
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Security Intelligence

A Practitioner’s Guide to Solving
Enterprise Security Challenges

Qing Li
Gregory Clark

www.allitebooks.com

http://www.allitebooks.org

Security Intelligence: A Practitioner’s Guide to Solving Enterprise Security Challenges

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-89669-3
ISBN: 978-1-118-89667-9 (ebk)
ISBN: 978-1-118-89666-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose.
No warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web
site is referred to in this work as a citation and/or a potential source of further information does not mean
that the author or the publisher endorses the information the organization or website may provide or
recommendations it may make. Further, readers should be aware that Internet websites listed in this work
may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015934208

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is
not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

To Huaying, Jane and Adalia;
in Him.

—Qing Li

To my parents, James and Mary Clark: thanks for providing guidance early in my
education and career.

—Greg Clark

To the cyber security researchers and professionals who are keeping us safe in the
digital world. We offer you our sincere admiration and gratitude for what you do.

—Qing Li and Greg Clark

www.allitebooks.com

http://www.allitebooks.org

iv

Executive Editor
Carol Long

Project Editor
Rosemarie Graham

Technical Editor
Robert J. Shimonski

Production Editor
Rebecca Anderson

Copy Editor
Marylouise Wiack

Manager of Content Development
and Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology &
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Kim Wimpsett

Indexer
J&J Indexing

Cover Designer
Wiley

Cover Image
©iStock.com/a-r-t-i-s-t

Credits

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors

Qing Li is the Chief Scientist and Vice President of Advanced Technologies at
Blue Coat Systems, Inc. He is an industry veteran with over 20 years of experi-
ence. He has spent the past 11 years designing and developing industry-leading
technologies and products at Blue Coat.

Qing is fully responsible for the IPv6 secure proxy, IPv6 WAN optimization
technology, and product lines at Blue Coat. He produced the industry’s first IPv6
Secure Web Gateway product in 2009 and received the IPv6 Application Solution
Pioneer Award from the IPv6 Forum in 2010. Subsequently he produced the
industry’s first IPv6 WAN Optimization appliance in 2011, and he produced and
released the industry’s first IPv6 visibility solution in early 2012.

In 2013 Qing took over responsibility for the PacketShaper product. He rein-
vented the technology and in early 2014 introduced the new PacketShaper
S-series appliances into the market place, which are Blue Coat’s first 10 Gbps
visibility and QoS solutions. The PacketShaper S-series appliance product line
reinvigorated new product revenue growth for the first time since 2008, when
Blue Coat acquired Packeteer.

In the past five years, Qing’s research has concentrated on emerging technolo-
gies including advanced application classification algorithms, mobile security,
SSL interception, malware detection, and data analytics. His innovations have
transformed the Blue Coat technology and product landscape.

Prior to Blue Coat, Qing spent over eight years at Wind River Systems and was
the Lead Architect of Wind River’s Networking Group. He was responsible for
both the pSOS+ and VxWorks networking systems. He led a large distributed
team and, in a development partnership with Siemens, successfully delivered
VxWorks 6.0 for Network Equipment in early 2003; this was the first VxWorks
release that offered full IPv6 support.

www.allitebooks.com

http://www.allitebooks.org

vi About the Authors

Qing is a published author, most notably of a two-volume reference series on
IPv6. Volume I, IPv6 Core Protocols Implementation, and Volume II, IPv6 Advanced
Protocols Implementation, were published in 2006 and 2007, respectively, by Morgan
Kaufmann Publishers. In 2003 Qing wrote the embedded systems development
book Real-Time Concepts for Embedded Systems, which was published by CRC Press;
it has served as a reference text in the industry as well as in universities. Qing
was also a contributing author to Handbook of Networked and Embedded Control
Systems, a first-of-its-kind book published in 2005 by Birkhäuser.

Qing holds 17 U.S. patents, with many more pending in the areas of net-
working and security. He has been an active speaker at industry and academic
conferences and contributes to discussions of technological innovation and
development across a wide range of media around the world.

Gregory Clark is currently the Chief Executive Officer and a member of the Board
of Directors of Blue Coat Systems, Inc., a developer of products and services that
secure enterprise infrastructure. Mr. Clark previously served as Chief Executive
Officer of Mincom, a leading global provider of software and services to asset-
intensive industries. Prior to Mincom, he served as Chief Technology Officer
and subsequently became President and Chief Executive Officer of E2open, a
leader in ERP-agnostic global supply chain integration.

Earlier in his career, Mr. Clark was the IBM Distinguished Engineer respon-
sible for IBM’s security technology and served as a vice president at IBM’s
Tivoli Systems, Inc. Before joining IBM, he founded the security software firm,
Dascom, Inc., which was sold to IBM in 1999 and formed a critical element of
IBM’s security product line. Mr. Clark previously held senior roles with AT&T’s
UNIX System Laboratories. He is also a member of the Board of Directors of the
Global Healthcare Exchange (GHX), Imperva (IMPV), and Emulex (ELX). Mr.
Clark is also a Senior Operating Partner at Thoma Bravo. He has almost 30 years
of experience in enterprise infrastructure and security and has been granted
multiple patents in security technology and business process applications.

www.allitebooks.com

http://www.allitebooks.org

vii

Acknowledgments

I want to thank my beautiful wife, Huaying, for replenishing my perseverance
with her inexhaustible love and support and for being my best friend and a
great mommy. I am blessed with two beautiful girls, Jane and Adalia; they are
the joy of my life, my inspiration, and through them I see God’s grace. I am also
grateful that I can draw my strength from Philippians 4:13, “I am able to do all
things in Him who empowers me.”

I would like to thank Wenjing Wang and Min Hao Chen for being my research
assistants. You guys are simply awesome!

I would also like to thank Chris Larsen, Ron Frederick, Tim van der Horst
and Ryan W. Smith for their insightful thoughts. I would like to thank Liliya
Bederov for helping with the graphics.

I would like to thank Carol A. Long for recognizing the value of, and being
the executive acquisitions editor for, this book. I would also like to thank Rosemarie
Graham for her tireless efforts at managing the editing and production phase
of the book and for pushing it over the finish line.

—Qing Li

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ix

Foreword xv

Preface xvii

Chapter 1 Fundamentals of Secure Proxies 1
Security Must Protect and Empower Users 2

The Birth of Shadow IT 2
Internet of Things and Connected Consumer Appliances 3

Conventional Security Solutions 5
Traditional Firewalls: What Are Their Main Deficiencies? 5
Firewall with DPI: A Better Solution? 9
IDS/IPS and Firewall 11
Unified Threat Management and Next‐Generation Firewall 14

Security Proxy—A Necessary Extension
of the End Point 15

Transaction‐Based Processing 18
The Proxy Architecture 19

SSL Proxy and Interception 22
Interception Strategies 24
Certificates and Keys 28
Certificate Pinning and OCSP Stapling 32
SSL Interception and Privacy 33

Summary 35

Chapter 2 Proxy Deployment Strategies and Challenges 37
Definitions of Proxy Types: Transparent Proxy

and Explicit Proxy 38
Inline Deployment of Transparent Proxy: Physical

Inline and Virtual Inline 41
Physical Inline Deployment 41
Virtual Inline Deployment 43

Contents

x Contents

Traffic Redirection Methods: WCCP and PBR 44
LAN Port and WAN Port 46

Forward Proxy and Reverse Proxy 47
Challenges of Transparent Interception 48

Directionality of Connections 53
Maintaining Traffic Paths 53
Avoiding Interception 56

Asymmetric Traffic Flow Detection and Clustering 58
Proxy Chaining 62
Summary 64

Chapter 3 Proxy Policy Engine and Policy Enforcements 67
Policy System Overview 69

Conditions and Properties 70
Policy Transaction 71
Policy Ticket 73

Policy Updates and Versioning System 77
Security Implications 77
Policy System in the Cloud Security Operation 80

Policy Evaluation 82
Policy Checkpoint 82
Policy Execution Timing 84
Revisiting the Proxy Interception Steps 86

Enforcing External Policy Decisions 90
Summary 91

Chapter 4 Malware and Malware Delivery Networks 93
Cyber Warfare and Targeted Attacks 94

Espionage and Sabotage in Cyberspace 94
Industrial Espionage 96

Operation Aurora 96
Watering Hole Attack 98
Breaching the Trusted Third Party 100

Casting the Lures 101
Spear Phishing 102
Pharming 102
Cross‐Site Scripting 103
Search Engine Poisoning 106
Drive‐by Downloads and the Invisible iframe 109
Tangled Malvertising Networks 113

Malware Delivery Networks 114
Fast‐Flux Networks 117
Explosion of Domain Names 119
Abandoned Sites and Domain Names 120

Antivirus Software and End‐Point Solutions – The Losing
Battle 121

Summary 122

 Contents xi

Chapter 5 Malnet Detection Techniques 123
Automated URL Reputation System 124

Creating URL Training Sets 125
Extracting URL Feature Sets 126
Classifier Training 128

Dynamic Webpage Content Rating 131
Keyword Extraction for Category Construction 132
Keyword Categorization 135

Detecting Malicious Web Infrastructure 138
Detecting Exploit Servers through Content Analysis 138
Topology‐Based Detection of Dedicated Malicious Hosts 142
Detecting C2 Servers 144
Detection Based on Download Similarities 147
Crawlers 148

Detecting Malicious Servers with a Honeyclient 150
High Interaction versus Low Interaction 151
Capture‐HPC: A High‐Interaction Honeyclient 152
Thug: A Low‐Interaction Honeyclient 154
Evading Honeyclients 154

Summary 158

Chapter 6 Writing Policies 161
Overview of the ProxySG Policy Language 162
Scenarios and Policy Implementation 164

Web Access 164
Access Logging 167
User Authentication 170
Safe Content Retrieval 177
SSL Proxy 181
Reverse Proxy Deployment 183
DNS Proxy 187

Data Loss Prevention 188
E‐mail Filtering 190
A Primer on SMTP 191
E‐mail Filtering Techniques 200

Summary 202

Chapter 7 The Art of Application Classification 203
A Brief History of Classification Technology 204
Signature Based Pattern Matching Classification 206

Extracting Matching Terms – Aho‐Corasick Algorithm 208
Prefix‐Tree Signature Representation 211
Manual Creation of Application Signatures 214
Automatic Signature Generation 216

Flow Set Construction 218
Extraction of Common Terms 220
Signature Distiller 222

xii Contents

Considerations 225
Machine Learning‐Based Classification Technique 226

Feature Selection 228
Supervised Machine Learning Algorithms 232

Naïve Bayes Method 233
Unsupervised Machine Learning Algorithms 236

Expectation‐Maximization 237
K‐Means Clustering 240

Classifier Performance Evaluation 243
Proxy versus Classifier 247
Summary 250

Chapter 8 Retrospective Analysis 251
Data Acquisition 252

Logs and Retrospective Analysis 253
Log Formats 254
Log Management and Analysis 255

Packet Captures 259
Capture Points 259
Capture Formats 261
Capture a Large Volume of Data 263

Data Indexing and Query 264
B‐tree Index 265

B‐tree Search 267
B‐tree Insertion 268
Range Search and B+‐tree 270

Bitmap Index 272
Bitmap Index Search 273
Bitmap Index Compression 276

Inverted File Index 279
Inverted File 279
Inverted File Index Query 281
Inverted File Compression 282

Performance of a Retrospective Analysis System 283
Index Sizes 283
Index Building Overhead 285
Query Response Delay 286
Scalability 288

Notes on Building a Retrospective Analysis System 289
MapReduce and Hadoop 289
MapReduce for Parallel Processing 292
Hadoop 293
Open Source Data Storage and Management Solution 295

Why a Traditional RDBMS Falls Short 295
NoSQL and Search Engines 296
NoSQL and Hadoop 297

Summary 298

 Contents xiii

Chapter 9 Mobile Security 299
Mobile Device Management, or Lack Thereof 300
Mobile Applications and Their Impact on Security 303
Security Threats and Hazards in Mobile Computing 304

Cross‐Origin Vulnerability 305
Near Field Communication 306
Application Signing Transparency 307
Library Integrity and SSL Verification Challenges 307
Ad Fraud 308

Research Results and Proposed Solutions 308
Infrastructure‐Centric Mobile Security Solution 311

Towards the Seamless Integration of WiFi and Cellular
Networks 312

Security in the Network 313
Summary 315

Bibliography 317

Index 327

xv

Foreword

It is difficult to unlearn something that was once considered fact; it’s against
human nature. But unlearning and then reimagining is where we find ourselves
in the field of information security today. Think about the changes in how we use
technology that have happened over the past decade: the unbounded mobility
of workers, the adoption of cloud services, and the rise of nation‐state hackers,
hacktivists bent on destruction, and cyber‐criminal organizations that are run
like efficient corporations. These shifts are reshaping our profession daily and
challenging yesterday’s “best practices.”

When I began teaching at Columbia University in the mid‐2000s, the term
hacking conjured up images of disaffected teenagers for most people. How
quickly that association has changed. The professionalization of hacking has
led to massive loss of intellectual property and the theft of countless personal
records. It has destroyed companies, threatened nations, and thrust security
into the consciousness of people who would otherwise not be concerned with
technology.

So where does a modern security practitioner become grounded in the reali-
ties of today’s security? This book is a great place to start. Qing Li and Greg
Clark have both left a permanent stamp on the security industry and continue
to help some of the biggest organizations in the world to protect themselves.
This book is a great resource for security professionals and cyber warriors, as
Qing and Greg share the knowledge they have accumulated from building
products that protect more than eighty percent of the Fortune 500 corporations
around the world.

As the chairman of the world’s largest security conference, and an academic
and practitioner, I can tell you there has never been a more important time for
you to read this book. Think of it as a primer for security in modern times,

xvi Foreword

against modern adversaries. What I have always admired about Qing and Greg
is that they are grounded in the practical. This is a book that doesn’t speak in
absolutes—it respects the dynamic nature of information security. It tackles the
hard topics like malnet detection, application intelligence, and retrospective
analysis. It examines the design of a system that can protect modern endpoints,
which can be anything from workstations, laptops, phones, and tablets to smart
refrigerators, power meters, and yet‐to‐be‐conceived devices in the Internet
of Things. It also exposes the power of what is still one of the most important
weapons we have in the fight against attackers: the security proxy.

If you are new to information security, this book is a terrific modern primer.
If you have been in security for a while, you must approach this book with a
simple truth in mind: our industry is having to reinvent itself in the face of
modern attacks. Eight‐character passwords and a defined network perimeter
are a part of our industry’s past, not its present or future. Come with an open
mind and allow Qing and Greg to reintroduce you to tools you thought you
knew in the context of today’s sophisticated attacks.

In this new era of security, the authors will take you into the world of malware
distribution networks and show you how they play a central role in attacks.
You’ll also learn how modern techniques like sandboxing, security analytics, and
fine‐grained application controls can be wielded to protect a modern enterprise.

Information sharing is essential for today’s security professional. The content
in this book can help invigorate thought on how to build better security solu-
tions. It can also help you come up with more relevant questions to ask in areas
where you want to attain clarity.

When security is done right, it is not about lockdown and fear. It is about open-
ing possibilities and liberating business instead of stifling it. In that way, this
is a very hopeful book, and I hope you will enjoy reading it as much as I have.

Hugh Thompson, Ph.D.
Los Gatos, CA
December 2014

xvii

Preface

The digitization of a prodigious amount of information is intensifying, from
health care records and educational backgrounds, to employment history, credit
reports, and financial statements. Words like eBilling, eStatements, and paperless
transactions have become part of our everyday language. The ever‐increasing
ability to retrieve this digital information online, combined with both the unre-
mitting compilation of such information to extrapolate personal traits and
behavior and the explosion of convenient venues for accessing the Internet,
should encourage questions in curious minds: “Just how vulnerable are we to
threats against personal privacy?” and “Who is at liberty to scrutinize the vast
amounts of private data?”

In recent years, the rapid growth of high‐bandwidth network infrastructures
accompanied by a dramatic reduction in storage costs serve as the catalysts in
the construction and commercialization of various cloud‐based services, which
are offered to both institutions and individuals. These cloud‐based services
range from personal online backup storage, content‐sharing, and collaboration
tools to customer relations management (CRM). These services are easily attain-
able with affordable prices that will only invigorate adoption and proliferation.
Naturally, for security‐conscious minds, questions arise as to how penetrable
these services are by nefarious entities and, when compromised, how limited
in scope the resulting damages will be from a specific breach incurred on the
cloud community as a whole.

Utility companies, power plants, air traffic control systems, public transit
systems, and others are predominately under digital control. Media coverage
of specific cyber‐attacks that have targeted these critical infrastructures indi-
cates that the frequency of the attacks is escalating and with rapidly evolving
sophistication, and these attacks are incurring more severe damages on their
targets. These stories may include enticing details that are suspenseful and

xviii About the Authorsxviii Preface

entertaining; however, failure to detect, defend, and remediate these threats will
effect monetary catastrophe and endanger the population with unimaginable
consequences. So, what mechanisms have been contrived to entrap offenders
before they assail us under a camouflage of bit streams?

Branches of government and the armed forces restrict information flow and
closely inspect each individual’s cyber activities. Similarly, organizations such
as health care providers, insurance companies, and financial institutions must
comply with certain industry rules and regulations. Many sumptuary laws require
exhaustive access logging and retrospective analysis. Mining this voluminous data
into a structured representation demands interdisciplinary expertise, through
a process that sanitizes the raw data, sieves out the relevant subsets, transforms
and normalizes the selection, and applies analytics to seek out patterns. Data
mining and analytics are critical components of the security envelope. The flex-
ibility and diversity of queries that can be issued against the extracted knowledge
measure the quality of the data mining approach. In the security context, the
length of time taken to excavate data determines how quickly active threats can
be divulged, imminent attacks revealed, and felicitous resolutions conjured in
response, instead of reacting with extemporary and ineffective countermeasures.

Security implementation and enforcement begins with us thinking in terms of
the end goals. These goals must be expressible in plain language. For example,
the thoughts of the CIO of a large enterprise may be as follows:

 ■ When Bob accesses Dropbox, I want to prevent him from uploading any
files but permit him to download content from his account between 8 a.m.
and 5 p.m., at a rate of no more than 256 Kbps. Bob is not allowed to
upload files because he is new to the company and is under a three‐month
probation period. However, he does have access to sensitive marketing
information, and I want to prevent him from sharing such information
externally. Bob has permission to download files from Dropbox because
his manager utilizes Dropbox for file sharing across a distributed team.
Because Dropbox is Bob’s main online application, I want to limit Bob’s
network bandwidth utilization so that Dropbox does not over‐consume
available network resources.

 ■ When Alice runs the Skype application, I want to log her text chat ses-
sions because she works in a restricted financial environment. Due to SEC
regulations and U.S. Treasury mandates, financial institutions must moni-
tor employee transactions and online behavior in order to detect insider
sabotage, data theft, or security breaches that originate externally. For
these reasons, all of Alice’s online activities must be logged and analyzed.

 ■ When users visit websites during work hours, I want to disallow them
from accessing sites that are categorized as adult entertainment. I want
the content of each website to be analyzed in real‐time for adult material,
and if any is discovered, I want to terminate that user session immediately
and send an alert to HR for coaching the user on company policies.

www.allitebooks.com

http://www.allitebooks.org

 Acknowledgments xix Preface xix

These security goals seem straightforward, yet a plethora of networking
and security technologies is necessary to achieve the desired end results.
For example, let us try to translate the first goal into an actual implementa-
tion and observe the various networking and security disciplines that are
involved.

The prerequisite of implementing the first security goal, at a minimum,
includes knowing which user initiated the network traffic, which application
is associated with which traffic flows, and which specific application action
generated the traffic.

When Bob initiates a Dropbox session to www.dropbox.com, the associated
traffic that is observed on the network does not contain visible user informa-
tion such as login name simply because the entire session is encrypted using
TLSv1. One way to determine the user information is by examining the source
IP address and then querying a directory service such as Active Directory for
mapping information between the username and the IP address. This method
is unreliable because multiple users could be running on the same host machine
that is assigned a single IP address. In other words, if both Bob and Alice are
using the same multi‐user system for accessing Dropbox, then the IP address‐to‐
username mapping approach will not produce accurate identification. Therefore,
the most reliable way of extracting the user information is by examining the
actual HTTPS payload.

Because the traffic is encrypted, it is impossible to decipher unless there is a
way to plant a device in the communication path; this device would act as the
man‐in‐the‐middle (MITM) that can communicate with the user as if it were
the server, while at the same time communicating with the server on behalf of
the user. Even when the application does not utilize data encryption between
its client and server, the art of application classification will be the key to asso-
ciate data flows to user‐initiated application actions, such as file download or
file upload commands. The data rate must be measured constantly and must be
adjusted according to the desired rate, assuming the data flow has been associ-
ated with a specific application command.

So, to summarize, this simple example involves technologies ranging from
application classification and authentication protocol to encrypted traffic intercep-
tion and quality of service management. Yet the example we have just presented
is only one aspect of enterprise security, which relates to employee online access
behavior and resource usage monitoring, followed by enforcement according to
defined policies. Monitoring an employee’s online activities involves more than
just restricting recreational traffic for productivity gain; more importantly, an
employee could be the source of various types of security breaches. For example,
an employee could visit a well‐known reputable website; however, if the site has
been compromised by hackers who have installed malicious URLs to alluring
content, the unsuspecting employee may follow a web link and download a
malicious piece of code unintentionally, which then turns the employee’s com-
puter into a sensor for a malicious botnet.

http://www.dropbox.com

xx About the Authorsxx Preface

Security tools that rely on a reputation‐based rating system to evaluate the
safety level of a website cannot protect users from new dynamic URLs that link
to malicious content. The just‐described scenario is occurring with increasing
frequency due to the ever‐growing and evolving lures that entice unsuspecting
users into the dark corners of the Internet. The employee’s personal information
could be stolen. However, if, for example, the employee is a health care worker
who may have access to millions of private records, then this private data could
be compromised on a massive scale, inflicting unimaginable damages on families
and individuals. Unfortunately, public disclosures of such incidents have been
made at an alarming rate in recent years.

If a security breach has been detected, postmortem analysis of the various
security compromises that encompass the breach is critical in constructing
adequate and flexible defense mechanisms against similar attacks in the future.
Depending on the severity and level of sophistication of the attack, the analysis
process is typically comprised of inspecting terabytes, if not petabytes, of data
that may include user transaction logs and raw packet captures. The essence
of this retrospective analysis is data mining, and the goals are, at a minimum, to
identify the victim or victims of the attack, the area of the initial penetration,
and the speed of dispersion and propagation, and to analyze the threat DNA
against the known attacks. The combination of real‐time traffic analysis, cor-
relation of events and response, and data recording and analytics, together
with vulnerability management, are loosely termed Security Information (or
Incident) and Event Management (SIEM). The maturity and sophistication of a
security solution, therefore, can be demonstrated in its effectiveness at translat-
ing security requirements, articulated from natural language into actionable
and enforceable security policies within that solution.

Our book is designed and written for CISOs, network administrators, solu-
tions architects, sales engineers, security engineers who implement security
solutions, and developers who are building new generations of security prod-
ucts. Similar to unraveling a math word problem, this book guides the reader
through a deciphering process that translates each security goal into a set of
security variables, substitutes each variable into a specific security technology
domain, formulates the equation that is the deployment strategy, and then verifies
the solution against the original problem by analyzing security incidents and
divulging hidden breaches, ultimately refining the security formula iteratively
in a perpetual cycle.

Fear not, you do not need a Ph.D. to read this book. We do assume that you
have a basic understanding of the TCP/IP protocols, the HTTP protocol, and a
high‐level conceptualization of SSL/TLS technology.

The book is organized into nine chapters.
Chapter 1, “Fundamentals of Secure Proxies,” dissects traditional defense

technologies, such as firewalls and IDS and IPS systems, to illustrate the defi-
ciencies in legacy security solutions. The proxy technology is described in detail

 Acknowledgments xxi Preface xxi

from the developer’s perspective. This chapter then demonstrates the power of
proxies by diving into the specifics of how SSL interception is achieved.

Chapter 2, “Proxy Deployment Strategies and Challenges,” provides defini-
tions of the various types of proxies in terms of their deployment strategy,
accompanied by their advantages and disadvantages. A proxy, being a stateful
device, is confronted by various and unpredictable network infrastructure
designs. This chapter enumerates the top deployment challenges and offers
respective solutions in detail.

Chapter 3, “Proxy Policy Engine and Policy Enforcements,” leverages the policy
language of a real‐world security product to illustrate the essential elements
of an effective policy system and demonstrates how various components of a
policy are implemented in various stages of the traffic processing path.

Chapter 4, “Malware and Malware Delivery Networks,” provides an overview
of the types of malware that are active in the wild. The ploys, lures, and schemes
fashioned by the attacks are illuminated through actual incidents. Advanced
persistent threats (APTs) and other sophisticated strategies such as Stuxnet and
Flame have been employed as infiltration and cyber weapons to wage warfare
among countries. This chapter sheds light on this topic.

Chapter 5, “Malnet Detection Techniques,” describes the algorithms that are
applied for detecting suspicious URLs and content that lead to malware infec-
tion. Techniques employed for trapping and analyzing malware and suspicious
code are fully articulated in this chapter, along with a discussion of open‐source
analysis tools.

Chapter 6, “Writing Policies,” offers meticulous detail on policy design for
many common security objectives in enterprise environments.

Chapter 7, “The Art of Application Classification,” examines the classification
techniques for identifying applications accurately over live traffic in real‐time.
Knowing what traffic is associated with which application is the first step in
applying intelligent control. This chapter elucidates the technical complexities
behind this challenging class of security problems that are under active research.

Chapter 8, “Retrospective Analysis,” discusses the algorithms and techniques
for data logging, storage, management, and mining knowledge, all in the context
of security intelligence.

Chapter 9, “Mobile Security,” focuses on the new and fast‐growing mobile
computing world, where security is optional. This chapter discusses the various
technical challenges that make designing and building mobile security solutions
difficult. With millions of applications available for download, mobile application
identification is a formidable challenge. This chapter offers a comprehensive
overview of the current active research trends in this new discipline.

There are countless books on firewalls, malware and viruses, cryptography,
IDS, IPS, data mining, and many related concepts. However, a book is needed that
unifies these concepts, analyzes and compares the various solutions, digests the
security problems into succinct requirements, and crystallizes the implementation

xxii About the Authorsxxii Preface

strategies that correlate to specific technology and solution categories. This book
is the missing manual that teaches you how to assemble all those parts into
practical solutions that solve real‐world enterprise security challenges.

At a minimum, we hope this book can assist you in turning some of those
desultory conversations of acronyms into meaningful discussions on enterprise
security.

1

The evolution of the secure proxy is a reflection of the evolution of the web. The
proxy began as a gateway that bridged content that was processed and managed
by various information systems, and served that content to the open web dur-
ing the early days of Internet web construction. The term web proxy server was
given to this general intermediary to reflect its main duty at the time, namely,
translating web requests from the Internet to representations that could be
understood and fulfilled by different internal systems, and vice versa.

The web has evolved, expanded, and flourished from a content‐centric,
information‐sharing system into an elaborate ecosystem for commerce, an accul-
turation establishment for Millennials, and a foundation for modern‐day cloud
computing. The web browser has become the instrument that unlocks all of the
wealth the web offers. The fundamental web protocols and technology, such as
HTTP, SSL, HTML, XML, Java, and JavaScript, have been amalgamated into a
complex conduit, which faces relentless assaults from nefarious forces that try
to subvert it for profit. However, private intellectual properties and confidential
data hosted in private and protected networks are accessible through a browser
over secure connections across the Internet. The web has also been adopted as a
system of portals for managing critical infrastructures at municipal, state, and
national levels. Consequently, the user and the browser have become attack
vectors for breaching corporate as well as national security.

The web proxy has evolved from a content gateway into an essential security
gateway that focuses on users, applications, and content. The security proxy

C H A P T E R

1
Fundamentals of

Secure Proxies

2 Chapter 1 ■ Fundamentals of Secure Proxies

differs from a generic web proxy in that the secure proxy can interpret and
intercept more application protocols than just HTTP. Secure proxies, especially
when deployed in enterprise environments, serve as both protectors and enablers
so that their user community can benefit from the web while minimizing the
risk of being victimized by malware delivery networks.

Security Must Protect and Empower Users

The rise of the Internet becoming the foundation of the new era in commerce,
culture, communication, education, entertainment, and technology was inva-
sive, with profound impact on our social behaviors. It is now ubiquitous and is
an indispensable element of both professional and personal life. At the time of
the Internet boom, even long before the advent of mobile computing, the line
between work hours and personal time was indistinguishable. With the intro-
duction and rapid adoption of smart phones and tablet computing, there is no
longer a distinction between a personal and a work‐related computing device.
This situation is particularly true for employees who travel a great deal as part
of their job functions. For this mobile workforce, a regular laptop computer is
typically installed with both personal software and work‐related applications.
They work wherever and whenever they can while roaming through airports
and hotels. The expansion of both the Internet and affordable residential broad-
band networks has enabled many employees to work from home. Similar to
the mobile workforce, the home computer serves as both a personal entertain-
ment and productivity platform and a professional instrument that performs
corporate-related job functions. Both computing paradigms raise a dilemma: a
well‐formed physical perimeter that isolates and guards the enterprise network
with traditional IT governance is nonexistent. This lack of separation of personal,
private information from corporate intellectual property and data on the same
storage device can be a liability for both the employee and the employer.

The Birth of Shadow IT
Business applications are migrating from locally hosted solutions within the
enterprise to a cloud‐hosted collaborative model. This transition means enterprise
users are accessing business‐critical applications through their web browser,
over the standard web protocols, using a diverse range of computing devices that
may not be owned or managed by the enterprise. Consequently, the traditional
security practice of the allow‐or‐deny‐all approach is inadequate in managing
today’s complex web‐oriented computing paradigm.

In today’s enterprises, users demand the ability to choose from a vast number
of applications that they can utilize to maximize their productivity when per-
forming their duties, while at the same time leveraging those same applications

 Chapter 1 ■ Fundamentals of Secure Proxies 3

for personal objectives. Because enterprise IT and network access policies tend to
be restrictive, many user‐chosen applications may not be authorized for use in
an enterprise network due to security risks, such as the type of information the
application gathers and transmits to entities that are external to the enterprise.
The servers that the application communicates with may also be easily compro-
mised by attacks. For example, many organizations prevent users from running
Dropbox for file sharing for fear that company‐related confidential documents
may be leaked as a result of unintentional but careless actions. Another typical
restriction is that users are forbidden from running any application that partici-
pates in a peer‐to‐peer (P2P) network. This prohibition is likely the precipitant
of the Digital Millennium Copyright Act that was signed into law in the United
States in 1998. From an enterprise perspective, any copyright infringing mate-
rial that is stored and that transits the enterprise network presents serious legal
liabilities and ramifications. Application software may be produced by various
publishers that range from large commercial vendors to independent software
developers. An enterprise may exclude an application from its permissible list
based on the publisher and its reputation.

One of the fundamental evolutions that have taken place in the enterprise IT
environment is the emergence and growth of shadow IT. Employees’ desire to
circumvent IT restrictions led to the use of shadow IT. In the previous example,
if Dropbox were blocked by IT policies, then employees would find alternative
mechanisms and tools to share files, thus resulting in shadow IT usage. Consider
the following example: sales engineers (SEs) travel constantly, and they need
to share files with other SEs, employees, and their customers. E‐mail systems
implement file size limits such that large files cannot be transferred over e‐mail.
Because Dropbox has been blocked, these SEs may experiment exhaustively
with Box.com, Wuala.com, Google Docs, Google Drive, TeamDrive, SugarSync,
OneDrive, CloudMe, or Amazon Cloud Drive until they find a solution that is
capable of penetrating the IT security net.

Internet of Things and Connected Consumer Appliances
The Internet of Things (IoT) refers to uniquely identifiable embedded devices
that are networked, which are reachable and manageable through the Internet
infrastructure. These embedded devices have proliferated and matured beyond
just smart sensors to more intelligent applications such as smart building and
home automation systems. Google’s $3.2 billion acquisition of Nest in January
2014, followed by Samsung’s acquisition of SmartThings in August 2014, offers a
glimpse into market developments that are shaping the future of the IoT. Much
of this IoT can now be accessed and controlled through applications on popular
mobile devices such as the Apple iPhone and iPad and Google’s Android‐based
gadgets. For example, a homeowner can use the ADT Pulse app on their iPad
to activate or deactivate their ADT home alarm system, check motion sensors,

4 Chapter 1 ■ Fundamentals of Secure Proxies

and watch live video feeds from various video cameras that have been installed
in their home. The Tesla Model S iPhone app allows a car owner to track their
car’s location or start and stop electrical charging of the vehicle.

The IoT has met little resistance as it has gradually become engrained
into our daily lives, in what appears to be almost a seamless integration,
because convenience and ease‐of‐use have replaced security at center stage.
Securing the IoT is a complex problem. Two main aspects of defense include
protecting the IoT device and securing the access channel. The access chan-
nel includes the communication between the device and its peer (commonly
known as machine‐to‐machine communications [M2M]), and the communication
between the device and its operator. Because it is embedded, the IoT device has
limited computing power and resources, which limits the device’s ability to
run sophisticated software such as a virus scanner. Such an embedded device
is typically powered by either a custom operating system (OS) or a special
variant of a known OS. An embedded OS generally lacks security software
that is commonly found in a desktop OS, for example, antivirus software. At
the time of this writing, the popular Apple iOS has been on the market for
over seven years, yet antivirus software for the iPhone and iPad is limited
in both variety and functionality; more importantly, such antivirus software
is rarely installed by iOS users. Considering the iPhone is by definition an
embedded device, the prospect of antivirus and anti‐malware software find-
ing its way into the iPhone as a standard application seems impossible, at
least for the next few years.

Running an embedded OS implies that software patches that fix security
vulnerabilities may not be released at a regular interval, if such a practice exists
at all. Even when such a firmware patch mechanism exists, in most cases the
patch process relies on the user to be diligent in exercising security practices,
and such a demand on the general population is simply unrealistic. Therefore,
these factors indicate that IoT devices can become popular attack targets and
can be compromised with relative ease. Once such an IoT device is hacked, user
information may be retrieved and the device can in fact cause physical harm to
its owner; for example, a hacker shutting off a smoke detector during a house
fire can cause physical injury or damage. These IoT devices can also be turned
into zombies and become part of a large botnet, which can be commandeered
into participating in a planned distributed denial‐of‐service (DDoS) attack
against another target.

Other types of consumer electronic appliances, such as the Sony PlayStation 4
(PS4) and Internet‐ready HDTVs, are network‐capable and face security threats
similar to those faced by IoT devices. An Internet‐ready HDTV may not allow
its owner to browse and surf the web; however, it permits its owner to log in
to Facebook and update their Facebook status through the built‐in application.
The Facebook account information could be stolen if the Internet‐ready HDTV
is hacked. The Sony PlayStation owner can purchase games at the PlayStation

 Chapter 1 ■ Fundamentals of Secure Proxies 5

Store. The PlayStation Network user account information includes the account
holder’s birthday and contains a stored credit card number. The user credential
to log in to the PlayStation Network to play multi‐player online games can be
stolen by an attacker who has compromised the PS4, thus putting the account
holder’s privacy at great risk.

Conventional Security Solutions

The security posture of an organization refers to the role security plays in the
organization’s business planning and its business operation. The security posture
encompasses the design and implementation of a well‐defined security plan.
The security plan is comprised of technical solutions including technology
in terms of software, hardware, and services that can be implemented at end
points and within the network. The security plan also includes non‐technical
aspects: employee education on the importance of security as an essential ele-
ment of business operations; a definition of policies on employee conduct and
behavior that conforms to corporate security governance; a definition of poli-
cies for achieving regulatory compliance; and a definition of procedures and
guidelines on responding to security incidents, both internally and externally.

In essence, the security posture refers to how an organization views security:
as a business enabler or as a hindrance and an inconvenience to its operational
efficiency. An organization’s security posture dictates its practices of security
and determines the effectiveness of its security implementation. In today’s
information age, the availability and timely accessibility of information are
important keys to an enterprise’s success. Enterprises strive to foster innovation
by harnessing the wealth of information capital available on the Internet, while
at the same time maintaining an energized and engaged workforce.

Security should afford users the freedom to explore and harvest the riches
of the Internet, and alleviate the fear of becoming victims of cyber threats.
Existing threats change and new ones emerge as the web evolves; therefore,
security postures cannot remain static for long and need regular assessment.
It is essential to have an in‐depth knowledge of available security solutions,
and an understanding of the strengths and the weaknesses of each solution in
order to perform assessments such as vulnerability testing, penetration testing,
and standards‐based auditing. Understanding security technologies is the key
to implementing the layered defense that is now mandatory in securing users
and enterprise networks.

Traditional Firewalls: What Are Their Main Deficiencies?
The firewall, the most commonly known and referenced security device,
was once the motif of security‐related conversations and continues to be an

6 Chapter 1 ■ Fundamentals of Secure Proxies

essential element of any network security design. The traditional firewall is
still the first line of defense. However, the growing body of threats have long
surpassed the capabilities of the traditional firewall. The security landscape
is now cluttered with acronyms such as unified threat management (UTM),
deep packet inspection (DPI), intrusion detection system (IDS), intrusion
prevention system (IPS), secure web gateway (SWG), web application firewall
(WAF), next‐generation firewall (NGFW), application intelligence and control
(AIC), and many more. These acronyms create the perception that perhaps
the security threats are largely under control, yet in reality, adroit, menacing
malware crafters flourish in the shadows, and security battles rage on with
growing ferocity and intensity. The various technologies that are behind the
acronyms add confusion and inundate the security implementers with over-
lapping solutions. These overlapping solutions obscure the deficiencies in
the core technologies, and this lack of clarity results in the construction and
deployment of inadequate defenses.

The deficiencies of the traditional firewall lie in its inability to examine the
packet payload, especially when content is encrypted. The traditional firewall
examines layer‐2 (L2) to layer‐4 (L4) packet header information, such as source
and destination IP addresses, L4 protocol type, and L4 source and destination port
information, as depicted in Figure 1-1. A firewall rule can be written to compare
any header field or bits against any specific values and can define instructions
for the firewall to apply one or more actions accordingly. For example, a firewall
rule can state, “If an incoming packet is a TCP connection initiation frame (i.e.,
the TCP header contains the SYN flag bit), then transmit a TCP RESET frame
back to the sender.” Basically, this firewall rule blocks all incoming TCP con-
nection requests.

Here is another example of a firewall policy: “If the source IP address is
10.9.44.108, the protocol is TCP, and the destination port is 6881, then discard
the packet.” TCP port 6881 is commonly used by the BitTorrent program for
P2P traffic. Enterprise firewalls block this port to prevent employees from
downloading questionable content and consuming valuable network band-
width. This firewall policy can be problematic in actual deployment. First, the
popularity of BitTorrent has enabled its adoption by various organizations for
legitimate use, for example, by communities that distribute open source soft-
ware releases. In such cases, blocking TCP traffic on port 6881 would preclude
users from permissible use of BitTorrent and, in some cases, would interrupt
the only distribution channel for a specific open source project. Therefore,
the content of a specific BitTorrent session, instead of simply the destina-
tion port, should determine whether such a session is permitted. However,
a traditional firewall does not have the ability to perform content analysis.
Second, BitTorrent uses port 6881 when the port is available; otherwise, port
6882 and subsequent ports are tried until an unused port is found. As such,

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Fundamentals of Secure Proxies 7

port 6881 can be occupied by traffic belonging to an admissible application.
The firewall cannot determine which application originated the traffic to port
6881. Consequently, simply blocking port 6881 could disrupt a permissible
application from its normal operation. Figure 1-2 illustrates the port‐sharing
dilemma that confuses a firewall.

Figure 1-1: TCP/IP Headers for Firewall Processing

0 4 8 16

IP Packet Header

Version Length Type of Service

Identification

Time to Live (TTL) Protocol

Source IP Address

Destination IP Address

Options (If Any)

Data

Data (Optional)

SYN bit is setFirewall rules can operate on
the payload content only if
the payload is not encrypted

Content matters
for application classi�cation

Options (0 or More 32-Bit Words)

Urgent PointerChecksum

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Sequence Number

Source Port Desination Port

Port = 6881

20 Bytes

Acknowledgment Number

Header
Length

Header Checksum

Flags Fragment Offset

Total Length (in Bytes)

Firewall rules
can be set on
individual visible �elds

Protocol = TCP

IP = 10.9.44.108

31

0 4 8 16

TCP Packet Header

31

20 Bytes

8 Chapter 1 ■ Fundamentals of Secure Proxies

This example depicts a serious deficiency in a firewall, where it cannot block
a malicious application that runs over a non‐default port. Consider another
example where a firewall permits outbound HTTP traffic: traffic destined to
TCP port 80 is permissible because otherwise users will not be able to access
any websites on the Internet. Malware writers have common knowledge of
well‐known destination ports that are allowed by firewalls. They create their
malware to transmit on these ports to circumvent the firewall because they
know the firewall is incapable of distinguishing HTTP traffic from non‐HTTP
traffic just by examining the packet headers. This example exposes another
serious deficiency in the firewall: it cannot block a malicious application that
transmits over allowed well‐known ports. We can make another observation
in Figure 1-2, that malware can perform port hopping to discover “holes” in
the firewall. The malware can transmit in the dynamic port range, beginning
with a high‐value port, and increment the port number by 1 until it successfully
receives a response from its intended peer.

Port
6881

Blocked

Ille
gitimate

Use

Legitimate

Use

Open

BitTorrent

BitTorrent

Application X

Port-based �rewall

rules cannot assess

application types

Malware

Games

Random
Port
51372

Figure 1-2: Port Overloading

 Chapter 1 ■ Fundamentals of Secure Proxies 9

Every packet that passes through a firewall will match at least one firewall
rule. The firewall understands the connection concept, whether it is a TCP con-
nection or a UDP connection. A common firewall feature is that it keeps stateful
information on TCP connections and UDP sessions. This stateful information
cache, known as the state table, reduces the firewall workload and increases
firewall scalability. For example, when the first packet of a TCP connection
is seen by the firewall (in this case a TCP SYN packet), the firewall executes
its rules against this TCP SYN packet, which results in a firewall action. This
resulting action and the TCP connection information (connection 4‐tuple and
the TCP header) is then stored into the state table. Figure 1-3 shows an example
of a firewall state table.

Figure 1-3: Firewall State Table

Firewall State Table

Session Information

TCP + IP Headers1.

UDP + IP Headers2.

TCP/IP Header

Payload

1 Connection

Stored

Incoming
Packets

Actions

Allow Log
Bandwidth

Management

Deny

Instead of running through all of the rules repeatedly on the subsequent
packets from that same TCP connection, the firewall can consult the state table
directly and obtain the action quickly. This is the reason why the firewall is also
known as the stateful packet inspection (or simply stateful inspection) firewall.
Examples of firewall actions include allowing traffic to pass, denying traffic
by silently dropping the packets, denying a TCP connection by generating a
TCP RESET protocol packet, and generating connection logs. Each entry in the
state table contains minimal information that represents a connection. Packets
belonging to connections that are permitted by the firewall transit the firewall
unmodified. In practice the firewall updates its state table entries using only
information from the packet headers.

Firewall with DPI: A Better Solution?
A new breed of firewalls—let us call them the second‐generation firewall
(SGFW)—incorporated DPI technology to address the problem of identifying
what application generated the traffic in question. With DPI, the packet payload
is scanned for specific known patterns, also known as signatures, which can

10 Chapter 1 ■ Fundamentals of Secure Proxies

potentially identify applications. We say potentially identify because of the
challenges of application identification using static patterns, which is a topic
we cover in Chapter 7. These SGFWs enable administrators to specify and
enforce policies that are based on application names and types, more than just
IP addresses and port numbers. In addition, by integrating user authentication
information that provides mapping between a user and a specific IP address,
some of these SGFWs extend the policy coverage to enforce policies that are
defined around individual users.

When an SGFW performs DPI to scan a flow for an application signature,
as Chapter 7 covers, multiple packets may have passed through the firewall
before an identification can be made. These leaked packets may have already
provided the black hats with useful information to further their attacks. Because
DPI relies on pattern matching, prevalent in the form of regular expression
matching, the operation is computationally intensive. The performance impact
of DPI on firewall throughput determines how much content is scanned on
a per‐packet basis and how much stateful data is kept for correlation when
conducting analytics. As such, firewalls with a DPI engine obtain scalability
through a hardware‐based regex processor that typically increases the cost of
the overall solution. Firewalls in general had become commoditized in the late
1990s. The cost factor determined whether a firewall had a built‐in DPI engine
and what capabilities that DPI engine offered.

There are many issues that render DPI ineffective. First, DPI does not work
on an encrypted payload. An encrypted payload is indistinguishable from
random byte streams and thus cannot match any known patterns. Other data
obfuscation techniques, such as compression, encoding, and tunneling, can
achieve the same effectiveness in defeating DPI.

Second, firewalls with DPI engines cannot modify the content even when
malicious content has been identified: entire packets must be discarded that
will impact the overall sessions. Here is the reason why: as Figure 1-1 illustrates,
the firewall rules are formulated against the fields from the layer‐3 and layer‐4
headers, in this example, from the IP header and TCP header. Any alteration
made to the packet can cause a TCP checksum error, unless the TCP check-
sum is recomputed by the firewall. Because TCP checksum covers all of the
payload data, re‐computing the TCP checksum is an expensive operation. The
firewall may need to perform packet reassembly due to IP layer fragmentation,
thus incurring additional processing overhead. Revising the TCP checksum is
insufficient and will not work in cases where, for example, an Internet protocol
security authentication header (IPSec AH) is employed to verify end‐to‐end
message integrity; in other words, any modification of the original message
by intermediate systems, in this case the firewall, would fail the AH integrity
check at the final destination.

Although an SGFW can provide better visibility by recognizing certain unen-
crypted applications by means of DPI, its enforceable actions are still as limited as

 Chapter 1 ■ Fundamentals of Secure Proxies 11

the traditional firewall. This coarse protection method can impede the usability
of other defensive systems against sophisticated attacks.

IDS/IPS and Firewall
A firewall is the first line of defense, but it has limited visibility into the content
while it makes traffic‐filtering decisions. Because a firewall is commonly deployed
at the ingress and egress points of a network, all traffic paths will converge and
traverse through the firewall. Therefore, the performance and scalability of a
firewall affects the network as a whole. For this reason, although some firewalls
may incorporate a DPI engine, a firewall is designed to execute a limited set of
actions against each packet, even when hardware acceleration is activated in
the firewall. When an attack circumvents the firewall, an IDS extends the secu-
rity coverage by inspecting the network and the end systems for evidence that
corroborates whether some network events and security alerts were instigated
by attacks or malicious infiltrations. An IDS generates alarms and reports to
network management systems upon detecting abnormal or suspicious traffic.

An IDS examines packets for signatures that are associated with known
viruses, malware, and other malicious traffic. In addition to pattern scanning
within the packets, an IDS analyzes overall traffic patterns to detect anomalies
and known attacks. Some examples of known attacks are denial‐of‐service
(DoS), port scanners that search for vulnerable network services, buffer overflow
exploits, and self‐propagating worms. Examples of anomalies include malformed
protocol packets and traffic patterns that deviate from the norm. An IDS is
divided into two main categories: a network‐based intrusion detection system
(NIDS) and a host‐based intrusion detection system (HIDS). NIDS and HIDS
differ in where the IDS is deployed, which consequently dictates the types of
data collected and analyzed by that specific type of IDS. Figure 1-4 illustrates
an example deployment of IDS systems behind a firewall.

As shown in Figure 1-4, the NIDS is deployed inside the organization’s inter-
nal networks, behind the firewall. A NIDS monitors the activities of the entire
network and examines both intranet traffic and Internet‐bound traffic. On the
other hand, the firewall concentrates on traffic that flows into and out of the
internal network to the Internet.

The traditional NIDS scans packets against a database of signatures of known
attacks. Similar to the open source IDS tool Snort, each signature in the data
is often implemented as a matching rule. This signature‐based IDS runs the
packets through these matching rules or signatures to detect attacks. Another
approach is the statistical‐based or anomaly‐based NIDS, which is also known as the
behavior‐based NIDS. With a statistical‐based NIDS, a profile of the network under
protection is built over time, based on evolving historical data, which represents
the norm of the network. Some examples of data collected and compiled into a
profile that represents the network operating under normal conditions include

12 Chapter 1 ■ Fundamentals of Secure Proxies

the following: the number of new applications that are discovered per day on the
network and the average traffic volume generated by each type of application;
the average number of DNS queries transmitted from a specific IP address at a
given time interval; the average overall aggregate throughput of the network; and
the average number of HTTP transactions issued per minute from a specific IP
address. Any deviation observed by the NIDS may be interpreted as anomalies or
misuse that instigates responses as defined by corresponding security directives.

Network # 1

Network # 2

Switch

NIDS

NIDS

NIDS

NMS

A host with

 HIDS running

Switch

Network Switch

SPAN

Firewall

Ex
te

rn
al

 N
et

w
or

k

Figure 1-4: IDS and Firewall

 Chapter 1 ■ Fundamentals of Secure Proxies 13

The key to the success of a signature‐based NIDS is the richness in the collec-
tion of the attack signatures. Identifying a unique and effective signature for a
new attack, especially a complex attack, takes time to develop and evolve. As new
attacks propagate across the networks and infrastructures, the signature‐based
NIDS is incapable of detecting these attacks while the new signatures are being
implemented. The success of the statistical‐based NIDS depends on the knowledge
or heuristics of the network characteristics that are considered as normal and
serve as the baseline. Establishing the boundaries of normal network behavior
is challenging as the network fosters a wide range of protocols and applications
and hosts a user base with a diverse spectrum of online behaviors that can trigger
sporadic traffic patterns. A statistical‐based NIDS can be effective against new
attacks because new attacks can incite network behaviors that alarm the NIDS.

A host‐based IDS (HIDS) is purposefully built, either for an operating system
or for a specific application, and operates in individual end systems. The HIDS
analyzes the operating system process identifier (PID), system calls, service
listeners, I/O and file system operations, specific application runtime behavior,
and system and application logs to identify evidence of an attack.

Firewalls are called active protection systems because a firewall is in the path
of all traffic, known as inline deployment. This enables the firewall to examine
live traffic, and when the firewall identifies an attack, it is capable of blocking
that attack while it is in progress. In other words, upon detection, a firewall can
prevent malicious traffic from reaching a targeted system.

Intrusion detection systems can be categorized as passive protection systems
because an IDS is typically connected to a SPAN (Switched Port Analyzer)
port on a network switch or to a network tap that duplicates packets for an
entire link. While an IDS can also examine every packet, however, the packets
under analysis have successfully passed through a firewall and cannot be
filtered by the IDS; those packets may also have already reached the intended
targets and enacted malicious activities. In other words, an IDS identifies an
attack that may have already taken place, at which point the IDS begins to
remediate the damage by executing countermeasures, for example, sending
alerts and notifications to monitoring and management systems. The passive
traffic‐processing nature of an IDS implies the performance of an IDS does not
have any impact on active live traffic. As such, an IDS can perform much more
in‐depth analysis, and correlate more data sets, than a firewall. A firewall fulfills
a security role that prevents the firewall from being a replacement for an IDS.

DPI is also an integral part of the IDS. Using the open source Snort software,
here is an example of a rule created by the Sourcefire Vulnerability Research
Team. The rule scans for the signature of the Flashpack/Safe/CritX exploit kit
that attempts to download a malicious file as part of the attack:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"EXPLOIT-KIT
Flashpack/Safe/CritX exploit kit jar file download";

14 Chapter 1 ■ Fundamentals of Secure Proxies

flow:to_client,established; file_data; content:"filename="; http_header;
content:".jar"; within:4; distance:24;
pcre:"/filename\=[a‐z0‐9]{24}\.jar/H";
metadata:policy balanced-ips drop, policy security-ips drop,
 service http;
reference:url,
 www.malwaresigs.com/2013/06/06/flashpack-exploit-kit-safepack/;
classtype:trojan-activity; sid:26892; rev:2;)

This example illustrates that as the IDS scans for attack signatures, it suf-
fers from the same inherent deficiencies in the DPI engines as those found in
the firewall. Evasion techniques that are used against DPI engines are also
effective in defeating the signature‐based IDS engines. In this example, the
code in bold face is a Perl Compatible Regular Expression (PCRE). The ques-
tion is, what if the exploit kit uses HTTPS to download the payload, resulting
in the payload being protected by the SSL encryption so that this rule cannot
be applied at all?

Unlike the passive network monitoring of an IDS, an IPS takes the active role
of performing mitigation actions in real‐time once attacks are detected. An IPS
possesses all of the capabilities of an IDS, but an IPS is deployed physically
inline in the network, which enables the IPS to drop attack packets, reset TCP
connections, or activate filters to block the source of the attack. An IPS can per-
form other functions such as configuring dynamic policies in security devices,
such as a firewall, to interrupt the malevolent maneuvering and prevent further
damage to the network.

Unified Threat Management and Next‐Generation Firewall
The most significant limitations of the traditional firewall are its inability to
perform payload inspection and to distinguish applications. The concept of
Unified Threat Management (UTM) gained visibility and momentum in 2004
to address the security gaps in firewalls, and to offer a solution for the lack
of unified policy management across the various security control technology
products commonly deployed together in an enterprise network. The UTM
strategy is to combine multiple security features such as a firewall, NIDS, IPS,
gateway‐based antivirus, and content filtering into a single platform or appli-
ance to offer multiple layers of security protection with simplified management
and ease of policy implementation. The security posture continued to increase
its focus on users and their applications, as the transformation in UTM took
place in parallel.

Then, Gartner Inc., an information technology research and advisory com-
pany, claimed to be the first to define the Next‐Generation Firewall (NGFW). In its
NGFW definition, the three key attributes of an NGFW are its ability to detect
application‐specific attacks, to enforce application‐specific security policies, and

http://www.malwaresigs.com/2013/06/06/flashpack-exploit-kit-safepack/

 Chapter 1 ■ Fundamentals of Secure Proxies 15

to intercept and decrypt SSL traffic. The NGFW includes all of the capabilities
of the traditional firewall and incorporates the full functionality of a signature‐
based IPS. Another key characteristic of the NGFW is its inline deployment as a
bump‐in‐the‐wire. In addition, the NGFW can collaborate with external services
to incorporate additional security‐relevant data and feeds to enhance its enforce-
ment capabilities.

The NGFW definition has a large overlap with that of the UTM. The
articulated differences have limited technical merits, and the deviations
are largely a result of verbiage manipulation. The NGFW concept seems to
be a desired byproduct of combining the UTM with the unique features of
the secure proxy. The conceptualization of the NGFW, with such a rich set
of security features, processing network traffic at multi‐gigabit wire speed,
and without any performance degradation, would be the ultimate goal
of security system design architects and developers. However, as we will
illustrate in this book, firewall and proxy are fundamentally incompatible
with respect to the policies each is designed to interpret and to enforce. The
process and method of application classification collides with the operation
of proxy interception.

Security Proxy: A Necessary Extension
of the End Point

A firewall, even with UTM, performs primarily syntactical analysis of traffic
that is largely signature driven and is capable of enforcing security with limited
actions. Without the ability to decrypt content for analysis when encountering
encrypted sessions, a firewall is confined to simply denying traffic in environ-
ments with restrictive enforcement policies. In enterprise networks, a legitimate
but encrypted session could be blocked, causing discontinuity in both business
and productivity. A security solution that can decrypt SSL cipher text, then feed
the plain text into other security technologies, is a mandatory step to combat
advanced and fast‐evolving threats.

The secure proxy was invented long before NGFW was conceptualized. The
demand for the secure proxy in enterprises in the financial sector, defense
industry, and many others has flourished since 2002. Even the design for SSL
interception was in full swing at that time. In essence, the secure proxy is the
result of combining a secure web gateway with application proxies, operating
with a complex and expressive policy engine at its core.

A security proxy, sometimes referred to as a secure proxy or simply a proxy unless
stated otherwise, performs semantic analysis in the context of individual protocols,
most importantly layer‐5 to layer‐7 application protocols. At the time of this writing,
the majority of proxies have some capability to decrypt SSL traffic. A proxy is a

16 Chapter 1 ■ Fundamentals of Secure Proxies

security enforcement companion to a firewall, an IDS and IPS, an enterprise‐grade
virus scanning appliance, analytics engines, and many other security solutions.
As illustrated in Figure 1-5, a proxy is the data hub that feeds decrypted traffic
to any attached companion system that performs one or more dedicated security
functions. Each companion system requires a different type of input. The proxy
is capable of extracting mail attachments, web URLs, and executable files from the
payload and feeding these inputs to its security attachments accordingly.

Figure 1-5: Secure Proxy as a Data Hub

- Raw Packets
Web Requests

Retrospective Analysis
Engine/Appliance

Encrypted & Non-encrypted

Traf�c

Content Analysis
Engine/Appliance

Proxy

Antivirus Scanning
Malware Scanning (Static)

URL Analysis (Malnet)
URL Categorization
Web Content Analysis &
 Categorization
Web Application Classification

Transaction Recording
Indexing
Search/Query Capability

Runtime
Behavior
Analysis

Sandboxing
Engine/Appliance

Multiple
Antivirus Engines

- Mail Attachment

- Web Download
- Executable
- Java Code
- JavaScript

Cloud Service

- Session Meta
Info

Executable Detonation
Runtime as Behavior

Runtime Network Behavior

- Process Activities
- File System Activities

- Network Service Creation
- Outgoing Connections

A proxy is predominantly deployed inside a firewall‐protected network. The
secure proxy performs proxy functions beyond just analyzing the web traffic.
We define web traffic as that which is carried over the HTTP or HTTPS proto-
cols. The secure proxy can intercept more protocols than just HTTP. However,
the proxy concept is best illustrated in Figure 1-6 using HTTP as an example.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Fundamentals of Secure Proxies 17

Figure 1-6: Proxy Concept

TCP SYN 1

TCP ACK 3

HTTP Get 7

TCP SYN-ACK2

Regular Sanitized
Content

Processing
According to

Policies

13

TCP SYN 4

TCP ACK

HTTP ServerHTTP Client Proxy

Interception

Connection

Termination

6

HTTP Get 8

TCP SYN-ACK5

Images9

Regular Content10

Adult Content11

12

As shown in Figure 1-6, the first and most important action a proxy exerts
on a connection is interception. Connection interception is achieved through
connection termination. We will use the term client to refer to the initiator of the
connection request, and the term server to refer to the original intended recipient
of the connection request. In TCP, connection termination involves the proxy
completing the TCP three‐way handshake to establish the connection with the
HTTP client. The next step in the interception process is for the proxy to establish

18 Chapter 1 ■ Fundamentals of Secure Proxies

another TCP connection with the server. In this example, the original destina-
tion is Google. Once both connections have been established successfully, the
next act of the interception procedure is for the proxy to receive traffic from one
connection and then inject that traffic, either unmodified or transformed, into
the other connection. In other words, the proxy splices the traffic between these
two TCP connections. Unlike a firewall, a proxy can modify any packet and
manipulate any content exchanged in these connections. In the example shown
in Figure 1-6, the proxy detects the presence of adult material in the returned
content and strips away that material as part of the configured policy. The sani-
tized content is then transmitted back to the HTTP client. This example illustrates
that a proxy performs intrusive maneuvering of communication exchanges that
are visible to the proxy. The payload obfuscation techniques used to defeat a
firewall are proven ineffective against the proxy. Because the proxy terminates
the connection, the proxy will reassemble packets and decode the content type
before subjecting the session to higher‐layer processing.

A real‐life example of a proxy in action is free WiFi access at airports. When
you connect to a WiFi access point, your computer indicates it is connected
and has obtained an IP address. Yet, without opening a web browser you are
unsuccessful when you try to run any application that needs the Internet. This
is because you have not agreed to the terms and conditions of use. When you
open the browser for the very first time, a legal agreement web page displays,
and you can proceed to use the Internet once you accept that agreement. This
legal agreement page displays as long as you have not accepted that agreement,
regardless of how many times you choose to close and reopen the web browser.
This is called a captive portal, which impels a user to fulfill some action, such
as responding to user authentication queries. A captive portal is also used by
hotels that offer Internet access, where a web page prompts the user to review
and agree to the charges on first use. A web proxy (or HTTP proxy) is one of
many techniques and an effective approach in implementing a captive portal.

Transaction‐Based Processing
A proxy also keeps state information on the connections it processes, but unlike
a firewall, a proxy participates in the connection activities, exchanging packets
as a communicating peer both to the originator of the connection and to the
originally intended destination. As such, there are some notable differences
when comparing the firewall state table against the proxy state table, as shown
in Figure 1-7. Each entry in the firewall state table represents a single connection.
As Figure 1-7 illustrates, the proxy must maintain the state information that cor-
relates the two TCP connections with the two corresponding HTTP transactions
as belonging to a single user transaction that was initiated from that specific
HTTP client. When the firewall processes incoming packets, only the packet
headers are applied when updating connection state information. In the proxy

 Chapter 1 ■ Fundamentals of Secure Proxies 19

case, entire packets are processed and may be stored as part of the transaction
state information. Remember, the proxy must receive traffic from the client‐side
connection and then transmit that traffic, either modified or verbatim, to the
server‐side connection, and vice versa.

Figure 1-7: Proxy State Table

Proxy State Table

Transaction InformationTCP/IP Header
Client-Side

Incoming Traffic
Payload

Policies
Client-Side

stored

2 Connections

TCP + IP Connection TCP + IP Connection

HTTP Transaction

1.

2.

HTTP Transaction

UDP + IP Connection UDP + IP Connection

Authenticate User

Server-Side

Transform Content

Scan Content for Malware

Cache Video Content

TCP/IP Header

Payload

Server-Side
Incoming Traffic

Some application‐level protocols are carried over UDP. Because UDP is
connectionless, the proxy must have the ability to track when a UDP‐based
transaction begins and ends. Similar to the TCP case, the proxy needs to create
two UDP flows and update the state information according to the transaction.
For example, a DNS proxy creates the UDP flow entry in its state table when
it processes the DNS query message. The DNS proxy may modify the query
message before sending it onward to the identified DNS server. The proxy
must maintain this DNS transaction until the proxy receives the corresponding
answer message, regardless of how the proxy may have processed the query
content. The DNS proxy may change the time‐to‐live (TTL) of a particular entry
in the DNS answer, or it may remove entries from the answer due to policy
restrictions. The DNS proxy removes the transaction from the state table once
it has transmitted the final DNS response to the client. In this example, the
DNS proxy treats the DNS query and the subsequent response as the complete
DNS transaction.

The Proxy Architecture
The DNS proxy example illustrates that a proxy must have in‐depth knowl-
edge about a specific application protocol and also about its structure and
operational detail in order to perform proper interception. Depending on the
protocol in question, examples of this knowledge may include the following:
whether a centralized directory service is involved in locating a service or
peer; how the connection is established between the communicating peers;

20 Chapter 1 ■ Fundamentals of Secure Proxies

the type of authentication mechanism employed; the encryption methods
that are available and the negotiation approach; the types of requests and the
associated payloads; the types of responses and the associated payloads; and
how the various content is encoded and transported. For every application
protocol that may exist in an enterprise network, if that application requires
management other than the simple allow‐or‐deny type of enforcement, then
there exists a specific proxy designed and built for that application protocol,
performing the necessary interception and processing requests and responses
according to defined security policies.

A secure proxy is an appliance that incorporates various application prox-
ies into a single platform, with the proxies collaborating with one another to
process application traffic and enforce policies. Figure 1-8 shows the high‐level
architecture of a proxy. As shown in the figure, the proxy is comprised of three
main components:

 ■ The protocol detection and application classification engine (PACE)

 ■ Various protocol and application proxies

 ■ The policy engine

When the proxy receives a transaction for the first time, the PACE dispatches
traffic to the proxy according to the default port designation. The PACE first
terminates the connection and then transfers the established connection to a
specific proxy. The connection transfer is done through a dispatcher that has
the knowledge of the various well‐known ports and the designated proxies.
As shown in Figure 1-8, the ports table maps a proxy to a well‐known port.
For example, the DNS proxy is assigned to handle port 54, and the SSH proxy
is assigned to port 22. Because malicious traffic attempts to evade the firewall
by utilizing the well‐known ports, a specific proxy must accurately detect if a
given traffic flow is in fact from the protocol that the proxy is built to handle.
For example, port 443 is used by HTTPS sessions. The first set of data packets
exchanged on the established connection must be the SSL handshake traffic.
Each proxy scans the payload for specific known signatures belonging to the
protocol or application in question. In the HTTPS example, when the SSL proxy
accepts the connection from the dispatcher, the SSL proxy expects to receive
the SSL ClientHello record, which begins with the byte pattern: 0x16 0x03
0x01 0x02 0x00 0x01 0x00 0x01 0xfc 0x03 0x03. The SSL proxy redirects the
transaction back to the PACE to perform further protocol detection if it cannot
interpret the payload as SSL traffic.

The keen reader will now oppugn some of the statements just made in the last
paragraph: if a proxy scans the payload for specific known signatures, then how
is the proxy different from a firewall or IDS system with a built‐in DPI engine?
How can the SSL proxy scan for a predefined byte stream in encrypted traffic?
And how can a proxy scan encrypted content?

 Chapter 1 ■ Fundamentals of Secure Proxies 21

The first question, asked differently, is: if the PACE has the ability to classify the
traffic against specific protocols and applications, is the PACE duplicating work
that is performed by the proxies? The answer is that there is no work duplica-
tion, and here is the reason why: The HTTP protocol is an ASCII protocol. The
PACE parses the payload for keywords such as “HTTP/”, “GET”, “Content‐type”,
“Content‐length”, “Accept:”, and “<HTML>”. Together these keywords provide
a high probability that the payload belongs to an HTTP request. Therefore, the
PACE forwards the transaction to the HTTP proxy. Once the HTTP proxy receives
the transaction and encounters the keyword “GET”, it interprets this keyword as
a method and parses the subsequent bytes to look for the parameter (such as a
filename) for this method.

Figure 1-8: Proxy Architecture

Policy Engine

Default

Dispatcher

Incoming
Session

443
HTTPS Proxy

Ports Table

80
HTTP Proxy

54
DNS Proxy

22
SSH Proxy

2598
Citrix Proxy

...
Others

HTTP Proxy

SSL Proxy

DNS Proxy

Citrix Proxy

HTTP

HTTPS

Web Application
Proxies

Facebook Proxies

2

3

1

YouTube Proxies

Protocol
Detection &
Application
Classification
Engine

22 Chapter 1 ■ Fundamentals of Secure Proxies

The PACE parses the payload and classifies the traffic according to the HTTP
protocol syntax. The HTTP proxy understands the full semantics of the
HTTP protocol and, as such, can enforce security policies that are written
specifically around the HTTP protocol. For example, a policy rule can be

Deny if (http.method == GET) and (Host == www.adserver.com)

Each proxy has its own nuances. In each proxy, security policies are designed
to operate on specific aspects of a protocol. Therefore, as this simple example
demonstrates, the proxy cannot apply any security policies unless it can, as a
first step, accurately detect the application or the protocol in question. As we
will show in more detail, a proxy identifies an application by specific payload
signatures and according to the sequence of events and exchanges that must
take place, combined with the runtime behavior of the application.

Application classification and protocol detection may require multiple pack-
ets before reaching the conclusion on what the application or protocol is. Each
enterprise has a different level of stringent policies on how many packets can be
permitted to flow through the proxy unrestricted before the proxy interrupts the
flow and closes down the transaction. Therefore, the PACE and the specific proxy
must work collaboratively to quickly identify the traffic. If the proxy cannot clas-
sify the protocol, the PACE can choose from two main options when proceeding:
the first option is for the PACE to stop and end the transaction immediately; the
second option is for the PACE to re‐inject the packets received from the initia-
tor connection into the other connection unmodified. In either case, the PACE
may log this transaction for the administrator. A proxy that chooses the second
approach is concerned more with preventing communication disruption than
with strict security enforcement where packet leaks are to be kept to a minimum.

The policy engine executes in the context of all modules and components
and across all layers between layer 2 and layer 7. The policy engine is covered
in detail in Chapter 3.

The SSL messages transmitted at the early stages of the handshake exchange
are not encrypted. These messages contain sufficient detail for an SSL proxy to
determine if it will perform interception on a specific transaction. Other proxies
rely on the SSL proxy to decrypt cipher text and offer these other proxies the
plain text for further analysis and processing.

SSL Proxy and Interception

The remaining discussion in this chapter will focus on the HTTPS proxy because
it depends on the SSL proxy. The SSL proxy is challenging to design, implement,
and deploy not only because of privacy concerns but also because the SSL proxy
performs identity emulation, and it must enforce authentication and the trust
model, which are essential in secure communication. Figure 1-9 illustrates two

http://www.adserver.com

 Chapter 1 ■ Fundamentals of Secure Proxies 23

main SSL interception scenarios. As shown in the figure, the proxy must mas-
querade as the server when communicating with the client. Similarly, the proxy
must assume the identity of the client when it connects to the server. In essence,
the proxy acts as the man‐in‐the‐middle (MITM), and if the proxy does a good job,
its presence remains undetected throughout its operational lifetime. The proxy
can succeed in interception only if both the client and the server trust the proxy.

Figure 1-9: SSL Interception

Client Hello

Modi�ed /Unmodi�ed
Server Hello

Scenario
1

Scenario
2

Decides
to Intercept

Proxy

Decides NOT
to Intercept

TCP PipeRemaining SSL Handshake

Remaining SSL Handshake

1

4

Client Hello 2

Client Hello 1

Unmodi�ed
Server Hello

7

Original

Client Hello 2

Close TCP Connection 4

Client Hello 5

Modi�ed

Unmodi�ed

Server Hello3

Server Hello3

Server Hello6

24 Chapter 1 ■ Fundamentals of Secure Proxies

In the first scenario, when the proxy receives the SSL ClientHello message at
the beginning of the SSL handshake, the proxy forwards this ClientHello mes-
sage to the server unmodified. When the corresponding ServerHello message
reaches the proxy, the proxy makes the interception decision by applying the
configured policies to the ServerHello message. At this point the proxy may
modify the ServerHello message before transmitting it back to the client. The
proxy does not modify the ClientHello message for a good reason. The final SSL
message exchanged between the client and the server is the Finished message.
The Finished message contains the MD5 digest of all of the handshake messages
combined with the negotiated master secret. If the proxy decides not to intercept
this connection but it has modified any of the handshake messages, such as the
initial ClientHello message, then the MD5 digest will fail verification at both the
client and the server ends, resulting in the client and the server failing to complete
the handshake even after the proxy has decided not to intercept that transaction.

There are several challenges the proxy must consider during its interception of
SSL traffic. The client may offer a cipher suite that is not supported by the proxy.
In this case, the proxy must modify the ClientHello message to substitute a cipher
suite that the proxy supports. Other negotiation parameters such as the version,
whether it is TLS 1.1, TLS 1.2, or SSL 3.0, could cause similar incompatibility
issues, and these fields may be modified by the proxy en route to the server. For
example, the proxy may replace and substitute a cipher suite it supports in the
ClientHello message. This case is illustrated in the second scenario in Figure 1-9.
In this scenario the proxy first saves a copy of the original ClientHello message
before making the necessary modifications to its content and then transmits the
new ClientHello message to the server. Then the proxy decides not to intercept
the traffic after processing the ServerHello message. Because the ClientHello
message was modified, the proxy must close the server‐side TCP connection. Next,
the proxy reconnects to the server with a new TCP connection and then sends
the saved original ClientHello message to the server as a new SSL handshake
negotiation. The client is unaware of any of these server‐side activities. When the
proxy forwards the ClientHello message to the server unmodified, however, the
ServerHello message indicates the server has chosen a set of parameters that are
not supported by the proxy; in this case the proxy will handle the transaction in
the exact same way as it did in the previously described processing scenario. In
this second scenario, once the SSL handshake completes, the SSL proxy acts as
a packet forwarding system that splices the two connections into a TCP tunnel.
The packets that flow across this TCP tunnel are encrypted packets, and the
proxy performs only the packet forwarding action.

Interception Strategies
The second SSL interception scenario alludes to an interesting question: can
SSL interception be accomplished without the TCP termination? There are

 Chapter 1 ■ Fundamentals of Secure Proxies 25

two main SSL interception strategies: one leverages the full TCP connection
termination, while the other relies only on SSL encryption and decryption. The
two SSL interception scenarios presented in Figure 1-9 can be summarized as
the SSL interception strategy illustrated in Figure 1-10. This SSL interception
strategy offers the most flexible and intrusive policy‐driven processing of the
content: content insertion, deletion, and transformation are all possible with
this approach.

Another SSL interception strategy is depicted in Figure 1-11. With this inter-
ception strategy, a single TCP connection is established between the client
and server; in other words, the proxy does not terminate the TCP connection.
The proxy has the ability to decrypt and encrypt the content within the SSL
session, but the proxy cannot modify the content and must keep the content
fully intact. Here is the reason why: SSL protects and transmits the data using
a record protocol. The SSL record protocol is similar to the IP fragmentation
and reassembly mechanism, where the data is divided into fragments and each
fragment is independently encrypted and transmitted. On the receiving end,
each encrypted payload is independently decrypted, verified, and reassembled
back into the original data. Any modification applied to any of the SSL records
would alter the original data and may render the data invalid.

Figure 1-10: Type‐I SSL Interception

Decryption

Pr
oc

es
si

ng
Pr

oc
es

si
ng

Encryption

Connection

Termination

DecryptionEncryption

Data may have
changed

Data may have

changed

Intrusive Processing:

 Insert, Delete, Modify

 Data

Connection

Termination ServerProxyClient

1 101
010

101
010

101
010

101
010

32

3 12

26 Chapter 1 ■ Fundamentals of Secure Proxies

Unlike the termination‐based interception, the main course of action the proxy
can enforce is to reset that single TCP connection, thus breaking the connectivity
between the two end points. As depicted in Figure 1-11, the decision to break
the TCP connection can come from a variety of sources. Once the encrypted
payload has been transformed from cipher text into plain text, the SSL proxy
can redirect the plain text to a diverse set of security devices to perform vari-
ous in‐depth content‐centric analysis. For example, as shown in Figure 1-11, the
content can be sent to a malware scanner first, and if something suspicious is
discovered, the malware scanner returns an indication to the proxy. At that point,
the proxy places the suspicious content into a malware sandbox to detonate the
potential malware and investigate the outcome of the controlled execution. As
soon as the malicious nature of the content is confirmed and the malware has
been identified, the proxy begins retrospective analysis of the historical data to

Malicious - Reset Connectio
n

Client Server

Original
Data

Proxy

Retrospective Analysis
Appliance

Malware Scanner

OK

Malware Sandbox

Is data
malicious?

Decryption

2

3

5

4

6

1

5

Encryption

No Connection

Termination
Non-intrusive,

 No Insertion Or Deletion

 of Data

101
010

101
010

101
010

101
010

101
010

101
010

Figure 1-11: Type‐II SSL Interception

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Fundamentals of Secure Proxies 27

discover the earliest exposure to that vulnerability and begins the construction
of countermeasures. In parallel, the proxy shuts down the TCP connection to
prevent further damage.

The proxy communicates with the other security devices by utilizing regular
TCP or UDP connections and transmitting the plain text over these standard
communication channels to maximize interoperability, thus eliminating the
need for these devices to make any software modifications.

Referring back to the proxy architecture illustrated in Figure 1-8, the concept
of transaction handoff was discussed in the context of application recognition:
the SSL proxy transfers the transaction to another proxy through the PACE
when the transaction operates over a protocol on top of the SSL. Another purpose
for the transaction handoff is when one or more proxies must work collabora-
tively to manage and manipulate a transaction. The transaction handoff concept
is detailed in Figure 1-12.

Figure 1-12: Transaction Handoff

HTTPS
443

HTTP ProxySSL Proxy

External Request

HTTPS proxy understands

 the sequence of events

 needed to take place and

 what each proxy must perform

Transaction “Handoff”

Works in Concert

As shown in Figure 1-12, the HTTPS proxy is conceptually comprised of two
proxies: the SSL proxy and the HTTP proxy. In practice, the HTTP proxy is fully
aware of the SSL processing detail when it handles the HTTPS request. Once
the SSL handshake is complete, the SSL proxy must transfer this transaction
to the HTTP proxy for HTTP‐based proxy operation. Another example is the
stunnel proxy, which is comprised of the SSL proxy and the TCP tunnel proxy.
Therefore, the SSL proxy is typically implemented as a common proxy that
provides services at the SSL layer to other proxies. Based on HTTP‐specific
policies, the HTTP proxy may instruct the SSL proxy to initiate certain opera-
tions, for example, performing a rehandshake, disallowing session resumption,
or perhaps requiring client certificate authentication in future transactions with
a specific client.

28 Chapter 1 ■ Fundamentals of Secure Proxies

Certificates and Keys
One of the SSL design goals is to facilitate server authentication. For example,
if you are making an online purchase at Amazon, your web browser must
ascertain whether it is indeed communicating with an Amazon server before
transmitting your credit card information to that server. An X.509 certificate
binds a public key to a specific entity. A trusted third party, the certificate
authority (CA), verifies the identity of the entity that owns the certificate and
ensures the entity possesses the corresponding private key. At the completion
of successful validation, the CA signs the certificate with its digital signature
as proof of the certificate’s authenticity. A CA‐signed certificate guarantees
the public key contained in the certificate belongs to the entity as claimed
in that certificate. The CA’s digital signature can be verified using the CA’s
public key.

The fact that an SSL proxy can perform traffic decryption and re‐encryption
after transaction interception implies that the SSL proxy possesses the server’s
private key if server authentication is mandatory. In practice and in the major-
ity of cases, the SSL proxy will not have the server’s private key. Can you
imagine the SSL proxy having private keys from Google, Amazon, Facebook,
Netflix, or any other commercial websites? Figure 1-13 illustrates how the SSL
proxy achieves the keying mechanism necessary to perform decryption on
intercepted traffic.

As shown in Figure 1-13, when the proxy receives the server certificate in
Step 4, it modifies the certificate before sending it to the client. The proxy
changes the certificate issuer to be the proxy itself. Because each certificate
has a pair of keys—one public and one private—associated with it, the proxy
replaces the original server’s public key with its own public key. After mak-
ing all of the necessary changes to the server certificate, the proxy signs the
modified certificate using the private key of a preinstalled CA certificate and
then replaces the signature field with the new signature value. The proxy
transmits this newly transformed certificate to the client. How does the cli-
ent respond when it receives this certificate from the proxy and begins server
authentication?

The server certificate verification will complete successfully and unevent-
fully if the proxy is a legitimate intermediate CA holding certificate signing
authority, and it is a part of a certificate chain that terminates at a client‐trusted
root CA. However, in most deployment situations the proxy will not have cer-
tificate signing authority. In this case, the client will neither trust nor accept
the certificate fabricated by the proxy without user intervention. The common
visual indication of a problematic certificate is a web browser pop‐up window,
similar to the one shown in Figure 1-14. In this example a proxy is deployed
between the client and the Internet. When the user tries to access the Google
website, the proxy modifies the Google certificate, subsequently triggering

 Chapter 1 ■ Fundamentals of Secure Proxies 29

In the enterprise environment, such a browser pop‐up window is a good
indication that a corporate proxy is present in the network, which enforces the
corporate use policy. Outside the corporate network, such an alert triggered by
a non‐verifiable certificate is strong evidence that a MITM attack may be taking
place somewhere in the infrastructure.

SSL interception is confronted with another challenge when secure servers
require client authentication. Client authentication may be necessary in situ-
ations where the client is granted access to restricted or highly confidential
resources and services, such as military systems, only after the client authenticates

Figure 1-13: Server Certificate Modification

Modified Certificate

Proxy

Modi�es the
server certi�cate

Was signed
by the CA

Version

Extensions...

Signature Value

Subject Unique ID

Issuer Unique ID

Subject Public Key
Subject Name

Validity Period

CA Signature Alg.

Issuer Name

Serial Number

Now signed
by the proxy

Remaining SSL Handshake~~ ~~

X.509 Version 3 Certificate

Changed to the new

signature value

after proxy signs

the modi�ed certi�cate

Changed
 to proxy

Changed
to the proxy’s

public key

Certificate

Server Hello

Server Hello

Client Hello

Client Hello

5

4

3

2

1

6

the browser pop‐up window at the client end. As shown in Figure 1-14, the
browser pop‐up window states the server certificate cannot be verified as the
reason for user notification.

30 Chapter 1 ■ Fundamentals of Secure Proxies

Installing an individual client certificate in the proxy so that the proxy can
offer the right client certificate upon request by the server is a possible solution
in enterprise networks. However, such a solution is neither scalable nor practi-
cal in any organization with a large number of users. One approach to solving
the scalability problem is using a technique called client certificate emulation.
Figure 1-15 illustrates an example of such a practice.

Figure 1-14: Browser Issued Warning about Proxy’s Certificate

successfully. The client certificate must be issued by an externally known and
trusted CA. Client authentication is controlled by the server. The server that
demands client authentication sends a certificate request to the client during
the SSL handshake process.

 Chapter 1 ■ Fundamentals of Secure Proxies 31

The Common Access Card (CAC) serves as standard identification for mili-
tary and DoD personnel. The CAC is a smart card that uniquely identifies an
individual with that individual’s private key embedded in it. In the fictitious
scenario depicted in Figure 1-15, the same trusted CA is installed in the proxy
and in the servers, and the proxy is given intermediate signing authority by
this trusted CA. Once the proxy authenticates an individual, the proxy gener-
ates a certificate (possibly with a limited lifetime) that identifies this specific
individual and the associated key pair and signs this certificate. When the
server demands client authentication for that individual, the proxy offers the
generated certificate to the server. The server can verify this certificate because
the proxy has the signing authority issued by a CA that is also trusted by
the server. As shown in Figure 1-15, instead of a single trusted CA, the proxy
could install three different trusted CAs, one for the Air Force server, one for
the Army server, and one for the Navy server. These CAs are trusted by each
server, respectively.

Figure 1-15: Client Certificate Emulation

ProxyClient Certi�cate
Emulation And
Authentication

Genera
tes

 user
 1

cer
t u

sin
g ce

rt #
1

Generates user 3

cert using cert #3

Generates user 2
cert using cert #2

Air Force Server

Trusts proxy
certificate #1

Army Server

Trusts proxy
certificate #2

Navy Server

Trusts proxy
certificate #3

CAC Reader

32 Chapter 1 ■ Fundamentals of Secure Proxies

In the non‐termination–based SSL interception strategy, as depicted in
Figure 1-11, the proxy must examine the SSL handshake exchange and modify
the server certificate similar to the termination‐based interception. The proxy
transmits the modified server certificate to the client and uses that modified
certificate along with its own key pairs to negotiate a master secret with the
client. This master secret is used for traffic encryption and decryption between
the client and the proxy. The proxy exchanges the master secret with the server
using the server’s original certificate. This master secret is used by the proxy to
re‐encrypt the decrypted client content and then transmit that newly encrypted
traffic to the server.

With both interception strategies, if the server’s private keys are installed in
the proxy, then the proxy can avoid modifying the server certificate completely.
In that case, the proxy has full capability to decrypt any content transmitted to
the server using the server’s private key.

Certificate Pinning and OCSP Stapling
Certificate pinning is a solution that attempts to solve a MITM attack when an
entity tries to communicate with a peer securely using SSL, but the attacker
assumes the identity of the peer by intercepting the certificate validation process
using a rogue but valid certificate that masquerades as the peer.

How can a rogue but valid certificate be created in the first place? Such an
attack was first made possible due to the fact there were still CAs that used the
MD5 cryptographic hash function to generate certificate signatures. The MD5
hash function has known collision vulnerabilities that were discovered back
in 1993; in a nutshell, it means that two different inputs to the same MD5 hash
function can produce the same exact hash output. In 2005 researchers dem-
onstrated a practical method to craft a pair of X.509 certificates, each having a
different public key, to result in the same computed MD5 digest. The collision
vulnerability attack against MD5 demonstrates that similar attacks could be
made against other cryptographic hash functions, such as SHA‐1, that are in
use by CAs. Once an intermediate rogue CA certificate with certificate signing
authority can be constructed, such a rogue CA certificate could be used to sign
any fabricated certificate bearing the identity of any entity.

In recent years, there have been known incidents where CAs have issued ques-
tionable intermediate or subordinate root certificates. For example, in early 2012
Trustwave revoked a subordinate root certificate it issued to an unnamed company,
which enabled that company to forge and issue unlimited certificates claiming the
identities of any server or organization. The subordinate root certificate and the
forged certificates it generated were all stored inside a hardware security module
(HSM), and that specific certificate was issued for that company’s internal use; how-
ever, such a certificate could have been misused, which warranted the revocation.

 Chapter 1 ■ Fundamentals of Secure Proxies 33

Another venue for attackers to gain access to rogue certificates is by breach-
ing a CA and then obtaining rogue certificates through that CA. In late 2011
DigiNotar, a Dutch CA, was hacked and its certificate issuing servers were
compromised by the hackers. Through DigiNotar, the hackers issued rogue
certificates as well as signing rogue certificates. The breach came to light only
after a third party made a public disclosure, and rogue certificates continued
in circulation after the discovery and after DigiNotar claimed to have revoked
all such rogue certificates.

With certificate pinning, the peer’s certificate is included in the application
when the application is built. For example, Google pins its certificates in its
Chrome web browser, and when users download the Chrome browser, the Google
certificates are already embedded inside the executable file. A peer’s certificate
can be manually inserted into a trusted certificate list after that certificate has
been obtained through a secure and trusted channel. Certificate pinning elimi-
nates the need to validate a certificate at runtime, during the secure connection
establishment phase. Because the public key is the most important element of
the certificate, pinning the public key instead of the certificate is another viable
solution. There are no known workable solutions for an intercepting proxy to
circumvent the certificate pinning mechanism other than holding the actual
pinned certificate at the proxy.

A related identity validation concept is Online Certificate Status Protocol
(OCSP) stapling, formally known as the Certificate Status Request TLS feature
extension. OCSP stapling places the burden of identity verification on the peer,
who must include an OCSP‐signed and time‐stamped response proving its
certificate is valid during the TLS or SSL handshake. OCSP stapling also chal-
lenges the proxy’s ability to perform transparent interception.

SSL Interception and Privacy
Privacy laws differ from country to country and region to region. Therefore, a
proxy must sometimes obtain explicit consent from a user before intercepting
any user traffic. When the proxy has intermediate certificate signing authority
issued by a trusted root CA, any modified server certificate will not trigger
a browser pop‐up warning message because this modified certificate can be
verified. In this case, how could the end user prevent proxy interception if the
user has the right to choose the action?

Due to privacy concerns, Blue Coat Systems took the approach of utilizing
the client authentication mechanism to determine if the client explicitly grants
permission to allow for proxy interception. The proxy is programmed to parse
two preformatted certificates, one that has the certificate common name “Yes
Sir”, and the other that has the common name “No Sir”. The client installs two
such certificates in its key ring, as shown in Figure 1-16.

34 Chapter 1 ■ Fundamentals of Secure Proxies

Policies configured in the proxy would instruct the proxy to request cli-
ent certificates for a pre‐determined set of destinations that show up in client
requests. Because the client has multiple certificates installed in its key ring, the
browser prompts the user to select the certificate to return to the server. This
process is shown in Figure 1-17.

Figure 1-16: Client Consent Certificate

Figure 1-17: Client Consent Pop-up

 Chapter 1 ■ Fundamentals of Secure Proxies 35

Now the user has direct control over whether the proxy should intercept that
particular session by selecting the right certificate. In other words, by choosing
the “No Sir” certificate to transmit to the proxy, when the proxy parses this cli-
ent certificate and sees the common name “No Sir”, the proxy takes that as the
cue and bypasses the session without SSL interception.

Summary

Firewalls are security devices that analyze traffic according to syntactical rules.
The security policies enforced by a firewall are based on limited actions such
as Allow or Deny. Firewalls provide the first level of traffic filtering. Intrusion
detection systems perform traffic analysis based on historical data and heuristics
and can scan for known threats. Both firewalls and intrusion detection systems
become inoperable with encrypted traffic. This fundamental challenge is solved
by proxies. Proxies are complex to design and implement. A proxy operates
with deep knowledge of the semantics of an application or a protocol. The SSL
proxy is a testament to just how sophisticated a proxy must be in order to suc-
cessfully intercept and process various transactions. A significant part of this
chapter was devoted to explaining the inner workings of the SSL proxy. The
next chapter focuses on the various types of proxy deployments and discusses
associated deployment challenges and solutions.

www.allitebooks.com

http://www.allitebooks.org

37

A proxy exerts its power and control on a network as an intelligent security device
through its ability to perform deep traffic analysis in the context of an applica-
tion and its users. One measure of the effectiveness of the proxy is its ability
to intercept application traffic without interrupting the application or causing
any side effects. An application being affected by a proxy can exhibit symptoms
such as being unresponsive to user commands, engaging in transactions with
sporadic data flows and unpredictable response times, and sometimes ceasing
to function completely. Another metric that gauges the effectiveness of a proxy
is its level of stealthiness while the proxy is active. When a proxy is stealthy, it
can avoid being detected by both the application and its user.

After its successful incursion into a network, as part of its continued assail-
ment, a sophisticated malicious application performs middle‐box detection to
avoid being discovered by the security proxies. Once a malicious application
detects the presence of a proxy, it begins executing countermeasures such as
changing its encryption methods, altering its communication patterns, mas-
querading as another victim, or sending a notification to its command‐and‐
control server seeking further instructions. The proxy must hide itself from
such applications so it can continue to surveil, pursue, and ultimately apprehend
the malicious source.

The strategic physical placement of the proxy in the network determines
the amount of network activity that may be subjected to proxy examina-
tion. The types of deployments demand that the proxy perform supporting

C H A P T E R

2
Proxy Deployment Strategies

and Challenges

38 Chapter 2 ■ Proxy Deployment Strategies and Challenges

network functions that are commonly found in a bridge or in a router. In
this chapter we will discuss the various challenges of deploying a security
proxy and describe the solutions that can either solve or alleviate these
deployment issues.

Definitions of Proxy Types: Transparent Proxy
and Explicit Proxy

A proxy’s visibility to a user or to an application defines whether the proxy is a
transparent proxy or an explicit proxy. The following example illustrates the char-
acteristics of a transparent proxy. When Bob communicates with Alice through
a peer‐to‐peer (P2P) application, such as an instant messaging (IM) application,
once a transparent proxy intercepts this IM session, that transparent proxy
masquerades as Bob when it speaks to Alice, and it masquerades as Alice when
it speaks to Bob, all without either Bob or Alice knowing such an impersonation
is taking place during that session. Also, no explicit configuration change is
necessary in either Bob or Alice’s IM application settings. The goal of the trans-
parent proxy is to be as invisible as possible to both the client and the peers that
the client communicates with. The application protocol operates normally and
is completely unaware it is exchanging packets with a proxy. In this example,
Bob and Alice did not give explicit consent to the interception of their session.

Unlike a transparent proxy, a user is aware of the presence of an explicit proxy.
The application is explicitly configured to transmit certain types of traffic to
the proxy for processing. For example, in the Firefox web browser, under the
Advanced ➢ Network menu, various proxy configuration settings are available
in the Connection Settings panel that specify how to access external networks
through various proxies. As shown in Figure 2-1, the SSL proxy setting contains
the IP address of the SSL proxy. When the user enters a URL that requires HTTPS
transport, the browser will forward this request to the configured proxy. In the
case of an explicit proxy, because a user has chosen to communicate through a
proxy, the user gives explicit consent for the interception.

As shown in the Firefox Connection Settings panel, each explicit proxy is
specified by an IP address and a port number, which means the following:

 ■ An explicit proxy does not masquerade as the client or the server.

 ■ An explicit proxy can be physically situated anywhere on the network as
long as there is a routing path between the client and the explicit proxy,
as depicted in Figure 2-2.

 ■ Multiple explicit proxies can co‐exist in the same infrastructure, each
offering a different set of proxy services. Also, each proxy can be located
on separate network segments. In Figure 2-2, the SSL proxy is directly
connected on the same physical network segment as client A and client B.

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 39

The SOCKS proxy is one routing hop away from both clients, as is the
HTTP proxy. Client A and client B can request proxy service from any of
these explicit proxies.

 ■ The IP address combined with the port number identifies the service access
point where the proxy performs the connection interception. In this example
the SSL proxy is located at IP address 10.9.45.3, and it is listening on port
443 for incoming interception requests to service.

 ■ Because the explicit proxy can be located anywhere on the network, the
proxy must use a source IP address that is different from the client’s IP
address when the proxy connects to the originally intended destination
after intercepting the client‐side request. We will discuss the types of
source IP addresses that can be set for a proxy‐initiated connection in more
detail in a later section titled “Challenges of Transparent Interception”.

Figure 2-1: Configuring Proxy Settings in the Firefox Browser

If the client sends its request to the proxy or if the application connects explicitly
to the proxy, how does the proxy know what the original intended destination
is for a given transaction? An application protocol needs to contain enough
destination information in its protocol requests in order for the explicit proxy
to function properly. For example, for an HTTP transaction the web browser
will issue a full URL in its HTTP request if the “HTTP proxy” setting is defined
in the browser, as in

GET http://www.mywebsite.com/index.html HTTP/1.0.

http://www.mywebsite.com/index.html

40 Chapter 2 ■ Proxy Deployment Strategies and Challenges

Even when the browser sends the partial URL, as in GET /index.html HTTP /1.0,
the HTTP protocol specification provides the Host field in the HTTP request
header that specifies the original intended destination and can include an
optional destination port number. The destination can be a server name that is
expressed as a fully qualified domain name (FQDN) or by an IP address. The
proxy extracts the destination from the Host field when it makes the outbound
connection on behalf of the client. As this example illustrates, implementing
an explicit proxy is possible only if an application protocol understands the
concept of a proxy and provides a level of protocol support for operating with
a proxy. However, the majority of application protocols are designed to run
independently, without any proxy intervention. A transparent proxy is most
likely the best method of deployment to intercept and process traffic from
these types of applications or protocols. For the remainder of this book, we
will use the terms intercepted, proxied, and terminated traffic interchangeably to
describe traffic that is intercepted and processed by a proxy, either transpar-
ently or explicitly.

Intranet

Internet

SSL Proxy

Clients/Users HTTP Proxy

Explicit Proxy

A

B

SOCKS Proxy

Request f
ro

m
 C

lie
nt

 A
Request f

ro
m

 C
lie

nt
 A

Request from Client B

Figure 2-2: Explicit Proxy Deployment

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 41

Inline Deployment of Transparent Proxy: Physical
Inline and Virtual Inline

Transparent inline deployment offers the most flexibility to a proxy with
respect to security policy enforcement, for the simple reason that the more
traffic that is accessible to the proxy, the more traffic can be subjected to
proxy examination and subjugated under policy control. The inline deploy-
ment can be categorized as either physically inline or virtually inline. All traffic
on a network segment traverses the transparent proxy when that proxy is
deployed physically inline. With virtual inline deployment, a configurable
option is available to send either a selected subset or all of the network traffic
to a transparent proxy.

Because network operations are commonly separate from security opera-
tions, network administrators, not being security engineers, are typically
reluctant to deploy a proxy inline. The main reason is because network
management is mostly concerned with optimal network resource assign-
ment and utilization and maximization of network performance and uptime;
ultimately network management is about attaining and maintaining the best
end user experience. On the other hand, security operations generally focus
on risk assessment, threat and vulnerability identification, and asset protec-
tion. Oftentimes security operations are viewed as a hindrance to network
performance and an inconvenience for end users. Therefore, in addition to
providing security capabilities and solutions, a proxy must strive to achieve
scalability and stability, and equally as important from a network operation
perspective, a proxy must minimize its effects on network traffic and “not
break any applications”.

Physical Inline Deployment
With physical inline deployment, a proxy is physically situated in a network as
a bump in the wire, as shown in Figure 2-3. A transparent proxy typically installs
in it a bypass network adapter for each network segment that it is attached to.
A bypass network adapter, called a bypass card for short, is a special network
device with built‐in hardware circuitry that can be programmed to behave like
a piece of wire after losing power or after the proxy stops activity (possibly
due to a software crash) for a predetermined period of time from the software
perspective. In the case of either hardware or software failure, this fail‐to‐wire
feature is crucial to assure operational continuity in a production network. The
network users must not be affected by the proxy outage or else lost productiv-
ity could be costly. At a minimum, the bypass card has two physical ports. It is
this pair of ports that are connected by the special circuitry to become a wire
during a system failure or loss of power.

42 Chapter 2 ■ Proxy Deployment Strategies and Challenges

The transparent proxy must provide various networking capabilities that are
crucial to its normal operation with this physical inline deployment scenario. One
of these networking capabilities is that the proxy must operate as a transparent
learning bridge. As a bridge, all of the network interfaces run in the promiscuous
mode to enable the proxy to receive all packets. Under normal conditions the
bypass card operates as a regular network interface, and the proxy treats each
port as a separate bridge port. The promiscuous mode of operation implies the
transparent proxy must make the right decision on whether to intercept specific
traffic flows. Consider the case where a transparent proxy intercepts a connection
when both of its source and destination end points reside on the same physical
network segment. Both the proxy and the destination will respond to the con-
nection request, but the source will connect to the one that responds first. The
communication will incur an unnecessary delay if the proxy responds first.
Because the security policies implemented in the proxy are designed to provi-
sion traffic that takes place between entities that reside on different networks,
the involvement of the proxy is unproductive and provides no security benefits
in this scenario. With the learning bridge, the proxy compares the bridge ports
where the source and the destination are known to reside on. Matching bridge
ports indicate that the source and the destination end points are located on the
same network segment, and as such the proxy will not perform interception.

The proxy translates policies such as “do not intercept any traffic from the
CEO” or “do not intercept any banking transactions on the enterprise network”
into explicit traffic bypass policies. The proxy must bridge any traffic that it does

Figure 2-3: Physical Inline Deployment

Internet

Intranet

Router

WAN
Port

LAN
Port

Clients/Users

Proxy

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 43

not intercept due to explicit bypass or because the traffic does not match any
interception rules. Therefore, the proxy must learn the MAC addresses on all
of the bridge ports and perform all the necessary bridging functions.

Another network capability designed into the proxy is the routing function.
A sophisticated proxy can participate in the interior gateway protocol (IGP) by
listening to the routing protocol exchanges. The proxy can extract the current
routing infrastructure from the routing protocol exchanges and build a dynamic
routing tree from routing protocols such as Open Shortest Path First (OSPF)
or Routing Information Protocol version 2 (RIPv2). Doing so reduces the con-
figuration requirement in the proxy and enables the proxy to enforce security
policies without impacting existing traffic engineering practices. In addition,
a proxy with routing capability can implement and enforce policy-based routing
(PBR) for intercepted traffic.

One of the main challenges of physical inline deployment is performance and
scalability. Unlike a switch or a router that processes L2 or L3 headers, a proxy
performs much more complex operations such as TCP connection termination
and L7 request parsing. Because an intelligent proxy needs to examine payload
information beyond L4 headers, the so‐called fast‐path processing commonly
found in traditional networking devices is not applicable to a proxy. Fast‐path
processing refers to hardware‐assisted packet processing that relies on extract-
ing bytes from packet headers, possibly from various offsets, and applying fixed
logic to the packet based on pattern matching or value comparison. In other
words, the proxy performs all of the networking functions in the software,
including bridging and routing functions. For high‐speed gigabit networks
that are now common in large and small organizations, the proxy becomes
a potential bottleneck: the higher the number of protocols and applications
the proxy is capable of intercepting, the lower the network throughput that is
achieved through the proxy.

Virtual Inline Deployment
With virtual inline deployment, a traffic redirector such as a router, a switch, or
a load balancer sends the selected traffic to the proxy as illustrated in Figure 2-4.
We will discuss traffic redirection shortly. The proxy returns the traffic, proxied
or unmodified, to the traffic redirector, which then forwards the traffic towards
the intended recipients, again according to either routing or traffic redirection
policies. As such, with virtual inline deployment the proxy can be physically
located anywhere in the network, as long as the traffic redirector can reach the
proxy through normal routing.

An interesting characteristic of the virtual inline deployment scenario is
that the proxy is physically placed out of the main network paths, as shown
in Figure 2-4. There are two main advantages to this approach: increased scal-
ability and improved reliability. Virtual inline deployment resolves the proxy

44 Chapter 2 ■ Proxy Deployment Strategies and Challenges

scalability challenge by redirecting to the proxy only traffic that is intended for
interception, while performing bridging and routing functions for the remaining
traffic types on separate appliances, in most cases regular routers and switches.
The second main advantage of virtual inline deployment is a reduction in the
intrusiveness of introducing a proxy into the network. The administrator can
gradually increase the number of applications for redirection to the proxy,
according to the operational performance metrics of transparency, accuracy,
and reliability of the interception obtained on the existing redirected traffic.
This approach improves the overall network reliability and user experience,
while enabling the administrator to discover the breaking points for the proxy
in terms of performance or reliability with the mixture of applications and
protocols. This method of redirecting more traffic incrementally also allows the
administrator to enhance and calibrate the policies being enforced by the proxy
with minimal user impacts. Another advantage of virtual inline deployment is
that this approach does not require a network redesign and is more flexible in
introducing additional supplemental solutions that collaborate with the proxy,
such as a content inspection solution or a sandboxing solution.

Internet

Intranet

RouterClients/Users

WAN

Proxy
WCCP or PBRredirection

LAN

Figure 2-4: Virtual Inline Deployment

Traffic Redirection Methods: WCCP and PBR

In practice, there are two main methods of traffic redirection for implementing
virtual inline proxy deployment: through Web Cache Communication Protocol
(WCCP) or policy-based routing (PBR). WCCP is a Cisco proprietary protocol
that was designed for traffic redirection, with built‐in load‐balancing and fault

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 45

tolerance. The router that implements the WCCP protocol is called a WCCP router.
The WCCP protocol exchange facilitates the automatic detection of a router or
a proxy failure and enables a rediscovery and recovery process to take place
automatically in order to resume normal operations quickly. A service group is
established between one or more routers that perform the traffic redirection and
one or more devices that receive and process the redirected traffic. The service
group specifies the types of traffic to be redirected and helps the proxy to dif-
ferentiate regular traffic from redirected traffic. Traffic selection can be based
on source and destination IP addresses, source and destination ports, and the
protocol type. The proxy describes the details of the service group to the WCCP
router in a specific WCCP protocol packet.

When the WCCP router redirects the traffic to a proxy, the traffic can be encap-
sulated in a GRE tunnel or by means of an L2 destination MAC address rewrite.
The WCCP protocol allows the WCCP router and the proxy to negotiate which
redirection method to use. The advantage of using a GRE tunnel for encapsu-
lating redirected traffic is that the WCCP router can be multiple routing hops
away from the proxy. This is because the GRE packets are transmitted over IP
packets, and the source and destination IP addresses can reside on different IP
networks. The disadvantage of using a GRE tunnel is the possible overhead of
packet fragmentation and reassembly. Adding a GRE header to the redirection
packet may exceed the MTU, thus requiring packet fragmentation at the WCCP
router and reassembly at the receiving proxy. Redirecting traffic by rewriting
the L2 destination MAC address is simpler to deploy but requires the WCCP
router and the proxy to be connected to the same physical network segment.

Because WCCP is a proprietary protocol, its implementation is vendor‐specific,
and each new release may create incompatibility with the existing third‐party
software that implements WCCP. PBR is a popular alternative to WCCP. PBR
works similarly to WCCP L2 redirection, but it is even simpler to operate because
PBR does not rely on a separate control protocol to negotiate a traffic redirec-
tion method. Once the physical network connectivity is established between
the router and the proxy and the traffic selection or matching rules are defined
in the router, simply configuring and installing the appropriate routing rules
into the router enables PBR into action. There are several drawbacks with PBR.
For example, it lacks automatic load balancing capability when multiple proxies
are present. Also, although PBR can be used to redirect traffic to a proxy that is
located multiple routing hops away, the routers along the path must be config-
ured to perform the same redirection in order for this scenario to work. This
is because PBR rewrites the destination MAC address of each packet to that of
the redirection target. Therefore, each router on the path to the proxy must be
explicitly configured with its respective next‐hop router for the traffic types to
be redirected. Another challenge with PBR is its difficulty in implementing an
external bypass and failover solution.

When a proxy becomes unresponsive due to either a software or hardware
malfunction, a bypass mechanism also exists with virtual inline deployment;

46 Chapter 2 ■ Proxy Deployment Strategies and Challenges

this bypass mechanism is called an external bypass. In the case of WCCP, the
WCCP protocol enables the router to detect a non‐responsive proxy. Assuming a
single proxy is present in the service group, the WCCP router will consequently
cease redirecting traffic to that unresponsive proxy until that proxy resumes
participation in the WCCP protocol exchange. Traffic that was meant for redirec-
tion is simply routed according to exiting network routing policies during the
proxy downtime. This bypass mechanism is initiated by the WCCP router and
is performed automatically, and the physical bypass is external to the proxy.
Obviously, the router will redirect the traffic to an alternative proxy if another
proxy is present in the service group.

In PBR the detection of a non‐responsive proxy is not an active process like
that in WCCP. With PBR the routing paths are fixed. Although redundancy or
failover may be an option, such a feature is implementation‐dependent. For
example, if the device implementing PBR is a Cisco router, then the automatic
failover mechanism requires the deployment of a Cisco Discovery Protocol
(CDP) to detect a failed proxy and then redirect traffic to an alternative one.
In this case, the proxy must also implement the CDP in order to allow for the
detection mechanism to work. As such, an external bypass may not be possible
with PBR due to additional feature requirements.

LAN Port and WAN Port

There are typically two network interfaces (or more precisely two physical ports)
installed in the proxy. These network interfaces can be either physical interfaces
or virtual interfaces. A VLAN is a type of virtual interface. Referring back to
Figure 2-3, with the physical inline deployment scenario there is a pair of physi-
cal ports belonging to a single special bypass network adapter, which connects
the proxy on the physical link as a bump in the wire. A common practice is to
connect one port towards the internal segments of the network and mark it as
the LAN port and to connect the other port towards the network egress point
and to mark it as the WAN port. In practice, the LAN port, also known as the
inside port, has security and interception policies that are quite different from
those designated for the WAN port, also known as the outside port. We will use
the terms LAN port and inside port interchangeably. We will also use the terms
WAN port and outside port interchangeably.

As we show in Figure 2-4, for a virtual inline deployment the proxy can be
deployed using a single physical network interface that has a single physical port,
which is allowable because a physical bypass is not a requirement. In this case
multiple VLANs will be configured over this physical interface such that one
VLAN interface is designated as the LAN port while another VLAN interface
is designated as the WAN port. This configuration is mandatory for the WCCP
and PBR redirection methods because the proxy must configure and enforce
security policies differently for each port.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 47

Forward Proxy and Reverse Proxy
The designations of LAN port and WAN port affect another categorization of
proxies: forward proxy and reverse proxy. For a forward proxy, traffic intercep-
tion takes place on the inside port but not on the outside port, while for a reverse
proxy, traffic interception takes place on the outside port but not on the inside
port. We need to give definitions for forward proxy and reverse proxy before we
can explain the reasons and the types of policies that are set on the inside and
outside ports. Figure 2-5 illustrates the concepts of forward and reverse proxies.

Figure 2-5: Forward Proxy versus Reverse Proxy

Internet

Internet

Intranet

Intranet

Forward Proxy

Reverse Proxy

Proxy

ProxyIngress Router

Servers

Egress Router

Outbound Requests

Inbound Requests

Clients/Users

48 Chapter 2 ■ Proxy Deployment Strategies and Challenges

A forward proxy is deployed closest to the clients and users who actively seek
access to network contents and resources and request services from servers that
are located on either the intranet or the Internet. A forward proxy examines
externally bound connection requests that are initiated from clients that are
internal to the intranet. The goals of the forward proxy may include enforcing
an organization’s use policies, conducting content filtering, and providing access
logging that tracks users and resources to meet compliance requirements.

A reverse proxy is deployed on the server side, which intercepts all incom-
ing requests coming from the Internet. A reverse proxy is typically deployed
in front of a group of servers, commonly known as a server farm, and offers
various protections for the server or the server farm. For example, the reverse
proxy protects server identities by exposing a single service access point to
the outside world. Once the reverse proxy intercepts each request, the proxy
performs rigorous validation on the request against known attacks. Once the
request passes the validation phase, the proxy then distributes the request to a
server based on some preconfigured load‐balancing algorithms, thus reducing
the chance of overloading a specific server. With a reverse proxy the servers do
not have to individually implement various security features against threats such
as cross‐site scripting and SQL injection. The reverse proxy can also centralize
the authentication implementation.

Challenges of Transparent Interception

A transparent proxy may not have any IP address assigned to any of its inter-
faces if it is deployed physically inline as a bump in the wire or virtually inline
through L2 redirection. So, what IP address would the proxy use after it inter-
cepts a transaction and initiates a connection to the original destination? There
are two main approaches to assigning a source IP address for a proxy‐initi-
ated outbound connection. The first approach is to configure one or more IP
addresses, called virtual IP addresses, into an address pool that is maintained
by the proxy. The proxy may choose an address from this pool when initiating
a connection on behalf of an intercepted transaction. These IP addresses are
routable towards the proxy because ultimately the proxy must be able to receive
the return traffic that is destined to these IP addresses. There are several issues
associated with this source IP address assignment solution. The original cli-
ent IP address is hidden once the proxy intercepts the traffic; only the proxy’s
addresses are visible. One issue is that the server may reject proxy‐originated
requests if the server utilizes IP address‐based authentication. In its simplest
form, address authentication refers to a server that uses a client’s IP address
as a form of authentication. A good example is a banking website that keeps
track of a client’s IP address once the client passes various security challenges
interactively for the first time. When the client accesses the same service using

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 49

a different IP address, the banking site will reissue those security challenges to
revalidate the client’s authenticity. In a more restricted environment, the client
is prohibited from accessing a service unless the client is using a designated
workstation that is locked to a specific IP address. In such cases the proxy will
break the service and prevent the client from ever successfully establishing a
connection with the server.

Another issue with using a virtual IP address is that the presence of a proxy
may negatively impact IP address‐based network bandwidth management
solutions. As shown in Figure 2-6, a network appliance that enforces IP address‐
based QoS policies will become ineffective because the client IP addresses will
have been replaced by the proxy’s address. As depicted in the figure, the band-
width management appliance has a QoS policy defined for each of the clients
to restrict bandwidth usage. Because the proxy sets the source IP address for
all server‐bound packets to one of its virtual IP addresses, none of the QoS
policies will match any of the client traffic. Therefore, all of the clients will have
unrestricted bandwidth utilization, and the proxy essentially has defeated the
QoS management objectives.

Request with a Single Source IP X

Bandwidth
Allocation

IP A 128 kbps
IP B 256 kbps
IP C 128 kbps

Request with Source IP A

Request with Source IP B

Request with Source IP C

Dedicated Bandwidth
Management DeviceProxy

Interception

QoS

QoS Policies

No rules matching

in the QoS appliance

No enforcement

IP A

IP B

IP C

Figure 2-6: Transparent Interception with Virtual IP Negates QoS Policies

Therefore, a proxy may spoof the client IP address. Called IP spoofing, this is
another source address assignment solution to solve the problems associated
with virtual IP addresses. With IP spoofing the proxy uses the source IP address
of packets from the original request as the source IP address for its outbound
connection after it intercepts the client connection. This method comes with its
own set of deployment challenges. For example, all of the routing paths to the
client IP address must pass through the proxy. Consider the example depicted
in Figure 2-7. The server responds to the proxy’s request by sending the traffic
to the client’s IP address. In this case the return traffic is routed through a path
that does not traverse the proxy, but instead reaches the client directly (③). This

50 Chapter 2 ■ Proxy Deployment Strategies and Challenges

is an instance of asymmetric routing where the routing path taken in one direc-
tion is different from the routing path taken in the reverse direction. Because
the client does not have a connection state for this particular traffic flow, the
client resets the connection and causes the overall transaction to fail (④). The
server‐returned traffic can also reach the client directly when the proxy fails
and its bypass adapter activates into the fail‐to‐wire mode.

Figure 2-7: Asymmetric Routing Breaks Interception

Internet

Request RequestClient
Request

Client

Reset Proxy

1

4

3

2

ResponseResponse

Path 2

Path 1

Server Response

Re
sp

on
se

Server

One of the key challenges of virtual inline deployment is to ensure that both
the forward direction traffic and the return traffic traverse the proxy, especially
when the proxy is using the client’s IP address as the source IP for its traffic.
A common error found in the WCCP deployment is that the return traffic is
not redirected to the proxy, thus creating asymmetric flows for intercepted
connections.

Now, what happens if the client actually has a connection state that matches
the returned traffic? A packet storm may ensue for a TCP‐based transaction. This
issue occurs more often than many believe. Consider the scenario depicted in
Figure 2-8. The server is communicating with the client directly after the proxy
has failed. From the server perspective, it is transmitting the TCP packets in
sequence (①). From the client perspective, although the incoming connection
is valid and is in the established state, the data packet received is not in the
expected sequence number range. In this example the client is expecting a TCP
packet with sequence number 10 but instead receives a packet with sequence
number 25 (②). From the client’s perspective there is a missing TCP segment. In
this case the client’s TCP implementation transmits a TCP ACK packet specify-
ing the sequence number of the next expected data packet. The server’s TCP

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 51

implementation receives the client TCP ACK packet and treats it as a duplicate
ACK packet, because the sequence number the client is asking for is in the past;
that is, the data that the client is asking for has already been fully acknowledged
and is no longer available (③). The server retransmits the TCP packets, and the
client responds exactly the same way as before (④). Because the server contin-
ues to receive valid TCP ACK packets, it does not terminate the connection,
even though it views the packets as duplicates. Similarly, the client keeps the
connection open. At this point this ping‐pong exchange with the exact same
sequence of packets from the client and server repeats indefinitely and causes
a rapid packet storm on the network.

Figure 2-8: Packet Storm Caused by Failed‐to‐Wire Due to Proxy Failure

10.1.1.1:80
192.103.1.100:2100

10.1.1.1:80
192.103.1.100:2100

192.103.1.100:2100
10.1.1.1:80

TCP SEQ = 25
 ACK = 15

TCP SEQ = 20
 ACK = 10

TCP SEQ = 25
 ACK = 15

ProxyClient Server

Failed to wire

1

2

3

4

Missing 15 bytes,

request retransmission

Packet storm ensues!!

 Duplicate ACK,

 packets before SEQ 25

has been acknowledged

Repeat the same

 sequence of packet

 exchange

To solve the aforementioned packet storm problem, the proxy implements a
source port selection process as a solution to reduce the chance of a collision in
the client’s connection space when the proxy performs transparent interception

52 Chapter 2 ■ Proxy Deployment Strategies and Challenges

with client IP spoofing. The TCP port space is a 16‐bit value for a total of 65,536
unique port numbers. However, out of this 64K port space,

 ■ port range 0 to 1023 are well‐known ports or reserved system ports;

 ■ port range 1024 to 49151 are registered ports that are assigned by IANA
to entities based on official port assignment requests; and

 ■ port range 49152 to 65535 are dynamic ports, also called ephemeral ports;
these ports can be used by any application for any purpose.

When the proxy initiates an outbound connection that is associated with an
intercepted transaction, the destination IP address and the destination port
remain the same as the original client’s connection. The proxy picks a source
port out of the ephemeral port range containing 16,384 unique port numbers.
This concept is illustrated in Figure 2-9.

Figure 2-9: Connection with Proxy IP Address Spoofing

Internet

 Source port is

now different

With client IP
spoo�ng

ServerClient

Source IP : Source Port
10.1.1.2 : 50000

Source IP : Source Port
10.1.1.2 : 62000

 Destination IP : Destination Port
192.103.68.1 : 80

 Destination IP : Destination Port
192.103.68.1 : 80

Proxy

Client-Originated Conncetion Proxy-Initiated Conncetion

For a specific destination, when applying client IP spoofing for outgoing con-
nections, the proxy needs to pick a source port that is different from the original
client‐selected port, but the port that is chosen must also not collide with other
connections the proxy has already initiated on behalf of that client. In addition,
the proxy needs to choose a port such that the selection does not collide with
existing connections to that destination, which are not intercepted by the proxy
but are managed by the client. In a typical large‐enterprise network with thou-
sands of users, the connections‐per‐second (CPS) rate is in the range of 100,000 to
180,000. The source port could deplete rapidly even if the interception rate is
just 10 percent of the CPS rate. The packet storm problem caused by transparent
interception with client IP spoofing is an NP‐complete problem; in other words,
no solution solves this problem completely. Instead, the proxy implements vari-
ous strategies to reduce the possibility of such a problem occurring.

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 53

Directionality of Connections
A transparent proxy may process a connection in a specific way depending on
the directionality of the TCP flow; for example, a policy may state, “intercept all
traffic that is destined for IP address 100.1.2.3”. The directionality of a TCP flow
is defined by which end point transmitted the initial TCP SYN packet. The proxy
cannot identify the directionality of a flow unless it has seen the SYN packet.
Now consider the scenario where some failure has occurred within the proxy
and it has begun operating in the bypass mode. The proxy does not perform any
interception and does not keep any connection states while it is in the fail‐to‐
wire mode. Clients continue to make service requests and initiate connections
to destinations and servers on the Internet during the proxy outage period. At
a later time after the proxy resumes its normal operation, any connection that
has 100.1.2.3 as either the source or the destination IP address may match an
interception policy; however, because the proxy did not process the SYN packet,
it cannot resolve the ambiguity in directionality. Therefore, the proxy resets any
such connection to force the client to reestablish that connection so that the proxy
can then execute and apply the policy against those transactions appropriately.
This conservative method of resetting a transaction to resolve ambiguity also
applies when the policy changes, a topic that we discuss in detail in Chapter 3.

Consider another example where the proxy enforces the following policies:

 ■ All traffic that is destined to TCP port 443 will be intercepted.

 ■ All traffic coming from IP address 100.1.2.3 will be bypassed.

When the proxy receives a flow with source IP address 100.1.2.3 and source
TCP port 443, the proxy does not know how to process this flow unless it knows
the directionality of the connection. That is because this flow can match either
policy, depending on the flow direction. If the initial TCP SYN packet has
100.1.2.3 as the destination address, then the flow matches the TCP port 443
interception policy; in this case the proxy will have intercepted that connection.
However, if 100.1.2.3 transmits the TCP SYN packet, then the flow will match the
bypass policy, and in that case the proxy will have bypassed that connection.
This ambiguity cannot be resolved unless the proxy knows the flow direction;
as such, the proxy will reset the connection for reasons explained previously.

Similarly, this flow directionality issue also affects interface‐based interception
rules. As discussed earlier, a proxy acting as a forward proxy performs traffic
interception on the LAN port but not on the WAN port. If the proxy does not
know the flow direction, it cannot apply the interface‐based policies correctly.

Maintaining Traffic Paths
When a transparent proxy does not have an IP address assigned to any of
its interfaces, there will not be any routing configuration in the proxy. So

54 Chapter 2 ■ Proxy Deployment Strategies and Challenges

how does the proxy know on which interface to respond to the client request
and on which interface to transmit the server‐bound connection? There are
situations where even when the proxy has IP addresses assigned and with
a populated routing table, the proxy may still need to circumvent its own
routing lookup and instead utilize the information contained in the client
request to make transmission decisions. Consider the example illustrated
in Figure 2-10.

Router-1

Proxy

Proxy’s routing table points

 to Router-1

 f
or reaching

 t
he client

Use the client request header

 to transmit traf�c

 through Router-2

Router-2Load Balancer

Request Request Request
Client

Figure 2-10: Use Source MAC to Take the Same Path Towards the Client

The client request first reaches a load balancer. The load balancer then
distributes the traffic among three different routers. In this case the client
request is forwarded through Router‐2 to reach the proxy. If the proxy has a
single default route installed and that route points to Router‐1 as its default
gateway, then the proxy’s response to the client is transmitted through Router‐1.
Taking the path through Router‐1 to reach the client negates the benefits
brought by the load balancer. When responding to the client request, instead
of performing a route lookup on the client, the proxy extracts the source
MAC address from the client’s request packet and uses that MAC address as
the destination MAC address for the response packet. Doing so ensures the
response packets will traverse Router‐2 and reach the client through the same
path as the incoming request packet because the source MAC address from
the client’s request packet belongs to the router interface that forwarded the
client packet to the proxy.

The proxy may take a similar approach when transmitting a server‐bound
connection after intercepting the client request. Consider the example illustrated
in Figure 2-11.

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 55

In this example the client and the proxy are configured with different default
gateways. Assume the client is connecting to a server that resides in Network‐1.
The client request traverses Router‐1 without proxy interception. However,
after the proxy intercepts the request, because Router‐3 is configured in the
proxy as its default gateway, the outbound request is sent to Router‐3 (②).
When Router‐3 receives the request and performs a route lookup, Router‐3
then forwards that request to Router‐1 to reach the intended destination (③).
In this case the request takes an extra routing segment unnecessarily. This
routing overhead applies to all packets that are part of the proxy‐initiated
connection. One solution is to configure multiple specific routes into the
proxy. A better solution is to utilize the information provided in the client’s
request. The client knows its request to Network‐1 should be sent through
Router‐1. This knowledge is reflected in the client request packet’s L2 packet
header, which contains Router‐1’s L2 MAC address as the packet destina-
tion. Instead of performing a route lookup, the proxy can simply construct
the outbound packets with the same destination MAC address as that of the
original client request packet. Doing so allows the proxy‐initiated packets
to traverse the same path as that of the client’s request packets without the
interception.

The proxy can extract the destination IP address from the client request packet
when it initiates a server‐bound connection after interception. However, the
proxy may perform DNS resolution if the hostname is known and uses its own
DNS result instead of trusting the IP address from the client. This allows the
proxy to offer an extra layer of validation against security issues such as pharm-
ing or DNS cache poisoning at the client end. Both pharming and DNS cache
poisoning are discussed in detail in Chapter 4. Another reason for the proxy to

Figure 2-11: Use Destination MAC to Reach the Correct Next‐Hop Router

Proxy

Client Request

Request

Request

Router-3

Network-2

Proxy’s default router

Network-1

Router-2

Router-1

Client

Internet

1 2

3

56 Chapter 2 ■ Proxy Deployment Strategies and Challenges

replace the original destination IP address is for load‐balancing purposes. The
proxy may have knowledge about the client‐provided IP address as being one
of many IP addresses that are assigned to a server. Because the proxy intercepts
all client traffic to this server, the proxy has a better knowledge of the number
of requests that have been submitted to each server IP address. Therefore, the
proxy may replace the original destination IP address with one that the proxy
believes is a better alternative.

Avoiding Interception
There are conditions under which the transparent proxy will not perform
interception. Static bypass policy consists of one or more rules that have
been configured into the proxy at the start of its operation, which instructs
the proxy to avoid intercepting certain types of traffic and instead to simply
bridge or forward that traffic unmodified. For example, an enterprise must
legally protect employee privacy if the employee’s action does not violate
corporate policies. An employee may conduct an online banking transaction
during lunch hour. In this case the proxy is configured to bypass all banking
sites during lunchtime. Another example is where a corporate attorney at a
large enterprise is permanently exempt from being examined by a proxy.
Legal material exchanged between the attorney and outside entities may be
extremely sensitive, and therefore any network traffic that originates from or
is destined to that attorney will never be stored or examined by any network-
ing devices, including a proxy.

While processing an intercepted transaction, a proxy may decide to bypass
such types of transactions in the future. For example, a user request to a des-
tination may not match any banking sites, but the proxy may conclude the
request constitutes a financial transaction after having analyzed the exchanged
content. In this case, the proxy will install a bypass rule at runtime to avoid
the interception of similar traffic in the future; this preemptive bypass action
is termed a dynamic bypass.

A proxy typically has multiple interfaces installed in it. An interface that is
dedicated to management traffic—such as connections that are established to
access the web‐based management console, or for receiving SNMP traffic for
device management—will not be configured to intercept traffic. Interception
will be disabled on an interface if it is known that intercepting inbound con-
nections provides no security benefits.

Each organization has a network infrastructure design that must satisfy
legal conformance and regulatory compliance requirements. The complexity
of the network interconnect varies from enterprise to enterprise. An intelli-
gent proxy must incorporate design logic that can recognize the traffic source
and make an interception decision accordingly. One of the more challenging

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 57

situations where interception must be avoided is when the proxy‐initiated
requests again traverse through that proxy due to a complex network infra-
structure configuration or because of a temporary routing loop. It is critical
for the proxy to detect self‐originated traffic, after intercepting a transaction,
and to avoid further interception of its own connections. Consider the example
shown in Figure 2-12, which was taken from a real‐world deployment at a
large financial institution.

Figure 2-12: Recognizing and Bypassing Self‐Originated Traffic

1A

2

4

6
5

3

Same Server-
Side Traffic
Returned and
Unmodified

Compliance

validation

and logging

Client A Request

Internet

Proxy bypasses

the traf�c as it

recognizes the traf�c

as self-originated

Bridged Towards
Server

Server

Server-Side
Connection

Initiated
by the Proxy

Proxy
Interception

In this example, the client request reaches the proxy and is intercepted
(①②). A purposefully configured route entry in the proxy causes the proxy
to send the proxy‐initiated server‐bound connection towards a compliance
validation service first (③). This service performs compliance validation on

58 Chapter 2 ■ Proxy Deployment Strategies and Challenges

the request while at the same time logging the transaction. If the request
is permissible, the compliance server forwards the original proxy‐initiated
connection, unmodified, back to the proxy (④). At this point, the proxy must
recognize this connection as one that was initiated by itself and then bypasses
this connection by bridging the connection onto its outside port (⑤). Without
this ability to recognize self‐originated connections, the proxy will intercept
the same connection repeatedly in an infinite loop until its resources are
completely exhausted.

What happens if the proxy intercepts a traffic flow and then decides inter-
ception was not the correct action? The proxy attempts to detect the condi-
tion of unintended interception as early as possible, but once discovered,
the proxy typically resets the connection followed by the installation of a
dynamic bypass rule so that it can properly process such types of traffic in
the future.

Asymmetric Traffic Flow Detection and Clustering

A security proxy is a stateful device: it keeps connection state information on
the transactions it has either intercepted or bypassed. We have already shown
an example where asymmetric traffic flow can cause a transaction to fail in
Figure 2-7. Asymmetric traffic flow can occur as a side effect of complex or
erroneous routing policies or due to explicit traffic engineering or a change
made in the infrastructure. Refer back to Figure 2-7; what is not explicitly
shown in the figure is that the network in discussion has multiple access
points to the Internet. The proxy‐initiated connection is routed through an
access point that is different from what is used by the server‐returned traffic.
The main reason for this asymmetry is because the server is configured with
different routes according to different routing policies than those configured
in the proxy. As illustrated in Figure 2-10, load balancers can also induce
asymmetric traffic flows. One practical solution that has been implemented
in a real‐world security proxy involves building a proxy cluster, as shown
in Figure 2-13.

As illustrated in Figure 2-13, Proxy A, Proxy B, and Proxy C build a cluster
by interconnecting with each other in a full mesh topology where each proxy
has a connection to all other proxies. Each proxy covers one possible path that
can reach the client. Each proxy also exchanges its connection state information
with all other peers of the same cluster. For each intercepted transaction, the
proxy keeps track of both the client‐side connection and the server‐side con-
nection. These connections are part of the state information that is exchanged
with other peers. Bypassed transactions are also exchanged. The goal of this
operating cluster is to form a virtual proxy that covers the entire infrastructure.
Consider the example illustrated in Figure 2-14.

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 59

Proxy B

Server

Internet

Proxy C

Client

Path 2

Path 1

Path 3

Proxy A

Proxy operating cluster

with full mesh connectivity

Figure 2-13: Full Mesh Clustering of Proxies

Figure 2-14: Exchanging State Information and Processing Asymmetric Traffic Flows

Internet

Server

3

4

2

5

1

Response Y

Response Y

Synchronized
information
maintained by both

Proxy A and Proxy B

Proxied Request YClient Request X

Exchange Exchange

Client

Proxy B

Connection

X

Y

Z

Proxy A

Proxy A

Proxy B

Owner

Proxy A

Fo
rw

ar
d

Re
as

po
ns

e
Y

to
 P

ro
xy

 AProxy A
State
Information
Table

Proxy B
State
Information
Table

Request Y

Response
 Y

60 Chapter 2 ■ Proxy Deployment Strategies and Challenges

In this example, Proxy A and Proxy B form a cluster. Proxy A and Proxy B
exchange their respective processing state information with one another. At the
conclusion of this information exchange, both proxies will maintain identical
combined information databases. In these information databases, each connec-
tion is identified with a responsible owner proxy. Consider the example where
a client request X reaches Proxy A (①), and after interception Proxy A generates
and sends the request Y to the server (②). The respective server response to Y
takes an asymmetric path and reaches Proxy B instead (③). Proxy B consults the
information base and recognizes that the response to Y should be processed by
Proxy A. So Proxy B forwards the response to Proxy A (④), and the transaction
proceeds normally (⑤). Essentially Proxy B acts as an application‐level router
for all of the connections that have been processed by Proxy A.

The state information exchange taking place between Proxy A and Proxy B is
a continuous process, not a one‐time effort. Each time a request reaches a proxy,
and the subsequent action that is applied to the request by that proxy must be
announced to all its peers immediately, in the form of connection state table updates.
Exchanging state information among the proxies requires a custom protocol that
must also be able to detect unresponsive peers, enabling the remaining proxies
to take appropriate actions on the orphaned connections. One other aspect of
this custom protocol is to facilitate packet forwarding from one proxy to another.
Because the forwarded packets are encapsulated in a custom protocol, the dis-
tance between each pair of proxies can be multiple routing hops apart. Associated
with this distance is the communication delay, in milliseconds, and this must be
accounted for in this proxy cluster design. In the previous example, consider the
scenario where Proxy B receives the response to request Y before the announce-
ment about request Y from Proxy A reaches Proxy B. Proxy B does not recognize
the response, it may forward the response onward to the client, and the client will
likely reset the server connection, resulting in a failed transaction; or Proxy B may
silently drop the response that will cause the server to retransmit the packets, and in
rare cases the server connection will timeout, also resulting in a failed transaction.

In the context of a proxy cluster, when a proxy receives a packet that does
not belong to any connection in the information base, there are two possible
reasons for this occurrence. The first possibility is that the packet is part of an
asymmetrically routed connection, and the announcement of the connection
owning that packet is en route. In this situation the proxy must wait for the
maximum known delay between itself and its peers. Once the wait time has
elapsed, it should then resume its normal processing of that packet accordingly.
The second possibility is that the packet is asymmetrically routed and the path
is not covered by the proxy cluster. In this case, when the wait time is over, the
packet will be either routed normally or dropped by the receiving proxy.

If constructing a proxy cluster is not an option or there exists a single proxy
in operation, then the proxy must have the ability to detect asymmetric routing
conditions and act in the interest of ensuring a good user experience. Consider the
example shown in Figure 2-15. The proxied server connection uses the client IP as

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 61

the source address but has the proxy‐selected port that replaces the original client
port (②). The server response has taken a different network path and reaches the
client directly due to client IP spoofing (③). The client resets the proxied server
connection when it receives the asymmetrically routed server response (④). When
the proxy receives the TCP RESET packet, it recognizes that the connection is one
that was originated by itself. This is an indication that asymmetric routing has
occurred between the client and the server. In this case the proxy will install a
dynamic bypass rule that states all traffic from or to these two end points will be
bypassed (⑤). The next time the client reissues the request, the proxy consults its
bypass rules and discovers the client request should be bypassed; this time the
proxy forwards the client request towards the server unmodified (⑥). Although
the server response reaches the client asymmetrically (⑦), because the original
request was not intercepted, the client will match the server response to its original
request and respond accordingly to proceed with the transaction successfully (⑧).

54

3

7

1 2 6

8

Internet
Server

TCP SYN Packet

Client IP, Client Port

Server IP, Server Port

Client IP, Client Port B

Server IP, Server Port

Client IP, Client Port B

Server IP, Server Port

Client IP, Proxy Port

Server IP, Server Port

Server IP, Server Port

Client IP, Client Port B

Server IP, Server Port

Client IP, Proxy Port

TCP SYN Packet

Should be bypassed

due to asymmetric
routing

Complete
the connection
with server

TCP ACK Packet

TCP SYN-ACK Packet

TCP SYN-ACK Packet

Proxy

Proxy installs bypass rule
for Client IP – Server IP

TCP Reset

Client

TCP SYN Packet

Figure 2-15: Dynamic Bypass to Handle Asymmetrically Routed Transactions

62 Chapter 2 ■ Proxy Deployment Strategies and Challenges

Proxy Chaining

One or more proxies can work in conjunction and process a request collaboratively.
The proxy that receives the request may forward that request to another proxy
to process fully, or the receiving proxy may process the request first and then
forward that partially processed request to another proxy for further processing.
When one or more proxies collaborate in such a fashion, these proxies form a
proxy hierarchy, also known as proxy chaining with respect to a request process-
ing. The proxy chaining concept is illustrated in Figure 2-16. The on‐premise
proxy is sometimes referred to as the downstream proxy, while its counterpart
in the cloud is referred to as the upstream proxy.

What is illustrated in Figure 2-16 is known as a hybrid security solution,
where an on‐premise proxy works in concert with a cloud‐based security
service to collaboratively provide security services to the enterprise. For
example, the cloud security service may offer data leak prevention (DLP)
service, and e‐mail scanning service, while the on‐premise proxy provides
URL filtering service and intercepts HTTP and HTTPS requests. For example,
a user who tries to access an external web‐based e‐mail service will have the
on‐premise proxy intercepting the HTTPS request (①). Once intercepted,
the on‐premise proxy recognizes the user is trying to access an e‐mail portal,
so it forwards the intercepted request into the cloud to perform e‐mail scan-
ning (②③) before downloading the content and passing the e‐mail to the user
(④⑤). This way the user will have access to clean e‐mail without the threat
of embedded malware or phishing links that attempt to persuade the user
to click.

Enterprises that purchase and utilize cloud‐based services commonly access
those cloud‐based services either through web portals or through special ser-
vice access points by means of encrypted tunnels, similar to virtual private
networks (VPNs). A common network issue that arises from this operational
model is the DNS name resolution for local domain names (that is, the client‐side
enterprise network resources, servers, and nodes), for cloud‐internal domain
names (cloud‐side resources and services), and for external domain names
(all other nodes that reside outside the cloud and outside of the client‐side
networks).

With the hybrid security solution, the on‐premise proxy must provide a
split‐DNS proxy to resolve service and resource names within three distinct
service regions: the enterprise network, the cloud, and the rest of the Internet.
This split‐DNS proxy concept is illustrated in Figure 2-17.

Each region has at least one distinct DNS server. Each time a DNS request
arrives at the proxy, the proxy intercepts that DNS request and parses the query
name to determine in which service region that domain name resides. The proxy
then sends the DNS request to the appropriate server.

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 63

Figure 2-16: Proxy Chaining—A Hybrid Security Service Model

Proxy A Proxy B

Load
BalancerSecurity

as a Service

Cloud

Enterprise

Network

Further Request
Processing

Then Forward
into the Cloud

Partial
Processing

Proxy

Re
qu

es
t

Internet

Response

Proxy C

1

2

5

3 4

64 Chapter 2 ■ Proxy Deployment Strategies and Challenges

Summary

Security proxies can be classified as either transparent or explicit and can be
deployed in the network either inline or out of the path. Deploying a transparent
proxy inline is the most challenging scenario because the proxy must have the

Figure 2-17: Split‐DNS Proxy Operation

1

2

3

Se
rv

ic
e

A

Se
rv

ic
e

B

Se
rv

ic
e

C

Cloud
DNS Server

Internet

Public DNS Server
Internet

DNS Server

Server A Server B

Client

DN
S

Re
qu

es
t

Cloud
Service

 Enterprise

Network

or

or

Proxy

 Chapter 2 ■ Proxy Deployment Strategies and Challenges 65

intelligence to make decisions on when to intercept a traffic flow and account
for traffic engineering design embedded in the infrastructure, while at the
same time performing networking operations such as bridging and routing
functions. Asymmetric routing, which often occurs in a network, can induce
complexity in operating a transparent proxy, and an intelligent security proxy
must have the ability to recognize asymmetrically routed traffic and take the
appropriate actions. In this chapter, we gave an example of how the split‐DNS
proxy operates, and in Chapter 6 we continue the discussion on specific proxies.

67

The expressiveness of a policy language is indicative of the maturity and
sophistication level of a policy engine. The policy engine epitomizes a security
proxy’s ability to manage users and applications and to perform desired policy
enforcement duties on the network. Chapter 1 explains the fundamental dif-
ferences between a firewall and a security proxy. One of the key differences
is in the expression of a policy. A firewall rule implements simple logic that
examines information at the packet level, such as L2 to L4 packet headers, but
not the actual packet payload.

The firewall rule concept is illustrated in Figure 3-1. When the firewall engine
executes a rule in the context of a UDP flow or in the context of a TCP connec-
tion, the engine performs one or more actions that are specified by the firewall
rule on the matching connections. For example, a firewall rule may instruct the
firewall to reset a TCP connection if the connection has been idle for a specified
period of time. The firewall must keep track of the TCP connection state, for
example, by maintaining the current TCP sequence number and acknowledg-
ment number in order for the firewall to generate a valid TCP reset packet.

Unlike the firewall rules, a proxy policy is highly expressive; this is evident in
its formulation through flexible logical expressions that may encompass layer‐2
(L2) to layer‐4 (L4) packet header information, layer‐7 (L7) application protocol
content and its payload data, and session context such as authentication and
authorization details. A proxy’s policy engine can execute its policies in the L7
transaction context as well as enforce policies at all layers of the protocol stack.

C H A P T E R

3
Proxy Policy Engine and

Policy Enforcements

68 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

0 4 8 16

IP Packet Header

Version Length Type of Service

Identification

Time to Live (TTL) Protocol

Source IP Address

Destination IP Address

Options (If Any)

Data

Data (Optional)

SYN bit is setFirewall rules can operate on
the payload content only if
the payload is not encrypted

Content matters
for application classi�cation

Options (0 or More 32-Bit Words)

Urgent PointerChecksum

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Sequence Number

Source Port Desination Port

Port = 6881

20 Bytes

Acknowledgment Number

Header
Length

Header Checksum

Flags Fragment Offset

Total Length (in Bytes)

Firewall rules
can be set on
individual visible �elds

Protocol = TCP

IP = 10.9.44.108

31

0 4 8 16

TCP Packet Header

31

20 Bytes

Figure 3-1: TCP/IP Header Fields and Firewall Rules

Understanding the internals of a policy engine and its implementation is
essential to writing semantically correct policies. In other words, knowing what
policies can be enforced under which conditions, then composing the security
goals in the given policy language correctly, is the essential approach to ensure
that the desired security outcomes can be achieved successfully.

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 69

Policy System Overview

In the context of a security proxy, a policy system is mainly comprised of the
following:

 ■ A policy specification language that can be used to express security policies,
where security policies refer to a set of enforceable rules that orchestrate
access to networked resources

 ■ A policy compiler that translates the policy specification language into
system configurations, operational settings, and actionable code

 ■ A policy engine that executes compiled policy‐actionable code within a
context such as an application, a user, or a network environment

 ■ A set of policy‐aware proxies that provide the policy engine with an
execution context and that invoke the policy engine at various points
in the data processing path, thus enabling the proxies to subsequently
obtain decisions regarding the necessary actions to be taken to achieve
security objectives

The policy engine is not one monolithic entity that has full comprehension in
all of the known applications, protocols, and user‐related concepts. Rather, the
policy engine provides the basic policy evaluation subsystem to the policy‐aware
proxies that interpret users’ access requests against desired security goals and
perform security enforcement actions accordingly. The policy compiler can
identify conflicting decisions that are present in the policy rules at the seman-
tics level and resolve those conflicts automatically when possible. Evaluating
or executing the policy rules follows an execution order, and the rules can be
prioritized.

In this chapter we will write example policies using a pseudo Content Policy
Language (CPL) from the ProxySG product created by Blue Coat Systems.
We will use this CPL for several reasons: the CPL is similar to a declarative
programming language and is extensible for creating custom and complex
policy gestures; the CPL is intuitive; and the ProxySG product is an indus-
try‐leading security proxy with over 12 years of widespread adoption, with
the CPL proving to be an expressive policy language in those years. We
use what we call a pseudo CPL, because we will create additional artificial
keywords such as “and”, “or”, “not”, “if”, and “then” as logic operators when
writing example policies for better readability and more clarity; however,
these keywords do not exist in the actual CPL. Some of the gestures that
are presented in the example policies may not exist in the CPL in that exact
form. Again, these gestures are introduced to offer clarity. We will use the
terms policy, policy rule, and rule interchangeably to refer to proxy policy rule
from this point on.

70 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

Conditions and Properties
Policy evaluation achieves a policy decision concerning user authentication require-
ments, authorization rights, access restrictions, compliance verification demand,
and access logging details. A proxy may examine data and information from
all seven layers of the communication stack before making decisions on, for
example, whether to intercept a request and whether to perform certain types
of content transformation before serving the responses to the clients. As shown
in Figure 3-2, the proxy extracts header and payload data from the networking
layers all the way to the application context inclusively and incorporates each
piece of information when consulting its policies on how to service a request.

DNS

Application

Policy Rules

DNS query/response

Source port
destination port

Source IP
destination IP

Source and destination

MAC addresses

SSL certi�cate

Request/response data

User authentication/authorization info

Test Conditions

Change/Set Properties

Execute ActionsL4 TCP/UDP

L3 IP

L2 MAC (Ethernet)

Payload
Data

TCP/UDP
Header

MAC
Header

IP
Header

Figure 3-2: Policy System Overview

Consider the following policy rules block that is written to achieve the security
goal “If a user is connecting from the engineering network (10.25.198.0/24), going
to Dropbox, then authenticate the user to see if the user is Alice. If so, log the
entire transaction for further analysis, and do not cache the response content”.

 if (client.address = 10.25.198.0/24) and
 (server.certificate.hostname = *.dropbox.com) then
 authenticate(NTLM)
 if (user = alice) then
 access_log.dropbox_log(yes) and
 cache(no)
 end
 end

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 71

In this example, “client.address” is the L3 IP address of the client. The L3 IP
address is extracted from the IP header of a packet. The code “server.certificate.
hostname” is an attribute in the server certificate. The server exchanges the
certificate information with the proxy only after the server has established a
TCP connection with the proxy. The SSL certificate exchange phase occurs in
the application context. As illustrated in Figure 3-2 and demonstrated in this
CPL policy example, the proxy relies on information that is available from all
layers of the protocol stack to make policy decisions and to enforce the desired
outcome. This policy example introduces a set of terminologies and concepts
that deserve further elaboration.

In this example, “client.address”, “server.certificate.hostname”, and “user”,
are each called a policy condition or condition variable. A policy rule tests each
condition variable against a specific value, and if a match is found, then
the condition becomes true; otherwise, the condition is said to be false. The
code “cache” and “authenticate” are called properties of a transaction. One or
more conditions guard a single or multiple properties. When the guarding
condition is true, the associated properties are set to desired values. Each
property is a setting that controls how the proxy processes a client request. In
this example, when the user is Alice and the server is identified as Dropbox,
the “cache” property is set to “no”; subsequently, the proxy will not cache any
content received from Dropbox for any of Alice’s transactions. Setting the
“authenticate” property to the “NTLM” value triggers the proxy to perform
the user authentication action inside a preconfigured Microsoft NTLM (NT
LAN Manager) authentication realm. In this example, “authenticate the user
in the Windows NTLM realm” and “log the Dropbox transaction” are the
policy actions.

As this example demonstrates, a policy rule consists of one or more conditions
that are combined into a logical expression that guards binding properties and
actions. Therefore, in essence, policy enforcement is the act of performing evaluation
of conditions against a transaction, modifying one or more binding proper-
ties when the overall logical expression evaluates to true, and executing the
associated binding actions.

Policy Transaction
So what is a transaction? A transaction or transaction object as defined by a
proxy is an encapsulation of client‐side and server‐side connection states,
client request and server response, policy evaluation states, and policy deci-
sions. Figure 3-3 visualizes the high‐level transaction concept. A transaction
presents to the policy engine a centralized collection of all necessary data
that is harvested from the client’s request and from the server’s response to
assist the policy engine in making policy decisions (①). A proxy creates a
transaction when it decides to intercept a client connection. A transaction

72 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

is active and remains in existence for the duration from when the client
issues a request to the time when the server delivers the response. More
precisely, a transaction has a lifetime that is at least as long as the client‐side
connection.

Virus Scanner

ICAP

Web Filter

Client

Request

Server

Policy Engine

Poicy Ticket

Policy Evaluation States
Results and Decisions

User Information

Application
Proxy

Transaction

Authentication
Authorization
Accounting

Off-Box Services

Response

2b

1

2a

3

4
Cl

ie
nt

-S
id

e

Se
rv

er
-S

id
e

Client
Connection

Server
Connection

Policy
enforcement

Decision

Deposits

Policy
execution

Input
conditions

Set properties

Figure 3-3: Overview of a Policy Transaction

Policy decisions that have been reached after executing policies against the
client request and the server response are stored in the transaction object. The
relevant policy properties are set to specific values once the policy decisions
have been made. The policy engine consults the transaction object when apply-
ing policy actions on each and every packet that is part of the client‐side or the
server‐side connections.

A client request may activate services that are external to the proxy, such as
a virus scanning service or web filtering service that are running on external
devices and are accessible through the Internet Content Adaptation Protocol
(ICAP). In this case a policy decision depends on the returned service results,
which are sometimes referred to as external policy decisions. For example, the virus
scanning service may return a positive response indicating the given content
is infected, which results in a “discard content” policy decision. Therefore, it is
also necessary for the transaction to maintain processing states for the off‐box
services.

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 73

Policy Ticket
As illustrated in Figure 3-3, the policy engine deposits its processing states and
its decisions inside the policy ticket within a transaction (②a) because policy
evaluation and enforcement takes place throughout the lifetime of a transaction.
The policy ticket is a key component of the transaction object. The application
proxy examines the policy ticket to retrieve policy decisions (③) and performs
enforcement (④) of those decisions on the transaction in question. A policy sys-
tem may have hundreds of conditions and properties. The policy engine does
not apply each and every condition to every transaction. The more conditions
the policy engine evaluates, the less scalable the engine becomes in relation to
performance. Conceptually the policy ticket selects the relevant conditions and
properties in the context of a specific application or protocol, and these condi-
tions and properties are then applied during the policy evaluation against a
given transaction.

As a simple illustration, when a user connects to YouTube, the proxy will
build a transaction and populate the policy ticket with conditions and proper-
ties that are relevant to the SSL protocol, the HTTP protocol, and the Real Time
Messaging Protocol (RTMP). These protocols are relevant because the SSL and
HTTP protocols facilitate a secure login to the YouTube account, and the RTMP
protocol is the delivery mechanism for YouTube videos. The policy ticket will
exclude conditions and properties that relate to the Skype application because
Skype has no relevance to the YouTube sessions.

This example suggests that the proxy needs to qualify the transaction into
a specific category at the transaction creation time. However, such a deter-
mination is impossible for most of the transactions. This is because when
a proxy decides to intercept a client request, the proxy terminates the L4
connection and builds the transaction object at that time. Because the client
has yet to issue the application‐level request, the proxy lacks sufficient
information to categorize the transaction. (Refer to the discussion on
transaction handoff in Chapter 1, where the proxy makes a best‐effort clas-
sification for a flow initially, and then refines its verdict as the proxy receives
more flow data.) Eventually the proxy becomes more accurate in identifying
the application, and the corresponding transaction type evolves accord-
ingly. As the transaction may evolve from one category to another, so will
the policy ticket as conditions and properties may be added or removed
appropriately.

As the policy engine compiles the policy rules into internal executable repre-
sentation, the policy engine has the knowledge on which condition is relevant
for which types of transactions. So when a policy ticket is created or is being
updated, any relevant condition must be marked for evaluation if that condition
is present in the policy or is implied by a policy rule. Figure 3-4 illustrates the
policy ticket concept.

74 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

1

3

2

5 4

Policy System

Conditions and Properties

Policy Engine Transaction Type

Policy Ticket

Facebook

Candy CrushContent Management

HTTP

SSL

Condition A

Condition A

Condition B

Condition B
Property B

Property B

Property A

Property A

Selects relevant
Conditions and Properties

Renes the
transaction type as

“Playing Candy Crush

game on Facebook”
Evaluation

Initial transaction type

is “ On Facebook”

Delete Add

SSL HTTP Skype Facebook Dropbox
Content
Mgmt

Figure 3-4: Policy Ticket and Its Evolution

The policy engine treats the transaction type as the filter to select the relevant
conditions and properties for the transaction. As Figure 3-4 shows, a transaction
may involve multiple protocols and applications. For example, when Mary uses
secure HTTPS to log in to her Facebook account, the transaction is “Mary is on
the Facebook web portal”, so the policy engine creates a transaction object and
populates it initially with conditions and properties that are relevant to SSL and
HTTP (①). After browsing through her friends’ Facebook postings, Mary begins

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 75

to play the Facebook game Candy Crush. As the policy engine continues its
evaluation, it refines the transaction type (②). Therefore if the overall transaction
changes to “Mary is playing Facebook game Candy Crush”, then the conditions
and properties that are relevant to SSL, HTTP, Facebook, and Candy Crush will
be selected into the policy ticket (③, ④).

Content management‐related conditions and properties such as caching
are typically selected into HTTP transactions. However, as the user navigates
Facebook conducting various activities, the policy ticket is populated with dif-
ferent conditions and properties at different times as the transaction progresses.
The content management conditions might be removed because caching is not
an option for gaming (⑤). Even though many conditions are relevant to an HTTP
transaction, however, the compiled policy marks only those conditions that are
relevant and appear in the rules, which will be evaluated for a given transaction.
Figure 3-5 shows an example policy ticket progression of executing the policy
of “Log Mary’s Facebook access and gaming activities”.

When Mary begins the login to her Facebook account, a TCP connection
is initiated towards the IP address of one of the Facebook servers, with TCP
destination port 443 (①). The proxy intercepts this TCP connection (②) and
subsequently creates a transaction object for this session (③). The SSL exchange
takes place between Mary’s workstation and the proxy after the TCP connection
is established (④). The SSL exchange modifies the transaction type to an SSL
transaction and allows the policy engine to place the SSL‐related conditions and
properties into the policy ticket (⑤). Then after the SSL exchange completes, the
HTTP request to the www.facebook.com URL (⑥) causes HTTP‐ and Facebook‐
related conditions and properties to be added into that same policy ticket (⑦).
While Mary visits her friends’ pages, the transaction is categorized as a Facebook
application. Finally, when Mary clicks the “Games” button and then selects the
“Play Now” option for “Candy Crush”, the policy engine detects this action after
observing the HTTPS request to https://apps.facebook.com/candycrush (⑧);
thereafter, the policy engine deposits additional conditions and properties for
the “Candy Crush” game into the policy ticket (⑨).

The policy ticket also carries user authentication information. Each authen-
ticated user has an associated set of authorized capabilities and permissions
for accessing the resources on the network, where the network can be either
an organization’s internal network or the Internet in general. The purpose of
evaluating authentication policies is to confirm the user’s identity and to obtain
the set of capabilities that are authorized and can be applied to satisfy the cur-
rent user request. An eager evaluation refers to the policy engine evaluating and
retrieving all capabilities associated with a user, even though not all capabili-
ties are applicable to the current request. Similar to the concept of limiting the
conditions and properties and selecting only relevant ones for a transaction,
the more scalable approach is to perform a lazy evaluation, where the policy
engine evaluates and retrieves only applicable capabilities that are necessary
for the current request. A user is typically a member of a group. Authorization

http://www.facebook.com
https://apps.facebook.com/candycrush

76 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

assigned to the group may either expand or limit the credentials of an indi-
vidual user. Therefore, policy evaluation incorporates user group membership
during user authentication. Lazy evaluation typically becomes mandatory in
the cloud‐based security solution that we will discuss shortly.

Destination Port: 443
Destination IP: Facebook Server IP

1

2

3

4

6

5

7

9
8

Proxy

Transaction

Policy Ticket

Policy Ticket

SSL Exchange

Policy Ticket

Policy Engine

SSL

SSL

SSL

HTTP

HTTP

Facebook

Facebook Candy
Crush

HTTP Request to
https://apps.facebook.com/candycrush/

HTTP Request to
www.facebook.com

Mary logs in to
https://www.facebook.com

in her browser

TCP connect

Creates a
Transaction object

Intercepts the
 TCP connection

Inserts
conditions

and properties
 for HTTP and

Facebook

(Encrypted)

Mary clicks “Games”
and then clicks “Play Now”

on Candy Crush

Inserts
Candy Crush

conditions
and properties

Inserts SSL conditions

 and properties
 into the policy ticket

Figure 3-5: Progression of a Policy Ticket as the Transaction Evolves

https://www.facebook.com
https://www.facebook.com
https://www.facebook.com
https://apps.facebook.com/candycrush/
http://www.facebook.com

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 77

Policy Updates and Versioning System

Another piece of information stored in the policy ticket is the policy version
number. Policies that apply in a proxy may be written by various administrators
or authors. Policies may also be imported from other proxies. Therefore, there
is a need for a policy manager to collect and compile these policies originated
from different sources into a single set and to apply a versioning system to each
policy set. Adding policies into or removing policies from the set results in the
creation of a new policy set that is assigned a new version number. Similarly,
modifying a policy in a set will also cause a new policy set to be created with
a different version number. The policy manager maintains the various sets of
policies in a policy repository. This policy set versioning system is important
in guaranteeing consistency in policy evaluation and enforcement during the
lifetime of a transaction.

The policy engine refers to and applies the most recent policy set at the time
when a proxy first begins to process a transaction. The policies may change
while the transaction is pending on a response. The policy version system
ensures that when the response becomes available, it will be evaluated against
the same version of policies that were applied to the request. Otherwise, the
inconsistency can produce an unpredictable outcome. Consider the example
illustrated in Figure 3-6.

In this example, multiple authors contributed various policies, and these
are compiled by the policy manager into a policy set with version A. The
policy manager deposits this policy set into the repository and delivers this
set to the policy engine. The proxy applies policy set version A against the
request in Transaction X (①). A policy author then modifies the policy while
Transaction X waits for the response to arrive (②). This modification triggers
the creation of a new policy set with version B (③), and it is delivered to the
policy engine as the new active policy set (④). Then when a new transaction
arrives (⑤), the policy engine applies this new policy set version B to the
arriving Transaction Y (⑥). When the response arrives for Transaction X (⑦),
the policy engine must reapply the policy set with version A on the response
(⑧). As you can see from this example, policy versioning requires the policy
engine to store the version of the policy that is currently in effect for a trans-
action into the policy ticket.

Security Implications
Policy consistency is important because when the policy changes, so does the
security goal. For example, at the time when user Mary generated Transaction
X, the security policy version A allowed Mary the access rights to a video
resource Z and permitted caching of that video resource but only for Mary.

78 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

By the time the server delivers the requested video, the policy has changed
to version B, which disallows all users from accessing video resource Z but
permits caching of all video content. If the policy engine evaluates policy
version B against the response, then the video resource Z will be cached and
marked as accessible by all users, and that is a clear violation of policy ver-
sion A. The keen reader will ask the question: Why would applying policy
version B against the response allow for the caching of resource Z? This
example policy is comprised of two conditions: 1) disallow access to video
resource Z by all users and 2) allow caching for all video content. The order of
evaluation specifies that the first condition is evaluated before the evaluation
of the second condition. This order of evaluation ensures that the request
is denied immediately by the first condition if the user is asking for video
resource Z; that is, the request will not be issued to the server. Therefore,
when the response arrives, the policy engine applies only the remaining
rule, and the only policy decision made should be about whether to cache
the returned content.

One approach to solving the consistency issue is for the policy engine to
reevaluate the request against the new policy version B, which will result in
the request being denied and consequently the retrieved video resource being
discarded. However, a valid argument exists that when Mary made the request,
if the response became available before the policy changed, then Mary would
have received the video resource. As such, the other option to ensure policy
consistency is to reapply policy version A against the response. In this case Mary
will obtain the video resource Z, and the video resource will also be cached.
Unfortunately, this option still results in a policy violation. Because policy ver-
sion B is the representation of the most current security goals to be enforced,
video resource Z should not be cached.

This example presents a dilemma where either solution produces an unde-
sirable outcome that violates the security objective. A security proxy has a
restrictive nature when it comes to policy enforcement; that is, the proxy blocks
more traffic than it permits to flow through. When ambiguity exists in a policy
decision, a common practice is for the proxy to halt and abort the Transaction
X without delivering any response to user Mary. One implication is that the
proxy has a set of configurations and settings that control how the proxy behaves
by default, when specific policies have been neither written nor committed.
A firewall is typically configured right out of the box to deny and to drop all
packets from all incoming and outgoing traffic. This default firewall behav-
ior guarantees that when the firewall is brought online for the first time, and
while the administrator is in the process of setting up specific rules, potential
incoming attack traffic will be denied entrance, while any outgoing traffic that
may create a potential security breach will also be blocked. Similarly, a proxy
intercepts and then denies all transactions by default. This “deny‐all” setting
is a system‐wide configuration.

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 79

Policy execution and enforcement depends on a proxy’s system‐wide con-
figurations and settings. The result of a policy evaluation may modify one or
more proxy settings and can affect the proxy’s actions. In the previous example,
when the policy changes to version B, the proxy must examine its system‐wide
content cache and flush all of the existing cached video resource Z. In other
words, a policy change may affect all operating components within a proxy.
Another important point about policy change is that such a change can affect
active transactions. Therefore, that change must be reflected and propagated
throughout the entire system immediately to avoid negative side effects.

Policy Author
Policy Author

Policy
Repository

Policy Manager

Policy Engine

Transaction X

Request Response

Transaction Y

Policy Author

2

3

4

6

8

7

5

B

A B

B

A
A

1

Adds a new policy
modi�es an existing policy

Creates policy
version B

Provides policy
version BCurrent policy

version A

Applies policy
version A

Applies policy
version A

Applies policy
version B

A new
transaction

arrives

Figure 3-6: Policy Versioning and Its Effect on Policy Engine Operation

80 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

Policy System in the Cloud Security Operation
The policy inconsistency problem is amplified in the cloud‐based security solu-
tion. The geographical location of each cloud point‐of‐presence (POP) signifies
that the propagation delays of the policy updates throughout the entire cloud
may vary from region to region. The enormous number of users and their respec-
tive transactions that are present at each cloud POP means that distributing
the entire policy database to every POP is prohibitively expensive. Therefore, a
scalable mechanism for policy retrieval and for providing updates is mandatory
in implementing cloud‐based security solutions.

One additional complication is the implementation of the policy everywhere
concept that is unique to cloud‐based security services. The hallmark of a global
cloud service is its composition of POPs that are local to each region. These POPs
are present in many cities and in many countries throughout EMEA (Europe,
the Middle East and Africa), APAC (Asia‐Pacific region), and North and South
America. One of the key benefits of an enterprise‐centric cloud‐based solution
is that not only are the services always accessible at any time and from any-
where the user is but also that the policies that apply to a user follow the user
at every POP where the user makes a service request. In other words, when an
enterprise user accesses the cloud services in San Francisco, the security policies
applied to the user’s transactions are the same as those that would be applied
if the user were in Munich. Figure 3-7 depicts example scenarios to illustrate
how the policy system operates in the cloud environment.

In this example, as user Mary connects to the Berlin POP (①), the cloud service
discovers there are no policies associated with Mary at that POP (②). At this point
the Berlin POP queries the central Cloud Security Operation Center (CSOC) for
Mary’s policies and retrieves these policies proactively (③). Similarly, as Mary
travels to San Francisco, her access policies will be populated at that POP as
well (④). Then the CSOC performs policy updates for the cloud (⑤). These policy
updates include policies that apply to all users and policies that are specific to
individual named users. Assuming the CSOC maintains records about Mary’s
access to the Berlin and San Francisco POPs and about Alice’s access to the
Singapore POP, then the CSOC will transmit the updates for Mary and Alice at
the Berlin, San Francisco, and Singapore POPs, respectively (⑥, ⑦).

Unfortunately, the updates sent to the Singapore POP for user Alice failed to
reach that POP, perhaps due to network outages (⑧). In the meantime, Alice con-
tinues to issue service requests into the cloud while the obsolete policies remain
in effect (⑨). As we discussed previously, policy changes can affect an active
in‐progress transaction. A solution to this policy update problem is to give each
policy ticket a lifetime that begins to count down when all of the decisions have
been made for a transaction. Having a policy ticket lifetime ensures, especially
for a long‐lived transaction, that there is a limit on how long stale policies will
remain active. When the policy ticket lifetime expires, the POP will revalidate
the user policies with the CSOC directly and take actions accordingly (⑩).

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 81

Cloud Security Operation Center

Centralized
Policy Management 5

6 3

8

10 7

492

1

POP: San FranciscoPOP: SingaporePOP: Berlin

Mary Alice Mary
(Roaming)

Policy updates:
 – some apply to all users

 – some apply to speci�c users

Active
revalidation

Prepopulation

for MaryRequest and
pull down
User A Policy

Prepopulation
for Mary

Updates
failed

No policy
found for
Mary

Policy ticket
expired

Figure 3-7: Operation of Policy System in a Cloud Environment

From this discussion we can make several observations. Each POP retains
a policy cache as the POP services more and more users. The policy cache
includes default policies that apply to all users and policies that must be
enforced only at that POP. A policy database synchronization mechanism
exists between the CSOC and each POP. At a minimum, the synchronization
process should reliably distribute cloud‐wide policies. However, the subject
of policy database synchronization in a distributed environment is beyond
the scope of this book.

82 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

The cloud will distribute user‐specific policies to POPs that have been accessed
by that user within a predefined timeframe. For example, the CSOC may main-
tain a user in an active usage records database for a week for each POP. A user’s
access record is removed if the POP has not seen that user’s activity for a week.
When a policy change takes place, the CSOC distributes a user’s specific policies
to those POPs on which the user is still visible in the active usage records. This
scenario alludes to an exchange protocol whereby the POP notifies the CSOC
about users who have been inactive for over a week. Again, the discussion on
such an exchange protocol is beyond the scope of this book.

Policy Evaluation

Pieces of information become available gradually at different stages of a trans-
action. Therefore, evaluation of conditions has timing requirements. In other
words, while the application proxy operates on a transaction, it submits to the
policy engine pieces of data extracted from the transaction, and the policy engine
must identify when sufficient information is available to test the conditions that
are defined in a policy rule. Knowing when to check for a condition, when to set
a property, and when to finalize a policy decision and apply an action are the
essential capabilities of the policy engine. However, these capabilities are attrib-
uted to the policy‐aware agents contributed by the application proxies.

Policy Checkpoint
A policy checkpoint is a fixed and known step in an application‐specific
transaction‐processing path where policy decisions are enforced. So a
policy checkpoint can be viewed as a policy enforcement point. There is a known
set of policies that can be enforced at each checkpoint for each application
proxy. Figure 3-8 illustrates the concept of policy checkpoints and the types of
decisions that can be made at each checkpoint.

An example policy rule that may be written for Figure 3-8 is shown in the
following pseudo policy code:

 if client.address = 10.9.44.1 then
 intercept(yes) // ①

 reflect_ip(client) // ④

 rewrite(url, "http://www.original.com",
 "http://www.different.com") // ⑦

 http.server.accept_encoding(client) // ⑧

 response.icap_service(icap-server-1) // ⑨ –

 bypass_cache(yes) // ⑨ –

 transform_active_content(how-to-definition) //
 end

http://www.original.com
http://www.different.com

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 83

Example policy executed

at the checkpoint

Intercept or bypass

the traf�ce based on

client IP address

A policy checkpoint

Rewrite
the content?

Consult the

content cache?

Rewrite the server URL?

Specify acceptablecontent encoding type?

Use client ip-spoo�ngSelect a speci�c serverIP for load balancing?

Scan the content
for virus?

Cache the content?

TCP SYN

TCP SYN

TCP SYN-ACK

TCP SYN-ACK

TCP ACK

TCP ACK

HTTP Get

HTTP Get

Images

Regular Content

Adult Content

HTTP Client

Regular Sanitized
Content

Policy Engine HTTP Server

1

3

7

9

10

12

11?

?

?

?

?

?

?

?

5

4

6

8

2

Figure 3-8: Policy Checkpoints in Transaction Processing

84 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

When a TCP connection arrives at the proxy at ①, the first decision the
proxy makes is whether to terminate this TCP connection. This intercep-
tion decision is based on L3 and L4 information. Once the proxy establishes
the TCP connection with the client at the end of ③, the proxy must execute
another checkpoint to determine the properties of the server‐bound con-
nection before transmitting the TCP connection request to the server. An
example decision that can be made at this checkpoint is whether to use the
client’s IP address as the source IP address for this outbound connection (④).
Later on when the client’s HTTP request reaches the proxy at ⑦, the proxy
runs another checkpoint to decide how to process this application request.
Example decisions that can be made at this step include whether to first
search its cache for the requested content or whether the request should be
redirected to a different server by rewriting the request URL. At ⑧ the proxy
runs another checkpoint so that it can re‐create the client request according
to defined policies. The proxy runs yet another checkpoint when the server
responses are received (⑨ or ⑩ or). The proxy consults the policy and for-
wards the content to an off‐box virus scanner for clean content verification.
In addition, the proxy does not cache the returned content. Finally, at the
proxy may rewrite or transform a subset of the content before responding
to the original client request.

This example illustrates that the placements of these checkpoints in the pro-
cessing path are specific to an application proxy and may differ from one proxy
to another. Each application proxy is comprised of various policy‐aware agents.
Some of these agents collect pieces of information and invoke the policy evalu-
ator to make policy decisions that will be maintained in the transaction. Other
agents enforce the policy decisions at the defined checkpoints. In this example,
many of the policy decision points coincide with the policy enforcement points.
Such an overlapping of different roles and actions is not always possible. In
the previous example rule, although at ⑦ a policy decision to rewrite the URL
has been reached, this policy decision is not enforced until ⑧ when the proxy
builds the request and sends it to the server. In this case the decision point is
different from the enforcement point.

Policy Execution Timing
An application proxy is designed to engage a request by manipulating the
transaction with a set of actions that are executed in a specific sequence. These
actions are driven by events that occur at the different stages of the transaction
processing flow. The example presented in Figure 3-5 illustrates that as the
transaction evolves, more conditions and properties become available. Each
condition in a policy rule may be evaluated at a different time and at a different
processing step compared to other conditions that are part of the same rule.
For example, HTTP‐related conditions cannot be evaluated at ④ because the

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 85

HTTP request has not been issued; thus, HTTP conditions are not yet available
at that processing stage. Similarly, evaluation of conditions related to Facebook
games cannot be done at ⑥ but instead can be performed at ⑧. Figure 3-9 depicts
the policy execution timing concept. In Figure 3-9, ①a, ①b, ②a, and ②b mark the
high‐level checkpoints of a transaction.

Client-Side
Connection

1 2

2a

2b1b

1a

Server-Side
Connection

Transaction

Application
Layer

Application
Layer

L2–L4 L2–L4

– Client-side certi�cate
– Client-side request
– URL

– Authentication
 request header
– Server response
– Application content

– MAC addresses
– IP addresses
– Port information

Application
layer
exchange

Connection

establishment

Figure 3-9: Transaction Checkpoints and Timing Constraints

Consider the following pseudo policy rule:

 if (client.address = 10.9.44.1) and (server.authenticate(RADIUS)) then
 intercept(no)
 end

This policy rule states that if the client is coming from IP address 10.9.44.1
and the server authenticates the user through the RADIUS authentication realm,
then the proxy must not intercept the client traffic. This rule has a timing violation
called “late condition guards early action” problem. The proxy tries to deter-
mine if it should intercept the client connection at checkpoint ①a; however, the
authentication condition will become available only after the proxy connects
to the server and has issued the server‐side application request. The action of
“intercept” must be executed at checkpoint ①a because the proxy must either
terminate the TCP connection or bypass the connection completely. However,
this action depends on a condition that cannot be evaluated at ①a, but at a later
time at ②b, which results in a semantics error.

This example illustrates another key point: a decision must be made at a cer-
tain checkpoint because a policy enforcement action must be executed at that
checkpoint to ensure security compliance. What happens when transaction
processing reaches a checkpoint but a decision has not arrived? There may be

86 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

such possibilities; however, the policy checkpoints are designed and created to
avoid such ambiguity. The policy compiler must be able to identify such conflicts
and raise errors against offending written policy rules.

Consider the checkpoint at ④ in Figure 3-8. The action “select a specific server IP
for load balancing” seems problematic. How does the proxy know what other
IP addresses belong to the same server as that of the destination IP address
from the client request? The proxy can perform a DNS reverse mapping lookup
of the destination IP address to a DNS name. Then the proxy can query all of
the IP addresses belonging to that DNS name, followed by an IP address selec-
tion based on the existing traffic patterns to that server. So although the action
seems to depend on a later condition, the proxy can leverage other mechanisms
to derive the value for a dependent property; thus, the action is permissible.

Revisiting the Proxy Interception Steps
At this point you may be asking the question, why not always initiate the server‐
side connection after applying the policy to the client’s HTTP request and only if
the policy allows this request to be serviced? The answer depends on the proxy
deployment type, the application type, and the defined policies.

Consider the following example of a real‐world proxy that implements a
feature called delayed interception. The typical proxy interception involves the
proxy first terminating the client request by establishing a TCP connection with
the client. Then the proxy processes the application‐level transaction, exe-
cutes the necessary policies, and, if permissible, initiates the connection with the
server. In this scenario, if the proxy operates in the transparent mode, the client
will perceive the server as being available once the client establishes the TCP
connection with the proxy. Then the client will begin issuing its requests.
Chapter 2 describes the transparent proxy and its mode of operation in detail.

At this point, the real server that the client tries to connect with may be tempo-
rarily unavailable, unwilling to service further requests due to overload, or have
been taken offline permanently. If the proxy intercepts the client‐side connection
successfully and then discovers the server is unavailable, the proxy will close the
client‐side connection, but this action could have undesirable consequences for
the overall communication and impact the application executing on the client.
For example, because the client had successfully established a connection with
the proxy previously, the client application may continue to attempt connect-
ing to the server and consuming proxy resources unnecessarily. The solution
to this problem is to emulate the server behavior, as illustrated in Figure 3-10.

As shown in Figure 3-10, the proxy suspends the client‐to‐proxy TCP hand-
shake immediately after receiving the client’s TCP SYN packet (①). The proxy
delays the completion of the client‐side connection until it can verify the server’s
availability and how the proxy will proceed with the client also depends on the
server’s response and behavior. In the first scenario, the server responds and

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 87

completes the TCP connection with the proxy normally (②, ③, ④). The proxy
then resumes the client‐side TCP handshake and completes that TCP connection
(⑤, ⑥). The client then submits its application request, and the proxy processes
the request according to the defined policies (⑦, ⑧).

TCP SYN

Resuming

Suspending client

 handshake

Resuming

Closely mimics the

server behavior

Suspending client

 handshake

SCENARIO
1

1

5

6

7

4a

4b

3b

3a

2

4

8

3

2

SCENARIO
2

TCP SYN

TCP SYN-ACK

TCP ACK

Application Request

HTTP Server

TCP SYN

OR

OR

TCP RESET

HTTP Client

TCP SYN-ACK

TCP ACK

Application Request

Policy Engine

TCP RESET

Timeout

Explicitly Timeout
the Connection

Figure 3-10: Delayed Interception

88 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

In the second scenario, either the server sends the TCP RESET that indicates
the server is not accepting service requests (③a) or the proxy‐to‐server TCP
connection request simply times out (③b), which indicates the server is simply
not available. The proxy then emulates the exact behavior towards the client:
resetting the client‐side TCP connection (④a) or simply letting the connection
timeout (④b), thus achieving transparency while eliminating any side effects.
This example demonstrates that a proxy feature can create an execution timing
exception to achieve additional deployment transparency.

Let us revisit the SSL interception example given in Chapter 1. In an HTTPS
transaction, the SSL negotiation phase occurs before the HTTP transaction.
As shown in Figure 3-11, the proxy first needs to perform SSL negotiation
with the server and makes the interception decision based on the results of
the server SSL exchange. The proxy cannot proceed with its interception
unless the proxy can negotiate agreeable SSL parameters with the server. In
fact, the proxy does not know the transaction that follows the SSL negotiation
is an HTTP transaction. Therefore, for any application that relies on SSL to
secure its transactions, it is necessary for the proxy to make the outbound
server connection before processing the application request. This is another
case where a server‐side connection must be established between the proxy
and the server before the client is allowed to issue its application request to
the proxy.

As we discuss in Chapter 2, for an explicit proxy deployment, when a client
makes an application‐level request, the TCP connection between the client and
the proxy has the proxy’s IP address as the destination. The proxy still lacks
server information after its TCP establishment with the client because only the
application request contains the server detail. Therefore, the proxy cannot make
the server‐bound connection until the application request arrives in an explicit
deployment. In a transparent proxy deployment and for a protocol such as HTTP,
the proxy has a choice as to when the server‐side connection will be established.
This choice is dictated by the configured policy. Therefore, transparent proxy
deployment offers an important advantage over the explicit deployment: the
ability to emulate the server behavior and reflect that behavior in the proxy’s
response to the client‐side request.

Now, if it is the application proxy that defines how a transaction is car-
ried out between the client and the server, then it is the application proxy
that defines the placement of its checkpoints, which also dictates the policy
execution timing with respect to a transaction. So if the policy compiler can
detect semantic errors in the policy rules, then the compiler must be intimately
aware of each application’s specific checkpoints, those conditions that can be
evaluated at each checkpoint, what the latest decision points are, and what
the execution order is of specified actions. Otherwise, the compiler will be
incapable of identifying policy conflicts. The more capable the compiler is, the
more expressive the policy language can be. Moreover, the policy language

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 89

must be constructed with application‐specific gestures. The earlier discus-
sion emphasizes a key point that we made at the beginning of this chapter:
a sophisticated policy language is a reflection of the capability and maturity
of a security proxy.

Client Hello

Modi�ed /Unmodi�ed
Server Hello

SCENARIO
1

SCENARIO
2

Decides
to Intercept

Proxy

Decides NOT
to Intercept

TCP PipeRemaining SSL Handshake

Remaining SSL Handshake

1

4

Client Hello 2

Client Hello 1

Unmodi�ed
Server Hello

7

Original

Client Hello 2

Close TCP Connection 4

Client Hello 5

Modi�ed

Unmodi�ed

Server Hello3

Server Hello3

Server Hello6

Figure 3-11: SSL Interception as Performed by a Proxy

90 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

Enforcing External Policy Decisions

Delegating a policy decision to an off‐box device, such as an external virus
scanner, and subsequently enforcing an external policy decision, can be rather
challenging. Figure 3-12 illustrates a scenario where a security proxy collaborates
with an antivirus (A/V) appliance to implement security policies, whereby the
proxy forwards policy‐controlled content to the off‐box A/V appliance to scan
for viruses, malware, and other malicious code.

Complete File Scanning

Virus Scanner

Stream Scanning and Trickling

ICAP

Large File

Internet
Server

Proxy SG

Mary

Client

4
2

1

3

Figure 3-12: Method of Content Delivery while Virus Scanning is In‐Progress

As shown in Figure 3-12, the proxy forwards the server response, in this
case a large file, to the A/V appliance for scanning (②). The proxy will cache
the content if the content has been verified as safe so that future requests to the
same content can be retrieved directly out of the proxy’s cache. The content being
retrieved from the server can be a large object, such as a multi‐gigabyte video file.

There are two approaches to scanning the object: wait until the entire object
is received and then perform the scan, or scan the partial object and trickle the
scanned portion to the user as early as possible. The first scanning method
offers maximum security at the expense of a poor user experience, while the
second method improves the user experience at the cost of accuracy. Similarly,
the proxy can wait until the entire object has been received from the server and

 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements 91

then forward the entire object to the A/V scanner, or the proxy can forward the
partially received content to the A/V scanner as early as possible.

An industry practice is for the proxy to receive the entire object and then
trickle the data to the client while the A/V engine performs the scanning. With
the trickle‐from‐start method, the proxy sends the data from the beginning at a
low data rate during scanning, for example, 1 byte per second, until the A/V
scanning is complete. Once the scan is complete and if the content is safe, the
proxy transmits the remaining data to the client at the normal data rate. With
the trickle‐at‐the‐end method, the proxy sends the data from the beginning at the
normal rate up to a configured percentage, for example, at 80 percent of the entire
object size. Then the proxy begins to trickle the data at a low rate, until the A/V
scanning is complete. At that time the proxy will again transmit the remaining
object to the client at the normal data rate. The trickle‐from‐start method is safer
than the trickle‐at‐the‐end method because a lower number of bytes are leaked
if the content proves to be malicious. The trickle‐at‐the‐end method provides
a better user experience because most of the object is delivered to the user and
only the last small portion needs to be delayed.

The challenges illustrated by this example are as follows:

 ■ The proxy needs to be aware of the A/V engine’s capabilities and its cur-
rent workload so that the proxy can choose the trickle method to balance
between performance and security.

 ■ The off‐box A/V engine is viewed as an external policy decision point,
and the proxy is the policy enforcement point. The proxy must implement
additional policies and actions to safeguard against a situation where the
policy decision point is inaccessible. For example, if the compiled policies
demand that all objects received from a specific server must be scanned
for malicious content, and the A/V engine is offline, then the proxy must
detect this abnormal situation and revert to another set of policies or
operating parameters to process the returned content from that server.

In Chapter 6 we discuss other external policy enforcement systems such as
the Data Leak Prevention appliance and technology.

Summary

A comprehensive policy system is comprised of an expressive policy language
containing application‐specific gestures, a compiler that is constructed with the
deep knowledge of application proxies, and a policy engine that can execute
policy rules and enforce policy‐defined actions effectively at the various check-
points along the transaction‐processing path. The transaction object maintains
the processing states for the client request and associated server response. The

92 Chapter 3 ■ Proxy Policy Engine and Policy Enforcements

policy ticket selects the necessary conditions and properties that are applicable
for a transaction. The policy engine operates on the policy ticket to make deci-
sions that are subsequently tracked by the policy ticket. Policy‐aware applica-
tion proxy agents then consult the policy ticket to enforce those decisions by
executing the binding actions. As policy rules change over time, those updates
must be propagated to every system component that either participates in the
policy decision‐making process or acts as the policy enforcer. Understanding
the policy execution timing is critical in writing semantically correct policy
rules. Knowing when a policy condition can be evaluated against a transac-
tion and when a decision must be enforced is the key to achieving the desired
security objectives.

93

Firewalls have evolved over the years and have been effective in defending
against threats that attempt to infiltrate through the open service ports from
outside of a protected infrastructure. The ubiquitous presence of Network
Address Translator (NAT) at the ingress points makes it nearly impossible to
obtain any meaningful results when host scanning from outside the perimeters
of an organization. Although distributed denial of service (DDoS) attacks are still
as prevalent today as they were a decade ago, modern variations of traditional
brute-force attacks against an infrastructure bring temporary network outages
that can be remediated quickly. The existing defensive solutions also can be
fortified to recognize these attacks easily, thus becoming capable of fending
off similar assaults in the future. More importantly, these attacks inflict limited
negative economic impacts on an organization.

Contemporary security attacks begin with an internal security breach, which
results when an internal user is lured into creating outbound connections and
reaching malware delivery networks where all kinds of malicious executable such
as keyloggers, Trojans, rootkits, and ransomware are hosted for download. The
security compromise is now coming from the inside. Hackers, black hats, threat
actors—no matter what we call them, these individuals are intelligent, inven-
tive, and capable of creating ingenious exploits. They are motivated by money
or driven by political beliefs. Those who are sponsored by governments have
inexhaustible resources at their disposal, making them formidable adversaries.

C H A P T E R

4
Malware and Malware

Delivery Networks

94 Chapter 4 ■ Malware and Malware Delivery Networks

Instead of focusing on a host‐based solution such as virus identification,
memory forensics, malware executable analysis, and rootkit fundamentals,
in this book we choose to focus on subjects that are relevant to key common
operations that are carried out by the majority of exploits after a successful
infiltration, namely, communication with the command and control (C2) center
(or “phone home”) and the exfiltration of valuable data.

Cyber Warfare and Targeted Attacks

Modern‐day attacks are stealthy and target individuals as well as organiza-
tions for maximum economic gain. The Internet, and especially Web 2.0, has
facilitated the rapid growth of an illicit shadow economy with hundreds of
millions if not billions of dollars in exchange. Modern attacks on organizations
have caused tremendous financial damage with far‐reaching impacts beyond
the victimized institutions. Classified materials that are crucial to national
security have been compromised in cyber‐attacks. Cyber warfare launched
against countries can bring devastation that may be described and measured
only with war terminology.

Espionage and Sabotage in Cyberspace
Moonlight Maze was a two‐year‐long cyber espionage operation carried out by a
foreign country, suspected to be Russia, against the computer systems within the
Pentagon, NASA, the Department of Energy, and various leading U.S. research
institutions and universities between 1998 and 2000. Moonlight Maze stole a
large volume of information regarding U.S. military installations and military
hardware blueprints.

Titan Rain was the FBI designation for cyber‐attacks that were uncovered by
an employee at Sandia National Laboratories in 2004. The infiltration carried
out by attackers targeted highly sensitive computer systems within Lockheed
Martin and Sandia National Laboratories, along with possible targets such as
NASA and other defense contractors. It was estimated to have been active for
over three years and was believed to be sponsored by the Chinese govern-
ment. Titan Rain was one of the most damaging cyber espionage attacks to be
undertaken to steal military intelligence and classified data. Titan Rain was
based on advanced persistent threats. Advanced persistent threats, or APTs, are
sophisticated cyber attacks that are extremely covert in nature and developed
by highly skilled personnel who may be subject experts with a full spectrum
of intelligence‐gathering and cyber penetration tools at their disposal. An APT
avoids detection by siphoning the data gradually over an extended period of
time. APTs are discussed further in Chapter 8.

 Chapter 4 ■ Malware and Malware Delivery Networks 95

Three years after Titan Rain, a second major cyber assault on an indepen-
dent country became part of cyber warfare history. The cyberspace incursion
into Estonia by attackers was allegedly funded and managed by the Russian
government, which paralyzed the Estonian information infrastructures that
covered government ministries, financial sectors, and media publications and
broadcasters.

No sabotage campaign in the cyber war theater has played out as significantly
as the Stuxnet attack on the Iranian nuclear fusion plant at Natanz. Stuxnet
malware was discovered in 2010 and was purportedly jointly developed by the
United States National Security Agency (NSA), the CIA, and the Israeli intel-
ligence service to sabotage and prevent the progress of the Iranian nuclear fuel
enrichment program. The development of Stuxnet spanned two U.S. presidential
administrations. Stuxnet was designed to reprogram the programmable logic
controllers (PLCs) that are common components in industrial control systems. In
fact, Stuxnet contained the first known PLC rootkit to date. Stuxnet is comprised
of zero‐day exploits and a Windows rootkit, as well as techniques for evading
behavior‐based analysis by antivirus engines and for performing advanced
process injection. It can propagate through a network or through removable
drives. A zero‐day exploit is an attack on a new vulnerability that is known only
to the attacker.

Stuxnet breaks the centrifuge by altering the motor speed in a meticulous
fashion to avoid detection: it increases the centrifuge speed for 15 minutes, then
resumes normal operation, hibernates for 27 days, then lowers the centrifuge
speed for 50 minutes before returning control; it then repeats this sequence
after hibernating for another 27 days. During each attack sequence, the Stuxnet
malware disables the relevant warning and safety controls so as to prevent the
system from alerting the operators during the speed change. Stuxnet damaged
approximately 1,000 IR‐1 type centrifuges representing roughly 10 percent of
the installation during the plant’s peak operation. Stuxnet demonstrated that
industrial sabotage can cause critical infrastructure failure, resulting in national
emergencies. Stuxnet offered strong evidence that its creators had full access to
the relevant industrial control systems and the centrifuge in order to develop
and qualify the code. Only a state‐sponsored organization could have facilitated
such an operation.

In 2012, Flame, also known as Skywiper, was uncovered by multiple organiza-
tions and was reported as the most sophisticated malware ever encountered;
it was expected to take years to unravel. Similar to Stuxnet, Flame appeared to
be another joint effort between the United States and Israel that was five years
in the making and served as a cyber espionage weapon to gather and exfiltrate
intelligence from multiple targets inside Iran.

In 2013, Operation Hangover was exposed as a series of attacks that originated
from India and that scoured entities in Pakistan to steal information that was of
importance to India’s national interests. Operation Hangover is another example

96 Chapter 4 ■ Malware and Malware Delivery Networks

of APT attacks, and although it ultimately failed in achieving its objectives, it
was in operation for over two years before being exposed to the public.

These momentous state‐sponsored cyber‐attack events have forever changed
and solidified the significance of cyberspace to the status of the “fifth domain”
of war, as a new addition to the domains of land, sea, air, and space. The concept
of cyber warfare has been transformed from abstract theorizations into formal-
ized doctrines in preparation for actual deployment in military combat theaters.
Information systems are treated as military assets that must be defended against
enemy attacks, utilized to gather foreign intelligence, and deployed in offensive
attacks against adversaries.

Weaponized malware is now part of the offensive capabilities in military
arsenals because cyber warfare can inflict physical damage on targets that is
comparable to conventional weapons. Cyber warfare can be launched against
both military and civilian targets. Critical infrastructures such as smart power
grids, nuclear power plants, water treatment systems, air traffic management
and control systems, oil and gas pipelines, food and beverage supply chain
management systems, and financial trading systems are all connected online
and accessible through the network, making them desirable targets. Sabotaging
these critical infrastructures can have detrimental effects, causing economic col-
lapse of the financial system and massive loss of life and creating widespread
panic and chaos across the country that is under the assaults. Cyber warfare
can be launched from thousands of miles away, without a physical presence,
and active military field equipment such as tanks, combat aircraft, and missile
systems are all subjected to interference and destruction.

Industrial Espionage
A dramatic increase in industrial espionage is evident in many targeted attacks
in recent years, with examples illuminating the fact that impenetrable security
is nonexistent and insidious APTs constitute a grievous threat to any organi-
zation. A targeted attack implies there is a specific target that possesses data
that is desired by the attackers, who will persist in their attacks until they have
acquired the objective. Therefore, such a potential target must concentrate on
continuous attack detection and eradication solutions to fend off APTs and
incorporate a mentality that the attack is constant and may have been success-
ful, instead of focusing on just attack prevention.

Operation Aurora

In January 2010, Google publicly disclosed that its operation in China, Google.cn,
was subjected to an APT attack. Operation Aurora was a targeted attack on
Google China that was carried out by an organization called Elderwood Group,
based in Beijing. It was largely believed the attack began when targeted Google
employees received an e‐mail or an instant message that was forged to appear

 Chapter 4 ■ Malware and Malware Delivery Networks 97

as if it came from a trusted source. In one case, the e‐mail contained a link. The
link led the employee to a website in Taiwan, and this website hosted malicious
JavaScript. The employee’s Windows Internet Explorer browser then automatically
downloaded this JavaScript, which ran and exploited the zero‐day vulnerability
in the browser. Once the JavaScript executed, it downloaded another malicious
payload that was disguised as an image file; this payload then created a back-
door and connected the malware to its C2 server. At this point the attackers
had gained full access to Google’s internal systems.

In another case, the e‐mail came with a malicious PDF file attachment that
exploited a vulnerability in the Adobe Reader program. Once opened, the
embedded malware inside the PDF file allowed the attacker to remotely control
the system for further penetration. Regardless of the infiltration method, the
malware went after source code repositories and tried to access Google e‐mail
accounts of Chinese political activists. More than 30 high‐profile technology
and defense companies were targets of the same espionage campaign. State
sponsorship was evident in the sophisticated nature of the malware and the
orchestrated manner of the attacks.

One disturbing fact about Operation Aurora is that, until Google discovered
the attack in December 2009, many, if not all, of the victimized corporations
were completely unaware of the fact they were being infiltrated and that their
confidential intellectual properties were being exfiltrated by the attackers.

Microsoft had known about this zero‐day vulnerability that allowed the
attackers to perform remote code execution since September 2009. The patch
to fix that Internet Explorer browser bug was scheduled for release in February
2010. Adobe had known about its vulnerability in December 2009, and the bug
was not fixed until January 2010, after the Google disclosure. All users of these
software programs were exposed to potential attacks while the vendors were
working on the fix. In the meantime, the black hats were hard at work trying
to maximize exploitation of these vulnerabilities. A crucial question for the
security industry to address is what the general public can do to protect itself
or to alleviate the threats during the vulnerable time before a solution becomes
available.

Since the attackers gained access to the source code repositories, Operation
Aurora unveiled a frightening new threat: after stealing the source code, the
attackers could have modified the source code by implementing a new exploit
or backdoor to be leveraged in the future against the entire user base of the
product built from that source code tree. The code modification could be com-
mitted into the original source tree either by masquerading as a legitimate user
or by exploiting software bugs that may be present in the underlying source
code control systems. The stolen source code will surely be subjected to elaborate
vulnerability analysis for creating future exploits.

In Operation Aurora, the multi‐layer security defense failed: the victims’ anti‐
spam defenses failed to catch the malicious e‐mails; their web filtering solution
permitted users to connect to the websites that were hosting the exploits; their

98 Chapter 4 ■ Malware and Malware Delivery Networks

antivirus engines did not detect the malware download, possibly due to the
zero‐day nature of the exploits; their IDS and IPS systems failed to recognize
any abnormal patterns during the intrusion; and their DLP systems did not
block any data exfiltration.

Watering Hole Attack

We have witnessed in the animal kingdom the dramatic scene of a preda-
tor chasing down its prey, twirling with high velocity, and pursuing it with
immense concentration while the prey foils the hunter with its mighty sprints.
The intensity of the prey’s struggle to survive is unimaginable, with death
only a few feet away. Sometimes the prey escapes and the hunter limps away,
salivating in discouragement.

Then there is another hunting approach often seen in the Serengeti, where the
predator lurks by a watering hole, patiently waiting for its prey to approach the
precious pond, and while it drinks avariciously, the predator dashes forward
for a surprise ambush.

In cyberspace, attacking individual users requires the black hats to penetrate
the first layer of defense, namely, a fortified firewall, which can be detected
quickly. The watering hole attack is a type of targeted attack that, instead of
focusing on an individual, is aimed at a specific group based on the group’s
interests and behavior. In August 2014, a watering hole malware campaign was
launched on the website of a software company that produces simulation and
systems engineering software for various industries. The website was known
to be frequented by engineers who worked in the automotive, aerospace, and
manufacturing industries. The attackers planted a Microsoft Internet Explorer
zero‐day exploit into the compromised website. This exploit leveraged out‐of‐
bounds memory vulnerability to perform remote code injection and execution
of multi‐stage shellcode through the visitor’s Internet Explorer browser. The
exploit performed reconnaissance operations: it probed for various pieces of
information on the visitor, logged the visitor’s key strokes, and encrypted and
then transmitted the collected data to its C2 server.

This exploit is unique in that it performs code injection without committing
a copy of itself to disk. This behavior may be an indication that the attackers
have high confidence in the exploit to infect the visitors on each of their visits.
We can only speculate that the intention of the attackers is to harvest potential
visitor information, correlate the user behavior according to what they entered,
and then subsequently launch targeted attacks against the visitor or the visitor’s
employer to gain industrial secrets.

Malware exploits typically consist of two components: the decryption module
and the encrypted code payload, as illustrated in Figure 4-1. Shellcode is a small
piece of code that is the payload delivered by an exploit. The decryption mod-
ule runs first to transform the payload into the shellcode by either decryption

 Chapter 4 ■ Malware and Malware Delivery Networks 99

or some type of de‐obfuscation algorithm (➁). The control is then transferred
to the newly formed shellcode where the execution resumes (➂). The shellcode
begins its subversion operations by spawning a system command interpreter,
commonly known as a command shell (thus the reason for its name); then
from within this command shell, it performs code injection and execution to
methodically take control and commandeer the system. The shellcode is written
as machine‐independent code, meaning the shellcode can be loaded into any
memory location for execution.

1

Decryption/De-Obfuscation Code

Encrypted/Obfuscated
Code as Payload

3

Decrypted/De-obfuscated
Shellcode

Second-Stage Shellcode

First-Stage Shellcode

2 Decrypts

Control transfers to
the second stage shellcode

and executes

After exploit
transfers control
and executes

Figure 4-1: Shellcode

Code injection refers to the mechanism by which malicious software inserts
code fragments into memory and then implants control transfer logic to inter-
cept and manipulate the execution flow. Figure 4-2 depicts the concept of a
watering hole attack.

As shown in Figure 4-2, when a user visits a compromised website (①), the
watering hole exploit remotely injects a code payload directly into the Internet
Explorer browser’s running process in memory (➁). From there, the first‐stage
shellcode then launches a standard Windows process, called rundll32, which is
responsible for loading Windows dynamic link libraries (DLLs) and placing the
functions (additional code) implemented by the DLLs into memory (➂). After
launching rundll32, the first‐stage shellcode injects the second‐stage shellcode
into the rundll32 process (➃) and then transfers execution control to it (➄). At
this point the exploit essentially has fully compromised the system.

100 Chapter 4 ■ Malware and Malware Delivery Networks

Breaching the Trusted Third Party

In February 2013, Bit9 was breached by hackers, and one of its digital code‐
signing certificates was stolen. Bit9 is best known for its whitelisting solution
that certifies known safe applications. Its agent software intercepts and blocks
any application that is not in the approved whitelist. Attackers used Bit9’s sign-
ing certificate to sign malicious applications that subsequently circumvented
Bit9‐based defensive solutions. Bit9’s customers discovered that malware and
notified Bit9 because the certificate pointed to Bit9 as its owner. The irony was
that Bit9 advocated its solution as the industry leader to offer non‐traditional
security solutions to enterprises, yet part of Bit9’s network was not protected by
its own solutions. Instead of launching direct assaults on the Bit9 security solu-
tion, the attackers made a strategic decision to breach the source of the solution,
effectively neutralizing the defense system by falsifying the attacks as benign
using the legitimate credentials of the system creator.

Figure 4-2: Watering Hole Attack

Breached Website

Visitor’s System

Running Internet
Explorer Process

Rundll32 Process
3

21

4
First-Stage
Shellcode

Second-Stage
Shellcode

5

Planted zero -day
Internet Explorer
exploit

Remote code injection
through zero-day exploit

Visits the
website

Launches

Injects
second-stage shellcode

into Rundll32

Transfers to �nal
stage and runs

 Chapter 4 ■ Malware and Malware Delivery Networks 101

There are known cases where certificates that were issued to hardware manu-
facturers have been stolen because these manufacturers produced not only the
hardware components and modules but also the companion drivers to run in
popular operating systems such as Microsoft Windows. These drivers must be
digitally signed by valid certificates before the driver binaries can be certified
to run within the Windows kernel at privileged execution levels. Stealing code‐
signing certificates and then signing malicious code pretending to be system
drivers can easily gain user and system acceptance.

The Korean gaming industry, especially the massive multiplayer online games,
has had numerous breach incidents in the past few years. In each publicized
case, malware bearing valid game publishers’ digital signatures was installed
through the game update process and infected millions of online players. The
various malware have stolen subscribers’ account information, seized in‐game
assets, installed in‐game cheats, or pirated game source code.

Casting the Lures

So how is a user led to download a piece of malware and fall victim to its creator?
It all begins with a wide variety of lures as colorful as the human imagination,
with the majority rooted in social engineering to entice a potential victim. In
the majority of attacks, the bait was conveyed through e‐mail.

Social networks continue to be an effective attack vector. Although we like
to avoid making general statements, incidents have proven time and again that
most people on social networks tend to be less knowledgeable about computer
security. A lot of them are relative newbies when it comes to Internet safe use
practices. This population is always connected to the Internet through their
smart mobile devices on fast 4G and LTE networks. They have become more
impatient due to constant distractions coming from various mobile applications:
Twitter, Snapchat, Skype, and text messages. They are constantly multitasking,
participating in simultaneous online conversations, and they are much more
willing to talk with strangers online. This changing user behavior subjects
them to greater exposure to cyber threats and makes them easy prey to online
scams and perpetrators.

The explosive growth of the user base that is energized by visual stimulants
and always seeking out instant gratification propels social networking service
providers to deliver more and more cool and easy‐to‐use features. Security
becomes an afterthought, often left out of the application design, and is per-
ceived as a hindrance to maintaining higher growth. The continuous addition
of features to the infrastructure of social networks means that the code remains
in a state of flux and security analysis is always incomplete. The interminable
relationships developed among millions of users within these social networks
serve as rapid infection paths with a broad reach.

102 Chapter 4 ■ Malware and Malware Delivery Networks

Spear Phishing
Spear phishing is a black hat e‐mail scam technique that—unlike regular phish-
ing, which spams indiscriminately to all potential victims—targets specific
individuals or organizations. With a spear phishing campaign against a well‐
known organization, the black hat first conducts a background investigation
of the targeted organization and then forges a spear phishing e‐mail directed
at specific individuals in that organization. The e‐mail header masquerades as
if it were originating from someone within that company. The e‐mail content
contains information pertaining to a specific event that is taking place at the
company or discusses a subject that is familiar to the potential victim.

For example, the e‐mail may purport to seek help from the victim in review-
ing a customer document, and the hyperlink to the document actually points to
an exploit that is hosted on a malicious website. Or the e‐mail may come with
a malicious executable disguised as a PDF file attachment. In either case, once
the victim takes the bait and executes the exploit that is obtained either directly
or through a drive‐by download, the exploit compromises the victim’s system
and takes a foothold in that corporation’s network. The effectiveness of spear
phishing credits its success to the deceptive social engineering tactic that breaks
down the victim’s suspicions because the e‐mail came from a credible source,
so the anecdotal warning “don’t take candy from a stranger” need not apply.

Pharming
Pharming refers to an attack that leads visitors away from a legitimate website
and redirects them to a forged site. The fake site is under black hat control and
resembles the original legitimate site in almost every way to deceive the visi-
tor. This forgery, when done successfully, persuades the visitor to think he has
reached the right site (for example, a banking site), thus inducing the visitor
to enter his user credentials to sign in to his account. After acquiring the user
credentials, a typical action performed by the pharming code is to forward
these credentials onward to the real site, essentially acting as a proxy without
the user taking notice. The web browser must issue a DNS query to resolve the
site’s IP address before making the connection. As such, one type of pharming
attack can be accomplished by exploiting DNS vulnerabilities so that the IP
address returned from the DNS query is replaced by one that points to the fake
site. Examples of DNS vulnerability exploitation include DNS hijacking, domain
hijacking, DNS cache poisoning, and DNS spoofing.

There are different methods of DNS hijacking. In one method the system con-
figuration is manipulated by malicious code that changes the DNS server to a
rogue DNS server under black hat control. The rogue DNS server always returns
IP addresses that connect to websites that masquerade as the respective legitimate
ones. Similarly the malicious code can change the local DNS configuration file,
typically called the host file, which directly maps a DNS name to an IP address.

 Chapter 4 ■ Malware and Malware Delivery Networks 103

Domain hijacking occurs when the owner of an established domain is changed
to a different registrant without the knowledge of the original owner. Because a
registered domain name has an expiration date, this change can occur due to a lapse
in renewal by the original owner, resulting in the domain name being purchased
by someone else. Another tactic is through impersonation, possibly by means of
identity theft and deploying social engineering to modify the domain ownership.
Related to domain hijacking, there is an attack vector where the black hat registers
multiple domain names, with each being one possible misspelling of the targeted
domain name. A visitor is redirected to a fake site when they misspell the domain
name to one that has a valid registration having the black hat as the owner.

In DNS cache poisoning, a compromised system inside a managed network
is induced by the attacker to query a domain name that is under the attacker’s
control. The attacker’s domain name is resolved by a rogue DNS server that acts
as the authoritative name server for that domain name. When the rogue DNS
server returns the query result, it includes response entries for the domains
the attacker wants to hijack. Obviously, the IP addresses associated with these
legitimate domain names link to forged websites. Once the DNS server that
resides in the managed network receives these DNS responses, it will cache these
entries. Future DNS responses that contain valid entries for those legitimate
domain names will not be accepted until the cached fake entries have expired.

Similar to DNS cache poisoning, in a DNS spoofing attack, the attacker leverages
a compromised system to transmit specially crafted DNS responses for domain
names to be hijacked. The goal is to insert a response into the DNS server cache
with a fake entry so that the valid entry can be rejected.

An attacker can launch a pharming attack through a phishing e‐mail. For
example, the attacker can craft and forge an e‐mail that appears to come from
a well‐known bank, asking the recipient to log into the banking site to validate
their address information. If the recipient is an unsuspecting user who promptly
clicks the link embedded in the e‐mail, that user is led to a landing page that
appears to be exactly the same as the banking site, but underneath it is a fake
site whose only purpose is to harvest user credentials.

Cross‐Site Scripting
Spear phishing is an essential component of a cross‐site scripting (XSS) attack.
An XSS attack is the exploitation of a type of vulnerability that has been discov-
ered in web‐based applications. This vulnerability enables an attacker to inject
scripts that will execute on the client side to hijack an active client session using
stolen session credentials. The XSS attack circumvents the basic same‐origin web
application security policy. The same‐origin policy restricts the browser such
that the browser disallows the content that was received from one website to
read or write content that was received from a different site. There are various
types of XSS attacks: reflected (or non‐persistent) attacks, persistent (or stored)
attacks, and Document Object Model (DOM) vulnerability‐based attacks.

104 Chapter 4 ■ Malware and Malware Delivery Networks

A reflected XSS attack describes the scenario where a web‐based application
extracts and includes a portion of the client’s input verbatim in its response to
the client. The goal of the attacker is to steal the session token, which may be in
the form of a browser cookie, and hijack that client session. The session cookie is
issued by the web application server; therefore, any dynamic JavaScript code that
wants to retrieve the session cookie must come from that same web server. So
the attacker attempts to explore the XSS vulnerability to own the session cookie.
The assumption is that the attacker has deep knowledge of the web application
under attack. It is a common practice for the black hat to first map out as much
of the web application as possible and then to probe each operation within the
application to expose one or more vulnerabilities. The prerequisite for a suc-
cessful attack is that the attacker has discovered an application behavior, called
an XSS vulnerability, where an operation is known to take a portion of the user
input and include that input unmodified in the result of that operation. This
discovery enables the attacker to create special input that targets the known
XSS vulnerability. This attack scenario is depicted in Figure 4-3.

Figure 4-3: Cross‐Site Scripting Attack

Black Hat

Browser
User

CRM Web Application

3
7

8

1

2

4

5 6

Spear Phishing E-mail

Sends session
 cookie to attacker

Crafted CRM
Request with
Embedded JavaScript

JavaScript executes
in browser and retrieves
the session cookie

CRM app responds
with the same
embedded JavaScript

Connected and signed on

Takes bait and sends request

Probes and discovers XSS
vulnerabilities in CRM

At
tac

ke
r h

ija
ck

s t
he

 us
er

 se
ssi

on

 Chapter 4 ■ Malware and Malware Delivery Networks 105

In this example, a black hat has discovered vulnerabilities in a customer
relationship management (CRM) application, which may be exploited to launch
XSS attacks against its users (①). Now a user has established a connection to this
CRM application, and the user has successfully logged into his or her account
(➁). For example, the user may be a salesperson who needs to be logged into
the CRM throughout the entire workday. So the attacker meticulously crafts
a request targeting that CRM system and embeds in that application request
a piece of obfuscated JavaScript code. The function to be performed by the
JavaScript code is to retrieve the session cookie and send it to a designated web
location. Then the attacker leverages spear phishing to send the user a spear
phishing e‐mail, with a subject title “please help validate customer contact info”
(➂). The attacker forges an HTML e‐mail to appear as if it were sent from the
user’s supervisor. In this bogus e‐mail is the customized request in hyperlink
form with a link title that reads “Customer Bob’s contact information”. The
user takes the bait and clicks the hyperlink, which sends the specially crafted
request to the web application (➃). The CRM system returns that exact JavaScript
back to the user due to the XSS vulnerability (➄). This time the user’s browser
executes the JavaScript (➅) and transmits the session cookie to the attacker (➆).
Now the attacker can easily hijack and take over the user session (➇).

The web has evolved from a repository of static content to an exciting, inter-
active web where participants of the so‐called Web 2.0 can browse static web
pages as well as publish dynamic content. For example, anyone can visit a social
forum where he or she can view ongoing discussions in real‐time. In many
cases the forum allows both subscribers and anonymous visitors to contribute
to that discussion by posting their comments and opinions. This interactive
forum facilitates a persistent or stored XSS attack.

With a stored XSS attack, an attacker can post content with crafted JavaScript
that will execute in the browser of whoever is reading that posting. Similar to
a reflected XSS attack, the malicious code executes in the visitor’s browser and
sends the visitor’s session cookie to the attacker. If the visitor is in fact a registered
forum member, then this stored XSS attack will help the attack to eventually
compromise that user’s account. A stored XSS attack is more damaging than a
reflected XSS attack.

A reflected XSS attack targets a single victim, but a stored XSS attack targets
anyone who can view the maliciously crafted content. In a reflected XSS attack,
when the attacker sends a spear phishing e‐mail or any other kind of lure to
the user, the user must have a session that is active with the web application in
question when the user clicks the crafted request. In comparison, in a stored XSS
attack, the user who is viewing a crafted posting will be doing so in an active
session already, thereby eliminating the timing issue that is a prerequisite to a
reflected XSS attack.

In addition to stored and reflected attacks, a third XSS attack method is
called a DOM‐based XSS attack. The DOM‐based XSS vulnerability is a side

106 Chapter 4 ■ Malware and Malware Delivery Networks

effect of a website that attempts to improve the user experience by custom-
izing content according to a given visitor. For a given web page constructed
in HTML or XML format, there exists a DOM that describes the structures of
that page and how that page is accessed and manipulated from the browser’s
perspective. When the browser renders the page, a DOM object such as the
document.URL object may be fed a URL that contains an embedded and obfus-
cated malicious script that exploits the vulnerability similar to a reflected
XSS attack.

Search Engine Poisoning
One method of luring potential victims to malware delivery servers is by
search engine poisoning (SEP). The main goal of SEP is for the black hats to
inject links that point to their malicious servers in the top search results for
any popular search engine. Links that are part of the top search results have
the highest potential of being clicked by the user who issued the search.
Therefore, the more poisoned links in the search results, the better chance
for the black hats to victimize users. This is why the process of deceiving a
search engine to return malicious links in its search results is called search
engine poisoning.

Black hats execute a series of steps to poison search engines. First, the black
hat creates bait pages that contain popular search keywords and phrases.
These keywords and phrases are repeated in a bait page but interleaved
with random words, phrases, and sentences, and combined with random
images to make the page appear more legitimate to a web bot or crawler.
Then the black hat launches mass e‐mail spam to advertise links to these bait
pages. He also posts those links to various social forums and compromised
websites and distributes those links through online advertising networks
or ad networks. Link farms are also set up to broaden the reach. A link farm
is a coterie of websites where each website cross-references every other
site within the group through hyperlinks. A site may build a directory of
web pages that serve as links. A link farm is another black hat venue for
search engine optimization (SEO) that increases the relevancy of a website
rating by a search engine algorithm that assigns weights or values to the
hyperlinks.

The goal of the bait page is to lead potential victims to the malware delivery
server. How is the malware delivered if and when the victim reaches the harm-
less bait page? The victim actually never sees the bait page. The trick is in how
the malware server processes each HTTP request and what content is returned
to fulfill the request. First, the malware server needs to know where the request
is coming from, that is, who or what entity is issuing the request, before decid-
ing which content should be returned. The User‐Agent field in the HTTP request
header discloses whether the entity is a search engine crawler or a web browser,
as shown in Figure 4-4.

 Chapter 4 ■ Malware and Malware Delivery Networks 107

For example, the Google web‐crawling bot named Googlebot is identified by
the following User‐Agent string:

User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

In this example, a regular user running a Firefox browser on the Mac OS X
operating system has the following User‐Agent signature:

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5)
AppleWebKit/600.1.17 (KHTML, like Gecko)
Version/7.1 Safari/537.85.10

Besides computing the relevance of a web page, the modern search engine
indexer has built‐in detection algorithms to identify potential malware scripts

Google Search

1

2

User

Searches for
“where can I get best iPad deals”

Figure 4-4: User‐Agent and Referrer

http://www.google.com/bot.html

108 Chapter 4 ■ Malware and Malware Delivery Networks

contained within a page and assesses the risk level of the overall page content.
The search engine market is competitive, and a search engine can lose its market
share quickly if users are frequently led to junk or malicious pages. Therefore, it
is good business practice to safeguard users by preemptively filtering harmful
results and presenting them with safe links. The exploit server is built to respond
intelligently according to who is making the request, as illustrated in Figure 4-5.

Googlebot
Google Search

User

Top Search Results

White Hat

ht
tp

://
su

sp
ic

io
us

 s
ite

Popular
Websites

(News,
Finance, etc.)

Exploit Server

Forums

Blogs
Social

Networking

Link Farms

2

3

4

1 5

Searches for
“best iPad deals”

Referer:
Search Results,
Ad Networks,
Websites

Direct
Connection

Fake:
- 404 Not Found
- Blank
- Under Construction

malware.js

Referer:
Search Bot

Repeating
keywords

and phrases
with random

text and images

High Relevance

Figure 4-5: Search Engine Poisoning

As shown in Figure 4-5, when a malware server detects a search engine crawler
is paying it a visit, the server presents a carefully constructed, innocuous bait
page to the search engine bot to index (①). When the malware server detects
that an HTTP request was directly entered into a browser to reach the malware

http://suspicious
http://suspicious

 Chapter 4 ■ Malware and Malware Delivery Networks 109

site, the malware server presents a snooper page in return. The snooper page
typically shows the site is under construction or the site is completely blank,
thus offering no content to the visitor. The snooper page is a lame strategy
put in place to keep a low profile and turn white hats away from examining
the site. Sometimes the malware server simply redirects a prying visitor to a
well‐known site. Now, as soon as the malware server detects that the request
originates from a search engine results page (➁, ➂, ➃), this is when it returns
the actual intended malicious content because it knows a user has taken the bait
and clicked a poisoned link (➄). The Referrer field in the HTTP request header
contains evidence of the search engine results. Figure 4-4 illustrates an example
where the user has entered “where can I get best iPad deals” in the Google
search engine. When the user selects the top search result and follows the link,
the Referrer field shows http://www.google.com. In addition, the words from
the search phrase entered by the user are shown as a URL parameter, which
is leveraged by the black hats to enhance the available keywords and phrases
contained in the bait pages, thus improving the potency of those bait pages in
poisoning the search engine.

The mainstream media has created a myth about SEP being a significant
threat vector during newsworthy events. Research into the data that has been
generated by Blue Coat’s 75 million WebPulse users indicated a disparity between
the compiled results and the press reports. In past significant events, between the
years 2008 and 2013, which include natural disasters, sports finals, financial
market meltdowns, deaths of celebrities, and so on, less than 0.01 percent of
malicious links were activated due to SEP. This surprising find may be attributed
to the following factors:

 ■ Significant events are covered by all news organizations, which causes a
search engine “clutter” effect. In other words, there is so much relevant
and clean content (articles, commentaries, blogs) that is distributed across
a large number of legitimate websites—reputable news media sites such
as CNN, NPR, and BBC—that it causes the search engine to produce real
content as top search results.

 ■ People are now drawn to social networking sites such as Facebook and Twitter
to obtain their information. Therefore, the attack vectors are chiefly phish-
ing e‐mails and malicious postings on well‐known online social media sites.

 ■ Search engines continue to improve their detection algorithms to sanitize
search results.

Drive‐by Downloads and the Invisible Iframe
As a result of SEP, drive‐by downloads are a scheme that black hats employ to
induce the download of malicious code from a crafted attack page, when a
user visits a compromised or purposely built malicious website. The goal of

http://www.google.com

110 Chapter 4 ■ Malware and Malware Delivery Networks

a drive‐by download is to inject malicious code into the user’s system. In one
approach, the black hats use social engineering to lure a user to consent and
accept an offer and then manually download and run the malicious code that
is behind the offer. A common bait to entice a user is through various offerings
of digital material relating to A‐list celebrities, such as a leaked nude video that
requires the user to download and install a “missing” video codec or to upgrade
an existing version of a player program in order to view the movie. Figure 4-6
shows a fake Adobe Flash Player upgrade scheme that we downloaded.

Figure 4-6: Fake Video Player Update

First of all, you may notice the displayed warning message is really just a web
page that tries to simulate an Adobe update pop‐up window. This should have
raised an alarm. Second, there is the URL, “2‐vinstaller.com”, which means this
website is not affiliated with Adobe. Below the big yellow Accept and Install but-
ton, the text in small print reads, “Clicking any download button on this website
will begin installation of InstallIQ, which manages installation of the products
available on this website.” In other words, this is a fake warning message, and
the executable has nothing to do with the Adobe Flash program. Clicking the
Install button means the user agrees to install an unknown program that is
published by an unknown software company that calls itself “InstallX, LLC” but
it names its software “adobeflashplayer.exe”. In this example, after completing

 Chapter 4 ■ Malware and Malware Delivery Networks 111

the download step, we uploaded the binary onto VirusTotal; it scored 24 out of
54 hits as Trojan adware.

Another common ploy is to instigate fear in the user to act without hesita-
tion, for example, displaying an animation that falsifies evidence of malicious
activities that appear to already exist in the user’s system. The user is urged
to download and install antivirus software immediately to remove the virus
and sterilize the system. Obviously the real malware is packaged as the fake
antivirus software, and once installed, it causes serious havoc in the user’s
system. Figure 4-7 shows fake antivirus scan results that prompt a user to act
immediately to clean up their system.

Figure 4-7: Fake Antivirus Scanning

This malicious web page used an animated image ploy that pretends to perform
a virus scan on the visitor’s system. In this case, we were actually running on a
Unix system, not on Microsoft Windows. The fake “Windows Security Alert”
pop‐up prompts the user to click the Remove All button, but clicking anywhere
on the web page will trigger a download and the installation of a Trojan virus.

Social engineering may be one attack vector, but another tactic is more danger-
ous and completely evades the user through an insidious automatic background
download and execution of malicious code to infect the user’s system. In other
words, the download process does not require user interaction at all. When a

112 Chapter 4 ■ Malware and Malware Delivery Networks

user visits a compromised website, the user’s browser is redirected to an attack
page, possibly through multiple layers of deflection using techniques such as
HTTP redirection, an invisible iframe, or JavaScript execution within a browser.
Figure 4-8 illustrates a common iframe‐based drive‐by download scheme.

Figure 4-8: Invisible Iframe

Web Browser

Newly Compromized Host Compromized Host

5

4

3

2

1

Well-Known Website
User

HTTP GET Request

Returned
 Web Page Advertising Banner

Hidden IframeBrowser loads page,
renders content

Hidden frame triggers
another download

Malicious
JavaScript

ExploitMalicious JavaScript
executes

In this example, the user visits a well‐known but compromised website (①),
and the page displayed to the user has an ad banner. Inside this ad banner is an
invisible iframe; it is invisible because, as shown in the figure, it has 0 dimensions
and the hidden display style (➁). The source of the iframe points to a piece of
JavaScript “js.js” that is hosted on a malicious site in Russia (➂). The browser
automatically downloads js.js when processing the embedded iframe directive

 Chapter 4 ■ Malware and Malware Delivery Networks 113

in the page (➃). Once downloaded, this JavaScript executes in the browser and
exploits a browser vulnerability to compromise the visitor’s machine (➄).

So how are malicious ads placed on a well‐known website if the website has
not been compromised by hackers?

Tangled Malvertising Networks
In online advertising, websites, e‐mails, RSS feeds, instant messaging, and other
similar assets, together with online ads or ad banners, all are considered to be
online inventories. An ad exchange connects owners of online real estate such
as websites with ad providers to facilitate real‐time trading of those online
inventories and assets. An online advertising network, or ad network, is an ad
distribution network that transfers the ads and displays those banners on the
negotiated ad space.

Malicious advertising, also known as malvertising, refers to black hats leverag-
ing ad networks to inject and distribute malware. Because ad networks cover
virtually the entire Internet, malware can propagate quickly to infect large online
user populations. Malvertising is an effective tool for black hats due to the nature
of ad networks. The black hats only need to compromise a limited number of ad
servers or well‐known reputable websites to begin a malvertising campaign. As
demonstrated by the previous iframe example, a modern malvertising attack
can infect a user by the simple act of automatically displaying banner ads inside
a browser, which is made possible by modern ad URLs that deliver JavaScripts
instead of static images. These ad JavaScripts are often obfuscated to prevent
the disclosure of information pertaining to ad server technology and platforms
in addition to reducing ad frauds. The obfuscation makes scanning for known
malware patterns in the end systems difficult if not impossible.

An online ad network is a complex world of ad servers, exchanges, buyers,
partners, affiliates, and subordinate providers. One ad provider outsourcing
its advertisement and ad spaces to other ad providers is a common practice to
reduce operational costs and also to leverage multiple ad networks to reach as
broad a population as possible. This complex web of advertising relations is
an incubation ground for malvertising outbreaks. In fact, black hats launching
attacks across a large region of ad networks have become alarmingly common
occurrences. Figure 4-9 illustrates an example of how an ad network can be
leveraged for malware distribution.

On a website, an ad banner area can rotate ads and display ads that are
sourced from different ad providers. As shown in this example, websites trust
their immediate large ad providers such as Google and Yahoo! However, large
ad providers are just part of the ad syndication. The layers of advertisement
outsourcing and subcontracted ad campaigns may result in a rogue ad provider
injecting itself into the chain. The process of establishing a trust relationship
between two ad providers varies dramatically from region to region, and an

114 Chapter 4 ■ Malware and Malware Delivery Networks

industry‐wide, rigorous methodology is yet to be standardized. The trust rela-
tionship is not transitive from one layer to another. Therefore, a malicious ad
can easily propagate throughout the ad network and reach a large audience.

Ad Network

AA

AdsAds
Ad Provider

Ad Provider Ad Provider

Ad Provider

Websites

Ad Provider Ad Provider

A

Trust is not
transitive

Subordinate Content

Rogue Rogue,
Unfriendly

Country

Ad Space

Malware Trusted
Provider

Figure 4-9: Ad Network

Once an ad server has been identified as having served links to malware, the
challenge is to determine whether the ad server has been compromised by black
hats or is itself truly malicious. Another possibility exists, where there may be
some kind of compromise in the ad supply chain. Further analysis of the ad
server in question can reveal compelling evidence in reaching a conclusion. An
ad server having a recent and anonymous registration is suspicious. An ad server
that distributes only its own ads is suspicious. An ad server that runs a single
ad is suspicious. In Chapter 5, we discuss general rating strategies on websites.

Malware Delivery Networks

The modern web page is decorated with a colorful array of graphics
and ad banners and embedded with links to entertainment news, articles,
famous blogs, up‐to‐the‐minute breaking news, real‐time stock quotes, and

 Chapter 4 ■ Malware and Malware Delivery Networks 115

MDN

Landing Pages

Redirection Servers

Exploit Servers

Client

1

3

2

4

6

5

HTTP Request

HTTP 3xx Redirection

HTTP Request

Redirection

Malware

HTTP Request

Figure 4-10: Redirection to Malnet

auto‐playing, embedded video clips. Even though these pieces of content
are presented to the user in a single view, each piece may be sourced from
different origins. The web page has become a valuable commodity, where
every inch can be sold to a content provider for both tangible and intangible
profit. Malware delivery networks (MDNs), or malnets, are born out of this
complex content delivery network that we call Web 2.0. The malvertising
network is a subnet of general malnets.

As the earlier drive‐by‐download example illustrates, the end of the
browser redirection is some kind of exploit kit that is to be retrieved auto-
matically by the browser. Typically the initial download is a dropper, and
once activated, it scans the victim’s system for the presence of known ver-
sions (and thus known vulnerabilities) of various software programs, for
example, Java, Adobe Reader, Flash Media Player, and the web browser
and browser plug‐ins. The dropper then “phones home” by contacting its
C2 servers to download and install one or more exploit kits that target each
program appropriately. Figure 4-10 illustrates the concept of this multi‐layer
redirection technique.

116 Chapter 4 ■ Malware and Malware Delivery Networks

A landing page is usually the first destination in the malnet. A user can
reach the landing page via search engine results, by clicking an embedded link
inside a phishing e‐mail, or by clicking an iframe link (①). The main purpose
of the landing page is to perform a first‐level referral that sends the visitor to
another website using simple HTTP status code 3xx for URL redirection (➁).
Another approach is to feed the visitor’s browser a JavaScript that generates a
dynamic URL linking to a destination. As we will discuss in the next section,
in most cases, these layers of intermediate destinations serve as either front‐end
proxies or redirectors that route the visitors deep into the malnet. In practice,
three to five layers of redirection are common (➂, ➃). Finally the visitor reaches
the real malware‐hosting servers that will return an exploit to the user (➄, ➅).
Figure 4-11 is a visualization graphic that was constructed out of real‐world
malnet data sets that have been collected by the Blue Coat WebPulse cloud
security solution.

Figure 4-11: Visualization of Malnets

Intermediate
Sites

Safe Website

Known Malware
Server

Flow between websites
 as observed by referer data

 Chapter 4 ■ Malware and Malware Delivery Networks 117

In Figure 4-11, each white square represents a safe website, the gray squares
represent intermediate sites that perform request redirections, and the black
squares represent known malware servers. Figure 4-11 illustrates the enormity
of the malnet and that the threats it casts on the Internet are both deep and
wide. This massive interconnection of landing sites, intermediate redirectors,
and referrers is the result of malware evasion techniques.

Fast‐Flux Networks
Botnets and MDNs employ the fast‐flux technique to evade eradication of the
actual servers that host malware. The core idea of fast‐flux is to map different
IP addresses to the same DNS name rapidly, often within a few minutes. These
IP addresses belong to compromised systems that are called bots or zombies, and
they are controlled by the black hats through C2 channels. Typically the black
hats take possession of tens of thousands of IP addresses before putting the
MDNs into operation. These hijacked IP addresses are cycled through quickly,
and newly commandeered IP addresses are added continuously into the pool.
The MDNs that operate in this manner are called fast‐flux networks. The DNS
records implemented to support an MDN operation may look like this:

webantivirusav.nl. 300 IN A 64.251.21.188
webantivirusav.nl. 300 IN A 64.251.21.222
webantivirusav.nl. 300 IN A 65.111.184.227
webantivirusav.nl. 300 IN A 65.111.184.229
webantivirusav.nl. 300 IN A 69.60.98.234

webantivirusav.nl. 1800 IN NS ns1.webvirusdefence.nl
webantivirusav.nl. 1800 IN NS ns2.webvirusdefence.nl

ns1.webvirusdefence.nl 864000 IN A 5.61.32.183
ns2.webvirusdefence.nl 864000 IN A 192.241.81.86

A single fast‐flux network describes MDNs with rapidly changing DNS address
records for the domain name. In the given example, there are five A‐records associ-
ated with the webantivirusav.nl domain, and these A‐records have a five‐minute
lifetime. At expiration, new IP addresses replace the old ones for these A‐records. A
double fast‐flux network refers to MDNs that also constantly change the IP addresses
of the authoritative name servers. In this example, the A‐records for the name
servers ns1.webvirusdefence.nl and ns2.webvirusdefence.nl are also remapped
at high frequency. Figure 4-12 illustrates the operations of a fast‐flux network.

Figure 4-12 shows what happens when a user has been enticed to click a mali-
cious link that points to some malware hosted on webantivirusav.nl. The user’s
browser needs to resolve the IP address of that DNS name before connecting to the
site. The DNS query is sent to one of the bots that is part of the fast‐flux network
and that is identified by the DNS system as the resolver for that hostname (①). In
actuality the bot does not perform the name resolution when it receives the DNS

118 Chapter 4 ■ Malware and Malware Delivery Networks

query. Unlike a regular DNS query process where an intermediate resolver will
refer the query issuer to another name server through a DNS referral response,
the bot never sends a referral but instead proxies the query and forwards it to the
backend server (➁). It is common for this backend server to run both DNS and
HTTP services. The backend server runs load balancing algorithms to perform
load distribution according to bot availability, bot reachability and health check
statistics, bandwidth utilization level, service lifetime, and other attributes. Once
the backend server reaches a decision, the DNS result is returned to the proxy bot
(➂), which then forwards that answer back to the query issuer (➃). Subsequently
the user sends the content request to the resolved IP address at 10.1.2.3 (➄). This bot
proxies the HTTP request to the backend server and retrieves the content to fulfill
the user request (➅, ➆). In this example, the bot that serves the malware to the user is
different from the bot that serviced the DNS query, which is located at 200.18.39.177.

Figure 4-12: Fast‐Flux Network

User Browser

Bot Clients

Backend
Well-Maintained

Core Server

200.18.39.17710.1.2.3

18

4

7

5

6 3

2

malicious.js

GET http://webantivirusav.nl/malicious.js

Front-end
Redirector/Proxy

Bot Client

DNS Redirect
DNS Resolution
Result

HTTP Redirect

Serving:
- Malicious Content
- DNS Resolution Requests

Each bot client:
- Disposable
- Can change quickly
- May live in
 any country,
 any region
 as long as reachable
 on the InternetHTTP Content

IP = 10.1.2.3

DNS Query
 webantivirusav.nl

http://webantivirusav.nl/malicious.js

 Chapter 4 ■ Malware and Malware Delivery Networks 119

As shown in Figure 4-12, the bot clients are disposable because they are typi-
cally discovered by experienced white hats and are decommissioned within
hours. Either the bot client knows the identity of the backend server through
the C2 channels, or the infecting malware contains hardcoded logic to locate
the backend server. Because each bot in the fast‐flux network may reside in any
region around the world, this, combined with the fast remapping to new IP
addresses, makes the discovery of the backend server a difficult task. Blocking
the IP addresses will only decommission the intermediate fast‐flux bots or zom-
bies, which is exactly what the fast‐flux technique was designed to solve, thus
shielding and prolonging the backend core servers to continue their operations
with minimal interruption.

The fast‐flux networks illustrate a common MDN strategy to sustain the mal-
ware servers and evade detection: creating multiple layers of dynamic redirections
that can span various domains and countries, traversing web pages constructed
with different languages, all for the purpose of deterring the white hats from
building meaningful correlations to detect the malware‐serving root hosts.

It may seem that the fast‐flux network can be defeated by blocking the
webantivirusav.nl domain. Filtering and blacklisting the domain is a viable
solution if the webantivirusav.nl domain can be classified as the root of a fast‐
flux network. However, this discovery is not so trivial. First of all, the domain
name must be seen as being contacted by the malware, correlated by evidence
the domain name resolves to a large number of IP addresses rapidly. Secondly,
a domain name can be hidden through dynamic name generation techniques.

Explosion of Domain Names
Black hats implement domain generation algorithms (DGAs) inside their mal-
ware to prevent a domain name from being identified as the contact point. A
malware executable contains visible strings of domain names if those domain
names are predefined and are compiled into the executable. The white hats can
perform binary analysis by using tools such as a disassembler and a low‐level
machine debugger to uncover the domain names and insert them into their
filtering lists. By performing DGA in real‐time, the malware can generate tens
of thousands of domain names in a day, with each domain name being a ran-
dom string of characters. There are known cases where the malware generates
up to 50,000 unique names in a day. Out of the generated names, the malware
performs a selection algorithm to choose a subset of domain names to contact
as C2 servers. Example domain names produced by a DGA may look like these:
uftfesnodnjflwta.inf, vxagtvsyqxtrfcm.com.

The black hats register a small subset of those DGA‐created domain names
using the same selection algorithm. Registering unique domain names, even for
a “.com” domain, can cost as little as $10 a year. The black hats have plenty of
stolen credit cards at their disposal for purchasing new domains. Free domain
provider freenom.com offers country code top‐level domains (ccTLDs) free of

120 Chapter 4 ■ Malware and Malware Delivery Networks

charge for .cf (Central African Republic), .ga (Gabon), .ml (Mali), and .tk (Tokelau).
Free subdomains are also abundantly available for the taking.

Address mapping detection of a fast‐flux server requires selecting the can-
didates from hundreds of thousands of domain names that are in operation,
then performing active DNS monitoring for an extended period of time, and
finally aggregating the data collection to conduct analysis. Such an operation is
impractical due to the sheer volume of collected samples. In addition, multiple
domain names can share a single IP address, thus further complicating the
discovery process.

Dynamic DNS (DynDNS) is another mechanism used by malicious content
providers. The black hats register subdomain names within the DynDNS domains.
For a specific DynDNS domain, the main domain resolver will resolve all of
the names under that specific DynDNS domain. For each registered subdomain
name, the black hats can change the IP address at will using an update tool. The
IP addresses can be located anywhere on the Internet. In this category, the IP
addresses that were hijacked by the black hats belong to dynamic IP addresses
commonly found on broadband networks designed for residential homes.

Abandoned Sites and Domain Names
A lot of websites either are poorly maintained or have been neglected because
they were built for some kind of experimentation by their respective owners.
Oftentimes these sites are simply abandoned once the learning experience
is over, but they are still connected and reachable. A great number of them
have since been converted into malware hosting servers, unbeknownst to
their owners.

Some domains were allowed to expire for one reason or another. Abandoned
domains that were assigned to legitimate sites or hosts, which were used for
conducting business on the Internet with either clean or reputable histories, are
highly desirable. The past history of these domains gives legitimacy to whatever
websites are put up by the black hats to host content once the black hats take
ownership of the abandoned domains.

There is a set of challenges in preventing the circulation of malicious content
using reputation‐based solutions. Allowing all content from a reputable website
indiscriminately will accelerate malware distribution. For example, a site such
as CNN may be an innocuous, valuable doorway to legitimate web content, but
the dynamic links inside each page served by the site could be composed from
different sources, and some may be malicious. A reputable website can also be
hacked to host malicious content. On the other hand, if a host has been com-
promised in the past and has been recorded as being a participant in an MDN,
then this information may be stored for a long time. A simple reputation‐based
blacklist will render this innocent but victimized host permanently invisible.
We discuss intelligent filtering solutions in Chapter 5.

 Chapter 4 ■ Malware and Malware Delivery Networks 121

Antivirus Software and End‐Point Solutions: The
Losing Battle

Zero‐day exploits are still rare occurrences and are limited in number in the
wild because creating zero‐day exploits demands uncommon experience and
skill sets possessed by a limited number of individuals, and they require elabo-
rate efforts to discover new vulnerabilities. In the meantime, attackers continue
to explore new ways to distribute and spread existing malware and exploits,
knowing that not all users are diligent at patching their systems and updating
their antivirus software or virus signature database. End‐point solutions such
as antivirus software continue to play an important role in identifying known
viruses and malware and are an essential component in a multi‐layered secu-
rity defense.

However, traditional antivirus companies have conceded that modern antivi-
rus engines have low malware detection rates. The detection rates of antivirus
engines have been a debated subject in many RSA conferences over the years.
The detection rate seemed to vary depending on the entity that performed the
analysis. The data set used in the studies was another variable that also affected
the results. The disparity seemed significant at times.

These signature‐based solutions are ineffective against polymorphic code.
Polymorphic code is code that changes itself each time the code executes, but
the original functionality remains the same. Polymorphic malware possesses the
runtime characteristics of polymorphic code. In addition, similar to shellcode,
discussed in the previous section, the executable is packaged with a decryption
function having the actual functional code being encrypted as the payload. When
the malware executes, the decryption function decrypts the payload and then
runs the actual code. A malicious executable that is downloaded from a malware
site changes with each download. Antivirus engines have low recognition rates
for polymorphic malware. We have seen typical identification rates between 0
to 2 hits out of more than 50 antivirus engines in VirusTotal after each down-
load of the malware. Compounding the polymorphic payload problem is the
challenge of recognizing the exploit that the payload delivers against a specific
application or system module. The exploit can be detected only by examining
its runtime behaviors.

Days, if not weeks, elapse after an attack surfaces before the major antivirus
engines are updated to recognize a new threat. However, by then, private and
confidential information may have been stolen, and valuable intellectual properties
may have been lost. Antivirus engines are ineffective in battling zero‐day attacks.

If a free service such as VirusTotal provides free scanning of uploaded files
against more than 50 antivirus engines in parallel, then black hats can model this
approach to antivirus‐proof their new creation by subjecting the new malware
to all known antivirus engines; they can evolve the new malware if necessary

122 Chapter 4 ■ Malware and Malware Delivery Networks

and then finally release the beast to the wild, knowing in advance that none of
the existing antivirus engines will detect its presence.

Once a breach has occurred, the task in the aftermath is damage control;
but the damage has already been inflicted. So why not shift the defense into a
preemptive prevention strategy? In the next chapter, we focus on techniques
that attempt to detect and prevent malware infection at each stage of the con-
tent retrieval process, from URL analysis at the beginning to content analysis
at the end.

Summary

The push model of delivering malware from outside of an organization’s for-
tified perimeter, by means of exhaustively exploiting and attacking possible
vulnerabilities in a trial‐and‐error fashion, has become much less capable of
achieving success. The black hats have focused their strategies on creating
and posting bait on the web and having the population infect itself simply by
visiting the compromised websites. Online users are lured into the dark web
by phishing and SEP and have been victimized by drive‐by downloads. The
era of relying on just end‐point solutions such as antivirus engines is coming
to an end because these solutions are no longer effective in combating modern
malware. In Chapter 5, we present the solutions that solve the malware challenge
by focusing on detecting and then interrupting C2 and exfiltration channels.

123

A malware distribution network (MDN) or malnet is comprised of three main
components: the landing pages, intermediate redirection servers, and malware
exploit distribution servers. As discussed in Chapter 4, a typical infection process
begins with a lure that leads the user to a malicious landing page; once there,
the user’s web browser is induced to download a piece of shellcode. In order
to avoid detection, the web browser is redirected through multiple layers of
intermediate nodes before getting to the initial exploit code. After the shellcode
executes, it downloads the main malware payload from yet another server.
Finally, the shellcode launches the malware to compromise the end system
completely. More sophisticated shellcode may first fingerprint the user system,
followed by the transmission of the collected information to its command and
control (C2) server, which will subsequently provide further instructions to
the shellcode on the location from where to download a targeted executable
suitable for the user’s system.

Some landing pages may be manually crafted by the attackers. However,
other landing pages are part of legitimate websites. There are numerous known
incidents where legitimate websites and web servers were hacked and the
attackers planted malicious links to infect visitors. A more pervasive approach
is to compromise the third‐party content provider, which could result in many
non‐malicious landing pages to contain third‐party content that could lead to
exploited servers. For example, a dynamic advertisement banner may contain
JavaScript that creates a hidden iframe that sources its content from another

C H A P T E R

5

Malnet Detection Techniques

124 Chapter 5 ■ Malnet Detection Techniques

server. In such cases the website hosting the landing page should not be marked
as a malicious site simply because the third‐party advertisement it holds contains
malnet redirection links.

Adding to the complexity of the landing page classification problem, a large
number of ads are dynamically generated and are targeted to specific users
or browsers or both. These dynamic ads may not always contain the malnet
redirection links. Therefore, the aim of detecting malicious landing pages
is to analyze the page contents and evaluate the embedded URLs so that if
one of the URLs eventually leads to a malnet exploit server, that URL can be
marked and tracked as a malicious URL rather than the URL that points to
the landing page.

Identifying malware distribution servers is a part of the solution to disrupt a
malnet. The identification technique must have the ability to differentiate between
malicious and benign downloads. In addition, although the intermediate servers
play a role in the MDN, these intermediate servers are disposable and are eas-
ily replaced. Blocking the distribution servers forces the malnet to migrate the
hosting service to new endpoints and is the most effective venue in preventing
malicious downloads while new servers are put into service. Therefore, the focus
is on the actual distribution servers; once they are identified, implementing the
blacklist can be done easily in the egress firewalls.

This chapter will describe the algorithms that are applied to rate the URLs
and the web pages and also explore methods of exposing malware distribution
servers. It will also describe open‐source tools, called honeyclients, which are
often used for malware and MDN analysis.

Automated URL Reputation System

A URL is the first linkage to a malware infection. A URL that leads to a mali-
cious drive‐by download should be recognized and blocked as early as possible,
thus preventing the attack by blocking the download of the first piece of exploit
code. Malicious URLs that lead to the same malware change quickly to avoid
detection. A web reputation or URL reputation system analyzes a given URL in
real‐time to assess its trustworthiness, which concludes in a rating. The rating
system is typically a scale that ranges from benign through good, cautious,
unwanted, potentially dangerous, and finally, to malicious. However, the rating
system is largely implementation‐dependent.

A considerable amount of resources and time must be devoted to collect and
rate URLs that exist on the web today. The sheer number of URLs requires a
machine‐assisted automatic solution to process and rate the URLs. In addition,
the URL reputation system incorporates input from the user community when
possible. A learning machine is essential in constructing a scalable system, which
at a minimum performs high‐level sorting of the URLs into a rating category,

 Chapter 5 ■ Malnet Detection Techniques 125

known as classification, followed by further granular analysis to remove false
positives from each category.

In machine learning terminology, a classifier is a classification algorithm that
maps input to a category. In its simplest form, a learning machine implements
one or more classifiers. Supervised learning refers to feeding the learning machine
a preselected data set with known categories and training the machine to reach
the same classification results. A feature refers to a measurable heuristic property
of the subject, or a characteristic of an observed event that is being classified.
The more distinct and independent a feature is, the more quality the feature
possesses in contributing to the accuracy of classification.

Building a learning machine‐based URL reputation system begins with a
collection of URLs that are known and pre‐classified as either malicious or
benign. Then, features are extracted from these URLs. In the context of URL
classification, distinct features can be the number of characters in the second
level domain (SLD) name, the number of subdomains in the URL, the number
of non‐alphabetical characters in the URL, and so on. The collection of the
extracted features from a single URL forms a feature set. For example, with URL
ju2sd.d8ufv.uitsmake.ru, the feature set containing the feature‐value pairs is
< length:8, subdomains:2, non‐alphabet:0> because there are eight characters in
the SLD name “uitsmake”, there are two subdomains (“d8ufv” and “uitsmake”),
and the URL does not contain any non‐alphabetical characters. We will revisit
the feature set in the next subsection in more detail.

The URL collection is fed into the classifier together with the pre‐classified
results. The classifier correlates each of the extracted features with the final result.
After processing each of the URLs, the classifier tunes its formula to better
match the pre‐classified result. This process is called classifier training, and the
URLs used in the training are called a training set. The classifier has a higher
probability to be trained with higher precision if the training set is sufficiently
large. Often times, another set of pre‐classified URLs is prepared as a test
set. Similar to constructing the training set, the test set consists of URLs that
have been rated by other means, such as manual rating, and each URL has an
ascertained rating. The test set is used to verify the accuracy of the automated
reputation system by comparing the classification results with the pre‐classified
ratings, but neither enhancing the training set nor tuning the algorithms in
the learning machine.

Creating URL Training Sets
Several free resources are available for collecting a list of URLs that are known
to be benign and malicious. Alexa (www.alexa.com/topsites) composes a list of
the most popular and frequently visited websites that are generally regarded as
benign. Online databases such as PhishTank and EmergingThreats.net provide
useful datasets on malicious URLs. In addition, the Google Safe Browsing API

http://www.alexa.com/topsites

126 Chapter 5 ■ Malnet Detection Techniques

is available to check whether a URL has been identified by Google as suspi-
cious or malicious. The URL training set is not static because the reputation of
a URL can change over time. As discussed in Chapter 4, a website may initially
be benign and then after being abandoned by its owner, it may be hijacked by
black hats to distribute malicious content at a later time. This means that over
time the reputation of the URL may have changed. Hence, a training set, whether
a malicious set or a benign one, must be updated, and the classifier must be
re‐trained, either periodically or during real‐time transaction evaluation, to
reflect the dynamics in URL reputation.

Extracting URL Feature Sets
A URL is a string of text that may or may not have meaning semantically.
Performing lexical analysis, that is, breaking the URL string into a series of
tokens, allows for the extraction of desired features. One useful feature is the
string length of the SLD name. In the fictitious domain mydomain.com, the SLD
is mydomain. As discussed in Chapter 4, to distribute malware while avoiding
detection, malware authors deploy domain generation algorithms (DGAs) to
generate domain names in a batch and then algorithmically select a subset of
the generated domain names to register for the malware distribution servers.
DGAs tend to create longer SLD names to reduce the probability of name col-
lisions. Therefore, the length of the SLD can be extracted as a feature to infer if
the URL belongs to an MDN.

There are exceptions to long SLD names being malicious. Some legiti-
mate subdomains are constructed using self‐explanatory words to
advertise the nature of the business of the website owner. For example,
www.stevenscreekchryslerjeepdodge.net is a legitimate auto dealer website that
has 30 characters in the subdomain name. Another reason for legitimate long
domain names is because legitimate website owners tend to use lexical words
for easy memorization while MDN creators have no such concerns. Having
a short domain name does not imply the URL is less malicious. For example,
the eight‐letter SLD qpqduqud.com belonged to the second‐largest spam botnet
(named Srizbi) that was discovered in 2008.

A related feature to domain name length is whether the domain name con-
sists of lexical words or is just a concatenation of random characters. A domain
name composed of random characters is likely to be suspicious. However, the
opposite of having a meaningful domain name is not a strong indicator of a
benign domain. We know that black hats have created domain names out of the
most frequently searched keywords, such as well‐known events, breaking news,
popular merchandise, and famous celebrities, all in the hope of getting the search
engines to give the URL a preferential score that puts it in the top search results.
For example, the botnet Torpig may call a Twitter API to use one of the popular
trending topics in real‐time in Twitter as the seed to generate domain names.

http://www.stevenscreekchryslerjeepdodge.net

 Chapter 5 ■ Malnet Detection Techniques 127

This discussion raises a number of important points about feature extraction:

 ■ A feature may be useful only when it is applied in conjunction with other
features.

 ■ A feature may not be unique enough to be useful; that is, if there are too
many exceptions to the rule, then the feature becomes irrelevant.

 ■ A feature may evolve and transform into something else entirely different
from the original intent.

 ■ One feature may help in the development of another feature.

The reputation of a top-level domain (TLD) or of the country code TLD (ccTLD)
may be selected as a feature. Dynamic DNS domains and free subdomains
are known to be utilized heavily by MDNs. Certain countries are notorious
in providing bulletproof hosting: .ru, .cc, and .cn continue to be the top ccTLDs
that host malicious, illegal, and spam‐related domains. The ratio of numeric
to alphabetical characters and the number of subdomains in the URL can also
serve as features for the URL reputation classifier.

The features that we have discussed thus far are static features; that is, these
features are derived from static analysis of the URL. We can further explore
the origin and formation of the URL to elicit additional features. In particular,
we can collect the WHOIS information of a domain to extract features such as
the age of the domain (the initial registration date of the domain), the registrar
of the domain (registrar name and country), the domain’s lease period (how
long the domain is registered for, for example, three months versus one year),
and whether the domain is automatically renewed at the end of the lease. These
features, which are derived from WHOIS domain information, are relevant
because legitimate websites do not usually choose to hide their registrant infor-
mation, while questionable domains often perform anonymous registration.

Each feature is given a value once the feature selection is complete. The type
of value assigned to a feature may differ from feature to feature. For example,
the value type is an integer for features such as length of SLD name, number of
subdomains, age of the domain, and domain lease period. The string value type is
given to the TLD domain name feature. The Boolean value type is given to the
domain name consists of lexical words feature, and the fraction value type is given
to the ratio of numeric to alphabetical characters feature. In the following text,
when we refer to a URL feature, we mean that the URL has the feature F with
a value equal to f.

It is worth noting that the value for a feature may be a range instead of an exact
number. For example, the length of SLD name feature can have multiple values
ranging from 1 to 253. With that many possible feature values, it may be more
meaningful to partition and assign a value range according to subjective and
empirical insights regarding a feature. Continuing with the length of SLD name
feature example, based on observation it may be possible to divide the values

128 Chapter 5 ■ Malnet Detection Techniques

into three groups, that is, length value greater than 15 characters, between 15
and 8 characters, and less than 8 characters. We can use 0, 1, and 2 to represent
each of the groups so that the length of SLD name feature will have only three
different values for all the URLs in the training set.

Classifier Training
There are many classifiers that can be used to rate URLs. In this section, we
show a straightforward example of how classifier training works using the
Naïve Bayesian classifier. Our focus here is on how to prepare and present
the data to the classifier for input classification.

The Naïve Bayesian classifier is an application of Bayes’ theorem, which relates
conditional probabilities with prior beliefs. In its basic form, P(A) and P(B) are
the probability of event A occurring and the probability of event B occurring,
respectively. P(A|B) is the probability that A occurs given event B has occurred.
The theorem states that the probability that event B occurs given that event A
has occurred can be derived as

P B A
P B P A B

P A
(|)

() (|)
()

=

In the context of a URL classifier, let us denote P(m) as the probability of
malicious URLs occurring in the training set. To get P(m), we can count the
number of malicious URLs and divide that value by the total number of URLs
in the training set. Let F denote an extracted feature that represents length of
the SLD name greater than 10 characters. P(F), by definition, is the probability of F
occurring in the training set. We can get this value by processing and counting
the URLs that have more than 10 characters in the SLD name. The conditional
probability P(F|m) means the probability that the length of the domain name
is greater than 10 characters given that the URL is malicious. We count the
total number of malicious URLs in the training set and let A denote that sum.
Within the malicious URLs, we count the number of URLs that have more than
10 characters in the SLD name and use B to denote that sum. By taking the ratio
of (A/B) we obtain the value for P(F|m). Applying Bayes’ theorem, we can obtain
the conditional probability P(m|F) that the URL is malicious, given it has more
than 10 characters in the SLD name, as

P m F
P m P F m

P F
(|)

() (|)
()

= .

Similarly, let P(!m) denote the probability of benign URLs in the training set.
Using the same analysis and approach, we have the conditional probability of
a URL being benign, given feature F, as

P m F
P m P F m

P F
(! |)

(!) (|!)
()

= .

 Chapter 5 ■ Malnet Detection Techniques 129

Now, considering two independent features F1 and F2, we would like to obtain
the probability of a malicious URL given F1 and F2. Applying Bayes’ theorem,
we can write the probability as

P m F F
P F m F P m F

P F F
P F m P F m P m

P F P F
(| ,)

(| ,) (,)
(,)

(|) (|) ()
() ()1 2

1 2 2

1 2

1 2

1 2

= =

Note in the preceding equations, because F1 and F2 are independent,
P F F P F P F(,) () ()1 2 1 2= . Also, the conditional probability of P F m F(| ,)1 2 does not
depend on F2 and can be written as P F m(|)1 .

Expanding the two‐feature analysis into a feature set with j independent
features, the conditional probability of a URL being malicious given the inde-
pendent feature set <F1,…,Fj> becomes

P m F F
P F m F P m F

P F F

P F m P F m P m

P F P F

P m P F m

P F

(| , ,)
(| ,) (,)

(, ,)

(|) (|) ()

() ()

() (|)

()
,

j
j

j

j

i

j
i

i

j
i

1
1 2 2

1

1

1

1

1

∏
∏

… =
…

=
…

…

= =

=

where P F()ii

j

1∏ =
 and P F m(|)ii

j

1∏ =
are the products of P(Fi) and P(Fi|m) from 1

to j respectively. In the preceding single feature example, we have shown how
to calculate P(m), P(Fi|m), and P(Fi); therefore, from the training set, we know
every term in the equation, and we can calculate P m F F(| , ,).j1 …

Similarly, we can also calculate the conditional probability of a URL being
benign given feature set <F1…Fj>, and we already know the value of each of
the terms.

P m F F
P m P F m

P F
(! | , ,)

! (|!)

()
j

i

j
i

i

j
i

1
1

1

∏
∏

()
… = =

=

Finally, the Naïve Bayesian classifier classifies a URL with j features by compar-
ing the probabilities of P m F F(| , ,)j1 … and P m F F(! | , ,).j1 … If the former is greater,
the URL is malicious; otherwise, the URL is benign. If those two probabilities
are the same, the URL can be either malicious or benign; however, such a case
is very rare with a large set of features and quality training URLs.

The Naïve Bayesian Classification is merely an example showing how pre‐
collected data can be used to train the classifier in the context of classifying
malicious URLs. Such a classifier that takes the labeled input training data and
infers the label of unseen samples is a typical approach of supervised learning.
Besides the Naïve Bayesian classifier, the approaches and algorithms in the general
category of supervised learning include decision trees, linear regression, sup-
port vector machines, and so on. Each of the approaches can be used to design

130 Chapter 5 ■ Malnet Detection Techniques

a classifier, and it is not always obvious which method is better than the other.
A common practice is to apply multiple classifiers using different algorithms in
parallel inside a single URL reputation system to improve accuracy. The final
output of the URL rating is based on the combined weighted ratings from all
the classifiers and can be represented as a reputation score. Further, the rating
score can be translated to multiple levels other than just a binary value of mali-
cious or benign. Those score and rating levels can reflect the confidence level
of the classifiers’ output; for example, based on the calculation, the ratings can
be malicious, unwanted, regular, and trusted with the decreasing probability
that the URL is malicious.

Many off‐the‐shelf data mining software applications are available that have
already implemented the aforementioned classifiers. For example, the Naïve
Bayesian classifier is available in Apache Mahout, and a comprehensive data‐
mining tool called Weka implements a wide range of classifiers, including the
supervised learning classifiers we mentioned earlier. The off‐the‐shelf software
can apply data‐mining models to the extracted features, but not the URLs. As
such we need to implement pre‐processing functions to extract the features from
the URLs and then feed the features to the data‐mining software.

Another possible addition to the feature set is the human tagged domain repu-
tation. Although manual rating of individual URLs is not a scalable solution,
there are situations where it is useful for security analysts to examine domain
names and assign trustworthiness ratings to them manually. In the aforemen-
tioned example, a domain may have had a good reputation but was hijacked
to participate in an MDN campaign, and over a brief period of time the URL
continues to surface in a redirection chain leading to malware. In such a case,
the reputation of this domain should be adjusted to a much lower rating until
that domain is removed from the MDN chain. In addition, security analysts
can apply their expertise and heuristics to label potential malicious domain
names with a threat severity level. For example, a domain that is constantly
associated with a ransomware campaign is of a higher level of threat severity
than a domain that merely distributes adware.

An interesting question to discuss is the size of the feature set. There is no
universal answer to how large the feature set should be in order to give accurate
ratings, as the outcome is highly dependent on the quality of the features, that
is, how indicative those features are. Instead, we can focus on evaluating how
important each of the features is to the classification result. We need to conduct
a series of controlled tests to evaluate the importance of a specific feature. In an
iterative approach, we run the classifier with all j features included against the
training set and obtain a classification accuracy rating of X. In the next test, we
rerun the classifier on the same training set, but with only j‐1 features, and get
an accuracy rating of Y. If X > Y, then the excluded feature helps to improve the
classification accuracy. The larger the difference in X and Y, the more impor-
tant that particular feature is. However, if X ≤ Y, it indicates that the classifier

 Chapter 5 ■ Malnet Detection Techniques 131

is better off or indifferent without the excluded feature, and we can remove it
from the feature set. There is also no definitive guideline on either the size of
the training set or the size of the test set. However, a good training set should be
able to train the classifier to reach over 99 percent accuracy in the similar‐sized
test set. In most cases, 20,000 URLs is a good starting point to build the URL
reputation system.

At the time of this writing, a few free online URL reputation services were
available. The most eminent ones are Blue Coat WebPulse Site Review and
McAfee TrustedSource. Both products offer categorization results and allow
users to submit revisions to the results if they feel the classification is inaccurate.
The TrustedSource service lists reputation in a separate column in addition to
the categorization. The reputations are Minimal Risk, Unverified Risk, Medium
Risk, and High Risk. The WebPulse Site Review service combines the ratings
with the descriptive categorization names; for example, a malicious URL can
fall into the categories of Malicious Outbound Data/Botnets, Malicious Sources/
Malnets, Suspicious, Potentially Unwanted Software, and so on. In addition,
Google provides a safe browsing service that allows applications to check a
URL against Google’s own collection of suspicious and malicious pages through
an API call. The responses from Google Safe Browsing servers are “phishing”,
“malware”, “both phishing and malware”, and “ok”.

A URL reputation system can be deployed to detect and filter malicious URLs.
However, this system has a few limitations:

 ■ Not all redirection links are URLs with domain names. Sometimes the
redirection link contains hardcoded IP addresses.

 ■ The accuracy of the URL rating is highly dependent on the extracted
feature set, the learning algorithm, and the quality of the training set.

To alleviate the first limitation, we can extend the URL rating to include IP
address blacklists. Similar to intermediate redirection servers, the collected
IP addresses are highly likely to be disposable. Newly seized IP addresses
need to be constantly added to the blacklists, while stale entries must be veri-
fied and removed, thus rendering blacklists either ineffective or not scalable.
The second limitation is much more difficult to address. Although advances in
machine learning can be incorporated to enhance the effectiveness of learning
and detection, extracting the URL feature set is quite subjective, and may not
adapt well with the characteristics of an evolving MDN.

Dynamic Webpage Content Rating

A webpage content analysis and categorization system complements the URL reputa-
tion systems. A web content categorization system takes a webpage as its input,
dynamically scans and analyzes the webpage content, and then generates a

132 Chapter 5 ■ Malnet Detection Techniques

category for that page based on its evaluation. Entertainment, Adult/Mature,
News/Media, Pornography, and Social Networking are just some example
categories for a webpage. These categories are referred to as web categories for
the remainder of this book. In the context of detecting malicious URLs, some
content categories have high risk levels because they can lead to malware. For
example, many lures are placed on porn sites that trap users into download-
ing fake video players that are actually malware. Therefore, a user should be
warned of the danger that lurks behind a webpage if the URL points to one that
is classified as pornographic.

A webpage categorization system is a multi‐dimensional engine that ana-
lyzes the content from different perspectives using various algorithms, and
the combined results determine the category. Analyzing the webpage content
types and their respective layouts within the page is one dimension. Analyzing
the advertised types of merchandise and services, as well as brand names, to
derive the targeted demographics is yet another dimension. In the following
section we will discuss one analysis dimension that extracts keywords from a
webpage and then uses these keywords to derive a category for that page. This
categorization system must be capable of extracting the most relevant keywords
from a webpage and then have the ability to search, compare, and match for
the most befitting category.

Keyword Extraction for Category Construction
The first step in keyword‐based content categorization is to create categories
of interest. Associated with each category is a set of keywords that, when com-
bined together, form the most representative characteristics of that category. As
a simple example, the keywords representing a Sports category may be “athlete,
touchdown, inning, home run, quarterback, mixed martial arts”. Although cer-
tain webpages list keywords in their page titles, these keywords are subjective
to the author’s intentions and may not truly reflect what the real content of the
webpage is. Therefore, the full text in each given webpage is analyzed, parsed,
and condensed into a small set of words during the category construction phase.

At the beginning, a large volume of webpages are collected and compiled to
form the basis of the categories. Human analysts are typically involved in this
initial construction phase. An analyst applies heuristics to sort each collected
webpage into a category that the analyst believes to best describe that page.
Once all of the webpages are sorted into the corresponding categories, the
collection of webpages in each category is then compiled through one or more
algorithms to extract the keywords to represent the category. In the early stages,
each category may contain a large number of keywords, and the keywords
may overlap across the categories. Then, through a perpetual iterative cycle,
the keywords in the categories are refined as new webpages are examined and
processed by the categorization system. Refining a category implies possibly

 Chapter 5 ■ Malnet Detection Techniques 133

changing the number of keywords in the category, and some keywords may
be replaced by new ones.

Term frequency‐inverse document frequency (TF‐IDF) is a well‐known and widely
adopted approach to evaluate how important a word is to a document in a col-
lection of documents, or corpus. Many search engines use TF‐IDF as the base
algorithm to relate pages to given user queries. We will illustrate the concept
of TF‐IDF before you see a demonstration of how this algorithm can be used to
extract relevant keywords for a category.

Let us assume we have a collection of English articles and we need to find out
which article is most relevant to the topic of “Windows antivirus scan”. Intuitively,
“Windows”, “antivirus”, and “scan” are the three keywords or terms we want to
search for in the articles. So, we start reviewing the articles and eliminate the
ones that do not contain all those three terms. In each of the remaining articles,
we count the occurrences of each term and sum those occurrences together. A
larger value means more occurrences of the terms and hence greater potential
to be more relevant. However, this method has drawbacks, such as in the case
where the collection of articles is exclusively about Microsoft Windows. In such
a case, “Windows” is a common word in all articles and is not a good term for
distinguishing relevant and non‐relevant articles. Therefore, we need some
mechanism to offset the weight of common terms (in this example, “Windows”)
and to emphasize the importance of the unique terms (in this example, “anti-
virus” and “scan”).

The preceding example infers that a good keyword representing a docu-
ment should appear more often in that document while occurring less often
in other documents. This is the basic concept of the TF‐IDF algorithm. The
algorithm has two parts: TF and IDF. TF is the function to evaluate the term
frequency within a document. The frequency function can be simply the raw
word frequency, for example, x occurrences among a total of y words. The
frequency function may also be a function derived from the raw word fre-
quency, for example, a logarithm function with the raw word frequency as a
parameter, as in log(1+x/y).

IDF measures how important the word is to the document collection. Oftentimes,
the IDF is the function log10(N/n), where N is the total number of documents in
a collection, n is the number of documents that the particular keyword appears
in, and log10 is the 10‐based logarithm. The product of TF and IDF is the score
of the keyword, and we can write it as S logx

y
N
nTF–IDF 10= . A larger score means

the keyword better represents the page. Applying the document concept to a
single category and mapping the corpus to all categories of interest, we can see
the TF‐IDF algorithm can be directly applied in keyword extraction out of the
webpages that belong to the same category.

Table 5-1 shows the results of a scan we did on 100 webpages. For a particular
page, we list the top five most frequently occurring words with their occurrence
count in the single page and in the overall 100‐page collection.

134 Chapter 5 ■ Malnet Detection Techniques

Table 5-1: Example of TF‐IDF Calculation

KEYWORD

OCCURRENCE
IN SINGLE PAGE
(WORD COUNT)

OCCURRENCES
IN COLLECTION
(PAGE COUNT) TF‐IDF SCORE

Windows 50 10 50

Free 100 30 52.3

Antivirus 100 5 130.1

Scan 10 3 15.2

Explorer 5 50 1.5

Take “antivirus” as an example. To calculate the TF‐IDF score, we first take
the 10‐based logarithm of total pages in the collection (100) over collection
occurrences (5), which is log10(100/5)=1.301. We then multiply the number by
the occurrences in a single page (100) and get 100 x 1.3 = 130.1. From the table,
we can observe that although the words “free” and “antivirus” both appeared
100 times in the sample webpage, the TF‐IDF score for “antivirus” is much higher
than the score for “free”, which indicates that “antivirus” is a better keyword
than “free” in representing the webpage. Repeating this same process, we can
compile additional top relevant keywords out of the remaining 99 webpages.
Together, these keywords would represent the category these 100 pages have
been sorted into.

There is almost always a need to sanitize a webpage and select a subset of
contents within the page prior to applying the TF‐IDF algorithm. Consider
the scenario where a malicious webpage is populated with a large number
of keywords that would classify the page to a benign category; however,
in this case, these crafted keywords are made invisible to webpage visitors
through display tricks, such as using a tiny font‐size, or using coloration
such as setting the font color to white while displaying the content on a
white background. The descriptive lures are prominently visible to visitors,
thus achieving the goal of leading the visitors down to a malnet, although
the words that make up the lures have the smallest number of occurrences
within that page.

Applying the TF‐IDF algorithm to such a page will result in the extraction
of keywords from the large volume of hidden text, which causes the classifica-
tion algorithm to treat the webpage as benign and does not represent the true
malicious intent of the webpage. A TF‐IDF‐based categorization system cannot
circumvent the display rendering techniques to derive the right category for
such a malicious webpage. Therefore, parsing the HTML code of a webpage to
identify and eliminate hidden content that is aimed at poisoning the keyword
extraction algorithm would be a necessary pre‐processing step.

 Chapter 5 ■ Malnet Detection Techniques 135

Building a collection of webpages for the IDF function is a perpetual process.
The initial set of webpages may be manually collected and categorized first, but
as the classification system is deployed to rate new webpages, these new pages
are added to the collection, and periodically the TF‐IDF algorithm is re‐run to
refine the keywords for each category.

Keyword Categorization
Let’s assume there are C web categories and each web category c has a num-
ber of associated keywords. There is a set s containing a number of unique
keywords extracted from a webpage. For each c, we test each of the keywords
in s against each of the keywords in c. The categorization problem becomes a
searching problem of finding the category c that contains the highest number
of keywords from s. In other words, the matching is not a precise one‐to‐one
matching. Therefore, categorizing a webpage is about identifying the most likely
category instead of reaching an absolute answer.

A bloom filter is a memory‐efficient data structure that enables the imple-
mentation of membership testing. A bloom filter is an example of a probabilistic
data structure, which is a data structure having some probabilistic components.
In the context of a bloom filter, the probabilistic component refers to the fact
that a membership test gives a probabilistic answer, not a definitive result. In
particular, with a bloom filter the test can determine whether an element is
“definitely not” in the set, or the element “may be in” the set, but the test cannot
conclude whether an element is “definitely in” the set. In other words, a bloom
filter can give a false positive answer of “the element is a member of the set”
when in fact the element is not in the set, but a bloom filter cannot give a false
negative answer of “the element is not a member of a set” when the member is
in fact part of the set.

The bloom filter concept was first introduced in 1970 to solve the problem of
implementing a membership testing method using an error‐free hash function
on a large amount of source data. Due to the amount of the source data, an
impractically large amount of memory is required to accommodate the hash
area. The bloom filter method reduces the hash area in memory by allowing a
small fraction of error in the membership test results.

The general idea of a bloom filter is to use a bit array to represent a set.
Assuming a set has n elements, then at the start the bloom filter is a bit array of
n slots, where each slot has a bit value 0. Each element in the set will be an input
to a number of hash functions. Applying each hash function to an element will
give a slot number, and then the bit value in that slot will change to value 1.
To test for a set membership, the element to be tested is fed into the same hash
functions, and the resulting bit array is compared against the bit array that was
created for the set. The construction method for a bloom filter allows for new
element insertion into the filter but cannot remove an element from it.

136 Chapter 5 ■ Malnet Detection Techniques

In the context of our webpage categorization problem domain, each bloom
filter represents a web category. The filter is constructed as an array of m bits.
We choose k independent hash functions. Each function will map a keyword
to an array element in the range of 1 to m. The reason for choosing k indepen-
dent hash functions is to reduce collision. It is possible for a single hash func-
tion to hash two different keywords into the same slot (or bit position) and
cause a collision. In such a case, the bit cannot represent a unique keyword.
However, with more than one hash function, a keyword is represented as a set
of bits and thus greatly reduces the probability of collisions. In popular bloom
filter implementations, the commonly used hash functions include Jenkins
hash, Murmur hash, Fowler‐Noll‐Vo (FNV) series of hashes, and MD5 hash.
Figure 5-1 illustrates the construction of a bloom filter for a web category that
contains four keywords and three independent hash functions.

Element 1

0

0

1

1

0

1

0

0

Step 1. Apply h1(), h2(), h3() on elements and get bit arrays (b1..b4).

Step 2. Bitwise OR of the element bit arrays to get the bit array of the bloom filter (bf).

h1
h2

h3

b1

Element 2

0

0

0

1

0

1

0

1

h1

h2

h3

b2

Element 3

1

0

1

1

0

0

0

0

h2

h1

h3

b3

Element 4

1

0

0

1

0

0

0

1

h1

h2

h3

b4

Bloom Filter

1

0

1

1

0

1

0

1

m=8
k=3

bf

Figure 5-1: Bloom Filter Construction

The bloom filter for a web category is initialized by applying each of the k
hash functions on each of the keywords in the category, resulting in k hash
values. Each of the k hash values is an index into the array, and the value at that
array slot is set to value 1. As shown in Figure 5-1, the three hash functions are
applied to each keyword to obtain the bit arrays b1, b2, b3, and b4, respectively.
Then these intermediate bit arrays are combined to form the bloom filter for the
category. To test for membership, the same number of hash functions is applied
to a given element to obtain an intermediate bit array, which is then compared

 Chapter 5 ■ Malnet Detection Techniques 137

against the bloom filter using a bitwise XOR operation. Figure 5-2 shows an
example of a membership test.

0 0 0 0 1101

1 0

Bloom Filter m=8 k=3

1 0 1 Category c101

1 0

Keyword 2Keyword 1

1 0 0010

h1 h1h2 h2h3

Flag raised

h3

Figure 5-2: Bloom Filter Matching

This example illustrates the process of testing two keywords against a bloom
filter of 8 bits built using three hash functions (h1, h2, h3). When applying the hash
functions to keyword 1, 3 bits are set in its array. The array is then compared
with the bloom filter using bitwise XOR, resulting in a value 0, which means
keyword 1 is in category c. For keyword 2, hash function h1 sets the second bit
that is not in the bloom filter, so the XOR operation results in a non‐0 value,
implying keyword 2 is not in category c.

In the context of content category classification, assume a category c‐1 has five
keywords (A, B, C, D, E), and a category c‐2 has five keywords (B, C, D, F, G). If
the harvested keywords from a webpage are (B, C, D), then the webpage will
match both categories because (B, C, D) are in sets c‐1 and c‐2. If category c‐3 has
(A, C, D, I, J), then the webpage has a 75 percent match against c‐3. Therefore,
a webpage can match multiple categories due to overlapping keywords, which
can be useful if the percentage of matching for a category is presented as part
of the result so as to enable a security analyst to conduct further, more focused,
analysis.

As mentioned earlier, one of the properties of a bloom filter is that it can never
return a false negative answer, but it can give a false positive answer. That is
to say, when an element (for example, keyword 2) is tested and the test shows
the element is not in the bloom filter, the test is 100 percent accurate. However,
we cannot be absolutely sure when a bloom filter test (for example, keyword 1)
passes. This probability of a false positive (p) is a function of the values of k, m,
and n as p e(1)kkn

m= − − , where k is the number of hash functions, m is the size of
the bit array, and n is the number of elements in the bloom filter.

We can derive from the equation that the value of p grows with n. This means
that as more elements are added to the bloom filter, the probability of false

138 Chapter 5 ■ Malnet Detection Techniques

positives increases in tandem. Choosing the optimal value of the hash func-
tion number k as (m/n) ln2 can minimize the probability p. When designing a
bloom filter, we first set the value of n and m, and then we calculate the optimal
k value. Those three values are put into the probability function to calculate the
false positive rate, which can be used to refine the parameters. For example, if
p is too large, we go back and choose a large m value to reduce p.

Through the aforementioned keyword extraction and category matching
techniques, we can process and compute the URL reputation as well as ana-
lyze and categorize the page behind the URL. Each category can be assigned
a rating that reflects the probability a webpage having that category can lead
to malicious infection. The category rating is similar to the domain rating in a
URL reputation system. Security analysts can dynamically update the ratings
to address emerging threats.

Detecting Malicious Web Infrastructure

Detecting malicious landing pages and redirection servers is the first tier of
defense against an MDN. Despite efforts at detecting and avoiding malicious
URLs and landing pages, some malicious ones will evade detection and lure
users into a malnet. When reputable websites and legitimate servers have been
compromised to host malicious content, reputation‐based detection may fail to
identify malicious downloads. In such cases, content‐based analysis not only
can offer protection for the end system but also record the host that served the
malware.

Identifying each of the malware distribution points and taking them down
one by one is an effective approach to defending against an MDN. However,
individual malware distribution points are just the tip of the iceberg. There are
malicious web infrastructures that orchestrate the MDNs. These MDN infra-
structures are well hidden and cannot be easily accessed from the legitimate
side of the web. Understanding their structures and the way they operate is
critical in creating multi‐layered defenses.

Detecting Exploit Servers through Content Analysis
One commonly deployed approach to detecting malware distribution points and
exploit servers is to perform content analysis of downloaded files. The server
that hosts a downloaded file, typically an executable file of some form, which
is found to be malicious, is marked as either an exploit server or a suspicious
host. The executable file must first be extracted from the download session
and then scanned by a content analysis system for known exploits and malware
signatures. Common components of a content analysis system include mul-
tiple antivirus engines and a sandbox. A sandbox is a controlled and restricted

 Chapter 5 ■ Malnet Detection Techniques 139

execution environment in which a suspicious executable file is placed and
executed, a process often known as malware denotation. The runtime behavior
of the executable is recorded and analyzed for identification of maliciousness.

The extraction of the executable content from a download session can be
done with the help of a secure proxy. A secure proxy can hold and examine
the connection between an exploit server and the user’s browser. For example,
with the HTTP proxy, if the Content‐Disposition value in the HTTP header is
“attachment”, the HTTP proxy can get the filename from the filename param-
eter. Furthermore, the proxy extracts the HTTP payload as the content of the
file and reconstructs the downloaded file with the extracted filename. The
reconstructed file can then be sent to the content analysis system for a malware
scan. The file transfer between the HTTP proxy and the content analysis system
can be carried over the Internet Content Adaptation Protocol (ICAP). The HTTP
proxy will serve the content to the user session if the content analysis system
finds the file to be clean. However, if malware is detected, the HTTP proxy
will record this connection with the exploit server IP address and hostname if
possible. The proxy will also block the content, and the browser may be served
with a warning page.

Once the proxy obtains a list of exploit server IP addresses and hostnames,
this list can be added into a proxy policy to block future connections to these
exploit servers. An HTTPS proxy is mandatory if the session is carried over
an HTTPS session. HTTPS‐based malware distribution is less common than
HTTP‐based distribution, mainly due to the fact that modern browsers will
warn a user of non‐CA (Certificate Authority) signed certificates and explicitly
ask the user to confirm the acceptance of such non‐authenticated certificates
before proceeding with that HTTPS connection. In order to silence the browser
warning, a malware distributor will need to obtain a valid certificate, which
is both difficult and costly, in addition to being easily traceable. Some MDNs
have been observed to host malware on well‐trusted cloud storage providers
such as Dropbox, Google Drive, and SkyDrive. However, such cases are rare
because reputable cloud storage providers constantly monitor their servers for
abuse and for malware infection and are known to quickly block access to the
malware as soon as it is identified.

The major challenge of using a content analysis system to detect malware
exploit servers is that most antivirus engines scan for particular patterns or
signatures of known viruses and malware. The pattern‐based scanning tech-
nique is prone to signature evasion. Even after the signature of malware is
captured and incorporated by an antivirus engine, the malware authors can
easily repackage or obfuscate the malware through encryption to result in a
different signature. The repackaged and redistributed malware is most likely
to evade the antivirus engines, although the major attack vectors remain the
same. A sandbox is an essential part of the content analysis system because a
sandbox detects malware through the analysis of runtime behavior instead of

140 Chapter 5 ■ Malnet Detection Techniques

static signatures. Let us look at a few examples of runtime analysis of JavaScripts
that can be done in a sandbox.

In order to analyze the webpage content, it is essential to understand what
the malware is intending to achieve in different environments. Because most
web‐based attacks exploit the vulnerabilities of a web browser, it is logical to
simply analyze the webpage contents, for example, HTML and JavaScript, by
executing these contents in the browser. However, due to environment finger-
printing techniques used by most malware, a single piece of malicious JavaScript
may follow different execution paths depending on the particular browser
version and system configuration, leading to completely opposite result states.
It is time‐consuming to create each specific browser and system configuration
and therefore impractical to test the malware on all possible configurations.

Rozzle, a JavaScript multi‐execution virtual machine, was designed specifically
to explore these multiple execution paths and bypass environment checks in one
pass. The key concept of execution‐path exploration is to visit every control‐flow
branch. For example, when an if/else block is processed, both the if and the
else code paths are executed. In the case of try/catch blocks, these are treated
as virtual if/else branches and the code in the catch block is executed as
well. Still, there are certain limitations with this approach. Malware can use
a server‐client structure to fingerprint the browser and detect the presence of
multi‐execution techniques. To do so, the malware client could sample a few
code paths and send reports about the execution results to its C2 server. The
C2 server could then return different content to render based on the sample
execution results. In addition, there are some browser‐dependent behaviors
that cannot be captured by control‐flow branches. For example, the expression
(0 * window.innerWidth + 1) will return 1 in Firefox and Chrome but will
return a NAN error in Internet Explorer. This expression can be coded as the key
to trigger an attack in Firefox and Chrome, and such an attack is not visible
when the code is executed on Internet Explorer.

Another challenge in content analysis is code obfuscation. Because malware
extensively uses eval() or document.write() functions to dynamically create
JavaScript at the time of execution, content analysis is not always strictly static
analysis. Therefore, the analyzer needs to collect and process the JavaScript code
at runtime. Fortunately, such tools are available to intercept the “unpacked”
code that’s dynamically generated in the JavaScript engine as the malicious
code is being executed. When using the Detours tool, for example, it is possible
to obtain the JavaScript code at each level of unpacking, such as each time it
executes eval().

With the de‐obfuscated JavaScript code, JavaScript analysis tools can be
used to classify whether the code fragment is malicious or benign. Zozzle is
an in‐browser JavaScript malware detection tool. Zozzle generates an Abstract
Syntax Tree (AST) from the JavaScript and then abstracts a set of features from
the expression and variable declaration nodes in the resulting AST. An AST is

 Chapter 5 ■ Malnet Detection Techniques 141

a tree representation of the syntactic structure of a program that is written in a
specific programming language; in this discussion the programming language
is JavaScript. Figure 5-3 illustrates an example AST of a code fragment written
in C. Each feature contains a context word and the AST text string.

Figure 5-3: Abstract Syntax Tree

Abstract Syntax Tree (AST)

if - then - else

conditionvar x var x

function : foocompare
operator <

var y var y addvar y

var y var x

var x50

compare
operator ==

if (x ==3)
{
while (y < 50)
{

foo (x, y);
y=y+x ;

}
}
else
x++;

add

block

assign

3 1

loop

Zozzle is a direct application of the Bayes theorem. Zozzle excludes features
that are statistically dependent. Its goal is to calculate the conditional prob-
ability that the JavaScript is malicious given a set of independent features that have
been extracted from the JavaScript code fragment. Experiments show that Zozzle
is surprisingly effective, with less than one false positive in a quarter‐million
samples. Integrating Zozzle into popular browsers does not show significant
performance degradation. Nonetheless, such feature‐based learning needs a
large dataset to train the classifier, which makes distributed collection and
classification at the end user’s browser inefficient. In addition, malware authors
can quickly restructure their JavaScript to obsolete the selected features. Code
variations in the collected malware samples require continuous retraining of
the classifier, which is also inefficient at the end user’s system.

To address the code variation challenge, Revolver has been proposed with
the attempt to understand the semantics of different variations of exploit code,

142 Chapter 5 ■ Malnet Detection Techniques

particularly in drive‐by‐download attacks. Revolver requires honeyclients to
collect the malicious code on the web despite the evasion attempts. (Honeyclients
are described in the section “Detecting Malicious Servers with a Honeyclient”.)
The collected scripts can be generally categorized as either malicious or benign
using honeyclients as well as other off‐the‐shelf antivirus scanners. Revolver
analyzes the scripts by first constructing an AST for the scripts. Then it runs the
scripts in a browser emulator to track which code path in the AST is executed.
It also tracks scripts that lead to network I/O operations, such as those gener-
ated by an iframe.

The ASTs are stored in the format of a normalized node sequence in an array
using pre‐order traversal. In addition, each AST is tagged as malicious or benign.
Working on the normalized node sequence of the ASTs, Revolver can check the
similarity of two ASTs by computing the directed edit distance between those
two node sequences. In the case of two malicious sequences, the similarity iden-
tifies the evolution of the malicious scripts. For a pair of benign and malicious
scripts, the similarity shows a possible hidden evasion attempt.

Topology‐Based Detection of Dedicated Malicious Hosts
In malnet infrastructures, there exist dedicated malicious hosts that have a
high percentage of presence in paths of multiple malnets that lead to distri-
bution servers. Instead of analyzing the types of malicious content served or
activities taking place at each such host individually, one effective approach
is to analyze the topology of the malnets these prevalent hosts belong to. The
topological detection method examines the malnet infrastructure holistically
to identify common nodes that are part of different malnets. Then, disrupting
these critical and common hosts in the malicious infrastructure can achieve
high negative impacts on the malnet’s operations. We know malnet owners
deploy DDNS (Dynamic DNS) and fast‐flux to evade detection by registering
a large number of domain names and mapping these domain names to a set
of IP addresses. In these mapping tactics, multiple domain names can map to
a single IP address, and a single domain name can have multiple IP addresses.
So the malnets relate to one another through hostnames and IP addresses
that appear in URLs and in web requests. Therefore, the Hostname‐IP Cluster
(HIC) data structure is utilized to compute the maximum overlapping. Each
HIC is represented as HIC={H, I}, where H is the list of hosts and I is the list of
IP addresses, essentially representing a group of malnet hostnames that are
associated with a set of IP addresses.

Sufficient data collection is necessary before constructing the HIC. The first
step in data collection is to gather a large number of URLs. The URLs are
partitioned into known malicious URLs and known legitimate URLs. The
URL data set typically numbers in the millions once it is finalized, and each

 Chapter 5 ■ Malnet Detection Techniques 143

URL is crawled, possibly through multiple redirections of various techniques
ranging from HTTP status code to JavaScript, to obtain the entire path to the
malware. After processing the URLs, the HICs are built through an iterative
process: first identifying the unique hostname (hi) followed by identifying all
of the IP addresses that have been resolved for that hostname hi, resulting in
the single‐host HIC in the form of HICi = {hi, (IP1, IP2, IPn)}. These single‐host
HICs are then processed to determine if they can be merged with each other to
form a larger multi‐host HIC. This process repeats until none of the HICs can
be merged with other HICs.

A pair of HICs can be merged if they are closely related, which is measured
by the clustering coefficient r, or the Jaccard index. The Jaccard index is also
known as the Jaccard similarity coefficient and measures the similarity between
two data sets by dividing the size of their intersection by the size of their union.
So the coefficient r is calculated as the number of shared IP addresses divided
by the total number of unique IP addresses in HICi and HICj. As a percentage
value, r falls between 0 and 1, with 0 indicating the two HICs are independent.
The pair of HICs is merged if coefficient r is above a certain threshold value that
is typically set to 0.5. The merge process is performed repeatedly on all HICs
until no two HICs can be merged. In the context of a topology‐based detection
approach, an additional merge criterion is the similarity in the registrar infor-
mation. By looking up the WHOIS database, we can obtain the registrar name
from the domain name. Because malnets utilize free domains and dynamic
DNS providers extensively, the registrar serves as a good indicator to determine
whether a domain name is legitimate. Consequently, the HIC merging criterion
is revised as r >= 0.5 and the hostnames share the same registrar. Figure 5-4
illustrates the HIC merge process.

Once the HIC merge process is complete, the final set of HICs contains both
malicious and legitimate HICs. The PageRank algorithm is then applied to iden-
tify the malicious HICs. The PageRank algorithm was designed to compute
the importance of a webpage or its rank by the number and quality of links
pointing to the webpage. A rank propagates across the hyperlinks, and the rank
of a page depends on the ranks of the pages that link to it. The idea behind
applying the PageRank algorithm to the HICs to discover the malicious ones
is that a malicious HIC will have a high rank in the malicious infrastructure;
that is, a malicious HIC has high references from other malicious HICs, while
at the same time receiving a low rank from the legitimate benign web infra-
structure. This topological relationship in the malicious infrastructure enables
this approach to identify new pervasive and dedicated malicious hosts, as well
as uncovering new malicious URLs. In addition, this topology‐based detection
method is agnostic to the nature of the attacks that leverage the infrastructure,
and taking down these dedicated pervasive hosts can disrupt many types of
attack campaigns.

144 Chapter 5 ■ Malnet Detection Techniques

Detecting C2 Servers
One type of resilience designed into the MDN is the separation of the C2 channel
from the malware distribution or download channel, as shown in Figure 5-5.
Unlike exploit servers, the C2 servers do not distribute the malware but rather
are the command center to orchestrate the malnet operation. In particular,
through the C2 channel, the malware downloader may obtain a list of URLs

Figure 5-4: HIC Merge Process

Hostname Registrar
HIC1

A1

Hostname RegistrarA2Hostname 1

Hostname

IP1 IP2 IP3

IP1 IP2 IP3 IP4

IP1 IP2 IP3 IP4

RegistrarA2

Clusters merge
with shared IPs

and registrar

Hostname Registrar
HIC2

A1

Hostname RegistrarA3

Hostname

IP1 IP2 IP3

IP7IP6IP5IP1

IP1 IP5 IP6 IP7

RegistrarA3

Clusters cannot
merge due to small

clustering coef�cient

Hostname Registrar
HIC3

A1

Hostname RegistrarB4

Hostname

IP1 IP2 IP3

IP5IP3IP2IP1

IP1 IP2 IP3 IP5

RegistrarB4

Clusters cannot
merge due to

different registrars

 Chapter 5 ■ Malnet Detection Techniques 145

that specify where to retrieve the actual malware payload, to report the malnet
download status to the C2 servers, to upload fingerprints of the host and the
browser environment, and to receive further attack instructions. Because C2
servers are not associated with malware downloads, they do not generate a
large volume of traffic in the C2 channels, thus making them difficult to detect.
In particular, the challenges lie in the following aspects:

 ■ The C2 servers and the malware bots can implement private communi-
cation protocols that are dynamic and can change at any time. It takes a
great amount of effort to reverse‐engineer those protocols.

 ■ A C2 channel can be encrypted or obfuscated, making deciphering the
C2 channel an extremely arduous process.

 ■ Some C2 servers leverage the distributed P2P infrastructure, making their
presence highly dynamic and live identification difficult.

Figure 5-5: Separation of C2 and Download Channels

Exploited Host/Bot

C & C Servers

MDN

Exploit Servers

Data Channel

C & C Channel

One approach to detect C2 servers is to create a contained environment, for
example, by using honeyclients, and run malware inside it. The assumption
is that the malware will infect the contained system and try to contact the C2
servers for further attack instructions or to download the malware payload.
The goal is to set custom network policies to deceive the malware by blocking

146 Chapter 5 ■ Malnet Detection Techniques

communications from the malware bot to one of the C2 servers so that the mal-
ware bot will enumerate the C2 servers it knows. In this way, the bot further
reveals its full list of C2 servers. By deploying the contained test environment
behind a proxy, we can enforce the desired behavior by adding the following
rules on the proxy:

 ■ Respond with “Name Error” when a DNS request is received. This rule
is based on the observations that some malware bots have a hardcoded
list of hostnames or URLs to connect to the C2 servers. The bot needs to
resolve the C2 server’s IP address before initiating the connection. The
rule is to trick a malware bot to explore all of its known hostnames or
domain names for the C2 servers.

 ■ Reply “TCP RST” to all “TCP SYN” requests. This rule is to block TCP con-
nections to C2 servers in case a C2 server is hardcoded with IP addresses. If
a bot has an embedded list of pre‐defined C2 server IP addresses, then the
bot might try to reach another one if the current C2 server connection fails.

 ■ Drop all UDP traffic. The consideration of this rule is similar to the TCP
rule just described. It takes care of the case when the C2 channels are
using UDP instead of TCP.

The preceding rules can detect certain types of C2 communication when
the bots themselves know the C2 servers. However, these detection rules are
ineffective if the bots rely on another layer of redirection servers. In such MDN
deployments, the bots communicate with a set of redirection servers to obtain
the hostnames or IP addresses of the actual C2 servers. The aforementioned
rules block the connections to the redirection servers, and thus the de facto C2
servers are not revealed. Another rule is implemented in the proxy to deal with
such cases: drop connections with a payload size greater than m bytes, in prac-
tice, choosing m to be 4K. The consideration in designing this rule is to allow
C2 control messages to go through but to block further download of malware
payloads from the exploit servers.

When all of the traffic to and from this contained environment is captured,
the identified network flows can be filtered to remove the connections to
well‐known websites (such as the Alexa top 100K domains), leaving only sus-
picious connections to potential C2 servers. Although this is not an efficient
strategy to decode the C2 communication protocol, nonetheless those suspi-
cious connections can be used to extract and analyze potential C2 requests
and responses.

Although advanced anti‐detection mechanisms have been adopted by malware
authors to hide the C2 servers, some features and patterns can be observed
from uncovered malware campaigns to extract heuristics that will aid in
detection design. For example, C2 servers usually have redundant deploy-
ments where there are multiple active and backup C2 servers. In addition, to

 Chapter 5 ■ Malnet Detection Techniques 147

avoid takedowns, those C2 servers span a diverse set of Top Level Domains
(TLDs) across multiple Autonomous Systems (ASes). The domains are regis-
tered through geographically distributed registrars on multiple continents.
Applying this property, if we observe a chain of connections each having
small payloads to a diverse set of servers fitting such a property, then those
servers are potentially C2 servers. As another example, C2 server domains
and exploit server domains are often distinct from each other to avoid domain
filtering. However, to reduce costs, MDNs usually choose the same service
provider to host multiple malicious servers, including both exploit and C2
servers. In other words, both malicious domains map into the same provider
prefixes. Therefore, applying the HIC and redirection graph approach that
we discussed in the previous section, we can correlate and sort these into C2
servers that are less connected in an HIC and the exploit servers that are the
most connected in an HIC.

Detection Based on Download Similarities
This detection method works by inspecting TCP/IP headers, HTTP headers,
HTTP responses, and a preconfigured number of bytes in the payload. Once
the HTTP response is identified as containing a download file that is not in a
configured white‐list, the flow information is recorded along with the request
URI and a computed hash of a k‐byte block from the payload. These metadata
records are collected over live networks for a predetermined period of time,
typically in days.

After the metadata extraction phase, different analysis techniques are applied
to separate the potential malicious requests into a set of URIs. The first analysis
aims to detect file mutation, also known as server‐side polymorphism. Malware
authors use file mutation in their attempt to defeat signature‐based detection
engines. The same malware file may be modified slightly each time it is served
so that it has a different hash digest. A single URI that points to different files
(according to different hash digests), and in a short time span, is a strong indica-
tion of active file mutation taking place on a distribution server.

The second analysis aims to detect fast‐flux. From the metadata, domains that
host at least one identical file (again according to the file digest) are grouped
together into a cluster. When multiple domains in the cluster map into the same
provider prefix, this is a sign of domain fluxing. The goal of a legitimate content
delivery network (CDN) is to provide a reliable distributed content delivery
infrastructure. The reliability stems from the fact that the same content is made
available on different provider networks, in different physical locations, and
on different physical servers to offer resiliency. Hosting multiple domains on a
single IP address or on one provider prefix violates one of the basic CDN goals
and does not seem to have any legitimate reason except for being a symptom
of fast‐flux.

148 Chapter 5 ■ Malnet Detection Techniques

Domains that host the same files and belong to the same legitimate CDN
tend to have the exact same structured directory layout. This characteristic is
missing from the malicious domain cluster. A legitimate CDN is likely to host
a variety of contents, and therefore a large number of URIs would be associ-
ated with a legitimate domain, while a malicious domain would have a small
number of URIs because each malicious domain usually hosts a small number
of malware files. Similarly, the file types hosted by a regular CDN will show a
wide variety while the file diversity in malicious domains is poor.

The third analysis aims to identify domains and IP addresses that participate
mainly in the download of a single executable file. This is typically a symptom
of domains and IP addresses that are active only in an attack campaign.

The fourth analysis aims to detect drive‐by download domains that are trig-
gered by second‐stage shellcode. This analysis is based on the observation that
some drive‐by downloads are initiated by the shellcode and result in the HTTP
header having a User‐Agent that is different from the HTTP header generated
by the user’s web browser. Therefore, when multiple HTTP requests originate
from the same IP address and go to the same destination but the requests have
different User‐Agent values, this is a sign of a malicious download, and the
destination is potentially malicious.

What remains at the end of these analyses is a set of URIs that are highly
suspicious. These URIs are then further analyzed using the techniques described
previously.

Crawlers
The detection methods described in the previous sections are all activated by
real‐time traffic generated from user‐initiated activities. The necessity for actively
probing for an MDN in the web infrastructure is motivated by two aspects. First,
active probing is intended to discover MDNs at large, and traffic from those
MDNs is not available on premise. In addition, active probing can discover new
MDNs or those that are in hibernation so that zero‐day or even negative‐day
protections can be afforded. Second, active probing provides fresh training
sets to refine classifiers or other machine learning‐based systems. For a rapidly
evolving malnet, certain indicative features, properties, and components can
change over time. Compiling the up‐to‐date collection of malnet samples also
helps us to better understand the new evolution trends taking place in an MDN.

Web crawlers are great tools for collecting malicious URLs and webpages
as they traverse the web in a systematic way. Typically, web crawlers follow
hyperlinks to land on as many webpages as possible. The key in designing the
crawler is efficiency: with numerous pages on the web, the crawler needs to
proactively filter the non‐malicious links it encounters and focus only on the
potentially malicious pages. Given the fact that popular search engines also
crawl the web continuously, an efficient crawler can leverage the existing search

 Chapter 5 ■ Malnet Detection Techniques 149

engine infrastructure and use it to its advantage to locate the malicious pages
of interest. The general concept is that the malicious pages share some common
searchable features, and if the crawler can identify such features from known
malicious pages, then it can utilize search engines to locate more pages with the
same features. Those pages in the search results have high probability being
potentially malicious pages. The more pages the crawler collects, the clearer a
picture it gets of how malnets structure those pages.

The web crawler starts with a set of known malicious URLs as samples. As we
discussed in previous sections, lists of such URLs are available from malware
databases online. The web crawler first needs to visit those URLs and obtain a
copy of the pages behind the URLs for processing. It is worth noting that the
crawler extracts common features that are indicators of malicious webpages,
which is a different approach from the dynamic content rating system we dis-
cussed earlier. In the latter case, the rating is based on the analysis of textual
content that is visible to the end user, while in the former case, the processing
covers more elements on the webpages, for example, the embedded links.

An easy‐to‐understand example of an extracted feature is “shared links”. The
web crawler first processes each of the sample pages and extracts the embedded
URLs. A link is recorded as a shared link if the link is found on more than one
page. At the end of this process you have a compiled list of shared links within
those sample pages, which is an indicator of common malicious features. The
crawler chooses the most highly referenced URLs (for example, top 10 URLs)
from the shared‐links list and submits them to the search engines. The search
results will list other pages indexed by the search engines that have the same
link. The crawler examines the retrieved pages and excludes the ones that are
already in the sample pages. The remaining pages in the search results are the
new pages that have the same malicious feature, that is, the shared links discov-
ered by the crawler. The final step is to add the newly crawled pages into the set
of sample pages. As the sample page count grows, the crawler will periodically
process the sample set to try to discover possible new shared links.

There are two particular challenges in implementing the detection crawler.
The first challenge is server‐side polymorphism. As discussed in Chapter 4, a
malware page can conceal itself from a crawler by returning benign or legitimate
content while returning a whole different set of malicious content when it is
visited by an exploited browser. By employing server‐side cloaking, the exploited
websites can respond to a crawler by traffic redirection to other benign or legiti-
mate websites. In this regard, server‐side cloaking is another malicious feature.
Server‐side cloaking is detected if the crawler eventually lands at two different
TLDs when appearing to be a crawler or browser. Although a legitimate website
can also deliver targeted contents based on users and exhibits certain levels of
server‐side polymorphism, it is unlikely that the targeted contents are served
from different TLDs. The crawler implements server‐side cloaking detection
by visiting a candidate URL multiple times, each time using a handcrafted

150 Chapter 5 ■ Malnet Detection Techniques

HTTP header, in particular, with specific values in the User‐Agent and Referer
fields. For example, the crawler simulates a click from a Google search result by
setting User‐Agent as a regular browser, such as Internet Explorer or Chrome,
and Referer as a Google search query URL. Then the crawler may simulate a
Google crawler by setting User‐Agent to Googlebot or Googlebot‐News, which
may experience a chain of redirections before reaching the final page. The
crawler compares the TLDs in both cases and identifies server‐side cloaking if
the TLDs are different.

The second challenge in implementing a detection crawler is to collect the
malicious URL samples. Free online databases are good sources, but due to
the short lifetimes of malicious domains, a good portion of the URLs listed in
those sources are outdated and are no longer valid when they are made available
online because the hosts were either taken down or abandoned. Therefore, a
key aspect in crawler implementation is to find live MDN campaigns that con-
trol and distribute malicious URLs. Search engines provide tools to show the
up‐to‐date statistics and live trends of popular keywords, such as Google Hot
Trends, Twitter hot hash tags, and so on. The same tools are also used by SEO
and SEP campaigns to attract traffic onto malicious landing pages. Therefore,
the keywords in the live trends are potential malicious features. In this case, the
crawler searches the keywords through search engines and returns with links
to a list of pages in which there are potential MDN landing pages. The crawler
then leverages other techniques (for example, server‐side cloaking detection)
to evaluate whether those links are malicious.

A detection crawler is best deployed together with other MDN detection
systems. On one hand, other detection systems can further filter the crawling
results and hence improve crawling efficiency and quality. In particular, a URL
reputation system can help to shorten the list of potential malicious URLs, and a
content analysis system can provide high‐accuracy detection on contents behind
those URLs if the links eventually lead to file downloads. On the other hand,
the crawler can be utilized as an exploration tool to probe for MDN infrastruc-
tures. For example, one important property of MDN infrastructure is that the
dedicated malicious HICs are highly intertwined and highly connected with one
another. Applying this property, the crawler, when encountering the hosts in the
malicious HICs, can then try to explore all of the links that originate from that
host because those links most likely point to other hosts in the same or related
HICs that serve as the backbone of the malicious infrastructures.

Detecting Malicious Servers with a Honeyclient

A honeyclient, also called a client honeypot, detects attacks and malware by
simulating a vulnerable client application and actively interacting with remote
servers. This client‐side approach is different from traditional honeypots, which

 Chapter 5 ■ Malnet Detection Techniques 151

simulate vulnerable server applications and then wait passively for incoming
attacks. Although the concept of a honeyclient can be extended to any type
of client application the power and popularity of browser‐based attacks have
made web browser honeyclients by far the most common type of honeyclient.
Web browser honeyclients mimic a user browsing a list of websites and then
analyze the activity to identify websites that exploit vulnerable web browsers
or browser plugins. This section will provide an overview of browser honey-
clients, discuss the design trade-offs using popular honeyclient implementa-
tions as examples, and conclude with some of the challenges and alternative
analysis techniques.

High Interaction versus Low Interaction
Similar to other types of honeypots, honeyclients can be divided into two main
categories: high interaction and low interaction. The major difference between
the two is that high‐interaction honeyclients use real applications, on a real
operating system, and sometimes even on real hardware, while low‐interaction
honeyclients use software to simulate the vulnerable client applications. For
example, in the original honeyclient implementation, the honeyclient drives a
real Internet Explorer browser running on a Windows host to visit the malware
websites and closely monitors memory, files, and Windows registry entries
in real‐time. In such cases where unexpected modifications and changes are
observed, a malware attack is recorded, and the web page is flagged. On the other
hand, low‐interaction honeyclients simulate only the critical parts of the browser
and operating system required to detect the types of attacks they’re looking
for and are often run on a different operating system than the vulnerable sys-
tems they are simulating. Because low‐interaction honeyclients do not require
the full application or operating system to be running, they are lightweight in
nature and are typically easier to deploy.

Although high‐interaction honeyclients generally give better detection rates
and lower false positives, they are more difficult to implement on a large scale
due to the amount of resources it takes to deploy a single full system and the
exploding combinations of deploying each possible browser type with various
configurations. On the other hand, low‐interaction honeyclients are generally
simpler to deploy on a large scale due to their lower resource overhead and ease
of creating different configurations, but they have lower fidelity because they
are only implementing a subset of the possible client capabilities. In an attempt
to close this gap, hybrid honeyclient implementations have been proposed to
gain the advantages of both high‐interaction and low‐interaction honeyclients.
The challenge faced by such hybrid systems is usually in the complexity of
combining multiple approaches.

In the following section, we give two examples that show how honeyclients
work in detail. Note that although the particular honeyclients we discuss are

152 Chapter 5 ■ Malnet Detection Techniques

designed with certain unique features, they reflect many of the common design
elements shared by other honeyclient implementations.

Capture‐HPC: A High‐Interaction Honeyclient
Capture‐HPC is a popular open‐source implementation of a high‐interaction
honeyclient. It uses a dedicated virtual machine running Windows and Internet
Explorer to interact with suspected malware webpages and monitors the system
for unauthorized state changes to detect attacks. There is no other user activity
occurring on the virtual machine, so activities that are not typical of normal
web browsing behavior—such as sensitive file system changes or modifica-
tion of registry key entries—can be flagged as strong indications of malware
exploiting the web browser.

Capture‐HPC is implemented using client‐server architecture. The Capture‐
HPC clients are specially instrumented Windows executables and reside inside
the guest operating systems to drive the browser and detect activity. A VMware
ESXi server is used to host a number of Capture‐HPC clients and is managed by
the Capture‐HPC server, which runs on a separate host. The Capture‐HPC server
communicates with both the VMware servers and the Capture‐HPC clients via
TCP using XML messages. For example, the Capture‐HPC server can instruct a
client to open a specific browser and visit a particular website. The server can
also request the client to send activity data back to it for further processing.
Capture‐HPC uses the VMware APIs to communicate with the VMware server
to control each of the guest VM instances, such as starting and stopping a VM
instance. In the event that a Capture‐HPC client detects and reports malware,
the guest operating system is then considered infected, and the Capture‐HPC
server will instruct the VMware server to restore the guest VM to a clean snap-
shot before dispatching further tasks to that Capture‐HPC client. Figure 5-6
illustrates the structure of the Capture‐HPC system.

The Capture‐HPC client detects malware by monitoring changes on the file
system, the Windows registry, and the running processes. To do so, special
kernel drivers are installed on the guest operating system. These kernel drivers
implement a set of kernel callback functions, which are invoked when certain
events occur during execution. In Capture‐HPC’s implementation, four call-
back functions are provided to monitor the system state: CmRegistryCallback,
FilterLoad, FltRegisterFilter, and PsSetCreateProcessNotifyRoutine. When
the Capture‐HPC client program starts, it loads the kernel drivers together with
a user space buffer. When a monitored event is received, the drivers invoke
the callback functions and copy the actual event information to the buffer so
that the client program can process it in user space. It is possible that certain
events are received as a result of legitimate operations such as writing to the
browser’s cache, and therefore the events are compared with a whitelist of
events and “normal” events are ignored. In addition to communicating with

 Chapter 5 ■ Malnet Detection Techniques 153

the specialized kernel drivers, the Capture‐HPC client also monitors network
I/O on the guest VM. It stores the network activity as packet capture files and
sends them to the server when malware is detected. Capture‐HPC is capable of
driving multiple browser instances inside a single VM concurrently in order to
parallelize execution and speed up the detection process.

Figure 5-6: Capture‐HPC Server/Client VMware Structure

VMware Server

Capture-HPC
Server

Browsers 1...N

Capture-HPC Client

Guest VM 1

Guest VM 2

Guest VM 3

Guest VM 4
VMware

 API

Star
t /

Stop
 VM

Rese
t V

M to
cle

an s
late

URL Requests / Commands
Kern

el D
rive

rs URL 1...N

Pa
ck

et
 C

apt
ure

Results / PCAP FIles / Reports

Capture‐HPC presents a good example of some of the key design concepts
in high‐interaction honeyclients:

 ■ High‐interaction honeyclients are typically virtual machines‐based. This
approach makes it easier to start and stop the honeyclients and revert
them to a clean state when the system is infected.

 ■ High‐interaction honeyclients are instrumented to monitor sensitive system
events in order to detect possible evidence of malware infections. Besides
the kernel drivers approach seen in Capture‐HPC, it is possible to intercept
system calls using hooks in the System Service Dispatch Table (SSDT) or
to directly hook in Windows API calls inside the browser process. Newer
methods of event monitoring, known as VM introspection, can even monitor
events without modifying the guest operating system at all. These methods
achieve event‐monitoring goals by instrumenting the virtual machine
and inspecting raw CPU instructions, memory, and hard drive to detect
sensitive events. By leaving the guest operating system unmodified, VM
introspection is harder to detect by malware but requires significantly
more effort to detect and understand the context of the events.

154 Chapter 5 ■ Malnet Detection Techniques

Thug: A Low‐Interaction Honeyclient
Thug is a popular low‐interaction honeyclient implemented in Python. It does not
use actual browsers for its analysis but instead mimics the behavior of vulner-
able web browsers. In other words, Thug only simulates the core functionality of
a web browser without relying on features from the underlying operating system.

Thug works very efficiently using Python to collect and analyze malicious web
pages. To emulate different browser configurations in an HTTP request, Thug
sends modified HTTP header fields and uses individually configured “personal-
ity” components to mimic a specific web browser. The browser personality may
also be configured with specific plugin versions such as Java, Flash, or Acrobat,
as well as modifying certain DOM or JavaScript behaviors.

A webpage is analyzed using Thug’s DOM interpreter when that webpage
is retrieved using the URL. It is then prepared for further analysis. Thug has
specialized modules to detect exploits for plugins such as Acrobat, Java, Flash,
and ActiveX, and can also analyze arbitrary JavaScript code to inspect it for
malicious activity. Thug uses the Google V8 JavaScript engine to perform both
static and dynamic analysis on all JavaScript code encountered. In this dual
approach, static analysis is used to identify high‐value locations in the code to
insert breakpoints, and then dynamic analysis is used to examine the environ-
ment once the code has been executed up to each breakpoint. Using this method,
they can perform complex analysis, such as shellcode or heap spray detection,
without significantly impacting performance. Because Thug uses a full JavaScript
engine and DOM interpreter, it is capable of detecting and handling various
types of obfuscation and can construct the page for additional analysis. The parse
results usually contain more URLs to be analyzed, which can then be used to
gradually crawl the web until an exploit is detected or a depth limit is reached.

Due to the lightweight implementation of Thug, it is possible to further emulate
specific vulnerabilities to pinpoint the attack vectors that are otherwise harder
to configure using a high‐interaction honeyclient. For example, if browser vul-
nerability is exploited only with certain Windows language packs, it requires a
high‐interaction honeyclient to load such language packs one by one, which is
time consuming. However, with Thug, because the browser is simulated, this
requires only a few lines to be changed in the personality profiles.

Designing honeyclients to detect malware has drawn the attention of research-
ers from all over the globe, and there are many additional implementations not
discussed in this chapter. For more information, visit The Honeynet Project
website, which maintains a list of historical and ongoing honeyclient projects.

Evading Honeyclients
Honeyclients face many challenges when deployed to combat malware. In
particular, they are prone to detection and evasion. Malware can adopt certain

 Chapter 5 ■ Malnet Detection Techniques 155

evasion techniques to detect whether a honeyclient is running and then modify
its behavior to avoid detection, such as attacking only if the malware cannot
detect the presence of the honeyclient.

VMware ESXi server has become a key ingredient in the migration to cloud
computing. Because the majority of high‐interaction honeyclients run on vir-
tual machines, VMware ESXi makes a perfect virtualization environment to
facilitate honeyclient implementations. Although cloud‐based applications
are likely running on an ESXi‐based virtual machine, however, regular end
users running the browser are likely to be in a non‐virtualized environment.
The malware tries to detect the presence of VMware ESXi before deciding
whether to attack.

Although the JavaScript and HTML provided by the malware cannot directly
access the file system, it is nonetheless possible to exploit certain dated browsers
or new browser vulnerability to check the existence of certain files. In the ESXi
case, one file to check for is C:\Program Files\VMware\VMware Tools\vmtoolsd.
exe. To perform such a check, the malware page simply tries to load the VMware
file as a source script. If the file does not exist, JavaScript throws a runtime error;
otherwise, the file is found and loaded. Obviously, although JavaScript cannot
load the binary file because of incorrect file format, it nonetheless offers a viable
way to detect if the system is running on top of VMware ESXi. Because no actual
attack is launched, this type of file existence check is usually overlooked. To
avoid browser caching, some random data, such as current time, is appended
to the filename of the checked file. The JavaScript snippet is listed as follows:

var is_esxi = 1;
var el = document.createElement('script');
el.id = "111";
el.type = "text/Javascript";
el.src = "res://C:\\Program%20Files\\VMware%20Tools\\vmtoolsd.exe";
el.src += "?"+new Date().getTime()+Math.floor(Math.random()*1000000);
el.onerror=function(){if (el.onerror) is_exsi = 0;};
document.getElementByTagName("head")[0].appendChild(el);

Using the preceding concept, the malware page can also detect whether
a honeyclient is installed on the system. For example, in Capture‐HPC,
the executable file of the honeyclient is located at C:\Program Files\Capture\
CaptureClient.exe. Similarly, if the honeyclient requires certain DLL files,
the malware page can check for their existence as well. Honeyclients will
not have enough protection from this type of file existence detection without
dynamically naming their required files and moving them around.

More advanced VM detection mechanisms enable a browser to intelligently
determine if it is running on a VM. Red pills refer to code that is designed specifi-
cally for detecting if it is running inside a VM or a CPU emulator. Browser‐based
red pills monitor the timing difference in I/O operations, thread operations

res://C:\\Program%20Files\\VMware%20Tools\\vmtoolsd.exe

156 Chapter 5 ■ Malnet Detection Techniques

including thread creation and inter‐thread communication, and graphics render-
ing. When the same operation is performed repeatedly over thousands of times,
completion time variations start to emerge, depending on whether the browser
is running on a native physical host or on a virtual machine. Browser‐based
red pills are easily coded using JavaScript and can be used by malware pages
to detect the existence of the underlying VM. The honeyclient would need to
be able to first evaluate the JavaScript content of the webpage in order to detect
the presence of browser‐based red pills.

Various countermeasures have been proposed and put into practice in
honeyclients to avoid malware evasion and detection against virtual machines.
A hypervisor is a combination of software and firmware that together facili-
tates the creation and execution of virtual machines. A Type‐1 hypervisor, also
known as a bare‐metal hypervisor, runs directly on top of the hardware and
manages the hardware directly to facilitate the execution of a guest operating
system. The guest operating system accesses the underlying hardware through
the hypervisor. VMware ESXi server is a typical example of a Type‐1 hypervisor.
A Type‐2 hypervisor is one that runs inside a conventional operating system.
The regular operating system owns and manages the underlying hardware.
With a Type‐2 hypervisor the guest operating system accesses the underlying
hardware first through the hypervisor, followed by the hypervisor accessing the
hardware through the hosting OS. VMware client is a representative example
of a Type‐2 hypervisor.

To avoid malware detection against Type‐2 hypervisors, transparent analy-
sis systems are proposed to run the honeyclients directly on bare‐metal
hardware. Because the transparent systems do not have in‐guest monitoring
components, detection is done by comparing the disk‐level statistics with the
initial clean state. Such comparison and analysis is non‐trivial and difficult
to perform in real‐time. In addition, user activities are difficult to simulate
on transparent systems, which can sometimes be used by malware to detect
the honeyclients.

Cloaking is another common approach malware employs to avoid detec-
tion by a honeyclient. By cloaking, the malware pages do not launch attacks
and act as if they are benign if some conditions are met. For example, the
malware page may match the User‐Agent type in the HTTP header to a list of
exploitable browsers and only choose to launch a drive‐by download attack
if the User‐Agent matches one on the list. In addition, the Referer value in
the HTTP header indicates where the URL link comes from. A malware cam-
paign may keep a list of domains and host names where the malicious links
are hosted on and check the HTTP Referer value on the requests from the
honeyclient. If they do not match the expected Referer values, then the attack
is not launched. Oftentimes in a honeyclient implementation, the malicious
URLs are compiled by an external database and fed to the browser instances
for an exploitation check. Although it is feasible to program certain HTTP

 Chapter 5 ■ Malnet Detection Techniques 157

header values, such as the User‐Agent, it is not always possible to do so for
every possible combination. After all, the honeyclient cannot set certain
fields in the header, such as the referer, if it does not know what the expected
values are.

The following code snippet is an exploit, found in the wild, which avoids
the honeyclients. The code issues a load of an ActiveX control object, called
yutian, which simply is known to be nonexistent. When the browser loading
fails, that exception is caught by the wrapper code that subsequently executes
the obfuscated true malicious code. Such honeyclient avoidance techniques can
easily defeat a low‐interaction honeyclient because the honeyclient itself usually
emulates the library API calls of ActiveX and does not catch exceptions; thus,
the malware remains dormant within the honeyclients.

try {
 new ActiveXObject("yutian");
} catch (e) {
var nop="%uyt9yt2yt9yt2";
var nop=(nop.replace(/yt/g,""));
var sc0="%ud5db%uc9c9%u87cd...";
var sc1="%"+"yutianu"+"ByutianD"+ ...;
var sc1=(sc1.replace(/yutian/g,""));
var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";
var sc2=(sc2.replace(/yutian/g,""));
var sc=unescape(nop+sc0+sc1+sc2);
}

There are numerous other evasion techniques that malware uses to invali-
date or cripple the honeyclient. In one interesting trick, the malware hibernates
until the mouseover event to trigger the attack. This works because real users
almost certainly move the mouse around when browsing, while honeyclients
do not. Moreover, a technique called Reflective DLL injection can remotely load
a malicious library from the shellcode and create a thread attached to the run-
ning browser. Because no new process is spawned, the additional thread is
created unnoticed. The newly created thread can then potentially participate
in a botnet until the browser process is terminated. This type of evasion does
not access the file system or modify the running processes and thus can defeat
many high‐interaction honeyclients like Capture‐HPC. The evasion is further
complemented by browser cache poisoning, in which the cached JavaScript files
are edited and appended with a code snippet that redirects the browser to fetch
the injection library. This evasion will succeed even after browser restarts or
even reboots.

Code obfuscation is one of the most common techniques to evade malware
detection. By adding code obfuscation, the malicious piece of code is hidden
in a chunk of scrambled scripts. The obfuscated code is still executable but is
much harder for a human to read, understand, and reverse‐engineer.

158 Chapter 5 ■ Malnet Detection Techniques

Summary

The malnet detection methodologies and approaches we have discussed in this
chapter are fundamental knowledge in building malware and malnet defense
systems. In practice, no single solution is capable of detecting all types and
variations of malwares or malnets. Therefore, building a multi‐layered detec-
tion and defense system that is comprised of different techniques, as depicted
in Figure 5-7, is essential in combating today’s threats.

MDN

Internet1

2 4

7

6

5

3

Search Engines

Crawler

URL Filtering

Content Analysis

Honeyclients

Cloud-Based Malnet Intelligence

Enterprise Malnet Protection

Retrospective AnalysisSecurity and Policy Enforcement Points

Firewall IDS Security Proxy Browser
Plugins

Malnet Databases

Subs
crib

e
Update

Figure 5-7: Multi‐layered Defense Architecture

 Chapter 5 ■ Malnet Detection Techniques 159

In the example solution system of malnet intelligence, crawlers constantly crawl
(①) the web for malicious URLs that lead to an MDN. The URLs are filtered and
fed into search engines to explore other related malicious URLs (②). With the
captured list of malicious URL candidates, content analysis systems and other
detection systems (③) are employed to detect malware and probe malnets. The
results are composed in a database (④). The processes repeat perpetually and
these components become the cornerstones of the cloud‐based malnet intelli-
gence. Enterprises are ideal subscribers of this cloud‐based malnet intelligence
(⑤) service. Security and privacy enforcement points—such as firewalls, secure
proxies and web gateways, IDS, browser plugins, and so on—that either are
located inside the perimeters of the enterprise network or reside in the end
user hosts can obtain real‐time updates from the malnet intelligence service to
constantly protect enterprise users from malware attacks. On the other hand,
the enterprises are contributors to building better and more comprehensive
malnet intelligence. The on‐premise malware retrospective analysis systems
mine the enterprise network traffic (⑥) and proactively collaborate with (⑦)
the malnet intelligence cloud to identify new threats. We discuss retrospective
analysis systems in Chapter 8.

161

A secure proxy possesses detailed knowledge about specific protocols and appli-
cations. This knowledge enables a proxy to examine network traffic thoroughly,
conduct deep content analysis, perform data transformation, and manipulate
connections and transactions, essentially applying every technique at its dis-
posal to enforce defined security policies. A proxy is deployed at a vantage point
that enables it to filter undesirable payloads, alert network administrators and
security teams of policy violations, log user activities, and prevent confidential
information leakage.

A proxy is commonly deployed collaboratively with other security solutions
such as a data loss prevention solution, antivirus engine, and sandbox malware
analyzer, and with systems that are essential to enterprise network operations
such as an authentication server and a mail server. Together, these solutions
offer a unified and layered security defense infrastructure against modern‐day
cyber threats conjured by black hats.

Chapter 3 examines the inner workings of a secure proxy’s policy engine
and discusses the general concepts behind a policy system, its policy lan-
guage, and the intricacies of policy execution against transactions. In this
chapter, we will provide example scenarios with specific security goals and
explain how to implement those security goals using a real‐world secure
policy system.

C H A P T E R

6

Writing Policies

162 Chapter 6 ■ Writing Policies

Overview of the ProxySG Policy Language

In this chapter, we use the Blue Coat ProxySG policy language as our primary
reference for discussing the constructs of a policy language. Examples that
are shown in normal font are available in the ProxySG policy language, while
examples that are shown in italics are conceptual policies that are not found in
ProxySG. Let us first define the important terms that we will use frequently
throughout this chapter:

 ■ Transaction – A transaction is an information container that encapsulates
the client request, server response, transaction processing states, policy
decisions, and variables that provide runtime information that is gathered
from the client‐request and the server‐response for the purpose of policy
evaluation and enforcement. The transaction object is created when the
proxy first intercepts a client request, and a set of default policy decisions
are set in the transaction.

 ■ Condition – A condition is a logical expression that tests one or more variables
against specific values. If a match is found, then the logical expression
evaluates to true; otherwise, it evaluates to false. The variable is called a
condition variable. Examples of condition variables are “user login time”
(user.login.time), “virus detected” (virus_detected), and “content
category of the request URL” (server_url.category).

 ■ Property – A property is a setting that controls how the proxy processes a
transaction. Examples of properties are “authenticate user in a specified
realm” (authenticate(yes)) and “request client certificate during SSL
negotiation” (client.certificate.require(yes)). The value of a prop-
erty is set when its associated condition evaluates to true. For example,
this policy states that “if the user is Bob” (testing condition “user” against
value “Bob”), then require the client to include its certificate during the
SSL negotiation phase.

 ■ Rule – A rule contains a set of conditions and properties. All of the proper-
ties are set if all the conditions in this rule evaluate to true. The order of
the conditions and properties in a rule is irrelevant, but rules are executed
sequentially.

 ■ Layer – A policy layer is a logical container that groups a set of rules, where
one decision will be made out of all the rules in the same layer. A layer
starts with a layer name enclosed in < >, and it is named according to the
policy engine component that executes the rules in that layer. For example,
a <proxy> layer contains policy rules that control the transaction, and an
<admin> layer contains policy rules that apply to management of the proxy
device. Because a layer stops processing once a decision can be made, the
order of the rules in a layer is important. The more specific rules should
come before the less specific rules.

 Chapter 6 ■ Writing Policies 163

 ■ Definition – A definition is a collection of conditions, policies, or other policy‐
related objects, which is customized to provide clarity and context so that
this definition can be referenced in a policy rule by its alias in order to
simplify the syntax and to facilitate code reuse. For example, if a condition
matches an IP address against a list of predefined IP addresses, then it
is generally a good idea to separately define this list of IP addresses as a
definition and appropriately name the list as “IP Addresses in Building
A” or “Finance Department”.

A policy can be generalized to have the following format, where N is
the number of conditions in a rule, and M is the number of properties in this
rule:

<layer-1>
condition1.1 condition1.2 … condition1.N
property1.1 property1.2 … property1.M
condition2.1 condition2.2 … condition2.N
property2.1 property2.2 … property2.M

All of the conditions and properties in the same rule are implied to be
logically connected by an AND relationship, while all of the rules in the same
layer are implied to be logically connected by an OR relationship. Therefore,
each layer can reach only one decision, even though a decision can consist of
multiple properties. Semantically, the policy layer just shown can be interpreted
as follows:

<layer-1>
 condition1.1 AND condition1.2 … AND condition1.N
 property1.1 AND property1.2 … AND property1.M
OR condition2.1 AND condition2.2 … AND condition2.N
 property2.1 AND property2.2 … AND property2.M

Another way to state these rules in the layer is as follows:

<layer-1>
 If (condition1.1 is True) AND
 (condition1.2 is True) AND …
 (condition1.N is True)
 Then
 (set property1.1 to value A) AND
 (set property1.2 to value B) AND …
 (set property1.M to value M)
 Else If (condition2.1 is True) AND
 (condition2.2 is True) AND
 (condition2.N is True)
 Then
 (set property2.1 to value A) AND
 (set property2.2 to value B) AND …
 (set property2.M to value M)

164 Chapter 6 ■ Writing Policies

From this example it is clear that when the number of conditions is large,
the policy rule becomes difficult to read and maintain. This is where policy
definition becomes useful to bind these conditions into a single set that can be
referenced as a whole, as in the following example:

define condition CONDITION_GROUP_1
 condition1.1
 condition1.2
 condition1.3
 …
 condition1.N
end

<layer-1>
condition=CONDITION_GROUP_1 property1.1 property1.2 … property1.M

It is also possible to apply a condition to a layer so that every rule in this layer
is subject to the evaluation result of this condition. This is called a layer guard.
The layer guard is a condition that is written on the layer line right after the
end of the angle bracket:

<layer-1> condition=LAYER_GUARD_CONDITION
condition=CONDITION_GROUP_1 property1.1 property1.2 … property1.M

This is semantically equivalent to applying condition=LAYER _ GUARD _
CONDITION to every rule inside this layer, but the policy engine can typically
optimize its execution by skipping the layer entirely when the layer guard
condition does not match.

Scenarios and Policy Implementation

Every enterprise defines network usage and Internet web access policies as
part of its security posture. These policies govern the online behavior of each
enterprise user. For example, they restrict user access to content and websites
that are not relevant to employees’ job duties or that may be legal liabilities to
the enterprise, and they dictate the actions that are executed by the proxy to
enforce the defined policies. We will begin with the most basic security policies
and gradually evolve the examples into more complicated scenarios as new
policy concepts are introduced.

Web Access
In the first example, an enterprise states in its web access policies that employees
must not be allowed to access websites that are classified as adult websites

 Chapter 6 ■ Writing Policies 165

because they contain adult content or are gambling sites. The IT security team
implements this guideline by first defining the required policies into the proxy
as shown in the following policy rules. Note that we include the line numbers
in the policy examples so that the annotation can reference the specific rule
that is under discussion. These line numbers would not be present in an actual
policy file.

1 <proxy>
2 url.category="Adult Content" deny
3 url.category="Gambling" deny
4 allow

The first two rules (lines ② and ③) state that any transaction that is intercepted
by the proxy, which requests web access to a URL that is categorized as either
Adult Content or Gambling, must be denied, while all other types of transac-
tions are allowed. If a user tries to access a site that contains adult material, he
will get an error page in the browser that indicates that access has been denied.
Typically the error page, commonly known as a coaching page, contains the rea-
son for denial and advises the user to consult the corporate policies regarding
online activities and behaviors. The last rule (line ④) is unconditional; that is,
there is no associated condition, and therefore it is always executed by the policy
engine. This is known as a catch‐all statement that acts as the default policy for
transactions that do not match a specific rule.

The way this policy is written to broadly allow transactions that do not explic-
itly match the forbidden categories is user friendly; however, it may introduce
security loopholes. A secure proxy should be paranoid about what it does not
know and what it cannot see. Having a default allow policy is subject to content
leakage and may create unintentional access exceptions due to poorly written
rules or to simple coding errors in the logics. A more conservative and restric-
tive security practice, however, is to use deny‐all as the default statement and
explicitly state only those specific activities and content that are permissible.

Now assume the Human Resources (HR) department has enhanced corporate
policy to comply with privacy laws without compromising the existing secu-
rity policies. The HR department demands that anyone who attempts to access
inappropriate content should be notified first that this enforcement is in place,
and their network activities, when not compliant with company policy, will be
logged and reported to HR. Anyone who knowingly continues after having
been coached about acting appropriately as an employee constitutes an explicit
consent to be monitored because that employee is exhibiting a willingness to
violate corporate policies.

1 <proxy>
2 service.name=HTTP exception(coaching_page)
3

166 Chapter 6 ■ Writing Policies

4 <proxy>
5 url.category="Adult Content"
 exception(inappropriate_warning_page)
 access_log(inappropriate_log)
6 url.category="Gambling"
 exception(inappropriate_warning_page)
 access_log(inappropriate_log)
7 allow access_log(main_log)

The policy now contains two layers: the first layer (the first occurrence of
<proxy>) is responsible for presenting the coaching page when any user browses
the web; the second layer (the second occurrence of <proxy>) denies access to
inappropriate URLs and logs both the URL and the IP address from where the
request was issued. In this example, we introduce two new elements of the
policy system: multiple layers and the property parameter. In the policy rule on
line ②, exception() is a property, and coaching _ page is the property parameter.
A property parameter such as coaching _ page allows a customized web page
that contains more information regarding the transaction to be displayed to
the end user.

Recall that a layer is a logical group that binds multiple policy statements
within a context, and only the first statement with matching conditions is
executed. In this case the first required action to be applied after intercepting
a web connection is to present a coaching page to inform the user that access-
ing inappropriate content will be logged. The coaching page should give each
user an opportunity to review the privacy agreement and decide whether to
accept the terms. Policy layers enhance the structure of the policy design by
facilitating a clear logical separation of the different conditions and actions that
should be applied to different stages of a transaction. For example, the coach-
ing page is presented to the user at the very beginning of the transaction, at
the connection establishment phase. Upon intercepting an HTTP connection,
instead of directly contacting the server, the proxy interrupts the transaction
by serving an exception page (line ②). An exception page is essentially a web
page that is generated and served by the proxy to inform the user of why it
is unable to fulfill a request. The same mechanism is used to inform the user
that a monitoring device is put in place, and the “Yes” and “No” buttons for
“Accept terms and conditions” are embedded inside the exception page for
the user to choose from.

The policy statement on line ⑤ contains one condition and two actions.
A simple deny action is now replaced by an action to “generate an exception
page”, and the parameter for this action specifies that the content for the
exception page comes from inappropriate _ warning _ page. The parameter
tells the policy engine to deny web access by presenting a warning page,
whereas the previous deny action simply closes the connection. This excep-
tion page in the second policy layer is not interactive, and the user request

 Chapter 6 ■ Writing Policies 167

is terminated once the exception page is served to the user’s browser. The
second action in this policy rule records the user request to the access log
file named “inappropriate _ log”, which is a separate log file intended to
contain only users who have attempted to access inappropriate content.
Any other web access is permitted and is logged in the main access log as
defined on line ⑦.

Line ⑤ and line ⑥ are essentially the same policy except for the matching
category. The number of URL categories can quickly become too large to man-
age this way. A better approach is to combine these rules and create a combined
condition such as this:

define condition inappropriate
 url.category="Adult Content"
 url.category="Gambling"
end

The combined condition can transform the rules on line ⑤ and line ⑥ into a
single statement:

condition=inappropriate
 deny(inappropriate_warning_page)
 access_log(inappropriate_log)

Access Logging
The proxy access log is an important data repository containing the history
of transactions, on which analysis can be performed to derive user activities
and behaviors. The proxy administrator specifies which pieces of informa-
tion from the transaction are written to the access log at the end of each
transaction.

An access log has a structured format. The Extended Log File Format (ELFF) is
widely adopted by various types of security devices including ProxySG. With an
ELFF‐formatted access log, each log line corresponds to a transaction. Each log
line contains a list of field identifiers, or just fields, with each field corresponding
to a transaction variable. For example, the following access log tracks the client
IP address, time of the request, and server URI:

#Fields: time c-ip s-uri
00:01:23 192.168.1.10 /login.html

In this log, time, c‐ip, and s‐uri are referred to as the transaction variables,
namely, the time when a transaction began, the client’s IP address, and the
requested URI. Every field consists of a prefix, such as c or s, and an identifier,
such as ip or uri, connected by a hyphen (‐). The prefix c indicates that the field
belongs to the client side of the transaction, while the prefix s indicates that the

168 Chapter 6 ■ Writing Policies

field belongs to the server side of the transaction. Although all of the possible
prefixes are given in the following list, the number of possible combinations of
prefix and identifier is too large to enumerate here. Always refer to the ProxySG
product manual for a complete listing of fields that are suitable for capturing
the desired information.

 ■ c refers to the client.

 ■ s refers to the server from the client’s perspective; the physical endpoint
for s could be the proxy.

 ■ r refers to the server (remote destination) from the proxy’s perspective;
this is the original destination of the client’s request.

 ■ cs is client to server, from the client’s perspective.

 ■ sc is server to client, from the client’s perspective.

 ■ rs is remote destination to proxy, from the proxy’s perspective.

 ■ sr is proxy to remote destination, from the proxy’s perspective.

 ■ x is the custom identifier.

Notice that there are two prefixes that refer to the destination: s for server,
and r for remote. The server prefix refers to the server (or destination) part of the
incoming connection that is originated from the client; the remote prefix refers
to the server (or destination) part of the outbound connection that is originated
from the proxy. The s‐ip and r‐ip fields may or may not have the same value,
depending on the network topology. For example, if the proxy is deployed as
an explicit proxy, all of client’s web requests are directed towards the proxy’s IP
address. In this case, s‐ip of a transaction is the proxy’s IP address, and r‐ip is
the original web server’s IP address. If a proxy is deployed transparently inline,
the s‐ip field and the r‐ip field may be identical.

Access logs are typically used to analyze and discover events that have taken
place. The amount of information that may be derived from the access log
depends on the number of fields in a given transaction that have been selected
by the security team for access logging. Having detailed information about a
transaction is important, but how such information is going to be leveraged is
unknown when the access log is created. The following is an example list of
fields that have been selected for access logging:

 date time time-taken c-ip sc-status s-action sc-bytes \
 cs-bytes cs-method cs-uri-scheme cs-uri-port cs-uri-path \
 cs-uri-query cs-host rs-content-type \
 cs-user-agent sc-filter-category s-ip r-ip

Most of the field identifiers are self‐explanatory based on the prefix and the
field name. Let’s take a sample log entry based on this field selection list to

 Chapter 6 ■ Writing Policies 169

illustrate how we can read the access log to extract useful information about a
specific transaction:

2014-12-10 21:40:19 78 10.9.45.28 200 TCP_NC_MISS 1025 1916 GET http 80
/.element/ssi/www/breaking_news/3.0/banner.html ?s=25ea5t1a www.cnn.com
text/html "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36"
News/Media 10.9.45.21 63.140.35.161

This log entry provides enough information to reconstruct what happened
in this transaction. Based on date and time, we know that this transaction
occurred on December 10, 2014, at 21:40:19. The total time taken to complete
the transaction, provided by the time‐taken field, was 78 milliseconds. This
transaction was initiated from a client machine with IP address 10.9.45.28 based
on the value of the c‐ip field. From the value (TCP _ NC _ MISS) of the s‐action field
we can deduce that the proxy examined the server response and discovered
that the origin server requested that the proxy not cache the returned content.
This server‐to‐client data transfer totaled 1025 bytes, while client‐to‐server data
transfer totaled 1916 bytes according to sc‐bytes and cs‐bytes, respectively. The
next six fields—cs‐method, cs‐uri‐scheme, cs‐uri‐port, cs‐uri‐path, cs‐uri‐query,
and cs‐host—together allow us to reconstruct the request URI, which in this
case was

http://www.cnn.com/.element/ssi/www/breaking_news/3.0/
banner.html?s=25ea5t1a

The field rs‐content‐type tells us the MIME type of the requested content was
“text/html”. The browser that requested this page was the Chrome browser, as
shown in the cs‐user‐agent field. The URI requested was categorized as “News/
Media”, as seen in sc‐filter‐category. The server IP was the proxy’s IP address,
which was 10.9.45.21, given by s‐ip; the original content server’s IP address was
63.140.35.161, given by the r‐ip field.

Although this access log contains a lot of useful information if the objective
is to track which user accessed what content at any given time, during a virus
outbreak this log does not provide sufficient data to determine which devices
may have retrieved malicious content and which servers may have been com-
promised. When a proxy and a dedicated virus scan appliance are deployed
as a collaborative security solution and policies have been written to redirect
specific content for scanning by the antivirus appliance, the scanning results can
be recorded in the x‐virus‐id field, and the output can be written into a separate
log file. Consider the following example policy:

1 <content>
2 virus_detected=yes access_log(main_log) access_log(virus_log)
3 access_log(main_log)

http://www.cnn.com
http://www.cnn.com/.element/ssi/www/breaking_news/3.0/

170 Chapter 6 ■ Writing Policies

This example policy produces a “virus_log” file that contains virus scanning–
related information, including the field x‐virus‐id. A sample virus log is shown
here, which includes the virus identifier of the detected virus, and the URL
where the infected content was downloaded:

date time cs-host cs-uri-path rs-content-type s-ip x-virus-id
2014-12-10 21:40:19 www.cnn.com /.element/ssi/www/breaking_news/3.0/
banner.html text/html 63.140.35.161 trojan-virus-1

Logging all possible fields for each transaction will consume a consider-
able amount of CPU resources and memory, as well as disk space. The perfor-
mance impact depends on the transaction volume being processed by the proxy.
Information overload is problematic for security analysts who try to deduce
attack vectors and identify victims of malware infection. The large volume of
data could overwhelm the security analysts and cause distractions that obscure
relevant evidence.

User Authentication
In the previous example, the defined policy indiscriminately disallows any
access to web content that is classified as either “Adult Content” or “Gambling”.
Some websites are generally considered harmful or non‐business-related
but are acceptable or even essential for a specific group of employees. For
example, if a website has been categorized as “Pornography” erroneously
and is thus blocked by the proxy, an enterprise user can submit an IT ser-
vice ticket requesting the website to be unblocked. Then it is up to the IT
security team to manually review the website and override the policy by
entering the website into a whitelist, if the user has made the correct claim.
In this case, certain members of the IT staff should be exempt from the policy
restrictions and be allowed to access the content and website that would be
restricted otherwise. Similarly, a few employees may have special privileges
and special status, and as part of performing their job duties they would be
granted special permissions on the web. In the previous section, we wrote
the policies that examine the content that is being accessed. In this section,
we will design policies that focus on authenticating users and examining
user permissions.

Imagine an enterprise that denies any access to web pages that offer hacking‐
related discussions and topics, possibly due to the elevated risk of downloading
malicious content. However, the Engineering department is unable to do its job
effectively without access to these sites for conducting threat research. The IT
security team is tasked to create an exception for the Engineering department
but also to warn of the potential risks before granting access to anyone from
engineering. Let’s assume that the networks for the Engineering department are
physically separated from the networks for all other departments, and therefore

http://www.cnn.com

 Chapter 6 ■ Writing Policies 171

the engineering networks are assigned an IP prefix 192.168.1.0/24. The policy
now looks like this:

1 <proxy> url.category="Hacking"
2 client.address =192.168.1.0/24 exception(coach) allow
 access_log(main_log)
3 deny access_log(main_log)

Because this policy layer describes specifically how the proxy should handle
sites that contain material related to “Hacking”, every rule within this policy
layer is applicable only if the given URL category is “Hacking”. Therefore, line ①
contains the layer guard url.category="Hacking". The rule on line ② states
that any client coming from network 192.168.1.0/24 should be presented with a
coaching page warning the user about the danger of visiting such websites and
that the transaction is logged but access permission is granted. For everyone
else, the access is denied, and the request is logged (line ③).

This policy solution has two main limitations. For example, assume Alice is
an employee from the Engineering department. The first limitation is that the
policy rule on line ② restricts Alice to be physically connected to the engineer-
ing network if she wants to access “Hacking” sites, even when Alice is onsite
and in the building. For example, she will not be able to do her research work
if she mainly uses her laptop computer and she is in the lunchroom, which is
connected to the corporate WiFi network. This is because the corporate WiFi
network will have an IP address prefix that is different from that of the engi-
neering network, which will cause the policy to block Alice’s computer while
she is on the corporate WiFi.

The second limitation is that the proxy cannot log user information regardless
of whether the transaction is permitted. Enterprise networks typically deploy
DHCP to assign dynamic IP addresses to attached devices. Although DHCP
attempts to assign the same IP address to the same device each time, there is
no definitive correlation between an IP address and its user. Clearly we need a
better mechanism to identify the users.

Authentication is the process of verifying a user against their claimed identity,
by challenging the user to present credentials or confidential information that
only that user possesses. Authorization refers to the permissions and rights
that have been granted to a user, which allow that user to perform actions and
retrieve content within the confines of defined policies. A proxy performs user
authentication by challenging the user for their username and password through
a captive portal. With a captive portal, a proxy presents a login page and asks the
user to enter their login credentials each time the user opens the web browser and
tries to connect to a website, if that user has not been authenticated previously.
We call this authentication method “local authentication” if the proxy keeps a
database of usernames and passwords on the proxy appliance. User‐entered
credentials are matched against the proxy’s local authentication database. For

172 Chapter 6 ■ Writing Policies

example, suppose an enterprise is providing a guest WiFi network for visitors.
Every visitor is required to obtain a temporary username and password from
the front desk in order to log into the guest WiFi. The following policy is writ-
ten to deny any unauthenticated access:

1 <proxy>
2 authenticated=no deny

If the authentication fails, the condition authenticated=no remains true,
subsequent requests are denied, and the proxy continues to present the user
with the captive portal login page. Consider the following policy:

1 <proxy>
2 authenticate(local_realm) authenticate.mode(ip) refresh_time(300)
3
4 <proxy>
5 authenticated=no deny
6 allow

An authentication realm is a group of network resources that allow the proxy
to query and authenticate a user. In this example, local _ realm indicates that
the authentication credentials are stored locally on the proxy. The authentica-
tion mode indicates that the IP address of the device is cached so that every
connection with the same source IP address will be authenticated. This cached
IP address is called a surrogate credential because this IP address will serve as
the user’s credentials and the proxy will challenge the user less frequently. We
do not want to keep this cache indefinitely; otherwise, after this guest has left
the building, another guest may have come in and pick up the same IP address,
which would then bypass the authentication mechanism. We determine that 15
minutes of inactivity is a reasonable assumption that the user has logged out
and is necessary to re‐challenge the user, and so the refresh _ time(300) policy
property is written.

In the previous example, the local authentication realm provided a user
challenge mechanism, but additional information, such as a user’s job title,
department, or geographic location, was missing. A Lightweight Directory Access
Protocol (LDAP) can be used to store user information with additional attributes
in a hierarchical manner. An example LDAP entry that describes user “John
Smith” in the Engineering department looks like the following:

dn: uid=John,ou=Engineering,cn=thecompany,dc=com
objectClass: inetOrgPerson
uid: jsmith
sn: Smith
givenName: John
cn: john.smith
organizationUnit: Engineering

 Chapter 6 ■ Writing Policies 173

displayName: John Smith
uidNumber: 10000
gidNumber: 5000
userPassword: js1234

An LDAP entry consists of a number of attribute‐value pairs. The dn attri-
bute stands for distinguished name and is a unique attribute that is mandatory
to position this entry in the LDAP database. There are a number of fields in the
dn attribute: the uid field stands for user id; the ou field stands for organizational
unit; and the cn field stands for common name. The last dc field, domain compo-
nent, typically defines what kind of organization the company is, following
the Internet domain convention, such as .com for a commercial organization
or .gov for government. In this example, uid=John specifies the person, who is
part of the Engineering department given by ou=Engineering, which is part of
a company, thecompany.

The next field, objectClass, defines the list of attributes necessary to describe
this entry. The inetOrgPerson object class holds information about people and
contains attributes such as name, uid for unique identifier, gid for group identi-
fier, and user password. Other object classes have a different set of required
fields, but we are interested only in inetOrgPerson for the purpose of user
authentication.

In order to communicate and retrieve user information from the LDAP server,
the client must bind with the server. This step requires the client to authenticate
with the LDAP server, and the LDAP server will authorize the client based on
access privilege. The detailed user information is communicated back to the
client when access is granted. In the context of proxy authentication, the proxy
is the LDAP client, and the LDAP server can be an on‐box or external server
hosting the LDAP database.

LDAP defines an organization layout for storing information; however, it does
not dictate how the client utilizes this information. As part of integrating LDAP
authentication with the proxy for the purpose of authentication and retrieving
group information, the policy must instruct the proxy on which attributes to
use when matching username information and user group conditions. In other
words, a policy instructs the proxy to match a user‐provided username against
givenName “John”, uid “jsmith”, or cn “john.smith”. Similarly, a policy decides if
the user‐supplied group information is matched against gidNumber “5000” or
organizationUnit “Engineering”. The username needs to be globally unique
for the purpose of authentication. For Windows Active Directory, the attribute
sAMAccountName is used because it specifies the Windows login name. For LDAP
it is possible to use the cn attribute or another custom attribute as long as the
value is unique. Similarly, the group name can be any attribute value as long
as it is uniquely identifiable.

Returning to the first example at the beginning of the section, this time
the company has revised the policy to leverage LDAP information instead of

174 Chapter 6 ■ Writing Policies

relying on the physical location (or IP prefix) to define accessibility. Assume
the authentication realm is called “LDAP_Realm”. The stored username is
retrieved from the cn attribute, and the stored group value is retrieved from
the organizationUnit attribute. The following example shows the enhanced
policies. An additional rule ⑥ states that any employee who attempts to access
sports‐related content during working hours from 9 a.m. to 5 p.m. is denied
and logged.

1 <proxy>
2 authenticate(LDAP_Realm) ldap.user_attribute(“cn”)
 ldap.group_attribute(“organizationUnit”)
3
4 <proxy>
5 authenticated=no deny access_log(unauthorized_log)
6 url.category="Sports" time=0900..1700 deny access_log(main_log)
7 url.category="Hacking" group="Engineering" exception(coach) allow
 access_log(main_log)
8 url.category="Hacking" deny access_log(main_log)

With this policy, an unsuccessfully authenticated user will trigger the condition
authenticated=no to be evaluated to true and the proxy denies the access. But
if the user logs in correctly, then the value of the organizationUnit is retrieved
as the group name that can be referenced in other policy rules. Notice that the
authentication rule is contained in a separate policy layer. Recall that policy
execution in each layer results in exactly one decision; putting the authentica-
tion rule together with all the other access rules will not work. The following
policy is written incorrectly:

1 <proxy>
2 authenticate(LDAP_Realm)
3 url.category="Sports" time=0900..1700 deny access_log(main_log)
4 url.category="Hacking" group="Engineering" exception(coach) allow
 access_log(main_log)
5 url.category="Hacking" deny access_log(main_log)

In this case, policy execution will never reach the rules between line ③ and
line ⑤. The reason is because for every new transaction, the authentication rule
on line ② is executed unconditionally, thus causing the layer to exit once that
rule completes.

Suppose Bob, the CEO of the company, is a baseball fan. He complains to
the IT department that he is unable to check the scores of his favorite teams
during the day. In addition, World Cup 2014 begins on 6/12/2014 and ends
on 7/13/2014. During this time, the company decides to open up the sports
websites. The new policy is then updated to reflect these changes. Notice that
we use the ! notation to indicate the negation of a condition. The rule on line ⑤

 Chapter 6 ■ Writing Policies 175

denies access to any sports websites, unless it is Bob or for the duration of the
World Cup games.

1 <proxy>
2 authenticate(LDAP_Realm)
3
4 <proxy>
5 url.category="Sports" user=!Bob date=!WorldCup2014 time=0900..1700
 deny access_log(log1)
6 url.category="Hacking" group="Engineering" exception(coach) allow
 access_log(main_log)
7 url.category="Hacking" deny access_log(main_log)
8
9 define condition WorldCup2014
10 date = 20140612..20140713
11 end

This policy is actually flawed. The policy rule on line ⑦ is not conditioned on
any authentication group. Because the URL category can be determined based
on the first HTTP request, the URL category‐related policies are executed before
authentication‐related policies. This means that the rule on line ⑦ is always
evaluated before the rule on line ②. Furthermore, the access log will not contain
any user information because user authentication did not take place. A policy
property called force _ authenticate was designed to overcome this issue
and instructs the proxy to perform the authentication procedure regardless of
whether the transaction would be allowed or denied:

1 <proxy>
2 force_authenticate(LDAP_Realm)

With this new policy, user authentication always takes place in the early stages
of a transaction, and the access log will contain the user information even if the
transaction is denied.

An LDAP entry can store any arbitrary information. For example, the IT
department may sometimes need to lock out a selected number of employees,
and this can be done easily by adding the following rules to lock out users John
and Bob:

1 <proxy>
2 authenticate(LDAP_Realm)
3
4 <proxy>
5 condition=black_list deny
6 allow
7
8 define condition black_list

176 Chapter 6 ■ Writing Policies

9 user=Bob
10 user=John
11 end

Alternatively, the company’s LDAP server can be configured with a special
attribute called userLockout in the user LDAP entry, and this attribute can be
referenced in the following policy:

1 <proxy>
2 authenticate(LDAP_Realm)
3
4 <proxy>
5 ldap.attribute.userLockout=1 deny
6 allow

Using the new LDAP attribute, this policy can lock out a user by simply
changing the attribute value in the user entry on the LDAP server. The policy
rules remain unchanged, and the proxy automatically picks up the change in
the lockout policy at runtime during the user authentication process.

LDAP was designed as a protocol to provide access to directory informa-
tion services, and because LDAP can store and maintain user authentication
information, it was later adopted as an authentication method. For this rea-
son, LDAP is not considered as a secure authentication mechanism unless
it operates over a secure transport layer such as SSL or TLS. Other types of
authentication servers, such as Kerberos and RADIUS servers, can also be
deployed with a proxy.

Kerberos is an authentication protocol that was designed to avoid sending user
passwords over an unsecured network. The username is transmitted from the
proxy to the authentication server (AS) in plain text. Both the proxy and the AS
generate secret keys using the same cipher suite configured on the server. These
secret keys, one in the hands of the proxy and the other in the hands of the AS,
are used to symmetrically decrypt subsequent messages. If the secret keys do
not match, the proxy is unable to decrypt the message given by the AS, and the
authentication process fails; otherwise, the proxy decrypts the first message from
the AS to find a timed ticket, called a Ticket‐Granting‐Ticket (TGT). The authentica-
tion process completes when the proxy successfully decrypts the TGT message.
This ticket will be used in all subsequent proxy‐to‐AS communications. It is
desirable to combine Kerberos and LDAP to take advantage of Kerberos’ strong
authentication architecture and LDAP’s wealth of user information.

RADIUS stands for Remote Authentication Dial In User Service and provides
full Authentication, Authorization, and Accounting (AAA) for user manage-
ment. A user does not directly communicate with the RADIUS server; instead,
a separate network entity called the Network Access Server (NAS) acts as the
RADIUS client. As the name suggests, RADIUS was originally designed to pro-
vide authentication for remote dial‐up users. When a user first establishes the

 Chapter 6 ■ Writing Policies 177

network connection, the router challenges the user to authenticate. This router
is the NAS. It takes the user‐provided username and password, communicates
with the RADIUS server, and either allows or denies subsequent network access
by this user.

Safe Content Retrieval
One of the main goals of a secure proxy is to protect users from malicious con-
tent. In Chapter 5 we discuss URL categorization and content rating algorithms,
which a proxy leverages to prevent users from reaching risky websites and com-
promised servers. Prevention is a great practice, and although these algorithms
strive to be accurate in identifying sources of malicious content, perfect solutions
that completely isolate users from malware do not exist. Well‐devised malware
requires only a few victims to spread its infection on a broad scale. The security
posture is to assume such an infection has already taken place on the network,
and continuous detection is the key to stop its propagation. Performing a thor-
ough malware scan is computationally intensive, especially on an inline proxy,
and thus is not a scalable solution. Mid‐size and large enterprises implement
security practices that include installing virus‐scan solutions on the endpoints
such as workstations and laptops, but they lack coverage on mobile devices.
Also, not all users are diligent when it comes to keeping up with and applying
the latest software updates.

Due to these factors and to mitigate threats at the enterprise level, a common
approach is to acquire and deploy a dedicated virus‐ and malware‐scanning
appliance on the network; this is then combined with the proxy to form a single
solution to find users that are prone to problematic content, and to stop malicious
content from entering the network. The proxy operates inline and the antivi-
rus appliance is attached to the proxy in a spoke configuration, as shown in
Figure 3‐12.

Corporate‐wide security policies that have been designed on the proxy decide
which content will be transferred to the antivirus (AV) appliance for scanning.
The proxy communicates with the AV appliance over the Internet Content
Adaptation Protocol (ICAP). ICAP operates with a request followed by a response
model, similar to HTTP. ICAP allows an ICAP client to send HTTP messages to
an ICAP server, which may then perform various transformations or specific
processing, called adaptations, on those received messages. One possible adapta-
tion is a virus‐ and malware‐scanning service.

ICAP allows for HTTP request modification (or the REQMOD mode) and
HTTP response modification (or the RESPMOD mode). In REQMOD mode, the
ICAP client sends the ICAP server an HTTP request. The ICAP server can
modify the HTTP request and send back the modified request to the ICAP
client, or the ICAP server can return an HTTP response. It is possible for the
ICAP server to return an error. In RESPMOD mode, the ICAP client sends

178 Chapter 6 ■ Writing Policies

the ICAP server an HTTP response. The ICAP server can send back either a
modified response or an error. In the context of ICAP operation, the proxy
acts as the ICAP client, and the AV appliance acts as the ICAP server when
servicing a user transaction. For example, when the proxy sends content that
was retrieved from a website to the AV appliance over ICAP in RESPMOD
mode, the AV appliance may detect a virus embedded in the content. In this
case, the AV appliance returns a modified response containing a simple page
that warns the user about the website.

The following policy configures the proxy to send all HTTP content to the AV
appliance over ICAP for analysis before it is given to the client. This is done via
response modification. By default, the ICAP server listens for service requests
on TCP port 1344.

1 <content>
2 response.icap_service(antivirus_service_1)

The content layer indicates that these rules apply to the server response
instead of the client request, as in the case with the <proxy> layer. The
fundamental difference lies in the policy execution checkpoint. Rules in
the <content> layer are not evaluated or executed until a server response
becomes available. The service antivirus _ service _ 1 is already configured
to perform response modification on any content that is passed to an AV
appliance that is reachable at a certain IP address and port. The configura-
tion of antivirus _ service _ 1 is vendor specific and typically contains the
following information:

ICAP service:
Name: antivirus_service_1
ICAP version: 1.0
Service URL: icap://10.9.4.1/
Connection timeout: 60
Port: 1344
ICAP method: response modification

The name is a unique string that identifies this service. The ICAP version
is 1.0 at the time of this writing and is the only version supported. Recall that
ICAP is very similar to the HTTP protocol, and it uses the same URL construct
except for the protocol part, which is icap instead of http. The service URL is the
request URL issued by the ICAP client (proxy) to the ICAP server (AV appliance).
The port is the TCP port on which the ICAP server listens for service requests
and is TCP port 1344 by default. The ICAP method defines whether this service
processes the user request or the server response. Notice in this policy rule that
there is no explicit action that defines how to respond when a virus is detected.
What the AV appliance returns over ICAP is either the modified HTTP response
or a success status stating that the content is safe to pass on to the client. For

icap://10.9.4.1/

 Chapter 6 ■ Writing Policies 179

example, when the AV appliance declares the content is virus‐free, the ICAP
response from the AV appliance is

 ICAP/1.0 204 No Content

The proxy sends the content back to the client verbatim upon receiving the
204 status from the AV appliance. However, if a virus has been detected, then
the HTTP response is modified and is encapsulated inside the ICAP response
with status code 200:

ICAP/1.0 200 OK
Date: Mon, 08 Dec 2014 11:16:10 GMT
Connection: close
X-Virus-ID: "Conficker"
ISTag: "E13Td2EFG"
Encapsulated: res-hdr=0, res-body=200

HTTP/1.1 403 Forbidden
Date: Mon, 08 Dec 2014 11:16:00 GMT
Content-Length: 75
Content-Type: text/html
The requested content contains a virus, it has been notified and removed

In this case, this exact HTTP response is presented to the client in place of the
original content, which is a customized error page containing a simple warning
string. The virus ID detected by the ICAP server is returned by the X‐Virus‐ID
header, which can be applied to the proxy policy condition virus‐detected.
Suppose the IT security team needs to track any activity of the notorious Conficker
virus that has gone rampant. In addition to blocking and warning the user that
this virus has been detected, this information needs to be sent to the security
team for further analysis. The following policy is added to send an e‐mail to
IT_redalert@company.com:

<content>
virus-detected=yes virus-id="Conficker"
 notify_email("IT_redalert@company.com", "conficker found")

A keen reader may find this e‐mail action to be too specific to one virus
type and lacking sufficient information to describe fully what the situation is.
A policy rule may contain variables for runtime substitutions, which describe
properties of a transaction. For example, it will be useful that the e‐mail contains
the client’s username, IP address, and the accessed URL. This information is
readily available in a given transaction and can be easily included as part of
the e‐mail content:

notify_email("IT_redalert@company.com", "virus found", \
 "$(user) accessed URL $(url) that contains a virus $(virus_name)")

mailto:IT_redalert@company.com
mailto:IT_redalert@company.com
mailto:IT_redalert@company.com

180 Chapter 6 ■ Writing Policies

In this example, we use a single \ to indicate line continuation. The third
parameter of the notify _ email action comprises the e‐mail body. A named
variable enclosed in $(variable _ name) is called a substitution; these variables
are replaced by the corresponding values extracted from the transaction. This
policy creates a more complete e‐mail notification that contains the username,
the actual URL, and information about the identified virus, from which a virus
scan report can be generated.

Safe content is more than just blocking viruses. The ICAP response modifica-
tion we have introduced is a form of content transformation that performs content
insertion, removal, and modification. Thus far, the discussions on content trans-
formation have focused on virus removal. In other cases, the removed content
can be a JavaScript or Microsoft ActiveX plug‐in. These active elements are
embedded inside regular HTML pages and can automatically trigger browser
actions without user interaction.

Suppose a new threat has been found that uses a Java applet to run the mali-
cious content. The IT security team has decided to block Java applets from web
pages while allowing all static content to pass through to reduce the chance
of infection. A deny action stops a user from accessing a web page completely,
and thus is not a viable solution here. Furthermore, a critical application that
runs on its own website, mycompany.com, may need to use a Java applet. The
aforementioned security objective can be achieved with the following content
transformation policy:

1 <proxy>
2 url.domain=!mycompany.com action.strip_java_applets(yes)
3
4 define active_content strip_applets_and_indicate
5 tag_replace applet <<EOT
6 java applet removed
7 EOT
8 end
9
10 define action strip_java_applets
11 transform strip_applets_and_indicate
12 end

In this policy, two definitions are used. From line ④ to line ⑧, the definition
on active _ content applies to an HTML page where any HTML tag enclosed
by <applet></applet> is replaced by the replacement string java applet
removed. Because the page fits into an HTML format, the replacement is also
formatted as HTML. The proxy simply performs a search‐and‐replace operation
on all appearances of said tag. The string <<EOT marks the end‐of‐term and tells
the policy compiler where the replacement ends. The second definition from
lines ⑩ to defines the action. This is a transformation action with only one
action defined. In a more general case, there may be multiple actions, in which

 Chapter 6 ■ Writing Policies 181

case the action definition is the list of all the actions to be executed on the same
transaction. The policy rule on line ② has the condition !mycompany.com to make
the internal domain an exception to this rule; otherwise, all the Java applets are
replaced with a single bolded string.

Note that an action is different from a property. An action defines a process to
modify the original content; a property does not change the content but modifies
the proxy behavior for a transaction. For example, deny terminates the current
transaction, and therefore it is called a property. A transformation modifies the
user‐requested web page and presents the modified page to the user. Therefore,
a transformation is called an action. Other possible actions include modifying
the HTTP headers or performing a URL rewrite.

SSL Proxy
Regardless of how thoroughly security policies are designed, expressed, and
implemented in an enterprise, these policies provide zero value unless they
can be enforced effectively against all possible traffic types on the enterprise
networks. SSL/TLS‐encrypted traffic circumvents many security defenses
unless these secure tunnels can be “cracked” open. A proxy that is capable of
terminating an SSL connection and decrypting the payload is called an SSL
Proxy. In Blue Coat ProxySG, the SSL proxy is one of a number of proxies that
make up the ProxySG appliance solution.

An SSL session is comprised of two phases: SSL negotiation and encrypted
data transfer. During the negotiation phase, communication takes place in plain
text to exchange certificates and encryption settings. Once the two sides are
in agreement, the subsequent communication exchange is encrypted. A very
common application of SSL is HTTPS, which wraps an HTTP connection inside
the SSL, encrypting both client requests and server responses. For a secure web
transaction, the client and server communicate via HTTP, except that the HTTP
protocol exchanges are carried over encrypted SSL messages.

The SSL proxy can either tunnel or intercept an SSL session. Recall that inter-
cept refers to the procedure of terminating a client connection followed by
establishing a server‐side connection on behalf of the client. In the context of
an SSL proxy, SSL interception refers to decrypting the client‐side connection
data, possibly modifying the data, and then transferring the resulting data
to the server‐side SSL connection. In SSL tunneling, the decrypted data from
the client side is unmodified, re‐encrypted according to what was negotiated
on the server‐side SSL session, and then transmitted over the server‐side SSL
connection. In other words, the client data is unmodified when it reaches the
server over an SSL tunnel.

TLS (or Transport Layer Security) is based on SSL version 3.0 and was designed
as an upgrade to version 3.0; however, TLS 1.0, TLS 1.1, and SSL v3.0 do not
have interoperability. SSL v3.0 deployment is still prevalent at the time of this

182 Chapter 6 ■ Writing Policies

writing. In this section, we will use the terms SSL and TLS interchangeably
unless the protocol version is explicitly stated. In late 2014, an SSL vulnerability
codenamed “POODLE” was discovered. This vulnerability targets any SSL v3.0
implementation and allows it to modify the SSL payload. Applications that run
on SSL v3.0 will be susceptible to this vulnerability.

The solution to POODLE is simple: do not use SSL v3.0, and use TLS 1.0
and later instead. However, this “simple” solution is difficult to implement in
practice. The security team needs to identify all of the applications that may be
using SSL, and either turn off SSL v3.0 manually or apply a security patch that
disallows the use of SSL v3.0 on these servers. For some custom applications,
these efforts may involve an engineering team creating and testing a security
patch to ensure that these applications no longer use SSL v3.0. In addition, the
security team needs to send out security advisories to all employees to disable
SSL v3.0 on their browsers, whether Internet Explorer, Chrome, Firefox, or
another browser. Still, employees may not fully understand what the security
vulnerability entails and what the implications are, and they may put off this
task until it is forgotten, leaving these workstations vulnerable to POODLE
attacks and compromising business‐critical applications.

The SSL proxy solves this problem by detecting possible use of SSL v3.0 dur-
ing the negotiation phase. The security department can create a policy on their
SSL proxy to issue a warning and display a solution page when an application
attempts to negotiate a secure session using SSL v3.0, followed by the SSL proxy
resetting such a connection:

1 <ssl>
2 client.connection.negotiated_ssl_version=SSLV3
 exception(warning_POODLE)

In this example, the warning _ POODLE exception page contains information
about how to disable SSL v3.0 on a browser. Because a user is never able to make
the SSL connection without turning off SSL v3.0, this is a much better solution
than a security advisory e‐mail. Because the SSL negotiation is in plain text,
there is no need to decrypt the SSL content to detect the SSL version.

When an employee connects to a social network through an SSL session such as
HTTPS, the secure proxy is typically given directives to intercept such a session
to check for compliance against corporate policies. However, an enterprise‐secure
proxy is rarely instructed to intercept an employee’s financial transactions due
to privacy laws. The following policy reflects the preceding discussion:

1 <ssl-intercept>
2 category=!"Financial Services" ssl.forward_proxy(https)

The SSL intercept layer contains rules that are specific to making the SSL inter-
ception decision. The rule on line ② defines that an SSL connection is intercepted

 Chapter 6 ■ Writing Policies 183

only if its category is not “Financial Services”. The property ssl.foward _ proxy
transfers ownership of this transaction from an SSL proxy to the HTTPS proxy,
where the HTTPS‐specific conditions can be observed, and properties can be set.

So how does the SSL proxy know the category of a connection when the
URL in an HTTPS transaction is not visible until after the SSL interception
has taken place and the category is necessary to decide whether the SSL
proxy will intercept the connection? It turns out that the URL is not the only
information available to categorize a website. In this example policy, a general
categorization condition called category is used instead of a url.category
condition. The former retrieves a category by any means necessary, while
the latter relies on the URL and nothing else. In this case, the category can
be derived from the server certificate’s Common Name (CN), observable in
plain text during SSL negotiation. For example, the CN in Wells Fargo bank’s
certificate is www.wellsfargo.com. This CN can be matched against the URL
categorization database and is determined to be “Financial Services”. The
CN inside Facebook’s certificate is *.facebook.com and it is categorized as
“Social Network”.

Reverse Proxy Deployment
Consider an example where a company is developing a new web‐oriented
service for its customers. The web service is tested on an internal web server
with a hostname service1.internal.mycompany.com and an internal private
IP address 192.168.1.100. This new web service is developed by multiple teams
using different programming languages: Java, JavaScript, Perl, and so on. This
company will face two immediate deployment challenges when the time comes
to take the service and go live.

The first challenge is that the service will have been developed and tested
using an internal hostname. Because the backend code is written by multiple
teams, there is the possibility that this internal hostname may be hardcoded
in some piece of code or scripts. The task of finding the hardcoded names,
replacing those entries, and performing revalidation could be overwhelming
and error prone.

The second challenge is about security. Although the web service will have
been launched, however, performing security analysis and penetration testing on
the new web service will be ongoing while the service evolves. For this reason,
the web server that is hosting the new web service will remain completely hid-
den from external entities and will be visible only within the internal company
networks. In other words, service requests originating from the Internet will
not reach the new web server directly. A secure proxy that is deployed in the
reverse proxy mode can solve these deployment issues.

First, let us assume the new web service has the external-facing URL https://
service.mycompany.com, and service.mycompany.com is registered in the

http://www.wellsfargo.com
https://service.mycompany.com
https://service.mycompany.com

184 Chapter 6 ■ Writing Policies

public DNS and is accessible from the Internet. The server hosting service1
.mycompany.com can be reached via http://service1.internal.mycompany
.com, but service1.mycompany.com is registered only in the internal DNS serv-
ers. The secure proxy is deployed as a reverse proxy inside the DMZ as shown
in Figure 6-1.

The client request to https://service.mycompany.com first reaches the reverse
proxy. The proxy enables client access to the web service by performing URL
rewrite and request forwarding. Upon receiving the client request, the proxy must
first correctly determine that service.mycompany.com maps to service1.internal
.mycompany.com. Therefore, after intercepting the client request, the proxy
will reissue that request to the right internal server; this is known as request
forwarding. All URL references to service.mycompany.com must be changed to
service1.internal.mycompany.com, and all relative references must be set to
this internal URL; this is known as URL write. In addition, a forwarding policy
rule that specifies the URL mapping must be set in the proxy:

<forward>
service.name=web_service forward(service1.internal.mycompany.com)

In this policy rule, a forward layer specifies that this rule is evaluated when
the proxy is making an upstream connection. In this example, we assume
that the proxy is already configured to process web _ service requests that
are destined for IP address 1.2.3.4 over TCP port 443. Therefore, all connec-
tions intended to reach https://service.mycompany.com are forwarded to the
internal web server that is located at IP address 192.168.1.100 on TCP port 80
for HTTP. From the internal web server perspective, all requests are relative to

Figure 6-1: Launching a New Web Service with Reverse Proxy

Internet

Client

DNS Server:
service.mycompany.com = 1.2.3.4

DNS Lookup

Response
ResponseReverse Proxy:

1.2.3.4 Web Service:
service1.internal.mycompany.com

192.168.1.100

https://service.mycompany.com
Client -> 1.2.3.4:443

http://service1.internal.mycompany.com

Proxy -> 192.168.1.100:80

2

5

3

4

1

http://service1.internal.mycompany.com
https://service.mycompany.com
https://service.mycompany.com
http://service1.internal.mycompany.com
http://service1.internal.mycompany.com
https://service.mycompany.com
https://service.mycompany.com
http://service1.internal.mycompany.com

 Chapter 6 ■ Writing Policies 185

the URL service1.internal.mycompany.com. Therefore, a URL rewrite policy
must be defined in the proxy:

1 define url_rewrite service1_url_rewrite
2 rewrite_url_prefix "https://service.mycompany.com"
 "http://service1.internal.mycompany.com"
3 end
4
5 define action service1_rewrite
6 rewrite(url, "https://service.mycompany.com/(.*)",
 "http://service1.internal.mycompany.com/$(1)")
7 transform service1_url_rewrite
8 end
9
10 <proxy>
11 service.name=web_service action.service1_rewrite(yes)
12
13 <forward>
14 service.name=web_service forward(service1.internal.mycompany.com)

The definition from lines ⑤ to ⑧ consists of two actions. The first action is
the URL rewrite, and the second action defines a transformation. As stated
earlier, a transformation modifies the content of the server response. Referring
to Figure 6-1, the URL rewrite action on line ⑥ modifies the client request
from step ② to step ③, while the transform action on line ⑦ modifies the
server response from step ④ to step ⑤. The transformation performed by
rewrite _ url _ prefix is to replace all occurrences of the original URL that
are found inside an HTML page to the new URL. For example, take an HTML
page such as this:

<html><title>login page</title>
<body>
<script src="http://service1.internal.mycompany.com/scripts/util.js">
<p>Login to the service.
</body></html>

After the transformation is complete, the revised HTML page is as follows:

<html><title>login page</title>
<body>
<script src="https://service.mycompany.com/scripts/util.js">
<p>Login to the service.
</body></html>

The process of rewriting both the request URL and the server response is
called two‐way URL rewrite. This type of transformation is necessary because it
is inevitable that some web developers will leave absolute URLs inside the web

https://service.mycompany.com
http://service1.internal.mycompany.com
https://service.mycompany.com/(.*
http://service1.internal.mycompany.com/
http://service1.internal.mycompany.com/scripts/util.js
https://service.mycompany.com/scripts/util.js

186 Chapter 6 ■ Writing Policies

page content, as shown in this example. Not all web developers will conform
to the rules of using relative paths such as <script src="/scripts/util.js">.
The time and effort involved in identifying all occurrences of absolute paths
and URL references may be too significant to be feasible. A reverse proxy with
content transformation capability offers a viable solution to handle such types
of deployment problems.

URL rewrite has other useful applications outside of reverse proxy deployment.
For example, suppose a secure proxy is deployed in an elementary school, and
the students are learning to search for information on the Internet. However,
the school is concerned that students may stumble upon inappropriate search
results. We can implement a safe search action that performs a URL rewrite that
utilizes the “SafeSearch” functionality offered by the Google search engine to
alleviate this problem:

1 <proxy>
2 url.host.substring=google action.google_safesearch(yes)
3
4 define action google_safesearch
5 rewrite(url, "(.*)", "$(1)&safe=on")
6 end

For a Google search, appending the search request with &safe=on turns on
the safe search feature, which filters out explicit search terms such as “nude”
or “porn”. In this example, a reverse proxy also performs SSL offloading. A
reverse proxy handles SSL decryption at step ② and encryption at step ⑤. All
communication between the reverse proxy and the internal web server is in
plain HTTP. This eases the load on the web server.

In addition to offloading computationally intensive workloads from a
web server, this reverse proxy example demonstrates another important
protection that a secure proxy offers: the reverse proxy shields the real
web server from being directly accessible by users and sanitizes applica-
tion requests, including malicious ones, from harming an application. This
protection capability is the essence of what is known as a web application
firewall (WAF). For example, through special crafting of an application’s
input parameter, a hacker can break the application server’s access control
and retrieve restricted data.

According to the Open Web Application Security Project (OWASP), the top
ten most critical web application security risks for 2013 were injection, broken
authentication and session management, cross‐site scripting, insecure direct
object references, security misconfiguration, sensitive data exposure, missing
function level access control, cross‐site request forgery, using components with
known vulnerabilities, and un‐validated redirects and forwards. A secure proxy
performs many protective functions as a WAF—with one of the important
tasks being identifying known attacks against various applications—and

 Chapter 6 ■ Writing Policies 187

shields applications and application servers from those known vulnerabilities
even when those servers have not been patched. Because a secure proxy has
in‐depth knowledge of an application, the proxy can sanitize user input and
application parameters before transferring an application request to the server.
This prevents hackers from injecting manipulated data into an application,
which causes that application to execute unintended or restricted commands
such as creating new user accounts with administrative privileges for the
hackers.

DNS Proxy
When a client makes a request for a network service or a network resource,
it begins the transaction by first issuing a DNS query that tries to resolve a
server name or a URL into an IP address. Deploying a DNS proxy provides the
opportunity to analyze the type of resource or service that a client is asking
for and prevents such an attempt as early as possible if a policy violation is
detected. For example, suppose a company wants to block all access to porno-
graphic websites, which we already know can be achieved by denying access
based on the URL category, which is expressed in policy by the condition
url.category. Alternatively, we can completely stop a client from initiating a
TCP connection by intercepting the DNS query and responding to the client
with a DNS error:

1 <DNS-Proxy>
2 dns.request.category=Pornography dns.respond(refused)

A client browser accessing a pornographic website will not succeed due to
a name resolution error. Depending on a DNS proxy to block offending client
requests is not a reliable method. First, if the client’s DNS traffic traverses a path
that is not covered by the proxy, then the DNS proxy does not have the oppor-
tunity to process any of the client’s DNS queries. Second, the user can bypass
this policy by directly entering the IP address of the pornographic website. It
is for these reasons that such a DNS‐based security policy cannot be reliably
enforced. Also, DNS proxy cannot selectively block specific content on a web
server. For example, if a server is hosting both www.somestore.com/adult‐books
and www.somestore.com/comic‐books, in this case, the DNS proxy can be con-
figured to block the entire www.somestore.com site, but not www.somestore
.com/adult‐books only.

Another use of a DNS proxy is to provision split DNS capability. Split DNS
refers to the use of different DNS databases based on the requester’s IP address.
Suppose a company’s internal hostnames are stored in the DNS server 10.9.1.53,
while all the other DNS queries are forwarded to a public‐domain DNS server
located at 67.14.210.250. Internal clients are assigned IP addresses from the prefix

http://www.somestore.com/adult%E2%80%90books
http://www.somestore.com/comic%E2%80%90books
http://www.somestore.com
http://www.somestore.com/adult%E2%80%90books
http://www.somestore.com/adult%E2%80%90books

188 Chapter 6 ■ Writing Policies

10.9.0.0/16. The following policy will forward DNS queries to a specific DNS
server based on where the clients are located:

1 <DNS-Proxy>
2 client.address=10.9.0.0/16 dns.forward(10.9.1.53)
3 dns.forward(67.14.210.250)

The rule on line ② forwards DNS queries to 10.9.1.53 only if the client address
has the internal address prefix, while DNS requests from all other clients are
forwarded to the public DNS server 67.14.210.250.

Data Loss Prevention

Another aspect of enforcing safe content policies is to prevent the exfiltration of
company secrets to external entities. Confidential information may be leaked by
employees, whether intentionally or unintentionally, and the damage incurred
on the company can be the same in either case. Data loss prevention (DLP) is also
known as data leak prevention. The main objective of DLP is to protect sensi-
tive data according to centrally defined policies from leaving an organization’s
internal network or an organization‐controlled device. The sensitive data may
be stored on mass storage media (known as data at rest), transmitted over the
network (known as data in motion), and accessed by users on the end systems
(known as data in use).

The first action taken by a DLP solution is to identify sensitive data that is
mandated by central policies for protection; this stage is commonly known as
the content discovery phase. Identifying at‐rest data entails scanning the hard
drives on file servers and on end systems to detect protected content. Identifying
in‐motion data means performing runtime scanning and analysis of network
traffic for sensitive information. Identifying in‐use data means scanning the
endpoint system memory for sensitive material. Regardless of the location
where the data may be present, content discovery demands content analysis
techniques that effectively identify protected material. Examples of content
analysis techniques include pattern‐based matching algorithms (for example,
for identifying Social Security numbers or credit card numbers), generating a
fingerprint for an entire file for exact matching, or creating hashes for specific
parts of a file for partial matching.

The second action taken by a DLP solution is to enforce data protection.
Possible actions associated with protecting at‐rest data include removal of
sensitive data from the endpoint, in‐place encryption of protected data, quar-
antine of the data by relocation, or modification of access rights. Protecting
in‐use data is achieved through security capabilities that are implemented
as extensions to the operating system (OS) that powers the endpoint. In‐use
data protection requires constant monitoring of data movement within

 Chapter 6 ■ Writing Policies 189

the OS, between the OS and the applications, and among the applications.
For example, sensitive data may be prohibited from being shared between
applications, and in this case, the copy‐and‐paste feature may be disabled
for such data.

A DLP solution can be implemented as either an endpoint solution or a
network‐based solution. Content‐based analysis is computationally intensive,
as Chapter 5 illustrates in the section “Dynamic Webpage Content Rating.”
Not all endpoints have the computing power or resources to perform content
analysis, which also impacts the end user experience. A good example is that
although the endpoint antivirus software is always active, it does not perform
virus scanning constantly because its scanning activities impact system perfor-
mance significantly. An endpoint DLP must perform constant validation as data
is accessed by applications. Because an endpoint DLP solution is designed and
implemented for specific operating systems, a DLP solution may not exist for
some types of endpoints. In addition, an endpoint DLP solution must prevent
sensitive data from leaving the system, for example, by preventing protected
data from being copied onto a USB drive.

Chapter 4 describes the various methods employed by malware to infiltrate
an endpoint. The attacking malware then “phones home” by establishing con-
nections to its command and control (C2) centers to receive further instructions.
Oftentimes the C2 server commands the malware to exfiltrate data from the
compromised host. Some of these C2 channels are also encrypted. Five key
points can be made from the preceding discussion.

First, deploying a network‐based DLP solution can provide better coverage
across a broad array of endpoints of varying types. The protection is centralized,
and the computation‐intensive tasks are offloaded to one or more dedicated
DLP appliances.

Second, DLP solutions offer limited value to an enterprise when deployed
as standalone solutions. Similar to the situation with antivirus solutions, static
pattern‐based antivirus solutions are useful in combating existing known
viruses and malware, but antivirus solutions must be deployed with real‐time
URL categorization and web content analysis systems to defend against zero‐day
attacks. DLP solutions afford an additional layer of protection when they are
deployed with a secure proxy, especially when the proxy is capable of decrypting
SSL/TLS‐encrypted traffic. In addition, a secure proxy can act as an extension
of the DLP by enforcing data protection because a secure proxy can remove
content from a connection or terminate a connection abruptly.

Third, at the time of this writing, existing DLP solutions are more effective
at protecting sensitive data from involuntary leakage due to erroneous imple-
mentation of security policies or simply bad practices of designed processes.
However, current DLP solutions are mostly ineffective against exfiltrations that
are initiated by malicious actors that have successfully attacked and gained
access to a protected network.

190 Chapter 6 ■ Writing Policies

Fourth, to improve the rate of successful enforcement, implementing DLP
solutions must include a combination of both endpoint‐based and network‐based
solutions. An endpoint solution is still necessary to protect data on devices that
are mobile, such as laptop computers, and these devices can leave the physical
perimeter of an enterprise network, although possibly at the expense of the
end‐user experience.

Last, centrally managed and administered policies dictate the integration
of the DLP solution with a corporate‐wide Document Rights Management
(DRM) system, or in general, an Information Rights Management (IRM) system.
Sensitive documents and data are registered with an IRM, and permissions and
rights are defined and managed centrally. Having a DLP solution installed on
an endpoint implies the presence of an active agent that communicates with
the IRM. In other words, DLP can be considered as a critical subsystem of the
overall IRM defense infrastructure.

A DLP appliance can be deployed with a secure proxy using the ICAP protocol,
similar to the deployment between a secure proxy and an antivirus appliance.
The most common layered defense that involves DLP is its integration with
the e‐mail system.

E‐mail Filtering
For many organizations, e‐mail is an indispensable communication tool and is
used heavily for file transfer to both internal and external recipients. E‐mail can
represent a large part of a company’s outbound traffic. An e‐mail may contain
extremely sensitive information both in the content and in its attachment. The
e‐mail system is also utilized heavily by scammers and spammers to sell illicit
products and services or to swindle people out of their money. Phishing e‐mails
are still one of the most effective first‐stage infiltration channels for black hats
to penetrate an organization.

Over the years, e‐mail filtering has evolved its focus from spamming e‐
mails to the detection and removal of phishing e‐mails as an important secu-
rity measure. E‐mail can be misused by employees to transmit sensitive or
confidential information such as competitive analysis, company financial
records, employee data, and customer records to external entities or destina-
tions, which is in violation of company policies and represents serious data
breaches. Outbound e‐mails may also contain inappropriate material that can
create legal liability resulting in damaged reputations and financial losses.
Therefore, outbound e‐mails must be scrutinized for data exfiltration and be
validated against compliance policies to mitigate potential risks. With the aid
of a DLP solution, an offending e‐mail may be blocked entirely by the proxy,
followed by the proxy redirecting that e‐mail to the legal or HR department
for review. The proxy may remove the offending content or attachment before

 Chapter 6 ■ Writing Policies 191

forwarding the e‐mail to a mail server. The proxy can also return the e‐mail
to the user and advise the user to encrypt the e‐mail before transmission, if
the DLP engine informs the proxy that it has detected the presence of sensi-
tive information.

Examining inbound e‐mail focuses on scanning the e‐mail attachment for
known viruses and malwares. Modern e‐mail readers have a built‐in capability
to display e‐mail that is created in HTML format. The e‐mail message body is
scanned for the presence of URLs. Each URL is analyzed to determine if the
URL points to a malware delivery server, if the URL contains an IP address that
is a part of a known botnet, or if previous analysis history indicates the URL
is risky. Chapter 5 discusses URL analysis techniques in detail. Any automatic
download of content as a result of the presence of an iframe in an HTML e‐mail
must be prevented. Chapter 4 discusses drive‐by downloads and the dangers
of invisible iframes that can trigger the automatic downloading and execution
of malicious code.

A Primer on SMTP
The primary protocol used in e‐mail communication is the Simple Mail Transfer
Protocol (SMTP), which transfers e‐mail from one mail system to another until it
has reached the recipient’s e‐mail server. The intermediate network nodes that
participate in routing e‐mails are called mail transfer agents (MTAs). The first
system that receives the e‐mail from a client’s e‐mail agent is called a mail sub-
mission agent (MSA). For example, the SMTP server configured in the Microsoft
Outlook client software is the IP address of an MSA. Figure 6-2 illustrates a
simplified e‐mail route when a user’s e‐mail agent is configured to use the Gmail
SMTP server for e‐mail submission.

Figure 6-2: A Simplified View of an E‐mail Route

1 2 3

4

Internet

Gmail SMTP

SMTP SMTP SMTP SMTP

POP3/IMAP

Sender Hotmail SMTP Hotmail Mail Server

Recipient

192 Chapter 6 ■ Writing Policies

In this case, the Gmail SMTP server is the MSA for the client. The client
communicates with the MSA using the SMTP protocol. Based on the des-
tination domain name, in this case hotmail.com, the Gmail SMTP server
discovers the Hotmail SMTP server through DNS and forwards this e‐mail
to the identified mail server. The DNS Mail Exchanger (or MX) record con-
tains the fully qualified domain name (FQDN) of the mail server for a given
domain, and the DNS Address (or A) record contains the IP address of that
mail server. This e‐mail is then stored in the Hotmail internal e‐mail server,
waiting for the recipient to retrieve it. The e‐mail is transferred using the
SMTP protocol from stage ① to stage ③, and depending on the type of mail
server hosting the recipient’s e‐mails, step ④ may be using a mail delivery
protocol such as Post Office Protocol (POP3) or Microsoft Exchange pro-
tocol. The mail system that delivers the e‐mail to the recipient is called a
mail delivery agent (MDA). The MDA communicates with the MTA using
SMTP but communicates with the recipient’s e‐mail agent using a mail
delivery protocol. In this section, we are primarily concerned with the SMTP
protocol.

The SMTP protocol is a server‐talk‐first protocol. Upon successful TCP
establishment with the client‐initiated connection request, the server sends
its own hostname along with a 220 response to the client first. The client
starts communication by sending a “hello message” (or HELO) with its own
hostname and then waits for the server to respond. The server responds
with 250 Ok if it accepts this host. The string “Ok” that follows the response
code 250 can be anything; what is important is the actual response code.
Most SMTP servers today support the EHLO, or Extended HELO, message.
EHLO works the same way as HELO, except that the server responding to an
EHLO will include a list of options that are supported by this SMTP server.
Each option is appended to the multi‐line 250 response from the server, as
shown in Figure 6-3.

As shown in Figure 6-3, an SMTP server responds to EHLO with eight
options:

250‐smtp.example.org
250‐PIPELINING
250‐SIZE 10240000
250‐VRFY
250‐ETRN
250‐STARTTLS
250‐ENHANCEDSTATUSCODES
250‐8BITMIME
250 DNS

A line with a dash followed by the 3‐digit response code indicates that
there are more lines to follow. The first line always contains the domain

 Chapter 6 ■ Writing Policies 193

name of the SMTP server, and subsequent lines list all the supported SMTP
options. The meanings and syntax of these SMTP options are outside the
scope of this book.

Figure 6-3: SMTP EHLO Exchange

Client SMTP Server

TCP Handshake

EHLO relay.example.org

220 smtp.example.org

250 smtp.example.org

250 PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

1

2

3

4

Once the initial SMTP negotiation is complete, the client starts to transmit
the e‐mail message. The SMTP protocol exchange contains three parts: sender
information, recipient information, and message data. Figure 6-4 summa-
rizes this mail exchange process. Steps ① and ② represent the initial client’s
mail transfer request and the server’s acceptance response. Step ⑤ provides
e‐mail sender information, and step ⑥ provides e‐mail recipient information.
Steps ⑨ to involve the actual e‐mail transfer from the client to the mail server
(or the MSA).

An SMTP transaction occurs in plain text. There are two ways to secure an
SMTP connection: SMTPS or STARTTLS. In SMTPS, the TCP handshake is fol-
lowed by the SSL/TLS handshake before the first 220 response is sent from the
SMTP server. This ensures that the entire SMTP communication is encrypted,
as shown in Figure 6-5.

194 Chapter 6 ■ Writing Policies

Another way of encrypting an SMTP connection is through the use of the
STARTTLS option. A server that supports STARTTLS will advertise this option
via a 250 response after a client’s EHLO, as shown in Figure 6-3. When a client
is notified of the STARTTLS option, it can initiate a secured session thereafter by
sending a STARTTLS message to the server. The TLS negotiation ensues when
the server acknowledges the agreement to the STARTTLS option by returning a
220 Ok response to the client, as shown in Figure 6-6.

Figure 6-4: An Example SMTP Exchange

Client SMTP Server

TCP Handshake

HELO relay.example.org

MAIL FROM: <joe@example.org>

RCPT TO: <john@example.org>

DATA

Message Body Followed by<CR><LF>.<CR><LF>

QUIT

220 smtp.example.org

250 Ok

250 Ok

250 Ok

250 Ok

221 Bye

354 End Data With

<CR><LF>.<CR><LF>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

mailto:joe@example.org
mailto:joe@example.org
mailto:joe@example.org
mailto:john@example.org
mailto:john@example.org
mailto:john@example.org

 Chapter 6 ■ Writing Policies 195

Many popular e‐mail servers enforce encrypted SMTP messages. For example,
Google Mail (Gmail) does not support plain‐text SMTP; instead, it enforces
SMTP over STARTTLS and SMTPS methods. Google uses Message Submission
port 587 to handle SMTP over STARTTLS and rejects connections that do not use
STARTTLS, as shown in the following example output:

MAIL FROM:<john.smith@gmail.com>
530 5.7.0 Must issue a STARTTLS command first. \
 dk5sm6776268pbc.61 – gsmtp

A typical e‐mail message consists of text, HTML‐formatted text, and attach-
ments (text or binary). The e‐mail message body is structured in the standard
Multi‐purpose Internet Mail Extension (MIME) format. The MIME format is designed
to extend an e‐mail into carrying more than just ASCII text. An e‐mail is typi-
cally broken up into multiple parts including an HTML version and an ASCII
version of the message. The content type for the message body is defined as

Figure 6-5: Securing SMTP Exchange with SMTPS

Client

TCP Handshake

SSL/TLS

SMTP Server

EHLO relay.example.org

220 smtp.example.org 3

2

1

4

4

250-smtp.example.org

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

5

mailto:john.smith@gmail.com

196 Chapter 6 ■ Writing Policies

In the example shown in Figure 6-7, the content type of the message is multi-
part/alternative, which indicates these are multiple parts with each part being
one alternative of the same message. It is common to see this format where the
e‐mail message contains two alternatives—plain text and HTML format—and
each part is described by its own content type. The boundary delimiter can be
any ASCII string up to 70 characters long and is typically a randomly generated
string to avoid collision with the actual e‐mail content. The delimiters between
different parts begin with the “––” marker followed by the boundary delimiting
string. The final delimiter is denoted by enclosing the boundary string in two
“––” markers, as shown Figure 6-7. The blank space between the MIME‐Version and
the first delimiter is called the preamble, while the space after the final delimiter
is called the epilogue. The preamble and epilogue sections are typically blank
spaces and are ignored by the e‐mail client.

Figure 6-6: Securing SMTP Exchange with STARTTLS

Client SMTP Server

EHLO relay.example.org

STARTTLS

250-smtp.example.org

250 STARTTLS

220 OK

3

4

220 smtp.example.org 2

5

6

TCP Handshake

1

SSL Exchange

7

“multipart/mixed” and each part is delimited by boundary=. The e‐mail client
looks for the delimiter and presents the multipart e‐mail to the user based on the
e‐mail client’s settings. Figure 6-7 shows an example e‐mail message that can be
presented in an e‐mail client either as a plain‐text message or in HTML format.

 Chapter 6 ■ Writing Policies 197

An e‐mail attachment is basically another part of the message, except in
this case it is an addition to the message, not an alternative. The content type
multipart/mixed identifies an attachment, as shown in Figure 6-8.

The mixed keyword indicates that both parts are to be presented to the client
instead of being alternatives to one another. The attachment contains additional
information in its header. In this example, the attachment is a text file, and so
the attachment has the text/plain content type. With a binary attachment,
the content type can be image/jpeg for an image attachment, or application/
octet‐stream for a generic binary file, such as an executable system file. The
Content‐Disposition field has the value attachment followed by the filename.
The Content‐Transfer‐Encoding field tells the e‐mail client how to decode the
attachment. A single e‐mail can contain nested multi‐part messages. Figure 6-9
illustrates an e‐mail that contains two attachments.

Figure 6-7: An E‐mail Message Containing Multiple Parts

Multipart

Delimiter

Multipart E-mail

First Version
(Text)

Second Version

(HTML)

End
Multipart

Epilogue

Preamble

198 Chapter 6 ■ Writing Policies

In this example, the first level indicates that this is a multipart/mixed e‐mail
that has two attachments. The first attachment is a plain‐text file, while the
second attachment is a Microsoft spreadsheet. We have changed the data to
AAAA for illustration purposes; real data should be base64‐encoded, as indicated
by the Content‐Transfer‐Encoding field. In the message body, there is the
second level of a nested multipart section with a different boundary delimiter.

So far we have assumed that the Content‐Type field gives accurate informa-
tion about the true format and nature of the attachment. A malicious sender can
easily fabricate the file type by giving it a fake file extension and content type to
bypass a naïve filtering mechanism that trusts such information blindly. Modern
antivirus software solves this problem by examining the data and searches for
known magic patterns that are associated with the various file types. For example,
on the Unix system, a utility called file performs such content verification by
checking for magic patterns and outputs the true type as shown here:

$ file ––mime-type 1.txt

Figure 6-8: An E‐mail with an Attachment

Message

Attachment

Multipart E-mail

Name of Attached File

 Chapter 6 ■ Writing Policies 199

Figure 6-9: An E‐mail with Multiple Attachments

Message Body

Text Message

HTML Message

Attachment 1

Attachment 2

1.txt: application/pdf

$ file 1.txt
1.txt: PDF document, version 1.4

200 Chapter 6 ■ Writing Policies

In this example, 1.txt was a PDF file renamed to hide its true identity. The
file utility works by checking a magic file, which is written as a set of rules to
classify the file format based on type signatures. An example of a PDF magic
file is shown here:

#--
$File: pdf,v 1.6 2009/09/19 16:28:11 christos Exp $
pdf: file(1) magic for Portable Document Format
#

0 string %PDF- PDF document
!:mime application/pdf
>5 byte x \b, version %c
>7 byte x \b.%c

The details of the magic rules can be found in the Unix man page: “man
magic”. We use PDF as an example. The rule contains two levels, indicated by
the presence of a “>” symbol at the beginning of the line. The first level checks
for the string %PDF‐ at offset 0:

0 string %PDF- PDF document

When the first‐level rule matches, the file utility executes all rules on the
second level to get more information. In this case, a single byte at offset 5 and
offset 7 returns the PDF version of this file. Note that the second line that starts
with ! is not used for pattern matching but is used to determine the MIME type
should a match be successful.

>5 byte x \b, version %c
>7 byte x \b.%c

An MTA or a malware detection device needs to discover the correct MIME
type of the attachment and should not rely on the “Content‐Type” field or the
file extension, as a malicious sender can easily create deceptions to circumvent
the MTA.

E‐mail Filtering Techniques
The goals of the e‐mail filtering system are to prevent restricted information
from leaving an organization and to block phishing e‐mails from entering the
network through the e‐mail system. Integrating a DLP solution with the MTA
can be an effective solution to filter outbound e‐mails. Because e‐mails are tem-
porarily stored on the MTA, executing DLP scan operations does not require
absolute real‐time performance.

Many of the traditional e‐mail filtering techniques are still relevant today.
For example, the IP address of a system that is delivering incoming e‐mails is

 Chapter 6 ■ Writing Policies 201

verified against an IP address blacklist, and if the e‐mails from that IP are found
to be on the list, then they are marked as suspicious and are candidates for
removal. An IP address that passes the blacklist check is then verified against a
DNS‐based blackhole list (DNSBL) or an open relay database block list (ORDBL) that
contains a list of e‐mail servers that are known or suspected to transmit spam
or malicious e‐mails. Similarly, the e‐mail address of the sender is validated
against a blacklist. The domain name of the sender’s e‐mail address is checked
for validity, and so is the reply‐to domain.

Scanning e‐mail contents by a DLP solution implies there is a set of rules and
policies that are defined in the DLP engine, and these rules are executed during
the scanning process. These rules contain patterns, keywords, and regular expres-
sions that classify sensitive data in the message body. In addition to searching
for patterns, the DLP engine has the ability to perform semantic analysis on the
content. For example, because a driver’s license number is a piece of sensitive
information, after discovering what appears to be a driver’s license number, the
DLP engine will search for a string that appears to be a birthday or an expiration
date. This contextual scan and correlation reduces false positive classifications.
Finally, associated with every DLP policy is an associated action that can instruct
either the MTA or the proxy to drop the e‐mail, modify the e‐mail content and
then deliver the e‐mail, quarantine the e‐mail and send notification to the legal
or HR department, or permit the delivery of the original e‐mail.

When an e‐mail contains an HTML version of the message and the e‐mail
client is configured to display such an HTML version of a message, the message
body should be scanned and processed in a similar fashion as for a web page
to mitigate security threats. Therefore, an effective e‐mail security system is
one that is fully integrated with other security solutions, such as an antivirus
system, web analysis, and a secure proxy, in addition to working in concert with
a DLP solution. For example, if a security vulnerability is discovered in PDF
documents, an organization may respond to such a threat by prohibiting any
PDF documents that are attached to e‐mails:

1 <proxy> service.name=SMTP
2 smtp.attachment.mime_type="application/pdf"
 action.remove_attachment(yes)
3 smtp.attachment.true_type="application/pdf"
 action.remove_attachment(yes)
4
5 define action remove_attachment
6 mime_remove(attachment, "PDF attachment is not safe, \
 removed by policy")
7 end

This policy layer applies to only the SMTP service, and rules on lines ② and
③ remove any attachment that either has the “application/pdf” MIME type or
is detected to be an “application/pdf” true file type. The action is defined to

202 Chapter 6 ■ Writing Policies

completely remove the attachment. The e‐mail that is delivered to the client will
not contain a PDF attachment. Instead, a plain‐text file containing the warning
message “PDF attachment is not safe, removed by policy” is created to notify
the recipient.

Summary

In this chapter, we have presented various security scenarios and offered policy
implementation strategies on how to solve those challenges. While we examined
the design logic behind these policies in detail, it should be apparent that these
scenarios offer a small representation of the security landscape and are meant
to explain how a secure proxy intercepts and processes a transaction through
the policy system. The security engineer can dictate the desired security goals
through a given policy language. Therefore, the level of sophistication of the
policy engine and the expressiveness of the policy language reflect the capa-
bilities of the proxy appliance and how well the proxy can enforce complex
security policies. Insights gained from these examples that have been written in
a real‐world policy language should serve as useful litmus tests when selecting
a secure proxy solution.

203

Application classification refers to the real‐time identification of traffic flows as
being part of a specific protocol or application. Timely and accurate classification
of network traffic is commonly known as network visibility. Network visibility
is the fundamental first step that enables network administrators and security
specialists to write and implement meaningful security and traffic engineering
policies, for example, “block Netflix traffic during work hours”.

A classifier refers to a system or device that examines traffic in real‐time and
produces one or many matching classification results. A pure classifier performs
the classification task only and produces a report. A classifier used in network
security typically takes the result and performs one or more actions on the
traffic flow. The action can be as simple as “allow” or “deny”, or more complex,
as in “logging user action and reducing the user’s bandwidth usage”. From a
security standpoint, it is vital to perform the desired enforcement action as early
as possible. For example, the classifier should conclude that a user is upload-
ing files to Dropbox using as few packets as possible in order to avoid leakage
of confidential information. In this case, the policy on the classification result,
“Dropbox Upload”, may include the actions, “Log the user who is uploading to
Dropbox”, and “Terminate the upload”.

A classifier needs information that sufficiently describes each application in
order for the classifier to make the proper decision. This information, known
as an application signature, is the unique pattern that distinguishes one appli-
cation from another. The signature may be bit patterns or ASCII patterns; for

C H A P T E R

7
The Art of Application

Classification

204 Chapter 7 ■ The Art of Application Classification

example, “GET” and “SIP” are visible ASCII characters that are found in the
HTTP and SIP protocol payloads, respectively. Another type of signature is
based on the behavior that an application exhibits on a network. The signature
type determines the algorithms that are applied in making the classification
decision. Some classification techniques identify an application category, such
as P2P category, rather than a specific application.

In this chapter we will describe the signature types and structures and the
associated classification techniques and algorithms. We will use the terms
classification engine and classifier interchangeably throughout this chapter.

A Brief History of Classification Technology

Firewalls could be considered as the first classification devices that enforce
security policies at a network’s ingress and egress points. Legacy firewalls
were confined to using the L4 packet header, specifically the port number
information to identify both protocols and applications. The Internet Assigned
Numbers Authority, or IANA, assigns port numbers to specific applications
and services. Legitimate protocols and applications operate in conformance
with these port designations. Even today, firewalls continue to perform
port‐based classification and are ubiquitous in network infrastructures. In
essence, a firewall makes the classification decision on the first packet with
very small computing overhead, as the port number resides on a known loca-
tion in the packet, as shown in Figure 7-1. For ease of discussion, any extra
headers such as VLAN or GRE or variable-length options are assumed to be
absent from the packets. The classification process is simple and efficient.
Instead of classifying packet by packet, a stateful firewall will classify a
connection using the first packet, and then create and keep a connection
state that includes the classification result. Future packets that belong to a
known connection in the connection state table require a simple lookup for
the classification ID.

Port‐based classification is efficient and the process is deterministic when
applications conform to the specifications. Unfortunately, many applications
do not abide by the rules. For example, peer‐to‐peer (P2P) applications try to
evade firewalls by using ephemeral ports. Other applications, especially mali-
cious types, try to evade firewalls by communicating over well‐defined ports.
A plethora of web‐based applications emerged with the explosive growth
of Web 2.0. Instead of one‐way information download, the web has become
interactive. As such, a simple port‐based classification engine would naïvely
treat all traffic running on port 80 as simply HTTP protocol traffic, thus ren-
dering the firewall ineffective because it could not, for example, distinguish
the application activity of “Playing Farmville on Facebook” from “Reading a
post on Facebook”.

 Chapter 7 ■ The Art of Application Classification 205

Firewalls with Deep Packet Inspection (DPI) capability began examining
the packet payload and searching for known patterns to identify protocols and
applications. Payload‐based classifiers make decisions slightly later in the flow
lifecycle than port‐based classifiers. For example, the HTTP classification engine
typically searches for a string such as “GET /* HTTP/1” where * denotes any
string. This information is not available until the TCP three‐way handshake is
complete. Therefore, the earliest time this flow can be classified as HTTP is on
the fourth packet. Even with the fourth packet, as TCP is a stream‐based protocol,
the first HTTP GET request may be truncated into two packets, with one packet
containing the “GET /” string and the other containing the “* HTTP/1” string.
In this case the classifier needs to accumulate enough packets to make the clas-
sification decision. As L4 information is readily available in the payload‐based
classifier, a firewall with DPI also performs port‐based classifications as part
of the payload detection. With this hybrid approach, a flow on a standard port
can be classified on the first packet, and the classification may change as more
payload data becomes available. With applications that run on non‐standard
ports, the classifier will make the classification decision only after enough pay-
load data becomes available.

The DPI classifier requires unique knowledge about the set of applications to be
classified in order to know what to look for inside the payload. This knowledge
can come from either a published specification or a signature database. Before
we discuss how signatures are generated, let’s first look at the structure of a
payload‐based classifier, as shown in Figure 7-2, assuming the signatures are
already available. A payload‐based classifier device can be generally broken up
into the following operations: packet intake, flow association, classifications, and
optionally actions to be applied to the outgoing packets. Some devices deploy

Figure 7-1: Port‐Based Classification

3

21

Decision

This is HTTP

Consult IANA
mapping tableLook for value

in offset

Classifier

Port = 80

MAC IP TCP
Port

80

21

22

HTTP

FTP

SSH

Application

206 Chapter 7 ■ The Art of Application Classification

the classifier entirely for visibility or retrospective analysis. For these types of
devices, packets are retrieved for analysis but do not need to be transmitted
after processing. Other devices may perform one or more actions, as specified
by the enforcement policies on each packet before its transmission.

Figure 7-2: DPI‐Based Classification

Packets Flow Association Classifier Classification
Signature
Database

Flow

Flow

Flow

Flow construction consists of separating flows based on combined L3 and
L4 information. A flow is represented by a 5‐tuple: L4 protocol type, source IP
address, source port, destination IP address, and destination port. In the case
of TCP connections, the directionality of a connection is defined by the packet
that contains the “SYN” flag, and directionality is maintained as a part of the
flow state. Many classifiers can greatly improve the classification accuracy if
the directionality is known.

At the completion of flow construction, a packet that matches an existing
flow is accumulated with other packets until a certain amount of payload data
becomes available, at which point the combined payload is dissected to look
for specific patterns based on the set of known classification signatures. In the
next section, we will examine signature-based classification engines in detail.

Signature-Based Pattern Matching Classification

The classification signature database is a collection of patterns that contain
enough data to confidently classify a flow and to map the flow to a specific
application as illustrated in Figure 7-3. An efficient pattern matching algorithm
is critical to the performance of the real‐time classification engine for pattern-
based application signatures.

The classification engine needs to iterate through all the applications known
to the classification engine and matches the collected payload against the set of
application signatures. The value of the classification engine is in the number
of applications it is capable of identifying. The pattern matching time grows
in proportion with the number of applications. A classifier that simply iter-
ates through all the signatures and performs pattern matching against each

 Chapter 7 ■ The Art of Application Classification 207

signature one at time is inefficient. Furthermore, many of the signatures may
have overlapping patterns. Scanning the input for the same pattern repeatedly
is an inefficient use of resources and increases the matching time unnecessarily.

Figure 7-3: Iterative Signature Matching

Flow

Classifier Classification
Signature
Database

Packets

Application

HTTP

FTP

SSL

Signature

Consider a naïve classification implementation that contains the following
application signatures: Battlefield and Battle.net. The former is a network war
game while the latter is a game server that hosts multiple popular strategy
games. The example classification code is presented in pseudo‐code format:

if data == "battle" OR data == "stella") then
 return BATTLEFIELD
else
 return UNKNOWN
endif

if data == "battle" then
 return BATTLE.NET
else
 return UNKNOWN
endif

The term “battle” is present in both signatures. A naïve classification imple-
mentation performs the exact same match on the term “battle” twice per flow,
which is inefficient. Moreover, the performance of the classifier depends on
the average number of classification signatures it needs to compare against
before reaching a decision. We can make a few observations from this simple
example. First, the quality of the signatures for both applications is poor. The
most desirable signature is one that contains unique terms that are distinct from
all other signatures; in other words, the fewer overlapping terms there are in
a signature, the better quality the signature has. Second, the matching order
is significant, and this is a symptom of the poor quality. In other words, if the
classifier compares the input against the signature for Battle.net first, then it will
reach a definitive result if the input string is “battle”, without the need to check

208 Chapter 7 ■ The Art of Application Classification

for “Battlefield”. Third, it is desirable to have the ability to compare the input
string against multiple signatures in parallel as a filter mechanism to create a
candidate signature set that is a subset of the entire database for comparison
when additional terms become available from the input.

Extracting Matching Terms: Aho‐Corasick Algorithm
The Aho‐Corasick algorithm is a simple and efficient algorithm for locating all
occurrences of a finite number of patterns, also called terms, in a text sample.
The Aho‐Corasick algorithm constructs a finite‐state machine (FSM) or finite
automaton out of the given terms, and this pattern‐matching machine is then
used to locate these terms in an input string.

Consider a set of terms {“ACE”, “FACE”, “ACT”, “SOFA”,
“SOS”}. We will use these terms to illustrate the step‐by‐
step construction of an Aho‐Corasick data structure. As
with any finite automaton, each node represents a state.
The Aho‐Corasick FSM begins with a single root node 0
as the starting state, as shown in Figure 7-4. The terms are
represented in capital letters for ease of discussion. Oftentimes packet payloads
are normalized, for example, into all capital letters, before feeding the data into
the classifier.

The operation of the Aho‐Corasick matching FSM is governed by three func-
tions: the goto function, the failure function, and the output function. The transition
from one state to another is dictated by the goto and failure functions. Every node
has a goto function marked by a solid arrow and a failure function marked by a
dashed arrow. An absence of a dashed arrow indicates the node has a default
failure function that points back to the initial state 0. A node contains an output
function denoted by a solid‐colored node if a term has been matched.

The first term is “ACE”, which will produce three nodes or states as shown
in Figure 7-5. The goto function maps a state and an input into another state. In
this example, the goto function maps the start state 0 and the input character
“A” into state 1. The goto function maps state 1 and the input character “C” into
state 2, and so on. State 3 contains an output function that produces “ACE”, which
indicates a match with “ACE” is found at state 3.

0

Figure 7-4: Start State

A0 1 2 3C E

Figure 7-5: FSM for the Term “ACE”

The next term to be inserted into the FSM is “FACE”. Construction of a new
term always starts from the root node. Because “F” is not in any of the available

 Chapter 7 ■ The Art of Application Classification 209

state transitions out of the root node, a new node is created as shown in Figure 7-6.
The main difference between Figure 7-5 and Figure 7-6 is the presence of explicit
failure functions for states 5, 6, and 7. Part of the Aho‐Corasick FSM construction
is to define the failure function at each node.

A

F

0 1 C 2 3E

A4 5 C 6 7E

Figure 7-6: FSM after Inserting the Term “FACE”

The goto function can indicate a failure if the goto function cannot map a given
input at a specific state into another state. For example, in Figure 7-5, if during
input parsing at state 1 the input character is “H”, the goto function reports a
failure, and at that point the failure function is executed. The failure function
causes a transition from one state to another. In this case, the lack of a dashed
arrow implies state 1 does not have an explicit failure function. So the default
failure function is executed, causing the FSM to return to starting state 0. In
Figure 7-5, none of the nodes contains an explicit failure function, which implies
the default failure function will take effect upon a matching failure, which will
reset the FSM.

The FSM, as shown in Figure 7-6, has an explicit failure function defined at
state 5, which maps state 5 into state 1 when the next input character does not
map into state 6. The state which the failure function maps into, called the failure
node, is derived by removing the first level transition “F” and looking for every-
thing else up to the current node. In this example, the failure node for state 5 is
derived by removing “F”, which is state 1, a single “A”; thus, state 5 maps to state
1. On state 6, the failure node is derived by removing “F” from “FAC”, which
is “AC”; thus, state 6 maps to state 2. In other words, the construction of the
failure function looks for the longest string match in the current Aho‐Corasick
tree, from the start state, using the new term obtained by removing the first
character from the just inserted term (“FACE”), one at a time, until every node
(4, 5, 6, 7) that leads to the end of the currently inserted term has been visited.
Notice that on state 6, the path leading from the root node to the current state
consists of three transitions with the characters “F”, “A”, and “C”. The possible
failure nodes are “AC” or “C”. Even if hypothetically there is a single‐character
term “C”, which leads from the root node to another state, the failure function
of state 6 is still state 2, because the term “AC” is longer than this hypothetical

210 Chapter 7 ■ The Art of Application Classification

term “C”. With this rule, after a term has been inserted, one and only one failure
function will be created on every state leading to the last state of this term. This
example illustrates that the failure function is important to keep the FSM running
without the need for rechecking all possible permutations of the matched string.

For a matching example, input sample “FACT” will traverse the FSM from node
0, 4, 5 to node 6. When input “T” does not match the next transition character
“E”, the FSM executes the failure function on node 6, resulting in a transition to
state 2. The input is checked against the next transition character at state 2. In
this case, again, there is no match, but this time the default failure function resets
the FSM back to node 0. Note that an input sample “FACE” matches both node
7 and node 3, so both output functions on node 7 and node 3 will be executed.

The next term for insertion is “ACT”. Because “A” is already available as the
first level transition, state 1 is reused. The first character that differs from the
existing path is the letter “T”, so state 8 is created to form a new transition branch
as shown in Figure 7-7. By removing one character at a time from the beginning
of this term, neither “CT” nor “T” can be found in the current FSM. Hence, no
failure node can be traced from the newly created node 8.

Figure 7-7: FSM after Inserting the Term “ACT”

A

F

0 1 C 2 3

8

E

T

A4 5 C 6 7E

Continuing the same insertion process with “SOFA” and “SOS”, we will
eventually arrive at the FSM as shown in Figure 7-8. Each of the solid‐colored
nodes denotes a positive pattern match, and in the context of application clas-
sification, a pattern match implies the input contains a term (or pattern) that is
part of one or more application signatures.

For illustration purposes, we assume that signatures for Facebook and FaceTime
both require the term “FACE”; as such, the output function (that is extended for
application classification) at node 7 contains a table that lists the applications
that are interested in this term, which are Facebook and FaceTime, as shown in
Figure 7-9. The term alone may not be descriptive enough for the classification
engine. Therefore, additional information, such as the byte offset in the input
string where the term is found, may be recorded as part of the output of the FSM.

 Chapter 7 ■ The Art of Application Classification 211

The byte offset serves as an additional matching criterion. In this example, the
term “FACE” is part of the signature for FaceTime only if the term is located at
byte offset 0 in the input string, but if the term is located between byte offset
10 and 20 inclusive, then it is part of the signature for Facebook.

A

F

S

S

0 1 C 2 3

8

E

T

A4 5 C 6 7E

O9 10 F 11 12

13

A

Figure 7-8: Final FSM Including All Terms

An application signature typically contains multiple terms. For illustration
purposes, we created a hypothetical application signature for Facebook, which
contains the term “FACE” between offset 10 and 20 and the term “SOS” at off-
set 25. A signature such as this can be represented as a list of matching rules,
as shown in Figure 7-10. All of the rules must match in order for a byte stream
to be classified as Facebook using the hypothetical Facebook signature. In this
case, the term “FACE” needs to match between the byte offset 10 and 20, and
the term “SOS” must appear at byte offset 25 in the input stream.

Prefix‐Tree Signature Representation
The quality of classification is greatly affected by how a signature is represented
and utilized by a classifier. Instead of representing classification signatures using

Figure 7-9: Output from a Pattern Match

7
Facebook

FaceTime

offset [10, 20]

offset 0

212 Chapter 7 ■ The Art of Application Classification

tables of static matching rules, recent research has shown that a Prefix Tree or
simply Trie can be leveraged to implement signatures effectively. A Trie acts as
an FSM similar to the Aho‐Corasick FSM. In a Trie, the terms of a signature
are arranged in chronological order, not with absolute offset. In other words,
the relationship between two terms is defined by who‐comes‐before‐whom.
Therefore, the resulting signature that is constructed in the form of a Trie specifies
the sequencing association among the different terms. Consider the following
example signature of the Session Initiation Protocol (SIP) that is widely used
for voice‐over IP communications. In Figure 7-11, each circle represents a state,
and the string value is a term that causes a state transition. A solid‐colored circle
represents a decision node. In other words, if a flow causes the Trie to transition
into state 3 or state 5, then this flow can be classified as the SIP application.

Figure 7-10: Matching Rules for Hypothetical Facebook Signature

“FACE”

Hypothetical Signature
for “Facebook”

“SOS”

Matching Rule 1

Matching Rule 2

offset [10, 20]

offset 25

Figure 7-11: SIP Signature in Prefix Tree Representation

4 5
User-Agent

SIP/

IN
VITE

REGISTER

SUBSCRIBE

200 OK
2 3

User-Agent

6

10

7

9

User-Agent

8
From:

10
To:

It is important to note that a Trie describes the entire application signature, while
the Aho‐Corasick FSM describes how a term can be matched against the input
data stream. A decision point made on the Aho‐Corasick FSM extracts a term that
corresponds to a transition on the Trie. Let’s now look closely at how the applica-
tion signature is used by the classifier, assuming that this is the only application

 Chapter 7 ■ The Art of Application Classification 213

signature available to the classifier. The classifier parses the incoming stream
of bytes and attempts to find matching patterns in its Aho‐Corasick FSM. For
illustration purposes, we are only showing a partial Aho‐Corasick FSM and its
relationship to the SIP signature. Recall that an Aho‐Corasick FSM transitions
on each input character while parsing the incoming data stream, and a decision
node corresponds to a matching term that can possibly make a transition in
the signature Trie FSM, as illustrated in Figure 7-12. The data stream is classified
only if the classifier reaches a decision node in its signature Trie FSM. When
the pattern “SIP/” is recognized by the Aho‐Corasick FSM, the current state in
the SIP signature Trie FSM advances its state to 1. At this point, the signature is
interested only in four possible transitions out of the current state: “INVITE”,
“REGISTER”, “SUBSCRIBE”, and “200 OK”. That is, if the next matching term is
“FROM:” at the current state, even though this is a term of interest to SIP, that
term is ignored, and the state remains in state 1. This flow is classified as SIP
only if the current data stream causes the Trie FSM to reach any of the decision
nodes: 3, 5, 7, or 10.

Figure 7-12: Relationship between Aho‐Corasick FSM and the Prefix Tree‐Based Signature

4 5
USER-AGENT

SIP/

Current
State

IN
VITE

REGISTER

SUBSCRIBE200 OK

2 3
USER-AGENT

6

10

7

9

USER-AGENT

8
FROM:

10
TO:

S I P /

I

F

0 1 2 3 4

N V I5 6 7 T E8 9

R O M11 12 13 :14 15

10

214 Chapter 7 ■ The Art of Application Classification

A closer look at the SIP signature Trie reveals that a number of enhancements
may be necessary in the Trie representation:

 ■ The absolute offset is omitted from the signature. In the earlier Facebook‐
versus‐FaceTime example, the classifier required both the term and its
offset in the input stream to classify the application. In this SIP signature,
the absolute offset is replaced by the order among the terms. However,
an absolute offset may still be necessary for classifying some applica-
tions. For example, the “GET” keyword in HTTP is useful only when it
is found at the beginning of the payload (offset=0). This extra constraint
can be detected during term extraction and be added to the signature as
a criterion so that a state transition occurs only if a term matches at the
desired offset.

 ■ The Trie FSM is a syntactical parser and thus lacks representation of cross‐
correlation among different flows. For example, in the input stream, the
data that follows the “FROM:” keyword may provide IP address infor-
mation that may be useful to classify a subsequent flow. A signature that
is structured as a Trie is incapable of expressing semantics of its terms.

 ■ A classifier may be able to make a classification decision based on terms
that are absent from the input stream. The Trie approach is incapable of
expressing such matching criteria.

In practice, a Trie typically contains multiple signatures. The combination of
the Aho‐Corasick FSM and the Trie‐based signature FSM provides an important
optimization: the input data is scanned only once, and classification evaluation
is performed against multiple signatures in parallel.

Manual Creation of Application Signatures
Defining the terms and constructing the signatures using these terms and
then aggregating these signatures into a database are the prerequisites to the
signature‐based classification engines. The first type of signature creation is a
manual process that involves human data analysts or protocol engineers. For
well‐defined and published protocols and applications, the signatures can be
generated out of specifications such as the IETF RFC documents. For unpublished
protocols and applications, the analysts or engineers must analyze the applica-
tion exchanges using packet captures and then reverse‐engineer the application
signature based on both the protocol payloads and the protocol’s operational
behaviors. A data analyst may collect the packet captures either from the field
or by running the application of interest in a controlled environment. In either
case, the signature creation process requires manual sample collection and
possibly applying a priori knowledge or heuristics in the analysis. Figure 7-13
provides an overview of this signature mining process.

 Chapter 7 ■ The Art of Application Classification 215

The biggest problem with the packet capture‐based reverse‐engineering
approach to creating an application signature is the lack of application feature
functional coverage. For a more complete coverage, one must enumerate all of
the possible menu options, generate traffic for each of the menu items, and then
track the data flow and produce a signature for that specific feature accordingly.
Not only is this method not scalable, but sometimes it is impossible to enumer-
ate all possible features without specific data as feature input. For example,
some business and legal applications grant access to certain features only when
the user has a sufficient privilege level.

In addition, recent Internet trends are constantly challenging the effectiveness
of the manual approach. Encrypted traffic is growing exponentially. One of the
major challenges for pattern‐based signature generation lies in the fundamental
requirement to look into the payload. SSL encryption scrambles the payload data
and renders this technique ineffective. Signature generation and traffic classifi-
cation are impossible without visibility into the encrypted payload. The use of
an SSL proxy to decrypt the traffic may be one way to overcome this challenge.
Rapid updates to applications and protocols amplify the scalability issue facing

4

1 Packet
Captures

Data Collectors

Classification
Signature Database

Real -Time Traf�c

Classifier

Network Analyzer
and Developer

2

3

Figure 7-13: Overview of Signature Mining Process

216 Chapter 7 ■ The Art of Application Classification

the manual generation process. For example, in 1999 Microsoft introduced MSN
Messenger to enter the instant messaging market. The version number was 9.0
by the time MSN Messenger shut down in 2012. In 2009, MSN Messenger was
renamed Windows Live Messenger, and the technical version jumped to ver-
sion 14.0 and was 16.4 by the time the service shut down and consolidated with
Skype. This meant there were 16 versions in 13 years.

During this time, MSN Messenger introduced numerous new features such
as voice, video, and emoticons, making it difficult for vendors that sold classi-
fication products to keep up with the updates. Companies consolidate through
mergers and acquisitions, and so do their respective applications. Take the
video sharing application YouTube, for example. It was created and based on
Flash, but its popularity demanded that YouTube traffic be classified as a unique
application aside from other “streaming media” applications. At the same time,
Google launched its own video sharing service called Google Video but eventu-
ally decided to purchase YouTube in 2006. Before 2006, classifiers were able to
separately identify both Google Video and YouTube, but after 2006, these two
services became synonymous. Classifiers had to evolve to accommodate this
change and be able to relate Google Video to YouTube. The explosive growth
in web‐based and mobile applications, which number in the millions, is simply
overwhelming for any manual approach to signature generation.

Automatic Signature Generation
Automatic signature generation is a different approach that utilizes machine learn-
ing and data mining techniques to produce and constantly update application
signatures. In a paper published in 2013 titled “SANTaClass: A Self Adaptive
Network Traffic Classification System”, Alok Tongaonkar and his fellow research-
ers proposed a method to automatically generate application signatures from
what they called invariant patterns, also known as common terms, which are pat-
terns that remain the same from flow to flow. The classification system defined
in their proposal contained two main components: the Automatic Signature
Generator and the Real‐Time Classifier, as shown in Figure 7-14. We will describe
their classification system and the proposed automatic signature generation
method in this section. The Real‐Time Classifier is based on the Aho‐Corasick
algorithm and the Trie and has been described in detail in the previous sections
in this chapter.

The Automatic Signature Generator (ASG) contains three main components: the
Machine Learning (ML) system, the Signature Generator (SG), and the data collectors.
The ML system constantly collects and accumulates real‐world traffic from one
or more data collectors and performs necessary extraction of common terms
from related flows. The SG takes inputs from the ML system and produces and
refines signatures, eventually storing new signatures in the database. A real‐
time classification system is deployed in the critical traffic path to classify the

 Chapter 7 ■ The Art of Application Classification 217

traffic based on signatures produced by the ASG system. The goal of this ASG
system is to constantly evolve and refine the signatures so that the classifier
will produce better results over time and new applications can be discovered
without human intervention. However, in practice a human inspector or analyst
is generally required for the following reasons:

 ■ The ML system employs probability algorithms to group flows into
clusters as if these flows were generated from the same application. The
clustering methods serve as a pre‐selection or filtering process that will
subsequently enable an analyst to fine‐tune the algorithms to achieve the
necessary accuracy.

 ■ An analyst can modify an automatically generated signature by either
inserting or removing terms according to heuristics or a priori knowledge
to improve classification accuracy. Such a practice is particularly true for
custom applications.

 ■ The ML and signature generator system may be able to automatically
generate a signature and accurately match the traffic against it, but the
signature lacks a meaningful name. One of the biggest challenges of auto-
matically mining and generating application signatures is the problem of
associating the signature with its proper application name. For example,
the signature generator may have created a signature to uniquely identify
Skype traffic, but the classifier may not know the application is Skype.

Figure 7-14: Automatic Signature Generation

Automatic Signature Generator

Real -Time
Traf�c

Machine Learning

010101

010101
101010

Signature Generator Classification
Signature Database

3

21

A practical signature generation system therefore puts a human inspector
in the loop, as shown in Figure 7-15. Notice that in this diagram, a few extra
elements were added. First, the ASG now contains an extra element called the
distiller. The distiller compares a new signature against the existing ones to check

218 Chapter 7 ■ The Art of Application Classification

for redundancies and merge with and refine another signature. Details of the
distiller will be discussed in a later section. Another interesting observation is
that the signature generation path involving the human inspectors is not in the
critical path. That is, the ASG system can run without human intervention, but the
human inspector can retrieve and overwrite the resultant signatures by directly
modifying the signature database. The work of the inspector should be performed
out‐of‐path, denoted by 3.1 and 3.2, and not become a bottleneck in the system.

Automatic Signature Generator

Classification
Signature Database

Real -Time Traf�c

Machine Learning Signature Generator

010101

010101
101010

Distiller

Inspectors

5

4

1

2
3.2

3

3.1

Figure 7-15: Automatic Signature Generation with Distiller

The ML system and classifier can both accept packets. Even when the clas-
sifier can already classify a flow, the flow may still contain useful information
to help refine the existing signature. In practice, the ML system continues the
data extraction out of the flow if the confidence level on the matched signature
has not reached a certain threshold. We will discuss the confidence level in the
“Signature Distiller” section.

Flow Set Construction

The first requirement for mining the common terms that are the basic build-
ing blocks of a signature is to sort the flows that may be related to the same
application into a flow set. The initial sorting process relies on L4 packet header
information. Because an application can utilize different L4 service ports and
different applications may communicate over the same port, the quality of the
signature depends on how accurately related flows are collected into the same
flow set while unrelated flows are excluded from that set.

The majority of applications issue DNS queries before initiating connections
to the intended destinations. Therefore, one way to correlate related flows is

 Chapter 7 ■ The Art of Application Classification 219

by leveraging the information obtained from the DNS exchange, such as the
domain name and its associated IP addresses. Flows that are destined to the IP
addresses corresponding to the same domain name are grouped together as one
application. This DNS‐based grouping approach makes the assumption that a
domain name predominantly hosts one main application. This assumption is
ineffective for web‐based applications. For example, the Facebook social media
site and Facebook games are all hosted under the domain name Facebook.com.
However, grouping all traffic going to Facebook.com will not produce any qual-
ity signatures for the various Facebook games.

In light of the constraint just mentioned, a possible solution to solving this
problem is to combine DNS information with data clustering techniques that we
will describe in detail later in this chapter. We recognize that the same domain
name can be used to host multiple applications, but each application should
exhibit different network behavior. Take YouTube, for example. Traffic flows
that are part of the YouTube website‐browsing activities exhibit distinct network
behavior that differs from traffic flows that are streaming YouTube videos in
terms of packet sizes and inter‐packet time gaps. Applying data clustering
techniques using packet sizes and inter‐packet gaps will yield two distinct data
clusters, and this information can be used to further divide flows into two sub‐
flow sets, even when those flows are going to the same domain. In fact, the data
clustering technique can help identify different actions being activated within
an application. Thus, the resulting signatures can provide immense insight into
the structure and the inner workings of an application.

Another challenge with the DNS‐based grouping method is the requirement
that the signature generator have visibility to all DNS traffic. The generator
may not capture all DNS exchanges that take place on the network. L4 port
information is utilized to group flows that have destination IP addresses that
are not found in any of the preceding DNS queries. Because flows from multiple
applications can run over the same port, the data clustering technique is again
utilized to separate those flows into different sub‐flow sets.

The resulting flow sets obtained from the procedures just mentioned may need
to satisfy a number of constraints to ensure each flow set is a good representa-
tion of the corresponding application. The server diversity constraint is a measure
of the number of different destination IP addresses that exist in a flow set. This
measurement is an indicator of whether the flows in the set belong to traffic
going to a specific server hosting a service. The number of flows per destination
IP address limits the effect of one node on the signature. Beyond the threshold,
the additional flows are excluded from the set. The total number of flows in a flow
set ensures sufficient traffic payloads are available to generate the signatures.

These constraints not only act as flow selection parameters but also dic-
tate where the data collectors can be deployed. Imagine the data collector is
deployed inside an enterprise network. A small or medium‐sized enterprise
may have only a few static public IPv4 addresses. The presence of a NAT device

220 Chapter 7 ■ The Art of Application Classification

at the enterprise network perimeter means connections that are initiated from
within the enterprise will be mapped to one or two public IP addresses as the
source IP address. Consequently, the server IP address is also limited to a few
values. For example, before an enterprise user initiates a connection to Google
Drive, a DNS query is issued for Google.com, which will solicit only a few IP
addresses due to Google’s global load balancing algorithm, which resolves the
query based on the physical location of the source IP of the DNS query issuer.
Whether Google.com resolves to one or two IP addresses also depends on the
workload at each of its servers at the query time. Therefore, as this example
illustrates, server diversity must be an adjustable parameter. As it turns out in
practice, the data collectors are best deployed in the ISP networks to be effective
in gathering the necessary data while meeting the constraints for the automatic
signature generator.

Extraction of Common Terms

An important aspect of automatic sig-
nature generation is the extraction and
selection of common terms from a vast
collection of traffic flows. The com-
mon terms are extracted by pair‐wise
comparison between all the flows in the
flow set obtained from the flow‐set construction phase. A pair‐wise comparison
involves taking two flows and attempting to extract any common substrings
such as that shown in Figure 7-16.

To perform a pair‐wise comparison between flow 1 and flow n, we start from
the first byte of flow 1 (B = 0), take the first M bytes on flow 1, and compare
it against the entire payload of flow n. M starts with a minimum comparison
size, typically 4, and increments until M reaches the end of flow 1. When M
reaches the end of flow 1, the process starts over, skipping the first B bytes, and
increments B by 1. M again starts with the minimum size of 4 and increments
until the end of the flow.

for B in (0, sizeof(flow1) − 4)
 for M in (4, sizeof(flow1)-B)
 str = flow1's data of size M at offset B
 if str is found in flow n; then
 record str as a candidate term
 end if
 end for
end for

Each pair‐wise comparison therefore requires O m()2 operations, where m is
the average payload size in the flow set. Because every flow in the flow set will

Flow N 92816783927268389fefdae032389790802

Flow 1
B M

000103ab10eafefdae032389792830912

Figure 7-16: Extracting Common Terms

 Chapter 7 ■ The Art of Application Classification 221

need to be compared to every other flow, there are another O n()2 operations.
Combining these two sets of operations results in a total of O n m()2 2 operations.
Even with a moderately large number of flows in the low thousands, the number
of substring comparison operations is in the order of 10 ,10 which is an impracti-
cal solution to implement for real‐world operations. Clearly something has to be
done to reduce this complexity. The law of diminishing returns applies to the
common term extraction problem. It is possible and thus desirable to partition
the flow set into multiple smaller subsets and perform pair‐wise comparisons
within each subset. This way, the number of operations is divided by the square
of the number of subsets, denoted by F. The resultant complexity is therefore

O n m

F

2 2

2
, which is much more manageable. The common terms that have been

discovered in these flow subsets are then aggregated into a combined term set,
and it is then subjected to additional selection criteria as follows:

 ■ Short terms such as “\r\n” or “OK” produce little value but add noise and
degrade the quality of the signature. The researchers of the SANTaClass
proposal found four characters to be an acceptable threshold. Any term
that is less than four characters long is therefore removed from the final
set of terms.

 ■ Some strings, such as specific date, time, or numeric values that may not
be related to a protocol or application, are removed from the flow set. In
practice, this selection method is challenging to automate because the
strings may need to be examined in the context of the surrounding terms
before they are eliminated. Also, it is difficult to assess the relevancy of
a string when the protocol or application is unknown. This step is best
executed by manual inspection.

 ■ Two terms that are substrings of each other are combined. For example,
consider the terms “HTTP” and “HTTP/”. The presence of both terms
is simply the result of automatic term extraction, but having both terms
does not provide any value. When a substring is detected, the term with
the higher probability is accepted, or the longer term is accepted if their
probabilities are the same.

 ■ High‐frequency terms are kept and low‐frequency terms are removed.
The frequency of a term is derived from the percentage of the occurrences
of the term over the total number of sampled flows. Two thresholds are
defined: high and low. Any term whose term frequency is above the high
threshold is accepted, while any term whose term frequency is below the
low threshold is rejected. Empirical values for the high and low thresholds
are found to be around 80 percent and 15 percent, respectively. Any term
with a frequency between these thresholds is subject to the mutual‐exclusion
detection that will be described shortly.

222 Chapter 7 ■ The Art of Application Classification

 ■ Mutually exclusive terms are kept in the final terms set. Using the term
frequency threshold may sometimes omit terms that are important, but
applies only to certain application variants. An example is that differ-
ent HTTP methods such as “GET”, “POST”, and “PUT” may not occur
frequently enough individually, but collectively produce a high enough
frequency above the acceptance threshold. These terms are collected and
used to produce different paths in the same application signature. A set
of terms is considered mutually exclusive when these terms belonging
to the same flow set do not appear in the same payload. Suppose that we
have a 100‐flow sample, where every flow contains one of “GET”, “POST”,
or “PUT”, and where “GET” appears in 50 flows, “PUT” appears in 25,
and “POST” appears in 18. If the frequency threshold is set at 80 percent,
then none of these terms can be accepted as they all have a term frequency
under the threshold. However, we know that in any given flow, if “GET”
appears as a term, then “POST” will not be present because these opera-
tions are mutually exclusive and cannot co‐exist in a single HTTP request.
Similarly, if “PUT” appears in the flow, then “GET” cannot be found in that
same flow. We can also compute the combined term frequency of “GET”,
“POST”, and “PUT” as (50%+25%+18%=93%), which is above the acceptance
frequency threshold of 80 percent. Based on this information, we can con-
clude that these three terms are mutually exclusive and may be relevant
for inclusion in the final terms set.

A prefix tree is then generated using the terms from the final set, which
constitutes a signature for the application.

Signature Distiller

The signature generator produces common terms that are present among all
of the flows that are considered to be the same application under the flow set
construction process. This is a somewhat narrow view, and the distiller module
attempts to mitigate this problem by looking at the freshly generated signature
in a global context. Specifically, a distiller performs the following actions after
obtaining a new signature:

 ■ Eliminates redundant signatures and optimizes the signature trie. Flows
from an application may be sorted into different flow sets, for example,
because the same application can run on multiple ports. In these cases,
a partial signature of an application can exist in the signature database
while the newly acquired signature represents another aspect of the same
application. The distiller compares the newly created signature to all of
the signatures in the current database and searches for similarities. Two
signatures that resemble one another will be combined into one. In the
context of the prefix tree FSM representation, combining signatures is

 Chapter 7 ■ The Art of Application Classification 223

about modifying the FSM such that branches with the same state transi-
tions that are triggered by the same input are merged, and additional new
branches may be created at a given state as part of the merge.

 ■ Assigns a confidence score to each signature. Every signature will be
assigned a confidence score at its creation time. The more flows that have
been applied in the signature generation process, the higher the confidence
is given to the resulting signature. Therefore, the confidence score may be
used to measure whether the signature requires additional refinement.
The confidence score also serves as the tie-breaker in the case where a
flow matches multiple signatures. The confidence score can be computed
based on multiple criteria such as path length, transition probabilities,
and term relevance. The path length refers to the number of terms in a
single “path” in the signature that leads to the decision node. A longer
path length generally indicates a better signature quality. A simplified
version of the SIP signature is shown in Figure 7-17 for illustration pur-
poses. The decision nodes 3 and 6 are assigned a path length criterion of
4 and 5, respectively. These values are computed from a number of nodes
leading up to this decision.

Figure 7-17: Prefix Tree with Path Length

SIP/
INVITE

200 OK

2 3
USER-AGENT

Path
Length = 4

Path
Length = 5

10

54
FROM:

6
TO:

The transition probabilities refer to the probability that a flow will take a spe-
cific path in the FSM given that it can be classified as that application. Transition
paths that have higher combined probabilities are given higher confidence scores.
For illustration purposes, we created an artificial path with the term “OTHER”,
as shown in Figure 7-18. The transition probability applies only when there are
multiple transition branches out of a state. When there is a single branch, there
is a single outcome; as a result, the transition probability is 100 percent and
therefore omitted. The transition probability for a path is computed at the deci-
sion node and is calculated as the product of all of the transition probabilities
leading up to this decision.

224 Chapter 7 ■ The Art of Application Classification

Last but not least, the term relevance is calculated using the Term Frequency‐
Inverse Document Frequency (TF‐IDF) value. TF‐IDF is the metric used to
compute term relevance to a set of documents. A term is more relevant if its
occurrences concentrate in the same document but becomes less relevant if it
appears in more documents. In the context of application classification, a term
is more relevant if it appears in one FSM, and it is less relevant if it appears in
multiple FSMs. We discuss TF‐IDF in Chapter 5, so the formula is not repeated
here. It suffices to say that each term can be assigned a TF‐IDF value normal-
ized to 1. In contrast to the path probabilities, the TF‐IDF value is significant
on every term in the signature. The TF‐IDF score at a decision node is the sum
of individual TF‐IDF scores on all the transitions leading up to this decision.
Intuitively, a term that is less unique to this signature because it appears in
other applications, such as “FROM:” and “TO:”, has a lower TF‐IDF score than
a term that is unique, such as “SIP/”, as shown in Figure 7-19.

Figure 7-18: Prefix Tree with Path Probability

SIP/
INVITE

200 OK

2 3
USER-AGENT

Path
 Probability = 20%

Path
 Probability = 56%

10

54 FROM:
6

Path
 Probability = 24%

7

TO:

OTHER

20%

80% 70%

30%

SIP/

0.82

INVITE

200 OK

2 3
USER-AGENT

0.05
TF–IDF = 1.47

TF–IDF = 1.17

10

54
FROM:

0.15 0.15
6

TO:

0.6

0.05

Figure 7-19: Prefix Tree with TF‐IDF

 Chapter 7 ■ The Art of Application Classification 225

The automatic signature generator is a complex system that is typically con-
structed using a computing cluster. Unlike inline traffic processing devices
such as firewalls, both the signature generation and distillation processes are
performed offline, not in real‐time, because real‐time packets are captured and
stored. Therefore, accuracy of signature generation is more important than
processing performance.

Considerations

An automatic signature generation system can dramatically reduce the amount
of human intervention required to collect, analyze, and produce quality signa-
tures. However, there are drawbacks and issues that demand continued research
in this technology domain to improve the algorithms. For example, one of the
issues is data overfitting. The signature generated on one network infrastructure
may work very well when classifying traffic on that same network but may
work poorly on a different infrastructure. The training set may contain terms
specific to a network infrastructure on which the samples are taken. A generic
algorithm does not have the intelligence to filter out these terms. The effect of
data overfitting becomes even more prevalent in statistical learning machines,
as we will discuss in the next section.

The use of automatic signature generation does not solve the problem when
it comes to encrypted traffic. Because the system relies on its ability to sniff out
common terms among flows, encrypted data completely evades this technique.
There may be some useful information that can be extracted from the initial
certificate exchanges, but there will be little value to the signature generator after
the encrypted sessions have been fully established and the data is encrypted
thereafter.

Putting the data collector at the ISP backbones will require the generator to
sanitize and remove private information such as usernames, IP addresses, and
e‐mail addresses before applying the signature generation algorithms. These
pieces of information must be transformed into generic token terms such as
“IP‐Address” and “Email‐Address”, meaning it is important to know a term is
an e‐mail address but the exact e‐mail address is not important.

An automatic generator does not have the ability to interpret semantics of
data that is embedded in the payload, which can serve as an important term. For
example, without knowing the actual FTP protocol, an automatic generator may
not be able to recognize the IP address of the data channel, which is embedded
in the payload in an obscure format that looks like “192,168,1,100,23,15”. On the
other hand, this IP address information can be easily identified by an experi-
enced protocol engineer.

In a connection, the traffic patterns from client to server can be distinctly
different from the traffic patterns going in the opposite direction. Terms that
appear in one direction are most likely different from those appearing in the
opposite direction. Likewise, the behavioral features constructed from the

226 Chapter 7 ■ The Art of Application Classification

client‐to‐server traffic may not apply to its server‐to‐client exchange. Therefore,
application signatures should be generated separately in the training phase. In
the classification phase, the traffic collector should separate each connection into
two directions before submitting the packets to the classifier. A naïve classifier
may perform classification on the first n bytes, without a separate signature
for each direction. In this case, asymmetric routing can affect the classification
results, because there is no guarantee that the classifier has access to packets
that traverse different network paths.

Machine Learning–Based Classification Technique

Pattern‐ or signature‐based classification is either not applicable or ineffective
in classifying. Examples include encrypted traffic and traffic flows with short
payloads such as interactive applications, mobile applications, or applications
with payloads that do not contain sufficient invariant patterns.

Machine Learning (ML) is an interdisciplinary field that combines statis-
tics, data mining, and artificial intelligence, a learning‐by‐example technique
where the system learns and evolves for the better as more data becomes
available. In the previous section, we introduced machine learning as a tool
to categorize flows and generate signatures for the classification engines.
In this section, we will take a closer look at different machine learning
techniques, specifically clustering and statistical analysis, to aid and refine
traffic classification.

There are two main types of machine learning, namely, supervised and
unsupervised. In the context of the application classification problem domain,
supervised machine learning provides the learning machine with a collection
of traffic flows, known as the training data set, and these traffic flows have been
given proper classifications. The learning machine executes against the train-
ing set and refines its algorithms to reach the predefined results, in this case,
arriving at the same known classifications. The automatic signature generator
discussed in the previous section is a form of supervised machine learning
system, where the flow set constructor creates the classification on which sub-
sequent machine learning is based.

Unsupervised machine learning attempts to derive the structure and features
in the data set without a priori knowledge of what this data represents. In other
words, traffic flows that exhibit a similar structure or contain similar features
are grouped together by the unsupervised machine learning as potentially
belonging to the same application. However, for the result to make sense to a
security engineer, the clusters of flows need to be labeled. Unsupervised machine
learning is unable to assign meaningful labels or application names to these
clusters. It is unlikely that any machine learning technique can be completely
free of any human intervention, as we demonstrated earlier.

 Chapter 7 ■ The Art of Application Classification 227

The set of features to be extracted for analysis is critical in both supervised and
unsupervised machine learning. We use probability to describe features used
in a machine learning algorithm. In the context of traffic classification, the prob-
abilities of these features allow us to answer the following question: If we observe
feature X and feature Y on a given flow, which one, out of all possible classification
categories, is the most likely? Let us review some basic probability concepts here:

 ■ Random Variable—In statistical analysis, a random variable is defined as
a function that produces a real value out of a sample space. Take “dice
tossing” as an example. We know that a die produces six outcomes, so
the random variable takes on a value between 1 and 6. In the context of
traffic classification, we can describe a feature using a random variable.
The outcome of the feature will affect the classification result on given
test data. For example, we can say that the “average packet length” is a
feature that affects the classification outcome, and this feature is a random
variable with possible values between 1 and 1500.

 ■ Probability Distribution Function—The probability distribution function
describes the random variable by assigning observations to the corre-
sponding likelihoods of an outcome. Using the “dice tossing” example,
the probability distribution of this random variable, D, can be defined as

=p D()
1
6

That is, every value of the die has an equal probability of 1/6. Let us now
assume that this is a loaded die such that it has a higher chance to land
on 6. In this case, the probability distribution of D can be expressed as

p D
d
d

()
0.5, 6
0.1, 1,2,3, 4,5

=
=
=

As a convention, we use the capital letter to represent a random variable
and its corresponding lowercase letter to represent an instance of the
random variable.

The parameter λ of a probability distribution function can be used to define
a specific distribution behavior such as in the loaded die example. Suppose
we define λ to represent the probability of the die landing on 6. In this
case, the distribution can be represented as

p D
d

d
()

, 6
1

5
, 1,2,3, 4,5

λ
λ=

=
− =

Knowing the probability distribution function, we can easily describe the
severity of the tainted die using the parameter. For example, we can say

228 Chapter 7 ■ The Art of Application Classification

that a mildly loaded die has a small λ, while a heavily loaded die has a
larger λ value.

 ■ Conditional Probability—A conditional probability describes the event
given that another event has occurred. Typically, the “given” clause is
written using the vertical bar, such as p X event(|). For example, say that
someone is playing a game of tossing a die and he wins $1 every time he
rolls an even number. Assuming we already know that he wins $1, this
rules out any chance of an odd‐numbered outcome. The conditional prob-
ability of tossing a die based on this new information is

p D win
d

d
(|)

, 6
1

2
, 2, 4

λ
λ=

=
− =

Now, instead of six possible outcomes, the extra information reduces the
possible number of outcomes to three; therefore, the conditional prob-
ability is modified to reflect that.

Feature Selection
A feature is defined as a certain trait of the traffic that can be retrieved and ana-
lyzed by a machine learning system. One example of a feature is the average
packet length. If we can group together flows with a similar average packet
length, we may be able to deduce that a flow that fits this profile is likely to be
a certain type of application or traffic, for example, a file download or an instant
messaging application. The set of features to be extracted depends on what the
classifier needs to achieve. Selecting the right features for classification is an
important step for supervised machine learning. Some machine learning algo-
rithms are robust to the presence of irrelevant features, while other algorithms
have less tolerance for noise in the feature set. A feature is considered relevant
if it contributes to the quality of the classification results. A feature can have
strong or weak relevance. With a strongly relevant feature, the lack of this feature
reduces the accuracy of the classifier. With a weakly relevant feature, removing
that feature may or may not impact the quality of the classifier, depending on
what other features it combines with in the classifier. The optimal feature set
contains all strongly relevant features and some weakly relevant features and
may even contain irrelevant features. However, the optimal feature set produces
the best‐quality classification results.

Based on empirical studies, behavior features such as inter‐packet gaps,
average packet length, packet length variants, flow durations, TCP PUSH flag,
and initial advertised TCP window size have served as relevant and important
features. There is no definitive process to derive a behavioral feature. However,
once potential features have been created, various methods exist to assist the

 Chapter 7 ■ The Art of Application Classification 229

selection of features based on their relevance and weight of contribution towards
the classification results. One of these methods is the wrapper approach. The
wrapper approach creates a decision tree that is comprised of all permutations
of the feature sets. By using a supervised machine learning algorithm, also
known as an induction algorithm in this context, the wrapper approach finds
the feature set with the highest evaluation metric that was produced by the
induction algorithm. An example of such an algorithm is the Naïve Bayes
method, which will be introduced in a later section. The wrapper approach
treats the induction algorithm as a black box. It uses only the evaluation metric
that the induction algorithm produces and reapplies the same evaluation to
different permutations of the feature sets to discover the optimal feature set.

The wrapper approach organizes all different possible (feature set) states in a
way that each state is connected to another state that has one feature deleted or
added. A state is represented by a vector of
binary bits, with each bit representing a fea-
ture. For example, suppose there are three
features in the feature selection, a state can
be represented by a bit set (1,0,0): where a
1 indicates that a feature is present and a
0 indicates that the feature is absent. This
state will be connected to other states with
one and only one feature being different,
namely, (0,0,0), (1,0,1), and (1,1,0). Each state
represents a feature set that is a permuta-
tion of the selected features, and we will
call each state a feature set permutation for
ease of discussion. The result is an inter‐
connected state diagram, referred to as the
search space and illustrated in Figure 7-20.
The size of the search space for n features
is O(2).n

The evaluation metric is a numeric quantity that measures the quality of
the classifier. The evaluation metric for each feature set permutation can be
obtained through an accuracy estimation method called k‐fold cross‐validation.
As a feature set permutation is created by either adding or removing features,
a test set is necessary to measure the result of the learning machine executed
with that feature set permutation. Because an explicit test set is not available
for each feature set permutation, the original training set is utilized to create
a hypothetical test set for validation. The entire training data set is randomly
divided into k equal partitions with k‐fold cross‐validation method. Out of k
partitions, one partition is used as test data, the other k‐1 partitions are used as
training data, and the result of the learning machine executed with that feature
set permutation is recorded. The motivation to split all of the training data

Figure 7-20: Wrapper Method for
Subset Feature Selection

0,0,0

0,1,0 0,0,11,0,0

1,0,1

1,1,1

0,1,11,1,0

230 Chapter 7 ■ The Art of Application Classification

into k partitions is to mitigate the effect of data overfitting, a problem where the
learning machine models too closely to the training set and loses sight of the
generality of the system. This process is repeated k times until each partition
has served as a test data set. The average of all of the recorded results is used
as the evaluation metric for that (feature set) state of the search space.

Because the wrapper approach produces a search space, finding the optimal
feature set becomes a searching problem. The search algorithm defines the initial
state and the termination condition: How do we know that we have reached
the state that has the highest accuracy? Notice that the search space is typically
much larger than this illustration. A search space with 40 features contains 240
states, or about one trillion states. It requires a structured approach to decide,
while traversing and evaluating each state, when to terminate further searches.
This is the goal of the search algorithm. We describe two search methods here:

 ■ The Hill‐Climbing Search, also known
as the greedy search or steepest
ascent, starts from the initial state
and computes the evaluation metric
of each of its children. The child with
the best evaluation metric is selected
as the next node, and the search con-
tinues from that child. The algorithm
stops when none of the child nodes
evaluate to be a better feature set
than the current node. The Hill‐
Climbing Search is not an exhaus-
tive search algorithm because it may
stop at a node that is locally optimal
but is not the most optimal set in the
entire search space. We will look at
an example using a much smaller
search space that contains three fea-
tures as illustrated in Figure 7-21. The number below the feature bitmap
represents the evaluation metric of each feature set.

By inspection, the best feature set is (1,1,0), which has an evaluation
metric of 20, the highest amongst all states in the search space. Applying
the Hill‐Climbing Search algorithm, we can see that the first step it takes
is towards (0,0,1), which has the best evaluation metric among all chil-
dren of the initial state (0,0,0). On iteration 2, it is found that (1,0,1) has
an evaluation metric that is better than the others, and hence the search
moves on to (1,0,1). At this point, none of its children has a better evalua-
tion metric than itself, the search algorithm stops, and (1,0,1) is declared
to be the most optimal feature set. The “local comparison” property of

Figure 7-21: Wrapper Method with
Hill‐Climbing Search

1,0,1
18

1,1,0
20

1,0,0
5

0,1,0
10

1

2

0,0,0
0

0,0,1
12

0,1,1
6

1,1,1
8

 Chapter 7 ■ The Art of Application Classification 231

the Hill‐Climbing algorithm does not guarantee that an optimal solution
can be reached in the entire search space. However, because the number
of evaluation computations is small, this algorithm is very efficient when
applied to large search spaces.

 ■ The Best‐First Search selects the most promising state generated so far
that has not already been expanded, that is, its children have not been
traversed. The operation defines two lists: OPEN and CLOSED. When the
search algorithm first begins, the OPEN list contains just the initial state,
while the CLOSED list is initially empty. The process then picks the best
state out of the OPEN list, which is (0,0,0) in the first iteration, and adds
this state to the CLOSED list. Every child from this node is then evalu-
ated and added to the OPEN list. On the next iteration, the best node is
picked from the OPEN list, and all of its children are evaluated and added
to the OPEN list. This node from the previous iteration is moved to the
CLOSED list, and if it has the best evaluation metric seen so far, then the
node is marked as the candidate node. This is an exhaustive search that,
if allowed to continue, will visit every single node in the search space. A
reasonable approach is to terminate the search when the evaluation metric
has reached a certain confidence level.

Using this example and referring again to Figure 7-21, we start with the
OPEN list containing just the initial node (0,0,0):

OPEN: (0,0,0)
BEST: none

Step 1 evaluates all of its children and moves the completed node to the
CLOSED list. When a node is moved into the CLOSED list, it compares
against the current BEST and replaces it if the new state is better. All of
the children are added to the OPEN list and sorted according to the evalu-
ation metric from the best to the worst:

OPEN: (0,0,1) (0,1,0) (1,0,0)
CLOSED: (0,0,0)
BEST: (0,0,0)

Because (0,0,1) has the best evaluation metric, this node is moved to the
CLOSED list, and all the children of (0,0,1) are evaluated and moved to
the OPEN list, if they are not already there. They are again sorted accord-
ing to their evaluation metrics. Because (0,0,1) is better than the current
BEST node, the BEST candidate is replaced:

OPEN: (1,0,1) (0,1,0) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1)
BEST: (0,0,1)

232 Chapter 7 ■ The Art of Application Classification

The next step traverses to node (1,0,1), which is first in line. The search
algorithm examines its children (1,0,0) and (1,1,1). In this case, (1,0,0) is
already in the OPEN list, so only (1,1,1) needs to be evaluated and moved
to the OPEN list. Again, (1,0,1) replaces (0,0,1) as the current best node:

OPEN: (0,1,0) (1,1,1) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1) (1,0,1)
BEST: (1,0,1)

The next node to visit is (0,1,0), which has an unevaluated child (1,1,0).
This new node is evaluated and added to the OPEN list. Because the cur-
rent node (0,1,0) has a lower evaluation metric than the current BEST, it
is simply added to the CLOSED list:

OPEN: (1,1,0) (1,1,1) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1) (1,0,1) (0,1,0)
BEST: (1,0,1)

The next node from the OPEN list is then (1,1,0). There is no child that
needs to be evaluated, and because (1,1,0) has a better evaluation metric
than the current best, it replaces the current BEST node:

OPEN: (1,1,1) (0,1,1) (1,0,0)
CLOSED: (0,0,0) (0,0,1) (1,0,1) (0,1,0) (1,1,0)
BEST: (1,1,0)

The process continues until there are no more search nodes on the OPEN
list, which means that every single node has been evaluated and accounted
for. A Best‐First Search algorithm typically chooses a threshold on which
the algorithm stops.

The Best‐First Search algorithm is considered more thorough, although not
necessarily the better fit for feature selection. Choosing the search algorithm for a
machine learning model should take into consideration the bias‐variance dilemma.
The bias stems from erroneous assumptions in the machine learning algorithm,
while variance comes from sensitivity to small fluctuations in the training set. A
network on which packet traces are collected creates a bias in the data set that is
localized to that network. In the attempt to use the data to create a general appli-
cation signature, the supervised training machine typically tolerates small data
variations. These are conflicting criteria; a machine learning system should readjust
its parameters based on the results to reach a balance between bias and variance.

Supervised Machine Learning Algorithms
A supervised learning machine relies on the availability of labeled training
data to create a mapping from a set of features to a corresponding output. In the

 Chapter 7 ■ The Art of Application Classification 233

context of classification, the features are packet or flow behaviors. The output
is the classification result. The learning machine derives a mapping function
from the data to the output so that the classifier can use this mapping func-
tion to predict classification results. In this section, we will look at the Naïve
Bayes method.

Naïve Bayes Method

The Naïve Bayes method applies Baye’s theorem to independent features. The
Naïve part refers to its assumption that every feature considered in the machine
learning system is independent of one another. Andrew Moore and Denis Zuev
provided the early work on applying the Naïve Bayes method to traffic behavior
feature sets to classify traffic into a discrete set of categories. The set of features
includes flow duration, TCP port, packet inter‐arrival time (IAT), packet size,
effective bandwidth, and Fourier Transform on packet IAT.

In Chapter 5, we describe how Baye’s theorem, in its simplest form, can be
represented using the following formula:

P A B
P B A P A

P B
(|)

(|) * ()
()

=

where P(A|B) is the conditional probability of event A occurring given that
event B has occurred, and P(A) and P(B) are the probability of event A occurring
and the probability of event B occurring, respectively. To apply this theorem in
the context of a classifier, our goal is to find the probability of a flow belonging to
category C given the set of features …F F F, , , n1 2 , denoted by

…P C F F F(| , , ,)n1 2

The theorem therefore indicates that this probability can be evaluated using
the following formula:

P C F F F
P C P F F F C

P F F F
(| , , ,)

() * (, , , |)
(, , ,)n

n

n
1 2

1 2

1 2

… = …
…

In other words, we need to first evaluate P C(), the probability of a category C,
independent of any conditions; then evaluate …P F F F(, , ,)n1 2 , the probability of a
feature set, independent of any conditions; and finally evaluate …P F F F C(, , , |)n1 2 ,
the conditional probability of a feature set given that a category C is observed.
The joint probabilities …P F F F C(, , , |)n1 2 and …P F F F(, , ,)n1 2 can be computed
with the independence assumption by taking the product of individual condi-
tional probability of each feature from the feature set. The following formula
applies to the conditional probabilities:

P F F F C P F C P F C P F C P F C(, , , |) (|) * (|) * * (|) (|)n n
i

n

i1 2 1 2
1

∏… = =
=

234 Chapter 7 ■ The Art of Application Classification

Similarly, the probability of a feature set without condition can be computed
by multiplying the probability of each feature from the feature set:

P F F F P F P F P F P F(, , ,) () * () * * () ()n n
i

n

i1 2 1 2
1

∏… = … =
=

The Naïve Bayes machine learning system therefore independently evaluates
a feature to derive the conditional probability distribution based on a given
classification result. The training data therefore needs to have prior knowledge
of which category it should belong to, typically achieved by a DPI classifier, in
order to calculate the conditional probabilities.

The simplest form of Naïve Bayes assumes a Gaussian distribution, or nor-
mal distribution, of a feature variable. While collecting the data, the mean
and variance of each feature are collected, and this feature is assumed to have
a Gaussian distribution. This assumption simplifies the calculation of the
conditional probabilities, but may not be accurate in practice. Taking packet
size, for example, if the average packet size of the data set on Web Category
is 500 bytes with 25 bytes variance, the probability distribution function is
shown in Figure 7-22.

Figure 7-22: Gaussian Distribution

500 Packet Size

Pr
ob

ab
ili

ty

This distribution implies that with 500 bytes being the mean, traffic belong-
ing to the Web Category is unlikely to generate packets that have a packet size
that is small, such as 64 bytes. In practice, the distribution can be multi‐modal.
This means that more than one peak can be found in the probability distribution
function, as shown in Figure 7-23.

Now, in order to classify an application, say Facebook, we need to first col-
lect a set of training data from the Facebook application. Each of the training
flows needs to be marked as Facebook so that the system knows what to expect.
These flows are used to generalize the probability distribution function of the
feature: P(X|Facebook), where X is the feature we are studying. Assuming that
we are only using three features—packet length, inter‐packet gap, and flow
duration—the Naïve Bayes system can be illustrated in Figure 7-24.

 Chapter 7 ■ The Art of Application Classification 235

Given the training data, we can easily derive the individual probability distri-
butions for P(L), P(G), P(D), P(Facebook), P(Netflix), and P(YouTube). The challenge
now is to calculate the joint probability distribution of L, G, and D given that an
application is Facebook, denoted as P(L,G,D|Facebook). Recall that our goal is to
find the probability that an application is Facebook given the set of feature values,
L, G, and D, which is found with Baye’s Theorem using the following formula:

P Facebook L G D
P Facebook P L G D Facebook

P L G D
(| , ,)

() * (, , |)
(, ,)

=

This is where the feature independence assumption comes to our rescue. The
probability theory states that for independent variables, the joint probability
distribution is the product of the probability distribution of each individual
random variable. Therefore,

P L G D Facebook P L Facebook P G Facebook P D Facebook(, , |) (|) * (|) * (|)=

50064 Packet Size

Pr
ob

ab
ili

ty

Figure 7-23: Multi‐modal Distribution

Figure 7-24: Naïve Bayes Learning System

Naïve Bayes
Learning System

P (L | Facebook)

P (G | Facebook)

P (D | Facebook)

P (L | Netflix)

P (G | Netflix)

P (D | Netflix)

P (L | YouTube)

P (G | YouTube)

P (D | YouTube)
Packet Length (L)

Inter-Packet Gap (G)
Flow Duration (D)

YouTube
Training Set

Netflix
Training Set

Facebook
Training Set

236 Chapter 7 ■ The Art of Application Classification

These are the distributions evaluated by the Naïve Bayes learning system as
shown in Figure 7-24.

Because the Naïve Bayes classifier is a supervised learning system, the training
data needs to be accompanied by the expected classification result. One way to
obtain the classification information for the training data set is to utilize a reli-
able DPI classifier to classify the traffic while feeding the data into the learning
machine. This approach may sound counter‐intuitive, but it is a feasible solution
given the availability of classifiers both commercially and in open source. The
problem with this approach is that the accuracy of the Naïve Bayes classifier
depends on the accuracy of the DPI comparator. Another way is to run the said
applications in a controlled environment and feed the known data into the
classifier. This method is more labor‐intensive but offers more accuracy than
the previous approach. The problem with this approach, however, is that the
feature behavior generated manually may not be diverse enough.

One factor that can affect the performance of Naïve Bayes is the skewed data
bias. When the training data set contains more data for a particular traffic
category than another, the decision boundary will become biased towards
the dominant feature. This is unavoidable in real‐world traffic, which is most
likely to be predominantly web traffic. The classifier, due to the fact that there
are more samples towards web traffic than samples for other types of appli-
cations, may prefer the web category over the other applications. A variant
of the Naïve Bayes classifier, called Complement Naïve Bayes, uses all training
data other than the requested application to derive the complement of the con-
ditional probability. For example, using the previous diagram where three
different groups of training data are available, the conditional probability
P(L|Facebook) is computed not by the Facebook training data but by all other
training data sets. In this particular example, the data from Netflix and YouTube
is used to derive the complement of conditional probability distribution, or
mathematically 1 − P(L|Facebook). In a real‐world learning system where the
number of applications is much larger than three, as in our example, the
Complement Naïve Bayes variant usually achieves better results, especially on
training sets where one or two applications dominate.

Unsupervised Machine Learning Algorithms
An unsupervised learning machine is presented with data without knowing
the structure of the data and what it represents. Just like a supervised learning
machine, the goal of an unsupervised machine is to create a mapping function
between data and classification results. Without knowing the “correct answer”
up front, an unsupervised machine refines and readjusts its mapping function
based on additional data iteratively until no further improvement can be made.
In this section, we present two unsupervised learning machines: Expectation‐
Maximization and K‐Means.

 Chapter 7 ■ The Art of Application Classification 237

Expectation‐Maximization

With unsupervised learning, we are given a set of data with unknown proper-
ties. To create a classifier out of the unknown data, we are now faced with two
conflicting requirements: we need to know the classification of each data entry
in order to create a model for the feature set, but we also need the model to
classify the data entry, as the learning is unsupervised.

The basic concept of the Expectation‐Maximization (EM) algorithm is to
estimate the accuracy of the current assumption against the data sample and
iteratively refine this assumption based on new data samples, all without a
priori knowledge of the data. The operation of the EM algorithm begins with
an initial assumption on the probability distribution functions of the features.
Taking in a manageable set of data entries at a time, the algorithm estimates the
likelihood of observing the current data set on all possible classification results.
A data set that is more likely to occur in the context of a classification result is
given a higher weight value. This weight is applied to the current data set, essen-
tially putting more emphasis on the data set that is more likely to occur. With
the weighted data set, new estimations of the probability distribution function
parameters are derived, and the process repeats itself.

This process iterates repeatedly until the parameters of the estimated probabil-
ity distribution functions converge. By convergence we mean that the difference
between a new estimation of the parameters and the old estimation is below a
certain threshold. The converged parameters are the desired parameters that
describe the probability distribution of the feature set. For example, a binary
feature such as the existence of a TCP PUSH flag has a value of either 1 or 0.
The probability distribution of this feature can be described using the Bernoulli
distribution, with the probability of having the “TCP PUSH flag is set” being
the only parameter describing how the TCP PUSH flag is distributed. Let us
hypothetically treat the TCP PUSH flag as an important feature to classify an
application as interactive, but we do not know if 30 percent of the packet hav-
ing the PUSH flag set is good enough to make that decision or not. So we start
with a rough assumption that if an application is interactive, then 30 percent
of the packets have the PUSH flag set, and if an application is not interactive,
then 60 percent of the packets have the PUSH flag set. The values 30 percent and
60 percent are the estimation of the parameter. Mathematically, a parameter is
denoted by θ , and an estimation of a parameter is denoted by θ̂ . In addition, an
estimated parameter corresponding to an interactive application is denoted as
θ̂I, while an estimated parameter corresponding to a non‐interactive application
is denoted as θ̂N. With these definitions we can describe the initial estimations
mathematically as follows:

θ =ˆ (0) 0.3I

θ =ˆ (0) 0.6N

238 Chapter 7 ■ The Art of Application Classification

The parenthesized value 0 in this case refers to the iteration count, which
is zero when the EM first starts. The system first retrieves a finite number of
samples on each iteration. In this example, assume we take five flows at a time.
At this point, the system has no knowledge of whether a flow belongs to the
interactive category or not. However, we can use the previously established
estimations to derive the probability of these flows being categorized as inter-
active or not. This is the Expectation step. The Expectation step takes sampled
data and computes the likelihoods of the set of five flow samples being either
interactive or non‐interactive given the current estimates.

For simplicity, we assume that each flow contains exactly ten packets. For
every packet, the presence of the PUSH flag is denoted by 1, while an absence
is denoted by 0. The first flow collected can look something like the following
stream of binary values: 1000010110. Given the estimation that the probability of
an interactive flow containing a PUSH flag is 0.3, we can compute the probability
that a flow produces these packets given that it is an interactive flow. The first
bit 1 has the probability of 0.3, the second bit 0 has the probability of 0.7, and so
on. The conditional probability of observing this particular series of PUSH flag
values on a flow given it is an interactive application, denoted as I, is therefore

p flow I(1|) 0.3 * 0.7 * 0.7 * 0.7 * 0.7 * 0.3 * 0.7 * 0.3 * 0.3 * 0.7 0.000953= =

Similarly, the conditional probability of observing this particular series of
PUSH flag values on this flow given it is a non‐interactive application, denoted
as N, can be computed as follows:

p flow N(1|) 0.6 * 0.4 * 0.4 * 0.4 * 0.4 * 0.6 * 0.4 * 0.6 * 0.6 * 0.4 0.000531= =

The Expectation step uses the probability of each outcome to compute the
weight of the current training data, normalized among all possible outcomes.
Because there are only two possible outcomes, interactive or non‐interactive, the
weights can be derived using the previous conditional probabilities:

=
+

=w flow I(1|)
0.000953

(0.000953 0.000531)
0.64

=
+

=w flow N(1|)
0.000531

(0.000953 0.000531)
0.36

The probability of a flow is used to compute the weight of this flow. A higher
weight means that the data is more relevant in re‐evaluating our new estima-
tion. The current flow “flow1” contains four packets with a PUSH flag and six
packets without a PUSH flag. Applying the weight to the current data stream
1000010110 yields 0.64*4=2.56 occurrences of a PUSH flag and 0.64*6=3.84
occurrences of a packet without a PUSH flag on an interactive application.
Similarly, the weight for a non‐interactive application on this sample flow is
0.36; hence, the weighted occurrence of packets with PUSH flags is 0.36*4=1.44,

 Chapter 7 ■ The Art of Application Classification 239

and the weighted occurrence of packets without PUSH flags is 0.36*6=2.16. By
repeating this process on all five flows, we can derive the following table of
weighted occurrences based on the current estimation, as shown in Figure 7-25.

Figure 7-25: Table of Weighted Occurrences

Weight Table

Interactive

0.64

0.003

0.34

0.86

0.96

0.36

0.997

0.66

0.14

0.04

Non-Interactive

Weighted Occurrences of 1 and 0

Interactive

2.56, 3.84

0.027, 0.003

1.7, 1.7

0.027, 0.003

1.7, 1.7

1.44, 2.16

8.97, 0.997

3.3, 3.3

8.97, 0.997

3.3, 3.3

Non-Interactive

8.787, 19.243Sum of Weighted Samples 14.21, 7.757

Samples

1000010110

0111111111

1010101010

0010101000

0100100000

The results of all the weighted samples are accumulated to produce the cumu-
lative weighted samples, and these values are used as a basis to create a new
estimation of the parameters. The Maximization step takes this “Sum of weighted
samples” as input and computes the new estimation. Recall that in our example,
the TCP PUSH flag feature is a Bernoulli distribution. Our current goal in the
Maximization step is to produce θ̂ (1)I so that this estimate can be used as a basis
in the Expectation step of iteration 1. In this particular case, a new estimate can
be easily computed. The conditional probability of observing a PUSH flag being
set on an application can be computed using the sum of weighted samples with
the PUSH flag set, divided by the sum of all weighted samples. Mathematically,
the new estimate can be found using the following equations:

θ =
+

=ˆ (1)
8.787

8.787 19.243
0.313I

θ =
+

=ˆ (1)
14.21

14.21 7.757
0.647N

The process then repeats until the estimated parameters converge. In other
words, if θ θ− −n nˆ () ˆ (1)I I is smaller than a threshold, say 0.001, then the algorithm
converges. The final values of θ θandˆ ˆ

I N are the best estimates of the parameters.
The EM algorithm works on multiple features that exhibit different proba-

bilistic behaviors. The EM system designer must define the desired features
and make intelligent decisions about what probability distribution function
best describes each feature. The process that analyzes the data stream and
estimates the parameter of a statistical model is called the Maximum Likelihood
Estimation, or MLE.

240 Chapter 7 ■ The Art of Application Classification

In this example, we have used the simple binary distribution to describe our
feature. Practical features can be Gaussian, Poisson, or Binomial distributed. The
calculation based on the current data set is different for each probability dis-
tribution. For example, let’s assume that the feature packet length is a Gaussian
distribution with two parameters: mean µ and variance σ . The data collected
from the sample is therefore a vector of a packet length such as {40, 40, 40, 150,
268, 352, 60, 492, 40, 40}. Just like the PUSH flag example, we can calculate
the probability of a data stream with this series of packet lengths by apply-
ing the probability distribution function using the current parameter values.
Assuming that the current mean and variance are 120 and 30, respectively, on
the interactive application, the probability of obtaining a packet with length x
can be computed using the Gaussian formula:

µ σ
σ π

=
µ
σ

− −

f x e(, ,)
1
2

x()
2

2

2

Applying the values x = 40, µ = 250 and σ = 30, the probability of obtaining
a 40‐byte packet is 0.000378. This formula is applied to every packet on the
data stream with a different x value. The product of ten probability values is
the conditional probability of this data stream, given that the packets are from
an interactive application. This product will be used as the basis to compute
the weight, as in the previous PUSH flag example. By changing the probability
distribution function and its corresponding parameters, we can apply the same
principle as shown earlier with the binary feature and extend that to a complex
distribution function such as the Gaussian distribution.

The performance of the EM algorithm depends on the initial assumptions
and estimations. The algorithm strives to find the optimal parameters that fit
the distribution property it was initially given. If the EM was given a bad dis-
tribution model to begin with, the result will be incorrect as well.

K‐Means Clustering

K‐Means clustering is a method that attempts to identify clusters or groupings
in a data set, such that each data point belongs in a cluster that it is closest to.
The distance is measured between the data point and the center of the cluster.
In other words, K‐Means clustering is a method to group similar data samples
into a finite set of clusters or groups. The K‐Means clustering concept is best
explained using a well‐known example of calculating T‐shirt sizes and mak-
ing T‐shirts that can fit an entire population. Let’s assume a T‐shirt company
has gathered statistical data on the heights and weights of a population. The
results of the statistics are shown in Figure 7-26.

Because the T‐shirt company cannot economically make a shirt for every size,
it will use these statistics to create three different sizes: small, medium, and
large, as shown in Figure 7-27.

 Chapter 7 ■ The Art of Application Classification 241

This is the basic idea of K‐Means clustering, which is typically applied to
an n‐dimensional space where n is the number of features to consider, and the
sample space is divided into k clusters. The goal of the K‐Means algorithm is
to draw the boundaries, as shown in Figure 7-27. The algorithm is an iterative
approach and consists of the following steps:

 1. Pick initial states. The algorithm starts with k initial centroids for each
cluster. A centroid is defined as the geometric center of a cluster Ck. To
compute the centroid, the average value along each dimension is com-
puted among all the samples, and the resultant vector is the centroid. A
Euclidean distance is the length of the line connecting from point A to
point B in an N‐dimensional space, which can be computed using the
following formula:

D P Q q p q p q p(ˆ , ˆ) () () ()n n1 1
2

2 2
2 2= − + − + + −

where pn is the nth dimension of point P. The initial position of a centroid
is arbitrary; the following steps will iteratively adjust its centroid based
on real samples until no further changes can be made. For illustration
purposes, we assume that there will be two clusters, and there are a total
of 14 samples, with each sample denoted as Si . Each sample contains two
features, which means that the cluster is a two‐dimensional plane. The
initial centroids c c1 and 2 are chosen to split up the space into left and
right spaces, as shown in Figure 7-28.

 2. Compute cluster membership based on the Euclidean distance vector. For
each sample, K‐Means calculate the Euclidean distance from the position
of the sample to every centroid that results in a distance vector. Within this

Figure 7-26: Weight and Height
Sample Statistics

Height

W
ei

gh
t

Height

Small

Medium

Large

W
ei

gh
t

Figure 7-27: Partitioning the Weight and
Height Sample Statistics

242 Chapter 7 ■ The Art of Application Classification

distance vector, the smallest distance is selected, and this sample is said
to be the member of the cluster whose Euclidean distance is the smallest.
For sample S1, the distances D1and D2 are computed, and because <D D1 2,
sample S1 belongs to cluster 1, as shown in Figure 7-29. At the end of Step 2,
the samples on the left side of the dotted line belong to cluster 1, while all
the other samples on the right side belong to cluster 2.

Feature 2

c2c1

Fe
at

ur
e

1

Figure 7-28: Separating the Sample
Space Using Centroids

Feature 2

c2c1

D1

S1

D2

Fe
at

ur
e

1

Figure 7-29: Cluster Membership
Based on Euclidean Distance Vector

 3. Adjust cluster centroid. After the mem-
bership has been determined, a new
centroid is computed based on all sam-
ples within the same cluster. This new
centroid is a point inside the existing
cluster where its value at dimension
n is the average of dimension n of all
samples that belong to this cluster. The
new centroids are used as the new basis
for distance vector calculation, as shown
in Figure 7-30.

 4. Iterate until convergence. After the
new centroids are calculated, the clus-
ter memberships are reset for all of the
samples. The algorithm returns to Step 2 and repeats until no further
changes to the location of the centroids can be made. At this point, the
centroids are said to have converged.

The K‐Means clustering algorithm always produces clusters of the same
shape. An application that exhibits a strong cluster in one feature may have

Feature 2

S1

c2c1
c1 ′

c2 ′

Fe
at

ur
e

1

Figure 7-30: Cluster Centroid
Adjustments

 Chapter 7 ■ The Art of Application Classification 243

diverse behavior in another. Simple K‐Means that consider both features may not
properly capture the cluster of this application. Therefore, the K‐Means cluster
is typically used as a first step or refinement step to classification problems.

Classifier Performance Evaluation

The performance or the accuracy of a classifier is evaluated against a number of
metrics: False Negatives, False Positives, True Positives, and True Negatives. Figures 7-31
through 7-34 illustrate the difference between these metrics:

 ■ False Negatives (FN)—Traffic that should be X but is incorrectly classified
as not belonging to X.

 ■ False Positives (FP)—Traffic that should not be X but is incorrectly clas-
sified as belonging to X.

 ■ True Positives (TP)—Traffic that should be X and is correctly classified
as belonging to X.

 ■ True Negatives (TN)—Traffic that should not be X and is correctly classi-
fied as not belonging to X.

This is not HTTP
False Negative

Classifier

HTTP

Checking
HTTP

Signature
Figure 7-31: False Negative

This is HTTP
False Positive

Classifier

FTP

Checking
HTTP

Signature

Figure 7-32: False Positive

244 Chapter 7 ■ The Art of Application Classification

The metrics are evaluated from the perspective of evaluating a classification
X, which is HTTP in the illustrated examples. A classifier tries to improve on its
True Positives while reducing the number of False Negatives and False Positives.

The accuracy of a classifier is defined to be the fraction of correct classification
results over all of the results, which is computed by

= +
+ + +

Accuracy
TP TN

TP TN FP FN

Ironically, the accuracy metric does not accurately reflect the performance of
a classifier. For example, suppose that we are interested in classifying SIP traf-
fic out of 1,000,000 flows. There are only 1,000 flows that are truly SIP traffic. A
classifier does not recognize any SIP traffic so always returns false with respect
to SIP traffic classification. The evaluation metrics are shown here:

True Positive = 0
True Negative = 999,000
False Positive = 0
False Negative = 1,000
The accuracy of this “classifier” is computed as

= +
+ + +

= =Accuracy
TP TN

TP TN FP FN
999000

1000000
99.9%

This is HTTP
True Positive

Classifier

HTTP

Checking
HTTP

Signature
Figure 7-33: True Positive

This is not HTTP
True Negative

Classifier

FTP

Checking
HTTP

Signature

Figure 7-34: True Negative

 Chapter 7 ■ The Art of Application Classification 245

and appears to be an extremely “accurate” classifier. However, this “classifier”
does not provide any value regarding SIP traffic classification. In light of this
deficiency in accuracy, two other evaluation metrics are used: recall and preci-
sion. Recall and precision emphasize how much the classifier gets right, while
ignoring what it did not get wrong. This translates to putting emphasis on
the TP value while ignoring the TN value. The formal definitions of recall and
precision are as follows:

 ■ Recall is the percentage of members of class X correctly classified as belong-
ing to class X, as illustrated in Figure 7-35. It measures the sensitivity of the
classifier by computing the percentage of the correct items that are classified.

Class X

Superset

False NegativeTrue Positives

Figure 7-35: Recall

Recall can be defined mathematically using the following formula:

=
+

Recall
TP

TP FN

 ■ Precision is the percentage of those instances that truly have class X, among
all those classified as class X, as illustrated in Figure 7-36. It measures the
relevant accuracy of the classifier by computing the percentage of the
classified items that are correct.

Figure 7-36: Precision

Class X

True Positives

False Positive

246 Chapter 7 ■ The Art of Application Classification

Precision can be defined mathematically using the following formula:

=
+

Precision
TP

TP FP

Naturally, recall and precision are opposing values. As recall increases, precision
decreases. A classification design strives to achieve a balance between recall
and precision.

Machine learning relies heavily on the training data set to generalize application
behavior. A system can sometimes try too hard to fit their model, resulting in a
model that overfits the training data. We use the bias error and variance error to
evaluate the degree of overfit. A system that has a very high bias is considered
to be underfit, while a system that has high variance is considered to be overfit.

A system that overfits can perform very well when applied to the network
environment on which training data was taken but works poorly when the
system is moved and deployed elsewhere. This is especially true in a behav-
ioral‐based machine learning system, where features such as inter‐arrival time
or packet length are used as the dominant features. For pattern‐based signa-
tures, it may be possible that a properly defined term filter can eliminate terms
that are site‐specific, which will greatly reduce the amount of variance so that
the generated application signatures are more generalized. It is also desirable
to obtain samples from various sources or at different points in time to reduce
the number of redundant behavioral patterns. Traffic patterns are typically
very different during office hours compared to nights and weekends. So col-
lecting data from multiple sources at different times is a good way to diversify
the samples. Machine learning systems are statistical in nature. It may not be
realistic to expect the model to fit every environment; however, a system should
contain tunable parameters that will fit the model to the particular network
environment the system is deployed in.

In traffic classification, more information typically results in better classifica-
tion results. However, more information infers that a classifier needs to collect
more packets on a given flow to reach a classification decision. The problem
with requiring more packets on a flow is twofold: first, on systems that require
a classification decision to perform a flow‐based policy action such as a QoS
device, an early classification result is essential so that packets consume the
allocated bandwidth instead of adhering to the default policy due to indecision.
On a security device where every leaked packet is a security risk, an early deci-
sion is of fundamental importance.

Second, accumulating packets requires storage. It is desirable for a system with
limited resources that is performing classification on a high‐speed network to
minimize memory footprint per flow. Reducing the number of packets to reach
a classification decision is a desirable criterion. As stated earlier, the port‐based
classification approach can obtain the classification results on the first packet.
The DPI‐based classification typically looks at only the first N‐bytes payload of

 Chapter 7 ■ The Art of Application Classification 247

the packets. The machine learning system depends completely on the features
selected. Some features, such as flow duration, require a flow to be completed
before a decision can be made and therefore are useful only when analyzing an
application retrospectively. A security engineer may prefer one type of system
to another, depending on the objectives of traffic classification.

Proxy versus Classifier

As detailed in Chapter 1, a proxy is designed to intercept traffic and to com-
municate with the end points of the original connection according to defined
security policies. Therefore, a proxy must have intrinsic knowledge of the pro-
tocol that is used in that communication. Metaphorically, the proxy needs to
know how to “speak the language”. On the other hand, a classification engine
wants to know “what language is spoken”. In addition, the proxy must not only
be capable of “speaking the language” but must also assume the identity of one
speaker while speaking to the other, and vice versa.

We covered the proxy architecture in the section titled “The Proxy Architecture”
of Chapter 1. That architecture diagram, shown again here as Figure 7-37, illus-
trates that the proxy has an embedded classifier. This classifier appears to be a
hybrid of a port‐based and DPI‐based classifier. The security policy in the proxy
dictates that the proxy must act on the first packet; otherwise, the proxy cannot
masquerade as the end point. This is because the proxy would be detected as a
“third‐party” if the proxy “did not initiate the conversation”. This basic operat-
ing requirement forces the proxy to first act as a port‐based classifier.

By definition, the proxy examines the payload packet by packet, which enables
the proxy to function as a DPI‐based classifier. As the proxy continues to clas-
sify the proxied traffic, the proxy verifies whether its original classification is
accurate. In the language analogy, as the proxy continues to speak, it verifies if it
is indeed speaking the correct language as expected by the other party. As soon
as the proxy detects its original classification is incorrect, the proxy performs a
protocol handoff that essentially transfers the connection to another proxy that
is designed to process that application. Still using the language analogy, the
proxy “switches the language” as soon as it detects what it has spoken to the
other party is not the right language. Sometimes the proxy realizes the correct
language is not one it is capable of speaking; at that point the proxy terminates
the connection, breaks the application, and possibly exposes its presence.

As the proxy architecture illustrates, a typical commercial proxy appliance has
a limited number of application proxies operating within itself. Twenty applica-
tion proxies operating in a typical commercial proxy appliance is already a high
number. This number is a tiny fraction when compared with a typical commercial
application classification appliance that enforces QoS‐centric policies, which can
classify between 2,000 and 5,000 applications. Developing a comprehensive proxy

248 Chapter 7 ■ The Art of Application Classification

for a specific application requires many months of intensive protocol analysis
and development time. For a complex application, the proxy may take years to
perfect. For an application that operates over an encryption protocol, the task
of developing a proxy is extremely difficult if not impossible. Having a proxy
for every application is simply not feasible with today’s technology.

Policy Engine

Protocol
Detection &
Application
Classification
EngineIncoming

Session

HTTP YouTube Proxy

Facebook Proxy

Web Application
Proxies

Citrix Proxy

DNS Proxy

HTTP Proxy

SSL Proxy
1

2

3

Ports Table
443

HTTPS Proxy
80

HTTP Proxy

54
DNS Proxy

22
SSH Proxy

2598
Citrix Proxy

...
Others

HTTPS

Default

Dispatcher

Figure 7-37: Proxy Architecture

Consider an example security policy that states “Block Dropbox Upload”.
This will require the proxy to examine a connection from the very begin-
ning, simply because the first payload could be a portion of a file that is being
uploaded to Dropbox. Therefore, if the first packet offers any indication the
flow may come from a Dropbox application, the proxy must terminate and

 Chapter 7 ■ The Art of Application Classification 249

intercept the connection at the first packet. Two observations can be made
from this scenario:

 ■ Because the proxy begins with a port‐based classifier, if the first packet has
a destination port or IP address that is not known to be used by Dropbox,
then that connection may circumvent the proxy. The only viable solution
to solving this proxy‐avoidance problem is for the proxy to intercept each
and every connection. There are quite a few issues associated with this
“shotgun” approach. First, performance and scalability become significant
requirements for the proxy. We have observed in several large school
districts that there are typically 120,000 users during the day, generat-
ing 200,000 connections per second, 6 million active connections at any
given moment, and 18 million web requests per day, and running close
to 1,000 applications that include web‐based, mobile, and traditional
applications. Second, intercepting connections from applications that
the proxy does not have any knowledge to handle as a proxy will cause
an application to misbehave, operate incorrectly, or stop functioning
completely. Consequently, the proxy cannot be transparent if it keeps
“breaking applications” and causing user uproars.

 ■ The first‐packet interception requirement prevents a proxy from employ-
ing a machine learning‐based classifier. Most practical machine learning
algorithms that are utilized for classification solutions require sample
features that translate into multiple packet collections. Packets received
during the classification phase are “leaked” and are very likely to violate
strict security policies.

Enforcing QoS policies can be difficult even in a dedicated network visibility
appliance. Suppose a hypothetical network management requirement is to restrict
the bandwidth usage of Dropbox download activities. Because Dropbox traffic
is encrypted and assuming the classifier is a learning machine‐based classifier
having inter‐packet arrival time and average packet size as the algorithm features,
ten seconds worth of traffic is collected as the sample to be extracted for clas-
sification. During this ten‐second interval, all of those packets in the sample are
transmitted using a default QoS policy. This default QoS policy must not be too
restrictive or else it may negatively impact an application that is granted high
bandwidth with certain timing guarantees. On the other hand, if the application
turns out to be one that must be restricted in bandwidth usage, that application
would enjoy ten seconds of unlimited utilization of valuable network resources
before the application is properly classified. On a high‐speed 10G network, ten
seconds worth of traffic can be significant, although the actual volume depends
on the application in question. In addition, on a large network that provides
services to thousands of users who may favor the Dropbox application, the
aggregate bandwidth consumption caused by the ten‐second classification delay
can be significant enough to render the QoS policies useless.

250 Chapter 7 ■ The Art of Application Classification

The industry has desired and attempted for years to combine the dedicated
proxy appliance with a dedicated application classification appliance into a
single‐box solution, which could possess the abilities to specify and enforce both
strict security policies and QoS‐centric traffic engineering policies. However,
the technical challenges illustrated in the previous discussion, compounded by
the SSL interception challenges, have prevented the successful construction of
such a commercially viable super appliance to date.

Summary

Traffic classification is a challenging problem, and classification technology is
far from mature. The increasing emphasis on data encryption obfuscates the
information a classifier needs to make classification decisions. The explosive
growth in web‐based and mobile applications amplifies the difficulties fac-
ing designers of classification algorithms. Classification technology should be
implemented according to intended objectives. For example, a classification
system that is used primarily for retrospective analysis prefers accuracy and a
breadth of application coverage and can be more tolerant of classification delay.
On the other hand, using a hybrid set of classification techniques to implement
comprehensive security policies will prefer early classification decisions and
real‐time performance but may accept a signature database with a smaller set of
applications. A classifier may be deployed in a network environment that needs
to see and analyze every packet, while others may respect individual privacy
and not track any private and personal information. A versatile solution has its
compromise, and each solution may excel at solving one aspect of the classifica-
tion problem at hand; however, it is still up to the practitioner to make the final
decision on which combination of technologies can best serve the objectives
while meeting performance expectations. The adoption rate of hybrid solutions
that combine multiple classifiers, which may include both signature based clas-
sifiers and learning machines, continues to grow as the Internet continues to
evolve with an increase in application complexity.

251

An advanced persistent threat (APT) is a targeted attack that is stealthy and can
maintain its presence in victimized systems for months if not years without
detection. Infiltration by APT typically begins with a prolonged campaign against
a specific target. The “advanced” aspect of APT does not necessarily imply the
attack is based on advanced technology but rather that the attack deploys a
combination of methods, ranging from traditional techniques to custom code
while launching the assault. The attackers have complete situational awareness
and are adaptive when it comes to altering attack approaches. As APTs are typi-
cally launched by well‐funded and well‐organized entities, the attack objectives
are focused and specific, such as acquiring military or commercial intelligence
or inflicting some type of damage. Therefore, the “persistent” aspect of APT
comes from the fact that the attack will not stop until the successful infiltration
and the intended objectives have been achieved.

Because APTs are not traditional threats, they cannot be treated as traditional
threats, and the traditional security mechanisms are ineffective at detecting
and defending against them. For example, with all of the known APTs that
have been uncovered, none has ever triggered an IDS system. The lack of vis-
ible symptoms does not imply that security compromises do not exist or that
exfiltration of sensitive data is not already underway. Therefore, planning,
designing, implementing, and refining detection solutions is just as impor-
tant and mandatory as the continued deployment of proactive preventive
solutions. Solving the APT problem is about detection because APT can enter

C H A P T E R

8

Retrospective Analysis

252 Chapter 8 ■ Retrospective Analysis

the network as legitimate traffic. APT traffic behaves like regular legitimate
traffic, and therefore the focus should be on the detection and prevention of
outbound data, that is, on data exfiltration, and this is one of the main objec-
tives of deploying secure proxies.

Performing effective APT analysis depends on both the quality and the
quantity of the data collected about the network that is under examination.
Data collection can be comprised of logs from applications and services and full
network traffic captures that contain each and every packet for all connections
and flows. The collected data must be managed and indexed because one of the
most important tasks of the analysis process is for a security analyst to conduct
various queries against the stored data, followed by correlating the answers to
discover suspicious patterns. Because the analysis is performed against offline
data, it is performed on events that have already taken place. As such, retro-
spective analysis interrogates and scrutinizes events back in time to uncover the
beginning of an APT attack and then, from that point in time, trace forward to
divulge the attack in its entirety and expose the extent of the damage.

In this chapter, we will focus our discussions on data management that
facilitates retrospective analysis.

Data Acquisition

A retrospective analysis system works with data that was collected in the past.
From that data, the system should be able to observe the occurrences of certain
network events, obtain detailed information about the occurrences, retrieve
additional events that are related to those occurrences, and finally draw conclu-
sions based on the compiled information. The functionalities of the retrospective
analysis system require the design of the system to facilitate in the following
aspects:

 ■ Data acquisition—The acquired data should cover all occurrences of all
network events within the time period specified by the retrospective
analysis system. The acquired data should contain enough detailed infor-
mation to elaborate the network events. For example, the collected data
may list the source and destination IP addresses of a connection. Or, if a
file download is included in an HTTP connection, the collected data may
contain the type of the file, the file size, or even the actual file.

 ■ Data organization—The acquired data should be organized in such a way that
it is easy to manage, process, and retrieve. In particular, the retrospective
analysis system needs to query the data containing detailed information
about the network events and expect rapid responses with results that are
linked to those events. In certain cases, those results are the abstracted
records from the collected raw data, and we may also need to retrieve the

 Chapter 8 ■ Retrospective Analysis 253

original raw data together with the result records. The data organization
also includes storage of the data.

With those specific design requirements in mind, in this section, we will
cover collecting and indexing the data with concrete examples showing how
that data is made available to a retrospective analysis system.

Logs and Retrospective Analysis
Network appliances and hosts generate logs to record network statistics, events,
and resolutions. From the logs, we can get information on what happened in
the network and reactions to those events. In the following example, we list two
sample logs. The first line is a firewall or IDS log, in which the type of intru-
sion is recorded along with its source and target. The second line is a proxy log,
which records much richer information, like the date and time of the event, the
browser type, the destination URL, and, most importantly, the action (that is,
policy enforcement) on the traffic flow.

Sample Network Logs

1 UDP Snork attack from 10.1.1.1 to 192.168.2.10 on interface outside
2 2014-12-01 00:49:13 2 192.168.2.10 - - policy_denied PROXIED
"News/Media" - 403 TCP_DENIED GET - http www.cnn.com 80 / - -
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/39.0.2171.95 Safari/537.36" 192.168.2.10 760 1662 -
"CNN" "none"

Generally speaking, the entire spectrum of logs can be categorized into four
types. Security logs record system security events. They cover all incidents that
are related to system intrusion, attacks, malware or viruses, data loss or leaks,
and other types of security breaches. For example, on some Linux systems,
the security logs are stored at /var/log/secure, where the user log ins and
authentication‐based resource access events are recorded.

Operational logs cover a wide range of logs that are generated while the appli-
ance or software is in operation. The operational logs provide real‐time informa-
tion to the system operators on the events that are happening or the status of
the appliance or software. While there are many good examples of operational
logs, we refer you to the sample proxy log in the previous example. It is a proxy
access log generated to report a policy in action.

Debug logs are designed by developers to gather internal information on the
system and software. There is usually a performance cost when debug logs are
enabled due to the sheer volume of logs generated. Therefore, in most cases, the
debug logs are disabled in a production environment, but they can be enabled
on demand.

http://www.cnn.com

254 Chapter 8 ■ Retrospective Analysis

Compliance logs provide measures to IT auditors to evaluate IT compliance such as
Payment Card Industry (PCI), Health Insurance Portability and Accountability Act
(HIPAA), and Federal Information Security Management Act (FISMA). Although
there is a certain overlap between compliance logs and security logs, the compli-
ance logs are recorded exclusively for compliance regulations and mandates.

Log Formats

Different appliances and devices may generate logs according to different syntax.
In order to parse, search, and analyze the various formats of logs, we need to
understand how and in what syntax the events are recorded. There are several
commonly adopted log formats.

The NCSA Common Log Format (CLF) is a standardized log format that is
easy to understand. NCSA stands for National Center for Supercomputing
Applications and CLF originated from the NCSA httpd project. The CLF writes
log entries in the format of “host user‐identifier username date:time request
status‐code bytes”. For example, a CLF log entry may look like the following
code, where the host is 192.168.2.2, and the user‐identifier is not available and
is replaced with the “‐” mark. The log also shows the following information:
the username is jdoe, the GET request to /book/images/cover.gif occurred at
12:10:17 on December 31, 2014 Pacific Time, the HTTP request was successful
with status code 200, and the total bytes downloaded were 350.

Sample NCSA CLF Log

192.168.2.2 – jdoe [31/Dec/2014:12:10:17 -0800]
"GET /book/images/cover.gif HTTP/1.0" 200 350

Although CLF logs are lightweight and easy to parse, they are quite simple
and may not contain all the detailed information we need to record. This gives
rise to logs with extended formats. Extended Log File Format (ELFF) is a web server
log format proposed by W3C and used by Microsoft Internet Information Server
(IIS). This format contains two types of basic elements, directive and entry, and
each line can be of either type. The directive lines start with the # character and
define general information like version, fields of data recorded, software name,
start and end time, and so on. The entry lines elaborate the details of an HTTP
transaction through a sequence of fields. The fields can specify information like
the time of the transaction, bytes transferred, client/server IP addresses, HTTP
status code, and so on.

The following example “Sample W3C ELFF Log” shows a sample piece of a
W3C ELFF log. In the entry line, it records the client IP address, date and time,
HTTP client‐to‐server method (GET), URI of the download resource, server return
code (200), bytes downloaded, client‐to‐server (browser) referrer link, HTTP
version, total time taken to serve the request, and user‐agent of the client. The

 Chapter 8 ■ Retrospective Analysis 255

client username is also a field in the entry, but the software cannot provide such
information, so “‐” is used as a placeholder. The previous proxy access log is
also an example of an ELFF log. The details of the proxy access log and its fields
can be found in Chapter 6.

Sample W3C ELFF Log

#Version: 1.0
#Software: SampleLogger
#Fields: c-ip cs-username date time cs-method cs-uri sc-status bytes
cs(Referrer) cs-version time-taken cs(User-Agent)
192.168.2.2 - 2014-12-31 12:10:17 GET /book/images/cover.gif 200 350
"http://192.168.1.100/author/pub/secbook.html" HTTP/1.0 200 "Mozilla/5.0
(Windows NT 6.1; WOW64; rv:26.0) Gecko/20100101 Firefox/26.0"

The Apache log format is adopted by the widely used Apache HTTP Server
and other related projects in the Apache Software Foundation. Apache logs
can be of either the Apache Common Format or the Apache Combined Format,
which resemble the CLF and the ELFF, respectively. However, the Apache log
format has its unique field directives. For example, it uses %a to represent the
client IP address, %s to represent the status code, and so on. If we want to use
the Apache Combined Log format to record the W3C ELFF log entry previously
listed, the log format and entry will look like this:

Sample Apache Combined Format Log

#Log Format: %a %l %t %m %U %s %b %{Referrer}i %H %T %{User-Agent}i
192.168.2.2 – [31/Dec/2014:12:10:17] GET /book/images/cover.gif 200 350
"http://192.168.1.100/author/pub/secbook.html" HTTP/1.0 200 "Mozilla/5.0
(Windows NT 6.1; WOW64; rv:26.0) Gecko/20100101 Firefox/26.0"

Other log formats are available, including the Unix syslog format, the XML‐
based Intrusion Detection Message Exchange Format (IDMEF), and the key‐value
based ArcSight Common Event Format (CEF). Formatted logs are easy to parse
because they can be structured by columns. However, not all logs are well for-
matted. For the unstructured logs, it is important to make sure the retrospective
analysis system is capable of extracting useful information out of them. (Later
in this chapter, we will discuss ways to index and search unstructured data.) In
addition, not all logs consist of human‐readable ASCII characters (for example,
the binary format Windows Event Log). For those logs, we need to process the
entries and organize them in a format that is convenient to index and search.

Log Management and Analysis

Given the various formats and sources of logs, it is important to centrally man-
age and analyze the logs. Such a log management and analysis system is a

http://192.168.1.100/author/pub/secbook.html
http://192.168.1.100/author/pub/secbook.html

256 Chapter 8 ■ Retrospective Analysis

critical piece in a retrospective analysis system, and it should have the follow-
ing two properties. First, the log management and analysis system should be
able to parse the logs of different formats. Second, the system should be able to
correlate the log entries in different logs and help to analyze certain network
security incidents.

We give an example in Figure 8-1 to show how we can use a log management
and analysis system to study APT. Suppose that a corporate network is protected
by a proxy. All Internet traffic goes through the proxy, and all intranet traffic
bypasses the proxy. Inside the corporate network, a source code server is running
an installation of Apache Subversion (SVN) that contains the core intellectual
property assets of the corporation, and only certain personnel in the corpora-
tion have access to the source code server and checkout (download) source
code with their login credentials. The log management and analysis system is
deployed on the corporate network, and it can receive logs from both the proxy
and the source code server. The proxy log can be configured to use the ELFF
format, and the Subversion on the source code server adopts the Apache log
format by default. Figure 8-1 depicts the network architecture of the corporate
network, and “Sample Log Configuration” lists the sample log configurations
on the proxy and the source code server.

Sample Log Configuration

#Version: 1.0
#Software: Proxy
#Fields: date time time-taken c-ip cs-username cs-auth-group
x-exception-id sc-filter-result cs-categories cs(Referer) sc-status
s-action cs-method rs(Content-Type) cs-uri-scheme cs-host cs-uri-port
cs-uri-path cs-uri-query cs-uri-extension cs(User-Agent) s-ip sc-bytes
cs-bytes x-virus-id x-vendor-application-name
x-vendor-application-operation

#SVN Log Format: %{%Y-%m-%d %T}t %u %h repo:%{SVN-REPOS-NAME}e
%{SVN-ACTION}e (%B Bytes in %T Sec)

Suppose on the first day of 2015, the corporation found its source code of
ProjectY was leaked on Internet. The IT security investigator first studies the
proxy access logs and searches for possible threads that may suggest a bulk file
transfer. Using the log management and analysis system, the proxy access logs
can be sorted by the cs‐bytes field, which specifies amount of data uploaded.
Unfortunately, the IT security investigator is not able to find any suspicious
transactions that could suggest a source code exfiltration event.

In the next step, the log management and analysis system queries the Subversion
logs to list all users that have access to ProjectY and have checked out a copy
of the source code. To satisfy the search, the SVN log entries should contain the
string repo:ProjectY checkout‐or‐export. The search results provide a list of
IP addresses on which copies of the source code exist, as well as the time when

 Chapter 8 ■ Retrospective Analysis 257

the code was first checked out. This list of IP addresses is a potential leakage
point, and all transactions from those IP addresses may contain the actual source
code exfiltration events. However, it is still not possible to examine each of the
suspect transactions due to their vast number of entries. Instead, it is necessary
to shortlist the IP suspect list. In this example, the list of suspect IP addresses
contains 192.168.2.23 and 192.168.2.10.

Figure 8-1: Analyzing Log Files for APT

Public Pirate & Hacker Sites

Leaked Source Code

Source Code
Server

Corporation X

Retrospective Analysis System

MDN
BotnetThreat Databases

Malicious
Landing

Pages

Proxy

Internet

3

42

5

6

1

Notify the
company Collect logs

from proxy

Begin
investigation

Collect logs
from source
code server

Analyze to identify APT

Get up-to-date
known threats

Knowing that the corporation could be a victim of APT, the log manage-
ment and analysis system goes back to the proxy access logs and tries to find
traits of malware download. There are two ways to perform the search. If

258 Chapter 8 ■ Retrospective Analysis

there is a list of known MDN server IP addresses or landing page URLs, then
such a list can be applied to the access log to search if any transaction has
s‐ip, cs(Referer), or cs‐uri‐path in that list. Alternatively, it is also possible
to search on cs‐categories and list all transactions that fall into suspicious
categories, for example, Adult, Malicious Sources, Botnet, Phishing, Scam,
Spam, Piracy, and so on. In this example, it is found that one IP address
(192.168.2.10) that has a copy of ProjectY source code visited some website
in the Piracy category and downloaded some file that was categorized as
Potentially Unwanted Software from that site. This could be the first sign of
APT, or malware download. The date of that event was more than four months
before it was discovered (2014‐07‐27).

At this stage, the log management and analysis system has three pieces of
important information: the suspect IP address (192.168.2.10) that has a copy
of leaked source code, the timestamp T1 (2014‐07‐27 18:21:11) when potential
malware was downloaded, and the timestamp T2 (2014‐10‐20 11:20:11) when
the leaked source code was checked out. What the log management and analysis
system needs to do next is to identify the exfiltration events in the APT that
caused the actual leakage of source code. However, as we have discussed earlier,
what makes APT so hard to detect is that the data exfiltrations are well hidden
in legitimate transactions: the exfiltration traffic takes up a small volume and
is spread over a long period of time.

There are several techniques to filter the proxy access logs and locate
exfiltration transactions. First, it is only necessary to search in the trans-
actions that happened after T2. Second, the low‐risk categories can be fil-
tered out. Those categories include Business/Economy, Financial Services,
News/Media, Search Engine/Portal, and so on. Third, transactions with
the destination hosts that appear before and after T1 can be filtered out
because those persistent destination hosts are not likely to be introduced
by the malware.

With the rest of the transactions in the access log, the log management and
analysis system can apply some data‐mining techniques. For example, it is pos-
sible to separate the transactions by destination hosts and study the statistical
characteristic (for example, average and variance of upload payload size, time
between transactions, and so on) of transactions to the same destination hosts.
Then the destination hosts can be grouped by their statistical characteristic, and
the abnormal ones can be picked out. Those abnormal ones may represent the
APT destination servers.

One approach to grouping is to use the K‐Means clustering algorithm that we
introduced in Chapter 7. While we do not plan to dive deep into data‐mining
techniques, the idea here is that certain tools are available to process and ana-
lyze the logs and locate the exfiltration events. The following log listing shows
the sample log entries that contain events of source code checkout, potential
malware download, and APT exfiltration.

 Chapter 8 ■ Retrospective Analysis 259

Sample Logs Showing APT (Actual Malnet IP/URLs Omitted)

#SVN log showing source code checkout
2014-10-11 09:00:39 asmith 192.168.2.23 repo:ProjectY checkout-or-export
/r1978 depth=infinity (645217532 Bytes in 188 Sec)
2014-10-20 11:20:11 jdoe 192.168.2.10 repo:ProjectY checkout-or-export
/r2048 depth=infinity (675876251 Bytes in 198 Sec)

#Proxy log showing potential malware download from suspicious category
2014-07-27 18:21:08 10448 192.168.2.10 - - - PROXIED "Piracy/Copyright
Concerns;Peer-to-Peer (P2P)" http://somesite.com/ 302 TCP_NC_MISS GET
 text/html;%20charset=UTF-8 http somesite.com 80 /wp-
content/themes/current/video_search.php ?query=lucy php "Mozilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.95 Safari/537.36" 192.168.2.1 389 640 - "none" "none"
2014-07-27 18:21:11 164 192.168.2.10 - - - PROXIED "Potentially Unwanted
Software" http://somesite.com/ 200 TCP_MISS GET application/
octet-stream
http files4.file-mirror.info 80 /download/1084396/dl
?bc=1084396&pid=16275&brand=somesite.com&country=US&cb=1354937941&zTmp=1
 - "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/39.0.2171.95 Safari/537.36" 192.168.2.1 684891 478
 - "none" "none"

#Proxy log showing potential APT exfiltration events
2014-12-21 01:05:26 1201 192.168.2.10 - - - PROXIED "none"
http://a.b.c.d/upload.htm?FILEDST=/public/
200 TCP_NC_MISS POST text/plain http a.b.c.d 80 /upload - -
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"
 192.168.2.1 207 35175 - "none" "none"
2014-12-24 02:23:02 3550 192.168.2.10 - - - PROXIED "none"
http://a.b.c.d/upload.htm?FILEDST=/public/
200 TCP_NC_MISS POST text/plain http a.b.c.d 80 /upload - -
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"
192.168.2.1 207 71368 - "none" "none"

Packet Captures
Capturing network traffic is another important step in designing and imple-
menting a retrospective analysis system. The general goal of data capture is to
obtain a complete view of the network traffic so that the retrospective analysis
system never misses a network event when analyzing traffic captures.

Capture Points

In order to capture all the events in the entire network, it is important to know
what the capture devices are, and what they are capable of capturing, so that
we can put them in the right places.

http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/302TCP_NC_MISSGETtext/html;%20charset=UTF-8httpsomesite.com80/wp-content/themes/current/video_search.php?query=lucyphp
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://somesite.com/200TCP_MISSGETapplication/octet-streamhttpfiles4.file-mirror.info80/download/1084396/dl?bc=1084396&pid=16275&brand=somesite
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--
http://a.b.c.d/upload.htm?FILEDST=/public/200TCP_NC_MISSPOSTtext/plainhttpa.b.c.d80/upload--

260 Chapter 8 ■ Retrospective Analysis

An Ethernet hub, albeit an old‐fashioned network device, is a perfect example
of a network capture device at the physical layer in the OSI network model. The
hub connects multiple Ethernet devices together using a shared bus. Internally,
the hub sends out traffic it receives on one port to all the ports so that every
device on the hub sees all of the traffic within the hub. For example, say there
are three devices on the hub, A, B, and C. If device A wants to send a packet to
B, this packet is repeated by the hub on all three ports. Normally, C will not take
the packet because the network interface controller (NIC) finds that the destina-
tion MAC address in the packet is not its own MAC address, and the packet
is dropped silently. However, we can configure the NIC on C to operate in
promiscuous (or promisc) mode so that the NIC accepts and potentially records
all packets it sees, even if the packets are not destined to it.

The type of networking in the hub is also called collision domain because each
Ethernet device on the hub can transmit at the same time and cause collisions.
While the hub is very inefficient due to collisions, it is a very useful traffic cap-
turing point. In the previous sample‐logs example, device C can be used as a
capturing device to observe communication between A and B.

Switches solve the collision problem by associating the MAC address with
the physical switch ports. In particular, based on the destination MAC address
of a packet, the switch only sends the packet to a specific port that this MAC
address is associated with. To learn the MAC address and port association,
the switch observes the source MAC address on packets from the ports and
keeps a lookup table to record the association. If the switch cannot find the
packet’s destination MAC in its lookup table, it needs to flood once in order to
find at which port that particular destination MAC address is located. Unlike
a hub, a switch does not repeat packets, and thus, it is not possible to monitor
all network traffic by listening on a port. However, most modern switches are
manufactured with port mirroring capabilities. With port mirroring, the switch
can be configured to send a duplicated copy of packets that are received on
certain ports to a common mirrored port. The mirrored port is sometimes
called a SPAN port, from the Cisco terminology Switch Port for Analysis. The
switch can be utilized as a capture point when we place a capturing device
on the SPAN port.

Routers are network layer devices that send packets to their destinations
in an interconnected network. Unlike switches that mostly work with MAC
addresses, routers are more concerned with IP addresses. Some routers are
equipped with port mirroring functions so that they can be used as cap-
ture points. Other routers have built‐in packet capture features and can
hold a limited volume of captured packets. In addition, routers have logs
to record network incidents. For example, Cisco routers can be configured
to perform network traffic filtering based on IP access control lists (ACLs).
Logs can record network access events (either allow or deny) that match the
configured access control entries (ACEs).

 Chapter 8 ■ Retrospective Analysis 261

Other network devices can also work as capture points. Those devices can
process and capture network traffic at different layers. For example, a proxy is
often able to perform packet capture while processing at layer 3 and below.
Meanwhile, it can also generate logs to record policy enforcement events that
are valuable to network forensic analysis. In addition, specially designed inline
deployed packet‐processing appliances are capable of either capturing packets
or calculating and generating network statistic reports. Blue Coat’s PacketShaper
product is an example. It can monitor and process network traffic, generate records
for each of the network flows, and present reports on the collected records. We
will visit the possible record formats in the next section.

Capture Formats

Different capture devices collect different formats of captures to record network
events. Depending on the capture points and the capture devices, the commonly
used capture formats are introduced in this section.

Packet capture (.pcap) is probably the most widely adopted format of network
traffic capture. A variety of monitoring software exists on different operating
systems that is capable of taking packet captures, including the popular open
source tools tcpdump and Wireshark. The underlying engine that handles the
actual capturing in those two tools is libpcap, or its Windows port WinPcap.
The libpcap library enables the software built on top of it to access the packets
from the NIC directly. The grabbed packets can be displayed or stored to a file,
usually with the extension .pcap or .dmp.

What libpcap captures are the actual packets that are seen on the wire. This
means that the captured packets are raw Ethernet frames that contain both
the Ethernet headers and the IP headers and payload. When using tcpdump
and Wireshark to capture packets, a timestamp recording when the packet is
captured is also added. Because libpcap and tcpdump record the full packet,
the sheer size of the capture file makes it difficult, if not impractical, to load
and analyze the packet capture using tools like Wireshark. To limit the capture
size, it is possible to apply the Berkeley Packet Filter (BPF) during the capturing
process. For example, the BFP syntax supports different qualifiers like port,
portrange, host, src, dst, tcp, udp, and so on. The expression tcp dst port 80
will instruct libpcap to only capture TCP traffic that is destined for port 80, and
ip src 10.2.2.200 will limit the captured traffic to only that which originated
from IP 10.2.2.200. The capture tool tcpdump also supports a capturing limit
based on packet count (‐c option), capture file size (‐C option), and time duration
(‐G option). In addition, it can save the capture into multiple files (‐W option).

Another consideration when performing packet capture is the size of indi-
vidual packets. In some commercial ISP networks, it is prohibited to record and
analyze capture with full packet length due to privacy and other regulations. In
such cases, it is possible to use the snaplen (‐s option) argument in tcpdump to

262 Chapter 8 ■ Retrospective Analysis

limit the captured frame size. Because libpcap records the raw Ethernet frame,
a 20‐byte Ethernet header length is counted in the snaplen.

NetFlow is a network traffic record format initially introduced and imple-
mented by Cisco on its routers and switches. Compared with packet capture, a
NetFlow record provides more compact and concise information to characterize
a flow; for example, NetFlow records the most useful tuple <srcaddr, dstaddr,
srcport, dstport, proto> but ignores the actual data payload of the flow.

Many devices can generate NetFlow records. Besides routers and switches
from major vendors, other inline‐deployed traffic‐processing appliances such
as Blue Coat PacketShaper can also emit NetFlow records while managing net-
work traffic. NetFlow has ten versions, with the most popular being version 5.
Versions 8 and 9 have also been widely adopted. Figure 8-2 contains a sample of
NetFlow Version 5 records showing the <srcaddr, dstaddr, srcport, dstport,
proto> tuple together with start time, duration, packet count, and byte count
of the flows monitored.

To collect NetFlow records, various vendors have their own proprietary imple-
mentations, often as a part of the network monitoring module. On the open source
side, nfdump (http://nfdump.sourceforge.net/) is a free software suite that
includes NetFlow capturing, displaying, and processing modules. The nfdump
software is also capable of receiving NetFlow records from multiple sources.
Although NetFlow was originally designed to facilitate network usage billing,
its records can also be utilized for security analytics. In the example shown in
Figure 8-2, the NetFlow record clearly lists the contact time and duration of a
flow between two distinct IP addresses and ports and the aggregated size of all
packets in the flow. If one of the IP addresses belongs to one of the C2 servers
in a malnet, then the NetFlow records provide statistical information about the
communication on the C2 channels.

Figure 8-2: Sample NetFlow Records

http://nfdump.sourceforge.net/

 Chapter 8 ■ Retrospective Analysis 263

It is worth noting that NetFlow may not be enabled by default on appli-
ances that are capable of generating NetFlow records. There are two reasons
for this. First, NetFlow generation requires a lot of computation resources on
the appliances themselves, and there is a trade‐off between packet processing
and NetFlow record generation. Second, emitting NetFlow records consumes
network bandwidth. When the flow count in the network is large, the NetFlow
records volume increases proportionally with the number of flows. In addition,
when the flows are short‐lived, more NetFlow records are burst in a short period
of time to report the start and stop of the flows, and this can cause a surge in
NetFlow bandwidth usage as well.

Internet Protocol Flow Information Export (IPFIX) that is based on NetFlow
Version 9 is an IETF‐defined protocol. The advantages of IPFIX over older ver-
sions of NetFlow are its extensibility and flexibility, for example, its integration
with IPv6 to emit IPv6 flow records, support of vendor‐specific definitions of
the records, and user selection of the flow keys in the records. In addition, IPFIX
also tries to define a unified metering, exporting, and collection architecture in
network monitoring. As a proposed standard, IPFIX is supported by mainstream
networking appliances from major vendors.

Capture a Large Volume of Data

Different networks and appliances generate and collect data at various speeds.
To capture the data without any loss, a retrospective analysis system should
be able to handle captured data at the highest speed that is possible on the
network, which is the line speed. In a typical enterprise network, that speed
is 10Gbps. The retrospective analysis system should be designed to capture
packets at 10Gbps speed.

Capturing a packet consists of two steps. First, the NIC receives a packet
and makes it available for storage. Second, a packet‐recording program takes
the packet and writes it somewhere on the storage device. In the example of a
Linux host, the second step can be done in either kernel space or user space.
If it happens in kernel space, the packet‐recording program needs to take the
packets directly from the NIC driver and dump them on the storage device. In
such a case, we need to implement the packet‐recording program and build it
into a custom kernel. If this happens in user space, it is critical to make sure the
packets are transferred to the memory both quickly and efficiently. A popular
approach is with direct NIC access, in which the specially designed NIC driv-
ers store the received packets in some pre‐allocated memory space that can be
directly accessed by user space programs without needing to copy the packets
from kernel to user space.

The particular challenge for the packet‐recording program is the speed of the
storage I/O subsystem. In 2014, the storage controller on mainstream servers was
SAS (Serial Attached SCSI), with a rate of 6Gbps. Apparently, that rate is smaller

264 Chapter 8 ■ Retrospective Analysis

than the input rate of 10Gbps. In this regard, in order to fully capture 10Gbps
traffic, multiple instances of the packet‐recording program need to be running
at the same time. Fortunately, modern Ethernet NIC adapters are equipped
with advanced features like receive‐side scaling (RSS). With RSS, the packets
received by the NIC are distributed into multiple hardware receive queues. To
improve packet processing performance, each receive queue can be assigned
to a unique interrupt that is affiliated with a separate CPU core. Therefore, it is
possible to run a packet‐recording program simultaneously on different CPU
cores and write packets to different storage devices. With the help of direct
NIC access and RSS, we can write a user space program to achieve high‐speed
packet capture.

There are other issues to consider in packet capture, one being the storage
layout. Well‐structured storage helps to locate and retrieve packets efficiently.
Because RSS distributes packets based on the hashing of the IP addresses, it is
possible to store the packets based on the IP address and port. In such a case,
the storage is structured with multiple top-level directories representing IP
addresses, and in each directory, there are subdirectories for different ports to
store the raw packets. Alternatively, packets can also be stored based on time
so that the directories can be structured by day, hour, and minute. No matter
what directory layout is chosen to store the packets, each of the raw packets
should be clearly identified, for example, with a unique packet ID. In that case,
when the retrospective analysis system needs to retrieve a single packet, it can
first locate the directory in which the packet is stored and then retrieve it from
that directory by the unique packet ID.

Another issue is packet processing. Although the goal of packet capture is
to receive and store the packets at line speed, it is still necessary to perform
certain types of processing on the packets. One type of processing is to add an
ID to the packets for efficient retrieval. Another example is to timestamp the
packets and record when they were received. Such time stamping needs to be
quite accurate, and as a matter of fact, there are a few off‐the‐shelf timestamping
cards that can append a timestamp to the end of the packet while receiving it. If
the timestamps are unique, they can even be used as packet IDs. An important
packet processing application is to index the packets. Indexing allows the ret-
rospective analysis system to quickly search the packet capture and respond to
a user query regarding what happened in the captured traffic. We will explain
in detail how to efficiently index packet captures in the next section.

Data Indexing and Query

With the terabytes, if not petabytes, of data collected, the first question to ask
is how to organize that data so that it is possible to easily look up and retrieve
a relevant piece of data. For that purpose, it is necessary to index the data, and

 Chapter 8 ■ Retrospective Analysis 265

such indexing should be able to resolve queries on the data effectively and
efficiently.

Most database administrators or users are familiar with the term index. A
database index is a data structure designed to sort multiple database entries on
certain fields so that searching for a record based on the field value in the index
is much faster than linear traversal on the records. The index data structure
also holds pointers to the actual records for fast retrieval. However, maintaining
such an index structure requires additional storage spaces, either in memory
or on disk.

B‐tree Index
B‐tree is a binary search tree (BST) based data structure that is widely implemented
in database systems for indexing records, which allows for efficient operations
such as record insertion, deletion, and searching. B‐trees are balanced search
trees, which is a unique property that requires all of the leaf nodes to be at the
same depth level from the root. The height of a B‐tree with n nodes is O(log n)
(a later section will provide a more precise value), which means a query takes
O(log n) comparisons in the worst case to determine if an entry is in the tree. As
with any BST, each node contains a key that is compared with a search key when
a query is issued into the B‐tree. When applying a B‐tree indexing algorithm for
implementing retrospective analysis, examples of a key can be a packet arrival
timestamp, a timestamp of an event occurrence, a policy enforcement action
code, or the hash value of a predefined log string.

Each tree node also contains a pointer for locating the associated file (such as a
packet capture) or record (such as a NetFlow record or a line of a proxy log). For
example, the pointer can be a file pointer in the file system or an offset within
a file such as a record offset within a raw packet capture file. We will use the
term key to refer to the (key, pointer) pair in a B‐tree node to simplify discussion.

What makes a B‐tree different from a BST is that one B‐tree node can con-
tain multiple keys, and each B‐tree node can have more than two children or
sub‐trees. Figure 8-3 shows an example B‐tree. The root node has two keys and
three children. These immediate children nodes each also have one to two keys,
with two to three children. This example B‐tree has 20 nodes with a depth of
three levels. In contrast, a regular BST can only hold up to eight nodes with the
same depth.

For each non‐leaf node, its keys are sorted in increasing order. In the example
in Figure 8-3, node E and node G each have three keys, and these keys are sorted
by their increasing value. The keys within an internal node separate the children
nodes. For an internal node with a single key, such as node C, the key values
of the child node G (10, 11, 12) to the left of this node C must have values no
greater than the key in node C, while the key values of the child node H (14) to
the right of node C must have values no less than the key in node C. Node D

266 Chapter 8 ■ Retrospective Analysis

has two keys with values 20 and 30, and these two keys separate three children
nodes. The left child of key 20 is node I, and the right child is node J. The key
values in node I (17, 18) must be less than 20, while the key values in node J (22,
25) must be greater than 20 but less than 30. The key values in node K (40, 60)
must be greater than 30.

A

C D

GFE

86

7 B

43

H I J K

16

13

14 17 18 22 25

3020

40 60121110

9

yx

x

LEGEND

Key-pointer pair x and its
pointer

Node with keys x and y, and a
three-child tree (pointers)

Figure 8-3: A Simple B‐tree

Each B‐tree has a minimum degree t, which is greater than or equal to 2. The
minimum degree specifies how many keys a node can hold. For an internal node,
it can have a minimum of (t–1) keys and a maximum of (2t–1) keys. For each B‐
tree node of x keys, there are (x+1) children. Therefore, for a B‐tree of minimum
t degrees, the number of children an internal node can have is between t and
2t. In the example given in Figure 8-3, its minimum degree is 2. For an internal
node, the minimum number of children is two, and the maximum number of
children is four. Because the number of children is two, three, or four, such a
B‐tree is also called a 2‐3‐4 tree. A B‐tree with a minimum degree of t, at level
h, can hold up to t(2)h keys. That is to say, if we have over 1 billion keys, we
can use a B‐tree with a minimum degree of 500 and tree depth of three levels
to include all of these keys. In practice, large B‐trees usually have minimum
degrees between 25 and 1,000.

 Chapter 8 ■ Retrospective Analysis 267

B‐tree Search

In the context of retrospective analysis, imagine we have a NetFlow collector
gathering NetFlow records from various sources. A B‐tree is used to index the
flow records. In each node the key value is an integer value that represents the
flow duration in seconds, and the pointer points to the actual NetFlow record
on disk for retrieval. Searching for a specific flow record in a B‐tree is illustrated
in Figure 8-4.

A

C D

GFE

86

7 B

43

H I J K

16

13

14 17 18 22 25

3020

40 60121110

9

22

yx

x

LEGEND

Key-pointer pair x and its
pointer

Node with keys x and y, and a
three-child tree (pointers)

1

2

3

Check root node
and compare

Find a key

Walk down right child
tree, check and compare

at level 2

Walk down middle
child tree and �nd
the key value in

the leaf node

Figure 8-4: Performing a Search in a B‐tree

The B‐tree shown in Figure 8-4 has 11 nodes (A to K) with 20 keys distributed
across three levels. The root node has two keys with values 9 and 16. It has three
children or sub‐trees. The key values in the root node separate the sub‐trees
according to the B‐tree property. So, to locate the key value 22, the keys in the
root node are compared with the search key 22. Because 22 is larger than 16, the
search continues in the rightmost sub‐tree. At node D, the search key is between

268 Chapter 8 ■ Retrospective Analysis

key values 20 and 30, and therefore the middle sub‐tree is visited next. Then
the value 22 is found at leaf node J as its first key value.

The search algorithm can be implemented in a recursive manner. In the first
step, we check all the keys in the node to see if the queried key value is present.
If a matching key is found, then we return the node as the result. We termi-
nate the search and return “not found” if the current node does not have any
sub‐trees. Otherwise, we choose the right sub‐tree and continue the search in
the same manner recursively. In general, for any B‐tree of minimum degree t,
because each node has at most (2t–1) keys to compare, the cost is O(t). Because
there are at most O(log n) levels, or O(logt n) if we factor in t, the overall time
complexity of the B‐tree search is O(t logt n).

B‐tree Insertion

Capturing and inserting new flow records into a retrospective analysis system
is a common operation. We will illustrate a B‐tree insertion example in this sec-
tion. Suppose a newly collected flow has a five‐second duration. The insertion
process involves first finding the right location where the key can be inserted
and, after the insertion, deciding if the updated tree needs to be restructured to
maintain the balance and the B‐tree property. Consider the insertion example
shown in Figure 8-5.

First, a search is performed in the tree to find the leaf node where the key
value 5 can be inserted. In this example, the right spot is the leftmost leaf node,
a sub‐tree of the node with key value 7 (②). Then a decision needs to be made on
how to insert this new key. The leftmost leaf node already has three keys, which
is a full node according to the B‐tree property of a maximum (2t–1 = 3) keys per
node. This leaf node must be split in order to fit the new key. So the median key
value 4 is removed, and the leaf node is divided to form two new nodes from
each half, with one new node containing the key value 3 and the other containing
the key value 6 (③). The removed median key is merged with the parent node,
and the newly formed nodes are linked with the parent node (④). The node with
key value 3 is attached to the left of key value 4, and the node with key value 6
is the new middle child node where key value 5 is inserted. The updated tree is
balanced, and each node contains an appropriate number of keys.

This insertion example shows that the insertion algorithm performs two
main operations. The first operation is finding the insertion location, which is
essentially a B‐tree search problem. The time complexity for this operation is
O t n(log)t . The second operation is to split a full node into two non‐full nodes.
A full node has (2t–1) keys, so the two new nodes have (t–1) keys each after
the split. Therefore, the split operation runs with O t() complexity. Combining
the cost of the two operations, we find that the overall time complexity of B‐tree
insertion is O t n(log)t .

 Chapter 8 ■ Retrospective Analysis 269

Figure 8-5: Performing an Insertion into a B‐tree

86

7

43

16

13

14 17 18 22 25

3020

40 60121110

7

8

3

5

86

643

9

yx

x

LEGEND

Key-pointer pair x and its
pointer

Node with keys x and y, and a
three-child tree (pointers)

3

4

74

5

2

1
Walk down left child tree, �nd the

insertion place in level 3

Node is full;
move up median key,
split the node in half Link the split child trees

to parent node

Insert the new key in
a non-full node

Check root node
and compare

5

Insert a key

270 Chapter 8 ■ Retrospective Analysis

Range Search and B+‐tree

In the previous sections, we have shown the exact‐match query or equality
search using a B‐tree index. The following search will return a particular
record or several records with the same key. However, if we change the query
to find all records that have a key value in a certain range, then the B‐tree
structure makes the search difficult because the matched keys are most
likely to be scattered in different nodes that reside in different sub‐trees.
For example, if we want to search for all NetFlow records that have a dura-
tion between 10 and 30 seconds, then the matched results are in six differ-
ent nodes (C, D, G, H, I, J), and there is no good way to access those results
sequentially accordingly to the key value. A variant of the B‐tree, the B+‐tree,
can facilitate range queries.

The B+‐tree resembles a B‐tree but possesses two unique features. First, all of
the keys are stored at the leaf node. The internal nodes only store value separa-
tors that can determine the path to the leaf node during a search. Second, all
leaf nodes are connected with a double‐linked list to support range searches
and sequential searches. Figure 8-6 provides an example B+‐tree, a derivative
of the B‐tree that is shown in Figure 8-3.

Performing a range search on a B+‐tree begins by first conducting an equality
search using the lower bound value of the range. In this example, the lower
bound is 10 (seconds). Doing an equality search in the B+‐tree is similar to that
in a B‐tree. The search for key value 10 ends at node J. We start a sequential
probe from node J by following the right sibling pointer in the double‐linked
list of the leaf nodes, until reaching the node that contains the upper bound
key value, which is 30 in this case; in this way, we collect all of the relevant
nodes J, K, L, M, N, O, and P as each is visited. The search stops at node Q after
visiting key 30. The linear probing stops at the first key value that is greater
than the upper bound.

The time complexity of the range search covering d keys in a B+‐tree consists
of the lower bound equality search and the cost of linear probing. The equality
search takes O t n(log)t steps to locate the lower bound key. The linear probing
takes at most d comparisons, and so the complexity is O d(), a constant. The
overall time complexity is then O t n(log).t

B‐trees and B+‐trees are the most widely adopted index approaches in
both relational database management systems (RDBMS) and Not Only
SQL (NoSQL) databases. For example, the most popular NoSQL database,
MongoDB, implements B‐tree as its indexing algorithm. RDBMS Oracle 8,
IBM DB2, Microsoft SQL Server, and the NoSQL database CouchDB support
B+‐tree‐based indices.

30
40

60
25

22
20

16
17

18
14

11
12

13
10

9
6

7
8

4
3

6

B

F
G

H
I

J
K

L
M

N
O

P
Q

4
11

16

C
D

A

10
25

30

E

22

14
20

9

LE
GE

ND

No
de

 w
ith

 k
ey

-p
oi

nt
er

pa
ir

z
an

d
its

 p
oi

nt
er

 in
a

do
ub

le
-li

nk
ed

 li
st

No
de

 w
ith

 k
ey

s
x

an
d

y,
 a

nd
 a

th
re

e-
ch

ild
 tr

ee
 (p

oi
nt

er
s)

y
x

z

Fi
gu

re
 8

-6
:

A
n

Ex
am

pl
e

B+ ‐t
re

e

272 Chapter 8 ■ Retrospective Analysis

Bitmap Index
B‐tree and its variants are efficient indexing approaches. However, insertion
or any other operation that modifies the tree may require rebalancing the tree
to maintain certain important tree properties, which can be costly when the
frequency of operation is high. In this section, we introduce a bitmap index that
is efficient for both insertion (append) and search operations.

The bitmap index is an indexing approach that stores the index value as a set of
bit sequences, as shown in Figure 8-7. Each column (…b b b, , ,0 1 2) is a bitmap, and
together these bitmaps are known as the bitmap index. The number of bitmaps
in a bitmap index is called the cardinality of the bitmap index and is determined
by the number of possible index values.

Figure 8-7: An Example Bitmap Index

In this example, the data values range from 0 to 7, and so a total of eight bit-
maps are used to index the stored data in the bitmap index. Each row of data
can choose only one bitmap to represent its data. For example, in the first row,
the data value is 3, so bitmap b3 is chosen by setting the fourth bit in the row
as 1. For another example, in the second row, the data value is 0, and the chosen
bitmap is b0 , which is the first bit of the row. The bitmap index is a set of binary
arrays of equal size if we view the bitmap index by rows instead of by columns.
The size of the arrays is the cardinality of the bitmap index.

Because each row in the bitmap index is a data entry, the insertion operation
consists of creating a bit array with the cardinality as the array size, setting the
bit value at the appropriate column, and then appending the array to the end of

 Chapter 8 ■ Retrospective Analysis 273

the existing bitmap index. The creation of a bit array can be done efficiently by the
bit shifting and bitwise OR operation. For the example illustrated in Figure 8-7,
we can use an 8‐bit unsigned integer to present the bit array. To set bit x, we use
array |= 1 << x. Bitmap indices are best for read‐mostly and append‐only data
because appending a bitmap index is a simple and efficient operation.

An attribute of the stored data, which will serve as the index for later searching
and retrieval operations, can be represented by a bitmap index. Example attri-
butes of a network flow are the source and destination IP addresses, the source
and destination ports, and the protocol type. So, for example, if the destination
port will serve as the index to retrieval flows that match a specific destination
port, then the destination ports and the associated flows can be represented by
a bitmap index. In this case, the possible values range from 0 to 65535, and the
cardinality of this bitmap index is 65536. If there are 1,000 rows (or flows) to be
stored, then we can build a bitmap index that consists of 65,536 bitmaps with
1,000 rows in each column; that is, this bitmap index consists of 1,000 × 65,536 bits.

Bitmap Index Search

Searching for an exact match using a bitmap index is straightforward. Because
each bitmap represents an attribute value, searching for records that have a
particular value essentially involves listing the rows that have the “1” bit in
that particular bitmap (or column) representing that value. For example, in the
bitmap index given in Figure 8-7, to search for records with value 2 in the bitmap
index, we first locate bitmap b2. Then we find that two rows (row 4 and row 9)
contain the value 1; therefore, those two rows are retrieved as the search result.

Range searches can also be done easily using a bitmap index. First, we need to
identify all bitmaps that fall within the searched range. For example, if the range
search is to find all records whose data value x is within the range ≤ ≤x3 6 , we
need to first select the bitmaps that represent this range. Because the possible
data values within the range are 3, 4, 5, and 6, the selected bitmaps are b b b, ,3 4 5 ,
and b6. The range search means that any record that is marked in any one of
these columns satisfies the search condition. Therefore, performing the range
search involves executing the bitwise OR operations on the selected bitmaps
to obtain a single resultant bitmap. The rows that have “1” bits in the resultant
bitmap are the records that satisfy the range search.

Each bitmap index can be used to store one data attribute, and if the data has
multiple attributes that will contribute to the searching criteria, then multiple
bitmap indices, as many as the number of attributes, are necessary to index the
stored data. For example, it is possible to store the source port of network flows
in a single bitmap index; however, if flow selection depends on the values of
both source and destination ports as search attributes, then two bitmap indices
are necessary to manage the stored flow records. A range search on a single
bitmap index is a one‐dimensional query. We can perform a multi‐dimensional

274 Chapter 8 ■ Retrospective Analysis

query by combining the results of multiple one‐dimensional queries, similar to
performing a range query, as shown in Figure 8-8.

Figure 8-8: Two‐Dimensional Query

Bitwise AND Operation to
Combine One-Dimensional Queries

Bitwise OR Operation
to Answer Range Queries

In this example, we illustrate a range search on data that has two attributes
X and Y. Each attribute is represented by a bitmap index. We are interested in
finding the entries such that ≤ ≤x3 6 and ≤ ≤y1 3 , where x and y are values
of attribute X and Y, respectively. From the previous range search example, we
know that the one‐dimensional query on attribute X is the result of bitwise
OR operations on bitmaps bx3, bx4, bx5, and bx6. Similarly, the one‐dimensional
query on attribute Y is the result of bitwise OR operations on bitmaps by1 and
by6. Finally, the two‐dimensional range query is the bitwise AND operation on
the two resulting bitmaps that are answers to the individual one‐dimensional
queries.

We will now show how to apply multi‐dimensional searches using bitmap
indices to solve real‐world problems in the context of retrospective analysis.

 Chapter 8 ■ Retrospective Analysis 275

As we discussed in previous sections, the large files of raw packet captures are
stored on multiple hard drives, and we need to build a fast search system to
quickly retrieve the desired data according to query conditions. For the sake of
discussion, we limit the query fields to source and destination IPv4 addresses
and associated ports. These are the attributes of the data managed through
the bitmap indices. Each packet has a unique packet ID (similar to the row
number in the simple bitmap index example shown previously). As shown in
Figure 8-9, there exists a packet record file that associates each packet ID with
an actual packet capture file holding the raw packet data and the offset value,
specifying the location of that raw packet within the capture file. For example,
as shown in Figure 8-9, the packet record file can locate packet 301 in the file
named ad.pcap at offset 0x5a46. Packet 301 can be retrieved quickly with such
detailed information.

Figure 8-9: Packet Capture Bitmap Index Search

192 168
1 or 2
or 3 6543

AND

301 Packet Record File

629

1080

Query
Result

Packet Capture Files

Dst Port
Bitmap

Src IP
Bitmap

1

Src IP
Bitmap

2

Src IP
Bitmap

3

Find �le pointers
and offsets

ANDing of result
to answer

multi-dimensional queries

One-dimensional
bitmap

index queries

Retrieve the raw
data that satis�es

the query

276 Chapter 8 ■ Retrospective Analysis

We first build the bitmap indices to serve the query. Because the query may
contain four different attributes (source and destination IP and ports), we need
to build multiple bitmap indices. As we have mentioned, the port attribute can
be represented using a bitmap index of cardinality of 65536, and we need two
different bitmap indices each for the source and destination ports. For the IP
address attribute, it is difficult to store them in a single bitmap index because
the IP address has four octets. Instead, we construct four bitmap indices for the
IP address attribute: one bitmap index for each byte in the IP address. Because
for an IPv4 address, each byte in the address can have a maximum value of
255, the cardinality of the IP address bitmap index is 256. Together, we have
+ + + =4 4 1 1 10 bitmap indices to index the packets in the capture files.
Figure 8-9 shows the query process to search for packets that have source IP

range 192.168.1.0/22 and destination port 6543. The source IP range can trans-
late to the bitmap query as “value of IP first byte is 192, value of IP second byte
is 168, value of IP third byte is 1 or 2 or 3 (this is because the prefix is /22, the
upper 6 bits is 0, and the lower 2 bits can be 1 or 2 or 3), and value of IP fourth
byte is ANY.” It means for the IP address attribute that exact‐match queries
need to be performed on the first two bitmap indices, the third bitmap index
requires a range search, and no query is needed on the fourth bitmap index.
As shown in the figure, in the IP first byte bitmap index, the bitmap for value
192 is selected. We use a black line to represent “1” in the bitmap and a black
box to represent a block of “1”s. The thicker the black box, the larger the block
of “1”s. Similarly, we select a bitmap for value 168 from the IP address second
byte bitmap index and 5432 from the destination port bitmap index. For the IP
address third byte bitmap index, we perform bitwise OR operations to obtain a
bitmap containing range search results. Each of the bitmaps selected or generated
is an answer to a one‐dimensional query (shown as step 1), and to answer the
original multi‐dimensional query, we combine the results of one‐dimensional
queries by doing bitwise AND operations on the bitmaps (shown as step 2). The
final result is a bitmap that has only three “1”s. The rows of those “1” entries
are the packet ID that satisfy the query.

In this example, the IDs are 301, 629, and 1080. To retrieve those packets, the
retrospective analysis system locates the entries in the packet record file with
the returned packet IDs from the search (shown as step 3). With the extracted
file pointers and offset values of those packets from the packet record file, it is
possible to fetch the raw packets from the actual packet capture files and process
them for display (shown as step 4).

Bitmap Index Compression

One drawback of bitmap indices is the large amount of storage they require. In
the previous example, a single packet entry is represented in ten bitmap indices
in different cardinalities. The eight IP address bitmap indices have 256 columns

 Chapter 8 ■ Retrospective Analysis 277

each, and the two port bitmaps each have 65,536 columns. Together, for a single
packet entry, that is 133,120 bits, or more than 16KB, which is a huge overhead.
Compressed bitmap indices bring more space efficiency while maintaining the
fast bitwise operation properties that the basic bitmap indices have to offer.

To compress a bitmap index, the most common approach is run‐length encod-
ing. The key concept of run‐length encoding is to use a single data value and a
count number to represent consecutively repeated occurrences of the data value.
For example, to compress the string “WWWWAAWWAAAAAAAWWBBBB”,
we can apply run‐length encoding to compress it as “W4A2W2A7W2B4”. The
number represents the repeated times the preceding letter occurs in the original
string, where in sequence, W repeats 4 times, A repeats 2 times, W repeats 2
times, and so on. However, this simple run‐length encoding approach is not the
appropriate method to compress a bitmap index because if we want to perform
bitwise operations on two compressed bitmap indices, we will need to first
un‐compress them, run bitwise operations, and compress the resulting bitmap
index. Clearly, this is not the desired solution.

Word‐Aligned Hybrid (WAH) coding is a run‐length encoding algorithm that
makes it possible to logically operate on compressed bitmap indices. In particular,
when using WAH coding, the result of logical operations on two compressed
bitmap indices is exactly the same as performing the same operations on the
uncompressed bitmap indices followed by compressing the result. Therefore,
searching the compressed bitmap indices generates the same results as search-
ing in the uncompressed bitmap indices.

We use the IP address bitmap index as an example to show how WAH cod-
ing works. The IP address bitmap index contains 256 bits for each byte in the IP
address. In the example, the first byte of the IP address is 192, so the 193rd bit
in that row of the bitmap index is 1 and the remaining 255 bits are 0. As shown
in Figure 8-10, the 256 bits are represented as “192*0, 1*1, 63*0”, sequentially
showing the value of each bit.

Figure 8-10: WAH Bitmap Index Compression

Suppose we use an x86 32‐bit system to process the bitmap index. In Intel’s
x86 architecture, each word is 32 bits long. To apply WAH coding, we first divide
the 256 bits into nine words, in which only the lower 31 bits are used and the
unused bits are filled by 0s. In this example, the first 6 words are all 0, the 7th
word has 6 zeros, and then 1 one, followed by another 24 zeros. The 8th word

278 Chapter 8 ■ Retrospective Analysis

is also 0. The 9th word only has 8 bits, all of which are 0, and the word itself is
also 0. Those nine words can be written as 4‐byte hexadecimal numbers; this
is called the literal representation of the bitmap index.

The key piece of the WAH algorithm is to count words that consist of repeated
bits and compress them as a fill word. In the example, all the bits in the first 6
words are 0, so we can compress them as a single fill word that has a count of 6.
The fill word has three parts. The most significant bit is the indicator bit, and it
is always 1. The second‐most significant bit is the fill bit showing the repeated
bit value, which is 0 in this example. The remaining 30 bits record the fill length
(repeated word count), which is 6 in the example. Therefore, the first 6 words
can be compressed as a hexadecimal number 80000006 where 8 means it is
a 0‐filled fill word.

In addition to a fill word, WAH coding also has a literal word. A literal word
has 0 in the most significant bit, and the literal word is the same as the literal
hexadecimal representation of the 31‐bit word. In this example, the 7th word
contains a bit of 1 and 30 bits of 0, so it cannot be compressed. WAH coding
treats that word as a literal word, which can be written as a hexadecimal number
01000000. The 8th word is all zeros, and it is also a literal word because no repeat-
ing words can be compressed with it. Finally, the last word is called an active
word; although its literal value is 0, it actually has only 8 bits of zeros. This active
word is specially treated (shown as an asterisk superscript in the example) and
we need to store it separately. This is because in WAH implementation, each
compressed bitmap index is contained in a structure (class) in which the active
word itself, its literal value, and bit count are member variables. As shown in
the example, WAH coding compresses the original 8‐word (256‐bit) bitmap
index into 4 words—a compression ratio of 2. This ratio is even larger when we
compress the 65,536‐bit port bitmap index: 2,048 words into 4 words.

WAH coding defines a set of functions to perform logical operations (for
example, AND, OR, XOR, and so on) on the WAH compressed bitmap index. The
key properties of the logical operations are two‐fold. First, the resulting bitmap
index from the logical operations on multiple WAH compressed bitmap indices
is the same as running the same logical operations on the uncompressed bitmap
indices, and compresses the resulting bitmap index using WAH coding. This
property means that WAH compressed bitmap indices can fully represent and
replace basic bitmap indices. Second, the logical operation complexity of WAH
compressed bitmap indices is linear to the total size of the input. Because the
compression ratio for some basic bitmap indices (for example, the port bitmap
index) is so high, the operations on compressed bitmap indices can be much faster.

There are many other bitmap index compression schemes, for example, Byte‐
aligned Bitmap Code (BBC), Compressed Adaptive Index (COMPAX), Enhanced
WAH (EWAH), Roaring bitmaps, and so on. Besides the application of indexing
large packet captures in a retrospective analysis system, bitmap indexing is
widely used by major RDBMS vendors like Oracle and IBM, as well as distrib-
uted data storage like Apache Hive.

 Chapter 8 ■ Retrospective Analysis 279

Inverted File Index
Both B‐tree indexing and bitmap indexing require pre‐processing on the raw
data. For example, when using B‐tree to index packet captures, this requires
that the source IP address string of the packet be hashed into a number, create
a B‐tree node with that number as a key, and insert that node in the B‐tree.
When using a bitmap index, we need to divide the IP address into 4 bytes,
create a bit array for each of the bytes, append it to the bitmap index, and
compress it.

As an alternative to the aforementioned two indexing methods, there
is a demand for a lightweight pre‐processing indexing approach. When
applying such an approach, each packet can be represented as plain text
that contains metadata of the packet without a payload, for example, the
source and destination IP addresses and ports as text. Such representation
is similar to NetFlow, but at the granularity of packet level. Creating and
saving metadata is one action per packet, as opposed to multiple actions
for the source IP and port, destination IP and port, and protocol field for
a single packet when using B‐tree or bitmap indexing. Figure 8-11 shows
sample metadata of packet captures.

Figure 8-11: Example Packet Metadata in Documents

In addition, not every form of collected network data is well structured. In
some cases, logs from certain network appliances are unstructured in nature; it
is not easy to parse these logs, create fields, and index them. Furthermore, even
if all the logs the retrospective analysis system collects are well formatted, the
formats can be different. Instead of creating indices for each format of the log
and performing the same query in each index, it would be much more efficient
to create a single index for all logs so that without querying on multiple indices,
a single query on a single index is sufficient.

Inverted File

When the index is built to search on text among a collection of text files (docu-
ments), the prevailing approach is inverted file indexing. An inverted file, also
known as a posting file, contains lists of pointers to every occurrence of each term

280 Chapter 8 ■ Retrospective Analysis

(unique word) in the documents. The list is called an inverted list or posting list.
Each pointer (posting) in the inverted list records the documents in which the
term appears.

In Figure 8-11, we have packet metadata saved in five documents. For now,
let us assume there is only one piece of packet metadata in each document;
we will relax this assumption later. Each document is uniquely identified
by a document ID, from which it is possible to locate the actual packet cap-
ture file containing the raw packets that are present in the document. Also,
in the packet metadata, we list only the <sip, sport, dip, dport, proto>
tuple to show how to create an inverted file. An additional metadata field can
be included and indexed using the same method. In Figure 8-12, we list the
documents with their document IDs on the right and their contents (packet
metadata) on the left.

Figure 8-12: Inverted File for Metadata

 Chapter 8 ■ Retrospective Analysis 281

To create an inverted file from the packet metadata, we first extract the terms.
Let us define a term in the metadata as type:value. For example, sip:192.168.1.2
is a term, and proto:tcp is another term. The reason we create terms in such a
way is for the convenience of making a query. We will explain this later when
we discuss queries. With the extraction of terms, each document can be viewed
as a collection of terms, and the same term can appear in different documents.
For example, the term sip:192.168.1.2 appears in both documents 1 and 5.

The way to construct an inverted file in this example is to create a list of docu-
ment IDs for each of the terms. For example, Figure 8-12 shows that the term
sip:192.168.1.2 has two postings, 1 and 5, in the inverted list because the term
appears in documents 1 and 5. The inverted list can be implemented using a
linked list. The requirement here is that the postings be sorted in monotonically
increasing order based on document ID. The inverted file is created by repeat-
edly adding the terms and their postings. The terms themselves can be hashed
so that they are easy to look up. When we have a new term and posting to add,
we first look up the term, and if the term is present, we append the posting to
the inverted list of the term. If not, we append the term to the inverted file and
create an inverted list with the document ID as the first posting. In this way, as
long as the documents are processed in the order of their ID, it is guaranteed
that the postings in the inverted lists will be sorted accordingly.

Inverted File Index Query

Because the inverted list already contains all occurrences of the term, in order to
find which documents contain a particular term, it is possible to walk through
the postings in the term’s inverted list and simply return the postings. For
example, to perform the query and obtain all documents containing the term
sip==192.168.1.2, we walk through the inverted list of this term and return each
posting; in this example, the IDs are 1 and 5. Inverted file indexing is also very
efficient at performing logical queries combining multiple terms.

With the inverted file shown in Figure 8.12, let us look at an example of the
logical AND query sip==192.168.1.2 && proto==tcp. To perform this query, we
first locate the inverted list of the two terms. To answer the logical AND query
of the two terms is to find the common postings in the two inverted lists—in
other words, the intersection of the two linked lists. In this example, because
the inverted lists are short, we can quickly tell that the common postings in the
two inverted lists are 1 and 5. For longer lists, it is possible to apply the follow-
ing simple algorithm to find the common postings.

Algorithm for Finding Common Postings in Two Inverted Lists

Find_Common_Posting(L1, L2) { // L1 and L2 point to head of
 // two inverted lists
1 result = < >;

282 Chapter 8 ■ Retrospective Analysis

2 while (L1 != NULL && L2 != NULL) {
3 if Doc_ID(L1) == Doc_ID(L2) {
4 result.add(L1);
5 L1++; L2++;
6 } else if (Doc_ID(L1 < Doc_ID(L2)) {
7 L1++;
8 else
9 L2++;
10 }
11 return result;
}

Similarly, other inverted list algorithms can be designed to realize different
logical queries on the terms. For example, a logical OR query on the terms is
to find the union of postings in their inverted lists. We now revisit the extrac-
tion of the terms to answer why we choose to represent the packet metadata’s
source IP field as a single term sip:192.168.1.2 instead of sip and 192.168.1.2.
First, sip is a common word in all packet metadata; indexing such a common
word alone does not help to make a query easier. The term 192.168.1.2 is merely
an IP address, and it can be either a source IP or a destination IP. If we were
to create separate terms for sip and 192.168.1.2, we would not even be able to
perform queries like sip==192.168.1.2. To fully take advantage of inverted file
indexing, it is best that the logical operands be the terms that are comprised of
meaning components.

Inverted File Compression

In order to help explain the example given in the previous section on inverted
file creation and query, we made an assumption that every document contains
exactly one piece of packet metadata. This assumption helps us represent the
postings as document IDs. However, in reality, a much more efficient way to save
packet metadata is to put multiple entries of the metadata into a single docu-
ment, with one piece of metadata in each row. Such a document usually maps
to a packet capture file so that the raw packets are saved in the packet capture
file and their metadata is stored in a single document. In that case, a posting
may contain two parts: the document ID and the offset (for example, the row
number) of the metadata in the document. To differentiate those two parts, we
denote < > as the list of document IDs, and [] as the list of offsets within the
same document.

Suppose we have a term with an inverted list like the following:
< 88[25,28,30,45,90,100], 95[1002,1045,1120], 130[99876,99902,99954],

150[2,7,12,15,19,25] >. To store such a list as plain text, it is clear that larger
numbers require more storage than smaller ones. For example, offsets 99876,
99902, and 99954 need five characters each to store, while offsets 2, 7, and 12
require only one or two characters each. Because the property of the inverted
list is that the postings are sorted in strictly increasing order, it is possible to

 Chapter 8 ■ Retrospective Analysis 283

compress the listing by only recoding the gaps between them. For example,
the postings <88, 95, 130, 150> can be compressed as <88, 7, 35, 20>, the
offset list of [25,28,30,45,90,100] can be compressed as [25,3,2,15,45,10], and
the offset list [99876,99902,99954] will become [99876,26,52]. As this example
shows, it takes less space to store the compressed lists.

It is further possible to apply advanced coding schemes (for example, γ code
or δ code) and encode the (gap) numbers on the lists to various‐length code
words because the code words are even more space‐efficient than strings or
integers. The detailed encoding and decoding algorithms can be found in the
following books: Introduction to Information Retrieval (Cambridge University
Press, 2008) and Managing Gigabytes: Compressing and Indexing Documents and
Images (Morgan Kaufmann, 1999).

Besides indexing packet metadata, inverted file indexing is best known
as the core technology for search engines in free text searches. The search
engines use this approach to index millions of documents so that they can
quickly return a list of documents containing certain queried keywords.
Inverted file indexing is also a key piece in Apache Solr and its offspring,
Elasticsearch, which is used as the underlying platform to index pcap files by
the open source network capturing and indexing system, Moloch (https://
github.com/aol/moloch).

Performance of a Retrospective Analysis System
With the design methodology and specific algorithm discussed in the previ-
ous section, we now focus on putting the ingredients together and building
a retrospective analysis system for enterprise network security. In particular,
we are interested in showing what resources it takes to run such a system and
what its capacity is.

Suppose the retrospective analysis system is designed to record and analyze
full packet captures. We choose full packet capture as an example to show how
the sheer volume of data impacts the performance of the system. Let us consider
the scenario where one week of network traffic is captured on an enterprise
network of 250 users. The IT security personnel of the enterprise are aware
of a live malnet campaign that was first uncovered two days before, and they
have a list of 100 malicious URLs that are landing pages of the malnet. With the
retrospective analysis system, the IT security personnel want to issue a query
to list all users that have visited those URLs within the past two days because those
users are potentially compromised.

Index Sizes

We use WAH compressed bitmap indexing as an example to calculate the amount
of resources a retrospective analysis system needs to support the query stated in
the last paragraph. Please note that the following calculations are from theoretical

https://github.com/aol/moloch
https://github.com/aol/moloch

284 Chapter 8 ■ Retrospective Analysis

values based on the properties of the approaches and algorithm; we present
them to give an estimate or guideline. The actual resource usage may vary
depending on the final implementation.

There are three elements in the query: user, time, and URL.

 ■ User can be represented by an IP address. For example, in certain LDAP
deployments, it is possible to associate a user with an IP address. As we
have shown in the example in the bitmap index section, an IPv4 address
can be implemented using four bitmap indices with the cardinality of 256
each to represent its 4 bytes.

 ■ Time is the timestamp when the packet is recorded. Because the retrospec-
tive analysis system in this example is designed to capture one week of
traffic, we can use a 7‐column bitmap to record the day of the week, a
24‐column bitmap to record the hour of the day, and a 3,600‐column bit-
map to record the second of the hour. Another 1,000‐column bitmap can
be added to show the millisecond‐level granularity of the packet capture
time. Together, they comprise four bitmaps.

 ■ URL is a string of text, and a bitmap is not a natural representation of
strings. To convert a URL into a number and store it in a bitmap, we can
use hash functions. In Chapter 5, we hash a category string into numbers
and check if they are present in a bloom filter. The idea here is similar, but
instead of using multiple hash functions together, we use only a single
hash function to hash the URL to an integer, say, less than 65,536. Those
65,536 values can form a bitmap. However, given the vast number of
URLs, it is very likely that multiple URLs are hashed into the same value.

To resolve the hash collision, we use another layer of hashing with a dif-
ferent hash function. The second layer of hashing is another bitmap. Still,
there can be collisions. A third layer of hashing can be added, or we can
store the URLs in a link list. Because the number of colliding elements
after two layers of different hashing is limited, it is not time consuming to
linearly traverse the link list. We call this type of hashing the hash bucket
method, where each hash bucket is a bit in the bitmap. Therefore, for the
URL element, we use two bitmaps.

Although not a part of the query, there are still some hidden elements. Those
hidden elements frequently appear in queries, and we want to index them as
well. They include the destination IP address (4 bitmaps), source and destination
ports (2 bitmaps), IP protocol number (1 bitmap), and packet length (1 bitmap). In
addition, we might want to record the classification results based on the systems
we designed in Chapter 7. Although this information may not be available at the
time of packet capture, we can nonetheless add the classification of the flow to
each packet the flow contains. Such classification results can be represented with
a 10,000‐column bitmap, which maps to 10,000 different classified applications.

 Chapter 8 ■ Retrospective Analysis 285

Adding up all the indexing elements together, we get a total of 19
(4+4+2+4+2+1+1+1) bitmaps with various column counts. We also need to know
the row counts, which is the number of packet records within the one‐week
time frame. According to research conducted by a team at Cisco in 2014 (Cisco
Visual Networking Index: Forecast and Methodology, 2013–2018), an average business
user generates 4 to 10GB of Internet and WAN traffic per month. Taking 8GB as
an estimate, the retrospective analysis system sitting on a 250‐user enterprise
network can capture 500GB per week. If the packets are an average of 1KB in
size, then the 500GB, one‐week traffic capture will contain 500 million packets.

Now we need to compress the bitmaps using WAH coding so that we can
estimate how much space we need to accommodate those bitmaps. In all of the
bitmaps, for each row, there is only one bit that is 1, and all the rest are zero;
that is to say, the bitmaps are really sparse. A property of WAH coding is that
for sparse bitmaps, the maximum size of a compressed bitmap index is about
2N words, where N is the number of rows in the bitmap. For a 64‐bit system,
the size of a word is 8 bytes, and in a 32‐bit system, a word requires 4 bytes.
To calculate the overall size of the compressed bitmap indices, we multiply the
terms together to obtain the size s 500M 2 8 bytes 19 152GB= × × × ≈ .

That is a large index! Even if we apply a more advanced and space‐efficient
compression algorithm like EWAH or COMPAX, the index size is still tens of
gigabytes. Loading the whole index in memory imposes a strong requirement
on the physical memory size of a retrospective analysis system. In this regard,
the compressed indices should be divided into smaller chunks and saved on
storage devices. The indices can then be loaded when performing a query.

This is actually a natural choice for a retrospective analysis system. As the
packets are being recorded, the retrospective analysis system also tries to index
them along the way. The separator of the index chunks can be time; for example,
every 15 minutes worth of packets are indexed in a single compressed index so that
there will be 4 indices every hour, and the one‐week traffic will create 672 indices.
Because the packet counts (bitmap rows) are smaller in each index, the size of each
index is smaller. In addition, the indices of day and hour in the original bitmaps
are now removed, which makes the index size still smaller. Finally, when perform-
ing queries on time, we can first locate which of the 672 indices fall into the time
range, and we load each of the indices to conduct the query. Assume the regular
business traffic runs to 12 hours per day, 5 days a week; the busy hour packet count
in 15 minutes is roughly 2 million (500 million/5/12/4). Using the aforementioned
approach, the size of the index is now s 2M 2 8 bytes 17 544MB= × × × ≈ , which is
a much more realistic memory requirement.

Index Building Overhead

Packet attributes like IP addresses, port numbers, IP protocol number, length,
and so on, are well‐defined header values and are stored in a pre‐defined offset

286 Chapter 8 ■ Retrospective Analysis

in a packet. When a packet is read into memory, reading those values from the
packet and setting the corresponding bit in the bitmap does not cost many CPU
cycles. Instead, saving the packets as well as the index to the storage device
involves many I/O operations.

Because there are about 2 million packets per 15 minutes and the packet
size is about 1KB, the average rate at which the data is captured is about
2 1 000 15 60 2 2M bytes seconds MB s.× × ≈, /() . / Even when we add the size of
bitmaps created from the packets, the total amount of data to be saved is much
less than the write speed of a regular 7,200‐rpm SATA hard drive, which can
write at the rate of 100 to 150MB/s. That is to say, it is possible to perform real‐
time indexing and packet saving while capturing.

Query Response Delay

To serve a query, the retrospective analysis system has to first locate and load
the index into memory, then run logical operations on the bitmap, and finally
load the query results. The query response delay is the sum of all delays
incurred in the aforementioned steps. In the example query we gave in an
earlier section, the query time frame is the past two days, which covers 192
out of a total of 672 indices. To obtain the sum of all delays, we calculate the
delays on 1 index and multiply that by 192 in the end.

We first take a look at the time complexity of the logical operations on WAH
compressed bitmaps. A 2006 paper by Wu et al. called “Optimizing bitmap
indices with efficient compression” (ACM Trans. on Database Systems, 2006)
offers detailed analytical results from performing general bitwise operations.
For two bitmaps x and y of mx and my words, respectively, the time complex-
ity of generic bitwise operations between the two bitmaps is O(mx+my). In
particular, for a sparse bitmap, the cost of overall bitwise operations is upper‐
bounded by C(mx + my), where C is a constant decoding and compressing cost
for a WAH word.

As shown in the previous section, the query is constructed as a single‐row
bitmap. To create a range query of range span l, the logical operations are done on
l bitmaps of the same size, which is Clmx in total. We also showed that a single‐
row sparse bitmap can be compressed into four words, and the total logical cost
Clmx can be bounded by 4Cl. When performing a search, the query is actually
the logical operation between the single‐row query bitmap and a compressed
bitmap index of N rows. Because of the maximum size of a compressed index
2N word, the total cost is roughly C(4l + 2N). Given 2N is far greater than 4l,
the total cost of logical operations in the query is 2CN. We know that in the
example, the N value for each index is around 2 million. That makes the total
operation count 8C million. An Intel quad‐core 3.3GHz i5 CPU, which is found
on many mid‐range business desktops, can do about 83,000 million instructions
per second (MIPS). Because the cost value of C is far lower than 10,000 CPU

 Chapter 8 ■ Retrospective Analysis 287

instructions, performing the logical operations to conduct a search on a bitmap
requires far less than a second time to complete.

Locating which of the 192 indices are to be looked up to serve the query is
a relatively light operation. We can use bitmap or B+‐tree to provide the time‐
based query that finds those indices. Even if we do linear traversing on those
672 indices, it does not cost many CPU cycles. However, loading those indices
into memory does cost I/O operations. A mainstream 7,200‐rpm hard drive
can do a random read at around 150MB/s. Loading a 544MB index from a hard
drive takes around 3.6 seconds.

In the final step, when the packets that satisfy the query are identified, they
need to be loaded into memory so that they can be displayed and examined
by IT security personnel. Regardless of how and where the packets are stored,
the time cost for reading those packets depends on the total size of the packets
and the read speed of the hard drive. Note that the average size of a packet is
1KB, which is less than the normal 4KB read per I/O operation. That is to say,
when reading 1KB packets one at a time, the speed of the hard drive is about
one‐quarter of the speed when reading a large chunk of a file. Because in the
example query, the packets from malicious landing pages are retrieved, the
number of those packets cannot be huge. Let us suppose there are 10,000 packets,
which contribute to a total size of 10MB. Loading 10MB of packets that are 1KB
each from a 7,200‐rpm hard drive costs about 0.3 second (10MB/(150MBps/4)).

Adding the three delay components together, we can see that the time used
to operate on the bitmap is really negligible, and the bottleneck of the search
speed is from the I/O operations. In this example, to load the 192 indices from
the hard drive costs about 10 minutes, which is about the total time needed
to complete the query. Note that in our calculations, we use the maximum or
upper‐bound values for many variables, so the results roughly represent the
worst‐case scenario.

The aforementioned analysis clearly indicates that the bottleneck of the query
speed is the disk I/O operation. In order to speed up the query, it is possible to
use hard drives that have a higher average IOPS (input/output operations per
second) value. For example, the 7,200‐rpm SATA drive we used in the example
has fewer than 100 IOPS. The 10,000‐rpm SATA or SAS drive can perform up
to 150 IOPS, while a 15,000‐rpm SAS hard drive can go up to 200 IOPS. That
is to say, we can save up to half of the query time by using a higher‐IOPS
hard drive.

It is possible to further increase the IOPS by deploying a RAID storage system.
However, in the RAID system, a disk‐write operation may require many disk
operations that act as a penalty to the overall system IOPS. In this regard, the
overall IOPS in a RAID system is not the aggregate IOPS of all the drives. For
example, in a RAID 5 deployment, we can use an array of 25 7,200‐rpm hard
drives to achieve the total IOPS of 1,000. At the cost of more storage, we can
bring down the query response time quite significantly.

288 Chapter 8 ■ Retrospective Analysis

Using a solid state drive (SSD) is another way to increase query speed. A
consumer‐grade SATA SSD can now support up to 85,000 IOPS, and a performance‐
oriented PCIe interface‐based SSD can easily support more than 200,000 IOPS.
That is a huge improvement over the 7,200‐rpm hard drive that we used in the
example. The major drawbacks of SSD are the high cost and lack of long‐term
reliability.

Scalability

The scalability obstacles to a retrospective analysis system come from two chal-
lenges. The first challenge is the complexity of the query. In our example, to
perform time range queries on packages with certain URLs, we use 19 bitmaps
to index the packet captures. If the query becomes more complex with more
variables—for example, vlan ID—we need to extract more information from the
raw packet while processing it and to create additional bitmap indices for the
added variables. Although performing logical operations on the added bitmap
indices may not cause a noticeable slowdown in query response, loading and
storing the indices can greatly impact performance because as we have shown
in the aforementioned calculations, the query response time is proportional to
the number of bitmaps that fall within the query range.

The second challenge comes from the scale of the input data rate. In the
example, we positioned the retrospective analysis system in an enterprise of 250
users that each generated 8GB of data per month. That equals about 18Mbps of
traffic. If we were to put the system on the enterprise intranet where the traffic
was flowing at a line rate 1Gbps, the volume of data to be indexed would be more
than 50 times as large. And if the storage period were extended from one week
to one month, that would be another 4 times more data, which would take the
total amount of data from the initial 500GB to 100TB. The data volume would
surge to a petabyte if the system were placed on a 10Gbps link.

The solutions to address the scalability challenges include the following
three aspects:

 ■ Fast I/O. From the analysis, we know that the speed of the I/O is the
bottleneck in performing the query. In addition, if the incoming data
rate or packet capture rate is greater than the overall disk‐write rate, the
captured packet cannot be dumped to the storage and we will accumulate
more and more packets in memory. As a consequence, we will end up
with a situation where no more packets can be captured and recorded. If
we can improve the disk I/O speed (IOPS) through either RAID or SSD,
the retrospective analysis system can both process the incoming data and
serve the queries more quickly.

 ■ Index size. The example we have shown uses a WAH compressed bit-
map to index the collected packets. Although the compressed bitmap

 Chapter 8 ■ Retrospective Analysis 289

is significantly smaller than the raw bitmap, it is still not the optimal
compression solution. We have also shown that the cost to operate on
the indices while performing the queries is negligible when compared
with the cost to read and store the indices. This suggests space‐efficient
indexing is the key to scalability.

 ■ Parallelization. In the example given at the beginning of this section, we
divide the time into 15‐minute intervals and index packets within those
intervals. We perform searches sequentially on each of the indices to produce
the results. When this approach is applied to search in a packet capture
of daunting size (say, 1PB capture on a 10Gbps link), it is impractical if
not implausible. However, because all bitmap indices are independent
of each other, we can parallel the search (logical operations) on different
indices at the same time and aggregate the results together when the
searches are completed.

If the indices are not independent (for example, B‐tree), it is possible to
replicate the indices and have several search tasks running on different
replicas simultaneously. The parallel tasks can be running on the same
machine as different processes or threads, or they can be scaled to run on
different machines. The parallelization can be implemented with an existing
big data framework, for example, MapReduce and NoSQL technologies.
Parallelization is critical to the horizontal scalability of the retrospective
analysis system.

Notes on Building a Retrospective Analysis System

Given the huge amount of data collected and the complexity of indexing and
querying on the data, it is not practical (if at all feasible) to store and process
all of the data on a single machine. In other words, the demands of scalability
require that the retrospective analysis system be designed in such a manner
that tasks can be distributed and completed in parallel. In this section, we dis-
cuss the parallel data processing paradigm of MapReduce and show a sample
retrospective analysis application under the MapReduce framework. We also
introduce some off‐the‐shelf products with MapReduce ingredients that can be
used to build a retrospective analysis system.

MapReduce and Hadoop
MapReduce is a data processing paradigm. The goal of MapReduce is to process
large volumes of data in a parallel and distributed way and to obtain useful
aggregated results. MapReduce contains two functions: Map() and Reduce().
Both functions come from the study of functional programming, where Map()

290 Chapter 8 ■ Retrospective Analysis

is used to transform (map) a list of values to another list of values, and Reduce()
is used to condense (reduce) the mapped list of values into a single value. To
explain the basic concepts of Map() and Reduce(), we give an example in real life.

Suppose there is a basket of fruit containing apples, oranges, and grapefruits,
and you want to make a glass of juice out of them so that you can enjoy a blend
of fruits. However, you cannot make a glass of juice directly from the whole
fruits, because the blender can only work with small chunks of fruit. Fortunately,
it is possible to use a knife to cut the fruits into slices. By cutting up the fruits,
instead of whole apples, oranges, and grapefruits, you now have apple slices,
orange slices, and grapefruit slices. With a different form of the original fruits,
that is, in slices, not whole fruits from the basket, the blender can now be used
to work on those slices and create a blended juice.

Now, let us view the original fruit basket as a list of values (apples, oranges,
grapefruits), and the knife as a Map() function. What the Map() function does is
to prepare (or transform) the list of values into another list of values (apple slices,
orange slices, grapefruit slices). Similarly, the blender is the Reduce() function. It
condenses the mapped list of values into a single value, which is the glass of juice.

Let us go back to the world of computing and look at a sample problem. The
problem is to calculate the sum of squares of a given array of integers. Every
programmer can write the solution quickly, similar to the following small code
snippet. While this piece of code works well when the input array is relatively
small, it does not scale when there are millions, if not billions, of integers in the
array. In such a scenario, the desired approach is to distribute the computing
task to multiple processing tasks and compute in parallel.

Sample Code Snippet to Get Sum of Squares

sum_of_squares(a) { // a is an array of integers
1 int result = 0, i = 0;
2 for (i = 0; i < a.length; i++) {
3 result += a[i] * a[i];
4 }
5 return result;
}

Sample Code for MapReduce to Get Sum of Squares

Map(fn, a) {
1 for (int i = 0; i < a.length; i++) {
2 a[i] = fn(a[i]);
3 }
}

Reduce(fn, a, val) {
4 int result = val;
5 for (int i = 0; i < a.length; i++) {

 Chapter 8 ■ Retrospective Analysis 291

6 result = fn(result, a[i]);
7 }
8 return result;
}

square(v) {
9 return (v * v);
}

summation(s, val) {
10 return (s + val);
}

//Map process
Map(square, a);
//Reduce process
Reduce(summation, a, 0);

To revisit the sum of squares problem and apply the concepts of MapReduce,
we divide the problem into two sub‐problems. First, we obtain the list of squares
values from the input list of integers. Then, we calculate the sum of the elements
in the list of squares values. The first sub‐problem can be solved by the Map()
function, in which we create a new list and map each of the original values
in the input array of integers to its squares values in the new list. The second
sub‐problem requires the Reduce() function, which works on a list of squares
values and computes their sum.

To further generalize the two functions, Map() can be written as a framework,
and the concrete implementation of how the mapping works can be a param-
eter of the Map() function. In the sample code, one of the input parameters of
Map() is a function pointer fn(), and the actual implementation of fn() is to
get the squares values (the square() function). Similarly, Reduce() can also
take a function pointer with the actual implementation being the summation
of all values in the input list (the summation() function). The Map() function
takes the input array a and maps each of the array elements in place to a dif-
ferent value through the square() function. In this way, the mapped array
is still a, but with a whole new list of values. The Reduce() function takes
the mapped array and reduces the elements to a single value through the
summation() function.

This framework can also be applied to solve other problems as long as those
problems require performing some operations on each of the elements of the
array. In addition, in the sum of squares example, the Map() function is not
concerned with the order in which the input array is processed, nor is the
Reduce() function concerned with the order of the elements for summation. In
this regard, it is possible to divide the input array into two sub‐arrays with half
of the integers and assign two CPU cores to run the Map() function in parallel.
In this way, the Map() function can be performed twice as quickly.

292 Chapter 8 ■ Retrospective Analysis

MapReduce for Parallel Processing
In the “sum of squares” example, we have shown that it is possible to divide the
map process to two different processing tasks and assign these tasks to different
CPUs. In this section, we generalize the concept and discuss the MapReduce
framework for parallel processing.

We continue with the fruit and juice example to explain the concept of paral-
lel processing in MapReduce. As we discussed earlier, the Map() function is the
knife, and the Reduce() function is the blender. To parallel Map() and Reduce(),
we need multiple knives and blenders. Suppose there are many baskets of fruit,
with each containing apples, oranges, and grapefruits. The goal is to create bottles
of a single fruit juice—for example, apple juice, orange juice, and grapefruit
juice—from the whole fruits. In operation, we first parallel the cutting process
by using multiple knives to slice the fruits into apple slices, orange slices, and
grapefruit slices. For each of the fruit baskets, we use the same knife to cut
all of the fruits, just as we did in the previous example. In this case, with the
same knife, we have created different fruit slices. In order to create single fruit
juices, we need to group all the slices from all the baskets by their fruit. After
the grouping, we have a pile of apple slices, one of orange slices, and one of
grapefruit slices. To create the juices, we use three different blenders, one for
each fruit. The blenders take the fruit slices and output the bottles of juice.

In this example, each basket is the input of each Map() function. To represent
the fruits in the basket, we can use a list of <key, value> pairs, for example,
(<a, apple>, <o, orange>, <g, grapefruit>). The output of the Map() function
is another list of <key, value> pairs, and we denote it as (<a', apple slices>,
<o', orange slices>, <g', grapefruit slices>). Therefore, the parallel Map()
function maps a list of <key, value> pairs to another list of <key, value> pairs.

The next step is to shuffle the Map() output and group the shuffled output
for the Reduce() function. In this example, the shuffling and grouping are
done by merging the <key, value> pairs that have the same key. Note that
by merging the <key, value> pairs, we have <key, value‐list> pairs, where
the value‐list is the aggregation of all values that share the same key. In this
example, the value‐lists are all fruit slices of the same type. Finally, each
Reduce() function takes the <key, value‐list> as input and reduces it into
a single value, and the parallel Reduce() functions reduce the <key, value‐
list> pairs into a list of values, which are the bottles of single‐fruit juice. In
summary, the parallel MapReduce framework converts a list of <key, value>
pairs into a list of values.

There are two aspects to note in the parallel MapReduce framework. First,
the key to link Map() and Reduce() functions is the shuffle step. To abstract the
shuffle step, we can view it as a processor‐matching problem. The outputs of
the Map() function are M<key, value> pairs with N unique keys. If we have N
processors to process each of the N unique keys, we need to match each of the

 Chapter 8 ■ Retrospective Analysis 293

M<key, value> pairs to a processor based on its key. Then, in the reduce process,
N processors run the Reduce() function (also called the reducer) in parallel to
create a list of output values. If we have fewer than N processors to run Reduce(),
we need a partition function to associate a given key to a reducer. The partition
function should consider balancing the load among reducers.

The second aspect is the input to the Map() function. The design of the Map()
function is to use multiple processors, or even multiple machines to process
all input data and generate M<key, value> pairs. Such a design requires that
the input data be distributed, which suggests that there should be no depen-
dency among the data that is processed on different processors. Similar to the
partition function, the distribution to the Map() function should also take load
balancing into consideration.

We now take a real‐word application as an example to describe how to use
the MapReduce framework in retrospective analysis. Suppose the retrospective
analysis system is designed to analyze proxy logs. The particular application
is to process the logs and show the counts of all policy enforcement actions on
each of the users (IP addresses).

Recall that in the previous sections, we introduced the ELFF log format for
proxy logs. In such logs, at each line of policy enforcement action, there is an
IP address (for example, 192.168.1.2) and the applied policy results (for example,
policy_denied). To process each line of the log, we need to extract the IP address
and policy fields from the log. The input data is then collected from proxy logs that
are millions of lines long. Because the log entries are independent of each other,
it is possible to truncate the logs and divide them into smaller log files that are of
similar size. Each of the log files is fed into the Map() function, which extracts the
two fields of interest from the log entry and forms the <IP address, policy> pair.

In the MapReduce framework, the IP address is the key and policy is the value.
The partition function groups the list of pairs by IP address and transforms the
<IP address, policy> list into <IP address, policy‐list>. To assign the <IP
address, policy‐list> to the reducers, the partition function can hash the IP
address into N values, where N is the number of reducers. Finally, the Reduce()
function can process the policy‐list and count the occurrences of each policy.

Hadoop
The most popular open source implementation of the parallel MapReduce
framework is Apache Hadoop. A typical deployment of Hadoop consists of a
cluster of commodity servers. One server works as a master node, which dis-
tributes, schedules, and parallelizes the other machines, which are known as
worker nodes. For a MapReduce task, a JobTracker process runs on the master node,
and each worker node runs a TaskTracker. When the client application submits
a MapReduce job—which includes the Map(), Reduce(), and partition functions
(also called the combine function in Hadoop)—the master node, based on the

294 Chapter 8 ■ Retrospective Analysis

amount of resources the Hadoop cluster has, distributes the Map and Reduce
tasks to the worker nodes and monitors the job status.

The distribution of tasks is to assign which nodes run Map tasks (mapper)
and which nodes run Reduce tasks (reducer). This process usually starts with
the input data being split, where each split is usually 16MB to 64MB in size. The
split data is fed into each of the mapper nodes. As we explained previously, the
Map task is to map a list of <key, value> pairs into another <key, value> list.
In Hadoop, the output of the mapped <key, value> list is stored in memory,
and the combine function is invoked periodically to process the <key, value> list
into <key, value‐list>. After the Map task is done, the TaskTracker notifies the
JobTracker. When all TaskTrackers on the mappers are finished, the JobTracker
will start the TaskTrackers in the reducers. When the TaskTrackers in all reducers
report the completion of Reduce tasks, the whole MapReduce task is completed
and the JobTracker can take another MapReduce task from the client application.

Another important use of the JobTracker is to monitor the status of each
TaskTracker. If any of the TaskTrackers crash, the JobTracker will restart another
worker node with the same task. That is to say, if the crashed TaskTracker is
in a mapper, the restarted worker node will rerun the Map task from the very
beginning with the same split of data as the crashed mapper, and if a reducer
crashes, a new reducer will rerun the entire Reduce task with the same <key,
value‐list> assigned to the crashed reducer.

Another core piece of Hadoop is the Hadoop Distributed File System (HDFS).
Each of the files stored in HDFS is made up of blocks. The metadata describing
what blocks a file has is stored in the NameNode, a similar concept to the master
node in MapReduce. A secondary NameNode can be configured as a hot standby.
The actual storage of the blocks is on the DataNodes, which are the counterparts
of worker nodes. A file is usually replicated multiple times (the default is three
times) and stored distributively on the DataNodes. The file metadata also keeps
track of which blocks are stored on which DataNodes. Therefore, when a client
application, say, the sample log processing application in the previous section,
wants to read a file, it needs to communicate with the NameNode first to obtain
the metadata.

Such a request is done via the Hadoop client API, and the request to the
NameNode contains the block index of the data to be read. The NameNode
returns which of the DataNodes contains a copy of the requested block so
that the client application can contact the DataNode directly to obtain that
block. To write a file to HDFS, the client application needs to write the file to all
DataNodes. The NameNode will assign one of the replicas as a primary copy
and the rest as secondary copies. Although the copies of files are pushed from
the client application directly to all the DataNodes, the files are held in a buffer.
In order to complete the write process, the client application needs to talk with
the DataNode that has the primary copy and send the “commit” request to write
the data from the buffer to the actual storage devices. The primary DataNode

 Chapter 8 ■ Retrospective Analysis 295

then orders the actual write of file blocks among all the DataNodes. HDFS and
MapReduce tasks are often tied together, where the input splits of data to the
mappers are from HDFS, and the outputs from the reducers are individual files
that are written back to HDFS.

Building around the Hadoop cores (MapReduce and HDFS) are the related
projects and products that together create the Hadoop ecosystem. The other
components include HBase (the Hadoop database), Pig (MapReduce task con-
verter), Hive (a SQL‐like query language), Mahout (data modeling and analytics
toolset), Storm (real‐time data stream processing), Zookeeper (high availability
through redundancy), and so on. Architecting the retrospective analysis system
can well leverage the available modules in the Hadoop ecosystem.

Open Source Data Storage and Management Solution
In previous sections, we introduced and analyzed several indexing approaches
and algorithms that are very efficient for managing the huge amount of data
collected in a retrospective analysis system. As a matter of fact, those approaches
and algorithms are available in many off‐the‐shelf data storage and manage-
ment solutions. A good example of such a system is known as a relational
database management system (RDBMS). The most typical RDBMS products that
are widely deployed include Oracle database, MySQL, Microsoft SQL Server,
and PostgreSQL. Such an RDBMS might fit perfectly with enterprise or other
applications; however, it is not the best solution to store and manage data in a
retrospective analysis system.

Why a Traditional RDBMS Falls Short

A traditional RDBMS and a retrospective analysis system are designed around
different goals, and the way they operate is not quite the same. The reasons why
a traditional RDBMS is not a proper solution for a retrospective analysis system
can be categorized as follows:

 ■ An RDBMS is designed to do frequent addition, modification, editing, and
removal of data. An RDBMS also has a complex design to keep track of
data changes to ensure the integrity of the data. However, a retrospective
analysis system does not require many of these operations. A retrospective
analysis system mostly writes data for storage and reads data for analysis.
Only in very rare cases, if at all, does a retrospective analysis system need
to modify or remove the data from storage.

 ■ An RDBMS is intended to manage data of a uniformed format because
it operates with predefined schemas. However, a retrospective analysis
system collects, stores, and analyzes structured and unstructured data of
various formats, and the unstructured data may be hard to describe with

296 Chapter 8 ■ Retrospective Analysis

schemas. In this regard, an RDBMS is not able to manage all types of data
required by a retrospective analysis system.

 ■ Typically, when inserting a data entry into an RDBMS, we need to make
such an entry by providing the values in the fields the entry requires. To
extract those values from raw data, we need to do some processing on its
raw format. In this regard, an RDBMS manages the extracted relations in
data, not the actual data. However, a retrospective analysis system requires
both a fast query on the data and retrieval of the data in its original raw
format, which an RDBMS cannot offer.

 ■ An RDBMS does not scale well in performance because it mainly focuses
on data relations (for example, multiple tables) and management (for
example, transaction processing). However, a retrospective analysis system
needs to handle gigabytes, if not petabytes, of data that may be stored
and processed on different machines. Therefore, scalability is key to a
retrospective analysis system.

NoSQL and Search Engines

Because an RDBMS is not appropriate for building a retrospective analysis sys-
tem, we are interested in finding alternative solutions that fit the requirements
of a retrospective analysis system.

Not Only SQL or Not using SQL (NoSQL) database technologies have emerged
to address the performance and scalability challenges in the presence of large
volumes of data. There are a variety of data models in NoSQL so that it can
process structured, semi‐structured, and unstructured data on a large scale.
Unlike the SQL query language in RDBMS, NoSQL provides an object‐oriented
API to manipulate data, and it is easy to integrate with other applications. The
major types of NoSQL include the following:

 ■ Key‐value store is the simplest form of NoSQL. It stores the data in the
format of <key, value> pairs. Because of its simplicity, it is a popular
solution in embedded systems. Well‐known key‐value store databases
include Redis and DynamoDB.

 ■ Document store does not work on schemas so that each database record
can have a different format (for example, a different number of columns
with various numbers of values). Internally, it implements a document
structure to hold the keys, and the database operations are around the
documents. The most notable NoSQL document store is MongoDB, which
is the most popular NoSQL database.

 ■ Wide‐column store organizes data by columns instead of rows. Because the
size and number of columns are dynamic, wide‐column store shows great
scalability. Wide‐column store is also schema‐free, and it can be viewed

 Chapter 8 ■ Retrospective Analysis 297

as a two‐dimensional key‐value store database. Examples of this type of
NoSQL database are Cassandra and HBase.

 ■ Graph database is designed to store the type of data that shows strong con-
nectivity properties among the records. Such connectivity can include
network links, social connections, and so on. Typical graph database
implementations include Neo4j and Titan.

A search engine is a tool to search and retrieve data. By strict definition, search
engines are not NoSQL databases because they do not consider data storage
as much as NoSQL databases do. Search engines can be high performing and
scalable with the help of powerful, efficient, and accurate search algorithms;
however, what sets search engines apart is their ability to perform searches
based on relevance. For example, think about the TF‐IDF algorithm we discuss
in Chapter 5; the results of the search can be ranked by the TF‐IDF score to show
relevance. Such abilities possessed by search engines in terms of information
retrieval cannot be found in NoSQL databases. Popular search engine solutions
include open source projects like Lucene, Apache Solr, Elasticsearch, and com-
mercial products like Splunk.

NoSQL and Hadoop

Hadoop MapReduce and NoSQL are two related techniques in the realm of
big data. As a matter of fact, they can co‐exist in a single product. For example,
the most popular NoSQL database, MongoDB, internally has a single‐thread
implementation of MapReduce. Using its MapReduce commands, it is possible
to query on a large volume of data in the database, process the query responses
in parallel, and condense them into aggregated results. For another example,
the default database in Hadoop is HBase, which is the wide‐column store
NoSQL database, and it has a well‐defined API to use Hadoop MapReduce.
In addition, it is also possible to integrate other NoSQL databases that are
not based on Hadoop with the MapReduce framework. One such example
is Cassandra, which is a NoSQL data store that is best used for web analyt-
ics. The Cassandra project has provided a set of utilities to input data from
Cassandra to MapReduce, and then retrieve output from MapReduce and save
it back to Cassandra.

Choosing which type of MapReduce and NoSQL integration to use is based
on the specific design consideration of the retrospective analysis system, because
different NoSQL technologies have their own unique characteristics. For example,
Cassandra is efficient at database replication but less efficient when there is more
than one index. MongoDB is relatively easy to deploy and has simpler internal
commands to perform MapReduce tasks that otherwise can take a lot of coding
work with Hadoop. However, MongoDB also takes a longer time to process the
MapReduce tasks than a distributed Hadoop deployment.

298 Chapter 8 ■ Retrospective Analysis

Summary

Victims of an APT typically discover the breach because an organization’s con-
fidential information has been made available to the public or has been exposed
to the hacker community. The public disclosure comes with both humiliation
and detrimental effects to the business. Because APT is stealthy, targeted, and
difficult to detect using traditional security defense mechanisms, retrospective
analysis is an important method in the detection of APTs. Petabytes of logs and
packet captures are the essential elements in a retrospective system. Efficient
indexing and storage management of such large volumes of data allows for
flexible and fast queries to be issued by security analysts, a fundamental step
in discovering the suspicious patterns that will eventually lead to the uncover-
ing of an implanted APT.

299

The Apple iOS and Google Android mobile operating systems have revolution-
ized the mobile device market, as evidenced by the amazing market growth in
the mobile phone industry. Millions of mobile applications have been developed
to serve just about any purpose or need imaginable. These devices have changed
our social behavior and influenced the way we do business in this new mobile
computing era.

Mobile devices and smartphones provide ubiquitous and convenient access
to information and services. Major news networks, entertainment content,
social networks, blogs, and tweets are only a click away. Mobile device–specific
applications have been built to enable access to corporate email systems, web
mail systems, online banking, online shopping, prescription services, and point
of sale (POS) systems, which are as comprehensive as traditional in‐person
services but consume only a fraction of the time to complete. The computing
power and feature sets of these mobile devices are evolving rapidly and are
becoming comparable to those of desktop and laptop computers. A popular
prediction is these mobile devices will replace desktop and laptop computers in
the not‐so‐distant future. These new‐generation mobile devices are more than
just gadgets for entertainment and making phone calls.

The always‐on, anywhere, and anytime computing paradigm trades security
for convenience. “Bring your own device” (BYOD) refers to the situation where an
employee’s personal mobile device has become an integral part of their corporate
computing experience. This is a symptom of users adopting new technology

C H A P T E R

9

Mobile Security

300 Chapter 9 ■ Mobile Security

and then forcing corporate IT departments to adapt. Unfortunately, in many
situations the IT department yields to user demands and the new technology is
integrated into the corporate IT system with little or no assessment of security
impacts. The lack of consideration for security raises the risk of compliance
violations and jeopardizes an enterprise due to possible theft of intellectual
property and leakage of corporate secrets as a result of malware intrusion.

In this chapter, we will examine the various real threats that are targeting
mobile devices, analyze the challenges of securing mobile devices, and propose
a network‐centric view towards solving some of these mobile security problems.

Mobile Device Management, or Lack Thereof

In today’s corporate environments, the boundary between private and cor-
porate use of mobile devices and smartphones is blurring. Most employees
prefer to purchase these mobile devices on their own to ensure mobile number
permanency even when they change employers. These personal devices are
utilized to access corporate information. The main challenges of the BYOD
problem are that corporate access policies must not interfere with privacy while
still complying with applicable regulations, corporate access policies must
not restrict private use, privately installed applications that are disqualified
by corporate policies must be restricted from accessing corporate data, and
some applications may be permitted to access corporate data depending on
the current device location.

The main goals of mobile device management (MDM) include remote manage-
ment of the mobile device, centralized provisioning of policies and configurations,
monitoring of user activities, and retrieval of log files from the device. Remote
management of a mobile device, or over‐the‐air (OTA) device management,
utilizes cellular or WiFi networks to administer the device and to perform tasks
such troubleshooting, locking the device, or completely wiping the device of
all data if it is lost or stolen.

MDM is driven by the need to manage employees’ personal devices that are
utilized for enterprise‐related productivity tasks. Therefore, the enterprise IT
defines access and security policies centrally, identifies and permits the instal-
lation of certain applications, creates standardized device configurations, and
then remotely distributes these settings to all registered devices. However,
although MDM infrastructure and technology are on the path to standardiza-
tion, the current implementations and architectures vary from vendor to vendor.

A commonality in the MDM architecture is the server‐client model where
the server component is managed by the enterprise and the mobile device is
required to install MDM client software. One of the biggest hurdles of MDM
adoption is the involuntary installation of a piece of software that the employer
can use to track the employee’s activities. An employee is highly likely to disable

 Chapter 9 ■ Mobile Security 301

the software on a personal device when possible, which defeats the purpose of
having MDM. When the employee cannot tamper with the client MDM software,
they will simply not use that device for job‐related activities, or they will carry
two mobile devices: one that is issued by the employer for work and one that is
purchased personally for everything else.

If MDM is truly meant to provide both convenience for the employee and
intellectual property protection for the employer with increased employee
productivity, then MDM has yet to succeed. First, carrying multiple devices is
an inconvenience, and working with monitoring software on a device creates
resentment and arouses suspicion. Second, although wiping a device remotely
if it is reported lost can presumably be achieved with little effort, this protection
can easily be bypassed if the stolen device is intentionally disconnected from
the cellular network by removing its subscriber identity module (SIM) card, and
by disabling the device’s WiFi feature to isolate the device from any network.

According to the National Institute of Standards and Technology (NIST),
the security objectives of a mobile device must include integrity, confidentiality,
and availability. Integrity, or more specifically data integrity, refers to the abil-
ity to detect when data tampering occurs in transmission or in storage and to
guarantee the accuracy and consistency of the original data. Confidentiality
requires the ability to define rights and restrictions on data in transmission or
in storage and to prevent unauthorized access. Availability refers to the ability
to provide reliable access to data at all times.

However, the server‐client model of MDM architecture is not free of vul-
nerabilities and is susceptible to threats just like any other networked infra-
structure. Data integrity and confidentiality are outside the responsibilities
of existing MDM solutions and are made possible only when the underlying
mobile operating systems provide the necessary system‐level support. For
example, the underlying mobile OS must offer encryption application program
interfaces (APIs) so that a document reader (in the form of a mobile application)
can encrypt and decrypt a document from a mobile device’s data storage. With
the increased size of storage on mobile devices (128GB or more), it is possible to
store a large part of, if not the entire, corporate employee contact database on
a mobile device. As a matter of fact, mobile users tend to download and carry
more data on their mobile devices than they actually need. Such behavior is
allowed to ensure undisrupted productivity when network connectivity is lost.
However, this practice also results in a huge risk of data loss or even data theft
if the mobile device is lost.

Another example of MDM vulnerability is that a mobile e‐mail client must
utilize an encrypted connection to the mail server in order to secure the mail
exchange. This communication channel is not supervised by the MDM solution.
Many existing enterprise networks do not implement restricted access to cor-
porate IT services. For example, many enterprises allow e‐mail access through
the web, which allows a mobile device such as an iPhone to connect to the

302 Chapter 9 ■ Mobile Security

corporate Microsoft Exchange Mail server using the built‐in iOS mail application,
without the need to connect through a virtual private network (VPN). An e‐mail
attachment containing confidential information such as a financial report can be
shared with another application on the same device and can cause a potential
leakage of that information. These activities are not monitored, protected, or
supervised by existing MDM solutions.

Current MDM solutions do not prevent managed mobile devices from using
untrusted wireless networks. When using untrusted networks, man‐in‐the‐middle
(MITM) attacks can be launched by intercepting or even modifying commu-
nications from a mobile device, which can also include the communications
between MDM agents on managed mobile devices and remote MDM servers.
Such a MITM attack is clearly a violation of the integrity and confidentiality
objectives of an organization.

In addition, MDM solutions do not prohibit managed mobile devices from
accessing untrusted contents. In such a scenario, a managed mobile device can
install applications created by unknown parties or from an untrusted alternative
application store or marketplace. Attacks through malicious mobile applications
are most common, and with a high success rate, and pose the biggest security
threats to a mobile device and its owner.

Furthermore, existing MDM solutions do not protect managed mobile devices
from malware or malnets. For example, a mobile device can scan a Quick Response
(QR) code that may lead to a malicious landing page and eventually to the
download and installation of malware. Current MDM solutions cannot address
device interactions with other external systems. Attacks are known to occur via
USB cable when a device is connected to a desktop computer to synchronize
and back up data from the device. Hackers can leverage the installed malware
to monitor and log user activities or even keystrokes on the infected mobile
device in order to intercept corporate credentials and passwords. When the
compromised mobile device connects back to the corporate network, the entire
network is exposed to a potential advanced persistent threat (APT) attack.

Because of the aforementioned security protection limitations, existing MDM
solutions cannot fulfill the security objectives as defined by NIST for mobile
devices. Mobile devices that are managed by existing MDM solutions, and
which are permitted on corporate networks, continue to be one of the weakest
points in the enterprise security domain. The inability of MDMs to fully protect
managed mobile devices partially comes from their ineffective security model,
which lacks an understanding of enterprise security objectives and requirements.
An MDM is designed to protect the security of a physical device. It is a passive
security approach that does not proactively prevent a hacker from attacking
the managed mobile device, but reactively relies on remotely wiping the data
off the device after some security violations have occurred. In the event of a
device breach, the data‐erasing mechanism may fail because the MDM server
needs to communicate with the MDM agent on the device to perform the erase

 Chapter 9 ■ Mobile Security 303

operation, and the mobile device may be turned off, thus losing network con-
nectivity, after it is compromised.

Finally, an MDM imposes restrictions on what users can do with a managed
mobile device. In the era of BYOD that is now expanding into what is called
“bring your own network” (BYON), when mobile devices are no longer provided
by corporations, MDM becomes an unattractive option.

Mobile Applications and Their Impact on Security

The evolution of mobile security demands a better approach to protecting enter-
prise information stored on mobile devices. This gives rise to Mobile Application
Management (MAM). Unlike MDM, MAM focuses on mobile applications that
have access to corporate networks and data on a device. By ensuring that only
trusted applications from the enterprise application store can be installed on
mobile devices, MAM can isolate untrusted applications from accessing corporate
resources. However, MAM solutions provide little or no protection for either
the mobile devices or the corporate data stored on the devices.

The core of enterprise mobile security is enterprise data security. The par-
ticular problem to address is how to implement fine‐grained policies to device
data management in order to achieve access control and confidentiality. For
example, the goal is to limit the amount of data that can be stored on the device
and make encryption mandatory to both minimize the chance of data theft and
reduce potential damage in the case of a security breach of the mobile device.
The solution to this data security problem requires multilayered approaches that
include mobile device management, application management, data encryption,
policy enforcement, network access control, malware detection and prevention,
and so on.

A close examination of the mobile application landscape reveals some undeni-
able trends. For example, each mobile application is designed to access a specific
service, and many of these services are cloud‐based. Also, a vast number of mobile
applications access a service directly through the mobile OS networking layer
by means of custom protocols, instead of using a traditional web browser or the
HTTP protocol. Therefore, solving the BYOD challenge in a corporate environ-
ment demands a thorough understanding of the mobile applications and their
users. Deep knowledge of mobile applications enables better decision‐making for
security, performance, network optimization, and risk management. Visibility
into mobile applications enables detailed logging and reporting for compliance.
From the mobile network operator (MNO) perspective, accurate identification of
mobile applications is mandatory in enforcing a service level agreement (SLA).

There are almost as many mobile applications as there are publishers. Unlike
the traditional desktop software market where the publishers are typically
well‐known and established companies with trustworthy reputations, most

304 Chapter 9 ■ Mobile Security

mobile developers have unknown reputations, and many may publish just
a single application and then disappear permanently. The sea of apps, in the
millions, makes mobile users less concerned about the presumed identity of an
individual developer and the developer’s reputation.

In theory, users must scrutinize the pedigree of any mobile application to be
installed on their device. However, the distribution channels of these mobile
applications, namely, the Apple App Store and Google Play, make these applica-
tions available to end users very quickly from publication to installation. This
rapid acceptance changes mobile users’ perception about the criticality of a pub-
lisher’s reputation and the intent behind a mobile app. Even when the developers
are not nefarious characters, many of them are not seasoned programmers and
are not versed in security. Some simply have little or no regard for security. As
such, applications created by these types of developers are prone to attacks and
can be easily exploited and turned into malicious actors.

Mobile app marketplaces do not necessarily concentrate on vetting these
mobile applications from a security perspective, although each makes a dili-
gent effort at conducting a rudimentary security review, identifying malicious
applications, and ensuring the timely removal of those bad apps. The pricing of
mobile apps—where many cost a few dollars or less and others are ad‐sponsored
and therefore free—is another factor that affects a user’s judgment in selecting
and allowing apps to be installed on their device.

The availability of a large number of apps raises the curiosity of end users
and entices them to experiment with as many apps as possible. As quickly as
their fingers can point and swipe, mobile users install the free applications,
often without heeding the security warnings that appear during app installa-
tion. For example, although Android implements a privilege separation model,
where a sandbox isolates application execution such that the application’s data
is protected within the sandbox from unauthorized access, the user may unin-
tentionally grant a malicious app Signature/System permission, thus allowing
the malicious app to circumvent this protection model.

Security Threats and Hazards in Mobile Computing

The different types of connectivity available on mobile devices—including
Bluetooth, 3G and 4G, and WiFi access—combined with the physical mobility
attribute, have broadened the attack vectors of these mobile devices compared
to desktop systems. The protection options for mobile devices are limited today
for various reasons.

First, there is a general lack of antivirus and anti‐malware software that is
specifically designed for mobile devices. This is mainly due to the large diver-
sity in both mobile operating systems and hardware platforms. The makeup of
the device platform, such as the processor selection, the system‐on‐chip (SoC)

 Chapter 9 ■ Mobile Security 305

design, the memory, the persistent storage, and the battery, varies from vendor to
vendor and thus increases the complexity and scalability of providing uniform
software for each device type.

Second, the underlying mobile OS or platform may restrict the capability of
the antivirus software. For example, because Apple iOS is a closed proprietary
mobile OS, third‐party vendors cannot modify the kernel or provide system
libraries for the OS. Because each application that executes in the iOS is shielded
from other running applications, a virus scanner running as an application
will not be able to access system files and look for a virus infection. Therefore,
Apple must grant special privileges to antivirus scan applications. However,
in the past Apple rejected a well‐known antivirus software vendor in its bid
to produce a version of its product for iOS‐powered devices. Even for an open
system such as Android, running an antivirus scan can overheat the CPU and
drain the battery rapidly because virus scanning is a complex operation.

Third, although mobile security research is an active area with commercial
support from the industry, mobile security is still in the early stages, and com-
mercial solutions that stem from these research activities are still far from frui-
tion. This is partly due to the OS design, whether Android or iOS, with the goal
of luring application developers to build as many applications as is humanly
imaginable, and as fast as is humanly possible, to expand the mobile application
landscape. The more apps there are, the faster and more solidified the market
adoption of the mobile OS—and the mobile devices that are powered by these
mobile operating systems—will become.

Finally, most end users have neither the technical knowledge to comprehend
the possible security threats nor any interest in acquiring such knowledge even
as the media have increased their coverage of cyber‐attacks; as such, the demand
for mobile security products is limited at best.

In the following sections, we list some of the more severe security issues
challenging mobile operating systems.

Cross‐Origin Vulnerability
From the very beginning, mobile operating systems were designed for usability
and interaction, and security was an afterthought. At the core of this security
challenge is the lack of security‐related support at the OS level. Consequently,
one of the most severe security problems is cross‐origin vulnerability.

WebView is the most utilized software on mobile devices today, and it is the
biggest attack surface because just about every mobile app uses the WebView
APIs to access the Internet. Both iOS and Android adopted the WebView class,
which enables a mobile application to incorporate basic browser functionality.
They embedded these capabilities inside a mobile app, which enables the app
to interact with the web and web contents as a basic browser. However, the
same‐origin security policy enforcement and protection that restrict content

306 Chapter 9 ■ Mobile Security

from one website from accessing and interfering with content retrieved out
of a different website are missing from the mobile operating systems. On a
mobile device, one app can interact with other apps or requesting services that
are running on the same device to enhance its functionality. An example is
the iOS mail reader, which can launch an appropriate app and send an attach-
ment to that app for processing. The same‐origin policy is not available in the
inter‐app communication channels in the mobile operating systems, which
allows attackers to launch mobile cross‐site request forgery (CSRF) attacks and
cross‐site scripting attacks.

The root of the problem lies in the underlying implementation of the app‐
to‐app communication channels inside iOS and Android. The inter‐app com-
munication channels include the Android intent channel, the URL scheme for
both iOS and Android, and the utility component (or class), such as WebView.
Fundamentally, the messages that are exchanged within these channels do not
contain any origin information. The intent channel is Android‐specific and
allows one app to activate the activities of another app or activate a background
service. Similarly, the URL scheme allows one app to use a URL to launch
another app or service.

Without origin‐crossing protection in the mobile operating systems, a mali-
cious app can essentially activate another app with arbitrary parameters, retrieve
the contents of the other app, and ultimately manipulate the other app to steal
credentials or other confidential data. Because this cross‐origin vulnerability
exists in both iOS and Android, the fixes must be applied to the underlying
operating systems. Fixing this vulnerability will take time due to the need to
change the underlying OS design, which can cause massive app compatibility
issues. In addition, applying the necessary patches across all vendors is a daunt-
ing task, which leaves many existing devices vulnerable.

Near Field Communication
Near Field Communication (NFC) technology is increasingly designed into
mobile devices. NFC allows mobile devices that are in close proximity to pair
and communicate with each other. Examples of NFC being used include in‐store
payment transactions, exchange of contact information, and device configuration.
The first commercial use of NFC in Apple iPhone 6, followed by its adoption in
Android‐based mobile devices, will demand mutual device authentication as an
essential step, a technology that is immature today. Apple has restricted the use
of the NFC chip to Apple Pay and has not made NFC available to third‐party
developers. A user’s fingerprint is more than just a passcode to unlock the phone
and is now associated with the built‐in mobile payment system.

The proliferation of NFC will go beyond the payment and POS system.
However, as with any new technology, attacks on NFC will begin to surface,
and protecting the mobile device from unintentional NFC communication

 Chapter 9 ■ Mobile Security 307

will become mandatory. Malicious NFC tags that contain URLs can cause the
device to process a URL and land at a malicious website, resulting in attacks
such as drive‐by downloads. Unless protected, peer‐to‐peer interactions with
other NFC‐enabled systems can potentially cause involuntary retrieval and
installation of malicious apps, in addition to potentially leaking information
to malevolent devices.

Application Signing Transparency
Android apps in Google Play are digitally signed using self‐signed certificates.
The identity and information offered in self‐signed certificates can be fabricated
to anything the signer intends. Based on a study conducted in April 2014, out of
the 97 percent of apps that are free in Google Play, which represent over 980,000
apps, 97 percent of those free apps have self‐signed certificates. If a reputable
and legitimate key is stolen, Google Play will not have an effective mechanism
in place to revoke the key.

Library Integrity and SSL Verification Challenges
Android is a popular mobile OS platform, having close to 80 percent of the market
share, and it has some unique security challenges of its own. Because Android
applications are developed using the Java programming language, various tools
are available to decompile and repackage an application. Attackers have attached
malicious payloads or injected malicious code into legitimate apps and then
repackaged the modified applications for redistribution to infect unsuspecting
users. Similar attacks have been applied to third‐party libraries as well.

The first type of modification is to remove license protection from the
third‐party library. Another type of attack involves creating a new library
that occupies the same namespace, essentially masquerading as its legiti-
mate counterpart. Many capabilities on Android devices are provided by
third‐party libraries, and free apps that are sponsored by advertisers include
ad‐libraries. The abundance and availability of third‐party libraries means
that an Android‐based mobile app has a higher chance of embedding in it
a third‐party library that may be rogue, and which may exhibit unwanted
activity such as collecting information on user behaviors and analyzing and
exporting users’ private data.

Studies done by a security vendor have shown that over 40 percent of sampled
Android apps were not properly programmed with the SSL library. These pro-
gramming errors include lack of or improper server certificate validation and
lack of server hostname verification against CA‐issued certificates, resulting in
Android apps being susceptible to MITM attacks even when SSL/TLS has been
enabled in the transaction. Many of these same apps are also found to ignore
SSL errors.

308 Chapter 9 ■ Mobile Security

Ad Fraud
Ad fraud and malvertising are two prevalent problems on the Android plat-
form. Malvertising refers to the injection of malicious advertisements into the
advertising networks and contaminating syndicate contents. Malvertising is
made possible due to the practice of ad arbitration. Ad arbitration refers to the
process of buying and selling advertisements, which results in an undesirable
situation where a website cannot guarantee the origin and the integrity of an
advertisement that is displayed on its web pages.

Those ad‐sponsored “free” Android apps must link with ad libraries so that
advertisement content can be fetched from the ad servers and then displayed
to the end user. These apps are prone to attacks that turn the mobile device into
a bot that then stealthily clicks ads without displaying the ads to the user and
without user consent, thus fraudulently generating revenue for the ad publish-
ers. These stealthy ad downloads can also retrieve malvertising content and
subject the device to further hacking.

Research Results and Proposed Solutions

In this section, we provide an overview of some of the representative solutions
and frameworks that have been proposed to address mobile device security
problems.

An ontology‐based semantic firewall focuses on protecting the privacy of a
user’s identity and data. The data set that requires protection is gathered first.
Then the explicit knowledge of data access patterns by mobile applications
is expressed using the OWL Web Ontology Language. The predefined security
policies are represented in the Semantic Web Rule Language. In this proposed
semantic firewall, once the ontologies have been populated and when a request
is being made, the firewall consults the description logic reasoning module
to perform the inferences according to the configured policy rules. The result
of the inference is a binary action of permitted or forbidden. If the request is
permitted, then the firewall provides the requested data and subsequently
logs the transaction.

The purpose of an application lockbox is to protect a sensitive application and
its data by means of an encrypted application volume. The sensitive applica-
tion, its data, and the memory swap file during execution all reside inside the
sandbox and are cryptographically protected. The proposed design is com-
prised of two cooperating components: the on‐box limited trusted computing
platform (TCP) and the off‐box policy decisions and trust modeling component.
The off‐box decision component determines the access control and is enforced
by the on‐box TCP. The communication taking place between the on‐box TCP and
the off‐box decision module is secure. The main security goal of the application

 Chapter 9 ■ Mobile Security 309

lockbox in this proposal is to protect the sensitive application and its data in
cases where the physical device has been compromised.

The bare metal hypervisor, also known as the Type‐1 hypervisor approach,
assumes that the built‐in mobile OS, the pre‐installed applications, and third‐party
applications installed by the user are all untrusted. The bare metal hypervisor
is the only trusted component in the mobile execution environment that has
direct access to the physical hardware. Running on top of this trusted hypervi-
sor are the built‐in mobile OS and its applications, and the trusted mobile OS
running trusted applications. In this model, the hypervisor isolates the trusted
systems from the untrusted systems of the mobile device ecosystem. The open
source L4 Android project offers another virtual machine approach by means
of developing a microkernel that can run multiple virtual machines (VMs) to
achieve isolation.

Intrusion detection systems that are specific to mobile devices and smartphones
use an on‐device lightweight agent to gather intelligence followed by off‐box
analysis to detect anomalous behaviors. Various solutions take this approach
and differ in the types of data that are gathered, the context in which the data
is interpreted, and the types of analysis that are performed. For example, in the
knowledge‐based temporal abstraction method, time‐stamped primitive param-
eters and events are collected. The context interprets a primitive parameter to
form an abstract parameter. For example, CPU usage is a primitive parameter,
user‐activity is the context, and interpreting a high CPU utilization when the
user is inactive indicates an abnormal system state. The user‐activity context
maps the value of the primitive parameter, for example, 30 percent CPU utili-
zation, to a value of HIGH for an abstract parameter CPU‐state. Then, patterns
are formed for anomalous analysis.

In the cloud‐based antivirus solution, the mobile agent sends files to a cloud
service, where multiple antivirus engines, each running inside a VM, will per-
form simultaneous scanning on those files. Another behavior‐based detection
framework takes on the crowd‐sourcing strategy. The agent application tracks
the API calls of each application and sends the log into the cloud, where logs
from other users are combined for analysis and detection of malware.

The iOS and Android mobile OS come with a built‐in virtual private network
(VPN) solution. In particular, the iOS VPN solution has been designed with the
enterprise in mind. The Apple mobile device management (MDM) infrastructure
allows an IT manager to provision a specific device profile into an iOS device
remotely. The MDM device profile enables the VPN on‐demand feature in iOS,
where access to certain domains or IP addresses will activate the VPN service
automatically, thus providing a seamless method to access the enterprise networks
securely. The VPN technology is also deployed to bridge mobile phones to cloud‐
based security services. In this case, all traffic that originates from the mobile
device is directed into the cloud where security services such as virus and malware
detection, data leak prevention, and phishing attack detection are performed.

310 Chapter 9 ■ Mobile Security

The VPN‐based solution deserves some extra discussion because the tech-
nology is adopted by enterprises as well as by cloud service vendors. Because
enterprises and cloud vendors have deployed iOS VPN solutions in practice,
we will focus our discussion on iOS. The network component of the VPN client
inside iOS is based on an early version of the open source Racoon software. The
specific version of Racoon adopted in iOS, as verified in iOS version 4.0, has
limited configurability, and due to what appear to be software bugs, it cannot
process certain configuration parameters sent by the VPN server correctly. As
such, the VPN on‐demand feature is not as configurable as intended. In addi-
tion, iOS does not have the ability to establish multiple active VPN tunnels
simultaneously. The end result is problematic because the iOS device cannot
connect to multiple services—such as to the enterprise network, a third‐party
cloud service, and services on a home network—at the same time.

Even if multiple VPN channels can be established at the same time, the
split‐DNS support is missing. Without split‐DNS it is difficult to perform DNS
name resolution for local domain names (for the iOS device side, for example,
these are home network nodes), the internal domain names (the enterprise or
cloud internal nodes), and external domain names (all other nodes that reside
outside the enterprise, cloud, and home networks) when multiple VPN tunnels
are active.

The problem is that when the VPN connection is established, if the VPN
server sends the DNS server information to the iOS device, this provided
DNS server will be used for internal domain name resolution as well as for all
other name resolutions. For example, consider the situation where an enter-
prise user with an iPad is connected to an enterprise WiFi network. When
that enterprise user needs to access a cloud‐based service, the iPad connects
to the cloud over VPN. As soon as the iPad connects to the cloud, the cloud
sends back a DNS server as part of the VPN configuration. At this point, the
internal enterprise resources are no longer accessible by hostname (such as
“mail.internal.bluecoat.com”) simply because the DNS server that is given by
the cloud does not contain any entries for the internal resources. Although each
internal resource may still be accessible by specifying the actual IP addresses,
it is still problematic because IP addresses can change constantly when DHCP
is used for address assignment.

Enhancements made to Android since the introduction of version 4.2 include
multiple user accounts and restricted profiles. The concept behind multiple user
accounts is to designate one user as the owner while all other accounts enjoy
the same privileges as the owner account without user management capability.
The restricted profile accounts cannot manage users and cannot install apps on
the device. These enhancements toward user data isolation are on the right path
to a more secure system, but they fall short in both design and implementation.
The design deficiencies not only fail to offer isolation protection for the user,
user‐initiated apps, and user data, but they may also allow secondary users to

 Chapter 9 ■ Mobile Security 311

launch privilege escalation attacks within the system. The evolution towards
execution separation and data isolation must leverage mobile processor hard-
ware capability such as the TrustZone extension offered by ARM (Advanced
RISC Machines), which is specifically designed for security and offers physical
partition of system resources into a secure world and a normal world.

Techniques for malicious app detection include dynamic analysis and static
analysis. Dynamic runtime analysis observes an app’s runtime execution behavior,
by means of sandboxing and system call interposition. With sandboxing, a mobile
app is executed inside a VM and emulator and uses the fuzzing technique that
injects different input to induce runtime behaviors for analysis. The fuzzing
technique can also be applied to probe app vulnerability. Dynamic analysis
includes an external component that monitors and records network activities
generated by the app. Static analysis is identical to the reverse engineering process
and mostly performs code analysis through call graphs and data dependency
graphs. In system call interposition, an analysis module attaches to a running
app and monitors the app’s interaction with the system by intercepting and
analyzing the system calls made by the app.

Infrastructure‐Centric Mobile Security Solution

Device‐based security solutions are segmented and are mostly research‐based
solutions with little commercial exposure. As a result, the adoption of a specific
solution remains in the context of academic research with some endorsement
from the industry. In other words, mobile security solutions are still in their
infancy. The problem is particularly thorny given the issues of mobile OS and
hardware platform diversity, which are driving research on combining cloud‐
based protection with a lightweight on‐device agent.

An infrastructure‐based protection solution solves the mobile end‐point
problems of lack of computing power (although mobile platforms are advancing
on this front), lack of a mature antivirus and anti‐malware scanner software on
each platform, and fast depletion of battery power. Mobile security must be a col-
laborative effort among mobile service providers and mobile network operators,
with mobile users being willing to offer cooperation and permit inspection. The
mobile network must be made programmable so that the network can evolve
according to ever‐changing security needs.

Furthermore, in today’s networks, there exist middle‐boxes or proxies that enable
in‐network protection—such as data leak prevention (DLP), web filtering, and
antivirus—to be applied to traffic crossing the boundary between the corporate
network and the Internet. Because mobile applications and devices face some
of the same attack vectors as their desktop counterparts, the lack of protection
from security proxies on cellular data networks exposes these mobile devices
to attacks on a massive scale.

312 Chapter 9 ■ Mobile Security

Towards the Seamless Integration of WiFi
and Cellular Networks
WiFi and cellular networks are two complementary types of wireless access
networks. Although the cellular network data rate has increased drastically
over the last decade with the help of advanced radio technologies, it still cannot
match the growth of data‐hungry devices, such as smartphones and tablets. As
a consequence, mobile network operators (MNOs) are under constant pressure
from limited licensed spectrums for cellular use. In addition, poor indoor cel-
lular coverage forces the MNOs to explore alternative connectivity solutions
to deliver better network services. Integrating WiFi with cellular networks
not only extends the coverage of MNOs’ networks but also reduces congestion
on cellular network backbones. As a matter of fact, WiFi and cellular network
integration has become the industry trend. Figure 9-1 shows a sample WiFi and
cellular inter‐networking solution under the 3GPP framework.

Figure 9-1: Integration of WiFi and Cellular Networks

MNO Private WiFiPublic WiFi

WAG/TWAG

TTG/ePDG

GGSN/P-GW

3G/4G/LTE

Internet

APPS

Enterprise MDM ServicesAAA

MNO Services

QoS Billing SMS

GTP/PMIP
Tunnel

GTP/PMIP
Tunnel

IP
Se

c T
unn

el
IPSec T

unne
l

In such implementations, the user equipment (UE) can choose to connect to
either cellular networks (for example, 3G, 4G, or LTE) or WiFi networks. Like the
current cellular network structure, the cellular towers are connected (through

 Chapter 9 ■ Mobile Security 313

the radio access network) to the Gateway GPRS Support Node (GGSN) in 2G/3G
architecture or the Packet Data Network Gateway (P‐GW) in 4G/LTE architecture.
The GGSN/P‐GW has access to both the Internet and the MNO’s own service
network where the core MNO services, including QoS, billing, and SMS, are
provided. For WiFi access, the UE has the option to use the MNO’s own private
WiFi service or the public WiFi in the event that the MNO’s WiFi network is not
available. In the former case, because the WiFi access point (AP) is operated and
owned by the MNO, the UE can view it as a trusted WiFi service and therefore
no encryption is required. When an MNO’s private WiFi AP receives traffic from
the UE, the AP needs to tunnel the IP traffic using the cellular standards and
send it to the GGSN/P‐GW. Such tunneling is performed at the wireless access
gateway (WAG) in 2G/3G architecture or the trusted wireless access gateway
(TWAG) in 4G/LTE architecture.

The protocols that use tunneling, such as the GPRS Tunneling Protocol (GTP)
and Proxy Mobile IP (PMIP), provide IP mobility so that the UE can roam seam-
lessly between access networks. Using a public WiFi is the most complicated
scenario because it requires that the UE establish a secure tunnel connection
between itself and the MNO’s network through the untrusted public WiFi net-
work. The MNO network module for handling the secure tunnel is called the
Tunnel Termination Gateway (TTG) in 2G/3G architecture or the Evolved Packet
Data Gateway (ePDG) in 4G/LTE architecture. Usually, the secure tunnel is an
IPsec tunnel initiated by the UE using the credentials that can be authenticated
by the AAA server in the MNO’s network. The TTG/ePDG not only decrypts
the IPSec tunnel from the UE but also encapsulates the decrypted IP traffic
using GTP or PMIP and forwards it to the GGSN/P‐GW to support mobility.
It can be seen that regardless of the wireless access network the UE uses, the
UE can roam freely and securely reach the Internet and, hence, the enterprise
MDM services through the MNO’s core cellular network.

With this integration, a wireless enterprise user can roam freely between
WiFi networks and cellular networks without losing connectivity to the enter-
prise MDM services. The user can choose to connect to both networks at the
same time to aggregate the wireless network bandwidth. The user’s privacy is
also better protected because the MNO can steer the user’s traffic so that only
business‐related traffic is directed to the enterprise network. Meanwhile, the
MNO can offload some traffic from the cellular network to the WiFi network
while maintaining the same level of MNO core services. WiFi and cellular
network integration makes it possible to fully realize enterprise MDM goals.

Security in the Network
The network‐centric solution, shown in Figure 9-2, becomes much more feasible
due to the continuous drive to integrate WiFi and cellular networks, with seam-
less roaming between these two technologies.

314 Chapter 9 ■ Mobile Security

Figure 9-2: Network‐Based Mobile Device Protection

Mobile Network
Operators

Enterprise MDM Service

Mobile Device
Policy Controllers

Cloud-Based
App Threat Analytics

Regional Operation
Center

APPS

WiFi Network

Real-Time Mobile Application and Threat Analysis System

Push Policy and Threat
Information

Push Policy and
Threat Information

WiFi Link
IEEE 802.11 a/b/g/n/...

Management and
Reporting

Subscription
Update

Cellu
lar Link

3G/HSPA/LTE/

In the network‐centric mobile security solution, the mobile device is under
the protection of both the WiFi and the cellular networks. Mobile application
classification is performed in the network. When the mobile device connects to
the wireless access point (AP), the WiFi AP extracts a small amount of packet
data and payload bytes and submits the information to an on‐box classifier.
The on‐box classifier tries to classify the traffic against its application cache; if
that is not present, then it sends the information to the regional operation center
(ROC). The ROC classifies the traffic and then pulls the associated application
threat attributes from a cloud‐based analytics service. The classified applica-
tion and its attributes are then examined against a set of policies defined by
the enterprise, and the corresponding policies are provisioned into the WiFi AP
for enforcement. The WiFi AP installs and enforces the new security policies
accordingly. Newly analyzed information is then recorded and submitted to a

 Chapter 9 ■ Mobile Security 315

cloud‐based analytics service to propagate to other ROCs. Similar operations
are performed on the cellular networks.

Summary

There are now well over a million unique mobile applications in Google Play
and the Apple App Store combined, and the growth of those app marketplaces
shows no sign of slowing down. Unlike traditional computing systems, imple-
menting adequate end‐point security solutions in mobile devices is impractical
with the current designs of mobile operating systems and under the constraints
defined by the hardware platform. Mobile security is under active research, and
viable solutions are still under development. Infrastructure‐centric security
solutions combined with cloud‐based defense are important practical strategies
in combating the ever‐evolving and highly adaptive threats in the wild.

Application identification and behavior profiling are key to implementing intel-
ligent, fine‐grained, and policy‐based control on mobile applications. Enterprises
and government agencies must pay close attention to this mobile security prob-
lem. Mobile service providers and operators must understand the importance
of security and privacy, begin the construction of infrastructure‐centric mobile
security solutions as a mandatory service, and proactively offer these new
 services to mobile users to gain their trust and cooperation.

317

Aho, Alfred V., and Margaret J. Corasick. 1975. “Efficient string matching: An
aid to bibliographic search.” Commun. ACM, 18(6) (June 1975): pp. 333–340.

Albright, David, Paul Brannan, and Christina Walrond. 2010. .ISIS Reports: “Did
Stuxnet Take Out 1,000 Centrifuges at the Natanz Enrichment Plant? Preliminary
Assessment.” In http://isis-online.org/isis-reports/detail/did-stuxnet-
take-out-1000-centrifuges-at-the-natanz-enrichment-plant/.

Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. 2014. “FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps.” SIGPLAN Not. 49(6):
pp. 259–269.

Bierma, M., E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe. 2014. “Andlantis:
Large-scale Android Dynamic Analysis.” In Proceedings of the Third Workshop
on Mobile Security Technologies (MoST) 2014. San Jose, CA, USA.

Blasco, Jaime. 2014. “Scanbox: A Reconnaissance Framework Used with Watering
Hole Attacks.” In https://www.alienvault.com/open-threat-exchange/blog/
scanbox-a-reconnaissance-framework-used-on-watering-hole-attacks.

Blue Coat Systems. 2014. “One-day Wonders: How Malware Hides Among
the Internet’s Short-Lived Websites.” In https://www.bluecoat.com/
security-report-one-day-wonders.

Bos, Herbert. “Shelia: A client-side honeypot for attack detection.” In http://
www.cs.vu.nl/~herbertb/misc/shelia/.

Bibliography

http://isis-online.org/isis-reports/detail/did-stuxnet-take-out-1000-centrifuges-at-the-natanz-enrichment-plant/
http://isis-online.org/isis-reports/detail/did-stuxnet-take-out-1000-centrifuges-at-the-natanz-enrichment-plant/
http://isis-online.org/isis-reports/detail/did-stuxnet-take-out-1000-centrifuges-at-the-natanz-enrichment-plant/
https://www.alienvault.com/open-threat-exchange/blog/scanbox-a-reconnaissance-framework-used-on-watering-hole-attacks
https://www.bluecoat.com/security-report-one-day-wonders
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.cs.vu.nl/~herbertb/misc/shelia/
https://www.alienvault.com/open-threat-exchange/blog/scanbox-a-reconnaissance-framework-used-on-watering-hole-attacks
https://www.bluecoat.com/security-report-one-day-wonders

318 Bibliography

Boutin, Jean-Ian. 2013. “Targeted information stealing attacks in South Asia use
email, signed binaries.” In http://www.welivesecurity.com/2013/05/16/
targeted-threat-pakistan-india/.

Burguera, Iker, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. “Crowdroid:
Behavior-based malware detection system for Android.” In Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile
devices (SPSM) 2011. ACM, New York, NY, USA, pp. 15–26.

Chen, Xiaobo and Dan Caselden. 2013. “New IE Zero-Day Found in Watering
Hole Attack.” In http://www.fireeye.com/blog/technical/2013/11/new-
ie-zero-day-found-in-watering-hole-attack.html.

Cisco Systems (2014). Cisco Visual Networking Index: Forecast and Methodology,
pp. 2013–2018.

Cooijmans, T., J. de Ruiter, and E. Poll. 2014. “Analysis of Secure Key Storage
Solutions on Android.” In Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM) 2014. ACM, New
York, NY, USA, pp. 11–20.

Crussell, J., R. Stevens, and H. Chen. 2014. “MAdFraud: Investigating ad fraud
in android applications.” In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services (MobiSys) 2014.
ACM, New York, NY, USA, pp. 123–134.

Curtsinger, Charlie, Benjamin Livshits, Benjamin Zorn, and Christian Seifert.
2011. “ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection.” In
Proceedings of the 20th USENIX Conference on Security Symposium, pp. 33–48.

Dabrowski, A., K. Krombholz, J. Ullrich, and E. R. Weippl. 2014. “QR Inception:
Barcode-in-Barcode Attacks.” In Proceedings of the 4th ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM) 2014. ACM,
New York, NY, USA, pp. 3–10.

Dinaburg, Artem, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. “Ether:
Malware analysis via hardware virtualization extensions.” In Proceedings of
the 15th ACM conference on Computer and communications security, pp. 51–62.

The Economist. 2010. “War in the fifth domain: Are the mouse and keyboard the
new weapons of conflict?” In http://www.economist.com/node/16478792.

Fahl, S., S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith. 2014. “Hey,
NSA: Stay Away from my Market! Future Proofing App Markets against
Powerful Attackers.” In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS) 2014. ACM, New York,
NY, USA, pp. 1143–1155.

Farshchi, Jamil. 2010. “Statistical-Based Intrusion Detection.” In http://www
.symantec.com/connect/articles/statistical-based-intrusion-detection.

Feng, Y., S. Anand, I. Dillig, and A. Aiken. 2014. “Apposcopy: Semantics-based
detection of Android malware through static analysis.” In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE) 2014. ACM, New York, NY, USA, pp. 576–587.

http://www.welivesecurity.com/2013/05/16/targeted-threat-pakistan-india/
http://www.fireeye.com/blog/technical/2013/11/new-ie-zero-day-found-in-watering-hole-attack.html
http://www.fireeye.com/blog/technical/2013/11/new-ie-zero-day-found-in-watering-hole-attack.html
http://www.fireeye.com/blog/technical/2013/11/new-ie-zero-day-found-in-watering-hole-attack.html
http://www.economist.com/node/16478792
http://www.symantec.com/connect/articles/statistical-based-intrusion-detection
http://www.welivesecurity.com/2013/05/16/targeted-threat-pakistan-india/
http://www.symantec.com/connect/articles/statistical-based-intrusion-detection

 Bibliography 319

Fewer, Stephen. “Reflective DLL Injection.” In https://github.com/stephenfewer/
ReflectiveDLLInjection.

Fisher, D. H., M. J. Pazzani, and P. Langley (eds.). 1991. Concept Formation: Knowledge
and Experience in Unsupervised Learning. San Francisco: Morgan Kaufmann.

Fisher, Dennis. 2012. “Final Report on DigiNotar Hack Shows Total Compromise
of CA Servers.” In http://threatpost.com/final-report-diginotar-hack-
shows-total-compromise-ca-servers-103112/77170.

Frantzen, Swa. 2011. “DigiNotar breach – the story so far.” In https://isc.sans
.edu/diary/DigiNotar+breach+-+the+story+so+far/11500.

Fusco, F., M. Stoecklin, and M. Vlachos. 2010. “NET-FLi: On-the-fly Compression,
Archiving and Indexing of Streaming Network Traffic,” VLDB End. 3(2): pp.
1382–1393.

Ge, X., H. Vijayakumar, and T. Jaeger. 2014. “Sprobes: Enforcing Kernel Code
Integrity on the TrustZone Architecture.” In Proceedings of the Third Workshop
on Mobile Security Technologies (MoST) 2014. San Jose, CA, USA.

Global Research & Analysis Team, Kaspersky Lab. 2013. “Winnti.
More than just a game.” In http://securelist.com/analysis/
internal-threats-reports/37029/winnti-more-than-just-a-game/.

Goodin, Dan. 2012. “SHA1 crypto algorithm underpinning Internet secu-
rity could fall by 2018.” In http://arstechnica.com/security/2012/10/
sha1-crypto-algorithm-could-fall-by-2018/.

Gorla, A., I. Tavecchia, F. Gross, and A. Zeller. 2014. “Checking App Behavior
Against App Descriptions.” In Proceedings of the 36th International Conference
on Software Engineering (ICSE) 2014. ACM, New York, NY, USA, pp. 1025–1035.

Green, Matthew. 2012. “The Internet is broken: could we please fix it?” In http://
blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html.

Grier, C., L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko, P.
Mavrommatis, et al. 2012. “Manufacturing Compromise: The Emergence of
Exploit-as-a-Service.” In Proceedings of the ACM conference on Computer
and communications security, pp. 821–832.

Gudeth, Kevin, Matthew Pirretti, Katrin Hoeper, and Ron Buskey. 2011. “Delivering
secure applications on commercial mobile devices: The case for bare metal
hypervisors.” In Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices (SPSM) 2011. ACM, New York,
NY, USA, pp. 33–38.

Gummeson, J. J., B. Priyantha, D. Ganesan, D. Thrasher, and P. Zhang. 2013.
“EnGarde: Protecting the mobile phone from malicious NFC interactions.” In
Proceedings of the 11th annual international conference on Mobile systems,
applications, and services (MobiSys) 2013. ACM, New York, NY, USA, pp. 445–458.

Hu, W., D. Octeau, P. D. McDaniel, and P. Liu. 2014. “Duet: Library integrity
verification for android applications.” In Proceedings of the 2014 ACM confer-
ence on Security and privacy in wireless and mobile networks (WiSec) 2014.
ACM, New York, NY, USA, pp. 141–152.

https://github.com/stephenfewer/ReflectiveDLLInjection
http://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170
http://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170
http://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170
https://isc.sans.edu/diary/DigiNotar+breach+-+the+story+so+far/11500
http://securelist.com/analysis/internal-threats-reports/37029/winnti-more-than-just-a-game/
http://arstechnica.com/security/2012/10/sha1-crypto-algorithm-could-fall-by-2018/
http://blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html
http://blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html
https://github.com/stephenfewer/ReflectiveDLLInjection
https://isc.sans.edu/diary/DigiNotar+breach+-+the+story+so+far/11500
http://securelist.com/analysis/internal-threats-reports/37029/winnti-more-than-just-a-game/
http://arstechnica.com/security/2012/10/sha1-crypto-algorithm-could-fall-by-2018/

320 Bibliography

Hunt, Galen, and Doug Brubacher. 1999. “Detours: Binary Interception of
Win32 Functions.” In Proceedings of the 3rd USENIX Windows NT
Symposium.

Invernizzi, Luca, S. Benvenuti, M. Cova, P. M. Comparetti, C. Kruegel, and
G. Vigna. 2012. “EvilSeed: A guided approach to finding malicious web
pages.” In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
pp. 428–442.

Invernizzi, Luca, L. Invernizzi, S. Benvenuti, P. M. Comparetti, M. Cova, C. Kruegel,
and G. Vigna. 2014. “Nazca: Detecting Malware Distribution in Large-Scale
Networks.” In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

Ho, Grant, Dan Boneh, Lucas Ballard, and Niels Provos. 2014. “Tick tock: Building
browser red pills from timing side channels.” In Proceedings of the 8th USENIX
Workshop on Offensive Technologies (WOOT).

K, Abid Rahman. 2012. “K-Means Clustering – 1: Basic Understanding,” http://
opencvpython.blogspot.com/2012/12/k-means-clustering-1-basic-under-

standing.html.
Kapravelos, Alexandros, Marco Cova, Christopher Kruegel, and Giovanni Vigna.

2011. “Escape from monkey island: Evading high-interaction honeyclients.”
In Proceedings of Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), pp. 124–143.

Kapravelos, Alexandros, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,
and Giovanni Vigna. 2013. “Revolver: An Automated Approach to the Detection
of Evasive Web-based Malware.” In Proceedings of the 22nd USENIX Security
Symposium, pp. 637–652.

Karagiannis, T., A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. 2004. “Is
P2P dying or just hiding?” In Proceedings of the Global Telecommunications
Conference, 2004 IEEE.

Kirat, Dhilung, Giovanni Vigna, and Christopher Kruegel. 2014. “BareCloud:
Bare-metal analysis-based evasive malware detection.” In Proceedings of the
23rd USENIX Security Symposium, pp. 287–301.

Kirk, Jeremy. 2013. “Hacking victim Bit8 blames SQL injection flaw.” In http://
www.infoworld.com/article/2612962/intrusion-detection/hacking-victim-

bit9-blames-sql-injection-flaw.html.
Kohavi, R., and G. H. John. 1997. “Wrappers for Feature Subset Selection.” Artificial

Intelligence, 97(1–2) pp. 273–324.
Kolbitsch, Clemens, Benjamin Livshits, Ben Zorn, and Christian Seifert. 2012.

“Rozzle: De-cloaking Internet Malware.” In Proceedings of the Oakland
Symposium on Security and Privacy (SP), 2012, pp. 443–457.

Krebs, Brian. 2013. “Security Firm Bit9 Hacked, Used to Spread
Malware.” In http://krebsonsecurity.com/2013/02/security-firm-
bit9-hacked-used-to-spread-malware/.

http://opencvpython.blogspot.com/2012/12/k-means-clustering-1-basic-under-standing.html
http://opencvpython.blogspot.com/2012/12/k-means-clustering-1-basic-under-standing.html
http://opencvpython.blogspot.com/2012/12/k-means-clustering-1-basic-under-standing.html
http://opencvpython.blogspot.com/2012/12/k-means-clustering-1-basic-under-standing.html
http://www.infoworld.com/article/2612962/intrusion-detection/hacking-victim-bit9-blames-sql-injection-flaw.html
http://www.infoworld.com/article/2612962/intrusion-detection/hacking-victim-bit9-blames-sql-injection-flaw.html
http://www.infoworld.com/article/2612962/intrusion-detection/hacking-victim-bit9-blames-sql-injection-flaw.html
http://www.infoworld.com/article/2612962/intrusion-detection/hacking-victim-bit9-blames-sql-injection-flaw.html
http://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/
http://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/
http://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/

 Bibliography 321

Lange, Matthias, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and
Michael Peter. 2011. “L4Android: A generic operating system framework for
secure smartphones.” In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices (SPSM) 2011. ACM, New
York, NY, USA, pp. 39–50.

Li, Qing. 2008. “A Novel Approach to Manage Asymmetric Traffic
Flows for Secure Network Proxies.” In Proceedings of the Network and
Parallel Computing IFIP International Conference (NPC) 2008, Shanghai,
China.

Li, Zhou, Sumayah Alrwais, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2013.
“Finding the linchpins of the dark web: A study on topologically dedicated
hosts on malicious web infrastructures.” In Proceedings of the Symposium
on Security and Privacy (SP) Conference, 2013, pp. 112–126.

Liang, S., A. W. Keep, M. Might, S. Lyde, T. Gilray, P. Aldous, and D. Van Horn.
2013. “Sound and precise malware analysis for android via pushdown reach-
ability and entry-point saturation.” In Proceedings of the Third ACM workshop
on Security and privacy in smartphones and mobile devices (SPSM) 2013.
ACM, New York, NY, USA, pp. 21–32.

Luo, Jim and Myong Kang. 2011. “Application Lockbox for Mobile Device Security.”
In Proceedings of the 2011 Eighth International Conference on Information
Technology: New Generations (ITNG) 2011. IEEE Computer Society, Las Vegas,
NV, USA, pp. 336–341.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. 2008.
Introduction to Information Retrieval. Cambridge University Press.

McGregor, Anthony, Mark Hall, Perry Lorier, and James Brunskill. 2004. “Flow
Clustering Using Machine Learning Techniques.” In Proceedings of the
5th International Passive and Active Network Measurement International
Workshop (PAM) 2004.

Mekky, Hesham, Ruben Torres, Zhi-Li Zhang, Sabyasachi Saha, and
Antonio Nucci. 2014. "Detecting Malicious HTTP Redirections Using
Trees of User Browsing Activity." In Proceedings of the 33rd IEEE
International Conference on Computer Communications (INFOCOM),
pp. 1159–1167.

Moran, Ned, Mike Scott, Sai Omkar Vashisht, and Thoufique Haq. 2013. “Operation
Ephemeral Hydra: IE Zero-Day Linked to DeputyDog Uses Diskless Method.”
November 10, 2013. In http://www.fireeye.com/blog/technical/cyber-
exploits/2013/11/operation-ephemeral-hydra-ie-zero-day-linked-to-

deputydog-uses-diskless-method.html.
Morley, Patrick. 2013. “Bit9 and Our Customers’ Security.” In https://blog
.bit9.com/2013/02/08/bit9-and-our-customers-security/.

Müller, Thomas, Benjamin Mack, and Mehmet Arziman. “Web Exploit Finder.”
In http://www.xnos.org/security/web-exploit-finder.html.

http://www.fireeye.com/blog/technical/cyber-exploits/2013/11/operation-ephemeral-hydra-ie-zero-day-linked-to-deputydog-uses-diskless-method.html
https://blog.bit9.com/2013/02/08/bit9-and-our-customers-security/
http://www.xnos.org/security/web-exploit-finder.html
https://blog.bit9.com/2013/02/08/bit9-and-our-customers-security/

322 Bibliography

Nappa, Antonio, Zhaoyan Xu, Zubair Rafique, Juan Caballero, and Guofei Gu.
2014. “CyberProbe: Towards Internet-Scale Active Detection of Malicious
Servers.” In Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, pp. 1–15.

Nazario, Jose. 2009. “PhoneyC: A Virtual Client Honeypot.” In Proceedings of
the 2nd USENIX conference on Large-scale exploits and emergent threats:
botnets, spyware, worms, and more (LEET).

Ness, Jonathan. 2012. Microsoft Security Response Center, “Flame malware collision
attack explained.” In http://blogs.technet.com/b/srd/archive/2012/06/06/
more-information-about-the-digital-certificates-used-to-sign-the-

flame-malware.aspx.
Neuner, S., V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik, M. Mulazzani,

and E. Weippl. 2014. “Enter Sandbox: Android Sandbox Comparison.” In
Proceedings of the 3rd Workshop on Mobile Security Technologies (MoST)
2014. San Jose, CA, USA.

Nguyen, Thuy T.T., and Grenville Armitage. 2008. “A Survey of Techniques for
Internet Traffic Classification Using Machine Learning.” IEEE Communications
Surveys & Tutorials, 10(4): pp. 56–76.

Oberheide, Jon, Kaushik Veeraraghavan, Evan Cooke, Jason Flinn, and Farnam
Jahanian. 2008. “Virtualized in-cloud security services for mobile devices.”
In Proceedings of the First Workshop on Virtualization in Mobile Computing
(MobiVirt) 2008. ACM, New York, NY, USA, pp. 31–35.

Rastogi, V., Y. Chen, and X. Jiang. 2013. “DroidChameleon: Evaluating Android
anti-malware against transformation attacks.” In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security
(ASIA CCS) 2013. ACM, New York, NY, USA, pp. 329–334.

Ratazzi, P., Y. Aafer, A. Ahlawat, H. Hao, Y. Wang, and W. Du. 2014. “A Systematic
Security Evaluation of Android’s Multi-User Framework.” In Proceedings of the
Third Workshop on Mobile Security Technologies (MoST) 2014. San Jose, CA, USA.

Reich, Y., and S. Fenves. 1991. “The formation and use of abstract concepts
in design.” In D.Fisher, M.Pazzani, and P.Langley (eds.), Concept Formation:
Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San
Mateo, CA, pp. 323–353.

Riden, Jamie. 2008. “How Fast-Flux Service Networks Work.” In http://www
.honeynet.org/node/132.

Rossow, Christian, Christian Dietrich, and Herbert Bos. 2013. “Large-scale analy-
sis of malware downloaders.” In Proceedings of the 9th international confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), pp. 42–61.

Russello, G., A. B. Jimenez, H. Naderi, and W. van der Mark. 2013. “FireDroid:
Hardening security in almost-stock Android.” In Proceedings of the 29th
Annual Computer Security Applications Conference (ACSAC) 2013. ACM,
New York, NY, USA, pp. 319–328.

http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://www.honeynet.org/node/132
http://www.honeynet.org/node/132

 Bibliography 323

Seifert, Christian and Ramon Steenson. 2008. “Capture-HPC Client Honeypot/
Honeyclient.” In https://projects.honeynet.org/capture-hpc.

Shabtai, Asaf, Uri Kanonov, and Yuval Elovici. 2010. “Intrusion detection for
mobile devices using the knowledge-based, temporal abstraction method.”
J. Syst. Softw. 83(8): pp. 1524–1537.

Soska, Kyle, and Nicolas Christin. 2014. “Automatically Detecting Vulnerable
Websites Before They Turn Malicious.” In Proceedings of the 23rd USENIX
Security Symposium, 2014, pp. 625–640.

Sotirov, Alexander, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David
Molnar, Dag Arne Osvik, and Benne de Weger. 2008. “MD5 considered harm-
ful today: Creating a rogue CA certificate.” In http://www.win.tue.nl/
hashclash/rogue-ca/.

Stringhini, Gianluca, Christopher Kruegel, and Giovanni Vigna. 2013. “Shady
paths: Leveraging surfing crowds to detect malicious web pages.” In
Proceedings of the ACM conference on Computer and communications
security, pp. 133–144.

Tendulkar, V., and W. Enck. 2014. “An Application Package Configuration Approach
to Mitigating Android SSL Vulnerabilities.” In Proceedings of the 3rd Workshop
on Mobile Security Technologies (MoST) 2014. San Jose, CA, USA.

Tongaonkar, Alok, Ram Keralapura, and Antonio Nucci. 2013. “SANTaClass:
A Self Adaptive Network Traffic Classification System.” In IFIP Networking
2013 Conference, Brooklyn, NY, USA, May 22–24, 2013, pp. 1–9.

Truong, H. T. T., E. Lagerspetz, P. Nurmi, A. J. Oliner, S. Tarkoma, N. Asokan, and
S. Bhattacharya. 2014. “The company you keep: Mobile malware infection rates
and inexpensive risk indicators.” In Proceedings of the 23rd international confer-
ence on World wide web (WWW) 2014. ACM, New York, NY, USA, pp. 39–50.

Vadrevu, Phani, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos
Antonakakis. 2013. “Measuring and Detecting Malware Downloads in Live
Network Traffic.” In Proceedings of the 18th European Symposium on Research
in Computer Security (ESORICS), pp. 556–573.

Vidas, T., J. Tan, J. Nahata, C. L. Tan, N. Christin, and P. Tague. 2014. “A5: Automated
Analysis of Adversarial Android Applications.” In Proceedings of the 4th
ACM Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM) 2014. ACM, Scottsdale, AZ, USA, pp. 39–50.

Vidas, T., and N. Christin. 2014. “Evading android runtime analysis via sand-
box detection.” In Proceedings of the 9th ACM symposium on Information,
computer and communications security (ASIA CCS) 2014. ACM, New York,
NY, USA, pp. 447–458.

Vincent, Johann, Christine Porquet, Maroua Borsali, and Harold Leboulanger.
2011. “Privacy protection for smartphones: An ontology-based firewall.” In
Information Security Theory and Practice: Security and Privacy of Mobile Devices
in Wireless Communication, Claudio A.Ardagna and JianyingZhou (eds.).
Heidelberg: Springer, pp. 371–380.

https://projects.honeynet.org/capture-hpc
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/

324 Bibliography

Wang, Gang, Jack Stokes, Cormac Herley, and David Felstead. 2013. “Detecting
Malicious Landing Pages in Malware Distribution Networks.” In Proceedings
of the 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 1–11.

Wang, R., L. Xing, X. Wang, and S. Chen. 2013. “Unauthorized origin crossing on
mobile platforms: Threats and mitigation.” In Proceedings of the 2013 ACM
SIGSAC conference on Computer and communications security (CCS) 2013.
ACM, New York, NY, USA, pp. 635–646.

Watkins, L., C. Corbett, B. Salazar, K. Fairbanks, and W. H. Robinson. 2013. “Using
Network Traffic to Remotely Identify the Type of Applications Executing on
Mobile Devices.” In Proceedings of the 2nd Workshop on Mobile Security
Technologies (MoST) 2013. San Francisco, CA, USA.

Wei, F., S. Roy, X. Ou, and Robby. 2014. “Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of
Android Apps.” In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS) 2014. ACM, New York, NY,
USA, pp. 1329–1341.

Werthmann, T., R. Hund, L. Davi, A. Sadeghi, and T. Holz. 2013. “PSiOS: Bring
your own privacy and security to iOS devices.” In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications
security (ASIA CCS) 2013. ACM, New York, NY, USA, pp. 13–24.

West, Andrew G., and Aziz Mohaisen. 2014. “Metadata-driven Threat Classification
of Network Endpoints Appearing in Malware.” In Proceedings of the 11th
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA) 2014, LNCS 8550, Sven Deitrich (ed.), Egham, UK, pp.
152–171.

Witten, Ian H., Alistair Moffat, and Timothy C. Bell. 1999. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann.

Wu, K., E. Otoo, and A. Shoshani. 2006. Optimizing bitmap indices with efficient
compression. ACM Trans. on Database Systems, 31: pp. 1–38.

Yang, W., J. Li, Y. Zhang, Y. Li, J. Shu, and D. Gu. 2014. “APKLancet: Tumor
payload diagnosis and purification for android applications.” In Proceedings
of the 9th ACM symposium on Information, computer and communications
security (ASIA CCS) 2014. ACM, New York, NY, USA, pp. 483–494.

Yang, Z., M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. 2013. “AppIntent:
Analyzing sensitive data transmission in android for privacy leakage detec-
tion.” In Proceedings of the 2013 ACM SIGSAC conference on Computer and
communications security (CCS) 2013. ACM, New York, NY, USA, pp. 1043–1054.

Zarras, A., A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and G. Vigna.
2014. “The Dark Alleys of Madison Avenue: Understanding Malicious
Advertisements.” In Proceedings of the 14th ACM SIGCOMM Internet
Measurement Conference (IMC) 2014. ACM, Vancouver, BC, Canada,
pp. 373–380.

 Bibliography 325

Zhang, Junjie, Christian Seifert, Jack Stokes, and Wenke Lee. 2011. “ARROW:
GenerAting SignatuRes to Detect DRive-By DOWnloads.” In Proceedings of
the 20th international conference on World Wide Web, pp. 187–196.

Zhang, M., Y. Duan, H. Yin, and Z. Zhao. 2014. “Semantics-Aware Android
Malware Classification Using Weighted Contextual API Dependency Graphs.”
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS) 2014. ACM, New York, NY, USA, pp. 1105–1116.

Zheng, M., M. Sun, and J. C. S. Lui. 2014. “DroidRay: A security evaluation
system for customized android firmwares.” In Proceedings of the 9th ACM
symposium on Information, computer and communications security (ASIA
CCS) 2014. ACM, New York, NY, USA, pp. 471–482.

Zhongyang, Y., Z. Xin, B. Mao, and L. Xie. 2013. “DroidAlarm: An all-sided static
analysis tool for Android privilege-escalation malware.” In Proceedings of the
8th ACM SIGSAC symposium on Information, computer and communications
security (ASIA CCS) 2013. ACM, New York, NY, USA, pp. 353–358.

Zhou, W., Y. Zhou, M. Grace, X. Jiang, and S. Zou. 2013. “Fast, scalable detec-
tion of Piggybacked mobile applications.” In Proceedings of the third ACM
conference on Data and application security and privacy (CODASPY) 2013.
ACM, New York, NY, USA, pp. 185–196.

Zorz, Zeljka. 2012. “Trustwave revokes ’MitM’ certificate, vows never to issue
one again.” In http://www.net-security.org/secworld.php?id=12369.

http://www.net-security.org/secworld.php?id=12369

327

Index

A
AAA (Authentication,

Authorization, and
Accounting), 176

Abstract Syntax Tree (ASTs),
Zozzle applying to content
analysis, 140–142

access control
policy decisions and, 70
web access policies, 164–167

access logging
filtering access logs, 257
policies, 167–170

access points (APs), network
security and, 314

ACEs (access control entries), 260
ACLs (access control lists), 260
actions, compared with properties,

181
ad arbitration, 308
ad fraud, 308
ad networks, malvertising attacks,

113–114
advanced persistent threats. See

APTs (advanced persistent
threats)

Advanced RISC Machines (ARM),
solutions to mobile security, 311

Aho-Corasick algorithm
extracting matching terms, 208–211
Prefix Trees compared with,

212–214
AIC (application intelligence and

control), firewall deficiencies
and, 6

allow policy, vs. deny-all policy, 165
AND operations

bitmap searches and, 276
connecting policy conditions and

properties, 163
Android apps. See also Google

Android

application signing transparency,
307

library integrity and SSL
verification challenges, 307

Android gadgets, 3–4
Android OS

mobile device market, 299
NFC (Near Field Communication)

in mobile devices, 306–307
solutions to mobile security, 309–310
use of WebView class, 305–306

antivirus solutions
access logging policies, 169–170
cloud-based, 309
components of content analysis

system, 138
embedded devices and, 4
end-point solutions, 121–122
implementing security policies,

90–91
mobile devices and, 304–305
safe content retrieval policies, 177

Apache log format, 255
Apache Mahout, sources of URL

classifiers, 129
Apache Subversion (SVN), log

management and analysis, 256
Apple iOS. See iOS
application classification

Aho-Corasick algorithm for
extracting matching terms,
208–211

classifier performance evaluation,
243–247

comparing classifiers with
proxies, 247–250

considerations in automatic
signature generation, 225–226

EM (Expectation-Maximization)
in unsupervised machine
learning, 237–240

extracting common terms,
220–222

feature selection in machine
learning, 228–232

flow set construction for term
mining, 218–220

functions of signature distiller,
222–225

generating application signatures
automatically, 216–218

generating application signatures
manually, 214–216

history of classification
techniques, 204–206

K-means clustering in
unsupervised machine
learning, 240–243

machine learning approach to,
226–228

Naïve Bayes method in feature
selection, 233–236

overview, 203–204
prefix-tree signature

representation, 211–214
signature-based pattern matching

in, 206–208
summary, 247–250
supervised machine learning,

232–233
unsupervised machine learning,

236
application intelligence and control

(AIC), firewall deficiencies and, 6
application lock boxes, mobile

security solutions, 308
application proxies, components of

secure proxies, 20
application signatures. See also

signature-based pattern
matching

defined, 203
generating automatically, 216–218
generating manually, 214–216
signature distiller and, 222–225

application signing transparency, 307

328 Index ■ B–C

application-level protocols, carried
over UDP, 19

applications, connected consumer
appliances, 3–5

apps
application signing transparency,

307
library integrity and SSL

verification challenges, 307
malicious apps, detecting, 311

APs (access points), network
security and, 314

APTs (advanced persistent threats)
analyzing log files for, 257–259
examples of cyber attacks, 96
retrospective analysis as

countermeasure, 251–252
types of cyber attacks, 94

architecture, of security proxies,
19–22

ARM (Advanced RISC Machines),
solutions to mobile security, 311

artificial intelligence, ML (Machine
Learning) system and, 226

AS (authentication servers),
176–177

ASCII
application signatures and, 204
e-mail message format, 195–196

ASG (Automatic Signature
Generator), 216–218

ASTs (Abstract Syntax Tree),
Zozzle applying to content
analysis, 140–142

asymmetric routing, 50
asymmetric traffic flow detection,

58–61
attachments, e-mail, 195, 197–199
attacks. See malware; threats/

vulnerabilities
attribute-value pairs, in LDAP, 173
authentication

CAC (Common Access Card)
in, 31

certificates and keys and, 28–30
IP address-based, 48–49
policy decisions and, 70
policy tickets and, 75
user authentication policies,

170–177
Authentication, Authorization, and

Accounting (AAA), 176
authentication realms, 172
authentication servers (AS), 176–177
authorization

authentication compared with, 171
policy decisions and, 70

automatic signature generation
considerations in, 225–226
extracting common terms,

220–222
flow set construction for term

mining, 218–220
overview of, 216–218
signature distiller, 222–225

Automatic Signature Generator
(ASG), 216–218

availability, NIST goals for mobile
devices, 301

B
B+-tree, 270–271
bare metal hypervisor, solutions to

mobile security, 309
Baye’s theorem

in classifier training, 128–129
Naïve Bayes method in feature

selection, 233–236
Zozzle applying to content

analysis, 141
BBC (Byte-aligned Bitmap Code), 278
behavior-based NIDS, 11
Berkeley Packet Filter (BPF), 261
Best-First Search, 231–232
bias

bias-variance dilemma in
machine learning, 232

skewed data bias impacting
Naive Bayes performance, 236

binary search trees (BST). See
B-trees

Binomial distribution, EM
(Expectation-Maximization) in
unsupervised machine learning,
240

Bit9, breach of trusted third party,
100–101

bitmap indexes
compression, 276–278
overview, 272–273
searches, 273–276

BitTorrent, firewall policies and, 6–7
bloom filters, in keyword

categorization, 135–138
Blue Coat Systems

addressing privacy concerns, 33–34
URL reputation services, 131

botnets, analyzing log files for, 257
BPF (Berkeley Packet Filter), 261
bring your own device (BYOD)

MAM (Mobile Application
Management), 303

security challenges of, 299–300, 303
bring your own network (BYON),

303
browser cache poisoning,

honeyclient avoidance
techniques, 157

BST (binary search trees). See B-trees
B-trees

capturing and inserting new flow
records into retrospective
analysis system, 268–269

indexing with, 265–266
range search and B+-tree, 270–271
searches, 267–268

bulletproof hosting, 127
bump in the wire, physical inline

deployment of proxies, 41
BYOD (bring your own device)

MAM (Mobile Application
Management), 303

security challenges of, 299–300, 303
BYON (bring your own network), 303
bypass mechanisms

dynamic bypass, 56–58
external bypass, 46
physical inline deployment of

proxies, 41–42

C
C2 (command and control) servers,

detecting C2 servers, 144–147
CAC (Common Access Card),

smart card authentication
mechanism, 31

caching, policy tickets and, 75
captive portals

in user authentication, 171
web proxies implementing, 18

capture formats, packet capture,
261–263

capture points, packet capture,
259–261

Capture-HPC
evading honeyclients, 155
example of high interaction

honeyclients, 151–152
honeyclient avoidance techniques

and, 157
cardinality, bitmap index, 272
CAs (certificate authorities)

client authentication and, 29–31
collision vulnerability and, 32–33
X.509 certificates and, 28

Cassandra. See also NoSQL
(Not Only SQL), 297

catch-all statement, as default
policy for transactions, 165

categorization
of keywords, 135–138
of webpage content. See webpage

content rating, dynamic
CDNs (content delivery networks),

147–148
CDP (Cisco Discovery Protocol), 46
CEF (Common Event Format), log

formats, 255
cellular networks

mobile device management, 300
network security, 313–315
seamless integration with WiFi,

312–313
certificate authorities. See CAs

(certificate authorities)
certificates

pinning, 32–33
SSL, 28–32

Citrix proxy, 248
classification engine. See also

classifiers/classifier training,
204, 206

classifiers/classifier training. See
also application classification

comparing classifiers with
proxies, 247–250

feature selection and, 228
feature set size and, 130–131
in history of classification

technology, 205–206
human tagged domain

reputation, 130
Naive Bayesian classifiers,

128–130, 236
overview of, 203
performance evaluation, 243–247
prefix-tree signature

representation and, 211
Real-Time Classifier, 216–217

 Index ■ D 329

reputation services and, 131
signature-based pattern

matching and, 206
in URL reputation analysis, 125

CLF (Common Log Format), 254–255
client honeypots. See honeyclients
clients

addressing privacy concerns, 33–35
authenticating, 29–31
DNS proxy policies, 187
interception and, 17

cloaking, honeyclient avoidance
techniques, 156–157

Cloud Security Operation Center
(CSOC), 80–82

Cloud-based security
cloud-based antivirus solution, 309
hybrid security solutions, 62
policy system in, 80–82

clustering
K-Means clustering, 240–243
proxies, 60–61

CN (common names), use of
categorization conditions by SSL
proxy, 183

coaching page
explaining corporate policies, 165
in human resource (HR) policy

example, 166
code injection attacks, 99
code obfuscation

honeyclient avoidance
techniques, 157

as obstacle in content analysis,
140–141

code reuse, 163
collision domains, capturing

network traffic and, 260
collision vulnerability, of MD5

digests, 32
combined conditions, 167
command and control (C2) servers,

detecting C2 servers, 144–147
Common Access Card (CAC),

smart card authentication
mechanism, 31

Common Log Format (CLF), 254–255
common names (CN), use of

categorization conditions by SSL
proxy, 183

common terms
in automatic signature

generation, 216
extracting, 220–222

COMPAX (Compressed Adaptive
Index), bitmap compression
schemes, 278, 285

Complement Naïve Bayes, 236
compliance logs, 254
compliance verification, 70
Compressed Adaptive Index

(COMPAX), bitmap compression
schemes, 278, 285

compression
bitmaps, 276–278
inverted file, 282–283

condition variables
defined, 162
policy system, 71

conditional probability, 228
conditions, policy

creating combined condition, 167
defined, 162
multiple policy conditions

connected by AND
relationships, 163

confidential information
data loss prevention policies, 188
e-mail filtering policies, 190

confidentiality, NIST goals for
mobile devices, 301

connection interception.
See interception

connections, directionality of, 53
connections-per-second (CPS) rate,

in enterprise network, 52
connectivity

Internet of Things and connected
consumer appliances and, 3–5

mobile devices, 304
consistency, importance of policy,

77–79
consumer appliances, threats to, 4–5
consumers, Internet of Things and

connected consumer appliances
and, 3–5

content
categorization using keywords,

132–135
data loss prevention policies,

188–190
detecting exploit servers using

content analysis, 138–142
rating dynamic webpage content.

See webpage content rating,
dynamic

safe content retrieval policies,
177–181

verification techniques, 198, 200
webpage categorization system,

131–132
content analysis system

code obfuscation as obstacle in,
140–141

components of, 138–139
detecting exploit servers,

138–142
evasion of pattern-based

scanning, 139–140
extracting executable content

from downloads, 139
Resolver for address ing code

variation challenge, 141–142
Rozzle for exploration of multiple

execution paths, 140
Zozzle application of Bayes

theorem, 141
content discovery phase, in DLP, 188
Content Policy Language (CPL),

writing policies with, 69
content transformation, safe

content retrieval policies, 180
CPL (Content Policy Language),

writing policies with, 69
CPS (connections-per-second) rate,

in enterprise network, 52
credentials. See also user

authentication

login credentials, 171–172
surrogate credentials, 172

CRM (customer relationship
management), XSS attack and, 105

cross-origin vulnerabilities, related
to OSs, 305–306

cross-site request forgery (CSRF)
attacks, 306

cross-site scripting (XSS) attacks,
103–106

cryptography, in bloom filter
implementations. See also
encryption, 136–138

CSOC (Cloud Security Operation
Center), 80–82

CSRF (cross-site request forgery)
attacks, 306

customer relationship management
(CRM), XSS attack and, 105

cyber warfare
breach of trusted third party,

100–101
espionage and sabotage, 94–96
industrial espionage, 96
Operation Aurora example of

targeted attack, 96–98
targeted attacks, 94
watering hole attack, 98–100

D
data

acquisition and organization
for retrospective analysis,
252–253

capturing large volume of data,
263–264

data clustering, in flow set
construction for term mining, 219

data collectors, in ASG (Automatic
Signature Generator), 216–218

data indexes. See indexes
data loss prevention. See DLP (data

loss prevention)
data mining

in automatic signature generation,
216

extracting common terms,
220–222

flow set construction for term
mining, 218–220

ML (Machine Learning) system
and, 226

data overfitting
feature selection and, 230
issues with automatic signature

generation, 225
database indexes. See indexes
DDNS (Dynamic DNS)

URL reputation classification, 127
use by malicious content

providers, 120
DDoS (distributed denial-of-

service) attacks
prevalence of, 93
vulnerabilities of embedded

devices, 4
debug logs, 253
Deep Packet Inspection. See DPI

(Deep Packet Inspection)

330 Index ■ E–F

definitions, in policy system, 163–164
delayed interception, 86–87
deny-all policy, vs. allow policy, 165
deployment of secure proxies. See

security proxies, deploying
Detours tool, addressing code

obfuscation, 140
devices. See also IoT (Internet of

Things), 300–303
DGAs (domain generation

algorithms), 119–120
directionality, of connections, 53
distiller

in ASG (Automatic Signature
Generator), 217–218

functions of, 222–225
distributed denial-of-service

(DDoS) attacks
prevalence of, 93
vulnerabilities of embedded

devices, 4
DLP (data loss prevention)

cloud security services offering, 62
e-mail filtering policies and,

190–191
e-mail filtering techniques, 201
integrating with MTAs, 200
policies, 188–190

DNS
exploiting vulnerabilities in,

102–103
resource records in e-mail

communication, 192
term mining and, 218–219

DNS cache poisoning, 55, 102–103
DNS hijacking attacks, 102–103
DNS proxy

example of transaction-based
processing, 19

policies, 187–188
in proxy architecture, 248

DNS spoofing attacks, 102–103
DNSBL (DNS-based blackhole

list), e-mail filtering techniques,
201

Document Object Model (DOM),
XSS attacks, 103, 106

Document Rights Management
(DRM), for central
administration of DLP solutions,
190

document store, NoSQL, 296
DOM (Document Object Model),

XSS attacks, 103, 106
domain generation algorithms

(DGAs), 119–120
domain hijacking attacks, 102
domain names

abandoned names used for
malware delivery, 120

as contact points for malware
delivery, 119–120

extracting URL feature sets,
126–127

double fast-flux network, 117
downloads

detecting malicious web
infrastructure, 147–148

drive-by downloads, 109–113

DPI (Deep Packet Inspection)
effectiveness of, 10–11
firewall deficiencies and, 6
firewalls improved by, 9–10
in history of classification

technology, 205–206
IDSs and, 13–14

DPI classifier, 236
drive-by downloads

detecting malicious web
infrastructure, 148

types of malware attacks,
109–113

DRM (Document Rights
Management), for central
administration of DLP solutions,
190

Dropbox, organization restrictions
on use of, 3

dynamic analysis, in malicious app
detection, 311

dynamic bypass
avoiding interception, 56–58
handling asymmetrically routed

transactions, 61
Dynamic DNS (DDNS)

URL reputation classification, 127
use by malicious content

providers, 120
dynamic links, malicious

exploitation of, 120
dynamic webpage content rating.

See webpage content rating,
dynamic

E
eager evaluation, by policy engine,

75
EHLO (extended Hello) exchange,

in SMTP session establishment,
192–193

ELEF (Extended Log File Format)
log formats, 254–255
structure of access logs, 167

EM (Expectation-Maximization)
expectation step, 238–239
maximization step, 239–240
overview, 237
types of unsupervised machine

learning algorithms, 236
e-mail

SMTP (Simple Mail Transfer
Protocol) and, 191–200

spear phishing attacks, 102
e-mail filtering

policies, 190–191
techniques, 200–202

embedded devices. See also IoT
(Internet of Things), 3–4

EmergingThreats.net, 125
employees, e-mail filtering policies

and, 190
encryption

in bloom filter implementations,
136–138

certificates and keys and, 28
between client and proxy, 32
SMTP messages, 194

end-point solutions, malware,
121–122

Enhanced WAH (EWAH), for
bitmap compression, 278, 285

ePDF (Evolved Packet Data
Gateway), in seamless integration
of WiFi and cellular, 313

ephemeral ports, evading firewalls,
204

espionage
cyber warfare and, 94–96
industrial espionage, 96
watering hole attack, 98–100

Ethernet hubs, capturing network
traffic, 260, 264

Evolved Packet Data Gateway
(ePDF), in seamless integration
of WiFi and cellular, 313

EWAH (Enhanced WAH), for
bitmap compression, 278, 285

exception page, interruption policy-
restricted transactions, 166–167

Expectation-Maximization. See EM
(Expectation-Maximization)

explicit proxies
compared with transparent

proxies, 38–40
deployment, 40
Firefox example, 39–40

exploit servers
components of malware

distribution network, 123
detecting, 138–142

extended Hello (EHLO) exchange,
in SMTP session establishment,
192–193

external bypass, WCCP protocol, 46
external policy decisions, ICAP

(Internet Content Adaption
Protocol) and, 72

F
fail-to-wire feature, operational

continuity and, 41
fast-flux

detection based on download
similarities, 147–148

in malware delivery, 117–119
fast-path processing, not applicable

to proxies, 43
feature set permutation, 229
features/feature sets

accuracy of classification and, 125
extracting, 126–128
k-fold cross-validation metric in

selection of, 229
in machine learning, 226–227
Naïve Bayes method in feature

selection, 233–236
search algorithms in feature

selection, 230–232
strong/weak relevance of, 228

fields/field identifiers, in access
logs, 167

fill word, WAH (Word-Aligned
Hybrid), 278

finite-state machine (FSM)
Aho-Corasick algorithm, 208–211
Prefix Tree, 212–214

 Index ■ G–I 331

Firefox web browser
example of explicit proxy, 39–40
search engine poisoning example,

107
firewalls

deficiencies, 5–9
in history of classification

technology, 204–205
improved with DPI technology, 9–11
intrusion detection and

protection, 11–14
ontology-based semantic, 308
rules, 67–68
unified threat management in

next-gen firewalls, 14–15
first-packet interception, 249
Flame attack (Skywiper), 95
flow sets, constructing for term

mining, 218–220
FNV (Fowler-Noll-Vo) hashes, in

bloom filter implementations, 136
forward proxies, traffic

interception and, 47–48
Fowler-Noll-Vo (FNV) hashes, in

bloom filter implementations, 136
FSM (finite-state machine)

Aho-Corasick algorithm, 208–211
Prefix Tree, 212–214

full mesh topology, proxy
clustering and, 58–59

fuzzing, malicious app detection,
311

G
Gateway GPRS Support Node

(GGSN), in seamless integration
of WiFi and cellular, 313

gateways, content gateways and
security gateways, 1

Gaussian distribution
in feature selection, 234
in unsupervised machine

learning, 240
GGSN (Gateway GPRS Support

Node), in seamless integration
of WiFi and cellular, 313

Google
example of certificate pinning, 33
Operation Aurora targeted attack

on Google China, 96–98
Google Android. See Android OS
Google Play, 307
Google Safe Browsing API

datasets on malicious URLs, 125
URL reputation services, 131

GPRS Tunneling Protocol (GTP),
in seamless integration of WiFi
and cellular, 313

graph database, NoSQL, 297
GTP (GPRS Tunneling Protocol),

in seamless integration of WiFi
and cellular, 313

H
Hadoop

combining NoSQL and Hadoop,
297

open source implementation of
MapReduce, 293–295

Hadoop Distributed File System
(HDFS), 294–295

hashes. See encryption
HBase, Hadoop, 297
HDFS (Hadoop Distributed File

System), 294–295
HDTVs, threats to, 4–5
HIC (Hostname-IP Cluster) data

structures
in topology-based detection of

malicious hosts, 142–144
use in detecting C2 servers, 147

HIDS (host-based intrusion
detection system), 11–14

high interaction honeyclients
Capture-HPC example, 151–152
vs. low interaction, 151–152

Hill-Climbing Search, in feature
selection, 230–231

home computer, security trends
and, 2

honeyclients
Capture-HPC high interaction

example, 152–153
in detection of malicious servers,

150–151
evading, 154–157
high interaction vs. low

interaction, 151–152
in malware and MDN analysis,

124
Resolver using to collect

malicious code, 142
Thug low interaction example,

152–153
use in detecting C2 servers, 145

honeypots, honeyclients contrasted
with, 150–151

host-based intrusion detection
system (HIDS), 11–14

Hostname-IP Cluster (HIC) data
structures

in topology-based detection of
malicious hosts, 142–144

use in detecting C2 servers, 147
hosts

bulletproof hosting, 127
detecting dedicated malicious

hosts, 142–144
HTML

components of typical e-mail
message, 195

e-mail message format, 195–196
safe content retrieval policies,

180–181
HTTP, request and response

modification modes, 177–180
HTTP proxy, 27, 248
HTTPS proxy

certificate pinning and OCSP
stapling, 32–33

certificates and keys, 28–32
components of secure proxies, 20
interception and privacy

concerns, 33–35
interception strategies, 24–27
overview, 22–24

human tagged domain reputation,
129

hybrid security solutions, 62–63
hypervisors

countermeasures to malware
evasion, 156

solutions to mobile security, 309

I
ICAP (Internet Content Adaption

Protocol)
content analysis and, 139
external policy decisions and, 72
safe content retrieval policies,

177–180
IDF (inverse document frequency).

See TF-IDF (term frequency-
inverse document frequency)

IDMEF (Intrusion Detection
Message Exchange Format), 255

IDSs (intrusion detection systems)
firewall deficiencies and, 6
firewalls and, 11–14
solutions to mobile security, 309
unified threat management and,

14–15
IGP (interior gateway protocols), 43
IM (instant messaging), 37
indexes

bitmap index, 272–273
bitmap index compression, 276–278
bitmap index searches, 273–276
B-tree indexes, 265–266
B-tree insertion, 268–269
B-tree search, 267–268
data indexing and querying,

264–265
inverted file compression, 282–283
inverted file index, 279–281
inverted file index queries, 281–282
range search and B+-tree, 270–271

induction algorithm, in feature
selection, 229

industrial espionage
cyber warfare, 96
watering hole attack, 98–100

Information Rights Management
(IRM), 190

infrastructure-centric solutions,
mobile security, 311

inline deployment of transparent
proxies

physical, 41–43
virtual, 43–44

input/output (I/O), in performance
of retrospective analysis system,
288

input/output operations per
second (IOPS), improving query
performance, 287

inside port. See LAN ports
instant messaging (IM), 37
integrity, NIST goals for mobile

devices, 301
interception

achieving, 17
asymmetric routing breaking, 50
avoiding, 56–58
challenges of transparent, 48–52
client authentication and, 29–31
first-packet interception, 249

332 Index ■ J–M

interception (continued)
metrics of proxy effectiveness, 37
policy system and steps in, 86–89
privacy concerns and, 33–35
SSL interception scenarios, 23–24
SSL interception strategies, 24–25,

181–183
Type-I SSL interception, 25–26
Type-II SSL interception, 26–27

interior gateway protocols (IGP), 43
Internet

growth of shadow IT, 3
mobile workforce and, 2

Internet Content Adaption
Protocol. See ICAP (Internet
Content Adaption Protocol)

Internet of Things (IoT), 3–5
Internet Protocol Flow Information

Export (IPFIX), 263
Intrusion Detection Message

Exchange Format (IDMEF), 255
intrusion detection systems. See IDSs

(intrusion detection systems)
intrusion protection systems.

See IPSs (intrusion protection
systems)

invariant patterns, in automatic
signature generation, 216

inverse document frequency (IDF).
See TF-IDF (term frequency-
inverse document frequency)

inverted file
compression, 282–283
indexes, 279–281
queries, 281–282

I/O (input/output), in performance
of retrospective analysis system,
288

IOPS (input/output operations
per second), improving query
performance, 287

iOS
mobile device market, 299
NFC (Near Field Communication)

in mobile devices, 306–307
solutions to mobile security,

309–310
use of WebView class, 305–306

IoT (Internet of Things), 3–5
IP addresses

detecting malicious web
infrastructure, 148

directionality of connections
and, 53

e-mail filtering techniques, 200–201
maintaining traffic paths, 53–56
term mining and, 219–220

IP spoofing
defined, 49
packet storm and, 51–52

iPad, 3–4
IPFIX (Internet Protocol Flow

Information Export), 263
iPhone, 3–4
IPSs (intrusion protection systems)

firewall deficiencies and, 6
firewalls and, 11–14
unified threat management and,

14–15

IRM (Information Rights
Management), 190

J
Jaccard index/Jaccard similarity

coefficient, 143
Jenkins hash, in bloom filter

implementations, 136

K
Kerberos authentication server, 176
keys, SSL, 28–32
key-value store, NoSQL, 296
keywords

categorization of, 135–138
extracting for content

categorization, 132–135
k-fold cross-validation metric, in

feature selection, 229
K-Means

analyzing log files, 258
clustering in unsupervised

machine learning, 240–243
types of unsupervised machine

learning algorithms, 236

L
LAN ports, 44, 47
landing pages, components of

malware distribution network,
123–124

layers
in human resource (HR) policy

example, 166
layer guard, 164
policy layers, 162
semantic interpretation of, 163

lazy evaluation, by policy engine, 75
LDAP (Lightweight Directory

Access Protocol)
combining with Kerberos, 176
storing user-related information,

172–176
learning machines, in URL

reputation analysis, 124–125
learning-by-example, machine

learning and, 226
lexical analysis, extracting URL

feature sets, 126
library integrity, mobile security, 307
Lightweight Directory Access

Protocol. See LDAP (Lightweight
Directory Access Protocol)

literal word, WAH (Word-Aligned
Hybrid), 278

load balancing
asymmetric traffic flow detection

and, 58
maintaining traffic paths, 54, 56

logical AND, inverted file query,
281

logical OR, inverted file query, 282
login credentials, in user

authentication, 171–172
logs/logging

access logging policies, 167–170
log formats, 254–255
log management and analysis,

255–259

policy decisions and, 70
in retrospective analysis, 253–254

low interaction honeyclients
Thug example, 151–152
vs. high interaction, 151–152

M
M2M (machine-to-machine

communications), 4
machine learning

in automatic signature
generation, 216

EM (Expectation-Maximization)
in unsupervised machine
learning, 237–240

feature selection in machine
learning, 228–232

K-means clustering in
unsupervised machine
learning, 240–243

Naïve Bayes method in feature
selection, 233–236

overview, 226–228
supervised, 232–233
unsupervised, 236

Machine Learning (ML) system,
216–218

machine-to-machine
communications (M2M), 4

mail delivery agents (MDAs), in
SMTP, 192

mail submission agents (MSAs), in
SMTP, 191–192

mail transfer agents (MTAs)
e-mail filtering techniques, 200
in SMTP, 191–192

maladvertising, types of malware
attacks, 113–114

malicious apps, detecting, 311
malnet detection

basing on download similarities,
147–148

crawlers in, 148–150
creating URL training sets, 125–126
detecting C2 servers, 144–147
detecting dedicated malicious

hosts, 142–144
detecting exploit servers, 138–142
detecting malicious servers,

150–154
detecting malicious web

infrastructure, 138
evading honeyclients, 154–157
extracting URL feature sets,

126–128
keyword categorization, 135–138
keyword extraction, 132–135
overview, 123–124
summary, 158–159
URL classifier training, 128–131
URL reputation system, 124–125
webpage content rating, 131–132

malvertising attacks, 113–114, 308
malware. See also MDNs (malware

delivery networks)
ad fraud, 308
analyzing log files for, 257
antivirus software and end-point

solutions, 121–122

 Index ■ N–N 333

breach of trusted third party,
100–101

casting lures, 101
cyber warfare and targeted

attacks, 94
drive-by downloads, 109–113
espionage and sabotage in

cyberspace, 94–96
exploitation of well-known ports,

8–9
industrial espionage, 96
maladvertising, 113–114, 308
mobile devices and, 304–305
Operation Aurora example of

target attack, 96–98
overview, 93–94
pharming, 102–103
search engine poisoning,

106–109
spear phishing, 102
summary, 121–122
watering hole attack, 98–100
weaponization of, 96
XSS (cross-site scripting) attacks,

103–106
malware delivery

abandoned sites and domain
names and, 120

domain names as contact points
for, 119–120

fast-flux networks, 117–119
networks. See MDNs (malware

delivery networks)
overview, 114–117

malware denotation, 139
MAM (Mobile Application

Management), 303–304
man-in-the-middle attacks. See

MITM (man-in-the-middle)
attacks

MapReduce
combining NoSQL and Hadoop,

297
data processing paradigm,

289–291
Hadoop open source

implementation of, 293–295
for parallel processing, 292–293

Maximization Likelihood
Estimation (MLE), 239

McAfee TrustedSource, 131
MD5 hash

in bloom filter implementations, 136
vulnerabilities of, 32

MDAs (mail delivery agents), in
SMTP, 192

MDM (mobile device management)
goals of, 300
solutions, 302–303
solutions to mobile security, 309
vulnerabilities of, 301–302

MDNs (malware delivery
networks)

components of, 123
crawlers use in collection of

malnet samples, 148–150
detecting C2 servers, 147
fast-flux techniques used by,

117–119

malnet detection. See malnet
detection

redirection to, 115
visualization of, 116

mean, in feature selection, 234
metadata, indexing, 283
metrics

in classifier performance
evaluation, 243

of proxy effectiveness, 37
middle-boxes, infrastructure-

centric security solutions, 311
MIME (Multi-Purpose Internet

Mail Extension), 195
MITM (man-in-the-middle) attacks

Android app susceptibility to, 307
certificate pinning solving, 32
indicated by non-verifiable

certificate, 29
mobile device vulnerabilities, 302
proxy acting as, 23

ML (Machine Learning) system,
216–218

MLE (Maximization Likelihood
Estimation), 239

MNOs (mobile network operators),
312–313

Mobile Application Management
(MAM), 303–304

mobile applications, impact on
security, 303–304

mobile device management.
See MDM (mobile device
management)

mobile devices
connectivity, 304
IoT (Internet of Things) and, 3–4
managing, 300–303
NFC (Near Field Communication)

in, 306–307
mobile network operators (MNOs),

312–313
mobile security

ad fraud, 308
application signing transparency,

307
cross-origin vulnerabilities

related to OSs, 305–306
infrastructure-centric solutions, 311
library integrity and SSL

verification challenges, 307
mobile applications impacting

security, 303–304
mobile device management,

300–303
network security, 313–315
NFC (Near Field

Communication), 306–307
overview, 299–300
proposed solutions, 308–311
seamless integration of WiFi and

cellular, 312–313
summary, 315
threats and hazard, 304–305

mobile workforce, 2
MongoDB. See also NoSQL (Not

Only SQL), 297
Moonlight Maze espionage

operation, 94

MSAs (mail submission agents), in
SMTP, 191–192

MTAs (mail transfer agents)
e-mail filtering techniques, 200
in SMTP, 191–192

multi-dimensional query, range
search on bitmap index,
273–275

Multi-Purpose Internet Mail
Extension (MIME), 195

Murmur hash, in bloom filter
implementations, 136

N
Naïve Bayes

in classifier training, 128–129
feature selection method, 233–236

NAS (Network Access Server), as
RADIUS client, 176–177

NAT (Network Address
Translator), 93

National Institute of Standards and
Technology (NIST), 301

Near Field Communication (NFC),
306–307

NetFlow, network traffic flow
record, 262–263

Network Access Server (NAS), as
RADIUS client, 176–177

Network Address Translator
(NAT), 93

network interface controllers
(NICs), capturing network
traffic, 260, 263–264

network security, 313–315
network traffic, capturing. See

packet capture
network visibility, application

classification and, 203
network-based intrusion detection

system (NIDS)
firewalls and, 11–14
unified threat management and,

14–15
next-generation firewall (NGFW)

firewall deficiencies and, 6
UTM (unified threat

management) in, 14–15
NFC (Near Field Communication),

306–307
NGFW (next-generation firewall)

firewall deficiencies and, 6
UTM (unified threat

management) in, 14–15
NICs (network interface

controllers), capturing network
traffic, 260, 263–264

NIDS (network-based intrusion
detection system)

firewalls and, 11–14
unified threat management and,

14–15
NIST (National Institute of

Standards and Technology), 301
NoSQL (Not Only SQL)

benefits in building retrospective
analysis system, 296

B-tree approach to indexing, 270
combining with Hadoop, 297

334 Index ■ O–P

O
OCSP (Online Certificate Status

Protocol) stapling, 33
one-dimensional query, range

search on bitmap index, 273
ontology-based semantic firewalls,

308
open relay database block list

(ORDBL), e-mail filtering
techniques, 201

Open Shortest Path First (OSPF), 43
Open Web Application Security

Project (OWASP), 186
operating systems. See OSs

(operating systems)
Operation Aurora, examples of

industrial espionage, 96–98
Operation Hangover, examples of

cyber attacks, 95–96
operational logs, 253
OR operations, bitmap search, 276
ORDBL (open relay database block

list), e-mail filtering techniques,
201

OSPF (Open Shortest Path First), 43
OSs (operating systems)

Apple iOS. See iOS
cross-origin vulnerabilities,

305–306
Google Android. See Android OS
mobile device vulnerabilities

and, 305
securing IoT devices and, 4

OTA (over-the-air) device
management, 300

outside ports. See WAN ports
overfits, classifier performance

evaluation, 246
over-the-air (OTA) device

management, 300
OWASP (Open Web Application

Security Project), 186
OWL Web Ontology Language,

308

P
P2P (peer-to-peer) networks

evasion of firewalls, 204
organization restrictions on use

of, 3
PACE (protocol detection and

application classification
engine), 20–22

packet capture
with bitmap index, 275
with B-tree index, 265
capture formats, 261–263
capture points, 259–261
capturing large volume of data,

263–264
with inverted file index, 279
in retrospective analysis, 259

Packet Data Network Gateway
(P-GW), 313

packet storm, proxy failure
causing, 51–52

PageRank algorithm, in detection
of malicious hosts, 143

parallelization
MapReduce for parallel

processing, 292–293
performance of retrospective

analysis system and, 289
pattern matching, signature-based.

See signature-based pattern
matching

pattern-based scanning, in content
analysis, 139–140

PBR (policy-based routing)
routing function of proxies, 43
traffic redirection methods, 44–46

.pcap (packet capture) format, 261
PCRE (Perl Compatible Regular

Expression), 13–14
peer-to-peer (P2P) networks

evasion of firewalls, 204
organization restrictions on use

of, 3
performance

evaluating classifiers, 243–247
information overload issue, 170

performance, of retrospective
analysis system

index building overhead impacting
performance, 285–286

index size impacting
performance, 283–285

overview, 283
query response delay, 286–288
scalability and, 288–289

Perl Compatible Regular
Expression (PCRE), 13–14

permissions, authorization and, 171
persistent attacks, 105
P-GW (Packet Data Network

Gateway), 313
pharming

types of malware attacks, 102–103
validation against, 55

phishing
analyzing log files for, 257
e-mail vulnerabilities, 190

PhishTank, datasets on malicious
URLs, 125

piracy, analyzing log files for, 257
PlayStation 4 (PS4), threats to, 4–5
PMIP (Proxy Mobile IP), in

seamless integration of WiFi
and cellular, 313

point of sales (POS) systems, 299
point-of-presence (POP), cloud

security system, 80–82
Poisson distribution, in

unsupervised machine learning,
240

policies
access logging, 167–170
checkpoints in policy evaluation,

82–84
data loss prevention, 188–190
DNS proxy, 187–188
e-mail filtering, 190–191
e-mail filtering techniques, 200–202
evaluation of, 82
example of firewall policy, 6–7
ProxySG policy language, 162–164
reverse proxy deployment, 183–187

rule use in detecting C2 servers, 146
safe content retrieval, 177–181
scenarios and implementation, 164
SMTP (Simple Mail Transfer

Protocol) and, 191–200
SSL proxy and, 181–183
timing rule execution, 84–86
true/false rule tests, 71
user authentication, 170–177
web access, 164–167
writing, 161

policy checkpoints, 82–84
policy conditions. See condition

variables
policy engine

compiling policy rules, 73
components of secure proxies, 20
delayed interception, 87
eager and lazy evaluation, 75–76
importance of policy consistency,

78–79
overview, 67–68
policy checkpoints in transaction

processing, 83
in policy system, 69
policy tickets and, 74–75
policy versioning and, 79

policy layers. See layers
policy manager, 77
policy repository, 77
policy rules. See also policies, 162
policy system

cloud security operation and, 80–82
components of policy system, 69
conditions and properties, 70–71
enforcing external policy

decisions, 90–91
evaluation of policies, 82
execution of policy timing, 84–86
illustration of, 70
importance of policy consistency,

77–79
interception steps and, 86–89
policy checkpoints, 82–84
policy tickets, 73–76
policy transactions and

transaction objects, 71–72
policy updates and versioning

system, 77
summary, 91–92

policy tickets, 73–76, 80
policy-aware agents, 84
policy-based routing (PBR)

routing function of proxies, 43
traffic redirection methods, 44–46

polymorphic code, 121
polymorphism, server-side, 147, 149
POODLE SSL vulnerability, 182–183
POP (point-of-presence), cloud

security system, 80–82
POP3 (Post Office Protocol 3), in

mail delivery, 192
port-based classification, 204–205
POS (point of sales) systems, 299
Post Office Protocol 3 (POP3), in

mail delivery, 192
posting file. See also inverted file, 279
precision, in classifier performance

evaluation, 246

 Index ■ Q–S 335

prefix-tree (Trie)
generated from extracted

common terms, 222
implementing application

signatures, 211–214
signature distiller optimizing,

222–224
privacy, SSL interception and,

33–35
probabilistic structures, bloom

filters as, 135
probability

concepts, 227–228
EM (Expectation-Maximization),

237–240
in feature selection, 233–236

probability distribution function,
227–228

properties
compared with actions, 181
defined, 162
multiple policy properties

connected by AND
relationships, 163

policy system, 70–71
protocol detection and application

classification engine (PACE),
20–22

protocol handoff, 247
protocol proxies, 20
proxied. See interception
proxies

infrastructure-centric security
solutions, 311

security proxies. See Security
proxies

web proxies. See Web proxies
proxy chaining, 62–64
proxy hierarchy, 62
Proxy Mobile IP (PMIP), in

seamless integration of WiFi
and cellular, 313

ProxySG
access logging policies, 167
CPL (Content Policy Language), 69
policy language, 162–164
SSL proxy in, 181

PS4 (PlayStation 4), threats to, 4–5
public keys

in certification process, 28
pinning, 33

pure classifiers, 203

Q
queries. See also searches

data indexes and, 264–265
DNS policies, 187–188
inverted file, 281–282
query response delay, 286–288
range search on bitmap index,

273–275
resource use and performance,

284–285

R
Racoon software, solutions to

mobile security, 310

RADIUS (Remote Authentication
Dial In User Service), 176–177

RAID systems, improving query
performance, 287

random variable, probability and,
227

range search
bitmap indexes, 273–274
B-tree indexes, 270–271

RDBMS (relational database
management systems)

indexing, 270
limitations for data storage and

management, 295–296
Real-Time Classifier, 216–217
recall, classifier performance

evaluation, 246
red pills, VM detection

mechanism, 155–156
redirection servers, components of

malware distribution network,
123

Reflective DLL injection,
honeyclient avoidance
techniques, 157

regional operation center (ROC),
314–315

rehandshake, 27
relational database management

systems (RDBMS)
indexing, 270
limitations for data storage and

management, 295–296
relevance, strong/weak relevance

of features, 228
reliability, advantages of virtual

inline deployment of proxies, 44
Remote Authentication Dial In

User Service (RADIUS), 176–177
remote prefix (r), identifying

destination in access logging,
168

reputation. See URL reputation
system

REQMOD (request modification)
mode, HTTP, 177–180

Resolver, addressing code
variation challenge in content
analysis, 141–142

RESPMOD (response modification)
mode, HTTP, 177–180

retrospective analysis
bitmap index, 272–273
bitmap index compression, 276–278
bitmap index searches, 273–276
B-tree indexes, 265–266
B-tree insertion, 268–269
B-tree search, 267–268
building system for, 289
capture formats, 261–263
capture points, 259–261
capturing large volume of data,

263–264
combining NoSQL and Hadoop,

297
data acquisition and

organization, 252–253
data indexing and querying,

264–265

Hadoop open source
implementation of
MapReduce, 293–295

index building overhead impacting
performance, 285–286

index size impacting
performance, 283–285

inverted file compression, 282–283
inverted file index, 279–281
inverted file index queries, 281–282
limitations of RDBMS for data

storage and management,
295–296

log formats, 254–255
log management and analysis,

255–259
logs in, 253–254
MapReduce data processing

paradigm, 289–291
MapReduce for parallel

processing, 292–293
NoSQL benefits in building

system for, 296
overview of, 251–252
packet capture, 259
performance of system for, 283
query response delay, 286–288
range search and B+-tree, 270–271
scalability and, 288–289
search engines and, 297
summary, 298

reverse proxies
deployment policies, 183–187
traffic interception and inside

and outside ports, 47–48
rights, 171
RIPv2 (Routing Information

Protocol version 2), 43
risks. See threats/vulnerabilities
Roaring bitmaps, bitmap

compression schemes, 278
ROC (regional operation center),

314–315
routers/routing

capturing network traffic and, 260
maintaining traffic paths, 55
proxy functions, 43

Routing Information Protocol
version 2 (RIPv2), 43

Rozzle, for exploration of multiple
execution paths in content
analysis, 140

rules. See also policies, 162

S
sabotage, cyber warfare, 94–96
safe search policies, 186
sandboxes/sandboxing

components of content analysis
system, 138–139

malicious app detection, 311
scalability

advantages of virtual inline
deployment of proxies, 43–44

performance of retrospective
analysis system and, 288–289

search engine optimization (SEO),
106

336 Index ■ S–S

search engine poisoning (SEP),
106–109

search engines, in retrospective
analysis, 297

search space, in feature selection, 229
searches

Best-First Search, 231
bitmaps, 273–276
B-trees, 267–268
Hill-Climbing Search algorithm,

230–231
safe search policies, 186

second-generation firewalls
(SGFW), 9–11

secure proxies. See security proxies
secure web gateway (SWG), 6
security logs, 253
security proxies

architecture of, 19–22, 248
certificate pinning and OCSP

stapling, 32–33
compared with web proxies, 1–2
comparing classifiers with

proxies, 247–250
DNS proxy policies, 187–188
e-mail filtering policies and,

190–191
extracting executable content

from downloads, 139
overview, 15–18
policy engine. See policy engine
reverse proxy deployment

policies, 185–186
SSL proxy, 22–24
SSL proxy certificates and keys,

28–32
SSL proxy interception, 24–27, 89
SSL proxy interception and

privacy concerns, 33–35
SSL proxy policies, 181–183
transaction based processing, 18–19
virus scanning by, 90–91
WAF (web application firewall)

and, 186–187
security proxies, deploying

asymmetric traffic flow detection
and clustering, 58–61

avoiding interception, 56–58
challenges of transparent

interceptions, 48–52
directionality of connections, 53
forward and reverse proxies,

47–48
LAN and WAN ports, 46
maintaining traffic paths, 53–56
overview, 37–38
physical inline deployment of

transparent proxies, 41–43
proxy chaining, 62–64
summary, 64–65
traffic redirection methods and,

44–46
transparent and explicit proxies

and, 38–40
virtual inline deployment of

transparent proxies, 43–44
security trends

conventional security solutions, 5
firewall deficiencies, 5–9

firewalls improved with DPI
technology, 9–11

growth of shadow IT, 2–3
Internet of Things and connected

consumer appliances and, 3–5
intrusion detection and

protection, 11–14
protecting and empowering

users, 2
unifying threat management in

next-gen firewalls, 14–15
Semantic Web Rule Language, 308
SEO (search engine optimization),

106
SEP (search engine poisoning),

106–109
server prefix (s), identifying

destination in access logging,
168

server-client model, in MDM
architecture, 300

servers, detecting malicious
C2 servers, 144–147
components of malware

distribution network, 123
evading honeyclients, 154–157
identifying malware distribution

servers, 124
using honey clients, 150–154

servers, interception and, 17
server-side cloaking, 149
server-side polymorphism, 147, 149
SG (Signature Generator), 216–218
SGFW (second-generation

firewalls), 9–11
shadow IT, 2–3
Shellcode, malware exploits and,

98–99
Signature Generator (SG), 216–218
signature-based IDS

defined, 11
keys to success of signature-

based NIDS, 13
signature-based pattern matching

Aho-Corasick algorithm for
extracting matching terms,
208–211

automatically generating
application signatures, 216–218

considerations in automatic
signature generation, 225–226

extracting common terms, 220–222
flow set construction for term

mining, 218–220
functions of signature distiller,

222–225
manually creating application

signatures, 214–216
overview, 206–208
prefix-tree signature

representation, 211–214
signatures

certificates and keys and, 28
scanning for application

signatures, 9–10
Simple Mail Transfer Protocol. See

SMTP (Simple Mail Transfer
Protocol)

single fast-flux network, 117

skewed data bias, 236
Skywiper (Flame attack), 95
SLD (second level domain) names

extracting URL feature sets,
126–128

in URL classification, 125
smart cards, in authentication, 31
smartphones, 299–300
SMTP (Simple Mail Transfer

Protocol)
components of typical e-mail

message, 195–200
initiation phase (EHLO

exchange), 192–193
overview, 191–192
securing SMTP connections,

194–196
as server-talk-first protocol, 192
transmission phase, 193–194

SMTPS, securing SMTP
connections, 194–195

snooper page, search engine
poisoning example, 109

social engineering attacks, 111
social networking, as attack vector,

101
solid state drive (SSD), 288
spam, analyzing log files for, 257
SPAN (Switched Port Analyzer), 13
spear phishing

types of malware attacks, 102
in XSS attack, 103

Split DNS, 187–188
split-DNS proxy, 62–64
SSD (solid state drive), 288
SSL

decrypting SSL traffic, 15
sessions, 181
verification challenges, 307

SSL proxies
certificate pinning and OCSP

stapling, 32–33
certificates and keys, 28–32
interception and privacy

concerns, 33–35
interception performed by, 89
interception strategies, 24–27
overview, 22–24
policies, 181–183
in proxy architecture, 248

stapling, OCSP (Online Certificate
Status Protocol), 33

STARTTLS, securing SMTP
connections, 194–196

state information exchange, 59–60
state tables

firewall scalability and, 9
proxy state table, 19

stateful packet inspection, by
firewalls, 9

static analysis, in malicious app
detection, 311

statistical-based or anomaly-based
NIDS

defined, 11
keys to success of, 13

statistics, machine learning and,
226

stunnel proxy, 27

 Index ■ T–U 337

Stuxnet attack, on Iranian nuclear
fusion plant, 95

supervised machine learning
feature selection, 233–236
overview, 125, 232–233
unsupervised machine learning

compared with, 226
surrogate credentials, 172
SVN (Apache Subversion), log

management and analysis, 256
SWG (secure web gateway), 6
Switched Port Analyzer (SPAN), 13
switches, capturing network traffic

and, 260
system call interposition, in

malicious app detection, 311

T
targeted attacks. See also cyber

warfare
Operation Aurora example, 96–98
overview, 94

TCP (Transmission Control
Protocol) connections

directionality of connections
and, 53

policy tickets and, 75
state table and, 9
three-way handshake, 17–18

TCP (trusted computing platform),
308

term frequency (TF). See TF-IDF
(term frequency-inverse
document frequency)

termination. See also interception, 17
terms

common terms in automatic
signature generation, 216

extracting common terms,
220–222

extracting matching, 208–211
inverted file searches, 279–280
mining, 218–220

text, components of typical e-mail
message, 195

TF-IDF (term frequency-inverse
document frequency)

algorithm for extracting
keywords, 133–135

calculating term relevance, 224
ranking search results, 297

TGT (Ticket-Granting Ticket),
Kerberos, 176

threats/vulnerabilities
APTs (advanced persistent

threats), 94, 96, 251–252
cross-origin vulnerabilities

related to OSs, 305–306
firewall deficiencies, 5–9
mobile devices, 301–302
mobile security, 304–305
OWASP top ten risks, 186
POODLE SSL vulnerability,

182–183
safe content retrieval policies,

180
unifying threat management in

next-gen firewalls, 14–15

Thug, example of low interaction
honeyclients, 151–152

Ticket-Granting Ticket (TGT),
Kerberos, 176

Titan Rain cyber attack, 94–95
TLDs (top-level domains)

C2 servers spanning diverse set
of, 147

extracting URL feature sets, 127
TLS (Transport Layer Security),

181–182
Tongaonkar, Alok, 216
top-level domains (TLDs)

C2 servers spanning diverse set
of, 147

extracting URL feature sets, 127
topology, detecting dedicated

malicious hosts based on,
142–144

traffic
asymmetric traffic flow detection

and clustering, 58–61
capturing network traffic. See

packet capture
maintaining traffic paths, 53–56
redirection methods, 44–46

training sets
creating, 125–126
in machine learning, 226
in URL reputation analysis, 125

transaction based processing, in
security proxies, 18–19

transactions/transaction objects
catch-all statement, 165
defined, 162
exception pages interrupting,

166–167
policy checkpoints in transaction

processing, 83
in policy system, 71–72
policy tickets and, 73–76
transaction variables in access

logging, 167–168
Transmission Control Protocol

connections. See TCP
(Transmission Control Protocol)
connections

transparent proxies
avoiding interception, 56–58
challenges of transparent

interceptions, 48–52
compared with explicit proxies,

38–40
directionality of connections

and, 53
maintaining traffic paths, 53–56
physical inline deployment of,

41–43
virtual inline deployment of, 43–44

Transport Layer Security (TLS),
181–182

trickle-at-the-end method, of virus
scanning, 91

trickle-from-start method, of virus
scanning, 91

Trie. See prefix-tree (Trie)
true/false tests

in classifier performance
evaluation, 243

in policy system, 71
using bloom filters, 135

trusted computing platform (TCP),
308

trusted third party, breach of,
100–101

TrustZone extension, ARM
(Advanced RISC Machines), 311

TTG (Tunnel Termination
Gateway), in seamless
integration of WiFi and cellular,
313

Tunnel Termination Gateway
(TTG), in seamless integration of
WiFi and cellular, 313

tunneling, SSL tunneling, 181
two-way URL rewrite, reverse

proxy deployment policies,
185–186

Type-1 hypervisor, solutions to
mobile security, 309

U
UDP

connectionless protocol, 19
state table and, 9

UE (user equipment), 312–313
underfits, classifier performance

evaluation, 246
unified threat management (UTM)

firewall deficiencies and, 6
in next-gen firewalls, 14–15

unsupervised machine learning
EM (Expectation-Maximization)

in unsupervised machine
learning, 237–240

K-means clustering in
unsupervised machine
learning, 240–243

overview, 236
supervised machine learning

compared with, 226
updates, policy updates and

versioning system, 77
URL reputation system

automating, 124–125
creating URL training sets, 125–126
extracting URL feature sets,

126–128
URL classifier training, 128–131

URL rewrite
reverse proxy deployment

policies, 185–186
safe search policies, 186

URLs
detecting malicious, 124
e-mail filtering policies and, 191
two-way URL rewrite, 185–186
URL-related policies to

be executed before
authentication policies, 175

web crawlers inspecting
malicious URLs, 149–150

user authentication
authentication compared with

authorization, 171
authentication realms and, 172
example of policy limitations, 171

338 Index ■ V–Z

user authentication (continued)
Kerberos for, 176
overview, 170
policy denying unauthorized

access, 172
RADIUS for, 176–177
storing user-related information

in LDAP database, 172–176
users

protecting and empowering, 2
user equipment (UE), 312–313

UTM (unified threat management)
firewall deficiencies and, 6
in next-gen firewalls, 14–15

V
variance

bias-variance dilemma in
machine learning, 232

in feature selection, 234
virtual inline deployment of

transparent proxies
LAN and WAN ports, 46
overview, 43–44
physical inline deployment

compared with, 41
traffic redirection methods and,

44–46
virtual IP addresses, 48–49
virtual LANs (VLANs), 46
virtual machines (VMs), solutions

to mobile security, 309
virtual private networks (VPNs),

309–310
viruses

access logging policies and, 169–170
external policy decisions and, 72
safe content retrieval policies,

177–180
scanning by security proxy, 90–91

VirusTotal service, 121
VLANs (virtual LANs), 46
VMs (virtual machines), solutions

to mobile security, 309
VMware ESXi

countermeasures to malware
evasion, 156

as virtualization environment for
honeyclient implementation,
155

VPNs (virtual private networks),
309–310

W
WAF (web application firewall)

firewall deficiencies and, 6
reverse proxy deployment

policies, 186–187
WAH (Word-Aligned Hybrid)

compression of bitmap indices,
277–278

performance of retrospective
analysis system and, 288–289

resource use and performance, 283
WAN ports

forward and reverse proxies
and, 47

security proxy deployment, 46
watering hole attack, 98–100
WCCP (Web Cache

Communication Protocol), 44–46
web access policies, 164–167
web application firewall. See WAF

(web application firewall)
web browsers

detection crawlers and, 150
POODLE SSL vulnerability, 182–183
search engine poisoning, 106–109

Web Cache Communication
Protocol (WCCP), 44–46

web crawlers, collecting malnet
samples with, 148–150

web infrastructure, detecting
malicious

basing on download similarities,
147–148

crawlers, 148–150
detecting C2 servers, 144–147
detecting dedicated malicious

hosts based on topology,
142–144

detecting exploit servers using
content analysis, 138–142

overview, 138
web proxies

captive portals and, 18
security proxies compared with, 1

Web proxy servers, 1
web reputation. See URL

reputation system
web sites

abandoned sites used for
malware delivery, 120

pharming attacks, 102
SEO (search engine optimization),

106

webpage content rating, dynamic
keyword categorization, 135–138
keyword extraction for content

categorization, 132–135
overview, 131–132

WebPulse Site Review, Blue Coat
Systems, 131

WebView software, 305
Weka, sources of URL classifiers, 129
well-known ports, firewall

deficiencies and, 8–9
WHOIS

determining is domain names are
legitimate, 143

extracting URL feature sets, 127
wide-column store, NoSQL,

296–297
WiFi networks

captive portals, 18
mobile device management, 300
network security, 313–315
seamless integration with

cellular, 312–313
Word-Aligned Hybrid. See WAH

(Word-Aligned Hybrid)
wrapper approach

combining with Hill-Climbing
Search, 229

to feature selection, 229

X
X.509 certificates

CAs (certificate authorities), 28
MD5 cryptographic hash and,

32
XSS (cross-site scripting) attacks,

103–106

Y
yutian, honeyclient avoidance

techniques, 157

Z
zero-day exploits

defined, 95
Operation Aurora example,

96–98
rareness of, 121

Zozzle
in content analysis, 141
in malware detection, 140

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Security Intelligence: A Practitioner’s Guide to Solving Enterprise Security Challenges
	Contents
	Foreword
	Preface
	Chapter 1 Fundamentals of Secure Proxies
	Security Must Protect and Empower Users
	The Birth of Shadow IT
	Internet of Things and Connected Consumer Appliances

	Conventional Security Solutions
	Traditional Firewalls: What Are Their Main Deficiencies?
	Firewall with DPI: A Better Solution?
	IDS/IPS and Firewall
	Unified Threat Management and Next-Generation Firewall

	Security Proxy—A Necessary Extension of the End Point
	Transaction-Based Processing
	The Proxy Architecture

	SSL Proxy and Interception
	Interception Strategies
	Certificates and Keys
	Certificate Pinning and OCSP Stapling
	SSL Interception and Privacy

	Summary

	Chapter 2 Proxy Deployment Strategies and Challenges
	Definitions of Proxy Types: Transparent Proxy and Explicit Proxy
	Inline Deployment of Transparent Proxy: Physical Inline and Virtual Inline
	Physical Inline Deployment
	Virtual Inline Deployment
	Traffic Redirection Methods: WCCP and PBR
	LAN Port and WAN Port

	Forward Proxy and Reverse Proxy

	Challenges of Transparent Interception
	Directionality of Connections
	Maintaining Traffic Paths
	Avoiding Interception

	Asymmetric Traffic Flow Detection and Clustering
	Proxy Chaining
	Summary

	Chapter 3 Proxy Policy Engine and Policy Enforcements
	Policy System Overview
	Conditions and Properties
	Policy Transaction
	Policy Ticket

	Policy Updates and Versioning System
	Security Implications
	Policy System in the Cloud Security Operation

	Policy Evaluation
	Policy Checkpoint
	Policy Execution Timing
	Revisiting the Proxy Interception Steps

	Enforcing External Policy Decisions
	Summary

	Chapter 4 Malware and Malware Delivery Networks
	Cyber Warfare and Targeted Attacks
	Espionage and Sabotage in Cyberspace
	Industrial Espionage
	Operation Aurora
	Watering Hole Attack
	Breaching the Trusted Third Party

	Casting the Lures
	Spear Phishing
	Pharming
	Cross-Site Scripting
	Search Engine Poisoning
	Drive-by Downloads and the Invisible iframe
	Tangled Malvertising Networks

	Malware Delivery Networks
	Fast-Flux Networks
	Explosion of Domain Names
	Abandoned Sites and Domain Names

	Antivirus Software and End-Point Solutions – The Losing Battle
	Summary

	Chapter 5 Malnet Detection Techniques
	Automated URL Reputation System
	Creating URL Training Sets
	Extracting URL Feature Sets
	Classifier Training

	Dynamic Webpage Content Rating
	Keyword Extraction for Category Construction
	Keyword Categorization

	Detecting Malicious Web Infrastructure
	Detecting Exploit Servers through Content Analysis
	Topology-Based Detection of Dedicated Malicious Hosts
	Detecting C2 Servers
	Detection Based on Download Similarities
	Crawlers

	Detecting Malicious Servers with a Honeyclient
	High Interaction versus Low Interaction
	Capture-HPC: A High-Interaction Honeyclient
	Thug: A Low-Interaction Honeyclient
	Evading Honeyclients

	Summary

	Chapter 6 Writing Policies
	Overview of the ProxySG Policy Language
	Scenarios and Policy Implementation
	Web Access
	Access Logging
	User Authentication
	Safe Content Retrieval
	SSL Proxy
	Reverse Proxy Deployment
	DNS Proxy

	Data Loss Prevention
	E-mail Filtering
	A Primer on SMTP
	E-mail Filtering Techniques

	Summary

	Chapter 7 The Art of Application Classification
	A Brief History of Classification Technology
	Signature Based Pattern Matching Classification
	Extracting Matching Terms – Aho-Corasick Algorithm
	Prefi x-Tree Signature Representation
	Manual Creation of Application Signatures
	Automatic Signature Generation
	Flow Set Construction
	Extraction of Common Terms
	Signature Distiller
	Considerations

	Machine Learning-Based Classification Technique
	Feature Selection
	Supervised Machine Learning Algorithms
	Naïve Bayes Method

	Unsupervised Machine Learning Algorithms
	Expectation-Maximization
	K-Means Clustering

	Classifier Performance Evaluation
	Proxy versus Classifier
	Summary

	Chapter 8 Retrospective Analysis
	Data Acquisition
	Logs and Retrospective Analysis
	Log Formats
	Log Management and Analysis

	Packet Captures
	Capture Points
	Capture Formats
	Capture a Large Volume of Data

	Data Indexing and Query
	B-tree Index
	B-tree Search
	B-tree Insertion
	Range Search and B+-tree

	Bitmap Index
	Bitmap Index Search
	Bitmap Index Compression

	Inverted File Index
	Inverted File
	Inverted File Index Query
	Inverted File Compression

	Performance of a Retrospective Analysis System
	Index Sizes
	Index Building Overhead
	Query Response Delay
	Scalability

	Notes on Building a Retrospective Analysis System
	MapReduce and Hadoop
	MapReduce for Parallel Processing
	Hadoop
	Open Source Data Storage and Management Solution
	Why a Traditional RDBMS Falls Short
	NoSQL and Search Engines
	NoSQL and Hadoop

	Summary

	Chapter 9 Mobile Security
	Mobile Device Management, or Lack Thereof
	Mobile Applications and Their Impact on Security
	Security Threats and Hazards in Mobile Computing
	Cross-Origin Vulnerability
	Near Field Communication
	Application Signing Transparency
	Library Integrity and SSL Verification Challenges
	Ad Fraud

	Research Results and Proposed Solutions
	Infrastructure-Centric Mobile Security Solution
	Towards the Seamless Integration of WiFi and Cellular Networks
	Security in the Network

	Summary

	Bibliography
	Index
	EULA

