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Foreword 

It is difficult to unlearn something that was once considered fact; it’s against 
human nature. But unlearning and then reimagining is where we find ourselves 
in the field of information security today. Think about the changes in how we use 
technology that have happened over the past decade: the unbounded mobility 
of workers, the adoption of cloud services, and the rise of nation‐state hackers, 
hacktivists bent on destruction, and cyber‐criminal organizations that are run 
like efficient corporations. These shifts are reshaping our profession daily and 
challenging yesterday’s “best practices.”

When I began teaching at Columbia University in the mid‐2000s, the term 
hacking conjured up images of disaffected teenagers for most people. How 
quickly that association has changed. The professionalization of hacking has 
led to massive loss of intellectual property and the theft of countless personal 
records. It has destroyed companies, threatened nations, and thrust security 
into the consciousness of people who would otherwise not be concerned with 
technology.

So where does a modern security practitioner become grounded in the reali-
ties of today’s security? This book is a great place to start. Qing Li and Greg 
Clark have both left a permanent stamp on the security industry and continue 
to help some of the biggest organizations in the world to protect themselves. 
This book is a great resource for security professionals and cyber warriors, as 
Qing and Greg share the knowledge they have accumulated from building 
products that protect more than eighty percent of the Fortune 500 corporations 
around the world.

As the chairman of the world’s largest security conference, and an academic 
and practitioner, I can tell you there has never been a more important time for 
you to read this book. Think of it as a primer for security in modern times, 
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against modern adversaries. What I have always admired about Qing and Greg 
is that they are grounded in the practical. This is a book that doesn’t speak in 
absolutes—it respects the dynamic nature of information security. It tackles the 
hard topics like malnet detection, application intelligence, and retrospective 
analysis. It examines the design of a system that can protect modern endpoints, 
which can be anything from workstations, laptops, phones, and tablets to smart 
refrigerators, power meters, and yet‐to‐be‐conceived devices in the Internet 
of Things. It also exposes the power of what is still one of the most important 
weapons we have in the fight against attackers: the security proxy.

If you are new to information security, this book is a terrific modern primer. 
If you have been in security for a while, you must approach this book with a 
simple truth in mind: our industry is having to reinvent itself in the face of 
modern attacks. Eight‐character passwords and a defined network perimeter 
are a part of our industry’s past, not its present or future. Come with an open 
mind and allow Qing and Greg to reintroduce you to tools you thought you 
knew in the context of today’s sophisticated attacks.

In this new era of security, the authors will take you into the world of malware 
distribution networks and show you how they play a central role in attacks. 
You’ll also learn how modern techniques like sandboxing, security analytics, and 
fine‐grained application controls can be wielded to protect a modern enterprise.

Information sharing is essential for today’s security professional. The content 
in this book can help invigorate thought on how to build better security solu-
tions. It can also help you come up with more relevant questions to ask in areas 
where you want to attain clarity.

When security is done right, it is not about lockdown and fear. It is about open-
ing possibilities and liberating business instead of stifling it. In that way, this 
is a very hopeful book, and I hope you will enjoy reading it as much as I have.

Hugh Thompson, Ph.D.
Los Gatos, CA
December 2014
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Preface

The digitization of a prodigious amount of information is intensifying, from 
health care records and educational backgrounds, to employment history, credit 
reports, and financial statements. Words like eBilling, eStatements, and paperless 
transactions have become part of our everyday language. The ever‐increasing 
ability to retrieve this digital information online, combined with both the unre-
mitting compilation of such information to extrapolate personal traits and 
behavior and the explosion of convenient venues for accessing the Internet, 
should encourage questions in curious minds: “Just how vulnerable are we to 
threats against personal privacy?” and “Who is at liberty to scrutinize the vast 
amounts of private data?”

In recent years, the rapid growth of high‐bandwidth network infrastructures 
accompanied by a dramatic reduction in storage costs serve as the catalysts in 
the construction and commercialization of various cloud‐based services, which 
are offered to both institutions and individuals. These cloud‐based services 
range from personal online backup storage, content‐sharing, and collaboration 
tools to customer relations management (CRM). These services are easily attain-
able with affordable prices that will only invigorate adoption and proliferation. 
Naturally, for security‐conscious minds, questions arise as to how penetrable 
these services are by nefarious entities and, when compromised, how limited 
in scope the resulting damages will be from a specific breach incurred on the 
cloud community as a whole.

Utility companies, power plants, air traffic control systems, public transit 
systems, and others are predominately under digital control. Media coverage 
of specific cyber‐attacks that have targeted these critical infrastructures indi-
cates that the frequency of the attacks is escalating and with rapidly evolving 
sophistication, and these attacks are incurring more severe damages on their 
targets. These stories may include enticing details that are suspenseful and 
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entertaining; however, failure to detect, defend, and remediate these threats will 
effect monetary catastrophe and endanger the population with unimaginable 
consequences. So, what mechanisms have been contrived to entrap offenders 
before they assail us under a camouflage of bit streams?

Branches of government and the armed forces restrict information flow and 
closely inspect each individual’s cyber activities. Similarly, organizations such 
as health care providers, insurance companies, and financial institutions must 
comply with certain industry rules and regulations. Many sumptuary laws require 
exhaustive access logging and retrospective analysis. Mining this voluminous data 
into a structured representation demands interdisciplinary expertise, through 
a process that sanitizes the raw data, sieves out the relevant subsets, transforms 
and normalizes the selection, and applies analytics to seek out patterns. Data 
mining and analytics are critical components of the security envelope. The flex-
ibility and diversity of queries that can be issued against the extracted knowledge 
measure the quality of the data mining approach. In the security context, the 
length of time taken to excavate data determines how quickly active threats can 
be divulged, imminent attacks revealed, and felicitous resolutions conjured in 
response, instead of reacting with extemporary and ineffective countermeasures.

Security implementation and enforcement begins with us thinking in terms of 
the end goals. These goals must be expressible in plain language. For example, 
the thoughts of the CIO of a large enterprise may be as follows:

 ■ When Bob accesses Dropbox, I want to prevent him from uploading any 
files but permit him to download content from his account between 8 a.m. 
and 5 p.m., at a rate of no more than 256 Kbps. Bob is not allowed to 
upload files because he is new to the company and is under a three‐month 
probation period. However, he does have access to sensitive marketing 
information, and I want to prevent him from sharing such information 
externally. Bob has permission to download files from Dropbox because 
his manager utilizes Dropbox for file sharing across a distributed team. 
Because Dropbox is Bob’s main online application, I want to limit Bob’s 
network bandwidth utilization so that Dropbox does not over‐consume 
available network resources.

 ■ When Alice runs the Skype application, I want to log her text chat ses-
sions because she works in a restricted financial environment. Due to SEC 
regulations and U.S. Treasury mandates, financial institutions must moni-
tor employee transactions and online behavior in order to detect insider 
sabotage, data theft, or security breaches that originate externally. For 
these reasons, all of Alice’s online activities must be logged and analyzed.

 ■ When users visit websites during work hours, I want to disallow them 
from accessing sites that are categorized as adult entertainment. I want 
the content of each website to be analyzed in real‐time for adult material, 
and if any is discovered, I want to terminate that user session immediately 
and send an alert to HR for coaching the user on company policies.
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These security goals seem straightforward, yet a plethora of networking 
and security technologies is necessary to achieve the desired end results. 
For example, let us try to translate the first goal into an actual implementa-
tion and observe the various networking and security disciplines that are 
involved.

The prerequisite of implementing the first security goal, at a minimum, 
includes knowing which user initiated the network traffic, which application 
is associated with which traffic flows, and which specific application action 
generated the traffic.

When Bob initiates a Dropbox session to www.dropbox.com, the associated 
traffic that is observed on the network does not contain visible user informa-
tion such as login name simply because the entire session is encrypted using 
TLSv1. One way to determine the user information is by examining the source 
IP address and then querying a directory service such as Active Directory for 
mapping information between the username and the IP address. This method 
is unreliable because multiple users could be running on the same host machine 
that is assigned a single IP address. In other words, if both Bob and Alice are 
using the same multi‐user system for accessing Dropbox, then the IP address‐to‐
username mapping approach will not produce accurate identification. Therefore, 
the most reliable way of extracting the user information is by examining the 
actual HTTPS payload.

Because the traffic is encrypted, it is impossible to decipher unless there is a 
way to plant a device in the communication path; this device would act as the 
man‐in‐the‐middle (MITM) that can communicate with the user as if it were 
the server, while at the same time communicating with the server on behalf of 
the user. Even when the application does not utilize data encryption between 
its client and server, the art of application classification will be the key to asso-
ciate data flows to user‐initiated application actions, such as file download or 
file upload commands. The data rate must be measured constantly and must be 
adjusted according to the desired rate, assuming the data flow has been associ-
ated with a specific application command.

So, to summarize, this simple example involves technologies ranging from 
application classification and authentication protocol to encrypted traffic intercep-
tion and quality of service management. Yet the example we have just presented 
is only one aspect of enterprise security, which relates to employee online access 
behavior and resource usage monitoring, followed by enforcement according to 
defined policies. Monitoring an employee’s online activities involves more than 
just restricting recreational traffic for productivity gain; more importantly, an 
employee could be the source of various types of security breaches. For example, 
an employee could visit a well‐known reputable website; however, if the site has 
been compromised by hackers who have installed malicious URLs to alluring 
content, the unsuspecting employee may follow a web link and download a 
malicious piece of code unintentionally, which then turns the employee’s com-
puter into a sensor for a malicious botnet.

http://www.dropbox.com
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Security tools that rely on a reputation‐based rating system to evaluate the 
safety level of a website cannot protect users from new dynamic URLs that link 
to malicious content. The just‐described scenario is occurring with increasing 
frequency due to the ever‐growing and evolving lures that entice unsuspecting 
users into the dark corners of the Internet. The employee’s personal information 
could be stolen. However, if, for example, the employee is a health care worker 
who may have access to millions of private records, then this private data could 
be compromised on a massive scale, inflicting unimaginable damages on families 
and individuals. Unfortunately, public disclosures of such incidents have been 
made at an alarming rate in recent years.

If a security breach has been detected, postmortem analysis of the various 
security compromises that encompass the breach is critical in constructing 
adequate and flexible defense mechanisms against similar attacks in the future. 
Depending on the severity and level of sophistication of the attack, the analysis 
process is typically comprised of inspecting terabytes, if not petabytes, of data 
that may include user transaction logs and raw packet captures. The essence 
of this retrospective analysis is data mining, and the goals are, at a minimum, to 
identify the victim or victims of the attack, the area of the initial penetration, 
and the speed of dispersion and propagation, and to analyze the threat DNA 
against the known attacks. The combination of real‐time traffic analysis, cor-
relation of events and response, and data recording and analytics, together 
with vulnerability management, are loosely termed Security Information (or 
Incident) and Event Management (SIEM). The maturity and sophistication of a 
security solution, therefore, can be demonstrated in its effectiveness at translat-
ing security requirements, articulated from natural language into actionable 
and enforceable security policies within that solution.

Our book is designed and written for CISOs, network administrators, solu-
tions architects, sales engineers, security engineers who implement security 
solutions, and developers who are building new generations of security prod-
ucts. Similar to unraveling a math word problem, this book guides the reader 
through a deciphering process that translates each security goal into a set of 
security variables, substitutes each variable into a specific security technology 
domain, formulates the equation that is the deployment strategy, and then verifies 
the solution against the original problem by analyzing security incidents and 
divulging hidden breaches, ultimately refining the security formula iteratively 
in a perpetual cycle.

Fear not, you do not need a Ph.D. to read this book. We do assume that you 
have a basic understanding of the TCP/IP protocols, the HTTP protocol, and a 
high‐level conceptualization of SSL/TLS technology.

The book is organized into nine chapters.
Chapter 1, “Fundamentals of Secure Proxies,” dissects traditional defense 

technologies, such as firewalls and IDS and IPS systems, to illustrate the defi-
ciencies in legacy security solutions. The proxy technology is described in detail 
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from the developer’s perspective. This chapter then demonstrates the power of 
proxies by diving into the specifics of how SSL interception is achieved.

Chapter 2, “Proxy Deployment Strategies and Challenges,” provides defini-
tions of the various types of proxies in terms of their deployment strategy, 
accompanied by their advantages and disadvantages. A proxy, being a stateful 
device, is confronted by various and unpredictable network infrastructure 
designs. This chapter enumerates the top deployment challenges and offers 
respective solutions in detail.

Chapter 3, “Proxy Policy Engine and Policy Enforcements,” leverages the policy 
language of a real‐world security product to illustrate the essential elements 
of an effective policy system and demonstrates how various components of a 
policy are implemented in various stages of the traffic processing path.

Chapter 4, “Malware and Malware Delivery Networks,” provides an overview 
of the types of malware that are active in the wild. The ploys, lures, and schemes 
fashioned by the attacks are illuminated through actual incidents. Advanced 
persistent threats (APTs) and other sophisticated strategies such as Stuxnet and 
Flame have been employed as infiltration and cyber weapons to wage warfare 
among countries. This chapter sheds light on this topic.

Chapter 5, “Malnet Detection Techniques,” describes the algorithms that are 
applied for detecting suspicious URLs and content that lead to malware infec-
tion. Techniques employed for trapping and analyzing malware and suspicious 
code are fully articulated in this chapter, along with a discussion of open‐source 
analysis tools.

Chapter 6, “Writing Policies,” offers meticulous detail on policy design for 
many common security objectives in enterprise environments.

Chapter 7, “The Art of Application Classification,” examines the classification 
techniques for identifying applications accurately over live traffic in real‐time. 
Knowing what traffic is associated with which application is the first step in 
applying intelligent control. This chapter elucidates the technical complexities 
behind this challenging class of security problems that are under active research.

Chapter 8, “Retrospective Analysis,” discusses the algorithms and techniques 
for data logging, storage, management, and mining knowledge, all in the context 
of security intelligence.

Chapter 9, “Mobile Security,” focuses on the new and fast‐growing mobile 
computing world, where security is optional. This chapter discusses the various 
technical challenges that make designing and building mobile security solutions 
difficult. With millions of applications available for download, mobile application 
identification is a formidable challenge. This chapter offers a comprehensive 
overview of the current active research trends in this new discipline.

There are countless books on firewalls, malware and viruses, cryptography, 
IDS, IPS, data mining, and many related concepts. However, a book is needed that 
unifies these concepts, analyzes and compares the various solutions, digests the 
security problems into succinct requirements, and crystallizes the implementation 
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strategies that correlate to specific technology and solution categories. This book 
is the missing manual that teaches you how to assemble all those parts into 
practical solutions that solve real‐world enterprise security challenges.

At a minimum, we hope this book can assist you in turning some of those 
desultory conversations of acronyms into meaningful discussions on enterprise 
security.
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The evolution of the secure proxy is a reflection of the evolution of the web. The 
proxy began as a gateway that bridged content that was processed and managed 
by various information systems, and served that content to the open web dur-
ing the early days of Internet web construction. The term web proxy server was 
given to this general intermediary to reflect its main duty at the time, namely, 
translating web requests from the Internet to representations that could be 
understood and fulfilled by different internal systems, and vice versa.

The web has evolved, expanded, and flourished from a content‐centric, 
information‐sharing system into an elaborate ecosystem for commerce, an accul-
turation establishment for Millennials, and a foundation for modern‐day cloud 
computing. The web browser has become the instrument that unlocks all of the 
wealth the web offers. The fundamental web protocols and technology, such as 
HTTP, SSL, HTML, XML, Java, and JavaScript, have been amalgamated into a 
complex conduit, which faces relentless assaults from nefarious forces that try 
to subvert it for profit. However, private intellectual properties and confidential 
data hosted in private and protected networks are accessible through a browser 
over secure connections across the Internet. The web has also been adopted as a 
system of portals for managing critical infrastructures at municipal, state, and 
national levels. Consequently, the user and the browser have become attack 
vectors for breaching corporate as well as national security.

The web proxy has evolved from a content gateway into an essential security 
gateway that focuses on users, applications, and content. The security proxy 
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differs from a generic web proxy in that the secure proxy can interpret and 
intercept more application protocols than just HTTP. Secure proxies, especially 
when deployed in enterprise environments, serve as both protectors and enablers 
so that their user community can benefit from the web while minimizing the 
risk of being victimized by malware delivery networks.

Security Must Protect and Empower Users

The rise of the Internet becoming the foundation of the new era in commerce, 
culture, communication, education, entertainment, and technology was inva-
sive, with profound impact on our social behaviors. It is now ubiquitous and is 
an indispensable element of both professional and personal life. At the time of 
the Internet boom, even long before the advent of mobile computing, the line 
between work hours and personal time was indistinguishable. With the intro-
duction and rapid adoption of smart phones and tablet computing, there is no 
longer a distinction between a personal and a work‐related computing device. 
This situation is particularly true for employees who travel a great deal as part 
of their job functions. For this mobile workforce, a regular laptop computer is 
typically installed with both personal software and work‐related applications. 
They work wherever and whenever they can while roaming through airports 
and hotels. The expansion of both the Internet and affordable residential broad-
band networks has enabled many employees to work from home. Similar to 
the mobile workforce, the home computer serves as both a personal entertain-
ment and productivity platform and a professional instrument that performs 
corporate-related job functions. Both computing paradigms raise a dilemma: a 
well‐formed physical perimeter that isolates and guards the enterprise network 
with traditional IT governance is nonexistent. This lack of separation of personal, 
private information from corporate intellectual property and data on the same 
storage device can be a liability for both the employee and the employer.

The Birth of Shadow IT
Business applications are migrating from locally hosted solutions within the 
enterprise to a cloud‐hosted collaborative model. This transition means enterprise 
users are accessing business‐critical applications through their web browser, 
over the standard web protocols, using a diverse range of computing devices that 
may not be owned or managed by the enterprise. Consequently, the traditional 
security practice of the allow‐or‐deny‐all approach is inadequate in managing 
today’s complex web‐oriented computing paradigm.

In today’s enterprises, users demand the ability to choose from a vast number 
of applications that they can utilize to maximize their productivity when per-
forming their duties, while at the same time leveraging those same applications 
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for personal objectives. Because enterprise IT and network access policies tend to 
be restrictive, many user‐chosen applications may not be authorized for use in 
an enterprise network due to security risks, such as the type of information the 
application gathers and transmits to entities that are external to the enterprise. 
The servers that the application communicates with may also be easily compro-
mised by attacks. For example, many organizations prevent users from running 
Dropbox for file sharing for fear that company‐related confidential documents 
may be leaked as a result of unintentional but careless actions. Another typical 
restriction is that users are forbidden from running any application that partici-
pates in a peer‐to‐peer (P2P) network. This prohibition is likely the precipitant 
of the Digital Millennium Copyright Act that was signed into law in the United 
States in 1998. From an enterprise perspective, any copyright infringing mate-
rial that is stored and that transits the enterprise network presents serious legal 
liabilities and ramifications. Application software may be produced by various 
publishers that range from large commercial vendors to independent software 
developers. An enterprise may exclude an application from its permissible list 
based on the publisher and its reputation.

One of the fundamental evolutions that have taken place in the enterprise IT 
environment is the emergence and growth of shadow IT. Employees’ desire to 
circumvent IT restrictions led to the use of shadow IT. In the previous example, 
if Dropbox were blocked by IT policies, then employees would find alternative 
mechanisms and tools to share files, thus resulting in shadow IT usage. Consider 
the following example: sales engineers (SEs) travel constantly, and they need 
to share files with other SEs, employees, and their customers. E‐mail systems 
implement file size limits such that large files cannot be transferred over e‐mail. 
Because Dropbox has been blocked, these SEs may experiment exhaustively 
with Box.com, Wuala.com, Google Docs, Google Drive, TeamDrive, SugarSync, 
OneDrive, CloudMe, or Amazon Cloud Drive until they find a solution that is 
capable of penetrating the IT security net.

Internet of Things and Connected Consumer Appliances
The Internet of Things (IoT) refers to uniquely identifiable embedded devices 
that are networked, which are reachable and manageable through the Internet 
infrastructure. These embedded devices have proliferated and matured beyond 
just smart sensors to more intelligent applications such as smart building and 
home automation systems. Google’s $3.2 billion acquisition of Nest in January 
2014, followed by Samsung’s acquisition of SmartThings in August 2014, offers a 
glimpse into market developments that are shaping the future of the IoT. Much 
of this IoT can now be accessed and controlled through applications on popular 
mobile devices such as the Apple iPhone and iPad and Google’s Android‐based 
gadgets. For example, a homeowner can use the ADT Pulse app on their iPad 
to activate or deactivate their ADT home alarm system, check motion sensors, 
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and watch live video feeds from various video cameras that have been installed 
in their home. The Tesla Model S iPhone app allows a car owner to track their 
car’s location or start and stop electrical charging of the vehicle.

The IoT has met little resistance as it has gradually become engrained 
into our daily lives, in what appears to be almost a seamless integration, 
because convenience and ease‐of‐use have replaced security at center stage. 
Securing the IoT is a complex problem. Two main aspects of defense include 
protecting the IoT device and securing the access channel. The access chan-
nel includes the communication between the device and its peer (commonly 
known as machine‐to‐machine communications [M2M]), and the communication 
between the device and its operator. Because it is embedded, the IoT device has 
limited computing power and resources, which limits the device’s ability to 
run sophisticated software such as a virus scanner. Such an embedded device 
is typically powered by either a custom operating system (OS) or a special 
variant of a known OS. An embedded OS generally lacks security software 
that is commonly found in a desktop OS, for example, antivirus software. At 
the time of this writing, the popular Apple iOS has been on the market for 
over seven years, yet antivirus software for the iPhone and iPad is limited 
in both variety and functionality; more importantly, such antivirus software 
is rarely installed by iOS users. Considering the iPhone is by definition an 
embedded device, the prospect of antivirus and anti‐malware software find-
ing its way into the iPhone as a standard application seems impossible, at 
least for the next few years.

Running an embedded OS implies that software patches that fix security 
vulnerabilities may not be released at a regular interval, if such a practice exists 
at all. Even when such a firmware patch mechanism exists, in most cases the 
patch process relies on the user to be diligent in exercising security practices, 
and such a demand on the general population is simply unrealistic. Therefore, 
these factors indicate that IoT devices can become popular attack targets and 
can be compromised with relative ease. Once such an IoT device is hacked, user 
information may be retrieved and the device can in fact cause physical harm to 
its owner; for example, a hacker shutting off a smoke detector during a house 
fire can cause physical injury or damage. These IoT devices can also be turned 
into zombies and become part of a large botnet, which can be commandeered 
into participating in a planned distributed denial‐of‐service (DDoS) attack 
against another target.

Other types of consumer electronic appliances, such as the Sony PlayStation 4 
(PS4) and Internet‐ready HDTVs, are network‐capable and face security threats 
similar to those faced by IoT devices. An Internet‐ready HDTV may not allow 
its owner to browse and surf the web; however, it permits its owner to log in 
to Facebook and update their Facebook status through the built‐in application. 
The Facebook account information could be stolen if the Internet‐ready HDTV 
is hacked. The Sony PlayStation owner can purchase games at the PlayStation 
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Store. The PlayStation Network user account information includes the account 
holder’s birthday and contains a stored credit card number. The user credential 
to log in to the PlayStation Network to play multi‐player online games can be 
stolen by an attacker who has compromised the PS4, thus putting the account 
holder’s privacy at great risk.

Conventional Security Solutions

The security posture of an organization refers to the role security plays in the 
organization’s business planning and its business operation. The security posture 
encompasses the design and implementation of a well‐defined security plan. 
The security plan is comprised of technical solutions including technology 
in terms of software, hardware, and services that can be implemented at end 
points and within the network. The security plan also includes non‐technical 
aspects: employee education on the importance of security as an essential ele-
ment of business operations; a definition of policies on employee conduct and 
behavior that conforms to corporate security governance; a definition of poli-
cies for achieving regulatory compliance; and a definition of procedures and 
guidelines on responding to security incidents, both internally and externally.

In essence, the security posture refers to how an organization views security: 
as a business enabler or as a hindrance and an inconvenience to its operational 
efficiency. An organization’s security posture dictates its practices of security 
and determines the effectiveness of its security implementation. In today’s 
information age, the availability and timely accessibility of information are 
important keys to an enterprise’s success. Enterprises strive to foster innovation 
by harnessing the wealth of information capital available on the Internet, while 
at the same time maintaining an energized and engaged workforce.

Security should afford users the freedom to explore and harvest the riches 
of the Internet, and alleviate the fear of becoming victims of cyber threats. 
Existing threats change and new ones emerge as the web evolves; therefore, 
security postures cannot remain static for long and need regular assessment. 
It is essential to have an in‐depth knowledge of available security solutions, 
and an understanding of the strengths and the weaknesses of each solution in 
order to perform assessments such as vulnerability testing, penetration testing, 
and standards‐based auditing. Understanding security technologies is the key 
to implementing the layered defense that is now mandatory in securing users 
and enterprise networks.

Traditional Firewalls: What Are Their Main Deficiencies?
The firewall, the most commonly known and referenced security device, 
was once the motif of security‐related conversations and continues to be an 
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essential element of any network security design. The traditional firewall is 
still the first line of defense. However, the growing body of threats have long 
surpassed the capabilities of the traditional firewall. The security landscape 
is now cluttered with acronyms such as unified threat management (UTM), 
deep packet inspection (DPI), intrusion detection system (IDS), intrusion 
prevention system (IPS), secure web gateway (SWG), web application firewall 
(WAF), next‐generation firewall (NGFW), application intelligence and control 
(AIC), and many more. These acronyms create the perception that perhaps 
the security threats are largely under control, yet in reality, adroit, menacing 
malware crafters flourish in the shadows, and security battles rage on with 
growing ferocity and intensity. The various technologies that are behind the 
acronyms add confusion and inundate the security implementers with over-
lapping solutions. These overlapping solutions obscure the deficiencies in 
the core technologies, and this lack of clarity results in the construction and 
deployment of inadequate defenses.

The deficiencies of the traditional firewall lie in its inability to examine the 
packet payload, especially when content is encrypted. The traditional firewall 
examines layer‐2 (L2) to layer‐4 (L4) packet header information, such as source 
and destination IP addresses, L4 protocol type, and L4 source and destination port 
information, as depicted in Figure 1-1. A firewall rule can be written to compare 
any header field or bits against any specific values and can define instructions 
for the firewall to apply one or more actions accordingly. For example, a firewall 
rule can state, “If an incoming packet is a TCP connection initiation frame (i.e., 
the TCP header contains the SYN flag bit), then transmit a TCP RESET frame 
back to the sender.” Basically, this firewall rule blocks all incoming TCP con-
nection requests.

Here is another example of a firewall policy: “If the source IP address is 
10.9.44.108, the protocol is TCP, and the destination port is 6881, then discard 
the packet.” TCP port 6881 is commonly used by the BitTorrent program for 
P2P traffic. Enterprise firewalls block this port to prevent employees from 
downloading questionable content and consuming valuable network band-
width. This firewall policy can be problematic in actual deployment. First, the 
popularity of BitTorrent has enabled its adoption by various organizations for 
legitimate use, for example, by communities that distribute open source soft-
ware releases. In such cases, blocking TCP traffic on port 6881 would preclude 
users from permissible use of BitTorrent and, in some cases, would interrupt 
the only distribution channel for a specific open source project. Therefore, 
the content of a specific BitTorrent session, instead of simply the destina-
tion port, should determine whether such a session is permitted. However, 
a traditional firewall does not have the ability to perform content analysis. 
Second, BitTorrent uses port 6881 when the port is available; otherwise, port 
6882 and subsequent ports are tried until an unused port is found. As such, 
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port 6881 can be occupied by traffic belonging to an admissible application. 
The firewall cannot determine which application originated the traffic to port 
6881. Consequently, simply blocking port 6881 could disrupt a permissible 
application from its normal operation. Figure 1-2 illustrates the port‐sharing 
dilemma that confuses a firewall.

Figure 1-1:  TCP/IP Headers for Firewall Processing
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This example depicts a serious deficiency in a firewall, where it cannot block 
a malicious application that runs over a non‐default port. Consider another 
example where a firewall permits outbound HTTP traffic: traffic destined to 
TCP port 80 is permissible because otherwise users will not be able to access 
any websites on the Internet. Malware writers have common knowledge of 
well‐known destination ports that are allowed by firewalls. They create their 
malware to transmit on these ports to circumvent the firewall because they 
know the firewall is incapable of distinguishing HTTP traffic from non‐HTTP 
traffic just by examining the packet headers. This example exposes another 
serious deficiency in the firewall: it cannot block a malicious application that 
transmits over allowed well‐known ports. We can make another observation 
in Figure 1-2, that malware can perform port hopping to discover “holes” in 
the firewall. The malware can transmit in the dynamic port range, beginning 
with a high‐value port, and increment the port number by 1 until it successfully 
receives a response from its intended peer.
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Every packet that passes through a firewall will match at least one firewall 
rule. The firewall understands the connection concept, whether it is a TCP con-
nection or a UDP connection. A common firewall feature is that it keeps stateful 
information on TCP connections and UDP sessions. This stateful information 
cache, known as the state table, reduces the firewall workload and increases 
firewall scalability. For example, when the first packet of a TCP connection 
is seen by the firewall (in this case a TCP SYN packet), the firewall executes 
its rules against this TCP SYN packet, which results in a firewall action. This 
resulting action and the TCP connection information (connection 4‐tuple and 
the TCP header) is then stored into the state table. Figure 1-3 shows an example 
of a firewall state table.

Figure 1-3:  Firewall State Table
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Instead of running through all of the rules repeatedly on the subsequent 
packets from that same TCP connection, the firewall can consult the state table 
directly and obtain the action quickly. This is the reason why the firewall is also 
known as the stateful packet inspection (or simply stateful inspection) firewall. 
Examples of firewall actions include allowing traffic to pass, denying traffic 
by silently dropping the packets, denying a TCP connection by generating a 
TCP RESET protocol packet, and generating connection logs. Each entry in the 
state table contains minimal information that represents a connection. Packets 
belonging to connections that are permitted by the firewall transit the firewall 
unmodified. In practice the firewall updates its state table entries using only 
information from the packet headers.

Firewall with DPI: A Better Solution?
A new breed of firewalls—let us call them the second‐generation firewall 
(SGFW)—incorporated DPI technology to address the problem of identifying 
what application generated the traffic in question. With DPI, the packet payload 
is scanned for specific known patterns, also known as signatures, which can 
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potentially identify applications. We say potentially identify because of the 
challenges of application identification using static patterns, which is a topic 
we cover in Chapter 7. These SGFWs enable administrators to specify and 
enforce policies that are based on application names and types, more than just 
IP addresses and port numbers. In addition, by integrating user authentication 
information that provides mapping between a user and a specific IP address, 
some of these SGFWs extend the policy coverage to enforce policies that are 
defined around individual users.

When an SGFW performs DPI to scan a flow for an application signature, 
as Chapter 7 covers, multiple packets may have passed through the firewall 
before an identification can be made. These leaked packets may have already 
provided the black hats with useful information to further their attacks. Because 
DPI relies on pattern matching, prevalent in the form of regular expression 
matching, the operation is computationally intensive. The performance impact 
of DPI on firewall throughput determines how much content is scanned on 
a per‐packet basis and how much stateful data is kept for correlation when 
conducting analytics. As such, firewalls with a DPI engine obtain scalability 
through a hardware‐based regex processor that typically increases the cost of 
the overall solution. Firewalls in general had become commoditized in the late 
1990s. The cost factor determined whether a firewall had a built‐in DPI engine 
and what capabilities that DPI engine offered.

There are many issues that render DPI ineffective. First, DPI does not work 
on an encrypted payload. An encrypted payload is indistinguishable from 
random byte streams and thus cannot match any known patterns. Other data 
obfuscation techniques, such as compression, encoding, and tunneling, can 
achieve the same effectiveness in defeating DPI.

Second, firewalls with DPI engines cannot modify the content even when 
malicious content has been identified: entire packets must be discarded that 
will impact the overall sessions. Here is the reason why: as Figure 1-1 illustrates, 
the firewall rules are formulated against the fields from the layer‐3 and layer‐4 
headers, in this example, from the IP header and TCP header. Any alteration 
made to the packet can cause a TCP checksum error, unless the TCP check-
sum is recomputed by the firewall. Because TCP checksum covers all of the 
payload data, re‐computing the TCP checksum is an expensive operation. The 
firewall may need to perform packet reassembly due to IP layer fragmentation, 
thus incurring additional processing overhead. Revising the TCP checksum is 
insufficient and will not work in cases where, for example, an Internet protocol 
security authentication header (IPSec AH) is employed to verify end‐to‐end 
message integrity; in other words, any modification of the original message 
by intermediate systems, in this case the firewall, would fail the AH integrity 
check at the final destination.

Although an SGFW can provide better visibility by recognizing certain unen-
crypted applications by means of DPI, its enforceable actions are still as limited as 
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the traditional firewall. This coarse protection method can impede the usability 
of other defensive systems against sophisticated attacks.

IDS/IPS and Firewall
A firewall is the first line of defense, but it has limited visibility into the content 
while it makes traffic‐filtering decisions. Because a firewall is commonly deployed 
at the ingress and egress points of a network, all traffic paths will converge and 
traverse through the firewall. Therefore, the performance and scalability of a 
firewall affects the network as a whole. For this reason, although some firewalls 
may incorporate a DPI engine, a firewall is designed to execute a limited set of 
actions against each packet, even when hardware acceleration is activated in 
the firewall. When an attack circumvents the firewall, an IDS extends the secu-
rity coverage by inspecting the network and the end systems for evidence that 
corroborates whether some network events and security alerts were instigated 
by attacks or malicious infiltrations. An IDS generates alarms and reports to 
network management systems upon detecting abnormal or suspicious traffic.

An IDS examines packets for signatures that are associated with known 
viruses, malware, and other malicious traffic. In addition to pattern scanning 
within the packets, an IDS analyzes overall traffic patterns to detect anomalies 
and known attacks. Some examples of known attacks are denial‐of‐service 
(DoS), port scanners that search for vulnerable network services, buffer overflow 
exploits, and self‐propagating worms. Examples of anomalies include malformed 
protocol packets and traffic patterns that deviate from the norm. An IDS is 
divided into two main categories: a network‐based intrusion detection system 
(NIDS) and a host‐based intrusion detection system (HIDS). NIDS and HIDS 
differ in where the IDS is deployed, which consequently dictates the types of 
data collected and analyzed by that specific type of IDS. Figure 1-4 illustrates 
an example deployment of IDS systems behind a firewall.

As shown in Figure 1-4, the NIDS is deployed inside the organization’s inter-
nal networks, behind the firewall. A NIDS monitors the activities of the entire 
network and examines both intranet traffic and Internet‐bound traffic. On the 
other hand, the firewall concentrates on traffic that flows into and out of the 
internal network to the Internet.

The traditional NIDS scans packets against a database of signatures of known 
attacks. Similar to the open source IDS tool Snort, each signature in the data 
is often implemented as a matching rule. This signature‐based IDS runs the 
packets through these matching rules or signatures to detect attacks. Another 
approach is the statistical‐based or anomaly‐based NIDS, which is also known as the 
behavior‐based NIDS. With a statistical‐based NIDS, a profile of the network under 
protection is built over time, based on evolving historical data, which represents 
the norm of the network. Some examples of data collected and compiled into a 
profile that represents the network operating under normal conditions include 
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the following: the number of new applications that are discovered per day on the 
network and the average traffic volume generated by each type of application; 
the average number of DNS queries transmitted from a specific IP address at a 
given time interval; the average overall aggregate throughput of the network; and 
the average number of HTTP transactions issued per minute from a specific IP 
address. Any deviation observed by the NIDS may be interpreted as anomalies or 
misuse that instigates responses as defined by corresponding security directives.
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The key to the success of a signature‐based NIDS is the richness in the collec-
tion of the attack signatures. Identifying a unique and effective signature for a 
new attack, especially a complex attack, takes time to develop and evolve. As new 
attacks propagate across the networks and infrastructures, the signature‐based 
NIDS is incapable of detecting these attacks while the new signatures are being 
implemented. The success of the statistical‐based NIDS depends on the knowledge 
or heuristics of the network characteristics that are considered as normal and 
serve as the baseline. Establishing the boundaries of normal network behavior 
is challenging as the network fosters a wide range of protocols and applications 
and hosts a user base with a diverse spectrum of online behaviors that can trigger 
sporadic traffic patterns. A statistical‐based NIDS can be effective against new 
attacks because new attacks can incite network behaviors that alarm the NIDS.

A host‐based IDS (HIDS) is purposefully built, either for an operating system 
or for a specific application, and operates in individual end systems. The HIDS 
analyzes the operating system process identifier (PID), system calls, service 
listeners, I/O and file system operations, specific application runtime behavior, 
and system and application logs to identify evidence of an attack.

Firewalls are called active protection systems because a firewall is in the path 
of all traffic, known as inline deployment. This enables the firewall to examine 
live traffic, and when the firewall identifies an attack, it is capable of blocking 
that attack while it is in progress. In other words, upon detection, a firewall can 
prevent malicious traffic from reaching a targeted system.

Intrusion detection systems can be categorized as passive protection systems 
because an IDS is typically connected to a SPAN (Switched Port Analyzer) 
port on a network switch or to a network tap that duplicates packets for an 
entire link. While an IDS can also examine every packet, however, the packets 
under analysis have successfully passed through a firewall and cannot be 
filtered by the IDS; those packets may also have already reached the intended 
targets and enacted malicious activities. In other words, an IDS identifies an 
attack that may have already taken place, at which point the IDS begins to 
remediate the damage by executing countermeasures, for example, sending 
alerts and notifications to monitoring and management systems. The passive 
traffic‐processing nature of an IDS implies the performance of an IDS does not 
have any impact on active live traffic. As such, an IDS can perform much more 
in‐depth analysis, and correlate more data sets, than a firewall. A firewall fulfills 
a security role that prevents the firewall from being a replacement for an IDS.

DPI is also an integral part of the IDS. Using the open source Snort software, 
here is an example of a rule created by the Sourcefire Vulnerability Research 
Team. The rule scans for the signature of the Flashpack/Safe/CritX exploit kit 
that attempts to download a malicious file as part of the attack:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"EXPLOIT-KIT
Flashpack/Safe/CritX exploit kit jar file download";



14 Chapter 1 ■ Fundamentals of Secure Proxies  

flow:to_client,established; file_data; content:"filename="; http_header;
content:".jar"; within:4; distance:24;
pcre:"/filename\=[a‐z0‐9]{24}\.jar/H";
metadata:policy balanced-ips drop, policy security-ips drop,
  service http;
reference:url,
  www.malwaresigs.com/2013/06/06/flashpack-exploit-kit-safepack/;
classtype:trojan-activity; sid:26892; rev:2;)

This example illustrates that as the IDS scans for attack signatures, it suf-
fers from the same inherent deficiencies in the DPI engines as those found in 
the firewall. Evasion techniques that are used against DPI engines are also 
effective in defeating the signature‐based IDS engines. In this example, the 
code in bold face is a Perl Compatible Regular Expression (PCRE). The ques-
tion is, what if the exploit kit uses HTTPS to download the payload, resulting 
in the payload being protected by the SSL encryption so that this rule cannot 
be applied at all?

Unlike the passive network monitoring of an IDS, an IPS takes the active role 
of performing mitigation actions in real‐time once attacks are detected. An IPS 
possesses all of the capabilities of an IDS, but an IPS is deployed physically 
inline in the network, which enables the IPS to drop attack packets, reset TCP 
connections, or activate filters to block the source of the attack. An IPS can per-
form other functions such as configuring dynamic policies in security devices, 
such as a firewall, to interrupt the malevolent maneuvering and prevent further 
damage to the network.

Unified Threat Management and Next‐Generation Firewall
The most significant limitations of the traditional firewall are its inability to 
perform payload inspection and to distinguish applications. The concept of 
Unified Threat Management (UTM) gained visibility and momentum in 2004 
to address the security gaps in firewalls, and to offer a solution for the lack 
of unified policy management across the various security control technology 
products commonly deployed together in an enterprise network. The UTM 
strategy is to combine multiple security features such as a firewall, NIDS, IPS, 
gateway‐based antivirus, and content filtering into a single platform or appli-
ance to offer multiple layers of security protection with simplified management 
and ease of policy implementation. The security posture continued to increase 
its focus on users and their applications, as the transformation in UTM took 
place in parallel.

Then, Gartner Inc., an information technology research and advisory com-
pany, claimed to be the first to define the Next‐Generation Firewall (NGFW). In its 
NGFW definition, the three key attributes of an NGFW are its ability to detect 
application‐specific attacks, to enforce application‐specific security policies, and 

http://www.malwaresigs.com/2013/06/06/flashpack-exploit-kit-safepack/
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to intercept and decrypt SSL traffic. The NGFW includes all of the capabilities 
of the traditional firewall and incorporates the full functionality of a signature‐
based IPS. Another key characteristic of the NGFW is its inline deployment as a 
bump‐in‐the‐wire. In addition, the NGFW can collaborate with external services 
to incorporate additional security‐relevant data and feeds to enhance its enforce-
ment capabilities.

The NGFW definition has a large overlap with that of the UTM. The 
articulated differences have limited technical merits, and the deviations 
are largely a result of verbiage manipulation. The NGFW concept seems to 
be a desired byproduct of combining the UTM with the unique features of 
the secure proxy. The conceptualization of the NGFW, with such a rich set 
of security features, processing network traffic at multi‐gigabit wire speed, 
and without any performance degradation, would be the ultimate goal 
of security system design architects and developers. However, as we will 
illustrate in this book, firewall and proxy are fundamentally incompatible 
with respect to the policies each is designed to interpret and to enforce. The 
process and method of application classification collides with the operation 
of proxy interception.

Security Proxy: A Necessary Extension 
of the End Point

A firewall, even with UTM, performs primarily syntactical analysis of traffic 
that is largely signature driven and is capable of enforcing security with limited 
actions. Without the ability to decrypt content for analysis when encountering 
encrypted sessions, a firewall is confined to simply denying traffic in environ-
ments with restrictive enforcement policies. In enterprise networks, a legitimate 
but encrypted session could be blocked, causing discontinuity in both business 
and productivity. A security solution that can decrypt SSL cipher text, then feed 
the plain text into other security technologies, is a mandatory step to combat 
advanced and fast‐evolving threats.

The secure proxy was invented long before NGFW was conceptualized. The 
demand for the secure proxy in enterprises in the financial sector, defense 
industry, and many others has flourished since 2002. Even the design for SSL 
interception was in full swing at that time. In essence, the secure proxy is the 
result of combining a secure web gateway with application proxies, operating 
with a complex and expressive policy engine at its core.

A security proxy, sometimes referred to as a secure proxy or simply a proxy unless 
stated otherwise, performs semantic analysis in the context of individual protocols, 
most importantly layer‐5 to layer‐7 application protocols. At the time of this writing, 
the majority of proxies have some capability to decrypt SSL traffic. A proxy is a 
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security enforcement companion to a firewall, an IDS and IPS, an enterprise‐grade 
virus scanning appliance, analytics engines, and many other security solutions. 
As illustrated in Figure 1-5, a proxy is the data hub that feeds decrypted traffic 
to any attached companion system that performs one or more dedicated security 
functions. Each companion system requires a different type of input. The proxy 
is capable of extracting mail attachments, web URLs, and executable files from the 
payload and feeding these inputs to its security attachments accordingly.

Figure 1-5:  Secure Proxy as a Data Hub
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A proxy is predominantly deployed inside a firewall‐protected network. The 
secure proxy performs proxy functions beyond just analyzing the web traffic. 
We define web traffic as that which is carried over the HTTP or HTTPS proto-
cols. The secure proxy can intercept more protocols than just HTTP. However, 
the proxy concept is best illustrated in Figure 1-6 using HTTP as an example.
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Figure 1-6:  Proxy Concept
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As shown in Figure 1-6, the first and most important action a proxy exerts 
on a connection is interception. Connection interception is achieved through 
connection termination. We will use the term client to refer to the initiator of the 
connection request, and the term server to refer to the original intended recipient 
of the connection request. In TCP, connection termination involves the proxy 
completing the TCP three‐way handshake to establish the connection with the 
HTTP client. The next step in the interception process is for the proxy to establish 
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another TCP connection with the server. In this example, the original destina-
tion is Google. Once both connections have been established successfully, the 
next act of the interception procedure is for the proxy to receive traffic from one 
connection and then inject that traffic, either unmodified or transformed, into 
the other connection. In other words, the proxy splices the traffic between these 
two TCP connections. Unlike a firewall, a proxy can modify any packet and 
manipulate any content exchanged in these connections. In the example shown 
in Figure 1-6, the proxy detects the presence of adult material in the returned 
content and strips away that material as part of the configured policy. The sani-
tized content is then transmitted back to the HTTP client. This example illustrates 
that a proxy performs intrusive maneuvering of communication exchanges that 
are visible to the proxy. The payload obfuscation techniques used to defeat a 
firewall are proven ineffective against the proxy. Because the proxy terminates 
the connection, the proxy will reassemble packets and decode the content type 
before subjecting the session to higher‐layer processing.

A real‐life example of a proxy in action is free WiFi access at airports. When 
you connect to a WiFi access point, your computer indicates it is connected 
and has obtained an IP address. Yet, without opening a web browser you are 
unsuccessful when you try to run any application that needs the Internet. This 
is because you have not agreed to the terms and conditions of use. When you 
open the browser for the very first time, a legal agreement web page displays, 
and you can proceed to use the Internet once you accept that agreement. This 
legal agreement page displays as long as you have not accepted that agreement, 
regardless of how many times you choose to close and reopen the web browser. 
This is called a captive portal, which impels a user to fulfill some action, such 
as responding to user authentication queries. A captive portal is also used by 
hotels that offer Internet access, where a web page prompts the user to review 
and agree to the charges on first use. A web proxy (or HTTP proxy) is one of 
many techniques and an effective approach in implementing a captive portal.

Transaction‐Based Processing
A proxy also keeps state information on the connections it processes, but unlike 
a firewall, a proxy participates in the connection activities, exchanging packets 
as a communicating peer both to the originator of the connection and to the 
originally intended destination. As such, there are some notable differences 
when comparing the firewall state table against the proxy state table, as shown 
in Figure 1-7. Each entry in the firewall state table represents a single connection. 
As Figure 1-7 illustrates, the proxy must maintain the state information that cor-
relates the two TCP connections with the two corresponding HTTP transactions 
as belonging to a single user transaction that was initiated from that specific 
HTTP client. When the firewall processes incoming packets, only the packet 
headers are applied when updating connection state information. In the proxy 
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case, entire packets are processed and may be stored as part of the transaction 
state information. Remember, the proxy must receive traffic from the client‐side 
connection and then transmit that traffic, either modified or verbatim, to the 
server‐side connection, and vice versa.

Figure 1-7:  Proxy State Table
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Some application‐level protocols are carried over UDP. Because UDP is 
connectionless, the proxy must have the ability to track when a UDP‐based 
transaction begins and ends. Similar to the TCP case, the proxy needs to create 
two UDP flows and update the state information according to the transaction. 
For example, a DNS proxy creates the UDP flow entry in its state table when 
it processes the DNS query message. The DNS proxy may modify the query 
message before sending it onward to the identified DNS server. The proxy 
must maintain this DNS transaction until the proxy receives the corresponding 
answer message, regardless of how the proxy may have processed the query 
content. The DNS proxy may change the time‐to‐live (TTL) of a particular entry 
in the DNS answer, or it may remove entries from the answer due to policy 
restrictions. The DNS proxy removes the transaction from the state table once 
it has transmitted the final DNS response to the client. In this example, the 
DNS proxy treats the DNS query and the subsequent response as the complete 
DNS transaction.

The Proxy Architecture
The DNS proxy example illustrates that a proxy must have in‐depth knowl-
edge about a specific application protocol and also about its structure and 
operational detail in order to perform proper interception. Depending on the 
protocol in question, examples of this knowledge may include the following: 
whether a centralized directory service is involved in locating a service or 
peer; how the connection is established between the communicating peers; 
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the type of authentication mechanism employed; the encryption methods 
that are available and the negotiation approach; the types of requests and the 
associated payloads; the types of responses and the associated payloads; and 
how the various content is encoded and transported. For every application 
protocol that may exist in an enterprise network, if that application requires 
management other than the simple allow‐or‐deny type of enforcement, then 
there exists a specific proxy designed and built for that application protocol, 
performing the necessary interception and processing requests and responses 
according to defined security policies.

A secure proxy is an appliance that incorporates various application prox-
ies into a single platform, with the proxies collaborating with one another to 
process application traffic and enforce policies. Figure 1-8 shows the high‐level 
architecture of a proxy. As shown in the figure, the proxy is comprised of three 
main components:

 ■ The protocol detection and application classification engine (PACE)

 ■ Various protocol and application proxies

 ■ The policy engine

When the proxy receives a transaction for the first time, the PACE dispatches 
traffic to the proxy according to the default port designation. The PACE first 
terminates the connection and then transfers the established connection to a 
specific proxy. The connection transfer is done through a dispatcher that has 
the knowledge of the various well‐known ports and the designated proxies. 
As shown in Figure 1-8, the ports table maps a proxy to a well‐known port. 
For example, the DNS proxy is assigned to handle port 54, and the SSH proxy 
is assigned to port 22. Because malicious traffic attempts to evade the firewall 
by utilizing the well‐known ports, a specific proxy must accurately detect if a 
given traffic flow is in fact from the protocol that the proxy is built to handle. 
For example, port 443 is used by HTTPS sessions. The first set of data packets 
exchanged on the established connection must be the SSL handshake traffic. 
Each proxy scans the payload for specific known signatures belonging to the 
protocol or application in question. In the HTTPS example, when the SSL proxy 
accepts the connection from the dispatcher, the SSL proxy expects to receive 
the SSL ClientHello record, which begins with the byte pattern: 0x16 0x03 
0x01 0x02 0x00 0x01 0x00 0x01 0xfc 0x03 0x03. The SSL proxy redirects the 
transaction back to the PACE to perform further protocol detection if it cannot 
interpret the payload as SSL traffic.

The keen reader will now oppugn some of the statements just made in the last 
paragraph: if a proxy scans the payload for specific known signatures, then how 
is the proxy different from a firewall or IDS system with a built‐in DPI engine? 
How can the SSL proxy scan for a predefined byte stream in encrypted traffic? 
And how can a proxy scan encrypted content?
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The first question, asked differently, is: if the PACE has the ability to classify the 
traffic against specific protocols and applications, is the PACE duplicating work 
that is performed by the proxies? The answer is that there is no work duplica-
tion, and here is the reason why: The HTTP protocol is an ASCII protocol. The 
PACE parses the payload for keywords such as “HTTP/”, “GET”, “Content‐type”, 
“Content‐length”, “Accept:”, and “<HTML>”. Together these keywords provide 
a high probability that the payload belongs to an HTTP request. Therefore, the 
PACE forwards the transaction to the HTTP proxy. Once the HTTP proxy receives 
the transaction and encounters the keyword “GET”, it interprets this keyword as 
a method and parses the subsequent bytes to look for the parameter (such as a 
filename) for this method.

Figure 1-8:  Proxy Architecture
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The PACE parses the payload and classifies the traffic according to the HTTP  
protocol syntax. The HTTP proxy understands the full semantics of the 
HTTP protocol and, as such, can enforce security policies that are written 
specifically around the HTTP protocol. For example, a policy rule can be

Deny if (http.method == GET) and (Host == www.adserver.com)

Each proxy has its own nuances. In each proxy, security policies are designed 
to operate on specific aspects of a protocol. Therefore, as this simple example 
demonstrates, the proxy cannot apply any security policies unless it can, as a 
first step, accurately detect the application or the protocol in question. As we 
will show in more detail, a proxy identifies an application by specific payload 
signatures and according to the sequence of events and exchanges that must 
take place, combined with the runtime behavior of the application.

Application classification and protocol detection may require multiple pack-
ets before reaching the conclusion on what the application or protocol is. Each 
enterprise has a different level of stringent policies on how many packets can be 
permitted to flow through the proxy unrestricted before the proxy interrupts the 
flow and closes down the transaction. Therefore, the PACE and the specific proxy 
must work collaboratively to quickly identify the traffic. If the proxy cannot clas-
sify the protocol, the PACE can choose from two main options when proceeding: 
the first option is for the PACE to stop and end the transaction immediately; the 
second option is for the PACE to re‐inject the packets received from the initia-
tor connection into the other connection unmodified. In either case, the PACE 
may log this transaction for the administrator. A proxy that chooses the second 
approach is concerned more with preventing communication disruption than 
with strict security enforcement where packet leaks are to be kept to a minimum.

The policy engine executes in the context of all modules and components 
and across all layers between layer 2 and layer 7. The policy engine is covered 
in detail in Chapter 3.

The SSL messages transmitted at the early stages of the handshake exchange 
are not encrypted. These messages contain sufficient detail for an SSL proxy to 
determine if it will perform interception on a specific transaction. Other proxies 
rely on the SSL proxy to decrypt cipher text and offer these other proxies the 
plain text for further analysis and processing.

SSL Proxy and Interception

The remaining discussion in this chapter will focus on the HTTPS proxy because 
it depends on the SSL proxy. The SSL proxy is challenging to design, implement, 
and deploy not only because of privacy concerns but also because the SSL proxy 
performs identity emulation, and it must enforce authentication and the trust 
model, which are essential in secure communication. Figure 1-9 illustrates two 

http://www.adserver.com


 Chapter 1 ■ Fundamentals of Secure Proxies   23

main SSL interception scenarios. As shown in the figure, the proxy must mas-
querade as the server when communicating with the client. Similarly, the proxy 
must assume the identity of the client when it connects to the server. In essence, 
the proxy acts as the man‐in‐the‐middle (MITM), and if the proxy does a good job, 
its presence remains undetected throughout its operational lifetime. The proxy 
can succeed in interception only if both the client and the server trust the proxy.

Figure 1-9:  SSL Interception

Client Hello

Modi�ed /Unmodi�ed
Server Hello

Scenario
1

Scenario
2

Decides
to Intercept

Proxy

Decides NOT
to Intercept

TCP PipeRemaining SSL Handshake

Remaining SSL Handshake

1

4

Client Hello 2

Client Hello 1

Unmodi�ed
Server Hello

7

Original

Client Hello 2

Close TCP Connection 4

Client Hello 5

Modi�ed

Unmodi�ed

Server Hello3

Server Hello3

Server Hello6



24 Chapter 1 ■ Fundamentals of Secure Proxies  

In the first scenario, when the proxy receives the SSL ClientHello message at 
the beginning of the SSL handshake, the proxy forwards this ClientHello mes-
sage to the server unmodified. When the corresponding ServerHello message 
reaches the proxy, the proxy makes the interception decision by applying the 
configured policies to the ServerHello message. At this point the proxy may 
modify the ServerHello message before transmitting it back to the client. The 
proxy does not modify the ClientHello message for a good reason. The final SSL 
message exchanged between the client and the server is the Finished message. 
The Finished message contains the MD5 digest of all of the handshake messages 
combined with the negotiated master secret. If the proxy decides not to intercept 
this connection but it has modified any of the handshake messages, such as the 
initial ClientHello message, then the MD5 digest will fail verification at both the 
client and the server ends, resulting in the client and the server failing to complete 
the handshake even after the proxy has decided not to intercept that transaction.

There are several challenges the proxy must consider during its interception of 
SSL traffic. The client may offer a cipher suite that is not supported by the proxy. 
In this case, the proxy must modify the ClientHello message to substitute a cipher 
suite that the proxy supports. Other negotiation parameters such as the version, 
whether it is TLS 1.1, TLS 1.2, or SSL 3.0, could cause similar incompatibility 
issues, and these fields may be modified by the proxy en route to the server. For 
example, the proxy may replace and substitute a cipher suite it supports in the 
ClientHello message. This case is illustrated in the second scenario in Figure 1-9. 
In this scenario the proxy first saves a copy of the original ClientHello message 
before making the necessary modifications to its content and then transmits the 
new ClientHello message to the server. Then the proxy decides not to intercept 
the traffic after processing the ServerHello message. Because the ClientHello 
message was modified, the proxy must close the server‐side TCP connection. Next, 
the proxy reconnects to the server with a new TCP connection and then sends 
the saved original ClientHello message to the server as a new SSL handshake 
negotiation. The client is unaware of any of these server‐side activities. When the 
proxy forwards the ClientHello message to the server unmodified, however, the 
ServerHello message indicates the server has chosen a set of parameters that are 
not supported by the proxy; in this case the proxy will handle the transaction in 
the exact same way as it did in the previously described processing scenario. In 
this second scenario, once the SSL handshake completes, the SSL proxy acts as 
a packet forwarding system that splices the two connections into a TCP tunnel. 
The packets that flow across this TCP tunnel are encrypted packets, and the 
proxy performs only the packet forwarding action.

Interception Strategies
The second SSL interception scenario alludes to an interesting question: can 
SSL interception be accomplished without the TCP termination? There are 
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two main SSL interception strategies: one leverages the full TCP connection 
termination, while the other relies only on SSL encryption and decryption. The 
two SSL interception scenarios presented in Figure 1-9 can be summarized as 
the SSL interception strategy illustrated in Figure 1-10. This SSL interception 
strategy offers the most flexible and intrusive policy‐driven processing of the 
content: content insertion, deletion, and transformation are all possible with 
this approach.

Another SSL interception strategy is depicted in Figure 1-11. With this inter-
ception strategy, a single TCP connection is established between the client 
and server; in other words, the proxy does not terminate the TCP connection. 
The proxy has the ability to decrypt and encrypt the content within the SSL 
session, but the proxy cannot modify the content and must keep the content 
fully intact. Here is the reason why: SSL protects and transmits the data using 
a record protocol. The SSL record protocol is similar to the IP fragmentation 
and reassembly mechanism, where the data is divided into fragments and each 
fragment is independently encrypted and transmitted. On the receiving end, 
each encrypted payload is independently decrypted, verified, and reassembled 
back into the original data. Any modification applied to any of the SSL records 
would alter the original data and may render the data invalid.

Figure 1-10:  Type‐I SSL Interception
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Unlike the termination‐based interception, the main course of action the proxy 
can enforce is to reset that single TCP connection, thus breaking the connectivity 
between the two end points. As depicted in Figure 1-11, the decision to break 
the TCP connection can come from a variety of sources. Once the encrypted 
payload has been transformed from cipher text into plain text, the SSL proxy 
can redirect the plain text to a diverse set of security devices to perform vari-
ous in‐depth content‐centric analysis. For example, as shown in Figure 1-11, the 
content can be sent to a malware scanner first, and if something suspicious is 
discovered, the malware scanner returns an indication to the proxy. At that point, 
the proxy places the suspicious content into a malware sandbox to detonate the 
potential malware and investigate the outcome of the controlled execution. As 
soon as the malicious nature of the content is confirmed and the malware has 
been identified, the proxy begins retrospective analysis of the historical data to 
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Figure 1-11:  Type‐II SSL Interception
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discover the earliest exposure to that vulnerability and begins the construction 
of countermeasures. In parallel, the proxy shuts down the TCP connection to 
prevent further damage.

The proxy communicates with the other security devices by utilizing regular 
TCP or UDP connections and transmitting the plain text over these standard 
communication channels to maximize interoperability, thus eliminating the 
need for these devices to make any software modifications.

Referring back to the proxy architecture illustrated in Figure 1-8, the concept 
of transaction handoff was discussed in the context of application recognition: 
the SSL proxy transfers the transaction to another proxy through the PACE 
when the transaction operates over a protocol on top of the SSL. Another purpose 
for the transaction handoff is when one or more proxies must work collabora-
tively to manage and manipulate a transaction. The transaction handoff concept 
is detailed in Figure 1-12.

Figure 1-12:  Transaction Handoff
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As shown in Figure 1-12, the HTTPS proxy is conceptually comprised of two 
proxies: the SSL proxy and the HTTP proxy. In practice, the HTTP proxy is fully 
aware of the SSL processing detail when it handles the HTTPS request. Once 
the SSL handshake is complete, the SSL proxy must transfer this transaction 
to the HTTP proxy for HTTP‐based proxy operation. Another example is the 
stunnel proxy, which is comprised of the SSL proxy and the TCP tunnel proxy. 
Therefore, the SSL proxy is typically implemented as a common proxy that 
provides services at the SSL layer to other proxies. Based on HTTP‐specific 
policies, the HTTP proxy may instruct the SSL proxy to initiate certain opera-
tions, for example, performing a rehandshake, disallowing session resumption, 
or perhaps requiring client certificate authentication in future transactions with 
a specific client.
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Certificates and Keys
One of the SSL design goals is to facilitate server authentication. For example, 
if you are making an online purchase at Amazon, your web browser must 
ascertain whether it is indeed communicating with an Amazon server before 
transmitting your credit card information to that server. An X.509 certificate 
binds a public key to a specific entity. A trusted third party, the certificate 
authority (CA), verifies the identity of the entity that owns the certificate and 
ensures the entity possesses the corresponding private key. At the completion 
of successful validation, the CA signs the certificate with its digital signature 
as proof of the certificate’s authenticity. A CA‐signed certificate guarantees 
the public key contained in the certificate belongs to the entity as claimed 
in that certificate. The CA’s digital signature can be verified using the CA’s 
public key.

The fact that an SSL proxy can perform traffic decryption and re‐encryption 
after transaction interception implies that the SSL proxy possesses the server’s 
private key if server authentication is mandatory. In practice and in the major-
ity of cases, the SSL proxy will not have the server’s private key. Can you 
imagine the SSL proxy having private keys from Google, Amazon, Facebook, 
Netflix, or any other commercial websites? Figure 1-13 illustrates how the SSL 
proxy achieves the keying mechanism necessary to perform decryption on 
intercepted traffic.

As shown in Figure 1-13, when the proxy receives the server certificate in 
Step 4, it modifies the certificate before sending it to the client. The proxy 
changes the certificate issuer to be the proxy itself. Because each certificate 
has a pair of keys—one public and one private—associated with it, the proxy 
replaces the original server’s public key with its own public key. After mak-
ing all of the necessary changes to the server certificate, the proxy signs the 
modified certificate using the private key of a preinstalled CA certificate and 
then replaces the signature field with the new signature value. The proxy 
transmits this newly transformed certificate to the client. How does the cli-
ent respond when it receives this certificate from the proxy and begins server 
authentication?

The server certificate verification will complete successfully and unevent-
fully if the proxy is a legitimate intermediate CA holding certificate signing 
authority, and it is a part of a certificate chain that terminates at a client‐trusted 
root CA. However, in most deployment situations the proxy will not have cer-
tificate signing authority. In this case, the client will neither trust nor accept 
the certificate fabricated by the proxy without user intervention. The common 
visual indication of a problematic certificate is a web browser pop‐up window, 
similar to the one shown in Figure 1-14. In this example a proxy is deployed 
between the client and the Internet. When the user tries to access the Google 
website, the proxy modifies the Google certificate, subsequently triggering 



 Chapter 1 ■ Fundamentals of Secure Proxies   29

In the enterprise environment, such a browser pop‐up window is a good 
indication that a corporate proxy is present in the network, which enforces the 
corporate use policy. Outside the corporate network, such an alert triggered by 
a non‐verifiable certificate is strong evidence that a MITM attack may be taking 
place somewhere in the infrastructure.

SSL interception is confronted with another challenge when secure servers 
require client authentication. Client authentication may be necessary in situ-
ations where the client is granted access to restricted or highly confidential 
resources and services, such as military systems, only after the client authenticates 

Figure 1-13:  Server Certificate Modification
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the browser pop‐up window at the client end. As shown in Figure 1-14, the 
browser pop‐up window states the server certificate cannot be verified as the 
reason for user notification.
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Installing an individual client certificate in the proxy so that the proxy can 
offer the right client certificate upon request by the server is a possible solution 
in enterprise networks. However, such a solution is neither scalable nor practi-
cal in any organization with a large number of users. One approach to solving 
the scalability problem is using a technique called client certificate emulation. 
Figure 1-15 illustrates an example of such a practice.

Figure 1-14:  Browser Issued Warning about Proxy’s Certificate

successfully. The client certificate must be issued by an externally known and 
trusted CA. Client authentication is controlled by the server. The server that 
demands client authentication sends a certificate request to the client during 
the SSL handshake process.
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The Common Access Card (CAC) serves as standard identification for mili-
tary and DoD personnel. The CAC is a smart card that uniquely identifies an 
individual with that individual’s private key embedded in it. In the fictitious 
scenario depicted in Figure 1-15, the same trusted CA is installed in the proxy 
and in the servers, and the proxy is given intermediate signing authority by 
this trusted CA. Once the proxy authenticates an individual, the proxy gener-
ates a certificate (possibly with a limited lifetime) that identifies this specific 
individual and the associated key pair and signs this certificate. When the 
server demands client authentication for that individual, the proxy offers the 
generated certificate to the server. The server can verify this certificate because 
the proxy has the signing authority issued by a CA that is also trusted by 
the server. As shown in Figure 1-15, instead of a single trusted CA, the proxy 
could install three different trusted CAs, one for the Air Force server, one for 
the Army server, and one for the Navy server. These CAs are trusted by each 
server, respectively.

Figure 1-15:  Client Certificate Emulation
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In the non‐termination–based SSL interception strategy, as depicted in 
Figure 1-11, the proxy must examine the SSL handshake exchange and modify 
the server certificate similar to the termination‐based interception. The proxy 
transmits the modified server certificate to the client and uses that modified 
certificate along with its own key pairs to negotiate a master secret with the 
client. This master secret is used for traffic encryption and decryption between 
the client and the proxy. The proxy exchanges the master secret with the server 
using the server’s original certificate. This master secret is used by the proxy to 
re‐encrypt the decrypted client content and then transmit that newly encrypted 
traffic to the server.

With both interception strategies, if the server’s private keys are installed in 
the proxy, then the proxy can avoid modifying the server certificate completely. 
In that case, the proxy has full capability to decrypt any content transmitted to 
the server using the server’s private key.

Certificate Pinning and OCSP Stapling
Certificate pinning is a solution that attempts to solve a MITM attack when an 
entity tries to communicate with a peer securely using SSL, but the attacker 
assumes the identity of the peer by intercepting the certificate validation process 
using a rogue but valid certificate that masquerades as the peer.

How can a rogue but valid certificate be created in the first place? Such an 
attack was first made possible due to the fact there were still CAs that used the 
MD5 cryptographic hash function to generate certificate signatures. The MD5 
hash function has known collision vulnerabilities that were discovered back 
in 1993; in a nutshell, it means that two different inputs to the same MD5 hash 
function can produce the same exact hash output. In 2005 researchers dem-
onstrated a practical method to craft a pair of X.509 certificates, each having a 
different public key, to result in the same computed MD5 digest. The collision 
vulnerability attack against MD5 demonstrates that similar attacks could be 
made against other cryptographic hash functions, such as SHA‐1, that are in 
use by CAs. Once an intermediate rogue CA certificate with certificate signing 
authority can be constructed, such a rogue CA certificate could be used to sign 
any fabricated certificate bearing the identity of any entity.

In recent years, there have been known incidents where CAs have issued ques-
tionable intermediate or subordinate root certificates. For example, in early 2012 
Trustwave revoked a subordinate root certificate it issued to an unnamed company, 
which enabled that company to forge and issue unlimited certificates claiming the 
identities of any server or organization. The subordinate root certificate and the 
forged certificates it generated were all stored inside a hardware security module 
(HSM), and that specific certificate was issued for that company’s internal use; how-
ever, such a certificate could have been misused, which warranted the revocation.
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Another venue for attackers to gain access to rogue certificates is by breach-
ing a CA and then obtaining rogue certificates through that CA. In late 2011 
DigiNotar, a Dutch CA, was hacked and its certificate issuing servers were 
compromised by the hackers. Through DigiNotar, the hackers issued rogue 
certificates as well as signing rogue certificates. The breach came to light only 
after a third party made a public disclosure, and rogue certificates continued 
in circulation after the discovery and after DigiNotar claimed to have revoked 
all such rogue certificates.

With certificate pinning, the peer’s certificate is included in the application 
when the application is built. For example, Google pins its certificates in its 
Chrome web browser, and when users download the Chrome browser, the Google 
certificates are already embedded inside the executable file. A peer’s certificate 
can be manually inserted into a trusted certificate list after that certificate has 
been obtained through a secure and trusted channel. Certificate pinning elimi-
nates the need to validate a certificate at runtime, during the secure connection 
establishment phase. Because the public key is the most important element of 
the certificate, pinning the public key instead of the certificate is another viable 
solution. There are no known workable solutions for an intercepting proxy to 
circumvent the certificate pinning mechanism other than holding the actual 
pinned certificate at the proxy.

A related identity validation concept is Online Certificate Status Protocol 
(OCSP) stapling, formally known as the Certificate Status Request TLS feature 
extension. OCSP stapling places the burden of identity verification on the peer, 
who must include an OCSP‐signed and time‐stamped response proving its 
certificate is valid during the TLS or SSL handshake. OCSP stapling also chal-
lenges the proxy’s ability to perform transparent interception.

SSL Interception and Privacy
Privacy laws differ from country to country and region to region. Therefore, a 
proxy must sometimes obtain explicit consent from a user before intercepting 
any user traffic. When the proxy has intermediate certificate signing authority 
issued by a trusted root CA, any modified server certificate will not trigger 
a browser pop‐up warning message because this modified certificate can be 
verified. In this case, how could the end user prevent proxy interception if the 
user has the right to choose the action?

Due to privacy concerns, Blue Coat Systems took the approach of utilizing 
the client authentication mechanism to determine if the client explicitly grants 
permission to allow for proxy interception. The proxy is programmed to parse 
two preformatted certificates, one that has the certificate common name “Yes 
Sir”, and the other that has the common name “No Sir”. The client installs two 
such certificates in its key ring, as shown in Figure 1-16.
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Policies configured in the proxy would instruct the proxy to request cli-
ent certificates for a pre‐determined set of destinations that show up in client 
requests. Because the client has multiple certificates installed in its key ring, the 
browser prompts the user to select the certificate to return to the server. This 
process is shown in Figure 1-17.

Figure 1-16:  Client Consent Certificate

Figure 1-17:  Client Consent Pop-up
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Now the user has direct control over whether the proxy should intercept that 
particular session by selecting the right certificate. In other words, by choosing 
the “No Sir” certificate to transmit to the proxy, when the proxy parses this cli-
ent certificate and sees the common name “No Sir”, the proxy takes that as the 
cue and bypasses the session without SSL interception.

Summary

Firewalls are security devices that analyze traffic according to syntactical rules. 
The security policies enforced by a firewall are based on limited actions such 
as Allow or Deny. Firewalls provide the first level of traffic filtering. Intrusion 
detection systems perform traffic analysis based on historical data and heuristics 
and can scan for known threats. Both firewalls and intrusion detection systems 
become inoperable with encrypted traffic. This fundamental challenge is solved 
by proxies. Proxies are complex to design and implement. A proxy operates 
with deep knowledge of the semantics of an application or a protocol. The SSL 
proxy is a testament to just how sophisticated a proxy must be in order to suc-
cessfully intercept and process various transactions. A significant part of this 
chapter was devoted to explaining the inner workings of the SSL proxy. The 
next chapter focuses on the various types of proxy deployments and discusses 
associated deployment challenges and solutions.
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A proxy exerts its power and control on a network as an intelligent security device 
through its ability to perform deep traffic analysis in the context of an applica-
tion and its users. One measure of the effectiveness of the proxy is its ability 
to intercept application traffic without interrupting the application or causing 
any side effects. An application being affected by a proxy can exhibit symptoms 
such as being unresponsive to user commands, engaging in transactions with 
sporadic data flows and unpredictable response times, and sometimes ceasing 
to function completely. Another metric that gauges the effectiveness of a proxy 
is its level of stealthiness while the proxy is active. When a proxy is stealthy, it 
can avoid being detected by both the application and its user.

After its successful incursion into a network, as part of its continued assail-
ment, a sophisticated malicious application performs middle‐box detection to 
avoid being discovered by the security proxies. Once a malicious application 
detects the presence of a proxy, it begins executing countermeasures such as 
changing its encryption methods, altering its communication patterns, mas-
querading as another victim, or sending a notification to its command‐and‐ 
control server seeking further instructions. The proxy must hide itself from 
such applications so it can continue to surveil, pursue, and ultimately apprehend 
the malicious source.

The strategic physical placement of the proxy in the network determines 
the amount of network activity that may be subjected to proxy examina-
tion. The types of deployments demand that the proxy perform supporting 
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network functions that are commonly found in a bridge or in a router. In 
this chapter we will discuss the various challenges of deploying a security 
proxy and describe the solutions that can either solve or alleviate these 
deployment issues.

Definitions of Proxy Types: Transparent Proxy  
and Explicit Proxy

A proxy’s visibility to a user or to an application defines whether the proxy is a 
transparent proxy or an explicit proxy. The following example illustrates the char-
acteristics of a transparent proxy. When Bob communicates with Alice through 
a peer‐to‐peer (P2P) application, such as an instant messaging (IM) application, 
once a transparent proxy intercepts this IM session, that transparent proxy 
masquerades as Bob when it speaks to Alice, and it masquerades as Alice when 
it speaks to Bob, all without either Bob or Alice knowing such an impersonation 
is taking place during that session. Also, no explicit configuration change is 
necessary in either Bob or Alice’s IM application settings. The goal of the trans-
parent proxy is to be as invisible as possible to both the client and the peers that 
the client communicates with. The application protocol operates normally and 
is completely unaware it is exchanging packets with a proxy. In this example, 
Bob and Alice did not give explicit consent to the interception of their session.

Unlike a transparent proxy, a user is aware of the presence of an explicit proxy. 
The application is explicitly configured to transmit certain types of traffic to 
the proxy for processing. For example, in the Firefox web browser, under the 
Advanced ➢ Network menu, various proxy configuration settings are available 
in the Connection Settings panel that specify how to access external networks 
through various proxies. As shown in Figure 2-1, the SSL proxy setting contains 
the IP address of the SSL proxy. When the user enters a URL that requires HTTPS 
transport, the browser will forward this request to the configured proxy. In the 
case of an explicit proxy, because a user has chosen to communicate through a 
proxy, the user gives explicit consent for the interception.

As shown in the Firefox Connection Settings panel, each explicit proxy is 
specified by an IP address and a port number, which means the following:

 ■ An explicit proxy does not masquerade as the client or the server.

 ■ An explicit proxy can be physically situated anywhere on the network as 
long as there is a routing path between the client and the explicit proxy, 
as depicted in Figure 2-2.

 ■ Multiple explicit proxies can co‐exist in the same infrastructure, each 
offering a different set of proxy services. Also, each proxy can be located 
on separate network segments. In Figure 2-2, the SSL proxy is directly 
connected on the same physical network segment as client A and client B. 
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The SOCKS proxy is one routing hop away from both clients, as is the 
HTTP proxy. Client A and client B can request proxy service from any of 
these explicit proxies.

 ■ The IP address combined with the port number identifies the service access 
point where the proxy performs the connection interception. In this example 
the SSL proxy is located at IP address 10.9.45.3, and it is listening on port 
443 for incoming interception requests to service.

 ■ Because the explicit proxy can be located anywhere on the network, the 
proxy must use a source IP address that is different from the client’s IP 
address when the proxy connects to the originally intended destination 
after intercepting the client‐side request. We will discuss the types of 
source IP addresses that can be set for a proxy‐initiated connection in more 
detail in a later section titled “Challenges of Transparent Interception”.

Figure 2-1: Configuring Proxy Settings in the Firefox Browser

If the client sends its request to the proxy or if the application connects explicitly 
to the proxy, how does the proxy know what the original intended destination 
is for a given transaction? An application protocol needs to contain enough 
destination information in its protocol requests in order for the explicit proxy 
to function properly. For example, for an HTTP transaction the web browser 
will issue a full URL in its HTTP request if the “HTTP proxy” setting is defined 
in the browser, as in

GET http://www.mywebsite.com/index.html HTTP/1.0.

http://www.mywebsite.com/index.html
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Even when the browser sends the partial URL, as in GET /index.html HTTP /1.0, 
the HTTP protocol specification provides the Host field in the HTTP request 
header that specifies the original intended destination and can include an 
optional destination port number. The destination can be a server name that is 
expressed as a fully qualified domain name (FQDN) or by an IP address. The 
proxy extracts the destination from the Host field when it makes the outbound 
connection on behalf of the client. As this example illustrates, implementing 
an explicit proxy is possible only if an application protocol understands the 
concept of a proxy and provides a level of protocol support for operating with 
a proxy. However, the majority of application protocols are designed to run 
independently, without any proxy intervention. A transparent proxy is most 
likely the best method of deployment to intercept and process traffic from 
these types of applications or protocols. For the remainder of this book, we 
will use the terms intercepted, proxied, and terminated traffic interchangeably to 
describe traffic that is intercepted and processed by a proxy, either transpar-
ently or explicitly.
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Figure 2-2: Explicit Proxy Deployment
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Inline Deployment of Transparent Proxy: Physical  
Inline and Virtual Inline

Transparent inline deployment offers the most flexibility to a proxy with 
respect to security policy enforcement, for the simple reason that the more 
traffic that is accessible to the proxy, the more traffic can be subjected to 
proxy examination and subjugated under policy control. The inline deploy-
ment can be categorized as either physically inline or virtually inline. All traffic 
on a network segment traverses the transparent proxy when that proxy is 
deployed physically inline. With virtual inline deployment, a configurable 
option is available to send either a selected subset or all of the network traffic 
to a transparent proxy.

Because network operations are commonly separate from security opera-
tions, network administrators, not being security engineers, are typically 
reluctant to deploy a proxy inline. The main reason is because network 
management is mostly concerned with optimal network resource assign-
ment and utilization and maximization of network performance and uptime; 
ultimately network management is about attaining and maintaining the best 
end user experience. On the other hand, security operations generally focus 
on risk assessment, threat and vulnerability identification, and asset protec-
tion. Oftentimes security operations are viewed as a hindrance to network 
performance and an inconvenience for end users. Therefore, in addition to 
providing security capabilities and solutions, a proxy must strive to achieve 
scalability and stability, and equally as important from a network operation 
perspective, a proxy must minimize its effects on network traffic and “not 
break any applications”.

Physical Inline Deployment
With physical inline deployment, a proxy is physically situated in a network as 
a bump in the wire, as shown in Figure 2-3. A transparent proxy typically installs 
in it a bypass network adapter for each network segment that it is attached to. 
A bypass network adapter, called a bypass card for short, is a special network 
device with built‐in hardware circuitry that can be programmed to behave like 
a piece of wire after losing power or after the proxy stops activity (possibly 
due to a software crash) for a predetermined period of time from the software 
perspective. In the case of either hardware or software failure, this fail‐to‐wire 
feature is crucial to assure operational continuity in a production network. The 
network users must not be affected by the proxy outage or else lost productiv-
ity could be costly. At a minimum, the bypass card has two physical ports. It is 
this pair of ports that are connected by the special circuitry to become a wire 
during a system failure or loss of power.
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The transparent proxy must provide various networking capabilities that are 
crucial to its normal operation with this physical inline deployment scenario. One 
of these networking capabilities is that the proxy must operate as a transparent 
learning bridge. As a bridge, all of the network interfaces run in the promiscuous 
mode to enable the proxy to receive all packets. Under normal conditions the 
bypass card operates as a regular network interface, and the proxy treats each 
port as a separate bridge port. The promiscuous mode of operation implies the 
transparent proxy must make the right decision on whether to intercept specific 
traffic flows. Consider the case where a transparent proxy intercepts a connection 
when both of its source and destination end points reside on the same physical 
network segment. Both the proxy and the destination will respond to the con-
nection request, but the source will connect to the one that responds first. The 
communication will incur an unnecessary delay if the proxy responds first. 
Because the security policies implemented in the proxy are designed to provi-
sion traffic that takes place between entities that reside on different networks, 
the involvement of the proxy is unproductive and provides no security benefits 
in this scenario. With the learning bridge, the proxy compares the bridge ports 
where the source and the destination are known to reside on. Matching bridge 
ports indicate that the source and the destination end points are located on the 
same network segment, and as such the proxy will not perform interception.

The proxy translates policies such as “do not intercept any traffic from the 
CEO” or “do not intercept any banking transactions on the enterprise network” 
into explicit traffic bypass policies. The proxy must bridge any traffic that it does 

Figure 2-3: Physical Inline Deployment
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not intercept due to explicit bypass or because the traffic does not match any 
interception rules. Therefore, the proxy must learn the MAC addresses on all 
of the bridge ports and perform all the necessary bridging functions.

Another network capability designed into the proxy is the routing function. 
A sophisticated proxy can participate in the interior gateway protocol (IGP) by 
listening to the routing protocol exchanges. The proxy can extract the current 
routing infrastructure from the routing protocol exchanges and build a dynamic 
routing tree from routing protocols such as Open Shortest Path First (OSPF) 
or Routing Information Protocol version 2 (RIPv2). Doing so reduces the con-
figuration requirement in the proxy and enables the proxy to enforce security 
policies without impacting existing traffic engineering practices. In addition, 
a proxy with routing capability can implement and enforce policy-based routing 
(PBR) for intercepted traffic.

One of the main challenges of physical inline deployment is performance and 
scalability. Unlike a switch or a router that processes L2 or L3 headers, a proxy 
performs much more complex operations such as TCP connection termination 
and L7 request parsing. Because an intelligent proxy needs to examine payload 
information beyond L4 headers, the so‐called fast‐path processing commonly 
found in traditional networking devices is not applicable to a proxy. Fast‐path 
processing refers to hardware‐assisted packet processing that relies on extract-
ing bytes from packet headers, possibly from various offsets, and applying fixed 
logic to the packet based on pattern matching or value comparison. In other 
words, the proxy performs all of the networking functions in the software, 
including bridging and routing functions. For high‐speed gigabit networks 
that are now common in large and small organizations, the proxy becomes 
a potential bottleneck: the higher the number of protocols and applications 
the proxy is capable of intercepting, the lower the network throughput that is 
achieved through the proxy.

Virtual Inline Deployment
With virtual inline deployment, a traffic redirector such as a router, a switch, or 
a load balancer sends the selected traffic to the proxy as illustrated in Figure 2-4. 
We will discuss traffic redirection shortly. The proxy returns the traffic, proxied 
or unmodified, to the traffic redirector, which then forwards the traffic towards 
the intended recipients, again according to either routing or traffic redirection 
policies. As such, with virtual inline deployment the proxy can be physically 
located anywhere in the network, as long as the traffic redirector can reach the 
proxy through normal routing.

An interesting characteristic of the virtual inline deployment scenario is 
that the proxy is physically placed out of the main network paths, as shown 
in Figure 2-4. There are two main advantages to this approach: increased scal-
ability and improved reliability. Virtual inline deployment resolves the proxy 
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scalability challenge by redirecting to the proxy only traffic that is intended for 
interception, while performing bridging and routing functions for the remaining 
traffic types on separate appliances, in most cases regular routers and switches. 
The second main advantage of virtual inline deployment is a reduction in the 
intrusiveness of introducing a proxy into the network. The administrator can 
gradually increase the number of applications for redirection to the proxy, 
according to the operational performance metrics of transparency, accuracy, 
and reliability of the interception obtained on the existing redirected traffic. 
This approach improves the overall network reliability and user experience, 
while enabling the administrator to discover the breaking points for the proxy 
in terms of performance or reliability with the mixture of applications and 
protocols. This method of redirecting more traffic incrementally also allows the 
administrator to enhance and calibrate the policies being enforced by the proxy 
with minimal user impacts. Another advantage of virtual inline deployment is 
that this approach does not require a network redesign and is more flexible in 
introducing additional supplemental solutions that collaborate with the proxy, 
such as a content inspection solution or a sandboxing solution.
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RouterClients/Users

WAN

Proxy
WCCP or PBRredirection

LAN

Figure 2-4: Virtual Inline Deployment

Traffic Redirection Methods: WCCP and PBR

In practice, there are two main methods of traffic redirection for implementing 
virtual inline proxy deployment: through Web Cache Communication Protocol 
(WCCP) or policy-based routing (PBR). WCCP is a Cisco proprietary protocol 
that was designed for traffic redirection, with built‐in load‐balancing and fault 
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tolerance. The router that implements the WCCP protocol is called a WCCP router. 
The WCCP protocol exchange facilitates the automatic detection of a router or 
a proxy failure and enables a rediscovery and recovery process to take place 
automatically in order to resume normal operations quickly. A service group is 
established between one or more routers that perform the traffic redirection and 
one or more devices that receive and process the redirected traffic. The service 
group specifies the types of traffic to be redirected and helps the proxy to dif-
ferentiate regular traffic from redirected traffic. Traffic selection can be based 
on source and destination IP addresses, source and destination ports, and the 
protocol type. The proxy describes the details of the service group to the WCCP 
router in a specific WCCP protocol packet.

When the WCCP router redirects the traffic to a proxy, the traffic can be encap-
sulated in a GRE tunnel or by means of an L2 destination MAC address rewrite. 
The WCCP protocol allows the WCCP router and the proxy to negotiate which 
redirection method to use. The advantage of using a GRE tunnel for encapsu-
lating redirected traffic is that the WCCP router can be multiple routing hops 
away from the proxy. This is because the GRE packets are transmitted over IP 
packets, and the source and destination IP addresses can reside on different IP 
networks.  The disadvantage of using a GRE tunnel is the possible overhead of 
packet fragmentation and reassembly. Adding a GRE header to the redirection 
packet may exceed the MTU, thus requiring packet fragmentation at the WCCP 
router and reassembly at the receiving proxy. Redirecting traffic by rewriting 
the L2 destination MAC address is simpler to deploy but requires the WCCP 
router and the proxy to be connected to the same physical network segment.

Because WCCP is a proprietary protocol, its implementation is vendor‐specific, 
and each new release may create incompatibility with the existing third‐party 
software that implements WCCP. PBR is a popular alternative to WCCP. PBR 
works similarly to WCCP L2 redirection, but it is even simpler to operate because 
PBR does not rely on a separate control protocol to negotiate a traffic redirec-
tion method. Once the physical network connectivity is established between 
the router and the proxy and the traffic selection or matching rules are defined 
in the router, simply configuring and installing the appropriate routing rules 
into the router enables PBR into action. There are several drawbacks with PBR. 
For example, it lacks automatic load balancing capability when multiple proxies 
are present. Also, although PBR can be used to redirect traffic to a proxy that is 
located multiple routing hops away, the routers along the path must be config-
ured to perform the same redirection in order for this scenario to work. This 
is because PBR rewrites the destination MAC address of each packet to that of 
the redirection target. Therefore, each router on the path to the proxy must be 
explicitly configured with its respective next‐hop router for the traffic types to 
be redirected. Another challenge with PBR is its difficulty in implementing an 
external bypass and failover solution.

When a proxy becomes unresponsive due to either a software or hardware 
malfunction, a bypass mechanism also exists with virtual inline deployment; 
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this bypass mechanism is called an external bypass. In the case of WCCP, the 
WCCP protocol enables the router to detect a non‐responsive proxy. Assuming a 
single proxy is present in the service group, the WCCP router will consequently 
cease redirecting traffic to that unresponsive proxy until that proxy resumes 
participation in the WCCP protocol exchange. Traffic that was meant for redirec-
tion is simply routed according to exiting network routing policies during the 
proxy downtime. This bypass mechanism is initiated by the WCCP router and 
is performed automatically, and the physical bypass is external to the proxy. 
Obviously, the router will redirect the traffic to an alternative proxy if another 
proxy is present in the service group.

In PBR the detection of a non‐responsive proxy is not an active process like 
that in WCCP. With PBR the routing paths are fixed. Although redundancy or 
failover may be an option, such a feature is implementation‐dependent. For 
example, if the device implementing PBR is a Cisco router, then the automatic 
failover mechanism requires the deployment of a Cisco Discovery Protocol 
(CDP) to detect a failed proxy and then redirect traffic to an alternative one. 
In this case, the proxy must also implement the CDP in order to allow for the 
detection mechanism to work. As such, an external bypass may not be possible 
with PBR due to additional feature requirements.

LAN Port and WAN Port

There are typically two network interfaces (or more precisely two physical ports) 
installed in the proxy. These network interfaces can be either physical interfaces 
or virtual interfaces. A VLAN is a type of virtual interface. Referring back to 
Figure 2-3, with the physical inline deployment scenario there is a pair of physi-
cal ports belonging to a single special bypass network adapter, which connects 
the proxy on the physical link as a bump in the wire. A common practice is to 
connect one port towards the internal segments of the network and mark it as 
the LAN port and to connect the other port towards the network egress point 
and to mark it as the WAN port. In practice, the LAN port, also known as the 
inside port, has security and interception policies that are quite different from 
those designated for the WAN port, also known as the outside port. We will use 
the terms LAN port and inside port interchangeably. We will also use the terms 
WAN port and outside port interchangeably.

As we show in Figure 2-4, for a virtual inline deployment the proxy can be 
deployed using a single physical network interface that has a single physical port, 
which is allowable because a physical bypass is not a requirement. In this case 
multiple VLANs will be configured over this physical interface such that one 
VLAN interface is designated as the LAN port while another VLAN interface 
is designated as the WAN port. This configuration is mandatory for the WCCP 
and PBR redirection methods because the proxy must configure and enforce 
security policies differently for each port.
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Forward Proxy and Reverse Proxy
The designations of LAN port and WAN port affect another categorization of 
proxies: forward proxy and reverse proxy. For a forward proxy, traffic intercep-
tion takes place on the inside port but not on the outside port, while for a reverse 
proxy, traffic interception takes place on the outside port but not on the inside 
port. We need to give definitions for forward proxy and reverse proxy before we 
can explain the reasons and the types of policies that are set on the inside and 
outside ports. Figure 2-5 illustrates the concepts of forward and reverse proxies.

Figure 2-5: Forward Proxy versus Reverse Proxy
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A forward proxy is deployed closest to the clients and users who actively seek 
access to network contents and resources and request services from servers that 
are located on either the intranet or the Internet. A forward proxy examines 
externally bound connection requests that are initiated from clients that are 
internal to the intranet. The goals of the forward proxy may include enforcing 
an organization’s use policies, conducting content filtering, and providing access 
logging that tracks users and resources to meet compliance requirements.

A reverse proxy is deployed on the server side, which intercepts all incom-
ing requests coming from the Internet. A reverse proxy is typically deployed 
in front of a group of servers, commonly known as a server farm, and offers 
various protections for the server or the server farm. For example, the reverse 
proxy protects server identities by exposing a single service access point to 
the outside world. Once the reverse proxy intercepts each request, the proxy 
performs rigorous validation on the request against known attacks. Once the 
request passes the validation phase, the proxy then distributes the request to a 
server based on some preconfigured load‐balancing algorithms, thus reducing 
the chance of overloading a specific server. With a reverse proxy the servers do 
not have to individually implement various security features against threats such 
as cross‐site scripting and SQL injection. The reverse proxy can also centralize 
the authentication implementation.

Challenges of Transparent Interception

A transparent proxy may not have any IP address assigned to any of its inter-
faces if it is deployed physically inline as a bump in the wire or virtually inline 
through L2 redirection. So, what IP address would the proxy use after it inter-
cepts a transaction and initiates a connection to the original destination? There 
are two main approaches to assigning a source IP address for a proxy‐initi-
ated outbound connection. The first approach is to configure one or more IP 
addresses, called virtual IP addresses, into an address pool that is maintained 
by the proxy. The proxy may choose an address from this pool when initiating 
a connection on behalf of an intercepted transaction. These IP addresses are 
routable towards the proxy because ultimately the proxy must be able to receive 
the return traffic that is destined to these IP addresses. There are several issues 
associated with this source IP address assignment solution. The original cli-
ent IP address is hidden once the proxy intercepts the traffic; only the proxy’s 
addresses are visible. One issue is that the server may reject proxy‐originated 
requests if the server utilizes IP address‐based authentication. In its simplest 
form, address authentication refers to a server that uses a client’s IP address 
as a form of authentication. A good example is a banking website that keeps 
track of a client’s IP address once the client passes various security challenges 
interactively for the first time. When the client accesses the same service using 
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a different IP address, the banking site will reissue those security challenges to 
revalidate the client’s authenticity. In a more restricted environment, the client 
is prohibited from accessing a service unless the client is using a designated 
workstation that is locked to a specific IP address. In such cases the proxy will 
break the service and prevent the client from ever successfully establishing a 
connection with the server.

Another issue with using a virtual IP address is that the presence of a proxy 
may negatively impact IP address‐based network bandwidth management 
solutions. As shown in Figure 2-6, a network appliance that enforces IP address‐
based QoS policies will become ineffective because the client IP addresses will 
have been replaced by the proxy’s address. As depicted in the figure, the band-
width management appliance has a QoS policy defined for each of the clients 
to restrict bandwidth usage. Because the proxy sets the source IP address for 
all server‐bound packets to one of its virtual IP addresses, none of the QoS 
policies will match any of the client traffic. Therefore, all of the clients will have 
unrestricted bandwidth utilization, and the proxy essentially has defeated the 
QoS management objectives.

Request with a Single Source IP X

Bandwidth
Allocation

IP A  128 kbps
IP B  256 kbps
IP C  128 kbps

Request with Source IP A

Request with Source IP B

Request with Source IP C

Dedicated Bandwidth
Management DeviceProxy

Interception

QoS

QoS Policies

No rules matching

in the QoS appliance

No enforcement

IP A

IP B

IP C

Figure 2-6: Transparent Interception with Virtual IP Negates QoS Policies

Therefore, a proxy may spoof the client IP address. Called IP spoofing, this is 
another source address assignment solution to solve the problems associated 
with virtual IP addresses. With IP spoofing the proxy uses the source IP address 
of packets from the original request as the source IP address for its outbound 
connection after it intercepts the client connection. This method comes with its 
own set of deployment challenges. For example, all of the routing paths to the 
client IP address must pass through the proxy. Consider the example depicted 
in Figure 2-7. The server responds to the proxy’s request by sending the traffic 
to the client’s IP address. In this case the return traffic is routed through a path 
that does not traverse the proxy, but instead reaches the client directly (③). This 
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is an instance of asymmetric routing where the routing path taken in one direc-
tion is different from the routing path taken in the reverse direction. Because 
the client does not have a connection state for this particular traffic flow, the 
client resets the connection and causes the overall transaction to fail (④). The 
server‐returned traffic can also reach the client directly when the proxy fails 
and its bypass adapter activates into the fail‐to‐wire mode.

Figure 2-7: Asymmetric Routing Breaks Interception
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One of the key challenges of virtual inline deployment is to ensure that both 
the forward direction traffic and the return traffic traverse the proxy, especially 
when the proxy is using the client’s IP address as the source IP for its traffic. 
A common error found in the WCCP deployment is that the return traffic is 
not redirected to the proxy, thus creating asymmetric flows for intercepted 
connections.

Now, what happens if the client actually has a connection state that matches 
the returned traffic? A packet storm may ensue for a TCP‐based transaction. This 
issue occurs more often than many believe. Consider the scenario depicted in 
Figure 2-8. The server is communicating with the client directly after the proxy 
has failed. From the server perspective, it is transmitting the TCP packets in 
sequence (①). From the client perspective, although the incoming connection 
is valid and is in the established state, the data packet received is not in the 
expected sequence number range. In this example the client is expecting a TCP 
packet with sequence number 10 but instead receives a packet with sequence 
number 25 (②). From the client’s perspective there is a missing TCP segment. In 
this case the client’s TCP implementation transmits a TCP ACK packet specify-
ing the sequence number of the next expected data packet. The server’s TCP 
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implementation receives the client TCP ACK packet and treats it as a duplicate 
ACK packet, because the sequence number the client is asking for is in the past; 
that is, the data that the client is asking for has already been fully acknowledged 
and is no longer available (③). The server retransmits the TCP packets, and the 
client responds exactly the same way as before (④). Because the server contin-
ues to receive valid TCP ACK packets, it does not terminate the connection, 
even though it views the packets as duplicates. Similarly, the client keeps the 
connection open. At this point this ping‐pong exchange with the exact same 
sequence of packets from the client and server repeats indefinitely and causes 
a rapid packet storm on the network.

Figure 2-8: Packet Storm Caused by Failed‐to‐Wire Due to Proxy Failure
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To solve the aforementioned packet storm problem, the proxy implements a 
source port selection process as a solution to reduce the chance of a collision in 
the client’s connection space when the proxy performs transparent interception 
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with client IP spoofing. The TCP port space is a 16‐bit value for a total of 65,536 
unique port numbers. However, out of this 64K port space,

 ■ port range 0 to 1023 are well‐known ports or reserved system ports;

 ■ port range 1024 to 49151 are registered ports that are assigned by IANA 
to entities based on official port assignment requests; and

 ■ port range 49152 to 65535 are dynamic ports, also called ephemeral ports; 
these ports can be used by any application for any purpose.

When the proxy initiates an outbound connection that is associated with an 
intercepted transaction, the destination IP address and the destination port 
remain the same as the original client’s connection. The proxy picks a source 
port out of the ephemeral port range containing 16,384 unique port numbers. 
This concept is illustrated in Figure 2-9.

Figure 2-9: Connection with Proxy IP Address Spoofing
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For a specific destination, when applying client IP spoofing for outgoing con-
nections, the proxy needs to pick a source port that is different from the original 
client‐selected port, but the port that is chosen must also not collide with other 
connections the proxy has already initiated on behalf of that client. In addition, 
the proxy needs to choose a port such that the selection does not collide with 
existing connections to that destination, which are not intercepted by the proxy 
but are managed by the client. In a typical large‐enterprise network with thou-
sands of users, the connections‐per‐second (CPS) rate is in the range of 100,000 to 
180,000. The source port could deplete rapidly even if the interception rate is 
just 10 percent of the CPS rate. The packet storm problem caused by transparent 
interception with client IP spoofing is an NP‐complete problem; in other words, 
no solution solves this problem completely. Instead, the proxy implements vari-
ous strategies to reduce the possibility of such a problem occurring.
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Directionality of Connections
A transparent proxy may process a connection in a specific way depending on 
the directionality of the TCP flow; for example, a policy may state, “intercept all 
traffic that is destined for IP address 100.1.2.3”. The directionality of a TCP flow 
is defined by which end point transmitted the initial TCP SYN packet. The proxy 
cannot identify the directionality of a flow unless it has seen the SYN packet. 
Now consider the scenario where some failure has occurred within the proxy 
and it has begun operating in the bypass mode. The proxy does not perform any 
interception and does not keep any connection states while it is in the fail‐to‐
wire mode. Clients continue to make service requests and initiate connections 
to destinations and servers on the Internet during the proxy outage period. At 
a later time after the proxy resumes its normal operation, any connection that 
has 100.1.2.3 as either the source or the destination IP address may match an 
interception policy; however, because the proxy did not process the SYN packet, 
it cannot resolve the ambiguity in directionality. Therefore, the proxy resets any 
such connection to force the client to reestablish that connection so that the proxy 
can then execute and apply the policy against those transactions appropriately. 
This conservative method of resetting a transaction to resolve ambiguity also 
applies when the policy changes, a topic that we discuss in detail in Chapter 3.

Consider another example where the proxy enforces the following policies:

 ■ All traffic that is destined to TCP port 443 will be intercepted.

 ■ All traffic coming from IP address 100.1.2.3 will be bypassed.

When the proxy receives a flow with source IP address 100.1.2.3 and source 
TCP port 443, the proxy does not know how to process this flow unless it knows 
the directionality of the connection. That is because this flow can match either 
policy, depending on the flow direction. If the initial TCP SYN packet has 
100.1.2.3 as the destination address, then the flow matches the TCP port 443 
interception policy; in this case the proxy will have intercepted that connection. 
However, if 100.1.2.3 transmits the TCP SYN packet, then the flow will match the 
bypass policy, and in that case the proxy will have bypassed that connection. 
This ambiguity cannot be resolved unless the proxy knows the flow direction; 
as such, the proxy will reset the connection for reasons explained previously.

Similarly, this flow directionality issue also affects interface‐based interception 
rules. As discussed earlier, a proxy acting as a forward proxy performs traffic 
interception on the LAN port but not on the WAN port. If the proxy does not 
know the flow direction, it cannot apply the interface‐based policies correctly.

Maintaining Traffic Paths
When a transparent proxy does not have an IP address assigned to any of 
its interfaces, there will not be any routing configuration in the proxy. So 
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how does the proxy know on which interface to respond to the client request 
and on which interface to transmit the server‐bound connection? There are 
situations where even when the proxy has IP addresses assigned and with 
a populated routing table, the proxy may still need to circumvent its own 
routing lookup and instead utilize the information contained in the client 
request to make transmission decisions. Consider the example illustrated 
in Figure 2-10.
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Figure 2-10: Use Source MAC to Take the Same Path Towards the Client

The client request first reaches a load balancer. The load balancer then 
distributes the traffic among three different routers. In this case the client 
request is forwarded through Router‐2 to reach the proxy. If the proxy has a 
single default route installed and that route points to Router‐1 as its default 
gateway, then the proxy’s response to the client is transmitted through Router‐1. 
Taking the path through Router‐1 to reach the client negates the benefits 
brought by the load balancer. When responding to the client request, instead 
of performing a route lookup on the client, the proxy extracts the source 
MAC address from the client’s request packet and uses that MAC address as 
the destination MAC address for the response packet. Doing so ensures the 
response packets will traverse Router‐2 and reach the client through the same 
path as the incoming request packet because the source MAC address from 
the client’s request packet belongs to the router interface that forwarded the 
client packet to the proxy.

The proxy may take a similar approach when transmitting a server‐bound 
connection after intercepting the client request. Consider the example illustrated 
in Figure 2-11.
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In this example the client and the proxy are configured with different default 
gateways. Assume the client is connecting to a server that resides in Network‐1. 
The client request traverses Router‐1 without proxy interception. However, 
after the proxy intercepts the request, because Router‐3 is configured in the 
proxy as its default gateway, the outbound request is sent to Router‐3 (②). 
When Router‐3 receives the request and performs a route lookup, Router‐3 
then forwards that request to Router‐1 to reach the intended destination (③). 
In this case the request takes an extra routing segment unnecessarily. This 
routing overhead applies to all packets that are part of the proxy‐initiated 
connection. One solution is to configure multiple specific routes into the 
proxy. A better solution is to utilize the information provided in the client’s 
request. The client knows its request to Network‐1 should be sent through 
Router‐1. This knowledge is reflected in the client request packet’s L2 packet 
header, which contains Router‐1’s L2 MAC address as the packet destina-
tion. Instead of performing a route lookup, the proxy can simply construct 
the outbound packets with the same destination MAC address as that of the 
original client request packet. Doing so allows the proxy‐initiated packets 
to traverse the same path as that of the client’s request packets without the 
interception.

The proxy can extract the destination IP address from the client request packet 
when it initiates a server‐bound connection after interception. However, the 
proxy may perform DNS resolution if the hostname is known and uses its own 
DNS result instead of trusting the IP address from the client. This allows the 
proxy to offer an extra layer of validation against security issues such as pharm-
ing or DNS cache poisoning at the client end. Both pharming and DNS cache 
poisoning are discussed in detail in Chapter 4. Another reason for the proxy to 

Figure 2-11: Use Destination MAC to Reach the Correct Next‐Hop Router
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replace the original destination IP address is for load‐balancing purposes. The 
proxy may have knowledge about the client‐provided IP address as being one 
of many IP addresses that are assigned to a server. Because the proxy intercepts 
all client traffic to this server, the proxy has a better knowledge of the number 
of requests that have been submitted to each server IP address. Therefore, the 
proxy may replace the original destination IP address with one that the proxy 
believes is a better alternative.

Avoiding Interception
There are conditions under which the transparent proxy will not perform 
interception. Static bypass policy consists of one or more rules that have 
been configured into the proxy at the start of its operation, which instructs 
the proxy to avoid intercepting certain types of traffic and instead to simply 
bridge or forward that traffic unmodified. For example, an enterprise must 
legally protect employee privacy if the employee’s action does not violate 
corporate policies. An employee may conduct an online banking transaction 
during lunch hour. In this case the proxy is configured to bypass all banking 
sites during lunchtime. Another example is where a corporate attorney at a 
large enterprise is permanently exempt from being examined by a proxy. 
Legal material exchanged between the attorney and outside entities may be 
extremely sensitive, and therefore any network traffic that originates from or 
is destined to that attorney will never be stored or examined by any network-
ing devices, including a proxy.

While processing an intercepted transaction, a proxy may decide to bypass 
such types of transactions in the future. For example, a user request to a des-
tination may not match any banking sites, but the proxy may conclude the 
request constitutes a financial transaction after having analyzed the exchanged 
content. In this case, the proxy will install a bypass rule at runtime to avoid 
the interception of similar traffic in the future; this preemptive bypass action 
is termed a dynamic bypass.

A proxy typically has multiple interfaces installed in it. An interface that is 
dedicated to management traffic—such as connections that are established to 
access the web‐based management console, or for receiving SNMP traffic for 
device management—will not be configured to intercept traffic. Interception 
will be disabled on an interface if it is known that intercepting inbound con-
nections provides no security benefits.

Each organization has a network infrastructure design that must satisfy 
legal conformance and regulatory compliance requirements. The complexity 
of the network interconnect varies from enterprise to enterprise. An intelli-
gent proxy must incorporate design logic that can recognize the traffic source 
and make an interception decision accordingly. One of the more challenging 
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situations where interception must be avoided is when the proxy‐initiated 
requests again traverse through that proxy due to a complex network infra-
structure configuration or because of a temporary routing loop. It is critical 
for the proxy to detect self‐originated traffic, after intercepting a transaction, 
and to avoid further interception of its own connections. Consider the example 
shown in Figure 2-12, which was taken from a real‐world deployment at a 
large financial institution.

Figure 2-12: Recognizing and Bypassing Self‐Originated Traffic
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In this example, the client request reaches the proxy and is intercepted 
(①②). A purposefully configured route entry in the proxy causes the proxy 
to send the proxy‐initiated server‐bound connection towards a compliance 
validation service first (③). This service performs compliance validation on 
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the request while at the same time logging the transaction. If the request 
is permissible, the compliance server forwards the original proxy‐initiated 
connection, unmodified, back to the proxy (④). At this point, the proxy must 
recognize this connection as one that was initiated by itself and then bypasses 
this connection by bridging the connection onto its outside port (⑤). Without 
this ability to recognize self‐originated connections, the proxy will intercept 
the same connection repeatedly in an infinite loop until its resources are 
completely exhausted.

What happens if the proxy intercepts a traffic flow and then decides inter-
ception was not the correct action? The proxy attempts to detect the condi-
tion of unintended interception as early as possible, but once discovered, 
the proxy typically resets the connection followed by the installation of a 
dynamic bypass rule so that it can properly process such types of traffic in 
the future.

Asymmetric Traffic Flow Detection and Clustering

A security proxy is a stateful device: it keeps connection state information on 
the transactions it has either intercepted or bypassed. We have already shown 
an example where asymmetric traffic flow can cause a transaction to fail in 
Figure 2-7. Asymmetric traffic flow can occur as a side effect of complex or 
erroneous routing policies or due to explicit traffic engineering or a change 
made in the infrastructure. Refer back to Figure 2-7; what is not explicitly 
shown in the figure is that the network in discussion has multiple access 
points to the Internet. The proxy‐initiated connection is routed through an 
access point that is different from what is used by the server‐returned traffic. 
The main reason for this asymmetry is because the server is configured with 
different routes according to different routing policies than those configured 
in the proxy. As illustrated in Figure 2-10, load balancers can also induce 
asymmetric traffic flows. One practical solution that has been implemented 
in a real‐world security proxy involves building a proxy cluster, as shown 
in Figure 2-13.

As illustrated in Figure 2-13, Proxy A, Proxy B, and Proxy C build a cluster 
by interconnecting with each other in a full mesh topology where each proxy 
has a connection to all other proxies. Each proxy covers one possible path that 
can reach the client. Each proxy also exchanges its connection state information 
with all other peers of the same cluster. For each intercepted transaction, the 
proxy keeps track of both the client‐side connection and the server‐side con-
nection. These connections are part of the state information that is exchanged 
with other peers. Bypassed transactions are also exchanged. The goal of this 
operating cluster is to form a virtual proxy that covers the entire infrastructure. 
Consider the example illustrated in Figure 2-14.
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Figure 2-13: Full Mesh Clustering of Proxies

Figure 2-14: Exchanging State Information and Processing Asymmetric Traffic Flows
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In this example, Proxy A and Proxy B form a cluster. Proxy A and Proxy B 
exchange their respective processing state information with one another. At the 
conclusion of this information exchange, both proxies will maintain identical 
combined information databases. In these information databases, each connec-
tion is identified with a responsible owner proxy. Consider the example where 
a client request X reaches Proxy A (①), and after interception Proxy A generates 
and sends the request Y to the server (②). The respective server response to Y 
takes an asymmetric path and reaches Proxy B instead (③). Proxy B consults the 
information base and recognizes that the response to Y should be processed by 
Proxy A. So Proxy B forwards the response to Proxy A (④), and the transaction 
proceeds normally (⑤). Essentially Proxy B acts as an application‐level router 
for all of the connections that have been processed by Proxy A.

The state information exchange taking place between Proxy A and Proxy B is 
a continuous process, not a one‐time effort. Each time a request reaches a proxy, 
and the subsequent action that is applied to the request by that proxy must be 
announced to all its peers immediately, in the form of connection state table updates. 
Exchanging state information among the proxies requires a custom protocol that 
must also be able to detect unresponsive peers, enabling the remaining proxies 
to take appropriate actions on the orphaned connections. One other aspect of 
this custom protocol is to facilitate packet forwarding from one proxy to another. 
Because the forwarded packets are encapsulated in a custom protocol, the dis-
tance between each pair of proxies can be multiple routing hops apart. Associated 
with this distance is the communication delay, in milliseconds, and this must be 
accounted for in this proxy cluster design. In the previous example, consider the 
scenario where Proxy B receives the response to request Y before the announce-
ment about request Y from Proxy A reaches Proxy B. Proxy B does not recognize 
the response, it may forward the response onward to the client, and the client will 
likely reset the server connection, resulting in a failed transaction; or Proxy B may 
silently drop the response that will cause the server to retransmit the packets, and in 
rare cases the server connection will timeout, also resulting in a failed transaction.

In the context of a proxy cluster, when a proxy receives a packet that does 
not belong to any connection in the information base, there are two possible 
reasons for this occurrence. The first possibility is that the packet is part of an 
asymmetrically routed connection, and the announcement of the connection 
owning that packet is en route. In this situation the proxy must wait for the 
maximum known delay between itself and its peers. Once the wait time has 
elapsed, it should then resume its normal processing of that packet accordingly. 
The second possibility is that the packet is asymmetrically routed and the path 
is not covered by the proxy cluster. In this case, when the wait time is over, the 
packet will be either routed normally or dropped by the receiving proxy.

If constructing a proxy cluster is not an option or there exists a single proxy 
in operation, then the proxy must have the ability to detect asymmetric routing 
conditions and act in the interest of ensuring a good user experience. Consider the 
example shown in Figure 2-15. The proxied server connection uses the client IP as 
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the source address but has the proxy‐selected port that replaces the original client 
port (②). The server response has taken a different network path and reaches the 
client directly due to client IP spoofing (③). The client resets the proxied server 
connection when it receives the asymmetrically routed server response (④). When 
the proxy receives the TCP RESET packet, it recognizes that the connection is one 
that was originated by itself. This is an indication that asymmetric routing has 
occurred between the client and the server. In this case the proxy will install a 
dynamic bypass rule that states all traffic from or to these two end points will be 
bypassed (⑤). The next time the client reissues the request, the proxy consults its 
bypass rules and discovers the client request should be bypassed; this time the 
proxy forwards the client request towards the server unmodified (⑥). Although 
the server response reaches the client asymmetrically (⑦), because the original 
request was not intercepted, the client will match the server response to its original 
request and respond accordingly to proceed with the transaction successfully (⑧).
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Proxy Chaining

One or more proxies can work in conjunction and process a request collaboratively. 
The proxy that receives the request may forward that request to another proxy 
to process fully, or the receiving proxy may process the request first and then 
forward that partially processed request to another proxy for further processing. 
When one or more proxies collaborate in such a fashion, these proxies form a 
proxy hierarchy, also known as proxy chaining with respect to a request process-
ing. The proxy chaining concept is illustrated in Figure 2-16. The on‐premise 
proxy is sometimes referred to as the downstream proxy, while its counterpart 
in the cloud is referred to as the upstream proxy.

What is illustrated in Figure 2-16 is known as a hybrid security solution, 
where an on‐premise proxy works in concert with a cloud‐based security 
service to collaboratively provide security services to the enterprise. For 
example, the cloud security service may offer data leak prevention (DLP) 
service, and e‐mail scanning service, while the on‐premise proxy provides 
URL filtering service and intercepts HTTP and HTTPS requests. For example, 
a user who tries to access an external web‐based e‐mail service will have the 
on‐premise proxy intercepting the HTTPS request (①). Once intercepted, 
the on‐premise proxy recognizes the user is trying to access an e‐mail portal, 
so it forwards the intercepted request into the cloud to perform e‐mail scan-
ning (②③) before downloading the content and passing the e‐mail to the user 
(④⑤). This way the user will have access to clean e‐mail without the threat 
of embedded malware or phishing links that attempt to persuade the user 
to click.

Enterprises that purchase and utilize cloud‐based services commonly access 
those cloud‐based services either through web portals or through special ser-
vice access points by means of encrypted tunnels, similar to virtual private 
networks (VPNs). A common network issue that arises from this operational 
model is the DNS name resolution for local domain names (that is, the client‐side 
enterprise network resources, servers, and nodes), for cloud‐internal domain 
names (cloud‐side resources and services), and for external domain names 
(all other nodes that reside outside the cloud and outside of the client‐side 
networks).

With the hybrid security solution, the on‐premise proxy must provide a 
split‐DNS proxy to resolve service and resource names within three distinct 
service regions: the enterprise network, the cloud, and the rest of the Internet. 
This split‐DNS proxy concept is illustrated in Figure 2-17.

Each region has at least one distinct DNS server. Each time a DNS request 
arrives at the proxy, the proxy intercepts that DNS request and parses the query 
name to determine in which service region that domain name resides. The proxy 
then sends the DNS request to the appropriate server.
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Figure 2-16: Proxy Chaining—A Hybrid Security Service Model
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Summary

Security proxies can be classified as either transparent or explicit and can be 
deployed in the network either inline or out of the path. Deploying a transparent 
proxy inline is the most challenging scenario because the proxy must have the 

Figure 2-17: Split‐DNS Proxy Operation
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intelligence to make decisions on when to intercept a traffic flow and account 
for traffic engineering design embedded in the infrastructure, while at the 
same time performing networking operations such as bridging and routing 
functions. Asymmetric routing, which often occurs in a network, can induce 
complexity in operating a transparent proxy, and an intelligent security proxy 
must have the ability to recognize asymmetrically routed traffic and take the 
appropriate actions. In this chapter, we gave an example of how the split‐DNS 
proxy operates, and in Chapter 6 we continue the discussion on specific proxies.
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The expressiveness of a policy language is indicative of the maturity and 
sophistication level of a policy engine. The policy engine epitomizes a security 
proxy’s ability to manage users and applications and to perform desired policy 
enforcement duties on the network. Chapter 1 explains the fundamental dif-
ferences between a firewall and a security proxy. One of the key differences 
is in the expression of a policy. A firewall rule implements simple logic that 
examines information at the packet level, such as L2 to L4 packet headers, but 
not the actual packet payload.

The firewall rule concept is illustrated in Figure 3-1. When the firewall engine 
executes a rule in the context of a UDP flow or in the context of a TCP connec-
tion, the engine performs one or more actions that are specified by the firewall 
rule on the matching connections. For example, a firewall rule may instruct the 
firewall to reset a TCP connection if the connection has been idle for a specified 
period of time. The firewall must keep track of the TCP connection state, for 
example, by maintaining the current TCP sequence number and acknowledg-
ment number in order for the firewall to generate a valid TCP reset packet.

Unlike the firewall rules, a proxy policy is highly expressive; this is evident in 
its formulation through flexible logical expressions that may encompass layer‐2 
(L2) to layer‐4 (L4) packet header information, layer‐7 (L7) application protocol 
content and its payload data, and session context such as authentication and 
authorization details. A proxy’s policy engine can execute its policies in the L7 
transaction context as well as enforce policies at all layers of the protocol stack.

C H A P T E R 

3
Proxy Policy Engine and 

Policy Enforcements
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Figure 3-1: TCP/IP Header Fields and Firewall Rules

Understanding the internals of a policy engine and its implementation is 
essential to writing semantically correct policies. In other words, knowing what 
policies can be enforced under which conditions, then composing the security 
goals in the given policy language correctly, is the essential approach to ensure 
that the desired security outcomes can be achieved successfully.
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Policy System Overview

In the context of a security proxy, a policy system is mainly comprised of the 
following:

 ■ A policy specification language that can be used to express security policies, 
where security policies refer to a set of enforceable rules that orchestrate 
access to networked resources

 ■ A policy compiler that translates the policy specification language into 
system configurations, operational settings, and actionable code

 ■ A policy engine that executes compiled policy‐actionable code within a 
context such as an application, a user, or a network environment

 ■ A set of policy‐aware proxies that provide the policy engine with an 
execution context and that invoke the policy engine at various points 
in the data processing path, thus enabling the proxies to subsequently 
obtain decisions regarding the necessary actions to be taken to achieve 
security objectives

The policy engine is not one monolithic entity that has full comprehension in 
all of the known applications, protocols, and user‐related concepts. Rather, the 
policy engine provides the basic policy evaluation subsystem to the policy‐aware 
proxies that interpret users’ access requests against desired security goals and 
perform security enforcement actions accordingly. The policy compiler can 
identify conflicting decisions that are present in the policy rules at the seman-
tics level and resolve those conflicts automatically when possible. Evaluating 
or executing the policy rules follows an execution order, and the rules can be 
prioritized.

In this chapter we will write example policies using a pseudo Content Policy 
Language (CPL) from the ProxySG product created by Blue Coat Systems. 
We will use this CPL for several reasons: the CPL is similar to a declarative 
programming language and is extensible for creating custom and complex 
policy gestures; the CPL is intuitive; and the ProxySG product is an indus-
try‐leading security proxy with over 12 years of widespread adoption, with 
the CPL proving to be an expressive policy language in those years. We 
use what we call a pseudo CPL, because we will create additional artificial 
keywords such as “and”, “or”, “not”, “if”, and “then” as logic operators when 
writing example policies for better readability and more clarity; however, 
these keywords do not exist in the actual CPL. Some of the gestures that 
are presented in the example policies may not exist in the CPL in that exact 
form. Again, these gestures are introduced to offer clarity. We will use the 
terms policy, policy rule, and rule interchangeably to refer to proxy policy rule 
from this point on.
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Conditions and Properties
Policy evaluation achieves a policy decision concerning user authentication require-
ments, authorization rights, access restrictions, compliance verification demand, 
and access logging details. A proxy may examine data and information from 
all seven layers of the communication stack before making decisions on, for 
example, whether to intercept a request and whether to perform certain types 
of content transformation before serving the responses to the clients. As shown 
in Figure 3-2, the proxy extracts header and payload data from the networking 
layers all the way to the application context inclusively and incorporates each 
piece of information when consulting its policies on how to service a request.
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Figure 3-2: Policy System Overview

Consider the following policy rules block that is written to achieve the security 
goal “If a user is connecting from the engineering network (10.25.198.0/24), going 
to Dropbox, then authenticate the user to see if the user is Alice. If so, log the 
entire transaction for further analysis, and do not cache the response content”.

     if (client.address = 10.25.198.0/24) and
          (server.certificate.hostname = *.dropbox.com) then
          authenticate(NTLM)
          if (user = alice) then
               access_log.dropbox_log(yes) and
               cache(no)
          end
     end
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In this example, “client.address” is the L3 IP address of the client. The L3 IP 
address is extracted from the IP header of a packet. The code “server.certificate.
hostname” is an attribute in the server certificate. The server exchanges the 
certificate information with the proxy only after the server has established a 
TCP connection with the proxy. The SSL certificate exchange phase occurs in 
the application context. As illustrated in Figure 3-2 and demonstrated in this 
CPL policy example, the proxy relies on information that is available from all 
layers of the protocol stack to make policy decisions and to enforce the desired 
outcome. This policy example introduces a set of terminologies and concepts 
that deserve further elaboration.

In this example, “client.address”, “server.certificate.hostname”, and “user”, 
are each called a policy condition or condition variable. A policy rule tests each 
condition variable against a specific value, and if a match is found, then 
the condition becomes true; otherwise, the condition is said to be false. The 
code “cache” and “authenticate” are called properties of a transaction. One or 
more conditions guard a single or multiple properties. When the guarding 
condition is true, the associated properties are set to desired values. Each 
property is a setting that controls how the proxy processes a client request. In 
this example, when the user is Alice and the server is identified as Dropbox, 
the “cache” property is set to “no”; subsequently, the proxy will not cache any 
content received from Dropbox for any of Alice’s transactions. Setting the 
“authenticate” property to the “NTLM” value triggers the proxy to perform 
the user authentication action inside a preconfigured Microsoft NTLM (NT 
LAN Manager) authentication realm. In this example, “authenticate the user 
in the Windows NTLM realm” and “log the Dropbox transaction” are the 
policy actions.

As this example demonstrates, a policy rule consists of one or more conditions 
that are combined into a logical expression that guards binding properties and 
actions. Therefore, in essence, policy enforcement is the act of performing evaluation 
of conditions against a transaction, modifying one or more binding proper-
ties when the overall logical expression evaluates to true, and executing the 
associated binding actions.

Policy Transaction
So what is a transaction? A transaction or transaction object as defined by a 
proxy is an encapsulation of client‐side and server‐side connection states, 
client request and server response, policy evaluation states, and policy deci-
sions. Figure 3-3 visualizes the high‐level transaction concept. A transaction 
presents to the policy engine a centralized collection of all necessary data 
that is harvested from the client’s request and from the server’s response to 
assist the policy engine in making policy decisions (①). A proxy creates a 
transaction when it decides to intercept a client connection. A transaction 
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is active and remains in existence for the duration from when the client 
issues a request to the time when the server delivers the response. More 
precisely, a transaction has a lifetime that is at least as long as the client‐side 
connection.
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Figure 3-3: Overview of a Policy Transaction

Policy decisions that have been reached after executing policies against the 
client request and the server response are stored in the transaction object. The 
relevant policy properties are set to specific values once the policy decisions 
have been made. The policy engine consults the transaction object when apply-
ing policy actions on each and every packet that is part of the client‐side or the 
server‐side connections.

A client request may activate services that are external to the proxy, such as 
a virus scanning service or web filtering service that are running on external 
devices and are accessible through the Internet Content Adaptation Protocol 
(ICAP). In this case a policy decision depends on the returned service results, 
which are sometimes referred to as external policy decisions. For example, the virus 
scanning service may return a positive response indicating the given content 
is infected, which results in a “discard content” policy decision. Therefore, it is 
also necessary for the transaction to maintain processing states for the off‐box 
services.
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Policy Ticket
As illustrated in Figure 3-3, the policy engine deposits its processing states and 
its decisions inside the policy ticket within a transaction (②a) because policy 
evaluation and enforcement takes place throughout the lifetime of a transaction. 
The policy ticket is a key component of the transaction object. The application 
proxy examines the policy ticket to retrieve policy decisions (③) and performs 
enforcement (④) of those decisions on the transaction in question. A policy sys-
tem may have hundreds of conditions and properties. The policy engine does 
not apply each and every condition to every transaction. The more conditions 
the policy engine evaluates, the less scalable the engine becomes in relation to 
performance. Conceptually the policy ticket selects the relevant conditions and 
properties in the context of a specific application or protocol, and these condi-
tions and properties are then applied during the policy evaluation against a 
given transaction.

As a simple illustration, when a user connects to YouTube, the proxy will 
build a transaction and populate the policy ticket with conditions and proper-
ties that are relevant to the SSL protocol, the HTTP protocol, and the Real Time 
Messaging Protocol (RTMP). These protocols are relevant because the SSL and 
HTTP protocols facilitate a secure login to the YouTube account, and the RTMP 
protocol is the delivery mechanism for YouTube videos. The policy ticket will 
exclude conditions and properties that relate to the Skype application because 
Skype has no relevance to the YouTube sessions.

This example suggests that the proxy needs to qualify the transaction into 
a specific category at the transaction creation time. However, such a deter-
mination is impossible for most of the transactions. This is because when 
a proxy decides to intercept a client request, the proxy terminates the L4 
connection and builds the transaction object at that time. Because the client 
has yet to issue the application‐level request, the proxy lacks sufficient 
information to categorize the transaction. (Refer to the discussion on 
transaction handoff in Chapter 1, where the proxy makes a best‐effort clas-
sification for a flow initially, and then refines its verdict as the proxy receives 
more flow data.) Eventually the proxy becomes more accurate in identifying 
the application, and the corresponding transaction type evolves accord-
ingly. As the transaction may evolve from one category to another, so will 
the policy ticket as conditions and properties may be added or removed 
appropriately.

As the policy engine compiles the policy rules into internal executable repre-
sentation, the policy engine has the knowledge on which condition is relevant 
for which types of transactions. So when a policy ticket is created or is being 
updated, any relevant condition must be marked for evaluation if that condition 
is present in the policy or is implied by a policy rule. Figure 3-4 illustrates the 
policy ticket concept.
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The policy engine treats the transaction type as the filter to select the relevant 
conditions and properties for the transaction. As Figure 3-4 shows, a transaction 
may involve multiple protocols and applications. For example, when Mary uses 
secure HTTPS to log in to her Facebook account, the transaction is “Mary is on 
the Facebook web portal”, so the policy engine creates a transaction object and 
populates it initially with conditions and properties that are relevant to SSL and 
HTTP (①). After browsing through her friends’ Facebook postings, Mary begins 
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to play the Facebook game Candy Crush. As the policy engine continues its 
evaluation, it refines the transaction type (②). Therefore if the overall transaction 
changes to “Mary is playing Facebook game Candy Crush”, then the conditions 
and properties that are relevant to SSL, HTTP, Facebook, and Candy Crush will 
be selected into the policy ticket (③, ④).

Content management‐related conditions and properties such as caching 
are typically selected into HTTP transactions. However, as the user navigates 
Facebook conducting various activities, the policy ticket is populated with dif-
ferent conditions and properties at different times as the transaction progresses. 
The content management conditions might be removed because caching is not 
an option for gaming (⑤). Even though many conditions are relevant to an HTTP 
transaction, however, the compiled policy marks only those conditions that are 
relevant and appear in the rules, which will be evaluated for a given transaction. 
Figure 3-5 shows an example policy ticket progression of executing the policy 
of “Log Mary’s Facebook access and gaming activities”.

When Mary begins the login to her Facebook account, a TCP connection 
is initiated towards the IP address of one of the Facebook servers, with TCP 
destination port 443 (①). The proxy intercepts this TCP connection (②) and 
subsequently creates a transaction object for this session (③). The SSL exchange 
takes place between Mary’s workstation and the proxy after the TCP connection 
is established (④). The SSL exchange modifies the transaction type to an SSL 
transaction and allows the policy engine to place the SSL‐related conditions and 
properties into the policy ticket (⑤). Then after the SSL exchange completes, the 
HTTP request to the www.facebook.com URL (⑥) causes HTTP‐ and Facebook‐
related conditions and properties to be added into that same policy ticket (⑦). 
While Mary visits her friends’ pages, the transaction is categorized as a Facebook 
application. Finally, when Mary clicks the “Games” button and then selects the 
“Play Now” option for “Candy Crush”, the policy engine detects this action after 
observing the HTTPS request to https://apps.facebook.com/candycrush (⑧); 
thereafter, the policy engine deposits additional conditions and properties for 
the “Candy Crush” game into the policy ticket (⑨).

The policy ticket also carries user authentication information. Each authen-
ticated user has an associated set of authorized capabilities and permissions 
for accessing the resources on the network, where the network can be either 
an organization’s internal network or the Internet in general. The purpose of 
evaluating authentication policies is to confirm the user’s identity and to obtain 
the set of capabilities that are authorized and can be applied to satisfy the cur-
rent user request. An eager evaluation refers to the policy engine evaluating and 
retrieving all capabilities associated with a user, even though not all capabili-
ties are applicable to the current request. Similar to the concept of limiting the 
conditions and properties and selecting only relevant ones for a transaction, 
the more scalable approach is to perform a lazy evaluation, where the policy 
engine evaluates and retrieves only applicable capabilities that are necessary 
for the current request. A user is typically a member of a group. Authorization 

http://www.facebook.com
https://apps.facebook.com/candycrush
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assigned to the group may either expand or limit the credentials of an indi-
vidual user. Therefore, policy evaluation incorporates user group membership 
during user authentication. Lazy evaluation typically becomes mandatory in 
the cloud‐based security solution that we will discuss shortly.
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Policy Updates and Versioning System

Another piece of information stored in the policy ticket is the policy version 
number. Policies that apply in a proxy may be written by various administrators 
or authors. Policies may also be imported from other proxies. Therefore, there 
is a need for a policy manager to collect and compile these policies originated 
from different sources into a single set and to apply a versioning system to each 
policy set. Adding policies into or removing policies from the set results in the 
creation of a new policy set that is assigned a new version number. Similarly, 
modifying a policy in a set will also cause a new policy set to be created with 
a different version number. The policy manager maintains the various sets of 
policies in a policy repository. This policy set versioning system is important 
in guaranteeing consistency in policy evaluation and enforcement during the 
lifetime of a transaction.

The policy engine refers to and applies the most recent policy set at the time 
when a proxy first begins to process a transaction. The policies may change 
while the transaction is pending on a response. The policy version system 
ensures that when the response becomes available, it will be evaluated against 
the same version of policies that were applied to the request. Otherwise, the 
inconsistency can produce an unpredictable outcome. Consider the example 
illustrated in Figure 3-6.

In this example, multiple authors contributed various policies, and these 
are compiled by the policy manager into a policy set with version A. The 
policy manager deposits this policy set into the repository and delivers this 
set to the policy engine. The proxy applies policy set version A against the 
request in Transaction X (①). A policy author then modifies the policy while 
Transaction X waits for the response to arrive (②). This modification triggers 
the creation of a new policy set with version B (③), and it is delivered to the 
policy engine as the new active policy set (④). Then when a new transaction 
arrives (⑤), the policy engine applies this new policy set version B to the 
arriving Transaction Y (⑥). When the response arrives for Transaction X (⑦), 
the policy engine must reapply the policy set with version A on the response 
(⑧). As you can see from this example, policy versioning requires the policy 
engine to store the version of the policy that is currently in effect for a trans-
action into the policy ticket.

Security Implications
Policy consistency is important because when the policy changes, so does the 
security goal. For example, at the time when user Mary generated Transaction 
X, the security policy version A allowed Mary the access rights to a video 
resource Z and permitted caching of that video resource but only for Mary. 
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By the time the server delivers the requested video, the policy has changed 
to version B, which disallows all users from accessing video resource Z but 
permits caching of all video content. If the policy engine evaluates policy 
version B against the response, then the video resource Z will be cached and 
marked as accessible by all users, and that is a clear violation of policy ver-
sion A. The keen reader will ask the question: Why would applying policy 
version B against the response allow for the caching of resource Z? This 
example policy is comprised of two conditions: 1) disallow access to video 
resource Z by all users and 2) allow caching for all video content. The order of 
evaluation specifies that the first condition is evaluated before the evaluation 
of the second condition. This order of evaluation ensures that the request 
is denied immediately by the first condition if the user is asking for video 
resource Z; that is, the request will not be issued to the server. Therefore, 
when the response arrives, the policy engine applies only the remaining 
rule, and the only policy decision made should be about whether to cache 
the returned content.

One approach to solving the consistency issue is for the policy engine to 
reevaluate the request against the new policy version B, which will result in 
the request being denied and consequently the retrieved video resource being 
discarded. However, a valid argument exists that when Mary made the request, 
if the response became available before the policy changed, then Mary would 
have received the video resource. As such, the other option to ensure policy 
consistency is to reapply policy version A against the response. In this case Mary 
will obtain the video resource Z, and the video resource will also be cached. 
Unfortunately, this option still results in a policy violation. Because policy ver-
sion B is the representation of the most current security goals to be enforced, 
video resource Z should not be cached.

This example presents a dilemma where either solution produces an unde-
sirable outcome that violates the security objective. A security proxy has a 
restrictive nature when it comes to policy enforcement; that is, the proxy blocks 
more traffic than it permits to flow through. When ambiguity exists in a policy 
decision, a common practice is for the proxy to halt and abort the Transaction 
X without delivering any response to user Mary. One implication is that the 
proxy has a set of configurations and settings that control how the proxy behaves 
by default, when specific policies have been neither written nor committed. 
A firewall is typically configured right out of the box to deny and to drop all 
packets from all incoming and outgoing traffic. This default firewall behav-
ior guarantees that when the firewall is brought online for the first time, and 
while the administrator is in the process of setting up specific rules, potential 
incoming attack traffic will be denied entrance, while any outgoing traffic that 
may create a potential security breach will also be blocked. Similarly, a proxy 
intercepts and then denies all transactions by default. This “deny‐all” setting 
is a system‐wide configuration.
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Policy execution and enforcement depends on a proxy’s system‐wide con-
figurations and settings. The result of a policy evaluation may modify one or 
more proxy settings and can affect the proxy’s actions. In the previous example, 
when the policy changes to version B, the proxy must examine its system‐wide 
content cache and flush all of the existing cached video resource Z. In other 
words, a policy change may affect all operating components within a proxy. 
Another important point about policy change is that such a change can affect 
active transactions. Therefore, that change must be reflected and propagated 
throughout the entire system immediately to avoid negative side effects.
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Policy System in the Cloud Security Operation
The policy inconsistency problem is amplified in the cloud‐based security solu-
tion. The geographical location of each cloud point‐of‐presence (POP) signifies 
that the propagation delays of the policy updates throughout the entire cloud 
may vary from region to region. The enormous number of users and their respec-
tive transactions that are present at each cloud POP means that distributing 
the entire policy database to every POP is prohibitively expensive. Therefore, a 
scalable mechanism for policy retrieval and for providing updates is mandatory 
in implementing cloud‐based security solutions.

One additional complication is the implementation of the policy everywhere 
concept that is unique to cloud‐based security services. The hallmark of a global 
cloud service is its composition of POPs that are local to each region. These POPs 
are present in many cities and in many countries throughout EMEA (Europe, 
the Middle East and Africa), APAC (Asia‐Pacific region), and North and South 
America. One of the key benefits of an enterprise‐centric cloud‐based solution 
is that not only are the services always accessible at any time and from any-
where the user is but also that the policies that apply to a user follow the user 
at every POP where the user makes a service request. In other words, when an 
enterprise user accesses the cloud services in San Francisco, the security policies 
applied to the user’s transactions are the same as those that would be applied 
if the user were in Munich. Figure 3-7 depicts example scenarios to illustrate 
how the policy system operates in the cloud environment.

In this example, as user Mary connects to the Berlin POP (①), the cloud service 
discovers there are no policies associated with Mary at that POP (②). At this point 
the Berlin POP queries the central Cloud Security Operation Center (CSOC) for 
Mary’s policies and retrieves these policies proactively (③). Similarly, as Mary 
travels to San Francisco, her access policies will be populated at that POP as 
well (④). Then the CSOC performs policy updates for the cloud (⑤). These policy 
updates include policies that apply to all users and policies that are specific to 
individual named users. Assuming the CSOC maintains records about Mary’s 
access to the Berlin and San Francisco POPs and about Alice’s access to the 
Singapore POP, then the CSOC will transmit the updates for Mary and Alice at 
the Berlin, San Francisco, and Singapore POPs, respectively (⑥, ⑦).

Unfortunately, the updates sent to the Singapore POP for user Alice failed to 
reach that POP, perhaps due to network outages (⑧). In the meantime, Alice con-
tinues to issue service requests into the cloud while the obsolete policies remain 
in effect (⑨). As we discussed previously, policy changes can affect an active 
in‐progress transaction. A solution to this policy update problem is to give each 
policy ticket a lifetime that begins to count down when all of the decisions have 
been made for a transaction. Having a policy ticket lifetime ensures, especially 
for a long‐lived transaction, that there is a limit on how long stale policies will 
remain active. When the policy ticket lifetime expires, the POP will revalidate 
the user policies with the CSOC directly and take actions accordingly (⑩).
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Figure 3-7: Operation of Policy System in a Cloud Environment

From this discussion we can make several observations. Each POP retains 
a policy cache as the POP services more and more users. The policy cache 
includes default policies that apply to all users and policies that must be 
enforced only at that POP. A policy database synchronization mechanism 
exists between the CSOC and each POP. At a minimum, the synchronization 
process should reliably distribute cloud‐wide policies. However, the subject 
of policy database synchronization in a distributed environment is beyond 
the scope of this book.
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The cloud will distribute user‐specific policies to POPs that have been accessed 
by that user within a predefined timeframe. For example, the CSOC may main-
tain a user in an active usage records database for a week for each POP. A user’s 
access record is removed if the POP has not seen that user’s activity for a week. 
When a policy change takes place, the CSOC distributes a user’s specific policies 
to those POPs on which the user is still visible in the active usage records. This 
scenario alludes to an exchange protocol whereby the POP notifies the CSOC 
about users who have been inactive for over a week. Again, the discussion on 
such an exchange protocol is beyond the scope of this book.

Policy Evaluation

Pieces of information become available gradually at different stages of a trans-
action. Therefore, evaluation of conditions has timing requirements. In other 
words, while the application proxy operates on a transaction, it submits to the 
policy engine pieces of data extracted from the transaction, and the policy engine 
must identify when sufficient information is available to test the conditions that 
are defined in a policy rule. Knowing when to check for a condition, when to set 
a property, and when to finalize a policy decision and apply an action are the 
essential capabilities of the policy engine. However, these capabilities are attrib-
uted to the policy‐aware agents contributed by the application proxies.

Policy Checkpoint
A policy checkpoint is a fixed and known step in an application‐specific 
transaction‐processing path where policy decisions are enforced. So a 
policy checkpoint can be viewed as a policy enforcement point. There is a known 
set of policies that can be enforced at each checkpoint for each application 
proxy. Figure 3-8 illustrates the concept of policy checkpoints and the types of 
decisions that can be made at each checkpoint.

An example policy rule that may be written for Figure 3-8 is shown in the 
following pseudo policy code:

   if client.address = 10.9.44.1 then
       intercept(yes)          // ①

       reflect_ip(client)      // ④

       rewrite(url, "http://www.original.com",
        "http://www.different.com") // ⑦

       http.server.accept_encoding(client)  // ⑧

       response.icap_service(icap-server-1) // ⑨ – 

       bypass_cache(yes)  // ⑨ – 

       transform_active_content(how-to-definition)  // 
   end

http://www.original.com
http://www.different.com
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When a TCP connection arrives at the proxy at ①, the first decision the 
proxy makes is whether to terminate this TCP connection. This intercep-
tion decision is based on L3 and L4 information. Once the proxy establishes 
the TCP connection with the client at the end of ③, the proxy must execute 
another checkpoint to determine the properties of the server‐bound con-
nection before transmitting the TCP connection request to the server. An 
example decision that can be made at this checkpoint is whether to use the 
client’s IP address as the source IP address for this outbound connection (④). 
Later on when the client’s HTTP request reaches the proxy at ⑦, the proxy 
runs another checkpoint to decide how to process this application request. 
Example decisions that can be made at this step include whether to first 
search its cache for the requested content or whether the request should be 
redirected to a different server by rewriting the request URL. At ⑧ the proxy 
runs another checkpoint so that it can re‐create the client request according 
to defined policies. The proxy runs yet another checkpoint when the server 
responses are received (⑨ or ⑩ or ). The proxy consults the policy and for-
wards the content to an off‐box virus scanner for clean content verification. 
In addition, the proxy does not cache the returned content. Finally, at  the 
proxy may rewrite or transform a subset of the content before responding 
to the original client request.

This example illustrates that the placements of these checkpoints in the pro-
cessing path are specific to an application proxy and may differ from one proxy 
to another. Each application proxy is comprised of various policy‐aware agents. 
Some of these agents collect pieces of information and invoke the policy evalu-
ator to make policy decisions that will be maintained in the transaction. Other 
agents enforce the policy decisions at the defined checkpoints. In this example, 
many of the policy decision points coincide with the policy enforcement points. 
Such an overlapping of different roles and actions is not always possible. In 
the previous example rule, although at ⑦ a policy decision to rewrite the URL 
has been reached, this policy decision is not enforced until ⑧ when the proxy 
builds the request and sends it to the server. In this case the decision point is 
different from the enforcement point.

Policy Execution Timing
An application proxy is designed to engage a request by manipulating the 
transaction with a set of actions that are executed in a specific sequence. These 
actions are driven by events that occur at the different stages of the transaction 
processing flow. The example presented in Figure 3-5 illustrates that as the 
transaction evolves, more conditions and properties become available. Each 
condition in a policy rule may be evaluated at a different time and at a different 
processing step compared to other conditions that are part of the same rule. 
For example, HTTP‐related conditions cannot be evaluated at ④ because the 
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HTTP request has not been issued; thus, HTTP conditions are not yet available 
at that processing stage. Similarly, evaluation of conditions related to Facebook 
games cannot be done at ⑥ but instead can be performed at ⑧. Figure 3-9 depicts 
the policy execution timing concept. In Figure 3-9, ①a, ①b, ②a, and ②b mark the 
high‐level checkpoints of a transaction.
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Figure 3-9: Transaction Checkpoints and Timing Constraints

Consider the following pseudo policy rule:

   if (client.address = 10.9.44.1) and (server.authenticate(RADIUS)) then
       intercept(no)
   end

This policy rule states that if the client is coming from IP address 10.9.44.1 
and the server authenticates the user through the RADIUS authentication realm, 
then the proxy must not intercept the client traffic. This rule has a timing violation 
called “late condition guards early action” problem. The proxy tries to deter-
mine if it should intercept the client connection at checkpoint ①a; however, the 
authentication condition will become available only after the proxy connects 
to the server and has issued the server‐side application request. The action of 
“intercept” must be executed at checkpoint ①a because the proxy must either 
terminate the TCP connection or bypass the connection completely. However, 
this action depends on a condition that cannot be evaluated at ①a, but at a later 
time at ②b, which results in a semantics error.

This example illustrates another key point: a decision must be made at a cer-
tain checkpoint because a policy enforcement action must be executed at that 
checkpoint to ensure security compliance. What happens when transaction 
processing reaches a checkpoint but a decision has not arrived? There may be 



86 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

such possibilities; however, the policy checkpoints are designed and created to 
avoid such ambiguity. The policy compiler must be able to identify such conflicts 
and raise errors against offending written policy rules.

Consider the checkpoint at ④ in Figure 3-8. The action “select a specific server IP 
for load balancing” seems problematic. How does the proxy know what other 
IP addresses belong to the same server as that of the destination IP address 
from the client request? The proxy can perform a DNS reverse mapping lookup 
of the destination IP address to a DNS name. Then the proxy can query all of 
the IP addresses belonging to that DNS name, followed by an IP address selec-
tion based on the existing traffic patterns to that server. So although the action 
seems to depend on a later condition, the proxy can leverage other mechanisms 
to derive the value for a dependent property; thus, the action is permissible.

Revisiting the Proxy Interception Steps
At this point you may be asking the question, why not always initiate the server‐
side connection after applying the policy to the client’s HTTP request and only if 
the policy allows this request to be serviced? The answer depends on the proxy 
deployment type, the application type, and the defined policies.

Consider the following example of a real‐world proxy that implements a 
feature called delayed interception. The typical proxy interception involves the 
proxy first terminating the client request by establishing a TCP connection with 
the client. Then the proxy processes the application‐level transaction, exe-
cutes the necessary policies, and, if permissible, initiates the connection with the 
server. In this scenario, if the proxy operates in the transparent mode, the client 
will perceive the server as being available once the client establishes the TCP 
connection with the proxy. Then the client will begin issuing its requests. 
Chapter 2 describes the transparent proxy and its mode of operation in detail.

At this point, the real server that the client tries to connect with may be tempo-
rarily unavailable, unwilling to service further requests due to overload, or have 
been taken offline permanently. If the proxy intercepts the client‐side connection 
successfully and then discovers the server is unavailable, the proxy will close the 
client‐side connection, but this action could have undesirable consequences for 
the overall communication and impact the application executing on the client. 
For example, because the client had successfully established a connection with 
the proxy previously, the client application may continue to attempt connect-
ing to the server and consuming proxy resources unnecessarily. The solution 
to this problem is to emulate the server behavior, as illustrated in Figure 3-10.

As shown in Figure 3-10, the proxy suspends the client‐to‐proxy TCP hand-
shake immediately after receiving the client’s TCP SYN packet (①). The proxy 
delays the completion of the client‐side connection until it can verify the server’s 
availability and how the proxy will proceed with the client also depends on the 
server’s response and behavior. In the first scenario, the server responds and 
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completes the TCP connection with the proxy normally (②, ③, ④). The proxy 
then resumes the client‐side TCP handshake and completes that TCP connection 
(⑤, ⑥). The client then submits its application request, and the proxy processes 
the request according to the defined policies (⑦, ⑧).
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In the second scenario, either the server sends the TCP RESET that indicates 
the server is not accepting service requests (③a) or the proxy‐to‐server TCP 
connection request simply times out (③b), which indicates the server is simply 
not available. The proxy then emulates the exact behavior towards the client: 
resetting the client‐side TCP connection (④a) or simply letting the connection 
timeout (④b), thus achieving transparency while eliminating any side effects. 
This example demonstrates that a proxy feature can create an execution timing 
exception to achieve additional deployment transparency.

Let us revisit the SSL interception example given in Chapter 1. In an HTTPS 
transaction, the SSL negotiation phase occurs before the HTTP transaction. 
As shown in Figure 3-11, the proxy first needs to perform SSL negotiation 
with the server and makes the interception decision based on the results of 
the server SSL exchange. The proxy cannot proceed with its interception 
unless the proxy can negotiate agreeable SSL parameters with the server. In 
fact, the proxy does not know the transaction that follows the SSL negotiation 
is an HTTP transaction. Therefore, for any application that relies on SSL to 
secure its transactions, it is necessary for the proxy to make the outbound 
server connection before processing the application request. This is another 
case where a server‐side connection must be established between the proxy 
and the server before the client is allowed to issue its application request to 
the proxy.

As we discuss in Chapter 2, for an explicit proxy deployment, when a client 
makes an application‐level request, the TCP connection between the client and 
the proxy has the proxy’s IP address as the destination. The proxy still lacks 
server information after its TCP establishment with the client because only the 
application request contains the server detail. Therefore, the proxy cannot make 
the server‐bound connection until the application request arrives in an explicit 
deployment. In a transparent proxy deployment and for a protocol such as HTTP, 
the proxy has a choice as to when the server‐side connection will be established. 
This choice is dictated by the configured policy. Therefore, transparent proxy 
deployment offers an important advantage over the explicit deployment: the 
ability to emulate the server behavior and reflect that behavior in the proxy’s 
response to the client‐side request.

Now, if it is the application proxy that defines how a transaction is car-
ried out between the client and the server, then it is the application proxy 
that defines the placement of its checkpoints, which also dictates the policy 
execution timing with respect to a transaction. So if the policy compiler can 
detect semantic errors in the policy rules, then the compiler must be intimately 
aware of each application’s specific checkpoints, those conditions that can be 
evaluated at each checkpoint, what the latest decision points are, and what 
the execution order is of specified actions. Otherwise, the compiler will be 
incapable of identifying policy conflicts. The more capable the compiler is, the 
more expressive the policy language can be. Moreover, the policy language 
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must be constructed with application‐specific gestures. The earlier discus-
sion emphasizes a key point that we made at the beginning of this chapter: 
a sophisticated policy language is a reflection of the capability and maturity 
of a security proxy.
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Enforcing External Policy Decisions

Delegating a policy decision to an off‐box device, such as an external virus 
scanner, and subsequently enforcing an external policy decision, can be rather 
challenging. Figure 3-12 illustrates a scenario where a security proxy collaborates 
with an antivirus (A/V) appliance to implement security policies, whereby the 
proxy forwards policy‐controlled content to the off‐box A/V appliance to scan 
for viruses, malware, and other malicious code.
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Figure 3-12: Method of Content Delivery while Virus Scanning is In‐Progress

As shown in Figure 3-12, the proxy forwards the server response, in this 
case a large file, to the A/V appliance for scanning (②). The proxy will cache 
the content if the content has been verified as safe so that future requests to the 
same content can be retrieved directly out of the proxy’s cache. The content being 
retrieved from the server can be a large object, such as a multi‐gigabyte video file.

There are two approaches to scanning the object: wait until the entire object 
is received and then perform the scan, or scan the partial object and trickle the 
scanned portion to the user as early as possible. The first scanning method 
offers maximum security at the expense of a poor user experience, while the 
second method improves the user experience at the cost of accuracy. Similarly, 
the proxy can wait until the entire object has been received from the server and 
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then forward the entire object to the A/V scanner, or the proxy can forward the 
partially received content to the A/V scanner as early as possible.

An industry practice is for the proxy to receive the entire object and then 
trickle the data to the client while the A/V engine performs the scanning. With 
the trickle‐from‐start method, the proxy sends the data from the beginning at a 
low data rate during scanning, for example, 1 byte per second, until the A/V 
scanning is complete. Once the scan is complete and if the content is safe, the 
proxy transmits the remaining data to the client at the normal data rate. With 
the trickle‐at‐the‐end method, the proxy sends the data from the beginning at the 
normal rate up to a configured percentage, for example, at 80 percent of the entire 
object size. Then the proxy begins to trickle the data at a low rate, until the A/V 
scanning is complete. At that time the proxy will again transmit the remaining 
object to the client at the normal data rate. The trickle‐from‐start method is safer 
than the trickle‐at‐the‐end method because a lower number of bytes are leaked 
if the content proves to be malicious. The trickle‐at‐the‐end method provides 
a better user experience because most of the object is delivered to the user and 
only the last small portion needs to be delayed.

The challenges illustrated by this example are as follows:

 ■ The proxy needs to be aware of the A/V engine’s capabilities and its cur-
rent workload so that the proxy can choose the trickle method to balance 
between performance and security.

 ■ The off‐box A/V engine is viewed as an external policy decision point, 
and the proxy is the policy enforcement point. The proxy must implement 
additional policies and actions to safeguard against a situation where the 
policy decision point is inaccessible. For example, if the compiled policies 
demand that all objects received from a specific server must be scanned 
for malicious content, and the A/V engine is offline, then the proxy must 
detect this abnormal situation and revert to another set of policies or 
operating parameters to process the returned content from that server.

In Chapter 6 we discuss other external policy enforcement systems such as 
the Data Leak Prevention appliance and technology.

Summary

A comprehensive policy system is comprised of an expressive policy language 
containing application‐specific gestures, a compiler that is constructed with the 
deep knowledge of application proxies, and a policy engine that can execute 
policy rules and enforce policy‐defined actions effectively at the various check-
points along the transaction‐processing path. The transaction object maintains 
the processing states for the client request and associated server response. The 
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policy ticket selects the necessary conditions and properties that are applicable 
for a transaction. The policy engine operates on the policy ticket to make deci-
sions that are subsequently tracked by the policy ticket. Policy‐aware applica-
tion proxy agents then consult the policy ticket to enforce those decisions by 
executing the binding actions. As policy rules change over time, those updates 
must be propagated to every system component that either participates in the 
policy decision‐making process or acts as the policy enforcer. Understanding 
the policy execution timing is critical in writing semantically correct policy 
rules. Knowing when a policy condition can be evaluated against a transac-
tion and when a decision must be enforced is the key to achieving the desired 
security objectives.
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Firewalls have evolved over the years and have been effective in defending 
against threats that attempt to infiltrate through the open service ports from 
outside of a protected infrastructure. The ubiquitous presence of Network 
Address Translator (NAT) at the ingress points makes it nearly impossible to 
obtain any meaningful results when host scanning from outside the perimeters 
of an organization. Although distributed denial of service (DDoS) attacks are still 
as prevalent today as they were a decade ago, modern variations of traditional 
brute-force attacks against an infrastructure bring temporary network outages 
that can be remediated quickly. The existing defensive solutions also can be 
fortified to recognize these attacks easily, thus becoming capable of fending 
off similar assaults in the future. More importantly, these attacks inflict limited 
negative economic impacts on an organization.

Contemporary security attacks begin with an internal security breach, which 
results when an internal user is lured into creating outbound connections and 
reaching malware delivery networks where all kinds of malicious executable such 
as keyloggers, Trojans, rootkits, and ransomware are hosted for download. The 
security compromise is now coming from the inside. Hackers, black hats, threat 
actors—no matter what we call them, these individuals are intelligent, inven-
tive, and capable of creating ingenious exploits. They are motivated by money 
or driven by political beliefs. Those who are sponsored by governments have 
inexhaustible resources at their disposal, making them formidable adversaries.

C H A P T E R 

4
Malware and Malware  

Delivery Networks 
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Instead of focusing on a host‐based solution such as virus identification, 
memory forensics, malware executable analysis, and rootkit fundamentals, 
in this book we choose to focus on subjects that are relevant to key common 
operations that are carried out by the majority of exploits after a successful 
infiltration, namely, communication with the command and control (C2) center 
(or “phone home”) and the exfiltration of valuable data.

Cyber Warfare and Targeted Attacks

Modern‐day attacks are stealthy and target individuals as well as organiza-
tions for maximum economic gain. The Internet, and especially Web 2.0, has 
facilitated the rapid growth of an illicit shadow economy with hundreds of 
millions if not billions of dollars in exchange. Modern attacks on organizations 
have caused tremendous financial damage with far‐reaching impacts beyond 
the victimized institutions. Classified materials that are crucial to national 
security have been compromised in cyber‐attacks. Cyber warfare launched 
against countries can bring devastation that may be described and measured 
only with war terminology.

Espionage and Sabotage in Cyberspace
Moonlight Maze was a two‐year‐long cyber espionage operation carried out by a 
foreign country, suspected to be Russia, against the computer systems within the 
Pentagon, NASA, the Department of Energy, and various leading U.S. research 
institutions and universities between 1998 and 2000. Moonlight Maze stole a 
large volume of information regarding U.S. military installations and military 
hardware blueprints.

Titan Rain was the FBI designation for cyber‐attacks that were uncovered by 
an employee at Sandia National Laboratories in 2004. The infiltration carried 
out by attackers targeted highly sensitive computer systems within Lockheed 
Martin and Sandia National Laboratories, along with possible targets such as 
NASA and other defense contractors. It was estimated to have been active for 
over three years and was believed to be sponsored by the Chinese govern-
ment. Titan Rain was one of the most damaging cyber espionage attacks to be 
undertaken to steal military intelligence and classified data. Titan Rain was 
based on advanced persistent threats. Advanced persistent threats, or APTs, are 
sophisticated cyber attacks that are extremely covert in nature and developed 
by highly skilled personnel who may be subject experts with a full spectrum 
of intelligence‐gathering and cyber penetration tools at their disposal. An APT 
avoids detection by siphoning the data gradually over an extended period of 
time. APTs are discussed further in Chapter 8.
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Three years after Titan Rain, a second major cyber assault on an indepen-
dent country became part of cyber warfare history. The cyberspace incursion 
into Estonia by attackers was allegedly funded and managed by the Russian 
government, which paralyzed the Estonian information infrastructures that 
covered government ministries, financial sectors, and media publications and 
broadcasters.

No sabotage campaign in the cyber war theater has played out as significantly 
as the Stuxnet attack on the Iranian nuclear fusion plant at Natanz. Stuxnet 
malware was discovered in 2010 and was purportedly jointly developed by the 
United States National Security Agency (NSA), the CIA, and the Israeli intel-
ligence service to sabotage and prevent the progress of the Iranian nuclear fuel 
enrichment program. The development of Stuxnet spanned two U.S. presidential 
administrations. Stuxnet was designed to reprogram the programmable logic 
controllers (PLCs) that are common components in industrial control systems. In 
fact, Stuxnet contained the first known PLC rootkit to date. Stuxnet is comprised 
of zero‐day exploits and a Windows rootkit, as well as techniques for evading 
behavior‐based analysis by antivirus engines and for performing advanced 
process injection. It can propagate through a network or through removable 
drives. A zero‐day exploit is an attack on a new vulnerability that is known only 
to the attacker.

Stuxnet breaks the centrifuge by altering the motor speed in a meticulous 
fashion to avoid detection: it increases the centrifuge speed for 15 minutes, then 
resumes normal operation, hibernates for 27 days, then lowers the centrifuge 
speed for 50 minutes before returning control; it then repeats this sequence 
after hibernating for another 27 days. During each attack sequence, the Stuxnet 
malware disables the relevant warning and safety controls so as to prevent the 
system from alerting the operators during the speed change. Stuxnet damaged 
approximately 1,000 IR‐1 type centrifuges representing roughly 10 percent of 
the installation during the plant’s peak operation. Stuxnet demonstrated that 
industrial sabotage can cause critical infrastructure failure, resulting in national 
emergencies. Stuxnet offered strong evidence that its creators had full access to 
the relevant industrial control systems and the centrifuge in order to develop 
and qualify the code. Only a state‐sponsored organization could have facilitated 
such an operation.

In 2012, Flame, also known as Skywiper, was uncovered by multiple organiza-
tions and was reported as the most sophisticated malware ever encountered; 
it was expected to take years to unravel. Similar to Stuxnet, Flame appeared to 
be another joint effort between the United States and Israel that was five years 
in the making and served as a cyber espionage weapon to gather and exfiltrate 
intelligence from multiple targets inside Iran.

In 2013, Operation Hangover was exposed as a series of attacks that originated 
from India and that scoured entities in Pakistan to steal information that was of 
importance to India’s national interests. Operation Hangover is another example 
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of APT attacks, and although it ultimately failed in achieving its objectives, it 
was in operation for over two years before being exposed to the public.

These momentous state‐sponsored cyber‐attack events have forever changed 
and solidified the significance of cyberspace to the status of the “fifth domain” 
of war, as a new addition to the domains of land, sea, air, and space. The concept 
of cyber warfare has been transformed from abstract theorizations into formal-
ized doctrines in preparation for actual deployment in military combat theaters. 
Information systems are treated as military assets that must be defended against 
enemy attacks, utilized to gather foreign intelligence, and deployed in offensive 
attacks against adversaries.

Weaponized malware is now part of the offensive capabilities in military 
arsenals because cyber warfare can inflict physical damage on targets that is 
comparable to conventional weapons. Cyber warfare can be launched against 
both military and civilian targets. Critical infrastructures such as smart power 
grids, nuclear power plants, water treatment systems, air traffic management 
and control systems, oil and gas pipelines, food and beverage supply chain 
management systems, and financial trading systems are all connected online 
and accessible through the network, making them desirable targets. Sabotaging 
these critical infrastructures can have detrimental effects, causing economic col-
lapse of the financial system and massive loss of life and creating widespread 
panic and chaos across the country that is under the assaults. Cyber warfare 
can be launched from thousands of miles away, without a physical presence, 
and active military field equipment such as tanks, combat aircraft, and missile 
systems are all subjected to interference and destruction.

Industrial Espionage
A dramatic increase in industrial espionage is evident in many targeted attacks 
in recent years, with examples illuminating the fact that impenetrable security 
is nonexistent and insidious APTs constitute a grievous threat to any organi-
zation. A targeted attack implies there is a specific target that possesses data 
that is desired by the attackers, who will persist in their attacks until they have 
acquired the objective. Therefore, such a potential target must concentrate on 
continuous attack detection and eradication solutions to fend off APTs and 
incorporate a mentality that the attack is constant and may have been success-
ful, instead of focusing on just attack prevention.

Operation Aurora

In January 2010, Google publicly disclosed that its operation in China, Google.cn, 
was subjected to an APT attack. Operation Aurora was a targeted attack on 
Google China that was carried out by an organization called Elderwood Group, 
based in Beijing. It was largely believed the attack began when targeted Google 
employees received an e‐mail or an instant message that was forged to appear 



 Chapter 4 ■ Malware and Malware Delivery Networks   97

as if it came from a trusted source. In one case, the e‐mail contained a link. The 
link led the employee to a website in Taiwan, and this website hosted malicious 
JavaScript. The employee’s Windows Internet Explorer browser then automatically 
downloaded this JavaScript, which ran and exploited the zero‐day vulnerability 
in the browser. Once the JavaScript executed, it downloaded another malicious 
payload that was disguised as an image file; this payload then created a back-
door and connected the malware to its C2 server. At this point the attackers 
had gained full access to Google’s internal systems.

In another case, the e‐mail came with a malicious PDF file attachment that 
exploited a vulnerability in the Adobe Reader program. Once opened, the 
embedded malware inside the PDF file allowed the attacker to remotely control 
the system for further penetration. Regardless of the infiltration method, the 
malware went after source code repositories and tried to access Google e‐mail 
accounts of Chinese political activists. More than 30 high‐profile technology 
and defense companies were targets of the same espionage campaign. State 
sponsorship was evident in the sophisticated nature of the malware and the 
orchestrated manner of the attacks.

One disturbing fact about Operation Aurora is that, until Google discovered 
the attack in December 2009, many, if not all, of the victimized corporations 
were completely unaware of the fact they were being infiltrated and that their 
confidential intellectual properties were being exfiltrated by the attackers.

Microsoft had known about this zero‐day vulnerability that allowed the 
attackers to perform remote code execution since September 2009. The patch 
to fix that Internet Explorer browser bug was scheduled for release in February 
2010. Adobe had known about its vulnerability in December 2009, and the bug 
was not fixed until January 2010, after the Google disclosure. All users of these 
software programs were exposed to potential attacks while the vendors were 
working on the fix. In the meantime, the black hats were hard at work trying 
to maximize exploitation of these vulnerabilities. A crucial question for the 
security industry to address is what the general public can do to protect itself 
or to alleviate the threats during the vulnerable time before a solution becomes 
available.

Since the attackers gained access to the source code repositories, Operation 
Aurora unveiled a frightening new threat: after stealing the source code, the 
attackers could have modified the source code by implementing a new exploit 
or backdoor to be leveraged in the future against the entire user base of the 
product built from that source code tree. The code modification could be com-
mitted into the original source tree either by masquerading as a legitimate user 
or by exploiting software bugs that may be present in the underlying source 
code control systems. The stolen source code will surely be subjected to elaborate 
vulnerability analysis for creating future exploits.

In Operation Aurora, the multi‐layer security defense failed: the victims’ anti‐
spam defenses failed to catch the malicious e‐mails; their web filtering solution 
permitted users to connect to the websites that were hosting the exploits; their 
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antivirus engines did not detect the malware download, possibly due to the 
zero‐day nature of the exploits; their IDS and IPS systems failed to recognize 
any abnormal patterns during the intrusion; and their DLP systems did not 
block any data exfiltration.

Watering Hole Attack

We have witnessed in the animal kingdom the dramatic scene of a preda-
tor chasing down its prey, twirling with high velocity, and pursuing it with 
immense concentration while the prey foils the hunter with its mighty sprints. 
The intensity of the prey’s struggle to survive is unimaginable, with death 
only a few feet away. Sometimes the prey escapes and the hunter limps away, 
salivating in discouragement.

Then there is another hunting approach often seen in the Serengeti, where the 
predator lurks by a watering hole, patiently waiting for its prey to approach the 
precious pond, and while it drinks avariciously, the predator dashes forward 
for a surprise ambush.

In cyberspace, attacking individual users requires the black hats to penetrate 
the first layer of defense, namely, a fortified firewall, which can be detected 
quickly. The watering hole attack is a type of targeted attack that, instead of 
focusing on an individual, is aimed at a specific group based on the group’s 
interests and behavior. In August 2014, a watering hole malware campaign was 
launched on the website of a software company that produces simulation and 
systems engineering software for various industries. The website was known 
to be frequented by engineers who worked in the automotive, aerospace, and 
manufacturing industries. The attackers planted a Microsoft Internet Explorer 
zero‐day exploit into the compromised website. This exploit leveraged out‐of‐
bounds memory vulnerability to perform remote code injection and execution 
of multi‐stage shellcode through the visitor’s Internet Explorer browser. The 
exploit performed reconnaissance operations: it probed for various pieces of 
information on the visitor, logged the visitor’s key strokes, and encrypted and 
then transmitted the collected data to its C2 server.

This exploit is unique in that it performs code injection without committing 
a copy of itself to disk. This behavior may be an indication that the attackers 
have high confidence in the exploit to infect the visitors on each of their visits. 
We can only speculate that the intention of the attackers is to harvest potential 
visitor information, correlate the user behavior according to what they entered, 
and then subsequently launch targeted attacks against the visitor or the visitor’s 
employer to gain industrial secrets.

Malware exploits typically consist of two components: the decryption module 
and the encrypted code payload, as illustrated in Figure 4-1. Shellcode is a small 
piece of code that is the payload delivered by an exploit. The decryption mod-
ule runs first to transform the payload into the shellcode by either decryption 
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or some type of de‐obfuscation algorithm (➁). The control is then transferred 
to the newly formed shellcode where the execution resumes (➂). The shellcode 
begins its subversion operations by spawning a system command interpreter, 
commonly known as a command shell (thus the reason for its name); then 
from within this command shell, it performs code injection and execution to 
methodically take control and commandeer the system. The shellcode is written 
as machine‐independent code, meaning the shellcode can be loaded into any 
memory location for execution.

1

Decryption/De-Obfuscation Code

Encrypted/Obfuscated
Code as Payload

3

Decrypted/De-obfuscated
Shellcode

Second-Stage Shellcode

First-Stage Shellcode

2 Decrypts

Control  transfers to
the second stage shellcode

and executes

After exploit
transfers control
and executes

Figure 4-1: Shellcode

Code injection refers to the mechanism by which malicious software inserts 
code fragments into memory and then implants control transfer logic to inter-
cept and manipulate the execution flow. Figure 4-2 depicts the concept of a 
watering hole attack.

As shown in Figure 4-2, when a user visits a compromised website (①), the 
watering hole exploit remotely injects a code payload directly into the Internet 
Explorer browser’s running process in memory (➁). From there, the first‐stage 
shellcode then launches a standard Windows process, called rundll32, which is 
responsible for loading Windows dynamic link libraries (DLLs) and placing the 
functions (additional code) implemented by the DLLs into memory (➂). After 
launching rundll32, the first‐stage shellcode injects the second‐stage shellcode 
into the rundll32 process (➃) and then transfers execution control to it (➄). At 
this point the exploit essentially has fully compromised the system.
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Breaching the Trusted Third Party

In February 2013, Bit9 was breached by hackers, and one of its digital code‐ 
signing certificates was stolen. Bit9 is best known for its whitelisting solution 
that certifies known safe applications. Its agent software intercepts and blocks 
any application that is not in the approved whitelist. Attackers used Bit9’s sign-
ing certificate to sign malicious applications that subsequently circumvented 
Bit9‐based defensive solutions. Bit9’s customers discovered that malware and 
notified Bit9 because the certificate pointed to Bit9 as its owner. The irony was 
that Bit9 advocated its solution as the industry leader to offer non‐traditional 
security solutions to enterprises, yet part of Bit9’s network was not protected by 
its own solutions. Instead of launching direct assaults on the Bit9 security solu-
tion, the attackers made a strategic decision to breach the source of the solution, 
effectively neutralizing the defense system by falsifying the attacks as benign 
using the legitimate credentials of the system creator.

Figure 4-2: Watering Hole Attack
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There are known cases where certificates that were issued to hardware manu-
facturers have been stolen because these manufacturers produced not only the 
hardware components and modules but also the companion drivers to run in 
popular operating systems such as Microsoft Windows. These drivers must be 
digitally signed by valid certificates before the driver binaries can be certified 
to run within the Windows kernel at privileged execution levels. Stealing code‐
signing certificates and then signing malicious code pretending to be system 
drivers can easily gain user and system acceptance.

The Korean gaming industry, especially the massive multiplayer online games, 
has had numerous breach incidents in the past few years. In each publicized 
case, malware bearing valid game publishers’ digital signatures was installed 
through the game update process and infected millions of online players. The 
various malware have stolen subscribers’ account information, seized in‐game 
assets, installed in‐game cheats, or pirated game source code.

Casting the Lures

So how is a user led to download a piece of malware and fall victim to its creator? 
It all begins with a wide variety of lures as colorful as the human imagination, 
with the majority rooted in social engineering to entice a potential victim. In 
the majority of attacks, the bait was conveyed through e‐mail.

Social networks continue to be an effective attack vector. Although we like 
to avoid making general statements, incidents have proven time and again that 
most people on social networks tend to be less knowledgeable about computer 
security. A lot of them are relative newbies when it comes to Internet safe use 
practices. This population is always connected to the Internet through their 
smart mobile devices on fast 4G and LTE networks. They have become more 
impatient due to constant distractions coming from various mobile applications: 
Twitter, Snapchat, Skype, and text messages. They are constantly multitasking, 
participating in simultaneous online conversations, and they are much more 
willing to talk with strangers online. This changing user behavior subjects 
them to greater exposure to cyber threats and makes them easy prey to online 
scams and perpetrators.

The explosive growth of the user base that is energized by visual stimulants 
and always seeking out instant gratification propels social networking service 
providers to deliver more and more cool and easy‐to‐use features. Security 
becomes an afterthought, often left out of the application design, and is per-
ceived as a hindrance to maintaining higher growth. The continuous addition 
of features to the infrastructure of social networks means that the code remains 
in a state of flux and security analysis is always incomplete. The interminable 
relationships developed among millions of users within these social networks 
serve as rapid infection paths with a broad reach.
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Spear Phishing
Spear phishing is a black hat e‐mail scam technique that—unlike regular phish-
ing, which spams indiscriminately to all potential victims—targets specific 
individuals or organizations. With a spear phishing campaign against a well‐
known organization, the black hat first conducts a background investigation 
of the targeted organization and then forges a spear phishing e‐mail directed 
at specific individuals in that organization. The e‐mail header masquerades as 
if it were originating from someone within that company. The e‐mail content 
contains information pertaining to a specific event that is taking place at the 
company or discusses a subject that is familiar to the potential victim.

For example, the e‐mail may purport to seek help from the victim in review-
ing a customer document, and the hyperlink to the document actually points to 
an exploit that is hosted on a malicious website. Or the e‐mail may come with 
a malicious executable disguised as a PDF file attachment. In either case, once 
the victim takes the bait and executes the exploit that is obtained either directly 
or through a drive‐by download, the exploit compromises the victim’s system 
and takes a foothold in that corporation’s network. The effectiveness of spear 
phishing credits its success to the deceptive social engineering tactic that breaks 
down the victim’s suspicions because the e‐mail came from a credible source, 
so the anecdotal warning “don’t take candy from a stranger” need not apply.

Pharming
Pharming refers to an attack that leads visitors away from a legitimate website 
and redirects them to a forged site. The fake site is under black hat control and 
resembles the original legitimate site in almost every way to deceive the visi-
tor. This forgery, when done successfully, persuades the visitor to think he has 
reached the right site (for example, a banking site), thus inducing the visitor 
to enter his user credentials to sign in to his account. After acquiring the user 
credentials, a typical action performed by the pharming code is to forward 
these credentials onward to the real site, essentially acting as a proxy without 
the user taking notice. The web browser must issue a DNS query to resolve the 
site’s IP address before making the connection. As such, one type of pharming 
attack can be accomplished by exploiting DNS vulnerabilities so that the IP 
address returned from the DNS query is replaced by one that points to the fake 
site. Examples of DNS vulnerability exploitation include DNS hijacking, domain 
hijacking, DNS cache poisoning, and DNS spoofing.

There are different methods of DNS hijacking. In one method the system con-
figuration is manipulated by malicious code that changes the DNS server to a 
rogue DNS server under black hat control. The rogue DNS server always returns 
IP addresses that connect to websites that masquerade as the respective legitimate 
ones. Similarly the malicious code can change the local DNS configuration file, 
typically called the host file, which directly maps a DNS name to an IP address.
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Domain hijacking occurs when the owner of an established domain is changed 
to a different registrant without the knowledge of the original owner. Because a 
registered domain name has an expiration date, this change can occur due to a lapse 
in renewal by the original owner, resulting in the domain name being purchased 
by someone else. Another tactic is through impersonation, possibly by means of 
identity theft and deploying social engineering to modify the domain ownership. 
Related to domain hijacking, there is an attack vector where the black hat registers 
multiple domain names, with each being one possible misspelling of the targeted 
domain name. A visitor is redirected to a fake site when they misspell the domain 
name to one that has a valid registration having the black hat as the owner.

In DNS cache poisoning, a compromised system inside a managed network 
is induced by the attacker to query a domain name that is under the attacker’s 
control. The attacker’s domain name is resolved by a rogue DNS server that acts 
as the authoritative name server for that domain name. When the rogue DNS 
server returns the query result, it includes response entries for the domains 
the attacker wants to hijack. Obviously, the IP addresses associated with these 
legitimate domain names link to forged websites. Once the DNS server that 
resides in the managed network receives these DNS responses, it will cache these 
entries. Future DNS responses that contain valid entries for those legitimate 
domain names will not be accepted until the cached fake entries have expired.

Similar to DNS cache poisoning, in a DNS spoofing attack, the attacker leverages 
a compromised system to transmit specially crafted DNS responses for domain 
names to be hijacked. The goal is to insert a response into the DNS server cache 
with a fake entry so that the valid entry can be rejected.

An attacker can launch a pharming attack through a phishing e‐mail. For 
example, the attacker can craft and forge an e‐mail that appears to come from 
a well‐known bank, asking the recipient to log into the banking site to validate 
their address information. If the recipient is an unsuspecting user who promptly 
clicks the link embedded in the e‐mail, that user is led to a landing page that 
appears to be exactly the same as the banking site, but underneath it is a fake 
site whose only purpose is to harvest user credentials.

Cross‐Site Scripting
Spear phishing is an essential component of a cross‐site scripting (XSS) attack. 
An XSS attack is the exploitation of a type of vulnerability that has been discov-
ered in web‐based applications. This vulnerability enables an attacker to inject 
scripts that will execute on the client side to hijack an active client session using 
stolen session credentials. The XSS attack circumvents the basic same‐origin web 
application security policy. The same‐origin policy restricts the browser such 
that the browser disallows the content that was received from one website to 
read or write content that was received from a different site. There are various 
types of XSS attacks: reflected (or non‐persistent) attacks, persistent (or stored) 
attacks, and Document Object Model (DOM) vulnerability‐based attacks.
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A reflected XSS attack describes the scenario where a web‐based application 
extracts and includes a portion of the client’s input verbatim in its response to 
the client. The goal of the attacker is to steal the session token, which may be in 
the form of a browser cookie, and hijack that client session. The session cookie is 
issued by the web application server; therefore, any dynamic JavaScript code that 
wants to retrieve the session cookie must come from that same web server. So 
the attacker attempts to explore the XSS vulnerability to own the session cookie. 
The assumption is that the attacker has deep knowledge of the web application 
under attack. It is a common practice for the black hat to first map out as much 
of the web application as possible and then to probe each operation within the 
application to expose one or more vulnerabilities. The prerequisite for a suc-
cessful attack is that the attacker has discovered an application behavior, called 
an XSS vulnerability, where an operation is known to take a portion of the user 
input and include that input unmodified in the result of that operation. This 
discovery enables the attacker to create special input that targets the known 
XSS vulnerability. This attack scenario is depicted in Figure 4-3.

Figure 4-3: Cross‐Site Scripting Attack
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In this example, a black hat has discovered vulnerabilities in a customer 
relationship management (CRM) application, which may be exploited to launch 
XSS attacks against its users (①). Now a user has established a connection to this 
CRM application, and the user has successfully logged into his or her account 
(➁). For example, the user may be a salesperson who needs to be logged into 
the CRM throughout the entire workday. So the attacker meticulously crafts 
a request targeting that CRM system and embeds in that application request 
a piece of obfuscated JavaScript code. The function to be performed by the 
JavaScript code is to retrieve the session cookie and send it to a designated web 
location. Then the attacker leverages spear phishing to send the user a spear 
phishing e‐mail, with a subject title “please help validate customer contact info” 
(➂). The attacker forges an HTML e‐mail to appear as if it were sent from the 
user’s supervisor. In this bogus e‐mail is the customized request in hyperlink 
form with a link title that reads “Customer Bob’s contact information”. The 
user takes the bait and clicks the hyperlink, which sends the specially crafted 
request to the web application (➃). The CRM system returns that exact JavaScript 
back to the user due to the XSS vulnerability (➄). This time the user’s browser 
executes the JavaScript (➅) and transmits the session cookie to the attacker (➆). 
Now the attacker can easily hijack and take over the user session (➇).

The web has evolved from a repository of static content to an exciting, inter-
active web where participants of the so‐called Web 2.0 can browse static web 
pages as well as publish dynamic content. For example, anyone can visit a social 
forum where he or she can view ongoing discussions in real‐time. In many 
cases the forum allows both subscribers and anonymous visitors to contribute 
to that discussion by posting their comments and opinions. This interactive 
forum facilitates a persistent or stored XSS attack.

With a stored XSS attack, an attacker can post content with crafted JavaScript 
that will execute in the browser of whoever is reading that posting. Similar to 
a reflected XSS attack, the malicious code executes in the visitor’s browser and 
sends the visitor’s session cookie to the attacker. If the visitor is in fact a registered 
forum member, then this stored XSS attack will help the attack to eventually 
compromise that user’s account. A stored XSS attack is more damaging than a 
reflected XSS attack.

A reflected XSS attack targets a single victim, but a stored XSS attack targets 
anyone who can view the maliciously crafted content. In a reflected XSS attack, 
when the attacker sends a spear phishing e‐mail or any other kind of lure to 
the user, the user must have a session that is active with the web application in 
question when the user clicks the crafted request. In comparison, in a stored XSS 
attack, the user who is viewing a crafted posting will be doing so in an active 
session already, thereby eliminating the timing issue that is a prerequisite to a 
reflected XSS attack.

In addition to stored and reflected attacks, a third XSS attack method is 
called a DOM‐based XSS attack. The DOM‐based XSS vulnerability is a side 
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effect of a website that attempts to improve the user experience by custom-
izing content according to a given visitor. For a given web page constructed 
in HTML or XML format, there exists a DOM that describes the structures of 
that page and how that page is accessed and manipulated from the browser’s 
perspective. When the browser renders the page, a DOM object such as the 
document.URL object may be fed a URL that contains an embedded and obfus-
cated malicious script that exploits the vulnerability similar to a reflected 
XSS attack.

Search Engine Poisoning
One method of luring potential victims to malware delivery servers is by 
search engine poisoning (SEP). The main goal of SEP is for the black hats to 
inject links that point to their malicious servers in the top search results for 
any popular search engine. Links that are part of the top search results have 
the highest potential of being clicked by the user who issued the search. 
Therefore, the more poisoned links in the search results, the better chance 
for the black hats to victimize users. This is why the process of deceiving a 
search engine to return malicious links in its search results is called search 
engine poisoning.

Black hats execute a series of steps to poison search engines. First, the black 
hat creates bait pages that contain popular search keywords and phrases. 
These keywords and phrases are repeated in a bait page but interleaved 
with random words, phrases, and sentences, and combined with random 
images to make the page appear more legitimate to a web bot or crawler. 
Then the black hat launches mass e‐mail spam to advertise links to these bait 
pages. He also posts those links to various social forums and compromised 
websites and distributes those links through online advertising networks 
or ad networks. Link farms are also set up to broaden the reach. A link farm 
is a coterie of websites where each website cross-references every other 
site within the group through hyperlinks. A site may build a directory of 
web pages that serve as links. A link farm is another black hat venue for 
search engine optimization (SEO) that increases the relevancy of a website 
rating by a search engine algorithm that assigns weights or values to the 
hyperlinks.

The goal of the bait page is to lead potential victims to the malware delivery 
server. How is the malware delivered if and when the victim reaches the harm-
less bait page? The victim actually never sees the bait page. The trick is in how 
the malware server processes each HTTP request and what content is returned 
to fulfill the request. First, the malware server needs to know where the request 
is coming from, that is, who or what entity is issuing the request, before decid-
ing which content should be returned. The User‐Agent field in the HTTP request 
header discloses whether the entity is a search engine crawler or a web browser, 
as shown in Figure 4-4.
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For example, the Google web‐crawling bot named Googlebot is identified by 
the following User‐Agent string:

User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

In this example, a regular user running a Firefox browser on the Mac OS X 
operating system has the following User‐Agent signature:

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5)
AppleWebKit/600.1.17 (KHTML, like Gecko)
Version/7.1 Safari/537.85.10

Besides computing the relevance of a web page, the modern search engine 
indexer has built‐in detection algorithms to identify potential malware scripts 
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contained within a page and assesses the risk level of the overall page content. 
The search engine market is competitive, and a search engine can lose its market 
share quickly if users are frequently led to junk or malicious pages. Therefore, it 
is good business practice to safeguard users by preemptively filtering harmful 
results and presenting them with safe links. The exploit server is built to respond 
intelligently according to who is making the request, as illustrated in Figure 4-5.
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As shown in Figure 4-5, when a malware server detects a search engine crawler 
is paying it a visit, the server presents a carefully constructed, innocuous bait 
page to the search engine bot to index (①). When the malware server detects 
that an HTTP request was directly entered into a browser to reach the malware 
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site, the malware server presents a snooper page in return. The snooper page 
typically shows the site is under construction or the site is completely blank, 
thus offering no content to the visitor. The snooper page is a lame strategy 
put in place to keep a low profile and turn white hats away from examining 
the site. Sometimes the malware server simply redirects a prying visitor to a 
well‐known site. Now, as soon as the malware server detects that the request 
originates from a search engine results page (➁, ➂, ➃), this is when it returns 
the actual intended malicious content because it knows a user has taken the bait 
and clicked a poisoned link (➄). The Referrer field in the HTTP request header 
contains evidence of the search engine results. Figure 4-4 illustrates an example 
where the user has entered “where can I get best iPad deals” in the Google 
search engine. When the user selects the top search result and follows the link, 
the Referrer field shows http://www.google.com. In addition, the words from 
the search phrase entered by the user are shown as a URL parameter, which 
is leveraged by the black hats to enhance the available keywords and phrases 
contained in the bait pages, thus improving the potency of those bait pages in 
poisoning the search engine.

The mainstream media has created a myth about SEP being a significant 
threat vector during newsworthy events. Research into the data that has been 
generated by Blue Coat’s 75 million WebPulse users indicated a disparity between 
the compiled results and the press reports. In past significant events, between the 
years 2008 and 2013, which include natural disasters, sports finals, financial 
market meltdowns, deaths of celebrities, and so on, less than 0.01 percent of 
malicious links were activated due to SEP. This surprising find may be attributed 
to the following factors:

 ■ Significant events are covered by all news organizations, which causes a 
search engine “clutter” effect. In other words, there is so much relevant 
and clean content (articles, commentaries, blogs) that is distributed across 
a large number of legitimate websites—reputable news media sites such 
as CNN, NPR, and BBC—that it causes the search engine to produce real 
content as top search results.

 ■ People are now drawn to social networking sites such as Facebook and Twitter 
to obtain their information. Therefore, the attack vectors are chiefly phish-
ing e‐mails and malicious postings on well‐known online social media sites.

 ■ Search engines continue to improve their detection algorithms to sanitize 
search results.

Drive‐by Downloads and the Invisible Iframe
As a result of SEP, drive‐by downloads are a scheme that black hats employ to 
induce the download of malicious code from a crafted attack page, when a 
user visits a compromised or purposely built malicious website. The goal of 

http://www.google.com
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a drive‐by download is to inject malicious code into the user’s system. In one 
approach, the black hats use social engineering to lure a user to consent and 
accept an offer and then manually download and run the malicious code that 
is behind the offer. A common bait to entice a user is through various offerings 
of digital material relating to A‐list celebrities, such as a leaked nude video that 
requires the user to download and install a “missing” video codec or to upgrade 
an existing version of a player program in order to view the movie. Figure 4-6 
shows a fake Adobe Flash Player upgrade scheme that we downloaded.

Figure 4-6: Fake Video Player Update

First of all, you may notice the displayed warning message is really just a web 
page that tries to simulate an Adobe update pop‐up window. This should have 
raised an alarm. Second, there is the URL, “2‐vinstaller.com”, which means this 
website is not affiliated with Adobe. Below the big yellow Accept and Install but-
ton, the text in small print reads, “Clicking any download button on this website 
will begin installation of InstallIQ, which manages installation of the products 
available on this website.” In other words, this is a fake warning message, and 
the executable has nothing to do with the Adobe Flash program. Clicking the 
Install button means the user agrees to install an unknown program that is 
published by an unknown software company that calls itself “InstallX, LLC” but 
it names its software “adobeflashplayer.exe”. In this example, after completing 
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the download step, we uploaded the binary onto VirusTotal; it scored 24 out of 
54 hits as Trojan adware.

Another common ploy is to instigate fear in the user to act without hesita-
tion, for example, displaying an animation that falsifies evidence of malicious 
activities that appear to already exist in the user’s system. The user is urged 
to download and install antivirus software immediately to remove the virus 
and sterilize the system. Obviously the real malware is packaged as the fake 
antivirus software, and once installed, it causes serious havoc in the user’s 
system. Figure 4-7 shows fake antivirus scan results that prompt a user to act 
immediately to clean up their system.

Figure 4-7: Fake Antivirus Scanning

This malicious web page used an animated image ploy that pretends to perform 
a virus scan on the visitor’s system. In this case, we were actually running on a 
Unix system, not on Microsoft Windows. The fake “Windows Security Alert” 
pop‐up prompts the user to click the Remove All button, but clicking anywhere 
on the web page will trigger a download and the installation of a Trojan virus.

Social engineering may be one attack vector, but another tactic is more danger-
ous and completely evades the user through an insidious automatic background 
download and execution of malicious code to infect the user’s system. In other 
words, the download process does not require user interaction at all. When a 
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user visits a compromised website, the user’s browser is redirected to an attack 
page, possibly through multiple layers of deflection using techniques such as 
HTTP redirection, an invisible iframe, or JavaScript execution within a browser. 
Figure 4-8 illustrates a common iframe‐based drive‐by download scheme.

Figure 4-8: Invisible Iframe
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In this example, the user visits a well‐known but compromised website (①), 
and the page displayed to the user has an ad banner. Inside this ad banner is an 
invisible iframe; it is invisible because, as shown in the figure, it has 0 dimensions 
and the hidden display style (➁). The source of the iframe points to a piece of 
JavaScript “js.js” that is hosted on a malicious site in Russia (➂). The browser 
automatically downloads js.js when processing the embedded iframe directive 
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in the page (➃). Once downloaded, this JavaScript executes in the browser and 
exploits a browser vulnerability to compromise the visitor’s machine (➄).

So how are malicious ads placed on a well‐known website if the website has 
not been compromised by hackers?

Tangled Malvertising Networks
In online advertising, websites, e‐mails, RSS feeds, instant messaging, and other 
similar assets, together with online ads or ad banners, all are considered to be 
online inventories. An ad exchange connects owners of online real estate such 
as websites with ad providers to facilitate real‐time trading of those online 
inventories and assets. An online advertising network, or ad network, is an ad 
distribution network that transfers the ads and displays those banners on the 
negotiated ad space.

Malicious advertising, also known as malvertising, refers to black hats leverag-
ing ad networks to inject and distribute malware. Because ad networks cover 
virtually the entire Internet, malware can propagate quickly to infect large online 
user populations. Malvertising is an effective tool for black hats due to the nature 
of ad networks. The black hats only need to compromise a limited number of ad 
servers or well‐known reputable websites to begin a malvertising campaign. As 
demonstrated by the previous iframe example, a modern malvertising attack 
can infect a user by the simple act of automatically displaying banner ads inside 
a browser, which is made possible by modern ad URLs that deliver JavaScripts 
instead of static images. These ad JavaScripts are often obfuscated to prevent 
the disclosure of information pertaining to ad server technology and platforms 
in addition to reducing ad frauds. The obfuscation makes scanning for known 
malware patterns in the end systems difficult if not impossible.

An online ad network is a complex world of ad servers, exchanges, buyers, 
partners, affiliates, and subordinate providers. One ad provider outsourcing 
its advertisement and ad spaces to other ad providers is a common practice to 
reduce operational costs and also to leverage multiple ad networks to reach as 
broad a population as possible. This complex web of advertising relations is 
an incubation ground for malvertising outbreaks. In fact, black hats launching 
attacks across a large region of ad networks have become alarmingly common 
occurrences. Figure 4-9 illustrates an example of how an ad network can be 
leveraged for malware distribution.

On a website, an ad banner area can rotate ads and display ads that are 
sourced from different ad providers. As shown in this example, websites trust 
their immediate large ad providers such as Google and Yahoo! However, large 
ad providers are just part of the ad syndication. The layers of advertisement 
outsourcing and subcontracted ad campaigns may result in a rogue ad provider 
injecting itself into the chain. The process of establishing a trust relationship 
between two ad providers varies dramatically from region to region, and an 
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industry‐wide, rigorous methodology is yet to be standardized. The trust rela-
tionship is not transitive from one layer to another. Therefore, a malicious ad 
can easily propagate throughout the ad network and reach a large audience.

Ad Network
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Figure 4-9: Ad Network

Once an ad server has been identified as having served links to malware, the 
challenge is to determine whether the ad server has been compromised by black 
hats or is itself truly malicious. Another possibility exists, where there may be 
some kind of compromise in the ad supply chain. Further analysis of the ad 
server in question can reveal compelling evidence in reaching a conclusion. An 
ad server having a recent and anonymous registration is suspicious. An ad server 
that distributes only its own ads is suspicious. An ad server that runs a single 
ad is suspicious. In Chapter 5, we discuss general rating strategies on websites.

Malware Delivery Networks

The modern web page is decorated with a colorful array of graphics 
and ad  banners and embedded with links to entertainment news, articles, 
famous blogs, up‐to‐the‐minute breaking news, real‐time stock quotes, and 
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Figure 4-10: Redirection to Malnet

auto‐playing, embedded video clips. Even though these pieces of content 
are presented to the user in a single view, each piece may be sourced from 
different origins. The web page has become a valuable commodity, where 
every inch can be sold to a content provider for both tangible and intangible 
profit. Malware delivery networks (MDNs), or malnets, are born out of this 
complex content delivery network that we call Web 2.0. The malvertising 
network is a subnet of general malnets.

As the earlier drive‐by‐download example illustrates, the end of the 
browser redirection is some kind of exploit kit that is to be retrieved auto-
matically by the browser. Typically the initial download is a dropper, and 
once activated, it scans the victim’s system for the presence of known ver-
sions (and thus known vulnerabilities) of various software programs, for 
example, Java, Adobe Reader, Flash Media Player, and the web browser 
and browser plug‐ins. The dropper then “phones home” by contacting its 
C2 servers to download and install one or more exploit kits that target each 
program appropriately. Figure 4-10 illustrates the concept of this multi‐layer 
redirection technique.
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A landing page is usually the first destination in the malnet. A user can 
reach the landing page via search engine results, by clicking an embedded link 
inside a phishing e‐mail, or by clicking an iframe link (①). The main purpose 
of the landing page is to perform a first‐level referral that sends the visitor to 
another website using simple HTTP status code 3xx for URL redirection (➁). 
Another approach is to feed the visitor’s browser a JavaScript that generates a 
dynamic URL linking to a destination. As we will discuss in the next section, 
in most cases, these layers of intermediate destinations serve as either front‐end 
proxies or redirectors that route the visitors deep into the malnet. In practice, 
three to five layers of redirection are common (➂, ➃). Finally the visitor reaches 
the real malware‐hosting servers that will return an exploit to the user (➄, ➅). 
Figure 4-11 is a visualization graphic that was constructed out of real‐world 
malnet data sets that have been collected by the Blue Coat WebPulse cloud 
security solution.

Figure 4-11: Visualization of Malnets
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In Figure 4-11, each white square represents a safe website, the gray squares 
represent intermediate sites that perform request redirections, and the black 
squares represent known malware servers. Figure 4-11 illustrates the enormity 
of the malnet and that the threats it casts on the Internet are both deep and 
wide. This massive interconnection of landing sites, intermediate redirectors, 
and referrers is the result of malware evasion techniques.

Fast‐Flux Networks
Botnets and MDNs employ the fast‐flux technique to evade eradication of the 
actual servers that host malware. The core idea of fast‐flux is to map different 
IP addresses to the same DNS name rapidly, often within a few minutes. These 
IP addresses belong to compromised systems that are called bots or zombies, and 
they are controlled by the black hats through C2 channels. Typically the black 
hats take possession of tens of thousands of IP addresses before putting the 
MDNs into operation. These hijacked IP addresses are cycled through quickly, 
and newly commandeered IP addresses are added continuously into the pool. 
The MDNs that operate in this manner are called fast‐flux networks. The DNS 
records implemented to support an MDN operation may look like this:

webantivirusav.nl.   300  IN  A  64.251.21.188
webantivirusav.nl.   300  IN  A  64.251.21.222
webantivirusav.nl.   300  IN  A  65.111.184.227
webantivirusav.nl.   300  IN  A  65.111.184.229
webantivirusav.nl.   300  IN  A  69.60.98.234

webantivirusav.nl.   1800 IN  NS  ns1.webvirusdefence.nl
webantivirusav.nl.   1800 IN  NS  ns2.webvirusdefence.nl

ns1.webvirusdefence.nl 864000 IN A 5.61.32.183
ns2.webvirusdefence.nl 864000 IN A 192.241.81.86

A single fast‐flux network describes MDNs with rapidly changing DNS address 
records for the domain name. In the given example, there are five A‐records associ-
ated with the webantivirusav.nl domain, and these A‐records have a five‐minute 
lifetime. At expiration, new IP addresses replace the old ones for these A‐records. A 
double fast‐flux network refers to MDNs that also constantly change the IP addresses 
of the authoritative name servers. In this example, the A‐records for the name 
servers ns1.webvirusdefence.nl and ns2.webvirusdefence.nl are also remapped 
at high frequency. Figure 4-12 illustrates the operations of a fast‐flux network.

Figure 4-12 shows what happens when a user has been enticed to click a mali-
cious link that points to some malware hosted on webantivirusav.nl. The user’s 
browser needs to resolve the IP address of that DNS name before connecting to the 
site. The DNS query is sent to one of the bots that is part of the fast‐flux network 
and that is identified by the DNS system as the resolver for that hostname (①). In 
actuality the bot does not perform the name resolution when it receives the DNS 
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query. Unlike a regular DNS query process where an intermediate resolver will 
refer the query issuer to another name server through a DNS referral response, 
the bot never sends a referral but instead proxies the query and forwards it to the 
backend server (➁). It is common for this backend server to run both DNS and 
HTTP services. The backend server runs load balancing algorithms to perform 
load distribution according to bot availability, bot reachability and health check 
statistics, bandwidth utilization level, service lifetime, and other attributes. Once 
the backend server reaches a decision, the DNS result is returned to the proxy bot 
(➂), which then forwards that answer back to the query issuer (➃). Subsequently 
the user sends the content request to the resolved IP address at 10.1.2.3 (➄). This bot 
proxies the HTTP request to the backend server and retrieves the content to fulfill 
the user request (➅, ➆). In this example, the bot that serves the malware to the user is 
different from the bot that serviced the DNS query, which is located at 200.18.39.177.

Figure 4-12: Fast‐Flux Network
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As shown in Figure 4-12, the bot clients are disposable because they are typi-
cally discovered by experienced white hats and are decommissioned within 
hours. Either the bot client knows the identity of the backend server through 
the C2 channels, or the infecting malware contains hardcoded logic to locate 
the backend server. Because each bot in the fast‐flux network may reside in any 
region around the world, this, combined with the fast remapping to new IP 
addresses, makes the discovery of the backend server a difficult task. Blocking 
the IP addresses will only decommission the intermediate fast‐flux bots or zom-
bies, which is exactly what the fast‐flux technique was designed to solve, thus 
shielding and prolonging the backend core servers to continue their operations 
with minimal interruption.

The fast‐flux networks illustrate a common MDN strategy to sustain the mal-
ware servers and evade detection: creating multiple layers of dynamic redirections 
that can span various domains and countries, traversing web pages constructed 
with different languages, all for the purpose of deterring the white hats from 
building meaningful correlations to detect the malware‐serving root hosts.

It may seem that the fast‐flux network can be defeated by blocking the 
webantivirusav.nl domain. Filtering and blacklisting the domain is a viable 
solution if the webantivirusav.nl domain can be classified as the root of a fast‐
flux network. However, this discovery is not so trivial. First of all, the domain 
name must be seen as being contacted by the malware, correlated by evidence 
the domain name resolves to a large number of IP addresses rapidly. Secondly, 
a domain name can be hidden through dynamic name generation techniques.

Explosion of Domain Names
Black hats implement domain generation algorithms (DGAs) inside their mal-
ware to prevent a domain name from being identified as the contact point. A 
malware executable contains visible strings of domain names if those domain 
names are predefined and are compiled into the executable. The white hats can 
perform binary analysis by using tools such as a disassembler and a low‐level 
machine debugger to uncover the domain names and insert them into their 
filtering lists. By performing DGA in real‐time, the malware can generate tens 
of thousands of domain names in a day, with each domain name being a ran-
dom string of characters. There are known cases where the malware generates 
up to 50,000 unique names in a day. Out of the generated names, the malware 
performs a selection algorithm to choose a subset of domain names to contact 
as C2 servers. Example domain names produced by a DGA may look like these: 
uftfesnodnjflwta.inf, vxagtvsyqxtrfcm.com.

The black hats register a small subset of those DGA‐created domain names 
using the same selection algorithm. Registering unique domain names, even for 
a “.com” domain, can cost as little as $10 a year. The black hats have plenty of 
stolen credit cards at their disposal for purchasing new domains. Free domain 
provider freenom.com offers country code top‐level domains (ccTLDs) free of 
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charge for .cf (Central African Republic), .ga (Gabon), .ml (Mali), and .tk (Tokelau). 
Free subdomains are also abundantly available for the taking.

Address mapping detection of a fast‐flux server requires selecting the can-
didates from hundreds of thousands of domain names that are in operation, 
then performing active DNS monitoring for an extended period of time, and 
finally aggregating the data collection to conduct analysis. Such an operation is 
impractical due to the sheer volume of collected samples. In addition, multiple 
domain names can share a single IP address, thus further complicating the 
discovery process.

Dynamic DNS (DynDNS) is another mechanism used by malicious content 
providers. The black hats register subdomain names within the DynDNS domains. 
For a specific DynDNS domain, the main domain resolver will resolve all of 
the names under that specific DynDNS domain. For each registered subdomain 
name, the black hats can change the IP address at will using an update tool. The 
IP addresses can be located anywhere on the Internet. In this category, the IP 
addresses that were hijacked by the black hats belong to dynamic IP addresses 
commonly found on broadband networks designed for residential homes.

Abandoned Sites and Domain Names
A lot of websites either are poorly maintained or have been neglected because 
they were built for some kind of experimentation by their respective owners. 
Oftentimes these sites are simply abandoned once the learning experience 
is over, but they are still connected and reachable. A great number of them 
have since been converted into malware hosting servers, unbeknownst to 
their owners.

Some domains were allowed to expire for one reason or another. Abandoned 
domains that were assigned to legitimate sites or hosts, which were used for 
conducting business on the Internet with either clean or reputable histories, are 
highly desirable. The past history of these domains gives legitimacy to whatever 
websites are put up by the black hats to host content once the black hats take 
ownership of the abandoned domains.

There is a set of challenges in preventing the circulation of malicious content 
using reputation‐based solutions. Allowing all content from a reputable website 
indiscriminately will accelerate malware distribution. For example, a site such 
as CNN may be an innocuous, valuable doorway to legitimate web content, but 
the dynamic links inside each page served by the site could be composed from 
different sources, and some may be malicious. A reputable website can also be 
hacked to host malicious content. On the other hand, if a host has been com-
promised in the past and has been recorded as being a participant in an MDN, 
then this information may be stored for a long time. A simple reputation‐based 
blacklist will render this innocent but victimized host permanently invisible. 
We discuss intelligent filtering solutions in Chapter 5.
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Antivirus Software and End‐Point Solutions: The 
Losing Battle

Zero‐day exploits are still rare occurrences and are limited in number in the 
wild because creating zero‐day exploits demands uncommon experience and 
skill sets possessed by a limited number of individuals, and they require elabo-
rate efforts to discover new vulnerabilities. In the meantime, attackers continue 
to explore new ways to distribute and spread existing malware and exploits, 
knowing that not all users are diligent at patching their systems and updating 
their antivirus software or virus signature database. End‐point solutions such 
as antivirus software continue to play an important role in identifying known 
viruses and malware and are an essential component in a multi‐layered secu-
rity defense.

However, traditional antivirus companies have conceded that modern antivi-
rus engines have low malware detection rates. The detection rates of antivirus 
engines have been a debated subject in many RSA conferences over the years. 
The detection rate seemed to vary depending on the entity that performed the 
analysis. The data set used in the studies was another variable that also affected 
the results. The disparity seemed significant at times.

These signature‐based solutions are ineffective against polymorphic code. 
Polymorphic code is code that changes itself each time the code executes, but 
the original functionality remains the same. Polymorphic malware possesses the 
runtime characteristics of polymorphic code. In addition, similar to shellcode, 
discussed in the previous section, the executable is packaged with a decryption 
function having the actual functional code being encrypted as the payload. When 
the malware executes, the decryption function decrypts the payload and then 
runs the actual code. A malicious executable that is downloaded from a malware 
site changes with each download. Antivirus engines have low recognition rates 
for polymorphic malware. We have seen typical identification rates between 0 
to 2 hits out of more than 50 antivirus engines in VirusTotal after each down-
load of the malware. Compounding the polymorphic payload problem is the 
challenge of recognizing the exploit that the payload delivers against a specific 
application or system module. The exploit can be detected only by examining 
its runtime behaviors.

Days, if not weeks, elapse after an attack surfaces before the major antivirus 
engines are updated to recognize a new threat. However, by then, private and 
confidential information may have been stolen, and valuable intellectual properties 
may have been lost. Antivirus engines are ineffective in battling zero‐day attacks.

If a free service such as VirusTotal provides free scanning of uploaded files 
against more than 50 antivirus engines in parallel, then black hats can model this 
approach to antivirus‐proof their new creation by subjecting the new malware 
to all known antivirus engines; they can evolve the new malware if necessary 
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and then finally release the beast to the wild, knowing in advance that none of 
the existing antivirus engines will detect its presence.

Once a breach has occurred, the task in the aftermath is damage control; 
but the damage has already been inflicted. So why not shift the defense into a 
preemptive prevention strategy? In the next chapter, we focus on techniques 
that attempt to detect and prevent malware infection at each stage of the con-
tent retrieval process, from URL analysis at the beginning to content analysis 
at the end.

Summary

The push model of delivering malware from outside of an organization’s for-
tified perimeter, by means of exhaustively exploiting and attacking possible 
vulnerabilities in a trial‐and‐error fashion, has become much less capable of 
achieving success. The black hats have focused their strategies on creating 
and posting bait on the web and having the population infect itself simply by 
visiting the compromised websites. Online users are lured into the dark web 
by phishing and SEP and have been victimized by drive‐by downloads. The 
era of relying on just end‐point solutions such as antivirus engines is coming 
to an end because these solutions are no longer effective in combating modern 
malware. In Chapter 5, we present the solutions that solve the malware challenge 
by focusing on detecting and then interrupting C2 and exfiltration channels.
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A malware distribution network (MDN) or malnet is comprised of three main 
components: the landing pages, intermediate redirection servers, and malware 
exploit distribution servers. As discussed in Chapter 4, a typical infection process 
begins with a lure that leads the user to a malicious landing page; once there, 
the user’s web browser is induced to download a piece of shellcode. In order 
to avoid detection, the web browser is redirected through multiple layers of 
intermediate nodes before getting to the initial exploit code. After the shellcode 
executes, it downloads the main malware payload from yet another server. 
Finally, the shellcode launches the malware to compromise the end system 
completely. More sophisticated shellcode may first fingerprint the user system, 
followed by the transmission of the collected information to its command and 
control (C2) server, which will subsequently provide further instructions to 
the shellcode on the location from where to download a targeted executable 
suitable for the user’s system.

Some landing pages may be manually crafted by the attackers. However, 
other landing pages are part of legitimate websites. There are numerous known 
incidents where legitimate websites and web servers were hacked and the 
attackers planted malicious links to infect visitors. A more pervasive approach 
is to compromise the third‐party content provider, which could result in many 
non‐malicious landing pages to contain third‐party content that could lead to 
exploited servers. For example, a dynamic advertisement banner may contain 
JavaScript that creates a hidden iframe that sources its content from another 
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server. In such cases the website hosting the landing page should not be marked 
as a malicious site simply because the third‐party advertisement it holds contains 
malnet redirection links.

Adding to the complexity of the landing page classification problem, a large 
number of ads are dynamically generated and are targeted to specific users 
or browsers or both. These dynamic ads may not always contain the malnet 
redirection links. Therefore, the aim of detecting malicious landing pages 
is to analyze the page contents and evaluate the embedded URLs so that if 
one of the URLs eventually leads to a malnet exploit server, that URL can be 
marked and tracked as a malicious URL rather than the URL that points to 
the landing page.

Identifying malware distribution servers is a part of the solution to disrupt a 
malnet. The identification technique must have the ability to differentiate between 
malicious and benign downloads. In addition, although the intermediate servers 
play a role in the MDN, these intermediate servers are disposable and are eas-
ily replaced. Blocking the distribution servers forces the malnet to migrate the 
hosting service to new endpoints and is the most effective venue in preventing 
malicious downloads while new servers are put into service. Therefore, the focus 
is on the actual distribution servers; once they are identified, implementing the 
blacklist can be done easily in the egress firewalls.

This chapter will describe the algorithms that are applied to rate the URLs 
and the web pages and also explore methods of exposing malware distribution 
servers. It will also describe open‐source tools, called honeyclients, which are 
often used for malware and MDN analysis.

Automated URL Reputation System

A URL is the first linkage to a malware infection. A URL that leads to a mali-
cious drive‐by download should be recognized and blocked as early as possible, 
thus preventing the attack by blocking the download of the first piece of exploit 
code. Malicious URLs that lead to the same malware change quickly to avoid 
detection. A web reputation or URL reputation system analyzes a given URL in 
real‐time to assess its trustworthiness, which concludes in a rating. The rating 
system is typically a scale that ranges from benign through good, cautious, 
unwanted, potentially dangerous, and finally, to malicious. However, the rating 
system is largely implementation‐dependent.

A considerable amount of resources and time must be devoted to collect and 
rate URLs that exist on the web today. The sheer number of URLs requires a 
machine‐assisted automatic solution to process and rate the URLs. In addition, 
the URL reputation system incorporates input from the user community when 
possible. A learning machine is essential in constructing a scalable system, which 
at a minimum performs high‐level sorting of the URLs into a rating category, 
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known as classification, followed by further granular analysis to remove false 
positives from each category.

In machine learning terminology, a classifier is a classification algorithm that 
maps input to a category. In its simplest form, a learning machine implements 
one or more classifiers. Supervised learning refers to feeding the learning machine 
a preselected data set with known categories and training the machine to reach 
the same classification results. A feature refers to a measurable heuristic property 
of the subject, or a characteristic of an observed event that is being classified. 
The more distinct and independent a feature is, the more quality the feature 
possesses in contributing to the accuracy of classification.

Building a learning machine‐based URL reputation system begins with a 
collection of URLs that are known and pre‐classified as either malicious or 
benign. Then, features are extracted from these URLs. In the context of URL 
classification, distinct features can be the number of characters in the second 
level domain (SLD) name, the number of subdomains in the URL, the number 
of non‐alphabetical characters in the URL, and so on. The collection of the 
extracted features from a single URL forms a feature set. For example, with URL 
ju2sd.d8ufv.uitsmake.ru, the feature set containing the feature‐value pairs is 
< length:8, subdomains:2, non‐alphabet:0> because there are eight characters in 
the SLD name “uitsmake”, there are two subdomains (“d8ufv” and “uitsmake”), 
and the URL does not contain any non‐alphabetical characters. We will revisit 
the feature set in the next subsection in more detail.

The URL collection is fed into the classifier together with the pre‐classified 
results. The classifier correlates each of the extracted features with the final result. 
After processing each of the URLs, the classifier tunes its formula to better 
match the pre‐classified result. This process is called classifier training, and the 
URLs used in the training are called a training set. The classifier has a higher 
probability to be trained with higher precision if the training set is sufficiently 
large. Often times, another set of pre‐classified URLs is prepared as a test 
set. Similar to constructing the training set, the test set consists of URLs that 
have been rated by other means, such as manual rating, and each URL has an 
ascertained rating. The test set is used to verify the accuracy of the automated 
reputation system by comparing the classification results with the pre‐classified 
ratings, but neither enhancing the training set nor tuning the algorithms in 
the learning machine.

Creating URL Training Sets
Several free resources are available for collecting a list of URLs that are known 
to be benign and malicious. Alexa (www.alexa.com/topsites) composes a list of 
the most popular and frequently visited websites that are generally regarded as 
benign. Online databases such as PhishTank and EmergingThreats.net provide 
useful datasets on malicious URLs. In addition, the Google Safe Browsing API 

http://www.alexa.com/topsites
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is available to check whether a URL has been identified by Google as suspi-
cious or malicious. The URL training set is not static because the reputation of 
a URL can change over time. As discussed in Chapter 4, a website may initially 
be benign and then after being abandoned by its owner, it may be hijacked by 
black hats to distribute malicious content at a later time. This means that over 
time the reputation of the URL may have changed. Hence, a training set, whether 
a malicious set or a benign one, must be updated, and the classifier must be 
re‐trained, either periodically or during real‐time transaction evaluation, to 
reflect the dynamics in URL reputation.

Extracting URL Feature Sets
A URL is a string of text that may or may not have meaning semantically. 
Performing lexical analysis, that is, breaking the URL string into a series of 
tokens, allows for the extraction of desired features. One useful feature is the 
string length of the SLD name. In the fictitious domain mydomain.com, the SLD 
is mydomain. As discussed in Chapter 4, to distribute malware while avoiding 
detection, malware authors deploy domain generation algorithms (DGAs) to 
generate domain names in a batch and then algorithmically select a subset of 
the generated domain names to register for the malware distribution servers. 
DGAs tend to create longer SLD names to reduce the probability of name col-
lisions. Therefore, the length of the SLD can be extracted as a feature to infer if 
the URL belongs to an MDN.

There are exceptions to long SLD names being malicious. Some legiti-
mate subdomains are constructed using self‐explanatory words to 
advertise the nature of the business of the website owner. For example,  
www.stevenscreekchryslerjeepdodge.net is a legitimate auto dealer website that 
has 30 characters in the subdomain name. Another reason for legitimate long 
domain names is because legitimate website owners tend to use lexical words 
for easy memorization while MDN creators have no such concerns. Having 
a short domain name does not imply the URL is less malicious. For example, 
the eight‐letter SLD qpqduqud.com belonged to the second‐largest spam botnet 
(named Srizbi) that was discovered in 2008.

A related feature to domain name length is whether the domain name con-
sists of lexical words or is just a concatenation of random characters. A domain 
name composed of random characters is likely to be suspicious. However, the 
opposite of having a meaningful domain name is not a strong indicator of a 
benign domain. We know that black hats have created domain names out of the 
most frequently searched keywords, such as well‐known events, breaking news, 
popular merchandise, and famous celebrities, all in the hope of getting the search 
engines to give the URL a preferential score that puts it in the top search results. 
For example, the botnet Torpig may call a Twitter API to use one of the popular 
trending topics in real‐time in Twitter as the seed to generate domain names.

http://www.stevenscreekchryslerjeepdodge.net
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This discussion raises a number of important points about feature extraction:

 ■ A feature may be useful only when it is applied in conjunction with other 
features.

 ■ A feature may not be unique enough to be useful; that is, if there are too 
many exceptions to the rule, then the feature becomes irrelevant.

 ■ A feature may evolve and transform into something else entirely different 
from the original intent.

 ■ One feature may help in the development of another feature.

The reputation of a top-level domain (TLD) or of the country code TLD (ccTLD) 
may be selected as a feature. Dynamic DNS domains and free subdomains 
are known to be utilized heavily by MDNs. Certain countries are notorious 
in providing bulletproof hosting: .ru, .cc, and .cn continue to be the top ccTLDs 
that host malicious, illegal, and spam‐related domains. The ratio of numeric 
to alphabetical characters and the number of subdomains in the URL can also 
serve as features for the URL reputation classifier.

The features that we have discussed thus far are static features; that is, these 
features are derived from static analysis of the URL. We can further explore 
the origin and formation of the URL to elicit additional features. In particular, 
we can collect the WHOIS information of a domain to extract features such as 
the age of the domain (the initial registration date of the domain), the registrar 
of the domain (registrar name and country), the domain’s lease period (how 
long the domain is registered for, for example, three months versus one year), 
and whether the domain is automatically renewed at the end of the lease. These 
features, which are derived from WHOIS domain information, are relevant 
because legitimate websites do not usually choose to hide their registrant infor-
mation, while questionable domains often perform anonymous registration.

Each feature is given a value once the feature selection is complete. The type 
of value assigned to a feature may differ from feature to feature. For example, 
the value type is an integer for features such as length of SLD name, number of 
subdomains, age of the domain, and domain lease period. The string value type is 
given to the TLD domain name feature. The Boolean value type is given to the 
domain name consists of lexical words feature, and the fraction value type is given 
to the ratio of numeric to alphabetical characters feature. In the following text, 
when we refer to a URL feature, we mean that the URL has the feature F with 
a value equal to f.

It is worth noting that the value for a feature may be a range instead of an exact 
number. For example, the length of SLD name feature can have multiple values 
ranging from 1 to 253. With that many possible feature values, it may be more 
meaningful to partition and assign a value range according to subjective and 
empirical insights regarding a feature. Continuing with the length of SLD name 
feature example, based on observation it may be possible to divide the values 



128 Chapter 5 ■ Malnet Detection Techniques

into three groups, that is, length value greater than 15 characters, between 15 
and 8 characters, and less than 8 characters. We can use 0, 1, and 2 to represent 
each of the groups so that the length of SLD name feature will have only three 
different values for all the URLs in the training set.

Classifier Training
There are many classifiers that can be used to rate URLs. In this section, we 
show a straightforward example of how classifier training works using the 
Naïve Bayesian classifier. Our focus here is on how to prepare and present 
the data to the classifier for input classification.

The Naïve Bayesian classifier is an application of Bayes’ theorem, which relates 
conditional probabilities with prior beliefs. In its basic form, P(A) and P(B) are 
the probability of event A occurring and the probability of event B occurring, 
respectively. P(A|B) is the probability that A occurs given event B has occurred. 
The theorem states that the probability that event B occurs given that event A 
has occurred can be derived as

P B A
P B P A B

P A
( | )

( ) ( | )
( )

=

In the context of a URL classifier, let us denote P(m) as the probability of 
malicious URLs occurring in the training set. To get P(m), we can count the 
number of malicious URLs and divide that value by the total number of URLs 
in the training set. Let F denote an extracted feature that represents length of 
the SLD name greater than 10 characters. P(F), by definition, is the probability of F 
occurring in the training set. We can get this value by processing and counting 
the URLs that have more than 10 characters in the SLD name. The conditional 
probability P(F|m) means the probability that the length of the domain name 
is greater than 10 characters given that the URL is malicious. We count the 
total number of malicious URLs in the training set and let A denote that sum. 
Within the malicious URLs, we count the number of URLs that have more than 
10 characters in the SLD name and use B to denote that sum. By taking the ratio 
of (A/B) we obtain the value for P(F|m). Applying Bayes’ theorem, we can obtain 
the conditional probability P(m|F) that the URL is malicious, given it has more 
than 10 characters in the SLD name, as 

P m F
P m P F m

P F
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Similarly, let P(!m) denote the probability of benign URLs in the training set. 
Using the same analysis and approach, we have the conditional probability of 
a URL being benign, given feature F, as 

P m F
P m P F m

P F
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( )

= .
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Now, considering two independent features F1 and F2, we would like to obtain 
the probability of a malicious URL given F1 and F2. Applying Bayes’ theorem, 
we can write the probability as

P m F F
P F m F P m F

P F F
P F m P F m P m

P F P F
( | , )

( | , ) ( , )
( , )

( | ) ( | ) ( )
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1 2

= =

Note in the preceding equations, because F1 and F2 are independent, 
P F F P F P F( , ) ( ) ( )1 2 1 2= . Also, the conditional probability of P F m F( | , )1 2  does not 
depend on F2 and can be written as P F m( | )1 .

Expanding the two‐feature analysis into a feature set with j independent 
features, the conditional probability of a URL being malicious given the inde-
pendent feature set <F1,…,Fj> becomes
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are the products of P(Fi) and P(Fi|m) from 1 

to j respectively. In the preceding single feature example, we have shown how 
to calculate P(m), P(Fi|m), and P(Fi); therefore, from the training set, we know 
every term in the equation, and we can calculate P m F F( | , , ).j1 …

Similarly, we can also calculate the conditional probability of a URL being 
benign given feature set <F1…Fj>, and we already know the value of each of 
the terms.
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Finally, the Naïve Bayesian classifier classifies a URL with j features by compar-
ing the probabilities of P m F F( | , , )j1 …  and P m F F(! | , , ).j1 …  If the former is greater, 
the URL is malicious; otherwise, the URL is benign. If those two probabilities 
are the same, the URL can be either malicious or benign; however, such a case 
is very rare with a large set of features and quality training URLs.

The Naïve Bayesian Classification is merely an example showing how pre‐
collected data can be used to train the classifier in the context of classifying 
malicious URLs. Such a classifier that takes the labeled input training data and 
infers the label of unseen samples is a typical approach of supervised learning. 
Besides the Naïve Bayesian classifier, the approaches and algorithms in the general 
category of supervised learning include decision trees, linear regression, sup-
port vector machines, and so on. Each of the approaches can be used to design 
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a classifier, and it is not always obvious which method is better than the other. 
A common practice is to apply multiple classifiers using different algorithms in 
parallel inside a single URL reputation system to improve accuracy. The final 
output of the URL rating is based on the combined weighted ratings from all 
the classifiers and can be represented as a reputation score. Further, the rating 
score can be translated to multiple levels other than just a binary value of mali-
cious or benign. Those score and rating levels can reflect the confidence level 
of the classifiers’ output; for example, based on the calculation, the ratings can 
be malicious, unwanted, regular, and trusted with the decreasing probability 
that the URL is malicious.

Many off‐the‐shelf data mining software applications are available that have 
already implemented the aforementioned classifiers. For example, the Naïve 
Bayesian classifier is available in Apache Mahout, and a comprehensive data‐
mining tool called Weka implements a wide range of classifiers, including the 
supervised learning classifiers we mentioned earlier. The off‐the‐shelf software 
can apply data‐mining models to the extracted features, but not the URLs. As 
such we need to implement pre‐processing functions to extract the features from 
the URLs and then feed the features to the data‐mining software.

Another possible addition to the feature set is the human tagged domain repu-
tation. Although manual rating of individual URLs is not a scalable solution, 
there are situations where it is useful for security analysts to examine domain 
names and assign trustworthiness ratings to them manually. In the aforemen-
tioned example, a domain may have had a good reputation but was hijacked 
to participate in an MDN campaign, and over a brief period of time the URL 
continues to surface in a redirection chain leading to malware. In such a case, 
the reputation of this domain should be adjusted to a much lower rating until 
that domain is removed from the MDN chain. In addition, security analysts 
can apply their expertise and heuristics to label potential malicious domain 
names with a threat severity level. For example, a domain that is constantly 
associated with a ransomware campaign is of a higher level of threat severity 
than a domain that merely distributes adware.

An interesting question to discuss is the size of the feature set. There is no 
universal answer to how large the feature set should be in order to give accurate 
ratings, as the outcome is highly dependent on the quality of the features, that 
is, how indicative those features are. Instead, we can focus on evaluating how 
important each of the features is to the classification result. We need to conduct 
a series of controlled tests to evaluate the importance of a specific feature. In an 
iterative approach, we run the classifier with all j features included against the 
training set and obtain a classification accuracy rating of X. In the next test, we 
rerun the classifier on the same training set, but with only j‐1 features, and get 
an accuracy rating of Y. If X > Y, then the excluded feature helps to improve the 
classification accuracy. The larger the difference in X and Y, the more impor-
tant that particular feature is. However, if X ≤ Y, it indicates that the classifier 
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is better off or indifferent without the excluded feature, and we can remove it 
from the feature set. There is also no definitive guideline on either the size of 
the training set or the size of the test set. However, a good training set should be 
able to train the classifier to reach over 99 percent accuracy in the similar‐sized 
test set. In most cases, 20,000 URLs is a good starting point to build the URL 
reputation system.

At the time of this writing, a few free online URL reputation services were 
available. The most eminent ones are Blue Coat WebPulse Site Review and 
McAfee TrustedSource. Both products offer categorization results and allow 
users to submit revisions to the results if they feel the classification is inaccurate. 
The TrustedSource service lists reputation in a separate column in addition to 
the categorization. The reputations are Minimal Risk, Unverified Risk, Medium 
Risk, and High Risk. The WebPulse Site Review service combines the ratings 
with the descriptive categorization names; for example, a malicious URL can 
fall into the categories of Malicious Outbound Data/Botnets, Malicious Sources/
Malnets, Suspicious, Potentially Unwanted Software, and so on. In addition, 
Google provides a safe browsing service that allows applications to check a 
URL against Google’s own collection of suspicious and malicious pages through 
an API call. The responses from Google Safe Browsing servers are “phishing”, 
“malware”, “both phishing and malware”, and “ok”.

A URL reputation system can be deployed to detect and filter malicious URLs. 
However, this system has a few limitations:

 ■ Not all redirection links are URLs with domain names. Sometimes the 
redirection link contains hardcoded IP addresses.

 ■ The accuracy of the URL rating is highly dependent on the extracted 
feature set, the learning algorithm, and the quality of the training set.

To alleviate the first limitation, we can extend the URL rating to include IP 
address blacklists. Similar to intermediate redirection servers, the collected 
IP addresses are highly likely to be disposable. Newly seized IP addresses 
need to be constantly added to the blacklists, while stale entries must be veri-
fied and removed, thus rendering blacklists either ineffective or not scalable. 
The second limitation is much more difficult to address. Although advances in 
machine learning can be incorporated to enhance the effectiveness of learning 
and detection, extracting the URL feature set is quite subjective, and may not 
adapt well with the characteristics of an evolving MDN.

Dynamic Webpage Content Rating

A webpage content analysis and categorization system complements the URL reputa-
tion systems. A web content categorization system takes a webpage as its input, 
dynamically scans and analyzes the webpage content, and then generates a 
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category for that page based on its evaluation. Entertainment, Adult/Mature, 
News/Media, Pornography, and Social Networking are just some example 
categories for a webpage. These categories are referred to as web categories for 
the remainder of this book. In the context of detecting malicious URLs, some 
content categories have high risk levels because they can lead to malware. For 
example, many lures are placed on porn sites that trap users into download-
ing fake video players that are actually malware. Therefore, a user should be 
warned of the danger that lurks behind a webpage if the URL points to one that 
is classified as pornographic.

A webpage categorization system is a multi‐dimensional engine that ana-
lyzes the content from different perspectives using various algorithms, and 
the combined results determine the category. Analyzing the webpage content 
types and their respective layouts within the page is one dimension. Analyzing 
the advertised types of merchandise and services, as well as brand names, to 
derive the targeted demographics is yet another dimension. In the following 
section we will discuss one analysis dimension that extracts keywords from a 
webpage and then uses these keywords to derive a category for that page. This 
categorization system must be capable of extracting the most relevant keywords 
from a webpage and then have the ability to search, compare, and match for 
the most befitting category.

Keyword Extraction for Category Construction
The first step in keyword‐based content categorization is to create categories 
of interest. Associated with each category is a set of keywords that, when com-
bined together, form the most representative characteristics of that category. As 
a simple example, the keywords representing a Sports category may be “athlete, 
touchdown, inning, home run, quarterback, mixed martial arts”. Although cer-
tain webpages list keywords in their page titles, these keywords are subjective 
to the author’s intentions and may not truly reflect what the real content of the 
webpage is. Therefore, the full text in each given webpage is analyzed, parsed, 
and condensed into a small set of words during the category construction phase.

At the beginning, a large volume of webpages are collected and compiled to 
form the basis of the categories. Human analysts are typically involved in this 
initial construction phase. An analyst applies heuristics to sort each collected 
webpage into a category that the analyst believes to best describe that page. 
Once all of the webpages are sorted into the corresponding categories, the 
collection of webpages in each category is then compiled through one or more 
algorithms to extract the keywords to represent the category. In the early stages, 
each category may contain a large number of keywords, and the keywords 
may overlap across the categories. Then, through a perpetual iterative cycle, 
the keywords in the categories are refined as new webpages are examined and 
processed by the categorization system. Refining a category implies possibly 
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changing the number of keywords in the category, and some keywords may 
be replaced by new ones.

Term frequency‐inverse document frequency (TF‐IDF) is a well‐known and widely 
adopted approach to evaluate how important a word is to a document in a col-
lection of documents, or corpus. Many search engines use TF‐IDF as the base 
algorithm to relate pages to given user queries. We will illustrate the concept 
of TF‐IDF before you see a demonstration of how this algorithm can be used to 
extract relevant keywords for a category.

Let us assume we have a collection of English articles and we need to find out 
which article is most relevant to the topic of “Windows antivirus scan”. Intuitively, 
“Windows”, “antivirus”, and “scan” are the three keywords or terms we want to 
search for in the articles. So, we start reviewing the articles and eliminate the 
ones that do not contain all those three terms. In each of the remaining articles, 
we count the occurrences of each term and sum those occurrences together. A 
larger value means more occurrences of the terms and hence greater potential 
to be more relevant. However, this method has drawbacks, such as in the case 
where the collection of articles is exclusively about Microsoft Windows. In such 
a case, “Windows” is a common word in all articles and is not a good term for 
distinguishing relevant and non‐relevant articles. Therefore, we need some 
mechanism to offset the weight of common terms (in this example, “Windows”) 
and to emphasize the importance of the unique terms (in this example, “anti-
virus” and “scan”).

The preceding example infers that a good keyword representing a docu-
ment should appear more often in that document while occurring less often 
in other documents. This is the basic concept of the TF‐IDF algorithm. The 
algorithm has two parts: TF and IDF. TF is the function to evaluate the term 
frequency within a document. The frequency function can be simply the raw 
word frequency, for example, x occurrences among a total of y words. The 
frequency function may also be a function derived from the raw word fre-
quency, for example, a logarithm function with the raw word frequency as a 
parameter, as in log(1+x/y).

IDF measures how important the word is to the document collection. Oftentimes, 
the IDF is the function log10(N/n), where N is the total number of documents in 
a collection, n is the number of documents that the particular keyword appears 
in, and log10 is the 10‐based logarithm. The product of TF and IDF is the score 
of the keyword, and we can write it as S logx

y
N
nTF–IDF 10= . A larger score means 

the keyword better represents the page. Applying the document concept to a 
single category and mapping the corpus to all categories of interest, we can see 
the TF‐IDF algorithm can be directly applied in keyword extraction out of the 
webpages that belong to the same category.

Table 5-1 shows the results of a scan we did on 100 webpages. For a particular 
page, we list the top five most frequently occurring words with their occurrence 
count in the single page and in the overall 100‐page collection.
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Table 5-1: Example of TF‐IDF Calculation

KEYWORD

OCCURRENCE 
IN SINGLE PAGE 
(WORD COUNT)

OCCURRENCES 
IN COLLECTION 
(PAGE COUNT) TF‐IDF SCORE

Windows 50 10 50

Free 100 30 52.3

Antivirus 100 5 130.1

Scan 10 3 15.2

Explorer 5 50 1.5

Take “antivirus” as an example. To calculate the TF‐IDF score, we first take 
the 10‐based logarithm of total pages in the collection (100) over collection 
occurrences (5), which is log10(100/5)=1.301. We then multiply the number by 
the occurrences in a single page (100) and get 100 x 1.3 = 130.1. From the table, 
we can observe that although the words “free” and “antivirus” both appeared 
100 times in the sample webpage, the TF‐IDF score for “antivirus” is much higher 
than the score for “free”, which indicates that “antivirus” is a better keyword 
than “free” in representing the webpage. Repeating this same process, we can 
compile additional top relevant keywords out of the remaining 99 webpages. 
Together, these keywords would represent the category these 100 pages have 
been sorted into.

There is almost always a need to sanitize a webpage and select a subset of 
contents within the page prior to applying the TF‐IDF algorithm. Consider 
the scenario where a malicious webpage is populated with a large number 
of keywords that would classify the page to a benign category; however, 
in this case, these crafted keywords are made invisible to webpage visitors 
through display tricks, such as using a tiny font‐size, or using coloration 
such as setting the font color to white while displaying the content on a 
white background. The descriptive lures are prominently visible to visitors, 
thus achieving the goal of leading the visitors down to a malnet, although 
the words that make up the lures have the smallest number of occurrences 
within that page.

Applying the TF‐IDF algorithm to such a page will result in the extraction 
of keywords from the large volume of hidden text, which causes the classifica-
tion algorithm to treat the webpage as benign and does not represent the true 
malicious intent of the webpage. A TF‐IDF‐based categorization system cannot 
circumvent the display rendering techniques to derive the right category for 
such a malicious webpage. Therefore, parsing the HTML code of a webpage to 
identify and eliminate hidden content that is aimed at poisoning the keyword 
extraction algorithm would be a necessary pre‐processing step.
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Building a collection of webpages for the IDF function is a perpetual process. 
The initial set of webpages may be manually collected and categorized first, but 
as the classification system is deployed to rate new webpages, these new pages 
are added to the collection, and periodically the TF‐IDF algorithm is re‐run to 
refine the keywords for each category.

Keyword Categorization
Let’s assume there are C web categories and each web category c has a num-
ber of associated keywords. There is a set s containing a number of unique 
keywords extracted from a webpage. For each c, we test each of the keywords 
in s against each of the keywords in c. The categorization problem becomes a 
searching problem of finding the category c that contains the highest number 
of keywords from s. In other words, the matching is not a precise one‐to‐one 
matching. Therefore, categorizing a webpage is about identifying the most likely 
category instead of reaching an absolute answer.

A bloom filter is a memory‐efficient data structure that enables the imple-
mentation of membership testing. A bloom filter is an example of a probabilistic 
data structure, which is a data structure having some probabilistic components. 
In the context of a bloom filter, the probabilistic component refers to the fact 
that a membership test gives a probabilistic answer, not a definitive result. In 
particular, with a bloom filter the test can determine whether an element is 
“definitely not” in the set, or the element “may be in” the set, but the test cannot 
conclude whether an element is “definitely in” the set. In other words, a bloom 
filter can give a false positive answer of “the element is a member of the set” 
when in fact the element is not in the set, but a bloom filter cannot give a false 
negative answer of “the element is not a member of a set” when the member is 
in fact part of the set.

The bloom filter concept was first introduced in 1970 to solve the problem of 
implementing a membership testing method using an error‐free hash function 
on a large amount of source data. Due to the amount of the source data, an 
impractically large amount of memory is required to accommodate the hash 
area. The bloom filter method reduces the hash area in memory by allowing a 
small fraction of error in the membership test results.

The general idea of a bloom filter is to use a bit array to represent a set. 
Assuming a set has n elements, then at the start the bloom filter is a bit array of 
n slots, where each slot has a bit value 0. Each element in the set will be an input 
to a number of hash functions. Applying each hash function to an element will 
give a slot number, and then the bit value in that slot will change to value 1. 
To test for a set membership, the element to be tested is fed into the same hash 
functions, and the resulting bit array is compared against the bit array that was 
created for the set. The construction method for a bloom filter allows for new 
element insertion into the filter but cannot remove an element from it.
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In the context of our webpage categorization problem domain, each bloom 
filter represents a web category. The filter is constructed as an array of m bits. 
We choose k independent hash functions. Each function will map a keyword 
to an array element in the range of 1 to m. The reason for choosing k indepen-
dent hash functions is to reduce collision. It is possible for a single hash func-
tion to hash two different keywords into the same slot (or bit position) and 
cause a collision. In such a case, the bit cannot represent a unique keyword. 
However, with more than one hash function, a keyword is represented as a set 
of bits and thus greatly reduces the probability of collisions. In popular bloom 
filter implementations, the commonly used hash functions include Jenkins 
hash, Murmur hash, Fowler‐Noll‐Vo (FNV) series of hashes, and MD5 hash. 
Figure 5-1 illustrates the construction of a bloom filter for a web category that 
contains four keywords and three independent hash functions.
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Figure 5-1: Bloom Filter Construction

The bloom filter for a web category is initialized by applying each of the k 
hash functions on each of the keywords in the category, resulting in k hash 
values. Each of the k hash values is an index into the array, and the value at that 
array slot is set to value 1. As shown in Figure 5-1, the three hash functions are 
applied to each keyword to obtain the bit arrays b1, b2, b3, and b4, respectively. 
Then these intermediate bit arrays are combined to form the bloom filter for the 
category. To test for membership, the same number of hash functions is applied 
to a given element to obtain an intermediate bit array, which is then compared 
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against the bloom filter using a bitwise XOR operation. Figure 5-2 shows an 
example of a membership test.
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Bloom Filter m=8 k=3
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1 0 0010

h1 h1h2 h2h3
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Figure 5-2: Bloom Filter Matching

This example illustrates the process of testing two keywords against a bloom 
filter of 8 bits built using three hash functions (h1, h2, h3). When applying the hash 
functions to keyword 1, 3 bits are set in its array. The array is then compared 
with the bloom filter using bitwise XOR, resulting in a value 0, which means 
keyword 1 is in category c. For keyword 2, hash function h1 sets the second bit 
that is not in the bloom filter, so the XOR operation results in a non‐0 value, 
implying keyword 2 is not in category c.

In the context of content category classification, assume a category c‐1 has five 
keywords (A, B, C, D, E), and a category c‐2 has five keywords (B, C, D, F, G). If 
the harvested keywords from a webpage are (B, C, D), then the webpage will 
match both categories because (B, C, D) are in sets c‐1 and c‐2. If category c‐3 has 
(A, C, D, I, J), then the webpage has a 75 percent match against c‐3. Therefore, 
a webpage can match multiple categories due to overlapping keywords, which 
can be useful if the percentage of matching for a category is presented as part 
of the result so as to enable a security analyst to conduct further, more focused, 
analysis.

As mentioned earlier, one of the properties of a bloom filter is that it can never 
return a false negative answer, but it can give a false positive answer. That is 
to say, when an element (for example, keyword 2) is tested and the test shows 
the element is not in the bloom filter, the test is 100 percent accurate. However, 
we cannot be absolutely sure when a bloom filter test (for example, keyword 1) 
passes. This probability of a false positive (p) is a function of the values of k, m, 
and n as p e(1 )kkn

m= − − , where k is the number of hash functions, m is the size of 
the bit array, and n is the number of elements in the bloom filter.

We can derive from the equation that the value of p grows with n. This means 
that as more elements are added to the bloom filter, the probability of false 
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positives increases in tandem. Choosing the optimal value of the hash func-
tion number k as (m/n) ln2 can minimize the probability p. When designing a 
bloom filter, we first set the value of n and m, and then we calculate the optimal 
k value. Those three values are put into the probability function to calculate the 
false positive rate, which can be used to refine the parameters. For example, if 
p is too large, we go back and choose a large m value to reduce p.

Through the aforementioned keyword extraction and category matching 
techniques, we can process and compute the URL reputation as well as ana-
lyze and categorize the page behind the URL. Each category can be assigned 
a rating that reflects the probability a webpage having that category can lead 
to malicious infection. The category rating is similar to the domain rating in a 
URL reputation system. Security analysts can dynamically update the ratings 
to address emerging threats.

Detecting Malicious Web Infrastructure

Detecting malicious landing pages and redirection servers is the first tier of 
defense against an MDN. Despite efforts at detecting and avoiding malicious 
URLs and landing pages, some malicious ones will evade detection and lure 
users into a malnet. When reputable websites and legitimate servers have been 
compromised to host malicious content, reputation‐based detection may fail to 
identify malicious downloads. In such cases, content‐based analysis not only 
can offer protection for the end system but also record the host that served the 
malware.

Identifying each of the malware distribution points and taking them down 
one by one is an effective approach to defending against an MDN. However, 
individual malware distribution points are just the tip of the iceberg. There are 
malicious web infrastructures that orchestrate the MDNs. These MDN infra-
structures are well hidden and cannot be easily accessed from the legitimate 
side of the web. Understanding their structures and the way they operate is 
critical in creating multi‐layered defenses.

Detecting Exploit Servers through Content Analysis
One commonly deployed approach to detecting malware distribution points and 
exploit servers is to perform content analysis of downloaded files. The server 
that hosts a downloaded file, typically an executable file of some form, which 
is found to be malicious, is marked as either an exploit server or a suspicious 
host. The executable file must first be extracted from the download session 
and then scanned by a content analysis system for known exploits and malware 
signatures. Common components of a content analysis system include mul-
tiple antivirus engines and a sandbox. A sandbox is a controlled and restricted 
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execution environment in which a suspicious executable file is placed and 
executed, a process often known as malware denotation. The runtime behavior 
of the executable is recorded and analyzed for identification of maliciousness.

The extraction of the executable content from a download session can be 
done with the help of a secure proxy. A secure proxy can hold and examine 
the connection between an exploit server and the user’s browser. For example, 
with the HTTP proxy, if the Content‐Disposition value in the HTTP header is 
“attachment”, the HTTP proxy can get the filename from the filename param-
eter. Furthermore, the proxy extracts the HTTP payload as the content of the 
file and reconstructs the downloaded file with the extracted filename. The 
reconstructed file can then be sent to the content analysis system for a malware 
scan. The file transfer between the HTTP proxy and the content analysis system 
can be carried over the Internet Content Adaptation Protocol (ICAP). The HTTP 
proxy will serve the content to the user session if the content analysis system 
finds the file to be clean. However, if malware is detected, the HTTP proxy 
will record this connection with the exploit server IP address and hostname if 
possible. The proxy will also block the content, and the browser may be served 
with a warning page.

Once the proxy obtains a list of exploit server IP addresses and hostnames, 
this list can be added into a proxy policy to block future connections to these 
exploit servers. An HTTPS proxy is mandatory if the session is carried over 
an HTTPS session. HTTPS‐based malware distribution is less common than 
HTTP‐based distribution, mainly due to the fact that modern browsers will 
warn a user of non‐CA (Certificate Authority) signed certificates and explicitly 
ask the user to confirm the acceptance of such non‐authenticated certificates 
before proceeding with that HTTPS connection. In order to silence the browser 
warning, a malware distributor will need to obtain a valid certificate, which 
is both difficult and costly, in addition to being easily traceable. Some MDNs 
have been observed to host malware on well‐trusted cloud storage providers 
such as Dropbox, Google Drive, and SkyDrive. However, such cases are rare 
because reputable cloud storage providers constantly monitor their servers for 
abuse and for malware infection and are known to quickly block access to the 
malware as soon as it is identified.

The major challenge of using a content analysis system to detect malware 
exploit servers is that most antivirus engines scan for particular patterns or 
signatures of known viruses and malware. The pattern‐based scanning tech-
nique is prone to signature evasion. Even after the signature of malware is 
captured and incorporated by an antivirus engine, the malware authors can 
easily repackage or obfuscate the malware through encryption to result in a 
different signature. The repackaged and redistributed malware is most likely 
to evade the antivirus engines, although the major attack vectors remain the 
same. A sandbox is an essential part of the content analysis system because a 
sandbox detects malware through the analysis of runtime behavior instead of 



140 Chapter 5 ■ Malnet Detection Techniques

static signatures. Let us look at a few examples of runtime analysis of JavaScripts 
that can be done in a sandbox.

In order to analyze the webpage content, it is essential to understand what 
the malware is intending to achieve in different environments. Because most 
web‐based attacks exploit the vulnerabilities of a web browser, it is logical to 
simply analyze the webpage contents, for example, HTML and JavaScript, by 
executing these contents in the browser. However, due to environment finger-
printing techniques used by most malware, a single piece of malicious JavaScript 
may follow different execution paths depending on the particular browser 
version and system configuration, leading to completely opposite result states. 
It is time‐consuming to create each specific browser and system configuration 
and therefore impractical to test the malware on all possible configurations.

Rozzle, a JavaScript multi‐execution virtual machine, was designed specifically 
to explore these multiple execution paths and bypass environment checks in one 
pass. The key concept of execution‐path exploration is to visit every control‐flow 
branch. For example, when an if/else block is processed, both the if and the 
else code paths are executed. In the case of try/catch blocks, these are treated 
as virtual if/else branches and the code in the catch block is executed as 
well. Still, there are certain limitations with this approach. Malware can use 
a server‐client structure to fingerprint the browser and detect the presence of 
multi‐execution techniques. To do so, the malware client could sample a few 
code paths and send reports about the execution results to its C2 server. The 
C2 server could then return different content to render based on the sample 
execution results. In addition, there are some browser‐dependent behaviors 
that cannot be captured by control‐flow branches. For example, the expression 
(0 * window.innerWidth + 1) will return 1 in Firefox and Chrome but will 
return a NAN error in Internet Explorer. This expression can be coded as the key 
to trigger an attack in Firefox and Chrome, and such an attack is not visible 
when the code is executed on Internet Explorer.

Another challenge in content analysis is code obfuscation. Because malware 
extensively uses eval() or document.write() functions to dynamically create 
JavaScript at the time of execution, content analysis is not always strictly static 
analysis. Therefore, the analyzer needs to collect and process the JavaScript code 
at runtime. Fortunately, such tools are available to intercept the “unpacked” 
code that’s dynamically generated in the JavaScript engine as the malicious 
code is being executed. When using the Detours tool, for example, it is possible 
to obtain the JavaScript code at each level of unpacking, such as each time it 
executes eval().

With the de‐obfuscated JavaScript code, JavaScript analysis tools can be 
used to classify whether the code fragment is malicious or benign. Zozzle is 
an in‐browser JavaScript malware detection tool. Zozzle generates an Abstract 
Syntax Tree (AST) from the JavaScript and then abstracts a set of features from 
the expression and variable declaration nodes in the resulting AST. An AST is 
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a tree representation of the syntactic structure of a program that is written in a 
specific programming language; in this discussion the programming language 
is JavaScript. Figure 5-3 illustrates an example AST of a code fragment written 
in C. Each feature contains a context word and the AST text string.

Figure 5-3: Abstract Syntax Tree
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Zozzle is a direct application of the Bayes theorem. Zozzle excludes features 
that are statistically dependent. Its goal is to calculate the conditional prob-
ability that the JavaScript is malicious given a set of independent features that have 
been extracted from the JavaScript code fragment. Experiments show that Zozzle 
is surprisingly effective, with less than one false positive in a quarter‐million 
samples. Integrating Zozzle into popular browsers does not show significant 
performance degradation. Nonetheless, such feature‐based learning needs a 
large dataset to train the classifier, which makes distributed collection and 
classification at the end user’s browser inefficient. In addition, malware authors 
can quickly restructure their JavaScript to obsolete the selected features. Code 
variations in the collected malware samples require continuous retraining of 
the classifier, which is also inefficient at the end user’s system.

To address the code variation challenge, Revolver has been proposed with 
the attempt to understand the semantics of different variations of exploit code, 
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particularly in drive‐by‐download attacks. Revolver requires honeyclients to 
collect the malicious code on the web despite the evasion attempts. (Honeyclients 
are described in the section “Detecting Malicious Servers with a Honeyclient”.) 
The collected scripts can be generally categorized as either malicious or benign 
using honeyclients as well as other off‐the‐shelf antivirus scanners. Revolver 
analyzes the scripts by first constructing an AST for the scripts. Then it runs the 
scripts in a browser emulator to track which code path in the AST is executed. 
It also tracks scripts that lead to network I/O operations, such as those gener-
ated by an iframe.

The ASTs are stored in the format of a normalized node sequence in an array 
using pre‐order traversal. In addition, each AST is tagged as malicious or benign. 
Working on the normalized node sequence of the ASTs, Revolver can check the 
similarity of two ASTs by computing the directed edit distance between those 
two node sequences. In the case of two malicious sequences, the similarity iden-
tifies the evolution of the malicious scripts. For a pair of benign and malicious 
scripts, the similarity shows a possible hidden evasion attempt.

Topology‐Based Detection of Dedicated Malicious Hosts
In malnet infrastructures, there exist dedicated malicious hosts that have a 
high percentage of presence in paths of multiple malnets that lead to distri-
bution servers. Instead of analyzing the types of malicious content served or 
activities taking place at each such host individually, one effective approach 
is to analyze the topology of the malnets these prevalent hosts belong to. The 
topological detection method examines the malnet infrastructure holistically 
to identify common nodes that are part of different malnets. Then, disrupting 
these critical and common hosts in the malicious infrastructure can achieve 
high negative impacts on the malnet’s operations. We know malnet owners 
deploy DDNS (Dynamic DNS) and fast‐flux to evade detection by registering 
a large number of domain names and mapping these domain names to a set 
of IP addresses. In these mapping tactics, multiple domain names can map to 
a single IP address, and a single domain name can have multiple IP addresses. 
So the malnets relate to one another through hostnames and IP addresses 
that appear in URLs and in web requests. Therefore, the Hostname‐IP Cluster 
(HIC) data structure is utilized to compute the maximum overlapping. Each 
HIC is represented as HIC={H, I}, where H is the list of hosts and I is the list of 
IP addresses, essentially representing a group of malnet hostnames that are 
associated with a set of IP addresses.

Sufficient data collection is necessary before constructing the HIC. The first 
step in data collection is to gather a large number of URLs. The URLs are 
partitioned into known malicious URLs and known legitimate URLs. The 
URL data set typically numbers in the millions once it is finalized, and each 
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URL is crawled, possibly through multiple redirections of various techniques 
ranging from HTTP status code to JavaScript, to obtain the entire path to the 
malware. After processing the URLs, the HICs are built through an iterative 
process: first identifying the unique hostname (hi) followed by identifying all 
of the IP addresses that have been resolved for that hostname hi, resulting in 
the single‐host HIC in the form of HICi = {hi, (IP1, IP2, IPn)}. These single‐host 
HICs are then processed to determine if they can be merged with each other to 
form a larger multi‐host HIC. This process repeats until none of the HICs can 
be merged with other HICs.

A pair of HICs can be merged if they are closely related, which is measured 
by the clustering coefficient r, or the Jaccard index. The Jaccard index is also 
known as the Jaccard similarity coefficient and measures the similarity between 
two data sets by dividing the size of their intersection by the size of their union. 
So the coefficient r is calculated as the number of shared IP addresses divided 
by the total number of unique IP addresses in HICi and HICj. As a percentage 
value, r falls between 0 and 1, with 0 indicating the two HICs are independent. 
The pair of HICs is merged if coefficient r is above a certain threshold value that 
is typically set to 0.5. The merge process is performed repeatedly on all HICs 
until no two HICs can be merged. In the context of a topology‐based detection 
approach, an additional merge criterion is the similarity in the registrar infor-
mation. By looking up the WHOIS database, we can obtain the registrar name 
from the domain name. Because malnets utilize free domains and dynamic 
DNS providers extensively, the registrar serves as a good indicator to determine 
whether a domain name is legitimate. Consequently, the HIC merging criterion 
is revised as r >= 0.5 and the hostnames share the same registrar. Figure 5-4 
illustrates the HIC merge process.

Once the HIC merge process is complete, the final set of HICs contains both 
malicious and legitimate HICs. The PageRank algorithm is then applied to iden-
tify the malicious HICs. The PageRank algorithm was designed to compute 
the importance of a webpage or its rank by the number and quality of links 
pointing to the webpage. A rank propagates across the hyperlinks, and the rank 
of a page depends on the ranks of the pages that link to it. The idea behind 
applying the PageRank algorithm to the HICs to discover the malicious ones 
is that a malicious HIC will have a high rank in the malicious infrastructure; 
that is, a malicious HIC has high references from other malicious HICs, while 
at the same time receiving a low rank from the legitimate benign web infra-
structure. This topological relationship in the malicious infrastructure enables 
this approach to identify new pervasive and dedicated malicious hosts, as well 
as uncovering new malicious URLs. In addition, this topology‐based detection 
method is agnostic to the nature of the attacks that leverage the infrastructure, 
and taking down these dedicated pervasive hosts can disrupt many types of 
attack campaigns.



144 Chapter 5 ■ Malnet Detection Techniques

Detecting C2 Servers
One type of resilience designed into the MDN is the separation of the C2 channel 
from the malware distribution or download channel, as shown in Figure 5-5. 
Unlike exploit servers, the C2 servers do not distribute the malware but rather 
are the command center to orchestrate the malnet operation. In particular, 
through the C2 channel, the malware downloader may obtain a list of URLs 

Figure 5-4: HIC Merge Process
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that specify where to retrieve the actual malware payload, to report the malnet 
download status to the C2 servers, to upload fingerprints of the host and the 
browser environment, and to receive further attack instructions. Because C2 
servers are not associated with malware downloads, they do not generate a 
large volume of traffic in the C2 channels, thus making them difficult to detect. 
In particular, the challenges lie in the following aspects:

 ■ The C2 servers and the malware bots can implement private communi-
cation protocols that are dynamic and can change at any time. It takes a 
great amount of effort to reverse‐engineer those protocols.

 ■ A C2 channel can be encrypted or obfuscated, making deciphering the 
C2 channel an extremely arduous process.

 ■ Some C2 servers leverage the distributed P2P infrastructure, making their 
presence highly dynamic and live identification difficult.

Figure 5-5: Separation of C2 and Download Channels
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One approach to detect C2 servers is to create a contained environment, for 
example, by using honeyclients, and run malware inside it. The assumption 
is that the malware will infect the contained system and try to contact the C2 
servers for further attack instructions or to download the malware payload. 
The goal is to set custom network policies to deceive the malware by blocking 
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communications from the malware bot to one of the C2 servers so that the mal-
ware bot will enumerate the C2 servers it knows. In this way, the bot further 
reveals its full list of C2 servers. By deploying the contained test environment 
behind a proxy, we can enforce the desired behavior by adding the following 
rules on the proxy:

 ■ Respond with “Name Error” when a DNS request is received. This rule 
is based on the observations that some malware bots have a hardcoded 
list of hostnames or URLs to connect to the C2 servers. The bot needs to 
resolve the C2 server’s IP address before initiating the connection. The 
rule is to trick a malware bot to explore all of its known hostnames or 
domain names for the C2 servers.

 ■ Reply “TCP RST” to all “TCP SYN” requests. This rule is to block TCP con-
nections to C2 servers in case a C2 server is hardcoded with IP addresses. If 
a bot has an embedded list of pre‐defined C2 server IP addresses, then the 
bot might try to reach another one if the current C2 server connection fails.

 ■ Drop all UDP traffic. The consideration of this rule is similar to the TCP 
rule just described. It takes care of the case when the C2 channels are 
using UDP instead of TCP.

The preceding rules can detect certain types of C2 communication when 
the bots themselves know the C2 servers. However, these detection rules are 
ineffective if the bots rely on another layer of redirection servers. In such MDN 
deployments, the bots communicate with a set of redirection servers to obtain 
the hostnames or IP addresses of the actual C2 servers. The aforementioned 
rules block the connections to the redirection servers, and thus the de facto C2 
servers are not revealed. Another rule is implemented in the proxy to deal with 
such cases: drop connections with a payload size greater than m bytes, in prac-
tice, choosing m to be 4K. The consideration in designing this rule is to allow 
C2 control messages to go through but to block further download of malware 
payloads from the exploit servers.

When all of the traffic to and from this contained environment is captured, 
the identified network flows can be filtered to remove the connections to 
well‐known websites (such as the Alexa top 100K domains), leaving only sus-
picious connections to potential C2 servers. Although this is not an efficient 
strategy to decode the C2 communication protocol, nonetheless those suspi-
cious connections can be used to extract and analyze potential C2 requests 
and responses.

Although advanced anti‐detection mechanisms have been adopted by malware 
authors to hide the C2 servers, some features and patterns can be observed 
from uncovered malware campaigns to extract heuristics that will aid in 
detection design. For example, C2 servers usually have redundant deploy-
ments where there are multiple active and backup C2 servers. In addition, to 
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avoid takedowns, those C2 servers span a diverse set of Top Level Domains 
(TLDs) across multiple Autonomous Systems (ASes). The domains are regis-
tered through geographically distributed registrars on multiple continents. 
Applying this property, if we observe a chain of connections each having 
small payloads to a diverse set of servers fitting such a property, then those 
servers are potentially C2 servers. As another example, C2 server domains 
and exploit server domains are often distinct from each other to avoid domain 
filtering. However, to reduce costs, MDNs usually choose the same service 
provider to host multiple malicious servers, including both exploit and C2 
servers. In other words, both malicious domains map into the same provider 
prefixes. Therefore, applying the HIC and redirection graph approach that 
we discussed in the previous section, we can correlate and sort these into C2 
servers that are less connected in an HIC and the exploit servers that are the 
most connected in an HIC.

Detection Based on Download Similarities
This detection method works by inspecting TCP/IP headers, HTTP headers, 
HTTP responses, and a preconfigured number of bytes in the payload. Once 
the HTTP response is identified as containing a download file that is not in a 
configured white‐list, the flow information is recorded along with the request 
URI and a computed hash of a k‐byte block from the payload. These metadata 
records are collected over live networks for a predetermined period of time, 
typically in days.

After the metadata extraction phase, different analysis techniques are applied 
to separate the potential malicious requests into a set of URIs. The first analysis 
aims to detect file mutation, also known as server‐side polymorphism. Malware 
authors use file mutation in their attempt to defeat signature‐based detection 
engines. The same malware file may be modified slightly each time it is served 
so that it has a different hash digest. A single URI that points to different files 
(according to different hash digests), and in a short time span, is a strong indica-
tion of active file mutation taking place on a distribution server.

The second analysis aims to detect fast‐flux. From the metadata, domains that 
host at least one identical file (again according to the file digest) are grouped 
together into a cluster. When multiple domains in the cluster map into the same 
provider prefix, this is a sign of domain fluxing. The goal of a legitimate content 
delivery network (CDN) is to provide a reliable distributed content delivery 
infrastructure. The reliability stems from the fact that the same content is made 
available on different provider networks, in different physical locations, and 
on different physical servers to offer resiliency. Hosting multiple domains on a 
single IP address or on one provider prefix violates one of the basic CDN goals 
and does not seem to have any legitimate reason except for being a symptom 
of fast‐flux.
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Domains that host the same files and belong to the same legitimate CDN 
tend to have the exact same structured directory layout. This characteristic is 
missing from the malicious domain cluster. A legitimate CDN is likely to host 
a variety of contents, and therefore a large number of URIs would be associ-
ated with a legitimate domain, while a malicious domain would have a small 
number of URIs because each malicious domain usually hosts a small number 
of malware files. Similarly, the file types hosted by a regular CDN will show a 
wide variety while the file diversity in malicious domains is poor.

The third analysis aims to identify domains and IP addresses that participate 
mainly in the download of a single executable file. This is typically a symptom 
of domains and IP addresses that are active only in an attack campaign.

The fourth analysis aims to detect drive‐by download domains that are trig-
gered by second‐stage shellcode. This analysis is based on the observation that 
some drive‐by downloads are initiated by the shellcode and result in the HTTP 
header having a User‐Agent that is different from the HTTP header generated 
by the user’s web browser. Therefore, when multiple HTTP requests originate 
from the same IP address and go to the same destination but the requests have 
different User‐Agent values, this is a sign of a malicious download, and the 
destination is potentially malicious.

What remains at the end of these analyses is a set of URIs that are highly 
suspicious. These URIs are then further analyzed using the techniques described 
previously.

Crawlers
The detection methods described in the previous sections are all activated by 
real‐time traffic generated from user‐initiated activities. The necessity for actively 
probing for an MDN in the web infrastructure is motivated by two aspects. First, 
active probing is intended to discover MDNs at large, and traffic from those 
MDNs is not available on premise. In addition, active probing can discover new 
MDNs or those that are in hibernation so that zero‐day or even negative‐day 
protections can be afforded. Second, active probing provides fresh training 
sets to refine classifiers or other machine learning‐based systems. For a rapidly 
evolving malnet, certain indicative features, properties, and components can 
change over time. Compiling the up‐to‐date collection of malnet samples also 
helps us to better understand the new evolution trends taking place in an MDN.

Web crawlers are great tools for collecting malicious URLs and webpages 
as they traverse the web in a systematic way. Typically, web crawlers follow 
hyperlinks to land on as many webpages as possible. The key in designing the 
crawler is efficiency: with numerous pages on the web, the crawler needs to 
proactively filter the non‐malicious links it encounters and focus only on the 
potentially malicious pages. Given the fact that popular search engines also 
crawl the web continuously, an efficient crawler can leverage the existing search 
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engine infrastructure and use it to its advantage to locate the malicious pages 
of interest. The general concept is that the malicious pages share some common 
searchable features, and if the crawler can identify such features from known 
malicious pages, then it can utilize search engines to locate more pages with the 
same features. Those pages in the search results have high probability being 
potentially malicious pages. The more pages the crawler collects, the clearer a 
picture it gets of how malnets structure those pages.

The web crawler starts with a set of known malicious URLs as samples. As we 
discussed in previous sections, lists of such URLs are available from malware 
databases online. The web crawler first needs to visit those URLs and obtain a 
copy of the pages behind the URLs for processing. It is worth noting that the 
crawler extracts common features that are indicators of malicious webpages, 
which is a different approach from the dynamic content rating system we dis-
cussed earlier. In the latter case, the rating is based on the analysis of textual 
content that is visible to the end user, while in the former case, the processing 
covers more elements on the webpages, for example, the embedded links.

An easy‐to‐understand example of an extracted feature is “shared links”. The 
web crawler first processes each of the sample pages and extracts the embedded 
URLs. A link is recorded as a shared link if the link is found on more than one 
page. At the end of this process you have a compiled list of shared links within 
those sample pages, which is an indicator of common malicious features. The 
crawler chooses the most highly referenced URLs (for example, top 10 URLs) 
from the shared‐links list and submits them to the search engines. The search 
results will list other pages indexed by the search engines that have the same 
link. The crawler examines the retrieved pages and excludes the ones that are 
already in the sample pages. The remaining pages in the search results are the 
new pages that have the same malicious feature, that is, the shared links discov-
ered by the crawler. The final step is to add the newly crawled pages into the set 
of sample pages. As the sample page count grows, the crawler will periodically 
process the sample set to try to discover possible new shared links.

There are two particular challenges in implementing the detection crawler. 
The first challenge is server‐side polymorphism. As discussed in Chapter 4, a 
malware page can conceal itself from a crawler by returning benign or legitimate 
content while returning a whole different set of malicious content when it is 
visited by an exploited browser. By employing server‐side cloaking, the exploited 
websites can respond to a crawler by traffic redirection to other benign or legiti-
mate websites. In this regard, server‐side cloaking is another malicious feature. 
Server‐side cloaking is detected if the crawler eventually lands at two different 
TLDs when appearing to be a crawler or browser. Although a legitimate website 
can also deliver targeted contents based on users and exhibits certain levels of 
server‐side polymorphism, it is unlikely that the targeted contents are served 
from different TLDs. The crawler implements server‐side cloaking detection 
by visiting a candidate URL multiple times, each time using a handcrafted 
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HTTP header, in particular, with specific values in the User‐Agent and Referer 
fields. For example, the crawler simulates a click from a Google search result by 
setting User‐Agent as a regular browser, such as Internet Explorer or Chrome, 
and Referer as a Google search query URL. Then the crawler may simulate a 
Google crawler by setting User‐Agent to Googlebot or Googlebot‐News, which 
may experience a chain of redirections before reaching the final page. The 
crawler compares the TLDs in both cases and identifies server‐side cloaking if 
the TLDs are different.

The second challenge in implementing a detection crawler is to collect the 
malicious URL samples. Free online databases are good sources, but due to 
the short lifetimes of malicious domains, a good portion of the URLs listed in 
those sources are outdated and are no longer valid when they are made available 
online because the hosts were either taken down or abandoned. Therefore, a 
key aspect in crawler implementation is to find live MDN campaigns that con-
trol and distribute malicious URLs. Search engines provide tools to show the 
up‐to‐date statistics and live trends of popular keywords, such as Google Hot 
Trends, Twitter hot hash tags, and so on. The same tools are also used by SEO 
and SEP campaigns to attract traffic onto malicious landing pages. Therefore, 
the keywords in the live trends are potential malicious features. In this case, the 
crawler searches the keywords through search engines and returns with links 
to a list of pages in which there are potential MDN landing pages. The crawler 
then leverages other techniques (for example, server‐side cloaking detection) 
to evaluate whether those links are malicious.

A detection crawler is best deployed together with other MDN detection 
systems. On one hand, other detection systems can further filter the crawling 
results and hence improve crawling efficiency and quality. In particular, a URL 
reputation system can help to shorten the list of potential malicious URLs, and a 
content analysis system can provide high‐accuracy detection on contents behind 
those URLs if the links eventually lead to file downloads. On the other hand, 
the crawler can be utilized as an exploration tool to probe for MDN infrastruc-
tures. For example, one important property of MDN infrastructure is that the 
dedicated malicious HICs are highly intertwined and highly connected with one 
another. Applying this property, the crawler, when encountering the hosts in the 
malicious HICs, can then try to explore all of the links that originate from that 
host because those links most likely point to other hosts in the same or related 
HICs that serve as the backbone of the malicious infrastructures.

Detecting Malicious Servers with a Honeyclient

A honeyclient, also called a client honeypot, detects attacks and malware by 
simulating a vulnerable client application and actively interacting with remote 
servers. This client‐side approach is different from traditional honeypots, which 
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simulate vulnerable server applications and then wait passively for incoming 
attacks. Although the concept of a honeyclient can be extended to any type 
of client application the power and popularity of browser‐based attacks have 
made web browser honeyclients by far the most common type of honeyclient. 
Web browser honeyclients mimic a user browsing a list of websites and then 
analyze the activity to identify websites that exploit vulnerable web browsers 
or browser plugins. This section will provide an overview of browser honey-
clients, discuss the design trade-offs using popular honeyclient implementa-
tions as examples, and conclude with some of the challenges and alternative 
analysis techniques.

High Interaction versus Low Interaction
Similar to other types of honeypots, honeyclients can be divided into two main 
categories: high interaction and low interaction. The major difference between 
the two is that high‐interaction honeyclients use real applications, on a real 
operating system, and sometimes even on real hardware, while low‐interaction 
honeyclients use software to simulate the vulnerable client applications. For 
example, in the original honeyclient implementation, the honeyclient drives a 
real Internet Explorer browser running on a Windows host to visit the malware 
websites and closely monitors memory, files, and Windows registry entries 
in real‐time. In such cases where unexpected modifications and changes are 
observed, a malware attack is recorded, and the web page is flagged. On the other 
hand, low‐interaction honeyclients simulate only the critical parts of the browser 
and operating system required to detect the types of attacks they’re looking 
for and are often run on a different operating system than the vulnerable sys-
tems they are simulating. Because low‐interaction honeyclients do not require 
the full application or operating system to be running, they are lightweight in 
nature and are typically easier to deploy.

Although high‐interaction honeyclients generally give better detection rates 
and lower false positives, they are more difficult to implement on a large scale 
due to the amount of resources it takes to deploy a single full system and the 
exploding combinations of deploying each possible browser type with various 
configurations. On the other hand, low‐interaction honeyclients are generally 
simpler to deploy on a large scale due to their lower resource overhead and ease 
of creating different configurations, but they have lower fidelity because they 
are only implementing a subset of the possible client capabilities. In an attempt 
to close this gap, hybrid honeyclient implementations have been proposed to 
gain the advantages of both high‐interaction and low‐interaction honeyclients. 
The challenge faced by such hybrid systems is usually in the complexity of 
combining multiple approaches.

In the following section, we give two examples that show how honeyclients 
work in detail. Note that although the particular honeyclients we discuss are 
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designed with certain unique features, they reflect many of the common design 
elements shared by other honeyclient implementations.

Capture‐HPC: A High‐Interaction Honeyclient
Capture‐HPC is a popular open‐source implementation of a high‐interaction 
honeyclient. It uses a dedicated virtual machine running Windows and Internet 
Explorer to interact with suspected malware webpages and monitors the system 
for unauthorized state changes to detect attacks. There is no other user activity 
occurring on the virtual machine, so activities that are not typical of normal 
web browsing behavior—such as sensitive file system changes or modifica-
tion of registry key entries—can be flagged as strong indications of malware 
exploiting the web browser.

Capture‐HPC is implemented using client‐server architecture. The Capture‐
HPC clients are specially instrumented Windows executables and reside inside 
the guest operating systems to drive the browser and detect activity. A VMware 
ESXi server is used to host a number of Capture‐HPC clients and is managed by 
the Capture‐HPC server, which runs on a separate host. The Capture‐HPC server 
communicates with both the VMware servers and the Capture‐HPC clients via 
TCP using XML messages. For example, the Capture‐HPC server can instruct a 
client to open a specific browser and visit a particular website. The server can 
also request the client to send activity data back to it for further processing. 
Capture‐HPC uses the VMware APIs to communicate with the VMware server 
to control each of the guest VM instances, such as starting and stopping a VM 
instance. In the event that a Capture‐HPC client detects and reports malware, 
the guest operating system is then considered infected, and the Capture‐HPC 
server will instruct the VMware server to restore the guest VM to a clean snap-
shot before dispatching further tasks to that Capture‐HPC client. Figure 5-6 
illustrates the structure of the Capture‐HPC system.

The Capture‐HPC client detects malware by monitoring changes on the file 
system, the Windows registry, and the running processes. To do so, special 
kernel drivers are installed on the guest operating system. These kernel drivers 
implement a set of kernel callback functions, which are invoked when certain 
events occur during execution. In Capture‐HPC’s implementation, four call-
back functions are provided to monitor the system state: CmRegistryCallback, 
FilterLoad, FltRegisterFilter, and PsSetCreateProcessNotifyRoutine. When 
the Capture‐HPC client program starts, it loads the kernel drivers together with 
a user space buffer. When a monitored event is received, the drivers invoke 
the callback functions and copy the actual event information to the buffer so 
that the client program can process it in user space. It is possible that certain 
events are received as a result of legitimate operations such as writing to the 
browser’s cache, and therefore the events are compared with a whitelist of 
events and “normal” events are ignored. In addition to communicating with 
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the specialized kernel drivers, the Capture‐HPC client also monitors network 
I/O on the guest VM. It stores the network activity as packet capture files and 
sends them to the server when malware is detected. Capture‐HPC is capable of 
driving multiple browser instances inside a single VM concurrently in order to 
parallelize execution and speed up the detection process.

Figure 5-6: Capture‐HPC Server/Client VMware Structure
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Capture‐HPC presents a good example of some of the key design concepts 
in high‐interaction honeyclients:

 ■ High‐interaction honeyclients are typically virtual machines‐based. This 
approach makes it easier to start and stop the honeyclients and revert 
them to a clean state when the system is infected.

 ■ High‐interaction honeyclients are instrumented to monitor sensitive system 
events in order to detect possible evidence of malware infections. Besides 
the kernel drivers approach seen in Capture‐HPC, it is possible to intercept 
system calls using hooks in the System Service Dispatch Table (SSDT) or 
to directly hook in Windows API calls inside the browser process. Newer 
methods of event monitoring, known as VM introspection, can even monitor 
events without modifying the guest operating system at all. These methods 
achieve event‐monitoring goals by instrumenting the virtual machine 
and inspecting raw CPU instructions, memory, and hard drive to detect 
sensitive events. By leaving the guest operating system unmodified, VM 
introspection is harder to detect by malware but requires significantly 
more effort to detect and understand the context of the events.
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Thug: A Low‐Interaction Honeyclient
Thug is a popular low‐interaction honeyclient implemented in Python. It does not 
use actual browsers for its analysis but instead mimics the behavior of vulner-
able web browsers. In other words, Thug only simulates the core functionality of 
a web browser without relying on features from the underlying operating system.

Thug works very efficiently using Python to collect and analyze malicious web 
pages. To emulate different browser configurations in an HTTP request, Thug 
sends modified HTTP header fields and uses individually configured “personal-
ity” components to mimic a specific web browser. The browser personality may 
also be configured with specific plugin versions such as Java, Flash, or Acrobat, 
as well as modifying certain DOM or JavaScript behaviors.

A webpage is analyzed using Thug’s DOM interpreter when that webpage 
is retrieved using the URL. It is then prepared for further analysis. Thug has 
specialized modules to detect exploits for plugins such as Acrobat, Java, Flash, 
and ActiveX, and can also analyze arbitrary JavaScript code to inspect it for 
malicious activity. Thug uses the Google V8 JavaScript engine to perform both 
static and dynamic analysis on all JavaScript code encountered. In this dual 
approach, static analysis is used to identify high‐value locations in the code to 
insert breakpoints, and then dynamic analysis is used to examine the environ-
ment once the code has been executed up to each breakpoint. Using this method, 
they can perform complex analysis, such as shellcode or heap spray detection, 
without significantly impacting performance. Because Thug uses a full JavaScript 
engine and DOM interpreter, it is capable of detecting and handling various 
types of obfuscation and can construct the page for additional analysis. The parse 
results usually contain more URLs to be analyzed, which can then be used to 
gradually crawl the web until an exploit is detected or a depth limit is reached.

Due to the lightweight implementation of Thug, it is possible to further emulate 
specific vulnerabilities to pinpoint the attack vectors that are otherwise harder 
to configure using a high‐interaction honeyclient. For example, if browser vul-
nerability is exploited only with certain Windows language packs, it requires a 
high‐interaction honeyclient to load such language packs one by one, which is 
time consuming. However, with Thug, because the browser is simulated, this 
requires only a few lines to be changed in the personality profiles.

Designing honeyclients to detect malware has drawn the attention of research-
ers from all over the globe, and there are many additional implementations not 
discussed in this chapter. For more information, visit The Honeynet Project 
website, which maintains a list of historical and ongoing honeyclient projects.

Evading Honeyclients
Honeyclients face many challenges when deployed to combat malware. In 
particular, they are prone to detection and evasion. Malware can adopt certain 



 Chapter 5 ■ Malnet Detection Techniques 155

evasion techniques to detect whether a honeyclient is running and then modify 
its behavior to avoid detection, such as attacking only if the malware cannot 
detect the presence of the honeyclient.

VMware ESXi server has become a key ingredient in the migration to cloud 
computing. Because the majority of high‐interaction honeyclients run on vir-
tual machines, VMware ESXi makes a perfect virtualization environment to 
facilitate honeyclient implementations. Although cloud‐based applications 
are likely running on an ESXi‐based virtual machine, however, regular end 
users running the browser are likely to be in a non‐virtualized environment. 
The malware tries to detect the presence of VMware ESXi before deciding 
whether to attack.

Although the JavaScript and HTML provided by the malware cannot directly 
access the file system, it is nonetheless possible to exploit certain dated browsers 
or new browser vulnerability to check the existence of certain files. In the ESXi 
case, one file to check for is C:\Program Files\VMware\VMware Tools\vmtoolsd.
exe. To perform such a check, the malware page simply tries to load the VMware 
file as a source script. If the file does not exist, JavaScript throws a runtime error; 
otherwise, the file is found and loaded. Obviously, although JavaScript cannot 
load the binary file because of incorrect file format, it nonetheless offers a viable 
way to detect if the system is running on top of VMware ESXi. Because no actual 
attack is launched, this type of file existence check is usually overlooked. To 
avoid browser caching, some random data, such as current time, is appended 
to the filename of the checked file. The JavaScript snippet is listed as follows:

var is_esxi = 1;
var el = document.createElement('script');
el.id = "111";
el.type = "text/Javascript";
el.src = "res://C:\\Program%20Files\\VMware%20Tools\\vmtoolsd.exe";
el.src += "?"+new Date().getTime()+Math.floor(Math.random()*1000000);
el.onerror=function(){if (el.onerror) is_exsi = 0;};
document.getElementByTagName("head")[0].appendChild(el);

Using the preceding concept, the malware page can also detect whether 
a honeyclient is installed on the system. For example, in Capture‐HPC, 
the executable file of the honeyclient is located at C:\Program Files\Capture\
CaptureClient.exe. Similarly, if the honeyclient requires certain DLL files, 
the malware page can check for their existence as well. Honeyclients will 
not have enough protection from this type of file existence detection without 
dynamically naming their required files and moving them around.

More advanced VM detection mechanisms enable a browser to intelligently 
determine if it is running on a VM. Red pills refer to code that is designed specifi-
cally for detecting if it is running inside a VM or a CPU emulator. Browser‐based 
red pills monitor the timing difference in I/O operations, thread operations 

res://C:\\Program%20Files\\VMware%20Tools\\vmtoolsd.exe
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including thread creation and inter‐thread communication, and graphics render-
ing. When the same operation is performed repeatedly over thousands of times, 
completion time variations start to emerge, depending on whether the browser 
is running on a native physical host or on a virtual machine. Browser‐based 
red pills are easily coded using JavaScript and can be used by malware pages 
to detect the existence of the underlying VM. The honeyclient would need to 
be able to first evaluate the JavaScript content of the webpage in order to detect 
the presence of browser‐based red pills.

Various countermeasures have been proposed and put into practice in 
honeyclients to avoid malware evasion and detection against virtual machines. 
A hypervisor is a combination of software and firmware that together facili-
tates the creation and execution of virtual machines. A Type‐1 hypervisor, also 
known as a bare‐metal hypervisor, runs directly on top of the hardware and 
manages the hardware directly to facilitate the execution of a guest operating 
system. The guest operating system accesses the underlying hardware through 
the hypervisor. VMware ESXi server is a typical example of a Type‐1 hypervisor. 
A Type‐2 hypervisor is one that runs inside a conventional operating system. 
The regular operating system owns and manages the underlying hardware. 
With a Type‐2 hypervisor the guest operating system accesses the underlying 
hardware first through the hypervisor, followed by the hypervisor accessing the 
hardware through the hosting OS. VMware client is a representative example 
of a Type‐2 hypervisor.

To avoid malware detection against Type‐2 hypervisors, transparent analy-
sis systems are proposed to run the honeyclients directly on bare‐metal 
hardware. Because the transparent systems do not have in‐guest monitoring 
components, detection is done by comparing the disk‐level statistics with the 
initial clean state. Such comparison and analysis is non‐trivial and difficult 
to perform in real‐time. In addition, user activities are difficult to simulate 
on transparent systems, which can sometimes be used by malware to detect 
the honeyclients.

Cloaking is another common approach malware employs to avoid detec-
tion by a honeyclient. By cloaking, the malware pages do not launch attacks 
and act as if they are benign if some conditions are met. For example, the 
malware page may match the User‐Agent type in the HTTP header to a list of 
exploitable browsers and only choose to launch a drive‐by download attack 
if the User‐Agent matches one on the list. In addition, the Referer value in 
the HTTP header indicates where the URL link comes from. A malware cam-
paign may keep a list of domains and host names where the malicious links 
are hosted on and check the HTTP Referer value on the requests from the 
honeyclient. If they do not match the expected Referer values, then the attack 
is not launched. Oftentimes in a honeyclient implementation, the malicious 
URLs are compiled by an external database and fed to the browser instances 
for an exploitation check. Although it is feasible to program certain HTTP 
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header values, such as the User‐Agent, it is not always possible to do so for 
every possible combination. After all, the honeyclient cannot set certain 
fields in the header, such as the referer, if it does not know what the expected 
values are.

The following code snippet is an exploit, found in the wild, which avoids 
the honeyclients. The code issues a load of an ActiveX control object, called 
yutian, which simply is known to be nonexistent. When the browser loading 
fails, that exception is caught by the wrapper code that subsequently executes 
the obfuscated true malicious code. Such honeyclient avoidance techniques can 
easily defeat a low‐interaction honeyclient because the honeyclient itself usually 
emulates the library API calls of ActiveX and does not catch exceptions; thus, 
the malware remains dormant within the honeyclients.

try {
  new ActiveXObject("yutian");
} catch (e) {
var nop="%uyt9yt2yt9yt2";
var nop=(nop.replace(/yt/g,""));
var sc0="%ud5db%uc9c9%u87cd...";
var sc1="%"+"yutianu"+"ByutianD"+ ...;
var sc1=(sc1.replace(/yutian/g,""));
var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";
var sc2=(sc2.replace(/yutian/g,""));
var sc=unescape(nop+sc0+sc1+sc2);
}

There are numerous other evasion techniques that malware uses to invali-
date or cripple the honeyclient. In one interesting trick, the malware hibernates 
until the mouseover event to trigger the attack. This works because real users 
almost certainly move the mouse around when browsing, while honeyclients 
do not. Moreover, a technique called Reflective DLL injection can remotely load 
a malicious library from the shellcode and create a thread attached to the run-
ning browser. Because no new process is spawned, the additional thread is 
created unnoticed. The newly created thread can then potentially participate 
in a botnet until the browser process is terminated. This type of evasion does 
not access the file system or modify the running processes and thus can defeat 
many high‐interaction honeyclients like Capture‐HPC. The evasion is further 
complemented by browser cache poisoning, in which the cached JavaScript files 
are edited and appended with a code snippet that redirects the browser to fetch 
the injection library. This evasion will succeed even after browser restarts or 
even reboots.

Code obfuscation is one of the most common techniques to evade malware 
detection. By adding code obfuscation, the malicious piece of code is hidden 
in a chunk of scrambled scripts. The obfuscated code is still executable but is 
much harder for a human to read, understand, and reverse‐engineer.
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Summary

The malnet detection methodologies and approaches we have discussed in this 
chapter are fundamental knowledge in building malware and malnet defense 
systems. In practice, no single solution is capable of detecting all types and 
variations of malwares or malnets. Therefore, building a multi‐layered detec-
tion and defense system that is comprised of different techniques, as depicted 
in Figure 5-7, is essential in combating today’s threats.

MDN

Internet1

2 4

7

6

5

3

Search Engines

Crawler

URL Filtering

Content Analysis

Honeyclients

Cloud-Based Malnet Intelligence

Enterprise Malnet Protection

Retrospective AnalysisSecurity and Policy Enforcement Points

Firewall IDS Security Proxy Browser
Plugins

Malnet Databases

Subs
crib

e
Update

Figure 5-7: Multi‐layered Defense Architecture
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In the example solution system of malnet intelligence, crawlers constantly crawl 
(①) the web for malicious URLs that lead to an MDN. The URLs are filtered and 
fed into search engines to explore other related malicious URLs (②). With the 
captured list of malicious URL candidates, content analysis systems and other 
detection systems (③) are employed to detect malware and probe malnets. The 
results are composed in a database (④). The processes repeat perpetually and 
these components become the cornerstones of the cloud‐based malnet intelli-
gence. Enterprises are ideal subscribers of this cloud‐based malnet intelligence 
(⑤) service. Security and privacy enforcement points—such as firewalls, secure 
proxies and web gateways, IDS, browser plugins, and so on—that either are 
located inside the perimeters of the enterprise network or reside in the end 
user hosts can obtain real‐time updates from the malnet intelligence service to 
constantly protect enterprise users from malware attacks. On the other hand, 
the enterprises are contributors to building better and more comprehensive 
malnet intelligence. The on‐premise malware retrospective analysis systems 
mine the enterprise network traffic (⑥) and proactively collaborate with (⑦) 
the malnet intelligence cloud to identify new threats. We discuss retrospective 
analysis systems in Chapter 8.
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A secure proxy possesses detailed knowledge about specific protocols and appli-
cations. This knowledge enables a proxy to examine network traffic thoroughly, 
conduct deep content analysis, perform data transformation, and manipulate 
connections and transactions, essentially applying every technique at its dis-
posal to enforce defined security policies. A proxy is deployed at a vantage point 
that enables it to filter undesirable payloads, alert network administrators and 
security teams of policy violations, log user activities, and prevent confidential 
information leakage.

A proxy is commonly deployed collaboratively with other security solutions 
such as a data loss prevention solution, antivirus engine, and sandbox malware 
analyzer, and with systems that are essential to enterprise network operations 
such as an authentication server and a mail server. Together, these solutions 
offer a unified and layered security defense infrastructure against modern‐day 
cyber threats conjured by black hats.

Chapter 3 examines the inner workings of a secure proxy’s policy engine 
and discusses the general concepts behind a policy system, its policy lan-
guage, and the intricacies of policy execution against transactions. In this 
chapter, we will provide example scenarios with specific security goals and 
explain how to implement those security goals using a real‐world secure 
policy system.

C H A P T E R 

6

Writing Policies 
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Overview of the ProxySG Policy Language

In this chapter, we use the Blue Coat ProxySG policy language as our primary 
reference for discussing the constructs of a policy language. Examples that 
are shown in normal font are available in the ProxySG policy language, while 
examples that are shown in italics are conceptual policies that are not found in 
ProxySG. Let us first define the important terms that we will use frequently 
throughout this chapter:

 ■ Transaction – A transaction is an information container that encapsulates 
the client request, server response, transaction processing states, policy 
decisions, and variables that provide runtime information that is gathered 
from the client‐request and the server‐response for the purpose of policy 
evaluation and enforcement. The transaction object is created when the 
proxy first intercepts a client request, and a set of default policy decisions 
are set in the transaction.

 ■ Condition – A condition is a logical expression that tests one or more variables 
against specific values. If a match is found, then the logical expression 
evaluates to true; otherwise, it evaluates to false. The variable is called a 
condition variable. Examples of condition variables are “user login time” 
(user.login.time), “virus detected” (virus_detected), and “content 
category of the request URL” (server_url.category).

 ■ Property – A property is a setting that controls how the proxy processes a 
transaction. Examples of properties are “authenticate user in a specified 
realm” (authenticate(yes)) and “request client certificate during SSL 
negotiation” (client.certificate.require(yes)). The value of a prop-
erty is set when its associated condition evaluates to true. For example, 
this policy states that “if the user is Bob” (testing condition “user” against 
value “Bob”), then require the client to include its certificate during the 
SSL negotiation phase.

 ■ Rule – A rule contains a set of conditions and properties. All of the proper-
ties are set if all the conditions in this rule evaluate to true. The order of 
the conditions and properties in a rule is irrelevant, but rules are executed 
sequentially.

 ■ Layer – A policy layer is a logical container that groups a set of rules, where 
one decision will be made out of all the rules in the same layer. A layer 
starts with a layer name enclosed in < >, and it is named according to the 
policy engine component that executes the rules in that layer. For example, 
a <proxy> layer contains policy rules that control the transaction, and an 
<admin> layer contains policy rules that apply to management of the proxy 
device. Because a layer stops processing once a decision can be made, the 
order of the rules in a layer is important. The more specific rules should 
come before the less specific rules.
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 ■ Definition – A definition is a collection of conditions, policies, or other policy‐
related objects, which is customized to provide clarity and context so that 
this definition can be referenced in a policy rule by its alias in order to 
simplify the syntax and to facilitate code reuse. For example, if a condition 
matches an IP address against a list of predefined IP addresses, then it 
is generally a good idea to separately define this list of IP addresses as a 
definition and appropriately name the list as “IP Addresses in Building 
A” or “Finance Department”.

A policy can be generalized to have the following format, where N is 
the number of conditions in a rule, and M is the number of properties in this 
rule:

<layer-1>
condition1.1 condition1.2 … condition1.N
property1.1 property1.2 … property1.M
condition2.1 condition2.2 … condition2.N
property2.1 property2.2 … property2.M

All of the conditions and properties in the same rule are implied to be 
logically connected by an AND relationship, while all of the rules in the same 
layer are implied to be logically connected by an OR relationship. Therefore, 
each layer can reach only one decision, even though a decision can consist of 
multiple properties. Semantically, the policy layer just shown can be interpreted 
as follows:

<layer-1>
   condition1.1 AND condition1.2 … AND condition1.N
   property1.1 AND property1.2 … AND property1.M
OR condition2.1 AND condition2.2 … AND condition2.N
   property2.1 AND property2.2 … AND property2.M

Another way to state these rules in the layer is as follows:

<layer-1>
   If (condition1.1 is True) AND
      (condition1.2 is True) AND …
      (condition1.N is True)
         Then
             (set property1.1 to value A) AND
             (set property1.2 to value B) AND …
             (set property1.M to value M)
   Else If (condition2.1 is True) AND
           (condition2.2 is True) AND
             (condition2.N is True)
         Then
             (set property2.1 to value A) AND
             (set property2.2 to value B) AND …
             (set property2.M to value M)
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From this example it is clear that when the number of conditions is large, 
the policy rule becomes difficult to read and maintain. This is where policy 
definition becomes useful to bind these conditions into a single set that can be 
referenced as a whole, as in the following example:

define condition CONDITION_GROUP_1
   condition1.1
   condition1.2
   condition1.3
   …
   condition1.N
end

<layer-1>
condition=CONDITION_GROUP_1 property1.1 property1.2 … property1.M

It is also possible to apply a condition to a layer so that every rule in this layer 
is subject to the evaluation result of this condition. This is called a layer guard. 
The layer guard is a condition that is written on the layer line right after the 
end of the angle bracket:

<layer-1> condition=LAYER_GUARD_CONDITION
condition=CONDITION_GROUP_1 property1.1 property1.2 … property1.M

This is semantically equivalent to applying condition=LAYER _ GUARD _  
CONDITION to every rule inside this layer, but the policy engine can typically 
optimize its execution by skipping the layer entirely when the layer guard 
condition does not match.

Scenarios and Policy Implementation

Every enterprise defines network usage and Internet web access policies as 
part of its security posture. These policies govern the online behavior of each 
enterprise user. For example, they restrict user access to content and websites 
that are not relevant to employees’ job duties or that may be legal liabilities to 
the enterprise, and they dictate the actions that are executed by the proxy to 
enforce the defined policies. We will begin with the most basic security policies 
and gradually evolve the examples into more complicated scenarios as new 
policy concepts are introduced.

Web Access
In the first example, an enterprise states in its web access policies that employees 
must not be allowed to access websites that are classified as adult websites 
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because they contain adult content or are gambling sites. The IT security team 
implements this guideline by first defining the required policies into the proxy 
as shown in the following policy rules. Note that we include the line numbers 
in the policy examples so that the annotation can reference the specific rule 
that is under discussion. These line numbers would not be present in an actual 
policy file.

1 <proxy>
2 url.category="Adult Content" deny
3 url.category="Gambling" deny
4 allow

The first two rules (lines ② and ③) state that any transaction that is intercepted 
by the proxy, which requests web access to a URL that is categorized as either 
Adult Content or Gambling, must be denied, while all other types of transac-
tions are allowed. If a user tries to access a site that contains adult material, he 
will get an error page in the browser that indicates that access has been denied. 
Typically the error page, commonly known as a coaching page, contains the rea-
son for denial and advises the user to consult the corporate policies regarding 
online activities and behaviors. The last rule (line ④) is unconditional; that is, 
there is no associated condition, and therefore it is always executed by the policy 
engine. This is known as a catch‐all statement that acts as the default policy for 
transactions that do not match a specific rule.

The way this policy is written to broadly allow transactions that do not explic-
itly match the forbidden categories is user friendly; however, it may introduce 
security loopholes. A secure proxy should be paranoid about what it does not 
know and what it cannot see. Having a default allow policy is subject to content 
leakage and may create unintentional access exceptions due to poorly written 
rules or to simple coding errors in the logics. A more conservative and restric-
tive security practice, however, is to use deny‐all as the default statement and 
explicitly state only those specific activities and content that are permissible.

Now assume the Human Resources (HR) department has enhanced corporate 
policy to comply with privacy laws without compromising the existing secu-
rity policies. The HR department demands that anyone who attempts to access 
inappropriate content should be notified first that this enforcement is in place, 
and their network activities, when not compliant with company policy, will be 
logged and reported to HR. Anyone who knowingly continues after having 
been coached about acting appropriately as an employee constitutes an explicit 
consent to be monitored because that employee is exhibiting a willingness to 
violate corporate policies.

1 <proxy>
2 service.name=HTTP exception(coaching_page)
3
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4 <proxy>
5 url.category="Adult Content"
     exception(inappropriate_warning_page)
     access_log(inappropriate_log)
6 url.category="Gambling"
     exception(inappropriate_warning_page)
     access_log(inappropriate_log)
7 allow access_log(main_log)

The policy now contains two layers: the first layer (the first occurrence of 
<proxy>) is responsible for presenting the coaching page when any user browses 
the web; the second layer (the second occurrence of <proxy>) denies access to 
inappropriate URLs and logs both the URL and the IP address from where the 
request was issued. In this example, we introduce two new elements of the 
policy system: multiple layers and the property parameter. In the policy rule on 
line ②, exception() is a property, and coaching _ page is the property parameter. 
A property parameter such as coaching _ page allows a customized web page 
that contains more information regarding the transaction to be displayed to 
the end user.

Recall that a layer is a logical group that binds multiple policy statements 
within a context, and only the first statement with matching conditions is 
executed. In this case the first required action to be applied after intercepting 
a web connection is to present a coaching page to inform the user that access-
ing inappropriate content will be logged. The coaching page should give each 
user an opportunity to review the privacy agreement and decide whether to 
accept the terms. Policy layers enhance the structure of the policy design by 
facilitating a clear logical separation of the different conditions and actions that 
should be applied to different stages of a transaction. For example, the coach-
ing page is presented to the user at the very beginning of the transaction, at 
the connection establishment phase. Upon intercepting an HTTP connection, 
instead of directly contacting the server, the proxy interrupts the transaction 
by serving an exception page (line ②). An exception page is essentially a web 
page that is generated and served by the proxy to inform the user of why it 
is unable to fulfill a request. The same mechanism is used to inform the user 
that a monitoring device is put in place, and the “Yes” and “No” buttons for 
“Accept terms and conditions” are embedded inside the exception page for 
the user to choose from.

The policy statement on line ⑤ contains one condition and two actions. 
A simple deny action is now replaced by an action to “generate an exception 
page”, and the parameter for this action specifies that the content for the 
exception page comes from inappropriate _ warning _ page. The parameter 
tells the policy engine to deny web access by presenting a warning page, 
whereas the previous deny action simply closes the connection. This excep-
tion page in the second policy layer is not interactive, and the user request 
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is terminated once the exception page is served to the user’s browser. The 
second action in this policy rule records the user request to the access log 
file named “inappropriate _ log”, which is a separate log file intended to 
contain only users who have attempted to access inappropriate content. 
Any other web access is permitted and is logged in the main access log as 
defined on line ⑦.

Line ⑤ and line ⑥ are essentially the same policy except for the matching 
category. The number of URL categories can quickly become too large to man-
age this way. A better approach is to combine these rules and create a combined 
condition such as this:

define condition inappropriate
    url.category="Adult Content"
    url.category="Gambling"
end

The combined condition can transform the rules on line ⑤ and line ⑥ into a 
single statement:

condition=inappropriate
    deny(inappropriate_warning_page)
    access_log(inappropriate_log)

Access Logging
The proxy access log is an important data repository containing the history 
of transactions, on which analysis can be performed to derive user activities 
and behaviors. The proxy administrator specifies which pieces of informa-
tion from the transaction are written to the access log at the end of each 
transaction.

An access log has a structured format. The Extended Log File Format (ELFF) is 
widely adopted by various types of security devices including ProxySG. With an 
ELFF‐formatted access log, each log line corresponds to a transaction. Each log 
line contains a list of field identifiers, or just fields, with each field corresponding 
to a transaction variable. For example, the following access log tracks the client 
IP address, time of the request, and server URI:

#Fields: time c-ip s-uri
00:01:23 192.168.1.10 /login.html

In this log, time, c‐ip, and s‐uri are referred to as the transaction variables, 
namely, the time when a transaction began, the client’s IP address, and the 
requested URI. Every field consists of a prefix, such as c or s, and an identifier, 
such as ip or uri, connected by a hyphen (‐). The prefix c indicates that the field 
belongs to the client side of the transaction, while the prefix s indicates that the 
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field belongs to the server side of the transaction. Although all of the possible 
prefixes are given in the following list, the number of possible combinations of 
prefix and identifier is too large to enumerate here. Always refer to the ProxySG 
product manual for a complete listing of fields that are suitable for capturing 
the desired information.

 ■ c refers to the client.

 ■ s refers to the server from the client’s perspective; the physical endpoint 
for s could be the proxy.

 ■ r refers to the server (remote destination) from the proxy’s perspective; 
this is the original destination of the client’s request.

 ■ cs is client to server, from the client’s perspective.

 ■ sc is server to client, from the client’s perspective.

 ■ rs is remote destination to proxy, from the proxy’s perspective.

 ■ sr is proxy to remote destination, from the proxy’s perspective.

 ■ x is the custom identifier.

Notice that there are two prefixes that refer to the destination: s for server, 
and r for remote. The server prefix refers to the server (or destination) part of the 
incoming connection that is originated from the client; the remote prefix refers 
to the server (or destination) part of the outbound connection that is originated 
from the proxy. The s‐ip and r‐ip fields may or may not have the same value, 
depending on the network topology. For example, if the proxy is deployed as 
an explicit proxy, all of client’s web requests are directed towards the proxy’s IP 
address. In this case, s‐ip of a transaction is the proxy’s IP address, and r‐ip is 
the original web server’s IP address. If a proxy is deployed transparently inline, 
the s‐ip field and the r‐ip field may be identical.

Access logs are typically used to analyze and discover events that have taken 
place. The amount of information that may be derived from the access log 
depends on the number of fields in a given transaction that have been selected 
by the security team for access logging. Having detailed information about a 
transaction is important, but how such information is going to be leveraged is 
unknown when the access log is created. The following is an example list of 
fields that have been selected for access logging:

       date time time-taken c-ip sc-status s-action sc-bytes \
       cs-bytes cs-method cs-uri-scheme cs-uri-port cs-uri-path \
       cs-uri-query cs-host rs-content-type \
       cs-user-agent sc-filter-category s-ip r-ip

Most of the field identifiers are self‐explanatory based on the prefix and the 
field name. Let’s take a sample log entry based on this field selection list to 
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illustrate how we can read the access log to extract useful information about a 
specific transaction:

2014-12-10 21:40:19 78 10.9.45.28 200 TCP_NC_MISS 1025 1916 GET http 80
/.element/ssi/www/breaking_news/3.0/banner.html ?s=25ea5t1a www.cnn.com
text/html "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36"
News/Media 10.9.45.21 63.140.35.161

This log entry provides enough information to reconstruct what happened 
in this transaction. Based on date and time, we know that this transaction 
occurred on December 10, 2014, at 21:40:19. The total time taken to complete 
the transaction, provided by the time‐taken field, was 78 milliseconds. This 
transaction was initiated from a client machine with IP address 10.9.45.28 based 
on the value of the c‐ip field. From the value (TCP _ NC _ MISS) of the s‐action field 
we can deduce that the proxy examined the server response and discovered 
that the origin server requested that the proxy not cache the returned content. 
This server‐to‐client data transfer totaled 1025 bytes, while client‐to‐server data 
transfer totaled 1916 bytes according to sc‐bytes and cs‐bytes, respectively. The 
next six fields—cs‐method, cs‐uri‐scheme, cs‐uri‐port, cs‐uri‐path, cs‐uri‐query, 
and cs‐host—together allow us to reconstruct the request URI, which in this 
case was

http://www.cnn.com/.element/ssi/www/breaking_news/3.0/
banner.html?s=25ea5t1a

The field rs‐content‐type tells us the MIME type of the requested content was 
“text/html”. The browser that requested this page was the Chrome browser, as 
shown in the cs‐user‐agent field. The URI requested was categorized as “News/
Media”, as seen in sc‐filter‐category. The server IP was the proxy’s IP address, 
which was 10.9.45.21, given by s‐ip; the original content server’s IP address was 
63.140.35.161, given by the r‐ip field.

Although this access log contains a lot of useful information if the objective 
is to track which user accessed what content at any given time, during a virus 
outbreak this log does not provide sufficient data to determine which devices 
may have retrieved malicious content and which servers may have been com-
promised. When a proxy and a dedicated virus scan appliance are deployed 
as a collaborative security solution and policies have been written to redirect 
specific content for scanning by the antivirus appliance, the scanning results can 
be recorded in the x‐virus‐id field, and the output can be written into a separate 
log file. Consider the following example policy:

1 <content>
2 virus_detected=yes access_log(main_log) access_log(virus_log)
3 access_log(main_log)

http://www.cnn.com
http://www.cnn.com/.element/ssi/www/breaking_news/3.0/
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This example policy produces a “virus_log” file that contains virus scanning–
related information, including the field x‐virus‐id. A sample virus log is shown 
here, which includes the virus identifier of the detected virus, and the URL 
where the infected content was downloaded:

# date time cs-host cs-uri-path rs-content-type s-ip x-virus-id
2014-12-10 21:40:19 www.cnn.com /.element/ssi/www/breaking_news/3.0/
banner.html text/html 63.140.35.161 trojan-virus-1

Logging all possible fields for each transaction will consume a consider-
able amount of CPU resources and memory, as well as disk space. The perfor-
mance impact depends on the transaction volume being processed by the proxy. 
Information overload is problematic for security analysts who try to deduce 
attack vectors and identify victims of malware infection. The large volume of 
data could overwhelm the security analysts and cause distractions that obscure 
relevant evidence.

User Authentication
In the previous example, the defined policy indiscriminately disallows any 
access to web content that is classified as either “Adult Content” or “Gambling”. 
Some websites are generally considered harmful or non‐business-related 
but are acceptable or even essential for a specific group of employees. For 
example, if a website has been categorized as “Pornography” erroneously 
and is thus blocked by the proxy, an enterprise user can submit an IT ser-
vice ticket requesting the website to be unblocked. Then it is up to the IT 
security team to manually review the website and override the policy by 
entering the website into a whitelist, if the user has made the correct claim. 
In this case, certain members of the IT staff should be exempt from the policy 
restrictions and be allowed to access the content and website that would be 
restricted otherwise. Similarly, a few employees may have special privileges 
and special status, and as part of performing their job duties they would be 
granted special permissions on the web. In the previous section, we wrote 
the policies that examine the content that is being accessed. In this section, 
we will design policies that focus on authenticating users and examining 
user permissions.

Imagine an enterprise that denies any access to web pages that offer hacking‐
related discussions and topics, possibly due to the elevated risk of downloading 
malicious content. However, the Engineering department is unable to do its job 
effectively without access to these sites for conducting threat research. The IT 
security team is tasked to create an exception for the Engineering department 
but also to warn of the potential risks before granting access to anyone from 
engineering. Let’s assume that the networks for the Engineering department are 
physically separated from the networks for all other departments, and therefore 

http://www.cnn.com
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the engineering networks are assigned an IP prefix 192.168.1.0/24. The policy 
now looks like this:

1 <proxy> url.category="Hacking"
2 client.address =192.168.1.0/24 exception(coach) allow
  access_log(main_log)
3 deny access_log(main_log)

Because this policy layer describes specifically how the proxy should handle 
sites that contain material related to “Hacking”, every rule within this policy 
layer is applicable only if the given URL category is “Hacking”. Therefore, line ① 
contains the layer guard url.category="Hacking". The rule on line ② states 
that any client coming from network 192.168.1.0/24 should be presented with a 
coaching page warning the user about the danger of visiting such websites and 
that the transaction is logged but access permission is granted. For everyone 
else, the access is denied, and the request is logged (line ③).

This policy solution has two main limitations. For example, assume Alice is 
an employee from the Engineering department. The first limitation is that the 
policy rule on line ② restricts Alice to be physically connected to the engineer-
ing network if she wants to access “Hacking” sites, even when Alice is onsite 
and in the building. For example, she will not be able to do her research work 
if she mainly uses her laptop computer and she is in the lunchroom, which is 
connected to the corporate WiFi network. This is because the corporate WiFi 
network will have an IP address prefix that is different from that of the engi-
neering network, which will cause the policy to block Alice’s computer while 
she is on the corporate WiFi.

The second limitation is that the proxy cannot log user information regardless 
of whether the transaction is permitted. Enterprise networks typically deploy 
DHCP to assign dynamic IP addresses to attached devices. Although DHCP 
attempts to assign the same IP address to the same device each time, there is 
no definitive correlation between an IP address and its user. Clearly we need a 
better mechanism to identify the users.

Authentication is the process of verifying a user against their claimed identity, 
by challenging the user to present credentials or confidential information that 
only that user possesses. Authorization refers to the permissions and rights 
that have been granted to a user, which allow that user to perform actions and 
retrieve content within the confines of defined policies. A proxy performs user 
authentication by challenging the user for their username and password through 
a captive portal. With a captive portal, a proxy presents a login page and asks the 
user to enter their login credentials each time the user opens the web browser and 
tries to connect to a website, if that user has not been authenticated previously. 
We call this authentication method “local authentication” if the proxy keeps a 
database of usernames and passwords on the proxy appliance. User‐entered 
credentials are matched against the proxy’s local authentication database. For 
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example, suppose an enterprise is providing a guest WiFi network for visitors. 
Every visitor is required to obtain a temporary username and password from 
the front desk in order to log into the guest WiFi. The following policy is writ-
ten to deny any unauthenticated access:

1 <proxy>
2 authenticated=no deny

If the authentication fails, the condition authenticated=no remains true, 
subsequent requests are denied, and the proxy continues to present the user 
with the captive portal login page. Consider the following policy:

1 <proxy>
2 authenticate(local_realm) authenticate.mode(ip) refresh_time(300)
3
4 <proxy>
5 authenticated=no deny
6 allow

An authentication realm is a group of network resources that allow the proxy 
to query and authenticate a user. In this example, local _ realm indicates that 
the authentication credentials are stored locally on the proxy. The authentica-
tion mode indicates that the IP address of the device is cached so that every 
connection with the same source IP address will be authenticated. This cached 
IP address is called a surrogate credential because this IP address will serve as 
the user’s credentials and the proxy will challenge the user less frequently. We 
do not want to keep this cache indefinitely; otherwise, after this guest has left 
the building, another guest may have come in and pick up the same IP address, 
which would then bypass the authentication mechanism. We determine that 15 
minutes of inactivity is a reasonable assumption that the user has logged out 
and is necessary to re‐challenge the user, and so the refresh _ time(300) policy 
property is written.

In the previous example, the local authentication realm provided a user 
challenge mechanism, but additional information, such as a user’s job title, 
department, or geographic location, was missing. A Lightweight Directory Access 
Protocol (LDAP) can be used to store user information with additional attributes 
in a hierarchical manner. An example LDAP entry that describes user “John 
Smith” in the Engineering department looks like the following:

dn: uid=John,ou=Engineering,cn=thecompany,dc=com
objectClass: inetOrgPerson
uid: jsmith
sn: Smith
givenName: John
cn: john.smith
organizationUnit: Engineering
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displayName: John Smith
uidNumber: 10000
gidNumber: 5000
userPassword: js1234

An LDAP entry consists of a number of attribute‐value pairs. The dn attri-
bute stands for distinguished name and is a unique attribute that is mandatory 
to position this entry in the LDAP database. There are a number of fields in the 
dn attribute: the uid field stands for user id; the ou field stands for organizational 
unit; and the cn field stands for common name. The last dc field, domain compo-
nent, typically defines what kind of organization the company is, following 
the Internet domain convention, such as .com for a commercial organization 
or .gov for government. In this example, uid=John specifies the person, who is 
part of the Engineering department given by ou=Engineering, which is part of 
a company, thecompany.

The next field, objectClass, defines the list of attributes necessary to describe 
this entry. The inetOrgPerson object class holds information about people and 
contains attributes such as name, uid for unique identifier, gid for group identi-
fier, and user password. Other object classes have a different set of required 
fields, but we are interested only in inetOrgPerson for the purpose of user 
authentication.

In order to communicate and retrieve user information from the LDAP server, 
the client must bind with the server. This step requires the client to authenticate 
with the LDAP server, and the LDAP server will authorize the client based on 
access privilege. The detailed user information is communicated back to the 
client when access is granted. In the context of proxy authentication, the proxy 
is the LDAP client, and the LDAP server can be an on‐box or external server 
hosting the LDAP database.

LDAP defines an organization layout for storing information; however, it does 
not dictate how the client utilizes this information. As part of integrating LDAP 
authentication with the proxy for the purpose of authentication and retrieving 
group information, the policy must instruct the proxy on which attributes to 
use when matching username information and user group conditions. In other 
words, a policy instructs the proxy to match a user‐provided username against 
givenName “John”, uid “jsmith”, or cn “john.smith”. Similarly, a policy decides if 
the user‐supplied group information is matched against gidNumber “5000” or 
organizationUnit “Engineering”. The username needs to be globally unique 
for the purpose of authentication. For Windows Active Directory, the attribute 
sAMAccountName is used because it specifies the Windows login name. For LDAP 
it is possible to use the cn attribute or another custom attribute as long as the 
value is unique. Similarly, the group name can be any attribute value as long 
as it is uniquely identifiable.

Returning to the first example at the beginning of the section, this time 
the company has revised the policy to leverage LDAP information instead of 
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relying on the physical location (or IP prefix) to define accessibility. Assume 
the authentication realm is called “LDAP_Realm”. The stored username is 
retrieved from the cn attribute, and the stored group value is retrieved from 
the organizationUnit attribute. The following example shows the enhanced 
policies. An additional rule ⑥ states that any employee who attempts to access 
sports‐related content during working hours from 9 a.m. to 5 p.m. is denied 
and logged.

1 <proxy>
2 authenticate(LDAP_Realm) ldap.user_attribute(“cn”)
    ldap.group_attribute(“organizationUnit”)
3
4 <proxy>
5 authenticated=no deny access_log(unauthorized_log)
6 url.category="Sports" time=0900..1700 deny access_log(main_log)
7 url.category="Hacking" group="Engineering" exception(coach) allow
    access_log(main_log)
8 url.category="Hacking" deny access_log(main_log)

With this policy, an unsuccessfully authenticated user will trigger the condition 
authenticated=no to be evaluated to true and the proxy denies the access. But 
if the user logs in correctly, then the value of the organizationUnit is retrieved 
as the group name that can be referenced in other policy rules. Notice that the 
authentication rule is contained in a separate policy layer. Recall that policy 
execution in each layer results in exactly one decision; putting the authentica-
tion rule together with all the other access rules will not work. The following 
policy is written incorrectly:

1 <proxy>
2 authenticate(LDAP_Realm)
3 url.category="Sports" time=0900..1700 deny access_log(main_log)
4 url.category="Hacking" group="Engineering" exception(coach) allow
    access_log(main_log)
5 url.category="Hacking" deny access_log(main_log)

In this case, policy execution will never reach the rules between line ③ and 
line ⑤. The reason is because for every new transaction, the authentication rule 
on line ② is executed unconditionally, thus causing the layer to exit once that 
rule completes.

Suppose Bob, the CEO of the company, is a baseball fan. He complains to 
the IT department that he is unable to check the scores of his favorite teams 
during the day. In addition, World Cup 2014 begins on 6/12/2014 and ends 
on 7/13/2014. During this time, the company decides to open up the sports 
websites. The new policy is then updated to reflect these changes. Notice that 
we use the ! notation to indicate the negation of a condition. The rule on line ⑤ 
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denies access to any sports websites, unless it is Bob or for the duration of the 
World Cup games.

1 <proxy>
2 authenticate(LDAP_Realm)
3
4 <proxy>
5 url.category="Sports" user=!Bob date=!WorldCup2014 time=0900..1700
    deny access_log(log1)
6 url.category="Hacking" group="Engineering" exception(coach) allow
    access_log(main_log)
7 url.category="Hacking" deny access_log(main_log)
8
9 define condition WorldCup2014
10 date = 20140612..20140713
11 end

This policy is actually flawed. The policy rule on line ⑦ is not conditioned on 
any authentication group. Because the URL category can be determined based 
on the first HTTP request, the URL category‐related policies are executed before 
authentication‐related policies. This means that the rule on line ⑦ is always 
evaluated before the rule on line ②. Furthermore, the access log will not contain 
any user information because user authentication did not take place. A policy 
property called force _ authenticate was designed to overcome this issue 
and instructs the proxy to perform the authentication procedure regardless of 
whether the transaction would be allowed or denied:

1 <proxy>
2 force_authenticate(LDAP_Realm)

With this new policy, user authentication always takes place in the early stages 
of a transaction, and the access log will contain the user information even if the 
transaction is denied.

An LDAP entry can store any arbitrary information. For example, the IT 
department may sometimes need to lock out a selected number of employees, 
and this can be done easily by adding the following rules to lock out users John 
and Bob:

1 <proxy>
2 authenticate(LDAP_Realm)
3
4 <proxy>
5 condition=black_list deny
6 allow
7
8 define condition black_list
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9 user=Bob
10 user=John
11 end

Alternatively, the company’s LDAP server can be configured with a special 
attribute called userLockout in the user LDAP entry, and this attribute can be 
referenced in the following policy:

1 <proxy>
2 authenticate(LDAP_Realm)
3
4 <proxy>
5 ldap.attribute.userLockout=1 deny
6 allow

Using the new LDAP attribute, this policy can lock out a user by simply 
changing the attribute value in the user entry on the LDAP server. The policy 
rules remain unchanged, and the proxy automatically picks up the change in 
the lockout policy at runtime during the user authentication process.

LDAP was designed as a protocol to provide access to directory informa-
tion services, and because LDAP can store and maintain user authentication 
information, it was later adopted as an authentication method. For this rea-
son, LDAP is not considered as a secure authentication mechanism unless 
it operates over a secure transport layer such as SSL or TLS. Other types of 
authentication servers, such as Kerberos and RADIUS servers, can also be 
deployed with a proxy.

Kerberos is an authentication protocol that was designed to avoid sending user 
passwords over an unsecured network. The username is transmitted from the 
proxy to the authentication server (AS) in plain text. Both the proxy and the AS 
generate secret keys using the same cipher suite configured on the server. These 
secret keys, one in the hands of the proxy and the other in the hands of the AS, 
are used to symmetrically decrypt subsequent messages. If the secret keys do 
not match, the proxy is unable to decrypt the message given by the AS, and the 
authentication process fails; otherwise, the proxy decrypts the first message from 
the AS to find a timed ticket, called a Ticket‐Granting‐Ticket (TGT). The authentica-
tion process completes when the proxy successfully decrypts the TGT message. 
This ticket will be used in all subsequent proxy‐to‐AS communications. It is 
desirable to combine Kerberos and LDAP to take advantage of Kerberos’ strong 
authentication architecture and LDAP’s wealth of user information.

RADIUS stands for Remote Authentication Dial In User Service and provides 
full Authentication, Authorization, and Accounting (AAA) for user manage-
ment. A user does not directly communicate with the RADIUS server; instead, 
a separate network entity called the Network Access Server (NAS) acts as the 
RADIUS client. As the name suggests, RADIUS was originally designed to pro-
vide authentication for remote dial‐up users. When a user first establishes the 
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network connection, the router challenges the user to authenticate. This router 
is the NAS. It takes the user‐provided username and password, communicates 
with the RADIUS server, and either allows or denies subsequent network access 
by this user.

Safe Content Retrieval
One of the main goals of a secure proxy is to protect users from malicious con-
tent. In Chapter 5 we discuss URL categorization and content rating algorithms, 
which a proxy leverages to prevent users from reaching risky websites and com-
promised servers. Prevention is a great practice, and although these algorithms 
strive to be accurate in identifying sources of malicious content, perfect solutions 
that completely isolate users from malware do not exist. Well‐devised malware 
requires only a few victims to spread its infection on a broad scale. The security 
posture is to assume such an infection has already taken place on the network, 
and continuous detection is the key to stop its propagation. Performing a thor-
ough malware scan is computationally intensive, especially on an inline proxy, 
and thus is not a scalable solution. Mid‐size and large enterprises implement 
security practices that include installing virus‐scan solutions on the endpoints 
such as workstations and laptops, but they lack coverage on mobile devices. 
Also, not all users are diligent when it comes to keeping up with and applying 
the latest software updates.

Due to these factors and to mitigate threats at the enterprise level, a common 
approach is to acquire and deploy a dedicated virus‐ and malware‐scanning 
appliance on the network; this is then combined with the proxy to form a single 
solution to find users that are prone to problematic content, and to stop malicious 
content from entering the network. The proxy operates inline and the antivi-
rus appliance is attached to the proxy in a spoke configuration, as shown in 
Figure 3‐12.

Corporate‐wide security policies that have been designed on the proxy decide 
which content will be transferred to the antivirus (AV) appliance for scanning. 
The proxy communicates with the AV appliance over the Internet Content 
Adaptation Protocol (ICAP). ICAP operates with a request followed by a response 
model, similar to HTTP. ICAP allows an ICAP client to send HTTP messages to 
an ICAP server, which may then perform various transformations or specific 
processing, called adaptations, on those received messages. One possible adapta-
tion is a virus‐ and malware‐scanning service.

ICAP allows for HTTP request modification (or the REQMOD mode) and 
HTTP response modification (or the RESPMOD mode). In REQMOD mode, the 
ICAP client sends the ICAP server an HTTP request. The ICAP server can 
modify the HTTP request and send back the modified request to the ICAP 
client, or the ICAP server can return an HTTP response. It is possible for the 
ICAP server to return an error. In RESPMOD mode, the ICAP client sends 
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the ICAP server an HTTP response. The ICAP server can send back either a 
modified response or an error. In the context of ICAP operation, the proxy 
acts as the ICAP client, and the AV appliance acts as the ICAP server when 
servicing a user transaction. For example, when the proxy sends content that 
was retrieved from a website to the AV appliance over ICAP in RESPMOD 
mode, the AV appliance may detect a virus embedded in the content. In this 
case, the AV appliance returns a modified response containing a simple page 
that warns the user about the website.

The following policy configures the proxy to send all HTTP content to the AV 
appliance over ICAP for analysis before it is given to the client. This is done via 
response modification. By default, the ICAP server listens for service requests 
on TCP port 1344.

1 <content>
2 response.icap_service(antivirus_service_1)

The content layer indicates that these rules apply to the server response 
instead of the client request, as in the case with the <proxy> layer. The 
fundamental difference lies in the policy execution checkpoint. Rules in 
the <content> layer are not evaluated or executed until a server response 
becomes available. The service antivirus _ service _ 1 is already configured 
to perform response modification on any content that is passed to an AV 
appliance that is reachable at a certain IP address and port. The configura-
tion of antivirus _ service _ 1 is vendor specific and typically contains the 
following information:

ICAP service:
Name: antivirus_service_1
ICAP version: 1.0
Service URL: icap://10.9.4.1/
Connection timeout: 60
Port: 1344
ICAP method: response modification

The name is a unique string that identifies this service. The ICAP version 
is 1.0 at the time of this writing and is the only version supported. Recall that 
ICAP is very similar to the HTTP protocol, and it uses the same URL construct 
except for the protocol part, which is icap instead of http. The service URL is the 
request URL issued by the ICAP client (proxy) to the ICAP server (AV appliance). 
The port is the TCP port on which the ICAP server listens for service requests 
and is TCP port 1344 by default. The ICAP method defines whether this service 
processes the user request or the server response. Notice in this policy rule that 
there is no explicit action that defines how to respond when a virus is detected. 
What the AV appliance returns over ICAP is either the modified HTTP response 
or a success status stating that the content is safe to pass on to the client. For 

icap://10.9.4.1/
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example, when the AV appliance declares the content is virus‐free, the ICAP 
response from the AV appliance is

       ICAP/1.0 204 No Content

The proxy sends the content back to the client verbatim upon receiving the 
204 status from the AV appliance. However, if a virus has been detected, then 
the HTTP response is modified and is encapsulated inside the ICAP response 
with status code 200:

ICAP/1.0 200 OK
Date: Mon, 08 Dec 2014 11:16:10 GMT
Connection: close
X-Virus-ID: "Conficker"
ISTag: "E13Td2EFG"
Encapsulated: res-hdr=0, res-body=200

HTTP/1.1 403 Forbidden
Date: Mon, 08 Dec 2014 11:16:00 GMT
Content-Length: 75
Content-Type: text/html
The requested content contains a virus, it has been notified and removed

In this case, this exact HTTP response is presented to the client in place of the 
original content, which is a customized error page containing a simple warning 
string. The virus ID detected by the ICAP server is returned by the X‐Virus‐ID 
header, which can be applied to the proxy policy condition virus‐detected. 
Suppose the IT security team needs to track any activity of the notorious Conficker 
virus that has gone rampant. In addition to blocking and warning the user that 
this virus has been detected, this information needs to be sent to the security 
team for further analysis. The following policy is added to send an e‐mail to 
IT_redalert@company.com:

<content>
virus-detected=yes virus-id="Conficker"
  notify_email("IT_redalert@company.com", "conficker found")

A keen reader may find this e‐mail action to be too specific to one virus 
type and lacking sufficient information to describe fully what the situation is. 
A policy rule may contain variables for runtime substitutions, which describe 
properties of a transaction. For example, it will be useful that the e‐mail contains 
the client’s username, IP address, and the accessed URL. This information is 
readily available in a given transaction and can be easily included as part of 
the e‐mail content:

notify_email("IT_redalert@company.com", "virus found", \
   "$(user) accessed URL $(url) that contains a virus $(virus_name)")

mailto:IT_redalert@company.com
mailto:IT_redalert@company.com
mailto:IT_redalert@company.com
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In this example, we use a single \ to indicate line continuation. The third 
parameter of the notify _ email action comprises the e‐mail body. A named 
variable enclosed in $(variable _ name) is called a substitution; these variables 
are replaced by the corresponding values extracted from the transaction. This 
policy creates a more complete e‐mail notification that contains the username, 
the actual URL, and information about the identified virus, from which a virus 
scan report can be generated.

Safe content is more than just blocking viruses. The ICAP response modifica-
tion we have introduced is a form of content transformation that performs content 
insertion, removal, and modification. Thus far, the discussions on content trans-
formation have focused on virus removal. In other cases, the removed content 
can be a JavaScript or Microsoft ActiveX plug‐in. These active elements are 
embedded inside regular HTML pages and can automatically trigger browser 
actions without user interaction.

Suppose a new threat has been found that uses a Java applet to run the mali-
cious content. The IT security team has decided to block Java applets from web 
pages while allowing all static content to pass through to reduce the chance 
of infection. A deny action stops a user from accessing a web page completely, 
and thus is not a viable solution here. Furthermore, a critical application that 
runs on its own website, mycompany.com, may need to use a Java applet. The 
aforementioned security objective can be achieved with the following content 
transformation policy:

1 <proxy>
2 url.domain=!mycompany.com action.strip_java_applets(yes)
3
4 define active_content strip_applets_and_indicate
5       tag_replace applet <<EOT
6             <b>java applet removed</b>
7       EOT
8 end
9
10 define action strip_java_applets
11       transform strip_applets_and_indicate
12 end

In this policy, two definitions are used. From line ④ to line ⑧, the definition 
on active _ content applies to an HTML page where any HTML tag enclosed 
by <applet></applet> is replaced by the replacement string <b>java applet 
removed</b>. Because the page fits into an HTML format, the replacement is also 
formatted as HTML. The proxy simply performs a search‐and‐replace operation 
on all appearances of said tag. The string <<EOT marks the end‐of‐term and tells 
the policy compiler where the replacement ends. The second definition from 
lines ⑩ to  defines the action. This is a transformation action with only one 
action defined. In a more general case, there may be multiple actions, in which 
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case the action definition is the list of all the actions to be executed on the same 
transaction. The policy rule on line ② has the condition !mycompany.com to make 
the internal domain an exception to this rule; otherwise, all the Java applets are 
replaced with a single bolded string.

Note that an action is different from a property. An action defines a process to 
modify the original content; a property does not change the content but modifies 
the proxy behavior for a transaction. For example, deny terminates the current 
transaction, and therefore it is called a property. A transformation modifies the 
user‐requested web page and presents the modified page to the user. Therefore, 
a transformation is called an action. Other possible actions include modifying 
the HTTP headers or performing a URL rewrite.

SSL Proxy
Regardless of how thoroughly security policies are designed, expressed, and 
implemented in an enterprise, these policies provide zero value unless they 
can be enforced effectively against all possible traffic types on the enterprise 
networks. SSL/TLS‐encrypted traffic circumvents many security defenses 
unless these secure tunnels can be “cracked” open. A proxy that is capable of 
terminating an SSL connection and decrypting the payload is called an SSL 
Proxy. In Blue Coat ProxySG, the SSL proxy is one of a number of proxies that 
make up the ProxySG appliance solution.

An SSL session is comprised of two phases: SSL negotiation and encrypted 
data transfer. During the negotiation phase, communication takes place in plain 
text to exchange certificates and encryption settings. Once the two sides are 
in agreement, the subsequent communication exchange is encrypted. A very 
common application of SSL is HTTPS, which wraps an HTTP connection inside 
the SSL, encrypting both client requests and server responses. For a secure web 
transaction, the client and server communicate via HTTP, except that the HTTP 
protocol exchanges are carried over encrypted SSL messages.

The SSL proxy can either tunnel or intercept an SSL session. Recall that inter-
cept refers to the procedure of terminating a client connection followed by 
establishing a server‐side connection on behalf of the client. In the context of 
an SSL proxy, SSL interception refers to decrypting the client‐side connection 
data, possibly modifying the data, and then transferring the resulting data 
to the server‐side SSL connection. In SSL tunneling, the decrypted data from 
the client side is unmodified, re‐encrypted according to what was negotiated 
on the server‐side SSL session, and then transmitted over the server‐side SSL 
connection. In other words, the client data is unmodified when it reaches the 
server over an SSL tunnel.

TLS (or Transport Layer Security) is based on SSL version 3.0 and was designed 
as an upgrade to version 3.0; however, TLS 1.0, TLS 1.1, and SSL v3.0 do not 
have interoperability. SSL v3.0 deployment is still prevalent at the time of this 
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writing. In this section, we will use the terms SSL and TLS interchangeably 
unless the protocol version is explicitly stated. In late 2014, an SSL vulnerability 
codenamed “POODLE” was discovered. This vulnerability targets any SSL v3.0 
implementation and allows it to modify the SSL payload. Applications that run 
on SSL v3.0 will be susceptible to this vulnerability.

The solution to POODLE is simple: do not use SSL v3.0, and use TLS 1.0 
and later instead. However, this “simple” solution is difficult to implement in 
practice. The security team needs to identify all of the applications that may be 
using SSL, and either turn off SSL v3.0 manually or apply a security patch that 
disallows the use of SSL v3.0 on these servers. For some custom applications, 
these efforts may involve an engineering team creating and testing a security 
patch to ensure that these applications no longer use SSL v3.0. In addition, the 
security team needs to send out security advisories to all employees to disable 
SSL v3.0 on their browsers, whether Internet Explorer, Chrome, Firefox, or 
another browser. Still, employees may not fully understand what the security 
vulnerability entails and what the implications are, and they may put off this 
task until it is forgotten, leaving these workstations vulnerable to POODLE 
attacks and compromising business‐critical applications.

The SSL proxy solves this problem by detecting possible use of SSL v3.0 dur-
ing the negotiation phase. The security department can create a policy on their 
SSL proxy to issue a warning and display a solution page when an application 
attempts to negotiate a secure session using SSL v3.0, followed by the SSL proxy 
resetting such a connection:

1 <ssl>
2 client.connection.negotiated_ssl_version=SSLV3
  exception(warning_POODLE)

In this example, the warning _ POODLE exception page contains information 
about how to disable SSL v3.0 on a browser. Because a user is never able to make 
the SSL connection without turning off SSL v3.0, this is a much better solution 
than a security advisory e‐mail. Because the SSL negotiation is in plain text, 
there is no need to decrypt the SSL content to detect the SSL version.

When an employee connects to a social network through an SSL session such as 
HTTPS, the secure proxy is typically given directives to intercept such a session 
to check for compliance against corporate policies. However, an enterprise‐secure 
proxy is rarely instructed to intercept an employee’s financial transactions due 
to privacy laws. The following policy reflects the preceding discussion:

1 <ssl-intercept>
2 category=!"Financial Services" ssl.forward_proxy(https)

The SSL intercept layer contains rules that are specific to making the SSL inter-
ception decision. The rule on line ② defines that an SSL connection is intercepted 
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only if its category is not “Financial Services”. The property ssl.foward _ proxy 
transfers ownership of this transaction from an SSL proxy to the HTTPS proxy, 
where the HTTPS‐specific conditions can be observed, and properties can be set.

So how does the SSL proxy know the category of a connection when the 
URL in an HTTPS transaction is not visible until after the SSL interception 
has taken place and the category is necessary to decide whether the SSL 
proxy will intercept the connection? It turns out that the URL is not the only 
information available to categorize a website. In this example policy, a general 
categorization condition called category is used instead of a url.category 
condition. The former retrieves a category by any means necessary, while 
the latter relies on the URL and nothing else. In this case, the category can 
be derived from the server certificate’s Common Name (CN), observable in 
plain text during SSL negotiation. For example, the CN in Wells Fargo bank’s 
certificate is www.wellsfargo.com. This CN can be matched against the URL 
categorization database and is determined to be “Financial Services”. The 
CN inside Facebook’s certificate is *.facebook.com and it is categorized as 
“Social Network”.

Reverse Proxy Deployment
Consider an example where a company is developing a new web‐oriented 
service for its customers. The web service is tested on an internal web server 
with a hostname service1.internal.mycompany.com and an internal private 
IP address 192.168.1.100. This new web service is developed by multiple teams 
using different programming languages: Java, JavaScript, Perl, and so on. This 
company will face two immediate deployment challenges when the time comes 
to take the service and go live.

The first challenge is that the service will have been developed and tested 
using an internal hostname. Because the backend code is written by multiple 
teams, there is the possibility that this internal hostname may be hardcoded 
in some piece of code or scripts. The task of finding the hardcoded names, 
replacing those entries, and performing revalidation could be overwhelming 
and error prone.

The second challenge is about security. Although the web service will have 
been launched, however, performing security analysis and penetration testing on 
the new web service will be ongoing while the service evolves. For this reason, 
the web server that is hosting the new web service will remain completely hid-
den from external entities and will be visible only within the internal company 
networks. In other words, service requests originating from the Internet will 
not reach the new web server directly. A secure proxy that is deployed in the 
reverse proxy mode can solve these deployment issues.

First, let us assume the new web service has the external-facing URL https://
service.mycompany.com, and service.mycompany.com is registered in the 

http://www.wellsfargo.com
https://service.mycompany.com
https://service.mycompany.com
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public DNS and is accessible from the Internet. The server hosting service1 
.mycompany.com can be reached via http://service1.internal.mycompany 
.com, but service1.mycompany.com is registered only in the internal DNS serv-
ers. The secure proxy is deployed as a reverse proxy inside the DMZ as shown 
in Figure 6-1.

The client request to https://service.mycompany.com first reaches the reverse 
proxy. The proxy enables client access to the web service by performing URL 
rewrite and request forwarding. Upon receiving the client request, the proxy must 
first correctly determine that service.mycompany.com maps to service1.internal 
.mycompany.com. Therefore, after intercepting the client request, the proxy 
will reissue that request to the right internal server; this is known as request 
forwarding. All URL references to service.mycompany.com must be changed to 
service1.internal.mycompany.com, and all relative references must be set to 
this internal URL; this is known as URL write. In addition, a forwarding policy 
rule that specifies the URL mapping must be set in the proxy:

<forward>
service.name=web_service forward(service1.internal.mycompany.com)

In this policy rule, a forward layer specifies that this rule is evaluated when 
the proxy is making an upstream connection. In this example, we assume 
that the proxy is already configured to process web _ service requests that 
are destined for IP address 1.2.3.4 over TCP port 443. Therefore, all connec-
tions intended to reach https://service.mycompany.com are forwarded to the 
internal web server that is located at IP address 192.168.1.100 on TCP port 80 
for HTTP. From the internal web server perspective, all requests are relative to 

Figure 6-1: Launching a New Web Service with Reverse Proxy
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the URL service1.internal.mycompany.com. Therefore, a URL rewrite policy 
must be defined in the proxy:

1 define url_rewrite service1_url_rewrite
2 rewrite_url_prefix "https://service.mycompany.com"
    "http://service1.internal.mycompany.com"
3 end
4
5 define action service1_rewrite
6 rewrite(url, "https://service.mycompany.com/(.*)",
    "http://service1.internal.mycompany.com/$(1)")
7 transform service1_url_rewrite
8 end
9
10 <proxy>
11 service.name=web_service action.service1_rewrite(yes)
12
13 <forward>
14 service.name=web_service forward(service1.internal.mycompany.com)

The definition from lines ⑤ to ⑧ consists of two actions. The first action is 
the URL rewrite, and the second action defines a transformation. As stated 
earlier, a transformation modifies the content of the server response. Referring 
to Figure 6-1, the URL rewrite action on line ⑥ modifies the client request 
from step ② to step ③, while the transform action on line ⑦ modifies the 
server response from step ④ to step ⑤. The transformation performed by 
rewrite _ url _ prefix is to replace all occurrences of the original URL that 
are found inside an HTML page to the new URL. For example, take an HTML 
page such as this:

<html><title>login page</title>
<body>
<script src="http://service1.internal.mycompany.com/scripts/util.js">
<p>Login to the service.
</body></html>

After the transformation is complete, the revised HTML page is as follows:

<html><title>login page</title>
<body>
<script src="https://service.mycompany.com/scripts/util.js">
<p>Login to the service.
</body></html>

The process of rewriting both the request URL and the server response is 
called two‐way URL rewrite. This type of transformation is necessary because it 
is inevitable that some web developers will leave absolute URLs inside the web 

https://service.mycompany.com
http://service1.internal.mycompany.com
https://service.mycompany.com/(.*
http://service1.internal.mycompany.com/
http://service1.internal.mycompany.com/scripts/util.js
https://service.mycompany.com/scripts/util.js
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page content, as shown in this example. Not all web developers will conform 
to the rules of using relative paths such as <script src="/scripts/util.js">. 
The time and effort involved in identifying all occurrences of absolute paths 
and URL references may be too significant to be feasible. A reverse proxy with 
content transformation capability offers a viable solution to handle such types 
of deployment problems.

URL rewrite has other useful applications outside of reverse proxy deployment. 
For example, suppose a secure proxy is deployed in an elementary school, and 
the students are learning to search for information on the Internet. However, 
the school is concerned that students may stumble upon inappropriate search 
results. We can implement a safe search action that performs a URL rewrite that 
utilizes the “SafeSearch” functionality offered by the Google search engine to 
alleviate this problem:

1 <proxy>
2 url.host.substring=google action.google_safesearch(yes)
3
4 define action google_safesearch
5 rewrite(url, "(.*)", "$(1)&safe=on")
6 end

For a Google search, appending the search request with &safe=on turns on 
the safe search feature, which filters out explicit search terms such as “nude” 
or “porn”. In this example, a reverse proxy also performs SSL offloading. A 
reverse proxy handles SSL decryption at step ② and encryption at step ⑤. All 
communication between the reverse proxy and the internal web server is in 
plain HTTP. This eases the load on the web server.

In addition to offloading computationally intensive workloads from a 
web server, this reverse proxy example demonstrates another important 
protection that a secure proxy offers: the reverse proxy shields the real 
web server from being directly accessible by users and sanitizes applica-
tion requests, including malicious ones, from harming an application. This 
protection capability is the essence of what is known as a web application 
firewall (WAF). For example, through special crafting of an application’s 
input parameter, a hacker can break the application server’s access control 
and retrieve restricted data.

According to the Open Web Application Security Project (OWASP), the top 
ten most critical web application security risks for 2013 were injection, broken 
authentication and session management, cross‐site scripting, insecure direct 
object references, security misconfiguration, sensitive data exposure, missing 
function level access control, cross‐site request forgery, using components with 
known vulnerabilities, and un‐validated redirects and forwards. A secure proxy 
performs many protective functions as a WAF—with one of the important 
tasks being identifying known attacks against various applications—and 
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shields applications and application servers from those known vulnerabilities 
even when those servers have not been patched. Because a secure proxy has 
in‐depth knowledge of an application, the proxy can sanitize user input and 
application parameters before transferring an application request to the server. 
This prevents hackers from injecting manipulated data into an application, 
which causes that application to execute unintended or restricted commands 
such as creating new user accounts with administrative privileges for the 
hackers.

DNS Proxy
When a client makes a request for a network service or a network resource, 
it begins the transaction by first issuing a DNS query that tries to resolve a 
server name or a URL into an IP address. Deploying a DNS proxy provides the 
opportunity to analyze the type of resource or service that a client is asking 
for and prevents such an attempt as early as possible if a policy violation is 
detected. For example, suppose a company wants to block all access to porno-
graphic websites, which we already know can be achieved by denying access 
based on the URL category, which is expressed in policy by the condition 
url.category. Alternatively, we can completely stop a client from initiating a 
TCP connection by intercepting the DNS query and responding to the client 
with a DNS error:

1 <DNS-Proxy>
2 dns.request.category=Pornography dns.respond(refused)

A client browser accessing a pornographic website will not succeed due to 
a name resolution error. Depending on a DNS proxy to block offending client 
requests is not a reliable method. First, if the client’s DNS traffic traverses a path 
that is not covered by the proxy, then the DNS proxy does not have the oppor-
tunity to process any of the client’s DNS queries. Second, the user can bypass 
this policy by directly entering the IP address of the pornographic website. It 
is for these reasons that such a DNS‐based security policy cannot be reliably 
enforced. Also, DNS proxy cannot selectively block specific content on a web 
server. For example, if a server is hosting both www.somestore.com/adult‐books 
and www.somestore.com/comic‐books, in this case, the DNS proxy can be con-
figured to block the entire www.somestore.com site, but not www.somestore 
.com/adult‐books only.

Another use of a DNS proxy is to provision split DNS capability. Split DNS 
refers to the use of different DNS databases based on the requester’s IP address. 
Suppose a company’s internal hostnames are stored in the DNS server 10.9.1.53, 
while all the other DNS queries are forwarded to a public‐domain DNS server 
located at 67.14.210.250. Internal clients are assigned IP addresses from the prefix 

http://www.somestore.com/adult%E2%80%90books
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10.9.0.0/16. The following policy will forward DNS queries to a specific DNS 
server based on where the clients are located:

1 <DNS-Proxy>
2 client.address=10.9.0.0/16 dns.forward(10.9.1.53)
3 dns.forward(67.14.210.250)

The rule on line ② forwards DNS queries to 10.9.1.53 only if the client address 
has the internal address prefix, while DNS requests from all other clients are 
forwarded to the public DNS server 67.14.210.250.

Data Loss Prevention

Another aspect of enforcing safe content policies is to prevent the exfiltration of 
company secrets to external entities. Confidential information may be leaked by 
employees, whether intentionally or unintentionally, and the damage incurred 
on the company can be the same in either case. Data loss prevention (DLP) is also 
known as data leak prevention. The main objective of DLP is to protect sensi-
tive data according to centrally defined policies from leaving an organization’s 
internal network or an organization‐controlled device. The sensitive data may 
be stored on mass storage media (known as data at rest), transmitted over the 
network (known as data in motion), and accessed by users on the end systems 
(known as data in use).

The first action taken by a DLP solution is to identify sensitive data that is 
mandated by central policies for protection; this stage is commonly known as 
the content discovery phase. Identifying at‐rest data entails scanning the hard 
drives on file servers and on end systems to detect protected content. Identifying 
in‐motion data means performing runtime scanning and analysis of network 
traffic for sensitive information. Identifying in‐use data means scanning the 
endpoint system memory for sensitive material. Regardless of the location 
where the data may be present, content discovery demands content analysis 
techniques that effectively identify protected material. Examples of content 
analysis techniques include pattern‐based matching algorithms (for example, 
for identifying Social Security numbers or credit card numbers), generating a 
fingerprint for an entire file for exact matching, or creating hashes for specific 
parts of a file for partial matching.

The second action taken by a DLP solution is to enforce data protection. 
Possible actions associated with protecting at‐rest data include removal of 
sensitive data from the endpoint, in‐place encryption of protected data, quar-
antine of the data by relocation, or modification of access rights. Protecting 
in‐use data is achieved through security capabilities that are implemented 
as extensions to the operating system (OS) that powers the endpoint. In‐use 
data protection requires constant monitoring of data movement within 
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the OS, between the OS and the applications, and among the applications. 
For example, sensitive data may be prohibited from being shared between 
applications, and in this case, the copy‐and‐paste feature may be disabled 
for such data.

A DLP solution can be implemented as either an endpoint solution or a 
network‐based solution. Content‐based analysis is computationally intensive, 
as Chapter 5 illustrates in the section “Dynamic Webpage Content Rating.” 
Not all endpoints have the computing power or resources to perform content 
analysis, which also impacts the end user experience. A good example is that 
although the endpoint antivirus software is always active, it does not perform 
virus scanning constantly because its scanning activities impact system perfor-
mance significantly. An endpoint DLP must perform constant validation as data 
is accessed by applications. Because an endpoint DLP solution is designed and 
implemented for specific operating systems, a DLP solution may not exist for 
some types of endpoints. In addition, an endpoint DLP solution must prevent 
sensitive data from leaving the system, for example, by preventing protected 
data from being copied onto a USB drive.

Chapter 4 describes the various methods employed by malware to infiltrate 
an endpoint. The attacking malware then “phones home” by establishing con-
nections to its command and control (C2) centers to receive further instructions. 
Oftentimes the C2 server commands the malware to exfiltrate data from the 
compromised host. Some of these C2 channels are also encrypted. Five key 
points can be made from the preceding discussion.

First, deploying a network‐based DLP solution can provide better coverage 
across a broad array of endpoints of varying types. The protection is centralized, 
and the computation‐intensive tasks are offloaded to one or more dedicated 
DLP appliances.

Second, DLP solutions offer limited value to an enterprise when deployed 
as standalone solutions. Similar to the situation with antivirus solutions, static 
pattern‐based antivirus solutions are useful in combating existing known 
viruses and malware, but antivirus solutions must be deployed with real‐time 
URL categorization and web content analysis systems to defend against zero‐day 
attacks. DLP solutions afford an additional layer of protection when they are 
deployed with a secure proxy, especially when the proxy is capable of decrypting 
SSL/TLS‐encrypted traffic. In addition, a secure proxy can act as an extension 
of the DLP by enforcing data protection because a secure proxy can remove 
content from a connection or terminate a connection abruptly.

Third, at the time of this writing, existing DLP solutions are more effective 
at protecting sensitive data from involuntary leakage due to erroneous imple-
mentation of security policies or simply bad practices of designed processes. 
However, current DLP solutions are mostly ineffective against exfiltrations that 
are initiated by malicious actors that have successfully attacked and gained 
access to a protected network.
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Fourth, to improve the rate of successful enforcement, implementing DLP 
solutions must include a combination of both endpoint‐based and network‐based 
solutions. An endpoint solution is still necessary to protect data on devices that 
are mobile, such as laptop computers, and these devices can leave the physical 
perimeter of an enterprise network, although possibly at the expense of the 
end‐user experience.

Last, centrally managed and administered policies dictate the integration 
of the DLP solution with a corporate‐wide Document Rights Management 
(DRM) system, or in general, an Information Rights Management (IRM) system. 
Sensitive documents and data are registered with an IRM, and permissions and 
rights are defined and managed centrally. Having a DLP solution installed on 
an endpoint implies the presence of an active agent that communicates with 
the IRM. In other words, DLP can be considered as a critical subsystem of the 
overall IRM defense infrastructure.

A DLP appliance can be deployed with a secure proxy using the ICAP protocol, 
similar to the deployment between a secure proxy and an antivirus appliance. 
The most common layered defense that involves DLP is its integration with 
the e‐mail system.

E‐mail Filtering
For many organizations, e‐mail is an indispensable communication tool and is 
used heavily for file transfer to both internal and external recipients. E‐mail can 
represent a large part of a company’s outbound traffic. An e‐mail may contain 
extremely sensitive information both in the content and in its attachment. The 
e‐mail system is also utilized heavily by scammers and spammers to sell illicit 
products and services or to swindle people out of their money. Phishing e‐mails 
are still one of the most effective first‐stage infiltration channels for black hats 
to penetrate an organization.

Over the years, e‐mail filtering has evolved its focus from spamming e‐
mails to the detection and removal of phishing e‐mails as an important secu-
rity measure. E‐mail can be misused by employees to transmit sensitive or 
confidential information such as competitive analysis, company financial 
records, employee data, and customer records to external entities or destina-
tions, which is in violation of company policies and represents serious data 
breaches. Outbound e‐mails may also contain inappropriate material that can 
create legal liability resulting in damaged reputations and financial losses. 
Therefore, outbound e‐mails must be scrutinized for data exfiltration and be 
validated against compliance policies to mitigate potential risks. With the aid 
of a DLP solution, an offending e‐mail may be blocked entirely by the proxy, 
followed by the proxy redirecting that e‐mail to the legal or HR department 
for review. The proxy may remove the offending content or attachment before 
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forwarding the e‐mail to a mail server. The proxy can also return the e‐mail 
to the user and advise the user to encrypt the e‐mail before transmission, if 
the DLP engine informs the proxy that it has detected the presence of sensi-
tive information.

Examining inbound e‐mail focuses on scanning the e‐mail attachment for 
known viruses and malwares. Modern e‐mail readers have a built‐in capability 
to display e‐mail that is created in HTML format. The e‐mail message body is 
scanned for the presence of URLs. Each URL is analyzed to determine if the 
URL points to a malware delivery server, if the URL contains an IP address that 
is a part of a known botnet, or if previous analysis history indicates the URL 
is risky. Chapter 5 discusses URL analysis techniques in detail. Any automatic 
download of content as a result of the presence of an iframe in an HTML e‐mail 
must be prevented. Chapter 4 discusses drive‐by downloads and the dangers 
of invisible iframes that can trigger the automatic downloading and execution 
of malicious code.

A Primer on SMTP
The primary protocol used in e‐mail communication is the Simple Mail Transfer 
Protocol (SMTP), which transfers e‐mail from one mail system to another until it 
has reached the recipient’s e‐mail server. The intermediate network nodes that 
participate in routing e‐mails are called mail transfer agents (MTAs). The first 
system that receives the e‐mail from a client’s e‐mail agent is called a mail sub-
mission agent (MSA). For example, the SMTP server configured in the Microsoft 
Outlook client software is the IP address of an MSA. Figure 6-2 illustrates a 
simplified e‐mail route when a user’s e‐mail agent is configured to use the Gmail 
SMTP server for e‐mail submission.

Figure 6-2: A Simplified View of an E‐mail Route
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In this case, the Gmail SMTP server is the MSA for the client. The client 
communicates with the MSA using the SMTP protocol. Based on the des-
tination domain name, in this case hotmail.com, the Gmail SMTP server 
discovers the Hotmail SMTP server through DNS and forwards this e‐mail 
to the identified mail server. The DNS Mail Exchanger (or MX) record con-
tains the fully qualified domain name (FQDN) of the mail server for a given 
domain, and the DNS Address (or A) record contains the IP address of that 
mail server. This e‐mail is then stored in the Hotmail internal e‐mail server, 
waiting for the recipient to retrieve it. The e‐mail is transferred using the 
SMTP protocol from stage ① to stage ③, and depending on the type of mail 
server hosting the recipient’s e‐mails, step ④ may be using a mail delivery 
protocol such as Post Office Protocol (POP3) or Microsoft Exchange pro-
tocol. The mail system that delivers the e‐mail to the recipient is called a 
mail delivery agent (MDA). The MDA communicates with the MTA using 
SMTP but communicates with the recipient’s e‐mail agent using a mail 
delivery protocol. In this section, we are primarily concerned with the SMTP 
protocol.

The SMTP protocol is a server‐talk‐first protocol. Upon successful TCP 
establishment with the client‐initiated connection request, the server sends 
its own hostname along with a 220 response to the client first. The client 
starts communication by sending a “hello message” (or HELO) with its own 
hostname and then waits for the server to respond. The server responds 
with 250 Ok if it accepts this host. The string “Ok” that follows the response 
code 250 can be anything; what is important is the actual response code. 
Most SMTP servers today support the EHLO, or Extended HELO, message. 
EHLO works the same way as HELO, except that the server responding to an 
EHLO will include a list of options that are supported by this SMTP server. 
Each option is appended to the multi‐line 250 response from the server, as 
shown in Figure 6-3.

As shown in Figure 6-3, an SMTP server responds to EHLO with eight 
options:

250‐smtp.example.org
250‐PIPELINING
250‐SIZE 10240000
250‐VRFY
250‐ETRN
250‐STARTTLS
250‐ENHANCEDSTATUSCODES
250‐8BITMIME
250 DNS

A line with a dash followed by the 3‐digit response code indicates that 
there are more lines to follow. The first line always contains the domain 
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name of the SMTP server, and subsequent lines list all the supported SMTP 
options. The meanings and syntax of these SMTP options are outside the 
scope of this book.

Figure 6-3: SMTP EHLO Exchange
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Once the initial SMTP negotiation is complete, the client starts to transmit 
the e‐mail message. The SMTP protocol exchange contains three parts: sender 
information, recipient information, and message data. Figure 6-4 summa-
rizes this mail exchange process. Steps ① and ② represent the initial client’s 
mail transfer request and the server’s acceptance response. Step ⑤ provides 
e‐mail sender information, and step ⑥ provides e‐mail recipient information. 
Steps ⑨ to  involve the actual e‐mail transfer from the client to the mail server 
(or the MSA).

An SMTP transaction occurs in plain text. There are two ways to secure an 
SMTP connection: SMTPS or STARTTLS. In SMTPS, the TCP handshake is fol-
lowed by the SSL/TLS handshake before the first 220 response is sent from the 
SMTP server. This ensures that the entire SMTP communication is encrypted, 
as shown in Figure 6-5.
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Another way of encrypting an SMTP connection is through the use of the 
STARTTLS option. A server that supports STARTTLS will advertise this option 
via a 250 response after a client’s EHLO, as shown in Figure 6-3. When a client 
is notified of the STARTTLS option, it can initiate a secured session thereafter by 
sending a STARTTLS message to the server. The TLS negotiation ensues when 
the server acknowledges the agreement to the STARTTLS option by returning a 
220 Ok response to the client, as shown in Figure 6-6.

Figure 6-4: An Example SMTP Exchange
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Many popular e‐mail servers enforce encrypted SMTP messages. For example, 
Google Mail (Gmail) does not support plain‐text SMTP; instead, it enforces 
SMTP over STARTTLS and SMTPS methods. Google uses Message Submission 
port 587 to handle SMTP over STARTTLS and rejects connections that do not use 
STARTTLS, as shown in the following example output:

MAIL FROM:<john.smith@gmail.com>
530 5.7.0 Must issue a STARTTLS command first. \
 dk5sm6776268pbc.61 – gsmtp

A typical e‐mail message consists of text, HTML‐formatted text, and attach-
ments (text or binary). The e‐mail message body is structured in the standard 
Multi‐purpose Internet Mail Extension (MIME) format. The MIME format is designed 
to extend an e‐mail into carrying more than just ASCII text. An e‐mail is typi-
cally broken up into multiple parts including an HTML version and an ASCII 
version of the message. The content type for the message body is defined as 

Figure 6-5: Securing SMTP Exchange with SMTPS
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In the example shown in Figure 6-7, the content type of the message is multi-
part/alternative, which indicates these are multiple parts with each part being 
one alternative of the same message. It is common to see this format where the 
e‐mail message contains two alternatives—plain text and HTML format—and 
each part is described by its own content type. The boundary delimiter can be 
any ASCII string up to 70 characters long and is typically a randomly generated 
string to avoid collision with the actual e‐mail content. The delimiters between 
different parts begin with the “––” marker followed by the boundary delimiting 
string. The final delimiter is denoted by enclosing the boundary string in two 
“––” markers, as shown Figure 6-7. The blank space between the MIME‐Version and 
the first delimiter is called the preamble, while the space after the final delimiter 
is called the epilogue. The preamble and epilogue sections are typically blank 
spaces and are ignored by the e‐mail client.

Figure 6-6: Securing SMTP Exchange with STARTTLS
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“multipart/mixed” and each part is delimited by boundary=. The e‐mail client 
looks for the delimiter and presents the multipart e‐mail to the user based on the 
e‐mail client’s settings. Figure 6-7 shows an example e‐mail message that can be 
presented in an e‐mail client either as a plain‐text message or in HTML format.
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An e‐mail attachment is basically another part of the message, except in 
this case it is an addition to the message, not an alternative. The content type 
multipart/mixed identifies an attachment, as shown in Figure 6-8.

The mixed keyword indicates that both parts are to be presented to the client 
instead of being alternatives to one another. The attachment contains additional 
information in its header. In this example, the attachment is a text file, and so 
the attachment has the text/plain content type. With a binary attachment, 
the content type can be image/jpeg for an image attachment, or application/
octet‐stream for a generic binary file, such as an executable system file. The 
Content‐Disposition field has the value attachment followed by the filename. 
The Content‐Transfer‐Encoding field tells the e‐mail client how to decode the 
attachment. A single e‐mail can contain nested multi‐part messages. Figure 6-9 
illustrates an e‐mail that contains two attachments.

Figure 6-7: An E‐mail Message Containing Multiple Parts
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In this example, the first level indicates that this is a multipart/mixed e‐mail 
that has two attachments. The first attachment is a plain‐text file, while the 
second attachment is a Microsoft spreadsheet. We have changed the data to 
AAAA for illustration purposes; real data should be base64‐encoded, as indicated 
by the Content‐Transfer‐Encoding field. In the message body, there is the 
second level of a nested multipart section with a different boundary delimiter.

So far we have assumed that the Content‐Type field gives accurate informa-
tion about the true format and nature of the attachment. A malicious sender can 
easily fabricate the file type by giving it a fake file extension and content type to 
bypass a naïve filtering mechanism that trusts such information blindly. Modern 
antivirus software solves this problem by examining the data and searches for 
known magic patterns that are associated with the various file types. For example, 
on the Unix system, a utility called file performs such content verification by 
checking for magic patterns and outputs the true type as shown here:

$ file ––mime-type 1.txt

Figure 6-8: An E‐mail with an Attachment
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Figure 6-9: An E‐mail with Multiple Attachments
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1.txt: PDF document, version 1.4
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In this example, 1.txt was a PDF file renamed to hide its true identity. The 
file utility works by checking a magic file, which is written as a set of rules to 
classify the file format based on type signatures. An example of a PDF magic 
file is shown here:

#------------------------------------------------------
# $File: pdf,v 1.6 2009/09/19 16:28:11 christos Exp $
# pdf:  file(1) magic for Portable Document Format
#

0   string      %PDF-       PDF document
!:mime  application/pdf
>5  byte        x       \b, version %c
>7  byte        x       \b.%c

The details of the magic rules can be found in the Unix man page: “man 
magic”. We use PDF as an example. The rule contains two levels, indicated by 
the presence of a “>” symbol at the beginning of the line. The first level checks 
for the string %PDF‐ at offset 0:

0   string      %PDF-       PDF document

When the first‐level rule matches, the file utility executes all rules on the 
second level to get more information. In this case, a single byte at offset 5 and 
offset 7 returns the PDF version of this file. Note that the second line that starts 
with ! is not used for pattern matching but is used to determine the MIME type 
should a match be successful.

>5  byte        x       \b, version %c
>7  byte        x       \b.%c

An MTA or a malware detection device needs to discover the correct MIME 
type of the attachment and should not rely on the “Content‐Type” field or the 
file extension, as a malicious sender can easily create deceptions to circumvent 
the MTA.

E‐mail Filtering Techniques
The goals of the e‐mail filtering system are to prevent restricted information 
from leaving an organization and to block phishing e‐mails from entering the 
network through the e‐mail system. Integrating a DLP solution with the MTA 
can be an effective solution to filter outbound e‐mails. Because e‐mails are tem-
porarily stored on the MTA, executing DLP scan operations does not require 
absolute real‐time performance.

Many of the traditional e‐mail filtering techniques are still relevant today. 
For example, the IP address of a system that is delivering incoming e‐mails is 
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verified against an IP address blacklist, and if the e‐mails from that IP are found 
to be on the list, then they are marked as suspicious and are candidates for 
removal. An IP address that passes the blacklist check is then verified against a 
DNS‐based blackhole list (DNSBL) or an open relay database block list (ORDBL) that 
contains a list of e‐mail servers that are known or suspected to transmit spam 
or malicious e‐mails. Similarly, the e‐mail address of the sender is validated 
against a blacklist. The domain name of the sender’s e‐mail address is checked 
for validity, and so is the reply‐to domain.

Scanning e‐mail contents by a DLP solution implies there is a set of rules and 
policies that are defined in the DLP engine, and these rules are executed during 
the scanning process. These rules contain patterns, keywords, and regular expres-
sions that classify sensitive data in the message body. In addition to searching 
for patterns, the DLP engine has the ability to perform semantic analysis on the 
content. For example, because a driver’s license number is a piece of sensitive 
information, after discovering what appears to be a driver’s license number, the 
DLP engine will search for a string that appears to be a birthday or an expiration 
date. This contextual scan and correlation reduces false positive classifications. 
Finally, associated with every DLP policy is an associated action that can instruct 
either the MTA or the proxy to drop the e‐mail, modify the e‐mail content and 
then deliver the e‐mail, quarantine the e‐mail and send notification to the legal 
or HR department, or permit the delivery of the original e‐mail.

When an e‐mail contains an HTML version of the message and the e‐mail 
client is configured to display such an HTML version of a message, the message 
body should be scanned and processed in a similar fashion as for a web page 
to mitigate security threats. Therefore, an effective e‐mail security system is 
one that is fully integrated with other security solutions, such as an antivirus 
system, web analysis, and a secure proxy, in addition to working in concert with 
a DLP solution. For example, if a security vulnerability is discovered in PDF 
documents, an organization may respond to such a threat by prohibiting any 
PDF documents that are attached to e‐mails:

1 <proxy> service.name=SMTP
2 smtp.attachment.mime_type="application/pdf"
  action.remove_attachment(yes)
3 smtp.attachment.true_type="application/pdf"
  action.remove_attachment(yes)
4
5 define action remove_attachment
6 mime_remove(attachment, "PDF attachment is not safe, \
              removed by policy")
7 end

This policy layer applies to only the SMTP service, and rules on lines ② and 
③ remove any attachment that either has the “application/pdf” MIME type or 
is detected to be an “application/pdf” true file type. The action is defined to 
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completely remove the attachment. The e‐mail that is delivered to the client will 
not contain a PDF attachment. Instead, a plain‐text file containing the warning 
message “PDF attachment is not safe, removed by policy” is created to notify 
the recipient.

Summary

In this chapter, we have presented various security scenarios and offered policy 
implementation strategies on how to solve those challenges. While we examined 
the design logic behind these policies in detail, it should be apparent that these 
scenarios offer a small representation of the security landscape and are meant 
to explain how a secure proxy intercepts and processes a transaction through 
the policy system. The security engineer can dictate the desired security goals 
through a given policy language. Therefore, the level of sophistication of the 
policy engine and the expressiveness of the policy language reflect the capa-
bilities of the proxy appliance and how well the proxy can enforce complex 
security policies. Insights gained from these examples that have been written in 
a real‐world policy language should serve as useful litmus tests when selecting 
a secure proxy solution.
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Application classification refers to the real‐time identification of traffic flows as 
being part of a specific protocol or application. Timely and accurate classification 
of network traffic is commonly known as network visibility. Network visibility 
is the fundamental first step that enables network administrators and security 
specialists to write and implement meaningful security and traffic engineering 
policies, for example, “block Netflix traffic during work hours”.

A classifier refers to a system or device that examines traffic in real‐time and 
produces one or many matching classification results. A pure classifier performs 
the classification task only and produces a report. A classifier used in network 
security typically takes the result and performs one or more actions on the 
traffic flow. The action can be as simple as “allow” or “deny”, or more complex, 
as in “logging user action and reducing the user’s bandwidth usage”. From a 
security standpoint, it is vital to perform the desired enforcement action as early 
as possible. For example, the classifier should conclude that a user is upload-
ing files to Dropbox using as few packets as possible in order to avoid leakage 
of confidential information. In this case, the policy on the classification result, 
“Dropbox Upload”, may include the actions, “Log the user who is uploading to 
Dropbox”, and “Terminate the upload”.

A classifier needs information that sufficiently describes each application in 
order for the classifier to make the proper decision. This information, known 
as an application signature, is the unique pattern that distinguishes one appli-
cation from another. The signature may be bit patterns or ASCII patterns; for 
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example, “GET” and “SIP” are visible ASCII characters that are found in the 
HTTP and SIP protocol payloads, respectively. Another type of signature is 
based on the behavior that an application exhibits on a network. The signature 
type determines the algorithms that are applied in making the classification 
decision. Some classification techniques identify an application category, such 
as P2P category, rather than a specific application.

In this chapter we will describe the signature types and structures and the 
associated classification techniques and algorithms. We will use the terms 
classification engine and classifier interchangeably throughout this chapter.

A Brief History of Classification Technology

Firewalls could be considered as the first classification devices that enforce 
security policies at a network’s ingress and egress points. Legacy firewalls 
were confined to using the L4 packet header, specifically the port number 
information to identify both protocols and applications. The Internet Assigned 
Numbers Authority, or IANA, assigns port numbers to specific applications 
and services. Legitimate protocols and applications operate in conformance 
with these port designations. Even today, firewalls continue to perform 
port‐based classification and are ubiquitous in network infrastructures. In 
essence, a firewall makes the classification decision on the first packet with 
very small computing overhead, as the port number resides on a known loca-
tion in the packet, as shown in Figure 7-1. For ease of discussion, any extra 
headers such as VLAN or GRE or variable-length options are assumed to be 
absent from the packets. The classification process is simple and efficient. 
Instead of classifying packet by packet, a stateful firewall will classify a 
connection using the first packet, and then create and keep a connection 
state that includes the classification result. Future packets that belong to a 
known connection in the connection state table require a simple lookup for 
the classification ID.

Port‐based classification is efficient and the process is deterministic when 
applications conform to the specifications. Unfortunately, many applications 
do not abide by the rules. For example, peer‐to‐peer (P2P) applications try to 
evade firewalls by using ephemeral ports. Other applications, especially mali-
cious types, try to evade firewalls by communicating over well‐defined ports. 
A plethora of web‐based applications emerged with the explosive growth 
of Web 2.0. Instead of one‐way information download, the web has become 
interactive. As such, a simple port‐based classification engine would naïvely 
treat all traffic running on port 80 as simply HTTP protocol traffic, thus ren-
dering the firewall ineffective because it could not, for example, distinguish 
the application activity of “Playing Farmville on Facebook” from “Reading a 
post on Facebook”.
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Firewalls with Deep Packet Inspection (DPI) capability began examining 
the packet payload and searching for known patterns to identify protocols and 
applications. Payload‐based classifiers make decisions slightly later in the flow 
lifecycle than port‐based classifiers. For example, the HTTP classification engine 
typically searches for a string such as “GET /* HTTP/1” where * denotes any 
string. This information is not available until the TCP three‐way handshake is 
complete. Therefore, the earliest time this flow can be classified as HTTP is on 
the fourth packet. Even with the fourth packet, as TCP is a stream‐based protocol, 
the first HTTP GET request may be truncated into two packets, with one packet 
containing the “GET /” string and the other containing the “* HTTP/1” string. 
In this case the classifier needs to accumulate enough packets to make the clas-
sification decision. As L4 information is readily available in the payload‐based 
classifier, a firewall with DPI also performs port‐based classifications as part 
of the payload detection. With this hybrid approach, a flow on a standard port 
can be classified on the first packet, and the classification may change as more 
payload data becomes available. With applications that run on non‐standard 
ports, the classifier will make the classification decision only after enough pay-
load data becomes available.

The DPI classifier requires unique knowledge about the set of applications to be 
classified in order to know what to look for inside the payload. This knowledge 
can come from either a published specification or a signature database. Before 
we discuss how signatures are generated, let’s first look at the structure of a 
payload‐based classifier, as shown in Figure 7-2, assuming the signatures are 
already available. A payload‐based classifier device can be generally broken up 
into the following operations: packet intake, flow association, classifications, and 
optionally actions to be applied to the outgoing packets. Some devices deploy 

Figure 7-1: Port‐Based Classification
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the classifier entirely for visibility or retrospective analysis. For these types of 
devices, packets are retrieved for analysis but do not need to be transmitted 
after processing. Other devices may perform one or more actions, as specified 
by the enforcement policies on each packet before its transmission.

Figure 7-2: DPI‐Based Classification
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Flow construction consists of separating flows based on combined L3 and 
L4 information. A flow is represented by a 5‐tuple: L4 protocol type, source IP 
address, source port, destination IP address, and destination port. In the case 
of TCP connections, the directionality of a connection is defined by the packet 
that contains the “SYN” flag, and directionality is maintained as a part of the 
flow state. Many classifiers can greatly improve the classification accuracy if 
the directionality is known.

At the completion of flow construction, a packet that matches an existing 
flow is accumulated with other packets until a certain amount of payload data 
becomes available, at which point the combined payload is dissected to look 
for specific patterns based on the set of known classification signatures. In the 
next section, we will examine signature-based classification engines in detail.

Signature-Based Pattern Matching Classification

The classification signature database is a collection of patterns that contain 
enough data to confidently classify a flow and to map the flow to a specific 
application as illustrated in Figure 7-3. An efficient pattern matching algorithm 
is critical to the performance of the real‐time classification engine for pattern-
based application signatures.

The classification engine needs to iterate through all the applications known 
to the classification engine and matches the collected payload against the set of 
application signatures. The value of the classification engine is in the number 
of applications it is capable of identifying. The pattern matching time grows 
in proportion with the number of applications. A classifier that simply iter-
ates through all the signatures and performs pattern matching against each 
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signature one at time is inefficient. Furthermore, many of the signatures may 
have overlapping patterns. Scanning the input for the same pattern repeatedly 
is an inefficient use of resources and increases the matching time unnecessarily.

Figure 7-3: Iterative Signature Matching
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Consider a naïve classification implementation that contains the following 
application signatures: Battlefield and Battle.net. The former is a network war 
game while the latter is a game server that hosts multiple popular strategy 
games. The example classification code is presented in pseudo‐code format:

if data == "battle" OR data == "stella" ) then
    return BATTLEFIELD
else
    return UNKNOWN
endif

if data == "battle" then
    return BATTLE.NET
else
    return UNKNOWN
endif

The term “battle” is present in both signatures. A naïve classification imple-
mentation performs the exact same match on the term “battle” twice per flow, 
which is inefficient. Moreover, the performance of the classifier depends on 
the average number of classification signatures it needs to compare against 
before reaching a decision. We can make a few observations from this simple 
example. First, the quality of the signatures for both applications is poor. The 
most desirable signature is one that contains unique terms that are distinct from 
all other signatures; in other words, the fewer overlapping terms there are in 
a signature, the better quality the signature has. Second, the matching order 
is significant, and this is a symptom of the poor quality. In other words, if the 
classifier compares the input against the signature for Battle.net first, then it will 
reach a definitive result if the input string is “battle”, without the need to check 
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for “Battlefield”. Third, it is desirable to have the ability to compare the input 
string against multiple signatures in parallel as a filter mechanism to create a 
candidate signature set that is a subset of the entire database for comparison 
when additional terms become available from the input.

Extracting Matching Terms: Aho‐Corasick Algorithm
The Aho‐Corasick algorithm is a simple and efficient algorithm for locating all 
occurrences of a finite number of patterns, also called terms, in a text sample. 
The Aho‐Corasick algorithm constructs a finite‐state machine (FSM) or finite 
automaton out of the given terms, and this pattern‐matching machine is then 
used to locate these terms in an input string.

Consider a set of terms {“ACE”, “FACE”, “ACT”, “SOFA”, 
“SOS”}. We will use these terms to illustrate the step‐by‐
step construction of an Aho‐Corasick data structure. As 
with any finite automaton, each node represents a state. 
The Aho‐Corasick FSM begins with a single root node 0 
as the starting state, as shown in Figure 7-4. The terms are 
represented in capital letters for ease of discussion. Oftentimes packet payloads 
are normalized, for example, into all capital letters, before feeding the data into 
the classifier.

The operation of the Aho‐Corasick matching FSM is governed by three func-
tions: the goto function, the failure function, and the output function. The transition 
from one state to another is dictated by the goto and failure functions. Every node 
has a goto function marked by a solid arrow and a failure function marked by a 
dashed arrow. An absence of a dashed arrow indicates the node has a default 
failure function that points back to the initial state 0. A node contains an output 
function denoted by a solid‐colored node if a term has been matched.

The first term is “ACE”, which will produce three nodes or states as shown 
in Figure 7-5. The goto function maps a state and an input into another state. In 
this example, the goto function maps the start state 0 and the input character 
“A” into state 1. The goto function maps state 1 and the input character “C” into 
state 2, and so on. State 3 contains an output function that produces “ACE”, which 
indicates a match with “ACE” is found at state 3.

0

Figure 7-4: Start State

A0 1 2 3C E

Figure 7-5: FSM for the Term “ACE”

The next term to be inserted into the FSM is “FACE”. Construction of a new 
term always starts from the root node. Because “F” is not in any of the available 



 Chapter 7 ■ The Art of Application Classification 209

state transitions out of the root node, a new node is created as shown in Figure 7-6. 
The main difference between Figure 7-5 and Figure 7-6 is the presence of explicit 
failure functions for states 5, 6, and 7. Part of the Aho‐Corasick FSM construction 
is to define the failure function at each node.

A

F

0 1 C 2 3E

A4 5 C 6 7E

Figure 7-6: FSM after Inserting the Term “FACE”

The goto function can indicate a failure if the goto function cannot map a given 
input at a specific state into another state. For example, in Figure 7-5, if during 
input parsing at state 1 the input character is “H”, the goto function reports a 
failure, and at that point the failure function is executed. The failure function 
causes a transition from one state to another. In this case, the lack of a dashed 
arrow implies state 1 does not have an explicit failure function. So the default 
failure function is executed, causing the FSM to return to starting state 0. In 
Figure 7-5, none of the nodes contains an explicit failure function, which implies 
the default failure function will take effect upon a matching failure, which will 
reset the FSM.

The FSM, as shown in Figure 7-6, has an explicit failure function defined at 
state 5, which maps state 5 into state 1 when the next input character does not 
map into state 6. The state which the failure function maps into, called the failure 
node, is derived by removing the first level transition “F” and looking for every-
thing else up to the current node. In this example, the failure node for state 5 is 
derived by removing “F”, which is state 1, a single “A”; thus, state 5 maps to state 
1. On state 6, the failure node is derived by removing “F” from “FAC”, which 
is “AC”; thus, state 6 maps to state 2. In other words, the construction of the 
failure function looks for the longest string match in the current Aho‐Corasick 
tree, from the start state, using the new term obtained by removing the first 
character from the just inserted term (“FACE”), one at a time, until every node 
(4, 5, 6, 7) that leads to the end of the currently inserted term has been visited. 
Notice that on state 6, the path leading from the root node to the current state 
consists of three transitions with the characters “F”, “A”, and “C”. The possible 
failure nodes are “AC” or “C”. Even if hypothetically there is a single‐character 
term “C”, which leads from the root node to another state, the failure function 
of state 6 is still state 2, because the term “AC” is longer than this hypothetical 
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term “C”. With this rule, after a term has been inserted, one and only one failure 
function will be created on every state leading to the last state of this term. This 
example illustrates that the failure function is important to keep the FSM running 
without the need for rechecking all possible permutations of the matched string.

For a matching example, input sample “FACT” will traverse the FSM from node 
0, 4, 5 to node 6. When input “T” does not match the next transition character 
“E”, the FSM executes the failure function on node 6, resulting in a transition to 
state 2. The input is checked against the next transition character at state 2. In 
this case, again, there is no match, but this time the default failure function resets 
the FSM back to node 0. Note that an input sample “FACE” matches both node 
7 and node 3, so both output functions on node 7 and node 3 will be executed.

The next term for insertion is “ACT”. Because “A” is already available as the 
first level transition, state 1 is reused. The first character that differs from the 
existing path is the letter “T”, so state 8 is created to form a new transition branch 
as shown in Figure 7-7. By removing one character at a time from the beginning 
of this term, neither “CT” nor “T” can be found in the current FSM. Hence, no 
failure node can be traced from the newly created node 8.

Figure 7-7: FSM after Inserting the Term “ACT”
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Continuing the same insertion process with “SOFA” and “SOS”, we will 
eventually arrive at the FSM as shown in Figure 7-8. Each of the solid‐colored 
nodes denotes a positive pattern match, and in the context of application clas-
sification, a pattern match implies the input contains a term (or pattern) that is 
part of one or more application signatures.

For illustration purposes, we assume that signatures for Facebook and FaceTime 
both require the term “FACE”; as such, the output function (that is extended for 
application classification) at node 7 contains a table that lists the applications 
that are interested in this term, which are Facebook and FaceTime, as shown in 
Figure 7-9. The term alone may not be descriptive enough for the classification 
engine. Therefore, additional information, such as the byte offset in the input 
string where the term is found, may be recorded as part of the output of the FSM. 
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The byte offset serves as an additional matching criterion. In this example, the 
term “FACE” is part of the signature for FaceTime only if the term is located at 
byte offset 0 in the input string, but if the term is located between byte offset 
10 and 20 inclusive, then it is part of the signature for Facebook.
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Figure 7-8: Final FSM Including All Terms

An application signature typically contains multiple terms. For illustration 
purposes, we created a hypothetical application signature for Facebook, which 
contains the term “FACE” between offset 10 and 20 and the term “SOS” at off-
set 25. A signature such as this can be represented as a list of matching rules, 
as shown in Figure 7-10. All of the rules must match in order for a byte stream 
to be classified as Facebook using the hypothetical Facebook signature. In this 
case, the term “FACE” needs to match between the byte offset 10 and 20, and 
the term “SOS” must appear at byte offset 25 in the input stream.

Prefix‐Tree Signature Representation
The quality of classification is greatly affected by how a signature is represented 
and utilized by a classifier. Instead of representing classification signatures using 

Figure 7-9: Output from a Pattern Match
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tables of static matching rules, recent research has shown that a Prefix Tree or 
simply Trie can be leveraged to implement signatures effectively. A Trie acts as 
an FSM similar to the Aho‐Corasick FSM. In a Trie, the terms of a signature 
are arranged in chronological order, not with absolute offset. In other words, 
the relationship between two terms is defined by who‐comes‐before‐whom. 
Therefore, the resulting signature that is constructed in the form of a Trie specifies 
the sequencing association among the different terms. Consider the following 
example signature of the Session Initiation Protocol (SIP) that is widely used 
for voice‐over IP communications. In Figure 7-11, each circle represents a state, 
and the string value is a term that causes a state transition. A solid‐colored circle 
represents a decision node. In other words, if a flow causes the Trie to transition 
into state 3 or state 5, then this flow can be classified as the SIP application.

Figure 7-10: Matching Rules for Hypothetical Facebook Signature
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Figure 7-11: SIP Signature in Prefix Tree Representation

4 5
User-Agent

SIP/

IN
VITE

REGISTER

SUBSCRIBE

200 OK
2 3

User-Agent

6

10

7

9

User-Agent

8
From:

10
To:

It is important to note that a Trie describes the entire application signature, while 
the Aho‐Corasick FSM describes how a term can be matched against the input 
data stream. A decision point made on the Aho‐Corasick FSM extracts a term that 
corresponds to a transition on the Trie. Let’s now look closely at how the applica-
tion signature is used by the classifier, assuming that this is the only application 
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signature available to the classifier. The classifier parses the incoming stream 
of bytes and attempts to find matching patterns in its Aho‐Corasick FSM. For 
illustration purposes, we are only showing a partial Aho‐Corasick FSM and its 
relationship to the SIP signature. Recall that an Aho‐Corasick FSM transitions 
on each input character while parsing the incoming data stream, and a decision 
node corresponds to a matching term that can possibly make a transition in 
the signature Trie FSM, as illustrated in Figure 7-12. The data stream is classified 
only if the classifier reaches a decision node in its signature Trie FSM. When 
the pattern “SIP/” is recognized by the Aho‐Corasick FSM, the current state in 
the SIP signature Trie FSM advances its state to 1. At this point, the signature is 
interested only in four possible transitions out of the current state: “INVITE”, 
“REGISTER”, “SUBSCRIBE”, and “200 OK”. That is, if the next matching term is 
“FROM:” at the current state, even though this is a term of interest to SIP, that 
term is ignored, and the state remains in state 1. This flow is classified as SIP 
only if the current data stream causes the Trie FSM to reach any of the decision 
nodes: 3, 5, 7, or 10.

Figure 7-12: Relationship between Aho‐Corasick FSM and the Prefix Tree‐Based Signature
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A closer look at the SIP signature Trie reveals that a number of enhancements 
may be necessary in the Trie representation:

 ■ The absolute offset is omitted from the signature. In the earlier Facebook‐
versus‐FaceTime example, the classifier required both the term and its 
offset in the input stream to classify the application. In this SIP signature, 
the absolute offset is replaced by the order among the terms. However, 
an absolute offset may still be necessary for classifying some applica-
tions. For example, the “GET” keyword in HTTP is useful only when it 
is found at the beginning of the payload (offset=0). This extra constraint 
can be detected during term extraction and be added to the signature as 
a criterion so that a state transition occurs only if a term matches at the 
desired offset.

 ■ The Trie FSM is a syntactical parser and thus lacks representation of cross‐
correlation among different flows. For example, in the input stream, the 
data that follows the “FROM:” keyword may provide IP address infor-
mation that may be useful to classify a subsequent flow. A signature that 
is structured as a Trie is incapable of expressing semantics of its terms.

 ■ A classifier may be able to make a classification decision based on terms 
that are absent from the input stream. The Trie approach is incapable of 
expressing such matching criteria.

In practice, a Trie typically contains multiple signatures. The combination of 
the Aho‐Corasick FSM and the Trie‐based signature FSM provides an important 
optimization: the input data is scanned only once, and classification evaluation 
is performed against multiple signatures in parallel.

Manual Creation of Application Signatures
Defining the terms and constructing the signatures using these terms and 
then aggregating these signatures into a database are the prerequisites to the 
signature‐based classification engines. The first type of signature creation is a 
manual process that involves human data analysts or protocol engineers. For 
well‐defined and published protocols and applications, the signatures can be 
generated out of specifications such as the IETF RFC documents. For unpublished 
protocols and applications, the analysts or engineers must analyze the applica-
tion exchanges using packet captures and then reverse‐engineer the application 
signature based on both the protocol payloads and the protocol’s operational 
behaviors. A data analyst may collect the packet captures either from the field 
or by running the application of interest in a controlled environment. In either 
case, the signature creation process requires manual sample collection and 
possibly applying a priori knowledge or heuristics in the analysis. Figure 7-13 
provides an overview of this signature mining process.
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The biggest problem with the packet capture‐based reverse‐engineering 
approach to creating an application signature is the lack of application feature 
functional coverage. For a more complete coverage, one must enumerate all of 
the possible menu options, generate traffic for each of the menu items, and then 
track the data flow and produce a signature for that specific feature accordingly. 
Not only is this method not scalable, but sometimes it is impossible to enumer-
ate all possible features without specific data as feature input. For example, 
some business and legal applications grant access to certain features only when 
the user has a sufficient privilege level.

In addition, recent Internet trends are constantly challenging the effectiveness 
of the manual approach. Encrypted traffic is growing exponentially. One of the 
major challenges for pattern‐based signature generation lies in the fundamental 
requirement to look into the payload. SSL encryption scrambles the payload data 
and renders this technique ineffective. Signature generation and traffic classifi-
cation are impossible without visibility into the encrypted payload. The use of 
an SSL proxy to decrypt the traffic may be one way to overcome this challenge. 
Rapid updates to applications and protocols amplify the scalability issue facing 
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Figure 7-13: Overview of Signature Mining Process
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the manual generation process. For example, in 1999 Microsoft introduced MSN 
Messenger to enter the instant messaging market. The version number was 9.0 
by the time MSN Messenger shut down in 2012. In 2009, MSN Messenger was 
renamed Windows Live Messenger, and the technical version jumped to ver-
sion 14.0 and was 16.4 by the time the service shut down and consolidated with 
Skype. This meant there were 16 versions in 13 years.

During this time, MSN Messenger introduced numerous new features such 
as voice, video, and emoticons, making it difficult for vendors that sold classi-
fication products to keep up with the updates. Companies consolidate through 
mergers and acquisitions, and so do their respective applications. Take the 
video sharing application YouTube, for example. It was created and based on 
Flash, but its popularity demanded that YouTube traffic be classified as a unique 
application aside from other “streaming media” applications. At the same time, 
Google launched its own video sharing service called Google Video but eventu-
ally decided to purchase YouTube in 2006. Before 2006, classifiers were able to 
separately identify both Google Video and YouTube, but after 2006, these two 
services became synonymous. Classifiers had to evolve to accommodate this 
change and be able to relate Google Video to YouTube. The explosive growth 
in web‐based and mobile applications, which number in the millions, is simply 
overwhelming for any manual approach to signature generation.

Automatic Signature Generation
Automatic signature generation is a different approach that utilizes machine learn-
ing and data mining techniques to produce and constantly update application 
signatures. In a paper published in 2013 titled “SANTaClass: A Self Adaptive 
Network Traffic Classification System”, Alok Tongaonkar and his fellow research-
ers proposed a method to automatically generate application signatures from 
what they called invariant patterns, also known as common terms, which are pat-
terns that remain the same from flow to flow. The classification system defined 
in their proposal contained two main components: the Automatic Signature 
Generator and the Real‐Time Classifier, as shown in Figure 7-14. We will describe 
their classification system and the proposed automatic signature generation 
method in this section. The Real‐Time Classifier is based on the Aho‐Corasick 
algorithm and the Trie and has been described in detail in the previous sections 
in this chapter.

The Automatic Signature Generator (ASG) contains three main components: the 
Machine Learning (ML) system, the Signature Generator (SG), and the data collectors. 
The ML system constantly collects and accumulates real‐world traffic from one 
or more data collectors and performs necessary extraction of common terms 
from related flows. The SG takes inputs from the ML system and produces and 
refines signatures, eventually storing new signatures in the database. A real‐
time classification system is deployed in the critical traffic path to classify the 
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traffic based on signatures produced by the ASG system. The goal of this ASG 
system is to constantly evolve and refine the signatures so that the classifier 
will produce better results over time and new applications can be discovered 
without human intervention. However, in practice a human inspector or analyst 
is generally required for the following reasons:

 ■ The ML system employs probability algorithms to group flows into 
clusters as if these flows were generated from the same application. The 
clustering methods serve as a pre‐selection or filtering process that will 
subsequently enable an analyst to fine‐tune the algorithms to achieve the 
necessary accuracy.

 ■ An analyst can modify an automatically generated signature by either 
inserting or removing terms according to heuristics or a priori knowledge 
to improve classification accuracy. Such a practice is particularly true for 
custom applications.

 ■ The ML and signature generator system may be able to automatically 
generate a signature and accurately match the traffic against it, but the 
signature lacks a meaningful name. One of the biggest challenges of auto-
matically mining and generating application signatures is the problem of 
associating the signature with its proper application name. For example, 
the signature generator may have created a signature to uniquely identify 
Skype traffic, but the classifier may not know the application is Skype.

Figure 7-14: Automatic Signature Generation
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A practical signature generation system therefore puts a human inspector 
in the loop, as shown in Figure 7-15. Notice that in this diagram, a few extra 
elements were added. First, the ASG now contains an extra element called the 
distiller. The distiller compares a new signature against the existing ones to check 



218 Chapter 7 ■ The Art of Application Classification

for redundancies and merge with and refine another signature. Details of the 
distiller will be discussed in a later section. Another interesting observation is 
that the signature generation path involving the human inspectors is not in the 
critical path. That is, the ASG system can run without human intervention, but the 
human inspector can retrieve and overwrite the resultant signatures by directly 
modifying the signature database. The work of the inspector should be performed 
out‐of‐path, denoted by 3.1 and 3.2, and not become a bottleneck in the system.
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Figure 7-15: Automatic Signature Generation with Distiller

The ML system and classifier can both accept packets. Even when the clas-
sifier can already classify a flow, the flow may still contain useful information 
to help refine the existing signature. In practice, the ML system continues the 
data extraction out of the flow if the confidence level on the matched signature 
has not reached a certain threshold. We will discuss the confidence level in the 
“Signature Distiller” section.

Flow Set Construction

The first requirement for mining the common terms that are the basic build-
ing blocks of a signature is to sort the flows that may be related to the same 
application into a flow set. The initial sorting process relies on L4 packet header 
information. Because an application can utilize different L4 service ports and 
different applications may communicate over the same port, the quality of the 
signature depends on how accurately related flows are collected into the same 
flow set while unrelated flows are excluded from that set.

The majority of applications issue DNS queries before initiating connections 
to the intended destinations. Therefore, one way to correlate related flows is 
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by leveraging the information obtained from the DNS exchange, such as the 
domain name and its associated IP addresses. Flows that are destined to the IP 
addresses corresponding to the same domain name are grouped together as one 
application. This DNS‐based grouping approach makes the assumption that a 
domain name predominantly hosts one main application. This assumption is 
ineffective for web‐based applications. For example, the Facebook social media 
site and Facebook games are all hosted under the domain name Facebook.com. 
However, grouping all traffic going to Facebook.com will not produce any qual-
ity signatures for the various Facebook games.

In light of the constraint just mentioned, a possible solution to solving this 
problem is to combine DNS information with data clustering techniques that we 
will describe in detail later in this chapter. We recognize that the same domain 
name can be used to host multiple applications, but each application should 
exhibit different network behavior. Take YouTube, for example. Traffic flows 
that are part of the YouTube website‐browsing activities exhibit distinct network 
behavior that differs from traffic flows that are streaming YouTube videos in 
terms of packet sizes and inter‐packet time gaps. Applying data clustering 
techniques using packet sizes and inter‐packet gaps will yield two distinct data 
clusters, and this information can be used to further divide flows into two sub‐
flow sets, even when those flows are going to the same domain. In fact, the data 
clustering technique can help identify different actions being activated within 
an application. Thus, the resulting signatures can provide immense insight into 
the structure and the inner workings of an application.

Another challenge with the DNS‐based grouping method is the requirement 
that the signature generator have visibility to all DNS traffic. The generator 
may not capture all DNS exchanges that take place on the network. L4 port 
information is utilized to group flows that have destination IP addresses that 
are not found in any of the preceding DNS queries. Because flows from multiple 
applications can run over the same port, the data clustering technique is again 
utilized to separate those flows into different sub‐flow sets.

The resulting flow sets obtained from the procedures just mentioned may need 
to satisfy a number of constraints to ensure each flow set is a good representa-
tion of the corresponding application. The server diversity constraint is a measure 
of the number of different destination IP addresses that exist in a flow set. This 
measurement is an indicator of whether the flows in the set belong to traffic 
going to a specific server hosting a service. The number of flows per destination 
IP address limits the effect of one node on the signature. Beyond the threshold, 
the additional flows are excluded from the set. The total number of flows in a flow 
set ensures sufficient traffic payloads are available to generate the signatures.

These constraints not only act as flow selection parameters but also dic-
tate where the data collectors can be deployed. Imagine the data collector is 
deployed inside an enterprise network. A small or medium‐sized enterprise 
may have only a few static public IPv4 addresses. The presence of a NAT device 
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at the enterprise network perimeter means connections that are initiated from 
within the enterprise will be mapped to one or two public IP addresses as the 
source IP address. Consequently, the server IP address is also limited to a few 
values. For example, before an enterprise user initiates a connection to Google 
Drive, a DNS query is issued for Google.com, which will solicit only a few IP 
addresses due to Google’s global load balancing algorithm, which resolves the 
query based on the physical location of the source IP of the DNS query issuer. 
Whether Google.com resolves to one or two IP addresses also depends on the 
workload at each of its servers at the query time. Therefore, as this example 
illustrates, server diversity must be an adjustable parameter. As it turns out in 
practice, the data collectors are best deployed in the ISP networks to be effective 
in gathering the necessary data while meeting the constraints for the automatic 
signature generator.

Extraction of Common Terms

An important aspect of automatic sig-
nature generation is the extraction and 
selection of common terms from a vast 
collection of traffic flows. The com-
mon terms are extracted by pair‐wise 
comparison between all the flows in the 
flow set obtained from the flow‐set construction phase. A pair‐wise comparison 
involves taking two flows and attempting to extract any common substrings 
such as that shown in Figure 7-16.

To perform a pair‐wise comparison between flow 1 and flow n, we start from 
the first byte of flow 1 (B = 0), take the first M bytes on flow 1, and compare 
it against the entire payload of flow n. M starts with a minimum comparison 
size, typically 4, and increments until M reaches the end of flow 1. When M 
reaches the end of flow 1, the process starts over, skipping the first B bytes, and 
increments B by 1. M again starts with the minimum size of 4 and increments 
until the end of the flow.

for B in (0, sizeof(flow1) − 4)
    for M in (4, sizeof(flow1)-B)
        str = flow1's data of size M at offset B
        if str is found in flow n; then
            record str as a candidate term
        end if
    end for
end for

Each pair‐wise comparison therefore requires O m( )2  operations, where m is 
the average payload size in the flow set. Because every flow in the flow set will 

Flow N 92816783927268389fefdae032389790802

Flow 1
B M

000103ab10eafefdae032389792830912

Figure 7-16: Extracting Common Terms



 Chapter 7 ■ The Art of Application Classification 221

need to be compared to every other flow, there are another O n( )2  operations. 
Combining these two sets of operations results in a total of O n m( )2 2  operations. 
Even with a moderately large number of flows in the low thousands, the number 
of substring comparison operations is in the order of 10 ,10  which is an impracti-
cal solution to implement for real‐world operations. Clearly something has to be 
done to reduce this complexity. The law of diminishing returns applies to the 
common term extraction problem. It is possible and thus desirable to partition 
the flow set into multiple smaller subsets and perform pair‐wise comparisons 
within each subset. This way, the number of operations is divided by the square 
of the number of subsets, denoted by F. The resultant complexity is therefore 







O n m

F

2 2

2
, which is much more manageable. The common terms that have been 

discovered in these flow subsets are then aggregated into a combined term set, 
and it is then subjected to additional selection criteria as follows:

 ■ Short terms such as “\r\n” or “OK” produce little value but add noise and 
degrade the quality of the signature. The researchers of the SANTaClass 
proposal found four characters to be an acceptable threshold. Any term 
that is less than four characters long is therefore removed from the final 
set of terms.

 ■ Some strings, such as specific date, time, or numeric values that may not 
be related to a protocol or application, are removed from the flow set. In 
practice, this selection method is challenging to automate because the 
strings may need to be examined in the context of the surrounding terms 
before they are eliminated. Also, it is difficult to assess the relevancy of 
a string when the protocol or application is unknown. This step is best 
executed by manual inspection.

 ■ Two terms that are substrings of each other are combined. For example, 
consider the terms “HTTP” and “HTTP/”. The presence of both terms 
is simply the result of automatic term extraction, but having both terms 
does not provide any value. When a substring is detected, the term with 
the higher probability is accepted, or the longer term is accepted if their 
probabilities are the same.

 ■ High‐frequency terms are kept and low‐frequency terms are removed. 
The frequency of a term is derived from the percentage of the occurrences 
of the term over the total number of sampled flows. Two thresholds are 
defined: high and low. Any term whose term frequency is above the high 
threshold is accepted, while any term whose term frequency is below the 
low threshold is rejected. Empirical values for the high and low thresholds 
are found to be around 80 percent and 15 percent, respectively. Any term 
with a frequency between these thresholds is subject to the mutual‐exclusion 
detection that will be described shortly.
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 ■ Mutually exclusive terms are kept in the final terms set. Using the term 
frequency threshold may sometimes omit terms that are important, but 
applies only to certain application variants. An example is that differ-
ent HTTP methods such as “GET”, “POST”, and “PUT” may not occur 
frequently enough individually, but collectively produce a high enough 
frequency above the acceptance threshold. These terms are collected and 
used to produce different paths in the same application signature. A set 
of terms is considered mutually exclusive when these terms belonging 
to the same flow set do not appear in the same payload. Suppose that we 
have a 100‐flow sample, where every flow contains one of “GET”, “POST”, 
or “PUT”, and where “GET” appears in 50 flows, “PUT” appears in 25, 
and “POST” appears in 18. If the frequency threshold is set at 80 percent, 
then none of these terms can be accepted as they all have a term frequency 
under the threshold. However, we know that in any given flow, if “GET” 
appears as a term, then “POST” will not be present because these opera-
tions are mutually exclusive and cannot co‐exist in a single HTTP request. 
Similarly, if “PUT” appears in the flow, then “GET” cannot be found in that 
same flow. We can also compute the combined term frequency of “GET”, 
“POST”, and “PUT” as (50%+25%+18%=93%), which is above the acceptance 
frequency threshold of 80 percent. Based on this information, we can con-
clude that these three terms are mutually exclusive and may be relevant 
for inclusion in the final terms set.

A prefix tree is then generated using the terms from the final set, which 
constitutes a signature for the application.

Signature Distiller

The signature generator produces common terms that are present among all 
of the flows that are considered to be the same application under the flow set 
construction process. This is a somewhat narrow view, and the distiller module 
attempts to mitigate this problem by looking at the freshly generated signature 
in a global context. Specifically, a distiller performs the following actions after 
obtaining a new signature:

 ■ Eliminates redundant signatures and optimizes the signature trie. Flows 
from an application may be sorted into different flow sets, for example, 
because the same application can run on multiple ports. In these cases, 
a partial signature of an application can exist in the signature database 
while the newly acquired signature represents another aspect of the same 
application. The distiller compares the newly created signature to all of 
the signatures in the current database and searches for similarities. Two 
signatures that resemble one another will be combined into one. In the 
context of the prefix tree FSM representation, combining signatures is 
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about modifying the FSM such that branches with the same state transi-
tions that are triggered by the same input are merged, and additional new 
branches may be created at a given state as part of the merge.

 ■ Assigns a confidence score to each signature. Every signature will be 
assigned a confidence score at its creation time. The more flows that have 
been applied in the signature generation process, the higher the confidence 
is given to the resulting signature. Therefore, the confidence score may be 
used to measure whether the signature requires additional refinement. 
The confidence score also serves as the tie-breaker in the case where a 
flow matches multiple signatures. The confidence score can be computed 
based on multiple criteria such as path length, transition probabilities, 
and term relevance. The path length refers to the number of terms in a 
single “path” in the signature that leads to the decision node. A longer 
path length generally indicates a better signature quality. A simplified 
version of the SIP signature is shown in Figure 7-17 for illustration pur-
poses. The decision nodes 3 and 6 are assigned a path length criterion of 
4 and 5, respectively. These values are computed from a number of nodes 
leading up to this decision.

Figure 7-17: Prefix Tree with Path Length
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The transition probabilities refer to the probability that a flow will take a spe-
cific path in the FSM given that it can be classified as that application. Transition 
paths that have higher combined probabilities are given higher confidence scores. 
For illustration purposes, we created an artificial path with the term “OTHER”, 
as shown in Figure 7-18. The transition probability applies only when there are 
multiple transition branches out of a state. When there is a single branch, there 
is a single outcome; as a result, the transition probability is 100 percent and 
therefore omitted. The transition probability for a path is computed at the deci-
sion node and is calculated as the product of all of the transition probabilities 
leading up to this decision.
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Last but not least, the term relevance is calculated using the Term Frequency‐
Inverse Document Frequency (TF‐IDF) value. TF‐IDF is the metric used to 
compute term relevance to a set of documents. A term is more relevant if its 
occurrences concentrate in the same document but becomes less relevant if it 
appears in more documents. In the context of application classification, a term 
is more relevant if it appears in one FSM, and it is less relevant if it appears in 
multiple FSMs. We discuss TF‐IDF in Chapter 5, so the formula is not repeated 
here. It suffices to say that each term can be assigned a TF‐IDF value normal-
ized to 1. In contrast to the path probabilities, the TF‐IDF value is significant 
on every term in the signature. The TF‐IDF score at a decision node is the sum 
of individual TF‐IDF scores on all the transitions leading up to this decision. 
Intuitively, a term that is less unique to this signature because it appears in 
other applications, such as “FROM:” and “TO:”, has a lower TF‐IDF score than 
a term that is unique, such as “SIP/”, as shown in Figure 7-19.

Figure 7-18: Prefix Tree with Path Probability
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Figure 7-19: Prefix Tree with TF‐IDF
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The automatic signature generator is a complex system that is typically con-
structed using a computing cluster. Unlike inline traffic processing devices 
such as firewalls, both the signature generation and distillation processes are 
performed offline, not in real‐time, because real‐time packets are captured and 
stored. Therefore, accuracy of signature generation is more important than 
processing performance.

Considerations

An automatic signature generation system can dramatically reduce the amount 
of human intervention required to collect, analyze, and produce quality signa-
tures. However, there are drawbacks and issues that demand continued research 
in this technology domain to improve the algorithms. For example, one of the 
issues is data overfitting. The signature generated on one network infrastructure 
may work very well when classifying traffic on that same network but may 
work poorly on a different infrastructure. The training set may contain terms 
specific to a network infrastructure on which the samples are taken. A generic 
algorithm does not have the intelligence to filter out these terms. The effect of 
data overfitting becomes even more prevalent in statistical learning machines, 
as we will discuss in the next section.

The use of automatic signature generation does not solve the problem when 
it comes to encrypted traffic. Because the system relies on its ability to sniff out 
common terms among flows, encrypted data completely evades this technique. 
There may be some useful information that can be extracted from the initial 
certificate exchanges, but there will be little value to the signature generator after 
the encrypted sessions have been fully established and the data is encrypted 
thereafter.

Putting the data collector at the ISP backbones will require the generator to 
sanitize and remove private information such as usernames, IP addresses, and 
e‐mail addresses before applying the signature generation algorithms. These 
pieces of information must be transformed into generic token terms such as 
“IP‐Address” and “Email‐Address”, meaning it is important to know a term is 
an e‐mail address but the exact e‐mail address is not important.

An automatic generator does not have the ability to interpret semantics of 
data that is embedded in the payload, which can serve as an important term. For 
example, without knowing the actual FTP protocol, an automatic generator may 
not be able to recognize the IP address of the data channel, which is embedded 
in the payload in an obscure format that looks like “192,168,1,100,23,15”. On the 
other hand, this IP address information can be easily identified by an experi-
enced protocol engineer.

In a connection, the traffic patterns from client to server can be distinctly 
different from the traffic patterns going in the opposite direction. Terms that 
appear in one direction are most likely different from those appearing in the 
opposite direction. Likewise, the behavioral features constructed from the 
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client‐to‐server traffic may not apply to its server‐to‐client exchange. Therefore, 
application signatures should be generated separately in the training phase. In 
the classification phase, the traffic collector should separate each connection into 
two directions before submitting the packets to the classifier. A naïve classifier 
may perform classification on the first n bytes, without a separate signature 
for each direction. In this case, asymmetric routing can affect the classification 
results, because there is no guarantee that the classifier has access to packets 
that traverse different network paths.

Machine Learning–Based Classification Technique

Pattern‐ or signature‐based classification is either not applicable or ineffective 
in classifying. Examples include encrypted traffic and traffic flows with short 
payloads such as interactive applications, mobile applications, or applications 
with payloads that do not contain sufficient invariant patterns.

Machine Learning (ML) is an interdisciplinary field that combines statis-
tics, data mining, and artificial intelligence, a learning‐by‐example technique 
where the system learns and evolves for the better as more data becomes 
available. In the previous section, we introduced machine learning as a tool 
to categorize flows and generate signatures for the classification engines. 
In this section, we will take a closer look at different machine learning 
techniques, specifically clustering and statistical analysis, to aid and refine 
traffic classification.

There are two main types of machine learning, namely, supervised and 
unsupervised. In the context of the application classification problem domain, 
supervised machine learning provides the learning machine with a collection 
of traffic flows, known as the training data set, and these traffic flows have been 
given proper classifications. The learning machine executes against the train-
ing set and refines its algorithms to reach the predefined results, in this case, 
arriving at the same known classifications. The automatic signature generator 
discussed in the previous section is a form of supervised machine learning 
system, where the flow set constructor creates the classification on which sub-
sequent machine learning is based.

Unsupervised machine learning attempts to derive the structure and features 
in the data set without a priori knowledge of what this data represents. In other 
words, traffic flows that exhibit a similar structure or contain similar features 
are grouped together by the unsupervised machine learning as potentially 
belonging to the same application. However, for the result to make sense to a 
security engineer, the clusters of flows need to be labeled. Unsupervised machine 
learning is unable to assign meaningful labels or application names to these 
clusters. It is unlikely that any machine learning technique can be completely 
free of any human intervention, as we demonstrated earlier.
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The set of features to be extracted for analysis is critical in both supervised and 
unsupervised machine learning. We use probability to describe features used 
in a machine learning algorithm. In the context of traffic classification, the prob-
abilities of these features allow us to answer the following question: If we observe 
feature X and feature Y on a given flow, which one, out of all possible classification 
categories, is the most likely? Let us review some basic probability concepts here:

 ■ Random Variable—In statistical analysis, a random variable is defined as 
a function that produces a real value out of a sample space. Take “dice 
tossing” as an example. We know that a die produces six outcomes, so 
the random variable takes on a value between 1 and 6. In the context of 
traffic classification, we can describe a feature using a random variable. 
The outcome of the feature will affect the classification result on given 
test data. For example, we can say that the “average packet length” is a 
feature that affects the classification outcome, and this feature is a random 
variable with possible values between 1 and 1500.

 ■ Probability Distribution Function—The probability distribution function 
describes the random variable by assigning observations to the corre-
sponding likelihoods of an outcome. Using the “dice tossing” example, 
the probability distribution of this random variable, D, can be defined as 

=p D( )
1
6

That is, every value of the die has an equal probability of 1/6. Let us now 
assume that this is a loaded die such that it has a higher chance to land 
on 6. In this case, the probability distribution of D can be expressed as
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As a convention, we use the capital letter to represent a random variable 
and its corresponding lowercase letter to represent an instance of the 
random variable.

The parameter λ  of a probability distribution function can be used to define 
a specific distribution behavior such as in the loaded die example. Suppose 
we define λ  to represent the probability of the die landing on 6. In this 
case, the distribution can be represented as
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Knowing the probability distribution function, we can easily describe the 
severity of the tainted die using the parameter. For example, we can say 
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that a mildly loaded die has a small λ, while a heavily loaded die has a 
larger λ value.

 ■ Conditional Probability—A conditional probability describes the event 
given that another event has occurred. Typically, the “given” clause is 
written using the vertical bar, such as p X event( | ). For example, say that 
someone is playing a game of tossing a die and he wins $1 every time he 
rolls an even number. Assuming we already know that he wins $1, this 
rules out any chance of an odd‐numbered outcome. The conditional prob-
ability of tossing a die based on this new information is

p D win
d

d
( | )
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2
, 2, 4

λ
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=
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Now, instead of six possible outcomes, the extra information reduces the 
possible number of outcomes to three; therefore, the conditional prob-
ability is modified to reflect that.

Feature Selection
A feature is defined as a certain trait of the traffic that can be retrieved and ana-
lyzed by a machine learning system. One example of a feature is the average 
packet length. If we can group together flows with a similar average packet 
length, we may be able to deduce that a flow that fits this profile is likely to be 
a certain type of application or traffic, for example, a file download or an instant 
messaging application. The set of features to be extracted depends on what the 
classifier needs to achieve. Selecting the right features for classification is an 
important step for supervised machine learning. Some machine learning algo-
rithms are robust to the presence of irrelevant features, while other algorithms 
have less tolerance for noise in the feature set. A feature is considered relevant 
if it contributes to the quality of the classification results. A feature can have 
strong or weak relevance. With a strongly relevant feature, the lack of this feature 
reduces the accuracy of the classifier. With a weakly relevant feature, removing 
that feature may or may not impact the quality of the classifier, depending on 
what other features it combines with in the classifier. The optimal feature set 
contains all strongly relevant features and some weakly relevant features and 
may even contain irrelevant features. However, the optimal feature set produces 
the best‐quality classification results.

Based on empirical studies, behavior features such as inter‐packet gaps, 
average packet length, packet length variants, flow durations, TCP PUSH flag, 
and initial advertised TCP window size have served as relevant and important 
features. There is no definitive process to derive a behavioral feature. However, 
once potential features have been created, various methods exist to assist the 
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selection of features based on their relevance and weight of contribution towards 
the classification results. One of these methods is the wrapper approach. The 
wrapper approach creates a decision tree that is comprised of all permutations 
of the feature sets. By using a supervised machine learning algorithm, also 
known as an induction algorithm in this context, the wrapper approach finds 
the feature set with the highest evaluation metric that was produced by the 
induction algorithm. An example of such an algorithm is the Naïve Bayes 
method, which will be introduced in a later section. The wrapper approach 
treats the induction algorithm as a black box. It uses only the evaluation metric 
that the induction algorithm produces and reapplies the same evaluation to 
different permutations of the feature sets to discover the optimal feature set.

The wrapper approach organizes all different possible (feature set) states in a 
way that each state is connected to another state that has one feature deleted or 
added. A state is represented by a vector of 
binary bits, with each bit representing a fea-
ture. For example, suppose there are three 
features in the feature selection, a state can 
be represented by a bit set (1,0,0): where a 
1 indicates that a feature is present and a 
0 indicates that the feature is absent. This 
state will be connected to other states with 
one and only one feature being different, 
namely, (0,0,0), (1,0,1), and (1,1,0). Each state 
represents a feature set that is a permuta-
tion of the selected features, and we will 
call each state a feature set permutation for 
ease of discussion. The result is an inter‐
connected state diagram, referred to as the 
search space and illustrated in Figure 7-20. 
The size of the search space for n features 
is O(2 ).n

The evaluation metric is a numeric quantity that measures the quality of 
the classifier. The evaluation metric for each feature set permutation can be 
obtained through an accuracy estimation method called k‐fold cross‐validation. 
As a feature set permutation is created by either adding or removing features, 
a test set is necessary to measure the result of the learning machine executed 
with that feature set permutation. Because an explicit test set is not available 
for each feature set permutation, the original training set is utilized to create 
a hypothetical test set for validation. The entire training data set is randomly 
divided into k equal partitions with k‐fold cross‐validation method. Out of k 
partitions, one partition is used as test data, the other k‐1 partitions are used as 
training data, and the result of the learning machine executed with that feature 
set permutation is recorded. The motivation to split all of the training data 

Figure 7-20: Wrapper Method for 
Subset Feature Selection
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into k partitions is to mitigate the effect of data overfitting, a problem where the 
learning machine models too closely to the training set and loses sight of the 
generality of the system. This process is repeated k times until each partition 
has served as a test data set. The average of all of the recorded results is used 
as the evaluation metric for that (feature set) state of the search space.

Because the wrapper approach produces a search space, finding the optimal 
feature set becomes a searching problem. The search algorithm defines the initial 
state and the termination condition: How do we know that we have reached 
the state that has the highest accuracy? Notice that the search space is typically 
much larger than this illustration. A search space with 40 features contains 240  
states, or about one trillion states. It requires a structured approach to decide, 
while traversing and evaluating each state, when to terminate further searches. 
This is the goal of the search algorithm. We describe two search methods here:

 ■ The Hill‐Climbing Search, also known 
as the greedy search or steepest 
ascent, starts from the initial state 
and computes the evaluation metric 
of each of its children. The child with 
the best evaluation metric is selected 
as the next node, and the search con-
tinues from that child. The algorithm 
stops when none of the child nodes 
evaluate to be a better feature set 
than the current node. The Hill‐
Climbing Search is not an exhaus-
tive search algorithm because it may 
stop at a node that is locally optimal 
but is not the most optimal set in the 
entire search space. We will look at 
an example using a much smaller 
search space that contains three fea-
tures as illustrated in Figure 7-21. The number below the feature bitmap 
represents the evaluation metric of each feature set.

By inspection, the best feature set is (1,1,0), which has an evaluation 
metric of 20, the highest amongst all states in the search space. Applying 
the Hill‐Climbing Search algorithm, we can see that the first step it takes 
is towards (0,0,1), which has the best evaluation metric among all chil-
dren of the initial state (0,0,0). On iteration 2, it is found that (1,0,1) has 
an evaluation metric that is better than the others, and hence the search 
moves on to (1,0,1). At this point, none of its children has a better evalua-
tion metric than itself, the search algorithm stops, and (1,0,1) is declared 
to be the most optimal feature set. The “local comparison” property of 

Figure 7-21: Wrapper Method with 
Hill‐Climbing Search
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the Hill‐Climbing algorithm does not guarantee that an optimal solution 
can be reached in the entire search space. However, because the number 
of evaluation computations is small, this algorithm is very efficient when 
applied to large search spaces.

 ■ The Best‐First Search selects the most promising state generated so far 
that has not already been expanded, that is, its children have not been 
traversed. The operation defines two lists: OPEN and CLOSED. When the 
search algorithm first begins, the OPEN list contains just the initial state, 
while the CLOSED list is initially empty. The process then picks the best 
state out of the OPEN list, which is (0,0,0) in the first iteration, and adds 
this state to the CLOSED list. Every child from this node is then evalu-
ated and added to the OPEN list. On the next iteration, the best node is 
picked from the OPEN list, and all of its children are evaluated and added 
to the OPEN list. This node from the previous iteration is moved to the 
CLOSED list, and if it has the best evaluation metric seen so far, then the 
node is marked as the candidate node. This is an exhaustive search that, 
if allowed to continue, will visit every single node in the search space. A 
reasonable approach is to terminate the search when the evaluation metric 
has reached a certain confidence level.

Using this example and referring again to Figure 7-21, we start with the 
OPEN list containing just the initial node (0,0,0):

OPEN: (0,0,0)
BEST: none

Step 1 evaluates all of its children and moves the completed node to the 
CLOSED list. When a node is moved into the CLOSED list, it compares 
against the current BEST and replaces it if the new state is better. All of 
the children are added to the OPEN list and sorted according to the evalu-
ation metric from the best to the worst:

OPEN: (0,0,1) (0,1,0) (1,0,0) 
CLOSED: (0,0,0)
BEST: (0,0,0)

Because (0,0,1) has the best evaluation metric, this node is moved to the 
CLOSED list, and all the children of (0,0,1) are evaluated and moved to 
the OPEN list, if they are not already there. They are again sorted accord-
ing to their evaluation metrics. Because (0,0,1) is better than the current 
BEST node, the BEST candidate is replaced:

OPEN: (1,0,1) (0,1,0) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1)
BEST: (0,0,1)
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The next step traverses to node (1,0,1), which is first in line. The search 
algorithm examines its children (1,0,0) and (1,1,1). In this case, (1,0,0) is 
already in the OPEN list, so only (1,1,1) needs to be evaluated and moved 
to the OPEN list. Again, (1,0,1) replaces (0,0,1) as the current best node:

OPEN: (0,1,0) (1,1,1) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1) (1,0,1)
BEST: (1,0,1)

The next node to visit is (0,1,0), which has an unevaluated child (1,1,0). 
This new node is evaluated and added to the OPEN list. Because the cur-
rent node (0,1,0) has a lower evaluation metric than the current BEST, it 
is simply added to the CLOSED list:

OPEN: (1,1,0) (1,1,1) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1) (1,0,1) (0,1,0)
BEST: (1,0,1)

The next node from the OPEN list is then (1,1,0). There is no child that 
needs to be evaluated, and because (1,1,0) has a better evaluation metric 
than the current best, it replaces the current BEST node:

OPEN: (1,1,1) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1) (1,0,1) (0,1,0) (1,1,0)
BEST: (1,1,0)

The process continues until there are no more search nodes on the OPEN 
list, which means that every single node has been evaluated and accounted 
for. A Best‐First Search algorithm typically chooses a threshold on which 
the algorithm stops.

The Best‐First Search algorithm is considered more thorough, although not 
necessarily the better fit for feature selection. Choosing the search algorithm for a 
machine learning model should take into consideration the bias‐variance dilemma. 
The bias stems from erroneous assumptions in the machine learning algorithm, 
while variance comes from sensitivity to small fluctuations in the training set. A 
network on which packet traces are collected creates a bias in the data set that is 
localized to that network. In the attempt to use the data to create a general appli-
cation signature, the supervised training machine typically tolerates small data 
variations. These are conflicting criteria; a machine learning system should readjust 
its parameters based on the results to reach a balance between bias and variance.

Supervised Machine Learning Algorithms
A supervised learning machine relies on the availability of labeled training 
data to create a mapping from a set of features to a corresponding output. In the 
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context of classification, the features are packet or flow behaviors. The output 
is the classification result. The learning machine derives a mapping function 
from the data to the output so that the classifier can use this mapping func-
tion to predict classification results. In this section, we will look at the Naïve 
Bayes method.

Naïve Bayes Method

The Naïve Bayes method applies Baye’s theorem to independent features. The 
Naïve part refers to its assumption that every feature considered in the machine 
learning system is independent of one another. Andrew Moore and Denis Zuev 
provided the early work on applying the Naïve Bayes method to traffic behavior 
feature sets to classify traffic into a discrete set of categories. The set of features 
includes flow duration, TCP port, packet inter‐arrival time (IAT), packet size, 
effective bandwidth, and Fourier Transform on packet IAT.

In Chapter 5, we describe how Baye’s theorem, in its simplest form, can be 
represented using the following formula:

P A B
P B A P A

P B
( | )

( | ) * ( )
( )

=

where P(A|B) is the conditional probability of event A occurring given that 
event B has occurred, and P(A) and P(B) are the probability of event A occurring 
and the probability of event B occurring, respectively. To apply this theorem in 
the context of a classifier, our goal is to find the probability of a flow belonging to 
category C given the set of features …F F F, , , n1 2 , denoted by

…P C F F F( | , , , )n1 2

The theorem therefore indicates that this probability can be evaluated using 
the following formula:

P C F F F
P C P F F F C

P F F F
( | , , , )

( ) * ( , , , | )
( , , , )n

n

n
1 2

1 2

1 2

… = …
…

In other words, we need to first evaluate P C( ), the probability of a category C, 
independent of any conditions; then evaluate …P F F F( , , , )n1 2 , the probability of a 
feature set, independent of any conditions; and finally evaluate …P F F F C( , , , | )n1 2 , 
the conditional probability of a feature set given that a category C is observed. 
The joint probabilities …P F F F C( , , , | )n1 2  and …P F F F( , , , )n1 2  can be computed 
with the independence assumption by taking the product of individual condi-
tional probability of each feature from the feature set. The following formula 
applies to the conditional probabilities:

P F F F C P F C P F C P F C P F C( , , , | ) ( | ) * ( | ) * * ( | ) ( | )n n
i

n

i1 2 1 2
1

∏… = =
=





234 Chapter 7 ■ The Art of Application Classification

Similarly, the probability of a feature set without condition can be computed 
by multiplying the probability of each feature from the feature set:

P F F F P F P F P F P F( , , , ) ( ) * ( ) * * ( ) ( )n n
i

n

i1 2 1 2
1

∏… = … =
=

The Naïve Bayes machine learning system therefore independently evaluates 
a feature to derive the conditional probability distribution based on a given 
classification result. The training data therefore needs to have prior knowledge 
of which category it should belong to, typically achieved by a DPI classifier, in 
order to calculate the conditional probabilities.

The simplest form of Naïve Bayes assumes a Gaussian distribution, or nor-
mal distribution, of a feature variable. While collecting the data, the mean 
and variance of each feature are collected, and this feature is assumed to have 
a Gaussian distribution. This assumption simplifies the calculation of the 
conditional probabilities, but may not be accurate in practice. Taking packet 
size, for example, if the average packet size of the data set on Web Category 
is 500 bytes with 25 bytes variance, the probability distribution function is 
shown in Figure 7-22.

Figure 7-22: Gaussian Distribution
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This distribution implies that with 500 bytes being the mean, traffic belong-
ing to the Web Category is unlikely to generate packets that have a packet size 
that is small, such as 64 bytes. In practice, the distribution can be multi‐modal. 
This means that more than one peak can be found in the probability distribution 
function, as shown in Figure 7-23.

Now, in order to classify an application, say Facebook, we need to first col-
lect a set of training data from the Facebook application. Each of the training 
flows needs to be marked as Facebook so that the system knows what to expect. 
These flows are used to generalize the probability distribution function of the 
feature: P(X|Facebook), where X is the feature we are studying. Assuming that 
we are only using three features—packet length, inter‐packet gap, and flow 
duration—the Naïve Bayes system can be illustrated in Figure 7-24.
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Given the training data, we can easily derive the individual probability distri-
butions for P(L), P(G), P(D), P(Facebook), P(Netflix), and P(YouTube). The challenge 
now is to calculate the joint probability distribution of L, G, and D given that an 
application is Facebook, denoted as P(L,G,D|Facebook). Recall that our goal is to 
find the probability that an application is Facebook given the set of feature values, 
L, G, and D, which is found with Baye’s Theorem using the following formula:

P Facebook L G D
P Facebook P L G D Facebook

P L G D
( | , , )

( ) * ( , , | )
( , , )

=

This is where the feature independence assumption comes to our rescue. The 
probability theory states that for independent variables, the joint probability 
distribution is the product of the probability distribution of each individual 
random variable. Therefore,

P L G D Facebook P L Facebook P G Facebook P D Facebook( , , | ) ( | ) * ( | ) * ( | )=
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Figure 7-23: Multi‐modal Distribution

Figure 7-24: Naïve Bayes Learning System

Naïve Bayes
Learning System

P (L | Facebook)

P (G | Facebook)

P (D | Facebook)

P (L | Netflix)

P (G | Netflix)

P (D | Netflix)

P (L | YouTube)

P (G | YouTube)

P (D | YouTube)
Packet Length (L)

Inter-Packet Gap (G)
Flow Duration (D)

YouTube
Training Set

Netflix
Training Set

Facebook
Training Set



236 Chapter 7 ■ The Art of Application Classification

These are the distributions evaluated by the Naïve Bayes learning system as 
shown in Figure 7-24.

Because the Naïve Bayes classifier is a supervised learning system, the training 
data needs to be accompanied by the expected classification result. One way to 
obtain the classification information for the training data set is to utilize a reli-
able DPI classifier to classify the traffic while feeding the data into the learning 
machine. This approach may sound counter‐intuitive, but it is a feasible solution 
given the availability of classifiers both commercially and in open source. The 
problem with this approach is that the accuracy of the Naïve Bayes classifier 
depends on the accuracy of the DPI comparator. Another way is to run the said 
applications in a controlled environment and feed the known data into the 
classifier. This method is more labor‐intensive but offers more accuracy than 
the previous approach. The problem with this approach, however, is that the 
feature behavior generated manually may not be diverse enough.

One factor that can affect the performance of Naïve Bayes is the skewed data 
bias. When the training data set contains more data for a particular traffic 
category than another, the decision boundary will become biased towards 
the dominant feature. This is unavoidable in real‐world traffic, which is most 
likely to be predominantly web traffic. The classifier, due to the fact that there 
are more samples towards web traffic than samples for other types of appli-
cations, may prefer the web category over the other applications. A variant 
of the Naïve Bayes classifier, called Complement Naïve Bayes, uses all training 
data other than the requested application to derive the complement of the con-
ditional probability. For example, using the previous diagram where three 
different groups of training data are available, the conditional probability 
P(L|Facebook) is computed not by the Facebook training data but by all other 
training data sets. In this particular example, the data from Netflix and YouTube 
is used to derive the complement of conditional probability distribution, or 
mathematically 1 − P(L|Facebook). In a real‐world learning system where the 
number of applications is much larger than three, as in our example, the 
Complement Naïve Bayes variant usually achieves better results, especially on 
training sets where one or two applications dominate.

Unsupervised Machine Learning Algorithms
An unsupervised learning machine is presented with data without knowing 
the structure of the data and what it represents. Just like a supervised learning 
machine, the goal of an unsupervised machine is to create a mapping function 
between data and classification results. Without knowing the “correct answer” 
up front, an unsupervised machine refines and readjusts its mapping function 
based on additional data iteratively until no further improvement can be made. 
In this section, we present two unsupervised learning machines: Expectation‐
Maximization and K‐Means.
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Expectation‐Maximization

With unsupervised learning, we are given a set of data with unknown proper-
ties. To create a classifier out of the unknown data, we are now faced with two 
conflicting requirements: we need to know the classification of each data entry 
in order to create a model for the feature set, but we also need the model to 
classify the data entry, as the learning is unsupervised.

The basic concept of the Expectation‐Maximization (EM) algorithm is to 
estimate the accuracy of the current assumption against the data sample and 
iteratively refine this assumption based on new data samples, all without a 
priori knowledge of the data. The operation of the EM algorithm begins with 
an initial assumption on the probability distribution functions of the features. 
Taking in a manageable set of data entries at a time, the algorithm estimates the 
likelihood of observing the current data set on all possible classification results. 
A data set that is more likely to occur in the context of a classification result is 
given a higher weight value. This weight is applied to the current data set, essen-
tially putting more emphasis on the data set that is more likely to occur. With 
the weighted data set, new estimations of the probability distribution function 
parameters are derived, and the process repeats itself.

This process iterates repeatedly until the parameters of the estimated probabil-
ity distribution functions converge. By convergence we mean that the difference 
between a new estimation of the parameters and the old estimation is below a 
certain threshold. The converged parameters are the desired parameters that 
describe the probability distribution of the feature set. For example, a binary 
feature such as the existence of a TCP PUSH flag has a value of either 1 or 0. 
The probability distribution of this feature can be described using the Bernoulli 
distribution, with the probability of having the “TCP PUSH flag is set” being 
the only parameter describing how the TCP PUSH flag is distributed. Let us 
hypothetically treat the TCP PUSH flag as an important feature to classify an 
application as interactive, but we do not know if 30 percent of the packet hav-
ing the PUSH flag set is good enough to make that decision or not. So we start 
with a rough assumption that if an application is interactive, then 30 percent 
of the packets have the PUSH flag set, and if an application is not interactive, 
then 60 percent of the packets have the PUSH flag set. The values 30 percent and 
60 percent are the estimation of the parameter. Mathematically, a parameter is 
denoted by θ , and an estimation of a parameter is denoted by θ̂ . In addition, an 
estimated parameter corresponding to an interactive application is denoted as 
θ̂I, while an estimated parameter corresponding to a non‐interactive application 
is denoted as θ̂N. With these definitions we can describe the initial estimations 
mathematically as follows:

θ =ˆ (0) 0.3I

θ =ˆ (0) 0.6N
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The parenthesized value 0 in this case refers to the iteration count, which 
is zero when the EM first starts. The system first retrieves a finite number of 
samples on each iteration. In this example, assume we take five flows at a time. 
At this point, the system has no knowledge of whether a flow belongs to the 
interactive category or not. However, we can use the previously established 
estimations to derive the probability of these flows being categorized as inter-
active or not. This is the Expectation step. The Expectation step takes sampled 
data and computes the likelihoods of the set of five flow samples being either 
interactive or non‐interactive given the current estimates.

For simplicity, we assume that each flow contains exactly ten packets. For 
every packet, the presence of the PUSH flag is denoted by 1, while an absence 
is denoted by 0. The first flow collected can look something like the following 
stream of binary values: 1000010110. Given the estimation that the probability of 
an interactive flow containing a PUSH flag is 0.3, we can compute the probability 
that a flow produces these packets given that it is an interactive flow. The first 
bit 1 has the probability of 0.3, the second bit 0 has the probability of 0.7, and so 
on. The conditional probability of observing this particular series of PUSH flag 
values on a flow given it is an interactive application, denoted as I, is therefore

p flow I( 1| ) 0.3 * 0.7 * 0.7 * 0.7 * 0.7 * 0.3 * 0.7 * 0.3 * 0.3 * 0.7 0.000953= =

Similarly, the conditional probability of observing this particular series of 
PUSH flag values on this flow given it is a non‐interactive application, denoted 
as N, can be computed as follows:

p flow N( 1| ) 0.6 * 0.4 * 0.4 * 0.4 * 0.4 * 0.6 * 0.4 * 0.6 * 0.6 * 0.4 0.000531= =

The Expectation step uses the probability of each outcome to compute the 
weight of the current training data, normalized among all possible outcomes. 
Because there are only two possible outcomes, interactive or non‐interactive, the 
weights can be derived using the previous conditional probabilities:

=
+

=w flow I( 1| )
0.000953

(0.000953 0.000531)
0.64

=
+

=w flow N( 1| )
0.000531

(0.000953 0.000531)
0.36

The probability of a flow is used to compute the weight of this flow. A higher 
weight means that the data is more relevant in re‐evaluating our new estima-
tion. The current flow “flow1” contains four packets with a PUSH flag and six 
packets without a PUSH flag. Applying the weight to the current data stream 
1000010110 yields 0.64*4=2.56 occurrences of a PUSH flag and 0.64*6=3.84 
occurrences of a packet without a PUSH flag on an interactive application. 
Similarly, the weight for a non‐interactive application on this sample flow is 
0.36; hence, the weighted occurrence of packets with PUSH flags is 0.36*4=1.44, 
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and the weighted occurrence of packets without PUSH flags is 0.36*6=2.16. By 
repeating this process on all five flows, we can derive the following table of 
weighted occurrences based on the current estimation, as shown in Figure 7-25.

Figure 7-25: Table of Weighted Occurrences
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The results of all the weighted samples are accumulated to produce the cumu-
lative weighted samples, and these values are used as a basis to create a new 
estimation of the parameters. The Maximization step takes this “Sum of weighted 
samples” as input and computes the new estimation. Recall that in our example, 
the TCP PUSH flag feature is a Bernoulli distribution. Our current goal in the 
Maximization step is to produce θ̂ (1)I  so that this estimate can be used as a basis 
in the Expectation step of iteration 1. In this particular case, a new estimate can 
be easily computed. The conditional probability of observing a PUSH flag being 
set on an application can be computed using the sum of weighted samples with 
the PUSH flag set, divided by the sum of all weighted samples. Mathematically, 
the new estimate can be found using the following equations:

θ =
+

=ˆ (1)
8.787

8.787 19.243
0.313I

θ =
+

=ˆ (1)
14.21

14.21 7.757
0.647N

The process then repeats until the estimated parameters converge. In other 
words, if θ θ− −n nˆ ( ) ˆ ( 1)I I  is smaller than a threshold, say 0.001, then the algorithm 
converges. The final values of θ θandˆ ˆ

I N are the best estimates of the parameters.
The EM algorithm works on multiple features that exhibit different proba-

bilistic behaviors. The EM system designer must define the desired features 
and make intelligent decisions about what probability distribution function 
best describes each feature. The process that analyzes the data stream and 
estimates the parameter of a statistical model is called the Maximum Likelihood 
Estimation, or MLE.
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In this example, we have used the simple binary distribution to describe our 
feature. Practical features can be Gaussian, Poisson, or Binomial distributed. The 
calculation based on the current data set is different for each probability dis-
tribution. For example, let’s assume that the feature packet length is a Gaussian 
distribution with two parameters: mean µ  and variance σ . The data collected 
from the sample is therefore a vector of a packet length such as {40, 40, 40, 150, 
268, 352, 60, 492, 40, 40}. Just like the PUSH flag example, we can calculate 
the probability of a data stream with this series of packet lengths by apply-
ing the probability distribution function using the current parameter values. 
Assuming that the current mean and variance are 120 and 30, respectively, on 
the interactive application, the probability of obtaining a packet with length x 
can be computed using the Gaussian formula:

µ σ
σ π

=
µ
σ

− −

f x e( , , )
1
2

x( )
2

2

2

Applying the values x = 40, µ  = 250 and σ  = 30, the probability of obtaining 
a 40‐byte packet is 0.000378. This formula is applied to every packet on the 
data stream with a different x value. The product of ten probability values is 
the conditional probability of this data stream, given that the packets are from 
an interactive application. This product will be used as the basis to compute 
the weight, as in the previous PUSH flag example. By changing the probability 
distribution function and its corresponding parameters, we can apply the same 
principle as shown earlier with the binary feature and extend that to a complex 
distribution function such as the Gaussian distribution.

The performance of the EM algorithm depends on the initial assumptions 
and estimations. The algorithm strives to find the optimal parameters that fit 
the distribution property it was initially given. If the EM was given a bad dis-
tribution model to begin with, the result will be incorrect as well.

K‐Means Clustering

K‐Means clustering is a method that attempts to identify clusters or groupings 
in a data set, such that each data point belongs in a cluster that it is closest to. 
The distance is measured between the data point and the center of the cluster. 
In other words, K‐Means clustering is a method to group similar data samples 
into a finite set of clusters or groups. The K‐Means clustering concept is best 
explained using a well‐known example of calculating T‐shirt sizes and mak-
ing T‐shirts that can fit an entire population. Let’s assume a T‐shirt company 
has gathered statistical data on the heights and weights of a population. The 
results of the statistics are shown in Figure 7-26.

Because the T‐shirt company cannot economically make a shirt for every size, 
it will use these statistics to create three different sizes: small, medium, and 
large, as shown in Figure 7-27.
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This is the basic idea of K‐Means clustering, which is typically applied to 
an n‐dimensional space where n is the number of features to consider, and the 
sample space is divided into k clusters. The goal of the K‐Means algorithm is 
to draw the boundaries, as shown in Figure 7-27. The algorithm is an iterative 
approach and consists of the following steps:

 1. Pick initial states. The algorithm starts with k initial centroids for each 
cluster. A centroid is defined as the geometric center of a cluster Ck. To 
compute the centroid, the average value along each dimension is com-
puted among all the samples, and the resultant vector is the centroid. A 
Euclidean distance is the length of the line connecting from point A to 
point B in an N‐dimensional space, which can be computed using the 
following formula:

D P Q q p q p q p( ˆ , ˆ ) ( ) ( ) ( )n n1 1
2

2 2
2 2= − + − + + −

where pn is the nth dimension of point P. The initial position of a centroid 
is arbitrary; the following steps will iteratively adjust its centroid based 
on real samples until no further changes can be made. For illustration 
purposes, we assume that there will be two clusters, and there are a total 
of 14 samples, with each sample denoted as Si . Each sample contains two 
features, which means that the cluster is a two‐dimensional plane. The 
initial centroids c c1 and 2  are chosen to split up the space into left and 
right spaces, as shown in Figure 7-28.

 2. Compute cluster membership based on the Euclidean distance vector. For 
each sample, K‐Means calculate the Euclidean distance from the position 
of the sample to every centroid that results in a distance vector. Within this 
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distance vector, the smallest distance is selected, and this sample is said 
to be the member of the cluster whose Euclidean distance is the smallest. 
For sample S1, the distances D1and D2  are computed, and because <D D1 2, 
sample S1 belongs to cluster 1, as shown in Figure 7-29. At the end of Step 2, 
the samples on the left side of the dotted line belong to cluster 1, while all 
the other samples on the right side belong to cluster 2.
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Figure 7-28: Separating the Sample 
Space Using Centroids
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Figure 7-29: Cluster Membership 
Based on Euclidean Distance Vector

 3. Adjust cluster centroid. After the mem-
bership has been determined, a new 
centroid is computed based on all sam-
ples within the same cluster. This new 
centroid is a point inside the existing 
cluster where its value at dimension 
n is the average of dimension n of all 
samples that belong to this cluster. The 
new centroids are used as the new basis 
for distance vector calculation, as shown 
in Figure 7-30.

 4. Iterate until convergence. After the 
new centroids are calculated, the clus-
ter memberships are reset for all of the 
samples. The algorithm returns to Step 2 and repeats until no further 
changes to the location of the centroids can be made. At this point, the 
centroids are said to have converged.

The K‐Means clustering algorithm always produces clusters of the same 
shape. An application that exhibits a strong cluster in one feature may have 
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diverse behavior in another. Simple K‐Means that consider both features may not 
properly capture the cluster of this application. Therefore, the K‐Means cluster 
is typically used as a first step or refinement step to classification problems.

Classifier Performance Evaluation

The performance or the accuracy of a classifier is evaluated against a number of 
metrics: False Negatives, False Positives, True Positives, and True Negatives. Figures 7-31 
through 7-34 illustrate the difference between these metrics:

 ■ False Negatives (FN)—Traffic that should be X but is incorrectly classified 
as not belonging to X.

 ■ False Positives (FP)—Traffic that should not be X but is incorrectly clas-
sified as belonging to X.

 ■ True Positives (TP)—Traffic that should be X and is correctly classified 
as belonging to X.

 ■ True Negatives (TN)—Traffic that should not be X and is correctly classi-
fied as not belonging to X.

This is not HTTP
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HTTP
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HTTP

Signature
Figure 7-31: False Negative
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Figure 7-32: False Positive
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The metrics are evaluated from the perspective of evaluating a classification 
X, which is HTTP in the illustrated examples. A classifier tries to improve on its 
True Positives while reducing the number of False Negatives and False Positives.

The accuracy of a classifier is defined to be the fraction of correct classification 
results over all of the results, which is computed by

= +
+ + +

Accuracy
TP TN

TP TN FP FN

Ironically, the accuracy metric does not accurately reflect the performance of 
a classifier. For example, suppose that we are interested in classifying SIP traf-
fic out of 1,000,000 flows. There are only 1,000 flows that are truly SIP traffic. A 
classifier does not recognize any SIP traffic so always returns false with respect 
to SIP traffic classification. The evaluation metrics are shown here:

True Positive = 0
True Negative = 999,000
False Positive = 0
False Negative = 1,000
The accuracy of this “classifier” is computed as

= +
+ + +

= =Accuracy
TP TN

TP TN FP FN
999000

1000000
99.9%
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and appears to be an extremely “accurate” classifier. However, this “classifier” 
does not provide any value regarding SIP traffic classification. In light of this 
deficiency in accuracy, two other evaluation metrics are used: recall and preci-
sion. Recall and precision emphasize how much the classifier gets right, while 
ignoring what it did not get wrong. This translates to putting emphasis on 
the TP value while ignoring the TN value. The formal definitions of recall and 
precision are as follows:

 ■ Recall is the percentage of members of class X correctly classified as belong-
ing to class X, as illustrated in Figure 7-35. It measures the sensitivity of the 
classifier by computing the percentage of the correct items that are classified.

Class X

Superset

False NegativeTrue Positives

Figure 7-35: Recall

Recall can be defined mathematically using the following formula:

=
+

Recall
TP

TP FN

 ■ Precision is the percentage of those instances that truly have class X, among 
all those classified as class X, as illustrated in Figure 7-36. It measures the 
relevant accuracy of the classifier by computing the percentage of the 
classified items that are correct.

Figure 7-36: Precision
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Precision can be defined mathematically using the following formula:

=
+

Precision
TP

TP FP

Naturally, recall and precision are opposing values. As recall increases, precision 
decreases. A classification design strives to achieve a balance between recall 
and precision.

Machine learning relies heavily on the training data set to generalize application 
behavior. A system can sometimes try too hard to fit their model, resulting in a 
model that overfits the training data. We use the bias error and variance error to 
evaluate the degree of overfit. A system that has a very high bias is considered 
to be underfit, while a system that has high variance is considered to be overfit.

A system that overfits can perform very well when applied to the network 
environment on which training data was taken but works poorly when the 
system is moved and deployed elsewhere. This is especially true in a behav-
ioral‐based machine learning system, where features such as inter‐arrival time 
or packet length are used as the dominant features. For pattern‐based signa-
tures, it may be possible that a properly defined term filter can eliminate terms 
that are site‐specific, which will greatly reduce the amount of variance so that 
the generated application signatures are more generalized. It is also desirable 
to obtain samples from various sources or at different points in time to reduce 
the number of redundant behavioral patterns. Traffic patterns are typically 
very different during office hours compared to nights and weekends. So col-
lecting data from multiple sources at different times is a good way to diversify 
the samples. Machine learning systems are statistical in nature. It may not be 
realistic to expect the model to fit every environment; however, a system should 
contain tunable parameters that will fit the model to the particular network 
environment the system is deployed in.

In traffic classification, more information typically results in better classifica-
tion results. However, more information infers that a classifier needs to collect 
more packets on a given flow to reach a classification decision. The problem 
with requiring more packets on a flow is twofold: first, on systems that require 
a classification decision to perform a flow‐based policy action such as a QoS 
device, an early classification result is essential so that packets consume the 
allocated bandwidth instead of adhering to the default policy due to indecision. 
On a security device where every leaked packet is a security risk, an early deci-
sion is of fundamental importance.

Second, accumulating packets requires storage. It is desirable for a system with 
limited resources that is performing classification on a high‐speed network to 
minimize memory footprint per flow. Reducing the number of packets to reach 
a classification decision is a desirable criterion. As stated earlier, the port‐based 
classification approach can obtain the classification results on the first packet. 
The DPI‐based classification typically looks at only the first N‐bytes payload of 
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the packets. The machine learning system depends completely on the features 
selected. Some features, such as flow duration, require a flow to be completed 
before a decision can be made and therefore are useful only when analyzing an 
application retrospectively. A security engineer may prefer one type of system 
to another, depending on the objectives of traffic classification.

Proxy versus Classifier

As detailed in Chapter 1, a proxy is designed to intercept traffic and to com-
municate with the end points of the original connection according to defined 
security policies. Therefore, a proxy must have intrinsic knowledge of the pro-
tocol that is used in that communication. Metaphorically, the proxy needs to 
know how to “speak the language”. On the other hand, a classification engine 
wants to know “what language is spoken”. In addition, the proxy must not only 
be capable of “speaking the language” but must also assume the identity of one 
speaker while speaking to the other, and vice versa.

We covered the proxy architecture in the section titled “The Proxy Architecture” 
of Chapter 1. That architecture diagram, shown again here as Figure 7-37, illus-
trates that the proxy has an embedded classifier. This classifier appears to be a 
hybrid of a port‐based and DPI‐based classifier. The security policy in the proxy 
dictates that the proxy must act on the first packet; otherwise, the proxy cannot 
masquerade as the end point. This is because the proxy would be detected as a 
“third‐party” if the proxy “did not initiate the conversation”. This basic operat-
ing requirement forces the proxy to first act as a port‐based classifier.

By definition, the proxy examines the payload packet by packet, which enables 
the proxy to function as a DPI‐based classifier. As the proxy continues to clas-
sify the proxied traffic, the proxy verifies whether its original classification is 
accurate. In the language analogy, as the proxy continues to speak, it verifies if it 
is indeed speaking the correct language as expected by the other party. As soon 
as the proxy detects its original classification is incorrect, the proxy performs a 
protocol handoff that essentially transfers the connection to another proxy that 
is designed to process that application. Still using the language analogy, the 
proxy “switches the language” as soon as it detects what it has spoken to the 
other party is not the right language. Sometimes the proxy realizes the correct 
language is not one it is capable of speaking; at that point the proxy terminates 
the connection, breaks the application, and possibly exposes its presence.

As the proxy architecture illustrates, a typical commercial proxy appliance has 
a limited number of application proxies operating within itself. Twenty applica-
tion proxies operating in a typical commercial proxy appliance is already a high 
number. This number is a tiny fraction when compared with a typical commercial 
application classification appliance that enforces QoS‐centric policies, which can 
classify between 2,000 and 5,000 applications. Developing a comprehensive proxy 
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for a specific application requires many months of intensive protocol analysis 
and development time. For a complex application, the proxy may take years to 
perfect. For an application that operates over an encryption protocol, the task 
of developing a proxy is extremely difficult if not impossible. Having a proxy 
for every application is simply not feasible with today’s technology.
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Figure 7-37: Proxy Architecture

Consider an example security policy that states “Block Dropbox Upload”. 
This will require the proxy to examine a connection from the very begin-
ning, simply because the first payload could be a portion of a file that is being 
uploaded to Dropbox. Therefore, if the first packet offers any indication the 
flow may come from a Dropbox application, the proxy must terminate and 
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intercept the connection at the first packet. Two observations can be made 
from this scenario:

 ■ Because the proxy begins with a port‐based classifier, if the first packet has 
a destination port or IP address that is not known to be used by Dropbox, 
then that connection may circumvent the proxy. The only viable solution 
to solving this proxy‐avoidance problem is for the proxy to intercept each 
and every connection. There are quite a few issues associated with this 
“shotgun” approach. First, performance and scalability become significant 
requirements for the proxy. We have observed in several large school 
districts that there are typically 120,000 users during the day, generat-
ing 200,000 connections per second, 6 million active connections at any 
given moment, and 18 million web requests per day, and running close 
to 1,000 applications that include web‐based, mobile, and traditional 
applications. Second, intercepting connections from applications that 
the proxy does not have any knowledge to handle as a proxy will cause 
an application to misbehave, operate incorrectly, or stop functioning 
completely. Consequently, the proxy cannot be transparent if it keeps 
“breaking applications” and causing user uproars.

 ■ The first‐packet interception requirement prevents a proxy from employ-
ing a machine learning‐based classifier. Most practical machine learning 
algorithms that are utilized for classification solutions require sample 
features that translate into multiple packet collections. Packets received 
during the classification phase are “leaked” and are very likely to violate 
strict security policies.

Enforcing QoS policies can be difficult even in a dedicated network visibility 
appliance. Suppose a hypothetical network management requirement is to restrict 
the bandwidth usage of Dropbox download activities. Because Dropbox traffic 
is encrypted and assuming the classifier is a learning machine‐based classifier 
having inter‐packet arrival time and average packet size as the algorithm features, 
ten seconds worth of traffic is collected as the sample to be extracted for clas-
sification. During this ten‐second interval, all of those packets in the sample are 
transmitted using a default QoS policy. This default QoS policy must not be too 
restrictive or else it may negatively impact an application that is granted high 
bandwidth with certain timing guarantees. On the other hand, if the application 
turns out to be one that must be restricted in bandwidth usage, that application 
would enjoy ten seconds of unlimited utilization of valuable network resources 
before the application is properly classified. On a high‐speed 10G network, ten 
seconds worth of traffic can be significant, although the actual volume depends 
on the application in question. In addition, on a large network that provides 
services to thousands of users who may favor the Dropbox application, the 
aggregate bandwidth consumption caused by the ten‐second classification delay 
can be significant enough to render the QoS policies useless.
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The industry has desired and attempted for years to combine the dedicated 
proxy appliance with a dedicated application classification appliance into a 
single‐box solution, which could possess the abilities to specify and enforce both 
strict security policies and QoS‐centric traffic engineering policies. However, 
the technical challenges illustrated in the previous discussion, compounded by 
the SSL interception challenges, have prevented the successful construction of 
such a commercially viable super appliance to date.

Summary

Traffic classification is a challenging problem, and classification technology is 
far from mature. The increasing emphasis on data encryption obfuscates the 
information a classifier needs to make classification decisions. The explosive 
growth in web‐based and mobile applications amplifies the difficulties fac-
ing designers of classification algorithms. Classification technology should be 
implemented according to intended objectives. For example, a classification 
system that is used primarily for retrospective analysis prefers accuracy and a 
breadth of application coverage and can be more tolerant of classification delay. 
On the other hand, using a hybrid set of classification techniques to implement 
comprehensive security policies will prefer early classification decisions and 
real‐time performance but may accept a signature database with a smaller set of 
applications. A classifier may be deployed in a network environment that needs 
to see and analyze every packet, while others may respect individual privacy 
and not track any private and personal information. A versatile solution has its 
compromise, and each solution may excel at solving one aspect of the classifica-
tion problem at hand; however, it is still up to the practitioner to make the final 
decision on which combination of technologies can best serve the objectives 
while meeting performance expectations. The adoption rate of hybrid solutions 
that combine multiple classifiers, which may include both signature based clas-
sifiers and learning machines, continues to grow as the Internet continues to 
evolve with an increase in application complexity.
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An advanced persistent threat (APT) is a targeted attack that is stealthy and can 
maintain its presence in victimized systems for months if not years without 
detection. Infiltration by APT typically begins with a prolonged campaign against 
a specific target. The “advanced” aspect of APT does not necessarily imply the 
attack is based on advanced technology but rather that the attack deploys a 
combination of methods, ranging from traditional techniques to custom code 
while launching the assault. The attackers have complete situational awareness 
and are adaptive when it comes to altering attack approaches. As APTs are typi-
cally launched by well‐funded and well‐organized entities, the attack objectives 
are focused and specific, such as acquiring military or commercial intelligence 
or inflicting some type of damage. Therefore, the “persistent” aspect of APT 
comes from the fact that the attack will not stop until the successful infiltration 
and the intended objectives have been achieved.

Because APTs are not traditional threats, they cannot be treated as traditional 
threats, and the traditional security mechanisms are ineffective at detecting 
and defending against them. For example, with all of the known APTs that 
have been uncovered, none has ever triggered an IDS system. The lack of vis-
ible symptoms does not imply that security compromises do not exist or that 
exfiltration of sensitive data is not already underway. Therefore, planning, 
designing, implementing, and refining detection solutions is just as impor-
tant and mandatory as the continued deployment of proactive preventive 
solutions. Solving the APT problem is about detection because APT can enter 
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the network as legitimate traffic. APT traffic behaves like regular legitimate 
traffic, and therefore the focus should be on the detection and prevention of 
outbound data, that is, on data exfiltration, and this is one of the main objec-
tives of deploying secure proxies.

Performing effective APT analysis depends on both the quality and the 
quantity of the data collected about the network that is under examination. 
Data collection can be comprised of logs from applications and services and full 
network traffic captures that contain each and every packet for all connections 
and flows. The collected data must be managed and indexed because one of the 
most important tasks of the analysis process is for a security analyst to conduct 
various queries against the stored data, followed by correlating the answers to 
discover suspicious patterns. Because the analysis is performed against offline 
data, it is performed on events that have already taken place. As such, retro-
spective analysis interrogates and scrutinizes events back in time to uncover the 
beginning of an APT attack and then, from that point in time, trace forward to 
divulge the attack in its entirety and expose the extent of the damage.

In this chapter, we will focus our discussions on data management that 
facilitates retrospective analysis.

Data Acquisition

A retrospective analysis system works with data that was collected in the past. 
From that data, the system should be able to observe the occurrences of certain 
network events, obtain detailed information about the occurrences, retrieve 
additional events that are related to those occurrences, and finally draw conclu-
sions based on the compiled information. The functionalities of the retrospective 
analysis system require the design of the system to facilitate in the following 
aspects:

 ■ Data acquisition—The acquired data should cover all occurrences of all 
network events within the time period specified by the retrospective 
analysis system. The acquired data should contain enough detailed infor-
mation to elaborate the network events. For example, the collected data 
may list the source and destination IP addresses of a connection. Or, if a 
file download is included in an HTTP connection, the collected data may 
contain the type of the file, the file size, or even the actual file.

 ■ Data organization—The acquired data should be organized in such a way that 
it is easy to manage, process, and retrieve. In particular, the retrospective 
analysis system needs to query the data containing detailed information 
about the network events and expect rapid responses with results that are 
linked to those events. In certain cases, those results are the abstracted 
records from the collected raw data, and we may also need to retrieve the 
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original raw data together with the result records. The data organization 
also includes storage of the data.

With those specific design requirements in mind, in this section, we will 
cover collecting and indexing the data with concrete examples showing how 
that data is made available to a retrospective analysis system.

Logs and Retrospective Analysis
Network appliances and hosts generate logs to record network statistics, events, 
and resolutions. From the logs, we can get information on what happened in 
the network and reactions to those events. In the following example, we list two 
sample logs. The first line is a firewall or IDS log, in which the type of intru-
sion is recorded along with its source and target. The second line is a proxy log, 
which records much richer information, like the date and time of the event, the 
browser type, the destination URL, and, most importantly, the action (that is, 
policy enforcement) on the traffic flow.

Sample Network Logs

1  UDP Snork attack from 10.1.1.1 to 192.168.2.10 on interface outside
2  2014-12-01 00:49:13 2 192.168.2.10 - - policy_denied PROXIED
"News/Media" -  403 TCP_DENIED GET - http www.cnn.com 80 / - -
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/39.0.2171.95 Safari/537.36" 192.168.2.10 760 1662 -
"CNN" "none"

Generally speaking, the entire spectrum of logs can be categorized into four 
types. Security logs record system security events. They cover all incidents that 
are related to system intrusion, attacks, malware or viruses, data loss or leaks, 
and other types of security breaches. For example, on some Linux systems, 
the security logs are stored at /var/log/secure, where the user log ins and 
authentication‐based resource access events are recorded.

Operational logs cover a wide range of logs that are generated while the appli-
ance or software is in operation. The operational logs provide real‐time informa-
tion to the system operators on the events that are happening or the status of 
the appliance or software. While there are many good examples of operational 
logs, we refer you to the sample proxy log in the previous example. It is a proxy 
access log generated to report a policy in action.

Debug logs are designed by developers to gather internal information on the 
system and software. There is usually a performance cost when debug logs are 
enabled due to the sheer volume of logs generated. Therefore, in most cases, the 
debug logs are disabled in a production environment, but they can be enabled 
on demand.

http://www.cnn.com
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Compliance logs provide measures to IT auditors to evaluate IT compliance such as 
Payment Card Industry (PCI), Health Insurance Portability and Accountability Act 
(HIPAA), and Federal Information Security Management Act (FISMA). Although 
there is a certain overlap between compliance logs and security logs, the compli-
ance logs are recorded exclusively for compliance regulations and mandates.

Log Formats

Different appliances and devices may generate logs according to different syntax. 
In order to parse, search, and analyze the various formats of logs, we need to 
understand how and in what syntax the events are recorded. There are several 
commonly adopted log formats.

The NCSA Common Log Format (CLF) is a standardized log format that is 
easy to understand. NCSA stands for National Center for Supercomputing 
Applications and CLF originated from the NCSA httpd project. The CLF writes 
log entries in the format of “host user‐identifier username date:time request 
status‐code bytes”. For example, a CLF log entry may look like the following 
code, where the host is 192.168.2.2, and the user‐identifier is not available and 
is replaced with the “‐” mark. The log also shows the following information: 
the username is jdoe, the GET request to /book/images/cover.gif occurred at 
12:10:17 on December 31, 2014 Pacific Time, the HTTP request was successful 
with status code 200, and the total bytes downloaded were 350.

Sample NCSA CLF Log

192.168.2.2 – jdoe [31/Dec/2014:12:10:17 -0800]
"GET /book/images/cover.gif HTTP/1.0" 200 350

Although CLF logs are lightweight and easy to parse, they are quite simple 
and may not contain all the detailed information we need to record. This gives 
rise to logs with extended formats. Extended Log File Format (ELFF) is a web server 
log format proposed by W3C and used by Microsoft Internet Information Server 
(IIS). This format contains two types of basic elements, directive and entry, and 
each line can be of either type. The directive lines start with the # character and 
define general information like version, fields of data recorded, software name, 
start and end time, and so on. The entry lines elaborate the details of an HTTP 
transaction through a sequence of fields. The fields can specify information like 
the time of the transaction, bytes transferred, client/server IP addresses, HTTP 
status code, and so on.

The following example “Sample W3C ELFF Log” shows a sample piece of a 
W3C ELFF log. In the entry line, it records the client IP address, date and time, 
HTTP client‐to‐server method (GET), URI of the download resource, server return 
code (200), bytes downloaded, client‐to‐server (browser) referrer link, HTTP 
version, total time taken to serve the request, and user‐agent of the client. The 



 Chapter 8 ■ Retrospective Analysis 255

client username is also a field in the entry, but the software cannot provide such 
information, so “‐” is used as a placeholder. The previous proxy access log is 
also an example of an ELFF log. The details of the proxy access log and its fields 
can be found in Chapter 6.

Sample W3C ELFF Log

#Version: 1.0
#Software: SampleLogger
#Fields:  c-ip cs-username date time cs-method cs-uri sc-status bytes
cs(Referrer)  cs-version time-taken cs(User-Agent)
192.168.2.2 - 2014-12-31 12:10:17 GET /book/images/cover.gif 200 350
"http://192.168.1.100/author/pub/secbook.html" HTTP/1.0 200 "Mozilla/5.0
(Windows NT 6.1; WOW64; rv:26.0) Gecko/20100101 Firefox/26.0"

The Apache log format is adopted by the widely used Apache HTTP Server 
and other related projects in the Apache Software Foundation. Apache logs 
can be of either the Apache Common Format or the Apache Combined Format, 
which resemble the CLF and the ELFF, respectively. However, the Apache log 
format has its unique field directives. For example, it uses %a to represent the 
client IP address, %s to represent the status code, and so on. If we want to use 
the Apache Combined Log format to record the W3C ELFF log entry previously 
listed, the log format and entry will look like this:

Sample Apache Combined Format Log

#Log Format:  %a %l %t %m %U %s %b %{Referrer}i %H %T %{User-Agent}i
192.168.2.2 – [31/Dec/2014:12:10:17] GET /book/images/cover.gif 200 350
"http://192.168.1.100/author/pub/secbook.html" HTTP/1.0 200 "Mozilla/5.0
(Windows NT 6.1; WOW64; rv:26.0) Gecko/20100101 Firefox/26.0"

Other log formats are available, including the Unix syslog format, the XML‐
based Intrusion Detection Message Exchange Format (IDMEF), and the key‐value 
based ArcSight Common Event Format (CEF). Formatted logs are easy to parse 
because they can be structured by columns. However, not all logs are well for-
matted. For the unstructured logs, it is important to make sure the retrospective 
analysis system is capable of extracting useful information out of them. (Later 
in this chapter, we will discuss ways to index and search unstructured data.) In 
addition, not all logs consist of human‐readable ASCII characters (for example, 
the binary format Windows Event Log). For those logs, we need to process the 
entries and organize them in a format that is convenient to index and search.

Log Management and Analysis

Given the various formats and sources of logs, it is important to centrally man-
age and analyze the logs. Such a log management and analysis system is a 

http://192.168.1.100/author/pub/secbook.html
http://192.168.1.100/author/pub/secbook.html
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critical piece in a retrospective analysis system, and it should have the follow-
ing two properties. First, the log management and analysis system should be 
able to parse the logs of different formats. Second, the system should be able to 
correlate the log entries in different logs and help to analyze certain network 
security incidents.

We give an example in Figure 8-1 to show how we can use a log management 
and analysis system to study APT. Suppose that a corporate network is protected 
by a proxy. All Internet traffic goes through the proxy, and all intranet traffic 
bypasses the proxy. Inside the corporate network, a source code server is running 
an installation of Apache Subversion (SVN) that contains the core intellectual 
property assets of the corporation, and only certain personnel in the corpora-
tion have access to the source code server and checkout (download) source 
code with their login credentials. The log management and analysis system is 
deployed on the corporate network, and it can receive logs from both the proxy 
and the source code server. The proxy log can be configured to use the ELFF 
format, and the Subversion on the source code server adopts the Apache log 
format by default. Figure 8-1 depicts the network architecture of the corporate 
network, and “Sample Log Configuration” lists the sample log configurations 
on the proxy and the source code server.

Sample Log Configuration

#Version: 1.0
#Software: Proxy
#Fields: date time time-taken c-ip cs-username cs-auth-group
x-exception-id sc-filter-result cs-categories cs(Referer)  sc-status
s-action cs-method rs(Content-Type) cs-uri-scheme cs-host cs-uri-port
cs-uri-path cs-uri-query cs-uri-extension cs(User-Agent) s-ip sc-bytes
cs-bytes x-virus-id x-vendor-application-name
x-vendor-application-operation

#SVN Log Format: %{%Y-%m-%d %T}t %u %h repo:%{SVN-REPOS-NAME}e
%{SVN-ACTION}e (%B Bytes in %T Sec)

Suppose on the first day of 2015, the corporation found its source code of 
ProjectY was leaked on Internet. The IT security investigator first studies the 
proxy access logs and searches for possible threads that may suggest a bulk file 
transfer. Using the log management and analysis system, the proxy access logs 
can be sorted by the cs‐bytes field, which specifies amount of data uploaded. 
Unfortunately, the IT security investigator is not able to find any suspicious 
transactions that could suggest a source code exfiltration event.

In the next step, the log management and analysis system queries the Subversion 
logs to list all users that have access to ProjectY and have checked out a copy 
of the source code. To satisfy the search, the SVN log entries should contain the 
string repo:ProjectY checkout‐or‐export. The search results provide a list of 
IP addresses on which copies of the source code exist, as well as the time when 



 Chapter 8 ■ Retrospective Analysis 257

the code was first checked out. This list of IP addresses is a potential leakage 
point, and all transactions from those IP addresses may contain the actual source 
code exfiltration events. However, it is still not possible to examine each of the 
suspect transactions due to their vast number of entries. Instead, it is necessary 
to shortlist the IP suspect list. In this example, the list of suspect IP addresses 
contains 192.168.2.23 and 192.168.2.10.

Figure 8-1: Analyzing Log Files for APT
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Knowing that the corporation could be a victim of APT, the log manage-
ment and analysis system goes back to the proxy access logs and tries to find 
traits of malware download. There are two ways to perform the search. If 
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there is a list of known MDN server IP addresses or landing page URLs, then 
such a list can be applied to the access log to search if any transaction has 
s‐ip, cs(Referer), or cs‐uri‐path in that list. Alternatively, it is also possible 
to search on cs‐categories and list all transactions that fall into suspicious 
categories, for example, Adult, Malicious Sources, Botnet, Phishing, Scam, 
Spam, Piracy, and so on. In this example, it is found that one IP address 
(192.168.2.10) that has a copy of ProjectY source code visited some website 
in the Piracy category and downloaded some file that was categorized as 
Potentially Unwanted Software from that site. This could be the first sign of 
APT, or malware download. The date of that event was more than four months 
before it was discovered (2014‐07‐27).

At this stage, the log management and analysis system has three pieces of 
important information: the suspect IP address (192.168.2.10) that has a copy 
of leaked source code, the timestamp T1 (2014‐07‐27 18:21:11) when potential 
malware was downloaded, and the timestamp T2 (2014‐10‐20 11:20:11) when 
the leaked source code was checked out. What the log management and analysis 
system needs to do next is to identify the exfiltration events in the APT that 
caused the actual leakage of source code. However, as we have discussed earlier, 
what makes APT so hard to detect is that the data exfiltrations are well hidden 
in legitimate transactions: the exfiltration traffic takes up a small volume and 
is spread over a long period of time.

There are several techniques to filter the proxy access logs and locate 
exfiltration transactions. First, it is only necessary to search in the trans-
actions that happened after T2. Second, the low‐risk categories can be fil-
tered out. Those categories include Business/Economy, Financial Services, 
News/Media, Search Engine/Portal, and so on. Third, transactions with 
the destination hosts that appear before and after T1 can be filtered out 
because those persistent destination hosts are not likely to be introduced 
by the malware.

With the rest of the transactions in the access log, the log management and 
analysis system can apply some data‐mining techniques. For example, it is pos-
sible to separate the transactions by destination hosts and study the statistical 
characteristic (for example, average and variance of upload payload size, time 
between transactions, and so on) of transactions to the same destination hosts. 
Then the destination hosts can be grouped by their statistical characteristic, and 
the abnormal ones can be picked out. Those abnormal ones may represent the 
APT destination servers.

One approach to grouping is to use the K‐Means clustering algorithm that we 
introduced in Chapter 7. While we do not plan to dive deep into data‐mining 
techniques, the idea here is that certain tools are available to process and ana-
lyze the logs and locate the exfiltration events. The following log listing shows 
the sample log entries that contain events of source code checkout, potential 
malware download, and APT exfiltration.
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Sample Logs Showing APT (Actual Malnet IP/URLs Omitted)

#SVN log showing source code checkout
2014-10-11 09:00:39 asmith 192.168.2.23 repo:ProjectY checkout-or-export
/r1978 depth=infinity (645217532 Bytes in 188 Sec)
2014-10-20 11:20:11 jdoe 192.168.2.10 repo:ProjectY checkout-or-export
/r2048 depth=infinity (675876251 Bytes in 198 Sec)

#Proxy log showing potential malware download from suspicious category
2014-07-27 18:21:08 10448 192.168.2.10 - - - PROXIED "Piracy/Copyright
Concerns;Peer-to-Peer (P2P)" http://somesite.com/  302 TCP_NC_MISS GET
 text/html;%20charset=UTF-8 http somesite.com 80 /wp-
content/themes/current/video_search.php ?query=lucy php "Mozilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.95 Safari/537.36" 192.168.2.1 389 640 - "none" "none"
2014-07-27 18:21:11 164 192.168.2.10 - - - PROXIED "Potentially Unwanted
Software" http://somesite.com/  200 TCP_MISS GET application/
octet-stream
http files4.file-mirror.info 80 /download/1084396/dl
?bc=1084396&pid=16275&brand=somesite.com&country=US&cb=1354937941&zTmp=1
 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/39.0.2171.95 Safari/537.36" 192.168.2.1 684891 478
 - "none" "none"

#Proxy log showing potential APT exfiltration events
2014-12-21 01:05:26 1201 192.168.2.10 - - - PROXIED "none"
http://a.b.c.d/upload.htm?FILEDST=/public/
200 TCP_NC_MISS POST text/plain http a.b.c.d 80 /upload - -
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"
 192.168.2.1 207 35175 - "none" "none"
2014-12-24 02:23:02 3550 192.168.2.10 - - - PROXIED "none"
http://a.b.c.d/upload.htm?FILEDST=/public/
200 TCP_NC_MISS POST text/plain http a.b.c.d 80 /upload - -
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"
192.168.2.1 207 71368 - "none" "none"

Packet Captures
Capturing network traffic is another important step in designing and imple-
menting a retrospective analysis system. The general goal of data capture is to 
obtain a complete view of the network traffic so that the retrospective analysis 
system never misses a network event when analyzing traffic captures.

Capture Points

In order to capture all the events in the entire network, it is important to know 
what the capture devices are, and what they are capable of capturing, so that 
we can put them in the right places.

http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
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An Ethernet hub, albeit an old‐fashioned network device, is a perfect example 
of a network capture device at the physical layer in the OSI network model. The 
hub connects multiple Ethernet devices together using a shared bus. Internally, 
the hub sends out traffic it receives on one port to all the ports so that every 
device on the hub sees all of the traffic within the hub. For example, say there 
are three devices on the hub, A, B, and C. If device A wants to send a packet to 
B, this packet is repeated by the hub on all three ports. Normally, C will not take 
the packet because the network interface controller (NIC) finds that the destina-
tion MAC address in the packet is not its own MAC address, and the packet 
is dropped silently. However, we can configure the NIC on C to operate in 
promiscuous (or promisc) mode so that the NIC accepts and potentially records 
all packets it sees, even if the packets are not destined to it.

The type of networking in the hub is also called collision domain because each 
Ethernet device on the hub can transmit at the same time and cause collisions. 
While the hub is very inefficient due to collisions, it is a very useful traffic cap-
turing point. In the previous sample‐logs example, device C can be used as a 
capturing device to observe communication between A and B.

Switches solve the collision problem by associating the MAC address with 
the physical switch ports. In particular, based on the destination MAC address 
of a packet, the switch only sends the packet to a specific port that this MAC 
address is associated with. To learn the MAC address and port association, 
the switch observes the source MAC address on packets from the ports and 
keeps a lookup table to record the association. If the switch cannot find the 
packet’s destination MAC in its lookup table, it needs to flood once in order to 
find at which port that particular destination MAC address is located. Unlike 
a hub, a switch does not repeat packets, and thus, it is not possible to monitor 
all network traffic by listening on a port. However, most modern switches are 
manufactured with port mirroring capabilities. With port mirroring, the switch 
can be configured to send a duplicated copy of packets that are received on 
certain ports to a common mirrored port. The mirrored port is sometimes 
called a SPAN port, from the Cisco terminology Switch Port for Analysis. The 
switch can be utilized as a capture point when we place a capturing device 
on the SPAN port.

Routers are network layer devices that send packets to their destinations 
in an interconnected network. Unlike switches that mostly work with MAC 
addresses, routers are more concerned with IP addresses. Some routers are 
equipped with port mirroring functions so that they can be used as cap-
ture points. Other routers have built‐in packet capture features and can 
hold a limited volume of captured packets. In addition, routers have logs 
to record network incidents. For example, Cisco routers can be configured 
to perform network traffic filtering based on IP access control lists (ACLs). 
Logs can record network access events (either allow or deny) that match the 
configured access control entries (ACEs).
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Other network devices can also work as capture points. Those devices can 
process and capture network traffic at different layers. For example, a proxy is 
often able to perform packet capture while processing at layer 3 and below. 
Meanwhile, it can also generate logs to record policy enforcement events that 
are valuable to network forensic analysis. In addition, specially designed inline 
deployed packet‐processing appliances are capable of either capturing packets 
or calculating and generating network statistic reports. Blue Coat’s PacketShaper 
product is an example. It can monitor and process network traffic, generate records 
for each of the network flows, and present reports on the collected records. We 
will visit the possible record formats in the next section.

Capture Formats

Different capture devices collect different formats of captures to record network 
events. Depending on the capture points and the capture devices, the commonly 
used capture formats are introduced in this section.

Packet capture (.pcap) is probably the most widely adopted format of network 
traffic capture. A variety of monitoring software exists on different operating 
systems that is capable of taking packet captures, including the popular open 
source tools tcpdump and Wireshark. The underlying engine that handles the 
actual capturing in those two tools is libpcap, or its Windows port WinPcap. 
The libpcap library enables the software built on top of it to access the packets 
from the NIC directly. The grabbed packets can be displayed or stored to a file, 
usually with the extension .pcap or .dmp.

What libpcap captures are the actual packets that are seen on the wire. This 
means that the captured packets are raw Ethernet frames that contain both 
the Ethernet headers and the IP headers and payload. When using tcpdump 
and Wireshark to capture packets, a timestamp recording when the packet is 
captured is also added. Because libpcap and tcpdump record the full packet, 
the sheer size of the capture file makes it difficult, if not impractical, to load 
and analyze the packet capture using tools like Wireshark. To limit the capture 
size, it is possible to apply the Berkeley Packet Filter (BPF) during the capturing 
process. For example, the BFP syntax supports different qualifiers like port, 
portrange, host, src, dst, tcp, udp, and so on. The expression tcp dst port 80 
will instruct libpcap to only capture TCP traffic that is destined for port 80, and 
ip src 10.2.2.200 will limit the captured traffic to only that which originated 
from IP 10.2.2.200. The capture tool tcpdump also supports a capturing limit 
based on packet count (‐c option), capture file size (‐C option), and time duration 
(‐G option). In addition, it can save the capture into multiple files (‐W option).

Another consideration when performing packet capture is the size of indi-
vidual packets. In some commercial ISP networks, it is prohibited to record and 
analyze capture with full packet length due to privacy and other regulations. In 
such cases, it is possible to use the snaplen (‐s option) argument in tcpdump to 
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limit the captured frame size. Because libpcap records the raw Ethernet frame, 
a 20‐byte Ethernet header length is counted in the snaplen.

NetFlow is a network traffic record format initially introduced and imple-
mented by Cisco on its routers and switches. Compared with packet capture, a 
NetFlow record provides more compact and concise information to characterize 
a flow; for example, NetFlow records the most useful tuple <srcaddr, dstaddr, 
srcport, dstport, proto> but ignores the actual data payload of the flow.

Many devices can generate NetFlow records. Besides routers and switches 
from major vendors, other inline‐deployed traffic‐processing appliances such 
as Blue Coat PacketShaper can also emit NetFlow records while managing net-
work traffic. NetFlow has ten versions, with the most popular being version 5. 
Versions 8 and 9 have also been widely adopted. Figure 8-2 contains a sample of 
NetFlow Version 5 records showing the <srcaddr, dstaddr, srcport, dstport, 
proto> tuple together with start time, duration, packet count, and byte count 
of the flows monitored.

To collect NetFlow records, various vendors have their own proprietary imple-
mentations, often as a part of the network monitoring module. On the open source 
side, nfdump (http://nfdump.sourceforge.net/) is a free software suite that 
includes NetFlow capturing, displaying, and processing modules. The nfdump 
software is also capable of receiving NetFlow records from multiple sources. 
Although NetFlow was originally designed to facilitate network usage billing, 
its records can also be utilized for security analytics. In the example shown in 
Figure 8-2, the NetFlow record clearly lists the contact time and duration of a 
flow between two distinct IP addresses and ports and the aggregated size of all 
packets in the flow. If one of the IP addresses belongs to one of the C2 servers 
in a malnet, then the NetFlow records provide statistical information about the 
communication on the C2 channels.

Figure 8-2: Sample NetFlow Records

http://nfdump.sourceforge.net/
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It is worth noting that NetFlow may not be enabled by default on appli-
ances that are capable of generating NetFlow records. There are two reasons 
for this. First, NetFlow generation requires a lot of computation resources on 
the appliances themselves, and there is a trade‐off between packet processing 
and NetFlow record generation. Second, emitting NetFlow records consumes 
network bandwidth. When the flow count in the network is large, the NetFlow 
records volume increases proportionally with the number of flows. In addition, 
when the flows are short‐lived, more NetFlow records are burst in a short period 
of time to report the start and stop of the flows, and this can cause a surge in 
NetFlow bandwidth usage as well.

Internet Protocol Flow Information Export (IPFIX) that is based on NetFlow 
Version 9 is an IETF‐defined protocol. The advantages of IPFIX over older ver-
sions of NetFlow are its extensibility and flexibility, for example, its integration 
with IPv6 to emit IPv6 flow records, support of vendor‐specific definitions of 
the records, and user selection of the flow keys in the records. In addition, IPFIX 
also tries to define a unified metering, exporting, and collection architecture in 
network monitoring. As a proposed standard, IPFIX is supported by mainstream 
networking appliances from major vendors.

Capture a Large Volume of Data

Different networks and appliances generate and collect data at various speeds. 
To capture the data without any loss, a retrospective analysis system should 
be able to handle captured data at the highest speed that is possible on the 
network, which is the line speed. In a typical enterprise network, that speed 
is 10Gbps. The retrospective analysis system should be designed to capture 
packets at 10Gbps speed.

Capturing a packet consists of two steps. First, the NIC receives a packet 
and makes it available for storage. Second, a packet‐recording program takes 
the packet and writes it somewhere on the storage device. In the example of a 
Linux host, the second step can be done in either kernel space or user space. 
If it happens in kernel space, the packet‐recording program needs to take the 
packets directly from the NIC driver and dump them on the storage device. In 
such a case, we need to implement the packet‐recording program and build it 
into a custom kernel. If this happens in user space, it is critical to make sure the 
packets are transferred to the memory both quickly and efficiently. A popular 
approach is with direct NIC access, in which the specially designed NIC driv-
ers store the received packets in some pre‐allocated memory space that can be 
directly accessed by user space programs without needing to copy the packets 
from kernel to user space.

The particular challenge for the packet‐recording program is the speed of the 
storage I/O subsystem. In 2014, the storage controller on mainstream servers was 
SAS (Serial Attached SCSI), with a rate of 6Gbps. Apparently, that rate is smaller 
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than the input rate of 10Gbps. In this regard, in order to fully capture 10Gbps 
traffic, multiple instances of the packet‐recording program need to be running 
at the same time. Fortunately, modern Ethernet NIC adapters are equipped 
with advanced features like receive‐side scaling (RSS). With RSS, the packets 
received by the NIC are distributed into multiple hardware receive queues. To 
improve packet processing performance, each receive queue can be assigned 
to a unique interrupt that is affiliated with a separate CPU core. Therefore, it is 
possible to run a packet‐recording program simultaneously on different CPU 
cores and write packets to different storage devices. With the help of direct 
NIC access and RSS, we can write a user space program to achieve high‐speed 
packet capture.

There are other issues to consider in packet capture, one being the storage 
layout. Well‐structured storage helps to locate and retrieve packets efficiently. 
Because RSS distributes packets based on the hashing of the IP addresses, it is 
possible to store the packets based on the IP address and port. In such a case, 
the storage is structured with multiple top-level directories representing IP 
addresses, and in each directory, there are subdirectories for different ports to 
store the raw packets. Alternatively, packets can also be stored based on time 
so that the directories can be structured by day, hour, and minute. No matter 
what directory layout is chosen to store the packets, each of the raw packets 
should be clearly identified, for example, with a unique packet ID. In that case, 
when the retrospective analysis system needs to retrieve a single packet, it can 
first locate the directory in which the packet is stored and then retrieve it from 
that directory by the unique packet ID.

Another issue is packet processing. Although the goal of packet capture is 
to receive and store the packets at line speed, it is still necessary to perform 
certain types of processing on the packets. One type of processing is to add an 
ID to the packets for efficient retrieval. Another example is to timestamp the 
packets and record when they were received. Such time stamping needs to be 
quite accurate, and as a matter of fact, there are a few off‐the‐shelf timestamping 
cards that can append a timestamp to the end of the packet while receiving it. If 
the timestamps are unique, they can even be used as packet IDs. An important 
packet processing application is to index the packets. Indexing allows the ret-
rospective analysis system to quickly search the packet capture and respond to 
a user query regarding what happened in the captured traffic. We will explain 
in detail how to efficiently index packet captures in the next section.

Data Indexing and Query

With the terabytes, if not petabytes, of data collected, the first question to ask 
is how to organize that data so that it is possible to easily look up and retrieve 
a relevant piece of data. For that purpose, it is necessary to index the data, and 
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such indexing should be able to resolve queries on the data effectively and 
efficiently.

Most database administrators or users are familiar with the term index. A 
database index is a data structure designed to sort multiple database entries on 
certain fields so that searching for a record based on the field value in the index 
is much faster than linear traversal on the records. The index data structure 
also holds pointers to the actual records for fast retrieval. However, maintaining 
such an index structure requires additional storage spaces, either in memory 
or on disk.

B‐tree Index
B‐tree is a binary search tree (BST) based data structure that is widely implemented 
in database systems for indexing records, which allows for efficient operations 
such as record insertion, deletion, and searching. B‐trees are balanced search 
trees, which is a unique property that requires all of the leaf nodes to be at the 
same depth level from the root. The height of a B‐tree with n nodes is O(log n) 
(a later section will provide a more precise value), which means a query takes 
O(log n) comparisons in the worst case to determine if an entry is in the tree. As 
with any BST, each node contains a key that is compared with a search key when 
a query is issued into the B‐tree. When applying a B‐tree indexing algorithm for 
implementing retrospective analysis, examples of a key can be a packet arrival 
timestamp, a timestamp of an event occurrence, a policy enforcement action 
code, or the hash value of a predefined log string.

Each tree node also contains a pointer for locating the associated file (such as a 
packet capture) or record (such as a NetFlow record or a line of a proxy log). For 
example, the pointer can be a file pointer in the file system or an offset within 
a file such as a record offset within a raw packet capture file. We will use the 
term key to refer to the (key, pointer) pair in a B‐tree node to simplify discussion.

What makes a B‐tree different from a BST is that one B‐tree node can con-
tain multiple keys, and each B‐tree node can have more than two children or 
sub‐trees. Figure 8-3 shows an example B‐tree. The root node has two keys and 
three children. These immediate children nodes each also have one to two keys, 
with two to three children. This example B‐tree has 20 nodes with a depth of 
three levels. In contrast, a regular BST can only hold up to eight nodes with the 
same depth.

For each non‐leaf node, its keys are sorted in increasing order. In the example 
in Figure 8-3, node E and node G each have three keys, and these keys are sorted 
by their increasing value. The keys within an internal node separate the children 
nodes. For an internal node with a single key, such as node C, the key values 
of the child node G (10, 11, 12) to the left of this node C must have values no 
greater than the key in node C, while the key values of the child node H (14) to 
the right of node C must have values no less than the key in node C. Node D 
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has two keys with values 20 and 30, and these two keys separate three children 
nodes. The left child of key 20 is node I, and the right child is node J. The key 
values in node I (17, 18) must be less than 20, while the key values in node J (22, 
25) must be greater than 20 but less than 30. The key values in node K (40, 60) 
must be greater than 30.
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Figure 8-3: A Simple B‐tree

Each B‐tree has a minimum degree t, which is greater than or equal to 2. The 
minimum degree specifies how many keys a node can hold. For an internal node, 
it can have a minimum of (t–1) keys and a maximum of (2t–1) keys. For each B‐
tree node of x keys, there are (x+1) children. Therefore, for a B‐tree of minimum 
t degrees, the number of children an internal node can have is between t and 
2t. In the example given in Figure 8-3, its minimum degree is 2. For an internal 
node, the minimum number of children is two, and the maximum number of 
children is four. Because the number of children is two, three, or four, such a 
B‐tree is also called a 2‐3‐4 tree. A B‐tree with a minimum degree of t, at level 
h, can hold up to t(2 )h keys. That is to say, if we have over 1 billion keys, we 
can use a B‐tree with a minimum degree of 500 and tree depth of three levels 
to include all of these keys. In practice, large B‐trees usually have minimum 
degrees between 25 and 1,000.
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B‐tree Search

In the context of retrospective analysis, imagine we have a NetFlow collector 
gathering NetFlow records from various sources. A B‐tree is used to index the 
flow records. In each node the key value is an integer value that represents the 
flow duration in seconds, and the pointer points to the actual NetFlow record 
on disk for retrieval. Searching for a specific flow record in a B‐tree is illustrated 
in Figure 8-4.
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Figure 8-4: Performing a Search in a B‐tree

The B‐tree shown in Figure 8-4 has 11 nodes (A to K) with 20 keys distributed 
across three levels. The root node has two keys with values 9 and 16. It has three 
children or sub‐trees. The key values in the root node separate the sub‐trees 
according to the B‐tree property. So, to locate the key value 22, the keys in the 
root node are compared with the search key 22. Because 22 is larger than 16, the 
search continues in the rightmost sub‐tree. At node D, the search key is between 
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key values 20 and 30, and therefore the middle sub‐tree is visited next. Then 
the value 22 is found at leaf node J as its first key value.

The search algorithm can be implemented in a recursive manner. In the first 
step, we check all the keys in the node to see if the queried key value is present. 
If a matching key is found, then we return the node as the result. We termi-
nate the search and return “not found” if the current node does not have any 
sub‐trees. Otherwise, we choose the right sub‐tree and continue the search in 
the same manner recursively. In general, for any B‐tree of minimum degree t, 
because each node has at most (2t–1) keys to compare, the cost is O(t). Because 
there are at most O(log n) levels, or O(logt n) if we factor in t, the overall time 
complexity of the B‐tree search is O(t logt n).

B‐tree Insertion

Capturing and inserting new flow records into a retrospective analysis system 
is a common operation. We will illustrate a B‐tree insertion example in this sec-
tion. Suppose a newly collected flow has a five‐second duration. The insertion 
process involves first finding the right location where the key can be inserted 
and, after the insertion, deciding if the updated tree needs to be restructured to 
maintain the balance and the B‐tree property. Consider the insertion example 
shown in Figure 8-5.

First, a search is performed in the tree to find the leaf node where the key 
value 5 can be inserted. In this example, the right spot is the leftmost leaf node, 
a sub‐tree of the node with key value 7 (②). Then a decision needs to be made on 
how to insert this new key. The leftmost leaf node already has three keys, which 
is a full node according to the B‐tree property of a maximum (2t–1 = 3) keys per 
node. This leaf node must be split in order to fit the new key. So the median key 
value 4 is removed, and the leaf node is divided to form two new nodes from 
each half, with one new node containing the key value 3 and the other containing 
the key value 6 (③). The removed median key is merged with the parent node, 
and the newly formed nodes are linked with the parent node (④). The node with 
key value 3 is attached to the left of key value 4, and the node with key value 6 
is the new middle child node where key value 5 is inserted. The updated tree is 
balanced, and each node contains an appropriate number of keys.

This insertion example shows that the insertion algorithm performs two 
main operations. The first operation is finding the insertion location, which is 
essentially a B‐tree search problem. The time complexity for this operation is 
O t n( log )t . The second operation is to split a full node into two non‐full nodes. 
A full node has (2t–1) keys, so the two new nodes have (t–1) keys each after 
the split. Therefore, the split operation runs with O t( ) complexity. Combining 
the cost of the two operations, we find that the overall time complexity of B‐tree 
insertion is O t n( log )t .
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Figure 8-5: Performing an Insertion into a B‐tree
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Range Search and B+‐tree

In the previous sections, we have shown the exact‐match query or equality 
search using a B‐tree index. The following search will return a particular 
record or several records with the same key. However, if we change the query 
to find all records that have a key value in a certain range, then the B‐tree 
structure makes the search difficult because the matched keys are most 
likely to be scattered in different nodes that reside in different sub‐trees. 
For example, if we want to search for all NetFlow records that have a dura-
tion between 10 and 30 seconds, then the matched results are in six differ-
ent nodes (C, D, G, H, I, J), and there is no good way to access those results 
sequentially accordingly to the key value. A variant of the B‐tree, the B+‐tree, 
can facilitate range queries.

The B+‐tree resembles a B‐tree but possesses two unique features. First, all of 
the keys are stored at the leaf node. The internal nodes only store value separa-
tors that can determine the path to the leaf node during a search. Second, all 
leaf nodes are connected with a double‐linked list to support range searches 
and sequential searches. Figure 8-6 provides an example B+‐tree, a derivative 
of the B‐tree that is shown in Figure 8-3.

Performing a range search on a B+‐tree begins by first conducting an equality 
search using the lower bound value of the range. In this example, the lower 
bound is 10 (seconds). Doing an equality search in the B+‐tree is similar to that 
in a B‐tree. The search for key value 10 ends at node J. We start a sequential 
probe from node J by following the right sibling pointer in the double‐linked 
list of the leaf nodes, until reaching the node that contains the upper bound 
key value, which is 30 in this case; in this way, we collect all of the relevant 
nodes J, K, L, M, N, O, and P as each is visited. The search stops at node Q after 
visiting key 30. The linear probing stops at the first key value that is greater 
than the upper bound.

The time complexity of the range search covering d keys in a B+‐tree consists 
of the lower bound equality search and the cost of linear probing. The equality 
search takes O t n( log )t  steps to locate the lower bound key. The linear probing 
takes at most d comparisons, and so the complexity is O d( ), a constant. The 
overall time complexity is then O t n( log ).t

B‐trees and B+‐trees are the most widely adopted index approaches in 
both relational database management systems (RDBMS) and Not Only 
SQL (NoSQL) databases. For example, the most popular NoSQL database, 
MongoDB, implements B‐tree as its indexing algorithm. RDBMS Oracle 8, 
IBM DB2, Microsoft SQL Server, and the NoSQL database CouchDB support 
B+‐tree‐based indices.
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Bitmap Index
B‐tree and its variants are efficient indexing approaches. However, insertion 
or any other operation that modifies the tree may require rebalancing the tree 
to maintain certain important tree properties, which can be costly when the 
frequency of operation is high. In this section, we introduce a bitmap index that 
is efficient for both insertion (append) and search operations.

The bitmap index is an indexing approach that stores the index value as a set of 
bit sequences, as shown in Figure 8-7. Each column ( …b b b, , ,0 1 2 ) is a bitmap, and 
together these bitmaps are known as the bitmap index. The number of bitmaps 
in a bitmap index is called the cardinality of the bitmap index and is determined 
by the number of possible index values.

Figure 8-7: An Example Bitmap Index

In this example, the data values range from 0 to 7, and so a total of eight bit-
maps are used to index the stored data in the bitmap index. Each row of data 
can choose only one bitmap to represent its data. For example, in the first row, 
the data value is 3, so bitmap b3  is chosen by setting the fourth bit in the row 
as 1. For another example, in the second row, the data value is 0, and the chosen 
bitmap is b0 , which is the first bit of the row. The bitmap index is a set of binary 
arrays of equal size if we view the bitmap index by rows instead of by columns. 
The size of the arrays is the cardinality of the bitmap index.

Because each row in the bitmap index is a data entry, the insertion operation 
consists of creating a bit array with the cardinality as the array size, setting the 
bit value at the appropriate column, and then appending the array to the end of 
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the existing bitmap index. The creation of a bit array can be done efficiently by the 
bit shifting and bitwise OR operation. For the example illustrated in Figure 8-7, 
we can use an 8‐bit unsigned integer to present the bit array. To set bit x, we use 
array |= 1 << x. Bitmap indices are best for read‐mostly and append‐only data 
because appending a bitmap index is a simple and efficient operation.

An attribute of the stored data, which will serve as the index for later searching 
and retrieval operations, can be represented by a bitmap index. Example attri-
butes of a network flow are the source and destination IP addresses, the source 
and destination ports, and the protocol type. So, for example, if the destination 
port will serve as the index to retrieval flows that match a specific destination 
port, then the destination ports and the associated flows can be represented by 
a bitmap index. In this case, the possible values range from 0 to 65535, and the 
cardinality of this bitmap index is 65536. If there are 1,000 rows (or flows) to be 
stored, then we can build a bitmap index that consists of 65,536 bitmaps with 
1,000 rows in each column; that is, this bitmap index consists of 1,000 × 65,536 bits.

Bitmap Index Search

Searching for an exact match using a bitmap index is straightforward. Because 
each bitmap represents an attribute value, searching for records that have a 
particular value essentially involves listing the rows that have the “1” bit in 
that particular bitmap (or column) representing that value. For example, in the 
bitmap index given in Figure 8-7, to search for records with value 2 in the bitmap 
index, we first locate bitmap b2. Then we find that two rows (row 4 and row 9) 
contain the value 1; therefore, those two rows are retrieved as the search result.

Range searches can also be done easily using a bitmap index. First, we need to 
identify all bitmaps that fall within the searched range. For example, if the range 
search is to find all records whose data value x is within the range ≤ ≤x3 6 , we 
need to first select the bitmaps that represent this range. Because the possible 
data values within the range are 3, 4, 5, and 6, the selected bitmaps are b b b, ,3 4 5 , 
and b6. The range search means that any record that is marked in any one of 
these columns satisfies the search condition. Therefore, performing the range 
search involves executing the bitwise OR operations on the selected bitmaps 
to obtain a single resultant bitmap. The rows that have “1” bits in the resultant 
bitmap are the records that satisfy the range search.

Each bitmap index can be used to store one data attribute, and if the data has 
multiple attributes that will contribute to the searching criteria, then multiple 
bitmap indices, as many as the number of attributes, are necessary to index the 
stored data. For example, it is possible to store the source port of network flows 
in a single bitmap index; however, if flow selection depends on the values of 
both source and destination ports as search attributes, then two bitmap indices 
are necessary to manage the stored flow records. A range search on a single 
bitmap index is a one‐dimensional query. We can perform a multi‐dimensional 
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query by combining the results of multiple one‐dimensional queries, similar to 
performing a range query, as shown in Figure 8-8.

Figure 8-8: Two‐Dimensional Query

Bitwise AND Operation to
Combine One-Dimensional Queries

Bitwise OR Operation
to Answer Range Queries

In this example, we illustrate a range search on data that has two attributes 
X and Y. Each attribute is represented by a bitmap index. We are interested in 
finding the entries such that ≤ ≤x3 6 and ≤ ≤y1 3 , where x and y are values 
of attribute X and Y, respectively. From the previous range search example, we 
know that the one‐dimensional query on attribute X is the result of bitwise 
OR operations on bitmaps bx3, bx4, bx5, and bx6. Similarly, the one‐dimensional 
query on attribute Y is the result of bitwise OR operations on bitmaps by1  and 
by6. Finally, the two‐dimensional range query is the bitwise AND operation on 
the two resulting bitmaps that are answers to the individual one‐dimensional 
queries.

We will now show how to apply multi‐dimensional searches using bitmap 
indices to solve real‐world problems in the context of retrospective analysis. 
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As we discussed in previous sections, the large files of raw packet captures are 
stored on multiple hard drives, and we need to build a fast search system to 
quickly retrieve the desired data according to query conditions. For the sake of 
discussion, we limit the query fields to source and destination IPv4 addresses 
and associated ports. These are the attributes of the data managed through 
the bitmap indices. Each packet has a unique packet ID (similar to the row 
number in the simple bitmap index example shown previously). As shown in 
Figure 8-9, there exists a packet record file that associates each packet ID with 
an actual packet capture file holding the raw packet data and the offset value, 
specifying the location of that raw packet within the capture file. For example, 
as shown in Figure 8-9, the packet record file can locate packet 301 in the file 
named ad.pcap at offset 0x5a46. Packet 301 can be retrieved quickly with such 
detailed information.

Figure 8-9: Packet Capture Bitmap Index Search
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We first build the bitmap indices to serve the query. Because the query may 
contain four different attributes (source and destination IP and ports), we need 
to build multiple bitmap indices. As we have mentioned, the port attribute can 
be represented using a bitmap index of cardinality of 65536, and we need two 
different bitmap indices each for the source and destination ports. For the IP 
address attribute, it is difficult to store them in a single bitmap index because 
the IP address has four octets. Instead, we construct four bitmap indices for the 
IP address attribute: one bitmap index for each byte in the IP address. Because 
for an IPv4 address, each byte in the address can have a maximum value of 
255, the cardinality of the IP address bitmap index is 256. Together, we have 
+ + + =4 4 1 1 10  bitmap indices to index the packets in the capture files.
Figure 8-9 shows the query process to search for packets that have source IP 

range 192.168.1.0/22 and destination port 6543. The source IP range can trans-
late to the bitmap query as “value of IP first byte is 192, value of IP second byte 
is 168, value of IP third byte is 1 or 2 or 3 (this is because the prefix is /22, the 
upper 6 bits is 0, and the lower 2 bits can be 1 or 2 or 3), and value of IP fourth 
byte is ANY.” It means for the IP address attribute that exact‐match queries 
need to be performed on the first two bitmap indices, the third bitmap index 
requires a range search, and no query is needed on the fourth bitmap index. 
As shown in the figure, in the IP first byte bitmap index, the bitmap for value 
192 is selected. We use a black line to represent “1” in the bitmap and a black 
box to represent a block of “1”s. The thicker the black box, the larger the block 
of “1”s. Similarly, we select a bitmap for value 168 from the IP address second 
byte bitmap index and 5432 from the destination port bitmap index. For the IP 
address third byte bitmap index, we perform bitwise OR operations to obtain a 
bitmap containing range search results. Each of the bitmaps selected or generated 
is an answer to a one‐dimensional query (shown as step 1), and to answer the 
original multi‐dimensional query, we combine the results of one‐dimensional 
queries by doing bitwise AND operations on the bitmaps (shown as step 2). The 
final result is a bitmap that has only three “1”s. The rows of those “1” entries 
are the packet ID that satisfy the query.

In this example, the IDs are 301, 629, and 1080. To retrieve those packets, the 
retrospective analysis system locates the entries in the packet record file with 
the returned packet IDs from the search (shown as step 3). With the extracted 
file pointers and offset values of those packets from the packet record file, it is 
possible to fetch the raw packets from the actual packet capture files and process 
them for display (shown as step 4).

Bitmap Index Compression

One drawback of bitmap indices is the large amount of storage they require. In 
the previous example, a single packet entry is represented in ten bitmap indices 
in different cardinalities. The eight IP address bitmap indices have 256 columns 
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each, and the two port bitmaps each have 65,536 columns. Together, for a single 
packet entry, that is 133,120 bits, or more than 16KB, which is a huge overhead. 
Compressed bitmap indices bring more space efficiency while maintaining the 
fast bitwise operation properties that the basic bitmap indices have to offer.

To compress a bitmap index, the most common approach is run‐length encod-
ing. The key concept of run‐length encoding is to use a single data value and a 
count number to represent consecutively repeated occurrences of the data value. 
For example, to compress the string “WWWWAAWWAAAAAAAWWBBBB”, 
we can apply run‐length encoding to compress it as “W4A2W2A7W2B4”. The 
number represents the repeated times the preceding letter occurs in the original 
string, where in sequence, W repeats 4 times, A repeats 2 times, W repeats 2 
times, and so on. However, this simple run‐length encoding approach is not the 
appropriate method to compress a bitmap index because if we want to perform 
bitwise operations on two compressed bitmap indices, we will need to first 
un‐compress them, run bitwise operations, and compress the resulting bitmap 
index. Clearly, this is not the desired solution.

Word‐Aligned Hybrid (WAH) coding is a run‐length encoding algorithm that 
makes it possible to logically operate on compressed bitmap indices. In particular, 
when using WAH coding, the result of logical operations on two compressed 
bitmap indices is exactly the same as performing the same operations on the 
uncompressed bitmap indices followed by compressing the result. Therefore, 
searching the compressed bitmap indices generates the same results as search-
ing in the uncompressed bitmap indices.

We use the IP address bitmap index as an example to show how WAH cod-
ing works. The IP address bitmap index contains 256 bits for each byte in the IP 
address. In the example, the first byte of the IP address is 192, so the 193rd bit 
in that row of the bitmap index is 1 and the remaining 255 bits are 0. As shown 
in Figure 8-10, the 256 bits are represented as “192*0, 1*1, 63*0”, sequentially 
showing the value of each bit.

Figure 8-10: WAH Bitmap Index Compression

Suppose we use an x86 32‐bit system to process the bitmap index. In Intel’s 
x86 architecture, each word is 32 bits long. To apply WAH coding, we first divide 
the 256 bits into nine words, in which only the lower 31 bits are used and the 
unused bits are filled by 0s. In this example, the first 6 words are all 0, the 7th 
word has 6 zeros, and then 1 one, followed by another 24 zeros. The 8th word 
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is also 0. The 9th word only has 8 bits, all of which are 0, and the word itself is 
also 0. Those nine words can be written as 4‐byte hexadecimal numbers; this 
is called the literal representation of the bitmap index.

The key piece of the WAH algorithm is to count words that consist of repeated 
bits and compress them as a fill word. In the example, all the bits in the first 6 
words are 0, so we can compress them as a single fill word that has a count of 6. 
The fill word has three parts. The most significant bit is the indicator bit, and it 
is always 1. The second‐most significant bit is the fill bit showing the repeated 
bit value, which is 0 in this example. The remaining 30 bits record the fill length 
(repeated word count), which is 6 in the example. Therefore, the first 6 words 
can be compressed as a hexadecimal number 80000006 where 8 means it is 
a 0‐filled fill word.

In addition to a fill word, WAH coding also has a literal word. A literal word 
has 0 in the most significant bit, and the literal word is the same as the literal 
hexadecimal representation of the 31‐bit word. In this example, the 7th word 
contains a bit of 1 and 30 bits of 0, so it cannot be compressed. WAH coding 
treats that word as a literal word, which can be written as a hexadecimal number 
01000000. The 8th word is all zeros, and it is also a literal word because no repeat-
ing words can be compressed with it. Finally, the last word is called an active 
word; although its literal value is 0, it actually has only 8 bits of zeros. This active 
word is specially treated (shown as an asterisk superscript in the example) and 
we need to store it separately. This is because in WAH implementation, each 
compressed bitmap index is contained in a structure (class) in which the active 
word itself, its literal value, and bit count are member variables. As shown in 
the example, WAH coding compresses the original 8‐word (256‐bit) bitmap 
index into 4 words—a compression ratio of 2. This ratio is even larger when we 
compress the 65,536‐bit port bitmap index: 2,048 words into 4 words.

WAH coding defines a set of functions to perform logical operations (for 
example, AND, OR, XOR, and so on) on the WAH compressed bitmap index. The 
key properties of the logical operations are two‐fold. First, the resulting bitmap 
index from the logical operations on multiple WAH compressed bitmap indices 
is the same as running the same logical operations on the uncompressed bitmap 
indices, and compresses the resulting bitmap index using WAH coding. This 
property means that WAH compressed bitmap indices can fully represent and 
replace basic bitmap indices. Second, the logical operation complexity of WAH 
compressed bitmap indices is linear to the total size of the input. Because the 
compression ratio for some basic bitmap indices (for example, the port bitmap 
index) is so high, the operations on compressed bitmap indices can be much faster.

There are many other bitmap index compression schemes, for example, Byte‐
aligned Bitmap Code (BBC), Compressed Adaptive Index (COMPAX), Enhanced 
WAH (EWAH), Roaring bitmaps, and so on. Besides the application of indexing 
large packet captures in a retrospective analysis system, bitmap indexing is 
widely used by major RDBMS vendors like Oracle and IBM, as well as distrib-
uted data storage like Apache Hive.
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Inverted File Index
Both B‐tree indexing and bitmap indexing require pre‐processing on the raw 
data. For example, when using B‐tree to index packet captures, this requires 
that the source IP address string of the packet be hashed into a number, create 
a B‐tree node with that number as a key, and insert that node in the B‐tree. 
When using a bitmap index, we need to divide the IP address into 4 bytes, 
create a bit array for each of the bytes, append it to the bitmap index, and 
compress it.

As an alternative to the aforementioned two indexing methods, there 
is a demand for a lightweight pre‐processing indexing approach. When 
applying such an approach, each packet can be represented as plain text 
that contains metadata of the packet without a payload, for example, the 
source and destination IP addresses and ports as text. Such representation 
is similar to NetFlow, but at the granularity of packet level. Creating and 
saving metadata is one action per packet, as opposed to multiple actions 
for the source IP and port, destination IP and port, and protocol field for 
a single packet when using B‐tree or bitmap indexing. Figure 8-11 shows 
sample metadata of packet captures.

Figure 8-11: Example Packet Metadata in Documents

In addition, not every form of collected network data is well structured. In 
some cases, logs from certain network appliances are unstructured in nature; it 
is not easy to parse these logs, create fields, and index them. Furthermore, even 
if all the logs the retrospective analysis system collects are well formatted, the 
formats can be different. Instead of creating indices for each format of the log 
and performing the same query in each index, it would be much more efficient 
to create a single index for all logs so that without querying on multiple indices, 
a single query on a single index is sufficient.

Inverted File

When the index is built to search on text among a collection of text files (docu-
ments), the prevailing approach is inverted file indexing. An inverted file, also 
known as a posting file, contains lists of pointers to every occurrence of each term 
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(unique word) in the documents. The list is called an inverted list or posting list. 
Each pointer (posting) in the inverted list records the documents in which the 
term appears.

In Figure 8-11, we have packet metadata saved in five documents. For now, 
let us assume there is only one piece of packet metadata in each document; 
we will relax this assumption later. Each document is uniquely identified 
by a document ID, from which it is possible to locate the actual packet cap-
ture file containing the raw packets that are present in the document. Also, 
in the packet metadata, we list only the <sip, sport, dip, dport, proto> 
tuple to show how to create an inverted file. An additional metadata field can 
be included and indexed using the same method. In Figure 8-12, we list the 
documents with their document IDs on the right and their contents (packet 
metadata) on the left.

Figure 8-12: Inverted File for Metadata
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To create an inverted file from the packet metadata, we first extract the terms. 
Let us define a term in the metadata as type:value. For example, sip:192.168.1.2 
is a term, and proto:tcp is another term. The reason we create terms in such a 
way is for the convenience of making a query. We will explain this later when 
we discuss queries. With the extraction of terms, each document can be viewed 
as a collection of terms, and the same term can appear in different documents. 
For example, the term sip:192.168.1.2 appears in both documents 1 and 5.

The way to construct an inverted file in this example is to create a list of docu-
ment IDs for each of the terms. For example, Figure 8-12 shows that the term 
sip:192.168.1.2 has two postings, 1 and 5, in the inverted list because the term 
appears in documents 1 and 5. The inverted list can be implemented using a 
linked list. The requirement here is that the postings be sorted in monotonically 
increasing order based on document ID. The inverted file is created by repeat-
edly adding the terms and their postings. The terms themselves can be hashed 
so that they are easy to look up. When we have a new term and posting to add, 
we first look up the term, and if the term is present, we append the posting to 
the inverted list of the term. If not, we append the term to the inverted file and 
create an inverted list with the document ID as the first posting. In this way, as 
long as the documents are processed in the order of their ID, it is guaranteed 
that the postings in the inverted lists will be sorted accordingly.

Inverted File Index Query

Because the inverted list already contains all occurrences of the term, in order to 
find which documents contain a particular term, it is possible to walk through 
the postings in the term’s inverted list and simply return the postings. For 
example, to perform the query and obtain all documents containing the term 
sip==192.168.1.2, we walk through the inverted list of this term and return each 
posting; in this example, the IDs are 1 and 5. Inverted file indexing is also very 
efficient at performing logical queries combining multiple terms.

With the inverted file shown in Figure 8.12, let us look at an example of the 
logical AND query sip==192.168.1.2 && proto==tcp. To perform this query, we 
first locate the inverted list of the two terms. To answer the logical AND query 
of the two terms is to find the common postings in the two inverted lists—in 
other words, the intersection of the two linked lists. In this example, because 
the inverted lists are short, we can quickly tell that the common postings in the 
two inverted lists are 1 and 5. For longer lists, it is possible to apply the follow-
ing simple algorithm to find the common postings.

Algorithm for Finding Common Postings in Two Inverted Lists

Find_Common_Posting(L1, L2)  { // L1 and L2 point to head of
                               // two inverted lists
1  result = < >;
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2  while (L1 != NULL && L2 != NULL) {
3      if Doc_ID(L1) == Doc_ID(L2) {
4           result.add(L1);
5           L1++; L2++;
6      } else if (Doc_ID(L1 < Doc_ID(L2)) {
7           L1++;
8      else
9           L2++;
10  }
11  return result;
}

Similarly, other inverted list algorithms can be designed to realize different 
logical queries on the terms. For example, a logical OR query on the terms is 
to find the union of postings in their inverted lists. We now revisit the extrac-
tion of the terms to answer why we choose to represent the packet metadata’s 
source IP field as a single term sip:192.168.1.2 instead of sip and 192.168.1.2. 
First, sip is a common word in all packet metadata; indexing such a common 
word alone does not help to make a query easier. The term 192.168.1.2 is merely 
an IP address, and it can be either a source IP or a destination IP. If we were 
to create separate terms for sip and 192.168.1.2, we would not even be able to 
perform queries like sip==192.168.1.2. To fully take advantage of inverted file 
indexing, it is best that the logical operands be the terms that are comprised of 
meaning components.

Inverted File Compression

In order to help explain the example given in the previous section on inverted 
file creation and query, we made an assumption that every document contains 
exactly one piece of packet metadata. This assumption helps us represent the 
postings as document IDs. However, in reality, a much more efficient way to save 
packet metadata is to put multiple entries of the metadata into a single docu-
ment, with one piece of metadata in each row. Such a document usually maps 
to a packet capture file so that the raw packets are saved in the packet capture 
file and their metadata is stored in a single document. In that case, a posting 
may contain two parts: the document ID and the offset (for example, the row 
number) of the metadata in the document. To differentiate those two parts, we 
denote < > as the list of document IDs, and [] as the list of offsets within the 
same document.

Suppose we have a term with an inverted list like the following: 
< 88[25,28,30,45,90,100], 95[1002,1045,1120], 130[99876,99902,99954], 

150[2,7,12,15,19,25] >. To store such a list as plain text, it is clear that larger 
numbers require more storage than smaller ones. For example, offsets 99876, 
99902, and 99954 need five characters each to store, while offsets 2, 7, and 12 
require only one or two characters each. Because the property of the inverted 
list is that the postings are sorted in strictly increasing order, it is possible to 
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compress the listing by only recoding the gaps between them. For example, 
the postings <88, 95, 130, 150> can be compressed as <88, 7, 35, 20>, the 
offset list of [25,28,30,45,90,100] can be compressed as [25,3,2,15,45,10], and 
the offset list [99876,99902,99954] will become [99876,26,52]. As this example 
shows, it takes less space to store the compressed lists.

It is further possible to apply advanced coding schemes (for example, γ code 
or δ code) and encode the (gap) numbers on the lists to various‐length code 
words because the code words are even more space‐efficient than strings or 
integers. The detailed encoding and decoding algorithms can be found in the 
following books: Introduction to Information Retrieval (Cambridge University 
Press, 2008) and Managing Gigabytes: Compressing and Indexing Documents and 
Images (Morgan Kaufmann, 1999).

Besides indexing packet metadata, inverted file indexing is best known 
as the core technology for search engines in free text searches. The search 
engines use this approach to index millions of documents so that they can 
quickly return a list of documents containing certain queried keywords. 
Inverted file indexing is also a key piece in Apache Solr and its offspring, 
Elasticsearch, which is used as the underlying platform to index pcap files by 
the open source network capturing and indexing system, Moloch (https://
github.com/aol/moloch).

Performance of a Retrospective Analysis System
With the design methodology and specific algorithm discussed in the previ-
ous section, we now focus on putting the ingredients together and building 
a retrospective analysis system for enterprise network security. In particular, 
we are interested in showing what resources it takes to run such a system and 
what its capacity is.

Suppose the retrospective analysis system is designed to record and analyze 
full packet captures. We choose full packet capture as an example to show how 
the sheer volume of data impacts the performance of the system. Let us consider 
the scenario where one week of network traffic is captured on an enterprise 
network of 250 users. The IT security personnel of the enterprise are aware 
of a live malnet campaign that was first uncovered two days before, and they 
have a list of 100 malicious URLs that are landing pages of the malnet. With the 
retrospective analysis system, the IT security personnel want to issue a query 
to list all users that have visited those URLs within the past two days because those 
users are potentially compromised.

Index Sizes

We use WAH compressed bitmap indexing as an example to calculate the amount 
of resources a retrospective analysis system needs to support the query stated in 
the last paragraph. Please note that the following calculations are from theoretical 

https://github.com/aol/moloch
https://github.com/aol/moloch
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values based on the properties of the approaches and algorithm; we present 
them to give an estimate or guideline. The actual resource usage may vary 
depending on the final implementation.

There are three elements in the query: user, time, and URL.

 ■ User can be represented by an IP address. For example, in certain LDAP 
deployments, it is possible to associate a user with an IP address. As we 
have shown in the example in the bitmap index section, an IPv4 address 
can be implemented using four bitmap indices with the cardinality of 256 
each to represent its 4 bytes.

 ■ Time is the timestamp when the packet is recorded. Because the retrospec-
tive analysis system in this example is designed to capture one week of 
traffic, we can use a 7‐column bitmap to record the day of the week, a 
24‐column bitmap to record the hour of the day, and a 3,600‐column bit-
map to record the second of the hour. Another 1,000‐column bitmap can 
be added to show the millisecond‐level granularity of the packet capture 
time. Together, they comprise four bitmaps.

 ■ URL is a string of text, and a bitmap is not a natural representation of 
strings. To convert a URL into a number and store it in a bitmap, we can 
use hash functions. In Chapter 5, we hash a category string into numbers 
and check if they are present in a bloom filter. The idea here is similar, but 
instead of using multiple hash functions together, we use only a single 
hash function to hash the URL to an integer, say, less than 65,536. Those 
65,536 values can form a bitmap. However, given the vast number of 
URLs, it is very likely that multiple URLs are hashed into the same value.

To resolve the hash collision, we use another layer of hashing with a dif-
ferent hash function. The second layer of hashing is another bitmap. Still, 
there can be collisions. A third layer of hashing can be added, or we can 
store the URLs in a link list. Because the number of colliding elements 
after two layers of different hashing is limited, it is not time consuming to 
linearly traverse the link list. We call this type of hashing the hash bucket 
method, where each hash bucket is a bit in the bitmap. Therefore, for the 
URL element, we use two bitmaps.

Although not a part of the query, there are still some hidden elements. Those 
hidden elements frequently appear in queries, and we want to index them as 
well. They include the destination IP address (4 bitmaps), source and destination 
ports (2 bitmaps), IP protocol number (1 bitmap), and packet length (1 bitmap). In 
addition, we might want to record the classification results based on the systems 
we designed in Chapter 7. Although this information may not be available at the 
time of packet capture, we can nonetheless add the classification of the flow to 
each packet the flow contains. Such classification results can be represented with 
a 10,000‐column bitmap, which maps to 10,000 different classified applications.
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Adding up all the indexing elements together, we get a total of 19 
(4+4+2+4+2+1+1+1) bitmaps with various column counts. We also need to know 
the row counts, which is the number of packet records within the one‐week 
time frame. According to research conducted by a team at Cisco in 2014 (Cisco 
Visual Networking Index: Forecast and Methodology, 2013–2018), an average business 
user generates 4 to 10GB of Internet and WAN traffic per month. Taking 8GB as 
an estimate, the retrospective analysis system sitting on a 250‐user enterprise 
network can capture 500GB per week. If the packets are an average of 1KB in 
size, then the 500GB, one‐week traffic capture will contain 500 million packets.

Now we need to compress the bitmaps using WAH coding so that we can 
estimate how much space we need to accommodate those bitmaps. In all of the 
bitmaps, for each row, there is only one bit that is 1, and all the rest are zero; 
that is to say, the bitmaps are really sparse. A property of WAH coding is that 
for sparse bitmaps, the maximum size of a compressed bitmap index is about 
2N words, where N is the number of rows in the bitmap. For a 64‐bit system, 
the size of a word is 8 bytes, and in a 32‐bit system, a word requires 4 bytes. 
To calculate the overall size of the compressed bitmap indices, we multiply the 
terms together to obtain the size s 500M 2 8 bytes 19 152GB= × × × ≈ .

That is a large index! Even if we apply a more advanced and space‐efficient 
compression algorithm like EWAH or COMPAX, the index size is still tens of 
gigabytes. Loading the whole index in memory imposes a strong requirement 
on the physical memory size of a retrospective analysis system. In this regard, 
the compressed indices should be divided into smaller chunks and saved on 
storage devices. The indices can then be loaded when performing a query.

This is actually a natural choice for a retrospective analysis system. As the 
packets are being recorded, the retrospective analysis system also tries to index 
them along the way. The separator of the index chunks can be time; for example, 
every 15 minutes worth of packets are indexed in a single compressed index so that 
there will be 4 indices every hour, and the one‐week traffic will create 672 indices. 
Because the packet counts (bitmap rows) are smaller in each index, the size of each 
index is smaller. In addition, the indices of day and hour in the original bitmaps 
are now removed, which makes the index size still smaller. Finally, when perform-
ing queries on time, we can first locate which of the 672 indices fall into the time 
range, and we load each of the indices to conduct the query. Assume the regular 
business traffic runs to 12 hours per day, 5 days a week; the busy hour packet count 
in 15 minutes is roughly 2 million (500 million/5/12/4). Using the aforementioned 
approach, the size of the index is now s 2M 2 8 bytes 17 544MB= × × × ≈ , which is 
a much more realistic memory requirement.

Index Building Overhead

Packet attributes like IP addresses, port numbers, IP protocol number, length, 
and so on, are well‐defined header values and are stored in a pre‐defined offset 
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in a packet. When a packet is read into memory, reading those values from the 
packet and setting the corresponding bit in the bitmap does not cost many CPU 
cycles. Instead, saving the packets as well as the index to the storage device 
involves many I/O operations.

Because there are about 2 million packets per 15 minutes and the packet 
size is about 1KB, the average rate at which the data is captured is about 
2 1 000 15 60 2 2M bytes seconds MB s.× × ≈, /( ) . /  Even when we add the size of 
bitmaps created from the packets, the total amount of data to be saved is much 
less than the write speed of a regular 7,200‐rpm SATA hard drive, which can 
write at the rate of 100 to 150MB/s. That is to say, it is possible to perform real‐
time indexing and packet saving while capturing.

Query Response Delay

To serve a query, the retrospective analysis system has to first locate and load 
the index into memory, then run logical operations on the bitmap, and finally 
load the query results. The query response delay is the sum of all delays 
incurred in the aforementioned steps. In the example query we gave in an 
earlier section, the query time frame is the past two days, which covers 192 
out of a total of 672 indices. To obtain the sum of all delays, we calculate the 
delays on 1 index and multiply that by 192 in the end.

We first take a look at the time complexity of the logical operations on WAH 
compressed bitmaps. A 2006 paper by Wu et al. called “Optimizing bitmap 
indices with efficient compression” (ACM Trans. on Database Systems, 2006)  
offers detailed analytical results from performing general bitwise operations. 
For two bitmaps x and y of mx and my words, respectively, the time complex-
ity of generic bitwise operations between the two bitmaps is O(mx+my). In 
particular, for a sparse bitmap, the cost of overall bitwise operations is upper‐
bounded by C(mx + my), where C is a constant decoding and compressing cost 
for a WAH word.

As shown in the previous section, the query is constructed as a single‐row 
bitmap. To create a range query of range span l, the logical operations are done on 
l bitmaps of the same size, which is Clmx in total. We also showed that a single‐
row sparse bitmap can be compressed into four words, and the total logical cost 
Clmx can be bounded by 4Cl. When performing a search, the query is actually 
the logical operation between the single‐row query bitmap and a compressed 
bitmap index of N rows. Because of the maximum size of a compressed index 
2N word, the total cost is roughly C(4l + 2N). Given 2N is far greater than 4l, 
the total cost of logical operations in the query is 2CN. We know that in the 
example, the N value for each index is around 2 million. That makes the total 
operation count 8C million. An Intel quad‐core 3.3GHz i5 CPU, which is found 
on many mid‐range business desktops, can do about 83,000 million instructions 
per second (MIPS). Because the cost value of C is far lower than 10,000 CPU 
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instructions, performing the logical operations to conduct a search on a bitmap 
requires far less than a second time to complete.

Locating which of the 192 indices are to be looked up to serve the query is 
a relatively light operation. We can use bitmap or B+‐tree to provide the time‐
based query that finds those indices. Even if we do linear traversing on those 
672 indices, it does not cost many CPU cycles. However, loading those indices 
into memory does cost I/O operations. A mainstream 7,200‐rpm hard drive 
can do a random read at around 150MB/s. Loading a 544MB index from a hard 
drive takes around 3.6 seconds.

In the final step, when the packets that satisfy the query are identified, they 
need to be loaded into memory so that they can be displayed and examined 
by IT security personnel. Regardless of how and where the packets are stored, 
the time cost for reading those packets depends on the total size of the packets 
and the read speed of the hard drive. Note that the average size of a packet is 
1KB, which is less than the normal 4KB read per I/O operation. That is to say, 
when reading 1KB packets one at a time, the speed of the hard drive is about 
one‐quarter of the speed when reading a large chunk of a file. Because in the 
example query, the packets from malicious landing pages are retrieved, the 
number of those packets cannot be huge. Let us suppose there are 10,000 packets, 
which contribute to a total size of 10MB. Loading 10MB of packets that are 1KB 
each from a 7,200‐rpm hard drive costs about 0.3 second (10MB/(150MBps/4)).

Adding the three delay components together, we can see that the time used 
to operate on the bitmap is really negligible, and the bottleneck of the search 
speed is from the I/O operations. In this example, to load the 192 indices from 
the hard drive costs about 10 minutes, which is about the total time needed 
to complete the query. Note that in our calculations, we use the maximum or 
upper‐bound values for many variables, so the results roughly represent the 
worst‐case scenario.

The aforementioned analysis clearly indicates that the bottleneck of the query 
speed is the disk I/O operation. In order to speed up the query, it is possible to 
use hard drives that have a higher average IOPS (input/output operations per 
second) value. For example, the 7,200‐rpm SATA drive we used in the example 
has fewer than 100 IOPS. The 10,000‐rpm SATA or SAS drive can perform up 
to 150 IOPS, while a 15,000‐rpm SAS hard drive can go up to 200 IOPS. That 
is to say, we can save up to half of the query time by using a higher‐IOPS 
hard drive.

It is possible to further increase the IOPS by deploying a RAID storage system. 
However, in the RAID system, a disk‐write operation may require many disk 
operations that act as a penalty to the overall system IOPS. In this regard, the 
overall IOPS in a RAID system is not the aggregate IOPS of all the drives. For 
example, in a RAID 5 deployment, we can use an array of 25 7,200‐rpm hard 
drives to achieve the total IOPS of 1,000. At the cost of more storage, we can 
bring down the query response time quite significantly.
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Using a solid state drive (SSD) is another way to increase query speed. A 
consumer‐grade SATA SSD can now support up to 85,000 IOPS, and a performance‐
oriented PCIe interface‐based SSD can easily support more than 200,000 IOPS. 
That is a huge improvement over the 7,200‐rpm hard drive that we used in the 
example. The major drawbacks of SSD are the high cost and lack of long‐term 
reliability.

Scalability

The scalability obstacles to a retrospective analysis system come from two chal-
lenges. The first challenge is the complexity of the query. In our example, to 
perform time range queries on packages with certain URLs, we use 19 bitmaps 
to index the packet captures. If the query becomes more complex with more 
variables—for example, vlan ID—we need to extract more information from the 
raw packet while processing it and to create additional bitmap indices for the 
added variables. Although performing logical operations on the added bitmap 
indices may not cause a noticeable slowdown in query response, loading and 
storing the indices can greatly impact performance because as we have shown 
in the aforementioned calculations, the query response time is proportional to 
the number of bitmaps that fall within the query range.

The second challenge comes from the scale of the input data rate. In the 
example, we positioned the retrospective analysis system in an enterprise of 250 
users that each generated 8GB of data per month. That equals about 18Mbps of 
traffic. If we were to put the system on the enterprise intranet where the traffic 
was flowing at a line rate 1Gbps, the volume of data to be indexed would be more 
than 50 times as large. And if the storage period were extended from one week 
to one month, that would be another 4 times more data, which would take the 
total amount of data from the initial 500GB to 100TB. The data volume would 
surge to a petabyte if the system were placed on a 10Gbps link.

The solutions to address the scalability challenges include the following 
three aspects:

 ■ Fast I/O. From the analysis, we know that the speed of the I/O is the 
bottleneck in performing the query. In addition, if the incoming data 
rate or packet capture rate is greater than the overall disk‐write rate, the 
captured packet cannot be dumped to the storage and we will accumulate 
more and more packets in memory. As a consequence, we will end up 
with a situation where no more packets can be captured and recorded. If 
we can improve the disk I/O speed (IOPS) through either RAID or SSD, 
the retrospective analysis system can both process the incoming data and 
serve the queries more quickly.

 ■ Index size. The example we have shown uses a WAH compressed bit-
map to index the collected packets. Although the compressed bitmap 
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is significantly smaller than the raw bitmap, it is still not the optimal 
compression solution. We have also shown that the cost to operate on 
the indices while performing the queries is negligible when compared 
with the cost to read and store the indices. This suggests space‐efficient 
indexing is the key to scalability.

 ■ Parallelization. In the example given at the beginning of this section, we 
divide the time into 15‐minute intervals and index packets within those 
intervals. We perform searches sequentially on each of the indices to produce 
the results. When this approach is applied to search in a packet capture 
of daunting size (say, 1PB capture on a 10Gbps link), it is impractical if 
not implausible. However, because all bitmap indices are independent 
of each other, we can parallel the search (logical operations) on different 
indices at the same time and aggregate the results together when the 
searches are completed.

If the indices are not independent (for example, B‐tree), it is possible to 
replicate the indices and have several search tasks running on different 
replicas simultaneously. The parallel tasks can be running on the same 
machine as different processes or threads, or they can be scaled to run on 
different machines. The parallelization can be implemented with an existing 
big data framework, for example, MapReduce and NoSQL technologies. 
Parallelization is critical to the horizontal scalability of the retrospective 
analysis system.

Notes on Building a Retrospective Analysis System

Given the huge amount of data collected and the complexity of indexing and 
querying on the data, it is not practical (if at all feasible) to store and process 
all of the data on a single machine. In other words, the demands of scalability 
require that the retrospective analysis system be designed in such a manner 
that tasks can be distributed and completed in parallel. In this section, we dis-
cuss the parallel data processing paradigm of MapReduce and show a sample 
retrospective analysis application under the MapReduce framework. We also 
introduce some off‐the‐shelf products with MapReduce ingredients that can be 
used to build a retrospective analysis system.

MapReduce and Hadoop
MapReduce is a data processing paradigm. The goal of MapReduce is to process 
large volumes of data in a parallel and distributed way and to obtain useful 
aggregated results. MapReduce contains two functions: Map() and Reduce(). 
Both functions come from the study of functional programming, where Map() 
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is used to transform (map) a list of values to another list of values, and Reduce() 
is used to condense (reduce) the mapped list of values into a single value. To 
explain the basic concepts of Map() and Reduce(), we give an example in real life.

Suppose there is a basket of fruit containing apples, oranges, and grapefruits, 
and you want to make a glass of juice out of them so that you can enjoy a blend 
of fruits. However, you cannot make a glass of juice directly from the whole 
fruits, because the blender can only work with small chunks of fruit. Fortunately, 
it is possible to use a knife to cut the fruits into slices. By cutting up the fruits, 
instead of whole apples, oranges, and grapefruits, you now have apple slices, 
orange slices, and grapefruit slices. With a different form of the original fruits, 
that is, in slices, not whole fruits from the basket, the blender can now be used 
to work on those slices and create a blended juice.

Now, let us view the original fruit basket as a list of values (apples, oranges, 
grapefruits), and the knife as a Map() function. What the Map() function does is 
to prepare (or transform) the list of values into another list of values (apple slices, 
orange slices, grapefruit slices). Similarly, the blender is the Reduce() function. It 
condenses the mapped list of values into a single value, which is the glass of juice.

Let us go back to the world of computing and look at a sample problem. The 
problem is to calculate the sum of squares of a given array of integers. Every 
programmer can write the solution quickly, similar to the following small code 
snippet. While this piece of code works well when the input array is relatively 
small, it does not scale when there are millions, if not billions, of integers in the 
array. In such a scenario, the desired approach is to distribute the computing 
task to multiple processing tasks and compute in parallel.

Sample Code Snippet to Get Sum of Squares

sum_of_squares(a)  { // a is an array of integers
1  int result = 0, i = 0;
2  for (i = 0; i < a.length; i++) {
3      result += a[i] * a[i];
4  }
5  return result;
}

Sample Code for MapReduce to Get Sum of Squares

Map(fn, a) {
1  for (int i = 0; i < a.length; i++) {
2      a[i] = fn(a[i]);
3  }
}

Reduce(fn, a, val) {
4  int  result = val;
5  for (int i = 0; i < a.length; i++) {
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6      result = fn(result, a[i]);
7  }
8  return result;
}

square(v) {
9  return (v * v);
}

summation(s, val) {
10 return (s + val);
}

//Map process
Map(square, a);
//Reduce process
Reduce(summation, a, 0);

To revisit the sum of squares problem and apply the concepts of MapReduce, 
we divide the problem into two sub‐problems. First, we obtain the list of squares 
values from the input list of integers. Then, we calculate the sum of the elements 
in the list of squares values. The first sub‐problem can be solved by the Map() 
function, in which we create a new list and map each of the original values 
in the input array of integers to its squares values in the new list. The second 
sub‐problem requires the Reduce() function, which works on a list of squares 
values and computes their sum.

To further generalize the two functions, Map() can be written as a framework, 
and the concrete implementation of how the mapping works can be a param-
eter of the Map() function. In the sample code, one of the input parameters of 
Map() is a function pointer fn(), and the actual implementation of fn() is to 
get the squares values (the square() function). Similarly, Reduce() can also 
take a function pointer with the actual implementation being the summation 
of all values in the input list (the summation() function). The Map() function 
takes the input array a and maps each of the array elements in place to a dif-
ferent value through the square() function. In this way, the mapped array 
is still a, but with a whole new list of values. The Reduce() function takes 
the mapped array and reduces the elements to a single value through the 
summation() function.

This framework can also be applied to solve other problems as long as those 
problems require performing some operations on each of the elements of the 
array. In addition, in the sum of squares example, the Map() function is not 
concerned with the order in which the input array is processed, nor is the 
Reduce() function concerned with the order of the elements for summation. In 
this regard, it is possible to divide the input array into two sub‐arrays with half 
of the integers and assign two CPU cores to run the Map() function in parallel. 
In this way, the Map() function can be performed twice as quickly.
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MapReduce for Parallel Processing
In the “sum of squares” example, we have shown that it is possible to divide the 
map process to two different processing tasks and assign these tasks to different 
CPUs. In this section, we generalize the concept and discuss the MapReduce 
framework for parallel processing.

We continue with the fruit and juice example to explain the concept of paral-
lel processing in MapReduce. As we discussed earlier, the Map() function is the 
knife, and the Reduce() function is the blender. To parallel Map() and Reduce(), 
we need multiple knives and blenders. Suppose there are many baskets of fruit, 
with each containing apples, oranges, and grapefruits. The goal is to create bottles 
of a single fruit juice—for example, apple juice, orange juice, and grapefruit 
juice—from the whole fruits. In operation, we first parallel the cutting process 
by using multiple knives to slice the fruits into apple slices, orange slices, and 
grapefruit slices. For each of the fruit baskets, we use the same knife to cut 
all of the fruits, just as we did in the previous example. In this case, with the 
same knife, we have created different fruit slices. In order to create single fruit 
juices, we need to group all the slices from all the baskets by their fruit. After 
the grouping, we have a pile of apple slices, one of orange slices, and one of 
grapefruit slices. To create the juices, we use three different blenders, one for 
each fruit. The blenders take the fruit slices and output the bottles of juice.

In this example, each basket is the input of each Map() function. To represent 
the fruits in the basket, we can use a list of <key, value> pairs, for example, 
(<a, apple>, <o, orange>, <g, grapefruit>). The output of the Map() function 
is another list of <key, value> pairs, and we denote it as (<a', apple slices>, 
<o', orange slices>, <g', grapefruit slices>). Therefore, the parallel Map() 
function maps a list of <key, value> pairs to another list of <key, value> pairs.

The next step is to shuffle the Map() output and group the shuffled output 
for the Reduce() function. In this example, the shuffling and grouping are 
done by merging the <key, value> pairs that have the same key. Note that 
by merging the <key, value> pairs, we have <key, value‐list> pairs, where 
the value‐list is the aggregation of all values that share the same key. In this 
example, the value‐lists are all fruit slices of the same type. Finally, each 
Reduce() function takes the <key, value‐list> as input and reduces it into 
a single value, and the parallel Reduce() functions reduce the <key, value‐
list> pairs into a list of values, which are the bottles of single‐fruit juice. In 
summary, the parallel MapReduce framework converts a list of <key, value> 
pairs into a list of values.

There are two aspects to note in the parallel MapReduce framework. First, 
the key to link Map() and Reduce() functions is the shuffle step. To abstract the 
shuffle step, we can view it as a processor‐matching problem. The outputs of 
the Map() function are M<key, value> pairs with N unique keys. If we have N 
processors to process each of the N unique keys, we need to match each of the 
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M<key, value> pairs to a processor based on its key. Then, in the reduce process, 
N processors run the Reduce() function (also called the reducer) in parallel to 
create a list of output values. If we have fewer than N processors to run Reduce(), 
we need a partition function to associate a given key to a reducer. The partition 
function should consider balancing the load among reducers.

The second aspect is the input to the Map() function. The design of the Map() 
function is to use multiple processors, or even multiple machines to process 
all input data and generate M<key, value> pairs. Such a design requires that 
the input data be distributed, which suggests that there should be no depen-
dency among the data that is processed on different processors. Similar to the 
partition function, the distribution to the Map() function should also take load 
balancing into consideration.

We now take a real‐word application as an example to describe how to use 
the MapReduce framework in retrospective analysis. Suppose the retrospective 
analysis system is designed to analyze proxy logs. The particular application 
is to process the logs and show the counts of all policy enforcement actions on 
each of the users (IP addresses).

Recall that in the previous sections, we introduced the ELFF log format for 
proxy logs. In such logs, at each line of policy enforcement action, there is an 
IP address (for example, 192.168.1.2) and the applied policy results (for example, 
policy_denied). To process each line of the log, we need to extract the IP address 
and policy fields from the log. The input data is then collected from proxy logs that 
are millions of lines long. Because the log entries are independent of each other, 
it is possible to truncate the logs and divide them into smaller log files that are of 
similar size. Each of the log files is fed into the Map() function, which extracts the 
two fields of interest from the log entry and forms the <IP address, policy> pair.

In the MapReduce framework, the IP address is the key and policy is the value. 
The partition function groups the list of pairs by IP address and transforms the 
<IP address, policy> list into <IP address, policy‐list>. To assign the <IP 
address, policy‐list> to the reducers, the partition function can hash the IP 
address into N values, where N is the number of reducers. Finally, the Reduce() 
function can process the policy‐list and count the occurrences of each policy.

Hadoop
The most popular open source implementation of the parallel MapReduce 
framework is Apache Hadoop. A typical deployment of Hadoop consists of a 
cluster of commodity servers. One server works as a master node, which dis-
tributes, schedules, and parallelizes the other machines, which are known as 
worker nodes. For a MapReduce task, a JobTracker process runs on the master node, 
and each worker node runs a TaskTracker. When the client application submits 
a MapReduce job—which includes the Map(), Reduce(), and partition functions 
(also called the combine function in Hadoop)—the master node, based on the 
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amount of resources the Hadoop cluster has, distributes the Map and Reduce 
tasks to the worker nodes and monitors the job status.

The distribution of tasks is to assign which nodes run Map tasks (mapper) 
and which nodes run Reduce tasks (reducer). This process usually starts with 
the input data being split, where each split is usually 16MB to 64MB in size. The 
split data is fed into each of the mapper nodes. As we explained previously, the 
Map task is to map a list of <key, value> pairs into another <key, value> list. 
In Hadoop, the output of the mapped <key, value> list is stored in memory, 
and the combine function is invoked periodically to process the <key, value> list 
into <key, value‐list>. After the Map task is done, the TaskTracker notifies the 
JobTracker. When all TaskTrackers on the mappers are finished, the JobTracker 
will start the TaskTrackers in the reducers. When the TaskTrackers in all reducers 
report the completion of Reduce tasks, the whole MapReduce task is completed 
and the JobTracker can take another MapReduce task from the client application.

Another important use of the JobTracker is to monitor the status of each 
TaskTracker. If any of the TaskTrackers crash, the JobTracker will restart another 
worker node with the same task. That is to say, if the crashed TaskTracker is 
in a mapper, the restarted worker node will rerun the Map task from the very 
beginning with the same split of data as the crashed mapper, and if a reducer 
crashes, a new reducer will rerun the entire Reduce task with the same <key, 
value‐list> assigned to the crashed reducer.

Another core piece of Hadoop is the Hadoop Distributed File System (HDFS). 
Each of the files stored in HDFS is made up of blocks. The metadata describing 
what blocks a file has is stored in the NameNode, a similar concept to the master 
node in MapReduce. A secondary NameNode can be configured as a hot standby. 
The actual storage of the blocks is on the DataNodes, which are the counterparts 
of worker nodes. A file is usually replicated multiple times (the default is three 
times) and stored distributively on the DataNodes. The file metadata also keeps 
track of which blocks are stored on which DataNodes. Therefore, when a client 
application, say, the sample log processing application in the previous section, 
wants to read a file, it needs to communicate with the NameNode first to obtain 
the metadata.

Such a request is done via the Hadoop client API, and the request to the 
NameNode contains the block index of the data to be read. The NameNode 
returns which of the DataNodes contains a copy of the requested block so 
that the client application can contact the DataNode directly to obtain that 
block. To write a file to HDFS, the client application needs to write the file to all 
DataNodes. The NameNode will assign one of the replicas as a primary copy 
and the rest as secondary copies. Although the copies of files are pushed from 
the client application directly to all the DataNodes, the files are held in a buffer. 
In order to complete the write process, the client application needs to talk with 
the DataNode that has the primary copy and send the “commit” request to write 
the data from the buffer to the actual storage devices. The primary DataNode 
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then orders the actual write of file blocks among all the DataNodes. HDFS and 
MapReduce tasks are often tied together, where the input splits of data to the 
mappers are from HDFS, and the outputs from the reducers are individual files 
that are written back to HDFS.

Building around the Hadoop cores (MapReduce and HDFS) are the related 
projects and products that together create the Hadoop ecosystem. The other 
components include HBase (the Hadoop database), Pig (MapReduce task con-
verter), Hive (a SQL‐like query language), Mahout (data modeling and analytics 
toolset), Storm (real‐time data stream processing), Zookeeper (high availability 
through redundancy), and so on. Architecting the retrospective analysis system 
can well leverage the available modules in the Hadoop ecosystem.

Open Source Data Storage and Management Solution
In previous sections, we introduced and analyzed several indexing approaches 
and algorithms that are very efficient for managing the huge amount of data 
collected in a retrospective analysis system. As a matter of fact, those approaches 
and algorithms are available in many off‐the‐shelf data storage and manage-
ment solutions. A good example of such a system is known as a relational 
database management system (RDBMS). The most typical RDBMS products that 
are widely deployed include Oracle database, MySQL, Microsoft SQL Server, 
and PostgreSQL. Such an RDBMS might fit perfectly with enterprise or other 
applications; however, it is not the best solution to store and manage data in a 
retrospective analysis system.

Why a Traditional RDBMS Falls Short

A traditional RDBMS and a retrospective analysis system are designed around 
different goals, and the way they operate is not quite the same. The reasons why 
a traditional RDBMS is not a proper solution for a retrospective analysis system 
can be categorized as follows:

 ■ An RDBMS is designed to do frequent addition, modification, editing, and 
removal of data. An RDBMS also has a complex design to keep track of 
data changes to ensure the integrity of the data. However, a retrospective 
analysis system does not require many of these operations. A retrospective 
analysis system mostly writes data for storage and reads data for analysis. 
Only in very rare cases, if at all, does a retrospective analysis system need 
to modify or remove the data from storage.

 ■ An RDBMS is intended to manage data of a uniformed format because 
it operates with predefined schemas. However, a retrospective analysis 
system collects, stores, and analyzes structured and unstructured data of 
various formats, and the unstructured data may be hard to describe with 



296 Chapter 8 ■ Retrospective Analysis

schemas. In this regard, an RDBMS is not able to manage all types of data 
required by a retrospective analysis system.

 ■ Typically, when inserting a data entry into an RDBMS, we need to make 
such an entry by providing the values in the fields the entry requires. To 
extract those values from raw data, we need to do some processing on its 
raw format. In this regard, an RDBMS manages the extracted relations in 
data, not the actual data. However, a retrospective analysis system requires 
both a fast query on the data and retrieval of the data in its original raw 
format, which an RDBMS cannot offer.

 ■ An RDBMS does not scale well in performance because it mainly focuses 
on data relations (for example, multiple tables) and management (for 
example, transaction processing). However, a retrospective analysis system 
needs to handle gigabytes, if not petabytes, of data that may be stored 
and processed on different machines. Therefore, scalability is key to a 
retrospective analysis system.

NoSQL and Search Engines

Because an RDBMS is not appropriate for building a retrospective analysis sys-
tem, we are interested in finding alternative solutions that fit the requirements 
of a retrospective analysis system.

Not Only SQL or Not using SQL (NoSQL) database technologies have emerged 
to address the performance and scalability challenges in the presence of large 
volumes of data. There are a variety of data models in NoSQL so that it can 
process structured, semi‐structured, and unstructured data on a large scale. 
Unlike the SQL query language in RDBMS, NoSQL provides an object‐oriented 
API to manipulate data, and it is easy to integrate with other applications. The 
major types of NoSQL include the following:

 ■ Key‐value store is the simplest form of NoSQL. It stores the data in the 
format of <key, value> pairs. Because of its simplicity, it is a popular 
solution in embedded systems. Well‐known key‐value store databases 
include Redis and DynamoDB.

 ■ Document store does not work on schemas so that each database record 
can have a different format (for example, a different number of columns 
with various numbers of values). Internally, it implements a document 
structure to hold the keys, and the database operations are around the 
documents. The most notable NoSQL document store is MongoDB, which 
is the most popular NoSQL database.

 ■ Wide‐column store organizes data by columns instead of rows. Because the 
size and number of columns are dynamic, wide‐column store shows great 
scalability. Wide‐column store is also schema‐free, and it can be viewed 
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as a two‐dimensional key‐value store database. Examples of this type of 
NoSQL database are Cassandra and HBase.

 ■ Graph database is designed to store the type of data that shows strong con-
nectivity properties among the records. Such connectivity can include 
network links, social connections, and so on. Typical graph database 
implementations include Neo4j and Titan.

A search engine is a tool to search and retrieve data. By strict definition, search 
engines are not NoSQL databases because they do not consider data storage 
as much as NoSQL databases do. Search engines can be high performing and 
scalable with the help of powerful, efficient, and accurate search algorithms; 
however, what sets search engines apart is their ability to perform searches 
based on relevance. For example, think about the TF‐IDF algorithm we discuss 
in Chapter 5; the results of the search can be ranked by the TF‐IDF score to show 
relevance. Such abilities possessed by search engines in terms of information 
retrieval cannot be found in NoSQL databases. Popular search engine solutions 
include open source projects like Lucene, Apache Solr, Elasticsearch, and com-
mercial products like Splunk.

NoSQL and Hadoop

Hadoop MapReduce and NoSQL are two related techniques in the realm of 
big data. As a matter of fact, they can co‐exist in a single product. For example, 
the most popular NoSQL database, MongoDB, internally has a single‐thread 
implementation of MapReduce. Using its MapReduce commands, it is possible 
to query on a large volume of data in the database, process the query responses 
in parallel, and condense them into aggregated results. For another example, 
the default database in Hadoop is HBase, which is the wide‐column store 
NoSQL database, and it has a well‐defined API to use Hadoop MapReduce. 
In addition, it is also possible to integrate other NoSQL databases that are 
not based on Hadoop with the MapReduce framework. One such example 
is Cassandra, which is a NoSQL data store that is best used for web analyt-
ics. The Cassandra project has provided a set of utilities to input data from 
Cassandra to MapReduce, and then retrieve output from MapReduce and save 
it back to Cassandra.

Choosing which type of MapReduce and NoSQL integration to use is based 
on the specific design consideration of the retrospective analysis system, because 
different NoSQL technologies have their own unique characteristics. For example, 
Cassandra is efficient at database replication but less efficient when there is more 
than one index. MongoDB is relatively easy to deploy and has simpler internal 
commands to perform MapReduce tasks that otherwise can take a lot of coding 
work with Hadoop. However, MongoDB also takes a longer time to process the 
MapReduce tasks than a distributed Hadoop deployment.
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Summary

Victims of an APT typically discover the breach because an organization’s con-
fidential information has been made available to the public or has been exposed 
to the hacker community. The public disclosure comes with both humiliation 
and detrimental effects to the business. Because APT is stealthy, targeted, and 
difficult to detect using traditional security defense mechanisms, retrospective 
analysis is an important method in the detection of APTs. Petabytes of logs and 
packet captures are the essential elements in a retrospective system. Efficient 
indexing and storage management of such large volumes of data allows for 
flexible and fast queries to be issued by security analysts, a fundamental step 
in discovering the suspicious patterns that will eventually lead to the uncover-
ing of an implanted APT.
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The Apple iOS and Google Android mobile operating systems have revolution-
ized the mobile device market, as evidenced by the amazing market growth in 
the mobile phone industry. Millions of mobile applications have been developed 
to serve just about any purpose or need imaginable. These devices have changed 
our social behavior and influenced the way we do business in this new mobile 
computing era.

Mobile devices and smartphones provide ubiquitous and convenient access 
to information and services. Major news networks, entertainment content, 
social networks, blogs, and tweets are only a click away. Mobile device–specific 
applications have been built to enable access to corporate email systems, web 
mail systems, online banking, online shopping, prescription services, and point 
of sale (POS) systems, which are as comprehensive as traditional in‐person 
services but consume only a fraction of the time to complete. The computing 
power and feature sets of these mobile devices are evolving rapidly and are 
becoming comparable to those of desktop and laptop computers. A popular 
prediction is these mobile devices will replace desktop and laptop computers in 
the not‐so‐distant future. These new‐generation mobile devices are more than 
just gadgets for entertainment and making phone calls.

The always‐on, anywhere, and anytime computing paradigm trades security 
for convenience. “Bring your own device” (BYOD) refers to the situation where an 
employee’s personal mobile device has become an integral part of their corporate 
computing experience. This is a symptom of users adopting new technology 
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and then forcing corporate IT departments to adapt. Unfortunately, in many 
situations the IT department yields to user demands and the new technology is 
integrated into the corporate IT system with little or no assessment of security 
impacts. The lack of consideration for security raises the risk of compliance 
violations and jeopardizes an enterprise due to possible theft of intellectual 
property and leakage of corporate secrets as a result of malware intrusion.

In this chapter, we will examine the various real threats that are targeting 
mobile devices, analyze the challenges of securing mobile devices, and propose 
a network‐centric view towards solving some of these mobile security problems.

Mobile Device Management, or Lack Thereof

In today’s corporate environments, the boundary between private and cor-
porate use of mobile devices and smartphones is blurring. Most employees 
prefer to purchase these mobile devices on their own to ensure mobile number 
permanency even when they change employers. These personal devices are 
utilized to access corporate information. The main challenges of the BYOD 
problem are that corporate access policies must not interfere with privacy while 
still complying with applicable regulations, corporate access policies must 
not restrict private use, privately installed applications that are disqualified 
by corporate policies must be restricted from accessing corporate data, and 
some applications may be permitted to access corporate data depending on 
the current device location.

The main goals of mobile device management (MDM) include remote manage-
ment of the mobile device, centralized provisioning of policies and configurations, 
monitoring of user activities, and retrieval of log files from the device. Remote 
management of a mobile device, or over‐the‐air (OTA) device management, 
utilizes cellular or WiFi networks to administer the device and to perform tasks 
such troubleshooting, locking the device, or completely wiping the device of 
all data if it is lost or stolen.

MDM is driven by the need to manage employees’ personal devices that are 
utilized for enterprise‐related productivity tasks. Therefore, the enterprise IT 
defines access and security policies centrally, identifies and permits the instal-
lation of certain applications, creates standardized device configurations, and 
then remotely distributes these settings to all registered devices. However, 
although MDM infrastructure and technology are on the path to standardiza-
tion, the current implementations and architectures vary from vendor to vendor.

A commonality in the MDM architecture is the server‐client model where 
the server component is managed by the enterprise and the mobile device is 
required to install MDM client software. One of the biggest hurdles of MDM 
adoption is the involuntary installation of a piece of software that the employer 
can use to track the employee’s activities. An employee is highly likely to disable 



 Chapter 9 ■ Mobile Security  301

the software on a personal device when possible, which defeats the purpose of 
having MDM. When the employee cannot tamper with the client MDM software, 
they will simply not use that device for job‐related activities, or they will carry 
two mobile devices: one that is issued by the employer for work and one that is 
purchased personally for everything else.

If MDM is truly meant to provide both convenience for the employee and 
intellectual property protection for the employer with increased employee 
productivity, then MDM has yet to succeed. First, carrying multiple devices is 
an inconvenience, and working with monitoring software on a device creates 
resentment and arouses suspicion. Second, although wiping a device remotely 
if it is reported lost can presumably be achieved with little effort, this protection 
can easily be bypassed if the stolen device is intentionally disconnected from 
the cellular network by removing its subscriber identity module (SIM) card, and 
by disabling the device’s WiFi feature to isolate the device from any network.

According to the National Institute of Standards and Technology (NIST), 
the security objectives of a mobile device must include integrity, confidentiality, 
and availability. Integrity, or more specifically data integrity, refers to the abil-
ity to detect when data tampering occurs in transmission or in storage and to 
guarantee the accuracy and consistency of the original data. Confidentiality 
requires the ability to define rights and restrictions on data in transmission or 
in storage and to prevent unauthorized access. Availability refers to the ability 
to provide reliable access to data at all times.

However, the server‐client model of MDM architecture is not free of vul-
nerabilities and is susceptible to threats just like any other networked infra-
structure. Data integrity and confidentiality are outside the responsibilities 
of existing MDM solutions and are made possible only when the underlying 
mobile operating systems provide the necessary system‐level support. For 
example, the underlying mobile OS must offer encryption application program 
interfaces (APIs) so that a document reader (in the form of a mobile application) 
can encrypt and decrypt a document from a mobile device’s data storage. With 
the increased size of storage on mobile devices (128GB or more), it is possible to 
store a large part of, if not the entire, corporate employee contact database on 
a mobile device. As a matter of fact, mobile users tend to download and carry 
more data on their mobile devices than they actually need. Such behavior is 
allowed to ensure undisrupted productivity when network connectivity is lost. 
However, this practice also results in a huge risk of data loss or even data theft 
if the mobile device is lost.

Another example of MDM vulnerability is that a mobile e‐mail client must 
utilize an encrypted connection to the mail server in order to secure the mail 
exchange. This communication channel is not supervised by the MDM solution.  
Many existing enterprise networks do not implement restricted access to cor-
porate IT services. For example, many enterprises allow e‐mail access through 
the web, which allows a mobile device such as an iPhone to connect to the 
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corporate Microsoft Exchange Mail server using the built‐in iOS mail application, 
without the need to connect through a virtual private network (VPN). An e‐mail 
attachment containing confidential information such as a financial report can be 
shared with another application on the same device and can cause a potential 
leakage of that information. These activities are not monitored, protected, or 
supervised by existing MDM solutions.

Current MDM solutions do not prevent managed mobile devices from using 
untrusted wireless networks. When using untrusted networks, man‐in‐the‐middle 
(MITM) attacks can be launched by intercepting or even modifying commu-
nications from a mobile device, which can also include the communications 
between MDM agents on managed mobile devices and remote MDM servers. 
Such a MITM attack is clearly a violation of the integrity and confidentiality 
objectives of an organization.

In addition, MDM solutions do not prohibit managed mobile devices from 
accessing untrusted contents. In such a scenario, a managed mobile device can 
install applications created by unknown parties or from an untrusted alternative 
application store or marketplace. Attacks through malicious mobile applications 
are most common, and with a high success rate, and pose the biggest security 
threats to a mobile device and its owner.

Furthermore, existing MDM solutions do not protect managed mobile devices 
from malware or malnets. For example, a mobile device can scan a Quick Response 
(QR) code that may lead to a malicious landing page and eventually to the 
download and installation of malware. Current MDM solutions cannot address 
device interactions with other external systems. Attacks are known to occur via 
USB cable when a device is connected to a desktop computer to synchronize 
and back up data from the device. Hackers can leverage the installed malware 
to monitor and log user activities or even keystrokes on the infected mobile 
device in order to intercept corporate credentials and passwords. When the 
compromised mobile device connects back to the corporate network, the entire 
network is exposed to a potential advanced persistent threat (APT) attack.

Because of the aforementioned security protection limitations, existing MDM 
solutions cannot fulfill the security objectives as defined by NIST for mobile 
devices. Mobile devices that are managed by existing MDM solutions, and 
which are permitted on corporate networks, continue to be one of the weakest 
points in the enterprise security domain. The inability of MDMs to fully protect 
managed mobile devices partially comes from their ineffective security model, 
which lacks an understanding of enterprise security objectives and requirements. 
An MDM is designed to protect the security of a physical device. It is a passive 
security approach that does not proactively prevent a hacker from attacking 
the managed mobile device, but reactively relies on remotely wiping the data 
off the device after some security violations have occurred. In the event of a 
device breach, the data‐erasing mechanism may fail because the MDM server 
needs to communicate with the MDM agent on the device to perform the erase 
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operation, and the mobile device may be turned off, thus losing network con-
nectivity, after it is compromised.

Finally, an MDM imposes restrictions on what users can do with a managed 
mobile device. In the era of BYOD that is now expanding into what is called 
“bring your own network” (BYON), when mobile devices are no longer provided 
by corporations, MDM becomes an unattractive option.

Mobile Applications and Their Impact on Security

The evolution of mobile security demands a better approach to protecting enter-
prise information stored on mobile devices. This gives rise to Mobile Application 
Management (MAM). Unlike MDM, MAM focuses on mobile applications that 
have access to corporate networks and data on a device. By ensuring that only 
trusted applications from the enterprise application store can be installed on 
mobile devices, MAM can isolate untrusted applications from accessing corporate 
resources. However, MAM solutions provide little or no protection for either 
the mobile devices or the corporate data stored on the devices.

The core of enterprise mobile security is enterprise data security. The par-
ticular problem to address is how to implement fine‐grained policies to device 
data management in order to achieve access control and confidentiality. For 
example, the goal is to limit the amount of data that can be stored on the device 
and make encryption mandatory to both minimize the chance of data theft and 
reduce potential damage in the case of a security breach of the mobile device. 
The solution to this data security problem requires multilayered approaches that 
include mobile device management, application management, data encryption, 
policy enforcement, network access control, malware detection and prevention, 
and so on.

A close examination of the mobile application landscape reveals some undeni-
able trends. For example, each mobile application is designed to access a specific 
service, and many of these services are cloud‐based. Also, a vast number of mobile 
applications access a service directly through the mobile OS networking layer 
by means of custom protocols, instead of using a traditional web browser or the 
HTTP protocol. Therefore, solving the BYOD challenge in a corporate environ-
ment demands a thorough understanding of the mobile applications and their 
users. Deep knowledge of mobile applications enables better decision‐making for 
security, performance, network optimization, and risk management. Visibility 
into mobile applications enables detailed logging and reporting for compliance. 
From the mobile network operator (MNO) perspective, accurate identification of 
mobile applications is mandatory in enforcing a service level agreement (SLA).

There are almost as many mobile applications as there are publishers. Unlike 
the traditional desktop software market where the publishers are typically 
well‐known and established companies with trustworthy reputations, most 
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mobile developers have unknown reputations, and many may publish just 
a single application and then disappear permanently. The sea of apps, in the 
millions, makes mobile users less concerned about the presumed identity of an 
individual developer and the developer’s reputation.

In theory, users must scrutinize the pedigree of any mobile application to be 
installed on their device. However, the distribution channels of these mobile 
applications, namely, the Apple App Store and Google Play, make these applica-
tions available to end users very quickly from publication to installation. This 
rapid acceptance changes mobile users’ perception about the criticality of a pub-
lisher’s reputation and the intent behind a mobile app. Even when the developers 
are not nefarious characters, many of them are not seasoned programmers and 
are not versed in security. Some simply have little or no regard for security. As 
such, applications created by these types of developers are prone to attacks and 
can be easily exploited and turned into malicious actors.

Mobile app marketplaces do not necessarily concentrate on vetting these 
mobile applications from a security perspective, although each makes a dili-
gent effort at conducting a rudimentary security review, identifying malicious 
applications, and ensuring the timely removal of those bad apps. The pricing of 
mobile apps—where many cost a few dollars or less and others are ad‐sponsored 
and therefore free—is another factor that affects a user’s judgment in selecting 
and allowing apps to be installed on their device.

The availability of a large number of apps raises the curiosity of end users 
and entices them to experiment with as many apps as possible. As quickly as 
their fingers can point and swipe, mobile users install the free applications, 
often without heeding the security warnings that appear during app installa-
tion. For example, although Android implements a privilege separation model, 
where a sandbox isolates application execution such that the application’s data 
is protected within the sandbox from unauthorized access, the user may unin-
tentionally grant a malicious app Signature/System permission, thus allowing 
the malicious app to circumvent this protection model.

Security Threats and Hazards in Mobile Computing

The different types of connectivity available on mobile devices—including 
Bluetooth, 3G and 4G, and WiFi access—combined with the physical mobility 
attribute, have broadened the attack vectors of these mobile devices compared 
to desktop systems. The protection options for mobile devices are limited today 
for various reasons.

First, there is a general lack of antivirus and anti‐malware software that is 
specifically designed for mobile devices. This is mainly due to the large diver-
sity in both mobile operating systems and hardware platforms. The makeup of 
the device platform, such as the processor selection, the system‐on‐chip (SoC) 
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design, the memory, the persistent storage, and the battery, varies from vendor to 
vendor and thus increases the complexity and scalability of providing uniform 
software for each device type.

Second, the underlying mobile OS or platform may restrict the capability of 
the antivirus software. For example, because Apple iOS is a closed proprietary 
mobile OS, third‐party vendors cannot modify the kernel or provide system 
libraries for the OS. Because each application that executes in the iOS is shielded 
from other running applications, a virus scanner running as an application 
will not be able to access system files and look for a virus infection. Therefore, 
Apple must grant special privileges to antivirus scan applications. However, 
in the past Apple rejected a well‐known antivirus software vendor in its bid 
to produce a version of its product for iOS‐powered devices. Even for an open 
system such as Android, running an antivirus scan can overheat the CPU and 
drain the battery rapidly because virus scanning is a complex operation.

Third, although mobile security research is an active area with commercial 
support from the industry, mobile security is still in the early stages, and com-
mercial solutions that stem from these research activities are still far from frui-
tion. This is partly due to the OS design, whether Android or iOS, with the goal 
of luring application developers to build as many applications as is humanly 
imaginable, and as fast as is humanly possible, to expand the mobile application 
landscape. The more apps there are, the faster and more solidified the market 
adoption of the mobile OS—and the mobile devices that are powered by these 
mobile operating systems—will become.

Finally, most end users have neither the technical knowledge to comprehend 
the possible security threats nor any interest in acquiring such knowledge even 
as the media have increased their coverage of cyber‐attacks; as such, the demand 
for mobile security products is limited at best.

In the following sections, we list some of the more severe security issues 
challenging mobile operating systems.

Cross‐Origin Vulnerability
From the very beginning, mobile operating systems were designed for usability 
and interaction, and security was an afterthought. At the core of this security 
challenge is the lack of security‐related support at the OS level. Consequently, 
one of the most severe security problems is cross‐origin vulnerability.

WebView is the most utilized software on mobile devices today, and it is the 
biggest attack surface because just about every mobile app uses the WebView 
APIs to access the Internet. Both iOS and Android adopted the WebView class, 
which enables a mobile application to incorporate basic browser functionality. 
They embedded these capabilities inside a mobile app, which enables the app 
to interact with the web and web contents as a basic browser. However, the 
same‐origin security policy enforcement and protection that restrict content 
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from one website from accessing and interfering with content retrieved out 
of a different website are missing from the mobile operating systems. On a 
mobile device, one app can interact with other apps or requesting services that 
are running on the same device to enhance its functionality. An example is 
the iOS mail reader, which can launch an appropriate app and send an attach-
ment to that app for processing. The same‐origin policy is not available in the 
inter‐app communication channels in the mobile operating systems, which 
allows attackers to launch mobile cross‐site request forgery (CSRF) attacks and 
cross‐site scripting attacks.

The root of the problem lies in the underlying implementation of the app‐
to‐app communication channels inside iOS and Android. The inter‐app com-
munication channels include the Android intent channel, the URL scheme for 
both iOS and Android, and the utility component (or class), such as WebView. 
Fundamentally, the messages that are exchanged within these channels do not 
contain any origin information. The intent channel is Android‐specific and 
allows one app to activate the activities of another app or activate a background 
service. Similarly, the URL scheme allows one app to use a URL to launch 
another app or service.

Without origin‐crossing protection in the mobile operating systems, a mali-
cious app can essentially activate another app with arbitrary parameters, retrieve 
the contents of the other app, and ultimately manipulate the other app to steal 
credentials or other confidential data. Because this cross‐origin vulnerability 
exists in both iOS and Android, the fixes must be applied to the underlying 
operating systems. Fixing this vulnerability will take time due to the need to 
change the underlying OS design, which can cause massive app compatibility 
issues. In addition, applying the necessary patches across all vendors is a daunt-
ing task, which leaves many existing devices vulnerable.

Near Field Communication
Near Field Communication (NFC) technology is increasingly designed into 
mobile devices. NFC allows mobile devices that are in close proximity to pair 
and communicate with each other. Examples of NFC being used include in‐store 
payment transactions, exchange of contact information, and device configuration. 
The first commercial use of NFC in Apple iPhone 6, followed by its adoption in 
Android‐based mobile devices, will demand mutual device authentication as an 
essential step, a technology that is immature today. Apple has restricted the use 
of the NFC chip to Apple Pay and has not made NFC available to third‐party 
developers. A user’s fingerprint is more than just a passcode to unlock the phone 
and is now associated with the built‐in mobile payment system.

The proliferation of NFC will go beyond the payment and POS system. 
However, as with any new technology, attacks on NFC will begin to surface, 
and protecting the mobile device from unintentional NFC communication 
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will become mandatory. Malicious NFC tags that contain URLs can cause the 
device to process a URL and land at a malicious website, resulting in attacks 
such as drive‐by downloads. Unless protected, peer‐to‐peer interactions with 
other NFC‐enabled systems can potentially cause involuntary retrieval and 
installation of malicious apps, in addition to potentially leaking information 
to malevolent devices.

Application Signing Transparency
Android apps in Google Play are digitally signed using self‐signed certificates. 
The identity and information offered in self‐signed certificates can be fabricated 
to anything the signer intends. Based on a study conducted in April 2014, out of 
the 97 percent of apps that are free in Google Play, which represent over 980,000 
apps, 97 percent of those free apps have self‐signed certificates. If a reputable 
and legitimate key is stolen, Google Play will not have an effective mechanism 
in place to revoke the key.

Library Integrity and SSL Verification Challenges
Android is a popular mobile OS platform, having close to 80 percent of the market 
share, and it has some unique security challenges of its own. Because Android 
applications are developed using the Java programming language, various tools 
are available to decompile and repackage an application. Attackers have attached 
malicious payloads or injected malicious code into legitimate apps and then 
repackaged the modified applications for redistribution to infect unsuspecting 
users. Similar attacks have been applied to third‐party libraries as well.

The first type of modification is to remove license protection from the 
third‐party library. Another type of attack involves creating a new library 
that occupies the same namespace, essentially masquerading as its legiti-
mate counterpart. Many capabilities on Android devices are provided by 
third‐party libraries, and free apps that are sponsored by advertisers include 
ad‐libraries. The abundance and availability of third‐party libraries means 
that an Android‐based mobile app has a higher chance of embedding in it 
a third‐party library that may be rogue, and which may exhibit unwanted 
activity such as collecting information on user behaviors and analyzing and 
exporting users’ private data.

Studies done by a security vendor have shown that over 40 percent of sampled 
Android apps were not properly programmed with the SSL library. These pro-
gramming errors include lack of or improper server certificate validation and 
lack of server hostname verification against CA‐issued certificates, resulting in 
Android apps being susceptible to MITM attacks even when SSL/TLS has been 
enabled in the transaction. Many of these same apps are also found to ignore 
SSL errors.
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Ad Fraud
Ad fraud and malvertising are two prevalent problems on the Android plat-
form. Malvertising refers to the injection of malicious advertisements into the 
advertising networks and contaminating syndicate contents. Malvertising is 
made possible due to the practice of ad arbitration. Ad arbitration refers to the 
process of buying and selling advertisements, which results in an undesirable 
situation where a website cannot guarantee the origin and the integrity of an 
advertisement that is displayed on its web pages.

Those ad‐sponsored “free” Android apps must link with ad libraries so that 
advertisement content can be fetched from the ad servers and then displayed 
to the end user. These apps are prone to attacks that turn the mobile device into 
a bot that then stealthily clicks ads without displaying the ads to the user and 
without user consent, thus fraudulently generating revenue for the ad publish-
ers. These stealthy ad downloads can also retrieve malvertising content and 
subject the device to further hacking.

Research Results and Proposed Solutions

In this section, we provide an overview of some of the representative solutions 
and frameworks that have been proposed to address mobile device security 
problems.

An ontology‐based semantic firewall focuses on protecting the privacy of a 
user’s identity and data. The data set that requires protection is gathered first. 
Then the explicit knowledge of data access patterns by mobile applications 
is expressed using the OWL Web Ontology Language. The predefined security 
policies are represented in the Semantic Web Rule Language. In this proposed 
semantic firewall, once the ontologies have been populated and when a request 
is being made, the firewall consults the description logic reasoning module 
to perform the inferences according to the configured policy rules. The result 
of the inference is a binary action of permitted or forbidden. If the request is 
permitted, then the firewall provides the requested data and subsequently 
logs the transaction.

The purpose of an application lockbox is to protect a sensitive application and 
its data by means of an encrypted application volume. The sensitive applica-
tion, its data, and the memory swap file during execution all reside inside the 
sandbox and are cryptographically protected. The proposed design is com-
prised of two cooperating components: the on‐box limited trusted computing 
platform (TCP) and the off‐box policy decisions and trust modeling component. 
The off‐box decision component determines the access control and is enforced  
by the on‐box TCP. The communication taking place between the on‐box TCP and 
the off‐box decision module is secure. The main security goal of the application 
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lockbox in this proposal is to protect the sensitive application and its data in 
cases where the physical device has been compromised.

The bare metal hypervisor, also known as the Type‐1 hypervisor approach, 
assumes that the built‐in mobile OS, the pre‐installed applications, and third‐party 
applications installed by the user are all untrusted. The bare metal hypervisor 
is the only trusted component in the mobile execution environment that has 
direct access to the physical hardware. Running on top of this trusted hypervi-
sor are the built‐in mobile OS and its applications, and the trusted mobile OS 
running trusted applications. In this model, the hypervisor isolates the trusted 
systems from the untrusted systems of the mobile device ecosystem. The open 
source L4 Android project offers another virtual machine approach by means 
of developing a microkernel that can run multiple virtual machines (VMs) to 
achieve isolation.

Intrusion detection systems that are specific to mobile devices and smartphones 
use an on‐device lightweight agent to gather intelligence followed by off‐box 
analysis to detect anomalous behaviors. Various solutions take this approach 
and differ in the types of data that are gathered, the context in which the data 
is interpreted, and the types of analysis that are performed. For example, in the 
knowledge‐based temporal abstraction method, time‐stamped primitive param-
eters and events are collected. The context interprets a primitive parameter to 
form an abstract parameter. For example, CPU usage is a primitive parameter, 
user‐activity is the context, and interpreting a high CPU utilization when the 
user is inactive indicates an abnormal system state. The user‐activity context 
maps the value of the primitive parameter, for example, 30 percent CPU utili-
zation, to a value of HIGH for an abstract parameter CPU‐state. Then, patterns 
are formed for anomalous analysis.

In the cloud‐based antivirus solution, the mobile agent sends files to a cloud 
service, where multiple antivirus engines, each running inside a VM, will per-
form simultaneous scanning on those files. Another behavior‐based detection 
framework takes on the crowd‐sourcing strategy. The agent application tracks 
the API calls of each application and sends the log into the cloud, where logs 
from other users are combined for analysis and detection of malware.

The iOS and Android mobile OS come with a built‐in virtual private network 
(VPN) solution. In particular, the iOS VPN solution has been designed with the 
enterprise in mind. The Apple mobile device management (MDM) infrastructure 
allows an IT manager to provision a specific device profile into an iOS device 
remotely. The MDM device profile enables the VPN on‐demand feature in iOS, 
where access to certain domains or IP addresses will activate the VPN service 
automatically, thus providing a seamless method to access the enterprise networks 
securely. The VPN technology is also deployed to bridge mobile phones to cloud‐ 
based security services. In this case, all traffic that originates from the mobile 
device is directed into the cloud where security services such as virus and malware 
detection, data leak prevention, and phishing attack detection are performed.
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The VPN‐based solution deserves some extra discussion because the tech-
nology is adopted by enterprises as well as by cloud service vendors. Because 
enterprises and cloud vendors have deployed iOS VPN solutions in practice, 
we will focus our discussion on iOS. The network component of the VPN client 
inside iOS is based on an early version of the open source Racoon software. The 
specific version of Racoon adopted in iOS, as verified in iOS version 4.0, has 
limited configurability, and due to what appear to be software bugs, it cannot 
process certain configuration parameters sent by the VPN server correctly. As 
such, the VPN on‐demand feature is not as configurable as intended. In addi-
tion, iOS does not have the ability to establish multiple active VPN tunnels 
simultaneously. The end result is problematic because the iOS device cannot 
connect to multiple services—such as to the enterprise network, a third‐party 
cloud service, and services on a home network—at the same time.

Even if multiple VPN channels can be established at the same time, the 
split‐DNS support is missing. Without split‐DNS it is difficult to perform DNS 
name resolution for local domain names (for the iOS device side, for example, 
these are home network nodes), the internal domain names (the enterprise or 
cloud internal nodes), and external domain names (all other nodes that reside 
outside the enterprise, cloud, and home networks) when multiple VPN tunnels 
are active.

The problem is that when the VPN connection is established, if the VPN 
server sends the DNS server information to the iOS device, this provided 
DNS server will be used for internal domain name resolution as well as for all 
other name resolutions. For example, consider the situation where an enter-
prise user with an iPad is connected to an enterprise WiFi network. When 
that enterprise user needs to access a cloud‐based service, the iPad connects 
to the cloud over VPN. As soon as the iPad connects to the cloud, the cloud 
sends back a DNS server as part of the VPN configuration. At this point, the 
internal enterprise resources are no longer accessible by hostname (such as 
“mail.internal.bluecoat.com”) simply because the DNS server that is given by 
the cloud does not contain any entries for the internal resources. Although each 
internal resource may still be accessible by specifying the actual IP addresses, 
it is still problematic because IP addresses can change constantly when DHCP 
is used for address assignment.

Enhancements made to Android since the introduction of version 4.2 include 
multiple user accounts and restricted profiles. The concept behind multiple user 
accounts is to designate one user as the owner while all other accounts enjoy 
the same privileges as the owner account without user management capability. 
The restricted profile accounts cannot manage users and cannot install apps on 
the device. These enhancements toward user data isolation are on the right path 
to a more secure system, but they fall short in both design and implementation. 
The design deficiencies not only fail to offer isolation protection for the user, 
user‐initiated apps, and user data, but they may also allow secondary users to 
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launch privilege escalation attacks within the system. The evolution towards 
execution separation and data isolation must leverage mobile processor hard-
ware capability such as the TrustZone extension offered by ARM (Advanced 
RISC Machines), which is specifically designed for security and offers physical 
partition of system resources into a secure world and a normal world.

Techniques for malicious app detection include dynamic analysis and static 
analysis. Dynamic runtime analysis observes an app’s runtime execution behavior, 
by means of sandboxing and system call interposition. With sandboxing, a mobile 
app is executed inside a VM and emulator and uses the fuzzing technique that 
injects different input to induce runtime behaviors for analysis. The fuzzing 
technique can also be applied to probe app vulnerability. Dynamic analysis 
includes an external component that monitors and records network activities 
generated by the app. Static analysis is identical to the reverse engineering process 
and mostly performs code analysis through call graphs and data dependency 
graphs. In system call interposition, an analysis module attaches to a running 
app and monitors the app’s interaction with the system by intercepting and 
analyzing the system calls made by the app.

Infrastructure‐Centric Mobile Security Solution

Device‐based security solutions are segmented and are mostly research‐based 
solutions with little commercial exposure. As a result, the adoption of a specific 
solution remains in the context of academic research with some endorsement 
from the industry. In other words, mobile security solutions are still in their 
infancy. The problem is particularly thorny given the issues of mobile OS and 
hardware platform diversity, which are driving research on combining cloud‐
based protection with a lightweight on‐device agent.

An infrastructure‐based protection solution solves the mobile end‐point 
problems of lack of computing power (although mobile platforms are advancing 
on this front), lack of a mature antivirus and anti‐malware scanner software on 
each platform, and fast depletion of battery power. Mobile security must be a col-
laborative effort among mobile service providers and mobile network operators, 
with mobile users being willing to offer cooperation and permit inspection. The 
mobile network must be made programmable so that the network can evolve 
according to ever‐changing security needs.

Furthermore, in today’s networks, there exist middle‐boxes or proxies that enable 
in‐network protection—such as data leak prevention (DLP), web filtering, and 
antivirus—to be applied to traffic crossing the boundary between the corporate 
network and the Internet. Because mobile applications and devices face some 
of the same attack vectors as their desktop counterparts, the lack of protection 
from security proxies on cellular data networks exposes these mobile devices 
to attacks on a massive scale.
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Towards the Seamless Integration of WiFi 
and Cellular Networks
WiFi and cellular networks are two complementary types of wireless access 
networks. Although the cellular network data rate has increased drastically 
over the last decade with the help of advanced radio technologies, it still cannot 
match the growth of data‐hungry devices, such as smartphones and tablets. As 
a consequence, mobile network operators (MNOs) are under constant pressure 
from limited licensed spectrums for cellular use. In addition, poor indoor cel-
lular coverage forces the MNOs to explore alternative connectivity solutions 
to deliver better network services. Integrating WiFi with cellular networks 
not only extends the coverage of MNOs’ networks but also reduces congestion 
on cellular network backbones. As a matter of fact, WiFi and cellular network 
integration has become the industry trend. Figure 9-1 shows a sample WiFi and 
cellular inter‐networking solution under the 3GPP framework.

Figure 9-1: Integration of WiFi and Cellular Networks
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In such implementations, the user equipment (UE) can choose to connect to 
either cellular networks (for example, 3G, 4G, or LTE) or WiFi networks. Like the 
current cellular network structure, the cellular towers are connected (through 
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the radio access network) to the Gateway GPRS Support Node (GGSN) in 2G/3G 
architecture or the Packet Data Network Gateway (P‐GW) in 4G/LTE architecture. 
The GGSN/P‐GW has access to both the Internet and the MNO’s own service 
network where the core MNO services, including QoS, billing, and SMS, are 
provided. For WiFi access, the UE has the option to use the MNO’s own private 
WiFi service or the public WiFi in the event that the MNO’s WiFi network is not 
available. In the former case, because the WiFi access point (AP) is operated and 
owned by the MNO, the UE can view it as a trusted WiFi service and therefore 
no encryption is required. When an MNO’s private WiFi AP receives traffic from 
the UE, the AP needs to tunnel the IP traffic using the cellular standards and 
send it to the GGSN/P‐GW. Such tunneling is performed at the wireless access 
gateway (WAG) in 2G/3G architecture or the trusted wireless access gateway 
(TWAG) in 4G/LTE architecture.

The protocols that use tunneling, such as the GPRS Tunneling Protocol (GTP) 
and Proxy Mobile IP (PMIP), provide IP mobility so that the UE can roam seam-
lessly between access networks. Using a public WiFi is the most complicated 
scenario because it requires that the UE establish a secure tunnel connection 
between itself and the MNO’s network through the untrusted public WiFi net-
work. The MNO network module for handling the secure tunnel is called the 
Tunnel Termination Gateway (TTG) in 2G/3G architecture or the Evolved Packet 
Data Gateway (ePDG) in 4G/LTE architecture. Usually, the secure tunnel is an 
IPsec tunnel initiated by the UE using the credentials that can be authenticated 
by the AAA server in the MNO’s network. The TTG/ePDG not only decrypts 
the IPSec tunnel from the UE but also encapsulates the decrypted IP traffic 
using GTP or PMIP and forwards it to the GGSN/P‐GW to support mobility. 
It can be seen that regardless of the wireless access network the UE uses, the 
UE can roam freely and securely reach the Internet and, hence, the enterprise 
MDM services through the MNO’s core cellular network.

With this integration, a wireless enterprise user can roam freely between 
WiFi networks and cellular networks without losing connectivity to the enter-
prise MDM services. The user can choose to connect to both networks at the 
same time to aggregate the wireless network bandwidth. The user’s privacy is 
also better protected because the MNO can steer the user’s traffic so that only 
business‐related traffic is directed to the enterprise network. Meanwhile, the 
MNO can offload some traffic from the cellular network to the WiFi network 
while maintaining the same level of MNO core services. WiFi and cellular 
network integration makes it possible to fully realize enterprise MDM goals.

Security in the Network
The network‐centric solution, shown in Figure 9-2, becomes much more feasible 
due to the continuous drive to integrate WiFi and cellular networks, with seam-
less roaming between these two technologies.
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Figure 9-2: Network‐Based Mobile Device Protection
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In the network‐centric mobile security solution, the mobile device is under 
the protection of both the WiFi and the cellular networks. Mobile application 
classification is performed in the network. When the mobile device connects to 
the wireless access point (AP), the WiFi AP extracts a small amount of packet 
data and payload bytes and submits the information to an on‐box classifier. 
The on‐box classifier tries to classify the traffic against its application cache; if 
that is not present, then it sends the information to the regional operation center 
(ROC). The ROC classifies the traffic and then pulls the associated application 
threat attributes from a cloud‐based analytics service. The classified applica-
tion and its attributes are then examined against a set of policies defined by 
the enterprise, and the corresponding policies are provisioned into the WiFi AP 
for enforcement. The WiFi AP installs and enforces the new security policies 
accordingly. Newly analyzed information is then recorded and submitted to a 
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cloud‐based analytics service to propagate to other ROCs. Similar operations 
are performed on the cellular networks.

Summary

There are now well over a million unique mobile applications in Google Play 
and the Apple App Store combined, and the growth of those app marketplaces 
shows no sign of slowing down. Unlike traditional computing systems, imple-
menting adequate end‐point security solutions in mobile devices is impractical 
with the current designs of mobile operating systems and under the constraints 
defined by the hardware platform. Mobile security is under active research, and 
viable solutions are still under development. Infrastructure‐centric security 
solutions combined with cloud‐based defense are important practical strategies 
in  combating the ever‐evolving and highly adaptive threats in the wild.

Application identification and behavior profiling are key to implementing intel-
ligent, fine‐grained, and policy‐based control on mobile applications. Enterprises 
and government agencies must pay close attention to this mobile security prob-
lem. Mobile service providers and operators must understand the importance 
of security and privacy, begin the construction of infrastructure‐centric mobile 
security solutions as a mandatory service, and proactively offer these new 
 services to mobile users to gain their trust and cooperation.
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