
www.allitebooks.com

http://www.allitebooks.org

SERVICE QUALITY
OF CLOUD-BASED

APPLICATIONS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SERVICE QUALITY
OF CLOUD-BASED

APPLICATIONS

Eric Bauer
Randee Adams

IEEE PRESS

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Bauer, Eric.
  Service quality of cloud-based applications / Eric Bauer, Randee Adams.
    pages cm
  ISBN 978-1-118-76329-2 (cloth)
  1.  Cloud computing.  2.  Application software–Reliability.  3.  Quality of service (Computer
networks) I.  Adams, Randee.  II.  Title.
  QA76.585.B3944 2013
  004.67'82–dc23
	 2013026569

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

www.allitebooks.com

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://www.allitebooks.org

Figures	 xv

Tables and Equations	 xxi

1	 INTRODUCTION	 1
1.1	 Approach	 1

1.2	 Target Audience	 3

1.3	 Organization	 3

I	 CONTEXT	 7

2	 APPLICATION SERVICE QUALITY	 9
2.1	 Simple Application Model	 9

2.2	 Service Boundaries	 11

2.3	 Key Quality and Performance Indicators	 12

2.4	 Key Application Characteristics	 15

2.4.1	 Service Criticality	 15
2.4.2	 Application Interactivity	 16
2.4.3	 Tolerance to Network Traffic Impairments	 17

2.5	 Application Service Quality Metrics	 17

2.5.1	 Service Availability	 18
2.5.2	 Service Latency	 19
2.5.3	 Service Reliability	 24
2.5.4	 Service Accessibility	 25
2.5.5	 Service Retainability	 25

CONTENTS

v

www.allitebooks.com

http://www.allitebooks.org

vi	 Contents

2.5.6	 Service Throughput	 25
2.5.7	 Service Timestamp Accuracy	 26
2.5.8	 Application-Specific Service Quality Measurements	 26

2.6	 Technical Service versus Support Service	 27

2.6.1	 Technical Service Quality	 27
2.6.2	 Support Service Quality	 27

2.7	 Security Considerations	 28

3	 CLOUD MODEL	 29
3.1	 Roles in Cloud Computing	 30

3.2	 Cloud Service Models	 30

3.3	 Cloud Essential Characteristics	 31

3.3.1	 On-Demand Self-Service	 31
3.3.2	 Broad Network Access	 31
3.3.3	 Resource Pooling	 32
3.3.4	 Rapid Elasticity	 32
3.3.5	 Measured Service	 33

3.4	 Simplified Cloud Architecture	 33

3.4.1	 Application Software	 34
3.4.2	 Virtual Machine Servers	 35
3.4.3	 Virtual Machine Server Controllers	 35
3.4.4	 Cloud Operations Support Systems	 36
3.4.5	 Cloud Technology Components Offered “as-a-Service”	 36

3.5	 Elasticity Measurements	 36

3.5.1	 Density	 37
3.5.2	 Provisioning Interval	 37
3.5.3	 Release Interval	 39
3.5.4	 Scaling In and Out	 40
3.5.5	 Scaling Up and Down	 41
3.5.6	 Agility	 42
3.5.7	 Slew Rate and Linearity	 43
3.5.8	 Elasticity Speedup	 44

3.6	 Regions and Zones	 44

3.7	 Cloud Awareness	 45

4	 VIRTUALIZED INFRASTRUCTURE IMPAIRMENTS	 49
4.1	 Service Latency, Virtualization, and the Cloud	 50

4.1.1	 Virtualization and Cloud Causes of Latency Variation	 51
4.1.2	 Virtualization Overhead	 52
4.1.3	 Increased Variability of Infrastructure Performance	 53

4.2	 VM Failure	 54

4.3	 Nondelivery of Configured VM Capacity	 54

www.allitebooks.com

http://www.allitebooks.org

Contents	 vii

4.4	 Delivery of Degraded VM Capacity	 57

4.5	 Tail Latency	 59

4.6	 Clock Event Jitter	 60

4.7	 Clock Drift	 61

4.8	 Failed or Slow Allocation and Startup of VM Instance	 62

4.9	 Outlook for Virtualized Infrastructure Impairments	 63

II	 ANALYSIS	 65

5	 APPLICATION REDUNDANCY AND CLOUD COMPUTING	 67
5.1	 Failures, Availability, and Simplex Architectures	 68

5.2	 Improving Software Repair Times via Virtualization	 70

5.3	 Improving Infrastructure Repair Times via Virtualization	 72

5.3.1	 Understanding Hardware Repair	 72
5.3.2	 VM Repair-as-a-Service	 72
5.3.3	 Discussion	 74

5.4	 Redundancy and Recoverability	 75

5.4.1	 Improving Recovery Times via Virtualization	 79

5.5	 Sequential Redundancy and Concurrent Redundancy	 80

5.5.1	 Hybrid Concurrent Strategy	 83

5.6	 Application Service Impact of Virtualization Impairments	 84

5.6.1	 Service Impact for Simplex Architectures	 85
5.6.2	 Service Impact for Sequential Redundancy 	

Architectures	 85
5.6.3	 Service Impact for Concurrent Redundancy 	

Architectures	 87
5.6.4	 Service Impact for Hybrid Concurrent Architectures	 88

5.7	 Data Redundancy	 90

5.7.1	 Data Storage Strategies	 90
5.7.2	 Data Consistency Strategies	 91
5.7.3	 Data Architecture Considerations	 92

5.8	 Discussion	 92

5.8.1	 Service Quality Impact	 93
5.8.2	 Concurrency Control	 93
5.8.3	 Resource Usage	 94
5.8.4	 Simplicity	 94
5.8.5	 Other Considerations	 95

6	 LOAD DISTRIBUTION AND BALANCING	 97
6.1	 Load Distribution Mechanisms	 97

6.2	 Load Distribution Strategies	 99

www.allitebooks.com

http://www.allitebooks.org

viii	 Contents

6.3	 Proxy Load Balancers	 99

6.4	 Nonproxy Load Distribution	 101

6.5	 Hierarchy of Load Distribution	 102

6.6	 Cloud-Based Load Balancing Challenges	 103

6.7	 The Role of Load Balancing in Support of Redundancy	 103

6.8	 Load Balancing and Availability Zones	 104

6.9	 Workload Service Measurements	 104

6.10	 Operational Considerations	 105

6.10.1	 Load Balancing and Elasticity	 105
6.10.2	 Load Balancing and Overload	 106
6.10.3	 Load Balancing and Release Management	 107

6.11	 Load Balancing and Application Service Quality	 107

6.11.1	 Service Availability	 107
6.11.2	 Service Latency	 108
6.11.3	 Service Reliability	 108
6.11.4	 Service Accessibility	 109
6.11.5	 Service Retainability	 109
6.11.6	 Service Throughput	 109
6.11.7	 Service Timestamp Accuracy	 109

7	 FAILURE CONTAINMENT	 111
7.1	 Failure Containment	 111

7.1.1	 Failure Cascades	 112
7.1.2	 Failure Containment and Recovery	 112
7.1.3	 Failure Containment and Virtualization	 114

7.2	 Points of Failure	 116

7.2.1	 Single Points of Failure	 116
7.2.2	 Single Points of Failure and Virtualization	 117
7.2.3	 Affinity and Anti-affinity Considerations	 119
7.2.4	 No SPOF Assurance in Cloud Computing	 120
7.2.5	 No SPOF and Application Data	 121

7.3	 Extreme Solution Coresidency	 122

7.3.1	 Extreme Solution Coresidency Risks	 123

7.4	 Multitenancy and Solution Containers	 124

8	 CAPACITY MANAGEMENT	 127
8.1	 Workload Variations	 128

8.2	 Traditional Capacity Management	 129

8.3	 Traditional Overload Control	 129

8.4	 Capacity Management and Virtualization	 131

8.5	 Capacity Management in Cloud	 133

www.allitebooks.com

http://www.allitebooks.org

Contents	 ix

8.6	 Storage Elasticity Considerations	 135

8.7	 Elasticity and Overload	 136

8.8	 Operational Considerations	 137

8.9	 Workload Whipsaw	 138

8.10	 General Elasticity Risks	 140

8.11	 Elasticity Failure Scenarios	 141

8.11.1	 Elastic Growth Failure Scenarios	 141
8.11.2	 Elastic Capacity Degrowth Failure Scenarios	 143

9	 RELEASE MANAGEMENT	 145
9.1	 Terminology	 145

9.2	 Traditional Software Upgrade Strategies	 146

9.2.1	 Software Upgrade Requirements	 146
9.2.2	 Maintenance Windows	 148
9.2.3	 Client Considerations for Application Upgrade	 149
9.2.4	 Traditional Offline Software Upgrade	 150
9.2.5	 Traditional Online Software Upgrade	 151
9.2.6	 Discussion	 153

9.3	 Cloud-Enabled Software Upgrade Strategies	 153

9.3.1	 Type I Cloud-Enabled Upgrade Strategy: 	
Block Party	 154

9.3.2	 Type II Cloud-Enabled Upgrade Strategy: 	
One Driver per Bus	 156

9.3.3	 Discussion	 157

9.4	 Data Management	 158

9.5	 Role of Service Orchestration in Software Upgrade	 159

9.5.1	 Solution-Level Software Upgrade	 160

9.6	 Conclusion	 161

10	 END-TO-END CONSIDERATIONS	 163
10.1	 End-to-End Service Context	 163

10.2	 Three-Layer End-to-End Service Model	 169

10.2.1	 Estimating Service Impairments via the 	
Three-Layer Model	 171

10.2.2	 End-to-End Service Availability	 172
10.2.3	 End-to-End Service Latency	 173
10.2.4	 End-to-End Service Reliability	 174
10.2.5	 End-to-End Service Accessibility	 175
10.2.6	 End-to-End Service Retainability	 176
10.2.7	 End-to-End Service Throughput	 176
10.2.8	 End-to-End Service Timestamp Accuracy	 177
10.2.9	 Reality Check	 177

x	 Contents

10.3	 Distributed and Centralized Cloud Data Centers	 177

10.3.1	 Centralized Cloud Data Centers	 178
10.3.2	 Distributed Cloud Data Centers	 178
10.3.3	 Service Availability Considerations	 179
10.3.4	 Service Latency Considerations	 181
10.3.5	 Service Reliability Considerations	 182
10.3.6	 Service Accessibility Considerations	 182
10.3.7	 Service Retainability Considerations	 182
10.3.8	 Resource Distribution Considerations	 182

10.4	 Multitiered Solution Architectures	 183

10.5	 Disaster Recovery and Geographic Redundancy	 184

10.5.1	 Disaster Recovery Objectives	 184
10.5.2	 Georedundant Architectures	 185
10.5.3	 Service Quality Considerations	 186
10.5.4	 Recovery Point Considerations	 187
10.5.5	 Mitigating Impact of Disasters with 	

Georedundancy and Availability Zones	 189

III	 RECOMMENDATIONS	 191

11	 ACCOUNTABILITIES FOR SERVICE QUALITY	 193
11.1	 Traditional Accountability	 193

11.2	 The Cloud Service Delivery Path	 194

11.3	 Cloud Accountability	 197

11.4	 Accountability Case Studies	 200

11.4.1	 Accountability and Technology Components	 201
11.4.2	 Accountability and Elasticity	 203

11.5	 Service Quality Gap Model	 205

11.5.1	 Application’s Resource Facing Service 	
Gap Analysis	 206

11.5.2	 Application’s Customer Facing Service 	
Gap Analysis	 208

11.6	 Service Level Agreements	 210

12	 SERVICE AVAILABILITY MEASUREMENT	 213
12.1	 Parsimonious Service Measurements	 214

12.2	 Traditional Service Availability Measurement	 215

12.3	 Evolving Service Availability Measurements	 217

12.3.1	 Analyzing Application Evolution	 218
12.3.2	 Technology Components	 223
12.3.3	 Leveraging Storage-as-a-Service	 224

Contents	 xi

12.4	 Evolving Hardware Reliability Measurement	 226

12.4.1	 Virtual Machine Failure Lifecycle	 226

12.5	 Evolving Elasticity Service Availability Measurements	 228

12.6	 Evolving Release Management Service Availability 	
Measurement	 229

12.7	 Service Measurement Outlook	 231

13	 APPLICATION SERVICE QUALITY REQUIREMENTS	 233
13.1	 Service Availability Requirements	 234

13.2	 Service Latency Requirements	 237

13.3	 Service Reliability Requirements	 237

13.4	 Service Accessibility Requirements	 238

13.5	 Service Retainability Requirements	 239

13.6	 Service Throughput Requirements	 239

13.7	 Timestamp Accuracy Requirements	 240

13.8	 Elasticity Requirements	 240

13.9	 Release Management Requirements	 241

13.10	 Disaster Recovery Requirements	 241

14	 VIRTUALIZED INFRASTRUCTURE MEASUREMENT
AND MANAGEMENT	 243
14.1	 Business Context for Infrastructure Service Quality 	

Measurements	 244

14.2	 Cloud Consumer Measurement Options	 245

14.3	 Impairment Measurement Strategies	 247

14.3.1	 Measurement of VM Failure	 247
14.3.2	 Measurement of Nondelivery of Configured 	

VM Capacity	 249
14.3.3	 Measurement of Delivery of Degraded VM 	

Capacity	 249
14.3.4	 Measurement of Tail Latency	 249
14.3.5	 Measurement of Clock Event Jitter	 250
14.3.6	 Measurement of Clock Drift	 250
14.3.7	 Measurement of Failed or Slow Allocation and 	

Startup of VM Instance	 250
14.3.8	 Measurements Summary	 251

14.4	 Managing Virtualized Infrastructure Impairments	 252

14.4.1	 Minimize Application’s Sensitivity to Infrastructure
Impairments	 252

14.4.2	 VM-Level Congestion Detection and Control	 252
14.4.3	 Allocate More Virtual Resource Capacity	 253

xii	 Contents

14.4.4	 Terminate Poorly Performing VM Instances	 253
14.4.5	 Accept Degraded Performance	 253
14.4.6	 Proactive Supplier Management	 254
14.4.7	 Reset End Users’ Service Quality Expectations	 254
14.4.8	 SLA Considerations	 254
14.4.9	 Changing Cloud Service Providers	 254

15	 ANALYSIS OF CLOUD-BASED APPLICATIONS	 255
15.1	 Reliability Block Diagrams and Side-by-Side Analysis	 256

15.2	 IaaS Impairment Effects Analysis	 257

15.3	 PaaS Failure Effects Analysis	 259

15.4	 Workload Distribution Analysis	 260

15.4.1	 Service Quality Analysis	 261
15.4.2	 Overload Control Analysis	 261

15.5	 Anti-Affinity Analysis	 262

15.6	 Elasticity Analysis	 263

15.6.1	 Service Capacity Growth Scenarios	 264
15.6.2	 Service Capacity Growth Action Analysis	 264
15.6.3	 Service Capacity Degrowth Action Analysis	 265
15.6.4	 Storage Capacity Growth Scenarios	 265
15.6.5	 Online Storage Capacity Growth Action Analysis	 266
15.6.6	 Online Storage Capacity Degrowth Action Analysis	 266

15.7	 Release Management Impact Effects Analysis	 267

15.7.1	 Service Availability Impact	 267
15.7.2	 Server Reliability Impact	 267
15.7.3	 Service Accessibility Impact	 267
15.7.4	 Service Retainability Impact	 267
15.7.5	 Service Throughput Impact	 267

15.8	 Recovery Point Objective Analysis	 268

15.9	 Recovery Time Objective Analysis	 270

16	 TESTING CONSIDERATIONS	 273
16.1	 Context for Testing	 273

16.2	 Test Strategy	 274

16.2.1	 Cloud Test Bed	 275
16.2.2	 Application Capacity under Test	 275
16.2.3	 Statistical Confidence	 276
16.2.4	 Service Disruption Time	 276

16.3	 Simulating Infrastructure Impairments	 277

16.4	 Test Planning	 278

16.4.1	 Service Reliability and Latency Testing	 279
16.4.2	 Impaired Infrastructure Testing	 280

Contents	 xiii

16.4.3	 Robustness Testing	 280
16.4.4	 Endurance/Stability Testing	 282
16.4.5	 Application Elasticity Testing	 284
16.4.6	 Upgrade Testing	 285
16.4.7	 Disaster Recovery Testing	 285
16.4.8	 Extreme Coresidency Testing	 286
16.4.9	 PaaS Technology Component Testing	 286
16.4.10	 Automated Regression Testing	 286
16.4.11	 Canary Release Testing	 286

17	 CONNECTING THE DOTS	 287
17.1	 The Application Service Quality Challenge	 287

17.2	 Redundancy and Robustness	 289

17.3	 Design for Scalability	 292

17.4	 Design for Extensibility	 292

17.5	 Design for Failure	 293

17.6	 Planning Considerations	 294

17.7	 Evolving Traditional Applications	 296

17.7.1	 Phase 0: Traditional Application	 298
17.7.2	 Phase I: High Service Quality on Virtualized 	

Infrastructure	 298
17.7.3	 Phase II: Manual Application Elasticity	 299
17.7.4	 Phase III: Automated Release Management	 299
17.7.5	 Phase IV: Automated Application Elasticity	 300
17.7.6	 Phase V: VM Migration	 300

17.8	 Concluding Remarks	 301

Abbreviations	 303

References	 307

About the Authors	 311

Index	 313

Figure 1.1.	 Sample Cloud-Based Application.	 2
Figure 2.0.	 Organization of Part I: Context.	 8
Figure 2.1.	 Simple Cloud-Based Application.	 10
Figure 2.2.	 Simple Virtual Machine Service Model.	 10
Figure 2.3.	 Application Service Boundaries.	 11
Figure 2.4.	 KQIs and KPIs.	 12
Figure 2.5.	 Application Consumer and Resource Facing Service Indicators.	 14
Figure 2.6.	 Application Robustness.	 14
Figure 2.7.	 Sample Application Robustness Scenario.	 15
Figure 2.8.	 Interactivity Timeline.	 16
Figure 2.9.	 Service Latency.	 19
Figure 2.10.	 Small Sample Service Latency Distribution.	 22
Figure 2.11.	 Sample Typical Latency Variation by Workload Density.	 22
Figure 2.12.	 Sample Tail Latency Variation by Workload Density.	 23
Figure 2.13.	 Understanding Complimentary Cumulative Distribution Plots.	 23
Figure 2.14.	 Service Latency Optimization Options.	 24
Figure 3.1.	 Cloud Roles for Simple Application.	 30
Figure 3.2.	 Elastic Growth Strategies.	 32
Figure 3.3.	 Simple Model of Cloud Infrastructure.	 34
Figure 3.4.	 Abstract Virtual Machine Server.	 35
Figure 3.5.	 Provisioning Interval (TGrow).	 38
Figure 3.6.	 Release Interval TShrink.	 39
Figure 3.7.	 VM Scale In and Scale Out.	 40
Figure 3.8.	 Horizontal Elasticity.	 40

FIGURES

xv

xvi	 Figures

Figure 3.9.	 Scale Up and Scale Down of a VM Instance.	 41
Figure 3.10.	 Idealized (Linear) Capacity Agility.	 42
Figure 3.11.	 Slew Rate of Square Wave Amplification.	 43
Figure 3.12.	 Elastic Growth Slew Rate and Linearity.	 43
Figure 3.13.	 Regions and Availability Zones.	 45
Figure 4.1.	 Virtualized Infrastructure Impairments Experienced by

Cloud-Based Applications.	 50
Figure 4.2.	 Transaction Latency for Riak Benchmark.	 52
Figure 4.3.	 VM Failure Impairment Example.	 55
Figure 4.4.	 Simplified Nondelivery of VM Capacity Model.	 55
Figure 4.5.	 Characterizing Virtual Machine Nondelivery.	 56
Figure 4.6.	 Nondelivery Impairment Example.	 56
Figure 4.7.	 Simple Virtual Machine Degraded Delivery Model.	 57
Figure 4.8.	 Degraded Resource Capacity Model.	 58
Figure 4.9.	 Degraded Delivery Impairment Example.	 58
Figure 4.10.	 CCDF for Riak Read Benchmark for Three Different Hosting

Configurations.	 59
Figure 4.11.	 Tail Latency Impairment Example.	 60
Figure 4.12.	 Sample CCDF for Virtualized Clock Event Jitter.	 61
Figure 4.13.	 Clock Event Jitter Impairment Example.	 61
Figure 4.14.	 Clock Drift Impairment Example.	 62
Figure 5.1.	 Simplex Distributed System.	 68
Figure 5.2.	 Simplex Service Availability.	 68
Figure 5.3.	 Sensitivity of Service Availability to MTRS (Log Scale).	 70
Figure 5.4.	 Traditional versus Virtualized Software Repair Times.	 71
Figure 5.5.	 Traditional Hardware Repair versus Virtualized Infrastructure

Restoration Times.	 72
Figure 5.6.	 Simplified VM Repair Logic.	 73
Figure 5.7.	 Sample Automated Virtual Machine Repair-as-a-Service Logic.	 74
Figure 5.8.	 Simple Redundancy Model.	 75
Figure 5.9.	 Simplified High Availability Strategy.	 76
Figure 5.10.	 Failure in a Traditional (Sequential) Redundant Architecture.	 76
Figure 5.11.	 Sequential Redundancy Model.	 77
Figure 5.12.	 Sequential Redundant Architecture Timeline with No Failures.	 77
Figure 5.13.	 Sample Redundant Architecture Timeline with Implicit Failure.	 78
Figure 5.14.	 Sample Redundant Architecture Timeline with Explicit Failure.	 79
Figure 5.15.	 Recovery Times for Traditional Redundancy Architectures.	 80
Figure 5.16.	 Concurrent Redundancy Processing Model.	 81
Figure 5.17.	 Client Controlled Redundant Compute Strategy.	 82
Figure 5.18.	 Client Controlled Redundant Operations.	 83
Figure 5.19.	 Concurrent Redundancy Timeline with Fast but

Erroneous Return.	 83
Figure 5.20.	 Hybrid Concurrent with Slow Response.	 84
Figure 5.21.	 Application Service Impact for Very Brief Nondelivery Events.	 86
Figure 5.22.	 Application Service Impact for Brief Nondelivery Events.	 86

Figures	 xvii

Figure 5.23.	 Nondelivery Impact to Redundant Compute Architectures.	 88
Figure 5.24.	 Nondelivery Impact to Hybrid Concurrent Architectures.	 89
Figure 6.1.	 Proxy Load Balancer.	 98
Figure 6.2.	 Proxy Load Balancing.	 100
Figure 6.3.	 Load Balancing between Regions and Availability Zones.	 104
Figure 7.1.	 Reliability Block Diagram of Simplex Sample System

(with SPOF).	 116
Figure 7.2.	 Reliability Block Diagram of Redundant Sample System

(without SPOF).	 117
Figure 7.3.	 No SPOF Distribution of Component Instances across

Virtual Servers.	 118
Figure 7.4.	 Example of No Single Point of Failure with

Distributed Component Instances.	 118
Figure 7.5.	 Example of Single Point of Failure with Poorly Distributed

Component Instances.	 119
Figure 7.6.	 Simplified VM Server Control.	 120
Figure 8.1.	 Sample Daily Workload Variation (Logarithmic Scale).	 128
Figure 8.2.	 Traditional Maintenance Window.	 129
Figure 8.3.	 Traditional Congestion Control.	 130
Figure 8.4.	 Simplified Elastic Growth of Cloud-Based Applications.	 134
Figure 8.5.	 Simplified Elastic Degrowth of Cloud-Based Applications.	 135
Figure 8.6.	 Sample of Erratic Workload Variation (Linear Scale).	 138
Figure 8.7.	 Typical Elasticity Orchestration Process.	 139
Figure 8.8.	 Example of Workload Whipsaw.	 139
Figure 8.9.	 Elastic Growth Failure Scenarios.	 141
Figure 9.1.	 Traditional Offline Software Upgrade.	 150
Figure 9.2.	 Traditional Online Software Upgrade.	 151
Figure 9.3.	 Type I, “Block Party” Upgrade Strategy.	 154
Figure 9.4.	 Application Elastic Growth and Type I,

“Block Party” Upgrade.	 155
Figure 9.5.	 Type II, “One Driver per Bus” Upgrade Strategy.	 156
Figure 10.1.	 Simple End-to-End Application Service Context.	 164
Figure 10.2.	 Service Boundaries in End-to-End Application Service Context.	 165
Figure 10.3.	 Measurement Points 0–4 for Simple End-to-End Context.	 166
Figure 10.4.	 End-to-End Measurement Points for Simple

Replicated Solution Context.	 167
Figure 10.5.	 Service Probes across User Service Delivery Path.	 168
Figure 10.6.	 Three Layer Factorization of Sample End to End Solution.	 170
Figure 10.7.	 Estimating Service Impairments across the Three-Layer Model.	 171
Figure 10.8.	 Decomposing a Service Impairment.	 172
Figure 10.9.	 Centralized Cloud Data Center Scenario.	 178
Figure 10.10.	 Distributed Cloud Data Center Scenario.	 179
Figure 10.11.	 Sample Multitier Solution Architecture.	 184
Figure 10.12.	 Disaster Recovery Time and Point Objectives.	 185
Figure 10.13.	 Service Impairment Model of Georedundancy.	 187

xviii	 Figures

Figure 11.1.	 Traditional Three-Way Accountability Split: Suppliers,
Customers, External.	 195

Figure 11.2.	 Example Cloud Service Delivery Chain.	 195
Figure 11.3.	 Service Boundaries across Cloud Delivery Chain.	 196
Figure 11.4.	 Functional Responsibilities for Applications Deployed on IaaS.	 198
Figure 11.5.	 Sample Application.	 201
Figure 11.6.	 Service Outage Accountability of Sample Application.	 201
Figure 11.7.	 Application Elasticity Configuration.	 203
Figure 11.8.	 Service Gap Model.	 205
Figure 11.9.	 Service Quality Zone of Tolerance.	 206
Figure 11.10.	 Application’s Resource Facing Service Boundary.	 207
Figure 11.11.	 Application’s Customer Facing Service Boundary.	 208
Figure 12.1.	 Traditional Service Operation Timeline.	 216
Figure 12.2.	 Sample Application Deployment on Cloud.	 217
Figure 12.3.	 “Network Element” Boundary for Sample Application.	 218
Figure 12.4.	 Logical Measurement Point for Application’s

Service Availability.	 218
Figure 12.5.	 Reliability Block Diagram of Sample Application (Traditional

Deployment).	 219
Figure 12.6.	 Evolving Sample Application to Cloud.	 220
Figure 12.7.	 Reliability Block Diagram of Sample Application on Cloud.	 220
Figure 12.8.	 Side-by-Side Reliability Block Diagrams.	 221
Figure 12.9.	 Accountability of Sample Cloud Based Application.	 221
Figure 12.10.	 Connectivity-as-a-Service as a Nanoscale VPN.	 222
Figure 12.11.	 Sample Application with Database-as-a-Service.	 224
Figure 12.12.	 Accountability of Sample Application with

Database-as-a-Service.	 224
Figure 12.13.	 Sample Application with Outboard RAID Storage Array.	 225
Figure 12.14.	 Sample Application with Storage-as-a-Service.	 225
Figure 12.15.	 Accountability of Sample Application with

Storage-as-a-Service.	 226
Figure 12.16.	 Virtual Machine Failure Lifecycle.	 227
Figure 12.17.	 Elastic Capacity Growth Timeline.	 229
Figure 12.18.	 Outage Normalization for Type I “Block Party”

Release Management.	 230
Figure 12.19.	 Outage Normalization for Type II “One Driver per

Bus” Release Management.	 231
Figure 13.1.	 Maximum Acceptable Service Disruption.	 235
Figure 14.1.	 Infrastructure impairments and application impairments.	 244
Figure 14.2.	 Loopback and Service Latency.	 246
Figure 14.3.	 Simplified Measurement Architecture.	 251
Figure 15.1.	 Sample Side-by-Side Reliability Block Diagrams.	 256
Figure 15.2.	 Worst-Case Recovery Point Scenario.	 268
Figure 15.3.	 Best-Case Recovery Point Scenario.	 269
Figure 16.1.	 Measuring Service Disruption Latency.	 277

www.allitebooks.com

http://www.allitebooks.org

Figures	 xix

Figure 16.2.	 Service Disruption Latency for Implicit Failure.	 277
Figure 16.3.	 Sample Endurance Test Case for Cloud-Based Application.	 283
Figure 17.1.	 Virtualized Infrastructure Impairments Experienced

by Cloud-Based Applications.	 288
Figure 17.2.	 Application Robustness Challenge.	 289
Figure 17.3.	 Sequential (Traditional) Redundancy.	 290
Figure 17.4.	 Concurrent Redundancy.	 290
Figure 17.5.	 Hybrid Concurrent with Slow Response.	 291
Figure 17.6.	 Type I, “Block Party” Upgrade Strategy.	 293
Figure 17.7.	 Sample Phased Evolution of a Traditional Application.	 296

TABLES

TABLE 2.1.	 Mean Opinion Scores [P.800]	 26
TABLE 13.1.	 Service Availability and Downtime Ratings	 236

EQUATIONS

Equation 2.1.	 Availability Formula	 18
Equation 5.1.	 Simplex Availability	 68
Equation 5.2.	 Traditional Availability	 69
Equation 10.1.	 Estimating General End-to-End Service Impairments	 171
Equation 10.2.	 Estimating End-to-End Service Downtime	 172
Equation 10.3.	 Estimating End-to-End Service Availability	 173
Equation 10.4.	 Estimating End-to-End Typical Service Latency	 173
Equation 10.5.	 Estimating End-to-End Service Defect Rate	 175
Equation 10.6.	 Estimating End-to-End Service Accessibility	 175
Equation 10.7.	 Estimating End to End Service Retainability (as DPM)	 176
Equation 13.1.	 DPM via Operations Attempted and Operations Successful	 238
Equation 13.2.  DPM via Operations Attempted and Operations Failed	 238
Equation 13.3.	 DPM via Operations Successful and Operations Failed	 238
Equation 14.1.	 Computing VM FITs	 248
Equation 14.2.	 Converting FITs to MTBF	 249

TABLES AND EQUATIONS

xxi

1

INTRODUCTION

Customers expect that applications and services deployed on cloud computing infra-
structure will deliver comparable service quality, reliability, availability, and latency as
when deployed on traditional, native hardware configurations. Cloud computing infra-
structure introduces a new family of service impairment risks based on the virtualized
compute, memory, storage, and networking resources that an Infrastructure-as-a-Service
(IaaS) provider delivers to hosted application instances. As a result, application devel-
opers and cloud consumers must mitigate these impairments to assure that application
service delivered to end users is not unacceptably impacted. This book methodically
analyzes the impacts of cloud infrastructure impairments on application service deliv-
ered to end users, as well as the opportunities for improvement afforded by cloud. The
book also recommends architectures, policies, and other techniques to maximize the
likelihood of delivering comparable or better service to end users when applications
are deployed to cloud.

1.1  APPROACH

Cloud-based application software executes within a set of virtual machine instances,
and each individual virtual machine instance relies on virtualized compute, memory,

1

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

2	 Introduction

storage, and networking service delivered by the underlying cloud infrastructure. As
shown in Figure 1.1, the application presents customer facing service toward end
users across the dotted service boundary, and consumes virtualized resources offered
by the Infrastructure-as-a-Service provider across the dashed resource facing service
boundary. The application’s service quality experienced by the end users is primarily
a function of the application’s architecture and software quality, as well as the service
quality of the virtualized infrastructure offered by the IaaS across the resource facing
service boundary, and the access and wide area networking that connects the end user
to the application instance. This book considers both the new impairments and oppor-
tunities of virtualized resources offered to applications deployed on cloud and how user
service quality experienced by end users can be maximized. By ignoring service impair-
ments of the end user’s device, and access and wide area network, one can narrowly
consider how application service quality differs when a particular application is hosted
on cloud infrastructure compared with when it is natively deployed on traditional
hardware.

The key technical difference for application software between native deployment
and cloud deployment is that native deployments offer the application’s (guest) operat-
ing system direct access to the physical compute, memory, storage, and network
resources, while cloud deployment inserts a layer of hypervisor or virtual machine
management software between the guest operating system and the physical hardware.
This layer of hypervisor or virtual machine management software enables sophisticated
resource sharing, technical features, and operational policies. However, the hypervisor
or virtual machine management layer does not deliver perfect hardware emulation to
the guest operating system and application software, and these imperfections can
adversely impact application service delivered to end users. While Figure 1.1 illustrates
application deployment to a single data center, real world applications are often deployed

Figure 1.1.  Sample Cloud-Based Application.

Organization	 3

to multiple data centers to improve user service quality by shortening transport latency
to end users, to support business continuity and disaster recovery, and for other business
reasons. Application service quality for deployment across multiple data centers is also
considered in this book.

This book considers how application architectures, configurations, validation, and
operational policies should evolve so that the acceptable application service quality can
be delivered to end users even when application software is deployed on cloud infra-
structure. This book approaches application service quality from the end users perspec-
tive while considering standards and recommendations from NIST, TM Forum, QuEST
Forum, ODCA, ISO, ITIL, and so on.

1.2  TARGET AUDIENCE

This book provides application architects, developers, and testers with guidance on
architecting and engineering applications that meet their customers’ and end users’
service reliability, availability, quality, and latency expectations. Product managers,
program managers, and project managers will also gain deeper insights into the service
quality risks and mitigations that must be addressed to assure that an application
deployed onto cloud infrastructure consistently meets or exceeds customers’ expecta-
tions for user service quality.

1.3  ORGANIZATION

The work is organized into three parts: context, analysis, and recommendations.
Part I: Context frames the context of service quality of cloud-based applications via
the following:

•	 “Application Service Quality” (Chapter 2).  Defines the application service
metrics that will be used throughout this work: service availability, service latency,
service reliability, service accessibility, service retainability, service throughput,
and timestamp accuracy.

•	 “Cloud Model” (Chapter 3).  Explains how application deployment on cloud
infrastructure differs from traditional application deployment from both a techni-
cal and an operational point of view, as well as what new opportunities are
presented by rapid elasticity and massive resource pools.

•	 “Virtualized Infrastructure Impairments” (Chapter 4).  Explains the infrastruc-
ture service impairments that applications running in virtual machines on cloud
infrastructure must mitigate to assure acceptable quality of service to end users.
The application service impacts of the impairments defined in this chapter will
be rigorously considered in Part II: Analysis.

Part II: Analysis methodically considers how application service defined in
Chapter 2, “Application Service Quality,” is impacted by the infrastructure impairments

4	 Introduction

enumerated in Chapter 4, “Virtualized Infrastructure Impairments,” across the follow-
ing topics:

•	 “Application Redundancy and Cloud Computing” (Chapter 5).  Reviews funda-
mental redundancy architectures (simplex, sequential redundancy, concurrent
redundancy, and hybrid concurrent redundancy) and considers their ability to
mitigate application service quality impact when confronted with virtualized
infrastructure impairments.

•	 “Load Distribution and Balancing” (Chapter 6).  Methodically analyzes work
load distribution and balancing for applications.

•	 “Failure Containment” (Chapter 7).  Considers how virtualization and cloud
help shape failure containment strategies for applications.

•	 “Capacity Management” (Chapter 8).  Methodically analyzes application service
risks related to rapid elasticity and online capacity growth and degrowth.

•	 “Release Management” (Chapter 9).  Considers how virtualization and cloud
can be leveraged to support release management actions.

•	 “End-to-End Considerations” (Chapter 10).  Explains how application service
quality impairments accumulate across the end-to-end service delivery path. The
chapter also considers service quality implications of deploying applications to
smaller cloud data centers that are closer to end users versus deploying to larger,
regional cloud data centers that are farther from end users. Disaster recovery and
georedundancy are also discussed.

Part III: Recommendations covers the following:

•	 “Accountabilities for Service Quality” (Chapter 11).  Explains how cloud
deployment profoundly changes traditional accountabilities for service quality
and offers guidance for framing accountabilities across the cloud service delivery
chain. The chapter also uses the service gap model to review how to connect
specification, architecture, implementation, validation, deployment, and moni-
toring of applications to assure that expectations are met. Service level agree-
ments are also considered.

•	 “Service Availability Measurement” (Chapter 12).  Explains how traditional
application service availability measurements can be applied to cloud-based
application deployments, thereby enabling efficient side-by-side comparisons of
service availability performance.

•	 “Application Service Quality Requirements” (Chapter 13).  Reviews high level
service quality requirements for applications deployed to cloud.

•	 “Virtualized Infrastructure Measurement and Management” (Chapter 14). 
Reviews strategies for quantitatively measuring virtualized infrastructure impair-
ments on production systems, along with strategies to mitigate the application
service quality risks of unacceptable infrastructure performance.

Acknowledgments	 5

•	 “Analysis of Cloud-Based Applications” (Chapter 15).  Presents a suite of analy-
sis techniques to rigorously assess the service quality risks and mitigations of a
target application architecture.

•	 “Testing Considerations” (Chapter 16).  Considers testing of cloud-based appli-
cations to assure that service quality expectations are likely to be met consistently
despite inevitable virtualized infrastructure impairments.

•	 “Connecting the Dots” (Chapter 17).  Discusses how to apply the recommenda-
tions of Part III to both existing and new applications to mitigate the service
quality risks introduced in Part I: Basics and analyzed in Part II: Analysis.

As many readers are likely to study sections based on the technical needs of their
business and their professional interest rather than strictly following this work’s running
order, cross-references are included throughout the work so readers can, say, dive into
detailed Part II analysis sections, and follow cross-references back into Part I for basic
definitions and follow references forward to Part III for recommendations. A detailed
index is included to help readers quickly locate material.

ACKNOWLEDGMENTS

The authors acknowledge the consistent support of Dan Johnson, Annie Lequesne, Sam
Samuel, and Lawrence Cowsar that enabled us to complete this work. Expert technical
feedback was provided by Mark Clougherty, Roger Maitland, Rich Sohn, John Haller,
Dan Eustace, Geeta Chauhan, Karsten Oberle, Kristof Boeynaems, Tony Imperato, and
Chuck Salisbury. Data and practical insights were shared by Karen Woest, Srujal Shah,
Pete Fales, and many others. Bob Brownlie offered keen insights into service measure-
ments and accountabilities. Expert review and insight on release management for vir-
tualized applications was provided by Bruce Collier. The work benefited greatly from
insightful review feedback from Mark Cameron. Iraj Saniee, Katherine Guo, Indra
Widjaja, Davide Cherubini, and Karsten Oberle offered keen and substantial insights.
The authors gratefully acknowledge the external reviewers who took time to provide
through review and thoughtful feedback that materially improved this book: Tim Coote,
Steve Woodward, Herbert Ristock, Kim Tracy, and Xuemei Zhang.

The authors welcome feedback on this book; readers may e-mail us at Eric
.Bauer@alcatel-lucent.com and Randee.Adams@alcatel-lucent.com.

mailto:Eric.Bauer@alcatel-lucent.com
mailto:Eric.Bauer@alcatel-lucent.com
mailto:Randee.Adams@alcatel-lucent.com

www.allitebooks.com

http://www.allitebooks.org

CONTEXT

I

Figure 2.0 frames the context of this book: cloud-based applications rely on virtualized
compute, memory, storage, and networking resources to provide information services
to end users via access and wide area networks. The application’s primary quality focus
is on the user service delivered across the application’s customer facing service bound-
ary (dotted line in Figure 2.0).

•	 Chapter 2, “Application Service Quality,” focuses on application service deliv-
ered across that boundary. The application itself relies on virtualized computer,
memory, storage, and networking delivered by the cloud service provider to
execute application software.

•	 Chapter 3, “Cloud Model,” frames the context of the cloud service that supports
this virtualized infrastructure.

•	 Chapter 4, “Virtualized Infrastructure Impairments,” focuses on the service
impairments presented to application components across the application’s
resource facing service boundary.

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

7

8	 CONTEXT

Figure 2.0.  Organization of Part I: Context.

2

APPLICATION SERVICE QUALITY

This section considers the service offered by applications to end users and the metrics
used to characterize the quality of that service. A handful of common service quality
metrics that characterize application service quality are detailed. These user service key
quality indicators (KQIs) are considered in depth in Part II: Analysis.

2.1  SIMPLE APPLICATION MODEL

Figure 2.1 illustrates a simple cloud-based application with a pool of frontend compo-
nents distributing work across a pool of backend components. The suite of frontend
and backend components is managed by a pair of control components that provide
management visibility and control for the entire application instance. Each of the appli-
cation’s components, along with their supporting guest operating systems, execute in
distinct virtual machine instances served by the cloud service provider. The Distributed
Management Task Force (DMTF) defines virtual machine as:

the complete environment that supports the execution of guest software. A
virtual machine is a full encapsulation of the virtual hardware, virtual disks,
and the metadata associated with it. Virtual machines allow multiplexing of

9

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

10	 Application Service Quality

the underlying physical machine through a software layer called a hypervisor.
[DSP0243]

For simplicity, this simple model ignores systems that directly support the applica-
tion, such as security appliances that protect the application from external attack,
domain name servers, and so on.

Figure 2.2 shows a single application component deployed in a virtual machine
on cloud infrastructure. The application software and its underlying operating system—
referred to as a guest OS—run within a virtual machine instance that emulates a

Figure 2.1.  Simple Cloud-Based Application.

Figure 2.2.  Simple Virtual Machine Service Model.

Service Boundaries	 11

dedicated physical server. The cloud service provider’s infrastructure delivers the fol-
lowing resource services to the application’s guest OS instance:

•	 Networking.  Application software is networked to other application compo-
nents, application clients, and other systems.

•	 Compute.  Application programs ultimately execute on a physical processor.

•	 (Volatile) Memory.  Applications execute programs out of memory, using heap
memory, stack storage, shared memory, and main memory to maintain dynamic
data, such as application state

•	 (Persistent) Storage.  Applications maintain program executables, configuration,
and application data on persistent storage in files and file systems.

2.2  SERVICE BOUNDARIES

It is useful to define boundaries that demark applications and service offerings to better
understand the dependencies, interactions, roles, and responsibilities of each element
in overall user service delivery. This work will focus on the two high-level application
service boundaries shown in Figure 2.3:

•	 Application’s customer facing service (CFS) boundary (dotted line in Figure
2.3), which demarks the edge of the application instance that faces users. User
service reliability, such as call completion rate, and service latency, such as
call setup, are well-known service quality measurements of telecommunications
customer facing service.

Figure 2.3.  Application Service Boundaries.

12	 Application Service Quality

•	 Application’s resource facing service (RFS) boundary (dashed line in Figure
2.3), which demarks the boundary between the application’s guest OS instances
executing in virtual machine instances and the virtual compute, memory, storage,
and networking provided by the cloud service provider. Latency to retrieve
desired data from persistent storage (e.g., hard disk drive) is a well-known
service quality measurement of resource facing service.

Note that customer facing service and resource facing service boundaries are
relative to a particular entity in the service delivery chain. Figure 2.3, and this book,
consider these concepts from the perspective of a cloud-based application, but these
same service boundary notions can be applied to an element of the cloud Infrastructure-
as-a-Service or technology component offered as “as-a-Service” like Database-as-
a-Service.

2.3  KEY QUALITY AND PERFORMANCE INDICATORS

Qualities such as latency and reliability of service delivered across a service boundary
can be quantitatively measured. Technically useful service measurements are generally
referred to as key performance indicators (KPIs). As shown in Figure 2.4, a subset of
KPIs across the customer facing service boundary characterize key aspects of the cus-
tomer’s experience and perception of quality, and these are often referred to as key
quality indicators (KQIs) [TMF_TR197]. Enterprises routinely track and manage these
KQIs to assure that customers are delighted. Well-run enterprises will often tie staff
bonus payments to achieving quantitative KQI targets to better align the financial
interests of enterprise staff to the business need of delivering excellent service to
customers.

In the context of applications, KQIs often cover high-level business considerations,
including service qualities that impact user satisfaction and churn, such as:

•	 Service Availability (Section 2.5.1).  The service is online and available to users;

•	 Service Latency (Section 2.5.2).  The service promptly responds to user requests;

Figure 2.4.  KQIs and KPIs.

Key Quality and Performance Indicators	 13

•	 Service Reliability (Section 2.5.3).  The service correctly responds to user
requests;

•	 Service Accessibility (Section 2.5.4).  The probability that an individual user can
promptly access the service or resource that they desire;

•	 Service Retainability (Section 2.5.5).  The probability that a service session, such
as a streaming movie, game, or call, will continuously be rendered with good
service quality until normal (e.g., user requested) termination of that session;

•	 Service Throughput (Section 2.5.6).  Meeting service throughput commitments
to customers;

•	 Service Timestamp Accuracy (Section 2.5.7).  Meeting billing or regulatory com-
pliance accuracy requirements.

Different applications with different business models will define KPIs somewhat
differently and will select different KQIs from their suite of application KPIs.

A primary resource facing service risk experienced by cloud-based applications is
the quality of virtualized compute, memory, storage, and networking delivered by the
cloud service provider to application components executing in virtual machine (VM)
instances. Chapter 4, “Virtualized Infrastructure Impairments,” considers the following:

•	 Virtual Machine Failure (Section 4.2).  Like traditional hardware, VM instances
can fail

•	 Nondelivery of Configured VM Capacity (Section 4.3).  For instance, VM
instance can briefly cease to operate (aka “stall”)

•	 Degraded Delivery of Configured VM Capacity (Section 4.4).  For instance, a
particular virtual machine server may be congested, so some application IP
packets are discarded by the host OS or hypervisor.

•	 Excess Tail Latency on Resource Delivery (Section 4.5).  For instance, some
application components may occasionally experience unusually long resource
access latency.

•	 Clock Event Jitter (Section 4.6).  For instance, regular clock event interrupts
(e.g., every 1 ms) may be tardy or coalesced.

•	 Clock Drift (Section 4.7).  Guest OS instances’ real-time clocks may drift away
from true (UTC) time.

•	 Failed or Slow Allocation and Startup of VM Instances (Section 4.8).  For
instance, newly allocated cloud resources may be nonfunctional (aka dead on
arrival [DOA])

Figure 2.5 overlays common customer facing service KQIs with typical resource
facing service KPIs on the simple application of Section 2.1.

As shown in Figure 2.6, the robustness of an application’s architecture charac
terizes how effectively the application can maintain quality across the application’s
customer facing service boundary despite impairments experienced across the resource
facing service boundary and failures within the application itself.

14	 Application Service Quality

Figure 2.7 illustrates a concrete robustness example: if the cloud infrastructure
stalls a VM that is hosting one of the application backend instances for hundreds of
milliseconds (see Section 4.3, “Nondelivery of Configured VM Capacity”), then is the
application’s customer facing service impacted? Do some or all user operations take
hundreds of milliseconds longer to complete, or do some (or all) operations fail due to
timeout expiration? A robust application will mask the customer facing service impact
of this service impairment so end users do not experience unacceptable service quality.

Figure 2.5.  Application Consumer and Resource Facing Service Indicators.

Figure 2.6.  Application Robustness.

Key Application Characteristics	 15

2.4  KEY APPLICATION CHARACTERISTICS

Customer facing service quality expectations are fundamentally driven by application
characteristics, such as:

•	 Service criticality (Section 2.4.1)

•	 Application interactivity (Section 2.4.2)

•	 Tolerance to network traffic impairments (Section 2.4.3).

These characteristics influence both the quantitative targets for application’s
service quality (e.g., critical applications have higher service availability expectations)
and specifics of those service quality measurements (e.g., maximum tolerable service
downtime influences the minimum chargeable outage downtime threshold).

2.4.1  Service Criticality

Readers will recognize that different information services entail different levels of
criticality to users and the enterprise. While these ratings will vary somewhat based on
organizational needs and customer expectations, the criticality classification definitions
from the U.S. Federal Aviation Administration’s National Airspace System’s reliability
handbook are fairly typical:

•	 ROUTINE (Service Availability Rating of 99%).  “Loss of this capability would
have a minor impact on the risk associated with providing safe and efficient
operations” [FAA-HDBK-006A].

Figure 2.7.  Sample Application Robustness Scenario.

16	 Application Service Quality

•	 ESSENTIAL (Service Availability Rating of 99.9%).  “Loss of this capability
would significantly raise the risk associated with providing safe and efficient
operations” [FAA-HDBK-006A].

•	 CRITICAL (Service Availability Rating of 99.999%).  “Loss of this capability
would raise to an unacceptable level, the risk associated with providing safe and
efficient operations” [FAA-HDBK-006A].

There is also a “Safety Critical” category, with service availability rating of seven
9s for life-threatening risks and services where “loss would present an unacceptable
safety hazard during the transition to reduced capacity operations” [FAA-HDBK-
006A]. Few commercial enterprises offer services or applications that are safety critical,
so seven 9’s expectations are rare.

The higher the service criticality the more the enterprise is willing to invest in
architectures, policies, and procedures to assure that acceptable service quality is con-
tinuously available to users.

2.4.2  Application Interactivity

As shown in Figure 2.8, there are three broad classifications of application service
interactivity:

•	 Batch or Noninteractive Type for nominally “offline” applications, such as
payroll processing, offline billing, and offline analytics, which often run for
minutes or hours. Aggregate throughput (e.g., time to complete an entire batch
job) is usually more important to users of an offline application than the time
to complete a single transaction. While a batch job may consist of hundreds,
thousands, or more individual transactions that may each succeed or fail indi-
vidually, each failed transaction will likely require manual action to correct
resulting in an increase in the customer’s OPEX to perform the repairs. While
interactivity expectations for batch operations may be low, service reliability
expectations (e.g., low transaction fallout rate to minimize the cost of rework)
are often high.

Figure 2.8.  Interactivity Timeline.

www.allitebooks.com

http://www.allitebooks.org

Application Service Quality Metrics	 17

•	 Normal Interactive Type for nominally online applications with ordinary inter-
activity expectations, such as routine web traffic (e.g., eCommerce), and com-
munications signaling. There is a broad range of interactivity expectations based
on application types, service providers, and other factors. For example, most
users will wait no more than a few seconds for ring back after placing a telephone
call or for the video on their IP TV to change after selecting a different channel,
but may wait longer for web-based applications, such as completing an eCom-
merce transaction. Interactive transaction response times are nominally measured
in hundreds or thousands of milliseconds.

•	 Real-Time Interactive Type for applications that are extremely interactive with
strict response time or service latency expectations. Interactive media content
(e.g., audio or video conferencing), gaming (e.g., first-party shooter games), and
data or bearer plane applications (e.g., firewalls and gateways) all have strict
real-time service expectations. Transaction response times for real-time applica-
tions are often measured in milliseconds or tens of milliseconds.

2.4.3  Tolerance to Network Traffic Impairments

Data networks are subject to three fundamental types of service impairments:

•	 Packet Loss.  Individual data packets can be discarded by intermediate systems
due to network congestion, corrupted in transit, or otherwise lost between the
sender and receiver.

•	 Packet Delay.  Electrical and optical signals propagate at a finite velocity, and
their flow through intermediate systems, such as routers and switches, takes finite
time. Thus, there is always some latency between the instant one party transmits
a packet and the moment that the other party receives the packet.

•	 Packet Jitter.  Variation in packet latency from packet to packet in a single data
stream is called jitter. Jitter is particularly problematic for isochronous data
streams, such as conversational audio or video, where the receiving device must
continuously render streaming media to an end user. If a packet has not arrived
in time to be smoothly rendered to the end user, then the end user’s device must
engage some lost packet compensation mechanism, which is likely to somewhat
compromise the fidelity of the service rendered and thus degrade the end user’s
quality of experience.

[RFC4594] characterizes tolerance to packet loss, delay, and jitter for common
classes of applications.

2.5  APPLICATION SERVICE QUALITY METRICS

While different applications offer different functionality to end users, the primary
service KQIs across the application’s customer facing service boundary for end users
of applications generally include one or more of the following:

18	 Application Service Quality

•	 Service availability (Section 2.5.1)

•	 Service latency (Section 2.5.2)

•	 Service reliability (Section 2.5.3)

•	 Service accessibility (Section 2.5.4)

•	 Service retainability (Section 2.5.5)

•	 Service throughput (Section 2.5.6)

•	 Service timestamp accuracy (Section 2.5.7)

•	 Application specific service quality measurements (Section 2.5.8).

Note that consistency of service quality is also important to users; measured
service quality performance should be consistent and repeatable from hour to hour
and day to day. Service consistency of branded information and communication ser-
vices are likely to be as important to end users as consistency of any other branded
product.

2.5.1  Service Availability

Availability is defined as the “ability of an IT service or other configuration item to
perform its agreed function when required” [ITIL-Availability]. Availability is mathe-
matically expressed in Equation 2.1, the availability formula:

	
Agreed Service Time – Outage Downtime

.
Agreed Service Time

Availability = 	 (2.1)

Agreed Service Time is the period during the measurement window that the system
should be up. For so-called 24 × 7 × Forever systems (sometimes awkwardly called
“24 × 7 × 365”), Agreed Service Time is every minute of every day; for systems that
are permitted planned downtime, the planned and scheduled downtime can be excluded
from Agreed Service Time. OutageDowntime is defined as: “the sum, over a given
period, of the weighted minutes, a given population of a systems, network elements or
service entities was unavailable divided by the average in-service population of systems,
networks element or service entities” [TL_9000]. Note that modern applications often
provide several different functions to different users simultaneously, so partial capacity
and partial functionality outages are often more common than total outages; partial
capacity or functionality outages are often prorated by portion of capacity or primary
functionality impacted.

Service availability measurements and targets generally reflect the service criti
cality of the affected applications (see Section 2.4.1, “Service Criticality”). For example,
consider the availability-related definitions used by popular IaaS supplier targeting
enterprise applications of nominally “essential” and “routine” criticality in which the
minimum chargeable downtime is at least 5 minutes: “Unavailable” means that all of
your running instances have no external connectivity during a five minute period and

Application Service Quality Metrics	 19

you are unable to launch replacement instances.* Critical services will generally have
much stricter service measurements and performance targets. For example, the telecom
industry’s quality standard TL 9000 uses the following outage definition: “all outages
shall be counted that result in a complete loss of primary functionality . . . for all
or part of the system for a duration greater than 15 seconds during the operational
window, whether the outage was unscheduled or scheduled” [TL_9000]. Obviously,
minimum chargeable outage duration of 15 seconds is far more stringent than minimum
chargeable outage duration of 5 minutes. In addition to stricter service performance
targets, critical services will often include more precise measurements, such as prorat-
ing of partial capacity or functionality impairments, rather than all-or-nothing measure-
ments (e.g., “no connectivity during a five minute period”). Outage events tend to be
rare acute events, with weeks, months, or years of outage-free operation punctuated by
an event lasting tens of minutes or even hours. Thus, availability or outage downtime
is often tracked on a 6-month rolling average to set outage events into an appropriate
context.

Requirements for this measurement are discussed in Section 13.1, “Service Avail-
ability Requirements.”

2.5.2  Service Latency

As shown in Figure 2.9, service latency is the elapsed time between a request and the
corresponding response. Most network-based services execute some sort of transactions
on behalf of client users: web applications return web pages in response to HTTP GET
requests (and update pages in response to HTTP PUT requests); telecommunications
networks establish calls in response to user requests; gaming servers respond to user
inputs; media servers stream content based on user requests; and so on.

In addition to detailed service latency measurements, such as time to load a web
page, some applications have service latency measurement expectations for higher level

Figure 2.9.  Service Latency.

*  “Amazon EC2 Service Level Agreement,” effective date: October 23, 2008, http://aws.amazon.com/
ec2-sla/ accessed on December 14, 2012.

http://aws.amazon.com/ec2-sla/
http://aws.amazon.com/ec2-sla/

20	 Application Service Quality

operations that include many discrete transactions, such as how many seconds or
minutes it takes to activate a new smartphone, or how long it takes to provision applica-
tion service for a new user. Well-engineered solutions will cascade the high-level
latency application expectations down to lower-level expectations to enable methodical
management of overall service latency.

Requirements for this measurement are discussed in Section 13.2, “Service Latency
Requirements.”

2.5.2.1  Traditional Causes of Latency Variations.  The latency between the
time a client sends a request and the time the client receives the response will inevitably
vary for reasons including:

•	 Request Queuing.  Rather than immediately rejecting requests that arrive the
instant when a resource is busy, queuing those requests increases the probability
that those requests will be served successfully, albeit with slightly greater service
latency. Assuming that the system is engineered properly, request queuing
enables the offered load to be served promptly (although not instantaneously)
without having to deploy sufficient system hardware to serve the busiest traffic
instant (e.g., the busiest millisecond or microsecond). In essence, request queuing
enables one to trade a bit of system hardware capacity for occasionally increased
service latency.

•	 Caching.  Responses served from cached memory are typically much faster than
requests that require one or more disk reads or network transactions.

•	 Disk Geometry.  Unlike random access memory (RAM), in which it takes the
same amount of time to access any memory location, disk storage inherently has
nonuniform data access times because of the need to move the disk head to a
physical disk location to access stored data. Disk heads move in two independent
directions:
○	 Rotationally as the disk storage platters spin
○	 Track-to-track, as the disk heads seek between concentric data storage rings

or tracks.
The physical layout of file systems and databases are often optimized to mini-
mize latency for rotational and track-to-track access to sequential data, but
inevitably some data operations will require more time than others due to physi-
cal layout of data on the disk.

•	 Disk Fragmentation.  Disk fragmentation causes data to be stored in noncontigu-
ous disk blocks. As reading noncontiguous disk blocks requires time-consuming
disk seeks between disk reads or writes, additional latency is introduced when
operating on fragmented portions of files.

•	 Variations in Request Arrival Rates.  There is inevitably some randomness
in the arrival rates of service requests, and this moment to moment variation
is superimposed over daily, weekly, and seasonal usage patterns. When offered
load is higher, request queues will be deeper, and hence queuing delays will
be greater.

Application Service Quality Metrics	 21

•	 Garbage Collection.  Some software technologies require periodic garbage col-
lection to salvage resources that are no longer required. When garbage collection
mechanisms are active, resources may be unavailable to serve application user
requests.

•	 Network Congestion or Latency.  Bursts or spikes in network activity can cause
the latency for IP packets traversing a network to increase.

•	 Unanticipated Usage and Traffic Patterns.  Database and software architectures
are configured and optimized for certain usage scenarios and traffic mixes. As
usage and traffic patterns vary significantly from nominal expectations, the con-
figured settings may no longer be optimal, and thus performance may degrade.

•	 Packet Loss and Corruption.  Occasionally IP packets are lost or damaged when
traveling between the client device and application instance, or between compo-
nents within the solution. It takes time to detect lost packets and then to retrans-
mit them, thus introducing latency.

•	 Resource Placement.  Resources that are held locally offer better performance
than resources held in a nearby data center, and resources held in a nearby data
center generally are accessible with lower latency than resources held in data
centers on distant continents.

•	 Network Bandwidth.  As all web users know, web pages load slower over lower
bandwidth network connections; DSL is better than dialup, and fiber to the home
is better than DSL. Likewise, insufficient network bandwidth between resources
in the cloud—as well as insufficient access bandwidth to users—causes service
latency to increase.

Application architectures can impact an application’s vulnerability to these latency
impairments. For example, applications that factor functionality so that more networked
transactions or disk operations are required are often more vulnerable to latency impair-
ments than applications with fewer of those operations.

2.5.2.2  Characterizing Service Latency.  Figure 2.10 shows the service latency
distribution of 30,000 transactions of one sample application. While the median (50th
percentile) service latency is 130 ms, there is a broad range of responses; the slowest
response in this data set (1430 ms) is more than 10 times slower than the 50th percentile.
As one can see from this cumulative distribution, the latency “tail” includes a few outli-
ers (sometimes called “elephants”) that are significantly slower than the bulk of the
population. As these tail values can be far slower than typical (e.g., 50th or 90th per-
centile) latency, it is useful to methodically characterize the latency statistics of the tail
across millions of transactions, rather than the thousands of samples in the data set of
Figure 2.10.

Individually recording the service latency of each transaction and then directly
analyzing hundreds of thousands, millions or more data points is often infeasible, and
thus it is common for service latency measurements to be recorded in measurement
buckets or bins (e.g., less than 30 ms, 30–49 , and 50–69 ms). Figure 2.11 shows service
latency based on binned measurements for a real-time Session Initiation Protocol (SIP)

22	 Application Service Quality

application running on virtualized infrastructure. Figure 2.11 gives service latency at
three different workload densities—“X,” 1.4 times “X,” and 1.7 times “X”—and one
can see that typical (e.g., 50th percentile and 90th percentile) latencies are consistent,
while the best case latency (e.g., fastest 25%) degrades slightly as workload density
increases.

As the linear cumulative distribution function (CDF) of Figure 2.11 obscures the
latency tail along the “100%” line, a logarithmic complementary cumulative distribu-
tion function (CCDF) is the best way to visualize the latency tail. Note that while the
CDF uses a linear scale for distribution on the y-axis, the CCDF uses a logarithmic
scale on the y-axis to better visualize the extreme end of the tail. Figure 2.12 gives a
CCDF of the same application’s latency data set of Figure 2.11, and the tail behaviors
for nominally the slowest 1 in 50,000 operations are radically different, with the slowest
1 in 100,000 operations of the 1.7 times “X” density being several times greater than
at density 1.4 times “X.” Thus, if the quality of service criteria considered only typical

Figure 2.10.  Small Sample Service Latency Distribution.

Figure 2.11.  Sample Typical Latency Variation by Workload Density.

Application Service Quality Metrics	 23

(e.g., 50th percentile and 90th percentile) service latency, then the density of 1.7 times
X workload—or perhaps even higher—might be acceptable. However, if the QoS cri-
teria considered tail (e.g., 99.999th percentile or 10−5 on the CCDF) service latency,
then the 1.4 times X workload might determine the maximum acceptable density.

While actual measured latency data often produces rather messy CCDFs, the results
can be analyzed by considering the statistical distribution of the data. Figure 2.13
overlays three classes of statistical distributions onto a CCDF:

•	 Concave (e.g., normal) distributions fall off very quickly on semi-log CCDF
plots. For example, the slowest one in 105 might be only three times slower than
the slowest one in 10 operations.

•	 Exponential distributions plot as straight lines on semi-log CCDFs, so the slowest
one in 105 might be five times slower than the slowest one in 10 operations.

Figure 2.12.  Sample Tail Latency Variation by Workload Density.

Figure 2.13.  Understanding Complimentary Cumulative Distribution Plots.

24	 Application Service Quality

•	 Convex (e.g., power law) distributions fall off slower than exponential distribu-
tions, so the slowest one in 105 operations might be several tens of times slower
than the slowest one in 10 operations.

As one can see from Figure 2.12, real distributions might blend several classes of
theoretical distributions, such as having a normal distribution to the slowest one in 104
operations, and becoming power law farther out in the tail (perhaps starting around the
slowest one in 50,000 operations).

2.5.2.3  Optimizing Service Latency.  There are two broad service latency related
characteristics that one can attempt to optimize (visualized in Figure 2.14):

•	 Minimizing “typical” latency, to shave milliseconds (or microseconds) off the
typical or 50th percentile latency to improve median performance

•	 Minimizing “tail” latency, to reduce the number of operations that experience
service latencies far beyond “typical,” thereby shrinking the latency “tail” to
reduce distribution variance by eliminating elephants.

As the root causes of typical and tail latency are often different, it is important to
agree on exactly what characteristic to optimize so the applicable root causes can be
identified and proper corrective actions deployed.

2.5.3  Service Reliability

Reliability is defined by [TL_9000] as “the ability of an item to perform a required
function under stated conditions for a stated time period.” Service reliability is the
ability of an application to correctly process service requests within a maximum accept-
able time. Service reliability impairments are sometimes called defective, failed, or
fallout operations. While service reliability can be measured as a probability of success

Figure 2.14.  Service Latency Optimization Options.

Application Service Quality Metrics	 25

(e.g., 99.999% probability of success), probabilistic representations are not easy for
many people to understand and are mathematically difficult to work with. Instead,
sophisticated customers and suppliers often measure service reliability as defective (or
failed) operations per million attempts (DPM). For example, seven defective operations
per million attempts is much easier for most people to grasp than 99.9993% service
reliability. In addition, DPM can often be combined by simply summing the DPM
values along the critical service delivery path. Requirements for this measurement are
discussed in Section 13.3, “Service Reliability Requirements.”

2.5.4  Service Accessibility

Application service accessibility is the probability of a user successfully establishing a
new application service session or connection, such as to begin streaming video content
or to begin an audio call or start an interactive game. Applications often have specific
service accessibility metrics, such as telephony service accessibility impairments,
which are sometimes called “failed call attempts.” Service accessibility is sometimes
used as a proxy for service availability, such as in “ ‘Availability’ or ‘Available’ means
that Customer is able to log on to the Application. . . .” Note that this work does not
consider accessibility of application service for users with physical disabilities who
may require modified service input, rendering of output, or operation. Requirements
for this measurement are discussed in Section 13.4, “Service Accessibility
Requirements.”

2.5.5  Service Retainability

It is important to users of session-oriented services—like streaming video—that their
session continue to operate uninterrupted with acceptable service quality until the
session terminates normally (e.g., the streaming video completes). Service retainability
is the probability that an existing service session will remain fully operational until the
end user requests the session be terminated. Applications often have application-specific
service retainability metrics, such as “dropped calls” or “premature releases” for tele-
phony service retainability impairments. As the risk of a service retention failure
increases with the duration of the service session, retainability is often either explicitly
normalized by time (e.g., risk per minute of service session) or implicitly (e.g., retention
risk for a 90-minute movie or a 10-minute online game or a 3-minute telephone call).
For example, the risk of abnormal service disconnection during a 30-minute video call
is nominally 10 times higher than the risk of disconnection for a 3-minute video call.
Thus, retainability is the probability that an unacceptable service impacting event will
affect a single user’s active service session during the normalization window (e.g., per
minute of user session). Requirements for this measurement are discussed in Section
13.5, “Service Retainability Requirements.”

2.5.6  Service Throughput

Service throughput is the sustained rate of successful transaction processing, such as
number of transactions processed per hour. Service throughput is generally considered

26	 Application Service Quality

a service capacity indicator, but failure to meet service throughput expectations for a
(nominally) properly engineered configuration is often seen as a service quality problem.
Service throughput is coupled to service reliability, since customers care most about
successfully processed operations—sometimes called “goodput”—rather than counting
unsuccessful or failed operations. For example, an application in overload may suc-
cessfully return properly formed TOO BUSY responses to many user service requests
to prevent application collapse, but few users would consider those TOO BUSY
responses as successful throughput or goodput. Thus, sophisticated customers may
specify throughput with a maximum acceptable transaction or fallout rate. Require-
ments for this measurement are discussed in Section 13.6, “Service Throughput
Requirements.”

2.5.7  Service Timestamp Accuracy

Many applications must carefully record timestamps for billing, regulatory compliance,
and operational reasons, such as fault correlation. Some applications and management
systems use timestamps to record—and later reconstruct—sequence and chronology of
operations, so erroneous timestamps may produce a faulty chronology of the sequence
of operations/events. While regulatory compliance and operational considerations may
not be concerns of end users, operations and compliance staff are special users of many
applications, and they may rely on accurate timestamps to do their jobs. As will be
discussed in Section 4.7, “Clock Drift,” virtualization can impact the accuracy of real
time perceived by application and guest OS software executing in a virtual machine
instance relative to universal coordinated time (UTC) compared with execution on
native hardware. Requirements for this measurement are discussed in Section 13.7,
“Timestamp Accuracy Requirements.”

2.5.8  Application-Specific Service Quality Measurements

Classes of applications often have application-specific service quality measurements
that are tailored to the specific application, such as:

•	 Mean Opinion Score characterizes the overall quality of experience as perceived
by end users, especially for streaming services, such as voice calling, interactive
video conferencing, and streaming video playback. Mean opinion scores (MOS)
[P.800] are typically expressed via the five-point scale in Table 2.1.

TABLE 2.1.  Mean Opinion Scores [P.800]

MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

www.allitebooks.com

http://www.allitebooks.org

Technical Service versus Support Service	 27

Service quality metrics of streaming applications are primarily impacted
by the coding and decoding (aka codec) algorithm and implementation, packet
loss, packet latency and packet jitter. Sophisticated client applications can mask
service quality impairments from the user by implementing dejitter buffers to
mitigate minor packet delivery variations and implementing lost packet compen-
sation algorithms when individual data packets are not available in time. Service
quality impairments result in a worse overall quality of experience for the end
user. High service quality for many applications requires low latency, low jitter,
and minimal packet loss, although the degree of tolerance for jitter and packet
loss is application and end user dependent. Service quality is primarily consid-
ered at the end user’s physical rendering interface, such as the audio played to
user’s ear or the video rendered before the user’s eyes. Rendering of audio, video,
and other service to users inherently integrates service impairments of the appli-
cation itself along with packet latency, loss, and jitter across the access and wide
area networking, as well as the quality and performance of the devices that both
encoded and decoded the content. For example, the voice quality of wireless
calls is limited by the voice coder/decoder (aka codec) used, the latency, jitter,
and packet loss of the wireless access network, as well as the presence or absence
of audio transcoding. The overall service quality impact of any individual com-
ponent in the service delivery path (e.g., a cloud based application) is generally
difficult to quantitatively characterize. End-to-end service quality is considered
in Chapter 10, “End to End Considerations.”

•	 Audio/Video Synchronization (aka “lip sync”), Synchronization of audio and
video is a key service quality for streaming video because if speech is shifted
by more than about 50 ms relative to video images of the speaker’s lips moving,
then the viewers’ quality of experience is degraded.

2.6  TECHNICAL SERVICE VERSUS SUPPORT SERVICE

The term “service quality” associated with applications is often used in two rather
different contexts: technical service quality (Section 2.6.1) of an application instance
or support service quality (Section 2.6.2) offered by a supplier or service provider to
their customers. Throughout this book, the term “service quality” shall refer to techni-
cal service quality, not support service quality.

2.6.1  Technical Service Quality

Technical service quality characterizes the application service delivered to users across
the customer facing service boundary, such as service availability (Section 2.5.1),
service latency (Section 2.5.2), and service reliability (Section 2.5.3).

2.6.2  Support Service Quality

Both suppliers and service providers routinely offer technical support services to their
customers. Many readers will be familiar with traditional helpdesks or customer support

28	 Application Service Quality

service arrangements. As with technical service KQIs, support service KQIs vary based
on the type of application or service being supported. Support service KQIs generally
include three metrics:

•	 Respond.  How quickly the provider is able to respond to the customer’s request
for assistance. For example, the time to answer a telephone call for assistance is
a common response time metric; customers may expect different response times
when calling 911 to request emergency assistance compared with calling their
credit card company to address a billing issue. The start and stop points for
support service respond times will vary based on industry practices and supplier
policies.

•	 Restore.  How quickly service is restored. Note that service is sometimes restored
via a workaround, such as a temporary configuration change or restarting a hung
process.

•	 Resolve.  Problems are typically resolved by correcting the true root cause(s),
such as installing a software patch that corrects a residual defect that escaped
into production software. Industry practices and supplier policies will dictate
exactly when a problem is considered resolved, such as upon a patch or fix being
scheduled for delivery, or a patch or fix actually being delivered, or a patch or
fix actually being installed and verified in the production environment.

Only aspects of support service that directly relate to addressing technical service
quality outages and impairments are considered in this work.

2.7  SECURITY CONSIDERATIONS

Security attacks are a chronic risk for both traditional and cloud-based applications.
Quality and reliability diligence is concerned with assuring that legitimate traffic is
served with acceptable quality; security diligence addresses rejecting nonlegitimate
traffic and myriad other security risks. Security attacks can directly impact the avail-
ability, accessibility, throughput, and quality of an application service via Distributed
Denial of Service (DDoS) attacks, or impact service reliability and correctness by
tampering with application data or configuration information. Security processes and
practices are separable from quality and reliability processes, but should be worked in
parallel. Computer security in general, and cloud security in particular, are active and
important topics that are beyond the scope of this work. Readers are encouraged to
consult security resources like [CSA] for more information on this crucial topic.

3

CLOUD MODEL

Cloud computing is fundamentally a business model that enables organizations and
individuals to outsource the ownership and operation of the compute, memory, storage,
and networking of the hosts that support the organizations’ and individuals’ applications
to cloud service providers. This shifts computing to a utility model, such as electricity,
water, telephony, broadband internet, and so on, in that that a service provider owns
and operates the necessary equipment and facilities to deliver computing service and
consumers are able to use service on demand. NIST [NIST] defines cloud computing as:

a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction. This cloud
model is composed of five essential characteristics, three service models, and
four deployment models. [SP800-145]

This chapter reviews the standard roles, service models, and essential characteris-
tics of cloud computing. The chapter concludes with a brief description of cloud regions
and availability zones.

29

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

30	 Cloud Model

3.1  ROLES IN CLOUD COMPUTING

Figure 3.1 visualizes the cloud consumer and cloud provider roles on the simple appli-
cation model used in Chapter 2, “Application Service Quality.” This work focuses on
cloud consumers because they often have primary responsibility for application service
quality, and on cloud service providers, because they often have primary responsibility
for the infrastructure service quality.

The cloud consumer offers application service to end users by selecting and inte-
grating software components from application suppliers that are hosted on compute
infrastructure provided by one or more cloud service providers. One or more cloud or
IP carriers provide network connectivity between cloud data centers and end users.

3.2  CLOUD SERVICE MODELS

NIST defines three cloud service models:

•	 Infrastructure as a Service (IaaS).  The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications [SP800-145].

•	 Platform as a Service (PaaS).  The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applications
created using programming languages, libraries, services, and tools supported by
the provider [SP800-145].

•	 Software as a Service (SaaS).  The capability provided to the consumer is to use
the provider’s applications running on a cloud infrastructure. The applications

Figure 3.1.  Cloud Roles for Simple Application.

Cloud Essential Characteristics	 31

are accessible from various client devices through either a thin client interface,
such as a web browser (e.g., web-based email), or a program interface
[SP800-145].

The customer facing service boundary of the IaaS or PaaS service provider is the
resource facing service boundary of the cloud-based application. As this work focuses
on cloud-based applications, this work will consider the IaaS/PaaS-to-application
service boundary as the application’s resource facing service boundary.

3.3  CLOUD ESSENTIAL CHARACTERISTICS

The five essential characteristics of cloud computing [SP800-145] are:

1.	 On-demand self-service (Section 3.3.1)

2.	 Broad network access (Section 3.3.2)

3.	 Resource pooling (Section 3.3.3)

4.	 Rapid elasticity (Section 3.3.4)

5.	 Measured service (Section 3.3.5).

The highest level application service quality risk of each essential characteristic is
considered separately.

3.3.1  On-Demand Self-Service

On-demand self-service is defined as “a consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically without
requiring human interaction with each service provider” [SP800-145]. On-demand self-
service enables cloud-based applications to be vastly more dynamic than traditional
applications because new resources can be allocated and deallocated on-the-fly by cloud
consumers. This naturally results in more configuration and capacity changes being
executed, and many of these on-demand changes will happen during moderate to heavy
usage periods when it is convenient for cloud consumers rather than deliberately post-
poning the changes to low usage maintenance periods (e.g., in the middle of the night).
Thus, provisioning actions must become more reliable for cloud-based applications to
maintain high service availability and quality despite more frequent on-demand con-
figuration changes happening during moderate to heavy application usage periods.

3.3.2  Broad Network Access

Broad network access is defined as “capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous thin or thick
client platforms” [SP800-145]. End users consume cloud-based applications via IP
access and wide area networks. End-to-end service quality is considered in Chapter 10,
“End-to-End Considerations.”

32	 Cloud Model

3.3.3  Resource Pooling

Resource pooling is defined as “the provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand. . . .
Examples of resources include storage, processing, memory, and network bandwidth”
[SP800-145]. Traditionally, applications and their supporting operating systems are
deployed directly onto native hardware, so nominally the full capacity of the compute,
memory, storage, and networking resources offered by the hardware are constantly
available to the application subject to timesharing by the operating system. Sharing
pooled resources across multiple consumers inevitably increases the risk of resource
contention, including “Delivery of Degraded VM Capacity” (Section 4.4), increased
“Tail Latency” (Section 4.5), and “Clock Event Jitter” (Section 4.6). The application
service quality risks caused by the infrastructure due to resource-sharing policies and
technologies (e.g., virtualization) are a focus of this work.

3.3.4  Rapid Elasticity

Rapid elasticity is defined as “capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any time” [SP800-145]. Figure
3.2 illustrates the three fundamental elastic growth strategies:

•	 Horizontal Growth.  Adding more resource instances (e.g., VMs and virtual disk
volumes to an existing application instance). “Scale out” refers to horizontal
growth actions, such as adding more VM instances; “scale in” refers to horizontal
degrowth (i.e., shrink) operations.

•	 Vertical Growth.  Increasing the resource allocation for existing resource
instances to an existing application instance (e.g., increasing memory allocation

Figure 3.2.  Elastic Growth Strategies.

Simplified Cloud Architecture	 33

of an existing VM instance or maximum disk allocation of an existing virtual
storage device). “Scale up” refers to vertical growth actions, such as growing
the size of a previously allocated virtual disk partition; “scale down” refers to
vertical degrowth (i.e., shrink) operations. Note that an option for vertical growth
is to replace a previously allocated VM with a larger instance.

•	 Outgrowth.  Typically means instantiating a new application instance in another
cloud data center.

Elastic measurements are discussed in Section 3.5, and elasticity growth and
degrowth is analyzed in detail in Chapter 8, “Capacity Management.”

3.3.5  Measured Service

Measured service is defined as “cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active user accounts).
Resource usage can be monitored, controlled, and reported, providing transparency for
both the provider and consumer of the utilized service” [SP800-145]. Combining mea-
sured service with on demand elasticity enables cloud consumers to proactively manage
how much application capacity is online across time. Chapter 8, “Capacity Manage-
ment,” considers how the errors and failures encountered while managing the applica-
tion capacity online can lead to insufficient capacity being provided to serve the offered
workload with acceptable service quality.

3.4  SIMPLIFIED CLOUD ARCHITECTURE

PaaS is inherently less well-defined than either IaaS (at the bottom of the cloud service
model stack) or SaaS (at the top of the cloud service model stack). Rather than focusing
on where the IaaS : PaaS or PaaS : SaaS dividing line should be, this work considers a
simplified cloud model comprised of five logical components:

•	 Application software (Section 3.4.1)

•	 Virtual machine servers (Section 3.4.2)

•	 Virtual machine server controllers (Section 3.4.3)

•	 Cloud operations support systems (Section 3.4.4)

•	 Cloud technology components offered “as-a-Service” (Section 3.4.5).

Figure 3.3 illustrates how the first four simplified component types interact.
Technology components offered “as-a-Service”— such as Database-as-a-Service—are
logically black boxes that applications can configure and use and can be considered
PaaS components.

34	 Cloud Model

3.4.1  Application Software

The application instance is an entity that includes the application software compo-
nents and their guest OSs instantiated in a suite of virtual machines. Traditionally,
application quality measurements are normalized against either network element or
system instances. The standard definitions of network element and system* do not
fit perfectly to cloud deployment, but Chapter 12, “Service Availability Measure-
ment,” offers a parsimonious adaptation of these concepts to cloud-based application
deployment.

Figure 3.3.  Simple Model of Cloud Infrastructure.

*  “System” is defined by [TL_9000] as: “A collection of hardware and/or software items located at one or
more physical locations where all of the items are required for proper operation. No single item can function
by itself.” “Network Element” (NE) is defined by [TL_9000] as: “A system device, entity or node including
all relevant hardware and/or software components located at one location. The Network Element (NE) must
include all components required to perform the primary function of its applicable product category. If multiple
FRUs, devices, and/or software components are needed for the NE to provide its product category’s primary
function, then none of these individual components can be considered an NE by themselves. The total col-
lection of all these components is considered a single NE. Note: While an NE may be comprised of power
supplies, CPU, peripheral cards, operating system and application software to perform a primary function,
no individual item can be considered an NE in its own right.”

Simplified Cloud Architecture	 35

3.4.2  Virtual Machine Servers

Virtual machine servers physically host virtual machine instances. Figure 3.4 illustrates
a virtual machine server consisting of a number of virtual machine instances hosted by
a virtual machine manager or hypervisor software executing on some server or general
purpose computer. Virtual machine server elements will often be built from large pools
of rack-mounted servers (RMS) and delivered as preconfigured racks—or even ship-
ping containers—of equipment. Note that VM instances are ephemeral and likely to be
created on the fly and be active for hours, days, weeks, or months before being deal-
located. The physical hardware supporting the virtual machine server is expected to be
in service for years.

3.4.3  Virtual Machine Server Controllers

Virtual machine servers enable efficient resource sharing to permit many applications
to be consolidated onto far less hardware than with traditional, dedicated hardware
configurations. Increasing the scale of application consolidation and resource sharing
drives down operational expenditure (OPEX), and ultimately gave rise to so-called
warehouse-scale computing. To efficiently operate pools of virtual machine servers,
specialized online critical operations support systems (OSSs) referred to in this work
as virtual machine server controllers are required. Virtual machine server controllers
allocate, manage, and control virtual machine instances—including the corresponding
hardware resources—hosted across one or more virtual machine servers. These control-
lers play a critical role in minimizing user service impact to applications running on
the virtual machine servers, such as enforcing application specific anti-affinity rules to
assure that no individual virtual machine server becomes a single point of failure for
applications (see Section 7.2.4, “No Single Point of Failure Assurance in Cloud Com-
puting”). These controllers will be involved in service orchestration and federated to

Figure 3.4.  Abstract Virtual Machine Server.

36	 Cloud Model

support cloud bursting. While virtual machine servers naturally focus on individual
virtual machine instances, virtual machine server controllers are likely to control the
mapping of individual application instances into sets of virtual machine instances that
are likely to be distributed across multiple virtual machine servers.

3.4.4  Cloud Operations Support Systems

Operations support systems (OSSs) provide myriad support functions to operate,
administer, maintain, and provision applications running on virtual machine servers,
and to support the cloud infrastructure itself. For example, OSSs support orchestration
of on boarding of applications, elastic growth, cloud bursting, and related service man-
agement functions. OSS functionality is often distributed across multiple types and
instances of interworking support systems. For instance, executing application out-
growth to another cloud data center inevitably requires careful coordination by one or
more OSSs, with the virtual machine server controllers managing the virtual machine
servers in the applicable cloud data centers.

3.4.5  Cloud Technology Components Offered “as-a-Service”

Cloud computing encourages customers and service providers to treat common standard
technology components as services rather than software products. Thus, rather than
being forced to purchase a technology component, such as a database management
system or load balancer outright, then install, operate, and maintain it to enable another
application to operate, cloud encourages a service provider to offer the technology
component “as-a-Service.” The technology component as-a-service offering reduces
both CAPEX and OPEX for most cloud consumers, and enables them to focus on
adding value for the enterprise rather than investing in maintenance and operation of
industry standard technology components. For this analysis, these technology compo-
nents offered “as-a-Service” will simply be treated as component instances that inter-
work with application components to deliver application service to end users.

3.5  ELASTICITY MEASUREMENTS

Rapid elasticity of online capacity offers fundamentally new functionality beyond what
was traditionally supported for native applications, and thus new service metrics are
appropriate to measure the key quality characteristics of an application’s rapid elasticity.
The cloud computing industry has not yet formally standardized a complete suite of
elasticity metrics, so the authors will use the following elasticity measurement concepts
in this work:

•	 Density (Section 3.5.1)

•	 Provisioning interval (Section 3.5.2)

•	 Release interval (Section 3.5.3)

www.allitebooks.com

http://www.allitebooks.org

Elasticity Measurements	 37

•	 Scaling in and out (Section 3.5.4)

•	 Scaling up and down (Section 3.5.5)

•	 Agility (Section 3.5.6)

•	 Slew rate and linearity (Section 3.5.7)

•	 Elasticity speedup (Section 3.5.8).

3.5.1  Density

[SPECOSGReport] proposes a density measurement for cloud that “measures how
many instances of the workload can be run on the [unit under test] before performance
degrades below a specified [quality of service].” Different cloud service providers’
virtualized infrastructures will support somewhat different densities (e.g., workload per
VM instance) for the same application based on factors such as:

•	 The underlying hardware components and architecture

•	 The hypervisor and host software

•	 The cloud service provider’s operational policies and infrastructure
configuration.

VM density is impacted by both the application’s architecture, as well as the quality
of virtualized infrastructure delivered by the cloud service provider. Figure 2.12 showed
how tail latency behavior can be significantly influenced by workload density. Degraded
delivery of virtualized resources (see Section 4.4, “Delivery of Degraded VM Capac-
ity”) may reduce the workload that can be consistently served with acceptable service
quality. For example, as the workload increases, the cloud infrastructure may begin to
discard IP packets at the busiest moments; timeout expiration and retransmission of
those discarded packets adds directly to the tail of the application’s service latency
distribution. If a cloud service provider’s virtualized infrastructure does not consistently
deliver sufficient resource throughput with acceptable quality to the application, then
the application will typically need to grow horizontally to decrease density so the
application latency (especially the tail) is less degraded.

3.5.2  Provisioning Interval

Traditionally, it took days or weeks for customers to order and take delivery of physical
compute, memory, networking, or storage hardware, which could then be manually
installed before application software could be reconfigured to use the additional resource
capacity. Cloud computing dramatically reduces that logistical delay for acquiring
resources from days or weeks to minutes or less. [SPECOSGReport] proposes a pro-
visioning interval measurement for cloud, which is “the time between initiating the
request to bring up a new resource or to relinquish it, and when the resource is either
ready to serve the first request or when it serves the first request.” Figure 3.5 visualizes
provisioning interval TGrow for horizontal growth of online capacity. The interval begins
when a cloud OSS, human, or other entity initiates elastic growth of online application
capacity. The interval includes the following:

38	 Cloud Model

1.	 Cloud OSS requesting additional virtual resources (e.g., VM instances) from
cloud infrastructure.

2.	 Cloud service provider successfully allocating additional virtual resources and
assigning them to the cloud consumer.

3.	 Initializing application software into newly allocated or grown virtual resources.

4.	 Verifying the new application component works properly, such as via test traffic
or other operational readiness verification.

5.	 Synchronizing and assimilating the new or grown virtual resource(s) with preex-
isting application components.

The interval ends when the new application capacity is available to serve user
traffic. Note that the provisioning interval can be applied to growth of both VM
instances and to persistent storage.

Elastic growth is quantized into discrete units of application capacity driven by the
quanta of resource offered by the cloud service provider, typically VM instance. Figure
3.5 shows application capacity increasing by CGrow. One can thus define a logical
growth density measurement by considering the unit of application capacity (CGrow) per
quanta of virtualized cloud resource (e.g., virtual machine instance). For example, an
application may add capacity for 100 additional active users (i.e., CGrow = 100 users)
per virtual machine instance grown.

Provisioning interval is largely determined by the application’s architecture and
elastic growth procedures, but the interval needed by the cloud service provider to
allocate additional virtual resources as well as the availability of sufficient resources is
in the critical path and thus impacts the overall interval. Note that elastic growth actions
routinely happen when the application instance is under heavy and growing load, so
application performance may be more sluggish than when the application instance is
under light or moderate load.

Figure 3.5.  Provisioning Interval (TGrow).

Elasticity Measurements	 39

3.5.3  Release Interval

Since workloads shrink as well as grow, elastic applications should be engineered to
gracefully release resources when they are no longer required. While the time required
to release excess application capacity is not likely to impact user service, this measure-
ment may be important when the offered workload whipsaws (see Section 8.9, “Work-
load Whipsaw”). Figure 3.6 visualizes a timeline for resource release. The release
interval (TShrink) begins when the cloud OSS, human, or other entity decides to initiate
a capacity degrowth action and includes:

1.	 Selecting virtualized resource(s) to release.

2.	 Blocking new traffic from being assigned to selected resource(s).

3.	 Draining or migrating active traffic away from the selected resource(s). Note that
if traffic does not naturally drain away from the selected resource(s) fast enough,
then traffic may be terminated.

4.	 Releasing selected resource(s) back to cloud service provider.

CShrink is the unit of application capacity that is diminished by the release action.
CGrow and CShrink will often be equal (e.g., an application can both grow and shrink online
capacity one VM instance at a time). As resources are often billed on an hourly basis,
there is seldom much business value in shaving seconds or minutes off of TShrink because
it has no impact on user service, and if resource usage is billed by the hour, then small
reductions in TShrink will likely produce negligible OPEX savings.

The release interval may be dominated by the time required to drain or migrate
traffic from the resource to be released. The nature of the application (e.g., stateful and
session oriented vs. stateless) along with the role of the target resource in service deliv-
ery and the cloud consumer’s willingness to impact users’ service drives also impact
how aggressively traffic can be drained from resources being released.

Figure 3.6.  Release Interval TShrink.

40	 Cloud Model

3.5.4  Scaling In and Out

Figure 3.7 illustrates scale in and scale out for horizontal elasticity. Typically, applica-
tions have a fixed overhead for supervisory and control functions (ROverhead in Figure
3.7). This fixed overhead ROverhead must be instantiated before the first unit of
user service-capacity RGrow can be instantiated to serve the application instance’s first
user. Thus, the application instance requires ROverhead plus one unit of RGrow to serve the
first user.

As shown in Figure 3.8, application resource usage can grow by units of RGrow
(e.g., discrete VM instances) to increase online service capacity by units of CGrow.

Figure 3.7.  VM Scale In and Scale Out.

Figure 3.8.  Horizontal Elasticity.

Elasticity Measurements	 41

The maximum supported online capacity for an application instance is often
limited by:

•	 Internal Algorithms.  For example, linear searching across unsorted datasets
becomes impractical when the dataset becomes too large, so more powerful data
arrangements are necessary before the maximum capacity limit can be increased.

•	 Static Allocations.  If a nonelastic data structure is statically allocated for the
application at startup time (e.g., table of active user sessions, open files, worker
VM instances, etc), then that allocation can limit the maximum capacity of the
application instance.

•	 License Limit.  For commercial reasons, applications may deliberately limit
capacity growth. For example, if a cloud consumer has licensed only “X” simul-
taneous user sessions of capacity for a technology component used by the appli-
cation, then the application should prohibit capacity growth beyond that licensed
capacity.

•	 External Constraints.  The maximum useful capacity of an application instance
may be limited by the capacity of supporting systems, such as payment gateway
request processing from a credit card payment processor.

•	 Financial Constraints.  The cloud consumer may constrain the maximum per-
mitted application capacity to prevent overrunning the organization’s budget.

3.5.5  Scaling Up and Down

Figure 3.9 illustrates scale up and scale down with vertical elastic growth. Theoretically,
one could scale up or down resources, such as RAM allocation, number of CPU cores,
size of disk partitions, CPU clock rate, and I/O bandwidth. Taking advantage of elastic
online vertical growth of some resources (e.g., CPU cores) may be infeasible or imprac-
tical for most guest OSs and applications, but online vertical growth of other resources
(e.g., CPU clock rate and I/O bandwidth) is often very natural. Thus, applications may
support online vertical growth (scale up) of some resources (e.g., CPU clock rate), but
not of other resources (e.g., CPU cores).

Note that horizontal growth need not always grow by the same size resource. For
example, an application could theoretically start by growing one size virtual machine

Figure 3.9.  Scale Up and Scale Down of a VM Instance.

42	 Cloud Model

(e.g., two-CPU core) and as the application continued to grow horizontally, it could
potentially scale up the unit of growth (e.g., growing by four-CPU core VM instances).

3.5.6  Agility

[SPECOSGReport] proposes a capacity agility measurement for cloud that “character-
izes the ability to scale the workload and the ability of a system provisioned to be as
close to the needs of the workload as possible.” Essentially, this characterizes how
closely online application capacity can track with the offered workload, and this is
fundamentally limited by the unit of capacity growth (CGrow from Figure 3.5) and capac-
ity degrowth (CShrink from Figure 3.6) that are supported by the application. The linkage
of capacity growth quanta and capacity agility is easily understood from the visualiza-
tion in Figure 3.10. Each growth action adds CGrow extra capacity; the smaller that unit
of growth, the closer the online capacity can track to offered workload.

Note that like physical inventory for a retailer, spare online capacity is not inher-
ently a bad thing. The trick is to carefully manage the “inventory” of spare online
capacity so that fluctuations in offered workload can efficiently be served with accept-
able service quality while minimizing both the cloud consumer’s user service quality
risk and their OPEX. Thus, capacity agility is an important application characteristic,
but the cloud consumer’s operational policies, as well as the application’s provisioning
interval TGrow, will determine how much spare online capacity is actually maintained.

CGrow is fundamentally determined by both how cloud service providers quantize
resources (e.g., offering VM instances with whole numbers of CPUs and fixed RAM
allocations), as well as the application’s architecture. Chapter 8, “Capacity Manage-
ment,” considers this topic in more detail, but the trade-off often comes down to bal-
ancing the smallest unit of CGrow without consuming too much resource in overhead
(e.g., guest OS instances along with management and control functionality), as well as
the increased OPEX and complexity associated with managing more small component
instances rather than fewer large component instances.

Figure 3.10.  Idealized (Linear) Capacity Agility.

Elasticity Measurements	 43

3.5.7  Slew Rate and Linearity

Electrical engineers use the concept of slew rate to characterize how quickly the output
of an amplifier can track with a dramatic change in the input, as shown in Figure 3.11.

As with amplifiers, rapid elasticity is incapable of instantaneously tracking work-
load swings. Instead, slew rate characterizes the unit of capacity growth (CGrow) that
can be added in a provisioning interval TGrow (Section 3.5.2, “Provisioning Interval”).
Thus, an application’s maximum capacity slew rate is the maximum CGrow divided by
TGrow. As shown in Figure 3.12, slew rate captures the “bulk” behavior application
elasticity, such as how much application capacity can grow in one or more hours.

Linearity of elastic growth considers the rate of CGrow divided by TGrow (i.e., the
slope or slew rate) across the application’s entire elastic range from CMin to CMax. For
example, does the typical value of TGrow remain constant across the application’s entire
elastic range, or does TGrow increase (or decrease) as online capacity approaches CMax?
Likewise, the linearity of elastic degrowth is considered by examining CShrink divided
by TShrink from CMax to CMin. If elasticity is not linear across the application’s entire

Figure 3.11.  Slew Rate of Square Wave Amplification.

Figure 3.12.  Elastic Growth Slew Rate and Linearity.

44	 Cloud Model

capacity range, then the elasticity policies will need to assure that automated application
elasticity policies can track varying workloads even when traffic surges while the
application is at the most sluggish point on its elasticity growth curve.

3.5.8  Elasticity Speedup

[SPECOSGReport] proposes an elasticity speedup measurement for cloud character-
izing any performance improvement from increasing resources. In essence, if allocated
resources are increased by “X” then will application throughput increase substantially?
An example of a process that enjoys elasticity speedup is cleaning a house: the more
people who pitch in, the faster the house is cleaned. The canonical example of a process
that does not enjoy an elasticity speedup is having a baby: while one woman can make
a baby in 9 months, nine women cannot make a baby in 1 month. An example cloud-
based application that might experience elasticity speed up is building application
software binaries because individual software modules can be compiled in separate VM
instances in parallel. For instance, if a software application includes 1000 source code
files that must be compiled, then instantiating more VM instances to simultaneously
compile those files should shorten overall job completion time.

Elasticity speedup is driven by the application’s architecture. Elasticity speedup
benefits may be linear for incremental resource growth after discounting resources
consumed by application overhead, including coordination and control of user traffic.

3.6  REGIONS AND ZONES

Traditionally, enterprises arranged for geographically distant data centers to be promptly
available to enable business continuity following a disaster event that renders a data
center unavailable or inaccessible. Cloud computing makes it simpler to arrange for
disaster recovery service at a cloud data center that is physically far enough from the
primary data center that no single event will impact both sites. Cloud changes the
economics of application deployment so it may become practical to deploy application
instances to multiple geographically dispersed data centers, all of which actively serve
traffic rather than relying on a single primary site and a cold or warm disaster recovery
site.

Some cloud service providers implement availability zones within their data centers
to create “virtual” data centers that each rely on independent infrastructure to contain
the impact of infrastructure failures. Consider Figure 3.13, which shows two hypotheti-
cal cloud data center sites (“North” and “South”) that are physically separated by 1000
miles so no single disaster event like an earthquake can simultaneously impact both
sites. Within each of the data centers are three completely independent availability
zones: North-1, North-2, and North-3 within the north data center, and South-1, South-
2, and South-3 within the southern data center. It is prudent to partition each data center
into independent physical infrastructure and administrative domains to assure that the
impact of any infrastructure failure or administrative error will be contained to a single
partition, rather than impacting all consumers hosted in the warehouse scale data center;

Cloud Awareness	 45

each of these partitions is called an “availability zone.” For example, if a fire broke out
in the data center, then the emergency power off (EPO) impact should be limited to a
single availability zone (hopefully, only a single rack or row of equipment within that
availability zone). Thus, collocated availability zones should mitigate the risks of some
cloud infrastructure failures and administrative errors, but geographically separated
(i.e., regional) data centers are required to mitigate the risk of force majeure events like
earthquakes.

3.7  CLOUD AWARENESS

Simply deploying an application onto cloud infrastructure does not make it “cloud
aware.” The Open Data Center Alliance (ODCA) frames the notion of “cloud aware-
ness” as follows:

Cloud-aware applications have been designed and built with the sole intent of
running in a cloud environment. They are both free of the dependencies and
assumptions which burden traditional or legacy applications, while simultane-
ously able to fully exploit the inherent advantages of cloud. [ODCA_CIaaS]

An application that is not cloud aware is called traditional, defined by ODCA as
follows:

Simply put, a program or system that has not been specifically designed (or
remediated) to transparently leverage the unique capabilities of cloud comput-
ing. Rather, such applications may be migrated to run in a cloud context, but
the value realization from such instances will be limited. [ODCA_CIaaS]

Figure 3.13.  Regions and Availability Zones.

46	 Cloud Model

ODCA offers eight attributes of cloud awareness [ODCA_CIaaS] [Freemantle]
[ODCA_DCCA]; let us consider the customer facing service quality risks of each of
these attributes:

•	 Composable: “Applications are distributed and dynamically wired” [ODCA_
CIaaS].  Distribution of functionality introduces the risks of communication
impairments between the distributed components; wide area distribution exposes
greater risk of communication latency, packet loss, and jitter than local area
distribution. The dynamic nature of composability raises further risks because
each configuration action, like redirecting an IP packet flow or a service relation-
ship between distributed components carries the risk of failure that impacts user
service.

•	 Elastic: “The ability to scale up but also to scale down based on the load”
[ODCA_CIaaS].  Chapter 8, “Capacity Management,” considers the service
quality risks of elasticity in detail.

•	 Evolvable: “This is related to portability, and suggests the ability to replace
existing underlying technology or vendor decisions with others, as the needs of
the business or market change, with minimal impact to the business” [ODCA_
CIaaS].  All information systems evolve from one generation of technology,
standards, and product releases to the next; successful businesses must learn to
manage their systems through these evolutionary cycles. Cloud computing accel-
erates the pace of evolution across the ICT ecosystem, and practices such as
continuous delivery and DevOps (i.e., a collaboration between development and
operations) may encourage even faster adoption of newer technologies as they
become available. Cloud encourages the development and adoption of technol-
ogy components offered as a service so suppliers and service providers can
independently evolve individual application components to facilitate the evolu-
tionary path for cloud consumers. Application architectures that treat “every-
thing” as a service via appropriate standard interfaces can evolve more easily
than brittle monolithic architectures. Not only are popular technology compo-
nents offered as-a-service likely to be more stable because of extensive usage
that will have exposed and repaired virtually all residual defects, but those
components should natively support rapid elasticity. New applications can accel-
erate time to market by leveraging existing PaaS technology components like
load balancers, message queues, database management servers, and so on. A
business challenge is to leverage enough platform services to shorten time to
market and boost service quality by using proven components while not making
the application tightly coupled to a specific cloud service provider’s platform or
components.

•	 Extensible: “Applications are incrementally deployed and tested” [ODCA_
CIaaS].  Incremental development and continuous delivery lead to far more
frequent software release changes than traditional development models. The
service quality risks of release management are considered in Chapter 9, “Release
Management.”

www.allitebooks.com

http://www.allitebooks.org

Cloud Awareness	 47

•	 Granular Metering and Billing.  Resource pricing in general, including granular-
ity of metering and billing, will influence how aggressively cloud consumers
manage the spare online application capacity that they maintain to cope with
traffic swings and failure events. As each capacity management action carries a
tiny risk of failure, fewer capacity management operations yield a slightly lower
service risk than more frequent capacity management actions. Likewise, main-
taining more spare online capacity has a slightly lower service quality risk than
keeping spare capacity to the consumer’s policy minimum, especially if the cloud
consumer’s policy fails to accurately anticipate actual traffic growth, resource
failure or elasticity reliability, and latency performance.

•	 Multitenant: “Multiple cloud subscribers may be using the same underlying
resources and infrastructure from the cloud provider, with reliability, security,
and consistent performance” [ODCA_CIaaS].  Sharing cloud infrastructure
resources contributes to the risks of Chapter 4, “Virtualized Infrastructure
Impairments.”

•	 Portable: “Applications can run almost anywhere, any cloud provider and from
any device” [ODCA_CIaaS].  Software portability is not a new concept, and
cloud computing does not materially change the user service quality risks associ-
ated with application portability.

•	 Self-Service.  Cloud computing relies on self-service to both reduce cloud con-
sumer’s OPEX via automation and to improve customer satisfaction by giving
customers greater control over their service experience. Self-service is likely to
increase the rate of configuration changes requested of the application because
it will be far easier for each user to click a few buttons on a website themselves
to tailor their service experience than it was to request a change to their service
via the technical support helpdesk or other traditional channel. In addition to far
more frequent configuration changes, the self-service interface mechanisms must
be extremely robust because users will inevitably make mistakes when attempt-
ing self-service changes. Creative and inquisitive users may even try seemingly
odd configurations in attempts to mash up or tailor service to better fit their
unique work style, need or taste. Thus, self-service means that the application’s
configuration mechanisms must be super robust to mitigate the impact of unex-
pected and even pathological configurations that users may accidentally or delib-
erately set via self service mechanisms.

4

VIRTUALIZED INFRASTRUCTURE
IMPAIRMENTS

This chapter considers the resource facing service impairments experienced by a cloud-
based application for virtualized compute, memory, storage, and networking. As shown
in Figure 4.1, these impairments are:

•	 VM Failure (Section 4.2).  A virtual machine instance can terminate or cease to
operate for some reason other than explicit request of the cloud consumer or the
application instance itself.

•	 Nondelivery of Configured VM Capacity (Section 4.3).  The cloud service pro-
vider’s infrastructure platform can fail to give a VM instance any resources for
a period of time (such as during a live migration event), thereby preventing the
application component nominally running in that VM instance from doing any
useful work.

•	 Delivery of Degraded VM Capacity (Section 4.4).  The cloud service provider’s
infrastructure can fail to give a VM instance enough of their nominally config-
ured compute, memory, storage, or networking capacity to adequately serve
the application’s offered workload, such as when heavy demand from other

49

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

50	 Virtualized Infrastructure Impairments

applications’ VM instances running on the same VM server host cause contention
and queuing for shared infrastructure resources.

•	 “Tail” Latency (Section 4.5).  Hypervisors and increased resource sharing often
cause resource access latencies to be worse than on native hardware, especially
for occasional outlier events in the statistical “tail.” The chapter begins with a
discussion of service latency, virtualization, and cloud computing.

•	 Clock Event Jitter (Section 4.6).  Strict real-time applications, such as those that
handle bearer traffic, such as interactive video, often rely on consistent clock
events to minimize jitter in application packets delivered to end users. Jitter
introduced by tardy, lost, or coalesced clock interrupt events can directly impact
the quality of service delivered to end users.

•	 Clock Drift (Section 4.7).  Real-time clocks for guest OS instances supporting
application components may drift away from standard (UTC) time due to
virtualization.

•	 Failed or Slow Allocation and Startup of VM Instance (Section 4.8).  Occasion-
ally, the cloud service provider may be unable to successfully allocate and
configure a VM instance and start up the guest OS and application software
promptly.

4.1  SERVICE LATENCY, VIRTUALIZATION, AND THE CLOUD

Virtualization and cloud add additional service latency risks beyond those discussed in
Section 2.5.2, “Service Latency”; Section 4.1.1 considers “Virtualization and Cloud
Causes of Latency Variation,” Section 4.1.2 discusses “Virtualization Overhead,” and
Section 4.1.3 covers “Increased Variability of Infrastructure Performance.”

Figure 4.1.  Virtualized Infrastructure Impairments Experienced by Cloud-Based Applications.

Service Latency, Virtualization, and the Cloud	 51

4.1.1  Virtualization and Cloud Causes of Latency Variation

Virtualization explicitly decouples application software from the underlying hardware
resources and helps enable the essential cloud characteristic of resource sharing. With
greater resource sharing comes the risk of greater resource contention that could
increase an application’s latency in accessing a shared resource, such as CPU, network-
ing, or storage, especially when that or another coresident application component is
under stress. The incremental latency risk of virtualization comes from several sources:

•	 Resource Utilization and Contention Latency.  A primary goal of both virtualiza-
tion and cloud computing is to increase utilization of physical resources.
Although there are resource utilization concerns with traditional systems, virtu-
alized systems exacerbate the concern. Increased utilization of finite resources
inherently means that more requests will queue for access rather than enjoying
instantaneous access available when applications have dedicated physical
resources. Any resource sharing increases the risk of resource contention, which
is typically addressed via some form of serialization via queuing, and queuing
entails a wait period, thus accruing latency. Resource contention is more likely
to occur as the traffic load on the system increases. Carefully tuned queuing/
scheduling strategies are essential to assure that application instances receive
timely access to resources so they can deliver acceptable service latency to
users. The more aggressive the Infrastructure-as-a-Service (IaaS) supplier is
about resource sharing (aka application/workload consolidation or “oversub-
scription”), the greater the risk of resource contention and hence increased
resource access latency and even the possibility of putting a coresident applica-
tion into overload.

•	 Real-Time Notification Latency.  While access to physical resources such as
compute cycles, disk storage, or networking are likely to be randomly distributed
across time, real-time clock interrupt notifications are inherently synchronized.
If multiple application instances request notification for the same real-time clock
interrupt event, then some executions may be serialized and thus implicitly shift
the real time understood by the applications that are notified later. If the applica-
tion requires periodic or synchronous real-time notification, such as for streaming
media, then any variations in execution timing of application instances can
introduce clock event jitter. While the virtualized application may or may not be
inherently aware of any notification jitter, end users will directly experience this
jitter; if this jitter is severe enough, then the users’ quality of experience will
degrade. Clock event jitter is discussed further in Section 4.6.

•	 Virtualization and Emulation Overhead Latency.  System calls made by applica-
tion software may pass through the additional layer of hypervisor software in
virtualized deployment to access hardware resources, and the additional layer of
software may add some latency. Beyond simply proxying access by VM instances
to physical resources, virtual machine managers also emulate physical hardware
devices, and perhaps even processors and instruction sets; the more elaborate the
emulation, the greater the incremental runtime latency. For example, emulating

52	 Virtualized Infrastructure Impairments

a processor or instruction set architecture requires far more runtime processing
than natively executing application instructions on the target VM server host.
Note that the virtualization overhead latency is dramatically shortened as
virtualization-enabled processors are deployed and hypervisors evolve to fully
leverage hardware support for virtualization.

•	 Separating/Decomposing Resources Can Defeat Some Optimizations.  Modern
computer and operating system architectures have evolved sophisticated perfor-
mance optimizations, such as advanced caching strategies. Introducing additional
networking latency when storage is not locally accessible to processors and main
memory may compromise performance optimizations that were designed for
locally accessible mass storage. Likewise, communications between application
components executing in VM instances on hosts at opposite sides of a data center
may have higher latency (and perhaps lower throughput) than for native compute
blades hosted in the same chassis. One can reduce this impact when both optimal
affinity rules are fully specified and the cloud service provider is able to honor
those rules.

•	 CPU Interrupt Response Time Variation and Loading.  As the CPU becomes
busier, it takes longer to get around to handling scheduled tasks

•	 Live Migration.  Execution of “live” migration events impacts operation of VM
instances between the moment the VM instance is paused on one VM server host
and the time it is resumed on another VM server host.

4.1.2  Virtualization Overhead

Figure 4.2 overlays service latency data for a sample application ([Riak], an open source
NoSQL [NoSQL] distributed database) deployed both with and without virtualization
on the same server hardware. The CCDF makes two points instantly apparent:

Figure 4.2.  Transaction Latency for Riak Benchmark.

Service Latency, Virtualization, and the Cloud	 53

•	 Service latency of the virtualized configuration is substantially greater (i.e.,
worse) than for native at all points on the statistical distribution.

•	 The latency tail of the virtualized configuration is far more substantial than the
tail of the native distribution.

The authors do not suggest that either the virtualization platform under test or the
application of Figure 4.2 are typical, but merely that application service latency on
virtualized and cloud-based applications can be materially different from native deploy-
ments. The choice and configuration of the underlying hypervisor technology, as well
as the architecture of the physical resources and the operational policies of the cloud
service provider (e.g., resource utilization factors and scheduling priorities) will all
impact the service latency of actual application deployments. The reader’s target appli-
cation will inevitably experience rather different latency curves on native and virtual-
ized deployments.

4.1.3  Increased Variability of Infrastructure Performance

Traditionally deployed applications generally enjoy fairly consistent compute, memory,
storage, and local networking performance because once the application software is
instantiated on the physical infrastructure, there are often few configuration or opera-
tional changes that materially impact the application’s access to the resources of the
underlying hardware. In contrast, the essential characteristics of resource sharing and
rapid elasticity drive cloud service providers to manage their virtualized infrastructure
more aggressively to maximize utilization of the underlying physical infrastructure
resources. In particular, the cloud service provider controls VM placement, resource
scheduling policies, and subsequent migration of individual VM instances, and place-
ment impacts the instantaneous quality and quantity of virtualized resources to an
applications’ VM instances because coresident application’s VM instances are likely to
be placing independent demands on shared resources. The service provider’s opera-
tional policies and architecture will determine how instantaneous resource contention
and scheduling issues are resolved, but resource sharing inevitably results in some
time- and/or capacity-sharing arrangements for virtualized and cloud-based applica-
tions that are not present when applications are deployed directly on unshared native
hardware.

To comply with anti-affinity rules, an application’s virtual machine instances are
likely to be placed across several virtual machine servers, and individual VM instances
are likely to be placed on different CPU cores within each virtual machine server based
on availability of capacity. As the instantaneous workload of each of the VM instances
for each of the applications that are running on each of the VM servers varies from
moment to moment, the instantaneous quality and capacity of virtualized infrastructure
resources available to each of an application’s VM instances will vary, so applications
are more likely to experience throughput variations across pools of nominally identical
(even identically loaded) application instances when running on cloud infrastructure
than when running directly on native hardware.

54	 Virtualized Infrastructure Impairments

4.2  VM FAILURE

Applications experience IaaS service via virtual machine instances, which emulate the
servers or single-board computers that application software components would tradi-
tionally execute on. Virtualization is a complex software technology, so occasional
software failures are inevitable. Virtual machine instances ultimately execute on physi-
cal servers that will eventually fail. Operationally, a VM failure is any situation that
causes the VM instance to cease functioning properly for a cause other than one of the
following “normal” VM termination triggers:

1.	 Explicit request by the cloud consumer (e.g., request via self-service GUI)

2.	 Explicit “shutdown” request by the application instance itself

3.	 Explicit termination by IaaS provider for predefined policy reasons, such as
nonpayment of bill or executing a lawful takedown order.

Any cause of VM termination that is not attributable to the cloud consumer, the
application itself, or for predefined policy reasons is considered a VM failure,
including:

•	 VM termination for the convenience of the IaaS provider rather than for the cloud
consumer

•	 Failure of virtual machine server hardware hosting a VM instance

•	 Failure of hypervisor or host OS (e.g., crash or panic) hosting a VM instance

•	 Hardware maintenance error resulting in a failure of resident VMs

•	 Power failure.

Figure 4.3 illustrates a sample manifestation of VM failure on the sample applica-
tion of Chapter 2, in which one of the VM instances hosting one of the application’s
backend components fails. The high-level service quality question becomes exactly
what is the customer facing service quality impairment associated with this VM failure?
Are pending user operations delayed or completely lost? Is any state information lost?

Measurement of this impairment is considered in Section 14.3.1, “Measurement
of VM Failure.”

4.3  NONDELIVERY OF CONFIGURED VM CAPACITY

The hypervisor is responsible for providing temporal isolation among VMs, that is, “the
capability of isolating the temporal behavior (or limiting the temporal interferences) of
multiple VMs among each other, despite them running on the same physical host and
sharing a set of physical resources such as processors, memory, and disks” [Wikipedia-TI].
However, it is possible that for a period of time, a particular VM instance will be denied
access to virtualized compute, memory, storage, or networking due to live migration,
resource sharing/contention, wait time in the scheduling queue, or some other reason.
This nondelivery event can be perceived as a VM “stall” or “hiccup” or a loss of pro-
cessing continuity. Figure 4.4 gives a simplified visualization of a nondelivery of VM

Nondelivery of Configured VM Capacity	 55

capacity scenario: the hypervisor blocks access for a particular virtual machine to one
or more resource types for a period of time, in this case compute resource for a time
TNondelivery. Obviously, when a VM instance is temporarily denied access to a required
resource (e.g., during a live migration event), application service will be impacted
because the application component hosted in that VM instance is unable to perform
useful work during TNondelivery.

Nondelivery events are easily understood in the context of live VM migration. A
nondelivery incident is experienced during live migration when a nominally running
(aka “live”) VM instance is migrated to another host. Technically, the VM instance is
running on HostSource until time TPause, at which point volatile state information and
control is transferred to HostDestination, and then HostDestination activates the VM instance
so it resumes execution at time TResume. TNondelivery is then the elapsed time between
TResume and TPause, as shown in Figure 4.5. Nondelivery “hiccup” or “stall” events can
also occur due to congestion or other reasons. Note that (e.g., VM “stall”) events can

Figure 4.3.  VM Failure Impairment Example.

Figure 4.4.  Simplified Nondelivery of VM Capacity Model.

56	 Virtualized Infrastructure Impairments

also cause the VM instance’s perception of real time to skew; real-time clock drift
within VM instances is considered in Section 4.7, “Clock Drift.”

Figure 4.6 illustrates a manifestation of this impairment in which the VM instance
hosting one of the application’s backend components stalls for hundreds of millisec-
onds. Does the end user experience much slower service, or do impacted operations
fail outright (after timeout), or does user service hang, or is there some other user visible
impact across the application’s customer facing service boundary?

Measurement of this impairment is considered in Section 14.3.2, “Measurement
of Nondelivery of Configured VM Capacity.”

Figure 4.5.  Characterizing Virtual Machine Nondelivery.

Figure 4.6.  Nondelivery Impairment Example.

Delivery of Degraded VM Capacity	 57

4.4  DELIVERY OF DEGRADED VM CAPACITY

Resource sharing is an essential characteristic of cloud computing, and IaaS service
providers rely on virtual machine managers and other mechanisms to implement poli-
cies to manage resource access, sharing, and contention. Figure 4.7 gives a simple
visualization of a degraded delivery of VM capacity scenario: storage bandwidth
available to a particular application in a VM instance is restricted for a period TDegraded
when diminished resource capacity is delivered to the VM instance because one or
more other applications in other virtual machine instances are making heavy demands
on shared storage resources so the hypervisor delivers less storage bandwidth to the
application’s VM instance than usual. When resource requests by applications approach
or exceed the physical capacity of the shared infrastructure, some requests will be
deferred (e.g., queued) and others will be flow controlled (e.g., bandwidth/rate limited).
Figure 4.8 visualizes the timeline of a degraded VM capacity event: the resource
capacity delivered to the VM instance is diminished by CDegraded for some period
TDegraded.

Another example of degraded delivery could arise based on CPU frequency
scaling. To reduce power consumption when utilization is low, the CPU frequency of
VM server hosts may be reduced. This will increase the latency of processing requests,
as the CPU will run slower and take longer to complete any request. This can produce
the paradoxical result of potentially delivering higher latency when the system is
mostly idle. The system may experience periods of degraded delivery of disk resources
due to inefficient disk space allocation or insufficient resources allocated resulting in
system performance issues or failures. The system may experience higher networking
latency if congestion leads the infrastructure to discard IP packets, which triggers
retransmission after some timeout interval has elapsed. Other reasons for periods of
degraded delivery include lumpy scheduling, interrupt coalescence, and jitter-related
artifacts, all of which could hinder provision of sufficient resources to the VM(s) to
meet capacity needs.

Figure 4.9 illustrates a scenario in which the VM hosting one of the applica
tion’s backend components delivers degraded networking capacity (i.e., dropped IP

Figure 4.7.  Simple Virtual Machine Degraded Delivery Model.

58	 Virtualized Infrastructure Impairments

Figure 4.9.  Degraded Delivery Impairment Example.

Figure 4.8.  Degraded Resource Capacity Model.

Tail Latency	 59

Figure 4.10.  CCDF for Riak Read Benchmark for Three Different Hosting Configurations.

packets) due to resource contention by other VM instances. The service quality ques-
tion then becomes what happens to the application’s customer facing service if tens
or hundreds of IP packets per million are dropped before reaching the backend
component?

Measurement of this impairment is considered in Section 14.3.3 “Measurement of
Delivery of Degraded VM capacity.”

4.5  TAIL LATENCY

As discussed in Section 4.1, “Service Latency, Virtualization, and the Cloud,” virtual-
ization machine managers and increased resource sharing often cause resource access
latencies to be worse than on native hardware, especially for occasional outlier events
in the statistical “tail” [Dean]. Figure 4.10 shows a CCDF for a read benchmark against
the Riak open source database running either natively (i.e., no virtualization) or under
virtualization on the same dedicated hardware, or running on a commercial cloud. The
CCDF clearly shows that while tail latency of native (nonvirtualized) hosts is very
close to typical latency read benchmark, virtualization for this configuration adds a
material latency tail to the slowest few samples per hundred thousand, and cloud-
hosting causes a significant latency tail that materially slows at least a few requests
per thousand.

Figure 4.11 illustrates a manifestation of this impairment in which the slowest one
in several thousand backend requests are, perhaps 20 times slower than the slowest 1
in 10 operations. The question becomes, what happens to the latency, reliability, and
overall quality of application service delivered to end users?

60	 Virtualized Infrastructure Impairments

Measurement of this impairment is considered in Section 14.3.4, “Measurement
of Tail Latency.”

4.6  CLOCK EVENT JITTER

Strict real-time applications, such as those that handle bearer traffic, such as interactive
video, often rely on consistent clock events to minimize jitter in application packets
delivered to end users. Jitter introduced by tardy or coalesced clock interrupt events
can directly impact the quality of service delivered to end users. Hypervisor overhead
and other factors associated with virtualization and cloud can introduce clock event
jitter impairments beyond what native deployments experience. Figure 4.12 gives a
CCDF of test results illustrating clock event jitter across hundreds of millions of 1-ms
clock events on tuned infrastructure.

The impact of this impairment is easily understood in the context of a conferencing
bridge, which combines real-time streaming media from multiple end users into a seam-
less audio/video teleconference. As shown in Figure 4.13, each user’s device sends
streaming media (e.g., RTP) to the conferencing bridge, and during every timer inter-
rupt, the conferencing bridge combines the live streams sent from each of the partici-
pants’ devices into a single merged stream, which is sent back to all of the participants.
If a clock event for the conferencing bridge is late, then the conference bridge is unable
to deliver a consistent isochronous stream of media to end users’ devices so packets
arrive too late to be smoothly rendered to users requiring devices to engage lost packet
compensation mechanisms (e.g., replaying stale packets and freezing video image) to
minimize user service quality impact.

Figure 4.11.  Tail Latency Impairment Example.

Clock Drift	 61

Figure 4.12.  Sample CCDF for Virtualized Clock Event Jitter.

Figure 4.13.  Clock Event Jitter Impairment Example.

4.7  CLOCK DRIFT

Coordinated universal time (UTC) is the standard time reference against which clock
accuracy is measured. Host computers periodically synchronize their local clocks with
a known accurate reference clock (often synchronized to NIST.gov, GPS, etc.) via the
network time protocol (NTP, RFC 5905) or the precision time protocol (PTP, IEEE
1588). Application components generally rely on the underlying guest operating system
to maintain an accurate clock for time stamping event records and for other uses.

62	 Virtualized Infrastructure Impairments

Decoupling the guest OS from the underlying hardware via virtualization and live
migration, which can surreptitiously move an application and guest OS instance between
hardware hosts, creates risks that additional clock drift (error) will confront applications
deployed to cloud. While this drift is unlikely to be large (e.g., seconds or minutes),
some applications may be sensitive to even small clock drifts (e.g., microseconds or
milliseconds).

Figure 4.14 illustrates a scenario in which the real-time clocks of the application’s
backend component instances drift from UTC by several milliseconds so one backend
instance is somewhat faster than UTC and one is somewhat slower. This clock drift
means that requests served by some backend component instances will be stamped with
incorrect times, so subsequent attempts to reconstruct the order of actions that occurred
almost simultaneously across different backend components may be missequenced.

Measurement of this impairment is considered in Section 14.3.6, “Measurement
of Clock Drift.”

4.8  FAILED OR SLOW ALLOCATION AND STARTUP OF
VM INSTANCE

VM allocation, configuration, and startup of application component instances is critical
to “on boarding” applications, growing online capacity, and software release manage-
ment. Allocation and configuration of a VM instance followed by guest OS plus appli-
cation software within that allocated VM instance is a complex, multistep process that
is susceptible to many risks that can either cause the operation to fail outright or to be
too slow and thus fail to complete within the maximum acceptable time. The impact

Figure 4.14.  Clock Drift Impairment Example.

Outlook for Virtualized Infrastructure Impairments	 63

of failed or slow allocation and startup of VM instances is considered in Chapter 8,
“Capacity Management.” Measurement of this impairment is considered in Section
14.3.7, “Measurement of Failed or Slow Allocation and Startup of VM Instance.”

4.9  OUTLOOK FOR VIRTUALIZED INFRASTRUCTURE IMPAIRMENTS

As the popularity of virtualization and cloud computing grows, infrastructure hardware
and software suppliers will focus on improving the performance of their virtualized
infrastructure offerings. These improvements, along with the benefits of Moore’s Law,
will improve the quality and consistency of virtualized compute, memory, storage, and
networking delivered to applications’ virtual machine instances. In the long run, the
frequency and severity of at least some of these infrastructure impairments should
materially decrease, but as John Maynard Keynes wrote in 1927:

The long run is a misleading guide to current affairs. In the long run we are
all dead. Economists [and engineers] set themselves too easy, too useless a
task if in tempestuous seasons they can only tell us that when the storm is past
the ocean is flat again. [Keynes]

Thus, Part II: Analysis considers how these virtualized infrastructure impairments
are likely to impact applications in the medium and short run, and Part III: Recom-
mendations offers guidance on how to mitigate the risk of application service impact
due to virtualized infrastructure impairments.

ANALYSIS

II

This part of the book analyzes how qualities of the customer facing service offered
by cloud based applications are impacted by both the benefits and the risks of cloud
deployment.

•	 Chapter 5, “Application Redundancy and Cloud Computing,”  reviews funda-
mental redundancy architectures (simplex, sequential redundancy, concurrent
redundancy and hybrid concurrent redundancy) and considers their ability to
mitigate application service quality impact when confronted with virtualized
infrastructure impairments.

•	 Chapter 6, “Load Distribution and Balancing,”  methodically analyzes work
load distribution and balancing for applications.

•	 Chapter 7, “Failure Containment,”  considers how virtualization and cloud
impact failure containment strategies for applications.

•	 Chapter 8, “Capacity Management,”  methodically analyzes application service
risks related to elastic online capacity growth and degrowth.

•	 Chapter 9, “Release Management,”  considers how virtualization and cloud
impact release management actions to patch, update, upgrade, and retrofit appli-
cation software.

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

65

66	 ANALYSIS

•	 Chapter 10, “End-to-End Considerations,”  explains how application service
quality impairments accumulate across the service delivery path. The chapter
also considers service quality implications of deploying applications to smaller
cloud data centers that are closer to end users versus deploying to larger, regional
cloud data centers that are farther from end users. Disaster recovery and geo-
redundancy are also discussed.

5

APPLICATION REDUNDANCY
AND CLOUD COMPUTING

Component redundancy is deployed to mitigate the service impact of inevitable failures.
This chapter considers how simplex, traditional (sequential) redundancy and nontradi-
tional (concurrent) redundancy architectures mitigate the application service impacts
of virtualized infrastructure impairments. Section 5.2 explains how virtualization tech-
nology can improve software restore times, and Section 5.3 explains how virtualization
and cloud can improve infrastructure restore times. Section 5.4 explains how redundant
architectures improve service availability by rapidly recovering service to a redundant
component rather than requiring a failure to be repaired before user service can be
restored. Section 5.5 compares and contrasts sequential redundancy with concurrent
redundancy arrangements. Section 5.6 methodically considers the application service
impact of virtualized infrastructure impairments on simplex, sequential redundant,
concurrent redundant, and hybrid concurrent redundant architectures. Section 5.7
discusses the role of data in redundancy. Section 5.8 discusses overall redundancy
considerations.

67

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

68	 Application Redundancy and Cloud Computing

5.1  FAILURES, AVAILABILITY, AND SIMPLEX ARCHITECTURES

Failures are inevitable, so applications must be prepared to cope with components that
fail. Distributed systems are also vulnerable to transient events, such as dropped IP
packets, as well as more persistent failures, such as crashed software processes (see
Section 16.4.3, “Robustness Testing,” for a broad list of common failure scenarios).
Consider the simple distributed system of Figure 5.1 with a client application “A” that
interacts with a server “B1.” Traditional simplex operation entails one and only one
application instance (e.g., “B1”) serving any particular user instance (e.g., “A”). Thus,
when an application component “B1” (in Figure 5.1) fails, all state and volatile infor-
mation held by the server is lost, as well as all networking context (e.g., sessions with
client devices). Note that persistent storage should remain intact, because that is what
“persistent” means.

Figure 5.2 illustrates a service availability timeline for a simplex system in which
the server “B1” is “up” (available to serve client “A”) until the server fails (nominally
after the Mean Time between Failures or MTBF), and the server is down until the failure
is repaired and service is restored (nominally after the Mean Time to Restore Service
or MTRS). MTRS is sometimes called maintainability.

As explained in Section 2.5.1, “Service Availability,” availability is the portion of
total time that a service is up. For simplex systems, one can compute service availability
via Equation 5.1, simplex availability:

	
MTBF + MTRS˙

MTBFAvailability = 	 (5.1)

Figure 5.1.  Simplex Distributed System.

Figure 5.2.  Simplex Service Availability.

Failures, Availability, and Simplex Architectures	 69

Note that for simplex systems, the Mean Time to Repair (MTTR) is generally equal
to the MTRS, and thus the simplex availability of Equation 5.1 is equivalent to the
traditional availability formula of Equation 5.2 that most readers will be familiar with.

	
MTBF + MTTR

MTBF
Availability = ˙	 (5.2)

Maintainability is a measure of how quickly and effectively a configuration
item or IT service can be restored to normal working order after a failure, and is
often measured and reported as MTRS. Maintainability for a simplex system includes
three steps:

1.	 Failure Detection.  Automatic failure detection is often fairly prompt (nominally
minutes or seconds), but if the system relies on manual failure detection (e.g.,
end-users reporting trouble through customer support processes), then it might
take tens of minutes or longer for the application service provider’s maintenance
engineers to realize that a component instance is not properly serving users. As
a practical matter, client “A” distinguishes two classes of failures:
a.	 Explicit failures are explicitly signaled to the client “A,” typically via an error

response, such as 500 Server Internal Error. Upon receipt of an explicit failure
indication, the client unambiguously knows that the server is currently unable
to properly service the client’s request, so the client “A” must somehow
address the failure condition (e.g., returning failure indication to the end user)
and a maintenance engineer must resolve the failure condition of server “B1.”

b.	 Implicit failures occur when the client “A” infers that a request failed because
no response is received in a reasonable time.

2.	 Troubleshooting the failure to identify the failed component and determine what
repair action must be taken to restore service. Troubleshooting the cause of failure
is typically at least partially manual, and thus may take time.

3.	 Repairing the Failed Unit and Restoring Service.  Repair actions, such as restart-
ing an application, rebooting a system, replacing failed hardware, reinstalling
software, and restoring backed up data, can take minutes to hours, or longer if
necessary spare parts or backup media is not physically on site at the time of the
failure. Since restoring service of traditional simplex systems requires human
involvement, logistical delays associated with notifying and scheduling appro-
priately trained staff, as well as transportation time of staff and/or replacement
hardware, can prolong outage duration.

Service for simplex systems is unavailable to users until all three of these tasks
are accomplished. Overall, outage durations for simplex (nonredundant) systems often
stretch to hours or even longer on traditional systems. Improving maintainability,
thereby shortening MTRS, improves service availability. Figure 5.3 shows service
availability as a function of MTRS by solving Equation 5.1 with a constant failure
rate.

70	 Application Redundancy and Cloud Computing

5.2  IMPROVING SOFTWARE REPAIR TIMES VIA VIRTUALIZATION

Software failures of traditionally deployed simplex application components are typi-
cally repaired via one of two options:

1.	 Application software is restarted.

2.	 Operating system is rebooted.

Software repair typically covers “rejuvenating” the application to return the soft-
ware to an operational state rather than correcting the true root cause of failure. Resolv-
ing the true root cause of a software failure often requires installing a software patch
that corrects the residual defect that produced the failure event.

As Figure 5.4 shows, virtualization offers several new repair options for software
failures. From slowest to fastest, the virtualized restoration options are the following:

•	 Virtual Machine (VM) Reset.  A VM can be reset by causing a transition from
deactivate to activate (a hard VM boot) without a corresponding deallocation
and reallocation of virtual resources. It is disruptive—like turning off and on a
computer—and thus state information will be lost. A VM reset has longer laten-
cies than a reboot of the VM.

•	 VM Reboot.  Guest OS and application software can be rebooted without reset-
ting the entire virtual machine instance.

•	 Activate VM Snapshot.  VM snapshot is a mechanism that preserves a copy of a
VM image at a certain instant in time that includes the VM’s memory contents,
settings, and virtual disk state. Once the snapshot has been successfully created,

Figure 5.3.  Sensitivity of Service Availability to MTRS (Log Scale).

Improving Software Repair Times via Virtualization	 71

it may be immediately activated or stored for later activation. A VM snapshot is
a useful repair mechanism, as it provides a means of recovering from a failure
in one version of the VM to a more stable (i.e., prefailure) version. Following a
failure, a previously recorded VM snapshot can be restored from disk and acti-
vated faster than a traditional cold restart because the snapshot activation
bypasses time-consuming application startup actions, since those tasks would
have been performed before the snapshot was taken and thus do not need to be
repeated. Snapshots may be taken:
○	 Of a Freshly Booted Application Instance.  Activating a fresh boot snapshot

can significantly reduce recovery time by skipping OS and application startup
times.

○	 Periodically.  Note that if the periodic snapshot captured the evolving failure,
like a memory leak shortly before total heap exhaustion, then the periodic
snapshot would not reliably clear the failure. Thus, periodic snapshot recover-
ies should always be prepared to fall back to a fresh boot snapshot or an OS
restart, if the periodic snapshot recovery is unsuccessful.

Since it represents an older version of the VM, snapshot activation may not offer
seamless service recovery for the user in the event of a failure since it will not likely
have the most recent state and session information.

To shorten the duration of service impact, both human and automatic mechanisms
will generally trigger the fastest recovery mechanism that is likely to clear the failure
rather than completing an exhaustive troubleshooting analysis to pinpoint the true root
cause of failure. If the fastest recovery action fails to resolve the problem, then a more
aggressive—and presumably slower and/or more impactful—recovery action can be
executed. For example, if an application component hangs, then the first recovery action
might be to activate a fresh boot snapshot of the application component. If that fails to
restore service, then the VM instance might reset.

Figure 5.4.  Traditional versus Virtualized Software Repair Times.

72	 Application Redundancy and Cloud Computing

5.3  IMPROVING INFRASTRUCTURE REPAIR TIMES VIA
VIRTUALIZATION

As shown in Figure 5.5, virtualization and cloud computing enable traditional, manual
hardware repair processes to be replaced with offline VM migration, which can be
automated to dramatically shorten infrastructure repair times. Section 5.3.1 explains
traditional hardware repair; Section 5.3.2 explains automatic VM Repair-as-a-Service
(RaaS); and Section 5.3.3 discusses the implications of these mechanisms.

5.3.1  Understanding Hardware Repair

MTTR is a mature and widely used concept. This chapter will use the ITILv3 definition
of MTTR [ITILv3MTTR]: “the average time taken to repair a Configuration Item or
IT Service after a Failure. MTTR is measured from when the CI or IT Service fails until
it is Repaired. MTTR does not include the time required to Recover or Restore.” MTTR
for computers and information systems hardware is often assumed to be 4 hours for
equipment in locations with staff and spare hardware units on-site. Rigorous training
and sophisticated operational policies can shorten hardware MTTR, or more generous
support arrangements can be made with slower respond/restore/resolve requirements
with longer hardware MTTR targets and lower costs. Note that MTRS is a related
measurement that is often confused with MTTR. The ITILv3 definition of MTRS
[ITILv3MTRS] is “the average time taken to Restore a Configuration Item or IT Service
after a Failure. MTRS is measured from when the CI or IT Service fails until it is fully
Restored and delivering its normal functionality.”

5.3.2  VM Repair-as-a-Service

As virtualization and cloud technology eliminate the need for physical maintenance
actions to repair application components impacted by infrastructure failures, it becomes
practical to deploy automated “VM RaaS” mechanisms rather than relying on manual
actions by application maintenance engineers to return an application to normal

Figure 5.5.  Traditional Hardware Repair versus Virtualized Infrastructure Restoration Times.

Improving Infrastructure Repair Times via Virtualization	 73

operation following an infrastructure failure. After identifying the faulty VM instance
to be repaired, the automated VM repair logic splits into two parallel procedures shown
in Figure 5.6:

•	 Repair Critical Steps.  This replaces the failed VM instance and returns the
application to full operational status (e.g., redundant operation). This procedure
consists of:
○	 Automated allocation and configuration of replacement vm instance
○	 Automated initialization and startup of replacement vm instance or activation

of vm snapshot
○	 Automated checkout of replacement VM instance.

This procedure concludes when the replacement VM instance is properly integrated
with the running application component instance. Note that this activity must not inter-
fere with service recovery activities provided by the application.

•	 Noncritical Procedure.  Includes tasks that are not in the critical repair path of
replacing the failed VM instance, so these noncritical tasks can be executed in
parallel to the repair critical procedure. The primary noncritical tasks are:
○	 Capture VM failure, configuration, and snapshot data for offline analysis.
○	 Release and cleanup (e.g., delete) failed and no longer needed resources.

The cloud consumer and/or cloud service provider can decide which VM failure
events to analyze to true root cause as a means to identify proper corrective actions so
service quality can be continuously improved.

As these automated actions are likely to complete in minutes rather than nominally
hours for traditional hardware repairs, it is important to recognize that the failure detec-
tion process, which activates the automated VM repair process, can also be automated
to further shorten MTTR. For instance, if the application’s management and control
function automatically signals the automated VM repair mechanisms about the failure
after it has recovered service, then the VM repair can begin seconds after the VM failure
event occurs. Fully automating failure detection and activation of repair service process
is obviously much faster than traditional processes, in which a hardware failure alarm

Figure 5.6.  Simplified VM Repair Logic.

74	 Application Redundancy and Cloud Computing

causes a maintenance engineer to create a trouble ticket that is dispatched to initiate
the traditional hardware repair process.

The VM repair logic of Figure 5.6 can be integrated into a fully automated VM
RaaS, which implements the service logic illustrated in Figure 5.7. VM RaaS adds the
following key features to the basic logic of Figure 5.6:

•	 RaaS can implement a surveillance mechanism to proactively detect VM instance
failures. When the automated VM instance failure detection mechanism indicts
a VM instance, that instance is reported to the fault isolation element to begin
the VM repair process.

•	 Faulty VM instance can be explicitly reported to the RaaS offering. For example,
the application’s management and control infrastructure can explicitly identify
a faulty VM instance to be repaired immediately after the application’s high
availability mechanism successfully restores user service after failure. VM
instances to be repaired can also be manually identified via appropriate GUI or
command line mechanisms.

•	 Checkout phase raises a critical alarm if the automated repair action failed to
recover service so that a human maintenance engineer can troubleshoot the
problem. Some RaaS offerings may be smart enough to support secondary fault
isolation and recovery logic if the primary repair action fails to resolve the
problem.

5.3.3  Discussion

Virtualization and cloud computing enable cloud consumers to treat virtual machines
as “disposable” rather than repairable units. While traditional disassemble/interchange/

Figure 5.7.  Sample Automated Virtual Machine Repair-as-a-Service Logic.

Redundancy and Recoverability	 75

reassemble procedures are impractical to automate, replacement (nominally “repair”)
of VM instances can largely be automated, which enables both cycle time reduction,
reduced risk of procedural errors during repair action, and lower cost per failure event.
Shorter repair times dramatically improve the service availability of simplex (i.e.,
nonredundant) applications and components, and actual repair times are likely to vary
based on efficiency and effectiveness of automated VM RaaS offerings, so more sophis-
ticated availability models should be used for simplex applications protected by VM
RaaS offerings. Shorter repair times due to automating “VM RaaS” offers the potential
to reduce the window of simplex or reduced capacity exposure following virtual
machine failure of redundant and highly available applications.

5.4  REDUNDANCY AND RECOVERABILITY

Figure 5.8 illustrates the simplified redundancy model that will be used throughout this
work: client instance “A” can access service “B” from a pool of application server
instances “B1” thru “Bn.” If “B1” is unable to serve client “A”s request promptly, then
service is recovered to another server instance (e.g., “B2”), and the request is retried
to that redundant server instance. As explained in Section 5.1, real distributed applica-
tions often include multiple tiers of interacting components so a component may logi-
cally be a server when interacting with some software entities and a client when
interacting with other entities.

In contrast to a simplex architecture that typically required at least some manual
troubleshooting and repair to recover service, redundant architectures enable the entire
recovery process to be automated, as shown in Figure 5.9. Following a failure (1), the
system should rapidly, automatically detect the failure (2), then isolate the failure to a
recoverable unit (3), and rapidly, automatically recover service to a redundant compo-
nent (4), thereby restoring service for users (5). The objective of high availability,
mechanisms is to automatically detect a failure, isolate/identify the failed component
and recover user service to an operational component as fast as possible to minimize

Figure 5.8.  Simple Redundancy Model.

76	 Application Redundancy and Cloud Computing

user impact. While it is infeasible for this all to be instantaneous, the goal is for this to
be faster than the maximum acceptable service disruption time so that failure events
only impact service reliability metrics (e.g., failed transactions per million attempts)
rather than accruing chargeable service downtime and thus also impacting service avail-
ability metrics (e.g., service downtime). Although repairing a failure requires careful
troubleshooting of the root cause of failure (e.g., which hardware component or soft-
ware module failed), in redundant architectures, one must merely isolate the failure to
the correct redundant unit so that the appropriate automatic recovery mechanism can
be activated. Traditional highly available systems with redundancy routinely mitigate
user service disruptions due to failure in seconds or less. Note that the true root cause
of the primary failure must still be repaired to return the system to protected full redun-
dancy, but that repair can be completed as a nonemergency maintenance action.

As shown in Figure 5.10, the primary serving unit (“B1”) is down for essentially
the same time as with a simplex architecture, yet user service can be restored quickly

Figure 5.9.  Simplified High Availability Strategy.

Figure 5.10.  Failure in a Traditional (Sequential) Redundant Architecture.

Redundancy and Recoverability	 77

by redirecting user traffic to a redundant unit “B2,” which can assume new and existing
traffic. Thus, the duration of user service impact is far shorter (nominally seconds) than
for simplex architectures.

As shown in Figure 5.11 traditional high availability is implemented via redundant
hardware and software (e.g., a redundant server instance “B2” to protect “B1”), and
requests are unicast to one and only one of the redundant server instances at a time
(i.e., either “B1” or “B2,” not both). This architecture depends heavily on fast detection
and recovery from failures. Note that proxy load balancing technologies discussed in
Chapter 6, “Load Distribution and Balancing,” can shield the client from complexities
of server redundancy.

Figure 5.12 shows a timeline of normal user service of a sequential redundancy
system when no failure exists: client “A” sends a request to server instance “B1”;
and “B1” successfully processes the request and sends a response back to client “A.”
Server instance “B2” is not involved in the transaction because “B1” successfully
served client “A.”

Figure 5.11.  Sequential Redundancy Model.

Figure 5.12.  Sequential Redundant Architecture Timeline with No Failures.

78	 Application Redundancy and Cloud Computing

Figure 5.13 shows a user service timeline of recovery from a major component
failure for a sequential redundancy system:

•	 Client “A” sends a request to server instance “B1.”

•	 As server instance “B1” has experienced a major failure, it is incapable of return-
ing any explicit failure indication to client “A.”

•	 Guard timer maintained by client “A” expires without a response from server
instance “B1” being received, so client “A” retries the request to “B1.”

•	 Additional guard timeout periods expire, followed by retries until client “A”
reaches its MaximumRetryCount value, and service is failed over from server
instance “B1” to “B2.”

•	 Client “A” sends the service request to server instance “B2.”

•	 Server instance “B2” promptly returns a successful reply to client “A.”

Note that failover might be controlled by monitoring software implemented in the
application’s high availability infrastructure rather than via client software.

In some cases, the primary serving unit “B1” remains sufficiently functional to
return an explicit failure response to client “A,” so “A” can failover to “B2” as soon
as explicit failure response is received rather than waiting for repeated requests to “B1”
to time out. As shown in Figure 5.14, user service recovery is faster when the primary
unit rapidly and explicitly signals failure to client “A” via a response, such as 500
Server Internal Error.

Figure 5.13.  Sample Redundant Architecture Timeline with Implicit Failure.

Redundancy and Recoverability	 79

5.4.1  Improving Recovery Times via Virtualization

Redundant units can be configured across a range of states of readiness, which affect
how quickly the redundant unit can recover user service, and thus directly impact
service outage duration. While the exact meaning (i.e., state of readiness) of “cold,”
“warm,” and “hot” standby vary from industry to industry, generally the hotter the
standby, the faster the service recovery. For example, a fully booted standby application
instance can recover service faster than a server that has booted the operating system
but not started the application, and both of those arrangements can recover service faster
than a standby server that is not even powered on.

Virtualization introduces several new recovery options that consume less physical
resources than traditional redundancy configurations. Figure 5.15 gives a side-by-side
timeline of both traditional and virtualized recovery strategies for redundant architec-
tures and their associated nominal recovery latency. From slower to faster, the new
virtualized recovery options are:

•	 Activate Suspended VM.  VMs in the “suspended state” are disabled from per-
forming tasks. The state of the virtual machine and its resources are saved to
nonvolatile storage, and virtual resources may be deallocated. Application com-
ponent instances can be started up in VMs, and those VM instances can be
suspended; following failure, a suspended VM instance can be activated, resyn-
chronized, and begin serving users. Suspended VM instances are sleeping
“deeply,” so there is more incremental recovery latency compared with activating
a “paused” VM instance, and even more latency compared to active or hot
standby VM redundancy; however, even fewer virtualized platform resources are
consumed to support suspended VM redundancy.

•	 Activate Paused VM.  In the “paused” state, a virtual machine and its virtual
resources are instantiated, but they are not enabled to execute tasks. Since these

Figure 5.14.  Sample Redundant Architecture Timeline with Explicit Failure.

80	 Application Redundancy and Cloud Computing

paused VM instances are already instantiated and resources are allocated, they
can be activated and made available to recover service quickly. Paused VM
instances are sleeping “lightly” so there is additional service recovery latency
compared to a switchover to a redundant active or hot standby VM instance, but
it has the advantage that fewer platform (e.g., CPU) resources are consumed to
maintain paused VMs than for online active VM instances.

•	 Failover to Active, Virtual Redundant Unit.  Traditional redundant units (e.g.,
active/standby redundancy) can be configured, kept in synch, and maintained as
(activated) virtual machines rather than being traditionally deployed on dedicated
hardware. Failovers to redundant units in virtual machine instances should have
the same latency as native redundant deployment. Note that standby redundant
units are lightly utilized when the active unit is operational, so virtualization
enables the redundant unit’s compute, memory, and networking resources that
would be mostly idle for traditional deployments to be used by or shared by other
applications when virtualized, which can lower the cloud consumer’s OPEX.

5.5  SEQUENTIAL REDUNDANCY AND CONCURRENT
REDUNDANCY

As shown in Figure 5.16, concurrent redundancy architectures entail client instance
“A” logically multicasting service requests to two or more server instances “B1,” “B2,”
and so on.

Having two or more server instances process the exact same client request simul-
taneously increases the probability that the correct response will be rapidly delivered
to the client. However, this architecture has several drawbacks:

Figure 5.15.  Recovery Times for Traditional Redundancy Architectures.

Sequential Redundancy and Concurrent Redundancy	 81

•	 Concurrent redundancy materially increases the complexity of client software
which must both manage the (logically) multicast requests and responses, as well
as decide which response to use; sometimes, delayed responses (because some
server instances might be slow) or conflicting responses (some server instances
might be faulty or data may not be in synch) are returned, further complicating
the logic.

•	 Concurrent redundancy increases the challenge of synchronization because each
operation is expected to occur simultaneously on two or more independent server
instances accessing the same logical application data, and thus synchronization
mechanisms must be designed to cope with literally constant data contention.

•	 Concurrent redundancy materially increases server resources consumed
because at least twice the resources are consumed since each request is processed
at least twice compared with simplex or traditional sequential redundancy
arrangements.

Figure 5.17 gives a timeline of how a concurrent redundancy arrangement
operates:

•	 Client “A” logically multicasts each request to multiple server instances (“B1,”
“B2,” and “B3” in this case).

•	 Each server instance responds to client “A” independently; inevitably, the
response latencies will be somewhat different from each server.

•	 Client “A” applies a selection strategy to the responses to determine which
result to use, and when. To mask failures of individual server instances, the
client’s selection strategy might not wait for responses from all server instances.
Each server instance returns its response independently, and client “A” selects
a response based on an algorithm, such as:

Figure 5.16.  Concurrent Redundancy Processing Model.

82	 Application Redundancy and Cloud Computing

○	 First (i.e., fastest) successful (i.e., nonerror) response
○	 First pair of matching responses
○	 Majority of successful responses received within a fixed time period.

Figure 5.18 shows a concurrent redundancy operation when server instance “B2”
fails. Since both “B1” and “B3” promptly provide successful responses to “A,” service
latency impact due to failure of “B2” is negligible, regardless of whether “B2” explicitly
signaled failure (e.g., returning 500 Server Internal Error) or implicitly signaled failure
(e.g., via timeout expiration).

Note that using the first response inherently produces shorter service latency than
for simplex or redundant architectures, but creates the risk that a single software failure
may compromise service for all users. For example, Figure 5.19 illustrates the case of
a software failure that causes one server instance to always return “404 Not Found”*
before other server instances can return correct results; in this case, that erroneous result
would automatically be used. Thus, clients of concurrent redundancy architectures often
use selection algorithms, such as the first pair of matching responses to both minimize
the risks of using a fast but wrong response and mask critical failures of individual
server instances that preclude any response from the other server instances. [Dean]
introduces the notion of “tied requests,” it which requests are sent to multiple servers
tagged with the identity of those other servers. The first server that responds to the
request issues a cancelation to the other servers so that multiple responses are not
returned.

Figure 5.17.  Client Controlled Redundant Compute Strategy.

*  “404 Not Found” is defined as “The server has not found anything matching the Request-URI” [RFC2616].

Sequential Redundancy and Concurrent Redundancy	 83

Figure 5.18.  Client Controlled Redundant Operations.

Figure 5.19.  Concurrent Redundancy Timeline with Fast but Erroneous Return.

5.5.1  Hybrid Concurrent Strategy

Concurrent redundancy arrangements offer better user service quality than sequential
redundancy arrangements by effectively eliminating the latency of failure detection and
recovery from user service delivery, but consuming far more resources. As most appli-
cations may not require the full service latency, reliability and availability benefits

84	 Application Redundancy and Cloud Computing

offered by concurrent redundancy architectures, one can achieve much of the service
quality benefit with vastly lower resource consumption with a hybrid concurrent model.
The hybrid model sends each request to a single server instance initially, and a suc-
cessful response from that server instance will be used when it is provided within an
overlap timeout. If the selected server instance does not reply within that overlap
timeout (e.g., within the 99th, 99.9th, or 99.99th percentile service latency time), then
the request is sent to another server instance. Whichever response is received first will
be used by the client. The hybrid concurrency strategy is very similar to the “hedged
request” strategy discussed in [Dean]. Figure 5.20 shows the timeline for hybrid con-
current operation: client “A” sends a request to “B1,” and if no response is received
before TGuard, then client “A” sends the same request to server “B2” and uses the first
successful response from either B1 or B2. While it is certainly possible that “B1” will
respond to the original request late or that a retry to “B1” might succeed (as shown in
Figure 5.20), it should be at least as likely that “B2” will respond promptly. But if “B1”
has failed, then by promptly overlapping the request to “B2,” the client should receive
a timely response despite the failure of “B1.”

5.6  APPLICATION SERVICE IMPACT OF VIRTUALIZATION
IMPAIRMENTS

This section considers how well each of the application service impacts (Section 2.5,
“Application Service Quality”) of infrastructure impairments (Chapter 4, “Virtualized
Infrastructure Impairments”) are mitigated by the four redundancy architectures
reviewed in this chapter:

•	 Simplex (nonredundant) architectures (Section 5.1)

•	 Traditional, sequential redundant architectures (Section 5.4)

Figure 5.20.  Hybrid Concurrent with Slow Response.

Application Service Impact of Virtualization Impairments	 85

•	 Concurrent redundancy architectures (Section 5.5)

•	 Hybrid concurrent architectures (Section 5.5.1).

5.6.1  Service Impact for Simplex Architectures

Since simplex architectures feature only a single serving component and service recov-
ery or repair has a significant user service impact, application service impact of simplex
deployments often directly endure the full impact of noncatastrophic virtualized infra-
structure impairments until service is so heavily impacted that the impact of a service
impacting recovery action is justified. Service impact for simplex architectures is the
performance baseline that other arrangements are compared to.

5.6.2  Service Impact for Sequential Redundancy Architectures

User service impact of traditional, sequential redundant architectures when confronted
with virtualized infrastructure impairments are considered as the following:

•	 Impact of VM Failure (Section 5.6.2.1)

•	 Impact of Nondelivery Events (Section 5.6.2.2)

•	 Impact of Degraded Delivery Events (Section 5.6.2.3)

•	 Impact of Tail Latency (Section 5.6.2.4)

•	 Impact of Clock Event Jitter (Section 5.6.2.5)

•	 Impact of Clock Drift (Section 5.6.2.6)

•	 Impact of VM Allocation and Startup Impairments (Section 5.6.2.7).

5.6.2.1  Impact of VM Failure.  VM failure appears to traditional redundancy
mechanisms as a hardware failure. Assuming spare VM capacity is available from the
IaaS, then offline migration can be used to “repair” failed components faster
than native deployments can be repaired, thereby reducing the application’s simplex
exposure time. While duplex failures caused by second failures occurring while
the system is simplex exposed are rare events, minimizing simplex exposure is a best
practice.

5.6.2.2  Impact of Nondelivery Events.  Figure 5.21 illustrates the timeline for
service delivery with a very brief TNondelivery event so that the sum of TNondelivery and
TNormal is less than TGuard. In this case the service impact for a traditional redundant
architecture is the same as for a simplex architecture.

Figure 5.22 illustrates a timeline for service delivery when TNonDelivery plus TNormal
is somewhat longer than TGuard so the client issues retries for transactions that were not
responded to before the guard time expired. As TNondelivery approaches and exceeds the
maximum acceptable service latency, users will deem transactions to have failed, thus
impacting service reliability and service accessibility, and perhaps service retainability.
Nondelivery of VM capacity directly impacts application service latency for traditional/
sequential application architectures. The user service impact for a traditional redundant
architecture on brief nondelivery events is the same as for a simplex architecture, since

86	 Application Redundancy and Cloud Computing

redundancy mechanisms should not activate. Longer delays may result in application
failover.

5.6.2.3  Impact of Degraded Delivery Events.  Degraded resource capacity will
directly impact service latency by increasing service latency for at least some operations
due to queuing for resource access, but traditional redundancy mechanisms should not
activate so the user service will be the same as with simplex architectures.

5.6.2.4  Impact of Tail Latency.  As excess tail latency events are unlikely to
impact both the initial request and all subsequent retries traditional redundancy mecha-

Figure 5.21.  Application Service Impact for Very Brief Nondelivery Events.

Figure 5.22.  Application Service Impact for Brief Nondelivery Events.

Application Service Impact of Virtualization Impairments	 87

nisms will not activate so the user service impact will be the same as with simplex
architectures.

5.6.2.5  Impact of Clock Event Jitter.  As only a single component instance is
serving each user request in traditional redundancy architectures, the user service
impact of clock event jitter is the same for traditional redundancy as for simplex
architectures.

5.6.2.6  Impact of Clock Drift.  System clocks can drift between redundant com-
ponents so that two or more redundant instances (e.g., “B1” and “B2”) have different
views of the current time. As a result, clients may experience (slight) apparent temporal
shifts when service fails over from one server instance (e.g., “B1”) to another (e.g.,
“B2”).

5.6.2.7  Impact of VM Allocation and Startup Impairments.  While VM allo-
cation and startup is in the critical path of user service recovery for simplex architec-
tures, it is not in the critical path of user service recovery of traditional redundancy
architectures. VM allocation and startup is necessary to restore full redundancy follow-
ing failure in a traditional architecture, so failed or slow VM allocation and startup
prolongs the period of simplex exposure following failure with traditional redundancy
architectures, but this impairment has little impact on user service.

5.6.3  Service Impact for Concurrent Redundancy Architectures

Concurrent redundancy architectures are better at mitigating user service impacts of
virtualized infrastructure impairments than either sequential redundancy or simplex
architectures, as discussed in the next sections.

5.6.3.1  Impact of VM Failure.  As shown in Figure 5.18, concurrent redundancy
architectures can completely mask the user service impact of VM failure.

5.6.3.2  Impact of Nondelivery Events.  As shown in Figure 5.23, concurrent
redundancy architectures effectively mitigate nondelivery impairment events.

5.6.3.3  Impact of Degraded Delivery Events.  Concurrent redundancy architec-
tures effectively mitigate degraded resource delivery events in the same way they miti-
gate nondelivery events.

5.6.3.4  Impact of Tail Latency.  Concurrent redundancy architectures fully miti-
gate the user service impact of tail latency events because successful timely responses
will mask tardy responses.

5.6.3.5  Impact of Clock Event Jitter.  Concurrent redundancy architectures miti-
gate the user service impact of clock jitter events by using a successful low jitter
response and discarding high jitter responses.

88	 Application Redundancy and Cloud Computing

5.6.3.6  Impact of Clock Drift.  If the real-time clocks of servers in the concurrent
redundancy pool drift out of sync, then both clients and cloud consumers may become
confused about the sequence and chronology of transactions that were served by dif-
ferent server instances. While this hazard is fundamentally the same, as with sequential
redundancy, concurrent redundancy means that actual responses sent to clients can
alternate between server components so clients might experience slightly differing
timestamps between any two transactions, while with sequential redundancy, the client
is only exposed to server clock drift following failover or switchover events.

5.6.3.7  Impact of VM Allocation and Startup Impairments.  VM alloca
tion and startup impairments are not in the user service delivery or recovery path, so
these impairments have no impact on user service for concurrent redundancy
architectures.

5.6.4  Service Impact for Hybrid Concurrent Architectures

Hybrid concurrent redundant architectures mitigate virtualized infrastructure impair-
ments better than traditional, sequential redundancy arrangements, but not quite as well
as concurrent redundancy arrangements.

5.6.4.1  Impact of VM Failure.  Hybrid redundant architectures yield a slight
increase (i.e., degradation) in user service latency for operations initially sent to a failed
VM instance compared with concurrent redundancy arrangements, but the overall
service latency impact is likely to be much smaller than for traditional redundancy
architectures.

Figure 5.23.  Nondelivery Impact to Redundant Compute Architectures.

Application Service Impact of Virtualization Impairments	 89

5.6.4.2  Impact of Nondelivery Events.  As shown in Figure 5.24, hybrid redun-
dant architectures should limit service latency due to nondelivery events to approxi-
mately TOverlap plus TNormal.

5.6.4.3  Impact of Degraded Delivery Events.  Hybrid redundant architectures
will effectively mitigate the user service impact of degraded delivery events like they
mitigate nondelivery events. As shown in Figure 5.24, hybrid redundant architectures
should limit service latency due to uncorrelated degraded delivery events to approxi-
mately TOverlap plus TNormal.

5.6.4.4  Impact of Tail Latency.  Hybrid redundant architectures should mitigate
extreme tail latency events because expiration of TOverlap will cause requests to be retried
to another server component instance so clients should receive responses within TOverlap
plus TNormal. The more aggressive (i.e., shorter) TOverlap is set, the smaller the service
latency tail should be.

5.6.4.5  Impact of Clock Event Jitter.  Hybrid concurrent architectures are gener-
ally ineffective at mitigating clock event jitter that is significantly shorter than TOverlap
because a redundant request will not be sent and served fast enough to mask most clock
jitter events.

5.6.4.6  Impact of Clock Drift.  Clients are somewhat more likely to experience
server clock drift with hybrid redundant architectures than with sequential redundancy
because individual transactions will occasionally be served by alternate servers with
hybrid arrangements, while alternate servers are only used in sequential redundancy
arrangements following failover or switchover.

5.6.4.7  Impact of VM Allocation and Startup Impairments.  VM allocation
and startup impairments are not in the user service delivery or recovery path, so these
impairments have no impact on user service for hybrid redundant architectures.

Figure 5.24.  Nondelivery Impact to Hybrid Concurrent Architectures.

90	 Application Redundancy and Cloud Computing

5.7  DATA REDUNDANCY

At the highest level, distributed applications deliver service by executing programs on
processors that respond to inputs based on data. Earlier sections of this chapter consid-
ered redundancy arrangements of processors to mitigate failed component instances
and retry strategies to mitigate lost input requests. Program files are static, so they are
easy to replicate in advance. That brings one to the question of data that is not com-
pletely static, which covers a diverse family such as:

•	 Application instance configuration data, such as IP addresses and DNS names

•	 User data, such as user names, passwords, and preferences

•	 Application data, such as inventory databases

•	 Session data, such as users currently logged on and last transaction executed

•	 Transaction data, such as the input parameters for the pending client request

•	 Variables and processor registers, such as the current value of the stack pointer.

The impact of recovering service after data have been lost varies dramatically
across this range: without a DNS name, an application component may not even be
able to start successfully, but losing the contents of automatic variables when a process
crashes may not even be noticed. Thus, architects must carefully catalog what data are
acceptable to lose on failure (e.g., contents of automatic variables in main memory)
and what data must be retained across failure events. The validation of the essential
data should be in the form of executable tests that accompany the application software.
Retaining data that rarely changes (e.g., DNS names) is relatively easy via writing
information to persistent (disk) storage and periodic replication. Retaining highly vola-
tile data is much harder because of the volatility forces higher bandwidth for replication
and greater risk of concurrency issues when maintaining consistency with replicated
values. However, if volatile data can be stored in a shared redundant repository, replica-
tion is simplified, and more components can provide recovery for another failed com-
ponent by accessing its volatile data from the shared storage, although at a possible
latency cost for data retrieval.

5.7.1  Data Storage Strategies

Application architects have three broad options for locating application data:

•	 Store It in Application RAM Memory.  This offers the fastest access and highest
cost option. RAM is inherently a volatile storage medium; when power goes
away, so does the data. As a practical matter, RAM is generally tightly coupled
with a particular application instance on a (virtual) machine. One accesses and
manipulates the content of that RAM via a particular application instance, and
if/when that application instance fails, then the contents of that RAM is generally
lost. Thus, one can refer to RAM-based storage as “volatile” because failure of
the application or virtual machine using that RAM will cause the contents of that
“volatile” RAM storage to be lost. Because RAM offers extremely low access

Data Redundancy	 91

latencies, it is ideal for storing volatile data (e.g., processor stacks), as well as
frequently accessed data (e.g., executable instructions).

•	 Store It on Persistent Media.  Hard disk drives, FLASH memory, and optical
disks are called persistent media because the data stored on those devices is
persistent across typical power and application failures. Persistent storage devices
generally offer very large capacities, and while the cost per device may be mod-
erate to high, the cost per unit of storage is cheap. Persistent storage has inher-
ently slower access latencies, and thus it is more awkward to store extremely
dynamic data on persistent media; in the extreme case the dynamic data might
change faster than the persistent media can record those changes, and thus
latency performance of the persistent media becomes the limiting factor on
application performance.

•	 Store It in the Client Application/Device, so the cost and maintenance of the data
is the responsibility of the client user rather than the application component
architect. While pushing data from the application itself to the client device does
not eliminate the risk of user service impact on failure, it does transfer account-
ability to the end user, and thus beyond the scope of this document.

Note that the contents of RAM storage is often initialized (or cached) by copying
data from persistent media, like when an executable program is copied from persistent
hard disk into main memory to execute. Note also that cache memory (e.g., L2 cache
on microprocessor chips) is not considered in the context of data storage because the
contents of cache are explicitly synchronized to one of the fundamental storage options
earlier.

One of the principles of data storage advocated by Amazon Web Service is: “Keep
dynamic data closer to the compute and static data closer to end-user” [Varia]. Dynamic
data is a good candidate for RAM storage as a result, while copies of static data should
be stored and made available to application instances that can best serve the end user.
Note that for large-scale systems, it is much easier to move compute than to move data.

Just as “no single point of failure” requirements prohibit singleton application
process or VM instances, no single RAM or persistent storage device may be a single
point of failure for critical applications either. Generally, this means that all data must
be maintained in two physically independent instances so if a failure impacts one
storage device then service can be rapidly recovered to another storage device. Place-
ment of the independent data instances and their ability to synchronize and provide
reliable storage with low latency for accessing applications is an important consider-
ation in configuring an application’s data needs.

5.7.2  Data Consistency Strategies

Data management is complex in the cloud environment since transactions can span
multiple application instances and be stored in multiple locations. There are two types
of mechanisms generally used to keep data synchronized: ACID and BASE.

Mechanisms that possess ACID (atomicity, consistency, isolation, and durability)
properties ensure transactional reliability [Wikipedia-DB]. Many relational database

92	 Application Redundancy and Cloud Computing

systems (e.g., SQL based) provide ACID capabilities. These mechanisms should be
used when transactional reliability and immediate consistency are essential to meet
customer needs, as these mechanisms can be very resource intensive and may introduce
latency into transactions.

BASE (basically available, soft state, eventual consistency) mechanisms ensure
eventual consistency, that is, transactions do not require all copies to be immediately
consistent to succeed. By loosening this requirement a simpler, less resource intensive,
more fault tolerant solution is supported that is well suited for scalability. Many web
and e-mail services that require scalability can take advantage of the less-complex
BASE properties because they do not have to be instantly up to date.

5.7.3  Data Architecture Considerations

Applications should be architected to back up or replicate persistent application, user
and enterprise data so that failure of a persistent storage device can be mitigated either
by recovering to a component instance hosting a replica of the data or restoring data
from a backup. Volatile state information should be stored in RAM and replicated across
redundant components. Alternatively, volatile data should be pushed out of application
server component instances either back to the client (if possible) or into a shared and
highly available registry server to minimize user service disruption on component
failure. For highly distributed databases, weaker eventual consistency (BASE) should
be considered instead of ACID arrangements to improve scalability. While ACID
ensures data consistency across all copies of the data as part of successful completion
of a transaction, BASE decouples the updating of the data from the transaction, allow-
ing the transaction to complete before all of the copies of the data have been updated.
For example, if a particular data store is not available due to a network problem, the
rest of the system is available to continue functioning and the data is updated in that
data store once it is available.

5.8  DISCUSSION

This section summarizes the advantages and drawbacks of the four redundancy archi-
tectures across several dimensions:

•	 Service Quality Impact (Section 5.8.1)

•	 Concurrency Control (Section 5.8.2)

•	 Resource Usage (Section 5.8.3)

•	 Simplicity (Section 5.8.4).

Application architects must pick the option that best fits the design goals and
constraints of their project.

Discussion	 93

5.8.1  Service Quality Impact

In descending order of feasible service quality (i.e., best to worst), the four architectures
are the following:

1.	 Concurrent Redundancy architectures effectively mitigate the user service impact
of VM failure, nondelivery of virtualized resource, degraded delivery of virtual-
ized resource, tail latency, clock event jitter, and VM allocation and startup
impairments. Note that concurrent redundancy and hybrid concurrent architec-
tures are somewhat more vulnerable to clock drift because if different servers
have different clock times, then the chronology of events may become confused,
which can create service, billing, troubleshooting, and other errors.

2.	 Hybrid Concurrent architectures mitigate all of the impairments addressed by
concurrent redundancy but with slightly increased service latency for some
transactions.

3.	 Sequential Redundancy architectures should effectively mitigate VM failures
because these appear like the hardware failures that traditional mechanisms were
designed to mitigate. If nondelivery of virtual resource events are very long rela-
tive to guard timeouts, then sequential redundancy mechanisms may activate to
limit user service impact; otherwise, the user service impact will be the same as
with simplex architectures. The impact of degraded resource delivery, tail latency,
and clock drift are likely to be the same as with simplex architectures. Note that
user service is not impacted by VM allocation and startup impairments on service
recovery with redundant architectures, although these impairments do directly
prolong user service recovery times for simplex architectures.

4.	 Simplex architectures are the baseline against which service impact of virtualized
infrastructure impairments should be compared. Deploying simplex configura-
tions protected by VM RaaS (aka self-healing) mechanisms can boost service
availability compared with native deployment by significantly shortening service
recovery times.

5.8.2  Concurrency Control

Parallel and concurrent programming is hard because synchronization of shared
resources across concurrent processes or threads must be carefully controlled to prevent
one instance from damaging (e.g., overwriting) another instance’s changes. With inad-
equate concurrency controls, one risks having data values erroneously overwritten,
leading to inaccurate operations and compromised data integrity. With excessive con-
currency controls, one risks performance bottlenecks due to excessive serialization and
deadlock. In order of increasing concurrency risk (i.e., low risk to high risk), the four
architectures are:

1.	 Simplex has the least concurrency risk, and thus the simplest (and thus most likely
to be defect free) concurrency controls can be implemented. After all, data that
is not directly shared by other software components does not require synchroniza-
tion mechanisms to maintain consistency across components.

94	 Application Redundancy and Cloud Computing

2.	 Sequential Redundancy has modest concurrency risk because, by design, concur-
rent operations are limited.

3.	 Hybrid Concurrent redundancy has elevated concurrency risk because by design,
slow operations will be overlapped by concurrently executing operations on other
component instances. The shorter the overlap timer (TOverlap), the more likely
operations are to be simultaneously pending with multiple server instances. When
TOverlap is large, then the concurrency risk is only slightly greater than for sequen-
tial redundancy; as TOverlap shrinks the frequency of concurrency—and hence the
risk of exposing concurrency control defects—rises.

4.	 Concurrent Redundancy has maximum concurrency risk because by design, all
operations will execute simultaneously and in parallel on at least two component
instances. As concurrent redundancy architectures are intended to actually execute
the same operation in parallel, traditional synchronization schemes, such as
coarse grained mutual exclusion (mutex) locks, are likely to defeat the service
quality benefits. After all, there is little value in sending requests simultaneously
to two or three component instances if service by those components will be serial-
ized by a single mutex lock, which assures that the response from the component
instance that successfully acquired the mutex first will be used, and the responses
from component instances that had to wait for the mutex will be slower and thus
be discarded.

5.8.3  Resource Usage

As measured usage is an essential characteristic of cloud computing, lower resource
usage should yield lower OPEX for the cloud consumer. In increasing order of resource
usage—and thus presumably increasing OPEX—the four architectures are:

1.	 Simplex

2.	 Sequential redundancy

3.	 Hybrid concurrent redundancy. Note that hybrid concurrent implementations
are likely to consume only slightly more resources than sequential redundancy
(e.g., only for transactions slower than TOverlap).

4.	 Concurrent redundancy implementation will consume significantly more
resources than sequential and hybrid concurrent redundancy architectures as each
transaction will be processed at least twice.

5.8.4  Simplicity

Simple systems are easier to build right the first time and thus tend to be more
reliable. In descending order of simplicity (i.e., simplest to most complex), the four
architectures are:

1.	 Simplex

2.	 Sequential redundancy

3.	 Concurrent redundancy, because of complex concurrency controls

Discussion	 95

4.	 Hybrid concurrent, because the actual concurrency risk varies based on the con-
figured value of TOverlap.

5.8.5  Other Considerations

Enthusiasm for the service quality benefits of concurrent redundancy should be
tempered by several practical considerations, as well as the fact that different compo-
nents will likely evolve at different speeds based on a cost/benefit analysis for that
component:

1.	 Accruing the full benefits of concurrent redundancy requires fine grained concur-
rency controls so that multiple component instances can effectively serve identi-
cal requests in parallel. Poorly architected and coarse-grained concurrency
controls can produce worse service performance than simplex or sequential
redundancy arrangements.

2.	 Existing application protocols may not properly support full concurrent oper
ation.  For example, existing application protocols may not support issuing mul-
tiple identical requests to separate component instances simultaneously, and later
canceling or aborting tardy responses.

3.	 Client software must change to support concurrent operation.

4.	 Debugging concurrent programming problems is harder than debugging prob-
lems in simplex or traditional (sequential) architectures.

As a thought experiment, imagine that your bank has decided to implement concur-
rent redundancy for their automated teller machines so that each ATM will send every
transaction to both of the bank’s data centers simultaneously. Consider the case of a
withdrawal request: the ATM will send identical withdrawal transactions to both data
centers, and then send a cancel request to the slower data center after the first successful
response is received. What can possibly go wrong with this service arrangement, and
what might happen to your bank account balance?

6

LOAD DISTRIBUTION
AND BALANCING

Wikipedia defines load balancing as “a computer networking method to distribute
workload across multiple computers or a computer cluster, network links, central pro-
cessing units, disk drives, or other resources, to achieve optimal resource utilization,
maximize throughput, minimize response time, and avoid overload” [Wikipedia-LB].
This chapter reviews the architectural, operational and service quality considerations
of both proxy and nonproxy load balancing technologies.

6.1  LOAD DISTRIBUTION MECHANISMS

Load balancing can be implemented either by positioning an intermediate system in
the service delivery path as a proxy or via mechanisms that do not rely on an intermedi-
ate system in the service delivery path.

•	 Proxy Load Balancers (Figure 6.1).  With proxy load balancing the client “A”
sees the IP address of the proxy load balancer. The proxy load balancer is respon-
sible for the distribution of client requests across the pool of servers “B1,” “B2,”
and “Bn.” As proxy load balancers are in the critical service delivery path, their

97

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

98	 Load Distribution and Balancing

downtime contributes to service downtime; however, because a proxy load bal-
ancer is in the service delivery path, it can gather metrics on offered workload
and performance of all server instances in its pool. Note that while message
queue servers provide a load balancing function, message queue servers are not
explicitly considered in this chapter. Proxy load balancing can be provided using
software modules or computer appliances with special purpose hardware and
integrated firmware to provide the load balancing capabilities.

•	 Nonproxy Load Distributors are mechanisms that do not insert an additional
component into the service delivery path. While nonproxy mechanisms generally
do not add service downtime because they are not in the critical service delivery
path, they are not able to produce the rich service measurements that proxy
mechanisms can, precisely because they are not in the service delivery path.
Nonproxy load distribution or balancing mechanisms include:
○	 Static Client Configuration.  Each client “A” can be configured with the IP

address of a primary server instance (e.g., “B1”). One or more secondary
instances (e.g., “B2”) can also be configured for client “A” to use if the primary
instance is unavailable.

○	 DNS.  Clients retrieve the IP address for one or more server instances from
DNS. The DNS server can act as a load balancer by providing clients with one
or more IP addresses based on a given domain name. Round robin distribution
is one technique for how DNS responds to those domain name requests. When
a client sends a domain name request to DNS, the DNS server provides an
ordered list of IP addresses corresponding to that domain name. The order of
the list changes with each client request in an attempt to balance traffic to be
sent to the components supporting the service identified by the domain name.
Note that clients can decide to select any IP address in that list so it does not
guarantee how client work load is actually distributed.

○	 Multicast IP Addressing.  Clients can use multicast IP addressing to send
requests to multiple servers simultaneously, and then wait for the first server

Figure 6.1.  Proxy Load Balancer.

Proxy Load Balancers	 99

to respond. This mechanism works well in certain contexts (e.g., DHCP), but
limitations on multicast support across WANs temper the usefulness of this
mechanism.

○	 Anycast.  Clients can use anycast to route to a single node within a group of
potential servers all identified by the same destination address.

○	 Representation State Transfer (REST).  Clients maintain any state information
they need and communicate with the servers using a standard interface
exchanging representations of the resources rather than the resources
themselves.

6.2  LOAD DISTRIBUTION STRATEGIES

Client workload distribution across a pool of server or application component instances
can be driven via several basic strategies including:

•	 Static Configuration.  Each client “A” is statically mapped to one primary
instance (e.g., “B1”). Optionally, one or more secondary server instances can be
configured.

•	 Round Robin.  requests can be uniformly distributed across the pool of available
servers on the fly.

•	 Random Choices.  Requests can be randomly distributed across the pool of avail-
able servers.

•	 Performance Based.  Requests can be distributed based on observed perfor-
mance of server component instances, such as biasing distribution to server
instances with shorter service latency and away from instances with greater
service latency.

•	 Status Based.  Server instances that are not active or have failed will not be
included in the pool of available servers until they are once again active.

•	 Orchestration Enabled.  Workload distribution can be integrated with both cloud
consumer and cloud service provider operations, such as planned maintenance,
release management and elasticity to gracefully drain traffic away from server
instances prior to starting operations impacting those instances, and begin flowing
traffic to server instances after maintenance actions have completed. Orchestra-
tion enabled workload distribution can minimize the user service disruption of
elastic degrowth, release management, and elastic growth actions.

6.3  PROXY LOAD BALANCERS

As shown in Figure 6.2, load balancing via proxy has the following basic steps:

1.	 Client sends request to proxy load balancer.

2.	 Load balancer selects a server instance to serve the client’s request.

100	 Load Distribution and Balancing

3.	 Load balancer forwards client’s request to selected server instance.

4.	 Selected server instance returns response to client’s request to load balancer.

5.	 Load balancer forwards response to client.

6.	 Load balancer records performance information, such as service response latency
for the selected server instance.

7.	 Performance information recorded by load balancer is used when making
server selection decisions for future requests and as input for operations support
systems.

Load distribution algorithms implemented by proxy load balancers include simple
methods discussed in Section 6.2, “Load Distribution Strategies,” such as round robin
or random choice. More complex algorithms can take into account one or more of the
following factors:

•	 Session “Stickiness.”  Some requests must be sent to the same component/
instance that has handled other requests for the same session. In Figure 6.2, if
server “B1” is providing service to client “A”, then all messages associated with
that session will continue to be sent to server “B1” as long as “B1” is available
and any of its critical downstream components.

•	 Component Availability.  Components that are out of service or otherwise
unavailable must be removed from the pool of available components.

•	 Component Resource Utilization.  Traffic should be spread in a way to maximize
usage of available resources.

Figure 6.2.  Proxy Load Balancing.

Nonproxy Load Distribution	 101

•	 Resource Availability.  Server components with the most available resources
(e.g., CPU, memory) based on application needs (e.g., as specified in a service-
level agreement [SLA]) may be chosen.

•	 Current Load on the Component.  Although traffic should be spread so as to
maximize usage of resources it should not cause components to exceed their
resources and trigger overload conditions.

•	 Latency.  Requests should be distributed to minimize response latency for the
end user. This may include prioritizing component selection based on closest
location to the end user to minimize transport latency.

As proxy load balancers are in the critical service delivery path they are often
designed to be highly available, and thus are typically deployed with some form of
sequential redundancy.

6.4  NONPROXY LOAD DISTRIBUTION

DNS is probably the most common nonproxy load distribution strategy used by applica-
tions. Load balancing via DNS has the following basic steps:

1.	 Client sends DNS server a domain name (e.g., www.wikipedia.org) and receives
one or more IP addresses assigned to that domain name.

2.	 Client caches the address(es).

3.	 Client sends request for service using one of the IP addresses provided
by DNS.

4.	 If the server does not successfully return a response to the client, then the client
may either retry the request to another IP address provided by DNS in the original
response or the client may request another IP address from DNS to use.

5.	 Selected server instance returns response to client

6.	 Client continues to use that server to send other messages associated with that
session or transaction.

Static configuration of distributed applications is also common. Load balancing via
static configuration has the following basic steps:

1.	 IP address of one (or more) server is explicitly written into a registry or configu-
ration file on the client device.

2.	 Client sends request for service to the statically configured IP address associated
with the service.

3.	 Selected server instance returns response to client, and client continues to use
that address for other messages associated with that session or transaction.

4.	 If primary configured server fails to respond to the client within the guard timeout
and subsequent retries to the primary fail, then the client can use a secondary

http://www.wikipedia.org

102	 Load Distribution and Balancing

server if one was configured or return an error to the end user until the primary
server is returned to service

Other nonproxy load-balancing mechanisms such as multicast and anycast are used
less frequently than either DNS or static configuration. Unlike proxy load balancers,
nonproxy load distribution is not generally in the critical delivery path particularly in
the case of static configuration. However, there is no load balancer collecting metrics
on server behavior to help support decisions such as growth.

6.5  HIERARCHY OF LOAD DISTRIBUTION

Complex applications are generally architected with several tiers of service and func-
tionality, and load distribution mechanisms and policies are generally implemented at
each tier. Consider the architectural tiers of load distribution for a hypothetical web
application:

•	 Data Center Tier.  Assuming the application is deployed to multiple data centers
(perhaps for disaster recovery), clients must select which data center to direct
each client request to. This tier of load distribution is generally via DNS (non-
proxy load distribution).

•	 Application Instance Tier.  If multiple application instances exist within a single
data center—perhaps in different availability zones within a single data center—
then the client must be directed to a specific application instance. This tier of
load distribution is generally via DNS (nonproxy load distribution).

•	 Application Frontend.  A single application instance is likely to have a pool of
frontend servers that actually terminate HTTP traffic, so each client request must
be distributed to a particular frontend server instance. This tier of load distribu-
tion is frequently done via proxy mechanisms, such as conventional load balanc-
ers or application distribution controllers.

•	 Application Backend.  Backend component instances are likely to implement
business logic, database functionality, and so on. As there are likely to be mul-
tiple instances of backend components for capacity, performance, and resilience,
some load distribution mechanism must be deployed to enable frontend compo-
nents (as “clients”) to get service from backend component instances (as
“servers”). While message queue servers are a common architecture for manag-
ing workloads between frontend and backend server components (and are not
considered in this chapter), nonproxy load balancing mechanisms will be used
for many applications.

Note that even a single application may require workload distribution across geo-
graphically separated data centers, as well as across different types of component
instances within the same data center. Each workload distribution step may have some-
what different selection criteria and constraints, and thus require different data and
different implementation architectures.

The Role of Load Balancing in Support of Redundancy	 103

6.6  CLOUD-BASED LOAD BALANCING CHALLENGES

Workload distribution across applications deployed to cloud is more complex than for
traditional deployments because:

•	 Rapid elasticity produces dynamic application configurations as workload grows
and shrinks so load balancers must distribute workloads across this dynamic
server pool

•	 Usage-based pricing and rapid elasticity encourage larger pools of smaller-sized
server instances to enable resource usage to track more closely with offered load.

•	 Virtualized infrastructure will potentially deliver less consistent server instance
throughput and latency than traditionally deployed application components, so
load balancers must address more variable server performance.

•	 Virtualization and support for vertical growth means that application component
instances with different typical throughput can coexist in a pool of application
server components, so load balancers must recognize asymmetric server compo-
nent capacity.

Later sections will discuss these topics in more detail and how the challenges are
met in the cloud environment.

6.7  THE ROLE OF LOAD BALANCING IN SUPPORT OF
REDUNDANCY

Chapter 5, “Application Redundancy and Cloud Computing,” discussed four funda-
mental redundancy strategies: simplex, sequential redundancy, concurrent redundancy,
and hybrid concurrent redundancy.

•	 Simplex.  By definition, load distribution is trivial for a simplex component
because there is only a single serving unit; nonproxy methods, such as DNS, are
generally used to enable clients to find the simplex server instance.

•	 Sequential Redundancy.  Intelligent proxy load balancers implement basic
sequential redundancy by automatically detecting failed or otherwise unavailable
server instances and sending traffic only to available server instances. Complex-
ity arises in the following cases:
1.	 Server instance fails while one or more client requests are pending.
2.	 Silent failure of server instance means that load balancer is unaware of com-

ponent failure.
To mitigate the complexity the load balancer can set a guard timer. If the

response is not received within the timer interval, it can retry the request several
times or return an error message to the requesting client. The load balancer can
collect metrics on the length of the nonresponse by the server instance and send
an alarm indicating server instance failure and remove the server instance from
its pool of available instances.

104	 Load Distribution and Balancing

•	 Concurrent Redundancy.  For concurrent redundancy, the proxy load balancer
can assume the role of the client and take on the responsibility for sending
requests to multiple server instances and choosing the “best” response to return
to the client that made the original request. As explained in Section 5.5, selection
of the “best” response can sometimes be complicated by delayed responses or
conflicting responses.

•	 Hybrid Concurrent Redundancy.  For hybrid concurrent redundancy the proxy
load balancer could assume the role of sending each client request to a single
server instance initially. If a successful response is received within the overlap
timeout (TOverlap) from that server instance, then it will be sent back to the request-
ing client. If the selected server instance does not reply within that overlap timeout
(TOverlap), then the load balancer sends the request to another server instance.
Whichever response is received first by the load balancer will be sent to the client.

6.8  LOAD BALANCING AND AVAILABILITY ZONES

As shown in Figure 6.3, DNS is typically used to distribute workloads across a suite
of data centers and availability zones. If an entire data center is unavailable (e.g., as a
result of a disaster event), then traffic can be directed to another data center by recon-
figuring DNS. See Section 10.5, “Disaster Recovery and Geographic Redundancy,” for
more details on disaster recovery.

6.9  WORKLOAD SERVICE MEASUREMENTS

Proxy load balancers are well positioned to monitor and collect data about offered
workload from clients and performance of the server instances in its pool. These data
can be used to make better load distribution decisions to:

Figure 6.3.  Load Balancing between Regions and Availability Zones.

Operational Considerations	 105

•	 Mitigate performance impairments of individual server components (see Section
6.10.3).

•	 Trigger elastic growth when offered load increases (see Section 8.5).

•	 Trigger elastic degrowth when offered load decreases (see Section 8.5).

In order to measure the effectiveness of the load balancing, the following per
formance measurements should be collected by the load balancer for a given interval
(e.g., 5, 15, and 30 minutes) for each server instance in the pool:

•	 Number of requests sent by the load balancer to a server instance

•	 Number of failure responses returned by a server instance to the load balancer

•	 Number of implicit failures detected by load balancer as timeout expirations

•	 Response latency between the client and server instance, generally both typical
(e.g., mean) and some tail variance latency (see Section 2.5.2.2, “Characterizing
Service Latency”)

•	 Portion of requests that meet latency requirements (e.g., as set by policies).

The load balancer should provide metrics to an operational support system (OSS)
or a virtual machine server controller (VMSC) because:

1.	 Metrics are used by a proxy load balancer to drive decisions of how to distribute
client requests.

2.	 Metrics are used to trigger threshold crossing alarms to trigger elastic growth and
so on.

3.	 Metrics are used as performance management data to OSSs to enable better
network/capacity planning and operations.

Note that the growth and degrowth activities may be manual or automatically trig-
gered through policies and service orchestration. Metrics can be pushed to or pulled
from the OSS based on the required interface between the components.

6.10  OPERATIONAL CONSIDERATIONS

6.10.1  Load Balancing and Elasticity

Proxy load balancing and elasticity are interrelated in several ways:

•	 As indicated in Section 6.9, load balancers can collect and forward metrics
to an OSS or VMSC, indicating the amount of traffic the server instances are
handling. This coupled with capacity forecasting can trigger resource growth or
degrowth activities.

•	 When server instances are added to the load balancer’s pool during elastic
growth, the load balancer should be notified of the change and start sending

106	 Load Distribution and Balancing

traffic to the new server instance(s). This addition will result in the rebalancing
of the workload across the updated pool

•	 As part of degrowth, the load balancer can support this activity by draining traffic
from the server instance to be degrown and directing new traffic to the remaining
server instances in the pool. Once the traffic has been successfully drained from
the server instance, it is removed from the server instance pool as part of the
degrowth procedure and the load balancer will no longer send traffic to that
server instance. Note that this method of draining traffic from the server instance
is similar to the method used to support release management as explained in
Section 6.10.3.

•	 In support of outgrowth, the load balancer may be involved in transferring traffic
to another load balancer in a different data center.

Chapter 8, “Capacity Management,” considers elasticity in detail.

6.10.2  Load Balancing and Overload

Each VM instance has a finite service capacity, and the primary function of the proxy
load balancer is to assure that workload is distributed across the pool of available server
instances that the load balancer itself controls. If the load balancer’s pool of resources
is at or beyond its engineered capacity, then the load balancer instance has the following
options for subsequent client requests:

•	 Continue to distribute requests to the active server instances in the pool and let
them execute their overload mechanisms.

•	 Silently drop requests until the overload condition has ended.

•	 Respond back to the client with an error message indicating overload (e.g., “TOO
BUSY”).

In addition to managing an overloaded pool of server instances, a proxy load bal-
ancer can mitigate overload situations by:

•	 Directing traffic away from overloaded server instances and using alternate
service instances.

•	 Raising an overload alarm to the cloud OSS so elastic capacity growth and/or
rebalancing workload across other application instances can be initiated.

Note that the load balancer itself may go into overload. TCP sockets are known
to misbehave if there is huge throughput running through a single socket and even
exponential backoff does not work well to resolve this. Overload control mechanisms
must be introduced into the load balancer itself in order to keep it functioning
properly.

Load Balancing and Application Service Quality	 107

6.10.3  Load Balancing and Release Management

As discussed in Section 9.5, proxy load balancers may be useful in supporting release
management operations to support the following:

•	 Proactively balancing the workload served by each application release.

•	 When draining traffic from the old release, load balancers must keep track of
existing sessions on the old release, direct new traffic to server instances running
the new release, and send any traffic associated with the existing sessions to the
active server instance currently handling those sessions even if it is still on the
old release. Note that this same draining procedure can be used during degrowth.

•	 In coordination with block party-type software upgrade (see Section 9.3.1), load
balancing will distribute workload taking into account policies and version
information when multiple versions of the application instance are active and
available for traffic.

•	 In coordination with one driver per bus type software upgrade (see Section 9.3.2),
load balancing will distribute workload to the active application instances.
Although only one version will be active at a time, there may be a period of
draining traffic in which multiple releases are active and traffic needs to be
controlled for distribution to the correct release.

6.11  LOAD BALANCING AND APPLICATION SERVICE QUALITY

The potential impact of proxy load balancing on application service quality is consid-
ered for the following:

•	 Service Availability (Section 6.11.1)

•	 Service Latency (Section 6.11.2)

•	 Service Reliability (Section 6.11.3)

•	 Service Accessibility (Section 6.11.4)

•	 Service Retainability (Section 6.11.5)

•	 Service Throughput (Section 6.11.6)

•	 Service Timestamp Accuracy (Section 6.11.7).

Note that in cases where nonproxy load balancing may provide support, it will be
explicitly noted below.

6.11.1  Service Availability

Proxy load balancing has a positive impact on service availability by:

•	 Monitoring the availability of the server instances in its pool and directing traffic
to active server instances.

108	 Load Distribution and Balancing

•	 Monitoring the health of server instances based on resource availability metrics
collected and directing traffic to server instances with sufficient resources to
manage the workload.

•	 Rerouting failed requests to an alternate server instance. The requests may have
failed explicitly with an error message or implicitly based on timers maintained
by the load balancer.

A proxy load balancer can have a negative impact on service availability
because:

•	 The load balancer becomes another critical element in the service path and must
be included in the availability calculation for the application service.

•	 The load balancer becomes a single point of failure so it must be redundant to
provide high availability.

•	 The load balancer goes into overload.

If elastic growth fails to activate or execute promptly and correctly, then user
traffic may experience overload control (e.g., TOO BUSY errors) rather than being
served normally. Accountability for this service impact is complex and is discussed in
Section 11.4, “Accountability Case Studies.”

6.11.2  Service Latency

Proxy load balancing can have a positive impact on service latency by:

•	 Collecting metrics on response latency measured for each server instance in the
pool and using that data to direct workload to servers that can meet response
requirements (as dictated by policies).

•	 Support concurrent redundancy (if implemented) to make sure a timely response
is provided to the client.

Nonproxy load balancing can have a positive impact on service latency by
specifically configuring server instances to be those closest in location to the request
ing client (e.g., based on transmission times). It can also add latency in retrieving the
data.

6.11.3  Service Reliability

Proxy load balancing can have a positive impact on service reliability by monitoring
resource usage on the servers and directing traffic to servers that have sufficient
resources available to process requests (e.g., based on SLA specifications) and not
overload those servers that are already at capacity.

Proxy load balancing can have a negative impact on service reliability by introduc-
ing failures into the service itself.

Load Balancing and Application Service Quality	 109

6.11.4  Service Accessibility

Proxy load balancing has a similar positive impact on service accessibility as service
availability:

•	 Monitoring the availability of the server instances in its pool and directing traffic
to active server instances.

•	 Monitoring the health of server instances based on resource availability metrics
collected and directing traffic to server instances with sufficient resources to
manage the workload.

•	 Rerouting failed requests to an alternate server instance. The requests may have
failed explicitly with an error message or implicitly based on timers maintained
by the load balancer.

Proxy load balancing can have a negative impact on service accessibility by
becoming inaccessible itself.

6.11.5  Service Retainability

Proxy load balancing can have a positive impact on service retainability by providing
session “stickiness”—sending all requests associated with the same session or transac-
tion to the same server. If that server is not available, the load balancer should keep
track of and direct requests to an alternate server that has access to the session data and
can retain the service.

Proxy load balancing can have a negative impact on service retainability by failing
itself, thereby impacting user service delivery. Note that some load balancers may not
be able to maintain session information for long-lasting sessions (e.g., lasting for days).

6.11.6  Service Throughput

Proxy load balancing can have a positive impact on service throughput by managing
the workload in a way that mitigates overload conditions, such as:

•	 Routing workload to servers that have sufficient capacity, that is, that are not
themselves in overload.

•	 Providing metrics to an OSS or service orchestration mechanism indicating the
need to:
○	 Grow additional instance to provide additional capacity.
○	 Move an instance to a server with more resources available.

Proxy load balancing can have a negative impact on service throughput by becom-
ing a bottleneck and not being able to handle the traffic being presented to it.

6.11.7  Service Timestamp Accuracy

Neither proxy nor nonproxy load balancing has any impact on service timestamp
accuracy.

7

FAILURE CONTAINMENT

High availability systems are designed so that no single failure causes an unacceptable
user service disruption by automatically detecting, containing, and recovering from
inevitable failures. Virtualization technology and cloud computing not only create
options for failure containment architectures that are more powerful than with tradi-
tional architectures, but also introduce new risks. Section 7.1, “Failure Containment,”
gives a thorough treatment of failure containment, and Section 7.2, “Points of Failure,”
gives a thorough treatment of traditional deployment risks and cloud mitigation tech-
niques. The chapter concludes with Section 7.3, “Extreme Solution Coresidency,” and
Section 7.4, “Multitenancy and Solution Containers.”

7.1  FAILURE CONTAINMENT

Failure containment is like watertight compartments on a ship: it limits the impacts of
a failure (i.e., a hole in the ship’s hull) to give management and control functions (i.e.,
captain and crew for a ship and high availability middleware for an application) a stable
platform to direct service recovery actions from. One can unpack failure containment
into the following concepts:

111

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

112	 Failure Containment

•	 Failure Cascades (Section 7.1.1).  Containment stops failure cascades.

•	 Failure Containment and Recovery (Section 7.1.2).  A failure container generally
defines a unit for failure recover.

•	 Failure Containment and Virtualization (Section 7.1.3).  Virtualization technol-
ogy enables more flexibility in failure container sizes than what traditional
hardware deployments offer.

7.1.1  Failure Cascades

Fault is defined as “(1) A defect in a hardware device or component; for example, a
short circuit or broken wire. (2) An incorrect step, process, or data definition in a
computer program” [IEEE610]. Error is primarily defined as “the difference between
a computed, observed, or measured value or condition and the true, specified, or theo-
retically correct value or condition. For example, a difference of 30 meters between a
computed result and the correct result” [IEEE610]. Failure is defined as “the inability
of a system or component to perform its required functions within specified performance
requirements” [IEEE610]. Faults are said to be activated, leading to errors, and errors
can lead to failures. For example, a software defect (fault) in the stopping condition of
a do/while loop is activated, leading to an infinite loop error, which prevents the system
from replying to a user’s request within the specified time and thus produces a service
failure.

If a system does not contain the initial failure promptly, then a cascade of second-
ary failures may be triggered. These concepts are easily illustrated via the example of
watertight compartments on a ship. A hole in the ship’s hull is a fault that is activated
when the hole is below the waterline (e.g., the fault is not a problem when the ship is
in dry dock); water flooding into the ship is the error. Well-designed ships will contain
the flooding to a single watertight compartment, which prevents the flooding from
sinking the ship because even with a single flooded watertight compartment, the vessel
maintains sufficient buoyancy to remain afloat. If the flooding is not successfully con-
tained to a single watertight compartment, then flooding will eventually compromise
so much buoyancy that the ship sinks (a catastrophic failure). Thus, an improperly
contained failure can cascade from a potentially small event to a catastrophic failure
over time. Failure containment for applications should strictly limit the extent of service
impact. For example, just as a single hole in a ship should not cause it to sink, a single
bug, such as a memory leak, should not cascade to produce a total service outage for
all users.

7.1.2  Failure Containment and Recovery

Failure containment is crucial to the following:

•	 Prevent failure cascades by providing a barrier to contain a failure’s impact.

•	 Enable limited service recovery actions so that partial capacity or functionality
impairments can be corrected without requiring service impact to all users
or functionality. For example, while most software failures can be cleared by

Failure Containment	 113

restarting the entire application (thereby impacting 100% of active users), fail-
ures that are rigidly contained to a particular module or process can be cleared
by recovering that particular module, thereby nominally impacting only the
portion of users or functionality tied to that failed and recovered module. As
service downtime is generally prorated by capacity lost or impacted, an archi-
tecture that enables a failure event to be recovered by impacting, say, 10% of
active users, is far better than an architecture that requires 100% of active users
to be impacted on recovery.

•	 Provide a fallback mechanism. Netflix introduced the notion of a circuit breaker
mechanism, in which if a critical failure is detected, connections to the failed
component are broken and a fallback mechanism is initiated. The fallback mech-
anism can be something like using local data if the connection to an external
data store has been broken or failing fast and returning an error message to the
client. The fallback options can be customized to the application based on pro-
viding some type of acceptable service or notification to the client. In many cases,
failing fast and recovering to another instance or instantiating a new instance
may be the easiest option.

•	 Maintain availability requirements by making sure that sufficient application
capacity remains online to meet service availability commitments despite a
single component failure. For example, if the application’s service level agree-
ment specifies that outage time is accrued when more than 10% of service has
been lost due to a failure, then containing a failure’s impact to less than 10% of
user capacity can prevent the failure from escalating into a chargeable service
outage.

Distributed applications have traditionally been built with the following hierarchy
of failure containment (from smallest to largest):

•	 Transaction.  Transactions traditionally offer rigid containment for database
operations. Aborting a pending transaction wipes away all traces of the aborted
operation, thereby elegantly containing failure events.

•	 Client Request.  Clients and servers of distributed applications are generally
designed so that individual requests can fail without compromising the client
session. For example, an individual application programming interface (API) call
can fail for myriad reasons (e.g., user not authorized, resource not found, and
system too busy), and the application will continue to operate properly despite
an error being returned via an API. The request failure generally flows back to
the client—and perhaps the user—where it can be revised and resubmitted to the
server. The cancel and reload functions on a web browser leverage failure con-
tainment at the client request level.

•	 Client Session.  If a user session becomes damaged, then the user will often
abandon it and start a fresh session. For example, if the service quality of a
streaming movie or telephone call becomes unacceptable, then the user will often
terminate the session and restart the movie or redial the call.

114	 Failure Containment

•	 Software Process.  Severe software problems are generally contained within a
single software process. Readers will undoubtedly be familiar with PC applica-
tions that hang and must be terminated via the operating system’s task manager
so the application can be restarted to restore normal operation.

•	 Application Component.  An application is generally made up of several com-
ponents (e.g., frontend, application, and database); a component level failure can
generally be contained to that component, and it can recover using its own
redundancy mechanism without adversely impacting the application service.

•	 Operating System Instance.  More severe software problems may require the
entire operating system to be rebooted. Undoubtedly, many readers are familiar
with rebooting their cable modem’s operating system by power cycling the unit
to restore residential broadband service to proper operation.

•	 Distributed Application Instance.  The most severe failures of distributed systems
may require all operating systems and/or components in the application instance
to be rebooted, possibly after some repair action (e.g., reloading or repairing
compromised configuration data).

•	 Availability Zone or Data Center.  Availability zones or data centers are the
largest unit of failure containment that is generally supported, and they are engi-
neered to contain the service impact of disaster events, such as earthquakes, that
could render a data center unavailable or inaccessible. Disaster recovery mecha-
nisms are designed to rigidly contain a failure to a single availability zone or
cloud data center to assure that application service can be promptly restored
despite all application software and data hosted in the impacted site or zone being
indefinitely unavailable or inaccessible. Geographic redundancy, or georedun-
dancy, relies on vast physical separation of data centers to assure that no indi-
vidual force majeure event, such as an earthquake, can impact more than one
data center.

The flip side of rigidly containing a failure within a transaction, session, or process
is that all other components must be capable of continuing to operate acceptably well
despite the failure. Netflix gave this robust operation the colorful name of “Rambo
architecture,” which they describe as “Each system has to be able to succeed, no matter
what, even all on its own . . . each distributed system [must] expect and tolerate failure
from other systems on which it depends” [Netflix10]. After all, a partial functionality
outage gives the user the option of accepting degraded functionality or not; a total
outage leaves the user stranded.

7.1.3  Failure Containment and Virtualization

Virtualization can enable even more powerful failure containment than native deploy-
ment because the resource configuration of the virtual machine (VM) is no longer
strictly defined by the underlying hardware. Virtualization enables architects more flex-
ibility to select the size of VM instances to use with an application than native hardware.
Consider the example of a hypothetical simplex application that can be configured to
serve 100 users, either with a single “big” VM instance or with 10 “little” VM instances.

Failure Containment	 115

Assume that identical application and guest OS software run in both big and little VM
instances, and the software failure rate is the same regardless of the VM size. Assume
further that the application software has a mean time between failures (MTBF) of 1
year and that the failure events have a mean time to restore service (MTRS) of 20
minutes. Thus, the typical big VM instance configuration experiences one outage per
year with 20 minutes of service downtime for all 100 users. The typical small VM
instance configuration experiences 10 outages per year (one outage for each of the 10
small VM instances), and each of those events accrues 20 minutes of service downtime
for the 10 users served by the impacted small VM instance. However, since 10 impacted
users is only 10% of the 100 users served by the application, the outage of a single
small VM instances is prorated to be a 10% capacity loss event, and 10% capacity loss
for 20 minutes is equivalent to 2 minutes of total service downtime. Ten small VM
instance outages per year (each accruing the equivalent of 2 minutes of total service
downtime) has the same total service downtime of a single big VM instance, which
accrues 20 minutes of total service downtime in a single event per year. Thus, changing
the capacity (size) of the failure containment does not generally impact service avail-
ability, although the complexity may increase, introducing a possibility of a slight
decrease in MTBF.

While containment size is unlikely to materially impact failure rate, recovery time,
or prorated service availability, it does affect the number of users impacted by each
outage event, sometimes called the “footprint of failure.” Footprint of failure is actually
an important attribute that has very practical implications in the real world. If a small
number of users (perhaps only one) are impacted by a service outage, then service
recovery is often worked with ordinary priority. If a large or very large number of users
are impacted by a failure event, then service recovery will be worked on an emergency
basis. Certain types of services in some localities may even be obligated to formally
disclose details of the outage event to government regulators (e.g., telecommunications
outage reporting to the U.S. Federal Communications Commission), which both adds
expense and regulatory risks for the service provider.

Just as children are advised not to put all of their eggs into one basket, application
service providers are advised not to put all of their users into a single failure group.
Unfortunately, the opposite extreme of putting each subscriber into an individual failure
group (e.g., served by a single, dedicated VM instance) requires massive resource
overhead and may not be architecturally feasible for large classes of applications. Thus,
architects must balance simultaneously minimizing the footprint of failure and resource
consumption when determining containment size.

Note that component size (e.g., maximum number of users, sessions, and transac-
tions served per component instance) may also influence recovery latency. For example,
if per user/session/transaction auditing and/or recovery actions are required to complete
a failover or other service recovery action, then a component supporting “10X” users/
sessions/transactions is likely to take somewhat longer to failover than a component
supporting a maximum of only “X” users/sessions/transactions. If the difference in
failover latency is material compared with the maximum acceptable service latency,
then architects should consider the failover latency budget when engineering applica-
tion component capacity onto VM instances.

116	 Failure Containment

7.2  POINTS OF FAILURE

7.2.1  Single Points of Failure

As explained in Section 5.4, “Redundancy and Recoverability,” redundancy and high
availability architectures are designed to enable a single failure event to be rapidly
detected and service recovered to a redundant component without accruing unaccept-
able user service impact. Operationally, this means that any single failure is rigidly
contained to a single component instance so service can be rapidly recovered to a
redundant component instance. Failure of a nonredundant (i.e., simplex) component
in the critical service delivery path impacts service until the failed component can be
repaired or replaced and service can be recovered; thus, simplex components in the
critical service delivery path whose failure will produce a service outage are said to be
“single points of failure.” By having redundancy built into the system’s design, service
can be restored rapidly following failure via a rapid and automatic failover from the
failed unit rather than requiring a much slower manual hardware replacement or repair
activity. Note that platform or application software may be required to activate a
failover to move traffic from the failed “side” to the “operational” side.

Single points of failure are generally identified by constructing and analyzing an
application’s reliability block diagram (RBD). For example, assume that a hypothetical
application has a frontend component “A” and a backend component “B” so that
instances of both “A” and “B” must be available to deliver service to users, and
hence are in the critical service delivery path. Figure 7.1 shows a RBD of this example
system with a single frontend component instance “A1” and three backend component
instances “B1,” “B2,” and “B3” that are necessary to serve the engineered workload with
acceptable service quality. In this nonredundant configuration, failure of component

Figure 7.1.  Reliability Block Diagram of Simplex Sample System (with SPOF).

Points of Failure	 117

“A1” produces a 100% capacity loss outage and failure of one backend component
instance (e.g., “B1”) produces a 33% capacity loss outage. Thus, component “A1” is a
single point of failure (SPOF) because its unavailability produces a total service outage.

The nonredundant SPOF design of Figure 7.1 can be enhanced to be no SPOF as
shown in Figure 7.2 by the following:

1.	 making simplex component A redundant so that failure of one instance (e.g., A1)
no longer yields a service outage until that component can be repaired or replaced.

2.	 adding an additional B component instance so that failure of one instance (e.g.,
B1) no longer produces a partial capacity loss outage until that component can
be repaired or replaced.

7.2.2  Single Points of Failure and Virtualization

The incremental SPOF risk of virtualization is best understood through an example, so
let us consider the no SPOF application architecture of Figure 7.2. The optimal distribu-
tion of components across virtualized server instances to achieve no SPOF is shown in
Figure 7.3: two VM servers host both a single instance of type A and a single instance
of type B (i.e., virtual server “S1” hosting A1 and B1 and virtual server “S2” hosting
A2 and B2) and two other virtual servers hosting one instance of type B (i.e., virtual
server “S3” hosting B3 and virtual server “S4” hosting “B4”).

Figure 7.4 illustrates successful operation of this optimal distribution by demon-
strating how, although failure of Virtual Server S1 impacts both A1 and B1, the service
requirement of at least one instance of server type A and at least three instances of type
B is still met.

Figure 7.2.  Reliability Block Diagram of Redundant Sample System (without SPOF).

118	 Failure Containment

In contrast, Figure 7.5 illustrates an alternate mapping of component instances onto
virtual servers that creates a SPOF when both A1 and A2 are hosted on virtual server
S1. The failure of the virtual server S1 breaches the minimum component configuration
required to serve the offered load with acceptable service quality, and thus produces an
outage. “Anti-affinity” rules enable applications to provide constraint rules to the IaaS
implementation so that no SPOF requirements are not breached during the following
infrastructure events:

1.	 Initial allocation of application resources

2.	 Elastic growth of application resources

3.	 Elastic degrowth (shrink) of application resources

Figure 7.3.  No SPOF Distribution of Component Instances across Virtual Servers.

Figure 7.4.  Example of No Single Point of Failure with Distributed Component Instances.

Points of Failure	 119

4.	 Migrating/reconfiguring cloud resources during IaaS operations, such as when
consolidating/balancing VM loads or storage allocations across virtualized disk
arrangements

5.	 Activating or resuming VM snapshots

6.	 Restarting/recovering/reallocating virtual resources (e.g., VMs, storage) follow-
ing failure

7.	 Carrying out uncoordinated administrative actions on the cloud and application
layers.

7.2.3  Affinity and Anti-affinity Considerations

When configuring native systems, application architects typically make explicit install
time decisions about which server or blade each individual application component
instance should run on. System architects carefully balance the performance benefits
of having related components in close proximity (e.g., on different compute blades in
a single chassis or even on different CPU cores on a single blade or rack mounted
server) against the SPOF risk, in which a single hardware failure would disrupt both
the primary and redundant instances of any system component. For example, if a high
availability system relies on a pair of registry servers to host volatile application data,
then a traditional high availability configuration would explicitly install those two
registry instances on different hardware servers so that no single hardware server,
Ethernet switch, and other failure could simultaneously impact both registry instances.
Note that since the pair of registry instances mirror all changes in volatile data to mini-
mize loss of context following failure of one registry instance, there is likely to be
significant network traffic between the two registry servers, and hence between the
hardware servers supporting each registry instance. While mirroring of volatile data
would presumably run significantly faster if both registry server instances were on the
same server instance, collocating them on the same server instance would create a
SPOF. Thus, architects of high availability systems will explicitly trade-off slightly

Figure 7.5.  Example of Single Point of Failure with Poorly Distributed Component Instances.

120	 Failure Containment

lower performance and somewhat increased network utilization to eliminate a SPOF
from the deployed application.

7.2.4  No SPOF Assurance in Cloud Computing

“Resource pooling” is an essential characteristic of cloud computing motivating the
cloud provider to maximize usage of resources. Cloud computing limits the application
architect’s and cloud consumer’s ability to explicitly control the mapping of software
component instances onto physical hardware resources because the cloud service pro-
vider has control over resource allocation decisions. In addition, hypervisors support
online (live) migration of VM instances, which enables cloud service providers to
physically move (live) VM instances from one VM server to another. Moreover, those
physical placement decisions (i.e., which virtual server instance will host the VM
instance requested by any particular application at any particular time) will ultimately
be made dynamically by the cloud service provider’s VM server controller(s) and their
operations support systems. In addition, those placement decisions may change over
time based on the cloud service provider’s maintenance plans, resource needs of other
applications, and even power management policies. This highlights the need for no
SPOF rules to be enforced both on resource allocation and whenever VM instances are
moved.

Figure 7.6 illustrates simplified VM server control architecture. Requests to instan-
tiate applications or to elastically grow an application are presented to software that
orchestrates control across a pool of VM server instances located in one or more data
centers. The VM server controller implements the requested application configuration
change while simultaneously enforcing both the application’s anti-affinity rules and the

Figure 7.6.  Simplified VM Server Control.

Points of Failure	 121

cloud service provider’s operational policies. The result is commands to one or more
VM servers to allocate and configure VM instances. In addition to considering anti-
affinity rules, VM server controllers may consider other factors, such as data center
utilization, time of day, physical location of actual and anticipated end users, and other
factors in their automation tools.

VM server controllers can implement a higher level of no SPOF assurance by
distributing instances across independent VM servers, and VM servers themselves will
implement some no SPOF assurance. Establishing clear accountability rules for no
SPOF assurance is essential as failing to properly enforce no SPOF rules puts applica-
tions at risk of extended service outages.

7.2.5  No SPOF and Application Data

Applications maintain volatile information to track active sessions, pending transac-
tions, resource status, recent performance statistics, cached data, program stacks, etc.
Application architects are confronted with the classic challenge of balancing duration
of service impact following failure against (1) operational expenditure (OPEX) for
maintaining redundant application or data instances and (2) development expense for
implementing and testing complex data replication, failure detection, and failure recov-
ery mechanisms. As the contents of an application’s volatile memory are managed by
an application itself, eliminating an SPOF for volatile memory generally means either
of the following:

•	 Maintaining a copy of application’s dynamic memory/storage in another appli-
cation process instance (e.g., a standby or mated pair process instance)

•	 Having the ability to rapidly rebuild application’s volatile memory from persis-
tent storage (e.g., reloading executable program binaries and user profile data)
and/or from nonimpacted software instances (e.g., retrieving user state/context
data from client applications)

•	 Storing volatile data in a shared data registry server, which is redundant and
stored on servers separate from the application software.

Although the contents of persistent storage can be automatically protected from
routine application software and power failures, the contents are vulnerable to physical
failure (e.g., disk head crashes), as well as software, human, and other failures that
damage the data but not the physical device. Vulnerability to data damage by software,
human, or other nonphysical failures is generally mitigated via periodic backups, appli-
cation data audits, and procedures to restore predamage snapshots of data from those
backups. Vulnerability to physical storage device failure is mitigated via physical
redundancy as either of the following:

•	 Redundancy within the Logical Storage Device.  Redundant array of inexpensive/
independent disks (RAIDs) is a common way to eliminate the SPOF for indi-
vidual hard disk devices by writing data to multiple physical hard disk drives.
The RAID storage device automatically writes the data to multiple independent

122	 Failure Containment

disks so that no single hard disk (or other single component) failure will impact
the ability to access data. The RAID storage device guarantees data consistency
across the redundant copies of data within the logical storage device. Operation-
ally, applications might access RAID persistent storage via a network protocol
such as network file system (NFS), so the application sees a single logical storage
device (i.e., file system and files), and detection and mitigation of physical
storage failures are managed completely by the RAID storage array.

•	 Redundancy across Multiple Logical Storage Devices.  Data redundancy can be
maintained by individual application instances across multiple logical storage
devices, such as having each application instance maintain the primary persistent
storage on a local hard disk device and having changes automatically replicated
across the network to another independent storage device. When multiple logical
storage devices are used, consistency must be managed by either the application
itself or via the file/data replication service. Often data changes will be collected
into a batch and replicated asynchronously, such as every 15 minutes. While
asynchronous replication has minimal impact on service latency, it does intro-
duce a window of data loss on recovery from that point in time replicas. Syn-
chronous replication across multiple logical storage devices is possible, but that
generally impacts service latency as both devices must successfully update per-
sistent storage before responding to application users; however, when one of the
logical storage devices fails, the application instance can switch to exclusively
use the alternate logical storage device until the failed unit can be repaired/
replaced. Note that the application will be exposed to risk of data loss if the
alternate disk fails before the other disk can be replaced and restored to service.

7.3  EXTREME SOLUTION CORESIDENCY

Virtualization allows solutions comprised of multiple applications to potentially be
taken to the extreme where all of the applications in the solution are consolidated and
deployed onto a pair of VM servers. This deployment of multiple high availability (i.e.,
redundant) application instances across a minimal physical host configuration with no
SPOF is referred to by the authors as “extreme solution coresidency.” Although all
components of all applications are redundant so no SPOF technically exists, each VM
server in an extremely coresident configuration represents a massive failure footprint,
which has correlated service impact on up to half of each and every one of the solu-
tion’s high availability components across all application instances. Application’s high
availability mechanisms must cope not only with a failure event that impacts a possibly
huge portion of the application’s functionality and/or capacity but also with simultane-
ous and correlated impact of other applications in the solution that the application itself
depends upon. For example, if all of the application instances of an (highly available)
eCommerce solution are consolidated onto two VM server hosts and one of the hosts
fails completely, then all of the active components on the failed host must recover
service on the other host and reconnect with other applications in the solution, such as
backend database servers, credit card payment systems, and logistics servers. The added

Extreme Solution Coresidency	 123

complexity of recovering from simultaneous failure of both components within the
application itself, as well as reconnecting with external applications upon which the
target application depends, makes service recovery for extreme solution coresidency
configurations more complex and possibly slower and less reliable.

Ideally, all application components rapidly and robustly recover user service fol-
lowing failures in extreme solution coresidency configurations; alternately, the cloud
consumer or application can treat the failure as catastrophic and rely on disaster recov-
ery mechanisms to restore user service.

7.3.1  Extreme Solution Coresidency Risks

Assuming that each individual application meets high availability and no-single-point-
of-failure requirements when configured across two physical hosts, the extreme coresi-
dency question becomes: How much longer will user service recovery from a host
failure be for extreme solution coresidency than for the slowest high availability
application configuration deployed standalone? After all, if solution recovery time
for extreme coresidency is simply the maximum of the individual application recovery
times, then one simply finds the slowest application and optimizes that application’s
recovery time. Some extreme coresidency concerns are the following:

1.	 If a component failover depends on another server, then the failover might take
longer with extreme coresidency. That is, if during the activation of application
“A,” it requires application “B” to process a request, then application “A” will
not be able to resume service until after application “B” has already recovered.

2.	 A deadlock situation could occur that prevents some applications from recover-
ing. That is, if activation of application “A” depends on application “B” running,
and similarly, application “B” depends on application “C” and application “C”
depends on application “A,” then none of the applications may ever recover.

3.	 Multiple applications failing over at the same time could saturate or overload
critical resources, such as the CPU or disk access, thus prolonging service recov-
ery significantly beyond nominal recovery times.

4.	 If any combination of active/standby instances is allowed on each physical host,
then it is not practical to test every possible configuration. Development teams
may not test the true worst-case scenario extreme coresidency configuration in
the lab because they cannot predict it, and thus are forced to discover it in the
field.

5.	 The use of backoff timers to slow recovery of individual application instances to
deal with the worst-case extreme solution coresidency failures may unnecessarily
slow recovery for typical failure scenarios.

6.	 If one of the coresident applications is making heavy demands on hardware
resources, then a more critical application may experience degraded service.

When a VM server failure impacts an extremely coresident solution, the nonim-
pacted VM server(s) will likely experience a correlated workload spike as potentially
all nonimpacted application component instances simultaneously initiate recovery

124	 Failure Containment

actions to mitigate the impact of the extreme coresidency failure event. These overlap-
ping, potentially interdependent recovery actions, coupled with likely short-term
performance degradations of virtualized infrastructure as all component instances
simultaneously execute recovery actions, increases the risk that overall service recovery
will not successfully complete within the maximum acceptable service disruption
time. To mitigate the risk, it is necessary to thoroughly analyze and test the extreme
solution coresidency configuration and determine if the architecture needs to be modi-
fied to more effectively manage any detected risks (see Section 15.5, “Anti-affinity
Analysis”).

The following architectural strategies are recommended to ensure that applications
can recover quickly when a host with extreme coresidency fails:

1.	 It is preferable for redundant components to run active/active, load shared rather
than active/standby so that recovering applications do not have to wait for a
standby component instance to be promoted. Client applications should establish
and maintain sessions for at least two noncoresident instances of load shared
servers, so that if half the servers fail simultaneously due to VM server failure,
then applications can still maintain service without disruptions. (Note that main-
taining multiple sessions to the same service has to be done carefully to avoid
state inconsistency across the sessions.)

2.	 Circular dependencies must be avoided, such as A depending on B, which
depends on C, which depends on A.

3.	 Redundant instances should always be as prepared as possible to take over
service from their mate instance(s). That is, the process should be running, and
state data received from the active instance should be properly stored in memory
data structures, and so on. This is to minimize the amount of processing needed
to activate the redundant unit and avoid critical resource shortages.

4.	 Applications should support fault recovery on all of their interfaces indepen-
dently. It should not be assumed that any two interfaces will, or will not, fail at
the same time.

7.4  MULTITENANCY AND SOLUTION CONTAINERS

Application service providers will often aggregate suites of application instances and
technology components into logical solution bundles or “containers,” which conve-
niently separate all configuration and user data of one application user group from
another. For example, an application service provider offering online collaboration
services to enterprise customers can architect their offering so that the configuration
and application data for each enterprise customer are rigidly separated from every
other enterprise customer (also known as closed user groups), and each enterprise’s
container is operated according to that enterprise customer’s security and other opera-
tional policies. While traditionally these closed user groups might be implemented via
complex application logic that programmatically isolate separate user communities,
virtualization enables separate application and solution instances to be created in

Multitenancy and Solution Containers	 125

separate virtualized resources and operated independently alongside each other, thus
reducing application complexity and minimizing risk of one user community interacting
or interfering with another community. This should enable the application service pro-
vider to quickly deploy and efficiently operate service containers for individual custom-
ers. In addition to rigidly containing the customer’s proprietary information, this should
also provide another level of failure containment. For example, if one customer acci-
dentally sets a security policy that erroneously denies authenticated users access to data
they should be authorized to see, then the application service provider’s containers
should prevent that error from impacting user service for other enterprises who are
“tenants” of that application service provider, even if they are running the same applica-
tion from the same cloud data center.

8

CAPACITY MANAGEMENT

This chapter considers the service quality risks of online, elastic capacity growth and
degrowth of cloud-based applications. Practical aspects of elasticity operations, includ-
ing overload controls, are discussed. The chapter concludes with a review of the risks
of rapid elasticity. Note that elasticity is mentioned in several other sections of this
book:

•	 Elasticity strategies and measurements were introduced in Section 3.5, “Elastic-
ity Measurements.”

•	 Application elasticity requirements are considered in Section 13.8, “Elasticity
Requirements.”

•	 Architectural analyses of application elasticity risks are discussed in Section
15.6, “Elasticity Analysis.”

•	 Testing of application elasticity is considered in Section 16.4.5, “Application
Elasticity Testing.”

127

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

128	 Capacity Management

8.1  WORKLOAD VARIATIONS

Application workloads vary for several fundamental reasons:

•	 Long-Term Popularity/Usage Growth and Decline Trends.  Popularity will often
grow over time or existing customers will often be methodically migrated onto
a new application. Methodical migration of users from legacy systems to new
systems is often executed with thousands of users migrated per week, and those
users can quickly grow usage of the new application week on week. Eventually,
older applications become obsolete and less popular, and usage declines. These
longer term popularity/usage trends can be explicitly managed when users are
methodically migrated or monitored and tracked as “organic” popularity growth
and degrowth trends play out over time.

•	 Daily, Weekly, and Seasonal Traffic Variations.  Figure 8.1 shows a typical daily
workload of a communications application on a logarithmic scale. Note that the
peak load (nominally at 10 a.m. local time) is more than 100 times greater than
the off-peak load (nominally 5 a.m.). Different applications may see very differ-
ent workload patterns. Many applications have weekly traffic variations, such as
enterprise applications having heavy workload on business days and light work-
loads on weekends. Seasonality patterns are also common, such as consumer
eCommerce applications experiencing higher workloads in the weeks before
Christmas.

•	 Extreme Popularity Peaks.  Some enterprise applications exhibit extreme sea-
sonality peaks, such as consumer eCommerce traffic volumes on “Black Friday”
and “Cyber Monday,” release day for a new product or service, or the day of a
major entertainment or sporting event.

•	 Extraordinary Events.  Promotional, viral (e.g., Slashdot), and other events of
regional or national significance (e.g., earthquake and terrorist act) can produce
unpredictable workload spikes.

Figure 8.1.  Sample Daily Workload Variation (Logarithmic Scale).

Traditional Overload Control	 129

•	 Market Trials.  Workload will naturally vary due to market trials when spinning
up very limited service capacity to run a user trial or a trial of a new implementa-
tion of a service to compare it with the existing implementation, and then spin-
ning down that capacity when the trial is over.

8.2  TRADITIONAL CAPACITY MANAGEMENT

Traditionally, application capacity was directly tied to capital expense because support-
ing more online service capacity meant buying more physical compute, memory,
storage, and networking resources to host application software. Typically, all of that
application capacity was maintained online 24 × 7 because it was simpler and had lower
service quality risk to leave full capacity online than actively managing online applica-
tion service capacity. Capacity management events were usually carefully planned and
scheduled in advance and executed during low usage maintenance window periods (see
Figure 8.2). Industry practice has evolved to treat these scheduled events specially, and
in many cases, applications are permitted to experience short planned outages to safely
complete capacity management operations. Those customers that use high-quality
methods of procedure (MOPs), diligent planning, adequate training and preparation,
and careful execution could grow or degrow service for traditional applications with
acceptable service risk.

8.3  TRADITIONAL OVERLOAD CONTROL

Well-designed applications detect the overload condition when offered workload
exceeds the online engineered service capacity and gracefully reject (or “shape”) some

Figure 8.2.  Traditional Maintenance Window.

130	 Capacity Management

traffic, such as by returning appropriate “TOO BUSY” errors to some user requests and
rescheduling low priority activities (e.g., measurement reports) until the overload condi-
tion has ended. As shown in Figure 8.3, proactively shaping the workload by gracefully
declining to serve some offered load is better than letting the application run past satu-
ration to the point of catastrophic failure.

While end users might interpret the result of overload controls (e.g., “all circuits
are busy, try your call again later”) to indicate service unavailability, methodically
rejecting traffic is exactly what well-engineered applications are designed to do, so it
is not considered a product-attributable service outage. Instead, the user service impact
is attributable to the application service provider who failed to engineer sufficient online
capacity to meet offered load. Technically, the customer would have made a procedural
error of failing to configure sufficient service capacity to meet offered load.

The best practice has traditionally been to follow rigorous capacity management
processes. The capacity management process recommended by IT Infrastructure Library
(ITIL) includes the following key activities [ITIL_CM]:

•	 Performance monitoring

•	 Workload monitoring

•	 Application sizing

•	 Resource forecasting

•	 Demand forecasting

•	 Modeling

•	 Implementing capacity-related changes.

As a practical matter, traditional capacity management often boiled down to pre-
dicting the peak user workload for an application and installing capacity to serve a
greater workload. This relatively static capacity management strategy presented risks
of both wasting capital expenditure (CAPEX) if predicted demand never materializes,

Figure 8.3.  Traditional Congestion Control.

Capacity Management and Virtualization	 131

and rejecting (or serving poorly) user traffic if offered load exceeds online capacity
until more capacity could be engineered, purchased, installed, and brought online. In
the typical best case, a traditional application was deployed with 15% excess capacity
beyond expected peak demand, so most of the time, there was vastly more available
(i.e., wasted) capacity than was necessary to serve offered load. The bottom line was
that traditional capacity management forced enterprises to put significant CAPEX at
risk to serve possible peak user demand that may never materialize and may eventually
decline as consumer tastes and business needs shift.

Note that in reality, degrowth operations were rarely performed, presumably
because the value of hardware resources depreciates so rapidly that by the time the
customer was confident that capacity could be degrown, the residual value of the
unused/underused hardware was too low to justify the operational expenditure (OPEX)
of releasing and redeploying the resource and the potential risk of failure and service
impact if the shrink operation failed.

8.4  CAPACITY MANAGEMENT AND VIRTUALIZATION

Virtualization makes it far simpler and faster to instantiate new virtual machine (VM)
instances to host online application capacity than with traditional hardware resources.
Rather than ordering additional hardware resources from a supplier (e.g., compute
blades, RAM, and hard disks), waiting days or weeks for the hardware to be delivered,
and manually executing a written procedure to physically install the hardware, one can
allocate additional virtual resources in minutes or less. In addition, virtualization makes
it far simpler to reuse resources that have been deallocated by an application than with
traditional application deployments. Note that this does assume good forecasting by
both the infrastructure providers to ensure sufficient resources are available to support
application growth, as well as by the cloud consumers to ensure their roadmaps on
capacity growth are given to the cloud providers.

In addition to the traditional capacity growth implementation model of acquiring
new resources (e.g., compute blade or VM instance) and installing application software
onto those resources, virtualization technology introduces two novel options:

•	 Activating VM Snapshots.  Hypervisors enable a VM snapshot to be created and
stored of the configuration and memory contents of a VM instance at a point in
time. That saved snapshot can later be activated to create a clone of the original
VM instance at the moment that the snapshot was taken. This mechanism can
be used to bypass at least some of the traditional procedures—and hence time—
associated with loading and configuring (guest) operating system and application
software when implementing capacity growth.

•	 Activating Suspended VM Instances.  Hypervisors permit VM instances to be
suspended, which effectively puts the VM instance into a deep sleep in which
it consumes no CPU resources. As a suspended VM instance will not respond
to heartbeat messages, use of this mechanism must be carefully coordinated
with the application’s high availability mechanism to prevent misinterpreting the

132	 Capacity Management

suspension of a VM instance for capacity management reasons with a VM
instance failure event.

After activating a snapshot or suspended VM instance, both the VM instance itself
and the rest of the application’s management and control infrastructure must resynchro-
nize state information to properly reintegrate the newly activated VM capacity with the
running application instance.

The example of Figure 8.1 showed daily workload of a sample application growing
by two orders of magnitude from 5 to 10 a.m. local time. Fortunately, virtualization
technology has proven itself in enterprise data center deployments as an efficient tool
for workload consolidation, so hypervisors can efficiently share the infrastructure
resources that are nominally supporting the target application at 5 a.m. local time when
the sample application’s offered load is minimal with other applications to optimize
overall resource utilization. Thus, virtualization can enable capacity management across
a broader pool of applications because the hypervisor—like older timesharing multiuser
computer systems—can efficiently share precious resources across pools of applications
by implementing predefined policies. Resources unused by a particular application at
a particular time (e.g., sample application at 5 a.m.) can be used by another application
rather than simply being wasted. Finding applications and users to consume resource
capacity at off-peak hours may be somewhat challenging for the infrastructure supplier,
but this is a routine problem for myriad businesses, such as airlines and hotels, which
have developed sophisticated pricing and promotional models to fill their off-peak
capacity.

As described in Section 3.5.4, “Scaling In and Out,” and Section 3.5.5, “Scaling
Up and Down,” virtualization gives great flexibility in the size and configuration of
those resources for tracking offered workload. Section 7.1.3, “Failure Containment and
Virtualization,” discusses failure containment considerations in the VM instance sizing
decision. Thus, application architects must select appropriate vertical sizes of its VM
instances and appropriate scale out and scale in configurations. Even with flexible
resources, multiple application instances will often be deployed by customers across
several availability zones and data centers rather than relying on a single enormous
application instance. Beyond failure containment, architects will consider the applica-
tion’s slew rate (see Section 3.5.7, “Slew Rate and Linearity”) when determining the
application’s horizontal and vertical scale. This simple notion of maximum application
slew rate must consider the following:

•	 Concurrency.  Are elastic growth actions strictly serialized by the application—
perhaps even rejecting new growth requests received when an elastic growth
action is pending—or can multiple growth actions be overlapped?

•	 Unit of Capacity Growth (Agility).  Are multiple sizes of CGrow supported (e.g.,
growing by either a two-CPU core VM instance or a four-CPU core VM instance),
or is only a single unit of capacity growth supported?

•	 Linearity of Growth.  Is provisioning interval, unit of capacity growth, and con-
currency constant across the application’s entire capacity range from minimum
scale down to maximum scale up?

Capacity Management in Cloud	 133

These factors determine the maximum sustained application slew rate, and the
cloud operations support system (OSS) must consider this maximum rate when deter-
mining how much spare application online capacity to maintain. Capacity management
policy decisions by the cloud consumer must balance the OPEX of maintaining spare
online capacity against the service quality risk of having insufficient online capacity
available to serve user traffic across a traffic surge and/or failure.

8.5  CAPACITY MANAGEMENT IN CLOUD

Two cloud computing characteristics radically shift capacity management expectations
for the cloud consumer by introducing the notion of on-demand growth, provisioning,
and release management activities:

•	 On-Demand Self-Service.  A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without requiring human interaction with each service provider. [SP800-145]

•	 Rapid Elasticity.  Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be appropriated in any quantity at any time.
[SP800-145]

Cloud computing’s essential characteristic of rapid elasticity leads to Weinman’s
Cloudonomics Law No. 2:

On-demand trumps forecasting. The ability to rapidly provision capacity
means that any unexpected demand can be serviced, and the revenue associ-
ated with it captured. The ability to rapidly de-provision capacity means that
companies don’t need to pay good money for non-productive assets. Forecast-
ing is often wrong, especially for black swans, so the ability to react instan-
taneously means higher revenues, and lower costs. [Weinman]

Thus, the onus is on the cloud service provider to forecast and assure that sufficient
resources are available to meet cloud consumers’ needs.

Capacity management in the cloud can be deployed in two basic ways:

•	 Manually triggered capacity management events, in which human beings explic-
itly initiate (and perhaps execute) elastic growth or degrowth procedures. For
example, an enterprise may explicitly trigger significant capacity growth prior
to an event that is likely to trigger unusually high offered loads, such as Cyber
Monday for eCommerce applications.

•	 Automatically triggered capacity management events when sophisticated elastic-
ity management operations support systems are implemented and configured to
autonomously implement elasticity policies. Automatic mechanisms must predict

134	 Capacity Management

offered load into the near future so that additional capacity can be brought online
ahead of the growing workload. The policies driving automated growth must
also implement hysteresis to prevent elasticity oscillations.

Figure 8.4 tailors the simplified cloud model of Figure 3.3 to give a simple view
of elastic capacity management in the cloud. Rapid elastic growth normally begins with
some automatic mechanism monitoring the workload offered to an application, based
on data collected by a load balancer, the application’s own performance metrics (e.g.,
throughput and number of active sessions), or utilization levels of cloud infrastructure
resources (e.g., CPU cycles and free disk space). When a usage measurement passes a
threshold (e.g., CPU occupancy is too high for too long), the cloud OSS can automati-
cally initiate the appropriate horizontal, vertical, or outgrowth action. That action begins
with a request to the cloud service provider for more resources; then, the cloud OSS
coordinates integration of the newly allocated cloud resources with the online applica-
tion instance; the new application component instance is verified with a set of test
sessions to assure it is functioning properly; and finally the newly expanded application
capacity is brought online and made available to serve users. Note that cloud consum-
ers’ solutions often rely on a suite of interworking application and technology compo-
nents, so growing capacity of one component (e.g., an application’s backend) may
imply that other components that support the target component (e.g., database compo-
nents) should also be grown to minimize the risk of capacity bottlenecks arising after
capacity growth events.

Figure 8.4 provides a simplified model of elastic growth; however, much of the
complexity lies in choosing the correct measurement thresholds, policies, and triggering

Figure 8.4.  Simplified Elastic Growth of Cloud-Based Applications.

Storage Elasticity Considerations	 135

points for capacity growth. This selection requires an analysis of the particular applica-
tion’s resource needs based on a typical workload and how its usage changes with an
increase in workload. There are numerous analysis tools (e.g., Dapper and AppDynam-
ics) that can help monitor resource and work patterns in order to help characterize
resource needs that can be fed into the application’s forecasting. It is important to
analyze the particular application because there are many influential factors that impact
resource usage, such as whether the application needs to retrieve and replicate state
information.

Figure 8.5 gives a simplified view of typical elastic degrowth. The cloud OSS
monitoring the application’s workload and resource usage determines that usage has
remained below a degrowth threshold for long enough and decides based on application
provided policies to shrink resource capacity. The cloud OSS selects a specific
resource(s) to be released, directs new traffic to other resources, drains or relocates
users from the selected resources, and finally releases the resources back to the infra-
structure service provider.

8.6  STORAGE ELASTICITY CONSIDERATIONS

Persistence makes virtualized storage a rather different type of resource to manage
than VM instances. For example, while there may be very few active users on a social
networking site at 2 a.m. local time, requiring only a few VM instances to serve the
user service workload, all of the users’ pictures, videos, blogs, and other personal

Figure 8.5.  Simplified Elastic Degrowth of Cloud-Based Applications.

136	 Capacity Management

information must still be stored. Persistent storage allocated to cloud-based applications
can also grow, but this is typically less frequent. While online capacity demands rou-
tinely cycle from high to low usage periods, persistent storage needs typically only
grow and are not decreased.

Persistent storage is often factored out of traditional application server configura-
tions into external storage arrays, network attached storage, or external database servers.
The mechanisms that have traditionally enabled applications to use outboard persistent
storage (e.g. network file system [NFS]) can often be leveraged to grow storage hori-
zontally, such as by mounting a new storage device alongside a preexisting storage
device, or reconfiguring the networked storage devices that are mounted from a smaller
volume to a larger volume.

In the event that the application does not assimilate sufficient persistent storage
capacity when the application instance is online, one might be forced to create a new
application instance with a larger persistent storage allocation. For example, if an
application does not permit a database instance to be resized after initial installation,
then increasing the size of the database instance may require creating a new installation
of the application with a larger database instance and importing the contents of the
original (smaller) database instance. Fortunately, cloud computing gives new options
for software release management that can reduce the user service impact of release
management actions; this topic is considered in Chapter 9, “Release Management.”

8.7  ELASTICITY AND OVERLOAD

Traditionally, when offered workload exceeds online application capacity, the applica-
tion would engage congestion control mechanisms, such as returning some “TOO
BUSY” indication to clients to reduce the offered workload and pausing low priority,
high resource consuming activities. The application would continue to correctly serve
some high priority traffic until the overload condition has cleared, and then the applica-
tion would revert to normal operation.

Rapid elasticity shifts this traditional overload expectation because application
capacity can elastically grow to minimize the risk of online application capacity being
insufficient to serve the offered workload. If the provisioning interval is short enough
and the cloud consumer’s operational policies are set up to rapidly detect and trigger
elastic growth actions on online spare capacity, then moments when offered load
exceeds online capacity should be rare. Inevitably, exceptional events will occasionally
cause workload to grow faster than the provisioning interval can track, so the applica-
tion will have to activate overload control mechanisms in parallel with elastic growth
actions as a best effort to serve users until sufficient application capacity can be brought
online.

Note that elastic growth during an overload event is more complicated and risky
(and hence has a higher likelihood of failure) than normal operation because of the
following:

1.	 Congestion controls are active, so some work will be explicitly rejected. Active
congestion controls will cause both the server and clients to behave slightly

Operational Considerations	 137

differently, including executing somewhat different legs of code, thereby increas-
ing the risk of exposing a residual defect in an error leg somewhere. For example,
application architects must be careful to assure that no actions related to elastic
growth are rejected by congestion controls during overload periods to prevent a
growth deadlock in which insufficient application capacity is online, so requests
are blocked and the online capacity growth action cannot complete successfully
because critical actions are rejected by overload controls.

2.	 Overload condition is likely to be accompanied by degraded performance, which
delays completion times, so the application may be more sluggish and possibly
degrade the application’s provisioning interval. Poorly tuned watchdog timers
can aggravate the overload condition by causing clients to retry slow operations,
thus pushing the application deeper into overload.

3.	 Overload conditions may trigger VM failures or impairments. For these cases,
application service recovery (e.g., failover to another VM instance) or repair (e.g.,
killing the faulty VM instance and spinning up a new VM instance on another
server) techniques should be employed.

4.	 Elastic growth operations themselves place an additional workload on some
application server components, and this additional workload might aggravate
overload.

Thus, all aspects of rapid elastic growth should be engineered to function reliably
even when the application is in sustained overload. Likewise, application overload
control mechanisms should be intelligent enough to deactivate any congestion controls
when sufficient online application capacity has been added to serve the offered work-
load with acceptable service quality.

Although applications should elastically grow up to their maximum licensed capac-
ity to mitigate an overload condition, at least some users may not experience ideal
service quality (e.g., receiving “TOO BUSY” is not ideal service for most users). Typi-
cally, cloud consumers are responsible for defining operational policies regarding how
much spare online capacity to maintain and when to trigger elastic capacity growth
actions so sufficient application capacity is online to continuously serve offered work-
load with acceptable service quality. If user service is impacted because the cloud
consumer’s policies are too lean, resulting in insufficient spare online capacity being
maintained to serve traffic spikes, then user service impact is generally attributable to
the cloud consumer. If the cloud consumer’s management policies are not properly
executed by a cloud OSS, then the user service impact of overload should be attributed
to that OSS.

8.8  OPERATIONAL CONSIDERATIONS

Elastic growth actions are likely to be triggered due to one of the following:

•	 Application service performance degradation because workload density is too
high (see Sections 2.5.2.2, “Characterizing Service Latency,” and 3.5.1,
“Density”), so additional online capacity is added to reduce density.

138	 Capacity Management

•	 Insufficient spare capacity is online. The example of Figure 8.1 experienced two
orders of magnitude growth in workload between 5 and 10 a.m., so additional
online capacity could be brought online somewhat ahead of the daily workload
growth to assure that sufficient capacity is available to serve user traffic with
acceptable service quality. Note that online spare capacity also supports unex-
pected traffic spikes, such as shown in Figure 8.6.

•	 Engineered capacity exceeds policy thresholds. Application supplier’s and/or
cloud consumer’s policy might assign no more than “X” online users per resource
instance, so when the number of online users reaches one more than “N” times
X, then (N + 1)th resource instance is elastically grown to avoid exceeding the
policy limit.

•	 Critical failure event reduced online capacity, so a capacity growth action to
replace the lost service or spare capacity is executed. Redundant (1 + 1) systems
are often at elevated service risk (called “simplex exposure”) between the time
of component failure and the time the failed capacity can be replaced because
service is vulnerable to a prolonged outage if a second failure occurs before the
capacity impacted by the first failure can be restored.

Typically, an OSS proactively monitors offered load, historic traffic patterns, appli-
cation performance, and other factors to make a short term prediction of offered load,
and initiate an elastic growth action if insufficient application capacity is online to meet
that predicted workload and still maintain sufficient “spare” online capacity to mitigate
failure and transient workload events. This OSS follows a procedure such as the one
shown in Figure 8.7 managed by a single team responsible for capacity management.

8.9  WORKLOAD WHIPSAW

Investors use the term whipsaw to mean “to beset or victimize in two opposite ways
at once, by a two phase operation, or by the collusive action of two opponents”
[Merriam-Webster]. This notion also applies to dramatic workload changes, such as the

Figure 8.6.  Sample of Erratic Workload Variation (Linear Scale).

Workload Whipsaw	 139

event around 10:45 PM in Figure 8.8. The elasticity OSS is likely to be gracefully
degrowing online capacity when the whipsaw traffic spike begins around 10:45 PM.
Ideally, the elasticity OSS and application can instantly cancel any pending degrowth
action and then immediately initiate elastic growth to address traffic spikes like this.
This leads to three architectural principles.

1.	 Rapid cancellation of pending online capacity degrowth actions should be
supported.

2.	 Elasticity requests should not be queued by applications or elasticity OSSs,
because by the time the request is dequeued, the elasticity action may no longer
be appropriate.

Figure 8.7.  Typical Elasticity Orchestration Process.

Figure 8.8.  Example of Workload Whipsaw.

140	 Capacity Management

3.	 Supporting different units of capacity growth can be useful when arbitrarily large
numbers of growth actions cannot be simultaneously executed. For example, if
an application only permits one VM instance of online capacity growth to occur
at a time, then having flexibility to size that instance to, say, two, four, or eight
CPU cores gives more flexibility to address both ordinary and extraordinary (e.g.,
whipsaw events) by growing two-CPU core VMs when workload is slowly
growing and growing by eight-CPU core VMs when workload is surging. The
advantage of this does have to be weighed against the complexity of monitoring
resource usage and the introduction of numerous permutations to test.

8.10  GENERAL ELASTICITY RISKS

Growing capacity of an online application that is actively serving traffic is inherently
risky, but different growth strategies carry different risks:

•	 Horizontal growth is generally the simplest strategy, and hence the lowest risk
because of the following:
○	 New resource instances can be created and initialized without impacting

service covered by other resource instances.
○	 A single application instance can manage the growth action.

•	 Outgrowth is more complex than horizontal, and hence higher risk because of
the following:
○	 Outgrowth operations often require coordination between two data centers’

orchestration frameworks, and thus complexity increases the risk of failure.
○	 Outgrowth operations insert a higher latency, lower bandwidth, and somewhat

less reliable network connection between preexisting and newly allocated
resources.

○	 Outgrowth operations will likely have to manage additional security require-
ments and check if the outgrown resources are in a different network, security,
and administrative domain, but this is outside the scope of this study.

•	 Vertical growth is generally the most complex because application and guest
OS configuration information changes when the engineered throughput (e.g.,
number of CPU cores, amount of RAM, and network bandwidth) or persistent
storage per component instance changes on the fly. Note that while changing
only network bandwidth allocated to a VM instance might technically be con-
sidered vertical growth (or degrowth), engineered network capacity is inherently
tied to the compute throughput of a component instance, so there is little sense
in changing only one type of throughput-related capacity for a well-engineered
application. If merely the networking allocation of a VM serving a well-
engineered distributed application is increased, then compute or memory capac-
ity is likely to quickly become the bottleneck, so much of the additional network
capacity may be wasted; if network allocation is decreased, then networking is
likely to become the capacity bottleneck, so some allocated compute capacity
is wasted.

Elasticity Failure Scenarios	 141

8.11  ELASTICITY FAILURE SCENARIOS

Elastic capacity operations introduce new failure scenarios to detect and mitigate. As
the failure scenarios for growth and degrowth operations are rather different, they will
be considered separately. Figure 8.9 overlays high level failure scenarios onto Figure
8.7. Section 15.6, “Elasticity Analysis,” offers an analysis methodology to apply when
architecting applications to verify acceptable service quality when confronted with
inevitable elasticity failures.

8.11.1  Elastic Growth Failure Scenarios

Successful elastic growth adds a unit of online service or storage capacity to an applica-
tion instance in an acceptable provisioning interval so that sufficient capacity is avail-
able to serve the offered workload. This suggests four broad failure scenarios:

1.	 Elastic growth action fails outright (Section 8.11.1.1, “Elastic Growth Action
Failure Scenarios”)

2.	 Elastic growth action (provisioning interval) takes too long (Section 8.11.1.2,
“Excess Provisioning Interval Scenarios”)

3.	 Elastic growth action is activated too late (Section 8.11.1.3, “Growth Policy and
Operations Failure Scenarios”)

4.	 Workload grows faster than application can grow (Section 8.11.1.4, “Insufficient
Online Spare Capacity Maintained”).

Figure 8.9.  Elastic Growth Failure Scenarios.

142	 Capacity Management

8.11.1.1  Elastic Growth Action Failure Scenarios.  A specific elastic growth
action request for a specific application instance can fail to complete successfully for
several reasons:

1.	 Application Instance’s Maximum Capacity Limit Has Been Reached.  While
cloud service providers offer the illusion of infinite resources, individual applica-
tion instances of real applications are not infinitely elastic. When an application
instance reaches the maximum licensed or architected limit, then it should pro-
hibit additional capacity growth and gracefully manage excess offered load by
activating overload control mechanisms. Ideally, the cloud consumer has policies
and procedures to either instantiate a new application instance or shift workload
to another application instance that has spare capacity.

2.	 Cloud Service Provider Fails to Provide Requested Resources.  The cloud service
provider may be unable to provide resources that meet the application’s con-
straints (e.g., resource capacity/size specification, comply with affinity and anti-
affinity rules, and within consumer’s budget/business constraints), and thus the
application instance’s growth action will fail.

3.	 Application Software Failure.  A software defect in the application or a technol-
ogy component can occur during the elastic growth action, which prevents suc-
cessful completion of the action.

8.11.1.2  Excess Provisioning Interval Scenarios.  An application’s elastic
growth action can take longer than expected to complete successfully because of the
following:

1.	 Cloud service provider is slow to provide requested resources because of heavy
aggregate workload.

2.	 Application instance is slow because of heavy user workload.

3.	 Application instance is slow because of large amounts of data to be processed or
configured.

8.11.1.3  Growth Policy and Operations Failure Scenarios.  Elastic growth
actions nominally take the provisioning interval to complete, and thus growth actions
must be initiated at least one provisioning interval before the additional capacity will
be required to serve offered load. Cloud consumers will deploy operational policies
that maintain sufficient excess capacity to mitigate transient traffic spikes and inevitable
failure scenarios. Should the cloud consumer maintain insufficient online spare capac-
ity, then a component failure or transient workload spike could push the application
temporarily into overload and thus deliver degraded quality of experience to at least
some users until additional application capacity is brought online. Likewise, if the
cloud consumer’s policies maintain insufficient excess capacity and do not accurately
predict near term workloads, then offered load can easily outstrip online application
capacity. In essence, cloud consumers bet their ability to accurately predict near-term
workloads against spare online capacity; the more accurately consumers can predict

Elasticity Failure Scenarios	 143

future workloads, the less spare capacity (beyond that is required to mitigate inevitable
failures) must be kept online.

8.11.1.4  Insufficient Online Spare Capacity Maintained.  As discussed in
Section 3.5.7, “Slew Rate and Linearity,” an application’s nominal growth rate is the
unit of capacity growth (CGrow) divided by the provisioning interval. If the workload
grows faster than that nominal application growth rate for long enough, then there will
be insufficient application capacity online to serve the offered load. Cloud consumers
are responsible for maintaining sufficient online spare capacity so that even if offered
load grows faster than the application’s maximum growth rate for a period of time, then
sufficient online spare capacity is in place so that user workload does not outstrip online
capacity. If offered load does outstrip online application capacity, then the application
should engage overload controls, which may reject user traffic.

8.11.2  Elastic Capacity Degrowth Failure Scenarios

Service risks during elastic degrowth arise from the following:

1.	 Failures Draining User Traffic from the Resource to Be Released.  Draining
traffic is obviously a delicate process, as a failure may directly impact one or
more user’s quality of experience, such as producing service retainability impair-
ments as active user sessions are abruptly terminated.

2.	 Application Fails to Stop Using Released Resource.  If the application does not
properly track the resources being released, then additional traffic may be sent
to the deactivated—and perhaps even deallocated—resource, only to have the
traffic dropped, causing the user to experience degraded service reliability,
latency, or overall service quality.

3.	 Pending or Failed Elastic Degrowth Action Delays or Deadlocks an Elastic
Growth Action.  If traffic surges during the release interval, then an elastic growth
action may be triggered. If an elastic growth action cannot overlap a pending
release action or the pending release actions cannot be canceled, then the applica-
tion may be driven into overload until the release can complete and the growth
action can begin.

While orderly cancellation of a pending degrowth action is not a failure scenario
per se, rapidly and cleanly canceling a pending online capacity degrowth action is a
complex operation, so applications should be architected and tested to assure that
degrowth events can be rapidly and reliably canceled so that subsequent growth actions
can reliably complete. Leakage of released resources, in which the application success-
fully releases a resource but the resource is not successfully deallocated by the cloud
service provider, is also a business risk. While resource leakage should not impact user
service, it will contribute to the cloud consumer’s OPEX.

9

RELEASE MANAGEMENT

“Release management” is the term used by IT Infrastructure Library (ITIL) to cover
planning, executing, and controlling the distribution and installation of new and changed
software. A key function of release management is software upgrade. Best practices for
release management can be found in ITIL’s Service Transition book [ITIL_ST]. This
section discusses traditional strategies for software upgrades and proposes alternate
strategies that leverage cloud mechanisms to mitigate some of the service quality risks
associated with executing software upgrades.

9.1  TERMINOLOGY

Software upgrade entails installation of a new version of software and evolution of the
application’s data schema (if needed) to introduce new features, bug fixes, and deploy
other changes to the software. Note that the term software upgrade will be used in
this work to encompass the following:

•	 Software Patch or Software Update.  Small changes to the software that do not
materially change functionality and do not require schema changes to persistent
data, such as bug fixes or security patches.

145

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

146	 Release Management

•	 Software Upgrade.  Major changes to the software that changes functionality and
may require schema (or other) changes to persistent data.

•	 Retrofit.  Traditionally, “retrofit” referred to even more substantial changes to the
software and architecture requiring a complete replacement of the software and
usually some hardware components. As cloud unbundles hardware from soft-
ware, the traditional retrofit notion of coordinating hardware/firmware and soft-
ware changes will not generally apply.

Backout and rollback are mechanisms to undo a “toxic” software upgrade and are
defined as follows:

•	 A software release backout entails undoing the software and data changes asso-
ciated with the new version before the new release has been committed.

•	 A software release rollback restores the old version and data after the new
release has been committed.

Maintenance and synchronization of persistent and dynamic data during software
upgrade will also be discussed. Persistent data are data that are preserved beyond a
particular session or transaction such as subscriber data. Dynamic data are more transi-
tory information, such as state data, that are only maintained across a session or trans-
action. Both types of data need to be considered during software upgrade.

9.2  TRADITIONAL SOFTWARE UPGRADE STRATEGIES

Traditional application deployments have finite hardware resources, and thus a software
upgrade must complete “in place” on that finite hardware. There are two fundamental
software upgrade strategies with finite hardware resources:

•	 Offline Software Upgrade.  The application is taken offline for the duration of
the upgrade procedure. Thus, the duration of the offline period is a critical
parameter, but the procedure can be simpler because service is not operational
during the procedure itself.

•	 Online Software Upgrade.  Highly available systems often maintain sufficient
hardware redundancy that it is possible to logically split the redundant system
into two simplex halves, each of which can be upgraded separately. This scheme
leaves the application simplex exposed during the upgrade so a failure during
the upgrade period could produce a prolonged service outage. This strategy is
significantly more complicated than offline software upgrade.

9.2.1  Software Upgrade Requirements

Enterprises often expect software upgrade of critical applications to have minimal user
service impact (also known as be “hitless”); practically, this often means user service

Traditional Software Upgrade Strategies	 147

may be unavailable or disrupted for nominally seconds. Ideally, user sessions or trans-
actions will be preserved, but gracefully terminating user sessions and transactions is
acceptable for most noncritical applications. As with other service quality expectations,
it is unlikely that customers will tolerate greater service impact on upgrade of cloud-
based applications than they experience with traditionally deployed versions of those
same applications.

Traditional software upgrade requirements also include the following:

•	 Ability to “Soak” the New Release to Verify Proper Operation before Committing
to Use the New Release.  Occasionally, a software upgrade will prove to be
incompatible with existing clients, applications, or other operational character-
istics, and thus be unacceptable or toxic in a particular operational environment.
Customers generally like to soak or validate the stability of the new release by
running traffic on it for a sufficient amount of time (e.g., several days to a week)
to make sure it is functioning properly. Note that in traditional high availability
architecture, soak may entail running the application without redundancy (i.e.,
simplex exposed) for the duration of the soak.

•	 Ability to Promptly Backout a Toxic Release or Rollback to the Previous Release
if Necessary.  If a new release proves to be toxic or otherwise unacceptable, then
enterprises want to be able to promptly restore the previous release. Operation-
ally, this means that sufficient time must be allocated so that if initial soak testing
demonstrates a release to be toxic, then there must be sufficient remaining time
in the maintenance window to back out the toxic release or roll back to the previ-
ous release before the maintenance window closes.

•	 Backward Compatibility between Old Release and New Release Interfaces to
reduce impact of the upgrade on interfacing components. New functionality
should be enabled and coordinated with other components.

•	 Ability to Skip Releases (e.g., Release “N” to Release “N + 3”).  Not every
customer will accept every software release for practical reasons (e.g., do not
need the new functionality or fixes offered by a new release), commercial reasons
(e.g., did not license the new/upgraded release), or operational reasons (e.g., the
benefit of installing a particular release does not exceed the expected cost/
complexity of installing that particular release). However, at some point, most
customers will presumably be enticed to upgrade, and then they will prefer a
“skip” upgrade, meaning upgrading from release “N” to release “N + I,” where
I > 1 (i.e., the next release). Skipping releases offers enterprises the practical
benefit of forgoing the operational expenditure (OPEX) and service disruption
associated with actually installing each of the skipped releases, although there
is considerable OPEX involved in the skip release itself. For example, a customer
may install release 2.0, and then pass on releases 3.0 and 4.0 and then want to
accept release 5.0; in this case, the customer would want a skip upgrade that
enabled them to go directly from 2.0 to release 5.0 without requiring explicit
upgrade transitions through releases 3.0 and 4.0. Note that it is much more
difficult to guarantee compatibility of the new and old releases when skipping

148	 Release Management

multiple releases, since external interfaces and data schemas are often enhanced
over a period of time with new customer feature requests. Data evolution may
have to cycle through each release, requiring a long interval.

Due to cost concerns and potential impact to users, sophisticated customers often
require the following:

•	 Ability to Complete the Upgrade—and If Necessary, Roll Back to the Previous
Release—within a Single Maintenance Window (See Section 9.2.2, “Mainte-
nance Windows”).  Because traditional software upgrade has the potential of
causing a large service impact if unsuccessful and may render the application
simplex exposed or at reduced capacity, software upgrade is generally performed
as a maintenance activity during a low usage period.

In order to provide robust software upgrade, the following requirements will also
apply depending on the software upgrade mechanism used:

•	 Clients shall be able to interface with the new and old version virtual application
instances.

•	 Sufficient resources (e.g., network, disk, CPU, memory, and IP addresses) must
be available from the infrastructure-as-a-service (IaaS) service provider to
support both the old and new version virtual application instances.

•	 Software licenses need to be shared by both the old and new versions of the
virtual application instance during the interval that they are both active.

•	 Old version virtual application instances are gracefully shutdown and do not
result in lost or dropped sessions/transactions.

By taking advantage of the cloud and virtualization, downtime can be mitigated,
and in some cases, eliminated, and the procedures can be made more robust through
automation making it feasible to perform software upgrades anytime, rather than only
during maintenance windows. Note that nonservice-impacting upgrade preparations
and postwork may be required before or after the single maintenance window when the
(potentially service impacting) upgrade action is actually completed.

9.2.2  Maintenance Windows

The purpose of maintenance windows (introduced in Section 8.2) is to arrange in
advance for a period when user service may experience service disruptions, degrada-
tions, and/or periods of service unavailability with minimal customer impact. The
maintenance windows are usually scheduled during times of low traffic (e.g., during
the late night hours), encompassing one work shift (e.g., nominally 4–6 hours of
activity). For traditional systems, software upgrade is often a user service-impacting
operation with many manual procedures and thus is performed during these mainte-
nance windows. Enterprise users are often notified of scheduled maintenance windows
when service of critical applications may be disrupted so they can plan accordingly.

Traditional Software Upgrade Strategies	 149

Customers prefer to execute very few of these upgrades, since they require these main-
tenance sessions and possible service disruption.

Agile and other modern development practices have popularized the “continuous
deployment” model, in which software builds are automatically completed once a day,
installed on a cloud, verified via rich automated test scripts, automatically soaked with
a portion of live traffic, and then have all new user traffic migrated to the new build.
As build/install/verify/activate cycles happen every day with continuous deployment
models, those processes quickly become very reliable with a robust orchestration
mechanism. At least some organizations will then shift their install/verify/activate
schedule so it occurs during business hours (e.g., starting at 9 a.m. local time) so that
developers and other experts are immediately available to debug and correct any deliv-
ery problems. This model can

•	 improve service agility by dramatically shortening deployment time for new and
changed features

•	 improve service quality by rapidly deploying bug fixes, stability improvements,
and security patches

•	 reduce OPEX by shifting release management activities out of expensive (e.g.,
overtime or double time) work periods to normal business hours

•	 improve probability of successful upgrades because frequent execution rapidly
improves process maturity and reliability. Shifting work from the middle of the
night (e.g., midnight to 6 a.m. local time) into normal working hours tends to
reduce the risk of human error also, further improving reliability of human/
procedural activities supporting release management.

Thus, traditional maintenance windows for software upgrade may become
deprecated—and possibly even unacceptable—for cloud-based applications in the
future.

9.2.3  Client Considerations for Application Upgrade

It is important for upgraded applications to maintain the highest degree of compatibility
with client software (i.e., software that is requesting service from the application from
an interfacing component or external user, such as a user endpoint) to minimize both
user service impact and operational expense associated with reconfiguring client soft-
ware. Application protocols and client software should enable graceful service transi-
tions, such as server-initiated session disconnection or inactivity timeouts and automatic
client session reconnection, so that clients can gracefully transition from an old release
to a new release with minimal user impact. If compatibility cannot be ensured, then
procedures may need to take into account sequencing of upgrades, versioning changes,
and deprecating of features in order to address the incompatibilities. Ideally, new soft-
ware releases support the following requirements:

1.	 The upgraded application is 100% protocol compatible with existing interfacing
client software, and hence no client software changes are necessary for it to

150	 Release Management

successfully interface with the application on the new version.  If protocol com-
patibility is assured, then strategies that require clients to interface with both old
and new application versions running at the same time can be implemented.

2.	 The upgraded application’s client configuration is 100% compatible (e.g., DNS
name and/or IP address) so no configuration information used or maintained by
client software must be changed.  If client configuration information is changed,
then arrangements must be made to execute those configuration changes and push
them out to impacted clients; this is likely to both increase the OPEX of a soft-
ware upgrade and increase the risk of user service impact.

9.2.4  Traditional Offline Software Upgrade

The simplest upgrade strategy (visualized in Figure 9.1) is referred to in this document
as traditional offline upgrade and has the following basic steps:

•	 Take the application instance offline so that traffic is no longer being served

•	 Install the new release (e.g., N + I, where I is one or more releases, presumably
with backward compatibility between N and I) software.

•	 Evolve persistent application data.

•	 Soak new release with test calls followed by live customer traffic to verify proper
operation.

•	 Activate (commit) the upgraded application instance and put it back online so
that the application instance resumes serving traffic.

Because the application instance is offline during the software upgrade interval,
all active sessions are dropped before starting the upgrade, and user service is com-
pletely unavailable from the application instance until the upgrade is completed and
the application is brought back online.

If installation of the new software or evolution of persistent data fails, or soak
testing reveals the release to be toxic, then it is necessary to back out the new release.
Note that backout can take place at any point before the commitment of the new
release. When sufficient persistent storage is available and the application is properly
architected, offline backout/rollback may be as simple as reconfiguring the system to

Figure 9.1.  Traditional Offline Software Upgrade.

Traditional Software Upgrade Strategies	 151

reference the old application’s persistent storage (e.g., file system or directory structure)
and restarting the application or rebooting the host. Note that any new transactions
against the evolved data that occurred on the new release will be lost with the backout/
rollback. If insufficient persistent storage was available to retain all release N applica-
tion software and persistent data, then it will be necessary to reinstall release N software
and restore persistent data from backup to complete the backout/rollback.

9.2.5  Traditional Online Software Upgrade

Traditional high availability systems are deployed with sufficient redundant hardware
so that no single failure need causes a loss of functionality or capacity. This hard-
ware redundancy creates the opportunity to upgrade software, while the application
remains online by splitting the system into two simplex “sides”: one side running on
the old version of software and the other taken offline to upgrade to the new version.
Once the new version side upgrade is complete, a switchover is performed so that
traffic is running on the new version. The other side is now upgraded to the new
version and activated once the upgrade has completed, thereby returning the system
to fully redundant operation. Figure 9.2 illustrates the basic steps of online software
upgrade:

  1.	 Take one portion of the application instance offline (e.g., standby side “B” in
Figure 9.2). Note that since the highly available application instance is config-
ured with hardware redundancy, the redundant portion (e.g., active side “A” in
Figure 9.2) remains online serving users. However, since the standby component
instance (B) is being upgraded, it is not available to rapidly recover service in

Figure 9.2.  Traditional Online Software Upgrade.

152	 Release Management

the event of a failure of the primary component instance. Thus, the component
(and hence the entire application instance) is said to be “simplex exposed”
because a single failure of the primary component (A) exposes the system to
a prolonged service outage because the high availability mechanism cannot
rapidly and automatically recover service to the component being upgraded (B).

  2.	 Install new release software on side B.

  3.	 Evolve persistent data from old release to new.

  4.	 Upload evolved data to side B.

  5.	 Activate new release software on side B.

  6.	 Synchronize (and evolve if necessary) dynamic data between old release A
with B.

  7.	 Switchover service so new release B is active component and serves offered
load.

  8.	 Take old release component A offline.

  9.	 Install new release on side A.

10.	 Load or synchronize evolved data on side A.

11.	 Activate side A.

12.	 Synchronize dynamic data from side B (note that steps 10 and 12 can be
combined).

13.	 Make side A “hot standby.”

14.	 Optional: Perform a switchover so that side A is back to being the active com-
ponent to verify that switchover on the new release works.

Soak testing is generally performed after the new release has become active (at
step 7) but before the new release has been committed in case a problem is found and
a backout is needed. Simplex time is depicted in steps 1–13, entailing most of the
software upgrade interval and soak time. Minimizing simplex exposure time is impor-
tant because a failure of a simplex component is likely to produce a service impacting
outage until the failure can be repaired. Some applications require dynamic data that
need to be synchronized in order to maintain stable user sessions across the upgrade.
If the dynamic data structure has changed, then this too may have to be evolved before
it is synchronized, thereby adding more complexity to the procedure.

To rollback in the event of serious problems with the new version after a commit
has been performed, the reverse operation would take place, taking the standby side A
offline and reloading the old version of software and data (or activating from the old
partitions if they still exist), switching over user service to side A, and repeating on the
other side. Downtime would typically be similar to the software upgrade, but it could
be much longer if the old version of software and application data are no longer avail-
able on the system and have to be rebuilt with changes that have occurred since the
upgrade. Dynamic data are lost in the event of a backout or rollback. If a problem is
found before the new release has been committed, then a backout can be performed at
that point. Backouts are generally easier and less service impacting than a rollback.

Cloud-Enabled Software Upgrade Strategies	 153

9.2.6  Discussion

Traditional software upgrade strategies often consist of long procedures with many
manual steps that require methodical coordination of changes with multiple systems.
Compounding this, large solutions can require weeks of maintenance intervals to
individually upgrade the various elements in the solution in a specific sequence that
assures the interfaces between the elements function properly. When dependencies
exist between different elements within the solution, then solution upgrades become
even more complex and may lead to longer simplex exposure periods than are con
sistent with highly available service. To minimize the risk of failure during upgrade
and minimize simplex exposure, the following mitigation techniques are often
implemented:

•	 Upgrades are performed during low traffic periods to reduce the risk of user
service impact, particularly if there is a failure during the upgrade. Some systems
merely indicate to users that the application will be down for a certain amount
of time so that the software upgrade can be performed offline.

•	 User traffic may be diverted to a (geographically) redundant system instance to
both minimize user service disruption and simplify the upgrade because the
application instance can be offline throughout the upgrade.

•	 Application elements are configured with sufficient spare disk capacity to store
both new version software and evolved data and retain the previous release
software and data so that rollback can be promptly executed, if necessary.

•	 Procedures are automated as much as possible to reduce or eliminate manual
operations, thereby both minimizing the risk of human (procedural) errors when
executing upgrade procedures and shortening execution time to minimize simplex
exposure.

•	 Backward compatibility between interfacing solution elements is maintained, as
well as with the clients.

Cloud-enabled software upgrade strategies (considered in Section 9.3) can reduce
the complexity and mitigate the risk associated with traditional software upgrade by
providing a much more automated, complete management of the software upgrade.

9.3  CLOUD-ENABLED SOFTWARE UPGRADE STRATEGIES

The rapid resource elasticity of cloud infrastructure enables software upgrade of cloud-
based applications to adopt radically different strategies because one can allocate suf-
ficient additional resources to install a new and independent instance of the upgraded
application and run it alongside the fully redundant previous version. The basic cloud
aware strategy is to allocate, install, configure, and soak the new software release
instance with minimal disturbance to the existing application instance. There are two
general strategies for managing cloud-enabled software upgrade:

154	 Release Management

•	 Type I: Block Party (Section 9.3.1).  Both old and new software releases run in
independent VMs simultaneously serving user traffic, and can theoretically con-
tinue doing so indefinitely. Some users will be served by the old version, and
some users will be served by the new version. This model enables enterprises to
enjoy extended soak periods and to minimize user service disruption by letting
traffic drain naturally from the old software version. The authors refer to this
model as “block party” because software releases can come and go without
careful coordination, like the guests at a block party.

•	 Type II: One Driver per Bus (Section 9.3.2).  Applications that require tight
control of critical resources typically permit one and only one application
instance to be active at a time. This strategy is required for application instances,
where only a single logical instance is permitted to be in charge at anytime, such
as when controlling a database or other resource where strict consistency is
required. The authors refer to this model as “one driver per bus,” because it
logically resembles a city bus, which can carry many people, but only one driver
is allowed to steer the bus at a time.

9.3.1  Type I Cloud-Enabled Upgrade Strategy: Block Party

The key characteristic of type I, “block party,” software upgrade (pictured in Figure
9.3) is the ability to run both the old and new versions of the virtual application instance
at the same time. The new version of software and data is installed into new and inde-
pendent cloud resources, while the old version is running on cloud resources. The new
version is allocated full resources, activated, and some user traffic is directed to the
new version while the majority of user traffic is served by the old version. This enables
the new release to soak with live traffic for an indefinite period. Once the new release
is deemed acceptable, all new traffic can be directed to the new release virtual applica-
tion. User traffic served by the old release can be allowed to drain away naturally as
users routinely log off (and subsequent logon requests are directed to the new release)

Figure 9.3.  Type I, “Block Party” Upgrade Strategy.

Cloud-Enabled Software Upgrade Strategies	 155

so that transactions can complete on the old release and do not have to be applied to
the new release, or the application service provider can eventually terminate residual
user sessions to the application instance running the old software release. Traffic is
controlled by a load balancer or a proxy, which can direct traffic to the new version
components. Either way, there is no explicit switchover event so traffic can run to
completion on the older version as long as the application service provider would like.
Since the old version can run to completion, there is no need to synchronize dynamic
data between old and new releases to maintain stable sessions. If there is a need to
revert to the old version, then traffic is drained from the new version application
instances. Separate IP addresses are needed for the old and new versions since they
will be running at the same time; however, a proxy or nonproxy load balancer can
expose a single IP address and manage those versions so that it is seamless to the client.

Because type I block party upgrade enables both release “N” and release “N + I”
to peacefully coexist, Figure 9.4 illustrates how traffic can be gradually redirected from
release “N” to release “N + I”:

1.	 An application instance is created and activated on release “N + I.”

2.	 Some traffic is directed to the “N + I” release application instance. When service
on the new release is deemed to be successful, all new traffic is directed to the
new release.

3.	 As traffic increases on the new release, capacity is grown on release N + I and
degrown on release “N”.

4.	 Once all activity has ceased on release “N,” the application instance is shut down,
and resources are deallocated.

Figure 9.4.  Application Elastic Growth and Type I, “Block Party” Upgrade.

156	 Release Management

Note that it is possible for type I, block party, upgrades to complete with no user
impact if traffic is allowed to naturally drain from old application instance “N” and new
traffic is directed to new application instance “N + I.” If the enterprise cannot wait for
all traffic to naturally drain from the old instance, then application-specific actions can
be taken to coerce the traffic from the old instance to the new instance. While this
migration period may be prolonged, it is important to note that both the old and new
application instances remain fully redundant and at no time is either application instance
simplex exposed.

Continuous delivery models of software work well with type I, block party, upgrade
that has been enhanced to include automated regression tests to verify release sanity
before directing any user traffic to the new release. This ability to support continuous
delivery of software directly supports the Open Data Center Alliance (ODCA) cloud
awareness “extensible” attribute discussed in Section 3.7, “Cloud Awareness.”

Since multiple versions can be running at the same time, type I software upgrade
provides the opportunity to install a special version of the application and only direct
a select set or number of users to trial it. Once the trial is over, the version can be grown
or removed.

9.3.2  Type II Cloud-Enabled Upgrade Strategy:  
One Driver per Bus

Type II, “one driver per bus,” software upgrade (illustrated in Figure 9.5) is a strategy
in which only one application instance version is providing user service at any time.
This strategy is appropriate when data or resource constraints preclude multiple applica-
tion instances from sharing access to one or more common resources. The strategy
entails the following:

Figure 9.5.  Type II, “One Driver per Bus” Upgrade Strategy.

Cloud-Enabled Software Upgrade Strategies	 157

1.	 Creation of an application instance on the new release “N + I” with sufficient
resources to manage equivalent capacity of that of the old release “N.” New
release software is installed, and persistent data are evolved from the old release
to the new release. Dynamic data are evolved (if needed) and synchronized.

2.	 The new release “N + I” application instance is activated, and traffic is directed
to the new release.

3.	 Once the new release “N + I” is determined to provide acceptable service,
the application instance on release “N” is deactivated and its resources are
deallocated.

The key characteristic of type II, one driver per bus, software upgrade is that only
one version is actively service users at a time. As a result, interfacing components do
not have to manage supporting both application version instances simultaneously. IP
addresses can be reused and moved from the old application instances to the new
version virtual application instances. In order to maintain user sessions across the
upgrade, user sessions that were still running on the old version at the time of switcho-
ver must be assumed by the new application instance with a copy of the associated
dynamic data. There is potential user impact during the switchover time, particularly
if the dynamic data cannot be synchronized or otherwise accessed by the new version
so that needs to be kept to a minimum. If there is a need to roll back to the old version,
then the same steps are repeated for the old version: disconnecting resources from the
new version and reconnecting on the old, switchover to the old version, including
moving of the IP addresses, and traffic redirected to the old version. There is potential
user service impact during the switchover interval.

9.3.3  Discussion

Type II software upgrade is similar to the traditional online strategy in that only one
version is running at a time, and has the challenge of synchronizing volatile data across
active members of the old and new versions. For many traditional applications, this
strategy will be the easiest to adopt without major design changes, particularly if there
is no volatile data that need to be preserved or if the volatile data can be maintained
by the client. Downtime is associated with the transition time needed to move from the
old release appliance instances to the new release appliance instances. There is also a
potential reliability impact during the transition time, particularly if there are dynamic
data that are not replicated.

Type I represents a very different strategy than traditional upgrade as it entails
managing multiple versions of application instances executing concurrently. There may
need to be architectural changes for an application to adopt this model, including the
addition of enhancement of proxy load balancers to manage the routing of service to
the appropriate application instances, as well as the mapping of the data. Type I can
feasibly upgrade with no user service downtime and no loss of dynamic data, since
traffic is being served at all times by at least one of the virtual application instances,
assuming traffic is gracefully drained from the old version. With type I, a percentage
of traffic could be routed to the new version appliances during the soak period to test

158	 Release Management

it before rerouting all of the traffic as is done with type II. Rollback with type I again
can feasibly be performed without downtime since it will be a matter of pausing or
suspending the new version and directing all of the traffic to the old version.

Section 15.7, “Release Management Impact Effects Analysis,” will provide an
assessment of the software upgrade mechanisms and types to help architects determine
the best strategy for a given application.

9.4  DATA MANAGEMENT

Persistent application data need to be maintained (e.g., no loss of user records) during
the software upgrade process, and the data schema may also need to be evolved if there
are any schema changes between releases. In addition, since any upgrade may cause
breakage, it must be possible to back out (before the commit) or roll back (after the
commit) from an upgrade to return the application to a stable and fully operational
state. There also needs to be a mechanism to clean up persistent data when a release is
shutdown and removed.

For type I, “block party,” a separate copy of the evolved data can be created for
the new version application instance. There are several possible approaches for data
changes during the upgrade:

•	 Block provisioning requests after the initial data dump is performed and do not
allow any changes until the new release is active.

•	 Allow provisioning to continue to occur on the old version but log all changes
or transactions to be evolved later and stored into the new version database.

•	 Allow provisioning to continue to occur on the old version and do a real time
sync of the data between the old and new versions.

•	 Use a combination of the items above: allow provisioning to continue to occur
on the old version but block provisioning just before the final activation of the
new version, and later evolve the old version data changes and store them in the
new version database.

Once the old application version is ready to be removed, the old version database
resources can also be deallocated and removed as well. A rollback is accomplished by
taking the new version instance offline and directing all new traffic to the old version
instance. As long as a release is maintained, its data must be backed up and able to be
restored if necessary.

For type II, one driver per bus, an evolved copy of the data is created for the new
application version. Prior to the switchover, the new application release instance’s data
are synchronized with the old release instance to make sure the new instance has the
latest copy. This synchronization can be done through a journaling type operation to
update the recently changed data entries. Note that some applications may choose not
to allow changes to persistent data during the upgrade to avoid this final synchroniza-
tion step. At the time of the switchover, only the new version of the data schema is
used, so there is no need to keep both versions up to date as in type I. If there is a

Role of Service Orchestration in Software Upgrade	 159

rollback, then updates since the activation of the new version instance should be reap-
plied to the old version schema as part of the rollback process if possible. Software
upgrades may be rolled out to users faster with type II as they do not wait for traffic
to drain on the old release; however, there is a greater potential for loss of existing user
sessions.

Regardless of the type of upgrade, separation of data (both persistent and dynamic)
from the application facilitates migration of virtual machines (VMs) among hosts. An
example of data separation is the case where a master copy of the data is kept on
virtual storage and is compatible across multiple versions of the software. An applica-
tion instance can then retrieve the data it needs from the master copy and cache it
locally. Updates to the data are only made to the master copy. Version specific access,
update, and synchronization functions can be provided to “proxy” the data to older
releases if needed. If separation of data is not possible, then software upgrade proce-
dures must include the proper sequencing of data evolution and synchronization of
the both persistent and dynamic data to ensure that data are not lost as a result of the
upgrade.

9.5  ROLE OF SERVICE ORCHESTRATION IN SOFTWARE UPGRADE

Service orchestration based on a methodical management of tasks and components can
be crucial for software upgrade to assist in meeting its service quality requirements
for availability, reliability, and retainability. Service orchestration entails the linking
together of architecture, tasks, and tools necessary to initiate and automatically manage
a service. In the cloud environment, service orchestration includes linking together and
automating tasks based on work flows, measured data, and policies with the purpose
of providing a service. For software upgrade, service orchestration involves automating
the processes for installation and configuration of the new software, allocation and
initialization of resources to instantiate the new release, the evolution of persistent data
and evolution and synchronization of any needed dynamic data, and transitioning from
the old to the new release with a graceful draining of the traffic on the old release and
retraining of traffic to the new release. In addition, other components may need to be
updated with new IP addresses. All of these activities need to be carefully coordinated
and monitored, providing for pauses and backouts if unsuccessful in a way that ensures
service availability (i.e., no user downtime) and service reliability and retainability (i.e.,
maintenance of stable sessions and transactions).

For example, in type I, block party, software upgrade, service orchestration would
be responsible for creating and installing the new application version; evolving and
synching the persistent data; updating domain name system (DNS), front end distribu-
tors, and firewalls to include the new version appliance instance IP addresses or fully
qualified directory numbers (FQDNs); and routing configurable amounts of traffic to
both the new and old version appliance instances while managing a graceful shutdown
of the old version. For type II, “one driver per bus” software upgrade, service orchestra-
tion would also be involved in synchronizing dynamic data (if applicable), and perform-
ing the switchover of old version appliance instances to new version appliance instances.

160	 Release Management

For both types I and II, service orchestration would also assist in performing the roll-
back if needed.

Load balancers are key components in the orchestration process responsible for
directing client traffic to the correct release application instance. There are two main
options for this role, although variations may also be designed:

•	 Client traffic is directed to a proxy load balancer that will send the traffic to the
appropriate server instance. The load balancer keeps track of which application
instances are managing a particular client session. During software upgrade,
messages associated with existing sessions on the old version are still directed
to those application instances supporting that old version and a designated
portion or all of the new registrations, and messages associated with new sessions
are directed to application instances on the new version.

•	 Client traffic continues to go to the old version application instances via a non-
proxy load balancer (e.g., DNS). A proxy that is integrated with the application
is invoked to direct traffic associated with registrations or new sessions to the
new version application instances. Messages associated with existing sessions
on the old version application instance continue to be processed by the old
version instance. In this case, the proxy may only be needed during the transition
phase and may be deactivated once the old version application instances have
been taken out of service. Once all old version traffic has been drained and the
old version is no longer needed, the nonproxy load balancer can be updated to
address the new version application instance, and the temporary proxy can be
disabled.

The role of the proxy load balancer could be enhanced to work based on policies
managed by service orchestration, such as defining a certain percentage of new traffic
to be directed to the new version server instances to soak the new version for a period.
This would also allow multiple versions to run for a chosen period of time—as deter-
mined by the customer.

9.5.1  Solution-Level Software Upgrade

Solution-level upgrade introduces another level of complexity to the software upgrade
process as it entails a sequencing of virtual application upgrades across the impacted
elements in the solution (i.e., all of the elements that require software upgrades). That
sequencing requires an understanding of the dependencies and release compatibilities
between the various elements in the solution to determine which elements need to be
upgraded first and which can be upgraded in parallel. In addition, data distribution
among the solution elements needs to be understood and included in the service orches-
tration procedures so that proper data synchronization is performed between those
elements as part of the solution software upgrade process. Obviously, this complexity
can be mitigated by ensuring release compatibility for interfaces between elements and
ability to perform upgrades in parallel instead of in sequence, but that may not always
be possible to ensure.

Conclusion	 161

Service orchestration mechanisms should be implemented to automate and manage
this complexity, ensuring the ordering of the upgrades, validating the successful com-
pletion of one before starting another upgrade, and synchronizing data among the ele-
ments. To facilitate orchestration, software upgrade strategies (e.g., block party and one
driver per bus) must be clearly defined for all elements with well-documented interfaces
for the management of the virtual applications and data that can be translated into
procedures implemented by service orchestration. The procedures manage not only the
software upgrade of each of the corresponding elements in the proper sequence, but
also the sequencing of the rerouting of traffic between the newly upgraded elements,
graceful shutdown of old version instances and eventual deallocation of resources, and
deletion of old version instances. As with individual application upgrades, it must be
possible to back out the upgrade of one or all of the upgraded application elements.
Service orchestration should be able to support the back outs as well.

9.6  CONCLUSION

Both type I, “block party,” and type II, “one driver per bus,” software upgrade strategies
improve the service quality of cloud-based applications compared with traditional
software upgrade architectures. Type I, “block party,” can offer higher user service
quality than type II by supporting the old and new version application instances at the
same time so there is no longer the complexity and user service risk of abruptly tran-
sitioning from one version to another. With type I, service can be slowly drained from
the old version, and active user sessions do not necessarily have to be forcibly migrated
to the new version. A portion of the traffic can be directed to the new version as a way
to soak it while the rest is still running on the old version. This can also be used to
enable limited user trials or testing. If there is a need to roll back the new version, it
is just a matter of disabling that version and directing all traffic to the old version. At
the solution level, service orchestration can be implemented to manage and coordinate
the upgrade of the various applications, taking into account any interface incompatibili-
ties and dependencies.

10

END-TO-END CONSIDERATIONS

End users experience cloud-based applications via their smartphone, tablet, laptop, or
other device, and that experience aggregates the service impairments of the cloud-based
application, the cloud infrastructure, the wide area and access networks, and the user’s
device itself. Section 10.1, “End-to-End Service Context,” frames the context and
general consideration for service quality actually experienced by end users. Section
10.2, “Three-Layer End-to-End Service Model,” offers a simple model for analyzing
end-to-end service impairments. Section 10.3, “Distributed and Centralized Cloud Data
Centers,” considers the service quality implications of obtaining service from smaller,
nearby cloud data centers compared with larger but more distant regional data centers.
Section 10.4, “Multitiered Solution Architectures,” considers complex solutions that
rely on resources in multiple cloud data centers. Section 10.5, “Disaster Recovery and
Geographic Redundancy,” considers georedundancy and disaster recovery of cloud-
based applications.

10.1  END-TO-END SERVICE CONTEXT

As shown in Figure 10.1, the service quality experienced by an end user in a simple end-
to-end application service model is vulnerable to five broad classes of impairment:

163

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

164	 End-to-End Considerations

1.	 IP service quality and impairments across the access and wide area networking
infrastructure and facilities, such as packet loss, packet latency, and packet jitter.

2.	 Impairments within the cloud service provider’s infrastructure and data center,
including service quality problems with the cloud data center’s compute, storage,
network, and service infrastructure (discussed in Chapter 4, “Virtualized Infra-
structure Impairments”). This category also covers catastrophic events that render
some or all of the cloud service provider’s data center unavailable or inaccessible;
mitigating catastrophic events is discussed in Section 10.5, “Disaster Recovery
and Geographic Redundancy.”

3.	 Impairments of Application Software and the Underlying Guest OS.  The applica-
tion software, guest OS, and technology components used by the application are
vulnerable to residual software and architectural defects.

4.	 Impairments Due to Human Error, Faulty Policies, and So On of Cloud Con-
sumer and Cloud Service Provider.  Procedural or human errors have traditionally
contributed significant service downtime; [TL_9000] offers the following canoni-
cal examples of traditional procedural errors:

Examples of a procedural error include but are not limited to
a.	 Removing the wrong fuse or circuit pack
b.	 Not taking proper precautions to protect equipment, such as shorting out

power and not wearing ESD strap
c.	 Unauthorized work
d.	 Not following methods of procedures (MOPs)
e.	 Not following the steps of the documentation
f.	 Using the wrong documentation

Figure 10.1.  Simple End-to-End Application Service Context.

End-to-End Service Context	 165

g.	 Using incorrect or outdated documentation
h.	 Insufficient documentation
i.	 Translation errors
j.	 User panic response to problems
k.	 Entering incorrect commands
l.	 Entering a command without understanding the impact
m.	 Inappropriate response to a network element alarm.

While automation can minimize the risk of wrong human actions, there is
still the risk of faulty operational policies, such as flawed policies for activating
elastic growth or failure to check out newly grown application capacity before
directing live traffic to the newly grown components.

5.	 Impairments due to end user’s device (e.g., dead battery) or network access (e.g.,
standing in a wireless dead spot) also impact the end user’s service, but these
impairments are generally attributed to the user rather than to the service quality
of the application itself. In addition, the technical characteristics of the device’s
hardware (e.g., speaker, microphone, and display) and software (e.g., codec
implementation) set practical upper limits on the end user’s quality of experience.
For example, the quality of experience for video rendered to a full-sized high-
definition TV is inherently superior to the video rendered to the small screen of
a handheld smartphone.

Section 2.2, “Service Boundaries,” introduced both the application’s customer
facing service boundary and the application’s resource facing service boundary. Figure
10.2 overlays the service boundaries from Section 2.2 on the end-to-end service context
of Figure 10.1.

To analyze end-to-end service, it is useful to define several logical measurement
points. Figure 10.3 expands the four measurement points of [Bauer12] by clarifying
that measurement point one (MP1) is equivalent to the application’s customer facing
service boundary and referring to the application’s resource facing service boundary as

Figure 10.2.  Service Boundaries in End-to-End Application Service Context.

166	 End-to-End Considerations

measurement point zero (MP0). Figure 10.3 overlays these measurement points onto
Figure 10.2:

•	 MP0—infrastructure measurements—is the application’s resource facing
service boundary to the cloud service provider’s virtualized infrastructure.
Chapter 4, “Virtualized Infrastructure Impairments,” considered the primary
service risks across the measurement point.

•	 MP1—component instance measurements—is the application’s customer
facing service boundary. Service across this boundary is subject to application
(or technology component)-specific service quality measurements, such as
service reliability and service latency (see Section 2.5, “Application Service
Quality”). Different types of application and technology component instances
are likely to have different key service quality measurements. For example,
session-oriented components may include some application-specific retainability
measurements while nonsession oriented components would not.

•	 MP2—data center service measurements—measures the service delivered by
an entire suite of application and technology component instances in a single
availability zone or data center that deliver a higher level solution service. This
measurement integrates the application components, supporting technology com-
ponents, and operations systems with the cloud data center infrastructure and
facilities.

•	 MP3—aggregate service measurements—captures the service benefit of intel-
ligent load distribution and balancing arrangements that manage user workloads
across two or more cloud data centers or availability zones, including disaster
recovery mechanisms. MP3 is not shown in Figure 10.3.

Figure 10.3.  Measurement Points 0–4 for Simple End-to-End Context.

End-to-End Service Context	 167

•	 MP4—”end-to-end service measurements”—aggregates the service impacts
experienced by the end user of the aggregate service measurement MP3 and the
access and wide area network (WAN) IP transport.

Figure 10.4 places a security appliance in front of the application instance of Figure
10.3 and replicates that application-plus-security-appliance solution to two cloud data
centers to highlight two key points:

•	 Multiple Component Instances.  Real cloud-based solutions are usually com-
prised of multiple discrete application and technology component instances. Each
of these components provides distinct primary functions that together enable the
application solution to deliver acceptable service to end users. Figure 10.4 shows
two distinct component instances to illustrate this point: an application instance
and a security appliance that protects the application instance from illegitimate
traffic (e.g., distributed denial of service [DDoS] attack). Both of these compo-
nents are required to be fully operational to deliver user service that is feasible
and likely to both meet users’ expectations for service quality and the enterprise’s
need for security. Each of these components has fundamentally different role in
the overall solution, and thus has rather different key quality indicator (KQI). Real
solutions would likely include many more discrete application or technology
component instances offering functions such as database functionality, applica-
tion logic, and network management. The quality characteristics of each of these
application or technology component instances can be measured separately, often
with somewhat different application component instance (MP1) metrics.

Figure 10.4.  End-to-End Measurement Points for Simple Replicated Solution Context.

168	 End-to-End Considerations

•	 Multiple Data Centers.  Critical applications are routinely deployed to multiple
data centers to both mitigate the risk of catastrophic failures and to boost service
availability. Figure 10.4 shows the same application being deployed to both the
“North data center” and the “South data center.” MP2 (data center measurement)
can logically be made at the service demark between each of these data centers
and their respective connections to the public internet (WAN). Thus, the applica-
tion’s MP2 for North data center (or the South data center) would characterize
user service delivered across the North (or South) data center’s demark to the
public network. MP3 characterizes the aggregate cloud service availability seen
by users across the pool of data centers. For example, if the cloud consumer
takes the application instance in the North data center offline for several hours
to perform routine maintenance, then the cloud consumer could gracefully drain
application user traffic from the North data center prior to the planned mainte-
nance event and restore user traffic after the maintenance action had successfully
completed. Thus, MP2 (data center measurement) for the North data center
would reflect several hours of service downtime during the applicable measure-
ment period, but MP3 (aggregate service measurement) for the period would not
be impacted because all users were successfully served by the application solu-
tion running in the South data center.

Figure 10.5 illustrates the typical service monitoring points.

1.	 Application software, operating system, library, and technology components rou-
tinely include performance monitoring mechanisms that record key performance

Figure 10.5.  Service Probes across User Service Delivery Path.

Three-Layer End-to-End Service Model	 169

data and make it available to service assurance and management systems in near
real time. While traditional performance monitoring mechanisms are a useful
starting point, Internet scale and other factors encourage adoption of cloud
friendly performance monitoring tools, such as Dapper [Sigelman]. Note that
individual network elements will routinely monitor appropriate performance
management metrics which range from generic measurements (e.g., IP packets
sent) to protocol-specific messages (e.g., types of specific protocol requests pro-
cessed successfully). Analysis of these measurements gives insight into perfor-
mance of an individual network element instance, but less insight into the
application service experienced by end users.

2.	 Application service can be monitored from within the data center hosting the
service. This probe point eliminates all impairments attributable to access and
wide area networking, but may not include all edge routers, security appliances,
and other IP infrastructure that service to real end users must traverse. This
can accurately measure a single application or component instance (MP1)
hosted within a target data center, and can take primary data center measurements
(MP2).

3.	 Service probes can be installed in one or more locations serviced by wireline
internet connections, such as another cloud data center or the cloud consumer’s
business office(s). These service probes should characterize the likely service
performance experienced for users accessing the service via wireline IP connec-
tions. This can approximate MP2, “primary data center service measurements,”
or MP3, “aggregate service measurements,” depending on the behavior and
operation of the service probe.

4.	 Wireless service probes can be used to characterize performance of fixed or
mobile wireless users. This measurement can roughly approximate MP4 perfor-
mance experienced by end users via wireless access. While wireless service
providers routinely execute the so-called drive testing to identify and correct
coverage holes, most cloud consumers have too little control over the wireless
access used by the end users to make this measurement generally useful.

5.	 Service probes in the end user’s device or client application can easily monitor
service impairments, such as late and lost packets, throughput and accessibility
and retainability failures. These performance measurements can be made remotely
accessible so that the cloud consumer’s operations and support teams can retrieve
these statistics to better understand the nature of service impairments being expe-
rienced by end users. This service probe can capture MP4, “end-to-end service
measurements.”

10.2  THREE-LAYER END-TO-END SERVICE MODEL

To better analyze end-to-end service risks, it is convenient to decompose this simple
model of Figure 10.1 into three logical layers, as shown in Figure 10.6:

170	 End-to-End Considerations

1.	 Infrastructure layer for the physical devices, equipment, and facilities that trans-
port IP packets and support application processing. The physical infrastructure
layer includes the following:
•	 User’s device
•	 Wireless base station and transmission path (or wireline access equipment and

facilities)
•	 Access network infrastructure and facilities
•	 Wide area networking infrastructure and facilities
•	 Access infrastructure and facilities to the cloud data center’s demark point
•	 Cloud service provider’s routers, networking, compute, memory and storage

infrastructure, and data center facility.

2.	 Service layer for the logical enabling services, such as IP network service
and cloud infrastructure as a service (IaaS). The service layer includes the
following:
•	 Networking software running on the end user’s device
•	 IP networking service provided by the end user’s wireless service provider
•	 Virtual private networking (VPN) services
•	 IaaS and associated any as-a-Service (XaaS) offerings (e.g., load balancing as

a service) supporting the cloud consumer’s application.

3.	 Application layer integrates application software offerings with enabling services
from the service layer, all supported by elements of the physical infrastructure
layer. The application layer includes
•	 Application software running on the end user’s device
•	 Cloud consumer’s application software, policies, and data that are built on

XaaS offerings from the service layer
•	 Integration with VPN and other networking services.

Each individual network element and facility across the infrastructure should have
its own performance measurements (key performance indicators [KPIs]). Providers of

Figure 10.6.  Three Layer Factorization of Sample End to End Solution.

Three-Layer End-to-End Service Model	 171

each service across the service layer should methodically manage the service quality
delivered between the provider’s demark points. For example, enterprise VPN service
providers routinely commit to service availability, packet loss, latency, and jitter per-
formance between their demark points, thereby shielding enterprise customers from
operation and practical complexity of VPN service. The end-to-end service across the
application layer experienced by end users is the focus of this chapter.

10.2.1  Estimating Service Impairments via the Three-Layer Model

Figure 10.7 shows how application service impairments accumulate across the end-to-
end service delivery path. As shown in Equation 10.1 (estimation of general end-to-end
service impairments), basic service impairment “X” (e.g., typical service latency) expe-
rienced by the end user can generally be estimated as the sum of

1.	 Impairment in the client’s device and application (e.g., XClient)

2.	 Impairment in the client device’s access network (e.g., XAccess)

3.	 Impairment across the WAN and cloud service provider’s access network (e.g.,
XWAN)

4.	 Impairment across the various cloud service provider’s services that are used by
the cloud consumer’s application, such as IaaS, load balancing as a service, and
database as a service (e.g., XXaaS)

5.	 Impairment of the application software itself (e.g., XApp).

	 XEnd2End ≈ XClient + XAccess + XWAN + XXaaS + XApp.	 (10.1)

This impairment model is composable in that impairment contributors can be
decomposed into “white box” component impairments or composed into aggregate
“black box” impairments. For example, the aggregate or black box impairment of

Figure 10.7.  Estimating Service Impairments across the Three-Layer Model.

172	 End-to-End Considerations

wireless access (XAccess) could be decomposed into smaller black boxes, as shown in
Figure 10.8 for deeper analysis into:

•	 XAirInterface. Propagation impairment across the wireless air interface

•	 XBTS. Impairment due to the wireless base station

•	 XBackhaul. Impairment due to backhaul equipment and facilities

•	 XWirelessGateway. Impairment due to interworking gateway and facilities between the
wireless carrier’s network and the public Internet.

These impairments could be further decomposed if appropriate, such as factoring
XBackhaul into impairments for equipment in the backhaul path and propagation latency
across physical transmission lines. Likewise, if IP traffic flows across multiple carriers,
then XWAN could be decomposed into the contributions from each of those IP carriers.

10.2.2  End-to-End Service Availability

As discussed in Section 2.5.1, “Service Availability,” service availability is driven by
service downtime. When an end user accesses application service from a particular
application instance in a data center (logically MP2), the components in the end-to-end
service delivery path are logically arranged in series; thus, service downtime of each
component should logically be summed across the service delivery path to estimate
end-to-end service downtime, as given in Equation 10.2 (estimation of end-to-end
service downtime). Note that not all of this end-to-end downtime may actually be
attributed to the application. For example, if the end user’s device is unavailable
because they used it to the point of battery exhaustion so DowntimeClient is logically
impacted; this downtime is usually attributed to the end user rather than the cloud-based
applications, and thus can be excluded from application consideration.

	
DowntimeEnd2End ≈ DowntimeClient + DowntimeAccess + DowntimeWAN +
 DowntimeXaaS + DowntimeApp.

	
(10.2)

Assuming that all of the component downtime values were expressed as minutes of
service downtime per year (i.e., annualized downtime per system), then DowntimeEnd2End

Figure 10.8.  Decomposing a Service Impairment.

Three-Layer End-to-End Service Model	 173

will be given in minutes of downtime per year. This enables one to estimate the end-to-
end service availability via Equation 10.3:*

	 AvailabilityEnd2End ≈ 525,960 – DowntimeEnd2End .
525,960

	 (10.3)

Sophisticated client applications and service provider operations can enable user
service to be recovered to a redundant application instance, generally in a different
availability zone or data center, if the primary instance fails. MP3 captures the benefit
of these redundant application instance recovery actions. Estimating the service avail-
ability benefit of multiple redundant application instances can often be done via the
client-initiated recovery model of [Bauer11].

10.2.3  End-to-End Service Latency

As discussed in Section 2.5.2, “Service Latency,” service latency has two key figures
of merit: typical (nominally 50th or 90th percentile value) and tail (nominally 99.99th
or 99.999th percentile value). The law of large numbers enables one to estimate typical
end-to-end service latency (TypicalEnd2End) by summing the typical latencies (e.g., Typi-
calApp) across the service delivery path, as shown in Equation 10.4 (estimation of end-
to-end typical service latency). As the application service latency (TypicalApp) may be
rather different for different classes of application operations, one typically focuses on
measuring one specific application operation, such as call setup, starting a streaming
movie, and displaying the first screen of search results. Applications with operations
that have materially different latency characteristics for different key functions (e.g.,
account creation, user logon, or completing a purchase transaction) can measure and
optimize each metric separately.

TypicalEnd2End ≈ TypicalClient + TypicalAccess + TypicalWAN + TypicalXaaS + TypicalApp.
(10.4)

Note that end user operations often include a request message sent by the user,
which is served via a response message from the application, so end-to-end service
latency should often consider both the upstream packet flow from the user’s device to
the application, as well as the downstream packet flow from the application back to the
user’s device. For example, both wireless and xDSL access networks often have asym-
metric performance characteristics, so one cannot generally assume that uplink (i.e.,
user to cloud) service latency will be identical to downlink (i.e., cloud to user) latency.
Likewise, WAN traffic flows are often carefully engineered so packets flowing from
point B to point A may not simply reverse the path taken by packets from point A to
point B.

*  525,960 is the number of minutes per average year, which is the product of 365.25 days per average year
(considering both leap and nonleap years), 24 h/d and 60 min/h.

174	 End-to-End Considerations

The shape of tail latency is driven by the throughput of the particular service
component, the offered workload, and the queuing/scheduling mechanism and policy.
Fundamental differences in the nature of specific services, components, and facilities
across the end-to-end service delivery path will produce different tail shapes. While
typical latencies can be summed across the end-to-end service delivery path, the tail
latencies arithmetically sum across the end-to-end path only when the tail variances are
independent. If the long tail (i.e., high variance) events are not independent, then the
end-to-end service latency tail will likely be worse than the mathematical sum. Band-
width reservations should reduce the tail variance compared with ordinary operation
(i.e., without resource reservations) because the reservation should enable elements and
facilities along the path to minimize the risk that application data will be forced to
remain queued due to congestion waiting for resource bandwidth.

10.2.4  End-to-End Service Reliability

As discussed in Section 2.5.3, “Service Reliability,” service reliability is conveniently
expressed as defective (i.e., failed) operations per million (DPM). Wireless access can
have packet loss rates high enough to cause transactions to exhaust timeout and retry
mechanisms resulting in outright transaction failure. Failures of networking equipment
(e.g., routers) or facilities (e.g., breakage of an optical transmission fiber), and some
transient events (e.g., lightning) can cause brief disruptions of access or WAN service
that will cause an end user’s transaction or operation to fail. Fortunately, robust net-
working equipment and facilities should recover service promptly (e.g., failover to
redundant component or alternate path) so operations retried by the user moments later
should succeed. Note that network congestion can also cause packets to be materially
delayed or even dropped and that will impact service reliability experienced by end
users. Unfortunately, the service reliability impairments due to wireless access degrada-
tion and network congestion are likely to vary based on network utilization, wireless
transmission path, and other factors, so it is hard to make a generalized service reli-
ability estimate. Thus, the defect rate contributed by each component in the end-to-end
service delivery path may change based on the time of day (e.g., traffic load), physical
location of the wireless device, and other factors. Nevertheless, Equation 10.5 (estima-
tion of end-to-end service defect rate) gives a useful starting point for estimating end-
to-end service reliability, where

•	 DPMApp gives the steady state service reliability of the application.

•	 DPMXaaS gives the incremental service reliability impact of typical XaaS opera-
tion, such as due to virtual machine (VM) stalls and hiccups. DPMXaaS is likely
to vary by cloud service provider based on their operational policies and other
factors.

•	 DPMAccess gives the impact of the user’s wireless and wireline access network.

•	 DPMNetworkFailures gives the average impact of acute network failure events.

•	 DPMNetworkTransients gives the average impact of chronic and transient events.

•	 DPMNetworkCongestion gives the average impact of congestion on the access and
backhaul network serving the user (assuming that it is not included in
DPMNetworkTransients).

Three-Layer End-to-End Service Model	 175

	
DPMEnd2End ≈ DPMApp + DPMXaaS + DPMAccess + DPMNetworkFailures

 + DPMNetworkTransients + DPMNetworkCongestion.
	

(10.5)

Note that service reliability is not generally affected by having applications
deployed across multiple cloud data centers because user devices will typically send
each request to an application instance in a single data center and await a response.
Theoretically, the user’s device could launch concurrent redundant requests to different
cloud data centers, but this is rare today.

10.2.5  End-to-End Service Accessibility

As discussed in Section 2.5.4, “Service Accessibility,” service accessibility captures the
probability that an arbitrary end user will be able to successfully complete application
service access, such as logging on to a secure service, starting a streaming movie, or
establishing a voice or video call within a maximum acceptable time. These complex
operations typically require availability of the entire service delivery path, as well as
the service reliability of supporting application operations. As shown in Equation 10.6
(estimation of end-to-end service accessibility), the rate of accessibility failures (inac-
cessibility) can be estimated by summing the end-to-end unavailability in parts per
million* and the failure rate for all required actions by the application and enabling
cloud infrastructure.

	 InaccessibilityDPMEnd2End ≈ UnavailabilityDPMEnd2End +
 (DPMApp + DPMXaaS).

RequiredActions
∑

	
(10.6)

Like service availability, service accessibility can be improved by deploying redun-
dant application instances across the WAN. Estimating the accessibility benefit of
redundant application instances must consider the client application’s automatic failure
detection and recovery architecture and performance. If the mechanism is fast enough,
then it is possible that unavailability of the primary application instance can be detected
and service recovered to a redundant application instance fast enough that the end user
does not perceive the original service access attempt to the primary application instance
to have failed before service was delivered via a redundant application instance. More
often, failure of the primary application instance will cause the client’s first access after
application failure to fail, which triggers clients to direct future requests to a redundant
application instance. When the end user retries the failed operation, the client should
send that request to a redundant application instance so that operation should succeed.
If the client was unable to switch away from the failed primary application instance
(e.g., because there was no redundant application instance configured), then all service

*  Availability (actually unavailability) can be expressed as DPM by multiplying the percentage of unavail-
ability (e.g., 99.999% availability means 0.001% unavailability) times 10,000 (i.e., 0.001% unavailability
becomes 10 DPM). Note that the multiplier of 10,000 is used rather than 1,000,000 because a percentage
value already includes a factor of 100.

176	 End-to-End Considerations

access attempts would fail until the primary application instance was returned to
service.

10.2.6  End-to-End Service Retainability

As discussed in Section 2.5.5, “Service Retainability,” service retainability character-
izes the probability that an end user’s service session (e.g., streaming movie, telephone
call, and online game) will continue to deliver acceptable service quality until normal
session termination (i.e., end of movie or game and user disconnection of telephone
call). Service retainability failures are likely to be caused by the following:

1.	 Failures of simplex access network components.

2.	 Slow automatic recovery of components in the service delivery path. For example,
if streaming video freezes or a telephone call goes silent for more than a few
seconds, most users will abandon the session and restart the movie, redial the
call, and so on, rather than waiting tens of seconds or minutes for service to
recover (or not). If the user does not have to cancel or abandon an unacceptably
slow session, then ideally, the service will automatically begin a reestablished
session at or near the point of session loss so the user is not further inconve-
nienced by having to manually seek to the point of disconnection to restore their
session context.

3.	 Unsuccessful automatic recovery of components in the service delivery path, such
as due to loss or inconsistency of session data across redundant components.

Service retainability impairments can be estimated by summing the rate of retain-
ability failures per user session minute via Equation 10.7 (estimation of end-to-end
service retainability [as DPM]), where each DPM value estimates the rate of failures
per million minutes of operation.

	
DPMEnd2End ≈ DPMApp + DPMXaaS + DPMAccess + DPMNetworkFailures
 + DPMNetworkTransients + DPMNetworkCongestion.

	
(10.7)

Service retainability is generally addressed via redundancy within an application
instance. When service is recovered to a different (e.g., geographically redundant)
application instance, then some user sessions are typically impacted because volatile
session data are not generally replicated between distinct application instances.

10.2.7  End-to-End Service Throughput

As discussed in Section 2.5.6, “Service Throughput,” application service throughput is
not an “end-to-end” metric per se because it captures the aggregate throughput delivered
to all end users. The throughput available to an end user typically is the minimum
guaranteed service throughput across their end-to-end service delivery path. As a practi-
cal matter, an end user’s service throughput is often limited by either their (wireless)
access network or by their client device.

Distributed and Centralized Cloud Data Centers	 177

10.2.8  End-to-End Service Timestamp Accuracy

Timestamp accuracy (Section 2.5.7) is not generally an end-to-end service quality
measurement experienced by end users because they typically see only timestamps
from applications and from their client device, and most users are not likely to expect
precise time synchronization between their device and universal time. Moreover, abso-
lute service timestamps (e.g., exactly when a business transaction was executed) are
implicitly relativistic in that they are assumed to be relative to the server’s frame of
(time) reference rather than to the client’s frame of (time) reference. While the server’s
frame of reference and the client’s frame of reference are roughly synchronized, few
user devices even attempt to report their local time reference with precision beyond
seconds.

10.2.9  Reality Check

The three layer model and the simplified end-to-end impairment estimates are tools to
help understand and analyze impairments; they are not a replacement for judicious
measurement of user service KQIs and appropriate KPIs across the end-to-end service
delivery path. The end-to-end view also sets cloud-related impairments into context.
For example, the user service impact of virtualized infrastructure clock event jitter
(Section 4.6, “Clock Event Jitter”) may be dwarfed by jitter caused by the user’s wire-
less access network or may be the dominant source of end-to-end jitter for users con-
nected via wireline access networks. Thus, cloud consumers should consider the service
of the end users experienced at their device, and focus on mitigating service impair-
ments that are most likely to impact the service experience rendered at the end user’s
device.

10.3  DISTRIBUTED AND CENTRALIZED CLOUD DATA CENTERS

As shown in Figure 10.4, many cloud-based applications are likely to be deployed to
multiple data centers to

•	 Improve end user service latency by reducing typical IP packet transmission
latency between the data center hosting the application and the end user

•	 Improve service resilience for disaster events (detailed in Section 10.5, “Disaster
Recovery”).

Once the decision has been made to deploy application instances to multiple
data centers that are geographically separated for business continuity and disaster
recovery, one must balance the strategy of deploying the target application to a small
number of big regional cloud data centers that are likely to be far from end users, or
deploying to a larger number of smaller, distributed cloud data centers that can be
geographically closer to more end users. This section considers the service trade-offs
of deploying service to more (often smaller) local cloud data centers or fewer (often
much larger) regional cloud data centers. Section 10.3.1, “Centralized Cloud Data

178	 End-to-End Considerations

Centers,” considers large, warehouse-scale regional data centers, and Section 10.3.2,
“Distributed Cloud Data Centers,” discusses small, local cloud data centers.

10.3.1  Centralized Cloud Data Centers

To reduce operating expenses, many cloud service providers have created a small
number of warehouse scale centralized cloud data centers that are capable of serving
huge geographic regions. Instead of populating these massive data centers with racks
or rows of computer equipment, warehouse scale data centers may be filled with entire
shipping containers of computer equipment. Thousands of servers are preinstalled in
each shipping container in a factory, and the shipping containers are easily transported
and installed in the warehouse scale facility.

Warehouse scale data centers are typically arranged to efficiently and conveniently
connect to several internet service provider’s (ISP’s) backbone networks to enable
massive traffic volumes across huge populations of users to be efficiently aggregated
and offered as load to the massive centralized cloud data center. In the “big cloud”
option, where a tiny number of warehouse scale cloud data centers are used, end user
traffic flows from their user device across a wireless or wireline access network into
their ISP’s core network. As shown in Figure 10.9, in many cases, the traffic will flow
across a long haul transport network, and perhaps one or more ISPs’ networks in order
to reach one of the few massive data centers operated by the particular cloud service
provider.

10.3.2  Distributed Cloud Data Centers

The logical alternative to a small number of centralized warehouse scale cloud data
centers is a large number of smaller, distributed cloud data centers (illustrated in Figure
10.10), in which cloud computing data centers are deployed as close to the end users’
edge of the network as practical, perhaps even in the central office terminating the ISP’s
access or even collocated with wireless base stations. In the distributed cloud case, most
users could be served from cloud computing resources installed in either their local
access office or from a data center accessible from the ISP’s metropolitan area network

Figure 10.9.  Centralized Cloud Data Center Scenario.

Distributed and Centralized Cloud Data Centers	 179

(MAN), so that their IP traffic need not traverse a WAN. This reduces both the physical
distance of transport facilities (i.e., miles of optical fiber) and number of transport,
routing, and security devices that IP traffic must traverse, thereby reducing end-to-end
service latency. Note that while this may materially shorten the end-to-end IP latency
when a user is connected via a wireline access network, elimination of WAN latency
may be small compared with wireless access latency. Local distributed cloud data
centers can save WAN bandwidth as well as improve latency by storing data close to
where it is being consumed.

Small distributed cloud data centers can also be pushed toward the edge of wireless
networks by collocating distributed data centers where wireless IP traffic first becomes
accessible. A content delivery network (CDN), which caches content for end users, is
an example of an application that benefits from deploying to more local data centers
because that arrangement both reduces WAN traffic for the Internet access service
provider and improves the end users’ quality of experience.

10.3.3  Service Availability Considerations

Given Equation 10.2 in Section 10.2.2, “End-to-End Service Availability,” the service
availability question becomes: is there likely to be any increase in service downtime
with distributed data centers to offset the availability benefit of eliminating Downtime-
WAN from the service delivery path? Let us methodically consider the factors that
drive service availability (introduced in Chapter 5, “Application Redundancy and Cloud
Computing”):

•	 Outage Rate.  Outage rate is a function of the following:
○	 Critical Failure Rate.  How frequently do service impacting failure events

occur? The authors assume (without data) that the rate of critical failures
within a cloud data center (e.g., software crashes and hardware failures) is
independent of whether myriad of VM instances are running on containerized
hardware in a massive centralized warehouse data center or a small number

Figure 10.10.  Distributed Cloud Data Center Scenario.

180	 End-to-End Considerations

of VM instances are running on rack-mounted hardware in a small distributed
cloud data center. After all, cloud service providers are accountable for shield-
ing each VM instance from every other VM instance, so the presence of a
larger number of VM instances in a massive centralized data center should
neither increase nor decrease the risk of the target application’s VM instances
or supporting infrastructure failing.

○	 Probability of Successful Automatic Failure Detection.  How likely is it that a
service impacting failure will be automatically detected and correctly isolated
fast enough to prevent a prolonged outage? Assuming that the same software
surveillance and high availability infrastructures are used, the effectiveness of
automatic failure detection mechanisms should be independent of cloud data
center size.

○	 Probability of Successful Automatic Recovery.  How likely is it that the recov-
ery action initiated by the system will successfully mitigate the user-visible
impact of failure, thereby eliminating the need for time consuming—and
outage prolonging—manual recovery actions? Assuming that the same high
availability platform(s) and infrastructure(s) are used, the probability of
successful automatic recovery should be independent of cloud data center
size, provided the application and cloud data center are engineered with
sufficient online or near-line spare/capacity that service can be recovered
within the original data center rather than having to burst to a different data
center.

•	 Outage Duration.  Assuming similar levels of automation and sophistication of
operational policies, outage durations should be comparable for critical failures
in both centralized and distributed cloud data centers. The authors assume that
all cloud data centers will maintain sufficient spare hardware capacity that non-
catastrophic hardware failures can be addressed by (offline) migration of applica-
tions from failed hardware to “spare” hardware capacity within the data center,
so applications can be restored to full-service redundancy in minutes rather than
requiring slower manual hardware replacement or repair to restore full applica-
tion redundancy (thereby mitigating window of simplex exposure risk). If data
centers do not include sufficient spare online service capacity in the local cloud
data center, then there may be additional latency to shift recovery traffic to an
alternate data center. The real difference in outage duration may arise in the rare
case when there is insufficient online redundancy, and remote access is not avail-
able or sufficient requiring manual, hands-on troubleshooting or repair actions
to reseat a circuit board or replace a failed field replaceable (hardware) unit
(FRU) before service can be resumed. Robust virtualization/hypervisor plat-
forms, hardware management infrastructure, and adequate online/near line
excess hardware capacity should make hands-on manual service recovery actions
(vs. nonemergency repair actions) vanishingly rare.

•	 Outage Extent.  The perceived business impact of service outage extent (e.g.,
number of impacted users) is often nonlinear. Unsurprisingly, service providers
are very keen to reduce the risk that outage events can be impactful enough to

Distributed and Centralized Cloud Data Centers	 181

make the news or move the stock price, and they are also eager to reduce the
risk of high impact individual events. More small application instances deployed
across many small cloud data centers are inherently at less risk of large outage
events that trigger external attention or internal escalations.

Fortunately, service outage events of applications hosted in small local data
centers should not impact users beyond the local vicinity served by the impacted
application instance; in contrast, events impacting a regional application instance in
a big warehouse scale data center can potentially impact a massive number of users,
and thus are much more likely to draw negative attention to the application service
provider.

10.3.4  Service Latency Considerations

Distributed cloud data centers attached to the users’ access network have the following
inherent service quality and latency advantages over regional warehouse scale cloud
data centers accessed via MAN and WAN:

•	 Less One-Way Service Latency.  Users who are physically farther away from
a data center are likely to experience higher service latency due to the
following:
○	 Transmission Latency.  Light takes more than 5 μs to travel a mile, so transmis-

sion latency accumulates for each mile of fiber, coaxial cable, twisted pair, or
air that data must travel between the user’s device and the cloud data center.

○	 Equipment Latency.  Every router, switch, repeater, and interworking element
in the transmission path between the user’s device and the application adds
packet latency.

•	 Shorter Dejitter Buffers Are Possible.  Both client and server applications rou-
tinely have dejitter buffers for streaming media to mask the effects of network
congestion and other impairments. Positioning data centers physically closer to
the end user may enable shorter dejitter buffers because less jitter may be intro-
duced across the end-to-end path because of the following:
○	 Less Opportunity for IP Packets to Take Different Routes across the WAN

between end user and application instance, thereby experiencing different
transmission latencies.

○	 Less Opportunity for Packet Resequencing.  Eliminating MAN and WAN
equipment and facilities reduces the risk of individual IP packets taking dif-
ferent routes and thus arriving out of sequence.

○	 Less Opportunity for Packet Jitter.  IP traffic traverses fewer aggregation or
choke points where traffic may encounter congestion and queuing, thereby
introducing packet jitter.

Note that the one-way transport latency benefit of using distributed cloud data
centers physically close to end users may be small compared with the latency of end
users’ wireless access.

182	 End-to-End Considerations

10.3.5  Service Reliability Considerations

Service reliability impairments typically arise from the following causes:

•	 Subcritical Application Software Failures.  A software bug, buffer overrun, con-
tention for critical resource, application switchover, or a similar event causes
isolated service requests to fail. The authors assume (without data) that the
service reliability (DPM) of applications is independent of the size (e.g., number
of VM instances) in a particular application instance. This means that the rate
of failed transactions is independent of whether a large application instance (e.g.,
100 VMs) is serving a large pool of active users (e.g., tens of thousands or hun-
dreds of thousands) or a small application instance (e.g., 3 VMs) is serving a
small pool of active users (e.g., tens to hundreds).

•	 Networking Failures and Impairments.  Packet loss, delay, and other impair-
ments can take time to detect and time to recover, which increases the risk that
the maximum acceptable service latency time will be exceeded so the operation
will be deemed unsuccessful and thus impact service reliability metrics. The
more networking facilities (e.g., miles of fiber) and the more network elements
(e.g., routers and security appliances), the greater the likelihood that some trans-
action latencies will exceed the maximum acceptable service latency.

Thus, end-to-end service reliability may be slightly worse from distant regional
data centers than from local data centers due to impairments from WAN equipment and
facilities.

10.3.6  Service Accessibility Considerations

End-to-end service accessibility may be slightly better for local distributed data centers
because end-to-end service is unaffected by WAN (and perhaps MAN) impairments.

10.3.7  Service Retainability Considerations

End-to-end service retainability should be slightly better for applications deployed to
local distributed data centers because the service delivery path does not include the
WAN (and perhaps MAN) networking equipment and facilities, and thus is exposed to
less risk of service impacting failure events.

10.3.8  Resource Distribution Considerations

The scale of the cloud data center impacts the probability that resources requested by
cloud consumers will be “in stock” at the data center, rather than requiring outgrowth
to fulfill the resource allocation request. Of the four resources offered by IaaS providers
(processing, volatile storage, persistent storage, and networking), three of these
resources—processing, memory, and networking—are essentially fungible, and thus
there is freedom in selecting particular resources to allocate to a particular application
because identically configured resources are essentially interchangeable. In contrast,
allocated persistent storage is often not fungible because one application’s user data are

Multitiered Solution Architectures	 183

not interchangeable with another application, and often one user’s data are not inter-
changeable with another user. A trivial example is e-mail or voice mail: a user needs
access to their personal mailbox; after all, successfully connecting to an e-mail or voice
mail system to learn “your mailbox is currently unavailable” is an unsatisfactory user
experience. Thus, service availability requires that appropriate fungible processing,
memory, and network resources to be brought together with nonfungible persistent
storage to correctly serve user requests.

The size of persistent storage indirectly impacts the mobility and accessibility of
that data. While it may be feasible to download and cache relatively small user-specific
persistent data (e.g., user profile information) to a different data center on the fly, it is
infeasible to download a multiterabyte database to another cloud data center on the fly.
Thus, for data centric applications, it is often most practical to collocate the fungible
processing, memory, and networking resources with the massive, nonfungible (and not
easily transportable) persistent storage, while applications with less user-specific per-
sistent storage can often be pushed to whichever data center is most convenient. The
alternative to collocating persistent data with processing and memory resources is to
deploy a multitiered solution architecture, which is considered in Section 10.4, “Mul-
titiered Solution Architectures.”

10.4  MULTITIERED SOLUTION ARCHITECTURES

Section 10.1, “End-to-End Service Context,” considered a simple solution architecture
in which all application server components and data are collocated in a single data
center, so a user’s service request flows from the user’s device to that single data center
and a response flows back. Many solutions will be deployed, with more complex archi-
tectures relying on two or more tiers of data centers in the service delivery path. For
example, an enterprise may rely on compute resources in a public cloud to directly
serve end users but retain enterprise data in a private data center on an enterprise loca-
tion. In this case, the end-to-end service delivery path would flow from the end user’s
device across access and WAN networks to the public cloud data center (Tier I) where
the application logic resides, and then across access and WAN networks to the private
cloud data center (Tier II) where the enterprise’s data resides.

The end-to-end service delivery path in this two-tiered architecture can be modeled
as logically appending additional access and WAN networks and a second data center
to the end-to-end model of Section 10.1, “End-to-End Service Context.” Figure 10.11
visualizes a sample two-tiered configuration. Logically, the end-to-end path is extended
by adding

•	 TierIIWAN for networking between the Tier I and Tier II data centers

•	 TierIIXaaS for the second data center’s cloud infrastructure services

•	 TierIIApp for the application (e.g., database server) in the Tier II data center.

The end-to-end service availability, latency, reliability, accessibility, retainability,
timestamp accuracy, and throughput (discussed in Sections 10.2.2–10.2.7) should be

184	 End-to-End Considerations

the same with additional impairments included for the application access, WAN, and
data center.

10.5  DISASTER RECOVERY AND GEOGRAPHIC REDUNDANCY

Disaster recovery plans methodically address the restoration of key business services
following a disaster event, such as an earthquake or fire, that renders a data center
unavailable. Disaster recovery time objective (RTO) and recovery point objective
(RPO) are the KQIs for disaster recovery, and are discussed in Section 10.5.1. Geo-
redundant architectures are discussed in Section 10.5.2, and service quality consider-
ations of georedundancy are considered in Section 10.5.3. Architectural considerations
for assuring RPOs are met are covered in Section 10.5.4, and availability zones and
disaster recovery are discussed in Section 10.5.5. Note that two disaster recovery
analysis methodologies are also given in Part III: Recommendations: Section 15.8,
“Recovery Point Objective Analysis,” and Section 15.9, “Recovery Time Objective
Analysis.”

10.5.1  Disaster Recovery Objectives

Best practice and fiduciary responsibility direct that enterprises establish business con-
tinuity plans to assure that critical business systems and data can be recovered following
disasters or catastrophic events that render a data center unavailable. Business continu-
ity expectations for information systems are defined via two key performance indica-
tors, shown in Figure 10.12:

•	 RTO is the time required to recover user service following a disaster event.
When manually initiated disaster recovery is used, RTO is often defined as the

Figure 10.11.  Sample Multitier Solution Architecture.

Disaster Recovery and Geographic Redundancy	 185

time from when the disaster was formally declared by a business leader, and thus
the disaster recovery plan was formally activated, to the time when a specified
portion of users (e.g., 90%) have recovered service. When automatic disaster
recovery mechanisms are used, RTO may be specified as from the time user
service is impacted by the disaster event to the time when a specified portion of
users have recovered service. RTO targets were traditionally measured in hours
and days, but many critical systems have RTO targets measured in minutes.

•	 RPO is the amount of data changes that can be lost when service is recovered
from (offsite) data (e.g., backup, mirror, and replica). For example, if database
changes are replicated to a geographically distant data center every 15 minutes,
then the RPO should be about 15 minutes because only slightly more than 15
minutes of database changes could be lost between the last backup and the
disaster event (see worst case scenario example in Section 15.8, “Recovery Point
Objective Analysis”). Different applications will have different RPO targets. For
example, while losing 24 hours of social networking updates on disaster recovery
may be acceptable; losing 24 hours of sales, inventory changes, or financial
transactions may compromise a business’s ability to survive after the disaster
event.

In any case, it is important to test and practice disaster recovery procedures peri-
odically, particularly on critical applications, to ensure that procedures are well under-
stood and correct and that the recovery objectives can be met.

10.5.2  Georedundant Architectures

While traditional high availability architectures carefully manage redundant resources
within a logical system to mitigate ordinary (single point) failures, events can occur
that simultaneously impact many components of a single system instance, such as a
disaster event that impacts or disables a data center, can overwhelm a single application
instance’s ability to mitigate user service impact. To mitigate these types of events, a
fully independent system instance is deployed at a geographically distant site that can
be used to recover the traffic for the impacted applications.

Figure 10.12.  Disaster Recovery Time and Point Objectives.

186	 End-to-End Considerations

Geographically redundant—or georedundant—architectures feature fully indepen-
dent application instances located at geographically distant sites to enable business
continuity following a disaster event. In the event of a disaster (e.g., earthquake and
fire), user traffic will automatically or manually be rerouted to a georedundant site,
which is engineered to serve the impacted workload indefinitely. Georedundant recover-
ies often have a longer RTO and RPO than traditional (intrasystem) redundancy
architectures, and thus georedundant recovery is typically only used when normal
(intrasystem) redundancy does not succeed (e.g., because ordinary redundancy mecha-
nisms have been overwhelmed).

There are three fundamental options for recovering impacted client devices via
georedundancy:

•	 Manually Activated Georedundant Recovery.  Traditional disaster recovery plans
are manually activated via an appropriate enterprise executive making a formal
disaster declaration.

•	 Server-Driven Georedundant Recovery.  Georedundant application (server)
instances can monitor (aka heartbeat) each other, and if a nominally active server
instance becomes unavailable or inaccessible from the specific application’s
point of view, then a georedundant application instance can automatically
promote itself and begin serving user impacted traffic.

•	 Client-Initiated Georedundant Recovery.  The application’s client instances can
control the decision of which application server instance they use. If an indi-
vidual client instance deems their primary server to be unavailable or inacces-
sible, then it will select and connect to an alternate (georedundant) application
instance.

These three strategies have rather different operational behaviors, with manually
activated georedundancy generally having the most explicit human visibility and con-
trollability, and client-initiated georedundant recovery having the least explicit human
visibility and controllability.

10.5.3  Service Quality Considerations

Figure 10.13 shows a simplified service impairment model for a georedundant disaster
recovery arrangement. While the client device and the client’s access networking
remain constant, disaster recovery replaces the WAN, XaaS access, and infrastructure
to the primary application instance with the WAN, XaaS access, and infrastructure to
an alternate application instance. As client devices are generally assigned to the applica-
tion instance in the physically closest data center, the data center hosting the alternate
application instance is likely to be geographically further from the client, and thus WAN
impairments, especially transport latency, are likely to be greater for end user service
delivered from the alternate application instance. Service impairments of the alternate
XaaS access network and infrastructure are likely to vary based on the XaaS service
provider’s offering. If the same XaaS service providers are used for both the primary
and alternate cloud data centers, then service impairment characteristics attributed to

Disaster Recovery and Geographic Redundancy	 187

the XaaS service provider are likely to be equivalent, but if different XaaS providers
or different service offerings (e.g., a disaster-recovery-as-a-service offering) are used,
then these impairments could be different. Likewise, the service impairment attributable
to the alternate application instance should be similar to the impairments attributable
to the primary instance if the configuration and workload on the two applications are
comparable. Note that user service during the period when service for end users is being
recovered to the alternate site may be temporarily degraded due to extremely heavy
offered load (e.g., due to re-registration at the alternate site), so one should compare
service impairments between primary and alternate sites during stable operational
periods (i.e., after service recovery actions have completed).

10.5.4  Recovery Point Considerations

For cost and performance reasons, volatile application and state information are not
generally replicated across a WAN between georedundant application instances. For-
tunately, many applications and users will tolerate the loss of volatile data and at least
some loss of persistent data (i.e., a nonzero RPO) on georedundant (disaster) recovery,
so georedundant service recovery generally has more user visible impact than either
traditional redundant or concurrent redundancy architectures. From an end user’s
perspective, georedundancy often is a less desirable alternative to traditional high
availability or redundant compute strategies for most failure events, including those
associated with VM impairments, particularly for stateful applications, because they
are likely to experience greater service disruption due to loss of at least some volatile
data. Nevertheless, georedundancy is a common strategy that is highly effective at
mitigating impact of catastrophic events including total loss or serious degradation of
network resources.

Figure 10.13.  Service Impairment Model of Georedundancy.

188	 End-to-End Considerations

 Common data replication strategies (roughly in descending order of consistency)
are as follows:

•	 Synchronous Data Replication between Mates.  Data changes—particularly vol-
atile data changes—are fully synchronized between mates. This means that
requests served by one application instance do not complete until changes are
executed successfully on replicated copies of data.

•	 Asynchronous Data Replication between Mates.  Data changes are replicated
between mates after the data change has occurred. Whenever data are modified
on the primary server due to client requests, the primary server sends updates to
the alternate server so that the alternate is prepared to immediately take over
service and preserve active requests if the primary fails. Often, the primary might
wait until a request has reached a relatively stable state or the length of a request
has exceeded a threshold before backing up the request’s state data.

•	 Data Stored in the Client.  User data (e.g., state and context information) are
stored in the client itself, so that if the primary server fails, then the client explic-
itly sends the correct data to the alternate server instance. If the interface between
the client and server is HTTP (e.g., a web server), then the servers can store and
retrieve data in the client using cookies (assuming that the data itself are appro-
priately replicated and shared by server instances).

•	 Data Backup to Networked Vault.  Persistent data can be backed up to a remote
networked storage device. While there is likely to be a small logistical delay in
initiating a restoration from a networked backup, the bandwidth to the networked
backup device will limit how quickly the entire dataset can be downloaded, thus
limiting RTO. Backups can be taken more frequently when using a networked
storage device, such as once an hour, which may be fast enough to support vola-
tile data for some applications.

•	 Data Backup on Physical Media.  A backup of the persistent data is generated
periodically (usually once a day) and stored on physical backup media. The
backup should be in a remote location, so that if the primary server’s location is
lost due to a disaster, the data can still be recovered at another site. Since the
backup is on physical media, there is inherently a logistical delay in transporting
the physical backup media to the target system.

•	 None.  Volatile data are not replicated or synchronized between elements
or backed up at all. This is generally acceptable for applications that process
short-lived requests that can be retried, such as the print jobs spooled by a
print server. While it is theoretically possible to back up all print jobs, their
transient nature and the overall unreliability of the printing process itself (e.g.,
paper jams and image quality issue) mean that users are likely to be prepared to
resubmit failed or lost jobs rather than expecting those jobs to be restored from
backups.

Section 15.8, “Recovery Point Objective Analysis,” gives a methodology that is
useful when designing an application’s data replication architecture.

Disaster Recovery and Geographic Redundancy	 189

10.5.5  Mitigating Impact of Disasters with Georedundancy and
Availability Zones

Force majeure events (e.g., hurricanes, earthquakes, and fires) or catastrophic events
(e.g., load balancing misconfiguration) can impact some or all infrastructure equipment
and facilities at the physical location that it affected. The traditional mitigation for the
risk of catastrophic and site disasters is to implement a disaster recovery plan to recover
service to an alternate data center with sufficient resources that is sufficiently far away
from the primary site that it is unlikely that a single event would impact both sites.
Availability zones are a lighter weight disaster recovery option in which fully indepen-
dent data center infrastructure “zones” are maintained in a single region. By creating
and maintaining independent application instances in separate availability zones, appli-
cations can contain catastrophic application failures, regardless of whether the avail-
ability zones are collocated or geographically dispersed across several regions. In
theory, the impact of fire or similar event should be contained to a single availability
zone. However, true force majeure events, such as earthquakes, could affect more than
one availability zone in a single data center. Thus, enterprises should carefully weigh
the risk of relying on separation using availability zones within the same region rather
than more geographically distributed sites in different regions for disaster recovery and
business continuity.

RECOMMENDATIONS

III

This part of the book covers the following:

•	 Chapter 11, “Accountabilities for Service Quality.”  The application’s resource
facing service boundary toward cloud infrastructure is somewhat different from
traditional deployment models. This chapter methodically reviews how roles,
responsibilities, and accountabilities evolve with cloud deployment.

•	 Chapter 12, “Service Availability Measurement.”  End users are likely to expect
cloud-based applications to deliver equivalent service quality as traditionally
deployed applications. This chapter explains how traditional service availability
measurements can be applied to cloud deployments.

•	 Chapter 13, “Application Service Quality Requirements.”  Rigorous architec-
tural, design, and validation diligence requires clear and quantified service
quality requirements so methodical analysis and testing can verify that it is fea-
sible and likely that the application’s customer facing service expectations will
consistently be met. This chapter offers sample service quality requirement for
cloud-based applications.

•	 Chapter 14, “Virtualized Infrastructure Measurement and Management.”  This
chapter reviews strategies for measuring quality delivered by the infrastructure

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

191

192	 RECOMMENDATIONS

across the application’s resource facing service boundary. High level strategies
for mitigating impairments are also reviewed.

•	 Chapter 15, “Analysis of Cloud-Based Applications.”  This chapter presents a
suite of analysis techniques to rigorously identify and mitigate service quality
risks during application design.

•	 Chapter 16, “Testing Considerations.”  This chapter considers testing of cloud-
based applications to assure that service quality expectations are likely to be met
consistently despite inevitable virtualized infrastructure impairments.

•	 Chapter 17, “Connecting the Dots.”  This chapter discusses how to apply the
recommendations of Part III to both new and evolved applications.

11

ACCOUNTABILITIES FOR
SERVICE QUALITY

Cloud consumers, cloud service providers, suppliers, and end users all want the quickest
and most effective resolution of any service impairments and failures that may arise.
Fast and effective problem resolution requires rapid and accurate problem attribution
so that the correct party can determine the true root cause and take effective corrective
actions. Cloud deployment subtly shifts roles, responsibilities, and accountabilities
compared with traditional deployments, so it is important to reconsider the implications
of these revised roles in advance to avoid problems arising around responsibility and
accountability gaps across the service delivery chain. This chapter reviews traditional
deployment accountabilities as a baseline, and then analyzes how cloud service delivery
impacts those traditional accountabilities.

11.1  TRADITIONAL ACCOUNTABILITY

Accountability for application service outages and other impairments is traditionally
(per [TL_9000]) factored into three broad categories:

1.	 Product (or supplier) attributable outage is defined by [TL_9000] as “an outage
primarily triggered by

193

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

194	 Accountabilities for Service Quality

a.	 The system design, hardware, software, components or other parts of the
system,

b.	 Scheduled outage necessitated by the design of the system,
c.	 Support activities performed or prescribed by [the supplier] including docu-

mentation, training, engineering, ordering, installation, maintenance, technical
assistance, software or hardware change actions, etc.,

d.	 Procedural error caused by the [supplier],
e.	 The system failing to provide the necessary information to conduct a conclu-

sive root cause determination, or
f.	 One or more of the above.”

2.	 Customer attributable outage is defined by [TL_9000] as “an outage that is pri-
marily attributable to the customer’s equipment or support activities triggered by
a.	 Customer procedural errors,
b.	 Office environment, for example power, grounding, temperature, humidity, or

security problems, or
c.	 One or more of the above.”

3.	 External attributable outage is defined by [TL_9000] as “outages caused by
natural disasters such as tornadoes or floods, and outages caused by third parties
not associated with the customer or the [supplier] such as commercial power
failures, third-party contractors not working on behalf of the [supplier] or
customer.”

Accountability for service quality impairments is thus relatively straightforward;
problems are either attributable to the product’s supplier, to the “customer” (e.g., the
IT organization that purchased and operates the equipment), or to external issues
beyond control of either the supplier or the customer. Figure 11.1 illustrates this tradi-
tional accountability by overlaying these outage attributability definitions across an
expanded 8i + 2d (eight ingredient plus data plus disaster) model (see [Bauer12] for a
full description of the expanded eight ingredient model).

11.2  THE CLOUD SERVICE DELIVERY PATH

Cloud computing impacts the traditional accountability model of Section 11.1 by
explicitly decoupling the application software from the physical compute, memory,
storage, and networking infrastructure that supports it. Further confusing accountability,
the application “consumer” (customer of the application supplier, not the end user of
the application) also consumes Infrastructure-as-a-Service (IaaS), and perhaps other
services (e.g., Database-as-a-Service), from a cloud service provider. The cloud service
provider, in turn, is a customer of infrastructure equipment suppliers. The additional
service boundary between the cloud consumer and the cloud service provider(s), as
well as the new boundary with cloud infrastructure and platform services, increases the
risk of interface-related failures and accountability breakdowns.

Figure 11.2 illustrates the simplified critical service delivery path for a cloud-based
application; the cloud consumer in this case offers e-mail as a service to end users. The

The Cloud Service Delivery Path	 195

Figure 11.1.  Traditional Three-Way Accountability Split: Suppliers, Customers, External.

Figure 11.2.  Example Cloud Service Delivery Chain.

cloud consumer configures the e-mail application software that they purchased from a
supplier onto VM instances and virtualized storage offered by the cloud IaaS provider
that the cloud consumer has selected. The IaaS provider’s service is physically imple-
mented via VM servers, storage arrays, Ethernet infrastructure, and other equipment
that the IaaS provider acquired from equipment suppliers. Some end users of the e-mail
service access the cloud consumer’s e-mail application instance via a wireless service
provider and one or more internet service providers, who haul IP traffic between the

196	 Accountabilities for Service Quality

end user’s device and the cloud service provider’s data center that hosts the cloud
consumer’s application software instance.

The example service delivery path of Figure 11.2 can be generalized as Figure
11.3. Of the seven logical service boundaries in Figure 11.3, three are product-related
boundaries between product/equipment/application suppliers and the customers who
own and operate those products, and the other four are between service consumers and
service providers. The three product suppliers to customer interfaces (shown in dashed
lines in Figure 11.3) are the following:

1.	 Equipment Supplier to Cloud Carrier (e.g., Selling Networking Infrastructure to
IP Network Operators such as Long Haul Transmission Gear).  These quality
measurements are covered by TL 9000 Measurement Handbook and product
categories today.

2.	 Equipment Supplier to Cloud Provider (e.g., Selling VM Servers and Controllers
to Cloud Service Providers).  This should be covered by TL 9000 via existing
and new product categories.

3.	 Application Supplier to Cloud Consumers.  This is the product-attributable
service quality of the application’s customer facing service (e.g., TL 9000
product-attributable service downtime).

The four service provider to service consumer interfaces (shown as dotted lines in
Figure 11.3) are the following:

Figure 11.3.  Service Boundaries across Cloud Delivery Chain.

Cloud Accountability	 197

4.	 Application’s Resource Facing Service Boundary.  The primary service risks
across this boundary were considered in Chapter 4, “Virtualized Infrastructure
Impairments.”

5.	 Cloud Consumer to Cloud (IP) Carrier.  IP traffic passed from the cloud pro-
vider’s data center to the IP network service providers who haul the cloud
consumer’s traffic. This is the cloud consumer’s customer facing service
boundary.

6.	 IP Carrier Service Boundaries.  There may be multiple IP network service pro-
viders, including wireless providers, in the packet delivery flow, and thus similar
service demarcation points will exist between each of those providers.

7.	 End to End User Service Boundary.  This is the logical demarcation point between
the cloud-based service and the end user. The specifics of this demarcation depend
on the service details, including responsibility for the device rendering service to
the end user and responsibilities for networking to that device. For example,
service impact of device failure if the end user dropped their wireless device on
a concrete floor and broke it would probably be deemed user attributable, but
hardware failure of a set top box might be attributable to the service provider
who bundled the box with television service. Of course, the television service
provider would probably cascade accountability to the supplier of the failed set
top box across the equipment supplier to cloud provider (or consumer) service
boundary.

Clear and measurable service boundaries benefit consumers, providers, and the
ecosystem at large because of the following:

1.	 Standard service measurements enable fair side-by-side comparisons of historic
service performance and quality. While historic behavior is no guarantee of future
performance, it does provide an excellent estimate of likely performance.

2.	 It simplifies fault isolation across complex multivendor solutions.

3.	 It enables clear interfaces with other products and services that implement and
use those service measurement standards

4.	 It enables efficient service quality tracking of globally deployed products and
services.

5.	 It simplifies service level agreement (SLA) negotiations with customers by focus-
ing on quantitative performance levels based on the service measurements rather
than having to define and negotiate service measurements themselves.

11.3  CLOUD ACCOUNTABILITY

Accountabilities in the cloud deployment ecosystem are quite different from the service
quality accountabilities in the traditional deployment ecosystem. Cloud IaaS fundamen-
tally shifts the traditional accountability model in two ways:

198	 Accountabilities for Service Quality

•	 Customers (now called “cloud consumers”) purchase or rent software-only appli-
cations from software suppliers, rather than purchasing software bundled with
physical hardware (e.g., embedded systems or software bundled with rack
mounted servers).

•	 Customers (now cloud consumers) lease use of virtualized compute, memory,
storage, and networking from IaaS (or any as-a-service [XaaS]) cloud service
providers. IaaS implicitly includes all aspects of the physical data center hosting
the virtualized infrastructure, such as power, grounding, and environmental
control.

As a result, neither application suppliers nor cloud consumers have direct control
or accountability for the physical hardware infrastructure that their application executes
on. In fact, the physical infrastructure hosting the application is probably controlled by
one or more cloud service providers who are separate and distinct from the cloud con-
sumer who purchased and operates the application software. Figure 11.4 illustrates the
high level responsibilities for cloud-based applications by role via the 8i + 2d model
[Bauer11].

•	 The cloud service provider is responsible for the physical hardware and enabling
software that supports the virtualized compute, memory, storage, and networking
service delivered to application software. The cloud service provider is also
responsible for the physical data center environment hosting the hardware,
including maintaining acceptable temperature (i.e., cooling), humidity, physical
security, and other environmental parameters. The cloud service provider is also

Figure 11.4.  Functional Responsibilities for Applications Deployed on IaaS.

Cloud Accountability	 199

responsible for IP networking within the data center and interworking with cloud
carriers who haul IP traffic to and from end users. Cloud service providers rely
on human staff and operational policies to continuously deliver acceptable
service quality to applications that they host. Specifically, cloud service provid-
ers’ responsibilities include
○	 Consistently providing high quality virtualized compute, memory, storage, and

network resources to host cloud consumer’s applications
○	 Providing service orchestration mechanisms that dynamically manage applica-

tion resource allocation/deallocation requests, subject to cloud service provider
policies; this includes determining where to instantiate the VMs (e.g., within
data center, outside data center) and how to balance the load to the application
instances

○	 Enforcing the cloud consumer’s affinity and anti-affinity/no single point of
failure rules

○	 Operations, administration, billing, maintenance, provisioning, and billing of
all infrastructure hardware, firmware, software, equipment, and facilities.

•	 The application software supplier’s responsibilities include
○	 Delivering application software that consistently meets applicable functional

and nonfunctional requirements
○	 Delivering correct installation, configuration, and operational guidance for

cloud consumers
○	 Providing application resource and configuration information (for initial instal-

lation as well as expected growth) to the cloud consumer, including recom-
mended affinity and anti-affinity/no single point of failure rules

○	 Providing application mechanisms for fault detection and recovery from
programming errors, data integrity problems, process failures, and protocol
errors

○	 Providing procedures for application maintenance operations, such as software
upgrade and disaster recovery

○	 Supporting root cause analysis of application-related service impairments/
outages.

•	 The cloud consumer’s responsibilities include
○	 Defining service requirements, architecture, and design of their application

solution
○	 Selecting application suppliers and products
○	 Selecting cloud service provider(s)
○	 Mitigating risks associated with gaps or overlaps between cloud service pro-

viders and application software suppliers
○	 Ensuring the correctness of their application data
○	 Establishing, correctly executing, and enforcing operational policies related

to operations, administration, maintenance, and provisioning of application
service

○	 Creating and maintaining disaster recovery plans, which often rely on services
offered by one or more cloud service providers.

200	 Accountabilities for Service Quality

Technology components offered “as a service” by Platform-as-a-Service (PaaS)
suppliers, such as Load Balancing-as-a-Service (LBaaS) or Database-as-a-Service, shift
accountability slightly compared with “shrink–wrapped” technology component offer-
ings. The technology-component-as-a-service “product” from a PaaS supplier is a fully
operational instantiation of the shrink–wrapped technology component that might be
offered and managed by a software supplier. Practically, this means that most or all of
the accountability for “customer procedural errors” that would be carried by the cus-
tomer if they were using the shrink–wrapped technology component is now carried by
the technology-component-as-a-service provider and supporter. This accountability is
likely to extend to cover both capacity management and release management of the
technology component if those services are supported by the technology component
supplier. Customers should carefully negotiate accountabilities related to technology
component as-a-Service offerings in SLAs with their providers to minimize the risk of
errors due to misunderstandings of the exact roles and responsibilities of both the PaaS
and IaaS service provider and the cloud consumer.

11.4  ACCOUNTABILITY CASE STUDIES

The commercial alternating current (AC) power infrastructure is now mature and stan-
dard enough that assigning accountability for electricity-related service impairments is
simple: consider the example of an electric toaster. Residential electric service in North
America is nominally 120 V AC so many home appliances are engineered to operate
properly for voltage ranges from 110 to 130 V AC at the electrical outlet. Thus, if the
appliance does not produce properly toasted bread when the AC voltage at the kitchen
electrical outage is between 110 and 130 V AC, then the toaster is probably faulty. But
if the voltage at the kitchen electrical outage is, say, 90 V AC, then the root cause of
unacceptable toast is probably the commercial AC service, the interior wiring, or the
electrical outlet itself. It took time for the electrical power ecosystem to standardize all
the physical and electrical expectations and accountabilities necessary to rapidly isolate
service failures to the accountable party: either the toaster, the interior wiring including
electrical outlet and household circuit breakers, or the local electric power utility. It
will inevitably take the cloud computing ecosystem time to agree on standard service
boundaries and expectations to enable rapid and accurate assignment of accountabilities
for service impairments and outages.

By considering the roles, responsibilities, and accountabilities of the different
parties in these case studies, one gains a deeper understanding of the subtle shift that
comes with cloud computing and will be better prepared to determine accountabilities
surrounding their applications until industry bodies and commercial agreements stan-
dardize accountabilities. Undoubtedly, standards from bodies will ultimately adopt
accountability rules that are somewhat different from the authors’ example in this
section, so this is offered merely as illustrative examples. This section considers the
following scenarios:

•	 Accountability and Technology Components (Section 11.4.1)

•	 Accountability and Elasticity (Section 11.4.2).

Accountability Case Studies	 201

11.4.1  Accountability and Technology Components

Cloud Platform-as-a-Service providers offer technology components as services to be
integrated with application software to deliver valuable services to end users, such as
load balancers, security appliances, and databases. Fortunately, standard quality mea-
surement principles detailed in [TL_9000] enable one to easily establish accountability
for service outages based on the primary functionality delivered by the technology
component offered as-a-Service. Consider an application server (perhaps a web server)
operated by a cloud consumer that is configured to use a cloud service provider’s load
balancer (i.e., LBaaS) to distribute the workload across application server component
instances, as shown in Figure 11.5. The primary function of the application server
instances (“S1” and “S2”) is to serve clients’ application protocol requests (e.g., HTTP
GET and PUT for a web server); the primary function of the load balancer (LBaaS) is
to distribute client requests across the pool of application server component instances
based on business rules.

Figure 11.6 illustrates the simplified [TL_9000] service outage accountability for
this configuration:

Figure 11.5.  Sample Application.

Figure 11.6.  Service Outage Accountability of Sample Application.

202	 Accountabilities for Service Quality

•	 The server application supplier retains “product-attributable” service outage
accountability for their software-only application component instances (S1, S2).

•	 The LBaaS service provider retains “product-attributable” service outage
accountability for the load balancing technology component, including failures
of the load balancer software application itself. While the supplier of the load
balancer software may be accountable for product attributable service outages
to the LBaaS service provider, the LBaaS service provider is fully accountable
for all aspects of the load balancing components operation to the cloud
consumer.

•	 The IaaS cloud service provider is responsible for delivering virtualized compute,
memory, storage, and networking services to both the cloud consumer’s applica-
tion software and the LBaaS’s load balancer virtual application. Logically, these
infrastructure services are generally packaged as VMs that can be modeled like
traditional field replaceable units (FRUs)* hardware. Just as traditional FRUs
are expected to have a nonzero failure rate which is measured by early life fail-
ures (e.g., early return index [ERI]), working life failures (e.g., yearly return rate
[YRR]), and long term reliability (e.g., long-term return rate [LTR]), VM
instances should have failure rate metrics as well. While it is obviously silly to
talk about “return rates” of failed VM instances because VMs are not repaired
like failed circuit boards are, it is still worth tracking and carefully managing
VM failure rates. VM failure rates are discussed in Section 12.4, “Evolving
Hardware Reliability Measurement.”

•	 The cloud consumer retains overall ([TL_9000] “all causes” SO2) outage
accountability for the load-balancing policies that they configure and which are
properly implemented by the load-balancing technology component.

The implications of this sample accountability model are understood by consider-
ing likely accountability of several failure scenarios:

•	 User service outage attributed to a software failure of service instance S1 or S2
would be product attributable service downtime against the server application
supplier.

•	 User service outage downtimes due to excessive (e.g., epidemic) failures of VM
compute, memory, storage, or networking are probably attributable to the infra-
structure service provider. The IaaS provider is likely to hold their infrastructure
equipment supplier accountable for epidemic failure of that equipment.

•	 User service outage downtime attributed to failure of a single application
server instance (e.g., S1) that was not rapidly detected and mitigated via service
failover to redundant server instance (e.g., S2) would likely be attributed to
LBaaS, assuming that LBaaS was responsible for automatic failure detection and
failover.

*  [TL_9000] defines “field replaceable unit” as “a distinctly separate part that has been designed so that it
may be exchanged at its site of use for the purposes of maintenance or service adjustment.”

Accountability Case Studies	 203

•	 User service outage downtime attributed to failure of the load balancer would
be service downtime against the LBaaS service provider; the LBaaS service
provider would then likely hold the supplier of the load balancer virtual applica-
tion software accountable.

•	 User service outage downtime attributed to faulty integration between applica-
tion servers S1, S2, and LBaaS would probably be attributable to the cloud
consumer.

•	 User service outage downtime due to a rare single-point failure of VM compute,
memory, storage, or networking provided to a high availability application would
probably be attributed to the application because highly available applications
are expected to mitigate rare single point hardware failure events. However, if
the cloud consumer failed to configure the application as recommended by the
supplier (e.g., with sufficient online redundancy), then outages that would have
been prevented by proper application configuration are accountable to the cloud
consumer.

11.4.2  Accountability and Elasticity

As discussed in Chapter 8, “Capacity Management,” elasticity of online applications
when applications are carrying a workload at or near the application’s online capacity
is inherently more risky than traditional growth. Elastic growth of online application
capacity is a complex process that carries the risk of producing user service downtime.
Figure 11.7 illustrates how elastic growth might be supported for our sample application
of Figure 11.6. The elastic growth process includes the following logical steps:

Figure 11.7.  Application Elasticity Configuration.

204	 Accountabilities for Service Quality

•	 Some operations support system (OSS) is actively monitoring how well the
application instance is serving the offered workload, such as by measuring
service latency and throughput reported by the load balancing component

•	 When the service latency, throughput, or other applicable factors cross threshold(s)
defined by the cloud consumer’s elastic growth policy, the elasticity triggering
functionality in the OSS directs the elasticity management functionality of the
OSS to initiate an appropriate elastic capacity growth action.

•	 The elasticity management function (e.g., elasticity OSS) then
1.	 Acquires additional resources from the cloud service provider on behalf of

the cloud consumer.
2.	 Configures new resources and initializes application component (S3).
3.	 Verifies proper operation and full readiness of the new application component

S3 (sometimes called a “warm-up” period).
4.	 When new application component (S3) is ready for service, the elasticity

management function reconfigures the load balancer to include new server
S3 in its pool for distribution of workload.

•	 The elasticity management function is responsible for detecting failures of any
of these steps and taking appropriate corrective actions, such as retrying failed
requests and cleaning up stranded or lost resources.

As roles and responsibilities related to rapid elasticity are not yet standard enough
to offer general rules, the authors offer a list of failure scenarios for readers to consider
when defining roles and responsibilities for specific application deployments. Sample
elasticity failure scenarios to consider include

•	 Cloud consumer’s elasticity growth trigger criteria are faulty.

•	 Performance measurements are faulty (e.g., resource utilization is not reported
correctly).

•	 IaaS service provider fails to deliver requested resources promptly.

•	 IaaS service provider returns faulty resources (e.g., virtual local area network
[VLAN] connectivity to allocated resource is not properly configured).

•	 Application fails to start properly with allocated resources.

•	 Application component testing during warm-up period fails.

•	 Elasticity manager fails to properly configure load balancer to include new
resources.

•	 Load balancer fails to distribute work load over newly allocated component (e.g.,
server S3).

Cloud consumers should assure that roles and responsibilities for parties across
their application’s service delivery chain are clear so that inevitable service impairments
can rapidly be isolated to the proper accountable party so that party can drive prompt
service restoration.

Service Quality Gap Model	 205

11.5  SERVICE QUALITY GAP MODEL

The service quality gap model of [Parasuraman] and [Zeithami] provides a useful
framework for rigorously analyzing service, considering how service quality percep-
tions form and can be managed. Figure 11.8 uses the service quality gap model to sepa-
rate the perspective of the service consumer and the service provider, and highlights
where service quality gaps can arise between what the service consumers expect and
the perception of the service they receive. The primary potential service quality gaps
of Figure 11.8 are as follows:

•	 Gap 1: Customers’ Expectations versus (Provider’s) Management Percep-
tions.  Essentially, is the service provider focusing on the key quality indicators
(KQIs) that the customers care most about?

•	 Gap 2: (Provider’s) Management Perceptions versus Service Specifications.  Are
the KQI targets set by provider’s management aligned with the expectations of
customers?

•	 Gap 3: Service Specifications versus Service Delivery.  Does the provider’s
service design make it feasible and likely that KQI targets will be met?

•	 Gap 4: Service Delivery versus External Communication.  Has the service pro-
vider communicated appropriate service quality expectations to the consumer?

Figure 11.8.  Service Gap Model.

206	 Accountabilities for Service Quality

•	 Gap 5: Discrepancy between Customer Expectations and Their Perceptions of
the Service Delivered.  Does the service perceived by the customer meet their
expectations? This is the key perception gap that drives customers’ perceptions
of service quality.

The goal for all service providers should be to deliver service in the customers’
zone of tolerance (see Figure 11.9, that is, at least what the customer accepts and hope-
fully exceeds what the customer expects, especially for Gap 5: Perceived Service versus
Expected Service).

Section 11.5.1 applies the service gap model to the application’s resource facing
service boundary (measurement point zero [MP0]) in which the cloud service provider
is the “provider” and the cloud consumer is the “consumer.” Section 11.5.2 applies the
service gap model to the application’s customer facing service boundary in which the
cloud consumer is the provider and the end user is the consumer.

11.5.1  Application’s Resource Facing Service Gap Analysis

The cloud service provider delivers virtualized compute, memory, storage, and net-
working services, and possibly technology component (PaaS) services, to the cloud
consumer. This section considers potential service gaps across the cloud consumer to
cloud service provider service boundary, visualized in Figure 11.10.

Each of the five gaps is considered separately:

1.	 Gap 1: Customers’ Expectations versus Management Perceptions.  Cloud-based
applications rely on the virtualized compute, memory, storage, and networking
service rendered by the cloud provider to VM instances executing software on
the consumer’s behalf to meet the consumer’s needs. Thus, cloud consumers and
application suppliers have expectations regarding the maximum tolerable service

Figure 11.9.  Service Quality Zone of Tolerance.

Service Quality Gap Model	 207

impairments of the virtualized infrastructure offered by the cloud service pro-
vider; these typical impairments were discussed in Chapter 4, “Virtualized Infra-
structure Impairments”:
•	 VM Failure (Section 4.2)
•	 Nondelivery of Configured VM Capacity (Section 4.3)
•	 Delivery of Degraded VM Capacity (Section 4.4)
•	 Tail Latency (Section 4.5)
•	 Clock Event Jitter (Section 4.6)
•	 Clock Drift (Section 4.7)
•	 Failed or Slow Allocation and Startup of VM Instance (Section 4.8).

2.	 Gap 2: Management Perceptions versus Service Specifications.  Having explained
which infrastructure impairments the cloud consumer’s applications are most
sensitive to, it is essential to agree on the maximum acceptable level of infra-
structure impairment that will enable the cloud consumer’s applications to deliver
acceptable service to end users.

3.	 Gap 3: Service Specifications versus Service Delivery.  The cloud service pro-
vider must put facilities, equipment, architectures, processes, and procedures in
place that make it feasible and likely that acceptable service will consistently be
delivered to the cloud consumer’s application instances.

4.	 Gap 4: Service Delivery versus External Communication.  Cloud service provid-
ers should provide cloud consumers with accurate and timely information on
service performance, trouble status, estimated times to repair, root cause analysis,
and corrective action plans. While cloud service providers may be reluctant to
proactively notify cloud consumers of major service impairments, many consum-
ers would prefer prompt trouble notification by their cloud service provider so
that they can initiate appropriate mitigating actions rather than be forced to dis-
cover the true nature and extent of a major cloud service provider impairment
via troubleshooting myriad end user service complaints.

Figure 11.10.  Application’s Resource Facing Service Boundary.

208	 Accountabilities for Service Quality

5.	 Gap 5: Discrepancy between Customer Expectations and Their Perceptions of
the Service Delivered.  Prudent application suppliers and cloud consumers will
deploy mechanisms and procedures for monitoring and managing virtualized
infrastructure performance (see Chapter 14, “Virtualized Infrastructure Measure-
ment and Management”) to assure they have an accurate view of current and
historic cloud service performance compared with consumer expectations.

11.5.2  Application’s Customer Facing Service Gap Analysis

This section considers the logical service boundary between the cloud consumer’s
application instance at the edge of the hosting cloud service provider’s data center
and the cloud or IP network service provider as a proxy for the end user service bound-
ary. This simplification enables us to focus on the differences between traditional
application deployment and cloud-based application deployment because we assume
that the end user’s device, access, and wide area networking are identical, and thus
can be excluded from consideration. This logical service boundary is highlighted in
Figure 11.11.

Each of the five gaps is considered separately for the customer facing service gaps:

1.	 Gap 1: Customers’ Expectations versus Management Perceptions.  As discussed
in Chapter 2, “Application Service Quality,” different applications have rather
different application-specific key quality indicators, but usually include at least
one of the following:
•	 Service Availability (Section 2.5.1)
•	 Service Latency (Section 2.5.2)
•	 Service Reliability (Section 2.5.3)

Figure 11.11.  Application’s Customer Facing Service Boundary.

Service Quality Gap Model	 209

•	 Service Accessibility (Section 2.5.4)
•	 Service Retainability (Section 2.5.5)
•	 Service Throughput (Section 2.5.6)
•	 Service Timestamp Accuracy (Section 2.5.7)
•	 Application-Specific Service Quality Measurements (Section 2.5.8).

2.	 Gap 2: Management Perceptions versus Service Specifications.  Having selected
the right set of application service KQIs, the cloud consumer should quantify and
characterize the minimum acceptable performance on all customer-facing service
quality KQIs. Ideally, the cloud consumer will pick target KQI values to increase
the probability that end users will be fully satisfied with the application’s service
quality. Best practice is to budget application service KQI impairments across at
least the cloud consumer’s application deployment, and ideally across the entire
end to end solution (e.g. using the three-layer model of Section 10.2, “Three-
Layer End-to-End Service Model”). For example, services that have strict end to
end service latency requirements (e.g., interactive communications, and gaming)
should be carefully engineered to keep actual end-to-end latency impairments
experienced by end users acceptably short.

3.	 Gap 3: Service Specifications versus Service Delivery.  The cloud consumer must
architect their solution so that it is feasible and likely that application service
quality delivered to end users will consistently meet or exceed minimum accept-
able KQI performance. To do this, the cloud consumer must understand the
sensitivity of application’s customer facing service KQI performance to likely
virtualized infrastructure impairments and other impairments across the user
service delivery path (see Chapter 10, “End-to-End Considerations”). Having set
KQI impairment budgets for critical application components, the cloud consumer
(or application supplier) should characterize the performance expectations of the
underlying virtualized infrastructure that is necessary to make it feasible and
likely that application components will meet their targets. The cloud consumer
then uses these performance targets when selecting a cloud service provider. If
the selected cloud service provider is unlikely to consistently achieve these per-
formance targets, then the cloud consumer’s architecture should be revised to
minimize service sensitivity to the virtualized infrastructure impairments most
at risk.

4.	 Gap 4: Service Delivery versus External Communication.  Cloud consumers
should communicate openly with end users about expected service performance,
service troubles, and estimated times to restore service.

5.	 Gap 5: Discrepancy between Customer Expectations and Their Perceptions of
the Service Delivered.  Distributed (including cloud-based) applications carry
risks with gap 5 because application service is usually rendered on a device
owned and operated by the end user (e.g., smartphone, tablet, laptop, and gaming
console) and service is carried over an access network selected by the end user.
This variation in both end user device and specific access network can materially
impact the end user’s quality of experience. For example, the application service
rendered via a laptop that is wired via Ethernet to the user’s broadband modem

210	 Accountabilities for Service Quality

may be superior to the application service rendered to a smartphone via com-
mercial wireless networking when the end user is riding in a bus or a train.
Fortunately, end users are fully aware of the variable nature of wireless data
service (e.g., dead zones, contention for finite bandwidth in popular locations),
so they are likely to ascribe at least some of their observed service impairments
to their wireless access provider or their own actions (e.g., being in a location
with poor wireless coverage).

11.6  SERVICE LEVEL AGREEMENTS

“Satisfaction guaranteed or your money back” is the de facto SLA of respectable
retailers. This simple rule works well for commercial off-the-shelf (COTS) products
to reduce the consumer’s risk of traditional take-it-or-leave-it purchase decisions.
Customized offerings, such as information systems, are not generally delivered “as
is,” and thus a simple binary take-it-or-leave-it decision is not ideal for either the
consumer or the supplier because a “leave it” decision leaves the consumer with no
information system and the supplier with no revenue. Clear SLAs enable consumers
and suppliers to agree in advance what the service quality expectations are and how
service quality issues will be addressed so a binary take-it-or-leave-it decision can be
avoided.

Successful SLAs help both suppliers and consumers meet their business
objectives by

1.	 Defining the scope and performance expectations of contracted service

2.	 Unambiguously defining expectations and obligations for both supplier and
consumer

3.	 Defining remedies if expectations are not met such as prompt service recovery or
an option for the consumer to prematurely terminate the contract

4.	 Bounding liabilities so both consumer and supplier can better manage their busi-
ness risks.

An agreement should meet the service quality and business needs of both the sup-
plier and the consumer. If the agreement is too heavily biased against one party, then
their business may fail or they may breach the agreement for business reasons, which
could plunge the counterparty into chaos. Just as “good fences make good neighbors,”
well-crafted SLAs between providers and consumers can produce more satisfactory
relations because of the following:

•	 Measurable and quantified key quality indicators of delivered service are rigor-
ously specified.

•	 KQI measurement and reporting arrangements are agreed in advance.

•	 Accountabilities for service impairments to those KQIs are clearly stated upfront.

Service Level Agreements	 211

•	 Remedies for failure to meet KQI targets are agreed in advance so that if one or
more failures prevent contracted service levels from being consistently delivered,
then the expectations and accountabilities for restoration of acceptable service
are clear.

Individual SLA commitments should include

•	 Definition of a quantitative service metric, such as one or more service measure-
ments from Chapter 4, “Virtualized Infrastructure Impairments,” or Section 2.5,
“Application Service Quality”

•	 Quantitative service performance targets or objectives, such as less than 50
failed calls per million attempts or less than one supplier-attributable critical
severity trouble ticket created per month

•	 Clear measurement accountability and exclusion rules, such as who is respon-
sible for measuring performance, and exactly how impairments will be
normalized

•	 Remedy for failing to meet the service performance targets, such as providing a
written root cause analysis within 30 days, the customer’s option to terminate
the contract early, and service purchase credits.

SLAs generally progress through the following lifecycle phases:

•	 Offer.  A service provider decides what service performance targets and assur-
ances to offer to consumers.

•	 Discover.  Consumer discovers the service levels offered by various suppliers.

•	 Select.  Consumer selects a service offering from a particular supplier.

•	 Agree.  Service provider and consumer agree to specific terms of service.

•	 Provision.  The consumer’s service is provisioned and turned up by the service
provider.

•	 Use.  The consumer uses the service during the period of agreement.

•	 Terminate.  Eventually, the period of agreement ends or the agreement is
terminated.

Traditionally, this lifecycle was executed by human beings over weeks, months, or
years. As the cloud ecosystem matures and service measurements, terms, and conditions
are standardized across the industry, the service level management lifecycle is likely to
become more automated.

Keep in mind that SLAs are business mechanisms designed to minimize risk; they
are not quality mechanisms that fundamentally increase the feasibility and likelihood
of committed service levels actually being achieved. Thus, SLAs are not a replacement
for diligent research and careful consideration prior to selecting a supplier. While
financial remedies may appear large when reading them in a contract, they are likely

212	 Accountabilities for Service Quality

to be miniscule compared with the cost to the enterprise of having to change suppliers
if the selected supplier proves incapable of consistently delivering acceptable service
quality.

SLAs for cloud services remain a popular topic for standardization organizations,
research, and trade publications, so readers should leverage the wisdom and experiences
(e.g., [ODCA_SUoM], [ODCA_CIaaS], [TMF_TR197]) captured in this growing body
of work prior to negotiating an SLA.

12

SERVICE AVAILABILITY
MEASUREMENT

Well-designed service measurements can gracefully evolve from one generation of
technology to another. Service availability of networked applications is a rigorous
service measurement that can be evolved from traditional deployments to cloud-based
deployments. This chapter lays out service availability measurement evolution as
follows:

•	 Parsimonious Service Measurements (Section 12.1).  Illustrates how well-
designed service measurements have evolved across significant technology
shifts.

•	 Traditional Service Availability Measurement (Section 12.2).  The telecommuni-
cations industry’s TL 9000 “SO” service outage measurement standards are
offered as an example of rigorous traditional service availability measurement.
Service availability measurements in other industries are likely to be similar to
the telecommunications industry’s service availability measurements, albeit
perhaps less rigorous.

•	 Evolving Service Availability Measurements (Section 12.3).  Offers a simple
and parsimonious adaptation of traditional service availability measurement of
Section 12.2 to a sample cloud-based application.

213

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

214	 Service Availability Measurement

•	 Evolving Hardware Reliability (Section 12.4).  Since hardware failures can
directly impact user service, enterprises have traditionally applied rigorous
measurements and management to hardware failures. This section describes
traditional hardware reliability measurements and evolves them to apply to
virtual machine instances.

•	 Evolving Elasticity Service Availability Measurements (Section 12.5).  Tradi-
tional applications supported manual capacity growth and degrowth procedures;
this section parsimoniously evolves service availability measurements of tradi-
tional growth and degrowth procedures to cover elastic capacity management
actions of cloud-based applications.

•	 Evolving Release Management Service Availability Measurement (Section
12.6).  Traditional applications supported traditional software upgrade proce-
dures; this section evolves service availability measurements for traditional
software upgrade procedures to cover software upgrade of cloud-based
applications.

•	 Service Measurement Outlook (Section 12.7).  This section reviews the broader
benefits of parsimonious evolution of traditional service measurements to cloud-
based applications.

12.1  PARSIMONIOUS SERVICE MEASUREMENTS

Well-defined service measurements are often technology independent, and thus can be
applied to give suppliers, customers, and end users better insight into actual service
performance of multiple technology and supplier options. End users, customers, and
suppliers are generally best served by parsimoniously applying existing service mea-
surements rather than inventing alternative measurements, or not even bothering with
service measurements at all. Consider the example of passenger transportation: trip
duration and schedule adherence are fundamentally the key service quality criteria. Trip
duration and schedule adherence are obviously applicable to airline travel, but also
apply to railroad and intercity bus travel. Concern for trip duration and schedule adher-
ence is certainly not new; one imagines that steamship and stagecoach passengers cared
about both of these service qualities just as modern travelers do.

As technology improves, one often has to refine service measurement details
to make them more precise, but the fundamental service measurement notion remains
the same. For example, while “departure time” and “arrival time” are fairly obvious
for trains, buses, steamships, and stagecoaches, operational aspects of aircraft travel
means that those traditional common sense notions of “departure” and “arrival” become
ambiguous. Specifically, aircraft “departure” could reasonably be applied to any one of
the following events:

a.	 When the boarding gate closes
b.	 When the aircraft door closes
c.	 When the aircraft pushes back from the gate

Traditional Service Availability Measurement	 215

d.	 When the aircraft is airborne (i.e., all wheels have left the ground)
e.	 When the aircraft has successfully retracted the landing gear after takeoff.

Since there are likely to be several minutes between each of these events and
aircraft travel time is measured in hours and minutes, it is best for travelers, airlines,
and the industry to agree on exactly which events are used to define “departure time,”
“arrival time,” and “flight duration” so that all parties can make fair comparisons of
service performance across different airlines and flight itineraries. By standardizing
these measurement details, end users can easily compare performance of different
airlines. In addition, the fundamental alignment of duration and schedule adherence
measurements across airline and railroad travel enables travelers to intelligently decide
between taking an intercity railroad trip or a regional flight.

Note that service measurements (e.g., trip duration and schedule adherence) are
very different from service expectations, and those expectations may shift from one
technology to another. Consider aircraft travel compared with railroad travel: end users
are typically willing to accept the benefit of shorter airline travel times for long trips
while accepting more risk on schedule adherence because airlines are more sensitive
to weather conditions; however, on shorter trips, business travelers may prefer intercity
railroad travel because of much-better schedule adherence. Similarly, end users over-
whelmingly accepted the lower voice quality of wireless telephony as a price for mobil-
ity, and longer television channel change (or “zap”) time with digital cable and IP-TV
(compared with analog cable TV) as a price for a vastly larger selection of channels.
Thus, if a cloud-based application delivers a material benefit (e.g., service is free to
end users) beyond traditional deployment, then end users may accept lower service
quality performance, otherwise end users will generally expect service quality perfor-
mance of cloud-based applications to be at least equivalent to native service quality
performance.

12.2  TRADITIONAL SERVICE AVAILABILITY MEASUREMENT

While “service impact outage downtime” measurements ([TL_9000] SO2 and SO4)
used by the telecommunications industry may be more rigorous than those used in other
industries, the same measurement principles are likely to apply for service availability
to myriad applications across all enterprises and organizations and thus can serve as a
useful example for analysis. While some enterprises will use the actual number of users
(e.g., measuring impact of failure events as “1234 user-minutes of service impact” or
“5678 user sessions impacted”), those absolute metrics make it harder to put service
impact into context; for instance, is 1234 user-minutes of service impact during a
1-month measurement period excellent performance or disastrous? Since many enter-
prises will deploy multiple instances of a particular application, and each instance
can serve multiple users, one generally normalizes service availability to better char-
acterize the overall service impact. Typically, service availability is normalized per
system instance per year, and partial capacity loss outages are prorated. For example,

216	 Service Availability Measurement

“five 9s” service availability translates to 5.26 minutes per system per year of prorated
user service impact downtime.

Figure 12.1 gives a simplified operational timeline for an application to make three
points:

1.	 Service outage measurements apply only after the application has entered stable
operation. Failures that prevent the application instance from originally installing,
starting up, and delivering acceptable service to end users are generally consid-
ered installation problems rather than being attributed to outage downtime service
measurements.

2.	 Service outage measurements apply during normal (i.e., stable) operation.

3.	 From time to time, the online capacity, configuration, or software release of an
application instance will change. This action can complete either while the
application instance is offline (e.g., as “scheduled downtime” for maintenance)
or while the application instance is online. If the event occurs while the applica-
tion instance is online and actively serving user traffic, then any user service
impact during that maintenance action is potentially chargeable as outage
downtime.

Service availability measurement in the stable operation phase is covered in
Section 12.3 and availability measurements during capacity management events
are covered in Section 12.5. Release management events are routinely executed
to patch, update, upgrade, or retrofit application software or the underlying guest
OS; service availability measurement of release management events is considered in
Section 12.6.

Figure 12.1.  Traditional Service Operation Timeline.

Evolving Service Availability Measurements	 217

12.3  EVOLVING SERVICE AVAILABILITY MEASUREMENTS

Figure 12.2 illustrates a sample application deployed on cloud that exposes enterprise
data to end users subject to business rules enforced by application logic modules. The
application includes a pair of load balancing components that distribute user workload
across a pool of application logic components, and the application logic components
are supported by a pair of database servers. The load balancer components are protected
by a pair of security appliances, and all of the software components are hosted in virtual
machine instances furnished by an Infrastructure-as-a-Service provider.

The first step in applying traditional service availability measurements to the
sample application of Figure 12.2 is to define exactly what is within the “application
instance” perimeter and thus is covered by the application’s service availability mea-
surement. TL 9000 typically normalizes service outage measurements by either network
element or system, defined as:

•	 Network Element.  “A system device, entity, or node, including all relevant hard-
ware and/or software components located at one location. The Network Element
(NE) must include all components required to perform the primary function of
its applicable product category. If multiple FRUs, devices, and/or software com-
ponents are needed for the NE to provide its product category’s primary function,
then none of these individual components can be considered an NE by them-
selves. The total collection of all these components is considered a single NE”
[TL_9000].

Figure 12.2.  Sample Application Deployment on Cloud.

218	 Service Availability Measurement

•	 System.  “A collection of hardware and/or software items located at one or more
physical locations where all of the items are required for proper operation. No
single item can function by itself” [TL_9000].

As protecting the application from illegitimate traffic, DDoS attack, and other
external security threats is not a primary function of the sample application, a separate
security appliance is added to protect the application from external attack. As the secu-
rity appliance is separate from the application itself, it is outside of the application’s
perimeter, as shown in Figure 12.3. Thus, the application’s service availability should
measure performance presented to end users at the logical edge of the application; in
this case, the application instance’s customer facing service boundary is in front of the
load balancer components but behind the security appliance, as shown in Figure 12.4.
Service availability and quality of the security appliance protecting the application
should certainly be measured, but those measurements should be against the security
appliance itself rather than being aggregated into the service measurement of the appli-
cation instance being protected.

12.3.1  Analyzing Application Evolution

Reliability block diagrams (RBDs) are a useful visualization for analyzing and under-
standing the service availability risks and behaviors of an application. Figure 12.5 gives

Figure 12.3.  “Network Element” Boundary for Sample Application.

Figure 12.4.  Logical Measurement Point for Application’s Service Availability.

Evolving Service Availability Measurements	 219

Figure 12.5.  Reliability Block Diagram of Sample Application (Traditional Deployment).

an RBD of the sample application of Figure 12.2 deployed on traditional hardware
architecture. Each application component instance (e.g., frontend load balancer, appli-
cation logic, and database management system) is deployed onto a separate compute
blade or rack mounted server, and all of those blades or servers are installed in a chassis
or rack with IP connectivity between application instances, as well as electrical power
and cooling, which are represented as the block labeled “Common Chassis Modules.”

Figure 12.6 visualizes how the RBD of Figure 12.5 maps onto cloud:

•	 Each compute blade or rack mounted server hosting an application component
instance is replaced by a virtual machine instance

•	 The IP connectivity between each of those VM instances is provided by the
Infrastructure-as-a-Service provider and can be considered a logical element
referred to as “Connectivity-as-a-Service.”

As shown in Figure 12.7, the RBDs of the sample application of Figure 12.5 can
be evolved to cloud by replacing the traditional chassis or rack-mounted Ethernet
switching infrastructure with virtual “Connectivity-as-a-Service” to represent the IP
connectivity between VM instances, as well as chassis power distribution and cooling
infrastructure.

Figure 12.8 shows side-by-side RBDs for traditional and cloud deployments
of the sample application highlighting the two points for alignment between the
deployments.

As explained in Chapter 11, “Accountabilities for Service Quality,” cloud
deployment complicates accountabilities for failures and impairments by potentially
attributing service impairments to either the cloud consumer (customer), application
software supplier, or XaaS cloud service provider(s). Figure 12.9 gives a chassis-like
visualization of the sample application deployed on a cloud to explicitly connect the

220	 Service Availability Measurement

Figure 12.7.  Reliability Block Diagram of Sample Application on Cloud.

Figure 12.6.  Evolving Sample Application to Cloud.

measurement discussions of this chapter with the accountability discussions of
Chapter 11. The dotted box of Figure 12.9 shows the logical perimeter of the sample
application instance; traditionally, this is the perimeter of the chassis that would host
all of the application’s blades. As with traditional system architectures, this perimeter
encloses a suite of application components (e.g., load balancers, application logic
modules and database server components), and each of those component instances

Evolving Service Availability Measurements	 221

Figure 12.8.  Side-by-Side Reliability Block Diagrams.

Figure 12.9.  Accountability of Sample Cloud Based Application.

executes in a distinct virtual machine instance. All of these virtual machine instances
are networked together via a logical “Connectivity-as-a-Service” notion that emulates
the IP infrastructure that traditionally connects the blades or rack-mounted servers
within a traditionally deployed application instance. This application instance physi-
cally exists within an Infrastructure-as-a-Service provider’s data center.

222	 Service Availability Measurement

The dashed box on Figure 12.9 visualizes the accountability perimeter of the IaaS
provider in the context of our sample application:

•	 VM Instances Hosting Application Component Instances.  These VM instances
host the application software and guest operating systems for all application
components. Inevitably these VM instances will occasionally experience failures
(e.g., VM reliability impairments, per Section 12.4, “Evolving Hardware Reli-
ability Measurement”). Just as hardware suppliers are expected to analyze fail-
ures of their equipment to identify the true root cause of field failures and deploy
appropriate corrective actions to continuously improve the reliability of their
hardware products, high-quality IaaS providers should assure that VM failures
are appropriately analyzed and corrective actions are deployed to continuously
improve VM instance reliability.

•	 “Connectivity-as-a-Service” Providing IP Connectivity between the VM
Instances Hosting Application Component Instances.  This emulates the IP
switching within a traditional application chassis or rack, which enables highly
reliable and available communications between application components with
low latency. Just as architects traditionally engineer application configurations
with minimal IP switching equipment and facilities between application compo-
nents to maximize application performance and quality, IaaS providers will apply
affinity rules and intelligent resource placement logic to assure that all of an
application’s VM instances and resources are physically close together without
violating the application’s anti-affinity rules. Connectivity-as-a-Service captures
the logical abstraction of the IP connectivity between all of an application’s VM
instances. As shown in Figure 12.10, Connectivity-as-a-Service can also be
viewed as a logical nanoscale VPN offered by the IaaS that connects each of the

Figure 12.10.  Connectivity-as-a-Service as a Nanoscale VPN.

Evolving Service Availability Measurements	 223

application’s VM instances in a virtual private network, regardless of where each
VM instances is actually placed.

•	 Logical “Data-Center-as-a-Service” that provides a secure and environmentally
controlled physical space to host the virtual machine servers that host the appli-
cations VM instances’ along with electrical power, cooling, and wide-area IP
connectivity. Typically, the availability expectations of the Data-Center-as-a-
Service are characterized by the Uptime Institute’s taxonomy [UptimeTiers]: Tier
I basic; Tier II redundant components; Tier III concurrently maintainable; or Tier
IV fault tolerant. Data-Center-as-a-Service outages are traditionally excluded
from traditional application service availability estimates and measurements, so
they often can be excluded from service availability estimates and measurements
for cloud deployments. Logically speaking, Connectivity-as-a-Service supports
IP communications within the perimeter of the application instance, while Data-
Center-as-a-Service provides IP communications from the edge of the applica-
tion instance’s perimeter to the demark point between the IaaS service provider
and the cloud carrier, including connectivity to any other application instances
in the service delivery path (e.g., connectivity between the security appliance on
Figure 12.2 and the application’s load balancer components).

12.3.2  Technology Components

Platform-as-a-Service offers technology components or functional blocks that applica-
tions can use to:

•	 Shorten time to market because they are already written

•	 Improve quality because they should be mature and stable

•	 Simplify operations because PaaS provider handles operations and maintenance
of the technology component.

Both load balancing and database management systems are technology compo-
nents that are offered “as-a-Service”; let us consider Database-as-a-Service (DBaaS)
in the context of the sample application of Figure 12.2. Architecturally, the applica-
tion’s pair of active/active database management system component instances of Figure
12.5 can be replaced with a blackbox representing Database-as-a-Service as shown in
Figure 12.11. The blackbox abstraction is appropriate because the DBaaS provider
explicitly hides all architectural, implementation, and operational details from both
the cloud consumer and the application supplier, so DBaaS truly is an opaque—or
black—box.

As technology components such as Database-as-a-Service offer well-defined func-
tionality to applications, it is conceptually easy to know whether that functionality is
available to the sample application (i.e. “up”) or not (i.e., “down”). With appropriate
application and component instrumentation, one can thus measure technology compo-
nent downtime via service probes or other mechanisms. As application service relies
on the technology components that are included in the architecture, service downtime
of included technology components cascades directly to user service downtime of the

224	 Service Availability Measurement

application. Replacing the application’s DBMS component with DBaaS changes the
accountability visualization of Figure 12.9, Figure 12.10, Figure 12.11, and Figure
12.12. Application suppliers may budget for reasonable and customary technology
component downtime (e.g., based on the availability estimated by the technology com-
ponent PaaS provider), but excess service downtime attributed to that technology
component is generally attributable to the technology component PaaS provider rather
than the application supplier.

12.3.3  Leveraging Storage-as-a-Service

Physical servers or compute blades—as well as virtual machine instances—routinely
offer mass storage via a local hard disk that is sufficient for many application

Figure 12.11.  Sample Application with Database-as-a-Service.

Figure 12.12.  Accountability of Sample Application with Database-as-a-Service.

Evolving Service Availability Measurements	 225

component instances. However, for some application architectures, it is better to rely
on shared—and often highly reliable—mass storage for some application data. For
example, application data that would be stored on a RAID array in native application
deployment would generally be configured onto a Storage-as-a-Service offering for
cloud deployment. The addition of “outboard” RAID storage array to host application
data evolves the sample application RBD of Figure 12.7, Figure 12.8, Figure 12.9,
Figure 12.10, Figure 12.11, Figure 12.12 and Figure 12.13.

When the sample application is deployed to cloud, the outboard RAID storage
array of Figure 12.13 can be replaced by a Storage-as-a-Service offering, as shown
in Figure 12.14. Figure 12.15 modifies the accountability diagram of Figure 12.9 to
include Storage-as-a-Service. Note that Figure 12.15 shows the Storage-as-a-Service

Figure 12.13.  Sample Application with Outboard RAID Storage Array.

Figure 12.14.  Sample Application with Storage-as-a-Service.

226	 Service Availability Measurement

component within the application instance’s perimeter, but some applications, consum-
ers, and cloud service providers will deem Storage-as-a-Service as a distinct element
that is measured separately.

12.4  EVOLVING HARDWARE RELIABILITY MEASUREMENT

Hardware reliability of ICT components has improved so that mean time between
failures (MTBF) of repairable or replaceable units often stretches to tens of thousands
of hours or more; nevertheless, hardware still fails for well-known physical reasons.
Failures of physical hardware, as well as failures of hypervisors and host operating
systems inevitably impact application software components hosted in virtual machines
executing on impacted infrastructure. The infrastructure or application must detect the
underlying hardware failure and take corrective actions, such as by redirecting work-
load to a redundant application component and allocating and configuring a replace-
ment VM instance to restore full application capacity. As both the failure events
themselves and the failure detection and recovery actions impact service quality expe-
rienced by application users, VM failure events should be measured to drive corrective
actions to manage and minimize this user service quality risk.

12.4.1  Virtual Machine Failure Lifecycle

Traditionally system software is hosted on hardware field replaceable units (FRUs)
defined as “a distinctly separate part that has been designed so that it may be
exchanged at its site of use for the purposes of maintenance or service adjustment”
[TL_9000]. Virtualized application components execute in virtual machine instances
that are effectively virtualized FRUs. Just as a hardware FRU failure triggers high
availability software to recover service to a redundant FRU, failure of a VM instance
often triggers recovery to a redundant VM instance. The failed VM instance is likely
to be “repaired” via a new VM instance that is allocated and configured as a replace-

Figure 12.15.  Accountability of Sample Application with Storage-as-a-Service.

Evolving Hardware Reliability Measurement	 227

ment by an automated Repair-as-a-Service or self-healing mechanism (see Section 5.3,
“Improving Infrastructure Repair Times via Virtualization”); the failed VM instance
is likely to ultimately be destroyed rather than returned for repair (as a hardware FRU
might be).

Virtualization technology and IaaS operational policies should decouple VM
instance failure patterns from the underlying hardware reliability lifecycle so measure-
ments based on traditional hardware reliability lifecycle phases should not be directly
applicable. For example, at the moment an arbitrary VM instance is allocated to a cloud
consumer’s application, the underlying physical hardware is not necessarily any more
likely to be in the hardware’s early life phase (with a higher failure rate) than it is to
be in the useful life phase (with a lower steady state failure rate). Thus, the authors
propose the simplified virtual machine failure measurement model of Figure 12.16.

Let us consider the two measurements of Figure 12.16 carefully:

•	 VM “Dead on Arrival” (DOA).  “Dead on arrival” is “a newly produced hard-
ware product that is found to be defective at delivery or installation (usage
time = 0)” [TL_9000]. Just as hardware FRUs are occasionally nonfunctional
when they are first removed from factory packaging and installed (aka an “out
of the box” failure), occasionally newly created VM instances do not startup and
function properly because they have been misconfigured or are otherwise non-
functional. VM DOAs can be expressed as defects (i.e., DOA events) per million
VM allocation requests (DPM), or as a simple percentage of VM allocation
requests. VM DOA explicitly measures cases in which the IaaS presents a VM
instance to the application that is misconfigured (e.g., VLAN not set up properly,
wrong software loaded, and application’s persistent data are inaccessible) or
otherwise not fully operational so the application component instance nominally
hosted in the DOA VM is unable to begin serving application users with accept-
able service quality. As VM DOAs are likely to prolong the time it takes for
application capacity to be elastically grown (because DOA VMs must be detected,
disengaged from the application and replacement VM instances allocated and

Figure 12.16.  Virtual Machine Failure Lifecycle.

228	 Service Availability Measurement

configured), minimizing VM DOA rate should improve the predictability and
consistency of elastic growth actions.

•	 VM Reliability.  Failures after an application’s component instance has success-
fully started delivering service count as VM instance failures. VM instance
failure rate can be expressed as mean time between failures (MTBF) or normal-
ized as failures per billion hours of operation (FITs) as traditional hardware
failure rates are. VM reliability should explicitly cover hypervisor failures and
failures of the underlying hardware and infrastructure. For example, an infra-
structure failure that broke network connectivity for a VM instance would count
as a VM reliability impairment because service offered by the application com-
ponent instance would be impacted. As discussed in Section 4.2, “VM Failure,”
the authors propose that any event that prevents a VM instance from executing
for more than some maximum VM stall time be deemed a chargeable VM reli-
ability impairment unless the event is attributed to one of the following excluded
causes:
○	 Explicit request by the cloud consumer (e.g., request via self-service GUI)
○	 Explicit “shutdown” request by the application instance itself
○	 Executed by IaaS provider for predefined policy reasons, such as nonpayment

of bill or executing a lawful takedown order.

VM DOA and VM reliability should be back-to-back measurements so that all VM
failures are covered by one and only one VM quality measurement. The exact dividing
point between VM DOA (nominally “accessibility”) and VM instance failure rate
(nominally “retainability”), as well as specific failure counting and normalization rules
should ultimately be defined by industry standards bodies so that cloud consumers,
service providers, and suppliers can rigorously measure and manage these critical
infrastructure quality characteristics.

12.5  EVOLVING ELASTICITY SERVICE AVAILABILITY
MEASUREMENTS

Growth of traditional systems is usually driven by long-term forecasting of capacity
utilization and is not used to support short-term spikes in traffic. Short-term increases
in traffic are managed through overload control mechanisms that throttle or refuse
traffic that exceeds the application capacity until the offered load falls within the engi-
neered capacity. If traffic is refused or dropped due to workloads exceeding engineered
capacity, then no product attributable outage accrues because the application is perform-
ing per specification. Per [TL_9000]: “Use of a product beyond its specifications would
be a customer procedural error and an outage resulting from that misuse would be
classified as customer attributable.”

Cloud-based systems offering elasticity provide the ability to dynamically grow
(and degrow) capacity and thus can be employed to add or remove VM instances to
manage online service capacity to address increases (or decreases) in traffic. Although
growth can be automated and triggered by policies (e.g., offered load exceeding some

Evolving Release Management Service Availability Measurement	 229

capacity threshold), elastic growth is neither instantaneous nor flawless, so it does not
eliminate the need for overload control mechanisms to manage the traffic until the
additional VM’s have been activated and integrated into the system.

As explained in Section 3.5.2, “Provisioning Interval,” cloud elastic growth actions
take a finite time (TGrow) to add a finite increment of application capacity (CGrow). Figure
12.17 highlights that, as with traditional capacity growth actions, the additional capacity
is not considered to be “in-service” until the acceptance testing of the elastically grown
capacity has confirmed that the new IaaS capacity was not DOA (see Section 12.4,
“Evolving Hardware Reliability Measurement”) and that the capacity has been properly
integrated with the active application instance and is thus fully ready to serve users
with acceptable quality. Note that if the cloud consumer elects to bring the elastically
grown capacity into service without completing the recommended suite of acceptance
tests, then any service impact due to unsuccessfully added service capacity may be
customer attributable, just as it would be if a customer elected to omit recommended
testing for traditional, manual system capacity growth procedures. If the growth of the
VM instances is too slow or fails and is unable to mitigate the workload that has
exceeded engineered capacity, then the overload control mechanisms should continue
to manage the traffic, just as with traditional systems.

12.6  EVOLVING RELEASE MANAGEMENT SERVICE
AVAILABILITY MEASUREMENT

Just as with growth, software release management (including software patch, update,
upgrade, and retrofit) is considered a planned maintenance activity and any required
downtime would be considered planned or scheduled. Some customers require
that software upgrade of critical applications be completed with no user service
downtime or service impact. If the software upgrade operations are not successful
and cause service impact or exceed the agreed-upon planned outage period, service

Figure 12.17.  Elastic Capacity Growth Timeline.

230	 Service Availability Measurement

downtime may accrue. As the user service impact of release management of cloud-
based applications will appear the same to end users, the same service outage measure-
ment rules should apply.

Normalization of any user service impact event during release management is
impacted by the release management model. Chapter 9, “Release Management,” fac-
tored cloud-based release management actions into two broad types:

•	 Type I: Block Party (see Section 9.3.1).  Both old and new software releases of
software run in VMs simultaneously serving user traffic, and can theoretically
continue doing so indefinitely. Some users will be served by the old version and
some users will be served by the new version. As shown in Figure 12.18 (modi-
fied version of Figure 9.4), each release (i.e., Release “N” and Release “N + I”)
appears as distinct and independent application instances, so following success-
ful acceptance testing of Release “N + I,” service outages are normalized for
each application instance separately based on the configured capacity of each
instance. Note that sophisticated customers will generally soak a new release
with a small enough set of users that the impact of a toxic release does not
produce a chargeable outage event.

•	 Type II: One Driver per Bus (see Section 9.3.2).  In this case the active applica-
tion instance is explicitly switched at a particular instant in time, so outage
measurements are directly applied to the active application instance. As shown
in Figure 12.19, at any instant in time, only one release is nominally in service
(like traditional deployments), so outage events are normalized just as they
would be for traditional application deployment.

Figure 12.18.  Outage Normalization for Type I “Block Party” Release Management.

Service Measurement Outlook	 231

12.7  SERVICE MEASUREMENT OUTLOOK

Traditional service availability measurements can be gracefully adapted to cover exist-
ing applications that run on cloud computing infrastructure. One can generally also
apply traditional application service reliability, latency, accessibility, and retainability
measurements to cloud deployments. Applying traditional service measurements to
cloud-based applications enables end users, customers, and suppliers to easily compare
service performance for both traditional and cloud deployments to drive root cause
analysis and corrective analyses necessary to enable cloud deployment meet and then
exceed service quality of traditional application deployments. Tracking and analyzing
service measurements by software releases enables insights into quality of the develop-
ment, validation, and deployment processes used for each release. Likewise, tracking
and analyzing service measurements of application instances hosted by different cloud
service providers and supported by different operations teams enables useful side-by-
side comparisons.

Figure 12.19.  Outage Normalization for Type II “One Driver per Bus” Release Management.

13

APPLICATION SERVICE
QUALITY REQUIREMENTS

Rigorous definition and quantification of key service performance characteristics
enables methodical analysis, architecture, design, and verification to assure the feasibil-
ity and likelihood of those requirements being consistently met in production deploy-
ment. The key service quality requirements for a target application should be specified
with clear definitions for unambiguous measurement and quantified minimum expecta-
tions. The highest level service quality requirements should characterize key aspects of
the end user experience rather than focusing on behaviors of individual components
or APIs. The fundamental application service quality performance requirements for
application instances from Section 2.5, “Application Service Quality,” are considered
separately:

•	 Service Availability Requirements (Section 13.1)

•	 Service Latency Requirements (Section 13.2)

•	 Service Reliability Requirements (Section 13.3)

•	 Service Accessibility Requirements (Section 13.4)

•	 Service Retainability Requirements (Section 13.5)

•	 Service Throughput Requirements (Section 13.6)

•	 Timestamp Accuracy Requirements (Section 13.7).

233

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

234	 Application Service Quality Requirements

The following requirements categories are also considered:

•	 Elasticity Requirements (Section 13.8)

•	 Release Management Requirements (Section 13.9).

13.1  SERVICE AVAILABILITY REQUIREMENTS

Service availability is the most fundamental quality requirement because if the applica-
tion is not available to serve users then little else matters. The identification of the
primary functionality of the application is critical because loss of primary functionality
of a system is deemed an outage, while loss of a nonprimary function is merely a
problem (albeit perhaps a serious problem). Primary functionality is typically specified
by the highest level requirements and product documents should identify which of an
application’s functions are considered primary.

Beyond specifying the primary functionality of the application that is covered by
availability requirements, service availability requirements should define:

1.	 Maximum Acceptable Service Disruption.  Different applications, especially
when accessed via different clients, may render application service disruptions
somewhat differently. For example, decoders of streaming media often include
lost packet concealment algorithms, such as replaying the previous audio packet
rather than rendering a moment of silence so that occasional late, lost, or damaged
media packets can be concealed from end users. A more extreme example are
streaming video clients that include huge buffers that prefetch 10 seconds or more
of content which enable the client to automatically detect and recover from
myriad application and networking problems with no perceptible impact to user
service. The maximum tolerable service disruption period entails how long appli-
cation service delivery to the client device can be impacted before creating an
unacceptable service experience. Application and infrastructure architectures and
configurations (e.g., settings of guard timers and maximum retry counts) are
engineered to successfully deliver service within some maximum acceptable
service window. If a service impacting failure cannot be detected and recovered
within this maximum acceptable service disruption time, then the service is gen-
erally deemed to be “down” and service availability metrics are impacted. For
example, [TL_9000] stipulates that “all outages shall be counted that result in a
complete loss of primary functionality for all or part of the system for a duration
of greater than 15 seconds.” Note that the maximum acceptable service latency
for an individual transaction is often shorter because a service outage requires
more than one failed transaction. Readers will be familiar with this behavior from
their experiences with web browsing: a “stuck” or hung webpage load will gener-
ally prompt them to “cancel” and “reload” the page; if the first—or perhaps
second—reload succeeds, then the failed page load is counted as a failed transac-
tion and should impact the web site’s service reliability metrics. But if reloads
for at least the maximum acceptable service disruption period are unsuccessful,

Service Availability Requirements	 235

then the website is deemed unavailable (at least to the user). This is visualized
in Figure 13.1.

2.	 Prorating Partial Capacity Loss.  Large and complex multiuser applications have
myriad failure modes, often with different impacts on user service capacity. While
a failure that critically impacts all users is deemed a total outage, if an event
impacts only a single user when tens, hundreds, or thousands of users enjoy
normal access to the application, then the problem is not generally deemed to be
a service outage. For example, painfully slow rendering of a webpage to a handful
of users might not qualify as a chargeable service outage, but it may prompt the
impacted users to abandon the site and turn to a competitor. The question becomes
how much user service capacity must be impacted before the event is deemed a
partial capacity loss service outage. It is customary to prorate partial capacity
loss outages by the percentage of users impacted. As this calculation is often
rather complicated in practice, especially when applications support elastic
capacity, it is useful to agree on partial capacity loss prorating rules in advance.
For example, application service providers might have operational policies
regarding incident reporting and management, with events impacting at least
10,000 users receiving immediate executive attention, events impacting 50–9999
users receiving immediate directors’ attention, events impacting 10–49 users
receiving supervisory attention, and events impacting 1–9 users being directly
worked by maintenance engineers with normal priority; this policy encourages
failures to be contained to no more than 9 users, then no more than 49 users, and
then no more than 9999 users.

Figure 13.1.  Maximum Acceptable Service Disruption.

236	 Application Service Quality Requirements

3.	 Prorating Partial Functionality Loss.  Failures often impact partial system func-
tionality. For example, Netflix’s “Rambo architecture” [Netflix] is explicitly
designed to continue delivering at least primary functionality to end users despite
failures. Thus, it is useful to agree in advance if and how partial functionality
loss events will be charged. For example, the following traditional partial func-
tionality prorating rules of [TL_9000] include:
a.	 Total loss of one or more operation, administration, and maintenance (OA&M)

functions (default weight is 5%)
b.	 Total loss of visibility from the Element Management System (EMS) (default

weight is 10%).

4.	 Maximum Quantified and Normalized Service Downtime.  Table 13.1 gives
maximum annualized prorated service downtime per system for common service
availability expectations. Note that the smaller the maximum allowable downtime
per measurement period (e.g., monthly down minutes), the more important it is
to rigorously define the maximum acceptable service disruption, the minimum
chargeable capacity impact, and the prorating rules for partial capacity and func-
tionality loss events.

Availability requirements should be fully aligned with the outage measurements
that will be used when the application is deployed and in production so that architects,
developers, and testers understand the quantitative service downtime impact that any
particular failure event will likely accrue. Clear alignment on the quantitative downtime
impact of any particular failure event and mitigation architecture enables architects,
developers, testers, and others to have richer conversations about improving service
availability.

As practical test campaigns are unlikely to exercise an application release for
long enough to characterize the likely service downtime per system per year with high
statistical confidence, mathematical modeling is often used to verify high service
availability requirements. Typically, architecture-based availability models consider the
likely rate of system failures, the success probability and timing of service recovery
actions and other factors to estimate the feasible and likely long-term service availabil-
ity of the system in production deployment. While construction of architecture-based

TABLE 13.1.  Service Availability and Downtime Ratings

Number
of 9s

Service
Availability

(%)

Annualized
Down

Minutes

Quarterly
Down

Minutes

Monthly
Down

Minutes Practical Meaning

1 90 52,596.00 13,149.00 4383.00 Down 5 weeks per year
2 99 5259.60 1314.90 438.30 Down 4 days per year
3 99.9 525.96 131.49 43.83 Down 9 hours per year
4 99.99 52.60 13.15 4.38 Down 1 hour per year
5 99.999 5.26 1.31 0.44 Down 5 minutes per year
6 99.9999 0.53 0.13 0.04 Down 30 seconds per year
7 99.99999 0.05 0.01 — Down 3 seconds per year

Service Reliability Requirements	 237

service availability models are beyond the scope of this work, architecture-based models
reflect key behaviors and characteristics of the system, so it is possible to construct
quantified and verifiable requirements for at least some of these key application charac-
teristics, such as:

•	 Application startup and restart time

•	 Failure detection latencies

•	 Latency for service recovery actions (e.g., switchover and failover)

•	 Probability of successful switchover or failover.

As many key application characteristics are not accurately known in the architec-
ture and design phase, development teams will often estimate target values for all input
parameters initially, then measure the actual values during testing, and update the
architecture-based availability model with actual values for input parameters to create
a better availability prediction prior to test complete. Best practice is to set quantitative
requirements for key availability input parameters to assure the each value is carefully
measured during testing, but less rigorous approaches can be acceptable.

13.2  SERVICE LATENCY REQUIREMENTS

End users typically experience an application one transaction (e.g., web page click, call
setup, and channel change) at a time, and the latency between the user’s action and the
application service’s response is a critical service quality characteristic. The maximum
acceptable transaction service latency specifies the upper limit beyond which many or
most users will abandon the request (e.g., cancel the web page load). Transactions that
complete slower than this maximum acceptable latency are deemed failures and thus
are counted as service reliability impairments (covered in Section 13.3, “Service Reli-
ability Requirements”).

As discussed in Section 4.1, “Service Latency, Virtualization, and the Cloud,”
service latency is best thought of as a statistical distribution rather than a single value
that can crisply be measured. A simple specification technique is to frame a service
latency distribution requirements via two points, like the maximum acceptable latency
at both the 90th percentile (slowest 1 in 10 transactions) and the 99.999th percentile
(slowest 1 in 100,000 transactions). These requirements can then be verified by inspec-
tion of a latency CCDF to verify that the distribution does not exceed the 10−1 (i.e.,
90th percentile point) or the 10−5 value (i.e., the 99.999th percentile point).

13.3  SERVICE RELIABILITY REQUIREMENTS

Service reliability requirements specify the probability that a logically, syntactically,
and semantically correct service request will produce a correct response within the
maximum acceptable service latency (from Section 13.2, “Service Latency Require-
ments”). Service reliability requirements are most conveniently specified as defective
(or failed) operations per million attempts, or DPM. Historically, some have expressed

238	 Application Service Quality Requirements

service reliability via a number of 9s, but this format is difficult for most people to
manipulate and evaluate, so the authors recommend DPM. One should also specify the
maximum acceptable transaction latency; transactions that exceed that latency are
deemed unsuccessful because the user would likely have canceled or abandoned trans-
actions that slow. Common percentage-based service reliability expectations map easily
to DPM values as follows:

99 9 1000. % service reliability defective operations per mill= iion DPM()

99 99 100. % service reliability DPM=

99 999 10. % service reliability DPM=

99 9999 1. % .service reliability DPM=

As shown in Equation 13.1 (DPM via operations attempted and operations suc-
cessful), Equation 13.2 (DPM via operations attempted and operations failed), and
Equation 13.3 (DPM via operations successful and operations failed), DPM is easily
computed either from any two of: operations attempted, operations successful, and
operations failed.

	 *106
Operations Attempted

(Operations Attempted – Operations Successful)
DPM = 	 (13.1)

	 *106
Operations Attempted

DPM =
Operations Failed

	 (13.2)

	 *106.(Operations Successful + Operations Failed)
DPM =

Operations Failed
	 (13.3)

Note that different transaction types may have different DPM and maximum trans-
action latency requirements even for the same application. For example, users may
expect simple query operations to be fast and reliable (e.g., <10 DPM in <500 milli-
seconds), but tolerate slower logon times (e.g., <50 DPM in <5 seconds); and complex
tasks like provisioning new application users may have even more generous require-
ments due to even greater complexity (e.g., <100 DPM in <20 seconds).

13.4  SERVICE ACCESSIBILITY REQUIREMENTS

While service availability requirements consider the impact of events that affect large
numbers of users, service accessibility metrics consider the probability than any indi-

Service Throughput Requirements	 239

vidual user can successfully acquire service on demand. Service accessibility is conve-
niently specified as a maximum DPM, and the requirement should stipulate one or more
accessibility scenarios, such as:

•	 The ability to successfully logon to a service and have the correct home
screen displayed (e.g. user logon followed by home screen display shall be acces-
sible within 10 seconds with no more than 100 failures per million attempts
[<100 DPM])

•	 The ability to begin streaming a particular movie with acceptable video and
audio quality (e.g., video and audio will begin rendering to the end user within
5 seconds of pressing “play” with no more than 50 failures per million attempts
[<50 DPM])

•	 The ability to establish a telephone call and receive ring back (e.g., ring back
shall be returned within 4 seconds of pressing “send” with no more than 20
failures per million attempts [<20 DPM]).

13.5  SERVICE RETAINABILITY REQUIREMENTS

Service retainability is an application specific metric for session-oriented applications,
such as the probability that a streaming movie plays to the end with no perceptible
visual or audible impairments or a telephone call continuously delivers acceptable
service quality until it is explicitly terminated by one of the callers. For practical pur-
poses, one may specify a nominal test case to be used (e.g., streaming a 2-hour movie
or holding a 3-minute telephone call). Service retainability requirements may be quanti-
fied as application sessions per million (DPM) that were prematurely terminated or
experienced (unacceptable) service impairments.

Note that accessibility and retainability are often meant to be back-to-back metrics
for session oriented services, so application setup failures are generally counted as
accessibility impairments while service defects after service is properly established with
acceptable service quality are counted as retainability impairments. Thus, one should
consider an application’s accessibility requirement along with the application’s retain-
ability requirement to assure that together these requirements adequately specify the
quality of experience expectations for individual end users.

13.6  SERVICE THROUGHPUT REQUIREMENTS

Throughput requirements typically specify a minimum rate of correct transactions
per second or batch operations per hour. Best practice is to pair service throughput
requirements with service reliability requirements, such as “Application shall deliver
a minimum throughput of 5000 operations per hour with a fallout rate of less than 1
failure per 10,000 operations (<100 DPM).”

240	 Application Service Quality Requirements

13.7  TIMESTAMP ACCURACY REQUIREMENTS

Timestamp accuracy requirements are typically framed either in terms of the maximum
acceptable difference (e.g., in microseconds or milliseconds) between the recorded
timestamp and the universal time (UTC) that an event actually occurred. For example,
“No more than 50 records per million will have timestamps that are inaccurate by more
than 100 milliseconds.”

13.8  ELASTICITY REQUIREMENTS

An application’s elasticity architecture, design, and analysis (see Sections 8, “Capacity
Management,” and 15.6, “Elasticity Analysis”) should be driven by verifiable require-
ments for the applications elasticity metrics (see Section 3.5, “Elasticity”):

•	 Density (Section 3.5.1, “Density”). Density requirements should frame the
maximum user workload that can be served by a particular resource configuration
while consistently meeting all application service quality requirements. Density
varies based on performance characteristics of the cloud service provider’s infra-
structure, so it may be impractical to specify general density requirements per
virtual machine instance. While desirable, it is also impractical to directly specify
an application’s density requirements in financial cost of applicable IaaS resources
(e.g., $X of monthly IaaS charges per Y subscribers served). Instead, density
requirements can be addressed via one or both of the following:
1.	 Specify density when application executes on a specific reference IaaS con-

figuration, such as “maximum user density shall be at least X active users per
VM instance.”

2.	 Specify service quality criteria for determining maximum acceptable density,
such as “maximum user workload per VM instance should be configured
so that slowest one in 106 query transactions take no more than 100
milliseconds.”

•	 Scale Up (Section 3.5.4, “Scaling In and Out”). The nominal capacity of the
largest application instance should be specified, such as maximum simultaneous
user sessions or pending transactions.

•	 Agility (Section 3.5.6, “Agility”). The nominal units of capacity growth and
degrowth should be specified.

•	 Provisioning Interval (Section 3.5.2, “Provisioning Interval”). The maximum
provisioning intervals for all elastic growth actions should be specified, often as
an increment of time beyond what is required by the cloud service provider to
complete their allocation action.

•	 Slew Rate (Section 3.5.7). The expected rate of sustained capacity growth should
be specified, such as “application shall elastically grow service capacity for at
least 5000 users per hour from the smallest (scale in/scale down) configuration
to the largest (scale out/scale up) configuration.”

Disaster Recovery Requirements	 241

•	 Elasticity Speedup (Section 3.5.8 “Elasticity Speedup”). The application’s archi-
tecture document should explain if and how any elasticity speedup is supported;
if elasticity speedup is supported, then the minimum acceptable speedup should
be specified, as well as the speedup benefit (i.e., as a function of increased
resource consumption).

Release interval is nominally the lower bound for how fast unneeded resources can
be gracefully released from an application instance. As resource charges are generally
fairly modest and are often charged by the hour, release interval (Section 3.5.3, “Release
Interval”) is not usually an important key quality indicator, so it is generally acceptable
not to specify quantified release interval requirements.

13.9  RELEASE MANAGEMENT REQUIREMENTS

Application release management requirements typically specify the following:

•	 Total interval required to perform the software upgrade or data migration (e.g.,
<4 hours)

•	 Service downtime allowed, if any, for each release management event (e.g., <15
seconds).

•	 Service impact on new and existing sessions (e.g., maintain all stable sessions)

•	 Percentage of traffic directed to a particular release during soak testing

•	 Dependencies or ordering of application or VM instance upgrades

Metrics on service downtime and number of dropped sessions should be collected
to prove compliance to the exact requirements specified.

13.10  DISASTER RECOVERY REQUIREMENTS

An application’s recovery time objectives should be quantitatively specified, including
exactly when recovery is deemed complete, such as when 90% of impacted users have
been successfully recovered.

An application’s recovery point objective should quantitatively specify the
maximum window size of acceptable data loss. If any persistent application or user
data is not protected by disaster recovery mechanisms, that potential loss of data should
be clearly specified (e.g., in SLAs) to assure that the limits of disaster recovery are
fully understood.

14
VIRTUALIZED INFRASTRUCTURE

MEASUREMENT AND
MANAGEMENT

Timely identification and accurate attribution of service impairments is essential to both
rapid restoration of acceptable user service quality and corrective action to resolve the
true root cause of the problem. Correcting the true root cause of service-impacting
problems is at the heart of continuous quality improvement. To enable timely identifica-
tion of virtualized infrastructure impairments, cloud consumers and application suppli-
ers should assure that adequate service measurements of virtualized infrastructure
service quality are in place. This chapter considers service quality measurements across
the MP0 service boundary (MP0 from Section 10.1, “End-to-End Service Context”).
As shown in Figure 14.1, performance of virtualized compute, memory, storage, and
networking resources delivered by a cloud service provider across the application’s
resource facing service boundary (MP0) to a cloud consumer’s application component
instances running in virtual machines directly impacts the application’s service quality
delivered to end users. Service performance across the application’s resource facing
service (MP0) boundary can be measured “below” the boundary by the infrastructure
service provider, but that presents risks considered in Section 14.1, “Business Context.”
Infrastructure service performance across MP0 can also be measured by the application,
which is considered in Section 14.2, “Cloud Consumer Measurement Options.” Section
14.3, “Impairment Measurement Strategies,” considers techniques to measure each of

243

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

244	 Virtualized Infrastructure Measurement and Management

the virtualized infrastructure impairments discussed in Chapter 4, “Virtualized Infra-
structure Impairments.” Section 14.4, “Managing Virtualized Infrastructure Impair-
ments” reviews the tactical and strategic mitigations that cloud consumers can take if
infrastructure performance is below expectation.

14.1  BUSINESS CONTEXT FOR INFRASTRUCTURE SERVICE
QUALITY MEASUREMENTS

While the cloud service provider should have access to detailed performance data from
the hypervisors and other components that serve virtualized resources to cloud consum-
ers’ application instances running in VMs, cloud service providers may be reluctant to
candidly share that detailed performance/quality information with cloud consumers for
reasons, including:

•	 Protecting Proprietary Business Information.  Just as few retailers voluntarily
disclose detailed cost and sales data to their customers and competitors, cloud
service providers are often reluctant to expose detailed data on performance of
individual and specific VM instances.

•	 Minimizing SLA Liability.  Even if a cloud service provider has knowledge that
performance of infrastructure has breached performance levels contractually
committed in service level agreements with cloud consumers, financial remedies
(e.g., service credits) might only be triggered if the cloud consumer explicitly
reports the performance breach and explicitly requests SLA remedies. As cloud
consumers might not otherwise be aware of the true duration or impact of an
SLA breaching event, volunteering those details potentially exposes the service
provider to larger remedies than consumers might otherwise have requested.

Figure 14.1.  Infrastructure impairments and application impairments.

Cloud Consumer Measurement Options	 245

•	 Nonstandard Measurements.  As industry standards do not yet exist for quantify-
ing virtualized infrastructure impairments, measurements available to cloud
service providers are likely to be product specific and thus may be hard to stitch
together into clear stories about what performance is actually delivered to indi-
vidual VM instances. For example, different hypervisor suppliers may expose
different performance management data to the cloud service providers. An addi-
tional problem is that infrastructure elements may not track performance char-
acteristics to specific cloud consumers, applications or VM instances, so it may
be difficult to map performance data from infrastructure components back to
individual VM instances associated with specific cloud consumer’s application
instances.

Thus, cloud service providers may not routinely provide sufficiently detailed per-
formance management data to enable cloud consumers to accurately characterize the
true performance of virtualized resources and implement aggressive application perfor-
mance management.

The alternate solution is for cloud consumers and their application instances
to monitor the performance of virtualized infrastructure resources delivered to each
VM instance and include these data along with the other performance management
information that is recorded and analyzed for each of the application’s component
instances. Ideally, these data will be rich enough to clearly differentiate application
service performance impairments that are attributable to the cloud service provider’s
virtualized infrastructure not meeting expectations from problems with application
software component instances and other factors. Once the root cause of a service
impairment is known, then appropriate actions can be taken to correct the true root
cause of the impairment and/or to make the application more robust to future impair-
ment events.

14.2  CLOUD CONSUMER MEASUREMENT OPTIONS

Cloud consumers have two fundamental options for assuring that the cloud service
provider delivers acceptable infrastructure service performance to their application
component instances:

1.	 Rely on (IaaS) Cloud Service Provider’s Best Effort.  The cloud consumer can
simply rely on the good faith effort of the cloud service provider and make no
effort to measure actual virtualized resource service delivered to their application
software. Crudely put, this is trust-but-don’t-verify the cloud service provider.

2.	 Enhance Application Software to Measure Actual Infrastructure Performance. 
Sophisticated applications generally feature performance monitoring mecha-
nisms coupled to a management and control infrastructure that affords external
visibility and controllability of the application instance. This function can be
enhanced to directly or indirectly measure performance of VMs and virtualized
infrastructure on an application component instance by instance basis.

246	 Virtualized Infrastructure Measurement and Management

Application software can deploy several measurement strategies:

•	 Poll Hypervisor and Infrastructure Measurements.  Useful performance mea-
surement data may be exposed by hypervisors and/or cloud service providers.
Unfortunately, the specific performance data that were exposed to applications
and cloud consumers, as well as the programmatic interfaces to that data, may
vary from cloud service provider to service provider and from hypervisor to
hypervisor.

•	 Active Service Probes.  Application or middleware software can proactively
probe infrastructure performance, such as by periodically executing performance
benchmark routines within the application’s VM instances. Active service probes
should be configured so that they add no more than a small incremental workload
to the target application so that the probe itself does not materially impact the
service performance enjoyed by the application’s software. For example, if
network throughput is actively probed by running a network performance bench-
mark routine, then when that benchmark routine is actively using network I/O,
less network capacity is available for the application components running in the
same VM instance. Note that active service probes can be configured to run when
the application itself is idle or lightly loaded to minimize application service
impact, but this may not accurately characterize infrastructure performance when
the application is under load.

•	 Loopback Mechanisms.  Loopback mechanisms (shown in Figure 14.2) can give
insight into virtualized infrastructure behavior by characterizing the latency for
a request to actually reach a target virtualized component instance, and by com-
paring the loopback latency and consistency to the service latency, one can gain
insight into the virtualized infrastructure’s contribution to overall service latency
and consistency.

•	 Minimally Intrusive (VM Instance) Monitoring.  Application, middleware, and/
or guest OS software can be enhanced to directly or indirectly characterize
performance of virtualized infrastructure delivered to the specific component

Figure 14.2.  Loopback and Service Latency.

Impairment Measurement Strategies	 247

instance. For example, clock event jitter can be measured by reading the time
when an application’s routine clock event is set to compute the time when the
event should fire and later reading the time when the event actually does fire.
The predicted and actual event times are compared to characterize clock event
jitter.

•	 Repurpose Traditional Measurements.  Traditional operating systems, utilities,
and applications often include rich performance measures that are designed for
native deployments. Some of these traditional measurements can be used to gain
insight into the true performance of the virtualized infrastructure. While these
measurements often do not give directly useful information because hypervisors
effectively mask the full effects of virtualization from the guest OS, careful
analysis and correlation of traditional measurements can be useful.

14.3  IMPAIRMENT MEASUREMENT STRATEGIES

Strategies for measuring each of the virtualized infrastructure impairments given in
Chapter 4, “Virtualized Infrastructure Impairments,” are discussed separately:

•	 Measurement of VM Failure (Section 14.3.1)

•	 Measurement of Nondelivery of Configured VM Capacity (Section 14.3.2)

•	 Measurement of Delivery of Degraded VM capacity (Section 14.3.3)

•	 Measurement of Tail Latency (Section 14.3.4)

•	 Measurement of Clock Event Jitter (Section 14.3.5)

•	 Measurement of Clock Drift (Section 14.3.6)

•	 Measurement of Failed or Slow Allocation and Startup of VM Instance
(Section 14.3.7).

As performance management data is often recorded every 15 minutes and data on
virtualized infrastructure impairments should be recorded individually on a per VM
instance basis, it is important to be frugal on the amount of performance management
data actually recorded to avoid hugely increasing the volume of data to be analyzed
and stored.

14.3.1  Measurement of VM Failure

Section 12.4, “Evolving Hardware Reliability Measurement,” introduced the notion of
VM instance reliability measurements as MTBF or FITs. While it is infeasible for a
failing VM instance to reliably record its own failure event, complex applications often
include a monitoring and control mechanism that manages high availability and/or
operations, administration, and management of each component instance, and this
mechanism routinely monitors the health of application components. Heartbeat mes-
sages exchanged between the application’s monitoring and control component and
individual application components do not reliably characterize VM instance failure

248	 Virtualized Infrastructure Measurement and Management

rates because critical failures of application or guest OS software could prevent heart-
beat messages from being correctly acknowledged. Those causes must be excluded
from consideration to accurately identify VM failure events. VM failures can be dif-
ferentiated from nondelivery of configured VM capacity events, such as live migration
of a VM instance, by appropriately configuring guard timers and maximum retry counts
for heartbeat messages. Differentiating catastrophic application OS software failures
from underlying VM failure can be inferred via:

1.	 Requiring application instances to explicitly record orderly VM termination
request events before initiating graceful VM termination.

2.	 Probing availability of the VM instance’s operating system (e.g., via ping).

3.	 Checking status of the VM instance hosting the nonresponse application compo-
nent instance via a cloud service provider mechanism (e.g., API) to see if the VM
instance is reported to be operational.

Applications will generally wish to retain individual VM instances for hours, days,
weeks, or even longer; thus, VM premature release rate must include a time component
in the metric to capture the probability that an arbitrary VM will continuously deliver
acceptable service over a fixed time period. Hardware failure rates have traditionally
been normalized as failures in 109 hours (a.k.a., FITs), so the authors propose that VM
failure rates be normalized as premature VM releases in 109 hours (i.e., VM FITs).
Equation 14.1 gives the formula for computing VM FITs, where:

•	 NumPrematureVMReleases is the whole number of VM failures or abnormal
terminations that were not triggered by one of the three normal termination trig-
gers given in Section 4.2, “VM Failure,” and repeated here for the reader’s
convenience:
1.	 Explicit request by the cloud consumer (e.g., request via self-service

GUI)
2.	 Explicit “shutdown” request by the application instance itself
3.	 Explicit execution by IaaS provider for predefined policy reasons, such as

non-payment of bill or executing a lawful takedown order.

•	 HoursVMInServiceTime is the total number of hours VM instances were in
service during the measurement period. Nominally, the VM “in service” clock
begins when the VM is stable after allocation and initialization, but the clock
can begin as early as the instant the VM allocation request was received. Time
that the VM instance is suspended does not count as being in service because
the VM is not executing and thus should not be vulnerable to failure.

	 *109.
Hours VMInServiceTime

NumPrematureVMReleasesVM_FITs = 	 (14.1)

FITs can easily be converted to Mean Time Between Failures (MTBF) in hours
via Equation 14.2:

Impairment Measurement Strategies	 249

	 109
.VM_FITs

MTBFHours = 	 (14.2)

This metric should be computed monthly.

14.3.2  Measurement of Nondelivery of Configured VM Capacity

Nondelivery of VM CPU capacity can be measured via tools like jHiccup [jHiccup].
Comparing time stamps of high frequency regularly scheduled events allows the appli-
cation to easily isolate intervals in which the VM did not run. Nondelivery of network
capacity can be measured by comparing output queues with transmit data statistics. An
increase in queue depth without a corresponding increase in transmitted bits may indi-
cate a network nondelivery condition. A similar technique can be applied to storage if
queue and I/O statistics are available for storage devices.

14.3.3  Measurement of Delivery of Degraded VM Capacity

Delivery of degraded resource capacity is hard because hypervisors explicitly make
virtual machine instances believe that they have full and dedicated access to the under-
lying physical resources. Growing work queues when the volume of offered work
remains stable may indicate that the virtualized infrastructure is delivering less resource
capacity. Likewise, an increase in IP packet retransmissions or lost packets suggests
that cloud networking infrastructure may be congested and thus is discarding packets.
Analysis of performance counters from the guest OS or the hypervisor can offer insights
into the quality of infrastructure service delivered by the cloud service provider.

14.3.4  Measurement of Tail Latency

As discussed in Section 4.1, virtualized and cloud infrastructure is often subject to
materially longer tail latencies for resource (e.g., CPU) access, which results in materi-
ally longer tail latencies for user service response times. Applications can potentially
measure mean and variance for application service latencies across the application’s
resource facing service boundary to the infrastructure (e.g., disk I/O latency).

The traditional way to monitor and characterize that service latency would be to
build latency performance complimentary cumulative distribution functions (CCDF) or
histograms (see Section 2.5.2.2, “Characterizing Service Latency”). While histograms
or CCDFs yield deep insight into latency behavior, they require an array of 10, 20, or
more buckets for each measurement interval for each latency measurement being
tracked. A larger challenge is that determining the optimal size of measurement buckets
is a function of actual behavior and thus is too complex to configure in advance. For
reasons detailed in Section 4.1, “Service Latency, Virtualization, and the Cloud,”
latency is far more variable with cloud computing so it is important to monitor latency
on a regular basis (e.g., every 5 or 15 minutes) and to record the results for offline
analysis. Unfortunately, histograms typically require sizeable data arrays for bucket
counters. Fortunately latency can be characterized more simply with the mean latency

250	 Virtualized Infrastructure Measurement and Management

(i.e., the average latency) and some variance measurement (e.g., root of mean of
squared latency). The first-order statistic (mean latency) and a second-order statistic
(root of mean of squared latency) compactly characterize service latency performance,
including the latency tail. As an optimization, one can often employ sampling tech-
niques (e.g., measuring and recording only every Nth sample) to reduce incremental
measurement overhead.

14.3.5  Measurement of Clock Event Jitter

Real-time applications often rely on clock event interrupts to regularly service isochro-
nous traffic, like streaming interactive media for video conferencing applications.
Typically, these applications will include real-time components that rely on timer inter-
rupts every few milliseconds to assure that traffic promptly flows through the applica-
tion with bounded latency. In these cases, one can measure the mean and variance
latency between when each clock event was requested to trigger (e.g., 1000 μs from
now) and when the timer service routine was actually executed (e.g., 2345 μs later).
Clock event jitter can also be probed using software that periodically fires events and
measures response latency like RealFeel (http://elinux.org/Realtime_Testing_Best_
Practices#RealFeel).

14.3.6  Measurement of Clock Drift

Conceptually, drift in a virtual machine instance’s clock is easy to characterize by
measuring the periodic corrections to a VM’s clock to resynchronize with a reference
clock (e.g., time.nist.gov) via a well-known mechanism like Network Time Protocol
(NTP RFC 5905) or Precision Time Protocol (PTP IEEE 1588). Time synchronization
programs, such as NTP daemon, can be configured to log the clock adjustments they
make, and analysis of these adjustment logs enables one to characterize the nature and
magnitude of clock drive experienced by each VM instance.

14.3.7  Measurement of Failed or Slow Allocation and Startup of
VM Instance

It is infeasible for a VM instance being allocated and started to know that its allocation
and startup was slow or faulty, and thus these impairments must be monitored from
another, preexisting VM instance. If the application’s monitoring and control compo-
nent explicitly initiates VM instance allocation for application startup and growth
actions, then that monitoring and control component can measure the response latency
and status of the allocation and startup of VM instances. It is useful to record at least
the following details for each VM allocation request:

•	 Time of allocation request

•	 Characteristics of VM being requested (e.g., number of CPU cores and RAM
allocation)

•	 Time of allocation response

•	 Final status of allocation request (e.g., success or error code).

http://elinux.org/Realtime_Testing_Best_Practices#RealFeel
http://elinux.org/Realtime_Testing_Best_Practices#RealFeel

Impairment Measurement Strategies	 251

This information should be recorded for each VM allocation request, and it can be
analyzed offline to characterize overall characteristics of IaaS performance.

14.3.8  Measurements Summary

While acute infrastructure impairments—such as simultaneous failure of many VM
instances—may be relatively easy to diagnose, chronic user service quality impairments
impacting several transactions or sessions per hundred, thousand, or more transactions
or sessions are often much harder to diagnose to true root cause. Appropriate monitoring
of virtualized infrastructure performance can help determine whether user service
impairments are attributable to the application, the virtualized infrastructure, end-to-end
networking, or some combination of those and/or other factors.

Figure 14.3 visualizes a sample cloud consumer’s rich infrastructure impairment
measurement strategy:

•	 Software in the application’s VM instances monitors: nondelivery of configured
VM capacity; delivery of degraded VM capacity; tail latency; clock event jitter;
and clock drift.

•	 The application’s management and control function monitors: VM failure rates;
and perhaps failed or slow allocation or startup of VM instances.

•	 The cloud OSS monitors: VM failure rates; failed or slow allocation or startup
of VM instances; and other infrastructure and technology component failures
and service impairments.

Figure 14.3.  Simplified Measurement Architecture.

252	 Virtualized Infrastructure Measurement and Management

Threshold crossing alarms can be configured to alert the cloud consumer when
infrastructure performance drops below specific targets, and this data can be analyzed
over days, weeks, and months to characterize IaaS service quality.

14.4  MANAGING VIRTUALIZED INFRASTRUCTURE IMPAIRMENTS

If performance of virtualized infrastructure drops below expectations, then the cloud
consumer can mitigate the impairment with a combination of technical and business
mitigations. Technical mitigations that enable short-term mitigation of poor infrastruc-
ture performance include one or more of the following:

•	 Minimize Application’s Sensitivity to Infrastructure Impairments (Section 14.4.1)

•	 VM-Level Congestion Detection and Control (Section 14.4.2)

•	 Allocate More Virtual Resource Capacity (Section 14.4.3)

•	 Terminate Poorly Performing VM Instances (Section 14.4.4).

Chronic infrastructure service impairments may require nontechnical business
mitigations, such as:

•	 Accept Degraded Performance (Section 14.4.5)

•	 Proactive Supplier Management (Section 14.4.6)

•	 Reset End Users’ Service Quality Expectations (Section 14.4.7)

•	 SLA Considerations (Section 14.4.8)

•	 Changing Cloud Service Providers (Section 14.4.9).

14.4.1  Minimize Application’s Sensitivity to Infrastructure
Impairments

Recognizing that virtualized infrastructure is vulnerable to service impairments beyond
what applications experience on native hardware, architects should explicitly design
their application to minimize the application’s sensitivity to likely infrastructure impair-
ments. An IaaS Impairment Effects Analysis (see Section 15.2) should be completed
to methodically characterize residual sensitivities that can be architecturally mitigated
or which can drive minimum performance expectations for virtualized infrastructure
service. Some mitigations are as simple as adjusting configurable parameters to tolerate
a wider range of infrastructure performance, such as widening the time window for
fault/alarm event correlation. More profound architectural changes, such as deploying
concurrent redundancy (see Section 5.5 “Sequential Redundancy and Concurrent
Redundancy”), are required to fundamentally reduce an application’s sensitivity to
infrastructure impairments.

14.4.2  VM-Level Congestion Detection and Control

Cloud deployment introduces more performance variability between application com-
ponent instances than would traditionally be experienced on native deployments.

Managing Virtualized Infrastructure Impairments	 253

Relatively consistent performance of natively deployed application components may
have enabled applications to sample workload levels at a few points in the application
and then estimate workload levels across all application components. Cloud computing
is potentially very different because even if the application uniformly distributes the
workload across application component instances, the cloud service provider may not
uniformly schedule virtualized compute, memory, storage, and networking resources
to each of the VM instances hosting those application components, so the throughput
and application service performance may vary dramatically between those application
component instances. Thus, congestion controls must assess the throughput and backlog
of each of the application’s VM instances separately. Knowing that a single VM
instance is congested should cause the impacted application component to activate
congestion control mechanisms that trigger application or solution mechanisms to shift
workload to one or more component or application instances with spare, high-quality
infrastructure capacity. As discussed in Chapter 6, “Load Distribution and Balancing,”
proxy load balancers can efficiently distribute workloads across a pool of serving com-
ponents to effectively mitigate virtualized infrastructure impairments. Nonproxy load
balancers (e.g., DNS) are often used to distribute workloads across application instances,
but nonproxy mechanisms do not offer the same degree of performance monitoring and
workload distribution control as proxy load balancers because they are not positioned
in the critical service delivery path.

14.4.3  Allocate More Virtual Resource Capacity

If the virtualized resources delivered to one or more application component instances
are unacceptable, then the application can horizontally grow another application com-
ponent instance and hope to serve the workload with acceptable application service
quality across a larger pool of poorer performance VM instances. If the application
instance is at or near maximum engineered capacity or the infrastructure impairments
are impacting multiple application components, then the application can outgrow a new
application instance, possibly to another availability zone or data center.

14.4.4  Terminate Poorly Performing VM Instances

After a VM instance has delivered unacceptable service impairments for a period of
time, it may be appropriate to simply terminate the poorly performing VM instance and
rely on the application’s high availability mechanisms to recover service for impacted
users. Note that terminating VM instances is not appropriate when infrastructure impair-
ments are not narrowly isolated to a single individual VM instance. After all, the more
widespread the infrastructure impairment event is, the greater the probability that the
redundant VM component instance that recovers service will also be affected by that
impairment.

14.4.5  Accept Degraded Performance

In some cases, end users will temporarily accept degraded application service quality.
For example, if application service quality is disrupted for a disaster or external event

254	 Virtualized Infrastructure Measurement and Management

beyond the cloud consumer’s reasonable control, then customer goodwill may limit
damage to the consumer’s reputation as a supplier of high-quality application service.

14.4.6  Proactive Supplier Management

Cloud consumers can work with their cloud service providers to characterize the most
troubling infrastructure impairments, provide necessary data to enable service provider
to drive true root cause analysis, and insist that appropriate corrective actions be
promptly deployed.

14.4.7  Reset End Users’ Service Quality Expectations

If virtual infrastructure impairments impact the feasibility and likelihood of achieving
end users’ expectations for service quality, then cloud consumers can attempt to lower
end users’ expectations. As service quality expectations are generally a core attribute
of a product’s or service’s brand experience, resetting the expectations of that brand to
a lower level may be a complex business problem that must be carefully managed.

14.4.8  SLA Considerations

If the cloud consumer has infrastructure service quality SLAs in place with the cloud
service provider, then financial or nonfinancial remedies may be due as compensation
for performance impairments. Typically, these SLAs are in the form of modest service
credits (e.g., crediting the cloud consumer for the cost of the resources that were not
delivered with acceptable service quality), so these remedies may not cover the cost of
the financial and/or nonfinancial remedies that the cloud consumer may be obligated
via SLA to provide to their end users. After all, unlike insurance products, SLAs are
not meant to make the consumer “whole” after a loss event.

14.4.9  Changing Cloud Service Providers

The ultimate business mitigation of unacceptable virtualized infrastructure performance
is to change cloud service providers. Cloud consumers should require that their con-
tracts with cloud service providers give them the option to prematurely terminate their
relationship with a cloud service provider if the infrastructure performance delivered
by the service provider fails to meet specified service levels. As changing cloud service
providers is often an expensive and time-consuming task for cloud consumers, it is
wise to diligently research potential service providers and select a service provider that
is extremely likely to consistently deliver acceptable infrastructure service quality. Note
that using standard rather than proprietary cloud interfaces and services will make it
easier to change cloud service providers, thereby making this option more practical.

15

ANALYSIS OF CLOUD-BASED
APPLICATIONS

Reliability engineering diligence for critical applications routinely includes activities
such as reliability block diagrams (RBDs), failure mode effects analysis (FMEA), single
point of failure analysis, and architecture based availability (downtime) modeling. As
discussed in Chapter 4, “Virtualized Infrastructure Impairments,” and throughout Part
II: Analysis, virtualization and cloud deployment present new challenges to application
service quality; thus, new engineering diligence is appropriate to assure that it is feasible
and likely that application architectures will mitigate the user service impact of these
new challenges. This chapter offers the following analysis methodologies to consider
when evolving or architecting applications that will be deployed on virtualized and
cloud platforms:

•	 Reliability Block Diagrams and Side-by-Side Analysis (Section 15.1)

•	 IaaS Impairment Effects Analysis (Section 15.2)

•	 PaaS Failure Effects Analysis (Section 15.3)

•	 Workload Distribution Analysis (Section 15.4)

•	 Anti-affinity Analysis (Section 15.5)

•	 Elasticity Analysis (Section 15.6)

255

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

256	 Analysis of Cloud-Based Applications

•	 Release Management Impact Effects Analysis (Section 15.7)

•	 Recovery Point Objective Analysis (Section 15.8)

•	 Recovery Time Objective Analysis (Section 15.9).

15.1  RELIABILITY BLOCK DIAGRAMS AND SIDE-BY-SIDE ANALYSIS

Reliability block diagrams (RBDs) are a convenient way to analyze the service avail-
ability risks and redundancy mitigations for an application. While RBDs for new cloud
applications can be created from scratch, when evolving existing applications or archi-
tecting new applications that will run both on cloud and native hardware, it is useful
to perform a side-by-side analysis of both native/traditional and cloud deployments. As
discussed in Chapter 12, “Service Availability Measurement,” side-by-side analysis
begins with reliability block diagrams for both native/traditional and cloud deployments
that are actually laid side by side, such as Figure 15.1 (identical to Figure 12.8). Any
components that are present in one RBD but absent in the other, or other differences
in the RBDs, should be explained. The architecture of the application’s cloud deploy-
ment may actually be quite different—especially if technology components as-a-Ser-
vice and other cloud centric architectures are used. Nevertheless, a side-by-side
comparison of traditional and cloud deployment can be useful when analyzing service
risks, setting performance targets and so on.

If PaaS technology components replace traditional components, then that will be
highlighted in the side-by-side analysis, like how common chassis module components

Figure 15.1.  Sample Side-by-Side Reliability Block Diagrams.

IaaS Impairment Effects Analysis	 257

in traditional deployment are logically replaced by “Connectivity-as-a-Service” in
cloud deployment in Figure 15.1. If there is a difference in the functionality supported
in cloud deployment compared with traditional deployment (e.g., because a more func-
tional PaaS technology component is used in cloud deployment compared to the native
technology component), then this can also be highlighted.

As architecture-based service availability models generally align with reliability
block diagrams, carrying side-by-side RBD analysis through to side-by-side architec-
ture based service availability (i.e., downtime) modeling should be straightforward.
Given side-by-side service availability (i.e., downtime) predictions from an architecture-
based mathematical model, one can construct side-by-side downtime targets and
budgets for each application module and technology component. Downtime budgets
for individual technology components (e.g., database-as-a-service, discussed in Section
12.3.2, “Technology Components”) can be useful for setting requirements when select-
ing a PaaS supplier.

15.2  IAAS IMPAIRMENT EFFECTS ANALYSIS

The fundamental service quality question that application teams and decision makers
should be concerned with is: is it feasible and likely that the application will consistently
meet its service quality requirements in production deployment on cloud infrastructure?
Infrastructure-as-a-Service impairment effects analysis (IIEA) identifies qualitative
risks to achieving the application’s service quality requirements. This knowledge
enables application teams and decision makers to take actions to mitigate identified
risks. Logically, the analysis is a matrix with the application’s key service quality indi-
cators (per Section 2.5, “Application Service Quality”) arranged as rows, virtualized
infrastructure impairments (per Chapter 4 “Virtualized Infrastructure Impairments”)
arranged as columns, and cells of the table indicating the application’s sensitivity.
Having identified the most sensitive points in the design, architects can focus on both
application mitigations (e.g., refining redundancy arrangements and retransmission/
retry strategies) and infrastructure mitigations (e.g., IaaS supplier evaluations, IaaS
performance monitoring, and aggressive IaaS supplier management).

IIEA methodology has the following steps:

1.	 Enumerate Applicable Application Service Quality Metrics.  In this step, one
should enumerate the exact service quality metrics that are applicable to the target
application. In many cases, some or all of these metrics will directly or indirectly
be included in the application service provider’s own quality performance mea-
surements, perhaps even including the service performance measurements that
impact bonus payments for management and staff. These measurements may
also appear in the application service provider’s RFPs with suppliers and service-
level agreements (SLAs) with their customers. Section 2.5, “Application Service
Quality,” gives general service quality measurements:
•	 Service Availability (Section 2.5.1)
•	 Service Latency (Section 2.5.2)

258	 Analysis of Cloud-Based Applications

•	 Service Reliability (Section 2.5.3)
•	 Service Accessibility (Section 2.5.4)
•	 Service Retainability (Section 2.5.5)
•	 Service Throughput (Section 2.5.6)
•	 Service Timestamp Accuracy (Section 2.5.7).

Note that classes of applications and industries often have tailored service
quality measurements that use or modify one or more of the earlier-mentioned
service quality measurements. For example, the telecommunications industry
uses failed call attempts as the primary service accessibility metric and dropped
calls as the primary service retainability metric.

2.	 Characterize Sensitivity of Virtualized Infrastructure Impairments on Applica-
tion’s Service Quality Metrics.  Individually consider the likely impact to each
application service measurement from step 1 on the virtualized infrastructure
impairments from Chapter 4, “Virtualized Infrastructure Impairments”:
•	 Virtual Machine Failure (Section 4.1.3)
•	 Nondelivery of Configured VM Capacity (Section 4.3)
•	 Degraded Delivery of Configured VM Capacity (Section 4.4)
•	 Excess Tail Latency on Resource Delivery (Section 4.5)
•	 Clock Event Jitter (Section 4.6)
•	 Clock Drift (Section 4.7)
•	 Failed or Slow Allocation and Startup of VM Instances (Section 4.8).

Operationally, one can consider the impact of each virtualized infrastructure
impairment on each type of virtual machine instance used by the application (e.g.,
frontend component, backend component, and management and control compo-
nent). While some virtualized infrastructure impairments may have negligible
impacts (e.g., clock drift is unimportant for application components that do not
use absolute timestamps), other impairments (e.g., nondelivery of configured VM
capacity) may have complex impacts on application service quality. Note that at
this step, one focuses on describing the qualitative user service impact; ranking
and classifying application service impacts is the next step.

3.	 Summarize the Infrastructure Impairment Impacts.  The result of step 2 is a rich
description of expected user service impact resulting from IaaS service impair-
ments. Note that these impacts may be nonlinear, such as when nondelivery of
VM capacity (aka stall) events are so long that client retry mechanisms timeout
and present a failure indication to the client. Service vulnerability estimates the
likelihood that the application’s target service quality requirement will not con-
sistently be met when the target infrastructure is delivering minimally acceptable
service (i.e., maximum acceptable infrastructure impairment). High vulnerability
means that the application’s service quality requirement is unlikely to be met
when the infrastructure is impaired. To enable application teams and decision
makers to comprehend the risk and prioritize corrective actions from the complex
results of step 2, the impacts can be categorized via a color coded heat map table
with application service metrics as rows, virtualized infrastructure impairments
as columns, and cells colored according to simplified risks:

PaaS Failure Effects Analysis	 259

•	 High Risk (Red).  Application service quality metric is highly vulnerable to
this IaaS service impairments

•	 Medium Risk (Yellow).  Application service quality metric is somewhat vul-
nerable to this IaaS service impairments

•	 Low Risk (Green).  Application service quality metric is not vulnerable to this
IaaS service impairment

4.	 Detection at Scale.  Verify that mechanisms exist so that if these impairments
impact a single VM instance when the application is scaled out to the maximum
configuration then the faulty VM instance can be promptly identified.

5.	 Recommend Mitigations.  Specific actions to drive all of the high risk (highly
vulnerable) and medium risk (somewhat vulnerable) to low risk (not vulnerable)
should be offered for project teams and decision makers to consider. Project teams
are likely to create a feature plan that maps each of the recommended actions
into an appropriate application release.

Note that application test teams should use the IIEA as input when planning appli-
cation service quality, reliability, and latency testing cases by focusing test cases around
the most vulnerable infrastructure impairments (i.e., high risk/red and medium risk/
yellow cells from step 3).

15.3  PAAS FAILURE EFFECTS ANALYSIS

In addition to leveraging virtual machine Infrastructure-as-a-Service, cloud-based
applications may also leverage Platform-as-a-Service technology components like load
balancers, databases, security appliances, and so on. Just as Section 15.2, “IaaS Impair-
ment Effects Analysis,” considered the application service impact of IaaS failures or
impairments, this section considers the application service impact of PaaS technology
component failures. Platform-as-a-Service failure effects analysis (PFEA) has the fol-
lowing steps:

1.	 Enumerate the PaaS Technology Components Used by the Application.  All of
the PaaS technology components used by the application that are directly or
indirectly in the user service delivery path should be enumerated.

2.	 Describe How the Application Will Detect PaaS Technology Component Failure
or Unavailability.  Like any other software object, technology components
can fail slowly and silently, as well as fast and clean, so the application
should be prepared to detect and mitigate a range of technology component
failures.

3.	 Characterize Impact of Technology Component Unavailability.  What is the user
service impact of each PaaS technology component’s unavailability? For example,
if the particular component is unavailable for about 5 minutes per year (as one
would expect with a “five 9s” technology component), then is user service
unavailable for that time also?

260	 Analysis of Cloud-Based Applications

4.	 Characterize Impact of Technology Component Failover.  While technology
components offered by PaaS service providers are likely to be highly available,
technology component instances will inevitably fail and recover service. What is
the likely user service impact of technology component failure followed by
prompt, successful recovery by the technology component?

5.	 Characterize Impact of Technology Component Software Release Management
and Planned Maintenance.  Software components inevitably need to be patched,
updated, and upgraded, and service providers may not notify cloud consumers of
every planned maintenance action of every technology component. What is the
likely application user service impact of planned maintenance actions of this
technology component?

6.	 Summarize the Technology Component Failure Effects Analysis.  PFEA is sum-
marized as a table with: one technology component per row; one column for
technology component failover and another column for technology component
planned maintenance; cell characterizing the application service impact. Essen-
tially, the same three risk classifications can be used for PFEA as for IIEA:
•	 High Risk (Red).  Application service quality metric is highly impacted by

failure of this PaaS technology component
•	 Medium Risk (Yellow).  Application service quality metric is somewhat

impacted by failure of this PaaS technology component
•	 Low Risk (Green).  Application service quality metric is not impacted by

failure of this PaaS technology component

7.	 Recommend Mitigations.  Specific actions to drive all of the high risk (highly
impacted) and medium risk (somewhat impacted) to low risk (not impacted)
items should be offered for decision makers and project teams to consider.

15.4  WORKLOAD DISTRIBUTION ANALYSIS

As discussed in Chapter 6, “Load Distribution and Balancing,” load distribution
becomes more complex with cloud, and it is very important that load distribution func-
tions are robust and positively contribute to the service quality of the application.
Workload distribution analysis entails a review of the load balancing mechanisms and
policies to assure they are meeting the application’s expectations. Workload distribution
analysis for proxy load balancers used by an application should complete the following
analyses:

•	 Service Quality Analysis (Section 15.4.1)

•	 Overload Control Analysis (Section 15.4.2).

If analysis indicates that it is not feasible or likely to achieve the application’s
workload distribution expectations or the likely user service impact is deemed unac-
ceptable, then the application’s architecture and/or load balancing policies can be
reworked and the analysis repeated until results are satisfactory.

Workload Distribution Analysis	 261

15.4.1  Service Quality Analysis

Service quality analysis will involve the following steps:

1.	 Describe how the proxy load balancer supports service availability and service
accessibility:
○	 How does the load balancer monitor and detect failures of application compo-

nent instances?
○	 How does the load balancer rebalance the workload based on failures?
○	 How long is the interval of fault detection and traffic redistribution?
○	 Is failure detection and traffic redistribution faster than the minimum charge-

able outage duration so that no chargeable outage event occurs on component
failure?

○	 Does the load balancer buffer or resend messages based on server instance
availability?

2.	 Describe how the proxy load balancer supports service latency:
○	 What data does the proxy load balancer collect on application component

instance service latency?
○	 How does the load balancer use performance data in load distribution decisions

to manage user service latency?

3.	 Describe how the proxy load balancer supports service reliability:
○	 How does the proxy load balancer monitor and detect service reliability per-

formance of application component instances?
○	 How does the proxy load balancer alter load distribution based on service

reliability performance data?
○	 How quickly does the load balancer modify load distribution?

4.	 Describe how the proxy load balancer supports service retainability:
○	 How are requests redirected if the service component that was previously

handling a session fails before the session has completed?

5.	 Assess whether the described methods and techniques will ensure compliance
with the application’s user service quality requirements. If the analysis indicates
that compliance to the requirements is not likely to be met, then recommend
mitigations to address the gaps.

15.4.2  Overload Control Analysis

To analyze the service quality risks of managing overloaded application instances, one
should:

•	 Describe how the load proxy load balancer detects overload of individual appli-
cation server components.

•	 Describe how the load distribution policy changes based on individual server
component overload of failure.

•	 Describe how the load balancer determines whether individual application server
component instance overload events have cleared or resulted in the instantiation

262	 Analysis of Cloud-Based Applications

of a new application server component to replace the failed overloaded
component.

•	 Describe what actions the load balancer takes to mitigate overload of most or all
of a server component pool

•	 Describe how the load balancer determines that overload of a pool of components
has cleared.

Any gaps in functionality identified during the assessment and overload testing
should be addressed through work items or new features and roadmapped appropriately
to meet product service requirements.

15.5  ANTI-AFFINITY ANALYSIS

To boost performance, IaaS providers often try to consolidate all of an application’s
VM instances onto the same virtualized host, rack or row of equipment to minimize
latency between the application’s interworking components and minimize bandwidth
utilization within the cloud data center. The IaaS provider may even try to consolidate
all of an application’s virtual machine instances onto a single chassis or a single virtual
machine server, which makes that virtual machine server a single point of failure that
impacts total application service capacity.

To prevent IaaS providers from collocating VMs so aggressively that an applica-
tion’s high availability mechanisms are defeated by putting them into the same failure
group (e.g., active and standby components running on the same virtual machine
server), anti-affinity rules (see Section 7.2.3, “Affinity and Anti-Affinity Consider-
ations”) are used to instruct the IaaS which virtual machines should not be put into the
same failure group. The purpose of an anti-affinity analysis is to assure that the applica-
tion is likely to promptly recover service following infrastructure failures. The anti-
affinity analysis steps are:

1.	 Construct a Reliability Block Diagram (RBD) of Application Virtual Machine
Instances.  Each block on the RBD maps to a type of application virtual machine
instance.

2.	 Determine the Minimum Number of Virtual Machine Server Hosts that Can Meet
the Application’s Anti-affinity Rules.  Logically, start from the assumption that all
of the application’s VM instances will be collocated on a single hypothetical,
infinitely large VM server, and then apply the anti-affinity rules such that the
smallest number of VM instances are moved from the hypothetical VM server
onto the smallest number of alternate VM server hosts.

3.	 Pick Colors or Other Identifiers for the Minimum Number of Virtual Machine
Servers from Step 2.  For example, if the minimum number of VM server hosts
expected to support the smallest application configuration while meeting anti-
affinity rules is three, then one can use red, blue, and green.

4.	 Color RBD Blocks of Step 1 Using Colors of Step 3 ONLY for Blocks Explicitly
Covered by Specified Anti-affinity Rules.  Blocks (i.e., VM instances) not explic-

Elasticity Analysis	 263

itly covered by specified anti-affinity rules are NOT colored. If the assumed
minimum number of VM server hosts from step 2 is incorrect, then define addi-
tional colors.

5.	 Assume that all uncolored VM instances are then assigned to one of the color
groups (e.g., red), and consider:
A.	 Is the user service impact of that color group failure (e.g., red) acceptable

(i.e., does not violate the application’s service quality requirements)?
B.	 Is the user service impact of failure of one of the alternate color groups (e.g.,

blue) acceptable?
C.	 Will user service recover automatically within the application’s maximum

acceptable service recovery time following (individual) failure of each color’s
VM server host?

6.	 Repeat step 5 with uncolored VM instances all assigned to other color groups.

7.	 Recommend Mitigations.  If the footprint of failure from steps 5 and 6 is too great,
then rework anti-affinity rules. If automatic application recovery is expected to
take too long for any permitted VM consolidation arrangement in step 4 or step 5,
then refine anti-affinity rules, make application recovery mechanisms more robust,
or both. Repeat analysis as necessary. Note that a chaos monkey can be used to
extend the recovery time in order to determine the impact of the delay on service.

As complex anti-affinity rules are harder to specify correctly, more challenging
for cloud service providers to implement, and may overconstrain application deploy-
ment, one should parsimoniously apply anti-affinity rules. Note that application’s anti-
affinity rules are designed to mitigate likely single (VM server host) point failures, and
more extreme or multipoint failure scenarios will be mitigated via disaster recovery
mechanisms (e.g., failing over service to one or more alternate application instances
in different availability zones or data centers). Thus, application architects may plan
to activate disaster recovery plans if a VM server hosting too many application VM
instances fails.

15.6  ELASTICITY ANALYSIS

Rapid elasticity of cloud-based applications introduces new service risks that should
be carefully analyzed and managed in the architecture and design phases. Two general
elasticity analyses are completed:

•	 Online Service Capacity Elasticity Analysis begins by cataloging all of the appli-
cation’s supported elastic service capacity growth actions (Section 15.6.1,
“Service Capacity Growth Scenarios”). The service risk of each of the growth
actions will be considered in Section 15.6.2, “Service Capacity Growth Action
Analysis.” Risks associated with capacity degrowth are considered in Section
15.6.3, “Service Capacity Degrowth Action Analysis.”

•	 Storage Capacity Elasticity Analysis begins by cataloging all of the application’s
supported storage capacity growth actions (Section 15.6.4, “Storage Capacity

264	 Analysis of Cloud-Based Applications

Growth Scenarios”). Then the service risk of each cataloged action will be con-
sidered separately for (1) each supported storage capacity growth action (Section
15.6.5, “Online Storage Capacity Growth Action Analysis”) and for each sup-
ported storage capacity degrowth action (Section 15.6.6, “Online Storage Capac-
ity Degrowth Action Analysis”).

If analysis indicates that it is neither feasible nor likely to achieve the application’s
elasticity expectations or requirements (see Section 13.8, “Elasticity Requirements”) or
if the likely user service impact is deemed unacceptable, then the application’s design
can be reworked and the analysis repeated until results are satisfactory. Results of this
analysis should be used as input when planning elasticity test cases for the application
(Section 16.4.5, “Application Elasticity Testing”).

15.6.1  Service Capacity Growth Scenarios

Enumerate the supported capacity growth strategies of the application’s elasticity
architecture:

1.	 If horizontal growth of service capacity is supported, then:
•	 What are the units of horizontal capacity growth, such as pairs of VM instances?
•	 What is the minimum horizontal scale down configuration and service

capacity?
•	 What is the maximum horizontal scale up configuration and service

capacity?

2.	 If vertical growth is of service capacity supported, then
•	 What are the units of vertical service capacity growth?
•	 What is the minimum vertical scale down?
•	 What is the maximum vertical scale up?

3.	 Regarding outgrowth of service capacity:
•	 If outgrowth is supported by creating an independent application instance, then

how are the independent application instances federated?
•	 If outgrowth is supported by integrating resources with a preexisting applica-

tion instance, then how does that integration work?

15.6.2  Service Capacity Growth Action Analysis

Having identified the specific growth actions for online service capacity supported by
the application, one should methodically consider the following for each supported
action:

1.	 Provisioning Interval Analysis.  Construct a timeline to estimate the likely pro-
visioning interval for the online elastic capacity growth action, including a soak
interval to run test traffic.

2.	 Decoupling from Overload Control Mechanisms.  Verify that the application’s
overload control mechanisms will not impact elastic growth actions, for example,

Elasticity Analysis	 265

elasticity-related actions will not fail within the application instance TOO BUSY
errors or other overload control mechanisms.

3.	 Robust Operation on Degraded Infrastructure Platform.  Verify that the elastic
growth operation is robust and relatively insensitive to the degraded performance
of virtualized infrastructure resources and other application components that may
be heavily loaded while the elastic growth action is executing.

4.	 Robust Integration with Overload Control Triggers.  Verify that overload control
triggers are promptly reevaluated when additional service capacity comes online
so that traffic is not rejected by congestion control mechanisms after additional
application capacity has been brought online.

5.	 Concurrency Control.  Verify that robust concurrency control mechanisms are
implemented so that growth or degrowth requests posted before a growth action
has completed will not compromise the pending elastic growth operation and that
elasticity management functions consider the expected capacity after that change
completes so capacity doesn’t materially overshoot offered load.

6.	 Rainy Day Analysis.  Verify that if any of the elasticity failure scenarios of
Section 8.11, “Elasticity Failure Scenarios,” occur, then the application will
continue to operate (presumably activating overload controls, as necessary) at
the current capacity indefinitely.

15.6.3  Service Capacity Degrowth Action Analysis

To analyze the service quality risks of elastic capacity degrowth of each supported
action, one should do the following:

1.	 Describe the degrowth procedure, including the technique for draining user traffic
from the resources to be released.

2.	 Characterize the service impact of gracefully draining traffic served by the tar-
geted resource.

3.	 Describe the procedure to forcibly drain user traffic from the targeted resource if
graceful drainage is not fast enough and characterize the user service impact of
forcibly draining traffic.

4.	 Estimate the likely and worst case release interval.

5.	 Explain how a service capacity growth action that is requested while a release
action is pending will be served.

Any supported elastic growth actions that are not complemented by matching
elastic degrowth actions should be highlighted, and a brief explanation for why the
elastic degrowth action is not supported should be given.

15.6.4  Storage Capacity Growth Scenarios

In addition to conducting an analysis of elasticity of online application capacity,
architects should also consider elasticity of all persistent storage for the application.
Architects should classify all persistent application data into one of three categories:

266	 Analysis of Cloud-Based Applications

•	 Online Elastic Storage.  These data stores can be elastically grown with the
application instance online and delivering service to end users.

•	 Offline Reconfigurable Storage.  The size of these data stores can be reconfig-
ured (e.g., grown) via an offline maintenance action, such as restarting or rein-
stalling the application instance. Identify the applicable MOP and tool(s), and
summarize the procedures. The user service impact of these offline elasticity
options should be summarized (e.g., same service impact as installing a new
software release).

•	 Inelastic Storage.  The size of this data store cannot be changed in the field. The
practical constraints (and mitigations) of inelastic storage allocations should be
clearly explained, such as requiring another application instance to be created.
Identify the most likely (perhaps extreme) scenario that would exhaust this
inelastic resource, and what the user visible service impact of that resource
exhaustion would be.

15.6.5  Online Storage Capacity Growth Action Analysis

For each supported online elastic storage growth action, one should:

1.	 Characterize the growth strategy as horizontal, vertical, or outgrowth.

2.	 Give the unit(s) of storage growth (e.g., disk volume), as well as the minimum
scale down and maximum scale up limits.

3.	 Describe the storage growth procedure.

4.	 Estimate the typical provisioning interval.

5.	 Summarize the user service impact on successful storage growth actions.

6.	 If storage capacity growth actions can be triggered automatically, then what
conditions and policies are likely to trigger the action?

7.	 Explain detection and recovery strategies for failures during elastic storage
growth.

15.6.6  Online Storage Capacity Degrowth Action Analysis

For each online elastic storage growth scenario identified, one should explain if
a symmetric degrowth action is supported. If a symmetric degrowth action is not
supported, then one should explain why not. For supported online degrowth actions,
one should:

1.	 Explain the storage capacity degrowth procedure.

2.	 Estimate the typical case release interval.

3.	 If storage capacity degrowth actions are expected to be triggered automatically,
then what conditions and policies are likely to trigger the action.

4.	 Explain how an elastic storage capacity growth action triggered during a release
interval will be handled.

Release Management Impact Effects Analysis	 267

15.7  RELEASE MANAGEMENT IMPACT EFFECTS ANALYSIS

For applications that support online release management actions, it is essential to
analyze and minimize the service impact to users who are online when the patch,
update, upgrade, or retrofit action is executed.

15.7.1  Service Availability Impact

In order to assess the impact of release management actions on service availability:

1.	 Describe the procedures defined for software upgrade, including the time
intervals required to accomplish each task. How long are the intervals in which
service is not available to the clients (e.g., during the redirecting of traffic from
old version to new version) for a successful software upgrade? Is a health check
done to make sure there are sufficient resources available for the new release
instances?

2.	 Describe the procedures defined for backing out or rolling back a software
release, including database schema and content rollback. How long are the inter-
vals in which service is not available to the clients (e.g., during the redirecting
of traffic from new version to old version) for a successful backout/rollback?

15.7.2  Server Reliability Impact

Verify that data records and other resources will be fully available so that no service
requests are failed due to “resource temporarily unavailable” conditions. If any requests
cannot be successfully served at any point in the release management process, then
document the exact nature and duration of service impact.

15.7.3  Service Accessibility Impact

If service will not be continuously accessible to all users throughout the entire release
management process, then characterize the likely duration and nature of that service
inaccessibility.

15.7.4  Service Retainability Impact

If any preexisting user sessions may be disrupted or dropped during the release man-
agement process, then characterize the likely service impact. Verify that the draining
process effectively retains user sessions until they are officially terminated.

15.7.5  Service Throughput Impact

Data evolution often puts a heavy load onto application databases, and this additional
workload may impact service throughput. Analyze if data evolution or any other aspect
of release management is likely to impact service throughput and characterize the nature
and duration of that impact.

268	 Analysis of Cloud-Based Applications

15.8  RECOVERY POINT OBJECTIVE ANALYSIS

Recovery point objective (RPO) analysis considers: how stale might the recovered data
be or what is the maximum window of data loss? For example, how many seconds,
minutes, hours, or days of user provisioning actions, inventory changes, sales, or other
transactions might be lost on disaster recovery?

As shown in Figure 15.2, the worst case recovery scenario is when a catastrophic
failure occurs the instant before a periodic backup completes, so one must recover to
the last fully completed backup, which is the sum of:

a.	 the periodic backup interval (TPeriodic), such as 24 hours for daily backups plus
up to the time required to successfully execute

b.	 the time to execute a backup to a geographically distant site (TArchive).

The best case RPO (shown in Figure 15.3) is when the catastrophic event occurs
the instant after the archive to a geographically distant site completes.

Methodical RPO analysis includes the following steps:

1.	 Enumerate all persistent data repositories that are archived and have been peri-
odically updated to a geographically distant data center and will be restored as
part of disaster recovery procedures, such as:
•	 Inventory database
•	 Sales database
•	 Configuration database

Figure 15.2.  Worst-Case Recovery Point Scenario.

Recovery Point Objective Analysis	 269

•	 Security logs
•	 Event logs.

2.	 Enumerate volatile and persistent data classes and repositories that are NOT
archived to geographically distant data centers and hence will be lost on disaster
recovery, such as:
•	 Active user sessions, registrations, and all pending and previous transactions

associated with those active sessions
•	 Performance management data.

3.	 Summarize user and overall visible impact of recovering service when nonar-
chived data is abruptly lost (e.g., following unexpected disaster event), such as:
•	 Active user sessions are abruptly terminated, and when users recover service

to DR site, there is no trace of anything that occurred during the abruptly
terminated session.

•	 All performance management data not pushed to service assurance product is
permanently lost.

4.	 Summarize visible and overall impact of recovering archived data that are
“RPO” time old.  Explain the practical impact of losing “RPO” seconds/minutes/
hours/days of data changes since the last backup for each of the persistent data
repositories that are archived, such as:
•	 All inventory changes less than RPO minutes old are completely lost when

inventory database is recovered.
•	 All sales less than RPO minutes old are completely lost when sales database

is recovered.
•	 All configuration changes less than RPO minutes old are completely lost when

the configuration database is recovered.

Figure 15.3.  Best-Case Recovery Point Scenario.

270	 Analysis of Cloud-Based Applications

•	 All security events less than RPO minutes are completely lost when security
log is recovered.

•	 All alarm events less than RPO minutes are completely lost when event log is
recovered.

For each, indicate whether the data have also been sent to an OSS or another
component where it can be recovered.

5.	 Give the default (or recommended) periodic backup interval (TPeriodic) for each
persistent data store that is archived and restored as part of disaster recovery
action, such as:
•	 Periodic backups (i.e., TPeriodic = 4 hours) of persistent data is recommended

for: inventory database, sales database, configuration database, security logs,
and event logs.

6.	 Estimate the typical time to complete a periodic backup (TArchive) to a geographi-
cally distant data center, such as:
•	 Daily backups of inventory database, sales database, configuration database,

security logs, and event logs to geographically distant recovery site typically
complete in 2 hours (i.e., TArchive ∼2 hours)

7.	 Estimate the worst case time to complete a periodic database backup (TArchive).

8.	 Summarize the likely range of RPO values from TPeriodic to TPeriodic + TArchive,
such as:
•	 Actual recovery points are likely to be between 2 hours (TArchive ∼2 hours) and

26 hours (TPeriodic of 24 hours plus TArchive ∼2 hours).

15.9  RECOVERY TIME OBJECTIVE ANALYSIS

Recovery time objective (RTO) analysis estimates the actual recovery time if a disaster
occurs when the system is running at nominally full capacity by summing the times
required to complete all applicable recovery activities.

1.	 Disaster Detection Time.  For automatically activated disaster recovery mecha-
nisms, time must be included for some offsite system to deem that a catastrophic
failure has occurred and activate the disaster recovery mechanism. For manually
activated disaster recovery plans, time to make the decision to formally declare
a disaster and activate the disaster recovery plan should be included in the recov-
ery time estimate.

2.	 Select Disaster Recovery Site(s).  Some disaster recovery architectures have all
impacted workload served by a single recovery site; other disaster recovery
architectures distribute the impacted workload across two or more recovery sites.
If any aspects of this site selection decision are made on the fly, then time must
be allocated to gather necessary data, select disaster recovery site(s), and com-
municate that selection to all applicable sites and systems. Time to notify the
selected disaster recovery site, support personnel, and others involved in recovery
actions are included in this time.

Recovery Time Objective Analysis	 271

3.	 Allocate and Bring Online Sufficient Virtualized Resources to Serve Impacted
Workload at Recovery Site(s).  If sufficient spare capacity was not previously
allocated and maintained online and “hot” at the recovery site to serve the
impacted workload redirected to the recovery site, then additional virtual
machines, networking, storage, and other infrastructure resources must be allo-
cated, configured, and activated.

4.	 Locate and Restore Application Data from the Last Recovery Point.  Data saved
from the impacted site must be restored and/or resynchronized to the application
instance(s) that will recover the impacted workload. Depending on the data
backup/replication strategy, it may be necessary to import one or more database
backups and then apply a series of incremental updates to rebuild a usable image
of the application data at the last recovery point. If archived data are stored at a
location other than the recovery site, then surging additional WAN capacity at
both the archive site and the recovery site might shorten time required to retrieve
archived data. Depending on the size of the backup data, the number of different
sets of data, and where that backup data are stored (e.g., collocated with recovery
application instance or geographically separated), significant time could be
required reading data back from persistent storage, compressing it for transmis-
sion, transmitting data across wide area networks, and decompressing it at the
recovery site.

5.	 Recovering Sufficient User Service Capacity.  Well-written RTO requirements
often explicitly specify a percentage of impacted users for whom service has
become available before a disaster recovery action is deemed complete. Authen-
ticated and session-oriented applications may experience unusually high logon
volume, as all impacted clients automatically attempt to restore service quickly.
This simultaneous spike in logon traffic may be far higher than the normal
logon and authentication workload that the application serves. After all, during
a normal day, users are likely to attempt to access the system across a range of
hours (e.g., 7:30–9:30 a.m. on weekdays for business systems), but a disaster
event will impact all users served by the impacted site to be impacted simulta-
neously, and thus all users are likely to attempt to initiate recovery actions more
or less simultaneously when the recovery site comes online. Nearly simultane-
ous recovery by all impacted clients is likely to push the recovery application
instance into overload, so congestion control mechanisms or backoff algorithms
are likely to activate to enable impacted users to be authenticated and served
in an orderly fashion. Depending on the online capacity of the recovery applica-
tion instance, the efficiency of the applications congestion control mechanisms
and the configuration of clients’ retry mechanisms, it could take tens of minutes
or longer for the stipulated percentage of impacted users to be fully restored to
service.

Notes:

a.	 Depending on the disaster recovery architecture and readiness of the standby
site, some activities may be omitted from consideration.

272	 Analysis of Cloud-Based Applications

b.	 Actual recovery time may be impacted by number of users active at time of
disaster event (or time of recovery). For example, it will take longer to reauthen-
ticate and rebuild sessions for thousands of users at 3 p.m. than for a handful of
users at 3 a.m. Thus, one typically assumes a busy hour workload load on the
system rather than worst-case workload when estimating recovery times.

Best practice is to write and validate through testing a document describing the
disaster recovery process step by step, including the estimated time for each step to
complete.

16

TESTING CONSIDERATIONS

Deploying applications on cloud infrastructure adds service quality risks due to impair-
ments in service delivered by virtualized infrastructure (see Chapter 4, “Virtualized
Infrastructure Impairments”) and from cloud operational characteristics such as rapid
elasticity (see Chapter 3, “Cloud Model”). This chapter considers the incremental
testing appropriate to assure that application service quality meets expectations when
deployed on cloud infrastructure. This chapter begins by framing the context of this
testing, then discusses testing strategy, simulating virtualized infrastructure impair-
ments and test planning.

16.1  CONTEXT FOR TESTING

Service quality testing of applications is what ISO 9000 would consider a qualification
process “to demonstrate the ability to fulfill specified requirements” [ISO_9000]. Veri-
fication means “confirmation, through the provision of objective evidence that specified
requirements have been fulfilled” [ISO_9000] and answers the question “have we built
the system right?” Validation means “confirmation, through the provision of objective
evidence, that the requirements for a specific intended use or application have been

273

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

274	 Testing Considerations

fulfilled” [ISO_9000] and answers the question “Have we built the right system?” This
chapter focuses on verification that the service quality requirements (see Chapter 13)
are properly implemented; validation that the “right” system has been developed is not
considered in this work.

These confirmations are typically done via

•	 Test, meaning “determination of one or more characteristics according to a
procedure” [ISO_9000].

•	 Inspection, meaning “conformity evaluation by observation and judgment
accompanied as appropriate by measurement, testing or gauging” [ISO_9000].

•	 Review, meaning “activity undertaken to determine the suitability, adequacy and
effectiveness of the subject matter to achieve established objectives” [ISO_9000].

While resource usage measured by an application may be an important factor that
directly impacts the cloud consumer’s operational expenditure (OPEX), characterizing
the application’s resource usage is not considered in this chapter.

16.2  TEST STRATEGY

Cloud computing explicitly decouples application software from the underlying infra-
structure hardware because the cloud service provider that operates and maintains the
cloud infrastructure is often organizationally separate from the cloud consumer who
operates the application software. The application virtual machine (VM) instances that
are coresident on VM servers and share storage arrays and network infrastructure can
vary, and the application’s specific configuration will change over time as capacity is
elastically grown and shrunk, and so on. Thus, it is unrealistic to expect that application
teams can test service quality on the “exact” deployment architecture because neither
the application supplier nor the cloud consumer has strict control over the actual place-
ment of application components across the cloud service provider’s physical infrastruc-
ture, and that exact configuration will likely change over time. As a result, application
suppliers must design applications to be tolerant of the variations that will be experi-
enced when the application is deployed across different cloud service providers’ infra-
structures, where both the physical configuration and the quality of virtualized resources
available to the application’s VM instances will vary across time as overall data center
workloads shift and cloud service provider operations and maintenance actions are
executed. This configuration variability leads one to consider several strategy topics
when framing service quality test plans:

•	 Selection of cloud platform to use as a test bed (Section 16.2.1, “Cloud Test Bed”)

•	 How much cloud test bed capacity should be used for testing (Section 16.2.2,
“Application Capacity under Test”)

•	 How many transactions should be executed to adequately characterize service
quality and latency (Section 16.2.3, “Statistical Confidence”)

Test Strategy	 275

•	 How to measure service disruption time (Section 16.2.4, “Service Disruption
Time”).

16.2.1  Cloud Test Bed

The fundamental test strategy question when considering verification of a cloud-based
application is if the application will be verified on the target production cloud infra-
structure or on some reference or convenient (e.g., most cost effective) cloud infrastruc-
ture. If an application is developed to execute on a single cloud service provider’s
infrastructure, then it makes sense to test the application on that cloud service provider’s
infrastructure. However, if an application will be deployed onto many cloud service
providers’ infrastructures, then it may make sense to either pick a “reference” cloud
environment to test on or to simply pick the most cost-effective cloud infrastructure to
test on. This flexibility is an advantage of cloud testing over traditional configurations
that required verification of the specific deployment environment. Business consider-
ations may suggest a hybrid testing arrangement in which the majority of testing is
completed on a reference or cloud of convenience, and a subset of the test campaign
(e.g., verifying service quality performance) is repeated on specific customers’ target
cloud infrastructures. While the choice of clouds may have little impact on ordinary
functional testing, the results of service quality testing may be highly influenced by the
normal behavior and typical impairments of the specific cloud infrastructure. Thus, it
may be difficult to accurately extrapolate the likely application service quality charac-
teristics of execution on clouds other than the one actually tested on. To manage this
risk of varying application performance across different clouds, one should plan to test
with the simulated infrastructure impairments that the application is most sensitive to.
As different hypervisors have different operational characteristics, at least some testing
should be executed on different hypervisors that are supported by the application
software.

As part of continuous delivery, a canary release version of the software can be
instantiated and made active for a small number of users in order to test service quality
in a live environment. Data gathered from this can be used to determine whether
changes need to be made to the application or whether the release is stable enough to
increase the traffic load directed to that version.

16.2.2  Application Capacity under Test

Testing of traditional applications was often limited by capital constraints because the
development organization had only finite capital for test bed hardware, software
licenses, and user load generating capacity. Thus, the maximum workload a test team
could place on a system under test was often practically constrained by their capital
budget. Just as cloud computing morphs capital expenditure (CAPEX) into OPEX for
cloud consumers, test organizations can also reengineer their operations to potentially
shift from being CAPEX constrained to being OPEX constrained. Rather than having
to purchase infrastructure to host application configurations under test and user load
simulators, test organizations can configure their test beds (including user load simula-
tors) on public clouds, which potentially have sufficient infrastructure resource capacity

276	 Testing Considerations

to create the largest supported application configuration and simulate an arbitrarily large
user workload. However, as this cloud capacity is likely to have usage based pricing,
the OPEX per test run becomes much more tangible, so a test run with 50,000 simulated
users is likely to have a somewhat higher cost than a test run with 5000 simulated users,
and an endurance test run for several days with perhaps a billion transactions has a
higher cost than a test run for a few hours with perhaps millions of transactions.

More interestingly, this flexibility can potentially allow testers to reengineer test
activities so that massive cloud test bed infrastructure resources are brought online to
shorten test execution time. With sufficient test automation of user workload and cloud
capacity, one can shorten the time required to execute an application’s test campaign
by executing many test plans in parallel on independent cloud test beds simultaneously.
While it may be impractical to actually execute all test plans in parallel because a
handful of bugs or misconfiguration may cause numerous test cases to fail, and each
failed test case requires engineering effort to analyze and determine the root cause,
judicious use of parallel test execution (e.g., for daily regression testing) can shorten
an application’s overall development intervals.

16.2.3  Statistical Confidence

Service reliability, latency, accessibility, retainability, and throughput are fundamentally
statistical in nature: thousands, millions, or billions of operations must be completed
to verify statistical requirements with confidence. In lieu of applying rigorous mathe-
matical analysis to compute the number of test case iterations required to achieve a
quantified statistical confidence level, testers should plan to include enough iteration to
produce statistically significant results. Practically, this means including at least an
order of magnitude more iteration than are nominally necessary to successfully meet
the requirement with a single failure, so if the requirement is for no more than 1 in
100,000 transactions to fail (10 DPM [defects per million]), then at least 1,000,000
transactions should be executed (10 × 100,000).

16.2.4  Service Disruption Time

As explained in Chapter 5, “Application Redundancy and Cloud Computing,” different
application architectures, guard timeouts, and maximum retry counts can yield different
user service impacts on failure. To accurately characterize the user service impact for
high performance sequential, concurrent, and hybrid redundancy architectures, one
needs appropriately high resolution test tools.

Figure 16.1 illustrates a conceptual measurement of service disruption latency
experienced by client “A” due to a failure of an application “B.” Client “A” normally
sends requests to “B” to which “B” promptly issues a response. A robustness test case
produces a critical failure of some component of “B” that precludes “B” from respond-
ing to requests for a period of time (“disruption latency”) during which requests 2–6
fail, and finally request 7 succeeds when “B” promptly returns a correct response to
client “A”’s request.

Figure 16.2 illustrates how the time between client requests quantizes the resolu-
tion of the disruption latency because while service latency can be precisely measured

Simulating Infrastructure Impairments	 277

by computing the time between when a request was sent and when the corresponding
reply was received, service disruption time often must be probed to estimate when the
system stopped successfully serving requests and when it resumed serving requests.
Thus, sampling time of service probing should be no more than one-tenth of the
maximum acceptable service disruption duration to accurately characterize duration of
service impact.

16.3  SIMULATING INFRASTRUCTURE IMPAIRMENTS

As discussed in Chapter 4, “Virtualized Infrastructure Impairments,” virtualization
introduces a suite of infrastructure impairments that can impact the customer facing

Figure 16.1.  Measuring Service Disruption Latency.

Figure 16.2.  Service Disruption Latency for Implicit Failure.

278	 Testing Considerations

service quality delivered by cloud-based applications. Testing of cloud-based applica-
tions should verify that application service quality remains acceptable even when the
application instance is confronted with degraded infrastructure performance. The ability
to simulate specific levels of virtualized infrastructure impairments on demand enables
testing to characterize an application’s service quality sensitivities to cloud impair-
ments. Section 15.2, “IaaS Impairment Effects Analysis,” enables architects and testers
to identify the impairments that are likely to be most impactful to service quality, so
simulation mechanisms for those impairments in an environment modeled after a pro-
duction system should be a priority.

Simulating virtualized infrastructure impairments raises two challenges:

1.	 Characterizing maximum level of infrastructure impairments, the application can
endure and still deliver acceptable service quality. Sophisticated cloud consumers
may have quantitative requirements for maximum allowable infrastructure
impairments that they use when selecting cloud service providers, and those same
expectations may be appropriate to be used by application suppliers.

2.	 Creating tools or procedures to simulate the maximum acceptable level of infra-
structure impairments on a cloud test bed, as described in this section. VM
failures can be simulated by suspending or destroying a VM instance. Nondeliv-
ery impairments can be simulated by pausing VM instances and reactivating them
after the simulated nondelivery interval has elapsed. Slow or failed VM allocation
can be simulated by hooking the VM allocation request and either delaying it
before passing it to the cloud operations support system (OSS) or returning a
simulated failure to the caller. Simulating degraded delivery of configured
resource capacity, tail latency degradation, clock event jitter, and clock drift
should be feasible with appropriate test tools and procedures.

16.4  TEST PLANNING

An application’s test campaign will include test plans to verify acceptable behavior,
characteristics, and performance. Best practice is for the service quality test campaign
for a cloud-based application to include aspects of most or all of the following test
types:

•	 Service Reliability and Latency (Section 16.4.1)

•	 Impaired Infrastructure Testing (Section 16.4.2)

•	 Robustness Testing (Section 16.4.3)

•	 Endurance/Stability Testing (Section 16.4.4)

•	 Application Elasticity Testing (Section 16.4.5)

•	 Upgrade Testing (Section 16.4.6)

•	 Disaster Recovery Testing (Section 16.4.7)

•	 Extreme Coresidency Testing (Section 16.4.8).

Test Planning	 279

16.4.1  Service Reliability and Latency Testing

Basic service quality testing verifies that service reliability requirements (Section 13.3)
and service latency requirements (Section 13.2) are met when application virtualized
infrastructure is delivering typical or nominal performance and the application is
running at or below engineered capacity. Concretely, this means that none of the virtual-
ized infrastructure impairments of Chapter 4 are significant. If the test tools are properly
instrumented, then service reliability and service latency can be characterized from the
same test run(s). The application load generation tool should generate a consistent
stream of properly formed transactions, and the responses should be monitored to both
check return codes and results, and monitor transaction latency. In addition to recording
the count of each request type sent, the test tool should do the following:

•	 Explicitly Count and Record Successful (e.g., “200 OK”) and Unsuccessful
(Anything Else) Responses.  This enables service reliability to be evaluated.

•	 Record Service Latency Counts in Enough Measurement “Buckets” to Produce
Useful Results.  While two measurement buckets (less than maximum acceptable
service latency and greater than maximum acceptable service latency) are mini-
mally sufficient to determine rate of unacceptably slow transactions, it is best to
use at least 10 and ideally 20 or more measurement buckets. There should be at
least two measurement buckets above the maximum acceptable service latency
(one to capture “slightly” longer than maximum acceptable service latency and
another to capture significantly longer than maximum acceptable service latency),
and the majority of measurement buckets should cover the range of acceptable
service latency times. Nonuniform bucket sizes can be used (e.g., smaller buckets
around the 50th and 90th percentiles and bigger buckets in the “tail” approaching
the maximum acceptable service latency value). Less than 20% of samples
should be in any single bucket. The data should be plotted as a statistical distri-
bution for easy analysis.

As discussed in Section 16.2.3, “Statistical Confidence,” sufficient iterations of
each request type should be sent to characterize performance with reasonable confi-
dence. Test results should be summarized by key function/operation and as follows:

•	 “Typical” service latency, such as median (50th percentile) or 90th percentile,
and a tail latency point, such as the 99.999th (slowest 1 in 100,000). A comple-
mentary cumulative distribution figure is best.

•	 The rate of transactions that are unacceptably slow is reported; generally as per
million attempts, as in “0.3 DPM (too slow).”

•	 The overall rate of failed transactions is reported, as in “3.2 DPM (overall)”

•	 Service latency tail is characterized, such as via a complementary cumulative
distribution figure.

Service reliability and latency testing should also be performed during the
following:

280	 Testing Considerations

•	 Production.  Service reliability, latency, and disruptions should be monitored on
live releases to determine how well the application is performing with actual
traffic. This is particularly useful for canary releases, as discussed in Section
16.4.11, “Canary Release Testing.”

•	 Cloud Service Provider’s Operations, Administration, Maintenance and Provi-
sioning (OAM&P).  Service reliability, latency, and disruptions should be moni-
tored when likely cloud service provider maintenance actions are executed (e.g.,
during live migration, provisioning, and growth).

16.4.2  Impaired Infrastructure Testing

Section 15.2, “IaaS Impairment Effects Analysis,” qualitatively characterized the
expected application service impact of virtualized infrastructure impairments. Impaired
infrastructure testing simulates the maximum acceptable infrastructure impairments to
verify that user service impact is acceptable. While impairment test cases should focus
on the impairments that IaaS impairment effects analysis (IIEA) indicated were highest
risk, cases should be included for all classes of impairments to verify that the applica-
tion is no more sensitive to infrastructure impairments than the analysis indicated. The
test plan should identify the tools and techniques to be used to simulate infrastructure
impairments (see Section 16.3, “Simulating Infrastructure Impairments”).

16.4.3  Robustness Testing

Robustness testing verifies that no single failure event causes service impact greater
than the maximum acceptable service disruption period (discussed in Section 13.1,
“Service Availability Requirements”). Logically, robustness testing should verify that
user service impact of failures is no more severe than what is documented in the appli-
cation’s failure mode effects analysis (FMEA). Robustness testing should also verify
that failure of all Platform-as-a-Service (PaaS) technology components used by the
application (e.g., load-Balancing-as-a-Service, Database-as-a-Service) are no worse
than estimated in the PaaS failure effects analysis (PFEA) (see Section 15.3).

To assure that an acceptably broad robustness testing campaign is planned, the
authors suggest that testers consider test cases from each of the following categories.
The relevant test cases should be automated and also used as regression tests for valida-
tion of software changes as part of the release management activity:

•	 VM Instance Failures.  Fail all types of application VM instances individually
and simultaneously.

•	 Technology Component “as-a-Service” Failures.  Individually fail each PaaS
technology component used by the application.

•	 Noisy neighbor and variable resource latency failures:
○	 Bursty VM scheduling (excessive scheduling latency)
○	 High IP packet loss
○	 Slow disk access
○	 Slow database access
○	 High clock event jitter.

Test Planning	 281

•	 Service orchestration errors:
○	 VM activation failure
○	 VM dead on arrival (DOA)
○	 Slow VM startup
○	 Slow VM live migration.

•	 Real-time clock skewing:
○	 High clock drift between VMs hosting application component instances
○	 Clock time appearing to run backward in some VM instances.

•	 Application programming errors:
○	 Memory leak or exhaustion (including excessive fragmentation)
○	 Shared resource conflict
○	 Tight or infinite loop
○	 Remote execution failures and “hangs,” including remote procedure call

failures
○	 Thread stack or address space corrupted
○	 Reference uninitialized or incorrect pointer
○	 Logic errors
○	 Nonmemory resource leaks
○	 Process abort, crash, or hang
○	 Thread hang or abort.

•	 Data errors:
○	 File system corruption, including from disorderly disk write on power down
○	 Database corruption, including from disorderly disk write on power down
○	 Database mismatch between active and standby versions
○	 Record corrupted
○	 Disk partition or file system full
○	 Persistent storage failure or corruption
○	 Shared memory corruption (e.g., checksum error)
○	 Linked list breakage
○	 File not found
○	 File corrupted
○	 Database upgrade failed.

•	 Redundancy errors:
○	 Failed recovery
○	 Failure of application’s high availability process(es)
○	 Failed VM repair.

•	 Networking errors:
○	 Failure or unreachability of adjacent or supporting network elements
○	 Dropped IP packets
○	 Corrupted IP packets
○	 IP packets out of sequence.

•	 Application protocol errors:
○	 Invalid protocol syntax
○	 Invalid protocol semantics

282	 Testing Considerations

○	 Unexpected or illegal message sequences
○	 Out-of-range parameters, including illegal command codes
○	 Malicious messages.

Netflix has popularized a suite of automated robustness test tools that together are
called the Simian Army [Netflix11], and include the Chaos Monkey [Netflix12] that
randomly kills component instances to verify that automatic failure detection and
recovery mechanisms operate properly. While operators of critical applications are not
likely to have the same freedom to unleash a Simian Army on their production environ-
ment as Netflix does, one can use a separate application test bed in the cloud and unleash
automated robustness test tools such as Chaos Monkey to verify the speed and effec-
tiveness of an application’s robustness mechanisms without risking service to end users.
There are also monkeys that can introduce network traffic delays and corruption that
can be unleashed in the test bed to verify the application’s handling of the network
issues.

16.4.4  Endurance/Stability Testing

Best practice is to execute endurance or stability tests to verify that applications remain
completely stable under long sustained workloads that simulate production usage pat-
terns. Cloud enables stability testing to evolve from traditional time bound (i.e., 72 h)
stability testing of a static application configuration into workload bound testing of a
dynamic application configuration where more transactions can be executed against an
elastic application configuration. In particular, stability testing of cloud-based applica-
tions can include the following:

•	 Elastic growth operations early in the endurance test run as workload grows at
the maximum growth rate supported by the application and cloud service pro-
vider configuration.

•	 Millions or billions of transactions executed when the application runs at or near
maximum engineered capacity for hours.

•	 A cloud consumer operations phase when database backup and other OAM&P
activities are run while application serves user workload at or near maximum
engineered capacity

•	 (If possible) a cloud service provider operations phase when the application’s
VM instances are live migrated individually and Ethernet switches are rebooted
to simulate routine cloud service provider operations

•	 Adversarial phase in which VMs are “randomly” killed to verify rapid automatic
recovery under heavy sustained workload

•	 Elastic degrowth when workload drains at the end of the endurance test run.

Figure 16.3 visualizes a sample endurance test case for a cloud-based application.
This sample test case includes the following phases:

Test Planning	 283

1.	 Application under test is instantiated with somewhat less than maximum sup-
ported online capacity.

2.	 “Warm up” verification of application functionality at startup is completed
to verify that the application instance is sufficiently functional to proceed
with the endurance test and to baseline service key quality indicators
(KQIs).

3.	 Workload surges significantly above the online application capacity to push the
application into overload and activate automatic elastic growth. Maintain ele-
vated workload to verify that the application can rapidly grow its way out of
overload.

4.	 With nominally full application capacity online, execute prolonged user service
KQI testing runs, completing millions or billions of transactions to characterize
service quality performance with high confidence.

5.	 Cloud consumer operations, administration, maintenance, and provisioning oper-
ations (e.g., database backup; adding, modifying, and deleting user accounts) are
introduced and KQI performance of both the application and OAM&P operations
is measured.

6.	 Adversarial scenarios are introduced, such as individually killing VM instances
to verify automatic recovery actions and briefly pausing VM instances to simulate
infrastructure impairments. KQIs are measured throughout this adversarial phase,
and the extent of degraded performance is noted.

Figure 16.3.  Sample Endurance Test Case for Cloud-Based Application.

284	 Testing Considerations

7.	 Optionally, cloud service provider OAM&P actions, such as live migration, can
be executed while monitoring application KQIs to verify that those actions will
neither destabilize the application nor significantly impact application KQI
performance.

8.	 Application capacity is elastically degrown to verify that no material impact on
user KQIs is observed during degrowth.

9.	 A final “cool down” phase verifies all KQIs to assure that performance has not
degraded from the warm up and full capacity test phases.

The sample endurance test case of Figure 16.3 should be tailored for individual
applications based on the application’s usage profile, sensitivities, vulnerabilities, and
quality history. For example, a period of traffic overload when the application is con-
figured at maximum capacity could be added. Automated test cases to mimic traffic
patterns that had caused field failures in a previous release could be added to verify
that the application is at least as stable as previous releases.

Service reliability and latency of all operations are measured separately for each
endurance test phase. While stability testing is not necessarily a replacement for service
latency or service reliability testing, stability testing should record service reliability
(DPM) data and service latency data when possible. The DPM results from stability
testing should be comparable with the focused service reliability testing; if not, then
the cause of variation should be investigated.

16.4.5  Application Elasticity Testing

Application elasticity functionality and requirements (Section 13.8, “Elasticity Require-
ments”) are verified via several test scenarios:

1.	 Verifying that elasticity requirements (see Section 13.8, “Elasticity Require-
ments”) are met for all supported elastic growth and degrowth actions for service
and storage capacity.

2.	 Verifying that application service gracefully recovers from elasticity failure sce-
narios discussed in Section 8.11, “Elasticity Failure Scenarios.”

3.	 Verifying that user service quality requirements are met throughout elastic service
capacity and storage growth, provided the workload does not rise so quickly as
to activate the application’s overload control mechanisms.

4.	 Verify that user service quality requirements are met throughout supported elastic
degrowth operations.

5.	 Verify that when the application is driven into overload, rapid elasticity mecha-
nisms operate properly to eventually mitigate the offered load (provided that the
offered load is less than the application’s maximum scale up capacity).

6.	 Verify that traffic surges which occur while elastic capacity degrowth actions are
underway are appropriately managed.

7.	 Verify that component failure during elastic capacity growth actions are appro-
priately managed.

Test Planning	 285

8.	 Verify that component failure during elastic capacity degrowth (shrink) actions
are appropriately managed.

Note that distributed denial of service (DDoS) attacks are likely to be far more
dramatic than ordinary traffic swings as attacks flood many times more than the normal
workload at an application instance. Applications are frequently deployed behind secu-
rity appliances, such as firewalls or deep packet inspection (DPI) engines, and those
security devices should absorb the brunt of a DDoS attack. DDoS and other security
attack scenarios should be explicitly verified as part of security testing.

16.4.6  Upgrade Testing

Although each software upgrade strategy requires testing to validate and measure any
downtime or loss of sessions or data during the upgrade, there are some tests associated
with each particular strategy.

For type I, “block party” software upgrade (see Section 9.3.1, “Type I Cloud-
Enabled Upgrade Strategy: Block Party”) testing, one must verify the following:

•	 Installation and initialization of new release instances do not impact traffic
running on the old release.

•	 There is a strategy to configure and direct traffic to particular release instances.

•	 Traffic can run on multiple releases at the same time.

•	 Data added, updated, or deleted for one release do not impact data integrity of
another release.

For type II, “one driver per bus” software upgrade (see Section 9.3.2, “Type II
Cloud-Enabled Upgrade Strategy: One Driver per Bus”) testing, one must verify the
following:

•	 Target release software and data can be instantiated without disrupting the current
release application service.

•	 Traffic can be drained from the originating release and redirected to the target
release within the maximum acceptable service disruption time (see Section 13.1,
“Service Availability Requirements”).

16.4.7  Disaster Recovery Testing

Catastrophic events that simultaneously impact all consumer applications running in a
single cloud data center should be simulated periodically to activate disaster recovery
plans to verify that observed recovery objectives are consistent with recovery point
analysis (Section 15.8, “Recovery Point Objective Analysis”) and recovery time analy-
sis (Section 15.9, “Recovery Time Objective Analysis”). Testing should measure actual
service impact of the following:

1.	 Unplanned site failure (i.e., no orderly preparation)

2.	 Orderly site switchover (i.e., taking an active site offline before initiating major
maintenance actions at that site)

286	 Testing Considerations

3.	 Orderly georedundant switch back (i.e., gracefully restoring service to a site that
was offline for repair, following a disaster event or major maintenance action).

16.4.8  Extreme Coresidency Testing

As discussed in Section 7.3, “Extreme Solution Coresidency,” extreme coresidency
means that multiple application components are consolidated onto a single virtualized
infrastructure so that a failure of a VM server can simultaneously impact multiple solu-
tion components. Because neither cloud consumers nor application suppliers have
explicit control over exactly how cloud service providers distribute application com-
ponent instances across the cloud service provider’s virtualized infrastructure, applica-
tions must be prepared to recover from any possible extreme coresidency configuration.
Thus, various extreme coresidency failure scenarios should be tested to verify that user
service is not unacceptably impacted. Special configuration procedures may be required
to coerce a solution into an extreme coresidency configuration and then to simulate an
infrastructure failure.

16.4.9  PaaS Technology Component Testing

As discussed in Section 15.3, “PaaS Failure Effects Analysis,” PaaS technology com-
ponents may be included in the solution. Failures of these components may have an
impact on application service; therefore, applications must be prepared to deal with
these failures. PaaS technology component testing includes the PaaS component failure
scenarios identified in the PFEA to verify that user service impact is acceptable when
faced with the failures. A complete set of regression tests, as discussed in Section 16.4.3,
“Robustness Testing,” should be run with an emphasis on the failure scenarios corre-
sponding to the impairments that PFEA indicated were highest risk.

16.4.10  Automated Regression Testing

To ensure that no new problems are introduced with a software or configuration change,
a set of automated regression tests should accompany the delivery to be run on the
production environment to further validate the change. This is particularly important
when supporting continuous delivery to ensure that the introduction of new software
does not negatively impact the active system. Examples of possible tests are included
in Section 16.4.3, “Robustness Testing.”

16.4.11  Canary Release Testing

A canary release provides an opportunity to monitor the quality of the application in a
production environment with a small set of early adopter users. Service reliability and
latency tests, as discussed in Section 16.4.1, “Service Reliability and Latency Testing,”
should be run, and KQIs monitored and analyzed to determine the quality of the release
and whether enhancements to the application need to be made before the number of
users is increased.

17

CONNECTING THE DOTS

Part I of this book considered the resource facing service impairments introduced by
virtualization and cloud that risk degrading the customer facing service offered by
cloud-based applications. Part II methodically analyzed those risks, and Part III offered
recommendations to mitigate the end user service impact of those risks. This chapter
summarizes the key points from these three parts.

17.1  THE APPLICATION SERVICE QUALITY CHALLENGE

Since end users do not generally care whether an application is deployed on a traditional
infrastructure or on cloud infrastructure, one routinely assumes that customer facing
service quality requirements are the same for both deployment options. Unfortunately,
cloud deployment introduces additional impairments (discussed in Chapter 4, “Virtual-
ized Infrastructure Impairments”) across the application’s resource facing service
boundary compared with deployment on nonvirtualized hardware configurations.
As shown in Figure 17.1 (identical to Figure 4.1), these impairments include the
following:

287

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

288	 Connecting the Dots

•	 Virtual Machine Failure (VM) (Section 4.2).  Such as traditional hardware, VM
instances can fail.

•	 Nondelivery of Configured VM Capacity (Section 4.3).  For instance, VM
instance can briefly cease to operate (aka “stall”).

•	 Degraded Delivery of Configured VM Capacity (Section 4.4).  For instance, a
particular VM server may be so congested that some application IP packets are
discarded by the host OS or hypervisor.

•	 Excess Tail Latency on Resource Delivery (Section 4.5).  For instance, some
application components may occasionally experience unusually long resource
access latency.

•	 Clock Event Jitter (Section 4.6).  For instance, regular clock event interrupts
(e.g., every 1 ms) may be tardy or coalesced.

•	 Clock Drift (Section 4.7).  Guest OS instances’ real time clocks may drive away
from true (UTC) time.

•	 Failed or Slow Allocation and Startup of VM Instances (Section 4.8).  For
instance, newly allocated cloud resources may be nonfunctional (aka dead on
arrival [DOA]).

As shown in Figure 17.2, the challenge is to create an application that is robust
enough that customer facing service quality metrics (discussed in Section 2.5, “Applica-
tion Service Quality”), such as service availability, service latency, and service reli-
ability, are insensitive to impairments of the application’s resource facing service
delivered by the cloud service provider.

The quality of the resource facing service delivered by the infrastructure funda-
mentally drives the architectural choices of the applications that execute on that infra-
structure. For example, two-wheel drive is more efficient for vehicles that operate on

Figure 17.1.  Virtualized Infrastructure Impairments Experienced by Cloud-Based
Applications.

Redundancy and Robustness	 289

well-maintained paved roads, but vehicles that use unpaved roads often require all
wheel drive and heavy-duty suspension systems to negotiate obstructions and impair-
ments in the terrain being traversed. Similarly, one should consider the likely cloud
infrastructure impairments when selecting an application architecture to assure that it
is feasible and likely that customer facing service quality expectations can be met
despite expected infrastructure impairments.

17.2  REDUNDANCY AND ROBUSTNESS

The plentiful, flexible, and elastic resources offered by cloud enable applications to
consider a broader range of redundancy options to increase service robustness. Funda-
mentally, there are four redundancy models which can be deployed by application
components:

•	 Simplex.  A single component instance is serving one or more users, and if that
instance fails, then the impacted component must be repaired prior to user service
recovery. Virtualization and cloud-enabled rapid automatic Repair-as-a-Service
(see Section 5.3, “Improving Infrastructure Repair Times via Virtualization”)
mechanisms can dramatically improve the service availability of simplex archi-
tectures by reducing the time to restore service following failure from hours to
minutes or less.

•	 Sequential Redundancy.  Redundancy adds alternate component instances, which
can serve users without first requiring a failed (simplex) component to be
repaired. In sequential redundancy (see Figure 17.3), each request is served by

Figure 17.2.  Application Robustness Challenge.

290	 Connecting the Dots

a single component instance, but if that component instance fails, then user
service fails over to a redundant component instance with minimal user service
impact. This redundancy arrangement potentially puts failure detection and
recovery from failure of a serving unit “B1” in the critical path of user service
delivery since failures are fundamentally mitigated by first detecting the unavail-
ability of the nominally serving component (“B1”) before the request can be
redirected to a redundant online component instance (e.g., “B2”).

•	 Concurrent Redundancy (Figure 17.4).  Each client request is logically multicast
to several online server component instances simultaneously so redundant copies
of each client request are processed concurrently. Client “A” logic is more
complex in this arrangement than with traditional redundancy, as it must simul-
taneously multicast requests to several server component instances and then
select a response to use from those returned. Server instances must be architected

Figure 17.4.  Concurrent Redundancy.

Figure 17.3.  Sequential (Traditional) Redundancy.

Redundancy and Robustness	 291

to efficiently deal with synchronization challenges that arise when several com-
ponent instances process the same request in parallel. Concurrent redundancy
architectures mitigate component failures more effectively compared with
sequential redundancy architectures because failure detection and recovery are
no longer in the critical service delivery path. Even if there is a failure of one of
the component instances, there will likely be at least one successful response by
an operational component instance promptly received by client “A” that it can
use rather than having to wait to detect the failure of a component instance and
then retrying the request to another component instance. In addition to this
service availability benefit, concurrent redundancy architectures can effectively
mitigate some virtualized infrastructure impairments, such as nondelivery or
degraded delivery of virtualized resources (aka VM hiccups or stalls) since it is
likely that at least one component instance is fully operational and can return a
prompt successful response to the client.

•	 Hybrid Concurrent Redundancy (Figure 17.5).  Rather than logically multicast-
ing copies of each request for simultaneous processing by multiple serving
components in concurrent redundancy, the client can send a request to a single
serving instance and await a prompt reply. If the selected serving instance does
not respond in less than guard time TOverlap (perhaps the 99th percentile latency
time), then the request is sent to another serving instance, and the client uses
whichever response is received first. This hybrid concurrent approach mitigates
the service impact of failure and infrastructure impairments better than sequential
redundancy by shortening the failure detection time. While hybrid concurrent
redundancy potentially delivers somewhat longer user service latency than con-
current redundancy during both normal and failure operation, hybrid concur-
rency consumes far less resources, because the overwhelming majority of client
requests are processed only once compared with processing each request mul-
tiple times with “full” concurrent redundancy.

Figure 17.5.  Hybrid Concurrent with Slow Response.

292	 Connecting the Dots

Cloud-based applications that cannot tolerate the user service impact of simplex
component failures or the outage duration while Repair-as-a-Service mechanisms
operate should deploy redundant architectures. Hybrid concurrent redundancy can
deliver better service quality than sequential redundancy because it effectively mitigates
tail latency events. Concurrent redundancy offers the robustness benefits of hybrid
concurrent redundancy plus improving service latency, albeit with much higher resource
utilization.

17.3  DESIGN FOR SCALABILITY

Rapid elasticity enables applications to bring additional resources online to serve an
increased offered load. As discussed in Chapter 8, “Capacity Management,” designing
weakly coupled components facilitates efficient horizontal growth and degrowth. As
discussed in Chapter 6, “Load Distribution and Balancing,” load balancers can facilitate
workload distribution across elastic pools of serving components. Moving application
state information out of serving component instances into a highly available registry
for volatile data that are shared by all of the application instance’s pool of serving
components can improve the scalability for stateful applications.

As discussed in Chapter 7, “Failure Containment,” virtualization decouples VM
resources from the underlying physical resources. Thus, application components can
be engineered to run in VM instances that are sized to scale by appropriate units of
capacity growth and to limit the footprint of impact of a VM instance failure to meet
business service quality requirements.

17.4  DESIGN FOR EXTENSIBILITY

Virtualization and elasticity enable software upgrade of cloud-based applications to
adopt radically different strategies because one can allocate sufficient additional
resources to install a new and independent instance of the upgraded application and run
it alongside the (fully redundant) current version. As discussed in Chapter 9, “Release
Management,” the preferred strategy, which the authors call type I “block party” (see
Section 9.3.1, “Type I Cloud-Enabled Upgrade Strategy: Block Party,” and Figure
17.6), is to allocate, install, configure, activate, and soak the new/upgraded application
instance with test or a small portion of user traffic with minimal disturbance to the
existing application instance until user service migrates completely over to the new
instance.

Block party not only facilitates continuous delivery of software, it also enables
cloud consumers to easily experiment with their service. For example, an application
release can be modified to trial a slightly different webpage layout or architectural
optimization, deploy it to a small portion of live user traffic, and make A/B comparisons
of application key quality indicators (KQIs) to assess the value of the change under
test.

Design for Failure	 293

17.5  DESIGN FOR FAILURE

VM instances will fail more often than native hardware because hypervisors and addi-
tional cloud software is inserted in the critical path between the application’s virtualized
machine instances and the underlying hardware. In addition, complex software systems
and operational policies deployed by cloud service providers to support the virtualized
infrastructure environment can fail in ways that impact VMs hosting application com-
ponents. Thus, application components should be prepared for more frequent critical
failure events than with traditional deployments.

The basic design for failure principles that suppliers and consumers of cloud-based
applications should consider are the following:

•	 Design for Failure Containment.  Inevitable failures should be automatically
contained so failure cascades are prevented (see Chapter 7, “Failure
Containment”).

•	 Design for Failure Detection.  Applications should be engineered to rapidly
detect failures and activate recovery mechanisms as quickly as possible to mini-
mize the risk of silent or sleeping failures. Cloud consumers should never be
forced to rely on end users to detect and notify them of application failures.

•	 Design for Service Availability.  The user service impact of failure can be mini-
mized via rapid and automatic failure detection and service recovery. Automatic
service recovery to online redundant components is inevitably faster than with
simplex arrangements, even when automatic Repair-as-a-Service mechanisms
are used (see Chapter 5, “Application Redundancy and Cloud Computing”).

Figure 17.6.  Type I, “Block Party” Upgrade Strategy.

294	 Connecting the Dots

•	 Design for Application Repair.  To mitigate the impact of a more frequent failure
rate (of VMs vs. traditional hardware) from increasing the cloud consumer’s
operational expenditure (OPEX), automatic VM Repair-as-a-Service or self-
healing mechanisms should be used (see Section 5.2, “Improving Software
Repair Times via Virtualization,” and Section 5.3, “Improving Infrastructure
Repair Times via Virtualization”).

By definition, failure events are messy because the system is plunged into an
unpredictable state. Thus, extensive testing is appropriate to assure that failure contain-
ment, detection, recovery, and repair mechanisms operate rapidly and reliably. Fortu-
nately, cloud makes it practical to create test beds to run extensive robustness tests
against application instances with no risk of impacting live user traffic. Services that
can tolerate the risks of robustness testing on production systems can benefit from
frequent validation of robustness mechanisms on production systems using test tools
such as the Simian Army that Netflix deploys on their production applications. Services
that can tolerate only very limited verification on product systems should limit their
testing on production systems to periodic disaster recovery drills.

17.6  PLANNING CONSIDERATIONS

As discussed in [Carr], cloud represents a “big switch” in the information and com-
munications technology (ICT) sector that will ultimately impact how enterprises use
information technology. [TOGAF] gives four types of architecture: business, applica-
tion, data, and technology. All four of these architectures will evolve as the needs of
the enterprise, customer and market demands, and technologies and ecosystems evolve.
Thus, business leaders must plan the evolution of these related architectures so that
application, data, and technology architectures support the needs of the business with
acceptable service quality while adhering to schedule and cost constraints. As a result,
cloud awareness for applications (see Section 3.7, “Cloud Awareness”) is more likely
to be an evolving process than a single big bang event. When considering new, written
from scratch applications for cloud, one should set aside traditional architectural
assumptions and start from cloud friendly architectural principles, such as those
described in works such as [Birman], [CCPP], [ODCA_DCCA], and [Varia].

The following actions are recommended to assure the feasibility and likelihood of
cloud-based applications consistently achieving their service quality expectations:

•	 Explicitly Define Service Quality Requirements.  Methodical architecture, analy-
sis, design, and testing requires qualitative and quantitative requirements. Base-
lining verifiable application service quality requirements (see Chapter 13,
“Application Service Quality Requirements”) is a key foundation for any high
service quality application.

•	 Architect and design applications to:
○	 Contain, detect, recover, and repair inevitable failures (see Chapter 5,

“Application Redundancy and Cloud Computing,” and Chapter 7, “Failure
Containment”)

Planning Considerations	 295

○	 Smoothly grow and shrink online capacity (see Chapter 8, “Capacity Manage-
ment,” and Chapter 6, “Load Distribution and Balancing”)

○	 Support block party release management (see Chapter 9, “Release
Management”)

○	 Monitor virtualized infrastructure performance to facilitate proper root cause
analysis of service failures or impairments (see Chapter 14, “Virtualized Infra-
structure Measurement and Management”).

•	 Analyze Application’s Architecture to Assure the Feasibility and Likelihood of
Consistently Meeting Service Quality Requirements in Production Deploy-
ment.  Complete analysis methodologies detailed in Chapter 15, “Analysis of
Cloud-Based Applications”:
○	 Reliability Block Diagrams and Side-by-Side Analysis (Section 15.1)
○	 IaaS Impairment Effects Analysis (Section 15.2)
○	 PaaS Failure Effects Analysis (Section 15.3)
○	 Workload Distribution Analysis (Section 15.4)
○	 Anti-affinity Analysis (Section 15.5)
○	 Elasticity Analysis (Section 15.6)
○	 Release Management Impact Effects Analysis (Section 15.7)
○	 Recovery Point Objective Analysis (Section 15.8)
○	 Recovery Time Objective Analysis (Section 15.9).

•	 Test Application Software on Cloud.  Chapter 16, “Testing Considerations,” dis-
cusses the incremental testing beyond what is done for traditional deployments
that is appropriate to assure that applications deployed to cloud deliver accept-
able service quality. In addition to functional testing, the application’s test cam-
paign should include (where applicable)
○	 Service Reliability and Latency (Section 16.4.1)
○	 Impaired Infrastructure Testing (Section 16.4.2)
○	 Robustness Testing (Section 16.4.3)
○	 Endurance/Stability Testing (Section 16.4.4)
○	 Application Elasticity Testing (Section 16.4.5)
○	 Upgrade Testing (Section 16.4.6)
○	 Extreme Coresidency Testing (Section 16.4.8).

•	 Drive Continuous Quality Improvement.  Design for failure is an appropriate
principle for cloud computing, but this should be accompanied by continuous
quality improvement. The service impact of failure will generally be far less
severe when the system automatically detects and recovers from failure events,
but often one or more users are impacted directly by each failure event. When
properly deployed, design for failure should enable failure events that might
otherwise have produced acute outages with major service impact to be addressed
automatically with minimal service impact. Note that minimal service impact is
not necessarily the same as no service impact. Often, the minimal service impact
of a failed transaction here and a painfully slow transaction there blends into the
background of chronic service impairments. After acute service impairments,
such as outages, are under control, leading enterprises will work to drive their

296	 Connecting the Dots

level of chronic or background service impairments to best in class. This effort
to drive chronic impairments to best in class generally relies on the classic quality
improvement approach as follows:
1.	 Measure service performance.
2.	 Do Pareto analysis of service impairments.
3.	 Perform a deep root cause analysis of primary service-impacting problems.
4.	 Deploy corrective action to prevent recurrence of service problems.
5.	 Repeat.

17.7  EVOLVING TRADITIONAL APPLICATIONS

This section considers the challenge of taking an existing or traditional application (see
Section 3.7, “Cloud Awareness”) that is successfully deployed on native hardware
configurations to cloud while continuing to deliver at least comparable service quality
to end users. Given the complexity of this task and business realities associated with
ongoing support of existing customers in a dynamic marketplace, most application
suppliers and cloud consumers will adopt a phased transition from traditional (native)
deployment to full cloud support over several application releases rather than taking
the risk of a single “big bang” release that does everything cloud related all at once.
Figure 17.7 illustrates a sample application evolution timeline that begins with phase
0, in which the existing traditional application is deployed only on native hardware and
grows to full cloud awareness over several releases.

Figure 17.7.  Sample Phased Evolution of a Traditional Application.

Evolving Traditional Applications	 297

•	 Phase 0: Traditional Application (Section 17.7.1).  One should quantitatively
characterize key user service quality metrics of native deployment so applica-
tion architects, developers, and testers have an accurate performance target to
shoot for.

•	 Phase I: High Service Quality on Virtualized Infrastructure (Section 17.7.2).  The
first step is to assure that the application delivers acceptable service to users
when installed on cloud infrastructure.

•	 Phase II: Manual Application Elasticity (Section 17.7.3).  Online elastic capacity
growth and degrowth are often challenging for traditional applications. Full
elasticity of cloud-based applications logically has two pieces:
A.	 The procedure to manually expand or contract the application’s capacity
B.	 The policies, mechanisms, and integration that enable those elastic growth

and degrowth procedures to reliably execute automatically without human
involvement.
To minimize the risk of user service impact, many application service pro-

viders of critical services will want to manually execute elastic growth and
degrowth procedures until the procedures are demonstrated to be sufficiently
reliable and deterministic that they can be automated without jeopardizing the
application service provider’s reputation for quality. Manual application elastic-
ity enables cloud consumers to easily grow application capacity ahead of antici-
pated loads (e.g., Cyber Monday for eCommerce sites), and to conveniently
reduce online capacity when the need has passed. Mechanisms and policies to
automatically trigger capacity growth and degrowth events, managing—and
possibly forcing—drainage of traffic from resources to be released during
degrowth operations, and other details of full automation are deferred to Section
17.7.5, “Phase IV: Automated Application Elasticity.”

•	 Phase III: Automated Release Management (Section 17.7.4).  Release manage-
ment actions often include data evolution steps that should be automated in
this phase, but suppliers retain the option of requiring that major release
upgrades rely on some manual actions, particularly if there are failures during
the procedure that require a decision to be made on whether to repair it or
continue.

•	 Phase IV: Automated Application Elasticity (Section 17.7.5).  Once the elastic
growth and degrowth procedures of phase II are demonstrated to be highly reli-
able, one can focus on automating both activation and execution of those proce-
dures, and then fully integrating them with a cloud elasticity OSS.

•	 Phase V: VM Migration (Section 17.7.6).  When graceful VM migration is sup-
ported by the application, the cloud service provider can autonomously move
application VM instances to perform maintenance actions (e.g., release manage-
ment of infrastructure components) or consolidate workloads to manage power
consumption (e.g., powering down servers during low usage periods) without
producing unacceptable service impact for the application’s end users.

Readers will recognize that these steps can be resequenced and tailored to meet
the needs of specific applications, cloud consumers, cloud service providers, and end

298	 Connecting the Dots

users. For example, some application service providers will want automated application
capacity (nominally phase IV) deployed before automated release management (nomi-
nally phase III).

17.7.1  Phase 0: Traditional Application

A traditional application that consistently delivers acceptable user service is a solid
foundation to evolve from. Ideally, the application’s customer facing KQIs will be
known and used as targets for the cloud deployed application and will be recorded in
clear and quantitative service quality requirements, as described in Chapter 13, “Appli-
cation Service Quality Requirements.” Note that many of the application’s user facing
KQI measurements may exceed users’ expectations, so it may be acceptable for cloud
deployment to approach rather than equal those targets.

17.7.2  Phase I: High Service Quality on Virtualized Infrastructure

The first phase of evolving a traditional application to cloud is to run it in VM instances
served by a hypervisor; this phase has the collateral benefit of increasing the applica-
tion’s hardware independence. Deployment on virtualized infrastructure can enable a
degree of server consolidation or application coresidency. Virtualization enables
resource sharing, which introduces the risks of those discussed in Chapter 4, “Virtual-
ized Infrastructure Impairments.” Note that as there are differences between hypervi-
sors, suppliers generally pick specific hypervisors to focus their support on.

Architects first map the application’s software components into VM instances.
When appropriate, application architects will consider replacing native application
components with technology components offered by the target Platform-as-a-Service
provider (e.g., load balancers and database servers). The architects and developers
should anticipate imperfect infrastructure and technology components, and complete
both IaaS impairment effects analysis (Section 15.2) and PaaS failure effects analysis
(Section 15.5). Applications should implement rich monitoring of virtualized infrastruc-
ture impairments to enable effective troubleshooting of application service quality
problems both in testing and in production deployment. If unacceptable performance
is delivered to a single VM instance, then application architects can consider supporting
one or more of the following mitigation strategies:

•	 VM-Level Congestion Detection and Control (Section 14.4.2)

•	 Terminate Poorly Performing VM Instances (Section 14.4.4).

When elastic growth is supported, applications can consider an additional mitiga-
tion: allocate more virtual resource capacity (Section 14.4.3)

Architects should complete an anti-affinity analysis (Section 15.5) to facilitate the
writing of anti-affinity rules to explicitly distribute the application’s VM instances
across sufficient VM server hosts so the application instance can withstand single VM
server failures. Note that architects can mitigate VM host failures of extreme coresi-
dency deployments via manual or automatic disaster recovery mechanisms. Recovery
point objective analysis (see Section 15.8) and recovery time objective analysis (see

Evolving Traditional Applications	 299

Section 15.9) should be executed to verify that the architecture meets its business
continuity and disaster recovery objectives, including recovering from major cloud
infrastructure failures that overwhelm the application’s high availability mechanisms.

Application installation and release management actions are manual in phase I,
and capacity growth and degrowth actions generally follow traditional (i.e., offline)
procedures.

In addition to functional testing, the application’s test campaign for cloud deploy-
ment should include (as applicable) the following:

•	 Service reliability and latency testing (Section 16.4.1). Note that this should
include testing with simulated virtualized infrastructure impairments.

•	 Impaired infrastructure testing (Section 16.4.2)

•	 Robustness testing (Section 16.4.3)

•	 Endurance/stability testing (Section 16.4.4)

•	 Upgrade testing (Section 16.4.6)

•	 Disaster recovery testing (Section 16.4.7)

•	 Extreme coresidency testing (Section 16.4.8).

17.7.3  Phase II: Manual Application Elasticity

Existing applications will undoubtedly support some capacity growth procedures, but
they are typically executed when the application is offline (e.g., during a maintenance
window) and may require profound changes to the application instance (e.g., reinstall-
ing the application with different settings, such as a larger database). Application teams
will decide which aspects of application growth and degrowth should support online
operation (e.g., adding user service capacity) and which aspects should remain as offline
operations using existing procedures (e.g., growing database capacity). Note that the
licensing strategy of both the application itself and included components should be
considered to assure that license management is aligned with application elasticity.

The architect determines whether the application’s online growth will be performed
horizontally or vertically, and designs appropriate mechanisms. The architect will also
determine both the units of growth (e.g., individual VM instances or groups of VM
instances) and the limits of elastic growth. Elasticity analysis (see Section 15.6) should
be used to assure robust elasticity architecture. Appropriate application elasticity testing
(Section 16.4.5) should be planned.

17.7.4  Phase III: Automated Release Management

Automated release management enables software patches, updates, upgrades, and ret-
rofits to be efficiently installed by cloud consumers with minimal manual intervention.
Chapter 9, “Release Management,” gives a detailed discussion of this topic. In addition
to reducing the cloud consumer’s OPEX, this can boost application service quality by
encouraging bug fixes and security or stability patches to be applied rapidly, thus reduc-
ing the time window that an application is vulnerable to known risks that have already
been patched. Automated release management is required to support continuous

300	 Connecting the Dots

delivery, but automated release management is valuable even for periodic release
delivery models. Release management impact effects analysis (see Section 15.7) should
be used to analyze the application’s release management strategy, and upgrade
testing (see Section 16.4.6, “Upgrade Testing”) should be completed to verify proper
operation.

17.7.5  Phase IV: Automated Application Elasticity

Application elasticity was considered in detail in Chapter 8, “Capacity Management.”
Automation of application elasticity requires application architects to perform the
following:

•	 Determine what application performance indicators should trigger automatic
elastic growth and degrowth decisions.

•	 Develop policies that evaluate performance indicators to appropriately trigger
elasticity operations.

•	 Define automated elasticity procedures that are robust enough to assure accept-
able service operation and quality despite inevitable failures and impaired
operation.

Architects should be careful to assure that elasticity actions are appropriately con-
nected to the right automated triggers to minimize the risk that an observed performance
slowdown or throughput bottleneck triggers growth of the wrong resource so the appli-
cation ends up with a glut of (unneeded) resource capacity and a performance/throughput
issue. Application developers will implement these mechanisms and integrate them
with the appropriate elasticity operations support system. Elasticity analysis (see
Section 15.6) should be repeated to assure that the architecture and high level design
for automated elasticity operations are robust.

Appropriate application elasticity testing (Section 16.4.5) should also be planned,
including verification that automated elasticity mechanisms do not interfere with auto-
mated failure detection and recovery mechanisms. Upgrade testing (Section 16.4.6)
should be repeated to assure that automated elasticity does not adversely impact soft-
ware upgrade. Endurance/stability testing (Section 16.4.4) should be expanded to
include automatic elastic growth (and perhaps degrowth) as a standard part of routine
stability testing.

17.7.6  Phase V: VM Migration

Inevitably, it will be convenient or necessary for the cloud service provider to remove
an application’s VM instance from a particular VM server host to enable the service
provider to perform a maintenance action such as release management on the VM server
itself or to make a configuration change or repair to the IP infrastructure. The traditional
solution to this problem was to schedule those actions into a maintenance window (e.g.,
between midnight and 4 a.m. local time) when the application could be taken offline
or exposed to an extended period of simplex operation. The preferred solution is for
applications to support graceful migration of VM instances to other servers so cloud

Concluding Remarks	 301

service providers can execute maintenance actions efficiently with minimal service
impact to the application’s end users, and hopefully minimal incremental OPEX and
risk for the cloud consumer. Hypervisors enable VM instances to be paused on one
host, to transfer the VM’s memory, storage, and network connectivity to another host,
and then activate on the VM on the other host to produce a “live” VM migration. The
hypervisor, cloud service provider’s infrastructure and operational policies, and other
factors will determine exactly how long the period of nondelivery of configured VM
capacity is (see Section 4.3). If that period is not short enough, application architects
should refine migration mechanisms to enable VM instances to be gracefully moved
on demand with minimal user service impact.

17.8  CONCLUDING REMARKS

Cloud computing enables enterprises to improve service agility and to reduce capital
expenditure (CAPEX) and OPEX compared with traditional application deployment
while delivering acceptable service quality to end users. But cloud computing also
introduces risks associated with virtualized infrastructure, more complex ecosystems,
and new layers of accountability that can impact application service quality delivered
to end users. This work methodically delineated and analyzed the risks, and offered
concrete recommendations to enable applications deployed to cloud to deliver service
quality at least as good as native application deployments and in some cases even better.

AC	 Alternating current

ACID	 Atomicity, consistency, isolation, durability

API	 Application programming interface

ASP	 Application service provider

BASE	 Basically available, soft state, eventual consistency

BAU	 Business as usual

BE	 Best effort

CAPEX	 Capital expenditure

CCDF	 Complementary cumulative distribution function

CDF	 Cumulative distribution function

CDN	 Content delivery network

CFS	 Customer facing service

CI	 Configuration item

COTS	 Commercial off-the-shelf

CPU	 Central processing unit

CSP	 Cloud service provider

DfR	 Design for reliability

DHCP	 Dynamic host configuration protocol

DNS	 Domain name system

DOA	 Dead on arrival

DPM	 Defects per million, such as defective transactions per million or
defective calls per million attempts

DR	 Disaster recovery

DSL	 Digital subscriber line, a wireline access technology

EMS	 Element management system

EOR	 End-of-row Ethernet switch

303

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

ABBREVIATIONS

304	 Abbreviations

ERI	 Early return index (nominally the hardware failure rate in first 6 months
of service)

FMEA	 Failure mode effects analysis

FRU	 Field replaceable (hardware) unit

GMT	 Greenwich mean time

GPS	 Global positioning system

GR	 Georedundancy

GUI	 Graphical user interface

HA	 High availability

IaaS	 Infrastructure-as-a-service

ICT	 Information and communications technology

IIEA	 IaaS impairment effects analysis

ISP	 Internet service provider

IT	 Information technology

ITIL	 IT Infrastructure Library, a suite of IT management processes published
by UK government.

KPI	 Key performance indicator

KQI	 Key quality indicator

LAN	 Local area network

LBaaS	 Load balancing as a service

LTR	 Long-term returns (nominally the hardware failure rate after more than 18
months of service)

MAN	 Metropolitan area network

MOP	 Method of procedure

MOS	 Mean opinion score

MTBF	 Mean time between failures

MTRS	 Mean time to restore service

MTTR	 Mean time to repair

NE	 Network element

NFS	 Network file system

NFV	 Network function virtualization

NIST	 U.S. National Institute of Standards and Technology

NSP	 Network service provider

NTP	 Network Time Protocol

OAM	 Operations, administration, and maintenance

OAM&P	 Operations, administration, maintenance, and provisioning

ODCA	 Open Data Center Alliance

OLTP	 Online transaction processing

OOS	 Out of service

Abbreviations	 305

OPEX	 Operational expenditure

OSS	 Operations support system

PaaS	 Platform-as-a-Service

PIEA	 PaaS impact effects analysis

PM	 Performance management

PTP	 Precision Time Protocol

QoS	 Quality of service

RaaS	 Repair-as-a-Service

RAID	 Redundant array of independent (or inexpensive) discs

RAM	 Random access memory

RBD	 Reliability block diagram

REST	 Representational state transfer

RFC	 Request for comment

RFP	 Request for proposal

RFS	 Resource facing service

RMS	 Rack-mounted server

RPO	 Recovery point objective

RTO	 Recovery time objective

SaaS	 Software-as-a-Service

SO4	 Annualized product attributable service downtime measurement

SPOF	 Single point of failure

TOR	 Top-of-rack Ethernet switch

VFRU	 Virtual field replaceable unit

VIP	 Virtual IP address

VLAN	 Virtual local area network

VM	 Virtual machine

VMI	 Virtual machine instance

VMS	 Virtual machine server

VMSC	 Virtual machine server controller

VoIP	 Voice over IP

VPN	 Virtual private network

WAN	 Wide area network

XaaS	 Any as-a-Service offering

YRR	 Yearly return rate (nominally the hardware failure rate in the first 6–18
months of service)

[Bauer11]  Eric Bauer, Randee Adams and Dan Eustace, Beyond Redundancy: How Geographic
Redundancy Can Improve Service Availability and Reliability of Computer-Based Systems,
Wiley-IEEE Press, 2011.

[Bauer12]  Eric Bauer and Randee Adams, Reliability and Availability of Cloud Computing,
Wiley+IEEE Press, 2012.

[Birman]  Kenneth P. Birman, Guide to Reliable Distributed Systems: Building High-Assurance
Applications and Cloud-Hosted Services, Springer Verlag, 2012.

[Carr]  Nicholas Carr, The Big Switch: Rewiring the World from Edison to Google, 2013.

[CCDF]  Daniel Zwillinger and Stephen Kokoska, CRC Standard Probability and Statistics
Tables and Formulae, 32nd edition, CRC Press, 2011.

[CCPP]  Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski (eds), Cloud Computing:
Principles and Paradigms, John Wiley and Sons, 2011.

[CSA]  Cloud Security Alliance, http://cloudsecurityalliance.org (accessed September 17, 2003).

[Dean]  Jeffrey Dean and Luiz André Barroso,The Tail at Scale, Communications of the ACM,
Vol. 56, No. 2, pp. 74–80, 2013, 10.1145/2408776.2408794, http://cacm.acm.org/
magazines/2013/2/160173-the-tail-at-scale/fulltext (accessed September 17, 2003).

[DSP0243]  Distributed Management Task Force, Open Virtualization Format Specification,
DSP0243, version 1.1.0, January 12, 2010, http://www.dmtf.org/sites/default/files/standards/
documents/DSP0243_1.1.0.pdf (accessed September 17, 2003).

[FAA-HDBK-006A]  Federal Aviation Administration Handbook: Reliability, Maintainability,
and Availability (RMA) Handbook, FAA-HDBK-006A, January 7, 2008.

[Freemantle]  Paul Fremantle Blog-Cloud Native, http://pzf.fremantle.org/2010/05/cloud-
native.html (accessed September 17, 2003).

[IEEE610]  IEEE Standard Glossary of Software Engineering Terminology, IEEE Std
610.12-1990(R2002).

[ISO_9000]  Quality Management Systems—Fundamentals and Vocabulary, International Stan-
dard ISO 9000:2005(E), February 12, 2008.

[ITIL-Availability]  ITIL® Glossary and Abbreviations—English, 2011, http://www.itil-
officialsite.com/InternationalActivities/ITILGlossaries_2.aspx (accessed September 17, 2003).

[ITIL_CM]  http://www.itlibrary.org/index.php?page=ITIL_Service_Transition (accessed Sep-
tember 17, 2003).

307

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

REFERENCES

http://cloudsecurityalliance.org
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdf
http://pzf.fremantle.org/2010/05/cloud-native.html
http://pzf.fremantle.org/2010/05/cloud-native.html
http://www.itil-officialsite.com/InternationalActivities/ITILGlossaries_2.aspx
http://www.itil-officialsite.com/InternationalActivities/ITILGlossaries_2.aspx
http://www.itlibrary.org/index.php?page=ITIL_Service_Transition

308	 References

[ITIL_ST]  Cabinet Office, TSO, ITIL® Service Transition 2011 Edition, 2011.

[ITILv3MTRS]  http://www.knowledgetransfer.net/dictionary/ITIL/en/Mean_Time_to_
Restore_Service.htm (accessed September 17, 2003).

[ITILv3MTTR]  http://www.knowledgetransfer.net/dictionary/ITIL/en/Mean_Time_To_
Repair.htm (accessed September 17, 2003).

[jHiccup]  http://www.azulsystems.com/jHiccup (accessed September 17, 2003).

[Keynes]  John Maynard Keynes, A Tract on Monetary Reform, London: Macmillan, 1924.

[Merriam-Webster]  http://www.merriam-webster.com/dictionary/whipsaw (accessed Septem-
ber 17, 2003).

[Netflix10]  5 Lessons We’ve Learned Using AWS, December 16, 2010, http://
techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html (accessed September
17, 2003).

[Netflix11]  The Netflix Simian Army, July 19, 2011, http://techblog.netflix.com/2011/07/
netflix-simian-army.html (accessed September 17, 2003).

[Netflix12]  Chaos Monkey Released into the Wild, July 30, 2012 http://techblog.netflix 
.com/2012/07/chaos-monkey-released-into-wild.html (accessed September 17, 2003).

[NIST]  http://csrc.nist.gov/publications/PubsDrafts.html (accessed September 17, 2003).

[NoSQL]  NoSQL Relational Database Management System: Home Page, Strozzi.it.,  
March 29, 2010, http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
(accessed September 17, 2003).

[ODCA_SUoM]  Open Data Center Alliance, Standard Units of Measure for IaaS Rev 1.1,
http://www.opendatacenteralliance.org/docs/Standard_Units_of_Measure_For_IaaS_
Rev1.1.pdf (accessed September 17, 2003).

[ODCA_CIaaS]  Open Data Center Alliance, Compute Infrastructure as a Service Rev 1.0,
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_
Nov2012.pdf (accessed September 17, 2003).

[ODCA_DCCA]  Jan Drake, Arun Jacob, Nigel Simpson, and Scott Thompson, Open Data
Center Alliance, Developing Cloud-Capable Applications White Paper Rev. 1.1, November
2012, http://www.opendatacenteralliance.org/docs/DevCloudCapApp.pdf (accessed Septem-
ber 17, 2003).

[P.800]  International Telecommunications Union, P.800: Methods for Subjective Determina
tion of Transmission Quality, August 1996, http://www.itu.int/rec/T-REC-P.800-199608-I/en
(accessed September 17, 2003).

[Parasuraman]  A. Parasuraman, Valarie A. Zeithamal, and Leonard L. Berry, A Conceptual
Model of Service Quality and its implications for Future Research, Journal of Marketing, Vol.
49, pp. 41–50, Fall 1985.

[RFC2616]  R. Fielding et al., Hypertext Transfer Protocol—HTTP/1.1, June 1999, http://
www.ietf.org/rfc/rfc2616.txt (accessed September 17, 2003).

[RFC4594]  Internet Engineering Task Force, Configuration Guidelines for DiffServ Service
Classes, RFC 4594, August 2006, http://tools.ietf.org/html/rfc4594 (accessed September 17,
2003).

[Riak]  http://docs.basho.com/riak/latest/ops/building/benchmarking/ (accessed September 17,
2003).

[Sigelman]  Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag, Dapper, a Large-Scale Distrib-

http://www.knowledgetransfer.net/dictionary/ITIL/en/Mean_Time_to_Restore_Service.htm
http://www.knowledgetransfer.net/dictionary/ITIL/en/Mean_Time_to_Restore_Service.htm
http://www.knowledgetransfer.net/dictionary/ITIL/en/Mean_Time_To_Repair.htm
http://www.knowledgetransfer.net/dictionary/ITIL/en/Mean_Time_To_Repair.htm
http://www.azulsystems.com/jHiccup
http://www.merriam-webster.com/dictionary/whipsaw
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://csrc.nist.gov/publications/PubsDrafts.html
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://www.opendatacenteralliance.org/docs/Standard_Units_of_Measure_For_IaaS_Rev1.1.pdf
http://www.opendatacenteralliance.org/docs/Standard_Units_of_Measure_For_IaaS_Rev1.1.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/DevCloudCapApp.pdf
http://www.itu.int/rec/T-REC-P.800-199608-I/en
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc4594
http://docs.basho.com/riak/latest/ops/building/benchmarking/

References	 309

uted Systems Tracing Infrastructure, 2010, http://research.google.com/pubs/pub36356.html
(accessed September 17, 2003).

[SP800-145]  Peter Mell and Timothy Grance, National Institute of Standards and Technology,
US Department of Commerce, The NIST Definition of Cloud Computing, Special Publication
800-145, September 2011, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
(accessed September 17, 2003).

[SPECOSGReport]  SPEC Open Systems Group, Cloud Computing Working Group, Report on
Cloud Computing to the OSG Steering Committee, http://www.spec.org/osgcloud/docs/
osgcloudwgreport20120410.pdf (accessed September 17, 2013).

[TL_9000]  Quality Excellence for Suppliers of Telecommunications Forum (QuEST Forum),
TL 9000 Quality Management System Measurements Handbook 5.0, 2012, http://tl9000.org
(accessed September 17, 2003).

[TMF_TR197]  TM Forum, Multi-Cloud Service Management Pack: Service Level Agreement
(SLA) Business Blueprint, TR 197, V1.3, February 2013.

[TOGAF]  The Open Group, TOGAF® Standard Courseware V9.1 Edition, http://www.togaf.info/
togaf9/togafSlides91/TOGAF-V91-M1-Management-Overview.pdf (accessed September 17,
2003).

[UptimeTiers]  Uptime Institute Professional Services, LLC, Data Center Site Infrastructure Tier
Standard: Topology, Aug, 2012.

[Varia]  Jinesh Varia, Architecting for the Cloud: Best Practices, January 2011, http://
jineshvaria.s3.amazonaws.com/public/cloudbestpractices-jvaria.pdf (accessed September 17,
2003).

[Weinman]  Joe Weinman, Cloudonomics: The Business Value of Cloud Computing, Wiley,
2012.

[Wikipedia-DB]  http://en.wikipedia.org/wiki/ACID (accessed September 17, 2003).

[Wikipedia-LB]  http://en.wikipedia.org/wiki/Load_balancing_(computing) (accessed Septem-
ber 17, 2003).

[Wikipedia-TI]  http://en.wikipedia.org/wiki/Temporal_isolation_among_virtual_machines
(accessed September 17, 2003).

[Zeithami]  Valarie A. Zeithaml, Leonard L. Berry, and A. Parasuaman, Delivering Quality
Service, The Free Press, 2009.

http://research.google.com/pubs/pub36356.html
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf
http://tl9000.org
http://www.togaf.info/togaf9/togafSlides91/TOGAF-V91-M1-Management-Overview.pdf
http://www.togaf.info/togaf9/togafSlides91/TOGAF-V91-M1-Management-Overview.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudbestpractices-jvaria.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudbestpractices-jvaria.pdf
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/Temporal_isolation_among_virtual_machines

ERIC BAUER is reliability engineering manager in the IP Platforms CTO of Alcatel-
Lucent. He has worked on reliability of Alcatel-Lucent’s platforms, applications, and
solutions for more than a decade. Before focusing on reliability engineering topics,
Mr. Bauer spent two decades designing and developing embedded firmware, networked
operating systems, IP PBXs, Internet platforms, and optical transmission systems. He
has been awarded more than a dozen U.S. patents, authored Reliability and Availability
of Cloud Computing, Beyond Redundancy: How Geographic Redundancy Can Improve
Service Availability and Reliability of Computer-Based Systems, Design for Reliability:
Information and Computer-Based Systems, and Practical System Reliability (all pub-
lished by Wiley-IEEE Press), and has published several papers in the Bell Labs Techni-
cal Journal. Mr. Bauer holds a BS in Electrical Engineering from Cornell University,
Ithaca, New York, and an MS in Electrical Engineering from Purdue University, West
Lafayette, Indiana. He lives in Freehold, New Jersey.

RANDEE ADAMS is a consulting member of technical staff in the IP Platforms CTO
of Alcatel-Lucent. She has spent the last decade concentrating on product reliability.
She has given talks at various internal forums on reliability. Ms. Adams authored
Beyond Redundancy: How Geographic Redundancy Can Improve Service Availability,
Reliability for Computer-Based Systems, and Reliability and Availability of Cloud
Computing. She originally joined Bell Labs in 1979 as a programmer on the 5ESS
switch. Ms. Adams has worked on many projects throughout the company (e.g., soft-
ware development, trouble ticket management, load administration research, software
delivery, systems engineering, software architecture, software design, tools develop-
ment, and joint venture setup) across many functional areas (e.g., database manage-
ment, recent change/verify, common channel signaling, operations, administration, and
management, reliability, and security). Ms. Adams holds a BA from University of
Arizona and an MS in Computer Science from Illinois Institute of Technology. She
lives in Naperville, Illinois.

ABOUT THE AUTHORS

311

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

Abbreviations  303
Accessibility  25
Accessibility requirements  238
Accuracy  26
ACID  91
Adversarial testing  280
Agility  42
Analysis  66
Anti-affinity  262
Anycast  99
Application characteristics  15
Application instance  34
Application layer  170
Application model  9
Application service quality

measurements  17
Application software supplier

responsibilities  199
Audio-video synchronization  27
Availability  18, 68
Availability ratings  236
Availability requirements  234
Availability zone  44, 102, 104, 114, 189,

263

Backout  146
BASE  92
Batch type applications  16
Block party upgrade  154, 155
Boundaries  11
Break testing  280

INDEX

313

Broad network access  31
Business continuity  184

Canary release  275, 280, 286
Capacity scale down  41
Capacity scale in  40
Capacity scale out  40
Capacity scale up  41
CCDF. See Complementary cumulative

distribution function
CGrow  38
Chaos Monkey  263, 282
Circuit breaker  113
Cloud awareness  45
Cloud computing  29
Cloud consumer  199
Cloud operations support systems  36
Cloud service models  30
Cloud service provider responsibilities   

198
Complementary cumulative distribution

function (CCDF)  22
Composability  171
Connectivity-as-a-Service  219
Containers  124
Containment  112
Continuous delivery  156
Continuous deployment  149
Coresidency testing  286
Critical criticality  16
Criticality, service  15

Service Quality of Cloud-Based Applications, First Edition. Eric Bauer and Randee Adams.
© 2014 The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

314	 Index

CShrink  39
Cumulative distribution function (CDF)  22
Customer facing service  11

Data-center-as-a-service  223
Data redundancy  90
Data replication strategies  188
Dead on arrival (DOA)  227
Defective operations per million (DPM) 237
Degraded delivery of VM capacity  57
Delay, packet  17
Density  37
Disaster recovery  184, 189

testing  285
Disruption time  276
Distributions  23
DNS  98
Downtime ratings  236
DPM. See Defective operations per million
Dynamic data  146

Elasticity speedup  44
Elasticity testing  284
Elephants  21
End to end service model  169
Endurance testing  282
Error  112
Essential characteristics of cloud

computing  31
Essential criticality  16
Extreme coresidency testing  286

Failure  112
Failure containment  111, 112
Failures per billion hours of operation

(FITs)  248
Fault  112
Field replaceable units (FRUs)  226
FITs. See Failures per billion hours of

operation
Footprint of failure  115
FRUs. See Field replaceable units

Georedundancy  189
Goodput  26
Growth density  38

Hardware reliability measurement  226
Hierarchy of failure containment  113

IaaS. See Infrastructure-as-a-Service (IaaS)
IIEA. See Infrastructure-as-a-Service

impairment effects analysis
Infrastructure layer  170
Infrastructure-as-a-Service (IaaS)  30

service impairments  49
Infrastructure-as-a-Service impairment effects

analysis (IIEA)  257
Inspection  274
Interactive type applications  17
Interactivity  16

Key performance indicators  12
Key quality indicators  12
Keynes, John Maynard  63

Latency requirements  237
Latency tail  21
Latency verification  279
Linearity  43
Lip sync  27
Live VM migration  300
Load balancing  97
Loss, packet  17

Maintainability  69
Maximum acceptable service disruption   

234
Mean Opinion Score  26
Mean Time Between Failures (MTBF)  248
Mean Time to Restore Service (MTRS)   

68
Measured service  33
Measurement, service availability  213
Measurement points  165
MTBF. See Mean Time Between Failures
MTRS. See Mean Time to Restore Service
Multicast IP addressing  98
Multiservice architecture  80

Negative testing  280
Network element  34
No single point of failure. See Single Point of

Failure
Non-interactive type applications  16
Non-proxy load balancers  98
Non-proxy load distribution  101
Normal type applications  17
Normalization  215

Index	 315

One driver per bus upgrade  156
Operations support systems  36

PaaS. See Platform-as-a-Service
Packet delay  17
Packet loss  17
Parsimonious service measurement  214
Part I—Context  7
Patch  145
Persistent data  146
PFEA. See Platform-as-a-Service failure

effects analysis
Platform-as-a-Service (PaaS)  30, 33, 46,

259, 280, 298
Platform-as-a-Service failure effects analysis

(PFEA)  259
Proxy load balancers  97, 99

Qualification process  273
Quality requirements  233

Rambo architecture  236
Rapid elasticity  32
Real time applications  17
Reboot  70
Recovery point objective (RPO)

analysis  268, 270
testing  285

Recovery time objective (RTO)  184
analysis 270
testing  285

Redundancy  66
Redundant architecture  80
Regions  44
Release interval  39
Release management  145
Release management impact effects

analysis  267
Reliability  24
Reliability block diagrams  116, 218, 256
Reliability verification  279
Requirements  233
Reset  70
Resolve  28
Resource facing service  12
Resource pooling  32
Respond  28
Restore  28
Retainability  25

Retainability requirements  239
Retrofit  146
Review  274
Robustness  13
Robustness testing  280
Rollback  146, 152
Routine criticality  15
RPO. See Recovery point objective
RTO. See Recovery time objective

SaaS. See Software-as-a-Service
Sampling times  276
Scale down  41
Scale in  40
Scale out  40
Scale up  41
Security  28
Self service  31
Service accessibility  25, 175

requirements  238
Service availability  18, 172

measurement  213
ratings  236
requirements  234

Service boundaries  11
Service criticality  15
Service disruption time  276
Service latency  19, 173

requirements  237
verification  279

Service layer  170
Service level agreements  210
Service models  30
Service orchestration  159
Service quality

measurements  17
requirements  233

Service reliability  24, 174
verification  279

Service retainability  25, 176
requirements  239

Service throughput  25
requirements  239

Side-by-side analysis  256
Simian army  282
Simple application model  9
Simplex  68
Simulating infrastructure impairments  277
Single point of failure (SPOF)  116

316	 Index

Slew rate  43
Snapshot  70, 131
Soak  147
Software-as-a-Service (SaaS)  30
Software patch  145
Software supplier responsibilities  199
Software upgrade  145, 146
Speedup  44
SPOF. See Single point of failure
Stability testing  282
Statistical confidence  276
Statistical distributions  23
Support service  27
System  34

Tail  21
Tail latency  59
Technology, components  200, 223
Test  274
Test bed  275
Test considerations  273
Test planning  278
Test strategy  274
TGrow  37, 38
Three layer service model  169
Throughput  25

requirements  239

Timestamp accuracy  26
requirements  240

Tolerance to network impairments  17
Traditional applications  45
Transaction latency  19
TShrink  39
Type I “block party” upgrade  154
Type II “one driver per bus” upgrade  156

Update  145
Upgrade  145, 146
Upgrade impact effects analysis  267

Validation  273
Verification  273
Virtualization  114
Virtual machine (VM)  9

DOA  227
failure  54
migration  300
reliability  228
server controllers  35
servers  35
service impairments  49
snapshot  131

Whipsaw  138

	Cover
	IEEE Press
	Title page
	Copyright page
	Contents
	Figures
	Tables and Equations
	Tables
	Equations

	1: Introduction
	1.1 Approach
	1.2 Target Audience
	1.3 Organization
	Acknowledgments

	I: Context
	2: Application Service Quality
	2.1 Simple Application Model
	2.2 Service Boundaries
	2.3 Key Quality and Performance Indicators
	2.4 Key Application Characteristics
	2.4.1 Service Criticality
	2.4.2 Application Interactivity
	2.4.3 Tolerance to Network Traffic Impairments

	2.5 Application Service Quality Metrics
	2.5.1 Service Availability
	2.5.2 Service Latency
	2.5.3 Service Reliability
	2.5.4 Service Accessibility
	2.5.5 Service Retainability
	2.5.6 Service Throughput
	2.5.7 Service Timestamp Accuracy
	2.5.8 Application-Specific Service Quality Measurements

	2.6 Technical Service versus Support Service
	2.6.1 Technical Service Quality
	2.6.2 Support Service Quality

	2.7 Security Considerations

	3: Cloud Model
	3.1 Roles in Cloud Computing
	3.2 Cloud Service Models
	3.3 Cloud Essential Characteristics
	3.3.1 On-Demand Self-Service
	3.3.2 Broad Network Access
	3.3.3 Resource Pooling
	3.3.4 Rapid Elasticity
	3.3.5 Measured Service

	3.4 Simplified Cloud Architecture
	3.4.1 Application Software
	3.4.2 Virtual Machine Servers
	3.4.3 Virtual Machine Server Controllers
	3.4.4 Cloud Operations Support Systems
	3.4.5 Cloud Technology Components Offered “as-a-Service”

	3.5 Elasticity Measurements
	3.5.1 Density
	3.5.2 Provisioning Interval
	3.5.3 Release Interval
	3.5.4 Scaling In and Out
	3.5.5 Scaling Up and Down
	3.5.6 Agility
	3.5.7 Slew Rate and Linearity
	3.5.8 Elasticity Speedup

	3.6 Regions and Zones
	3.7 Cloud Awareness

	4: Virtualized Infrastructure Impairments
	4.1 Service Latency, Virtualization, and the Cloud
	4.1.1 Virtualization and Cloud Causes of Latency Variation
	4.1.2 Virtualization Overhead
	4.1.3 Increased Variability of Infrastructure Performance

	4.2 VM Failure
	4.3 Nondelivery of Configured VM Capacity
	4.4 Delivery of Degraded VM Capacity
	4.5 Tail Latency
	4.6 Clock Event Jitter
	4.7 Clock Drift
	4.8 Failed or Slow Allocation and Startup of VM Instance
	4.9 Outlook for Virtualized Infrastructure Impairments

	II: Analysis
	5: Application Redundancy and Cloud Computing
	5.1 Failures, Availability, and Simplex Architectures
	5.2 Improving Software Repair Times via Virtualization
	5.3 Improving Infrastructure Repair Times via Virtualization
	5.3.1 Understanding Hardware Repair
	5.3.2 VM Repair-as-a-Service
	5.3.3 Discussion

	5.4 Redundancy and Recoverability
	5.4.1 Improving Recovery Times via Virtualization

	5.5 Sequential Redundancy and Concurrent Redundancy
	5.5.1 Hybrid Concurrent Strategy

	5.6 Application Service Impact of Virtualization Impairments
	5.6.1 Service Impact for Simplex Architectures
	5.6.2 Service Impact for Sequential Redundancy Architectures
	5.6.3 Service Impact for Concurrent Redundancy Architectures
	5.6.4 Service Impact for Hybrid Concurrent Architectures

	5.7 Data Redundancy
	5.7.1 Data Storage Strategies
	5.7.2 Data Consistency Strategies
	5.7.3 Data Architecture Considerations

	5.8 Discussion
	5.8.1 Service Quality Impact
	5.8.2 Concurrency Control
	5.8.3 Resource Usage
	5.8.4 Simplicity
	5.8.5 Other Considerations

	6: Load Distribution and Balancing
	6.1 Load Distribution Mechanisms
	6.2 Load Distribution Strategies
	6.3 Proxy Load Balancers
	6.4 Nonproxy Load Distribution
	6.5 Hierarchy of Load Distribution
	6.6 Cloud-Based Load Balancing Challenges
	6.7 The Role of Load Balancing in Support of Redundancy
	6.8 Load Balancing and Availability Zones
	6.9 Workload Service Measurements
	6.10 Operational Considerations
	6.10.1 Load Balancing and Elasticity
	6.10.2 Load Balancing and Overload
	6.10.3 Load Balancing and Release Management

	6.11 Load Balancing and Application Service Quality
	6.11.1 Service Availability
	6.11.2 Service Latency
	6.11.3 Service Reliability
	6.11.4 Service Accessibility
	6.11.5 Service Retainability
	6.11.6 Service Throughput
	6.11.7 Service Timestamp Accuracy

	7: Failure Containment
	7.1 Failure Containment
	7.1.1 Failure Cascades
	7.1.2 Failure Containment and Recovery
	7.1.3 Failure Containment and Virtualization

	7.2 Points of Failure
	7.2.1 Single Points of Failure
	7.2.2 Single Points of Failure and Virtualization
	7.2.3 Affinity and Anti-affinity Considerations
	7.2.4 No SPOF Assurance in Cloud Computing
	7.2.5 No SPOF and Application Data

	7.3 Extreme Solution Coresidency
	7.3.1 Extreme Solution Coresidency Risks

	7.4 Multitenancy and Solution Containers

	8: Capacity Management
	8.1 Workload Variations
	8.2 Traditional Capacity Management
	8.3 Traditional Overload Control
	8.4 Capacity Management and Virtualization
	8.5 Capacity Management in Cloud
	8.6 Storage Elasticity Considerations
	8.7 Elasticity and Overload
	8.8 Operational Considerations
	8.9 Workload Whipsaw
	8.10 General Elasticity Risks
	8.11 Elasticity Failure Scenarios
	8.11.1 Elastic Growth Failure Scenarios
	8.11.2 Elastic Capacity Degrowth Failure Scenarios

	9: Release Management
	9.1 Terminology
	9.2 Traditional Software Upgrade Strategies
	9.2.1 Software Upgrade Requirements
	9.2.2 Maintenance Windows
	9.2.3 Client Considerations for Application Upgrade
	9.2.4 Traditional Offline Software Upgrade
	9.2.5 Traditional Online Software Upgrade
	9.2.6 Discussion

	9.3 Cloud-Enabled Software Upgrade Strategies
	9.3.1 Type I Cloud-Enabled Upgrade Strategy: Block Party
	9.3.2 Type II Cloud-Enabled Upgrade Strategy: One Driver per Bus
	9.3.3 Discussion

	9.4 Data Management
	9.5 Role of Service Orchestration in Software Upgrade
	9.5.1 Solution-Level Software Upgrade

	9.6 Conclusion

	10: End-to-End Considerations
	10.1 End-to-End Service Context
	10.2 Three-Layer End-to-End Service Model
	10.2.1 Estimating Service Impairments via the Three-Layer Model
	10.2.2 End-to-End Service Availability
	10.2.3 End-to-End Service Latency
	10.2.4 End-to-End Service Reliability
	10.2.5 End-to-End Service Accessibility
	10.2.6 End-to-End Service Retainability
	10.2.7 End-to-End Service Throughput
	10.2.8 End-to-End Service Timestamp Accuracy
	10.2.9 Reality Check

	10.3 Distributed and Centralized Cloud Data Centers
	10.3.1 Centralized Cloud Data Centers
	10.3.2 Distributed Cloud Data Centers
	10.3.3 Service Availability Considerations
	10.3.4 Service Latency Considerations
	10.3.5 Service Reliability Considerations
	10.3.6 Service Accessibility Considerations
	10.3.7 Service Retainability Considerations
	10.3.8 Resource Distribution Considerations

	10.4 Multitiered Solution Architectures
	10.5 Disaster Recovery and Geographic Redundancy
	10.5.1 Disaster Recovery Objectives
	10.5.2 Georedundant Architectures
	10.5.3 Service Quality Considerations
	10.5.4 Recovery Point Considerations
	10.5.5 Mitigating Impact of Disasters with Georedundancy and Availability Zones

	III: Recommendations
	11: Accountabilities for Service Quality
	11.1 Traditional Accountability
	11.2 The Cloud Service Delivery Path
	11.3 Cloud Accountability
	11.4 Accountability Case Studies
	11.4.1 Accountability and Technology Components
	11.4.2 Accountability and Elasticity

	11.5 Service Quality Gap Model
	11.5.1 Application’s Resource Facing Service Gap Analysis
	11.5.2 Application’s Customer Facing Service Gap Analysis

	11.6 Service Level Agreements

	12: Service Availability Measurement
	12.1 Parsimonious Service Measurements
	12.2 Traditional Service Availability Measurement
	12.3 Evolving Service Availability Measurements
	12.3.1 Analyzing Application Evolution
	12.3.2 Technology Components
	12.3.3 Leveraging Storage-as-a-Service

	12.4 Evolving Hardware Reliability Measurement
	12.4.1 Virtual Machine Failure Lifecycle

	12.5 Evolving Elasticity Service Availability Measurements
	12.6 Evolving Release Management Service Availability Measurement
	12.7 Service Measurement Outlook

	13: Application Service Quality Requirements
	13.1 Service Availability Requirements
	13.2 Service Latency Requirements
	13.3 Service Reliability Requirements
	13.4 Service Accessibility Requirements
	13.5 Service Retainability Requirements
	13.6 Service Throughput Requirements
	13.7 Timestamp Accuracy Requirements
	13.8 Elasticity Requirements
	13.9 Release Management Requirements
	13.10 Disaster Recovery Requirements

	14: Virtualized Infrastructure Measurement and Management
	14.1 Business Context for Infrastructure Service Quality Measurements
	14.2 Cloud Consumer Measurement Options
	14.3 Impairment Measurement Strategies
	14.3.1 Measurement of VM Failure
	14.3.2 Measurement of Nondelivery of Configured VM Capacity
	14.3.3 Measurement of Delivery of Degraded VM Capacity
	14.3.4 Measurement of Tail Latency
	14.3.5 Measurement of Clock Event Jitter
	14.3.6 Measurement of Clock Drift
	14.3.7 Measurement of Failed or Slow Allocation and Startup of VM Instance
	14.3.8 Measurements Summary

	14.4 Managing Virtualized Infrastructure Impairments
	14.4.1 Minimize Application’s Sensitivity to Infrastructure Impairments
	14.4.2 VM-Level Congestion Detection and Control
	14.4.3 Allocate More Virtual Resource Capacity
	14.4.4 Terminate Poorly Performing VM Instances
	14.4.5 Accept Degraded Performance
	14.4.6 Proactive Supplier Management
	14.4.7 Reset End Users’ Service Quality Expectations
	14.4.8 SLA Considerations
	14.4.9 Changing Cloud Service Providers

	15: Analysis of Cloud-Based Applications
	15.1 Reliability Block Diagrams and Side-by-Side Analysis
	15.2 IaaS Impairment Effects Analysis
	15.3 PaaS Failure Effects Analysis
	15.4 Workload Distribution Analysis
	15.4.1 Service Quality Analysis
	15.4.2 Overload Control Analysis

	15.5 Anti-Affinity Analysis
	15.6 Elasticity Analysis
	15.6.1 Service Capacity Growth Scenarios
	15.6.2 Service Capacity Growth Action Analysis
	15.6.3 Service Capacity Degrowth Action Analysis
	15.6.4 Storage Capacity Growth Scenarios
	15.6.5 Online Storage Capacity Growth Action Analysis
	15.6.6 Online Storage Capacity Degrowth Action Analysis

	15.7 Release Management Impact Effects Analysis
	15.7.1 Service Availability Impact
	15.7.2 Server Reliability Impact
	15.7.3 Service Accessibility Impact
	15.7.4 Service Retainability Impact
	15.7.5 Service Throughput Impact

	15.8 Recovery Point Objective Analysis
	15.9 Recovery Time Objective Analysis

	16: Testing Considerations
	16.1 Context for Testing
	16.2 Test Strategy
	16.2.1 Cloud Test Bed
	16.2.2 Application Capacity under Test
	16.2.3 Statistical Confidence
	16.2.4 Service Disruption Time

	16.3 Simulating Infrastructure Impairments
	16.4 Test Planning
	16.4.1 Service Reliability and Latency Testing
	16.4.2 Impaired Infrastructure Testing
	16.4.3 Robustness Testing
	16.4.4 Endurance/Stability Testing
	16.4.5 Application Elasticity Testing
	16.4.6 Upgrade Testing
	16.4.7 Disaster Recovery Testing
	16.4.8 Extreme Coresidency Testing
	16.4.9 PaaS Technology Component Testing
	16.4.10 Automated Regression Testing
	16.4.11 Canary Release Testing

	17: Connecting the Dots
	17.1 The Application Service Quality Challenge
	17.2 Redundancy and Robustness
	17.3 Design for Scalability
	17.4 Design for Extensibility
	17.5 Design for Failure
	17.6 Planning Considerations
	17.7 Evolving Traditional Applications
	17.7.1 Phase 0: Traditional Application
	17.7.2 Phase I: High Service Quality on Virtualized Infrastructure
	17.7.3 Phase II: Manual Application Elasticity
	17.7.4 Phase III: Automated Release Management
	17.7.5 Phase IV: Automated Application Elasticity
	17.7.6 Phase V: VM Migration

	17.8 Concluding Remarks

	Abbreviations
	References
	About the Authors
	Index

