
www.allitebooks.com

http://www.allitebooks.org

Selenium Essentials

Get to grips with automated web testing with
the amazing power of Selenium WebDriver

Prashanth Sams

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Selenium Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1230315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-433-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Prashanth Sams

Reviewer
Alen Šiljak

Commissioning Editor
Pramila Balan

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Sweny Sukumaran

Technical Editor
Parag Topre

Copy Editor
Sarang Chari

Project Coordinator
Rashi Khivansara

Proofreaders
Safis Editing

Maria Gould

Indexer
Hemangini Bari

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Prashanth Sams is a test automation engineer contributing to the IT industry since
2011. He graduated with a bachelor's degree in information technology from Anna
University and lives in Chennai, India, with his family. He started his career as a
human resource executive. Later, he worked at an HR outsourcing (US recruiting)
company that operates in Chennai.

He is very passionate about test automation and has chosen to be a professional
software engineer. He is an active blogger and a moderator for http://
seleniumworks.blogspot.in/, a blog about Selenium, and is a great supporter
of the Selenium Community, responding diligently to questions and answers over
professional networks. He loves emerging technologies with soft skills development
and spends 14 to 16 hours a day on them. In a short span of time, he has gained rich
experience in various projects, handling different automation tools. Prashanth's
Twitter handle is @prashanthsams.

I would like to thank all Selenium Core committers and the Selenium
Community members who spend most of their time making this
open source product a successful tool. I would also like to thank
the editors of this book, who are very intense and responsible for
bringing about knowledge transfer to software professionals.

www.allitebooks.com

http://seleniumworks.blogspot.in/
http://seleniumworks.blogspot.in/
http://www.allitebooks.org

About the Reviewer

Alen Šiljak is a solutions architect and software development enthusiast who
was lucky enough to live through the times from the 8-bit machines to the 64-bit
ones. As a fan of Agile methodologies, he appreciates creativity and enjoys creating
order from entropy. Currently, he is happy to see software become mainstream, but
he still sighs for the times when technologies were obsolete in a matter of months,
if not weeks. Also, he still marvels at the fact that his phone is incomparably more
advanced than the machines on which he started his IT journey.

Thank you, my family and friends. You are the icing on the cake of
my life.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
mailto:service@packtpub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: The Selenium IDE	 1

WebDriver playback	 5
Prerequisites for the WebDriver playback feature	 6

Locator prioritization	 8
Avoiding Selenium export	 9
The Selenium IDE clipboard	 10
Data Driven tests	 11

User-defined JavaScript methods	 13
Selenium IDE JavaScript functions	 15

Simple JavaScript execution	 16
Mouse scroll	 16
Parameterization using arrays	 17

Selenium Builder	 18
Recording and playback	 19
Data Driven tests	 20

Testing using a JSON file	 20
Testing using an XML file	 21

Selenium Builder on the cloud	 22
Summary	 23

Chapter 2: Selenium WebDriver Cross-browser Tests	 25
Selenium WebDriver compatibility tests	 26

TestNG	 28
Selenium cross-browser tests on the cloud	 31

SauceLabs	 31
BrowserStack	 33
TestingBot	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Selenium headless browser testing	 36
PhantomJS	 37
HTMLUnitDriver	 39

Switching user agents	 40
Firefox user agent	 40
Chrome user agent	 41

Tests on specific Firefox versions	 42
Tests from the custom Firefox profile	 42

Tests from the custom Chrome profile	 44
Summary	 45

Chapter 3: Selenium WebDriver Functions	 47
Basic WebDriver functions	 48
Locating WebElements	 50
WebElement functions	 55
Navigation	 59
Cookies	 60
Window functions	 63
Select functions	 67
Handling alerts and pop-ups	 71
Mouse and keyboard actions	 73
Summary	 80

Chapter 4: Selenium WebDriver Best Practices	 81
Handling Ajax websites	 82

The isElementPresent method	 82
Waits	 83

Explicit wait	 84
The FluentWait method	 86
Sleeper	 86

Timeouts	 87
The PageObject pattern	 88

The PageFactory class	 91
The @FindBy annotation	 93
The @FindBys annotation	 94

The EventFiringWebDriver class	 95
Event-firing WebDriver example	 101

Handling iframes	 106
Handling native OS and browser pop-ups using Java Robot	 108

Downloading browser pop-ups	 109
Screen capture	 111

Firefox profile to download files	 112

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

The JavascriptExecutor class	 114
Page scroll	 115
Highlighting elements	 117
Opening a new browser window	 118
JavaScript error collector	 118

Summary	 120
Chapter 5: Selenium WebDriver Frameworks	 121

Behaviour-Driven Development	 122
Cucumber BDD framework	 123

Cucumber JVM	 123
JBehave BDD framework	 128

JXL API Data-Driven framework	 133
Reading and writing in an Excel sheet	 133
Simple Data-Driven approach	 136
Data-Driven testing using reusable library	 137
Data-Driven testing using TestNG with the @dataProvider annotation	 141

Apache POI Data-Driven framework	 144
HSSF usermodel – Binary workbook	 145
XSSF usermodel – SpreadsheetML workbook (.xlsx)	 150
SS usermodel – Binary and SpreadsheetML workbooks	 151

Text file Data-Driven framework	 153
Data-Driven testing using TestNG with the @dataProvider
annotation – text file	 155

Properties file Data-Driven framework	 157
Data-Driven testing using TestNG with @dataProvider
annotation – properties file	 160
CSV file Data-Driven framework	 162

Keyword-Driven framework	 164
Hybrid-Driven framework	 166
Summary	 169

Index	 171

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Selenium WebDriver is an open source software-testing tool used to automate
web-based applications that is platform independent and that can be accessed
by any popular programming languages. It's been about a decade since Jason
Huggins started the Selenium project in 2004 at Thoughtworks. Later, in 2008,
Simon Stewart combined his work on WebDriver with Selenium to give a new
birth to Selenium WebDriver. Today, Selenium WebDriver is the most widely
used web-automation tool around the world.

This book provides guidance that will help readers grasp Selenium WebDriver
concepts fast. You will learn about the advanced features of the Selenium IDE and
Selenium Builder, followed by cross-browser tests, methods of Selenium WebDriver,
best practices involved, and extensive ideas to create a Selenium framework.

What this book covers
Chapter 1, The Selenium IDE, provides intense ideas to practice record-and-playback
IDEs such as the Selenium IDE and Selenium Builder.

Chapter 2, Selenium WebDriver Cross-browser Tests, helps you to do efficient
compatibility tests. Here, we will also learn about how to run tests in the cloud.

Chapter 3, Selenium WebDriver Functions, delivers all the functions of Selenium
WebDriver in detail with examples on each.

Chapter 4, Selenium WebDriver Best Practices, explains how to manage Selenium
automation tasks with dissimilar techniques.

Chapter 5, Selenium WebDriver Frameworks, guides you to customize and build any
kind of automation framework using Selenium WebDriver.

Preface

[vi]

What you need for this book
•	 Microsoft Windows
•	 MAC / Ubuntu (Linux)
•	 Eclipse IDE/IntelliJ IDEA
•	 Selenium IDE
•	 Selenium Builder
•	 Mozilla Firefox
•	 Google Chrome
•	 Internet Explorer
•	 Opera
•	 Apple Safari
•	 Microsoft Excel

Who this book is for
Selenium Essentials is intended for software professionals who want to learn about
Selenium WebDriver from scratch and for testers who want to migrate from Selenium
RC to Selenium WebDriver. This book delivers an easy learning curve for Selenium
newbies who want to begin with Selenium WebDriver and a perfect guide for
intermediate Selenium testers to become masters in Selenium WebDriver.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now, replace the directory on your code with C:/Users/user_name/AppData/
Local/Google/Chrome/New User."

A block of code is set as follows:

<testdata>
 <testvarname="value" />
 <testvarname="value" />
 <testvarname="value" />
</testdata>

Preface

[vii]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

driver.switchTo().frame(value);

Any command-line input or output is written as follows:

$ Unzip chromedriver_linux64.zip

$ cp chromedriver /usr/local/bin

$ chmod +x /usr/local/bin/chromedriver

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"It will prompt you to enter the admin password; enter it to set the path."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[viii]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.comwith a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Chapter 1

[1]

The Selenium IDE
The Selenium IDE (Integrated Development Environment) is an open source
record-and-playback tool for generating Selenium scripts, which is integrated
with the Firefox web browser as an extension. It is a renowned web-based UI test
automation tool that extracts any kind of locator from the web page. The locators can
be either attribute-based or structure-based, and include ID, name, link, XPath, CSS,
and DOM. The IDE has the entire Selenium Core, which allows the users to record,
playback, edit, and debug tests manually in a browser. The user actions in the web
page can be recorded and exported in any of the most popular languages, such as
Java, C#, Ruby, and Python.

Selenium Builder is an alternative open source tool for the Selenium IDE to record
and playback web applications. It is an extension of the Firefox web browser, which
is similar to the Selenium IDE, but, it has some unique features that the Selenium IDE
doesn't support. Selenium Builder is a standard tool from Sauce Labs that runs tests on
Sauce Cloud from the Selenium Builder interface itself.

In this chapter, we will learn about:

•	 Selenium IDE's record and playback abilities
•	 Selenium IDE functions
•	 Selenium IDE Data Driven tests
•	 Selenium IDE JavaScript functions
•	 Selenium Builder record and playback
•	 Selenium Builder Data Driven tests
•	 Selenium Builder on cloud

The Selenium IDE

[2]

The Selenium IDE is a Firefox extension to record and playback web-based
applications. However, it does more than what a record-and-playback tool would
do. Breakpoints allow the users to debug IDE commands step by step on runtime.
The IDE has three different types of panes, namely the left pane, test case pane,
and log / reference / UI-element / rollup pane.

Launch the Selenium IDE from the Firefox Tools menu, Tools | Selenium IDE.
The IDE can also be opened using the Ctrl + Shift + S shortcut or by clicking
on the Selenium icon in the top-right corner of the Firefox web browser. The
Selenium icon is shown in the following screenshot:

A new, untitled test case will be created in Left Pane after launching the Selenium
IDE. To start with a new test case, choose New Test Case from the File menu,
that is, File | New Test Case, or make use of Ctrl + N, the Windows shortcut.

To start recording test scripts, click on the round, red icon from the playback control
toolbar. By default, the record button will be active and the test scripts are recorded
in Selenese, a domain-specific language that is similar to the HTML format.
The playback control toolbar is shown in the following screenshot:

The Fast-Slow slider adjusts the test speed execution; the Play All
button lets you run entire test cases as a test suite, where a test suite is a collection
of test cases; and the Play button helps you to run the current test case. The
Pause/Resume button pauses test execution for a while and allows the user to
resume tests at their convenience.

The Test Case pane displays all the recorded steps with Command, Target, and
Value. The Command column instructs the IDE about what to do. It comes with
three different aspects, which are:

•	 Actions
•	 Accessors
•	 Assertions

Chapter 1

[3]

The Selenium IDE has a list of built-in commands that let you drive tests as expected.
Adding user-defined commands to the Selenium IDE is quite feasible by extending
the external JavaScript methods. A command can be any one of the preceding
three types. In the IDE, these commands are easily editable and replaceable with
alternative commands while generating scripts.

Action commands manipulate the application state through some kind of actions,
can be either action or actionAndWait. Action commands that end with the suffix
AndWait allow the page to load fully before starting to execute the next command.

A few of the Action command examples are open, type, typeAndWait, select,
selectAndWait, check, checkAndWait, click, and clickAndWait.

Accessors detect the application state and store results in a variable; store, storeText,
and storeValue are the commands that are used to store values. For example, in the
following screenshot, search is a variable and prashanth sams is the search keyword.
Later on, the stored value is retrieved and is used as a parameter for an action,
${search}. The discussion in this paragraph is encapsulated in this screenshot:

Assertions verify the application state by validating the expected result. It is
available in three different modes, namely, assert, verify, and waitFor. Assert fails
and aborts the test execution upon failure, verify fails and continues the test execution
upon failure, and waitFor waits for a specific condition to occur and fails upon
timeout. By default, the timeout is set to 30,000 milliseconds, 30 seconds. In the
Selenium IDE, the timeout can be manually configured using the Options menu.

The Target field directs the IDE to locate elements, and the general syntax for
Target is as follows:

locatorType = argument

An example for Target is as follows:

css=#gbqfq

The Selenium IDE

[4]

The Log / Reference / UI-Element / Rollup pane is displayed at the bottom of the
IDE. This is shown in the following screenshot:

This pane allows the user to see the log information, command reference, UI-Element,
and Rollup, among others. On installing the Neustar plugin to the Selenium IDE, a
separate tab called Neustar Script Uploader will be shown along with the other tabs.
Neustar WPM (formerly called Browsermob) is a web performance management tool
for web page monitoring and load testing.

The log captures all the IDE test execution steps one by one and is mainly used for
debugging purposes. The Debug menu in the bottom pane contains a list of options,
namely Info, Debug, Warn, and Error. It lets you filter the explicit status, warning,
and error messages, and certainly reduces the verbosity level.

Chapter 1

[5]

The Reference tab gives a detailed explanation of the IDE commands upon clicking
on each row from the Test Case pane. In the case of user-defined commands,
the Reference tab will not include any information. Rollup executes a group of
commands in one step; it is reusable and can be used any number of times within
the test case. Refer to Help | UI-Element Documentation for more details about
UI-Element and Rollup.

While recording test scripts, the Selenium IDE provides UI-based options for
every mouse right-click on elements on a browser web page. To achieve this,
right-click on the web page and hover the mouse over Show All Available
Commands. The following screenshot is the result of this action:

WebDriver playback
The WebDriver playback feature in Selenium IDE lets you run tests in any one of
the most popular web browsers: Chrome, Firefox, HtmlUnit, Internet Explorer, and
Opera. By default, the WebDriver playback feature is turned off and is inactive. To run
Selenium IDE scripts through WebDriver, turn on the WebDriver playback settings.

www.allitebooks.com

http://www.allitebooks.org

The Selenium IDE

[6]

Launch the Selenium IDE and choose Selenium IDE Options from the Options menu.
Switch to the WebDriver tab and select the Enable WebDriver checkbox. Now, restart
the Selenium IDE to enable the WebDriver playback feature. However, on changing
the browser name, restarting the IDE is not necessary. The idea discussed in these two
paragraphs is shown in the following screenshot:

Prerequisites for the WebDriver playback feature
The following are the prerequisites that need to be fulfilled to enable the WebDriver
playback feature:

•	 Download the latest Selenium Server standalone library (JAR) file
•	 Install Java to start the Selenium Server
•	 Download the latest drivers for popular browsers (chromedriver,

IEDriver, and so on)

Selenium Server can be initialized manually from the terminal or Command Prompt.
Open the terminal or Command Prompt, locate the Selenium Server JAR file, and
run the command using the following syntax:

java -jar selenium-server-standalone-<version-number>.jar

Now you can run the command:

java -jar selenium-server-standalone-2.44.0.jar

Chapter 1

[7]

Click on the Selenium IDE Play button to drive tests through WebDriver.
To run tests in the Chrome web browser, replace the text firefox with chrome
under the Selenium IDE options, as shown in the following screenshot:

By default, it is essential to set the ChromeDriver path in your working machine.
Download the latest ChromeDriver extension from http://chromedriver.
storage.googleapis.com/index.html?path=2.9/.

Follow these configuration steps to set the ChromeDriver extension path for
different platforms.

On Windows:

1.	 Double-click and open the My Computer window.
2.	 Right-click anywhere on the window and select Properties.
3.	 Click on Advanced System settings.
4.	 Click on Environment Variables from System Properties.
5.	 Under System variables, select the variable named Path and click on

the Edit button.
6.	 Now, extract the downloaded ChromeDriver package and copy the

location path.
7.	 Paste the extracted location in Path (under System variables) and

click on OK.

On Linux:

Open the terminal and run the following command:

$ wget http://chromedriver.storage.googleapis.com/2.7/chromedriver_
linux64.zip

$ Unzip chromedriver_linux64.zip

$ cp chromedriver /usr/local/bin

$ chmod +x /usr/local/bin/chromedriver

http://chromedriver.storage.googleapis.com/index.html?path=2.9/
http://chromedriver.storage.googleapis.com/index.html?path=2.9/

The Selenium IDE

[8]

On Mac:

1.	 Unzip/extract the zipped package (chromedriver_mac32.zip).
2.	 Copy and paste ChromeDriver to /usr/bin.
3.	 It will prompt you to enter the admin password; enter it to set the path.

Locator prioritization
Prioritization lets you prioritize locators while recording scripts. In general, this
feature helps the user by giving high priority to generate scripts with respect to
the user's preferred locators. For example, by changing the csslocator order from
the fifth to the first position, the further elements generated on the Selenium IDE's
target will be in CSS, that is, the locatorType will be set to CSS by default.

An example of this is CSS = argument.

Launch the Selenium IDE, choose Options... from the Options menu, and switch
to the Locator Builders tab. The left-hand pane will be mounted with a list of
available locator builders, such as, ui, id, link, name, css, dom:name, xpath:link,
xpath:img, xpath:attributes, xpath:idRelative, xpath:href, dom:index,
and xpath:position. The list of available locator builders is shown in the
following screenshot:

Chapter 1

[9]

Drag and drop locator builders on the left-hand side to change their order. Finally,
click on the OK button, and restart the Selenium IDE for the changes to take effect.
To reset the default settings of the Selenium IDE, click on the Reset option found in
the bottom-left corner of the Selenium IDE options window pane.

Avoiding Selenium export
Exporting test cases each and every time can bother the user. The Selenium IDE
provides an excellent feature to avoid such exporting trouble by using a quick solution.
In general, clicking on the Source toggle button under the Test Case pane displays the
current test case in the Selenese language. The Selenium IDE transforms the existing
Selenese language into a user-preferred script format, such as, Java/JUnit4/WebDriver.

Launch the Selenium IDE and choose Options... from the Options menu. Make
sure that the option Enable experimental features is selected and click on the OK
button. Click on the Format option in the Options menu and select the preferred
combination format.

For example, you can select the Java/JUnit4/WebDriver option, as shown in the
following screenshot.

Finally, restart the Selenium IDE for the changes to take effect. In the Selenium
IDE, there is no support for exporting the test cases in TestNG with the WebDriver
(Java/TestNG/WebDriver) combination format.

The Selenium IDE

[10]

The tab will automatically switch to the Source view on disabling the Table toggle
button, as shown in the following screenshot:

The Selenium IDE clipboard
Copying snippets through Clipboard Format is one of the quickest ways to obtain
instantly generated scripts. Here, a snippet may contain one or two lines of code.
The following screenshot displays different types of export formats available under
the Clipboard Format option:

Launch the Selenium IDE, hover your mouse over the Clipboard Format option
from the Options menu, and select the preferred combination format.

Chapter 1

[11]

An example of a combination format is Java/JUnit 4/WebDriver. In general,
the HTML snippet is set as default. The following screenshot shows a row being
copied from the Test Case pane:

Copy the following row from the Test Case pane (as shown in the preceding
screenshot) and paste it as a code snippet:

driver.findElement(By.id("gbqfq")).clear();
driver.findElement(By.id("gbqfq")).sendKeys("prashanthsams");

Data Driven tests
Parameterization is a part of the Data Driven technique for retrieving values from
an external data source as input. In general, the Data Driven tests are used to verify
the actual and expected values from an external data source. The Selenium IDE plays
a major role in parameterization, as it operates with different sets of permutations
and combinations. Let's see how we can use a JavaScript file as a data source for
Data Driven tests. The following is the JavaScript syntax for parameterization:

varname = "value"

For example, create a JavaScript (.js) file (Datasource.js) that includes the
following keywords:

Search1 = "PrashanthSams"
Search2 = "Selenium Essentials"

The Selenium IDE

[12]

Launch the Selenium IDE and choose Options… from the Option menu,
Option | Options.... Now, browse through Selenium IDE extensions and select
the .js file created earlier (Datasource.js), as shown in the following screenshot:

Finally, restart the Selenium IDE to effect the changes. Initialize, store, and fetch
values from the .js file one by one using the storeEval command, as follows:

Chapter 1

[13]

Here, Search1 and Search2 are the two variables that retrieve the respective
keywords from the JavaScript file. These values are again stored in the new variables,
GoogleSearch1 and GoogleSearch2, as shown in the preceding screenshot.

User-defined JavaScript methods
The IDE actions, accessors, and assertions can be user-defined and customized.
To achieve this, the user is supposed to add JavaScript methods to the Selenium
object prototype and the PageBot object prototype. In general, the Selenium IDE
verifies the user-defined JavaScript methods on launching the IDE. Selenium Core
extensions (user-extensions.js) in Options... give support to upload the
user-defined JavaScript files.

Let's discuss this with an example that involves step-by-step instructions, as follows:

1.	 Refer to the Google site https://sites.google.com/site/
seleniumworks/selenium-ide-data-driven to download the following
JavaScript files:

°° datadriven.js

°° goto_sel_ide.js

°° user-extensions.js

2.	 Launch the Selenium IDE and choose Options… from the Option menu,
Option | Options.... Now, navigate to Selenium Core extensions and
upload the JavaScript files (user-extensions.js, goto_sel_ide.js and
datadriven.js), as shown in the following screenshot. Finally, restart the
Selenium IDE for the changes to take effect.

https://sites.google.com/site/seleniumworks/selenium-ide-data-driven
https://sites.google.com/site/seleniumworks/selenium-ide-data-driven

The Selenium IDE

[14]

3.	 In the Selenium IDE, the XML file is used as a data source to store values,
whereas Datadriven.js is designed to support the XML file format.
Here is the syntax for XML file formatted data source:

<testdata>
 <test varname="value" />
 <test varname="value" />
 <test varname="value" />
</testdata>

Create an XML file with the extension .xml (data.xml). Here, varname is
the variable name, and value refers to the keyword under the <test> tag.
Let's create an XML file with the .xml extension (data.xml). For example,
refer to the following code snippet:

<testdata>
 <test phrase="selenium essentials" />
 <test phrase="seleniumworks.com" />
 <test phrase="prashanthsams" />
</testdata>

4.	 Take a look at these details: loadTestData is a user-defined command that
fetches the XML data source, while and endWhile do looping, whereas
nextTestData checks for the data from the next row in the data source.
The user can add any number of JavaScript methods. The following
screenshot shows this step in detail:

Chapter 1

[15]

Selenium IDE JavaScript functions
In addition to user-defined JavaScript commands introduced through
user-extensions.js, the Selenium IDE allows the user to create JavaScript
queries or functions directly in the Target field. For example, let's run a Google
search by getting a random number between 1 and 100, as follows:

The following HTML source tags let you convert the steps into runnable test scripts:

<tr>
 <td>store</td>
 <td>javascript{'Random number ' + Math.floor(Math.random() * 100);}
</td>
 <td>search</td>
</tr>
<tr>
 <td>echo</td>
 <td>${search}</td>
 <td></td>
</tr>
<tr>
 <td>open</td>
 <td>/</td>
 <td></td>
</tr>
<tr>
 <td>type</td>
 <td>id=gbqfq</td>
 <td>${search}</td>
</tr>

www.allitebooks.com

http://www.allitebooks.org

The Selenium IDE

[16]

Simple JavaScript execution
The predefined Selenium IDE JavaScript command runScript is a very powerful
command that lets the user execute simple JavaScript functions directly from the
IDE, for example, javascript{alert("Hello!")}.

Let's see how we can disable an active textbox and enable an inactive textbox using
the following code snippet:

document.getElementsByName('****')[0].setAttribute('disabled', '')
document.getElementsByName('****')[0].removeAttribute('disabled');

Mouse scroll
The scroll event is currently unavailable in the Selenium IDE. However, the
user-extensions.js file includes a JavaScript method that lets you scroll the
mouse through the web page.

Refer to the Google site https://sites.google.com/site/seleniumworks/
selenium-ide-tricks to download user-extensions.js. This user extension
file includes IDE commands like while, endWhile, gotoIf, gotoLabel, and push.
Increase the value to 10 based upon the vertical length of the web page, as shown
in the following screenshot:

https://sites.google.com/site/seleniumworks/selenium-ide-tricks
https://sites.google.com/site/seleniumworks/selenium-ide-tricks

Chapter 1

[17]

Parameterization using arrays
The Selenium IDE command storeEval is used to store values in a variable while
running scripts, whereas storedVars is a JavaScript associate array with string
indexes containing variables. In the following example, storeEval reserves the list
of rivers in an array, and getEval is a command for initiating and incrementing the
values. Some of the commands used in this section are purely user-defined, such as
while, endWhile, and so on. Here, the endWhile command is used to break the loop
once the value inside the array reaches the maximum limit. The following screenshot
gives us a clear idea of what is being discussed here:

Let's see another example of advanced parameterization concepts using the Selenium
IDE. Refer to the Google site https://sites.google.com/site/seleniumworks/
selenium-ide-tricks to download the user-extensions.js
file. The following screenshot captures the essence of this discussion:

https://sites.google.com/site/seleniumworks/selenium-ide-tricks
https://sites.google.com/site/seleniumworks/selenium-ide-tricks

The Selenium IDE

[18]

In this example, the values are pushed into the array manually, and it does a Google
search one by one.

Selenium Builder
Selenium Builder is a record-and-playback tool similar to the Selenium IDE and is an
extension of the Firefox web browser. It has some unique features that the Selenium
IDE doesn't support, for example GitHub integration to export and commit test
suites/cases in GitHub and TestingBot integration to run tests in the cloud. It also
provides more language support than the Selenium IDE, including for languages
such as JSON, Java/TestNG, NodeJS WD, NodeJS Mocha, and NodeJS Protractor.
Selenium Builder is expected to be the future of the Selenium IDE, with advanced
features. Here's a screenshot of Selenium Builder:

Chapter 1

[19]

Recording and playback
Upon confirmation of the addition of the Selenium Builder extension into the Firefox
browser, open the web page that is being tested (such as www.google.com). There are
a number of ways to open Selenium Builder, such as:

•	 Right-click on the web page and select Launch Selenium Builder.
•	 Choose Selenium Builder from the Tools menu, that is, Tools | Web

Developer | Launch Selenium Builder
•	 Alternatively, you can use the Ctrl + Alt + B shortcut keys

Selenium Builder is supposed to have an option Selenium 2 to record WebDriver
test scripts. The user can easily identify the page being actively recorded, as it has
a green-colored tab, as shown in the following screenshot:

Selenium Builder allows you to have control over the web app to start recording test
scripts. It allows the users to verify their tests using a button, Record a verification.
Clicking on the verification button highlights the text to be verified all over the page
on mouseover. The mouseover function is an excellent feature of Selenium Builder
that helps the user to add mouse hover functionality whenever needed. Select the
Record mouseovers checkbox to record mouseover actions. The following screenshot
shows this functionality:

Stop recording the scripts and export (File | Export) the tests in the preferred
combination format.

www.google.com

The Selenium IDE

[20]

Data Driven tests
In general, Selenium Builder is capable of importing test scripts saved by the
Selenium IDE, since both the IDEs' native format is Selenese. Exporting Selenium
scripts in the Java/TestNG/WebDriver format, which avoids all the extra human
effort when working with TestNG, is feasible in Selenium Builder. TestNG is one of
the most popular unit testing frameworks and is similar to JUnit for Java bindings.

Despite the fact that Selenium Builder is a record-and-playback tool, it allows users
to perform basic Data Driven tests by receiving input from the data source. The
values can also be stored temporarily in Selenium Builder using the Manual Entry
option (Data | Manual Entry). To do so, create a variable and assign the value, as
shown in the following screenshot:

Selenium Builder comprises higher-level support for Data Driven testing that lets
you drive tests using the JSON, XML, and CSV file formats. CSV file formats can
be used to fetch data files with large volumes. Let's see some of the file formats
involving Data Driven tests.

Testing using a JSON file
The following is the syntax for a JSON file formatted data source:

[
{ "varname": "value", "varname": "value", ... },
{ "varname": "value", "varname": "value", ... },
 ...
]

Chapter 1

[21]

For example, create a JSON file with the .json extension (data.xml). Here, foo is
the variable name, whereas value is defined with the keywords prashanth and
sams, as follows:

[{"foo": "prashanth"}, {"foo": "sams"}]

To address the values stored in a JSON file, it is recommended to call the variables,
for example, ${foo}, in the pre-recorded steps, as shown in the preceding screenshot.

Testing using an XML file
The following is the syntax for an XML file formatted data source:

<testdata>
 <testvarname="value" />
 <testvarname="value" />
 <testvarname="value" />
</testdata>

For example, create an XML file with the .xml extension (data.xml). Here, search is
the variable name, and value refers to the keyword under the <test> tag, as shown
in the following code snippet:

<testdata>
 <test search="selenium essentials" />
 <test search="prashanthsams" />

The Selenium IDE

[22]

 <test search="seleniumworks" />
</testdata>

Selenium Builder on the cloud
Selenium Builder allows users to run cross-browser tests on the cloud directly from
the IDE interface. To integrate Selenium Builder with Sauce and enable export and
playback scripts on Sauce OnDemand, it's necessary to install the Selenium Builder
Sauce plugin first. Launch Selenium Builder, click on Manage plugins, and install
the Sauce for Selenium Builder plugin. Also, users should create a Sauce account
before running cloud-based Selenium tests. For further details on Selenium Builder
on the cloud, refer to https://saucelabs.com/. The following screenshot shows us
the Plugins page:

https://saucelabs.com/

Chapter 1

[23]

Obtain the Sauce access key after logging in to your Sauce account as a real user
or by clicking look up access key in Selenium Builder. The access key is unique for
each user.

Choose Run on Sauce OnDemand from the Run menu. Make sure that Sauce Settings
is furnished before running the test cases. All you need to do is enter the Sauce
Username, Sauce Access Key, Browser, and OS versions. Finally, log in to Sauce and
verify the test results. The tests are recorded in video and images for user preview.

Summary
In this chapter, you learned about the Selenium IDE functions, along with Selenium
Builder, and observed how to handle the Selenium IDE to automate simple tests.

In the next chapter, we will discuss advanced compatibility-testing techniques using
Selenium WebDriver. It lets you drive tests on different browsers.

Chapter 2

[25]

Selenium WebDriver
Cross-browser Tests

The term cross-browser testing can be applied to both multi-browser testing and
compatibility testing. Testing the web application with multiple web browsers is
defined as cross-browser testing. A lack of cross-browser testing results in layout and
functionality issues. Manually testing an application needs a lot of human effort and
time to finish a complex job, but automated tests are carried out to avoid such issues.
In general, most of the cross-browser issues are generated while rendering web page
elements, which results in a functional and UI-based mess. Selenium WebDriver
provides excellent support for automating test cases with the most popular browsers,
using their own drivers. Selenium cross-browser tests can also be automated on the
cloud using web application tools, such as SauceLabs, BrowserStack, and TestingBot.

In this chapter, we will cover the following topics:

•	 Selenium WebDriver compatibility tests
•	 Selenium cross-browser tests on cloud
•	 Selenium headless browser testing
•	 Switching user agents
•	 Tests on specific Firefox versions
•	 Tests from custom Firefox profile
•	 Tests from custom Chrome profile

www.allitebooks.com

http://www.allitebooks.org

Selenium WebDriver Cross-browser Tests

[26]

Selenium WebDriver compatibility tests
Selenium WebDriver handles browser compatibility tests on almost every
popular browser, including Chrome, Firefox, Internet Explorer, Safari, and Opera.
In general, every browser's JavaScript engine differs from the others, and each
browser interprets the HTML tags differently. The WebDriver API drives the web
browser as the real user would drive it. By default, FirefoxDriver comes with the
selenium-server-standalone.jar library added, but for Chrome, IE, and Opera,
there are libraries that need to be added or instantiated externally.

Let's see how we can instantiate each of the following browsers through its
own driver:

•	 Mozilla Firefox: The selenium-server-standalone library is bundled with
FirefoxDriver to initialize and run tests in a Firefox browser. FirefoxDriver is
added to the Firefox profile as a file extension on starting a new instance of
FirefoxDriver. Please check the Firefox versions and its suitable drivers
at http://selenium.googlecode.com/git/java/CHANGELOG.
The following is the code snippet to kick start Mozilla Firefox:

WebDriver driver = new FirefoxDriver();

•	 Google Chrome: Unlike FirefoxDriver, the ChromeDriver is an external
library file that makes use of WebDriver's wire protocol to run Selenium tests
in a Google Chrome web browser. The following is the code snippet to kick
start Google Chrome:
System.setProperty("webdriver.chrome.driver","C:\\chromedriver.
exe");
WebDriver driver = new ChromeDriver();

To download ChromeDriver, refer to http://chromedriver.
storage.googleapis.com/index.html.

•	 Internet Explorer: IEDriverServer is an executable file that uses the
WebDriver wire protocol to control the IE browser in Windows. Currently,
IEDriverServer supports the IE versions 6, 7, 8, 9, and 10. The following code
snippet helps you to instantiate IEDriverServer:
System.setProperty("webdriver.ie.driver","C:\\IEDriverServer.
exe");

http://selenium.googlecode.com/git/java/CHANGELOG
http://chromedriver.storage.googleapis.com/index.html
http://chromedriver.storage.googleapis.com/index.html

Chapter 2

[27]

DesiredCapabilities dc = DesiredCapabilities.internetExplorer();
dc.setCapability(InternetExplorerDriver.INTRODUCE_FLAKINESS_BY_
IGNORING_SECURITY_DOMAINS, true);
WebDriver driver = new InternetExplorerDriver(dc);

To download IEDriverServer, refer to http://selenium-release.
storage.googleapis.com/index.html.

•	 Apple Safari: Similar to FirefoxDriver, SafariDriver is internally bound with
the latest Selenium servers, and starts the Apple Safari browser without any
external library. SafariDriver supports Safari browser version 5.1.x and runs
only on Mac. For more details, refer to http://elementalselenium.com/
tips/69-safari.
The following code snippet helps you to instantiate SafariDriver:

WebDriver driver = new SafariDriver();

•	 Opera: OperaPrestoDriver (formerly called OperaDriver) is available only
for Presto-based Opera browsers. Currently, it does not support Opera
versions 12.x and above. However, the recent releases (Opera 15.x and above)
of Blink-based Opera browsers are handled using OperaChromiumDriver.
For more details, refer to https://github.com/operasoftware/
operachromiumdriver.

The following code snippet helps you to instantiate OperaChromiumDriver:

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability("opera.binary", "C://Program Files
(x86)//Opera//opera.exe");
capabilities.setCapability("opera.log.level", "CONFIG");
WebDriver driver = new OperaDriver(capabilities);

To download OperaChromiumDriver, refer to https://github.
com/operasoftware/operachromiumdriver/releases.

http://selenium-release.storage.googleapis.com/index.html
http://selenium-release.storage.googleapis.com/index.html
http://elementalselenium.com/tips/69-safari
http://elementalselenium.com/tips/69-safari
https://github.com/operasoftware/operachromiumdriver
https://github.com/operasoftware/operachromiumdriver
https://github.com/operasoftware/operachromiumdriver/releases
https://github.com/operasoftware/operachromiumdriver/releases

Selenium WebDriver Cross-browser Tests

[28]

TestNG
TestNG (Next Generation) is one of the most widely used unit-testing frameworks
implemented for Java. It runs Selenium-based browser compatibility tests with the
most popular browsers. The Eclipse IDE users must ensure that the TestNG plugin
is integrated with the IDE manually. However, the TestNG plugin is bundled with
IntelliJ IDEA as default. The testng.xml file is a TestNG build file to control test
execution; the XML file can run through Maven tests using POM.xml with the help
of the following code snippet:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.12.2</version>
 <configuration>
 <suiteXmlFiles>
 <suiteXmlFile>testng.xml</suiteXmlFile>
 </suiteXmlFiles>
 </configuration>
 </plugin>

To create a testng.xml file, right-click on the project folder in the Eclipse IDE,
navigate to TestNG | Convert to TestNG, and click on Convert to TestNG,
as shown in the following screenshot:

The testng.xml file manages the entire test. It acts as a mini data source by passing
the parameters directly into the test methods. The location of the testng.xml file is
shown in the following screenshot:

Chapter 2

[29]

As an example, create a Selenium project (for example, Selenium Essentials)
along with the testng.xml file, as shown in the previous screenshot. Modify the
testng.xml file with the following tags:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="Suite" verbose="3" parallel="tests" thread-count="5">

 <test name="Test on Firefox">
 <parameter name="browser" value="Firefox" />
 <classes>
 <class name="package.classname" />
 </classes>
 </test>

 <test name="Test on Chrome">
 <parameter name="browser" value="Chrome" />
 <classes>
 <class name="package.classname" />
 </classes>
 </test>

 <test name="Test on InternetExplorer">
 <parameter name="browser" value="InternetExplorer" />
 <classes>
 <class name="package.classname" />
 </classes>
 </test>

 <test name="Test on Safari">
 <parameter name="browser" value="Safari" />
 <classes>
 <class name="package.classname" />
 </classes>
 </test>

 <test name="Test on Opera">
 <parameter name="browser" value="Opera" />
 <classes>
 <class name="package.classname" />
 </classes>
 </test>
</suite>
<!-- Suite -->

Selenium WebDriver Cross-browser Tests

[30]

Download all the external drivers except FirefoxDriver and SafariDriver, extract
the zipped folders, and locate the external drivers as mentioned in the preceding
snippets for each browser.

Refer to Chapter 1, The Selenium IDE, to learn how to set the path
on different platforms.

The following Java snippet will explain how you can get parameters directly from
the testng.xml file and how you can run cross-browser tests as a whole:

@BeforeTest
@Parameters({"browser"})
public void setUp(String browser) throws MalformedURLException {
 if (browser.equalsIgnoreCase("Firefox")) {
 System.out.println("Running Firefox");
 driver = new FirefoxDriver();
 } else if (browser.equalsIgnoreCase("chrome")) {
 System.out.println("Running Chrome");
 System.setProperty("webdriver.chrome.driver", "C:\\chromedriver.
exe");
 driver = new ChromeDriver();
 } else if (browser.equalsIgnoreCase("InternetExplorer")) {
 System.out.println("Running Internet Explorer");
 System.setProperty("webdriver.ie.driver", "C:\\IEDriverServer.
exe");
 DesiredCapabilities dc = DesiredCapabilities.internetExplorer();
 dc.setCapability
 (InternetExplorerDriver.INTRODUCE_FLAKINESS_BY_IGNORING_SECURITY_
DOMAINS, true);
 //If IE fail to work, please remove this line and remove enable
protected mode for all the 4 zones from Internet options
 driver = new InternetExplorerDriver(dc);
 } else if (browser.equalsIgnoreCase("safari")) {
 System.out.println("Running Safari");
 driver = new SafariDriver();
 } else if (browser.equalsIgnoreCase("opera")) {
 System.out.println("Running Opera");
 // driver = new OperaDriver(); --Use this if the location is
set properly--
 DesiredCapabilities capabilities = new DesiredCapabilities();
 capabilities.setCapability("opera.binary", "C://Program Files
 (x86)//Opera//opera.exe");
 capabilities.setCapability("opera.log.level", "CONFIG");
 driver = new OperaDriver(capabilities);
 }
}

Chapter 2

[31]

SafariDriver is not yet stable. A few of the major issues in SafariDriver are as follows:

•	 SafariDriver won't work properly in Windows
•	 SafariDriver does not support modal dialog box interaction
•	 You cannot navigate forwards or backwards in the browser history

through SafariDriver

Selenium cross-browser tests on the
cloud
The ability to automate Selenium tests on the cloud is quite interesting, with instant
access to real devices. Sauce Labs, BrowserStack, and TestingBot are the leading web-
based tools used for cross-browser compatibility checking. These tools contain unique
test automation features, such as diagnosing failures through screenshots and video,
executing parallel tests, running Appium mobile automation tests, executing tests on
internal local servers, and so on.

SauceLabs
SauceLabs is the standard Selenium test automation web app to do cross-browser
compatibility tests on the cloud. It lets you automate tests in your favorite
programming languages, using test frameworks such as JUnit, TestNG, Rspec, and
many more. SauceLabs cloud tests can also be executed from the Selenium Builder
IDE interface. Check for the available SauceLabs devices, OS, and platforms at
https://saucelabs.com/platforms.

Access the website from your web browser, log in, and obtain the Sauce username
and Access Key. Make use of the credentials to drive tests over the SauceLabs cloud.
SauceLabs creates a new instance of the virtual machine while launching the tests.
Parallel automation tests are also possible using SauceLabs. The following is a Java
program to run tests over the SauceLabs cloud:

package packagename;

import java.net.URL;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.lang.reflect.*;

public class saucelabs {

https://saucelabs.com/platforms

Selenium WebDriver Cross-browser Tests

[32]

 private WebDriver driver;

 @Parameters({"username", "key", "browser", "browserVersion"})
 @BeforeMethod
 public void setUp(@Optional("yourusername") String username,
 @Optional("youraccesskey") String key,
 @Optional("iphone") String browser,
 @Optional("5.0") String browserVersion,
 Method method) throws Exception {

 // Choose the browser, version, and platform to test
 DesiredCapabilities capabilities = new DesiredCapabilities();
 capabilities.setBrowserName(browser);
 capabilities.setCapability("version", browserVersion);
 capabilities.setCapability("platform", Platform.MAC);
 capabilities.setCapability("name", method.getName());
 // Create the connection to SauceLabs to run the tests
 this.driver = new RemoteWebDriver(
 new URL("http://" + username + ":" + key + "@ondemand.saucelabs.
 com:80/wd/hub"), capabilities);
 }

 @Test
 public void Selenium_Essentials() throws Exception {
 // Make the browser get the page and check its title
 driver.get("http://www.google.com");
 System.out.println("Page title is: " + driver.getTitle());
 Assert.assertEquals("Google", driver.getTitle());
 WebElement element = driver.findElement(By.name("q"));
 element.sendKeys("Selenium Essentials");
 element.submit();
 }
 @AfterMethod
 public void tearDown() throws Exception {
 driver.quit();
 }
}

SauceLabs has a setup similar to BrowserStack on test execution and generates detailed
logs. The breakpoints feature allows the user to manually take control over the virtual
machine and pause tests, which helps the user to investigate and debug problems. By
capturing JavaScript's console log, the JS errors and network requests are displayed for
quick diagnosis while running tests against the Google Chrome browser.

Chapter 2

[33]

BrowserStack
BrowserStack is a cloud-testing web app to access virtual machines instantly.
It allows users to perform multi-browser testing of their applications on different
platforms. It provides a setup similar to SauceLabs for cloud-based automation
using Selenium.

Access the site https://www.browserstack.com from your web browser, log in,
and obtain the BrowserStack username and Access Key. Make use of the obtained
credentials to drive tests over the BrowserStack cloud.

For example, the following generic Java program with TestNG provides a detailed
overview of the process that runs on the BrowserStack cloud. Customize the browser
name, version, platform, and so on, using capabilities. Let's see the Java program
we just talked about:

package packagename;

import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;

public class browserstack {

 public static final String USERNAME = "yourusername";
 public static final String ACCESS_KEY = "youraccesskey";
 public static final String URL = "http://" + USERNAME + ":" +
 ACCESS_KEY + "@hub.browserstack.com/wd/hub";

 private WebDriver driver;

 @BeforeClass
 public void setUp() throws Exception {
 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("browser", "Firefox");
 caps.setCapability("browser_version", "23.0");
 caps.setCapability("os", "Windows");

https://www.browserstack.com

Selenium WebDriver Cross-browser Tests

[34]

 caps.setCapability("os_version", "XP");
 caps.setCapability("browserstack.debug", "true");
 //This enable Visual Logs

 driver = new RemoteWebDriver(new URL(URL), caps);
 }

 @Test
 public void testOnCloud() throws Exception {
 driver.get("http://www.google.com");
 System.out.println("Page title is: " + driver.getTitle());
 Assert.assertEquals("Google", driver.getTitle());
 WebElement element = driver.findElement(By.name("q"));
 element.sendKeys("seleniumworks");
 element.submit();
 }

 @AfterClass
 public void tearDown() throws Exception {
 driver.quit();
 }
}

The app generates and stores test logs for the user to access anytime. The generated
logs provide a detailed analysis with step-by-step explanations. To enhance the test
speed, run parallel Selenium tests on the BrowserStack cloud, but the automation
plan has to be upgraded to increase the number of parallel test runs.

TestingBot
TestingBot also provides a setup similar to BrowserStack and SauceLabs for
cloud-based cross-browser test automation using Selenium. It records a video of
the running tests to analyze problems and debug them. Additionally, it provides
support to capture the screenshots on test failure. To run local Selenium tests, it
provides an SSH tunnel tool that lets you run tests against local servers or other
web servers. TestingBot uses Amazon's cloud infrastructure to run Selenium scripts
in various browsers.

Access the site https://testingbot.com/, log in, and obtain the Client Key and
Client Secret from your TestingBot account. Make use of the credentials to drive
tests over the TestingBot cloud.

https://testingbot.com/

Chapter 2

[35]

Let's see an example Java test program with TestNG, using the Eclipse IDE that
runs on the TestingBot cloud:

package packagename;

import java.net.URL;

import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;

public class testingbot {
 private WebDriver driver;

 @BeforeClass
 public void setUp() throws Exception {
 DesiredCapabilitiescapabillities = DesiredCapabilities.firefox();
 capabillities.setCapability("version", "24");
 capabillities.setCapability("platform", Platform.WINDOWS);
 capabillities.setCapability("name", "testOnCloud");
 capabillities.setCapability("screenshot", true); 
 capabillities.setCapability("screenrecorder", true);
 driver = new RemoteWebDriver(
 new URL
 ("http://ClientKey:ClientSecret@hub.testingbot.com:4444/wd/hub"),
 capabillities);
 }

 @Test
 public void testOnCloud() throws Exception {
 driver.get
 ("http://www.google.co.in/");
 driver.findElement(By.id("q")).clear();
 WebElement element = driver.findElement(By.id("q"));
 element.sendKeys("selenium");
 Assert.assertEquals("selenium - Google Search", driver.
getTitle());
 }

 @AfterClass
 public void tearDown() throws Exception {
 driver.quit();
 }
}

www.allitebooks.com

http://www.allitebooks.org

Selenium WebDriver Cross-browser Tests

[36]

Click on the Tests tab to check the log results. The logs are well organized with test
steps, screenshots, videos, and a summary. Screenshots are captured at each and step
to make the tests more precise, as follows:

capabillities.setCapability("screenshot", true); // screenshot
capabillities.setCapability("screenrecorder", true); // video capture

TestingBot provides a unique feature by scheduling and running tests directly from
the site. The tests can be scheduled to repeat any number of times on a daily or
weekly basis. It's even more accurate on scheduling the test start time. You will be
apprised of test failures with an alert through e-mail, an API call, an SMS, or a Prowl
notification. This feature enables error handling to rerun failed tests automatically as
per the user settings.

Launch the Selenium IDE, record tests, and save the test case or test suite in default
format (HTML). Access the https://testingbot.com/ URL from your web browser
and click on the Test Lab tab. Now, try to upload the already-saved Selenium test case,
select the OS platform and browser name and version. Finally, save the settings and
execute tests. The test results are recorded and displayed under Tests.

Selenium headless browser testing
A headless browser is a web browser without Graphical User Interface (GUI).
It accesses and renders web pages but doesn't show them to any human being.
A headless browser should be able to parse JavaScript. Currently, most of the
systems encourage tests against headless browsers due to their efficiency and
time-saving properties. PhantomJS and HTMLUnit are the most commonly-used
headless browsers. Capybara-webkit is another efficient headless WebKit for
rails-based applications.

https://testingbot.com/

Chapter 2

[37]

PhantomJS
PhantomJS is a headless WebKit scriptable with the JavaScript API. It is generally
used for the headless testing of web applications that come with GhostDriver
built-in. Tests on PhantomJS are obviously fast since it has fast and native support
for various web standards, such as DOM handling, CSS selector, JSON, canvas, and
SVG. In general, WebKit is a layout engine that allows web browsers to render web
pages. Some browsers, such as Safari and Chrome, use WebKit.

Apparently, PhantomJS is not a test framework, it is a headless browser that is used
only to launch tests via a suitable test runner called GhostDriver. GhostDriver is
a JS implementation of the WebDriver Wire Protocol for PhantomJS; WebDriver
Wire Protocol is a standard API that communicates with the browser. By default,
GhostDriver is embedded with PhantomJS.

To download PhantomJS, refer to http://phantomjs.org/
download.html.

Download PhantomJS, extract the zipped file (for example, phantomjs-1.x.x-
windows.zip for Windows) and locate the phantomjs.exe folder. Add the
following imports to your test code:

import org.openqa.selenium.phantomjs.PhantomJSDriver;
import org.openqa.selenium.phantomjs.PhantomJSDriverService;
import org.openqa.selenium.remote.DesiredCapabilities;

Introduce PhantomJSDriver using capabilities to enable or disable JavaScript
or to locate the phantomjs executable file path:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setCapability("takesScreenshot", true);
caps.setJavascriptEnabled(true); // not really needed; JS is enabled
by default
caps.setCapability(PhantomJSDriverService.PHANTOMJS_EXECUTABLE_PATH_
PROPERTY, "C:/phantomjs.exe");
WebDriver driver = new PhantomJSDriver(caps);

Alternatively, PhantomJSDriver can also be initialized, as follows:

System.setProperty("phantomjs.binary.path", "/phantomjs.exe");
WebDriver driver = new PhantomJSDriver();

PhantomJS supports screen capture as well. Since PhantomJS is a WebKit and a
real layout and rendering engine, it is feasible to capture a web page as a screenshot.
It can be set as follows:

caps.setCapability("takesScreenshot", true);

http://phantomjs.org/download.html
http://phantomjs.org/download.html

Selenium WebDriver Cross-browser Tests

[38]

The following is the test snippet to capture a screenshot on a test run:

File scrFile = ((TakesScreenshot)driver).getScreenshotAs(OutputType.
FILE);
FileUtils.copyFile(scrFile, new File("c:\\sample.jpeg"),true);

For example, check the following test program for more details:

package packagename;

import java.io.File;
import java.util.concurrent.TimeUnit;
import org.apache.commons.io.FileUtils;
import org.openqa.selenium.*;
import org.openqa.selenium.phantomjs.PhantomJSDriver;

public class phantomjs {
 private WebDriver driver;
 private String baseUrl;

 @BeforeTest
 public void setUp() throws Exception {
 System.setProperty("phantomjs.binary.path", "/phantomjs.exe");
 driver = new PhantomJSDriver();
 baseUrl = "https://www.google.co.in";
 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
 }

 @Test
 public void headlesstest() throws Exception {
 driver.get(baseUrl + "/");
 driver.findElement(By.name("q")).sendKeys("selenium essentials");
 File scrFile = ((TakesScreenshot) driver).
 getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile, new File("c:\\screen_shot.jpeg"), true);
 }

 @AfterTest
 public void tearDown() throws Exception {
 driver.quit();
 }
}

Chapter 2

[39]

HTMLUnitDriver
HTMLUnit is a headless (GUI-less) browser written in Java and is typically used
for testing. HTMLUnitDriver, which is based on HTMLUnit, is the fastest and most
lightweight implementation of WebDriver. It runs tests using a plain HTTP request,
which is quicker than launching a browser and executes tests way faster than other
drivers. The HTMLUnitDriver is added to the latest Selenium servers (2.35 or above).

The JavaScript engine used by HTMLUnit (Rhino) is unique and different from
any other popular browsers available on the market. HTMLUnitDriver supports
JavaScript and is platform independent. By default, JavaScript support for
HTMLUnitDriver is disabled. Enabling JavaScript in HTMLUnitDriver slows
down test execution, but it is advised to enable JavaScript support because most
modern sites are Ajax-based web apps. Enabling JavaScript also throws a number
of JavaScript warning messages in the console during test execution. The following
snippet lets you enable JavaScript for HTMLUnitDriver:

HtmlUnitDriver driver = new HtmlUnitDriver();
driver.setJavascriptEnabled(true); // enable JavaScript

The following line of code is an alternate way to enable JavaScript:

HtmlUnitDriver driver = new HtmlUnitDriver(true);

The following piece of code lets you handle a transparent proxy using
HTMLUnitDriver:

HtmlUnitDriver driver = new HtmlUnitDriver();
driver.setProxy("xxx.xxx.xxx.xxx", port); // set proxy for handling
Transparent Proxy
driver.setJavascriptEnabled(true); // enable JavaScript [this emulate
IE's js by default]

HTMLUnitDriver can emulate a popular browser's JavaScript in a better way.
By default, HTMLUnitDriver emulates IE's JavaScript. To handle the Firefox web
browser with version 17, use the following snippet:

HtmlUnitDriver driver = new HtmlUnitDriver(BrowserVersion.FIREFOX_17);
driver.setJavascriptEnabled(true);

Here is the snippet to emulate a specific browser's JavaScript using
capabilities:
DesiredCapabilities capabilities = DesiredCapabilities.htmlUnit();
driver = new HtmlUnitDriver(capabilities);

Selenium WebDriver Cross-browser Tests

[40]

DesiredCapabilities capabilities = DesiredCapabilities.firefox();
capabilities.setBrowserName("Mozilla/5.0 (X11; Linux x86_64; rv:24.0)
Gecko/20100101 Firefox/24.0");
capabilities.setVersion("24.0");
driver = new HtmlUnitDriver(capabilities);

Switching user agents
Earlier, cryptic commands and texts were used to retrieve data from the Internet,
which would act as a user agent; now, web browsers are used as user agents. To put
it simply, a user agent is a tool to browse the Internet by faking another browser. In
general, websites are being rendered differently on different browsers with different
platforms (for example, Chrome browser on Windows 7). However, the user agents
cannot render a web page similar to the selected one. The user can track their own
user agent string from http://whatsmyuseragent.com/.

For example, Mozilla Firefox 5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/36.0.1985.143 Safari/537.36.

Here, Mozilla/5.0 is an application name and Chrome/36.0.1985.143 is the browser
type, with version. Whenever the user enters a URL in the web browser, a request
will be sent to the web server to identify the user agent; it provides the relevant
data as response. Selenium WebDriver has extended its features to drive tests over
different user agents and execute tests from browser profiles.

Firefox user agent
Follow these steps to run tests on your favorite Firefox user agents:

1.	 Launch Firefox and install User Agent Switcher, the Firefox add-on.
2.	 From the Tools menu, navigate to Tools | Default User Agent | Edit User

Agents and click on Edit User Agents.
3.	 Select any one of the user agents from the list (for example, Googlebot 2.1)

and click on the Edit button.
4.	 Now, get the user agent string, as follows:

Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/
bot.html)

http://whatsmyuseragent.com/

Chapter 2

[41]

Make use of the above user agent string to run tests through Googlebot 2.1. To run
tests on a specific version of Firefox, refer to http://www.useragentstring.com/
pages/Firefox/. The following code encapsulates the discussion in this paragraph:

ProfilesIni profile = new ProfilesIni();
FirefoxProfilemyprofile = profile.getProfile("default");
myprofile.setPreference("general.useragent.override", "Mozilla/5.0
(compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/
slurp)"); // here, the user-agent is 'Yahoo Slurp'
WebDriver driver = new FirefoxDriver(myprofile);

Chrome user agent
Follow these steps to run tests on your favorite Chrome user agents:

1.	 Launch Google Chrome and install the Chrome add-on User-Agent Switcher
for Chrome.

2.	 Go to chrome://extensions/ in the Chrome web browser and click on
options link_text.

3.	 Obtain the desired user agent string (for example, iPhone 4). The following
is the stream for iPhone4:
Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_2 like Mac OS X; en-us)
AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8H7
Safari/6533.18.5

The following screenshot shows us the Extensions page in which
User-Agent Switcher for Chrome is added:

Make use of the obtained user agent string to run the tests through the iPhone 4 user
agent from Chrome, as follows:

System.setProperty("webdriver.chrome.driver","C:\\chromedriver.exe");
ChromeOptions options = new ChromeOptions();
options.addArguments("user-data-dir=C:/Users/user_name/AppData/Local/
Google/Chrome/User Data");

http://www.useragentstring.com/pages/Firefox/
http://www.useragentstring.com/pages/Firefox/

Selenium WebDriver Cross-browser Tests

[42]

options.addArguments("--user-agent=Mozilla/5.0 (iPhone; U; CPU iPhone
OS 4_3_2 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like
Gecko) Version/5.0.2 Mobile/8H7 Safari/6533.18.5"); //iPhone 4
options.addArguments("--start-maximized");
driver = new ChromeDriver(options);

Tests on specific Firefox versions
The Firefox binary lets you run tests on your favorite Firefox versions. In order to do
that, perform the following steps:

1.	 Install multiple versions of Firefox on your PC (say, FF 26 and FF 28).
Make sure that the Mozilla Firefox versions are installed at different
path locations using custom installation.

2.	 Add the following imports in your test code:
import java.io.File;
import org.openqa.selenium.firefox.FirefoxBinary;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.firefox.FirefoxProfile;

3.	 Locate the secondary Firefox executable path in the Firefox binary.
4.	 Create a Firefox profile and initialize WebDriver as shown in the

following code snippet:
FirefoxBinary binary = new FirefoxBinary(new File("C://Program
Files//Mozilla Firefox26//firefox.exe"));
FirefoxProfile profile = new FirefoxProfile();
WebDriver driver = new FirefoxDriver(binary, profile);

5.	 For Python bindings, use a similar scenario and add the following
code snippet:
from selenium.webdriver.firefox.firefox_binary import
FirefoxBinary
driver = webdriver.Firefox
(firefox_binary=FirefoxBinary("C://Program Files//Mozilla
Firefox26//firefox.exe"))

Tests from the custom Firefox profile
In general, custom profiles are used in order to get rid of control over existing cookies
that contain history, bookmarks, passwords, personal information, and so on.

Chapter 2

[43]

Firefox Profile Manager is used to create or remove Firefox profiles. To create
a Firefox profile, perform the following steps:

1.	 Open the Run command window (using Windows Key + R), type
firefox.exe –p and click on OK.

Mozilla Firefox must be closed before opening the Firefox Profile
Manager. If the Profile Manager window does not open, Firefox
must be running in the background. Close all instances of Firefox,
restart the computer, and then try again to solve the issue.

2.	 Create a Firefox profile (for example, myProjectProfile) by clicking
on the Create Profile button from the profile manager.

3.	 Add the following snippet in your test code to run tests from the new,
customized Firefox profile:
ProfilesIni profile = new ProfilesIni();
FirefoxProfilemyprofile = profile.getProfile("myProjectProfile");
WebDriver driver = new FirefoxDriver(myprofile);

In Linux, Firefox native events are disabled by default as they may launch more than
one browser in parallel in a test. To enable such default Firefox-disabled features, the
native events insist on being set to true, as shown in the following code:

FirefoxProfile profile = new FirefoxProfile();
profile.setEnableNativeEvents(true);
WebDriver driver = new FirefoxDriver(profile);

Selenium WebDriver Cross-browser Tests

[44]

Tests from the custom Chrome profile
Google Chrome is always the preferable browser on which to run tests. The Firefox
and Chrome browsers work with binary. However, Internet Explorer doesn't need a
profile to be set up to run tests because they run on the server user. In Chrome, the
user data directory contains all the data of the given user, which includes history,
bookmarks, and cookies. Add the following snippet to run tests from a new profile:

System.setProperty
("webdriver.chrome.driver","C:\\chromedriver.exe");
ChromeOptions options = new ChromeOptions();
options.addArguments("user-data-dir=C:/Users/user_name/AppData/Local/
Google/Chrome/User Data");
options.addArguments("--start-maximized");
driver = new ChromeDriver(options);

If you face an error such as org.openqa.selenium.
WebDriverException: unknown error: Chrome failed to
start: exited normally, then create a new Chrome profile and
execute the tests.
To get more information on the user data location (for different
OS platforms), refer to http://www.chromium.org/user-
experience/user-data-directory.

The following are the steps to create a custom Chrome profile:

1.	 Copy the User Data folder (located at C:/Users/user_name/AppData/
Local/Google/Chrome/User Data) and paste it in the same folder with
a different name (for example, New User).

2.	 Open the New User folder.
3.	 Rename the Default folder, so that after your test run, a new folder named

Default is created.
4.	 Now, replace the directory in your code with C:/Users/user_name/

AppData/Local/Google/Chrome/New User.
5.	 To verify the new profile, try to bookmark some of the websites

and observe them in the next run.

http://www.chromium.org/user-experience/user-data-directory
http://www.chromium.org/user-experience/user-data-directory

Chapter 2

[45]

Summary
In this chapter, we have learned how to perform Selenium cross-browser automation
tests, how to run automation tests in the cloud, and how to switch user agents.

In the next chapter, we will discuss all about the functions of Selenium WebDriver
and its uses.

www.allitebooks.com

http://www.allitebooks.org

[47]

Selenium WebDriver
Functions

Selenium WebDriver API provides an object-oriented approach to test web-based
applications. On the one hand, Selenium RC (Remote Control) injects JavaScript
into the browser on runtime, and on the other hand, Selenium WebDriver performs
direct calls to the browser using each browser's native approach. Meanwhile,
WebDriverBackedSelenium lets you combine both Selenium RC and WebDriver.
Hopefully, Selenium RC will be deprecated and taken away in Selenium 3.0, which
includes the Marionette driver replacing the Firefox driver to automate Firefox
OS in mobile platforms. WebDriver API enriched Selenium RC is called Selenium
WebDriver or Selenium 2.0. In the future, Selenium will meet all the W3C standards;
however, the current Selenium WebDriver API encloses a bunch of functions used
for effective web automation tests.

In this chapter, we will learn about the following topics:

•	 Basic Selenium WebDriver functions
•	 Locating WebElements
•	 WebElement and Windows WebDriver functions
•	 Navigation and Cookies WebDriver functions
•	 Select functions
•	 Handling alerts and pop-ups
•	 Mouse and keyboard actions

Selenium WebDriver Functions

[48]

Basic WebDriver functions
Consider a test use case with the user opening a browser, searching for a term,
asserting the actual value with the expected value, and then finally exiting the
browser. This simple use case can certainly be achieved using the basic Selenium
WebDriver functions. The elementary functions, such as click(), close(),
submit(), and sendKeys(), are the fundamental keys to start with any test
automation tasks. Let's discuss the basic WebDriver functions in more detail:

•	 close(): This function exits or closes the current active browser window.
The following is the syntax for this function:
driver.close();

•	 quit(): This function halts the running driver and closes every browser
window by ending the active session. The following is the syntax for
this function:
driver.quit();

•	 getTitle(): This function fetches the current page title. The following
is the syntax for this function:
driver.getTitle();

•	 getCurrentUrl(): This function gets the current web page URL. The
following is the syntax for this function:
driver.getCurrentUrl();

•	 getPageSource(): This function retrieves the entire page source of the
loaded web page and allows the user to assert any text present in the same
web page. However, the modified DOM, due to asynchronous (Ajax) calls,
is not reflected on some of the browsers. Instead, it returns the page source
of the previously loaded web page. The getPageSource() method is not
advisable for web pages loading JavaScripts asynchronously. The following
is the syntax for this function:
driver.getPageSource();

Some of the helpful snippets using this function are given as follows:

°° Verify text:
driver.getPageSource().contains("your text");

°° Assert text:
boolean b = driver.getPageSource().contains("your text");
System.out.println(b);
assertTrue(b);

[49]

•	 click(): This function lets you click on a link, button, checkbox, or radio
button. The following is the syntax for this function:
driver.findElement(By.locatorType("path")).click();

The following is an example that covers the click() function to do a simple
Google search on clicking the search button:
driver.get("https://www.google.com");
driver.findElement(By.name("q")).sendKeys("selenium essentials");
driver.findElement(By.id("sblsbb")).click();

•	 clear(): This function erases or empties the string values present in a text
field. The following is the syntax for this function:
driver.findElement(By.locatorType("path")).clear();

The following code snippet is a simple Google search, where the clear()
method is used to erase the current search keyword from the search text field
and prepare for the next search:

driver.get("https://www.google.com");
driver.findElement(By.name("q")).sendKeys("selenium essentials");
driver.findElement(By.name("q")).clear();
driver.findElement(By.name("q")).sendKeys("prashanth sams");

•	 sendKeys(): This function lets you type or insert text in the text field on
runtime. The following is the syntax for this function:
driver.findElement(By.locatorType("path")).sendKeys("your text");

The following snippet explains the sendKeys() function that lets you insert
text or a sentence in the Google search text field:

driver.get("https://www.google.com");
WebElement element = driver.findElement(By.name("q"));
element.sendKeys("selenium essentials");

•	 submit(): This function is similar to the click() function. However, this
function is used to submit a form with <form> tags. The following is the
syntax for this function:
driver.findElement(By.locatorType("path")).submit();

The submit() function is commonly used instead of pressing the Enter key.
Let's see an example to retrieve results from the Google search:

driver.get("https://www.google.com");
WebElement element = driver.findElement(By.name("q"));
element.sendKeys("selenium essentials");
element.submit();

Selenium WebDriver Functions

[50]

Locating WebElements
Element-locating functions are the building blocks of Selenium tests. These methods
handle Ajax calls using timeouts and wait conditions to search and locate elements
within a web page. There is no fixed strategy that you can follow to locate an element;
it depends on the user ideology and their comfort level in locating the web elements.

An element can be located using any kind of locator type. Selenium WebDriver uses
locators to interact with elements present in a web page. The following is the list of
locator types used in Selenium WebDriver to locate web elements:

•	 By.id

•	 By.name

•	 By.xpath

•	 By.cssSelector

•	 By.className

•	 By.linkText

•	 By.tagName

•	 By.partialLinkText

The following is the syntax to use locatorType:

driver.findElement(By.locatorType("path"))

The following is an example for locatorType:

driver.findElement(By.id("sblsbb")).click();

Prioritize the locator type in this order: id > name > css > xpath. The
cssSelector locator type is a good pick to work with Ajax calls. Always try to avoid
locating elements using XPath locators. Remember that Internet Explorer tests often
fail to respond to XPath locators. The XPath locator type is of two categories, namely,
absolute XPath / and relative XPath //. Consider an element on the Google
search page:

Absolute XPath Relative XPath

//html/body/div[1]/div[3]/form/div[2]/
div[2]/div[1]/div[1]/div[3]/div[1]/div[3]/
div[1]/input[1]

//input[@id='lst-
ib']

[51]

Here, both the absolute and relative XPath point to the same element.

To know more on XPath functions and axes, please refer to the
following links:

•	 http://bit.ly/ZSBNzp
•	 http://bit.ly/1w7YIna

Let's take a look at Selenium WebDriver's element-locating functions, which are
as follows:

•	 findElement(): This element locates the first element within the current
page. The following is the syntax for this function:
driver.findElement(By.locatorType("path"));

The following is an example where Selenium WebDriver locates the Google
search text field using the findElement() method:
driver.get("https://www.google.com");
WebElement element = driver.findElement(By.id("lst-ib"));

•	 findElements(): This element locates all the elements within the current
page. The following is the syntax for this function:

List<WebElement> elements = driver.findElements(By.
locatorType("path"));
WebElement element = driver.findElement(By.locatorType("path"));
List<WebElement> elements = element.findElements(By.
locatorType("path"));

Some of the useful tasks that you can perform with the help of these functions are
as follows:

•	 Store Length: The following code snippet captures the list of textboxes
available in a Google authentication page:
driver.get("https://accounts.google.com/");
List<WebElement> Textbox =driver.findElements(By.xpath("//script[@
type='text/javascript']"));
System.out.println("Overall textboxes:"+Textbox.size());

•	 Click Element: Let's go through a book search on clicking on any one of the
available autosuggestions. Fortunately, the first option from the list is chosen,
which returns contents related to it as the search result. The following code
snippet does the work for us:
driver.get("http://www.indiabookstore.net");
driver.findElement(By.id("searchBox")).sendKeys("Alche");

http://bit.ly/ZSBNzp
http://bit.ly/1w7YIna

Selenium WebDriver Functions

[52]

List <WebElement> listItems = driver.findElements(By.xpath("//
div[3]/ul/li"));
listItems.get(0).click();

•	 Locate by tag name: Capturing elements using tag names is widely used to
collect autosuggestions, checkboxes, ordered lists, and so on. The following
snippet is an example for capturing elements through the tagName function:

List<WebElement> link = driver.findElement(By.
locatorType("path")).findElements(By.tagName("li"));

•	 Multi-select elements: This snippet gives you a clear idea on how to use
the multi-select functionality. Here, the findElements() method is used to
return the total length of the option tag, and it lets you pick all the preferred
checkboxes:
driver.get("http://www.ryancramer.com/journal/entries/select_
multiple/");
List<WebElement> ele = driver.findElements(By.tagName("select"));
System.out.println(ele.size());
WebElement ele2 = ele.get(0);
List<WebElement> ele3 = ele2.findElements(By.tagName("option"));
System.out.println(ele3.size());
ele2.sendKeys(Keys.CONTROL);
ele3.get(0).click();
ele3.get(1).click();
ele3.get(3).click();
ele3.get(4).click();
ele3.get(5).click();

•	 Capture and navigate all links in a web page: As discussed in the preceding
section, the element list is captured and stored in a single dimensional array
using the findElements() method. Later, the user is intended to navigate
each and every link one by one. The following snippet is an example for
capturing and navigating all links in a web page:
private static String[] links = null;
private static int linksCount = 0;
driver.get("https://www.google.co.in");
List<WebElement> linksize = driver.findElements(By.tagName("a"));
linksCount = linksize.size();
System.out.println("Total no of links Available: "+linksCount);
links= new String[linksCount];
System.out.println("List of links Available: ");
// print all the links from webpage
for(int i=0;i<linksCount;i++)
{

[53]

 links[i] = linksize.get(i).getAttribute("href");
}
// navigate to each Link on the webpage
for(int i=0;i<linksCount;i++)
{
 driver.navigate().to(links[i]);
 Thread.sleep(3000);
}

•	 Capture all links under specific frame/class/ID and navigate one by one:
In general, StaleElementException will be thrown whenever a user
navigates through the link and tries to click on the second link after returning
from the visited page. To avoid such exceptions, an external method,
getElementWithIndex(), is used to return values. The following code
snippet exemplifies this method:
driver.get("https://www.google.co.in");
WebElement element = driver.findElement(By.locatorType("path"));
List<WebElement> elements = element.findElements(By.tagName("a"));
int sizeOfAllLinks = elements.size();
System.out.println(sizeOfAllLinks);
for(int i=0; i<sizeOfAllLinks ;i++)
{
 System.out.println(elements.get(i).getAttribute("href"));
}
for (int index=0; index<sizeOfAllLinks; index++) {
 getElementWithIndex(By.tagName("a"), index).click();
 driver.navigate().back();
}

public WebElement getElementWithIndex(By by, int index) {
 WebElement element = driver.findElement(By.id(Value));
 List<WebElement> elements = element.findElements(By.
tagName("a"));
 return elements.get(index);
}

•	 Capture all links: The following model follows looping conditions to capture
all the links present in a web page:
driver.get("https://www.google.co.in");
List<WebElement> all_links_webpage = driver.findElements(By.
tagName("a"));
System.out.println("Total no of links Available: " + all_links_
webpage.size());
int k = all_links_webpage.size();

Selenium WebDriver Functions

[54]

System.out.println("List of links Available: ");
for(int i=0;i<k;i++)
{
 if(all_links_webpage.get(i).getAttribute("href")
 .contains("google"))
 {
 String link = all_links_webpage.get(i)
 .getAttribute("href");
 System.out.println(link);
 }
}

•	 Locate and select autocomplete: The following snippet captures and clicks
on a list of autocomplete results grown at runtime using the list tag:
driver.get("http://www.indiabookstore.net");
driver.findElement(By.id("searchBox")).sendKeys("Alche");
Thread.sleep(3000);
List <WebElement> listItems = driver.findElements(By.
cssSelector(".acResults li"));
listItems.get(0).click();
driver.findElement(By.id("searchButton")).click();

•	 Store autosuggestions using iterator: The iterator is an alternative method to
handle loops. In this example, a list of autosuggestions is iterated and stored:
driver.get("http://www.indiabookstore.net/");
driver.findElement(By.id("searchBox")).sendKeys("sam");
WebElement table = driver.findElement(By.className("acResults"));
List<WebElement> rowlist = table.findElements(By.tagName("li"));
System.out.println("Total No. of list: "+rowlist.size());
Iterator<WebElement> i = rowlist.iterator();
System.out.println("Storing Auto-suggest..........");
while(i.hasNext())
{
 WebElement element = i.next();
 System.out.println(element.getText());
}

•	 The looping iteration can also be wrapped with the following snippet. It is as
simple as the preceding snippet. Here, the list items are declared to a variable
named called temp. Through temp, the values are being retrieved:
List<WebElement> listitems = driver.findElements(By.id("value"));
for(WebElement temp: listitems) // temp is the declared variable
name
{

[55]

 System.out.println
 ((temp.findElement(By.tagName("value")).getText()));
}

WebElement functions
WebElement is an HTML element that helps the users to drive automation tests.
Selenium WebDriver provides well-organized web page interactions through
WebElements, such as locating elements, getting attribute properties, asserting text
present in WebElement, and more. However, to interact with hidden elements in a
web page, it is necessary to unhide the hidden elements first. Let's discuss Selenium
WebElement functions further:

•	 getText(): This function delivers the innerText attribute of WebElement.
The following is the syntax for this function:
driver.findElement(By.locatorType("path")).getText();

The following is an example on the Google page that returns the innerText
attribute of a Google search button using the getText() function:

driver.get("https://www.google.com");
System.out.println(driver.findElement(By.id("_eEe")).getText());

JavaScriptExecutor is a Selenium interface to execute JavaScripts that
returns the innerText attribute of a hidden element. It is important to
unhide the hidden elements before extracting innerText, as shown in the
following code snippet:

WebElement Element = driver.findElement(By.locatorType("path"));
JavascriptExecutor jse = (JavascriptExecutor)driver;
System.out.println(jse.executeScript("return arguments[0].
innerHTML", Element));

•	 getAttribute(): This function delivers the value of a given attribute of an
element. The following is the syntax for this function:
driver.findElement(By.locatorType("path")).getAttribute("value");

The values or properties of an attribute can be easily returned using the
getAttribute() method. The attributes can be a class/id/name/value/
or any other attribute. The following piece of code returns the class attribute
value of a Google search button:

driver.get("https://www.google.com");
driver.findElement(By.xpath("//div[@id='lst-ib']")).
getAttribute("class");

www.allitebooks.com

http://www.allitebooks.org

Selenium WebDriver Functions

[56]

•	 getTagName(): This function delivers the tag name of a given element.
The following is the syntax for this function:
driver.findElement(By.locatorType("path")).getTagName();

Let's see a snippet to get tagName of a Google search text field element using
the getTagName() function:

driver.get("https://www.google.com");
driver.findElement(By.xpath("//div[@class='sbib_b']")).
getTagName();

•	 isDisplayed():This function checks whether an element is displayed in a
page or not. It returns a Boolean value (true or false). The following is the
syntax for this function:
driver.findElement(By.locatorType("path")).isDisplayed();

This method confirms whether an element is visible in a page or not until
the timeout occurs. The Google search text field element is asserted here to
acknowledge that the page is opened properly or not. The following code
snippet does the work for us:

driver.get("https://www.google.com");
WebElement Element = driver.findElement(By.name("q"));
Assert.assertTrue(Element.isDisplayed());

•	 isEnabled(): This function checks whether an element is enabled in a page
or not. It returns a Boolean value (true or false). The following is the syntax
for this function:
driver.findElement(By.locatorType("path")).isEnabled();

Let's see an example that checks the element's status using the isEnabled()
method. In general, the user is not allowed to edit the text field when an
element is disabled. However, if it is in the enabled status, the right action
has to be performed, or an assertion failure can be thrown as follows:

driver.get("https://www.google.com");
WebElement Element = driver.findElement(By.name("q"));
if(Element.isEnabled())
{
 driver.findElement(By.name("q")).sendKeys("Selenium
Essentials");
}else{
 Assert.fail();
}

[57]

•	 isSelected(): This function verifies whether an element is selected or not.
It returns a Boolean value (true or false). The following is the syntax for
this function:
driver.findElement(By.locatorType("path")).isSelected();

In the following example, the if condition is used to confirm whether the
combobox is selected or not:

driver.get("http://www.angelfire.com/fl5/html-tutorial/ddmenu.
htm");
WebElement Element1 = driver.findElement(By.xpath("//select[@
name='jump']/option[1]"));
WebElement Element2 = driver.findElement(By.xpath("//select[@
name='jump']/option[2]"));
if(Element1.isSelected())
{
 System.out.println("html tutorial is selected");
}else if (Element2.isSelected()){
 System.out.println("altavista is selected");
}

•	 getSize(): This method returns the width and height (dimensions) of a
rendered element, as follows:

Dimension dimensions=driver.findElement(By.locatorType("path")).
getSize();
dimensions.width;
dimensions.height;

Let's see how we can return the width and height of a Google logo in the
Google search page:

driver.get("https://www.google.com");
System.out.println(driver.findElement(By.xpath("//div[@
id='hplogo']")).getSize());
Dimension dimensions=driver.findElement(By.xpath("//div[@
id='hplogo']")).getSize();
System.out.println("Logo Width : "+dimensions.width);
System.out.println("Logo Height : "+dimensions.height);

Selenium WebDriver Functions

[58]

•	 getLocation(): This function returns the x and y coordinates with the point
location of the top-left corner of an element.
Point point = driver.findElement(By.locatorType("path")).
getLocation();
point.x;
point.y;
point.getX();
point.getY();

The getLocation() method returns the values as point objects. Let's see how
to return the x and y coordinates of a Google logo in the Google search page.
The following are the two methods to use the getLocation() method:

°° Method 1:
driver.get("https://www.google.com");
Point point = driver.findElement(By.xpath("//div[@
id='hplogo']")).getLocation();
System.out.println("X Position : " + point.x);
System.out.println("Y Position : " + point.y);

°° Method 2:
driver.get("https://www.google.com");
Point point = driver.findElement(By.xpath("//div[@
id='hplogo']")).getLocation();
System.out.println(point);
System.out.println(point.getX() + "\t" + point.getY());

•	 getCssValue(): This method returns the value of any CSS properties.
The following is the syntax for this function:

driver.findElement(By.locatorType("path")).getCssValue("font-
size");

WebElement's style attribute values can be certainly attained using this
method. Let's focus on the CSS properties of the Google logo, as follows:

driver.get("https://www.google.com");
WebElement element = driver.findElement(By.xpath("//div[@
id='hplogo']"));
System.out.println(element.getCssValue("font-size"));
System.out.println(element.getCssValue("font-weight"));
System.out.println(element.getCssValue("color"));
System.out.println(element.getCssValue("background-size"));

[59]

Navigation
Page navigation kicks in from the start of test execution; it is a fundamental task
for each and every use case, especially to browse through the history and navigate
backwards and forward. Let's discuss Selenium navigation functions, as follows:

•	 The get() function commands the browser to navigate to the URL. In general,
the get() function is used to open a web page on every test execution. The
onload event lets the browser wait until the complete page is loaded. If the
page is overloaded with lots of Ajax calls, there will be delays on page load.
The following is the syntax for this function:
driver.get("URL");

•	 The navigate().back() function lets the browser navigate backwards.
The following is the syntax for this function:
driver.navigate().back();

Here is an alternative method using keyboard actions to navigate web
browser history.

Actions actions = new Actions(driver);
actions.sendKeys(Keys.BACK_SPACE).perform();

•	 The navigate().forward() function allows the browser to navigate
forward. This function lets you move a page forward, which is similar
to clicking a browser's forward button. The following is the syntax for
this function:

driver.navigate().forward();

•	 The navigate().to() function is similar to the get() function in order to
access a web page. This function is normally used whenever a user needs to
navigate to a specific URL at test. The following is the syntax for this function:
driver.navigate().to("URL");

•	 The refresh() method refreshes the current web page. A page refresh is
nothing but reloading a full page. The following is the syntax of this function:

driver.navigate().refresh();

Selenium WebDriver Functions

[60]

There are numerous ways to refresh the current web page. Let's see the
methods one by one; however, a few methods are not applicable to Mac:

Method 1:
Actions actions = new Actions(driver);
actions.keyDown(Keys.CONTROL).sendKeys(Keys.F5).
perform();

Method 2:
JavascriptExecutor js = (JavascriptExecutor) driver;
js.executeScript("history.go(0)");

Method 3:
driver.navigate().to(driver.getCurrentUrl());

Method 4:
driver.findElement(By.locatorType("path")).sendKeys("\
uE035");

Method 5:
driver.findElement(By.locatorType("path")).sendKeys(Keys.
F5);

Cookies
Cookies are generally stored in a web browser to identify the user's activity when
browsing a web page. Selenium WebDriver handles web browser cookies by finding,
deleting, modifying, and adding the cookies. It provides an excellent mechanism to
modify cookies for high-level automation testing. Let's discuss Selenium WebDriver
cookies, as follows:

•	 The getCookies() method returns cookies present in a loaded page.
The following is the syntax for this function:
driver.manage().getCookies();

Some of the useful tasks that you can perform with the help of getCookies()
function are discussed as follows:

Return cookies: The getCookies() method captures all the cookies
generated in a web page. Let's see a model to get to know how we
can return the entire cookie ID and expiry date and time and the
domain name of each and every cookie:

driver.get("https://www.google.co.in");
System.out.println(driver.manage().getCookies());

[61]

°° The following piece of code lets you explain how to get all the cookies
in a systematic manner:

driver.get("https://www.google.co.in");
Set<Cookie> cookies = driver.manage().getCookies();
for(Cookie ck :cookies) {
 System.out.println(ck);
}

•	 The getCookieNamed() returns a specific cookie by name. The following is
the syntax for this function:
driver.manage().getCookieNamed(String arg0);

The following snippet returns cookies with respect to the name from the
cookie file (memory of the browser); here, the generated cookie named NID is
reached from the Google page:

driver.get("https://www.google.co.in");
System.out.println(driver.manage().getCookies());
System.out.println(driver.manage().getCookieNamed("NID"));

•	 The addCookie() method injects user-defined cookies into the loading page
at runtime:
driver.manage().addCookie(Cookie arg0);

Adding a cookie replaces the existing cookie if one exists. Let's see how
we can inject a new cookie into the current domain using the following
code snippet:

driver.get("https://www.google.co.in");
System.out.println(driver.manage().getCookies());
Cookie cookie = new Cookie("NID",
"67=h88c3NpCuTQABjgZF2Ix8CJHivtpYDLFk5gc1_dtEnz1aP_
UugPSWGukXUPeKPXOeTKZdkcWrw-DnqjsOEGhL7sURlkhamIAxsBUWH_
Hh76MQ490jfT9pdwsMkWoYJAJ");
driver.manage().addCookie(cookie);
System.out.println("------------------------");
driver.get("https://www.google.co.in");
System.out.println(driver.manage().getCookies());

•	 The deleteCookie() method deletes the stored cookie in the loaded
webpage. The following is the syntax for this function:
driver.manage().deleteCookie(Cookie arg0);

Selenium WebDriver Functions

[62]

Deleting a cookie or a set of cookies means erasing certain cookies from the
browser's cookie file. The following snippet explains the deleteCookie()
method in different techniques:

driver.get("https://www.google.co.in");
Set<Cookie> cookies = driver.manage().getCookies();
for(Cookie ck :cookies) {
	 driver.manage().deleteCookie(ck);
}
System.out.println(driver.manage().getCookies());
driver.get(driver.getCurrentUrl());
Cookie cookie = new Cookie("NID", "67=QKDjS3SxgW9NTe4m
ymVk8t0V_7314Tf1JFtkiVfb27REyOJJfW8NXzCWsandTyCYVllSK-
EO7Vol2yJH1Xam4HmbKmUm7Pvm8g44dtOdm-wfW evNWKRr_UlF3Z34n28e");
driver.manage().deleteCookie(cookie);

•	 The deleteAllCookies() method deletes all the stored cookies in a loaded
web page. The following is the syntax of this function:
driver.manage().deleteAllCookies();

Let's delete all the cookies generated and stored in a web page (the current
domain) using the following code snippet:

driver.get("https://www.google.co.in");
System.out.println(driver.manage().getCookies());
driver.manage().deleteAllCookies();
System.out.println(driver.manage().getCookies());

•	 The deleteCookieNamed() method deletes a specific cookie by name.
The following is the syntax of this function:

driver.manage().deleteCookieNamed(String arg0);

This method clears the cookies with respect to the name from the cookie
file (the memory of the browser). As cookies are stored as name-value
pairs, removing a cookie from the current domain is simple using Selenium
WebDriver's cookie functions. Let's have a quick glance at how to remove a
single cookie from the Google page using the cookie name:

driver.get("https://www.google.co.in");
System.out.println(driver.manage().getCookies());
driver.manage().deleteCookieNamed("NID");
System.out.println(driver.manage().getCookies());

[63]

Window functions
The browser window is a source key for web automation tests. A web page should
cover W3C standards and meet responsive design needs. In general, the test status
(pass/fail) varies with the varying size of browser windows for a buggy site built
without proper responsive design and W3C standards. Selenium WebDriver handles
browser window tasks, such as resizing the window, locating the window, and
switching windows with its extensive API support without any JavaScript injections
from outside. Let's discuss Selenium window functions:

•	 The maximize() method lets you maximize the current browser window
size. This function directly responds to the browser window; however, the
user needs the java.awt.Robot library for Java bindings to work along with
the screen resolutions. The following is the syntax of this function:
driver.manage().window().maximize();

Maximizing the browser window gives a better view of test execution.
By default, the browser window is in normal mode and not maximized.
Let's see how to maximize a Firefox browser window using the following
code snippet:

WebDriver driver = new FirefoxDriver();
driver.manage().window().maximize();

Still, there are a number of ways to maximize a browser window. Some of the
methods are cited as snippets, as follows:

°° Method 1: In this method, we use the Robot class to get the total
screen size. Finally, the width and height of the screen are applied to
maximize the window:

import org.openqa.selenium.Dimension;
import org.openqa.selenium.Point;
WebDriver driver = new FirefoxDriver();
driver.manage().window().setPosition(new Point(0,0));
java.awt.Dimension capturedScreenSize = java.awt.Toolkit.
getDefaultToolkit().getScreenSize();
Dimension d = new Dimension((int) capturedScreenSize.
getWidth(), (int) capturedScreenSize.getHeight());
driver.manage().window().setSize(d);

Selenium WebDriver Functions

[64]

°° Method 2: Here, the size of the current browser is forced to be set to
a fixed Dimension with the help of Selenium WebDriver windows
functions, as follows:

import org.openqa.selenium.Dimension;
import org.openqa.selenium.Point;
WebDriver driver = new FirefoxDriver();
driver.manage().window().setPosition(new Point(0,0));
driver.manage().window().setSize(new
Dimension(1600,768));

°° Method 3: JavaScript is an optional mode to maximize the browser
window. The following is the JavaScript to maximize the browser
window:

JavascriptExecutor jse = (JavascriptExecutor)driver;
jse.executeScript("window.open('','Test','width=200,heig
ht=200')");
driver.close();
driver.switchTo().window("Test");
jse.executeScript("window.moveTo(0,0);");
jse.executeScript("window.resizeTo(1800,800);");

•	 The getSize() method stores the width and height of a browser window,
an image, or WebElement. The following is the syntax for this function:
driver.manage().window().getSize();

This method returns dimension values as objects. Here, we go to get the size
of the current browser window:

driver.get("https://www.google.co.in");
System.out.println(driver.manage().window().getSize());

•	 The getPosition() method stores the x and y coordinates of the top-left
corner of the browser window. The following is the syntax of this function:
driver.manage().window().getPosition();

This method returns the values as point objects. Here, we go to get the
position of the current browser window:

System.out.println(driver.manage().window().getPosition());
System.out.println("Position X: " + driver.manage().window().
getPosition().x);
System.out.println("Position Y: " + driver.manage().window().
getPosition().y);
System.out.println("Position X: " + driver.manage().window().
getPosition().getX());

[65]

System.out.println("Position Y: " + driver.manage().window().
getPosition().getY());

•	 The setSize() method customizes the browser window dimension.
The following is the syntax for this function:
driver.manage().window().setSize(new Dimension(width, height));

Due to the increasing number of mobile users, responsive design is equally
in demand to meet industry standards. Selenium offers a better solution to
test these responsive sites. Let's look through a short code to customize the
browser window:

Dimension d = new Dimension(320, 480);
driver.manage().window().setSize(d);
driver.manage().window().setSize(new Dimension(320, 480));

•	 The setPosition() method customizes x and y coordinates of the top-left
corner of the browser window:
driver.manage().window().setPosition(new Point(X-axis, Y-axis));

Screens with varying resolution need attention before locating the browser
under test. This method customizes the browser window location using the
Point object, as follows:

Point p = new Point(200, 200);
driver.manage().window().setPosition(p);
driver.manage().window().setPosition(new Point(300, 150));

•	 The getWindowHandle() method handles the current browser window
(for example, main | parent window).
This method lets you handle a browser after switching a specific window being
tested. The following is a sample snippet to handle the browser window:

String parentwindow = driver.getWindowHandle();
driver.switchTo().window(parentwindow);

•	 The getWindowHandles() method handles all the browser windows and
allows the user to switch control between the parent window and the child
windows. The following is the syntax for this function:
driver.getWindowHandles();

Selenium WebDriver Functions

[66]

A browser window can populate any number of child windows. To handle
these windows, lists of objects are used to get through them (child windows)
one by one. The following is a sample code snippet for this function:

Set<String> childwindows = driver.getWindowHandles();
driver.switchTo().window(childwindow);

•	 The switchTo.window() method transfers control from one browser to
another browser window. In general, it helps you to switch control from a
parent window to a child window and then get back the control to the parent
window. The following is the syntax for this function:

driver.SwitchTo().Window(childwindow);
driver.close();
driver.SwitchTo().Window(parentWindow);

The following image is a pictorial representation of a browser with multiple
windows (parent and child).

A Web Page

http://
A Web Page

http://

Multiple browser windows appears when:

•	 The user intends to click on a link from the parent browser window
(for example, to share via social network)

•	 There is a sudden pop-up with an advertisement browser window

[67]

•	 Handling tests via the Internet Explorer web browser
In the following example, a user is trying to switch control from a parent to a
child window, perform tasks, close the driver, and then switch control from
the child to the parent window:

String parentwindow = driver.getWindowHandle();
Set<String> handles = driver.getWindowHandles();
for(String childwindow : handles)
{
 if(!childwindow.equals(parentwindow))
 {
 driver.switchTo().window(childwindow);
 <!--Perform the steps for child|sub window here-->
 driver.close(); //closing child window
 //cntrl to main|parent window
 driver.switchTo().window(parentwindow);
 }
}

Select functions
A Select function allows you select or deselect values from a drop-down box or a
radio button. It includes a list of Selenium API methods to work with select boxes
that contain the <select>…</select> tags. These functions interact with the UI
comboboxes to select options.

Select select = new Select(driver.findElement(By.
locatorType("path")));

Some helpful snippets using select functions are given below:

•	 The selectByIndex(index) method selects an option using the index value.
The following is the syntax for this function:
select.selectByIndex(index);

Let's get into the bookstore and select a product from a drop-down
list. Here, we select the products at the top of the options list using the
selectByTndex() method:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
select.selectByIndex(1);
select.selectByIndex(2);

Selenium WebDriver Functions

[68]

•	 The selectByValue(value) method selects an option using value in the
string format. The following is the syntax for this function:
select.selectByValue("value");

Let's see how we can select an option from the bookstore's category list using
the text value:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
select.selectByValue("music");

•	 The getFirstSelectedOption() method fetches the first selected option or
currently selected option from the list.
select.getFirstSelectedOption();

Even if there are five options already picked or selected, this method
recognizes only the first selected option. In the following code snippet, it
returns the currently selected value at option 6:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
select.selectByIndex(6);
WebElement FSO = select.getFirstSelectedOption();
System.out.println(select.getFirstSelectedOption().getText());

•	 The selectByVisibleText(text) method selects an option from the select
tag using text visibility. The following is the syntax for this function:
select.selectByVisibleText("text");

This method fetches text values, which are highly case sensitive. Let's search
for a text value, Music, in the category list:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
select.selectByVisibleText("Music");

•	 The getAllSelectedOptions() method returns all the selected options.
The following is the syntax for this function:
select.getAllSelectedOptions();

[69]

This method finds all the selected options from the list and returns them.
Let's see all the selected categories in this bookstore from the products list in
the following snippet of code:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
List<WebElement> selectedOptions = select.getAllSelectedOptions();
for(WebElement b : selectedOptions) {
 System.out.println(b.getText());
}

•	 The getOptions() method returns all data from the options list. The
following is the syntax for this function:
select.getOptions();

The list values of all the categories are returned from the bookstore, as shown
in the following snippet:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
for (WebElement b : select.getOptions()) {
 System.out.println(b.getText());
}

•	 The isMultiple() method verifies multiple selection support. The following
is the syntax for this function:
select.isMultiple();

For instance, the radio buttons or checkboxes have enough reason to have
multiple select features; however, some of them might not. This method
identifies the multi-select status and quickly responds to the user with
valuable feedback. Let's get into a bookstore with a categories (products)
combobox that doesn't involve any multi-select features as described:

driver.get("http://www.barnesandnoble.com/");
Select select = new Select(driver.findElement(By.id("quick-search-
1-category")));
if(select.isMultiple()){
System.out.println("Support multiple select at a time");
}
else{
System.out.println("Doesn't support multiple select at a time");
}

Selenium WebDriver Functions

[70]

•	 The deselectAll() method deselects all the selected options.
The following is the syntax of this function:
select.deselectAll();

A multi-select box with the options already chosen can obviously be deselected
using this select method. Let's see an example in which a web page contains
the multi-select box that is chosen with the default option. Finally, the
deselectAll() method deselects all the chosen options as follows:

driver.get("http://compendiumdev.co.uk/selenium/basic_html_form.
html");
Select select = new Select(driver.findElement(By.
name("multipleselect[]")));
select.deselectAll();

•	 The deselectByIndex(index) method deselects an option using the index
value. The following is the syntax for this function:
select.deselectByIndex(index);

This function is the reverse of the selectByIndex(index) method. Let's see
how to deselect an option from the multi-select box using an integer value
with the following piece of code:

driver.get("http://compendiumdev.co.uk/selenium/basic_html_form.
html");
Select select = new Select(driver.findElement(By.
name("multipleselect[]")));
select.deselectByIndex(3);

•	 The deselectByValue(value) method removes the specific option using
value. The following is the syntax of this function:
select.deselectByValue(value);

This function is the reverse of the selectByValue(value) method. Let's see
how to deselect an option from the multi-select box using a String value
with the following piece of code:

driver.get("http://compendiumdev.co.uk/selenium/basic_html_form.
html");
Select select = new Select(driver.findElement(By.
name("multipleselect[]")));
select.deselectByValue("ms4");

•	 The deselectByVisibleText(text) method removes options using text
visibility. The following is the syntax of this function:

select.deselectByVisibleText(text);

[71]

This function is the reverse of the selectByVisibleText(text) method.
Let's see how to deselect an option from the multi-select box using String
text with the following piece of code:

driver.get("http://compendiumdev.co.uk/selenium/basic_html_form.
html");
Select select = new Select(driver.findElement(By.
name("multipleselect[]")));
select.deselectByVisibleText("Selection Item 4");

Handling alerts and pop-ups
A pop-up is a browser window that opens randomly on surfing the Internet
through the web browser. Web applications generate three different types of
pop-ups, namely:

•	 JavaScript alert (pop-ups) (for example, advertisements)
•	 Browser pop-up (for example, a confirmation dialog box, an authentication

prompt, and so on)
•	 Native OS pop-ups (for example, Windows pop-ups such as

upload/download notfications)

JavaScript pop-ups are generally in the form of alerts and advertisements, especially
for marketing purposes. Selenium WebDriver provides an API to handle the
JavaScript pop-ups. The following is an example of an alert:

Alert alert = driver.switchTo().alert();

Some of the helpful snippets using JavaScript alert functions are as follows:

•	 The dismiss() function ignores or cancels the alert dialog box.
The following is the syntax for this function:
alert.dismiss();

Let's see an example to wait for the alert dialog box, which is expected to
appear, and then skip it to move forward:

WebDriverWait wait = new WebDriverWait(driver, 10);
try {
 wait.until(ExpectedConditions.alertIsPresent());
 Alert alert = driver.switchTo().alert();
 alert.dismiss();
} catch (Exception e) {
 System.out.println("Alert is not available");
}

Selenium WebDriver Functions

[72]

•	 The accept() function acknowledges the alert dialog box upon our clicking
the OK button.
alert.accept();

In general, the alert dialog box waits for an action to be initiated; it can be
either alert cancellation or acceptance. Acceptance is one of two ways to close
the alert pop-up, but with a reason. Let's see how to accept an alert dialog
box by clicking on the OK button:

WebDriverWait wait = new WebDriverWait(driver, 10);
try {
 wait.until(ExpectedConditions.alertIsPresent());
 Alert alert = driver.switchTo().alert();
 alert.accept();
} catch (Exception e) {
 System.out.println("Alert is not available");
}

•	 The getText() function retrieves text or string values from the alert dialog
box. The following is the syntax for this function:
alert.getText();

This method is normally used to verify the alert dialog box by fetching text
values from the pop-up.

Alert alert = driver.switchTo().alert();
alert.getText();

•	 The sendKeys() method passes text or string values to the alert dialog box.
The following is the syntax for this function:
alert.sendKeys(String arg0);

Sending text values into an alert pop-up dialog box is quite possible using
these alert methods. Let's see a small piece of code to achieve this:

Alert alert = driver.switchTo().alert();
alert.sendKeys("Text to be passed");

•	 The authenticateUsing() method handles the basic HTTP authentication by
passing the username and password to the browser pop-up. The following is
the syntax for this function:
UserAndPassword user = new UserAndPassword("USERNAME",
"PASSWORD");
alert.authenticateUsing(user);

[73]

Authentication is a consistent blocker for many automation testers.
Eventually, this method gets you into an environment to test with an API
that helps you skip basic authentication blockers. Let's see an example to
operate authentication pop-ups by passing valid credentials, as follows:

WebDriverWait wait = new WebDriverWait(driver, 10);
Alert alert = wait.until(ExpectedConditions.alertIsPresent());
alert.authenticateUsing(new UserAndPassword("USERNAME",
"PASSWORD"));

Actions action = new Actions(driver);

Mouse and keyboard actions
In Selenium WebDriver, actions can be either mouse actions or keyboard actions.
The selenium-based Actions API provides support to click on a particular location
with or without elements and use keyboard shortcuts efficiently.

•	 The build() method generates all the composite actions. The following is the
syntax for this function:
action.build();

The following code snippet explains to you how you can generate actions
using the build() method:

Actions action = new Actions(driver);
action.click(driver.findElement(By.locatorType("path")));
action.build();

•	 The click() method performs a mouse click on the current mouse pointer
location. The following is the syntax for this function:
action.click();
action.click(driver.findElement(By.locatorType("path")));

Unlike clicking on the mouse's current location, this function allows you to
click on an element by locating it (using the Actions class). Please check the
following snippet for both cases:

driver.get("http://www.google.com");
Actions action = new Actions(driver);
action.click().build().perform();
action.click(driver.findElement(By.id("gsri_ok0"))).build().
perform();

Selenium WebDriver Functions

[74]

•	 The clickAndHold() method lets you click and hold the current mouse
pointer location. The following is the syntax for this function:
action.clickAndHold();
action.clickAndHold(driver.findElement(By.locatorType("path")));

Here, the selected source element is on hold unless the pressed key is
released using the release() method. The following is a piece of code to
click and hold an element:

action.clickAndHold().build().perform();
action.clickAndHold(driver.findElement(By.locatorType("path"))).
build().perform();

•	 The contextClick() method allows you to pop up the contextual menu, in
instances such as when the right-click mouse operation occurs. The following
is the syntax for this function:
action.contextClick();
action.contextClick(driver.findElement(By.locatorType("path")));

To do a context-click, it is important to locate an element before activating
this action. Let's get through a snippet to understand the working of the
contextClick() method:

driver.get("http://docs.seleniumhq.org");
Actions action = new Actions(driver);
WebElement ele = driver.findElement(By.xpath("//div[@
id='mainContent']/p[1]/i"));
action.moveToElement(ele).contextClick().build().perform();

•	 The doubleClick() method double-clicks on the current mouse pointer
location. It also allows you to double-click on an element by locating it.
The following is the syntax for this method:
action.doubleClick();
action.doubleClick(driver.findElement(By.locatorType("path")));

To double-click on an element, link text, link, context, or HTML5-based
elements, the doubleClick() actions method is the right candidate. The
following is a code snippet that selects a context by locating an element:

driver.get("http://docs.seleniumhq.org");
Actions action = new Actions(driver);
WebElement ele = driver.findElement(By.xpath("//div[@
id='mainContent']/p[1]/i"));
action.doubleClick(ele).build().perform();

[75]

•	 The dragAndDrop() function allows the user to drag an item from the
source element and drop it on the target element. The following is the
syntax for this function:
action.dragAndDrop(WebElement source, WebElement target);

Obviously, this method allows you to click and hold an element from
a draggable source location, drag the element, and finally drop it in a
suitable target location. Let's see how we can perform this action in the
following example:

Actions action = new Actions(driver);
WebElement source = driver.findElement(By.locatorType("path"));
WebElement target = driver.findElement(By.locatorType("path"));
action.dragAndDrop(source, target).build().perform();

•	 The dragAndDropBy() function allows the user to drag an item from the
source element and drop it on the target location using x and y coordinates.
The following is the syntax of this function:
action.dragAndDropBy(WebElement source, int xOffset, int yOffset);

Unlike the dragAndDrop() method, this function uses offset values as a
target location to release elements. Let's see how we can perform this action
in the following example:

Actions action = new Actions(driver);
WebElement source = driver.findElement(By.locatorType("path"));
action.dragAndDropBy(source, 456, 234).build().perform();

•	 The keyDown() method allows the user to press or hold a specific key
without releasing it. The following is the syntax for this function:
action.keyDown(Keys theKey);

Let's see an example that selects multiple keys using the control button in the
pressed state:

Actions action = new Actions(driver);
WebElement source = driver.findElement(By.locatorType("path"));
WebElement target = driver.findElement(By.locatorType("path"));
action.keyDown(Keys.CONTROL);
action.click(source);
action.click(target);
action.keyUp(Keys.CONTROL);
action.perform();

Selenium WebDriver Functions

[76]

•	 The keyUp() method releases the key that is already in a pressed condition.
The following is the syntax for this function:
action.keyUp(Keys theKey);

The following example illustrates how we can move to the bottom of
the page view using the Ctrl + End key combination and finally release
the Ctrl key:

Actions action = new Actions(driver);
action.keyDown(Keys.CONTROL).sendKeys(Keys.END).keyUp(Keys.
CONTROL).build().perform();

•	 The moveByOffset() method moves the mouse pointer to a specific location
using the x and y coordinates:
action.moveByOffset(int xOffset, int yOffset);

By default, the mouse offset will be located in the top-left corner of the page,
that is, (0,0). Customizing the x and y coordinates moves the mouse pointer
to the desired location, as follows:

Actions action = new Actions(driver);
action.moveByOffset(234, 345).build().perform();

•	 The moveToElement() method moves the mouse pointer to a specific
element. Besides this, the mouse pointer can also be moved from a source
element to the target location using xy coordinates. The following is the
syntax for this function:
action.moveToElement(WebElement source);
action.moveToElement(WebElement source, int xOffset, int yOffset);

This method directly scrolls the page view by highlighting the mouse pointer
to the middle of the given element. Let's see how this method works with the
following example:

Actions action = new Actions(driver);
WebElement source = driver.findElement(By.locatorType("path"));
action.moveToElement(source).build().perform();
action.moveToElement(source, 234, 345).build().perform();

•	 The perform() method executes actions. The following is the syntax for
this function:
action.perform();

[77]

Though the build() function generates actions, the perform() method is
the key to executing action commands. The following is a piece of code to
generate and execute actions:

Actions action = new Actions(driver);
WebElement source = driver.findElement(By.locatorType("path"));
action.click(source);
action.build();
action.perform();

•	 The release() method drops an item fetched by the action of left-clicking
the mouse. This function also releases an item to a specific element by
locating it. The following is the syntax for this function:
action.release();
action.release(WebElement target);

Let's see how the release() method works with the drag and drop
functionality in the following code snippet:

WebElement source = driver.findElement(By.locatorType("path"));
WebElement target = driver.findElement(By.locatorType("path"));
Action dragAndDrop = action.clickAndHold(source)
.moveToElement(target)
.release(target)
.build();
dragAndDrop.perform();

•	 The sendKeys() method controls the keyboard functions using keys.
This function can also perform actions by locating elements. The following
is the syntax for this function:
action.sendKeys(Keys theKeys);
action.sendKeys(Keys theKeys, Keys theKeys);
action.sendKeys(WebElement target, Keys theKeys);

This method supports Selenium users in three different flavors. Multiple
combinations of keyboard shortcuts can be easily achieved using the
sendKeys() method, as shown in the following code snippet:

Actions action = new Actions(driver);
WebElement target = driver.findElement(By.locatorType("path"));
action.sendKeys(Keys.TAB).build().perform();
action.sendKeys(Keys.CONTROL, Keys.END).build().perform();
action.sendKeys(target, Keys.TAB).build().perform();

Selenium WebDriver Functions

[78]

Some of the helpful tasks using the above methods are given as follows:

°° Zoom In: Use HTML tags for the advanced zoom-in and zoom-out
features. The zoom-in feature gives better focus on a page under test.
The following snippet explains well the zoom-in action on both Mac
and Windows platforms:

WebElement html = driver.findElement(By.tagName("html"));
// WINDOWS
html.sendKeys(Keys.chord(Keys.CONTROL, Keys.ADD));
// MAC
html.sendKeys(Keys.chord(Keys.COMMAND, Keys.ADD));

°° Zoom Out: The zoom out function is carried out by hitting the
Ctrl+- key combinations. The following snippet explains well the
zoom-out action:

WebElement html = driver.findElement(By.tagName("html"));
// WINDOWS
html.sendKeys(Keys.chord(Keys.CONTROL, Keys.SUBTRACT));
// MAC
html.sendKeys(Keys.chord(Keys.COMMAND, Keys.SUBTRACT));

°° Zoom 100%: This snippet ensures that the page is fully loaded with
100 percent zoom capacity:

WebElement html = driver.findElement(By.tagName("html"));
// WINDOWS
html.sendKeys(Keys.chord(Keys.CONTROL, "0"));
// MAC
html.sendKeys(Keys.chord(Keys.COMMAND, Keys."0"));

°° Enter: To submit a form or press the Enter key, the following piece of
code will be helpful:

driver.findElement(By.locatorType("path")).sendKeys(Keys.
RETURN);
driver.findElement(By.locatorType("path")).sendKeys(Keys.
ENTER);

°° Drag and Drop: Consider an application containing the drag and
drop feature, in which an element is being dragged from one location
to another. The source and target elements ought to be declared first
so that the actions library prepares the drag and drop actions. Let's
see the types of methods that allow you to perform a drag and drop
functionality throughout the web page UI, as follows:

[79]

Method 1: In this model, the dragAndDrop action method is directly
used to perform a drag and drop action by moving an item from the
source element to the expected target element location:

WebElement source = driver.findElement(By.
locatorType("path"));
WebElement target = driver.findElement(By.
locatorType("path"));

Actions action = new Actions(driver);
Action dragAndDrop = action.dragAndDrop(source, target).
build();
dragAndDrop.perform();

Method 2: Here, the source and target elements are predefined,
following a series of actions to click, hold, move, and release
an element:

WebElement source = driver.findElement(By.
locatorType("path"));
WebElement target = driver.findElement(By.
locatorType("path"));
Actions action = new Actions(driver);
Action dragAndDrop = action.clickAndHold(source)
.moveToElement(target)
.release(target Element)
.build();
dragAndDrop.perform();	

Method 3 (Using Java Robot for HTML5 pages): The Java Robot
class is an optional method to drag and drop an element, similar to
the Actions API. Let's see an example web page built with HTML5
technology that doesn't support Selenium's Actions method to drag
and drop an element:

@Test
public void dragAndDrop() throws AWTException,
InterruptedException {

driver.get("http://demo.kaazing.com/forex/");
Actions action = new Actions(driver);
WebElement sourceElement = driver.findElement(By.
xpath("(//li[@name='dragSource'])[13]"));
Action drag = action.clickAndHold(sourceElement).build();
drag.perform();

Selenium WebDriver Functions

[80]

WebElement targetElement = driver.findElement(By.
xpath("//section[@id='section1']/div[2]"));
Point coordinates = targetElement.getLocation();
Robot robot = new Robot(); //Robot for controlling mouse
actions
robot.mouseMove(coordinates.getX(), coordinates.getY() +
120);
Thread.sleep(2000);
robot.mouseMove(coordinates.getX(), coordinates.getY() +
110);
Thread.sleep(5000);
}

°° Mouse Hover: When a user tries to hover over elements in a web page
(for example, link text), the mouse hover events are automatically
triggered to perform an action. Let's look at a snippet to mouse hover
an element with the link text locator:

Actions action = new Actions(driver);
WebElement HoverLink = driver.findElement(By.
linkText("value"));
action.moveToElement(HoverLink);
action.perform();

Refer to the following link to check all the available Actions keyboard keys:
https://sites.google.com/site/seleniumworks/keyboard-
actions

Summary
In this chapter, we learned about almost every single Selenium WebDriver function,
along with their examples in detail.

In the next chapter, we will explore how we can practice Selenium WebDriver and
learn about its techniques and how to survive without Selenium WebDriver functions.

https://sites.google.com/site/seleniumworks/keyboard-actions
https://sites.google.com/site/seleniumworks/keyboard-actions

Chapter 4

[81]

Selenium WebDriver
Best Practices

In this chapter, we will learn the best practices for Selenium WebDriver and
its techniques for handling a complex web application. Better understanding
of WebDriver provides better results to find a quick solution. For example,
JavascriptExecutor provides a quick workaround to automate web pages at
a faster rate without using DOM.

In general, we face problems while involving an automation process without
examining the application. It's quite necessary to understand why standard
WebDriver approaches fail to work. Most of the problems occur when a page is
overloaded with Ajax calls that load DOM elements asynchronously or when a page
contains lots of frames, ActiveX/flex/flash components, and so on. Eventually,
Selenium WebDriver overrides all these glitches with a proper workaround, where
the driver simulates browsers exactly like a real user would do.

An efficient approach will help you to ensure better interaction with user interface
components such as alerts, forms, and lists. For instance, the approach should
be stable, quick, and reliable. The PageObject pattern is one of the best Selenium
practices to maintain test suites or a collection of tests. Let's go through them one
by one in the following sections.

In this chapter, we will learn the following topics:

•	 Handling Ajax websites
°° isElementPresent()

°° Waits

•	 Page Object pattern
•	 Event-firing WebDriver

Selenium WebDriver Best Practices

[82]

•	 Handling iFrames
•	 Handling native OS and browser pop-ups
•	 JavascriptExecutor

Handling Ajax websites
Every modern web application makes use of Ajax calls that return data through
asynchronous calls made to the web server. It avoids page reload and updates part
of the web page at any time. Let's see how to manage these Ajax-based websites
through Selenium WebDriver in detail.

The isElementPresent method
The isElementPresent() method is a user-defined method that checks for an
element's availability within a web page. By default, the Selenium IDE generates the
following script, where the object returns a Boolean value (however, this method is
not recommended for handling Ajax-based web apps):

private boolean isElementPresent(By by) {
 try {
 driver.findElement(by);
 return true;
 } catch (NoSuchElementException e) {
 return false;
 }
}

@Test
public void Test01() throws Exception {
 driver.get("https://www.google.co.in/");
 Boolean a = isElementPresent(By.name("q"));
 System.out.println(a);
 Boolean b = isElementPresent(By.name("selenium_essentials"));
 System.out.println(b);
}

This method lets you wait for an element to execute appropriate actions. If the element
is not found, it returns false. The try-catch statement in this example captures
all the exceptions thrown (such as NoSuchElementException). This method can be
written in many different ways. Let's see a few of the helpful tasks using this method:

Chapter 4

[83]

•	 Method 1: This approach is used to verify whether an element is present in a
page or not:
if (isElementPresent(By.locatorType("path"))) {
 System.out.println("Element is available");
} else {
 System.out.println("Element not available");
}

•	 Method 2: The following is an alternative method to check the element's
availability in a web page:
if(driver.findElements(By.locatorType("path"))).size()>0)
{
 System.out.println("Element is present in the webpage");
} else {
 System.out.println("Element not available");
}

•	 Method 3: The following is a negative approach that verifies the
unavailability of an element in a web page:

if(!isElementPresent(By.locatorType("path")))
{
 System.out.println("Element not available");
} else {
 System.out.println("Element is available");
}

In spite of the method verifying the element's availability, our tests certainly fail due
to regular timeout (by returning false); what it lacks is WebDriverWait an explicit
wait to meet a specific condition to occur and an implicit wait to wait for a specific
time interval. We will explore this in detail in the following section.

Waits
Wait commands let you put tests on hold or pause for a few seconds or even days.
Nowadays, Ajax-based websites are widely in used for their high data-exchanging
speed. However, there will be variations in receiving each and every Ajax web
service on a fully loaded page. To avoid such delays and to ignore exceptions such
as ElementNotVisibleException, it is highly recommended to use waits. To handle
such delays on a web page, Selenium WebDriver makes use of both implicit and
explicit waits.

Selenium WebDriver Best Practices

[84]

Explicit wait
An explicit wait waits for certain conditions to occur. It results in TimeoutError only
when the conditions fail to meet their target. In general, the usage of the explicit wait
is highly recommended. Here's an example of an explicit wait:

WebDriverWait wait = new WebDriverWait(driver, 10);
wait.until(ExpectedConditions.presenceOfElementLocated(By.
locatorType("path")));

In the example that follows, WebDriver waits for 20 seconds until the web element is
found; if it is not, it will simply throw TimeoutException:

@Test
public void Test01() throws Exception {
 driver.get(baseUrl + "/");
try {
 waits().until(ExpectedConditions.presenceOfElementLocated
 (By.id("invalidID")));
} catch(Exception e){
 System.out.println("Element Not Found");
}

private WebDriverWait waits(){
 return new WebDriverWait(driver, 20);
}

A few of the useful tasks that you can perform using explicit waits are listed
as follows:

•	 Handling an explicit wait on the PageObject pattern: A
NullPointerException exception will be thrown whenever WebDriverWait
is declared globally on the PageObject design pattern. To avoid such risks,
make use of the following snippet efficiently:
public class classname{
 private WebDriver driver;
 private final Wait<WebDriver> wait;

 public classname(WebDriver driver) { //constructor
 this.driver = driver;
 wait = new WebDriverWait(driver, 20);
 }
}

public void Test01() throws Exception {

Chapter 4

[85]

 wait.until
(ExpectedConditions.presenceOfElementLocated(By.
locatorType("path")));
}

•	 Handling an explicit wait by locators (ID, name, XPath, CSS, and so on):
The following is an alternative method to utilize an explicit wait. It waits for
a specific locator until the expected conditions are fulfilled. The locator can
be an ID, name, XPath, or CSS, among others:

@Test
public void Test01() throws Exception {
 driver.get(baseUrl + "/");
 waitForID("value");
}

public void waitForID(String id) {
 WebDriverWait wait = new WebDriverWait(driver, 10);
 wait.until
(ExpectedConditions.presenceOfElementLocated(By.id(id)));
}

In the preceding code, WaitForID is a user-defined method, where the
locator ID can be customized with any locator types. ExpectedCondition
is one of the Selenium libraries containing a set of conditions that verify an
element's availability through WebDriverWait. The methods listed in the
following screenshot includes all the expected conditions of Selenium:

Selenium WebDriver Best Practices

[86]

For further information, refer to the following link:
https://selenium.googlecode.com/git/docs/api/java/org/
openqa/selenium/support/ui/ExpectedConditions.html

The FluentWait method
The FluentWait method uses a polling technique, that is, it will keep on polling every
fixed interval for a particular element to appear. The FluentWait method is more or
less similar to explicit wait; however, FluentWait holds additional features, such as
polling intervals and ignore exceptions. In the following example, the polling takes
place every two seconds with a timeout of 10 seconds, so every two seconds, it checks
for the element to appear, until it reaches 10 seconds, and the overall polling count
will be five. Through FluentWait, the user can ignore any kind of exceptions, such as
NoSuchElementException. The code for the FluentWait method is as follows:

@Test
public void Test01() throws Exception {
 driver.get(baseUrl + "/");
 fluentWait(By.locatorType("path"));
}

public WebElement fluentWait(final By locator) {
 FluentWait<WebDriver> wait = new FluentWait<WebDriver>(driver)
 .withTimeout(10, TimeUnit.SECONDS)
 .pollingEvery(2, TimeUnit.SECONDS)
 .ignoring(NoSuchElementException.class);

 WebElement foo = wait.until(new Function<WebDriver, WebElement>() {
 public WebElement apply(WebDriver driver) {
 return driver.findElement(locator);
 }
 });

 return foo;
};

Sleeper
The sleeper method is not an ideal approach to handle delays. The worst case of
explicit wait is Thread.sleep, which is a fixed delay and mostly used for debugging
test cases when the internet speed is slow. It lets the user pause test execution for a
certain time period even though the expected condition is met.

https://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html

Chapter 4

[87]

The general usage of the sleeper method instead of the explicit wait or fluentWait is
not appreciated. Here's the code for the sleeper method:

Thread.sleep(long millis);

Here, the sleeper is set to 3 seconds, that is, it lets you wait for 3 seconds to move
forward to the next process:

Thread.sleep(3000); // waits for 3 secs

Timeouts
Unlike explicit wait, timeouts is an interface without any conditions that set a
standard user-defined timeframe for a test to fail. The three types of timeouts are
explained as follows:

•	 implicitlyWait(): An implicit wait waits for an element to appear or be
displayed within a certain time period set by the user. In general, every
timeout that occurs throughout the tests relies on the implicit wait. It lets
you to poll the DOM for a specific time period until an element is found.
An implicit wait acts as a master wait; however, the usage of the explicit
wait or Fluent Wait is highly recommended since it has the ability to wait
for dynamically loading Ajax elements that target a unique web element.
The implicit wait is active from the start to the end of the test execution, that
is, till the web page is closed. In the Selenium IDE, the wait defaults to 30
seconds. The following is the syntax for the implicit wait:
driver.manage().timeouts().implicitlyWait(long, TimeUnit);

The following code snippet is one of the possible ways to define an
implicit wait (it can be days, hours, microseconds, milliseconds, minutes,
nanoseconds, or seconds):

driver.manage().timeouts().implicitlyWait(30, TimeUnit.DAYS);
driver.manage().timeouts().implicitlyWait(30, TimeUnit.HOURS);
driver.manage().timeouts().implicitlyWait(30, TimeUnit.
MICROSECONDS);
driver.manage().timeouts().implicitlyWait(30, TimeUnit.
MILLISECONDS);
driver.manage().timeouts().implicitlyWait(30, TimeUnit.MINUTES);
driver.manage().timeouts().implicitlyWait(30, TimeUnit.
NANOSECONDS);
driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

Selenium WebDriver Best Practices

[88]

•	 pageLoadTimeout(): The pageLoad timeout method waits for the entire
page to be loaded within a specific time period. A timeout exception will
be thrown whenever a page takes more than the expected time to load. The
following is the syntax for this method:
driver.manage().timeouts().pageLoadTimeout(long, TimeUnit);

In the example code snippet that follows, the pageLoad timer is set to 30
seconds for a web page to load soon after launching a browser under test:

driver.manage().timeouts().pageLoadTimeout(30, TimeUnit.SECONDS);

•	 setScriptTimeout(): The setScript timeout method waits for
asynchronous APIs (Ajax) to be loaded in a web page within a certain time
period. The following is the syntax for this method:
driver.manage().timeouts().setScriptTimeout(long, TimeUnit);

In the following example, the setScript timer is set to 30 seconds to avoid
unusual Ajax timeout breaks. The timeout error returns whenever Ajax calls
fail to retrieve within the given time period. The example code snippet follows:

driver.manage().timeouts().setScriptTimeout(30, TimeUnit.SECONDS);

The PageObject pattern
PageObject is an approach widely used in testing to reduce code duplication and
increase the reusability of code. It is a design pattern that defines a page using objects.
Moreover, the page object provides easy maintenance of code, and the scripts can be
read easily anytime by any user. It is a pattern representing an entire page or a portion
of the page in an object-oriented behavior.

Let's discuss the PageObject design pattern with an example on the Google web
page. To start with the example, let's create a class that emphasizes how to write
PageObject methods for a page in detail (GoogleSearchPage.java). The search()
and assertTitle()methods let you perform Google searches and to assert the
page title on the results page. Here's how we create the aforementioned class for
this example:

public class GoogleSearchPage {
 public WebDriver driver;
 private final Wait<WebDriver> wait;

 public GoogleSearchPage(WebDriver driver) {
 this.driver = driver;
 wait = new WebDriverWait(driver, 10);
 //driver.get("https://seleniumworks.com");

Chapter 4

[89]

 }

 public void search() throws Exception{
 // search google
 wait.until.
(ExpectedConditions.presenceOfElementLocated(By.name("q")));
 driver.findElement(By.name("q")).sendKeys("Prashanth Sams");
 driver.findElement(By.name("q")).submit();
 System.out.println("Google Search - SUCCESS!!");
 Thread.sleep(4000);
 }

 public void assertTitle() throws Exception{
 // assert google search
 Boolean b = driver.getTitle().contains("Prashanth Sams");
 System.out.println(b);
 }
}

Now, create a test class using the TestNG unit test framework (for example, TC.java).
The following test methods perform three different tasks, namely, opening the Google
URL, searching for a keyword, and finally asserting the page title on the Google
results page:

public class TC {
 private WebDriver driver;
 public GoogleSearchPage Task;

 @BeforeTest
 public void setUp() throws Exception {
 System.out.println("Instantiating Chrome Driver...");
 driver = new ChromeDriver();
 }

 @Test
 public void Test01() throws Exception {
 URL url = new URL(driver);
 url.geturl();
 }

 @Test
 public void Test02() throws Exception {
 Task = new GoogleSearchPage(driver);
 Task.search();
 }

Selenium WebDriver Best Practices

[90]

 @Test
 public void Test03() throws Exception {
 Task = new GoogleSearchPage(driver);
 Task.assertTitle();
}

 @AfterTest
 public void tearDown() throws Exception {
 driver.quit();
 }
}

Here, Selenium WebDriver is initiated at the start, followed by a series of test
methods; the page objects are initialized inside the test class as well. The constructor
avoids unusual errors by defining a driver as shown in the following Java class
(URL.java). However, this class is significantly used to load the Google web page
in this example. Once done with the task, it returns control to another class that
contains PageObject methods for the tests to continue further. The following code
exemplifies the discussion in this paragraph:

public class URL{
 public WebDriver driver;
 private String baseUrl;
 private boolean acceptNextAlert = true;
 private StringBuffer verificationErrors = new StringBuffer();

 public URL(WebDriver driver) {
 this.driver = driver;
 driver.get("http://www.google.co.in");
 }

 public GoogleSearchPage geturl() {
 System.out.println("Opened URL successfully");
 return new GoogleSearchPage(driver);
 }
}

Chapter 4

[91]

The following is the final test report for all the preceding test cases:

The PageFactory class
The PageFactory class is a class file under WebDriver's support library that
maintains the PageObject pattern. It has the ability to find and locate elements
quickly. The PageFactory class uses the initElements method to instantiate
the WebDriver instance of PageObject. The following is the syntax for the the
PageFactory class:

PageFactory.initElements(WebDriver driver, classname.class)

NullPointerException will be thrown when a user fails to implement
PageFactory. By default, the name and id locator types can be accessed directly
without labeling locators. For example, refer to the following code snippet:

private WebElement lst-ib; // Here, 'lst-ib' is an id
private WebElement q; // Here, 'q' is a name

lst-ib.sendKeys("selenium essentials");
q.sendKeys("Prashanth Sams");

Selenium WebDriver Best Practices

[92]

Let's discuss PageFactory in detail with an example on the Google web page.
This example is similar to the previous one. However, we will get to know how to
make use of the PageFactory class efficiently in order to maintain the PageObject
pattern. Let's create a test class using the TestNG unit-test framework (for example,
GoogleTest.java). Initialize WebDriver and create an object using the PageFactory
class as shown in the following snippet:

public class GoogleTest {
 private WebDriver driver;

 @BeforeTest
 public void setUp() throws Exception {
 driver = new FirefoxDriver();
 }

 @Test
 public void Test01() throws Exception{
 GoogleSearchPage page = PageFactory.initElements(driver,
GoogleSearchPage.class);
 page.searchFor("Prashanth Sams");
 }

 @AfterTest
 public void Teardown() throws Exception{
 driver.quit();
 }
}

Now, create a class file (for example, GoogleSearchPage.java) containing methods
where the locator values are declared without any attribute names:

public class GoogleSearchPage {

 private WebElement q; // Here's the Element
 public WebDriver driver;

 public GoogleSearchPage(WebDriver driver) {
 this.driver = driver;
 driver.get("http://www.google.com/");
 }

 public void searchFor(String text) {
 q.sendKeys(text);
 q.submit();
 }
}

Chapter 4

[93]

Here, the element q is declared without stating any locator type. However, it
automatically identifies whether it is id or name. The PageFactory class finds an
element with the id attribute matching; if not, it searches for the name attribute.

The @FindBy annotation
There are several methods to locate an element and one among them is the @FindBy
annotation from PageFactory, which supports PageObject. The annotations @FindBy
and @FindBys let you find elements using locators easily. The following snippets
are an alternative approach to define the Google search text field. Here's the first of
these snippets:

@FindBy(how = How.NAME, using = "q")
private WebElement searchBox;

@FindBy(name "q")
private WebElement searchBox;

Let's discuss this with an example using the @FindBy annotation on the Google web
page. Here, the @CacheLookup annotation is used to keep the elements in cache and
utilize them from the next time for rapid test execution:

import org.openqa.selenium.support.CacheLookup;
import org.openqa.selenium.support.FindBy;
import org.openqa.selenium.support.How;

public class GoogleSearchPage {

 @FindBy(how = How.NAME, using = "q") // or use @FindBy(name = "q")
 @CacheLookup
 private WebElement searchme;

 @FindBy(id = "lst-ib") // Less Verbose
 private WebElement submitme;
 //Here, both searchme & submitme refers to the same element

 public WebDriver driver;

 public GoogleSearchPage(WebDriver driver) {
 this.driver = driver;
 driver.get("http://www.google.com/");
 }

 public void searchFor(String text) {

Selenium WebDriver Best Practices

[94]

 searchme.sendKeys(text);
 submitme.submit();
 }

}

The @FindBys annotation
The @FindBys annotation can have any numbers of tags in a series to define an
element. In the following example, the @FindBys annotation handles three tags in a
series to locate the Google search field. The tag series can be in top-to-bottom order,
as shown in the following screenshot:

The following is the code for the @FindBys annotation:

import org.openqa.selenium.support.CacheLookup;
import org.openqa.selenium.support.FindBy;
import org.openqa.selenium.support.FindBys;

public class GoogleSearchPage {

@FindBys({ @FindBy(id = "sb_ifc0"), @FindBy(id = "gs_lc0"), @
FindBy(name = "q") })
 @CacheLookup // keeps the element in cache for rapid execution
 private WebElement searchme;

 public WebDriver driver;

 public GoogleSearchPage(WebDriver driver) {
 this.driver = driver;
 driver.get("http://www.google.com/");
 }

 public void searchFor(String text) {
 searchme.sendKeys(text);
 searchme.submit();
 }
}

Chapter 4

[95]

The EventFiringWebDriver class
The EventFiringWebDriver class is a sort of API that encloses arbitrary WebDriver
instances to register WebDriverEventListener; it provides an automatic system
to trigger events. For example, whenever a test failure occurs, the automatic
screen capture method gets activated and starts logging screenshots. The
EventFiringWebDriver class is highly recommended for better reporting and test
maintenance. Through EventFiringWebDriver, the user can have full control over
the web page under test, including control over navigation, over finding elements,
on exception, the click action, over script execution, and so on.

Follow these regulations to run tests through EventFiringWebDriver:

1.	 Create a Listeners class by either implementing the
WebDriverEventListener interface or extending the
AbstractWebDriverEventListener class:
public class Listeners extends AbstractWebDriverEventListener
{...
}

public class Listeners implements WebDriverEventListener
{...
}

2.	 Now, create a test class and initialize EventFiringWebDriver (termed
eventDriver in the following examples):
private WebDriver driver;
EventFiringWebDriver eventDriver = new
EventFiringWebDriver(driver);

3.	 Finally, register the WebDriver event listener with EventFiringWebDriver:
Listeners EL = new Listeners();
eventDriver.register(EL);
eventDriver.get("http://www.yourwebsite.com");

The user-defined WebDriver event listener functions are easily customizable and
play a major role by responding to events. Let's discuss EventFiringWebDriver
functions further, as follows:

•	 afterNavigateBack(): The afterNavigateBack() method is triggered
soon after executing the navigate().back() command. The following
is the syntax for this method:
afterNavigateBack(WebDriver driver)

Selenium WebDriver Best Practices

[96]

In the following code snippet, the afterNavigateBack() method prints the
web page's current URL after navigating back from the previous URL:

@Override
public void afterNavigateBack(WebDriver driver) {
System.out.println("After Navigating Back. I'm at "
 + driver.getCurrentUrl());
}

•	 afterNavigateForward(): The afterNavigateForward() method is
triggered soon after executing the navigate().forward() command.
The following is the syntax for this method:
afterNavigateForward(WebDriver driver)

In the following code snippet, it prints the web page's current URL after
navigating towards the previously visited URL:

@Override
public void afterNavigateForward(WebDriver driver) {
System.out.println("After Navigating Forward. I'm at "
 + driver.getCurrentUrl());
}

•	 afterNavigateTo(): The afterNavigateTo() method is triggered soon
after executing the get(String url) or navigate().to(String url)
commands. The following is the syntax for this method:
afterNavigateTo(java.lang.String url, WebDriver driver)

In the following code snippet, it prints the web page's current URL after
visiting or opening a web page:

@Override
public void afterNavigateTo(String url, WebDriver driver) {
 System.out.println("After Navigating To: " + url + ", my url is:
" + driver.getCurrentUrl());
}

•	 beforeNavigateBack(): The beforeNavigateBack() method is triggered
just before executing the navigate().back() command. The following is the
syntax for this method:
BeforeNavigateBack(WebDriver driver)

Chapter 4

[97]

In the following code snippet, it prints the web page's current URL before
navigating back from the previous URL:

@Override
public void beforeNavigateBack(WebDriver driver) {
 System.out.println("Before Navigating Back. I was at "
 + driver.getCurrentUrl());
}

•	 beforeNavigateForward(): The beforeNavigateForward() method is
triggered just before executing the navigate().forward() command.
The following is the syntax for this method:
beforeNavigateForward(WebDriver driver)

In the following code snippet, it prints the web page's current URL before
navigating towards the previously visited URL:

@Override
public void beforeNavigateForward(WebDriver driver) {
 System.out.println("Before Navigating Forward. I was at "
 + driver.getCurrentUrl());
}

•	 beforeNavigateTo(): The beforeNavigateTo() method is triggered just
before executing the get(String url) or navigate().to(String url)
commands. The following is the syntax for this method:
beforeNavigateTo(java.lang.String url, WebDriver driver)

In the following code snippet, it prints the web page's current URL before
visiting or opening a web page:
@Override
public void beforeNavigateTo(String url, WebDriver driver) {
 System.out.println("Before Navigating To : " + url + ", my url
was: " + driver.getCurrentUrl());
}

•	 afterClickOn(): The afterClickOn() method is triggered soon after
executing the WebElement.click() command. The following is the syntax
for this method:
afterClickOn(WebElement element, WebDriver driver)

Selenium WebDriver Best Practices

[98]

In the following code snippet, the afterClickOn() method prints the most
recently clicked element:

@Override
public void afterClickOn(WebElement element, WebDriver driver) {
System.out.println("Clicked Element with: '" + element + "'");
}

•	 beforeClickOn(): The beforeClickOn() method is triggered just before
executing WebElement.click() command. The following is the syntax for
this method:
beforeClickOn(WebElement element, WebDriver driver);

In the following code snippet, the element likely to be clicked is highlighted
just before executing the click() function:

@Override
public void beforeClickOn(WebElement element, WebDriver driver) {
 System.out.println("Trying to click: '" + element + "'");
 /** Highlight Elements before clicking **/
 for (int i = 0; i < 1; i++) {
 JavascriptExecutor js = (JavascriptExecutor) driver;
 js.executeScript("arguments[0].setAttribute('style',
arguments[1]);", element, "color: black; border: 3px solid
black;");
 }
}

•	 afterFindBy(): The afterFindBy() method is triggered soon after
executing the WebElement.findElement(), WebElement.findElements(),
driver.findElement(), or driver.findElements() command. The
following is the syntax for this method:
afterFindBy(By by, WebElement element, WebDriver driver);

In the following code snippet, afterFindBy() prints the element soon after
locating it:

private By finalFindBy;
@Override
public void afterFindBy(By by, WebElement element, WebDriver
driver) {
 finalFindBy = by;
 System.out.println("Found: '" + finalFindBy + "'.");
 // This is optional or an alternate method
 System.out.println("Found: " + by.toString() + "'.");
}

Chapter 4

[99]

•	 beforeFindBy(): The beforeFindBy() method is triggered just before
executing the WebElement.findElement(), WebElement.findElements(),
driver.findElement(), or driver.findElements() command. The
following is the syntax for this method:
beforeFindBy(By by, WebElement element, WebDriver driver);

In the following code snippet, the beforeFindBy() method prints the
element just before locating it:

private By finalFindBy;
@Override
public void beforeFindBy(By by, WebElement element, WebDriver
driver) {
 finalFindBy = by;
 System.out.println("Trying to find: '" + finalFindBy + "'.");
 System.out.println("Trying to find: " + by.toString()); // This
is optional or an alternate method
}

•	 afterScript(): The afterScript() method is triggered soon after executing
the RemoteWebDriver.executeScript(java.lang.String, java.lang.
Object[]) command. The following is the syntax of this method:
afterScript(java.lang.String script, WebDriver driver)

In the following code snippet, afterScript() prints a successful message
soon after executing the JavaScript function:

@Override
public void afterScript(String script, WebDriver driver) {
 System.out.println("JavaScript is Executed");
}

•	 beforeScript(): The beforeScript() method is triggered just before
executing the RemoteWebDriver.executeScript(java.lang.String,
java.lang.Object[]) command. The following is the syntax for this method:
beforeScript(java.lang.String script, WebDriver driver)

In the following code snippet, beforeScript() prints a foretelling message,
saying that the JavaScript is about to be executed:

@Override
public void beforeScript(String script, WebDriver driver) {
 System.out.println("JavaScript is about to execute");
}

Selenium WebDriver Best Practices

[100]

•	 afterChangeValueOf(): The afterChangeValueOf() method is triggered
soon after executing the WebElement.clear() or WebElement.sendKeys()
command. The following is the syntax of this method:
afterChangeValueOf(WebElement element, WebDriver driver);

In the following code snippet, this method prints the text field values
available both before and after the Google search:

private String actualValue;
@Override
public void afterChangeValueOf(WebElement element, WebDriver
driver) {
 String modifiedValue = "";
 try {
 modifiedValue = element.getText();
 } catch (StaleElementReferenceException e) {
System.out.println("Could not log change of element, because of a
stale" + " element reference exception.");
 return;
 }

 // What if the element is not visible anymore?
 if (modifiedValue.isEmpty()) {
 modifiedValue = element.getAttribute("value");
 }

System.out.println("The value changed from '" + actualValue + "'
to '" + modifiedValue + "'");
}

•	 beforeChangeValueOf(): The beforeChangeValueOf() method is triggered
just before executing the WebElement.clear() or WebElement.sendKeys()
command. The following is the syntax of this method:
beforeChangeValueOf(WebElement element, WebDriver driver)

In the following code snippet, this method prints the value that exists before
clearing the Google search field:

private String actualValue;
@Override
public void beforeChangeValueOf(WebElement element, WebDriver
driver) {
 actualValue = element.getText();

 // What if the element is not visible anymore?

Chapter 4

[101]

 if (actualValue.isEmpty()) {
 actualValue = element.getAttribute("value");
 }

System.out.println("The existing value is: " + actualValue);
}

•	 onException(): The onException() method is triggered whenever an
exception is thrown during test execution. The following is the syntax of
this method:
onException(java.lang.Throwable throwable, WebDriver driver)

In the following code snippet, the EventFiringWebDriver takes a screenshot
soon after getting an exception thrown on test execution:

@Override
public void onException(Throwable throwable, WebDriver webdriver)
{

 File scrFile = ((TakesScreenshot) webdriver)
 .getScreenshotAs(OutputType.FILE);
 try {
 org.apache.commons.io.FileUtils.copyFile(scrFile, new
File("C:\\Testfailure.jpeg"));
 } catch (Exception e) {
 System.out.println("Unable to Save");
 }
}

Event-firing WebDriver example
Let's discuss this with an example by creating a Listener class, which is said to be an
EventListener class. Here, we are extending the AbstractWebDriverEventListener
class instead of implementing the WebDriverEventListener class; however, either
class does the same job. Through EventListener, you can override any listeners
as you wish and the events can be fired on any popular browsers; for example, the
following class is named Listeners.java:

public class Listeners extends AbstractWebDriverEventListener {
 // public class Listeners implements WebDriverEventListener {
 private By finalFindBy;
 private String actualValue;

Selenium WebDriver Best Practices

[102]

As discussed in the preceding functions with an exercise on each, there are different
events that are triggered each time EventFiringDriver is executed. The following is
a list of navigation functions with user-defined steps to perform an action:

/** URL NAVIGATION | navigate(), get() **/
// Prints the URL before Navigating to specific URL
@Override
public void beforeNavigateTo(String url, WebDriver driver) {
System.out.println("Before Navigating To : " + url + ", my url was: "
+ driver.getCurrentUrl());
}

// Prints the current URL after Navigating to specific URL
@Override
public void afterNavigateTo(String url, WebDriver driver) {
System.out.println("After Navigating To: " + url + ", my url is: " +
driver.getCurrentUrl());
}

// Prints the URL before Navigating back "navigate().back()"
@Override
public void beforeNavigateBack(WebDriver driver) {
System.out.println("Before Navigating Back. I was at " + driver.
getCurrentUrl());
}

// Prints the current URL after Navigating back from the previous URL
@Override
public void afterNavigateBack(WebDriver driver) {
System.out.println("After Navigating Back. I'm at " + driver.
getCurrentUrl());
}

// Prints the URL before Navigating forward "navigate().forward()"
@Override
public void beforeNavigateForward(WebDriver driver) {
System.out.println("Before Navigating Forward. I was at " + driver.
getCurrentUrl());
}

// Prints the current URL after Navigating forward "navigate().
forward()"
@Override
public void afterNavigateForward(WebDriver driver) {
System.out.println("After Navigating Forward. I'm at " + driver.
getCurrentUrl());
}

Chapter 4

[103]

The following methods are automatically activated on locating an element. They help
you to identify whether an element is available in a page or not:

/** FINDING ELEMENTS | findElement(), findElements() **/
// Called before finding Element(s)
 @Override
public void beforeFindBy(By by, WebElement element, WebDriver driver)
{
 finalFindBy = by;
 System.out.println("Trying to find: '" + finalFindBy + "'.");
 System.out.println("Trying to find: " + by.toString()); // This is
optional and an alternate way
}

 // Called after finding Element(s)
 @Override
public void afterFindBy(By by, WebElement element, WebDriver driver) {
 finalFindBy = by;
 System.out.println("Found: '" + finalFindBy + "'.");
 System.out.println("Found: " + by.toString() + "'."); // This is
optional and an alternate way
 }

The following are used to debug and are also helpful during an ongoing
presentation. Every testing scenario involves clicking on a link and verifying the
expected page; EventFiringWebDriver does more than an ordinary click()
function would do, as shown in the following code:

/** CLICK | click() **/
// Called before clicking an Element
@Override
public void beforeClickOn(WebElement element, WebDriver driver) {
 System.out.println("Trying to click: '" + element + "'");

 // Highlight Elements before clicking
 for (int i = 0; i < 1; i++) {
 JavascriptExecutor js = (JavascriptExecutor) driver;
 js.executeScript("arguments[0].setAttribute('style',
arguments[1]);", element, "color: black; border: 3px solid black;");
 }
}

// Called after clicking an Element
@Override
public void afterClickOn(WebElement element, WebDriver driver) {
System.out.println("Clicked Element with: '" + element + "'");
}

Selenium WebDriver Best Practices

[104]

The following methods maintain a clear tracking system by storing both existing
and updated values:

/** CHANGING VALUES | clear(), sendKeys() **/
// Before modifying values
@Override
public void beforeChangeValueOf(WebElement element, WebDriver driver)
{
 actualValue = element.getText();

 if (actualValue.isEmpty()) {
 actualValue = element.getAttribute("value");
 }
System.out.println("The existing value is: " + actualValue);
}

// After modifying values
@Override
public void afterChangeValueOf(WebElement element, WebDriver driver) {
 String modifiedValue = "";
 try {
 modifiedValue = element.getText();
 } catch (StaleElementReferenceException e) {
 System.out.println("StaleElementReferenceException is thrown");
 return;
 }

 if (modifiedValue.isEmpty()) {
 modifiedValue = element.getAttribute("value");
 }

 System.out.println("The value changed from '" + actualValue + "' to
'" + modifiedValue + "'");
}

The following methods can operate before and after executing RemoteWebDriver,
which is composed of both client and server. Shown here is an example with
JavaScript execution:

/** JAVASCRIPT | beforeScript(), afterScript()**/
// Called before executing RemoteWebDriver.executeScript(java.lang.
String, java.lang.Object[])
@Override
public void beforeScript(String script, WebDriver driver) {
 System.out.println("JavaScript is about to execute");

Chapter 4

[105]

}

// Called after executing RemoteWebDriver.executeScript(java.lang.
String, java.lang.Object[])
@Override
public void afterScript(String script, WebDriver driver) {
 System.out.println("JavaScript is Executed");
}

The following method, which allows the user to capture screens on test failure,
is one of the most important methods used in EventFiringWebDriver:

/** ON EXCEPTION | capture screenshots on test failure **/
 // Takes screenshot on any Exception thrown during test execution
@Override
public void onException(Throwable throwable, WebDriver webdriver) {
 System.out.println("Caught Exception");
 File scrFile = ((TakesScreenshot) webdriver)
 .getScreenshotAs(OutputType.FILE);
 try {
 org.apache.commons.io.FileUtils.copyFile(scrFile, new File("C:\\
Testfailure.jpeg"));
 } catch (Exception e) {
 System.out.println("Unable to Save");
 }
}

Let's define a Test class to run events through the Listeners class. To do so,
initialize EventFiringWebDriver along with EventListenerDriver, and finally
register Listeners to the EvenFiringWebDriver instance. The following test class
explicates all the EventFiringWebDriver functions on a Google web page in detail:

private WebDriver driver;
@BeforeTest
public void setUp() throws Exception {
 driver = new FirefoxDriver();
}

@Test
public void Test01() throws Exception {

 EventFiringWebDriver eventDriver = new EventFiringWebDriver(driver);
 Listeners EL = new Listeners();
 eventDriver.register(EL);

Selenium WebDriver Best Practices

[106]

 // beforeNavigateTo | afterNavigateTo
 eventDriver.get("http://www.bing.com");

 // beforeNavigateBack | afterNavigateBack
 eventDriver.get("http://www.google.com");
 eventDriver.navigate().back();

 // beforeNavigateForward | afterNavigateForward
 eventDriver.navigate().forward();

 // beforeFindBy | afterFindBy
 eventDriver.findElement(By.name("q"));

 // beforeClickOn | afterClickOn
 eventDriver.findElement(By.id("sblsbb")).click();

 // afterScript() | beforeScript()
 JavascriptExecutor jse = (JavascriptExecutor) eventDriver;
 jse.executeScript("alert('Selenium Essentials saved my Day!')");

 // beforeChangeValueOf | afterChangeValueOf
 eventDriver.findElement(By.name("q")).sendKeys("Selenium
Essentials");

 // onException
 eventDriver.findElement(By.id("Wrong Value"));
}

@AfterTest
public void tearDown() throws Exception {
 driver.quit();
}

Handling iframes
A web page can have any number of iframes (inline frames) to represent new pages
inside a main page. They can be either multiple iframes or nested iframes. The
iframes are indicated with an iframe tag, such as <iframe>...</iframe>.

It's easy to handle iframes when a user discovers all the iframes available in a web
page. Google Chrome's Developer debugging tool is used to check the availability
of iframes. The following figure is an example of nested iframes:

Chapter 4

[107]

To handle iframes, it's important to switch into and move out of an iframe to the
main frame. The following is the syntax for switching iframes:

driver.switchTo().frame()

The following code snippet is a real-time example of switching iframes to
locate elements.

driver.switchTo().frame(driver.findElement(By.locatorType("iframe[id=
'Value']")));

To access an iframe located outside the present iframe, it is essential to terminate the
current iframe. Closing an iframe lets you move from the current iframe to the main
content. To do so, follow the following syntax:

driver.switchTo().defaultContent(); // close iFrame

To locate an element in a web page with nested iframes, try the switchTo() method
multiple times to switch between iframes. The following code snippet is a sample
nested iframe structure, followed by a snippet for handling multiple iframes:

<iframe ...>
 <iframe ...>
 <iframe ...>
 </iframe>
 </iframe>
</iframe>

Selenium WebDriver Best Practices

[108]

The following is a snippet that handles the structured nested iframes:

driver.switchTo().frame(driver.findElement(By.locatorType("iframe[
id='1']")));
driver.switchTo().frame(driver.findElement(By.locatorType("iframe[
id='2']")));
driver.switchTo().frame(driver.findElement(By.locatorType("iframe[
id='3']")));
driver.switchTo().defaultContent();
driver.switchTo().defaultContent();
driver.switchTo().defaultContent();

Obtain the iframe position to handle iframes without id or name. To do so,
use the following syntax:

driver.switchTo().frame(value);

The following iframes are available at the first and second positions:

driver.switchTo().frame(0);
driver.switchTo().frame(1);

Handling native OS and browser pop-ups
using Java Robot
Some of the most popular UI-based automation tools, such as AutoIT, Sikuli, and
Java Robot, are quite easy to integrate with Selenium WebDriver tests. However, it is
difficult to implement and operate these tools on varying screen resolutions, handling
Selenium Grid, cross-browser tests, and more. In general, the Selenium WebDriver
API doesn't support native OS and browser pop-up handling. The browser profile
is a set of customized browser instances, which is an alternative choice to handle
these pop-ups.

The Java.awt.Robot library is a Java library file that supports Selenium WebDriver
to interact with web applications through control over mouse and keyboard actions.

Let's discuss the following example to perform a simple Google search using Java
Robot and Selenium WebDriver:

import java.awt.Robot;
import java.awt.event.KeyEvent;
import java.lang.reflect.Field;

public class classname {
 private WebDriver driver;
 private String baseUrl;

Chapter 4

[109]

@Test
public void Test01() throws Exception {
 driver = new FirefoxDriver();
 driver.get("https://www.google.com");

 Robot r = new Robot();
 driver.findElement(By.name("q")).click();
 Thread.sleep(4000);
 typeKeys("Prashanth Sams", r);
 }

public static void typeKeys(String str, Robot r) {
 for (int i = 0; i < str.length(); i++) {
 typeCharacter(r, "" + str.charAt(i));
 }
}

public static void typeCharacter(Robot robot, String letter) {
 try {
 boolean upperCase = Character.isUpperCase(letter.charAt(0));
 String variableName = "VK_" + letter.toUpperCase();
 Class c = KeyEvent.class;
 Field field = c.getField(variableName);
 int keyCode = field.getInt(null);
 robot.delay(1000);

 if (upperCase)
 robot.keyPress(KeyEvent.VK_SHIFT);
 robot.keyPress(keyCode);
 robot.keyRelease(keyCode);

 if (upperCase)
 robot.keyRelease(KeyEvent.VK_SHIFT);
 } catch (Exception e) {
 System.out.println(e);
 }
}

Downloading browser pop-ups
Multiplatform support, such as running tests through Selenium Grid with varying
screen resolutions, is not feasible on Java Robot, and it always depends on the screen
(x,y) coordinates. In general, the browser pop-up is in the form of a download dialog
box, upload dialog box, advertisements, and more.

Selenium WebDriver Best Practices

[110]

Let's see how to save a file from a browser download pop-up as shown in the
following screenshot:

The prerequisites for the next code snippet to execute are:

•	 Native window screen resolution of 1920 x 1080
•	 FF Browser window status of Maximize
•	 Customized xy coordinates according to the screen resolution

Make sure that all the preceding specifications are met before executing the following
piece of code. Here, it is mandatory to customize location coordinates for screens with
different resolutions. In this example, the Java Robot class is intended to choose Save
file on clicking the radio button and finally clicking on the OK button:

Robot r = new Robot();
/** click Save File **/
r.mouseMove(787, 544); //move to co-ordinate Location
r.mousePress(InputEvent.BUTTON1_MASK); //Left Mouse click-Press
r.mouseRelease(InputEvent.BUTTON1_MASK); //Left Mouse click-Release
r.delay(5); //wait for 5 millisecs
/** click ok **/
r.mouseMove(10322, 641); //move to co-ordinate Location
r.mousePress(InputEvent.BUTTON1_MASK); //Left Mouse click-Press
r.mouseRelease(InputEvent.BUTTON1_MASK); //Left Mouse click-Release

Chapter 4

[111]

Screen capture
Screen capture provides explicit test reports by logging test failures as screenshots.
Furthermore, the Java Robot class is also helpful in taking instant screenshots on
each test failure. The following is the code for this method:

Robot r = new Robot();
BufferedImageimg = r.createScreenCapture(new Rectangle(0, 0, 100,
100));
File path = new File("C://screen.jpg");
ImageIO.write(img, "JPG", path);

There are several ways to capture the screen. Let's see some of the helpful methods,
which are as follows:

•	 Method 1: Selenium provides the augmenter to take screenshots in any given
timeframe of test execution:
WebDriver augmentedDriver = new Augmenter().augment(driver);
File screenshot = ((TakesScreenshot)augmentedDriver).
getScreenshotAs(OutputType.FILE);
String path = "/Users/prashanth_sams/Desktop/" + screenshot.
getName();
FileUtils.copyFile(screenshot, new File(path));

•	 Method 2: Selenium provides another method to capture screens using Java
Robot as follows:
java.awt.Dimension size = Toolkit.getDefaultToolkit().
getScreenSize();
Robot r = new Robot();
BufferedImage img = r.createScreenCapture(new Rectangle(size));
File path = new File("C://screen.jpg");
ImageIO.write(img, "JPG", path);

In the following list are some of the most important Robot class functions that are
eventually valuable while integrating Selenium WebDriver:

Robot r = new Robot();
r.mouseMove(500, 500); //move to co-ordinate Location
r.mousePress(InputEvent.BUTTON1_MASK); //Left Mouse click-Press
r.mouseRelease(InputEvent.BUTTON1_MASK); //Left Mouse click–Release
r.mousePress(InputEvent.BUTTON2_MASK); //Middle Mouse click-Press
r.mouseRelease(InputEvent.BUTTON2_MASK); //Middle Mouse click–Release
r.mousePress(InputEvent.BUTTON3_MASK); //Right Mouse click-Press
r.mouseRelease(InputEvent.BUTTON3_MASK); // Right Mouse click-Release
r.mouseWheel(7); //Scroll Mouse
r.getPixelColor(500, 100); //Get Pixel color-RBG

Selenium WebDriver Best Practices

[112]

MouseInfo.getPointerInfo().getLocation(); //Get Current Mouse Location
Toolkit.getDefaultToolkit().getScreenSize(); //Get Screen Resolution-
Dimension
r.createScreenCapture(new Rectangle(size)); //Screen capture
r.keyPress(KeyEvent.VK_ENTER); //Press Enter Key
r.keyRelease(KeyEvent.VK_ENTER); //Release Enter Key
r.delay(5); //wait for certain milliseconds

Refer to the following link to check all the Java Robot keyboard actions:
https://sites.google.com/site/seleniumworks/java_robot

Mofiki's Coordinate Finder lets you find the instant screen coordinates of
the current mouse pointer location.

Firefox profile to download files
Whenever a user tries to download a file, they get a download dialog box that keeps
on asking whether the file has to be saved or opened with an application. The simplest
way to ignore these browser pop-ups and to save files is through browser profiles.
It can be done either manually or through setting up Firefox profile preferences.

The following couple of methods let you download files locally without any risk:

•	 Method 1: Here is a quick workaround to download files through manually
setting up the Firefox profile's default behavior. This method certainly
provides a manual alternative to the next method, which uses set preferences
to disable the Firefox browser's download pop-up. Follow these steps to
make this quick difference:

1.	 Launch the Firefox web browser.
2.	 Go to the Firefox applications under the Tools menu

(Tools | Options | Applications).

https://sites.google.com/site/seleniumworks/java_robot

Chapter 4

[113]

3.	 Replace/set all the download actions to Save File, as shown in the
following screenshot:

4.	 Click on the OK button and restart the browser.

•	 Method 2: By customizing the Firefox profile through setting preferences,
we can directly download files without any external disturbances. The code
snippet is summarized in the following steps:

1.	 Initialize the Firefox profile as follows:
FirefoxProfile profile = new FirefoxProfile();

2.	 Set your preference for all the file types that prompt to save,
as follows:
"browser.helperApps.neverAsk.saveToDisk"

Selenium WebDriver Best Practices

[114]

Refer to the following code to avoid the Firefox browser's default download pop-up
through setPreferences:

FirefoxProfile profile = new FirefoxProfile();

String path = "C:\\Test\\";
profile.setPreference("browser.download.folderList", 2);
profile.setPreference("browser.download.dir", path);
profile.setPreference("browser.download.manager.alertOnEXEOpen",
false);
profile.setPreference("browser.helperApps.neverAsk.saveToDisk",
"application/msword, application/csv, application/ris, text/csv,
image/png, application/pdf, text/html, text/plain, application/zip,
application/x-zip, application/x-zip-compressed, application/download,
application/octet-stream");
profile.setPreference("browser.download.manager.showWhenStarting",
false);
profile.setPreference("browser.download.manager.focusWhenStarting",
false);
profile.setPreference("browser.download.useDownloadDir", true);
profile.setPreference("browser.helperApps.alwaysAsk.force", false);
profile.setPreference("browser.download.manager.alertOnEXEOpen",
false);
profile.setPreference("browser.download.manager.closeWhenDone", true);
profile.setPreference("browser.download.manager.showAlertOnComplete",
false);
profile.setPreference("browser.download.manager.useWindow", false);
profile.setPreference("services.sync.prefs.sync.browser.download.
manager.showWhenStarting", false);
profile.setPreference("pdfjs.disabled", true);

driver = new FirefoxDriver(profile);

The JavascriptExecutor class
JavascriptExecutor is a class under the Selenium library that executes JavaScript
code snippets. For example, a Selenium WebDriver command such as WebElement.
click() might not work on all browsers, but JavaScriptExecutor could help you
to click on an element in any browser by executing the appropriate JavaScript snippet.
There are a couple of Selenium WebDriver functions to handle JavaScript, such as
executeAsyncScript() and executeScript(). The executeAsyncScript() method
lets you inject JavaScript snippets into the page for asynchronous execution. The
following is the syntax for this method:

JavascriptExecutor jse = (JavascriptExecutor)driver;

Chapter 4

[115]

Let's see how you can click on an element without using Selenium's click()
method. The following code snippet displays an alert message as a pop-up:

(JavascriptExecutor) driver).executeScript("arguments[0].click();",
WebElement element);
JavascriptExecutor jse = (JavascriptExecutor)driver;
jse.executeScript("alert('Selenium Essentials saved my Day!')");

A few of the helpful tasks using JavascriptExecutor are discussed as follows.

Page scroll
Page scroll allows the user to focus on an element to perform any action. It helps
you to scroll throughout the web page using xy coordinates. There are numerous
methods and techniques to make it happen.

The following is a list of methods to scroll the web page:

•	 Scroll down: This is the JavascriptExecutor method that makes use
of the xy coordinates to scroll down the page. The page scrolls down with
respect to the changes made on the y co-ordinate. The following is the code
for this method:
import org.openqa.selenium.JavascriptExecutor;
JavascriptExecutor jse = (JavascriptExecutor)driver;
jse.executeScript("scroll(0, 250)"); //Y-coordinate '250' can be
altered

•	 Scroll up: Similar to the above snippet, JavaScript uses xy coordinates to
scroll up the page. The page scrolls up with respect to the changes made
on the x coordinate. The following is the code for this method:
JavascriptExecutor jse = (JavascriptExecutor)driver;
jse.executeScript("scroll(250, 0)"); // X-coordinate '250' can be
altered

•	 Scroll to bottom of the page: The document.documentElement.
scrollHeight method returns the height of the HTML element. The
document.body.scrollHeight method outputs the page/frame height,
and finally document.documentElement.clientHeight returns the browser
window height. This method gets the user to focus on the bottom of the page
quickly. The following is the code for this method:
JavascriptExecutor jse = (JavascriptExecutor)driver;
jse.executeScript("window.scrollTo(0,Math.max(document.
documentElement.scrollHeight,document.body.scrollHeight,document.
documentElement.clientHeight));");

Selenium WebDriver Best Practices

[116]

•	 Full scroll to bottom in slow motion: The following two methods get the
user focus on the bottom of the page in slow motion.

°° Method 1:
for(int second = 0;; second++) {
 if (second >= 60) {
 break;
 }
 ((JavascriptExecutor) driver).executeScript("window.
scrollBy(0,400)", ""); //y value '400' can be altered
 Thread.sleep(3000);
}

°° Method 2:
JavascriptExecutor jse = (JavascriptExecutor) driver;
for (int second = 0;; second++) {
 if (second >= 60) {
 break;
 }
jse.executeScript("window.scrollBy(0,800)", ""); //y value
'800' can be altered
Thread.sleep(3000);
}

•	 Scroll automatically to WebElement: These methods automatically focus on
a web page element by using different types of JavaScript functions:

°° Method 1:
Point hoverItem =driver.findElement(By.xpath("Value")).
getLocation();
((JavascriptExecutor)driver).executeScript("return window.
title;");
Thread.sleep(6000);
((JavascriptExecutor)driver).executeScript("window.
scrollBy(0,"+(hoverItem.getY())+");");
// Adjust your page view by making changes right over here
(hoverItem.getY()-400)

°° Method 2:
((JavascriptExecutor)driver).executeScript("arguments[0].
scrollIntoView();", driver.findElement(By.
xpath("Value')]")));

Chapter 4

[117]

°° Method 3:
WebElement element = driver.findElement(By.
xpath("Value"));
Coordinates coordinate = ((Locatable)element).
getCoordinates();
coordinate.onPage();
coordinate.inViewPort();

Highlighting elements
Debugging can be even easier by highlighting elements at runtime through the
browser UI. Optimizing user-interactive CSS values paves the way for better user
interactions while conducting a seminar or a demonstration. A similar function is
available in the Selenium IDE as an add-on, Highlight Elements (Selenium IDE),
for stress-free debugging. The following is the code for this function:

WebElement element1 = driver.findElement(By.className("Value"));
WebElement element2 = driver.findElement(By.id("Value"));

JavascriptExecutor jse = (JavascriptExecutor)driver;
jse.executeScript("arguments[0].setAttribute('style', arguments[1]);",
element1, "color: blue; border: 2px solid blue;");
jse.executeScript("arguments[0].setAttribute('style', arguments[1]);",
element2, "color: yellow; border: 0px solid red;");

The following code snippet provides you with a better understanding of customizing
CSS values through JavaScript:

@Test
public void Highlight() throws Exception {
 driver.get(baseUrl + "/");
 WebElement searchbutton = driver.findElement(By.id("Value"));
 highlightElement(searchbutton);
 WebElement submitbutton = driver.findElement(By.id("Value"));
 highlightElement(submitbutton);
 element.click();
}

public void highlightElement(WebElement element) {
 for (int i = 0; i < 2; i++) {
 JavascriptExecutor js = (JavascriptExecutor) driver;
 js.executeScript("arguments[0].setAttribute('style',
arguments[1]);", element, "color: yellow; border: 2px solid yellow;");
 js.executeScript("arguments[0].setAttribute('style',
arguments[1]);", element, "");
 }
}

Selenium WebDriver Best Practices

[118]

Opening a new browser window
Tests on a single browser instance are quite usual and consistent. However, opening
a new browser window at the start or in the middle of the test lets you open a new
browser instance as a child window. So, you have two windows open at a time with
an active, newly opened browser window.

The following snippet lets you open a new browser instance to make it ready
for testing:

@Test
public void Test01() throws Exception {
 OpenNewTab("https://www.google.com");
}
public void trigger(String script, WebElement element) {
 ((JavascriptExecutor) driver).executeScript(script, element);
}
public Object trigger(String script) {
 return ((JavascriptExecutor) driver).executeScript(script);
}

public void OpenNewTab(String url) {
 String script = "var d=document,a=d.createElement('a');a.target='_
blank';a.href='%s';a.innerHTML='.';d.body.appendChild(a);return a";
 Object element = trigger(String.format(script, url));
 if (element instanceof WebElement) {
 WebElement anchor = (WebElement) element;
 anchor.click();
 trigger("var a=arguments[0];a.parentNode.removeChild(a);",
anchor);
} else {
 throw new JavaScriptException(element, "Unable to open Window",
1);
 }
}

In the preceding code snippet, OpenNewTab is the user-defined method that opens
a new browser window along with the given URL.

JavaScript error collector
The JSErrorCollector library is a third-party, external Java library file that collects
all the JavaScript errors through the Firefox profile during test execution. This library
file feeds an extension, JSErrorCollector.xpi, into the Firefox browser profile
on runtime to collect JS errors. All the captured JS errors are listed as counts in the
bottom-right corner of the browser's page. The following screenshot depicts a list of
captured JS errors:

Chapter 4

[119]

Follow these steps to store the JavaScript errors generated at runtime:

1.	 Download the JSErrorCollector Java library file from the following link:
http://cl.ly/3W160N1R0E0U/JSErrorCollector-0.5.jar

2.	 Add the downloaded JAR file to build the path.
3.	 Initialize the Firefox profile with the JSErrorCollector extension,

as follows:
FirefoxProfile ffProfile = new FirefoxProfile();
JavaScriptError.addExtension(ffProfile);

4.	 Finally, collect all the JavaScript errors:
List < JavaScriptError > jsError = JavaScriptError.
readErrors(driver);

The following code lets you collect the JS errors and reflects them in the console
after test execution:

import java.util.List;
import net.jsourcerer.webdriver.jserrorcollector.JavaScriptError;
import org.openqa.selenium.firefox.FirefoxProfile;

@BeforeTest
public void setUp() throws Exception {
 FirefoxProfile ffProfile = new FirefoxProfile();
 JavaScriptError.addExtension(ffProfile);
 driver = new FirefoxDriver(ffProfile);
 baseUrl = "http://404checker.com";
}

@Test
public void Test01() throws Exception {
 driver.get(baseUrl + "/");
 Thread.sleep(5000);
}

@AfterTest

http://cl.ly/3W160N1R0E0U/JSErrorCollector-0.5.jar

Selenium WebDriver Best Practices

[120]

public void tearDown() throws Exception {
List < JavaScriptError > jsError = JavaScriptError.readErrors(driver);
 System.out.println("——————JavaScript Error List——————");
 for (int i = 0; i < jsError.size(); i++) {
 System.out.println(jsError.get(i).getErrorMessage());
System.out.println("Error Line: " + jsError.get(i).getLineNumber());
 System.out.println(jsError.get(i).getSourceName());
 }
 System.out.println("——————End of the List———————");
 System.out.println("\n");
 driver.close();
 driver.quit();
}

The following screenshot is a test result for the preceding script that displays the
error type, the error line, and the affected JavaScript filename.

Summary
In this chapter, you learned the best practices for Selenium WebDriver on how to
make use of WebDriver techniques and how to survive through external libraries
when WebDriver support is not in use.

In the next chapter, we will discuss Selenium frameworks and their unique approach
to build successful projects.

Chapter 5

[121]

Selenium WebDriver
Frameworks

A test automation framework helps reduce the repetition of the same task again and
again. In general, the automation framework increases productivity by raising code
reusability and reducing coding efforts and test maintenance. Selenium WebDriver
is exceptionally robust in building test automation frameworks. Every framework
starts with a prototype version followed by stabilized standard versions. The
Selenium WebDriver framework consists of three significant flavors, namely,
Data-Driven, Keyword-Driven, and Hybrid-Driven frameworks.

Once the framework has been developed, its structure can be accessed by different
projects and is reusable. Thus, it avoids building a new Selenium test automation
framework from scratch. The key role of this chapter is to explain how to create a test
automation framework for use in Selenium projects.

In this chapter, we will learn the following topics:

•	 Behavior-Driven Development
°° Cucumber BDD framework
°° JBehave BDD framework

•	 JXL API Data-Driven framework
°° Read and write Excel sheet
°° Simple Data-Driven approach
°° Selenium Data-Driven testing using reusable library
°° Data-Driven testing using TestNG | @dataProvider

Selenium WebDriver Frameworks

[122]

•	 Apache POI Data-Driven framework
°° Read and write Binary Workbook (.xls)
°° HSSF usermodel (.xls)
°° XSSF usermodel (.xlsx)
°° SS usermodel (.xls, .xlsx]

•	 Text file Data-Driven framework
•	 Properties file Data-Driven framework
•	 CSV file Data-Driven framework
•	 Keyword-Driven framework
•	 Hybrid-Driven framework

Behaviour-Driven Development
Behaviour-Driven Development (BDD) is a part of the successful Agile
methodology that creates a mutual understanding between business analysts,
testers, and developers. It is a practice extended from the Test-Driven
Development (TDD) and Acceptance-Driven Development (ATDD) approaches.
Acceptance tests enclose business logic with procedural steps and tasks that fully
rely on the software requirements, that is, they determine whether or not the
given test scenarios meet with the requirements. The BDD scenarios are easy to
understand and are reusable, especially their maintenance which is effortless in
any time period. They can be parameterized using tables as a data source; on the
other hand, multiple scenarios let you handle end-to-end tests as well. Refer to the
following scenario:

Scenario: User authentication

Given I am at the login page
When I enter valid credentials
Then I should log in

Gherkin-based frameworks such as Cucumber and JBehave are fairly attractive and
robust. Gherkin is a human (business) readable Domain Specific Language (DSL).

Chapter 5

[123]

Cucumber BDD framework
Cucumber is a tool developed in the Ruby language that automates acceptance test
scenarios by matching stories with step definitions using patterns. Here, the stories
are documented as plain text and featured in a .feature file format. Cucumber can
be implemented and is available for most of the popular languages, such as Java,
.Net, Ruby, and so on. See the following for a sample Feature file format:

Feature: Log in to an e-commerce site

Scenario: Real user authentication

Given I am at the login page
When I enter valid credentials
Then I should log in

Cucumber JVM
Cucumber JVM is a Java implementation of the Cucumber tool that can be integrated
with Selenium WebDriver to run web-based automation tests. It is recommended
that all the Eclipse IDE users add the cucumber-eclipse plugin through Help
| Install new software..., with the input URL, http://cucumber.github.com/
cucumber-eclipse/update-site.

Maven is the safest build automation tool to execute Cucumber JVM tests. First,
create a Maven project and add the plugin along with the following dependencies
in the generated POM.xml file:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <encoding>UTF-8</encoding>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

http://cucumber.github.com/cucumber-eclipse/update-site
http://cucumber.github.com/cucumber-eclipse/update-site

Selenium WebDriver Frameworks

[124]

 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.12.2</version>
 <configuration>
 <useFile>false</useFile>
 </configuration>
 </plugin>
 </plugins>
</build>
<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.8</version>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-server</artifactId>
 <version>2.43.1</version>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-core</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-html</artifactId>
 <version>0.2.2</version>

Chapter 5

[125]

 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>gherkin</artifactId>
 <version>2.11.6</version>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-core</artifactId>
 <version>1.3</version>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>gherkin</artifactId>
 <version>2.11.6</version>
 </dependency>
 <dependency>
 <groupId>com.rubiconproject.oss</groupId>
 <artifactId>jchronic</artifactId>
 <version>0.2.6</version>
 <scope>test</scope>
 </dependency>
</dependencies>

The following screenshot depicts a project structure for the given example:

Selenium WebDriver Frameworks

[126]

Let's see an example with Google search that asserts a search keyword on the Google
results page using Cucumber JVM through Selenium WebDriver:

1.	 Start BDD automation tests by creating specs in a .feature extension
file (test.feature). A single feature can have any number of scenarios.
The following is the code for this step:
@foo
Feature: test

Scenario Outline: google search case#1

Given Google page "http://www.google.com"
When I enter the keyword "<keyword>" in search box
When I press enter key
Then I should get the results of "<expected>"

Examples: ASSERT GOOGLE SEARCH1
keyword	expected
prashanth sams	prashanth sams
selenium essentials	selenium essentials
seleniumworks	seleniumHQ

Scenario Outline: google search case#2

Given Google page "http://www.google.com"
When I enter the keyword "<keyword>" in search box
When I press enter key
Then I should get the results of "<expected>"

Examples: ASSERT GOOGLE SEARCH2
keyword	expected
prashanth sams	prashanth sams
selenium essentials	selenium essentials

Cucumber defines a set of rules called regular expression patterns (regex
patterns) to pass parameters for the steps written. Some of the most
commonly used regex patterns are listed as follows:

Regex patterns Description
[0-9]* or \d* This is used to pass a series of digits.
[0-9]+ or \d+ This is used to pass a series of digits except an empty string.
\d+\.\d+ This is used to pass floating point numbers.

Chapter 5

[127]

Regex patterns Description
"[^\"]*" This is used to pass anything in double quotes.

. This is used to pass only one character.

.* This is used to pass any number of characters.

.+ This is used to pass any character except an empty string.

2.	 Create step definitions using the @Given, @When, @And, @But, and @Then
annotations provided by the Cucumber API (Googlesearch.java), as follows:
public class Googlesearch {

 WebDriver driver;

 @Before
 public void beforeTest() {
 driver = new FirefoxDriver();
 }

 @Given("^Google page \"([^\"]*)\"$")
 public void I_open_google_page_as(String URL) throws Throwable {
 driver.get(URL);
 driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);
 }

 @When("^I enter the keyword \"(.*)?\" in search box$")
 public void i_enter_in_search_box(String arg1) throws Throwable
 {
 driver.findElement(By.name("q")).sendKeys(arg1);
 }

 @When("^I press enter key$")
 public void i_press_enter_key() throws Throwable {
 driver.findElement(By.name("q")).submit();
 }

 @Then("^I should get the results of \"(.*)?\"$")
 public void i_should_see_results_of(String content) throws
Throwable {
 Thread.sleep(3000L);
 Boolean b = driver.getPageSource().contains(content);
 Assert.assertTrue(b);

Selenium WebDriver Frameworks

[128]

}

@After
public void after(Scenario scenario) {
 driver.close();
 driver.quit();
 }
}

Finally, create a global test class to execute Cucumber JVM tests (TestRun.java).
Customize the feature file location and format as mentioned in the following class:

import org.junit.runner.RunWith;
import cucumber.api.junit.Cucumber;

@RunWith(Cucumber.class)@Cucumber.Options(format = {
"pretty", "html:target/cucumber", "json:target/cucumber.json"
}, features = "/Users/prashanth_sams/IdeaProjects/Selenium_
Essentials/src/test/java/resources")

public class TestRun {
}

Use the maven clean command to wipe out files and directories generated in the
previous test run. The command, maven install lets you run Cucumber tests.
The Cucumber JVM builds a clear test report through the Surefire Report plugin
(as mentioned in the preceding example). Ant is also a build automation tool similar
to Maven and therefore is an alternative for executing tests.

JBehave BDD framework
JBehave is an open source, Java-based BDD, whereas rbehave is an implementation
for the Ruby language. It is an efficient framework for Behavior-Driven Development,
similar to the Cucumber JVM. Here, the stories are documented as plain text and
featured in the .story file format. Annotations such as @Given, @When, and @Then
are used to bind the textual map steps to Java methods. The base stories have to be
configured as per the requirements for running stories. To do so, you need a separate
class for configuration (Basestories.java). JBehave has the embeddable interface
to run stories, whereas the configuration instances configure the running of the
stories and CandidateSteps instances match textual steps in the stories. These two
embedders, namely configurable embedders and injectable embedders are used to
run stories.

Chapter 5

[129]

The JUnit-enabled embeddables are listed as follows:

•	 JUnitStory
•	 JUnitStories

In general, for one-to-one mapping, the superclass used is JUnitStory; for
many-to-one mapping, the superclass used is JUnitStories. Find the two types of
classes, one-to-one mapping and many-to-one mapping, at the JBehave official site
at http://jbehave.org/reference/stable/developing-stories.html.

Let's see an example with Google search that asserts a search keyword on the Google
results page using JBehave through Selenium WebDriver:

Start BDD automation tests by creating specifications in the .story file format
(googlesearch.story), as shown in the following code:

Scenario: Google search
Given I have a google welcome page
When I search for <keywords>
Then I should get the <expected> text in the results page
Examples:
keywords	expected
prashanth sams	prashanth
selenium essentials	prashanth

Then, create a new story class, Basestories.java, which is the heart of the entire
story-running process. Check the following link to get the modified JBehave
stories class for one-to-one mapping at https://gist.github.com/prashanth-
sams/642f8bc1ebcff76f98d2.

One-to-one mapping is used in this example since we have only one story and a
single-step class, but we are extending JUnitStories. Here, the Basestories
class is an abstract class that requires no base class; you have a notable subclass for
a configurable embedder, that is, the base class that extends JUnitstories. The
configuration(), stepsFactory(), and storyPaths()methods are extended from
the JUnitStories class. The annotation override is used here on extending the
JUnitStories class. Generally, the configurable embedder allows subclasses such
as base stories to specify the configuration steps and the injectable embedder allows
the injection of the fully specified embedder. Here, the createsteps() method
is used to run tests from another class, and the storyPaths() method locates the
story file. All the Eclipse IDE users are recommended to add the JBehave-eclipse
plugin from Help | Install new software... using the URL, http://jbehave.org/
reference/eclipse/updates/.

http://jbehave.org/reference/stable/developing-stories.html
https://gist.github.com/prashanth-sams/642f8bc1ebcff76f98d2
https://gist.github.com/prashanth-sams/642f8bc1ebcff76f98d2
http://jbehave.org/reference/eclipse/updates/
http://jbehave.org/reference/eclipse/updates/

Selenium WebDriver Frameworks

[130]

The following screenshot depicts a project structure for the following example:

The steps class is clearly a Pojo. Pojo is short for a plain old Java object that does not
extend any class and is literally called a Java class. It encloses the Java methods to be
mapped with the aforementioned human-readable story file. Create a test step class
using annotations provided by the JBehave API (Googlesteps.java):

public class Googlesteps {

 private int result;
 private WebDriver driver;
 private String baseUrl;

 @Given("I have a google welcome page")
 public void GoogleWelcomePage() {
 driver = new ChromeDriver();
 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
 driver.get("https://www.google.co.in/");

 }

 @When("I search for <keywords>")
 public void searchGoogle(@Named("keywords") String keywords) throws
InterruptedException {

Chapter 5

[131]

 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys(keywords);
 driver.findElement(By.name("sblsbb")).click();
 Thread.sleep(2000);
 }

@Then("I should get the <expected> text in the results page")
 public void searchResult(@Named("expected") String expected) {
 String bodyText = driver.findElement(By.tagName("body")).
getText();
 Assert.assertTrue("Selenium", bodyText.contains(expected));
 driver.close();
 driver.quit();
 }

}

In the preceding example, Googlestories.java is the test class used to execute the
stories. The base class, Basestories.java, is extended here since it is an abstract
class and one cannot create objects in it:

public class Googlestories extends Basestories {

 @Override
 protected List < Object > createSteps() {
 List < Object > steps = new ArrayList < Object > ();
 steps.add(new jbehave.google.steps.Googlesteps());
 // TODO Auto-generated method stub
 return steps;
 }

 @Override
 public void run() throws Throwable {
 // TODO Auto-generated method stub
 super.run();
 }
}

Selenium WebDriver Frameworks

[132]

The stories can be executed through build automation tools such as Ant and
Maven or using development IDEs such as Eclipse, IntelliJ IDEA, and so on.
The following screenshot displays the test result obtained with one pass
condition and one fail condition:

Multiple scenarios can be executed in the JBehave BDD framework. Use $ to identify
the parameters; however, it can also be customized using the base class explained in
the previous section. Refer to the following code snippets to run multiple JBehave
acceptance test scenarios:

Scenario: Google search #1
Given I have a google welcome page
When I search for seleniumessentials
Then I should get the selenium text in the results page

Scenario: Google search #2
Given I have a google welcome page
When I search for seleniumworks.com
Then I should get the selenium text in the results page

The following is a test class for the preceding multiple scenarios:

@Given("I have a google welcome page")
public void GoogleWelcomePage() {
 driver = new ChromeDriver();
 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

Chapter 5

[133]

 driver.get("https://www.google.co.in/");
}

@When("I search for $keyword")
public void searchGoogle(String keyword) throws InterruptedException {
 driver.findElement(By.name("q")).sendKeys(keyword);
 driver.findElement(By.id("sblsbb")).click();
}

@Then("I should get the $expected text in the results page")
public void searchResult(String expected) {
 String bodyText = driver.findElement(By.tagName("body")).getText();
 Assert.assertTrue("Selenium", bodyText.contains(expected));
}

JXL API Data-Driven framework
Data-Driven testing is a software-testing methodology, which is an iterative process
to assert the actual value with the expected value that fetches test input data from an
external or internal data source. Data-Driven tests are generally carried out with bulk
input data.

Java Excel API is termed the JXL API. It is the most widely used API for executing
Selenium Data-Driven tests that allows the user to read, write, create, and modify
sheets in an Excel Binary (.xls) workbook at runtime. JXL API has no support for
SpreadsheetML (.xlsx) workbooks.

Reading and writing in an Excel sheet
The API reads data from Excel Binary workbooks with versions Excel 95, 97, 2000,
XP, and 2003. The following snippet tells you how to read an Excel Binary workbook:

FileInputStream fi = new FileInputStream("C:\\...\inputdata.xls");
Workbook wb = Workbook.getWorkbook(fi);
Sheet ws = wb.getSheet(0);
String a[][] = new String[ws.getRows()][ws.getColumns()];

for (int rowCnt = 1; rowCnt < ws.getRows(); rowCnt++) {
 driver.get("www.example.com");
 driver.findElement(By.locatorType("path")).sendKeys(ws.getCell(0,
rowCnt).getContents());
...
}

Selenium WebDriver Frameworks

[134]

Here, the getWorkbook() method fetches the workbook as a file and not as string;
the getSheet() method accesses the sheet of the workbook; and the getRows() and
getColumns() methods store row and column counts using two-dimensional arrays.

The JXL library also allows the users to create an Excel workbook and write data into
the workbook. The following snippet tells you how to write an Excel Binary workbook:

FileOutputStream fo = new FileOutputStream("C:\\...\outputdata.xls");
WritableWorkbook wb = Workbook.createWorkbook(fo);
WritableSheet ws = wb.createSheet("Sheet1", 0);

for (int rowCnt = 1; rowCnt < wrksheet.getRows(); rowCnt++) {
 driver.get("www.example.com");
 driver.findElement(By.locatorType("path")).sendKeys(wrksheet.
getCell(0, rowCnt).getContents());
 driver.findElement(By.locatorType("path")).click();

 boolean resultfound = isElementPresent(By.locatorType("path"));

 if (resultfound) {
 //Writes data into 3rd column
 Label l3 = new Label(2, rowCnt, "pass");
 ws.addCell(l3);
 else {
 //Writes data into 3rd column
 Label l2 = new Label(2, rowCnt, "fail");
 ws.addCell(l2);
 }
 }
wb.write();
wb.close();
}

Here, the write() method returns the values to be saved in the Excel workbook
and the close() method quits the current workbook session. The getContents()
method returns all the values from the cell. Here's the syntax for this method:

wrksheet.getCell(0, rowCnt).getContents()

Let's see an example test method to read and write data in an Excel Binary workbook:

@Test
public void readandwrite() throws Exception {

 // Read data from excel sheet
 FileInputStream fi = new FileInputStream("C:\\...\inputdata.xls");

Chapter 5

[135]

 Workbook wrkbook = Workbook.getWorkbook(fi);
 Sheet wrksheet = wrkbook.getSheet(0);
 String a[][] = new String[wrksheet.getRows()][wrksheet.
getColumns()];
 // Write the input data into another excel file
 FileOutputStream fo = new FileOutputStream("C:\\...\outputdata.
xls");
 WritableWorkbook wwb = Workbook.createWorkbook(fo);
 WritableSheet ws = wwb.createSheet("customsheet", 0);

 System.out.println("Total Rows: " + wrksheet.getRows());
 System.out.println("Total Columns: " + wrksheet.getColumns());

 for (int i = 0; i < wrksheet.getRows(); i++) {

 for (int j = 0; j < wrksheet.getColumns(); j++) {
 a[i][j] = wrksheet.getCell(j, i).getContents();
 Label l = new Label(j, i, a[i][j]);
 Label l1 = new Label(2, 0, "Result");
 ws.addCell(l);
 ws.addCell(l1);
 }
 }

 for (int rowCnt = 1; rowCnt < wrksheet.getRows(); rowCnt++) {

 driver.get("www.example.com");
 //Enter search keyword by reading data from Excel [Here it read
from 1st column]

 driver.findElement(By.locatorType("path")).sendKeys(wrksheet.
getCell(0, rowCnt).getContents());
 driver.findElement(By.locatorType("path")).click();
 Thread.sleep(5000);

 boolean resultfound = isElementPresent(By.locatorType("path"));

 if (resultfound) {
 //Writes data into 3rd column
 Label l3 = new Label(2, rowCnt, "pass");
 ws.addCell(l3);
 else {
 //Writes data into 3rd column
 Label l2 = new Label(2, rowCnt, "fail");
 ws.addCell(l2);

Selenium WebDriver Frameworks

[136]

 }
 }
 wwb.write();
 wwb.close();
}

Simple Data-Driven approach
The Data-Driven technique is a repetitive process of any step with multiple sets of
data. The Selenium WebDriver API doesn't have any built-in support for Data-Driven
tests. Regardless of that, the JExcel/JXL library is a third-party API for Selenium-based
tests to perform Data-Driven tasks. In this approach, the script to activate the
Data-Driven function is embedded in the test class itself instead of the reusable library
being put to use. Let's see an example with a pass condition and a fail condition using
a simple Data-Driven technique from JXL API. The following screenshot is an Excel
data source of the given example:

Here, we search for a set of keywords on every test run and finally assert the title
on the Google search results page. TestNG is the unit-testing framework used here
to prioritize and execute tests. The following script is built based on the simple
Data-Driven approach using JXL API:

public class SimpleDataDriven {
 WebDriver driver;
 Sheet s;

 @BeforeTest
 public void setUp() {
 driver = new ChromeDriver();
 driver.get("https://www.google.com/");
 }

 @Test(priority = 1)
 public void Googlepass() throws Exception {
 FileInputStream fi = new FileInputStream("/Users/.../data.xls");
 Workbook w = Workbook.getWorkbook(fi);
 s = w.getSheet(0);
 for (int row = 1; row <= s.getRows() - 1; row++) {

Chapter 5

[137]

 String input1 = s.getCell(0, row).getContents();
 String output1 = s.getCell(1, row).getContents();

 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys(input1);
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(3000);
 try {
 Assert.assertEquals(output1, driver.getTitle());
 } catch (Error e) {
 verificationErrors.append(e.toString());
 }
 }
 }

 @Test(priority = 2)
 public void Googlefail() throws Exception {
 FileInputStream fi = new FileInputStream("/Users/.../data.xls");
 Workbook w = Workbook.getWorkbook(fi);
 s = w.getSheet(0);
 for (int row = 1; row <= s.getRows() - 1; row++) {
 String input2 = s.getCell(2, row).getContents();
 String output2 = s.getCell(3, row).getContents();

 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys(input2);
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(3000);
 try {
 Assert.assertEquals(output2, driver.getTitle());
 } catch (Error e) {
 verificationErrors.append(e.toString());
 }
 }
 }
}

Data-Driven testing using reusable library
The JExcel library does way more than the simple Data-Driven methodologies
explained in the above section. It lets you perform any Java-oriented Data-Driven
tasks by creating a reusable library file. The reusable library is in the form of a class
rather than a JAR file; it can be easily understood and customized based upon the
given specifications:

Selenium WebDriver Frameworks

[138]

Create a library file with the following guidelines:

1.	 Locate and initialize the Excel Binary workbook.
2.	 Obtain the worksheet and read the Excel sheet row count.
3.	 Create a function to read the cell value.
4.	 Create a dictionary using the Hash table and store the Excel sheet

column names.

The following is the reusable library class file (ExcelSheetDriver.java) built using
JXL API:

import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;

import java.io.File;
import java.io.IOException;
import java.util.Hashtable;

public class ExcelSheetDriver {

 // create sheet name
 static Sheet wrksheet;
 // create workbook name
 static Workbook wrkbook = null;
 static Hashtable dict = new Hashtable();
 //Create a Constructor
 public ExcelSheetDriver(String ExcelSheetPath) throws BiffException,
IOException {
 //Initialize the workbook
 wrkbook = Workbook.getWorkbook(new File(ExcelSheetPath));

 //Here, the worksheet is pointed to Sheet1
 wrksheet = wrkbook.getSheet("Sheet1");
 }

 //Returns the Number of Rows
 public static int RowCount() {
 return wrksheet.getRows();
 }

 //Returns the Cell value by taking row and Column values as argument
 public static String ReadCell(int column, int row) {
 return wrksheet.getCell(column, row).getContents();

Chapter 5

[139]

 }

 //Create Column Dictionary to hold all the Column Names
 public static void ColumnDictionary() {
 //Iterate through all the columns in the Excel sheet and store
 the value in Hashtable
 for (int col = 0; col < wrksheet.getColumns(); col++) {
 dict.put(ReadCell(col, 0), col);
 }
 }

 //Read Column Names
 public static int GetCell(String colName) {
 try {
 int value;
 value = ((Integer) dict.get(colName)).intValue();
 return value;
 } catch (NullPointerException e) {
 return (0);
 }
 }
}

Now, let's create a test class to perform a simple Google search by reading values
from the Excel sheet. To do so, first create a constructor to initialize the Excel
data source and then create a loop to iterate through the Excel sheet cell values.
The following screenshot is an Excel data source of the preceding example:

Here, we do a simple Google search for a set of keywords from the Excel file.
TestNG is the unit-testing framework used here for executing tests. The following
script (Googlesearch.java) is built based on the Data-Driven reusable library
using JXL API.

public class GoogleSearch {

 //Global initialization of Variables
 static ExcelSheetDriver xlsUtil;

Selenium WebDriver Frameworks

[140]

 //Constructor to initialze Excel for Data source
 public GoogleSearch() throws BiffException, IOException {
 xlsUtil = new ExcelSheetDriver("/Users/.../data.xls");
 //Load the Excel Sheet Col in to Dictionary
 xlsUtil.ColumnDictionary();
 }

 private WebDriver driver;

 @BeforeTest
 public void setUp() throws Exception {
 driver = new ChromeDriver();
 driver.get("https://www.google.com/");
 }

 @Test
 public void Test01() throws Exception {

 //Create a for loop to iterate through the Excel sheet
 for (int rowCnt = 1; rowCnt < xlsUtil.RowCount(); rowCnt++) {

 driver.findElement(By.name("q")).clear();

 //Enter search keyword by reading data from Excel
 driver.findElement(By.name("q")).sendKeys(xlsUtil.
ReadCell(xlsUtil.GetCell("keyword1"), rowCnt));
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);

 driver.findElement(By.name("q")).clear();

 //Enter search keyword by reading data from
 Exceldriver.findElement(By.name("q")).sendKeys(xlsUtil.
ReadCell(xlsUtil.GetCell("keyword2"), rowCnt));
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 }
 }
}

Chapter 5

[141]

Data-Driven testing using TestNG with the
@dataProvider annotation
TestNG is a Java-based advanced unit-testing framework similar to JUnit 4,
as mentioned in our previous chapters. In this method, we use the TestNG
@dataProvider annotation to fetch keywords from an Excel sheet and pass
arguments into the test method. This framework using DataProvider is highly
recommended for use and an advised Data-Driven framework for implementing
Java-based Selenium tests. Let's discuss this with a couple of methods in this section.

In the first method (with Excel), the Excel Binary workbook is used as a data source.
This method is usually applied on projects with high data volumes. Here, the
TestNG annotation, @dataProvider, allows parameters to pass through the whole
iteration process on the Test method. The following screenshot is an Excel data
source of the given example:

Create a test class by getting the array of tables in a two-dimensional array as shown
in the following code:

public class DataDrivenWithExcel {
 WebDriver driver;
 private String baseUrl;

 @DataProvider(name = "Test")
 public Object[][] createPayId() throws Exception {
 Object[][] retObjArr = getTableArray("C:\\...\\data.xls",
"Sheet1", "Test01");
 return (retObjArr);
 }

 @BeforeClass
 public void BeforeClass() {
 driver = new FirefoxDriver();
 driver.manage().window().maximize();
 baseUrl = "http://www.google.co.in";
 }

Selenium WebDriver Frameworks

[142]

 @Test(dataProvider = "Test", description = "Testing ")
 public void Test01(String column1, String column2, String column3,
String column4) throws Exception {

 driver.get(baseUrl + "/");
 driver.findElement(By.name("q")).sendKeys(column1);
 driver.findElement(By.name("q")).sendKeys(Keys.RETURN);
 Thread.sleep(2000);
 driver.findElement(By.name("q")).clear();
 }

 public String[][] getTableArray(String xlFilePath, String sheetName,
String tableName) throws Exception {
 String[][] tabArray = null;

 Workbook workbook = Workbook.getWorkbook(new File(xlFilePath));
 Sheet sheet = workbook.getSheet(sheetName);
 int startRow, startCol, endRow, endCol, ci, cj;
 Cell tableStart = sheet.findCell(tableName);
 startRow = tableStart.getRow();
 startCol = tableStart.getColumn();

 Cell tableEnd = sheet.findCell(tableName, startCol + 1, startRow +
1, 100, 64000, false);

 endRow = tableEnd.getRow();
 endCol = tableEnd.getColumn();
 System.out.println("startRow=" + startRow + ", endRow=" + endRow +
", " + "startCol=" + startCol + ", endCol=" + endCol);
 tabArray = new String[endRow - startRow - 1][endCol - startCol -
1];
 ci = 0;

 for (int i = startRow + 1; i < endRow; i++, ci++) {
 cj = 0;
 for (int j = startCol + 1; j < endCol; j++, cj++) {
 tabArray[ci][cj] = sheet.getCell(j, i).getContents();
 }
 }
 return (tabArray);
 }
}

Chapter 5

[143]

In the second method (without Excel), the Test class makes use of a built-in data
source within a class. Here, the TestNG annotation @dataprovider plays a major
role by maintaining effective Data-Driven tests as said in the preceding section.
This method is applicable only to projects with lightweight data. Create a Test
class by storing data in memory with a two-dimensional array, as shown in the
following code:

public class DataDrivenWithoutExcel {
 WebDriver driver;
 private String baseUrl;

 @DataProvider(name = "Test")
 public String[][] y() {

 return new String[][] {
 {
 "prashanth sams", "prashanth"
 }, {
 "selenium esentials", "selenium"
 }, {
 "seleniumworks", "prashanth sams"
 }
 };
 }

 @BeforeClass
 public void BeforeClass() {
 driver = new FirefoxDriver();
 driver.manage().window().maximize();
 baseUrl = "http://www.google.co.in";

 }

 @Test(dataProvider = "Test")
 public void Google(String actual, String expected) throws Exception
 {

 driver.get(baseUrl + "/");
 driver.findElement(By.name("q")).sendKeys(actual);
 driver.findElement(By.name("q")).sendKeys(Keys.RETURN);
 Thread.sleep(2000);
 boolean b = driver.getPageSource().contains(expected);
 Assert.assertTrue(b);

Selenium WebDriver Frameworks

[144]

 }

 @AfterClass
 public void AfterClass() {
 driver.quit();
 }

}

Apache POI Data-Driven framework
Apache Poor Obfuscation Implementation (POI) is a set of Java-based libraries used
to manipulate Microsoft Excel documents, such as the .xls and .xlsx file formats.
It is an extensive API used to automate Selenium Data-Driven tests that lets you
create, modify, read, and write Excel data. Unlike JXL API, it supports both Binary
and SpreadsheetML workbooks. Configuring JXL API is easier compared to Apache
POI. However, Apache POI has as many features to work with modern Microsoft
products. Obviously, the test performance with the .xlsx file will be slower
compared to the .xls file in Apache POI.

A dependency of Apache POI is the xmlbeans library, which has to be added in
the build path before executing tests. Another Java framework for older versions of
Apache POI is dom4j. The following screenshot displays a list of library files required
to support the Apache POI Data-Driven framework:

The preceding JAR files are the significant libraries to be added in the build path.
Here, the workbook is a common interface for the HSSF, XSSF, and SS usermodels.
Refer to the following snippets to write values in different workbooks:

Workbook wb = new HSSFWorkbook(); // HSSF Workbook
FileOutputStream fo = new FileOutputStream("/Users/.../workbook.xls");
wb.write(fo);
fo.close();

Chapter 5

[145]

Workbook wb = new XSSFWorkbook(); // XSSF Workbook
FileOutputStream fo = new FileOutputStream("/Users/.../workbook.
xlsx");
wb.write(fo);
fo.close();

Apache POI provides significant features such as creating a new workbook,
new sheet, new cells, and date cells; formatting cells; setting footers; setting zoom;
freezing panes; and enhancing cell styles using colors, fonts, and borders.

The following code snippet helps to create a new worksheet:

InputStream fi= new FileInputStream("/Users/.../workbook.xls");
// SS Usermodel
Workbook wb = WorkbookFactory.create(fi);
Sheet ws= wb.getSheetAt(0);

// HSSF Usermodel
Workbook wb = new HSSFWorkbook();
Sheet ws = wb.createSheet("Sheet1");

// XSSF Usermodel
Workbook wb = new XSSFWorkbook();
Sheet ws = wb.createSheet("Sheet1");

HSSF usermodel – Binary workbook
Horrible SpreadSheet Format (HSSF) implements the Excel 97 Binary workbook
with the .xls file format. Apache POI has specific features similar to JXL API that
read and write Excel workbooks at any instance of time. HSSF takes cell data in the
cell format and converts format, such as numeric, string, Boolean, or formula, into
string, as shown in the following code:

HSSFCell cell = row.getCell(j);
String value = cellToString(cell);

The two-dimensional array retrieves the external data source by storing all values
from an Excel sheet into the data array. Here, data is the variable and i and j are the
row and column numbers:

String[][] data = new String[rowNum][colNum];
data[i][j] = value;

Selenium WebDriver Frameworks

[146]

Let's discuss with an example how to read and write values in the Excel Binary
workbook (.xls). The following example is customized based on the TestNG
unit testing framework with the @dataProvider annotation to iterate through the list
of values available in a spreadsheet. The following screenshot is an Excel data source
of the given example.

Build a test class using the hssf.usermodel.* library classes from the Apache
POI API. The following script depicts a simple Google search by reading a set of
keywords and writing the PASS / FAIL status in the same Binary worksheet:

import org.apache.poi.hssf.usermodel.HSSFCell;
import org.apache.poi.hssf.usermodel.HSSFRow;
import org.apache.poi.hssf.usermodel.HSSFSheet;
import org.apache.poi.hssf.usermodel.HSSFWorkbook;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;

public class Excelreadwrite {

 private static WebDriver driver;
 private static String baseUrl;
 private static int n = 0;

 @BeforeTest
 public void setUp() {
 driver = new ChromeDriver();
 }

 @Test(dataProvider = "DP")
 public static String login(String keyword1, String keyword2)
 throws Exception {

 driver.get("https://www.google.com");

 driver.findElement(By.name("q")).sendKeys(keyword1);
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 String actualtitle = driver.getTitle();
 System.out.println(actualtitle);

Chapter 5

[147]

 driver.findElement(By.name("q")).clear();

 driver.findElement(By.name("q")).sendKeys(keyword2);
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 String expectedtitle = driver.getTitle();
 System.out.println("Expected Title is: " + expectedtitle);
 driver.findElement(By.name("q")).clear();

 int LastRow = ++n;
 if (expectedtitle.equals(actualtitle)) {
 System.out.println("PASSED");
 String status = "PASS";
 excelwrite(status, LastRow);
 } else {
 System.out.println("FAILED");
 String status = "FAIL";
 excelwrite(status, LastRow);
 }
 return expectedtitle;
 }

 public static void main(String[] args) throws Exception {
 excelRead();
 }

 @DataProvider(name = "DP")
 public static String[][] excelRead() throws Exception {
 File excel = new File("/Users/.../data.xls");
 FileInputStream fis = new FileInputStream(excel);
 HSSFWorkbook wb = new HSSFWorkbook(fis);
 HSSFSheet ws = wb.getSheet("Sheet1");
 int rowNum = ws.getLastRowNum() + 1;
 int colNum = ws.getRow(0).getLastCellNum();
 String[][] data = new String[(rowNum - 1)][colNum];
 int k = 0;
 for (int i = 1; i < rowNum; i++) {
 HSSFRow row = ws.getRow(i);
 for (int j = 0; j < colNum; j++) {
 HSSFCell cell = row.getCell(j);
 String value = cellToString(cell);
 data[k][j] = value;
 }
 k++;

Selenium WebDriver Frameworks

[148]

 }
 return data;
 }

 public static void excelwrite(String status, int LastRow) throws
Exception {
 try {
 FileInputStream file = new FileInputStream(new File("/Users/.../
data.xls"));

 HSSFWorkbook workbook = new HSSFWorkbook(file);
 HSSFSheet sheet = workbook.getSheetAt(0);

 Row row = sheet.getRow(LastRow);

 Cell cell2 = row.createCell(2); // Shift the cell value
depending upon column size
 cell2.setCellValue(status);
 // System.out.println(status);
 file.close();
 FileOutputStream outFile = new FileOutputStream(new File("/
Users/.../data.xls"));
 workbook.write(outFile);

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (HeadlessException e) {
 e.printStackTrace();
 }
 }

 public static String cellToString(HSSFCell cell) {
 int type;
 Object result;
 type = cell.getCellType();
 switch (type) {
 case 0:
 result = cell.getNumericCellValue();
 break;
 case 1:
 result = cell.getStringCellValue();

Chapter 5

[149]

 break;
 default:
 throw new RuntimeException("There are no support for this type
of cell");
 }
 return result.toString();
 }
}

Let's create the testNG.xml file inside the project folder to execute the preceding
test cases. Here, the .xml file allows you to define the package name, class, groups,
methods, include, exclude, and much more. Invoking testNG.xml is an efficient
method of running TestNG tests. See the following example to run the test:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="Suite" allow-return-values="true" parallel="none">
 <test name="Test">
 <classes>
 <class name="packagename.Excelreadwrite" />
 </classes>
 </test>
 <!-- Test -->
</suite>
<!-- Suite -->

The following screenshot is a report obtained after running the preceding test case.
You will notice a new column with values inserted (PASS or FAIL) based on the
status after test completion, as follows:

For more information on HSSF Read Binary (.xls) workbook, refer to
http://goo.gl/YqfzvZ.
The TestNG.xml file for the preceding example is available at
http://goo.gl/0KyaSR.

http://goo.gl/YqfzvZ
http://goo.gl/0KyaSR

Selenium WebDriver Frameworks

[150]

XSSF usermodel – SpreadsheetML workbook
(.xlsx)
The XSSF (XML SpreadSheet Format) usermodel implements Excel 2007, a
SpreadsheetML workbook with the OOXML (.xlsx) file format. Handling tests
through the HSSF API on Excel 2003 results in running out of memory on the creation
of large sheets. Apache POI introduces the XSSF API to avoid such risks by handling
Excel 2007. Let's see an example of reading values from the Excel SpreadsheetML
workbook. This example is customized based on the TestNG unit-testing framework
using @dataProvider annotation to iterate through the list of values available in a
spreadsheet. The following screenshot is an Excel data source of the given example:

In this example, we perform a simple Google search by reading a set of keywords
from the SpreadsheetML workbook through the Apache POI API:

import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class className {
 private WebDriver driver;
 private String baseUrl;
 private StringBuffer verificationErrors = new StringBuffer();

 @BeforeTest
 public void setUp() throws Exception {
 baseUrl = "http://www.google.com/";
 driver = new FirefoxDriver();
 driver.manage().window().maximize();
 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
 }

 @Test
 public void Test01() throws Exception {
 driver.get(baseUrl + "/");
 InputStream inp = new FileInputStream("/Users/.../data.xlsx");

Chapter 5

[151]

 XSSFWorkbook wb = new XSSFWorkbook(inp);
 XSSFSheet ws = wb.getSheet("Sheet1");

 for (int i = 1; i <= ws.getLastRowNum(); i++) {
 XSSFRow row = ws.getRow(i);
 XSSFCell col1 = row.getCell(0);
 XSSFCell col2 = row.getCell(1);

 driver.findElement(By.name("q")).sendKeys("" +col1+ "");
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys("" +col2+ "");
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 driver.findElement(By.name("q")).clear();
 }
 }
}

SS usermodel – Binary and SpreadsheetML
workbooks
The SS usermodel (org.apache.poi.ss.usermodel) is common for both the Binary
(.xls) and SpreadsheetML (.xlsx) workbooks; however, the HSSF and XSSF
usermodels focus on a single workbook. So there we have it:

SS = HSSF + XSSF

The SS usermodel is the most commonly used API and the most easy-to-handle
workbook. Unlike HSSF and XSSF, the SS usermodel uses the Factory class, org.
apache.poi.ss.usermodel.WorkbookFactory, to handle workbooks. The
following is the syntax for this usermodel:

Workbook wb = WorkbookFactory.create(filepath);

Let's discuss with an example to read values from either Excel Binary or
SpreadsheetML workbooks. The following screenshot is an Excel data source
of the given example:

Selenium WebDriver Frameworks

[152]

Build a test class using ss.usermodel.* library classes from the Apache POI API.
The following script depicts a simple Google search by reading a set of keywords
from any kind of Excel worksheet:

import org.apache.poi.ss.usermodel.*;

public class className {
 private WebDriver driver;
 private String baseUrl;
 private StringBuffer verificationErrors = new StringBuffer();

 @BeforeTest
 public void setUp() throws Exception {
 baseUrl = "http://www.google.com/";
 driver = new FirefoxDriver();
 driver.manage().window().maximize();
 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
 }

 @Test
 public void Test02() throws Exception {
 driver.get(baseUrl + "/");
 InputStream fp = new FileInputStream("/Users/.../data.xlsx");

 Workbook wb = WorkbookFactory.create(fp);
 Sheet ws = wb.getSheetAt(0);

 Row row = null;

 for (int i = 1; i <= ws.getLastRowNum(); i++) {
 row = ws.getRow(i);
 Cell col1 = row.getCell(0);
 Cell col2 = row.getCell(1);

 driver.findElement(By.name("q")).sendKeys("" + col1 + "");
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys("" + col2 + "");
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 driver.findElement(By.name("q")).clear();

 row = null;

Chapter 5

[153]

 }
 }
}

Text file Data-Driven framework
The text file is a human-readable plain-text file with the .txt file extension. Unlike
Microsoft documents, the text file doesn't need any external APIs to support Data-
Driven tests. However, it depends on the individual to develop their own framework
to handle a text file.

To separate two or more values in a text file, detach the keywords on customizing
suitable expressions, such as comma, space, and so on, as follows:

String[] data = line.split(", ");

Notepad is a default application normally used to access the text file. Certainly, the
text file is a universal file, which is platform independent and can be accessed from
any machine. A minimum version of Java 7 is mandatory to execute tests based on
the text file. Let's discuss with an example how to drive tests using the text file as a
data source. The following screenshot is a text data source of the given example:

This example covers a Google search accompanied by an assertion between the
expected value and the actual value on the Google results page. Let's see the
following complete workaround:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;

public class className {
 WebDriver driver;
 private String baseUrl;

 @BeforeClass
 public void BeforeClass() {

Selenium WebDriver Frameworks

[154]

 driver = new FirefoxDriver();
 driver.manage().window().maximize();
 baseUrl = "http://www.google.co.in";
 }

 @Test
 public void Test01() {
 Execute();
 }

 public void Execute() {

 BufferedReader in = null;
 InputStreamReader inputStream = null;
 try {

 inputStream = new InputStreamReader(new FileInputStream("/
Users/.../" + File.separator + "data.txt")); in = new
BufferedReader(inputStream);
 String line = null;
 String actualvalue = "";
 String expectedvalue = "";
 while ((line = in .readLine()) != null) {
 String[] data = line.split(", ");
 if (data.length >= 1) {
 actualvalue = data[0];
 expectedvalue = data[1];
 System.out.println("Actual : " + actualvalue);
 System.out.println("Expected : " + expectedvalue);
 driver.get(baseUrl + "/");
 WebElement element = driver.findElement(By.name("q"));
 element.sendKeys(actualvalue);
 element.sendKeys(Keys.RETURN);
 boolean b = driver.getPageSource().contains(expectedvalue);
 Assert.assertTrue(b);
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Chapter 5

[155]

Data-Driven testing using TestNG with
the @dataProvider annotation – text file
Annotation is one of the fascinating features introduced by the TestNG framework that
was later implemented in JUnit 4. In fact, the annotations from both the frameworks
always differ. In this method, we are using the @dataProvider annotation of TestNG
to fetch multiple sets of data from a text file and pass arguments to a test method.
Meanwhile, it's pretty safe to place the text file inside your project. The following
syntax helps you to do it:

System.getProperty("user.dir")

Define a constant header to tag the row values. Here, search1 and search2
are the two constants used. The following screenshot is a text data source of
the given example:

The following example is a simple Google search that reads a set of keywords
separated by a comma and a space using reusable TextDriver. Create a test class
(GoogleTest.java) as follows:

import java.util.HashMap;

public class GoogleTest {
 private WebDriver driver;

 @DataProvider(name = "keywords")
 public Object[][] data() throws Exception {
 HashMap < String, String[] > dataSet = new TextDriver(System.
getProperty("user.dir") + "/data.txt").getData();

 String search1Strings[] = dataSet.get("search1");
 String search2Strings[] = dataSet.get("search2");
 int size = search1Strings.length;

 // modify 2 upon the no. of rows; Here, I used two rows,
 'search1'&'search2'
 Object[][] creds = new Object[size][2];
 for (int i = 0; i < size; i++) {

Selenium WebDriver Frameworks

[156]

 creds[i][0] = search1Strings[i];
 creds[i][1] = search2Strings[i];
 }
 return creds;
 }

 @BeforeTest
 public void setUp() throws Exception {
 driver = new ChromeDriver();
 }

 @Test(dataProvider = "keywords", description = "Google_Test")
 public void search(String search1, String search2) throws Exception
 {

 driver.get("http://www.google.co.in");

 // search google with keyword1
 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys("" + search1);
 driver.findElement(By.name("q")).submit();
 Thread.sleep(4000);

 // search google with keyword2
 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys("" + search2);
 driver.findElement(By.name("q")).submit();
 Thread.sleep(4000);
 }
}

As discussed previously in the JXL API section, the reusable library used here is
a customized class but for a text file that can be modified and used instead of an
external library. Here, the one-dimensional array stores value and splits them
accordingly, as follows:

String[] keyValue = stringLine.split(" = ");
keyValuePair.put(keyValue[0], keyValue[1].split(", "));

The following is a reusable library class file (TextDriver.java) to fetch data from
a text file:

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileReader;

Chapter 5

[157]

import java.util.HashMap;

public class TextDriver {

 private String fileLocation;

 public TextDriver(String fileLocation) {
 this.fileLocation = fileLocation;
 }

 public HashMap < String, String[] > getData() {
 FileInputStream fs;
 HashMap < String, String[] > keyValuePair = new HashMap < String,
String[] > ();
 try (BufferedReader br = new BufferedReader(new
FileReader(fileLocation))) {
 String stringLine;
 //Read File Line By Line
 while ((stringLine = br.readLine()) != null) {
 // Print the content on the console
 String[] keyValue = stringLine.split(" = ");
 keyValuePair.put(keyValue[0], keyValue[1].split(", "));
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 return keyValuePair;
 }
}

Properties file Data-Driven framework
The properties file is similar to the text file but with the .properties file extension.
It is widely used in Java apps to store and configure parameters.

Data-Driven testing using the properties file as the data source is feasible on
Selenium WebDriver to handle small data. Create a .properties file and store the
keywords with a constant key (search). In Eclipse, open the project, right-click on
the src folder and select New| Other... | General | File. Name the file with the.
properties extension, for example, config.properties.

Selenium WebDriver Frameworks

[158]

Let's see an example of how to read values from the properties file:

Build a test class that depicts a simple Google search by reading a series of keywords
from the .properties file:

import java.util.ResourceBundle;
import java.util.StringTokenizer;
import java.util.concurrent.TimeUnit;

public class classname {
 private WebDriver driver;
 private String baseUrl;

 @BeforeTest
 public void setUp() throws Exception {
 driver = new ChromeDriver();
 baseUrl = "https://www.google.co.in";
 }

 @Test
 public void Test01() throws Exception {

 ResourceBundle bundle = ResourceBundle.getBundle("config");
 String Channel = bundle.getString("search");
 StringTokenizer st = new StringTokenizer(Channel, ", ");
 while (st.hasMoreTokens()) {
 String value = st.nextToken();
 driver.get(baseUrl + "/");
 driver.findElement(By.name("q")).click();
 driver.findElement(By.name("q")).sendKeys(value);
 driver.findElement(By.name("q")).sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 }
 }
}

Let's see an alternative method to fetch values from the .properties file. More than
a data source, the properties file acts as a repository by storing web elements for data
reusability. The following is the syntax for the properties file:

prop.getProperty("path")

Chapter 5

[159]

The following screenshot is a properties data source of the next example. Here, q is a
path as mentioned in the preceding syntax and search is a constant key to define the
search keyword.

The following example contains a simple Google search functionality driven with the
Java utility library on a properties file:

import java.io.FileInputStream;
import java.util.Properties;
import java.util.concurrent.TimeUnit;

public class className {
 private WebDriver driver;
 private String baseUrl;

 @BeforeTest
 public void setUp() throws Exception {
 driver = new ChromeDriver();
 baseUrl = "https://www.google.co.in";
 }

 @Test
 public void Test01() throws Exception {
 driver.get(baseUrl + "/");

 FileInputStream fs = new FileInputStream("/Users/.../config.
properties");
 Properties prop = new Properties();
 prop.load(fs);

 String value = prop.getProperty("search");
 System.out.println(prop.getProperty("search"));
 driver.findElement(By.name(prop.getProperty("path"))).click();
 driver.findElement(By.name(prop.getProperty("path"))).
sendKeys(value);
 driver.findElement(By.name(prop.getProperty("path"))).
sendKeys(Keys.ENTER);
 Thread.sleep(2000);
 }
}

Selenium WebDriver Frameworks

[160]

Data-Driven testing using TestNG with
@dataProvider annotation – properties file
In this method, we use the @dataProvider annotation of the TestNG framework to
fetch multiple sets of data from a properties file and pass arguments to a test method.

Create a .properties data source file similar to the following screenshot, where the
data is separated with a comma and a space (,). The two constant keys, search1
and search2, are used to define the data available in a properties file.

The following example is a simple Google search that reads a set of keywords
separated by a comma and a space using PropertiesDriver that is reusable.
Create a test class (GoogleTest.java), as follows:

import java.util.HashMap;

public class GoogleTest{
 private WebDriver driver;

 @DataProvider(name = "keywords")
 public Object[][] data() throws Exception {
 HashMap<String, String[]> dataSet = new PropertiesDriver().
getData();

 String search1Strings[] = dataSet.get("search1");
 String search2Strings[] = dataSet.get("search2");
 int size = search1Strings.length;

 // modify 2 upon the no. of rows; Here, two rows, 'search1'&
 'search2' are used
 Object[][] creds = new Object[size][2];
 for (int i = 0; i < size; i++) {
 creds[i][0] = search1Strings[i];
 creds[i][1] = search2Strings[i];
 }
 return creds;
 }

 @BeforeTest
 public void setUp() throws Exception {
 driver = new ChromeDriver();

Chapter 5

[161]

 }

 @Test(dataProvider = "keywords", description = "Google_Test")
 public void search(String search1, String search2) throws Exception
{

 driver.get("http://www.google.co.in");

 // search google via keyword 1
 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys("" + search1);
 driver.findElement(By.name("q")).submit();
 Thread.sleep(2000);

 // search google via keyword 2
 driver.findElement(By.name("q")).clear();
 driver.findElement(By.name("q")).sendKeys("" + search2);
 driver.findElement(By.name("q")).submit();
 Thread.sleep(2000);
 }
}

The following is a reusable library class file (PropertiesDriver.java) to fetch data
from a properties file:

import java.util.Enumeration;
import java.util.HashMap;
import java.util.ResourceBundle;

public class PropertiesDriver {
 public PropertiesDriver() {
 }
 public HashMap<String, String[]> getData() {
 HashMap<String, String[]> configMap = new HashMap<String,
String[]>();
 try {
 ResourceBundle bundle = ResourceBundle.getBundle("config");
 Enumeration<String> keys = bundle.getKeys();
 while (keys.hasMoreElements()) {
 String aKey = keys.nextElement();
 String aValue = bundle.getString(aKey);
 configMap.put(aKey, aValue.split(","));
 }
 } catch (Exception e) {
 e.printStackTrace();

Selenium WebDriver Frameworks

[162]

 }
 return configMap;
 }
}

CSV file Data-Driven framework
The term CSV refers to Comma-Separated Values. In CSV, plain-text values are
automatically accessed as tabular data. The following screenshot depicts the CSV
data source. These values are actually stored using a notepad with separator
(comma) between any two keywords.

The FileReader class is a Java library class used to read data from a CSV file. Refer to
the following code snippet that explains how to read data from a CSV-formatted file.

String path = "/Users/.../data.csv";
File file = new File(path);
BufferedReader IN = new BufferedReader(new FileReader(file));
String line = null;
while ((line = IN.readLine()) != null) {
 String[] data = line.split(",");
 driver.findElement(By.locatorType("path")).sendKeys(data[0]);
 driver.findElement(By.locatorType("path")).sendKeys(data[1]);
}

The FileWriter class is a Java library class to write data into a CSV file. This library
class helps you to create a CSV file and store output data as a fresh copy. The
following code snippet explains how to write data into a CSV file:

FileWriter writer = new FileWriter("/Users/.../output.csv");
writer.append("your_text or runtime_value");

Let's see an example that involves both reading and writing CSV files. The following
example depicts a simple Google search by reading a set of keywords and writing
the attained page title into a CSV file.

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;

Chapter 5

[163]

public class classname {
 private WebDriver driver;
 private String baseUrl;

 String path = "/Users/.../data.csv";

 @Before
 public void setUp() throws Exception {
 driver = new ChromeDriver();
 baseUrl = "https://www.google.com";
 }

 @Test
 public void Test01() throws Exception {
 driver.get(baseUrl + "/");

 FileWriter writer = new FileWriter("/Users/.../output.csv");
 writer.append("ColumnHeader1");
 writer.append(',');
 writer.append("ColumnHeader2");
 writer.append('\n');

 File file = new File(path);
 BufferedReader IN = new BufferedReader(new FileReader(file));
 String line = null;
 while ((line = IN.readLine()) != null) {
 String[] data = line.split(",");

 driver.findElement(By.name("q")).sendKeys(data[0]);
 driver.findElement(By.name("q")).submit();
 Thread.sleep(2000);
 String element1 = driver.getTitle();
 driver.findElement(By.name("q")).clear();

 driver.findElement(By.name("q")).sendKeys(data[1]);
 driver.findElement(By.name("q")).submit();
 Thread.sleep(2000);
 String element2 = driver.getTitle();

 writer.append(element1);
 writer.append(',');
 writer.append(element2);
 writer.append('\n');
 writer.flush();

Selenium WebDriver Frameworks

[164]

 }
 try {
 IN.close();
 } catch (Exception e) {
 System.out.println(e);
 }
 }
}

Keyword-Driven framework
A Keyword-Driven test is a kind of functional automation testing, where
keywords are used instead of scripts. Since all the required Selenium functions
and operations are prewritten in an external user-defined driver, basic knowledge
of the framework's workflow is more than enough to learn and maintain tests.
Furthermore, a fully developed Keyword-Driven framework reduces a tester's
scripting effort. Let's take a look at Open2Test, which is purely a Keyword-Driven
framework that supports Selenium WebDriver too. This framework handles the
Binary Excel sheet through JExcel API.

The Open2Test components, namely Selenium_Utility, ObjectRepository,
TestSuite, and Test_Script are the source files used to perform Keyword-Driven
tests. See the following screenshot to get an idea about the framework structure:

These components are available in the form of Excel sheets, where Utility Excel stores
all the location paths of the object repository, test suite, test script, and report folder.
The following table represents Selenium Utility Excel of the Open2Test framework:

Chapter 5

[165]

File \ Folder Name Path Location
Test Suite C:/.../Test_Suite.xls

Test Script C:/.../Test_Script.xls

Object Repository C:/.../Object_Repository.xls

Summary Report C:/.../Report/

Screen shot Report C:/.../Screen_shot/

Detailed Report C:/.../Detailed_Report/

Let's see how to use this approach in an example with a simple Google search.
Create an object repository Excel sheet, where the elements can be stored with an
object name. These objects are always reusable and maintained in a separate Excel
file. The following is an object repository Excel content table that contains elements
of a Google page:

Object name Object type Parent Object path
clear_search Textbox 1 name=q

google_search Textbox 1 name=q

submit_search Button 1 id=sblsbb

As we know, a test suite is a collection of test cases; it can have any number of test
cases. The following table is a test-suite Excel content table with a couple of test scripts:

Run Test scripts
r Test_Script.xls

r Test_Script2.xls

The test case sheet contains keywords to perform Selenium WebDriver functions, such
as click, clear, submit, and so on. Here, the keywords, such as launchapp, perform,
check, condition, storevalue, and loop are predefined in the Open2Test framework
that give you full control over the application under test. The following test case
(Test_Script.xls) Excel content table contains a clean Google search workflow:

Run Keyword Object details Action

r launchapp http://www.google.com

r Perform Textbox;clear_search Clear

r Perform Textbox;google_search set:Selenium Essentials

r Perform Button;submit_search

r Wait 5000

Selenium WebDriver Frameworks

[166]

An Open2Test keyword is launchapp, which allows users to access the Google
page URL. The Perform keyword is used to execute Selenium WebDriver functions.
Meanwhile, there are keywords that assert or verify an element. Remember that
this framework has limitations and is not yet fully stable. Certainly, the Open2Test
framework can be modified with additional functions.

To acquire the Open2Test driver, refer to https://bit.ly/1yz5F0L.

Creating a Keyword-Driven framework consumes more time and scripting skills;
however, it is highly efficient and reliable. Moreover, it reduces the scripting effort
and improves the reusability of test scripts.

Hybrid-Driven framework
A combination of the Data-Driven and Keyword-Driven (or Modular-Driven)
frameworks is commonly said to be a Hybrid-Driven framework. In general, a
Hybrid-Driven framework is a collection of two or more frameworks that can be
customized and accessed by any user. For example, a combination of PageObjects,
a Keyword-Driven framework, a Data-Driven framework, an object repository, and
reporting listeners provides a powerful Hybrid framework.

Let's take a tour of the framework that can be helpful as a part while building a
Hybrid approach.

Create a driver class (loadDriver.java) that loads user-defined methods by
invoking Selenium WebDriver functions:

public class loadDriver {

 private static WebDriver driver;

 public static void Firefox() {
 driver = new FirefoxDriver();
 driver.manage().window().maximize();
 System.out.println("Firefox browser is initiated...");
 }
 public static void IE() {
 driver = new InternetExplorerDriver();
 driver.manage().window().maximize();
 System.out.println("Internet Explorer is instantiated...");
 }
 public static void Chrome() {

https://bit.ly/1yz5F0L

Chapter 5

[167]

 driver = new ChromeDriver();
 driver.manage().window().maximize();
 System.out.println("Google Chrome is instantiated...");
 }
 public static void URL() {
 driver.get(ObjectRepository.URL);
 }
 public static void waitForID(String id) {
 WebDriverWait wait = new WebDriverWait(driver, 10);
 wait.until(ExpectedConditions.presenceOfElementLocated(By.
id(id)));
 }
 public static void WaitForPageLoad() {
 driver.manage().timeouts().pageLoadTimeout(10, TimeUnit.SECONDS);
 }
 public static void clearID(String id) {
 driver.findElement(By.id(id)).clear();
 }
 public static void submit(String id) {
 driver.findElement(By.id(id)).submit();
 }
 public static void assertPageTitle() {
 Assert.assertEquals(driver.getTitle(), ObjectRepository.title);
 }
 public static void insertText(String id, String searchValue) {
 driver.findElement(By.id(id)).sendKeys(searchValue);
 }
 public static void exit() {
 driver.close();
 driver.quit();
 }
 public static void sleeper(int value) throws InterruptedException {
 Thread.sleep(value);
 }
}

In the preceding code, the driver automatically shrinks the code size in a test class
and maintains an object repository to store entire web elements for data reusability.
These practices help you to optimize reusability and make compact test scripts.
Shown here is an object repository for Google search:

public class ObjectRepository {
 public static final String URL = "https://www.google.com/";
 public static final String searchField = "lst-ib";
 public static final String searchText1 = "Prashanth Sams";

Selenium WebDriver Frameworks

[168]

 public static final String searchText2 = "Selenium Essentials";
 public static final String submitButton = "sblsbb";
 public static final String title = "Prashanth Sams - Google Search";
}

Create a test class (GoogleTest.java) with a couple of use cases. It involves both
negative and positive workarounds. TestNG is a framework used here to prioritize
and execute test methods. The following is the code for the test class with the use cases:

public class GoogleTest {

 //Positive Use_case
 @Test(enabled = true, priority = 2)
 public void TC_01() throws InterruptedException {
 loadDriver.Chrome();
 loadDriver.URL();
 loadDriver.WaitForPageLoad();
 loadDriver.waitForID(ObjectRepository.searchField);
 loadDriver.clearID(ObjectRepository.searchField);
 loadDriver.insertText(ObjectRepository.searchField,
 ObjectRepository.searchText1);
 loadDriver.submit(ObjectRepository.submitButton);
 loadDriver.sleeper(3000);
 loadDriver.assertPageTitle();
 loadDriver.exit();
 }

 //Negative Use_case
 @Test (enabled = true, priority = 1)
 public void TC_02() throws InterruptedException {
 loadDriver.Chrome();
 loadDriver.URL();
 loadDriver.WaitForPageLoad();
 loadDriver.waitForID(ObjectRepository.searchField);
 loadDriver.clearID(ObjectRepository.searchField);
 loadDriver.insertText(ObjectRepository.searchField,
 ObjectRepository.searchText2);
 loadDriver.submit(ObjectRepository.submitButton);
 loadDriver.sleeper(3000);
 loadDriver.assertPageTitle();
 loadDriver.exit();
 }
}

Chapter 5

[169]

Summary
In this chapter, we learned about the different types of Selenium frameworks
with examples, how to build automation frameworks from scratch, and how
to optimize a successful Selenium WebDriver automation framework.

[171]

Index
Symbols
@dataProvider annotation 141
@FindBy annotation 93
@FindBys annotation 94

A
Acceptance-Driven Development

(ATDD) 122
Actions keyboard keys

URL 80
Ajax websites

handling 82
alerts

handling 71
Apache POI Data-Driven framework

about 144
HSSF usermodel 145
SS usermodel 151
XSSF usermodel 150

Apache Poor Obfuscation Implementation
(Apache POI) 144, 145

Apple Safari
instantiating, with SafariDriver 27

B
Behaviour-Driven Development (BDD)

about 122
Cucumber BDD framework 123
Gherkin-based frameworks 122
JBehave BDD framework 128

Browsermob 4

browser pop-ups
downloading 109, 110
handling, Java Robot used 108

BrowserStack
about 33, 34
URL 33

C
Capybara-webkit 36
Chrome/36.0.1985.143 40
ChromeDriver

about 6, 26
configuring, on Linux 7
configuring, on Mac 8
configuring, on Windows 7
downloading 7
URL 7, 26

Chrome user agent 41
clipboard, Selenium IDE 10, 11
cookies

about 60
addCookie() method 61
deleteAllCookies() method 62
deleteCookie() method 61
deleteCookieNamed() method 62
getCookieNamed() method 61
getCookies() method 60, 61

cross-browser testing
about 25
from custom Chrome profile 44
from custom Firefox profile 42, 43
on specific Firefox versions 42

[172]

cross-browser testing, on cloud
with BrowserStack 33, 34
with SauceLabs 31, 32
with TestingBot 34-36

CSV file Data-Driven framework 162
Cucumber 123
Cucumber BDD framework 123
Cucumber JVM

about 123-125
using 126-128

custom Chrome profile
creating 44

D
Data Driven tests

about 11, 133
JSON file, using 20, 21
performing, in Selenium Builder 20
performing, in Selenium IDE 11-13
reusable library, used 137-139
TestNG, using with @dataProvider 141-143
user-defined JavaScript methods 13, 14
XML file, using 21

E
element-locating functions, Selenium

WebDriver
findElement() 51
findElements() 51
using 51-54

endWhile command 17
EventFiringWebDriver class

about 95
afterChangeValueOf() 100
afterClickOn() 97, 98
afterFindBy() 98
afterNavigateBack() 95
afterNavigateForward() 96
afterNavigateTo() 96
afterScript() 99
beforeChangeValueOf() 100
beforeClickOn() 98
beforeFindBy() 99

beforeNavigateBack() 96
beforeNavigateForward() 97
beforeNavigateTo() 97
beforeScript() 99
example 101-105
onException() 101

explicit wait
about 84
FluentWait method 86
sleeper method 86, 87
tasks 84, 85

F
FirefoxDriver

about 26
URL 26

Firefox profile
creating 43
used, for downloading files 112-114

Firefox user agent
about 40
URL 41

FluentWait method 86

G
getEval command 17
Gherkin 122
GhostDriver 37
Google Chrome

instantiating, with ChromeDriver 26
Graphical User Interface (GUI) 36

H
headless browser

about 36
HTMLUnitDriver 39
PhantomJS 37, 38

HSSF (Horrible SpreadSheet Format)
usermodel

about 145
Binary workbook (.xls),

implementing 145-149

[173]

HTMLUnit 36, 39
HTMLUnitDriver 39
Hybrid-Driven framework 166-168

I
IEDriverServer

about 26
IE, instantiating with 26
URL 27

iframes
handling 106, 107

isElementPresent method 82, 83

J
Java Excel API (JXL API) 133
Java Robot

URL, for keyboard actions 112
used, for handling browser pop-up 108
used, for handling native OS 108

JavascriptExecutor class
about 114
elements, highlighting 117
JavaScript error collector 118, 119
new browser window, opening 118
page scroll methods 115

JavaScript functions, Selenium IDE
about 15
for mouse scroll 16
parameterization, with arrays 17, 18
runScript command 16

JBehave
about 128
embedders 128
injectable embedders 128
URL 129

JBehave BDD framework
about 128
using 129-132

JSErrorCollector library
about 118, 119
URL, for downloading 119

JUnit-enabled embeddables
JUnitStory 129
JUnitStories 129

JXL API Data-Driven framework
about 133
Data-Driven testing, reusable library

used 137-139
Data-Driven testing, using TestNG

with @dataProvider 141-143
data, reading in Excel sheet 133, 134
data, writing in Excel sheet 133, 134
simple Data-Driven approach 136

K
keyboard actions 73
Keyword-Driven framework

about 164-166
framework structure 164

L
launchapp 166
Linux

ChromeDriver, configuring 7
locator prioritization 8, 9

M
Mac

ChromeDriver, configuring 8
Maven 123
Mofiki's Coordinate Finder 112
mouse and keyboard actions

accept() method 72
authenticateUsing() method 72
build() method 73
click() method 73
clickAndHold() method 74
contextClick() method 74
dismiss() method 71
doubleClick() method 74
dragAndDrop() method 75
dragAndDropBy() method 75
getText() method 72
keyDown() method 75
keyUp() method 76
moveByOffset() method 76
moveToElement() method 76

[174]

perform() method 76
release() method 77
sendKeys() method 77

Mozilla/5.0 40
Mozilla Firefox

instantiating, with FirefoxDriver 26

N
native OS

handling, Java Robot used 108
navigation functions, Selenium

get() 59
navigate().back() 59
navigate().forward() 59
navigate().to() 59
refresh() 59, 60

Neustar WPM 4

O
Open2Test components

ObjectRepository 164
Selenium_Utility 164
Test_Script 164
TestSuite 164

Opera
instantiating, with OperaPrestoDriver 27

OperaChromiumDriver
about 27
URL 27

P
PageFactory class 91, 92
PageObject pattern

@FindBy annotation 93
@FindBys annotation 94
about 88-90
PageFactory class 91, 92

page scroll methods, JavascriptExecutor
class 115, 116

parameterization
about 11
arrays, using 17, 18

PhantomJS
about 36-38
URL 37

PhantomJSDriver 37
pop-ups

handling 71
properties file 157
properties file Data-Driven framework

about 157-159
Data-Driven testing, using TestNG with

@dataProvider 160, 161

R
rbehave 128
record and playback

in Selenium Builder 19
in Selenium IDE 2-5

reusable library
about 137
used, for Data-Driven testing 137-139

S
SafariDriver

about 27
drawbacks 31
URL 27

SauceLabs
about 31, 32
URL 31

Sauce plugin
about 22
URL 22

screen capture
about 111
examples 111

Select functions
deselectAll() 70
deselectByIndex(index) 70
deselectByValue(value) 70
deselectByVisibleText(text) 70, 71
getAllSelectedOptions() 68
getFirstSelectedOption() 68

[175]

getOptions() 69
isMultiple() 69
selectByIndex(index) 67
selectByValue(value) 68
selectByVisibleText(text) 68

Selenese 2
Selenium Builder

about 1, 18
Data Driven tests 20
on cloud 22, 23
record and playback 19

Selenium IDE (Selenium Integrated
Development Environment)

about 1
clipboard 10, 11
JavaScript functions 15
locator prioritization 8, 9
record and playback 2-5
Selenium export, avoiding 9
WebDriver playback 5, 6

Selenium WebDriver
about 26, 121
TestNG 28-31

Selenium window functions
getPosition() 64
getSize() 64
getWindowHandle() 65
getWindowHandles() 65
maximize() 63, 64
setPosition() 65
setSize() 65
switchTo.window() 66

simple Data-Driven technique, JXL API 136
sleeper method 86, 87
SS usermodel

about 151
Binary and SpreadsheetML workbooks,

implementing 151
text file Data-Driven framework 153

storedVars command 17
storeEval command 17

T
Test-Driven Development (TDD) 122
TestingBot

about 34-36
URL 34

TestNG 28-30, 141
text file 153
text file Data-Driven framework

about 153
Data-Driven testing, using TestNG with

@dataProvider 155, 156
timeouts

implicitlyWait() 87
pageLoadTimeout() 88
setScriptTimeout() 88

U
user agents

Chrome user agents 41
Firefox user agent 40
switching 40
URL 40

user-defined JavaScript methods 13, 14

W
waits

about 83
explicit wait 84

WebDriver functions
clear() 49
click() 49
close() 48
getCssValue() 58
getCurrentUrl() 48
getLocation() 58
getPageSource() 48
getTitle() 48
quit() 48
sendKeys() 49
submit() 49

[176]

WebDriver playback
about 5, 6
prerequisites 6-8

WebElement
getAttribute() 55
getSize() 57
getTagName() 56
getText() 55
isDisplayed() 56
isEnabled() 56
isSelected() 57
locating 50

WebKit 37
while command 17
Windows

ChromeDriver, configuring 7

X
XPath locators 50
XSSF (XML SpreadSheet Format) usermodel

about 150
SpreadsheetML workbook (.xlsx),

implementing 150

Thank you for buying
Selenium Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Selenium WebDriver Practical
Guide
ISBN: 978-1-78216-885-0 Paperback: 264 pages

Interactively automate web applications using
Selenium WebDriver

1.	 Covers basic to advanced concepts of
WebDriver.

2.	 Learn how to design a more effective
automation framework.

3.	 Explores all of the APIs within WebDriver.

4.	 Acquire an in-depth understanding of each
concept through practical code examples.

Selenium Design Patterns
and Best Practices
ISBN: 978-1-78398-270-7 Paperback: 270 pages

Build a powerful, stable, and automated test suite
using Selenium WebDriver

1.	 Keep up with the changing pace of your web
application by creating an agile test suite.

2.	 Save time and money by making your Selenium
tests 99% reliable.

3.	 Improve the stability of your test suite and your
programing skills by following a step-by-step
continuous improvement tutorial.

Please check www.PacktPub.com for information on our titles

Selenium Testing Tools Cookbook
ISBN: 978-1-84951-574-0 Paperback: 326 pages

Over 90 recipes to build, maintain, and improve test
automation with Selenium WebDriver

1.	 Learn to leverage the power of Selenium
WebDriver with simple examples that illustrate
real world problems and their workarounds.

2.	 Each sample demonstrates key concepts
allowing you to advance your knowledge
of Selenium WebDriver in a practical and
incremental way.

3.	 Explains testing of mobile web applications
with Selenium Drivers for platforms such as
iOS and Android.

Selenium 2 Testing Tools
Beginner's Guide
ISBN: 978-1-84951-830-7 Paperback: 232 pages

Learn to use Selenium testing tools from scratch

1.	 Automate web browsers with Selenium
WebDriver to test web applications.

2.	 Set up Java Environment for using Selenium
WebDriver.

3.	 Learn good design patterns for testing
web applications.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Selenium IDE
	WebDriver playback
	Prerequisites for the WebDriver playback feature
	Locator prioritization
	Avoiding Selenium export

	The Selenium IDE clipboard
	Data Driven tests
	User-defined JavaScript methods

	Selenium IDE JavaScript functions
	Simple JavaScript execution
	Mouse scroll
	Parameterization using arrays

	Selenium Builder
	Recording and playback
	Data Driven tests
	Testing using a JSON file
	Testing using an XML file

	Selenium Builder on the cloud

	Summary

	Chapter 2: Selenium WebDriver
Cross-browser Tests
	Selenium WebDriver compatibility tests
	TestNG

	Selenium cross-browser tests on the cloud
	SauceLabs
	BrowserStack
	TestingBot

	Selenium headless browser testing
	PhantomJS
	HTMLUnitDriver

	Switching user agents
	Firefox user agent
	Chrome user agent

	Tests on specific Firefox versions
	Tests from the custom Firefox profile

	Tests from the custom Chrome profile
	Summary

	Chapter 3: Selenium WebDriver Functions
	Basic WebDriver functions
	Locating WebElements
	WebElement functions
	Navigation
	Cookies
	Window functions
	Select functions
	Handling alerts and pop-ups
	Mouse and keyboard actions
	Summary

	Chapter 4: Selenium WebDriver
Best Practices
	Handling Ajax websites
	The isElementPresent method

	Waits
	Explicit wait
	The Fluent Wait method
	Sleeper

	Timeouts

	The PageObject pattern
	The PageFactory class
	The @FindBy annotation
	The @FindBys annotation

	The EventFiringWebDriver class
	Event-firing WebDriver example

	Handling iframes
	Handling native OS and browser pop-ups using Java Robot
	Downloading browser popups
	Screen capture

	Firefox profile to download files

	The JavascriptExecutor class
	Page scroll
	Highlighting elements
	Opening a new browser window
	JavaScript error collector

	Summary

	Chapter 5: Selenium WebDriver Frameworks
	Behaviour-Driven Development
	Cucumber BDD framework
	Cucumber JVM
	JBehave BDD framework

	JXL API Data-Driven framework
	Reading and writing in an Excel sheet
	Simple Data-Driven approach
	Data-Driven testing using reusable library
	Data-Driven testing using TestNG with @dataProvider annotation

	Apache POI Data-Driven framework
	HSSF usermodel – Binary workbook
	XSSF usermodel – SpreadsheetML workbook (.xlsx)
	SS usermodel – Binary and SpreadsheetML workbooks
	Text file Data-Driven framework

	Data-Driven testing using TestNG with
@dataProvider – text file

	Properties file Data-Driven framework
	Data-Driven testing using TestNG with
@dataProvider annotation – properties fie
	CSV file Data-Driven framework

	Keyword-Driven framework
	Hybrid-Driven framework
	Summary

	Index

