they resisted backward masking), but only when the stimuli were oriented toward 
the observers (i.e., direct threat stimuli). Thus, it seems both innate and overlearned 
threats can be effective in evoking preattentive responses, at least when they are immi-
nent and directed toward the observer. Future studies will need to delve more deeply 
into this interesting question: whether we are innately predisposed to perceive certain 
threats (and if  so, which), and whether overlearned threats, such as guns, can become 
as effi ciently recognizable as phylogenetic threats. 

 Conclusions 

 The fi ndings described in this chapter show that humans are keenly sensitive to the 
spatial and temporal direction of threats in visual scenes. This perceptual discrimina-
tion results in clear differences in overt appraisal, as well as action toward, visual 
scenes with varying threat loading. The behavioral differences refl ect the activation 
patterns in fMRI, where threat scenes engaged regions implicated in avoiding danger, 
whereas merely negative scenes activated networks known to be involved in associative 
thinking. The timing and functional connectivity of the cortical regions likewise 
refl ected early engagement of areas involved in ambiguity resolution, such as the 
OFC, and blocking of associative thinking during threat perception in scene images. 
Later stages of threat reappraisal and assessment triggered activity in the VLPFC and 
interactions between the OFC and VLPFC, consistent with the role of the VLPFC. 
This research is just the beginning in developing our understanding of the neural 
processes underlying the perception of the spatial and temporal aspects of affective 
scenes. Future efforts will need to consider how the ingredients of complex affective 
images infl uence the larger percepts of threat and negativity in visual scenes. These 
component parts include facial expression and identity cues, body posture and appear-
ance, display of natural and manufactured weapons, signs of tissue damage, as well 
as more elusive infl uences such as the general affective tone of a scene. 
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