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Praise for
Software Build Systems

“This book represents a thorough and extensive treatment of the software build
process including the choices, benefits, and challenges of a well designed build
process. I recommend it not only to all software build engineers but to all soft-
ware developers since a well designed build process is key to an effective soft-
ware development process.”

—Kevin Bodie, Director Software Development, Pitney Bowes Inc.

“An excellent and detailed explanation of build systems, an important but often

overlooked part of software development projects. The discussion of productiv-

ity as related to build systems is, alone, well worth the time spent reading this
book.”

—John M. Pantone, Objectech Corporation, VP,

IT Educator and Course Developer

“Peter Smith provides an interesting and accessible look into the world of soft-
ware build systems, distilling years of experience and covering virtually every
type of tool in the build engineer’s toolbox. Well organized, well written, and
very thorough; I would recommend this book to anyone with a build system
under their responsibility.”

—]Jeff Overbey, Project Co-Lead, Photran

“Software Build Systems teaches how to think about building software. It sur-

veys the tools and techniques for building software products and the ways things

go wrong. This book will appeal to those new to build systems as well as expe-
rienced build system engineers.”

—Monte Davidoff, Software Development Consultant,

Alluvial Software, Inc.
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Preface

Are you a software developer? Are you interested in how build systems work?
You’re reading this book; so there’s a good chance you answered “Yes” to both
questions. On the other hand, many software developers aren’t interested in
how their program is compiled. Most people just want to press a button and
have their source code turned into an executable program. If they need to fix a
bug, they change the source code and press the same button again. Their joy is
in seeing their program do all the exciting things it’s supposed to do. The build
system is just something that needs to be there in the background.

Anything more than a small collection of source files requires some type
of automated build system. This may be a shell script that you run after each
source code change, a makefile that knows the relationship between the source
and object files, or a more complex build framework that scales to thousands
of sourece files.

If you’ve developed code in a UNIX or Windows command-line environ-
ment, the following command should look familiar:

cc -o sorter main.c sort.c files.c tree.c merge.c

In this example, five C-language files are being compiled and linked to create
a single executable program, named sorter. This may be unfamiliar to those who
use an integrated development environment (IDE), but it’s essentially the same
as creating an IDE project with five source files and then pressing the build
button on the toolbar.

After you’ve compiled your program a few times, you’ll probably decide to
store this command in a shell script and rerun it any time you make a code
change. Alternatively, you can retrieve the command from your command-line
history and replay the sequence each time you modify the code.

If you have some basic knowledge of the Make tool, you can create yourself a
makefile and type make each time you need to rebuild. The advantage of Make
is that it rebuilds the program only if any of the source files changed since the
last compilation. Here’s a simple makefile for compiling the sorter example:

sorter: main.c sort.c files.c tree.c merge.c
cc -o sorter main.c sort.c files.c tree.c merge.c

XX1
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If you’re familiar with Make, you’ll immediately realize that this isn’t a good
way to write a makefile. The first mistake is that the source files are listed twice,
once for the dependency relationship and a second time in the compilation com-
mand. Next, all source files are compiled each time you rebuild the program,
even if they haven’t all been modified. Finally, there’s no mention of dependen-
cies that a C file may have on header files.

A better solution is to break up the compilation steps so that each source file
is compiled, and recompiled, independently of the others. Additionally, there
should be dependency files (with a suffix of .d) to track header file usage. The
list goes on, so rather than go into all the technical details, take a look at the
final makefile that does everything you need:

SOURCES = main.c sort.c files.c tree.c merge.c

OBJECTS = $ (SOURCES:.c=.0)

sorter: $(OBJECTS)
$(cc) -o se $°
-include $(SOURCES:.c=.d)

%$.d: %.c
@$ (CC) -MM $(CPPFLAGS) $< | sed ‘s#\(.*\)\.o: #\1l.o
w\1.d: #g’ > Se

That’s all there is to it—a simple makefile that does the bare-minimum
amount of work, with the least amount of repetition. Easy, right?

If you’re a developer and not a build expert, though, do you really under-
stand what’s going on in the previous example? A seasoned Make expert cer-
tainly understands the syntax and would probably suggest a more efficient way
of achieving the same result. However, most of us who just want a push-button
build are destined to waste a lot of time getting the makefile correct in the first
place.

Build systems tend to be complex to implement and maintain. A badly de-
signed build system can waste many hours if a file isn’t recompiled when it
should have been. When scaled to thousands of source files, a developer can
literally waste half a day tracking down a problem, only to find that starting the
build from scratch (removing all the object files) is the only way to make things
work. So much for a push-button build!
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Why Do Build Systems Become Complex?

You might be surprised to read that build systems can be complex and hard
to maintain. With graphical user interfaces so common these days, you’d ex-
pect build tools to be equally simple to use. Unfortunately, many see creating a
build system as a black art. Only a few knowledgeable gurus understand the full
syntax of the build tool or the subtleties in the dependency system. Although
IDE-based build tools go part of the way toward solving this problem, they can’t
support the complexities of a large-scale build system.

In most cases, a software product starts with a small number of source files
that are compiled and linked into a program. A simple makefile is sufficient in
this case, and these can be thrown together in a couple hours by copying the
makefile template from a user manual. For several months, nobody needs to
change this build system, aside from adding new source files or libraries.

After a while, people start to see problems in the build process. They notice
that files aren’t recompiled when they should be, or perhaps that files are incor-
rectly being recompiled when none of the data they depend on has changed. In
other cases, files may be compiled multiple times in the same build, leading to
slower build times. It quickly becomes part of the engineering culture to always
do a “clean build” (removing all object files first) or to modify files for the sole
purpose of making them recompile.

When this simple build system becomes painful to use, a makefile expert
needs to rethink the design. They might create a framework that solves all the
build problems, while keeping the implementation detail away from the end
users. For example, software developers want to have visibility into the list of
source files, libraries, and compilation flags being used, but they aren’t inter-
ested in how the dependencies are managed. For example:

SOURCES := main.c sort.c files.c tree.c merge.c
PROGRAM := sorter
LIBRARIES := libc libz

include framework.mk

The end goal is to have a correct and easy-to-use build system, while hiding
all the complexity inside the framework.mk file. This is an ideal solution for the
software developer who just wants a push-button build.
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This framework approach works efficiently for a while, although growing
pains start some time in the future. This is particularly true for a successful prod-
uct whose software grows over a number of years. The build system that worked
for a small-to-medium product no longer works when the product scales.

Consider how you’d integrate a new code module purchased from a third-
party vendor. The new code already has its own build system and uses a differ-
ent build framework than your original product. When developers modify the
code, they create interdependencies between this newly acquired code and your
existing code base, requiring the build system to understand the more complex
file relationships. The end result is that one or both of the build frameworks
requires significant rework—and possibly a complete rewrite.

As frameworks grow over time, maintaining them properly becomes chal-
lenging. In some cases, the original author of the framework is no longer avail-
able to make changes, so a nonguru steps in to perform the work. Developers
who lack sufficient build experience often use quick-and-dirty techniques to get
the software to build. As discussed later, these techniques include badly written
shell scripts, copious use of symbolic links, and, worst of all, duplicate copies of
source files. The build process becomes a rat’s nest of complexity that nobody is
comfortable maintaining.

It’s sad that many organizations don’t feel compelled to fix their build system.
If they’re experts in some other field (such as computer gaming, telecommuni-
cations, or business applications), their enthusiasm is directed toward creating
their product and adding new features to entice and excite their end customer.
The build system is viewed as a necessary part of the product life cycle, but
people don’t see it as their job to fix. The task certainly never appears in a com-
pany’s corporate objectives or quarterly feature plan.

As you’ll see throughout this book, plenty of issues must be considered when
designing a build system. It’s not just a matter of having a makefile guru on call
to help with problems. You should also keep the development environment in
a maintainable state. The time and money spent cleaning up a build system can
pay off many times when you consider a software team’s overall productivity.

The True Cost of a Build System

If you don’t already believe that a reliable build system is important, think about
the true cost. That is, what costs will you incur if you don’t have a good build
system? These aren’t numbers that appear on any accountant’s balance sheet;
they’re hidden inside the day-to-day productivity of software developers.
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One industry survey [1] found that developers perceived an average produc-
tivity loss of 12% due to build problems, although some of the respondents felt
that 20%-30% was not uncommon. It’s worth noting that this survey focused
on smaller development groups (with less than 20 people), who likely didn’t suf-
fer from the scalability problems encountered with much larger software.

Let’s start by assuming that all software developers in your team lose 10%
of their time to problems with the build system. Your reaction to this figure
will vary, based on your previous experience with software projects. For some
people, 10% may seem like an exaggerated figure, but for many groups, this is
on the low side.

What are the reasons for this 10% loss of productivity? Consider some typi-
cal problems your team has almost certainly experienced in the past:

¢ Bad dependencies causing false compile errors: The build system has some-
how acquired incorrect dependency information and is failing to recompile
parts of the source code correctly. When this happens, the developers focus
all their time on trying to complete a successful build. They’re faced with
cryptic error messages completely unrelated to the area of code they’ve
been changing. Until these are fixed, they’re unable to proceed with pro-
ductive work.

¢ Bad dependencies that create failed software images: As in the previous case,
bad dependencies cause parts of the build to compile incorrectly. However,
instead of giving a compilation error, the program no longer generates the
correct output. This simply gives the developer and software testers the im-
pression that the code is buggy, and they often blame themselves instead
of the build system. Developers waste a day or two trying to debug a test
failure, only to discover that their private code changes aren’t causing the
problem. Starting with a fresh build tree makes the problem go away.

¢ Slow compilation: This is more of a problem for larger software systems,
because smaller software can be built in a matter of minutes. If your soft-
ware code base requires many hours to compile, developers waste time
while they wait for the compilation to complete. This is particularly trou-
blesome for incremental builds in which changing a single source file can
result in a delay of 5-10 minutes before the program is ready to execute
again.

You may feel that people can productively do other work while they wait
for their compilation, but this isn’t always the case. Developers have many
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types of “waiting” activities, such as reading the latest news headlines,
updating social networking sites, getting more coffee, or going off to chat
with a friend. Even if a developer can multitask while the build completes,
the cost of context switching between the different tasks is a productivity
loss. Developers can get distracted and completely forget about one of the
tasks they were working on.

¢ Time spent updating build description files: If the software build frame-
work isn’t trivial to understand, developers may need to ask an expert to
make modifications. For example, if they need to add a new type of source
file or a new compilation tool, they must first engage in a discussion with
a build guru. This can take days of waiting while the build guru finds time
to help. After that, the build guru might need a few weeks to complete the
job.

If you now believe that a 10% productivity loss is a realistic number, what’s
the financial cost of this loss? The best way to evaluate this is to determine
10% of your organization’s salary payment. This clearly doesn’t apply if you’re
volunteering to write the software (as is commonly the case in the open-source
world), but the numbers are interesting all the same.

Assume that you have ten software engineers, each of which is paid $75,000
per year. This is high for some cities and low for others, so it’s worth evaluating
the numbers from your own perspective. An accountant would likely double this
estimate when considering the additional costs of employee medical benefits,
electricity, rent, parking, and other perks a developer enjoys. Assume, therefore,
that each developer costs $150,000 per year.

Thus, the total cost of paying your developers to deal with build
problems is
10% x US$150,000 per year x 10 developers = $150,000 per year

That’s equivalent to having a full-time developer sitting around for a whole
year without doing any productive work! If you assume 250 working days per
year, your company is paying $600 every day simply because of build problems!

If you were a software manager, what would you consider to be more profit-
able? Continuing to pay $600 per day for your team to waste time, or paying
$600 per day for a few months to hire a new build guru to fix your problems?
It’s definitely worth considering what your own organization is doing. Remem-
ber, a company can make a profit in two ways: either by increasing revenue by
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selling more of the product, or by reducing the cost associated with creating the
product in the first place.

The Focus of This Book

You should spend time reading this book for two reasons:

¢ To understand the basic principles underlying a build system: This book
provides an end-to-end survey of build system features and usage scenari-
0s, giving you an understanding of how a build tool performs its work.

¢ To gather more experience about build systems: This book encapsulates
years of experience in creating and maintaining build systems, using many
different build tools. After reading this book, you can avoid making the
same trial-and-error mistakes that previous build system developers have
made.

Armed with such knowledge, you can make well-informed choices on which
build tool to use, how to construct a reliable build system, and how to foresee
traps and pitfalls before they impact your productivity. The outcome is that
building software should get faster, easier, and more reliable.

It’s also important to note what this book does not attempt to address:

¢ Not a hands-on tutorial: Except for a few small examples (such as those
in Chapter 2, “A Make-Based Build System”), this book doesn’t provide
a hands-on tutorial on any particular build tool or technology. Popular
build tools already have web sites and books devoted to teaching you every
syntactic and semantic detail you’ll ever need. Refer to those books for the
finer details of each tool.

¢ Doesn’t show a fully functional build system: Although this book contains
a number of examples on how to use each build tool, and many supporting
tools, it doesn’t demonstrate the end-to-end creation of a full build system.
Again, you should refer to each build tool’s documentation to see fully
worked-out examples.

Of course, read this book first so that you understand the pros and cons of
each build tool and can judge for yourself which features your build system
should use.
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Instead of staying specific to a single development environment or program-
ming language, this book offers examples and concepts from a variety of differ-
ent angles:

¢ C/C++ builds: This is perhaps the most traditional type of build process.
This style of building originated in the 1970s and hasn’t changed much
since then. The only recent challenge is the growth in the number of files
and third-party libraries that are now used in a typical software product.

¢ Java builds: The Java language became popular in the late 1990s and has
had a considerable impact on the design of build systems. As one example,
Java source files must be stored in a directory hierarchy that matches the
software package structure.

e C# builds: Whereas C, C++, and Java are platform-neutral programming
languages and can thus be used on any operating system (such as Linux,
Solaris, Mac OS X, and Windows), the C# build environment is more tai-
lored toward the Microsoft way of doing things.

In addition to covering multiple programming languages, this book discusses
two different approaches to constructing large software products:

¢ Monolithic builds: In this approach, the entire code base is compiled from
source code into an executable program in a single build process. This is a
common approach for small programs, but it doesn’t scale well because it
leads to large source trees and long compilation times.

e Component builds: In contrast to monolithic builds, this approach breaks
the source code into multiple stages, each compiled separately. The final
step is to integrate the various prebuilt components, to produce the final
executable program.

Finally, this book goes beyond the common assumptions that Make is the
primary tool of choice for C/C++ development and that all Java and C# software
should be built inside an IDE.

Who Should Read This Book?

This book was written with several audiences in mind, although the primary
focus is software developers:
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e Developers: If you’re a software developer with years of experience writing
source code but only minimal experience with build systems, you can learn
about the issues involved in constructing and maintaining a build system.
You can also study the different tools that describe the build process.

¢ Managers: From this book, you can learn the concepts and tricks-of-the-
trade at a fairly high level instead of seeing too much of the complex detail.
This enables you to evaluate the work your team is doing, and ask the ap-
propriate “direction-setting” questions.

¢ Build gurus: Even with years of experience in constructing build systems,
you can expect to learn new things. Not only will you be exposed to mod-
ern build tools that you may never have used, but the discussions on scal-
ability and performance of large build systems will make you think twice
when you start to write your next build framework.

How This Book Is Organized

This book is divided into four main parts, each looking at build systems from a
slightly different angle. Depending on your experience and level of interest, you
might choose to focus on different parts of the book. Novice developers should
focus on Parts I and II, whereas more experienced users should skim through
Part I but focus their attention on Parts II, III, and IV.

Part I: The Basics

This first part provides a gentle introduction to build systems, for software de-
velopers who haven’t had much exposure to the topic. Even advanced users
should skim these chapters to ensure that they have a complete picture of the
basic concepts. For example, C/C++ developers can learn new things about the
C# language.

Chapter 1, “Build System Overview,” provides an introduction to high-level
build system concepts such as source and object trees, build tools, and compila-
tion tools. Chapter 2, “A Make-Based Build System,” provides a quick tutorial
on writing a makefile, for those who have never done so. Chapter 3, “The Runtime
View of a Program,” describes the structure of a program as it executes on a
computer, with the goal of describing what a build system needs to construct.
Chapter 4, “File Types and Compilation Tools,” goes into detail on the differ-
ent types of input and output file used in the build process and uses examples
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in the C/C++, Java, and C# languages. Chapter 5, “Subtargets and Build Vari-
ants,” describes the basic idea behind build variants, which later chapters cover
in more detail.

After reading Part I, you’ll have a good understanding of the basic concepts
surrounding the design of build systems.

Part II: The Build Tools

The second part of this book compares five build tools. Each tool was selected
both because of its popularity and because it demonstrates a particular way of
building software. Each chapter starts with an introduction to the syntax of
the build tool and then describes the tool’s main usage scenarios. To provide a
meaningful comparison, a standard set of examples is used across all chapters.

Chapter 6, “Make,” discusses the GNU Make tool, which is the most com-
mon tool for C/C++ development. Chapter 7, “Ant,” examines the Ant build
tool, which is the de facto standard for compiling Java. Chapter 8, “SCons,” in-
vestigates the more recent SCons build tool, which uses the Python language to
describe the build process. Chapter 9, “CMake,” shows the CMake tool, which
generates a native build system (such as a Make-based system) from a high-level
description of the build process. Finally, Chapter 10, “Eclipse,” describes the
build-related features of the Eclipse IDE.

After reading Part II, you’ll have an appreciation for the state of the art in
build tools and will understand the pros and cons of using each.

Part III: Advanced Concepts

The third part discusses more advanced build system concepts, such as depend-
ency analysis, software packaging and installation, version management, and
the management of build machines and compilation tools. These chapters as-
sume that you’ve had experience working on nontrivial software projects and
can therefore relate to the issues discussed.

Chapter 11, “Dependencies,” goes into detail on various dependency-check-
ing techniques that discover whether a file must be recompiled. Chapter 12,
“Building with Metadata,” shows how a build system can generate metadata
to aid with debugging, profiling, and source code documentation. Chapter 13,
“Software Packaging and Installation,” provides simple examples of packaging
the software and getting ready to install it on the target machine. Chapter 14,
“Version Management,” surveys version-control issues as they relate to build
systems. Chapter 15, “Build Machines,” provides best practices for managing
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the build machine on which the software is compiled. Chapter 16, “Tool Man-
agement,” provides a similar discussion for compilation tools.

After reading Part III, youw’ll understand many of the advanced topics in-
volved in constructing a build system and a number of best practices.

Part IV: Scaling Up

The final part of this book discusses the design of build systems for large soft-
ware products. As a software product grows in size, it faces scalability problems,
such as an increase in complexity, a dramatic increase in disk usage, and an
increase in build times. All these problems tend to make software development
less productive.

Chapter 17, “Reducing Complexity for End Users,” provides approaches for
reducing the complexity of a build system, as perceived by the end user. Chap-
ter 18, “Managing Build Size,” describes how a large software product can be
divided into multiple components to make development more efficient. Finally,
Chapter 19, “Faster Builds,” discusses techniques for measuring and improving
the time taken to perform a software build.

After reading Part IV, you’ll have a better appreciation of how you should
design your small-scale build system, in case it ends up becoming much larger.

Summary

A good-quality build system isn’t easy to construct, and failure to do so causes
significant problems for your software team. If source code isn’t recompiled
when it should be, your team members will face longer build times or random
build failures. They may also waste days debugging an invalid software image.
It’s worth putting in the time to make sure your build system is doing the cor-
rect thing,.

The true cost of using a poor quality build system can be measured in mon-
etary terms. A typical software organization might find that developers waste
10% of their time with build problems, which translates into large sums of
money wasted each year.

This book explains a number of build system concepts, introduces you to a
range of commonly available build tools, provides a number of best practices,
and discusses the issues surrounding the construction and maintenance of large
build systems.
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PART I

The Basics

Part I provides a gentle introduction to the concepts used in software build
systems. This part starts with a high-level view of the various stages of
the build process, describes what a build system aims to create, shows the
various input and output files used during compilation, and introduces the
concepts of build targets and variants. You’ll explore these topics:

¢ Chapter 1, “Build System Overview”: A brief tour of the major com-
ponents of a build system, including a number of important defini-
tions that you need for later chapters.

e Chapter 2, “A Make-Based Build System”: A short tutorial on using
the GNU Make build tool, for those who’ve never been exposed to a
text-based build system.

e Chapter 3, “The Runtime View of a Program”: The many ways in
which a program can be loaded into a computer and executed. A
software build system must create the executable programs, libraries,
and data files that are loaded into memory.

e Chapter 4, “File Types and Compilation Tools”: The tools used to
compile C/C++, Java, and C# source code. These compilation tools
are the building blocks of a complete build system.

e Chapter 5, “Subtargets and Build Variants”: The approach taken
when building software for multiple target CPUs or creating multiple
editions of the product.



Although Part I provides an introduction to build systems and their purpose,
this book doesn’t discuss build tools until Part II; there you more deeply im-
merse yourself in studying GNU Make, Ant, SCons, CMake, and the Eclipse
builders. By the time you finish reading Part I, you’ll be in a good position to
evaluate each of these build tools.



Chapter 1

Build System Overview

This first chapter provides a complete overview of software build systems. Be-
fore diving into the details of how a build system works, it’s important to un-
derstand the high-level process of building software. This chapter also acts as a
roadmap for the rest of the book.

The most common goal of a build system is to translate human-readable
source code into an executable program. In addition, build systems support
the packaging of web-based applications, the generation of documentation, the
automatic analysis of source code, and many related activities. Although the
exact details of this process vary for each programming language and for each
operating system, the basic concepts are universal.

This chapter starts with an end-to-end view of a few common build sys-
tem scenarios. You then get an introduction to some of the high-level concepts
involved; later chapters cover the finer details of each topic. By the end of this
chapter, you’ll understand each of the main steps in the build process, along
with the common build-related concepts and terminology.

What Is a Build System?

With such a wide range of programming languages and development environ-
ments, no single model can represent all possible build systems. A build system
can manage any type of activity that involves translating one form of data (the
input) into another form of data (the output). This discussion focuses on con-
structing software, hence the emphasis on software build systems.

In any software development environment, you’re likely to encounter the fol-
lowing build-related scenarios:

3
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e The compilation of software written in traditional compiled languages,
such as C and C++. This can be extended to include newer languages such
as Java and C#.

e The packaging and testing of software written in interpreted languages
such as Perl and Python.

¢ The compilation and packaging of web-based applications. These include
static HTML pages, source code written in Java or C#, hybrid files writ-
ten using JSP (JavaServer Pages), ASP (Active Server Pages), or PHP (PHP:
Hypertext Preprocessor) syntax, along with numerous types of configura-
tion file.

e The execution of unit tests to validate small portions of the software in
isolation from the rest of the code.

¢ The execution of static analysis tools to identify bugs in a program’s source
code. The output from this build system is a bug report document rather
than an executable program.

¢ The generation of PDF or HTML documentation. This type of build sys-
tem consumes input files in a range of different formats but generates hu-
man-readable documentation as the output.

Of course, this list isn’t exhaustive, and you can probably think of many
other uses for a build system. To simplify the discussion, this book focuses pri-
marily on the traditional model of compiled languages. It’s important to note
that many of the build system concepts are the same, no matter what you’re
building.

Compiled Languages

Figure 1.1 depicts the high-level view of a traditional build system for compiled
languages such as C, C++, Java, and C#. In this model, source files are com-
piled into object files, which are then linked into code libraries or executable
programs. The resulting files are collected into a release package that can be
installed on a target machine. This model should be quite familiar to software
developers.
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Figure 1.1 Overview of a traditional build system for compiled languages.

The key components of Figure 1.1 are listed here:

¢ Version-control tool: A tool that stores the program’s source code and
enables multiple developers to make concurrent changes to the code base.
It also facilitates the retrieval of historical versions of the code. Common
examples of a version-control tool include CVS [2], Subversion [3], Git [4],

and ClearCase [5].

¢ Source trees and object trees: The set of source files and compiled object
files that a particular developer works with. Developers can make their
own private changes in these trees, without impacting other people.

¢ Compilation tools: The tools that take input files and generate output files
(for example, converting source code files into object code and executable
programs). Common examples of compilation tools include a C or Java
compiler, but they also include documentation and unit test generators.

¢ Build machines: The computing equipment on which the compilation tools
are executed.

¢ Release packaging and target machines: The method by which the soft-
ware is packaged, distributed to end users, and then installed on the target
machine.

Each of these topics is discussed in more detail, both later in this chapter and
later in this book. Many of these topics are so detailed that they warrant a full
chapter of their own.
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Interpreted Languages

For interpreted languages, the build system model is slightly different (see
Figure 1.2).

Source Rel
Tree Package
| Compilation Tools Target Machine

| Build Machine |

Figure 1.2 Overview of a build system for interpreted languages.

Interpreted source code isn’t compiled into object code, so there’s no need
for an object tree. Instead, the source files themselves are collected into a release
package, ready to be installed on the target machine. If compilation tools are
required in this type of build system, which they often are, their focus is on
transforming source files and storing them in the release package. Compilation
into machine code is not performed at build time, even though it may happen
at runtime.

Web-Based Applications

The build system for a web-based application is a mix of compiled code, inter-
preted code, and configuration or data files. As Figure 1.3 shows, some files
(such as HTML files) are copied directly from the source tree to the release
package, whereas others (such as Java source files) are first compiled into ob-
ject code. In addition, both the web application server and the end user’s web
browser play a role in interpreting or compiling code, but that’s beyond the
scope of this build system.
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Figure 1.3 Overview of a build system for web-based software.

A typical web application deals with many of the following file types:

Static HTML files, containing nothing more than marked-up data to be
displayed in a web browser. These files are copied directly to the release
package.

JavaScript files containing code to be interpreted by an end user’s web
browser. These files are also copied directly to the release package.

JSP, ASP, or PHP pages, containing a mix of HTML and program code.
These files are compiled and executed by the web application server rather
than by the build system. These files are also copied to the release package,
ready for installation on the web server.

Java source files to be compiled into object code and packaged as part of
the web application. The build system performs this transformation before
packaging the Java class files. The Java classes are executed on the web
application server or even within the web browser (using a Java applet).

Of course, there’s no reason that the build system can’t autogenerate some of
these HTML, JavaScript, or JSP/ASP/PHP files (from other input file formats).
Many compilation steps might take place before the output is finally copied to
the release package.

Unit Testing

The build system for a unit testing environment is simply an extension of the
models already discussed. Instead of producing a release package to be installed
on the target machine, the build system produces a number of smaller unit test
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suites. Each suite is executed on the target machine and produces a “pass” or
“fail” result to indicate whether the software behaved as expected.

Figure 1.4 shows how the traditional compiled language build system (shown
in Figure 1.1) can be extended to generate unit tests rather than a standard
release package.

ANAN=
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Figure 1.4 Overview of a build system that generates unit tests.

For interpreted languages (see Figure 1.2) and web-based applications (see
Figure 1.3), a similar unit test build system can be created. In fact, a unit test
build system is simply a variant of a standard build system. Chapter 12, “Build-
ing with Metadata,” discusses unit testing in more detail.

Static Analysis

Figure 1.5 shows a build system that performs static analysis. A static analy-
sis tool, such as Coverity Prevent [6], Klocwork Insight [7], and FindBugs [8],
examines a program’s source code with the goal of identifying potential bugs.
The analysis is done statically (at build time) instead of the more common
approach of executing the software to see if it behaves correctly.
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Figure 1.5 Overview of a build system for static analysis.

The input to a static analysis system is the same source code used in a regular
build system. However, instead of generating an object tree and release pack-
age, the output is some type of defect report document (often in text or HTML
format). Chapter 12 discusses static analysis in more detail.

Documentation Generation

The final build system scenario considers the generation of human-readable
documentation, as shown in Figure 1.6.

KhEn—

Source Object Document
Tree Tree
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Figure 1.6 Overview of a build system for generating documentation.

The output from this build system is a PDF file, a collection of HTML pages
and graphic images, or anything else that could be considered documentation.
Generating documentation might also include a number of intermediate data
files, so the concept of an object tree still applies. No target machine is men-
tioned in this case, although, technically, the document would need to be viewed
in some way, whether via a printer, a web browser, or a PDF viewer.
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In summary, a build system can be used for many different purposes. This
book focuses more on build systems for traditional compiled languages, although
the concepts are the same for other scenarios.

The important point to understand for now is the process by which a build
system operates. Although Figures 1.1-1.6 don’t show it, a build tool is used to
orchestrate the entire build process. Common build tools include GNU Make,
Ant, SCons, CMake, and the Eclipse builders; Part II, “The Build Tools,” dis-
cusses each one.

Components of a Build System

Now that you’ve seen the high-level view of a software build system, you can dig
deeper in each of the main sections. Later chapters cover many of these topics,
so for now you’ll cover only the basics.

Version-Control Tools

Although you won’t explore version-control systems until Chapter 14, “Version
Management,” a version-control tool is the first component of a build system.
Before any software can be compiled, the developers must obtain a private copy
of the source code. As part of their assigned work (fixing a bug or adding a new
feature), each developer changes the appropriate source files and then triggers
the build system to compile the software.

Version-control tools enable you to perform a number of operations:

¢ Obtain a copy of the source code, ready for private modifications to be
made.

¢ Control check-ins or commits so that private changes can be made avail-
able for other developers to use.

¢ Facilitate the creation of multiple code streams to manage the development
and maintenance of different versions of the same product.

¢ Control access to files so that only authorized developers can change cer-
tain source files.

¢ Enable a developer to view older (historical) versions of each source file,
even if newer revisions have superseded them.



COMPONENTS OF A BUILD SYSTEM

This isn’t a book about version control, so it doesn’t discuss specific version-
control tools. However, Chapter 14 focuses extensively on the many ways in
which the build system must interact with a version-control tool. There you’ll
consider which files should or shouldn’t be kept under version control, and you
explore the use and management of version numbers.

The next section focuses more on the source code stored within the version-
control system.

Source and Object Trees

As you might expect, a program’s source code is stored as a number of disk files.
This arrangement of the files into different directories (or folders, in Windows
terminology) is known as the source tree. The way in which the source code is
structured within the source tree has a significant impact on the design of the
build system.

The structure of the source tree often reflects the architecture of the software.
Figure 1.7 illustrates how the source code files for a Microsoft Windows-based
accounting application can be stored, based on the various major components
of the system.

Notice that each directory contains a file named Makefile. The implication
here is that you use Make to build the software, which is common only for
older Windows applications. The build description files (known as makefiles)
are stored in the same directory as the source files they describe. This isn’t the
only way to store the build description, but it does make it easy to locate the
parts of the build system that deal with the files in each directory.

Alongside the source tree is the object tree (see Figure 1.8). Although it’s
entirely possible to store object files in the same directory as the source files, it’s
often considered a messy approach (as you see in later chapters). You should
instead create a separate tree hierarchy that stores any object files or executable
programs constructed by the build process. Notice that Figure 1.8 contains not
only object files, but also the final executable program (accounting.exe).

11
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Although a small program such as this accounting application could be stored
inside a single source code file, this is unrealistic for larger programs. Several
important considerations call for dividing a program into multiple source files
and then placing those files into different directories on the disk:

¢ Comprehension: Conceptually, people find it easier to think about pro-

grams when they’re divided into logical subsections. This is the basic
premise of object-oriented programming, in which people can think about
the program as a collection of different classes. Each class must have both
an external behavior that programmers can keep fresh in their minds and
an internal implementation that hides the complexity of the class away
from view. In a build system, therefore, it’s best to divide the source code
into multiple sections, each encapsulating a specific area of the program’s
functionality.

Source code control: When a program’s source code is spread across mul-
tiple files and directories, it becomes easier to manage them with a source
code control tool. Conversely, if the entire program was stored inside a
single disk file, it would be challenging for different developers to submit
code changes without constantly stepping on each other’s work.

Performance: Development tools such as editors and compilers perform
much more efficiently with smaller units of work. Although these tools are
capable of dealing with source files that are megabytes in size, they do so
inefficiently.
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Throughout this book, you’ll learn more about the design and construction
of source and object trees.

Compilation Tools and Build Tools

When developers have a source tree to work with, they must have some way to
translate the human-readable source files into the machine-readable executable
program. A compilation tool is a program that reads input files and translates
them into output files. This might sound like a generic statement, but there’s no
limit to the type of data translation these tools could undertake.

The following are common examples of compilation tools:

¢ C compiler: Reads human-written C language source files and produces
object files that contain a machine code translation of that same program.
In this scenario, the output from the compilation tool should be function-
ally equivalent to the input, although closer to what the target machine
can understand.

¢ Linker: Joins a number of different object files to produce a single execut-
able program image. In this case, the object files are the input to the linker
tool, but in the previous build step, they were the output from a compiler.
In this example, it makes more sense to talk about input and output files
than source and object files.

¢ UML-based code generator: Reads a UML model file as input and pro-
duces an equivalent program written in a general-purpose programming
language such as Java, C++, or C#.

e Documentation generator: Reads a human-written file written in a mark-
up language and generates a PDF file (or similar) as output.

¢ Command-line tool for making a new directory: Creates a new directory
on the file system (for example, using the UNIX mkdir command). In this
scenario, the name of the new directory is the only input data provided.

At this point, it’s worth noting the distinction between a compiler and a com-
pilation tool. A compiler typically translates high-level programming language
source code into object code, which is the first of the previous examples given.
However, a compilation tool is defined as any tool that translates input data to
output data.

In contrast, a build tool is a program that functions at a level above compila-
tion tools. That is, it must have sufficient knowledge of the relationship between
source files and object files that it can orchestrate the entire build process. The
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build tool calls upon the necessary compilation tools to produce the final build
output.

This book takes care to distinguish between compilation tools and build
tools. Both play a critical role in creating a good build system, but they do so
in different ways. Chapter 4, “File Types and Compilation Tools,” looks at a
number of compilation tools (such as gcc and javac) and explores how they
manipulate the various types of files in the source and object trees. Chapter 16,
“Tool Management,” discusses some best practices for managing compilation
tools over the lifetime of the software. Part II looks in more detail at build tools
(Make, Ant, SCons, CMake, and the Eclipse builders) that orchestrate the entire
build process.

Build Machines

It may not appear so at first, but the machine on which the compilation and
build tools execute plays a vital role in the management of a build system. Each
of the tools must be capable of executing on the build machine, even though the
underlying machine hardware and operating system might change over time. As
you’ll learn in Chapter 15, “Build Machines,”
management of build machines, particularly when you need to reproduce older
versions of software or to provide a uniform environment in which different
developers can compile the same source code.

You must also consider whether the software itself is being compiled and exe-
cuted on the same type of machine or whether the software is destined to run in
a completely different environment (CPU type and operating system). Figure 1.9
illustrates both a native compilation environment and a cross-compilation envi-
ronment. In the native case, the software is executed on a target machine that’s
identical to the build machine; the cross-compilation case requires two different
machines, with a different operating system or CPU on the target machine.

numerous issues surround the
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Figure 1.9 Native compilation versus cross-compilation.

You’ll learn more about native and cross-compilation environments in Chap-
ter 15, which studies build machines in more detail.

Release Packaging and Target Machines

Although much of a build tool’s work focuses on generating object files and
executable programs, the final packaging step produces something that you can
actually install on a user’s machine. It’s not realistic to hand novice users a
number of executable programs and data files and expect them to install and
configure them by hand. Instead, you need to provide a single file that they can
download, or a single CD or DVD that they can insert into their computer’s
CD-ROM drive. For software written for the home consumer market, the in-
stallation process should involve nothing more than double-clicking an icon and
answering a few basic questions.

The final step of a build process is therefore to extract the relevant files from
the source and object trees and store them in a release package. If at all possi-
ble, the release package should be a single disk file and should be compressed,
to reduce the amount of time it takes to download or the number of DVDs
required. Additionally, any nonessential debug information should be removed
so that it doesn’t clutter the software’s installation.

Chapter 13, “Software Packaging and Installation,” examines three common
ways of packaging and installing software:

15
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e Archive files: This is the most straightforward approach, with files com-
pressed and joined into a single disk file. The end user must perform the
reverse operation to install the software.

¢ Package-management tools: These are common in UNIX-like environ-
ments where complete software packages are downloaded from the Inter-
net and installed as an optional part of the operating system. Installation is
a one-step process, and any prerequisite packages are installed at the same
time. Common examples include .rpm and .deb package files.

¢ Custom-built GUI installation tools: These are familiar to anyone who
has installed software on the Microsoft Windows operating system. The
installation process is started by double-clicking an icon, and the end user
interacts with a custom-built GUI to install the software.

One final option, which isn’t discussed in detail here, is that the software
may be partially installed yet partially accessed at runtime. A portion of the
software is installed on the end user’s computer, but the rest of the code and
data is accessed when the program is running. Common examples include video
games in which graphic images, movies, and sound files are loaded off the DVD
whenever they are required, but are never stored on the target machine’s hard
disk. Additionally, tools such as Google Earth [9] require that a client program
be installed, but the rest of the data is downloaded from the Internet when
required.

The generation of a release package marks the end of the software build proc-
ess. The next section considers how this process is implemented within a build
tool.

The Build Process and Build Description

Now that you’ve covered each part of the build system at a high level, take a
brief look at a couple of examples. In Figure 1.10, you can see the process by
which the build tool invokes each of the compilation tools to get the job done
(using the traditional compiled languages model shown in Figure 1.1). This end-
to-end sequence of events is known as the build process.
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Figure 1.10 Overview of a build system for compiled languages.

Although it’s easy for humans to visualize this process in the form of a dia-
gram, a build tool needs the build description to be written in a text-based
format. For example, when using Make, the interfile dependency information
is specified in the form of rules, which are stored in a file named Makefile. In
contrast, the SCons build tool uses Python-language functions to describe the
compilation steps; it keeps this information in a file named SConstruct.

To illustrate, the following SCons build description file states that the stock
program should be generated by compiling the source files, ticker.c and

currency.c.
Program("stock", ["ticker.c", "currency.c"])

In this case, SCons uses the default C compiler to create ticker.o and
currency.o, even though the build description does not explicitly state that
step. It then links those object files into the final executable program, stock.
Figure 1.11 shows the equivalent diagram, to help you visualize the individual
steps in the process:
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Compilation

ticker.o Linking

e

ticker.c

Y

Compilation
currency.c >»| currency.o

Figure 1.11 Overview of a SCons-based build process.

Because the example stock program consists of only a small number of source
files, the build description remains simple and fits nicely into a single text file.
For larger programs (with thousands of source files in the code base), the build
description may consist of hundreds of small files that work together to capture
the build recipe for the entire program.

From a software developer’s perspective, the text-based build description is
at the heart of the whole build process. Every build tool has its own syntax for
describing the build process, including file dependencies and compilation com-
mands. You’ll learn more about these build description languages in Part II.

How a Build System Is Used

In a software development organization, three different types of software build
are commonly performed. Each uses the same build system, but the end purpose

of the build is different:

¢ Developer (or private) build: The developer has checked out the source
code from version control and is building the software in a private work-
space. The resulting release package will be used for the developer’s pri-
vate development instead of being shared with other people. The developer
makes source code changes many times a day, incrementally recompiling
the software each time.

¢ Release build: One or more people, known as release engineers, are
assigned to perform release builds. The sole purpose is to provide a com-
plete software package for the test group to validate. When the testers are
convinced that the software is of high enough quality, that same package
is made available to customers. The source tree used for a release build is
compiled only once, and the source tree is never modified.
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e Sanity build: This is similar to a release build, except that the software
package isn’t destined for a customer. Instead, the build process deter-
mines whether the current source code in the version-control system is
“sane”—that is, whether the software build is free of errors and passes a
basic set of sanity tests. This type of build can occur many times per day
and tends to be fully automated. Many developers use the terms daily
build or nightly build to describe this scenario.

As you can see, the key distinction among these three scenarios is how the
build system is used—how often it’s invoked and how the final program image
is used. For the purposes of this book, the upcoming chapters don’t discuss these
topics in much detail, unless there’s a need to distinguish how the build system
accommodates each type of user.

Build-Management Tools

The use of build-management tools has increased in recent years. Given the
focus of this book, a build-management tool should be viewed as an extra layer
of management on top of an existing build system rather than as part of the
build system itself. Figure 1.12 illustrates the distinction.

I Build-Management Tool |

Source Object Release E
Tree Tree Package ‘:‘
= E

| Compilation Tools

Target Machine

| Build Machine |

Figure 1.12 The use of a build-management tool, to oversee the use of a build system.

The build-management tool communicates with the version-control tool to
check out a build tree, calls upon the build system to compile the software,
and then informs the developer when the build is complete. Depending on your
perspective, you may view a build-management tool as just another part of the
build system, but this book keeps them separate.
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A good build-management tool provides the following features:

¢ Checks out and builds a source tree on a predetermined schedule, or sim-
ply when new code has been committed.

¢ Provides a queuing mechanism so that multiple build jobs can share a pool
of build machines. When a sufficient number of machines are available,
the next job is started.

¢ Sends email notification messages to various groups of users (when the
build starts, completes, succeeds, or fails).

¢ Provides a graphical user interface to show when builds took place and
whether they failed or succeeded.

® Manages version numbers, incrementing them after each successful build.

¢ Stores the final software package in an archive directory, ready for testers
to use.

e Starts executing sanity tests on any successful build.

e Can identify which developers are on the “guilty list” of people who may
have recently checked in bad code.

A build-management tool is vital for any software projects that have more
than a few developers. A number of tools are available, either commercially
developed and supported or from the open-source world. Some of these com-
mon tools include Build Forge [10], ElectricCommander [11], CruiseControl
[12], and Hudson [13]. With the wide range of tools available, you can easily
find something that meets your needs, and you won’t need to implement your
own build-management solution.

Aside from this brief introduction to build-management tools, this book
doesn’t cover the topic in any detail. Instead, it focuses on all the build system
functionality below the build-management tool (see Figure 1.12). For a good
overview of build management and the concepts of continuous integration, refer
to [14].



SUMMARY

Build System Quality

As with any software-related topic, a number of system attributes define wheth-
er it’s perceived as high quality, low quality, or somewhere in between. Accord-
ing to one build tool expert [15], a good build system should have the following
characteristics:

¢ Convenience: The tool and the description files should be easy to use and
should not place too much burden on the software developers who need to
use them. The developer should focus on writing source code rather than
dealing with the complexities of the build tool.

¢ Correctness: The build tool should always compile/link the correct files,
using the correct compiler options. When it matters, the tool should com-
pile the files in the correct order so that the final executable program
always reflects the content of the source files.

¢ Performance: In an ideal world, the build process would complete without
any noticeable delay. Realistically, though, it must perform as fast as pos-
sible for the computing equipment it’s running on.

e Scalability: The build tool must be convenient, provide correct release im-
ages, and perform well, even when the tool is building a large program (for
example, with thousands of source files). Part IV, “Scaling Up,” discusses
this topic of scalability.

The rest of this book spends a lot of time examining both good and bad ways
to create a build process, and the pros and cons of using a range of different
build tools. The book makes a special effort to consider these four characteris-
tics, because they’re important in the operation of a build system.

Summary

This chapter offered a high-level overview of a complete build system and
introduced the terminology for describing the steps in an end-to-end build proc-
ess. Due to the wide range of build-related applications, there is no single type
of build system.

The first step in a build system is usually to store and control access to the
source code using a version-control tool. Next, you make source code changes
in a source tree and generate the object files into the corresponding object tree.
This depends on whether you’re compiling source code or working with an
interpreted language.
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A build tool handles the end-to-end management of the build process. These
build tools orchestrate the use of compilation tools to generate object files from
source files (or whatever makes sense for the file types being used). Each of these
tools must execute on the build machine.

The end product of the build system is called a release package. This is usu-
ally an archive file or an installation program that’s capable of installing the
software on the target machine. In some cases, the output of the build system is
a documentation file rather than an executable file.

For the build tool to understand the details of the build process, you must cre-
ate a suitable text-based file known as a build description. For example, with the
SCons tool, the build description must be written in the Python programming
language and stored in a file named sconstruct.



Chapter 2

A Make-Based Build System

One of this book’s key assumptions is that you already have experience in de-
veloping software. However, this doesn’t mean that you have experience writ-
ing your own build system, or even understanding an existing system. Many
developers work on projects in which other people create and maintain the build
system, or perhaps use an integrated development environment (IDE) to build
at the push of a button. In either of these cases, you may not see the underlying
build system.

This chapter introduces a build system for a small C-language program with
only five source files. The build system is implemented using GNU Make [16]
syntax, not only because it’s an extremely popular tool, but also because Make
syntax helps you understand the fundamental concepts underlying any build
system.

If you’ve never written a makefile, take the time to study this example before
moving to the more advanced concepts. Many of this book’s examples use Make
syntax, so understanding these concepts is important.

If you’re already experienced with makefile syntax, feel free to skip forward
to the next chapter. Chapter 6, “Make,” presents more advanced details of the
GNU Make tool.

Calculator Example

This chapter uses a simple calculator program as its running example. You don’t
need to understand how the program works, other than knowing that it contains
five C-language source files: Four are .c files (add.c, calc.c, mult.c, and
sub.c), and the fifth is a .h file (numbers.h). In the C language, files with a .c
suffix contain the main body of the source code, whereas files ending with .h
provide type, variable, and function definitions to be shared by all . c files. Every-
thing is then linked together into a single executable program, named calculator.

23
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Here’s the content of the source code directory, before anything is compiled:

S 1s
add.c calc.c mult.c numbers.h sub.c

Figure 2.1 shows a corresponding source tree diagram, with all files in the
same directory. Source trees are a fundamental part of a build system, so you’ll
see many of these diagrams throughout this book. As you can imagine, the build
system for this program is one of the simplest you can create, other than the
standard “Hello World” program.

Bsre
[l add e
Bl cate o
Bl rowate
Bl mumbsers b
Bl aubs e

Figure 2.1 The source tree for a simple calculator example.

In the C programming language, each .c file is compiled into a single object
file containing the compiled machine code instructions (.o suffix in UNIX-like
systems, or .obj in Window systems). With four different .c files, you can
expect four different compilation commands, each producing a unique .o file.
You’ll use the GNU C Compiler [17], commonly known as GCC, with all exam-
ples performed in a UNIX environment.

$ gcc -g -c add.c
$ gcc -g -c calc.c
$ gcc -g -c mult.c
$ gcc -g -c sub.c

In each gcc command, the —c option requests that an object file be created,
with the -g option requesting that debugging be enabled. You’ll learn more
about GCC in Chapter 4, “File Types and Compilation Tools.”

The source code directory now contains a few more files:

S 1s
add.c calc.c mult.c numbers.h sub.o
add.o calc.o mult.o sub.c

If you look carefully, you see that each . ¢ file has a corresponding . o file. Note
that numbers.h doesn’t have an object file; instead, it was included (imported)
by the add.c, calc.c, mult.c, and sub.c files. In build system terminology,
each of the . c files is dependent on numbers . h.



CALCULATOR EXAMPLE

To build the final calculator program, these .o files are linked together into
a single executable file.

$ gcc -g -o calculator add.o calc.o mult.o sub.o

S 1s
add.c calc.c calculator mult.o sub.c
add.o calc.o mult.c numbers.h sub.o

That completes the entire process of building the calculator program. To
illustrate this graphically, consider the concept of a dependency graph, shown
in Figure 2.2.

calc.c

N

numbers.h

Figure 2.2 The dependency graph for the simple calculator example.

For several reasons, a dependency graph is important in build systems.
Not only does it list the files involved in the build process, but it also shows
the dependencies between those files. A build tool such as GNU Make uses a
dependency graph to determine which files should be compiled, and when they
should be compiled.

For example, the arrows originating from add.o toward both add.c and
numbers . h state that both these sources files contribute to the compilation of
add.o. Additionally, if either of these files is edited, add .o must be recompiled
to include any recent changes. Conversely, if neither add.c nor numbers.h has
changed since the last time add.o was compiled, it doesn’t need to be compiled
again.

With these concepts in mind, you’ll now explore how GNU Make enables you
to specify the dependency graph for the example program. This book spends a
lot of time looking at different build tools (such as GNU Make, Ant, SCons,
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CMake, and the Eclipse builders), to show different ways of specifying a build
system’s dependency graph.

Creating a Simple Makefile

This section examines how the example can be implemented using the GNU
Make build tool. A dependency graph is a purely mathematical concept, so you
need some way to express the graph in a source code format. This should use
plain text to list the files, describe the dependencies between them, and show
which compiler commands are to be used. The GNU Make tool offers a straight-
forward translation.

The following text file, called Makefile, is stored in the same directory as the
source and object files.

1 calculator: add.o calc.o mult.o sub.o
2 gcc -g -o calculator add.o calc.o mult.o sub.o
3

4 add.o: add.c numbers.h

5 gcc -g -c add.c

6

7 calc.o: calc.c numbers.h

8 gcc -g -c calc.c

9

10 mult.o: mult.c numbers.h

11 gcc -g -c mult.c

12

13 sub.o: sub.c numbers.h

14 gcc -g -c sub.c

As you’ll see when you study GNU Make in more detail (see Chapter 6), this
is an inefficient way of implementing a makefile. However, this direct transla-
tion of the dependency graph is easy to understand.

Each section of the makefile introduces a new rule. Line 1 of the listing states
that the file named calculator is dependent on all the files, add.o, calc.o,
mult.o, and sub.o. Line 2 then provides a UNIX command to generate the
calculator file from all those object files.

Line 4 specifies that add. o depends on both add.c and numbers.h, and line
5 provides the UNIX command for compiling add.o. The rest of the makefile
provides similar rules for the other source and object files.

One important warning is that all UNIX commands (lines 2, 5, 8, 11, 14)
must be preceded by a TAB character instead of spaces. This feature is historic
and confuses many new makefile developers. If you forget this rule, you see the
following error:
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Makefile:2: *** missing separator (did you mean TAB instead of
=8 spaces?) .

Assuming that you’ve created the makefile in the same directory as all the
source files, you’re ready to build the software. To start, perform a full build by
executing the gmake command in the UNIX shell.

$ gmake

gcc -g -c add.c

gcc -g -c calc.c

gcc -g -c¢ mult.c

gcc -g -c sub.c

gcc -g -o calculator add.o calc.o mult.o sub.o

The GNU Make program examines the makefile, reconstructs the depend-
ency graph in its memory, and then determines which commands to execute.
GNU Make automatically determines that all object files must exist before the
calculator program can be created, hence the ordering of the commands in the
output.

The next important concept in a build tool is that of incremental builds.
Instead of blindly executing commands, GNU Make does some upfront analysis
to see if files actually need to be compiled or whether they already exist. After
performing the build for the first time, you can easily invoke GNU Make a sec-
ond time:

$ gmake
gmake: 'calculator' is up to date.

In this case, GNU Make determines that all generated files are more recent
(that is, have a later time stamp) than all the source files, so no additional work
must be done. As a software developer, you should be familiar with this concept,
even if you’ve never thought about how it was implemented.

As you might expect, if you modify a source file (such as add.c), you’ll be
changing the time stamp of that file. As a result, GNU Make determines that
add.o is no longer up-to-date and that both add.o and calculator should be
recompiled.

$ gmake
gcc -g -c add.c
gcc -g -o calculator add.o calc.o mult.o sub.o

The situation changes a little if you modify numbers.h, because every source
file is dependent on that file. This causes all object files, and the final program,
to be recompiled:

$ gmake
gcc -g -c add.c
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gcc -g -c calc.c
gcc -g -c mult.c
gcc -g -c sub.c
gcc -g -o calculator add.o calc.o mult.o sub.o

As a final note, this type of incremental build isn’t possible in GNU Make if
you don’t create a separate makefile rule for each object file. If you instead list
all the source files on the right side of the rule, GNU Make has no choice but to
recompile all source files each time one of them changes.

1 calculator: add.c calc.c mult.c sub.c numbers.h
2 gcc -g -o calculator add.c calc.c mult.c sub.c
numbers.h

Even though line 2 has only a single command to execute, it compiles all the
source files each time it’s invoked. Compare this with the previous example
that linked the separate .o files. In this case, you’re compiling all the files from
source code and then linking them in one command.

Let’s now consider how you can optimize the example makefile. After all, it
seems wasteful to provide a separate rule for each source and object file pair.

Simplifying the Makefile

Regardless of whether you’ve seen a makefile before, you should be questioning
the need for so much repetition in the example. Developers know that duplica-
tion is a bad thing, and build systems are no exception. To make it easier to
construct a makefile, GNU Make provides built-in rules for common opera-
tions, such as a compiling a . c file into a . o file. Therefore, this example can be
rewritten in significantly fewer lines:

1 calculator: add.o calc.o mult.o sub.o

2 gcc -g -o calculator add.o calc.o mult.o sub.o
3

4 add.o calc.o mult.o sub.o: numbers.h

Lines 1 and 2 are the same as before, but the rest of the makefile has mostly
been eliminated. GNU Make already knows that any file ending with .o depends
on the corresponding file with a .c suffix. The only thing you need to state
explicitly is that all object files depend on numbers . h.

This is a fairly good optimization, although you should probably use sym-
bolic names to make the code more readable. GNU Make provides the famil-
iar concept of variables, similar to other programming languages. Consider the
revised example:
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1 SRCS = add.c calc.c mult.c sub.c
2 OBJS = $(SRCS:.c=.0)

3 PROG = calculator

4 CC = gcc

5 CFLAGS = -g

6

7 $(PROG) : $(OBJS)

8 $(cc) $(CFLAGS) -o se $*
9

10 $(OBJS): numbers.h

Line 1 defines the SRCS variable to include the full list of source files in the
program. Line 2 is a clever piece of GNU Make syntax that replaces .c with
.o in each file’s name in the list of source files. 0BJS is therefore defined as the
complete list of object files.

Line 3 defines the name of the executable program, and line 4 defines the
name of the compilation tool. If these values were referenced multiple times in
the makefile, defining them in one place makes perfect sense (which is why many
programming languages allow constant definitions).

Line 5 sets the CFLAGS variable to enable debugging information. Note that
the previous example, which used the implicit rule for creating .o files from
.c files, didn’t have the cFLAGS variable defined. That example wouldn’t have
included the -g flag when compiling source code, which isn’t what we wanted.

Lines 7 and 8 are the same as in previous examples, after having expanded
the variable definitions. Note that $e is a syntactical shortcut for the files men-
tioned on the left side of the rule (calculator), and $* refers to the files listed
on the right side (all the object files). These shortcuts are rather cryptic but are
useful in larger build systems. Chapter 6 offers a more detailed explanation of
these concepts.

Now you can consider some other activities the makefile should perform,
other than simply compiling the software.

Additional Build Targets

A build system can do more than just compile a program. As you saw in Chapter
1, “Build System Overview,” you can generate web applications, create PDF
documentation, perform static analysis, and run unit tests. In fact, a build sys-
tem can handle any activity in which output files are created from input files.
This also includes removing files and copying of files from one place to another.

In a C-language build system, two of the most common operations are
to “clean” the build tree and install the executable program onto the target
machine. The goal of the clean target is to remove any generated files that were
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created when compiling the software. For the install target, the goal is to copy
the final executable program into the target machine’s standard binary path.
Consider how these build targets are implemented using makefile syntax:

1 SRCS = add.c calc.c mult.c sub.c
2 OBJS = $(SRCS:.c=.0)

3 PROG = calculator

4 CC = gcc

5 CFLAGS = -g

6 INSTALL ROOT = /usr/local

7

8 S$(PROG): $(OBJS)

9 $(CC) $(CFLAGS) -o $@ $*
10

11 $(OBJS) : numbers.h

12

13 clean:

14 rm -f $(OBJS) $ (PROG)

15

16 install: $(PROG)

17 cp $(PROG) $(INSTALL ROOT) /bin

The clean target has been added on lines 13 and 14. This is a standard GNU
Make rule, but without any input files listed on the right side. This simply means
that the target will always be executed, and there’s no need to check the time
stamp on the input files. The output from invoking this build target is as follows:

$ gmake clean
rm -f add.o calc.o mult.o sub.o calculator

You haven’t listed any input files on the right side of the rule, so invoking the
clean target a second time has the same result:

$ gmake clean
rm -f add.o calc.o mult.o sub.o calculator

In this rule, GNU Make has no way to avoid executing the rm command. The
rule has no file time stamps to check that would stop it from repeating the same
command each time. This contrasts with the previous rules, which compared
source and object file time stamps, such as add. c and add.o. One problem arises
if a file named clean already exists on the disk, but Chapter 6 discusses that.

The install target has been added on lines 16 and 17. This time the rule has
the calculator file listed on the right side, so invoking the install target auto-
matically ensures that the whole calculator program is brought up-to-date. The
cp command on line 17 copies the executable program into the directory specified
by the INSTALL ROOT variable (defined on line 6).
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$ gmake install
gcc -g -¢ -o add.o add.c

gcc -g -c¢ -o calc.o calc.c
gcc -g -¢ -o mult.o mult.c
gce -g -¢ -o sub.o sub.c

gcc -g -o calculator add.o calc.o mult.o sub.o
cp calculator /usr/local/bin

For the install target, invoking the target for a second time still performs
some work, but not as much as the first time.

$ gmake install
cp calculator /usr/local/bin

GNU Make determines that the calculator file already has a more recent
time stamp than all the .o files, so it doesn’t attempt to recompile the calculator
program. However, because there’s no file on the disk named install, GNU
Make invokes the cp command each time, just as you saw with the clean target.

Using a Framework

The example build system is small here, but you can see that it’s starting to
get more complex. As build systems get larger and more detailed, more expert
knowledge is required to read and understand the makefile. After you’ve read
Chapter 6 in detail, you’ll see that a makefile using GNU Make syntax can be-
come challenging to understand.

A common practice in most build systems is to create a framework. That is,
all parts of the build system that a software developer doesn’t care about are
kept in a separate set of files. In contrast, the interesting parts of the build sys-
tem, such as the list of source files and compiler options, are more visible to the
developer. Most software developers don’t need to read the complex framework
and, therefore, don’t bother doing so.

As an example, the following makefile provides only the information that an
average software developers needs to understand.

SRCS = add.c calc.c mult.c sub.c
PROG = calculator
HEADERS = numbers.h

Ul W N R

include framework.mk

Lines 1-3 provide the most basic information: which source files should be
compiled, the name of the executable program, and the list of header files. This
is all the information required to compile a simple program and, therefore, all
that a software developer typically cares about.
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Line 5 proceeds to include the framework file, essentially appending
framework .mk to the end of Makefile. This file encapsulates the GNU Make
rules and other advanced definitions:

1 OBJS = $(SRCS:.c=.0)

2 CC = gcc

3 INSTALL ROOT = /usr/local

4

5 ifdef DEBUG

6 CFLAGS = -0 -g

7 else

8 CFLAGS = -0

9 endif
10

11 S$(PROG): $(OBJS)

12 $(CC) $(CFLAGS) -o $@ $*
13

14 $(OBJS) : $ (HEADERS)

15

16 clean:

17 rm -f $(OBJS) $ (PROG)

18

19 install: $(PROG)
20 cp $(PROG) $(INSTALL ROOT) /bin

Most of framework.mk should look familiar, although you don’t see any
mention of source filenames or executable programs. These are kept out of the
framework and appear only in the user-facing makefile.

One notable addition in this framework, in lines 5-9, is that you’re testing
for the existence of the DEBUG symbol. This can be set (or not) by the makefile
that includes the framework, or even by the user on the UNIX command line.

For example, a standard build of the calculator program uses the -0 (opti-
mize) compiler flag:

$ gmake

gcc -0 -c -0 add.o add.c
gcc -0 -¢ -o calc.o calc.c
gcc -0 -¢ -o mult.o mult.c
gcc -0 -c -0 sub.o sub.c

gcc -O -o calculator add.o calc.o mult.o sub.o

On the other hand, setting the DEBUG variable to 1 on the gmake command
line incorporates the -g (debug) flag:

$ gmake DEBUG=1

gcc -0 -g -c -0 add.o add.c
gcc -0 -g -c -0 calc.o calc.c
gcc -0 -g -c -o mult.o mult.c
gcc -0 -g -c -0 sub.o sub.c

gcc -0 -g -o calculator add.o calc.o mult.o sub.o



SUMMARY

As you’ll see many times throughout this book, using a separate framework
file centralizes much of this complexity in a single place. The build system can
contain a large number of Makefile files, each including the same common
framework.

Summary

A dependency graph is a mathematical structure that shows the relationship
between files in the build tree. If one file depends on another file (that is, there’s
an arrow in the dependency graph), any change to the content of the source file
might require the object file to be regenerated.

To invoke a software build system, the dependency graph must be encoded
in a form that a build tool can understand. In the case of the GNU Make tool,
the dependency graph is expressed in a text-based form known as a makefile.

As a starting point, a build tool performs a full build to generate all the object
files from the corresponding source files, eventually linking them into an execut-
able program. If object and executable files already exist, the build tool exam-
ines their time stamps to see whether any files have changed since the last time a
build was invoked. This approach, known as an incremental build, ensures that
the minimum number of recompilation steps is performed.

Build tools are more than just a way to represent a dependency graph. They
include variables, conditional statements, and other syntax tricks to make it
easier to implement a build system.

Most build systems include additional build targets, such as clean and
install, beyond basic compilation of the program. Finally, a framework often
is used to separate the developer-facing details of the build process (such as
filenames and options) from the complexity of the underlying build tool.
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Chapter 3

The Runtime View of a
Program

Chapter 1, “Build System Overview,” took a high-level view of the build proc-
ess, originating with an untouched source code tree and ending with a software
package installed on the target machine. Before looking at each of these build
steps in detail, you should learn more about what you’re actually building. That
is, what does a program look like when it runs inside the target machine, and
what are all the disk files that the target machine needs to load into memory?

To fully understand the sequence of steps the build system performs, you need
to visualize the program’s runtime view. Seeing how your program will be loaded
into memory and executed makes it easier to determine which object files, execut-
able programs, and release packages must be created. Is the program translated
into pure machine code, or is it partially interpreted by the runtime system? Is it a
single program, or does it consist of multiple interacting programs? The answers
to these questions determine what the build system must generate.

The runtime view of the program also depends on which programming
language is used and which operating system provides the runtime environment.
Chapter 4, “File Types and Compilation Tools,” examines the specific details of
UNIX- and Windows-based programs, but for now, you can focus on the high-
level concepts that are the same on most computing platforms:

¢ Executable programs: The sequence of machine-readable instructions that
the CPU executes, along with associated data values. This is the fully com-
piled program that’s ready to be loaded into the computer’s memory and
executed.

e Libraries: Collections of commonly used object code that can be reused
by different programs. Most operating systems include a standard set of
libraries that developers can reuse, instead of requiring each program to
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provide their own. A library can’t be directly loaded and executed on the
target machine; it must first be linked with an executable program.

¢ Configuration and data files: These are not executable files; they provide
useful data and configuration information that the program can load from

disk.

¢ Distributed programs: This type of software consists of multiple executable
programs that communicate with each other across a network or simply as
multiple processes running on the same machine. This contrasts with more
traditional software that has a single monolithic program image.

The following sections examine each concept in detail, using diagrams to help
illustrate the structure of the software. In each case, keep in mind that the build
system must create each of the build artifacts. In most cases, these artifacts are
stored in disk files.

Executable Programs

An executable program is a sequence of instructions that’s loaded in memory
and executed by the central processing unit (CPU). Typically, this program is
started by double-clicking an icon in a windowing environment or typing the
name of the program into a command shell. In other cases, a program is loaded
into memory when the computer first boots or is started at a specific time of day
by a scheduling tool.

After the program is loaded, several mechanisms exist for executing the soft-
ware, depending on how much compilation took place before the program was
loaded and how much operating system support the program requires.

Native Machine Code

In this scenario, the build system fully converted the executable program into
the CPU’s native machine code. The CPU simply “jumps” to the program’s
starting location, and all the execution is performed purely using the CPU’s
hardware. While it’s executing, the program optionally makes calls into the
operating system to access files and other system resources (see Figure 3.1).

In modern software systems, native machine code is most commonly used for
languages such as C or C++, when execution of the program must be as fast as
possible or when the program requires full access to the CPU’s features. There’s
no faster way to execute code.
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Machine
Code Program

Y

Operating System

Figure 3.1 A machine code program interacting with the operating system.

In the case of a native machine code program, the build system produces an
executable program file. In common terminology, you might hear these referred
to as a program, an executable, or a binary.

Monolithic System Images

Given that most desktop computers run an operating system such as Linux,
Mac OS X, or Windows, computer users are familiar with using a mouse and
keyboard and with viewing a program’s output on their display monitor. How-
ever, for an embedded system that exists inside an automobile, a television, or a
kitchen appliance, there’s often a much smaller operating system, or no operat-
ing system at all (see Figure 3.2). In many cases, the computer can run only one
program at a time.

Monolithic
System Image
(no operating system)

Figure 3.2 A monolithic system image, with no operating controlling the machine.
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Most embedded systems are designed to be cheap and easy to make, so they
have limited CPU power and memory. As you might expect, writing software
for an embedded system can often be trickier than designing code that runs on
a full-fledged operating system. To make things possible, the build system must
run on a separate build server, running something like Linux or Windows. After
the software is compiled, the final release package is transferred to the embed-
ded device for the program to be executed.

Although interpreters are sometimes used, many embedded systems use the
native machine code model of execution, with the program itself using the entire
system memory. From a build system perspective, the final release package is
simply a large file that’s loaded directly into the computer’s memory. Often you
hear these programs called an image (short for “memory image” or “system
image”), because they tend to be the only thing loaded into the computer.

Full Program Interpretation

A number of programming languages are never compiled into machine code;
instead, the runtime system loads the entire source code into memory and inter-
prets it (see Figure 3.3). This was true of early versions of the BASIC language
and is still the case with UNIX shell scripts.

Source Code
Program

> Interpreter

A

Y

Operating System

Figure 3.3 Source code being processed by an interpreter.

Although no compilation of source code to object files occurs, the build sys-
tem still has a lot of work to do. It’s necessary to collect the source files into
a release package that can be installed on the target machine. Generating unit
tests, performing static analysis, and generating documentation is also common
as part of the build system. Finally, some interpreted languages enable integra-
tion with compiled languages, turning the software into a hybrid of compiled
and interpreted code.
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Interpreted Byte Codes

Byte codes are similar to native machine code, except that the CPU doesn’t
directly understand them. It first translates them into native machine code or
interprets them as the program executes. A byte code environment therefore
requires that an additional interpreter or compiler be loaded alongside the
program.

For example, the Java language is designed to be platform-independent. This
means that the build system calls upon the Java compiler to create machine-
independent byte-code files instead of generating a CPU’s native machine code.
When the program is later executed (see Figure 3.4), it starts up within a Java
Virtual Machine (JVM). The virtual machine has the option of interpreting and
acting upon the byte codes as the program runs, but it more likely uses Just In
Time (JIT) compilation to translate the program into native machine code as it
executes.

In common terminology, byte-code programs often are referred to as byte-
code files, class files (in Java terminology), or managed code assemblies (in .NET
terminology). In most cases, the build system creates a disk file to be loaded by
the byte-code interpreter.

Precompiled Byte | _[Java VM and JIT
Codes g Compiler

Machine
Code

{

Operating System

Figure 3.4 A Java virtual machine converting byte codes into native machine code.

Before going any further, contrast the byte-code model with that of languages
such as Perl and Python. From a build system perspective, Perl and Python lan-
guages are interpreted rather than compiled. That is, the build system collects
the source files into the release package, ready to be interpreted on the target
machine. The build process has no explicit compilation phase.
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However, these interpreted languages use byte codes at runtime, as shown in
Figure 3.5. The simple act of executing the Perl or Python script automatically
triggers the generation of byte codes. In this respect, part of the traditional build
system is embedded into the runtime environment.

Executable _| Perl/Python
Source Code | Compiler
Y
Interpreter | Byte Codes

{

Operating System

Figure 3.5 Runtime compilation of Perl or Python source code into byte codes.

The advantage of this approach is that changes to source code will take effect
the next time the script is executed, removing the compile step from the stand-
ard edit-compile-run cycle. One major downside of this approach is that syntax
errors in the code might not be found until the program starts executing.

Libraries

The library file is also an important build artifact. At first glance, you might
think that a single group of developers wrote a program. This is true in some
cases, although developers frequently make use of prewritten code libraries de-
veloped by other people or organizations. These libraries, stored in disk files
of their own, collect a set of code functions that can be reused across a variety
of programs. Therefore, developers aren’t always building a single executable
program file; they instead join custom-developed software and prebuilt libraries
into a single program.

In many programming languages, a library function can be viewed as an
extension to the standard language and is used in the same way as functions
written by the developers. For example, to print a string in the C language, you
use the printf library function:

printf ("Hello World\n") ;
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In Java, the print1n method is used:
System.out.println("Hello World") ;

In both examples, the developer uses a function (or method) that was written
by somebody else but is conveniently linked into the executable program during
the build process. Unless you’re familiar with the language, you might not even
know whether a function or method is from a library or whether it was custom
written.

Most operating systems have a preinstalled set of libraries for operations such
as file and network I/O, mathematical functions, user interface manipulation,
and sometimes database access. A developer can obtain libraries from third-
party sources, such as downloading them from the Internet. Developers can also
publish their own libraries.

In the realm of build systems, there are two main operations on libraries:

e Creating a new library: If you want to create your own library, the first
step is to compile all the object files you want to store. With this collection
in hand, you use a special linking or archiving operation to bundle the
object files into a single library file, and create a suitable index of all the
functions that exist.

¢ Linking with a library: When an executable program is created, the build
system must provide a list of libraries to search. If a function is referenced
in the source code but the developer didn’t explicitly write it, the list of
libraries is searched to locate the required function. When the function is
found, the appropriate object file is copied into the executable program.

In Chapter 4, you’ll see exactly how a library can be created and referenced in
various programming languages and operating systems. Even before then, you
still need to understand the two different approaches of integrating a library into
an executable program.

Static Linking

In this first approach, a library is just a collection of individual object files.
During the build process, when the linker tool determines that a function is
required, it extracts the appropriate object file from the library and copies it into
the executable program. In this sense, the library’s object file appears identical
to any of the object files the developer created on his or her own.
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Note that the act of linking a library with the developer’s own software hap-
pens during the build process. Therefore, you end up with a single executable
program to be loaded onto the target machine (see Figure 3.6). In this sense, a
static library is a build-time concept rather than anything that exists at runtime.
After the final executable program has been created, it’s impossible to separate
the program from its libraries.

Single
Executable Program
(with built-in libraries)

A

Y

Operating System

Figure 3.6 A program with libraries statically linked into the executable program.

Dynamic Linking

In contrast to static linking, the dynamic linking method doesn’t copy the object
file into the executable image; instead, it notes which libraries are required to
successfully execute the program. When the program later starts running, the
libraries are loaded into memory as separate entities and then are connected
with the main program (see Figure 3.7). A special dynamic linker is required
to connect the links between the functions that the program requires and the
libraries that supply those functions.

From a build system perspective, a dynamic library is a disk file that is con-
structed by joining object files. The library is then collected into the release
package and installed on the target machine. Only then can it be loaded into the
machine’s memory.
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Machine Dynamic
Code Program Linker

A

Library Library

Library Library

Operating System

Figure 3.7 A program with libraries dynamically linked at runtime.

Although this is a more complex approach than static linking, using dynamic
libraries offers two significant benefits. First, it’s possible to upgrade to a newer
version of a library (adding features or fixing bugs), without needing to re-create
the executable program. Second, many operating systems can optimize their
memory usage by loading only a single copy of the library into memory, yet
sharing it with other programs that require that same library. These features
aren’t possible when using the static linking method.

For more details on how static and dynamic linking work, refer to [18] in
References.

Configuration and Data Files

Every computer program in existence uses some type of data, even if it’s just
adding two numbers. In some cases, the data is directly linked into the execut-
able program, as is the case with an initialized array of numbers. However, any
program of significant size uses external data sources, such as a file on a disk.
Your program makes calls into the operating system to request that data be read
into memory (see Figure 3.8).

There’s no limit to the ways in which data can be used. For example, all these
are forms of data:

¢ A bitmap graphic image displayed onscreen
¢ A sound stored as a digitized wave form

¢ A configuration file that customizes the behavior of a program
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e A set of documents containing online help text

¢ A database containing names and addresses
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Figure 3.8 Various data files read into the program at runtime.

From the perspective of a build system, you need to transfer these data files
into the program’s release package so that they can be installed on the target
machine. The exception to this is if the data files are stored on an Internet site
that could be accessed remotely.

Although data files are often copied into the release package without modifi-
cation, in some scenarios data files must first be modified or created by the build
process. For example, a configuration file might need to include the software’s
version number, such as 4.2.3. Furthermore, a database might not have any
content when the software is first built, so the build process simply creates an
empty set of database files.

Distributed Programs

The final runtime concept to consider is programs distributed around multiple
parts of the system. Most modern operating systems enable you to have multi-
ple programs running at the same time, so you also have the option of multiple
programs communicating together as a single piece of software. This concept
can be extended to have geographically remote computers communicate across
a network but still behave as if they’re a single program.

In build systems, the concept of a release package now plays a more impor-
tant role. No longer are you building a single executable program that’s stored
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in a single disk file. Instead, you must build and package many different execut-
able programs, along with the necessary configuration files and start-up scripts.

For example, a software system might use the client/server model, with a
single server program running on one computer and a large number of client
programs running on many other computers (see Figure 3.9). In this scenario,
the build system could create two release packages, given that different people
will be installing the server program versus the client program. Alternatively, the
same release package could be used to install the two separate programs.

Client Server
Program Program
A A
\ Y
Operating System «— Operating System
Network

Communication

Figure 3.9 A single program divided across two physical machines, using a network to
communicate.

To support multiple programs, the build system also requires a few addi-
tional features. For example, developers need to specify which executable pro-
gram should be built, rather than attempting to rebuild and repackage all files
each time they build the software. Given that developers often work on one
executable program at a time, this can lead to some important productivity
improvements.

The build system must also support the concept of a shared application pro-
gramming interface (API). That is, the different programs communicate with
each other by sharing a number of data structures (often by sending those data
structures across a network). Each program that the build system can construct
must use the same set of data definitions to avoid consistency problems.

The key message here is that build systems can be detailed, especially when
the software becomes larger and more complex because of the distributed
runtime view.
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Summary

The way a program is loaded into memory and executed has a significant impact
on the design of the software build system. An executable program is loaded
into memory and executed. It can contain native machine code instructions, or
perhaps byte-code instructions to be interpreted or compiled at runtime. The
software’s build system needs to do a different amount of work, depending on
how much upfront compilation is required.

Code libraries are a convenient way of reusing functionality between differ-
ent programs. Static libraries are linked with custom-written source code as part
of the build process, whereas dynamic libraries are linked with the program
after it’s loaded into memory.

A software release package can contain any number of data files, including
graphic images, sound files, and database content. In addition, a single piece of
software can actually consist of multiple executable programs, communicating
together via a network or as multiple processes on the same machine.



Chapter 4

File Types and Compilation
Tools

In contrast to Chapters 1, 2, and 3, which discussed the conceptual view of a
build system, this chapter takes a more hands-on view of the various files and
compilation tools that can be used during a build. You’ll examine the tools used
with several programming languages, including C, C++, Java, and C#, and look
at command-line examples on both Linux and Windows operating systems. These
languages and operating systems were chosen solely because of their popularity.

In addition, this chapter briefly touches on file formats that could appear in
a build system. For example, any nontrivial program contains graphical images,
sound waveforms, or database content. This data is important for the success-
ful execution of the program and, therefore, must be constructed and packaged
appropriately.

In reference to the big picture, this chapter focuses on the compilation tools
that convert individual files from the source tree into individual files in the
object tree (see Figure 4.1). As an extension, object files can also be converted
into other object files, both of which are stored in the object tree.

Version-
Control
Tool

Source Object Rel E
Tree Tree Package
== E
Target Machine

| Compilation Tools

| Build Machine |

Figure 4.1 Big-picture diagram (for traditional compiled software), showing that
source files are compiled into object files.
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Recall the distinction between build tools and compilation tools. This chapter
focuses only on compilation tools, each of which translates one or more input
files into an equivalent output file. On the other hand, a build tool such as Make
or Ant is responsible for the higher-level orchestration of the build process, such
as deciding which files need to be compiled and which compilation tools to use.
Part II, “The Build Tools,” focuses more on build tools.

As you might expect, anyone constructing a build system must be intimately
familiar with the file types being manipulated and the tools being used. This
knowledge is used on a regular basis, especially when you need to change the
build process or find out whether it’s working correctly. If the build tool fails
to create a valid executable program, you need the skills to determine the root
cause of the problem.

This chapter focuses on the following questions:

e What is the purpose of each source and object file type?

e What is their basic format?

Which compilation tool is used to generate the object files?

What are some important options when using the compilation tool?

How do you examine the content of the file to see if it looks valid?

Because of the sheer number and complexity of these tools, this chapter can
provide only an overview of each type. Additionally, this chapter focuses only
on the aspects of the language and tools relevant to build systems. To fill in the
gaps, you’re encouraged to read the reference manual for each of the tools.

C/C++

The C Programming Language [19] was created in 1969, as the language to be
used with the UNIX Operating System (from which Linux is derived). Despite
its age, a significant number of new programs are still written in C, making it
one of the oldest programming languages in active use. C has been standardized
by the International Standards Organization (ISO), and a number of versions
have been defined (most recently, the C99 version [20]).

Although C can be used for developing all types of computer software, newly
developed C code is most likely seen when CPU performance and “bare-metal”
access to the computer’s hardware is important. Compared with most other
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languages, programming in C is just one step above programming directly in
assembly language. C doesn’t provide features such as garbage collection or
multithreading support, and it doesn’t have any complex data types built into
the language. Therefore, it’s a compact and efficient language, often the choice
for embedded systems.

In the early 1980s, the C++ language [21] was created as a means to add
object-oriented concepts to the basic C language. C++ was designed to be a
superset of C, so the two languages can be used in the same program—and even
within the same source file. The language includes concepts such as classes,
inheritance, and templates, and has complex data structures that aren’t a
standard part of C. Given the newer features, C++ is more commonly used for
application programming, although it still can support embedded systems and
high-performance computing.

Compilation Tools

Many C compilers exist, although the most widely used is likely the C compiler
from the GNU Compiler Collection (GCC) [17]. First released in 1987, GCC
has become the de facto standard for compiling open-source software and is
used extensively for commercial development. One of the major strengths of
GCC is its capability to generate object code for a wide range of CPU types,
including lesser-known embedded processors (such as in video game consoles
and kitchen appliances).

Other popular compilers, which this book doesn’t examine in detail, include
the Microsoft Visual Studio C++ compiler [22], the Green Hills Compiler [23],
and the Intel C++ compiler [24].

GCC uses the toolchain approach to compiling code. As the name suggests,
it consists of a chain of tools invoked in the necessary sequence. This consists of
the following components:

1. The C preprocessor, for expanding macro definitions

2. The C compiler, which translates source code into assembly language
3. The assembler, which translates assembly language into object files

4. The linker, which joins different object files into a single executable

program

The upcoming examples demonstrate the compilation of C and C++ code,
using the GCC compiler on Linux. Although the details vary from platform
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to platform, the same basic concepts apply to most modern systems, includ-
ing Microsoft Windows. Note that many of the commands mentioned actually
existed long before the introduction of Linux, so the book refers to them as
UNIX commands.

If you plan to use GCC in your build system, spend time becoming familiar
with GCC’s usage and options. The GCC manual is a good starting point [25],
but you can also find textbooks written on the subject [26]. Although this book
covers some of the basic options, there are literally hundreds of configuration
parameters.

Source Files

The basic units of compilation in the C language are the C source file (with file
suffix .c) and the C header file (with file suffix .h). By convention, a source file
contains the definition of functions and global variables, and this is where most
of the source code is kept. On the other hand, a header file contains such things
as type, macro, and constant definitions, and function prototypes that declare
which parameters and return values each function takes.

When compiling code, each C source file is compiled into a single object file
(with file suffix .o in UNIX or .obj in Windows). However, each source file
can include header files to obtain all the definitions it needs. When structuring
software, header files are used for defining macros, constants, types, or function
prototypes that must be shared between multiple source files.

In the following example are two source files (main.c and hello.c) and a
single header file (hello.h). The main.c file is as follows:

1 #include "hello.h"

2

3 int main(int argc, char *argvl(])
4 |

5 if (MAX(1,2) == 2){

6 hello ("World") ;

7 }

8

9 return 0;

10 }

Line 1 uses the #include directive to state that hello.h must also be scanned
for additional definitions. As you’ll see shortly, one of those definitions is the
MAX macro, which returns the maximum of two numeric input values. This
macro is used inside the body of the main function, on line 5.

Next, line 6 calls the hello function, which also happens to be defined in
another file, hello.c. The capability to call functions defined in other source
files demonstrates another way in which source files are logically linked.
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The second source file, hello.c, includes two header files:

1 #include <stdio.h>

2 #include "hello.h"

3

4 wvoid hello(const char *string)

5 |

6 printf ("Hello %$s\n", string);
7}

The first header file is the built-in stdio.h, providing information about the
standard printf function, which is used on line 6. The second header file is
hello.h, which is the same file that was included into main.c. This guarantees
that both main.c and hello.c have a consistent view of their shared definitions.

The final file in this example is hello.h, the header file that was referenced
by both the source files.

1 extern void hello(const char *string);
2
3  #define MAX(a,b) ((a) > (b) ? (a) : (b))

On line 1 is a function prototype that informs the compiler which parameters
and return value the hello function expects. By including this prototype in each
of the source files, the compiler can validate that the hello function is defined
and used consistently in all places.

Next, line 3 shows the definition of the MAX macro that you’ve used before.
A macro is different from a function, in that it exists only at compile time and is
textually replaced wherever it’s used in the source code. You’ll see an example
of this shortly.

When you compile the example, you end up with two different object files:
main.o and hello.o. Note that the -c option to GCC requests that the source
files be compiled into object files.

$ gcc —c hello.c

$ gcc -c main.c

S 1s

hello.c hello.h hello.o main.c main.o

No object file is generated for hello.h, because header files can be used only
by including them in a source file; they can’t be compiled on their own.

By using the -E option to GCC, you can see the C preprocessor portion of the
toolchain at work. This option instructs GCC to only process #include direc-
tives and macro expansions instead of actually doing any compilation work (as
was the case with -c). Note that, in the following example, hello.h has essen-
tially been merged into the same compilation unit as main.c, and the MAX macro
in the body of the main function has been replaced by its definition.
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$ gcc -E main.c

1 "main.c"

# 1 "hello.h" 1

extern void hello(const char *string) ;
# 2 "main.c" 2

int main(int argc, char *argvl[])

if (((1) > (2) 2 (1) : (2)) == 2){
hello ("World") ;
1

return O;

}

Although GCC implicitly calls the preprocessor, and the developer doesn’t
normally need to think about it, examining the output of the preprocessor is
useful in some cases. For example, if your program appears to contain a bug that
might be caused by a macro, it’s often useful to expand the macro and look at
the underlying C code that’s being compiled. Second, if a type or constant defini-
tion appears to be missing (causing compile errors), it’s useful to expand the C
code to determine whether the definition is actually included.

Assembly Language Files

With the GCC compiler, creating an object file from a source file is a multistep
process. You’ve already explored the preprocessing step (-E option), but it’s also
interesting to examine the generation of assembly language code (-s option).
Keep in mind that GCC uses the toolchain approach, in which the source file is
first preprocessed, then compiled into assembly language, and then assembled in
object files that contain machine code instructions.

The following output shows the result of asking GCC to create an assembler
file (with file suffix .s). For more details of the file’s format, refer to any book
that describes your computer’s assembly language. (In this example, it’s Intel
x86 code, often referred to as i386-series code.)

$ gcc -S hello.c
$ cat hello.s

file "hello.c"

.section .rodata
.LCO:

.string "Hello %s\n"

.text

.globl hello

.type hello, @function
hello:

pushl sebp

mov1l %esp, %ebp
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subl $8, %esp

movl 8 (%ebp), %eax
movl $eax, 4 (%esp)
movl $.LCO, (%esp)
call printf

leave

ret

Although this is an intermediate step that’s usually hidden from the devel-
oper, you should care about assembly language files for several reasons. Some
software is written directly in assembly language, so your build system must
cater to that need. This is usually in system-level programming where high-
performance is required or special CPU features must be used. Assembly language
programming isn’t for the faint-of-heart and isn’t the slightest bit portable, so
try to limit yourself to high-level languages, if you can.

It’s not unheard of for developers to complain that the compiler is generating
bad code. Using the -5 option in GCC enables you to view the exact sequence
of instructions the CPU will execute. If the sequence of instructions doesn’t look
correct when you compare it with the C code, the compiler is probably at fault.
For popular CPU types such as x86 and PowerPC (used and tested for many
years), you’re less likely to see this type of compiler error.

Sometimes, even when you use only C source files, you might see a compile
error reported at the assembly language level. The message may be reported in
some obscure temporary file that GCC created internally. In this case, either
you’ve hit another compiler bug or somebody has inserted bad assembly lan-
guage code into an asm directive in your C source file.

Object Files

An object file is a container for machine code instructions. It’s not yet capable
of being executed by the computer, because it still needs to be linked with other
object files and all the required libraries. As you saw earlier, to compile a source
file into object code, you use the -c option for GCC:

$ gcc —c hello.c

$ file hello.o

hello.o: ELF 32-bit LSB relocatable, Intel 80386, version 1
(SYSV), not

stripped

An object file isn’t human readable (it’s just a series of numbers), so you use
the UNIX file command to give you some high-level information on the con-
tent. In this case, file is confirming that you produced the following type of file:
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e The object file uses the Executable and Linking Format (ELF) structure
when storing the various components of the program. ELF [27] is a com-
mon object file format that supersedes older formats, such as a.out and

COFF.

e The file is a 32-bit program, as distinct from newer 64-bit programs or
older 16-bit programs.

¢ The data is stored in least significant byte format (little endian), as opposed
to most significant byte format (big endian).

¢ The machine instructions are for the Intel x86 family of processors, as
opposed to MIPS, PowerPC, or many other CPU types.

e The file is still relocatable and hasn’t yet been stripped. This means that
the file contains the information necessary to link it with other object files
and libraries but doesn’t contain enough information to be loaded into
memory and executed.

If your build system produces programs for a single CPU type, this informa-
tion will only be of passing interest. On the other hand, if you’re compiling for
a multiple CPU-type system, you must pay great attention to get all the file type
details correct. If your build system accidentally mixed two types of object file,
you’d end up with a lot of confusing errors in which the files couldn’t be linked.
Even trying to mix 32-bit and 64-bit object files can cause obscure compilation
errors, even if the CPU family is the same.

Another way to examine an object file is to ask which symbols that file
defines or requires. This is equivalent to asking which functions and variables
are defined in a C source file, or which functions and variables are used by that
file but defined in some other file. Recall how you used header files to define the
function prototypes; now you’re looking at the same mechanism from the object
file’s perspective.

Using the UNIX nm command, you can determine that hello.o defines the
hello function (with machine code starting at position 0 within the file). It
also requires that some other object file define the print £ function, because it’s
undefined in hello.o.

$ nm hello.o
00000000 T hello
U printf

The nm command is invaluable for resolving undefined symbol compila-
tion errors, in which a function is required but, for some reason, isn’t being
linked into the executable program. By running the nm command on all your
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object files, you can locate where the missing symbol is referenced and where
it’s defined.

For power users, the UNIX objdump command can provide even more
information about your object files. The following example shows how the
-x option provides summary information about hello.o. It provides exten-
sive information about the file’s type, the list of sections it contains (such as
program text, data, uninitialized data, and read-only data), where those sec-
tions are located within the file, and where they’ll be loaded into memory. It
also provides a superset of the information provided by both the file and
nm commands.

$ objdump -x hello.o

hello.o: file format elf32-1i386
hello.o

architecture: 1386, flags 0x00000011:
HAS RELOC, HAS SYMS

start address 0x00000000

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000014 00000000 00000000 00000034 2**2
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
1 .data 00000000 00000000 00000000 00000048 2**2
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 00000000 00000000 00000048 2**2
ALLOC
3 .rodata 0000000a 00000000 00000000 00000048 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 .comment 0000003a 00000000 00000000 00000052 2**0

CONTENTS, READONLY
5 .comment.SUSE.OPTs 00000005 00000000 00000000 0000008c 2**0
CONTENTS, READONLY
6 .note.GNU-stack 00000000 00000000 00000000 00000091 2**0
CONTENTS, READONLY
SYMBOL TABLE:
00000000 1 df *ABS* 00000000 hello.c

00000000 1 d .text 00000000 .text
00000000 1 d .data 00000000 .data
00000000 1 d .bss 00000000 .bss
00000000 1 d .rodata 00000000
.rodata

00000000 1 d .comment.SUSE.OPTs
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00000000 .comment.SUSE.OPTs

00000000 1 d .note.GNU-stack
00000000 .note.GNU-stack

00000000 1 d .comment 00000000
.comment

00000000 g F .text 00000014 hello
00000000 *UND* 00000000 printf

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE
00000009 R 386_32 .rodata
0000000e R_386_PC32 printf

The objdump command has many different options that are worth learning
about [28]. It’s highly recommended you become an expert in using objdump,
especially if you’re doing advanced work with compilers and linkers. This tool
also provides the capability to disassemble machine code back into assembly
language, which is important if you suspect that your assembler is generating
bad machine code instructions.

As a final resort, you may also consider using the UNIX hexdump command
to examine the raw bytes in the file. This is a primitive way to examine files, but
if objdump fails for some reason (such as a corrupt file), it might be your only
hope.

Executable Programs

The final step in the C/C++ example is to link the object files into a single execut-
able program. This is done by providing the name of the program (with the -o
option) and listing all the object files that should be linked.

$ gcc —-o hello hello.o main.o

For the sake of convenience, GCC enables you to execute the whole toolchain
at once instead of explicitly listing each step (preprocess, compile, assemble,
link). To use this feature, you specify the source code filenames instead of the
object filenames.

$ gcc -o hello hello.c main.c

Although doing everything in one command is a useful feature for small pro-
grams, a large build system wouldn’t do things this way. Instead, you’d need
more control over when and how files are compiled and linked, especially if only
some of the source files have changed. In most build systems, you see the compi-
lation from . c files to .o files done using the -c option, followed by a separate
linking phase that joins all the object files.
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Finally, to make sure you generated a suitable executable file, use the UNIX
file command again.

$ file hello

hello: ELF 32-bit LSB executable, Intel 80386, version 1

= (SYSV), for

GNU/Linux 2.6.4, dynamically linked (uses shared libs), not
= stripped

The file command’s output is similar, except that you’ve now constructed
an executable program. This file can be loaded into memory and executed.

Static Libraries

The Linux operating system supports both statically and dynamically linked
libraries. As a reminder, static libraries are just an archive of object files that can
be linked into an executable program (if required), whereas a dynamic library is
loaded at runtime and the program directly calls the required functions.

The following example shows how to create a static library containing four
object files (sqrt .o, sine.o, cosine.o, and tan.o). Static libraries are also
known as archives, given that all they’re doing is collecting multiple files into a
single larger file. The object files aren’t modified in any way and can easily be
extracted from the archive and returned to their original form.

$ gcc -c sgrt.c

$ gcc -c sine.c

$ gcc -c cosine.c
$ gcc -c tan.c

$ ar -rs mymath.a sgrt.o sine.o cosine.o tan.o
ar: creating mymath.a

$ ar -t mymath.a
sgrt.o

sine.o

cosine.o

tan.o

The UNIX ar command is responsible for creating the static library archive
(with the -rs option) and can also be used to examine the content of the archive
(with the -t option). Options exist for extracting object files and writing their
content back to disk, but that’s not a common operation for build systems.

In the final step, you specify both the main.o object file (the main program)
and the mymath.a archive file on the GCC command line.

$ gcc -c main.c
$ gcc -o prog main.o mymath.a
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GCC knows how to manage these archive files and can link them into the
program, but only if it needs to. If main. o actually requires any of the archive’s
object files, they’re included in the executable program. Conversely, other object
files that main.o doesn’t require are not linked.

Dynamic Libraries

In the case of dynamically linked libraries, the process is more complex. In par-
ticular, you must allow for the fact that linking happens at runtime rather than
when the program is compiled. This necessitates a change to the compilation
sequence.

All object files must now be created using special position-independent code
(PIC) so that they can be loaded at any memory location the program requires.
The shared library is created as if it were an executable program in its own right,
except that you use the -shared option to make it a dynamic library (with the
. so suffix).

gcc -c -fPIC sgrt.c

gcc -c¢ -fPIC sine.c

gcc -c -fPIC cosine.c

gcc -c -fPIC tan.c

gcc -shared -o libmymath.so sgrt.o sine.o cosine.o tan.o

Uy Ur U Ur

$ file libmymath.so

libmymath.so: ELF 32-bit LSB shared object, Intel 80386,
version 1 (SYSV),

dynamically linked, not stripped

To make use of the new shared library, you specify the name of that library
on the standard GCC linker line. The -1 option asks the linker to include the
libmymath.so library. Note that the -L option informs the linker of the direc-
tory where the library can be found—in this case, that is the current directory.

$ gcc -c main.c
$ gcc -o prog main.c -L. —-lmymath

To verify that everything works correctly, you use the UNIX 1dd command
to see which dynamic libraries need to be loaded into memory when the main
program is executed.

$ 1ldd prog
linux-gate.so.1l => (0xffffe000)
libmymath.so => not found
libc.so.6 => /lib/libc.so.6 (0xb7£3a000)
/1lib/ld-1linux.s0.2 (0xb80ab000)
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The first observation is that there are four libraries, with only one being
yours. GCC implicitly added the remaining three libraries so that the program
would execute correctly. One of these libraries (1ibc.so.6) is the standard C
language library that provides the implementation of functions such as printf.

The second observation is that the 1ibmymath. so library can’t be found, and
trying to run the prog executable will therefore fail. Although you used the -L
option to tell GCC where the library is stored (the current directory), you also
need to inform the operating system where it can be loaded. Directories such as
/1lib and /usr/1ib are searched automatically, but for nonstandard locations,
you first must set the LD_LIBRARY PATH environment variable.

$ export LD LIBRARY PATH=.

$ 1dd prog
linux-gate.so.1l => (0xffffe000)
libmymath.so => ./libmymath.so (0xb80a7000)
libc.so.6 => /lib/libc.so.6 (0xb7£3a000)
/lib/1d-1linux.so0.2 (0xb80ab000)

This time, the library can be found. Of course, in a real situation, you would
set LD_LIBRARY PATH to the absolute pathname where 1ibmymath.so is installed,
instead of asking the operating system to find the library in the current directory
(which would be a major security hole).

As a reminder, using dynamic libraries enables you to upgrade them without
recompiling the executable program. Dynamic libraries can also save a lot of the
computer’s memory, because it’s possible to share a single copy among multiple
programs instead of requiring each program to have its own copy (as is the case
with static libraries).

C++ Compilation

Given that C++ is a superset of the C language, every effort has been made to
ensure that the object files are consistent between the two languages. However,
the file formats are different in a few places. Most notably, C++ is capable of
performing link-time type checking, whereas C programs must do all their type
checking at compile time.

In the previous example, hello.c and main.c both included the prototype
definition of the hello function, by including hello.h. The compiler could
then ensure that the caller of the function (main.c) and the definer of the func-
tion (hello.c) are in total agreement about the type of parameters and return
value expected.

On the other hand, if the two files used inconsistent definitions for the hello
function (that is, they didn’t both include hello.h), there would be no way for
the linker to complain. After all, the object file states only that hello is defined,
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or required by that file, and never mentions that it has parameters. The linker
would have no way to identify the parameter type mismatch.

For C++, the compiler (called g++) gets around this problem by generating
more detailed object file information. In the following output, notice that the
hello symbol has been mangled (yes, that’s the technical term) to include extra
characters that specify the type information.

$ g++ -c hello.c

$ nm hello.o

00000000 T _Z5helloPc
U  gxx _personality vO
U printf

You end up with the symbol name zshellopc. If two object files don’t use
the same type information, the mangled names won’t match when the program
is linked, and the linking step will fail.

If you’re observant, you notice that the print £ function doesn’t have a man-
gled name. This is because printf is a C-language function (not C++), and the
compiler is explicitly instructed to treat it as a C function. This is an important
feature that allows C++ and C object files to be linked correctly without causing
type mismatch errors in legacy source code.

That completes the analysis of the files and compilation steps for C and C++
software. You haven’t explored any of the language details, but when creating a
build system, you care only about the sequence of compilation steps required to
create an executable program, not the content of the software itself.

Let’s now focus on Java-based software and learn how Java programs are
compiled into executable form.

Java

The Java programming language is now one of the most popular systems for
developing new application code. Sun Microsystems (now Oracle) publicly re-
leased it in 1995, but Java was made famous when it was incorporated into
the Netscape web browser. Although many people saw Java as a way of creat-
ing cute web page animations, it quickly became a full-fledged general-purpose
language that could execute programs on a wide range of desktop and server
machines (including Linux, Mac OS X, Windows, and Solaris).

Java was derived from a number of earlier languages, with C++ being a key
contributor. However, many of the quirks in the C++ language were removed
and replaced by “safer” features. For example, C++ developers can manipulate
pointers using arithmetic, which is a frequent cause of memory corruption prob-
lems. Additionally, C++ developers often forget to deallocate memory when it’s
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no longer required, potentially causing memory leaks. Both of these limitations
have been removed from the Java language and replaced by safer mechanisms
that enable faster and more accurate software development.

One big selling point of the Java language has been its “write once, run any-
where” philosophy. That is, it should be possible to compile a Java program
on a Linux machine, yet run it on a Windows or Solaris machine without any
modification. This is achieved by using a standard set of byte codes that are
interpreted by the Java Virtual Machine (JVM) [29]. Also, because of Java’s
security features, it’s possible to restrict the environment in which a Java pro-
gram executes, therefore allowing untrusted programs to be executed without
fear of harming the host computer.

Because of Java’s general-purpose nature, it’s currently used in a wide range
of applications, including desktop applications, business applications, and web-
based systems. One area in which Java is not so strong is in high-performance
systems where execution time is highly optimized.

Compilation Tools

Sun Microsystems (now a subsidiary of Oracle) maintains the standard Java
programming environment. The Java Development Kit (JDK) has gone through
numerous iterations since the inception of Java and is still actively being im-
proved as the Java language grows. The JDK is shipped with both a set of com-
pilation tools (specifically javac) and a number of standard Java libraries.

The JDK is often viewed as being a reference implementation of the language.
Other vendors are welcome to create their own Java implementation, as long as
it conforms to the JDK standard. The advantage of this approach is that each
vendor is permitted to add platform support and performance optimizations,
while ensuring that they can still execute programs compiled by other standard
version of Java.

Although the JDK is the most popular implementation and can be down-
loaded for free [30], you can consider several other options. The Open]DK
implementation [31] is an open-source spinoff from the original JDK product,
whereas the GNU Java Compiler [32] (from the Free Software Foundation) is a
completely separate implementation. It’s also worth considering the Eclipse Java
Compiler (EC]), which is mostly used within the Eclipse IDE [33]. Finally, ven-
dors such as IBM (the Jikes compiler) and Microsoft (Visual J++) have provided
Java implementations, although these are no longer actively supported.

The examples in this book use the JDK system on a Microsoft Windows
environment. Given Java’s cross-platform nature, the same concepts apply on
all other operating system types (such as Linux and Solaris). Also, as with the
discussion of C and C++, this book focuses exclusively on the language and tool
features that are relevant to build systems.
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Source Files

In Java, the basic unit of source code is the .java file. These files contain Java
class definitions (typically one class per source file), which, in turn, contain the
definitions of constants, variables, and methods. Unlike C and C++, there’s no
concept of preprocessing a source file and no capability to include header files.

Sharing information between classes occurs when one class explicitly imports
variables and methods that are defined within another class. A developer can
control when a variable or method is available for export or may decide to keep
it hidden for private use within a single class definition.

Consider an example in which the source codeis stored in the file com\arapiki\
examples\Hello.java. Note the Java convention in which files are stored
within a hierarchy of directories that indicate which package the file belongs to.
This encourages developers to think hard about the structure of their code (and,
hence, their source tree) before they start to write their software.

In Hello.java, you define a new Java class, named Hello:

1 package com.arapiki.examples;

2

3 public class Hello {

4

5 private String words;

6

7 public Hello(String message)
8 words = message;

9 }

10

11 public void speak() {

12 System.out.println("Hello " + words) ;
13 }

14 }

When an object of the Hello class is first created, the Hello method (lines
7-9) is implicitly executed (this is known as a constructor). Later, users of the
Hello class can call the speak method (lines 11-13) to perform operations on
the data that Hello encapsulates. Note that, on line 8, the constructor saves a
string message to be displayed when speak is called.

The second source file, com\arapiki\examples\Main.java, is the main
entry point of the program:

package com.arapiki.examples;

import com.arapiki.examples.Hello;

public static void main(String args[]) {

1
2
3
4
5 public class Main {
6
7
8 Hello speaker = new Hello("World");
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9 speaker.speak() ;
10 }
11}

In the main method (lines 7-10), you create a new object of type Hello and
pass in a String-typed message as a parameter. You then ask the newly created
object to execute its speak method.

It’s worth noting that, in Main.java, you use an explicit import directive
(line 3) to ask the Java compiler to look for the definition of the Hello class.
Using this information, the compiler determines the various types, constants,
and methods that the Hello class defines. If mismatches arise between the defi-
nition of Hello and the reference to that class, they’re flagged at compile time.
This is similar to the concept of header files in C, except that there’s no need
for duplicated code between two different files (such as hello.c and hello.h).

Note that, on line 12 of Hello.java, you explicitly reference System.out.
println by its fully qualified name instead of using an import directive. This
approach has the same effect with respect to gathering type information and
performing type checking.

The Java language also supports the concept of an interface, which is essen-
tially a class that doesn’t have any of its methods implemented. These ensure
type compatibility between objects of different classes. From the perspective of
the build system, little difference exists between interfaces and a true class, so
this book doesn’t discuss them further.

Object Files

The object file format for a Java class is known as a class file and has the
suffix of .class. Because of Java’s “run anywhere” approach, a class file uses
machine-independent byte codes to describe the flow of the program instead of
compiling directly into native machine code. A Java Virtual Machine (JVM) is
required to load and interpret these byte codes, although the JVM likely first
translates them into native machine code before actually executing the program.

To translate Java source files into class files, you use the javac command.
Because of Java’s package system, you’re required to invoke the compiler from
the top of the directory hierarchy instead of starting in the directory containing
the source files.

C:\Work> javac com\arapikilexamples\Main.java

C:\Work> dir com\arapikilexamples
Directory of C:\Work

07/24/2009 09:17 AM <DIR>
07/24/2009 09:17 AM <DIR>
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07/24/2009 09:47 AM 632 Hello.class
07/24/2009 09:17 AM 227 Hello.java
07/24/2009 09:47 AM 391 Main.class
07/24/2009 09:18 AM 210 Main.java

4 File(s) 1,460 bytes

2 Dir(s) 17,457,893,376 bytes free

Note that because the Main class imports definitions from the Hello class,
the Java compiler also proceeds to compile Hello.java, even though it wasn’t
explicitly listed on the javac command line.

In general, a Java compilation produces one class file for each Java file. The
exception is if you used Java’s inner class concept, in which multiple classes can
be defined within a single Java source file. As you’ll see later, this mechanism
can cause problems for your build system.

To check that you’ve generated a valid class file, you now use the javap com-
mand. Not many command-line options exist for javap, but it does provide the
capability to list the methods defined in the file, as well as to view the byte codes
for each method.

C:\Work\com\arapiki\examples> javap Hello

Compiled from "Hello.java"
public class com.arapiki.examples.Hello extends java.lang.
wObject {
public com.arapiki.examples.Hello(java.lang.String) ;
public void speak() ;

}

C:\Work\com\arapiki\examples> javap -c Hello

Compiled from "Hello.java"
public class com.arapiki.examples.Hello extends java.lang.

wObject {
public com.arapiki.examples.Hello(java.lang.String) ;
Code:
0: aload 0
1: invokespecial #1; //Method java/lang/
wObject."<init>": ()V
4: aload 0
5: aload 1
6: putfield #2; //Field words:Ljava/lang/String;
9: return

public void speak() ;

Code:
0: getstatic #3; //Field java/lang/System.out:Ljava/io/
wpPrintStream;
3: new #4; //class java/lang/StringBuilder

6: dup
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7 invokespecial #5; //Method java/lang/
wStringBuilder."<init>": ()V
10: 1dc #6; //String Hello

12: invokevirtual #7; //Method java/lang/StringBuilder.
= append:
// (Ljava/lang/String;)Ljava/lang/

wStringBuilder;
15: aload 0
16: getfield #2; //Field words:Ljava/lang/String;

19: invokevirtual #7; //Method java/lang/StringBuilder.
= append:
// (Ljava/lang/String;)Ljava/lang/
wStringBuilder;
22: 1invokevirtual #8; //Method java/lang/StringBuilder.
wtoString: ()
// Ljava/lang/String;
25: invokevirtual #9; //Method java/io/PrintStream.
wprintln:
// (Ljava/lang/String;)V
28: return

}

Examining these byte codes in detail gives you a rough idea of how they relate
to the original Hello.java file. For more information about Java byte codes,
refer to [29] in References.

Executable Programs

One of the fundamental concepts in the world of Java programming is dynam-
ic class loading. No build-time link step is required to produce an executable
program. Instead, Java classes are individually loaded into memory when a run-
ning program needs them. Java executable programs are thus quite different in
nature from C/C++ programs, and there’s no single executable program image
to be loaded.

In reality, Java programs are simply a collection of dynamic libraries,
although individual classes are loaded one at a time instead of as part of much
larger shared libraries.

A Java program requires two things to execute:

e The JVM must be provided with the name of a class that contains a main
method. This is used as the starting point for execution.

e The JVM must also be provided with a class path, which is used to identify
where additional classes can be located.
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Let’s see how the java tool (the JDK’s virtual machine) executes the previous
“Hello World” example. Note the use of the fully qualified class name (contain-
ing periods) rather than the directory path (containing slashes or backslashes).

C:\Work> java com.arapiki.examples.Main
Hello World

If you followed along when looking at the source code in Main.java and
Hello.java, the program output shouldn’t surprise you. What’s more interest-
ing is the sequence of events taking place under the covers of the JVM inter-
preter. If you run that same java command again, but this time with verbose
output enabled, you see additional information on which classes are loaded.

C:\Work> javac -verbose:class com.arapiki.examples.Main
[Loaded java.lang.Object from shared objects file]
[Loaded java.io.Serializable from shared objects file]
[Loaded java.lang.Comparable from shared objects file]
[Loaded java.lang.CharSequence from shared objects file]
[Loaded java.lang.String from shared objects file]

[... lots of output removed ...]

[Loaded java.security.Principal from shared objects filel
[Loaded java.security.cert.Certificate from shared objects file]
[Loaded com.arapiki.examples.Main from file:/C:/Work/]

[Loaded com.arapiki.examples.Hello from file:/C:/Work/]

Hello World

The output is quite long because of all the built-in classes used. Toward the
end of the output, you can see the Main class being loaded, followed shortly by
Hello. Finally, you see the expected output displayed.

The remaining question is how the JVM knew where to find the .class
files. In this example, the Hello class was located in a directory that was rela-
tive to the current directory. That is, when the JVM was asked to import the
class named com.arapiki.examples.Hello, it simply looked for a file named
com\arapiki\examples\Hello.class relative to the current directory.

In more complicated programs, you would need to explicitly set the class
path to indicate where additional classes could be located. The class path can
be specified either by setting the CLASSPATH environment variable before start-
ing the JVM or by specifying the -cp command-line option. The class path is a
semicolon-separated list (or colon-separated list, in UNIX) of all the directories
to search to find class files.
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Libraries

In addition to specifying a list of directories in which .class files can be found,
Java classes can be placed into larger archive files, known as JAR files. Most
Java applications prefer the JAR file format (with a . jar suffix), simply because
it’s easier to manipulate JAR files than package and distribute a large number
of .class files.

JAR files are similar to the archive (.a) files used with C and C++, because
they’re simply a container for a number of different .class files. They’re also
similar to C’s dynamic libraries because they’re loaded at runtime instead of
being statically linked into the main program (a concept that isn’t normally used
in Java).

The following example demonstrates how a JAR file can be created. With
the -cf option, you create a new . jar file containing all the . class files found
within the com/ directory hierarchy.

C:\Work> jar -cf example.jar com

The jar command works silently in this case and doesn’t produce any out-
put. With the -tf option, you can examine the table of contents to make sure
the .jar file was created properly.

C:\Work> jar -tf example.jar
com/

com/arapiki/
com/arapiki/examples/
com/arapiki/examples/Hello.class
com/arapiki/examples/Main.class

To use this JAR file, you provide the -cp option to the JVM and execute the
program as you did earlier.

C:\Work> java -cp example.jar com.arapiki.examples.Main
Hello World

As you’ll see in Part Il when you look at Java-based build tools, the JAR file is
commonly used as a means of distributing programs. Not only do you package
your own software in JAR files, but you can incorporate third-party packages
by obtaining other people’s JAR files and adding them to your own class path.
Because of the dynamic loading system, you can replace and upgrade JAR files
whenever you want.

As an added bonus, the Java class loader ensures that a class’s method names,
parameters, and return types match what the rest of the program expects them
to be. For example, during the compilation process, the compiler ensures that
whenever an instance of the Hello class is created, it’s done so by passing a single
String value into the constructor. At runtime, when the Hello class is loaded and
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executed, there’s an additional check to ensure that this constructor still exists and
that the class’s public API hasn’t been modified. Invalid changes to the API cause
a runtime error.

C#

The third and final general-purpose programming language examined here is C#
(pronounced “C Sharp”). This is an object-oriented language that uses the Mi-
crosoft NET development framework [34]. Although it’s primarily designed for
use in the Microsoft Windows environment, it’s also possible to compile and ex-
ecute C# programs on UNIX-like environments, such as Linux and Mac OS X.
C# and the .NET Framework first made their public appearance around 2001.

From a language design perspective, C# is derived from a number of previ-
ous object-oriented languages, most notably C++ and Java. It provides general-
purpose object-oriented programming facilities, and important concepts such
as type safety and multithreading support. C# can be used in a wide variety of
software, ranging from desktop applications to large business systems. How-
ever, it’s not optimized for high-performance computing in the way C and C++
are often used.

One interesting feature of C# is that it uses the same intermediate byte code
standard as other Microsoft-based languages. In particular, C#, Visual Basic.
NET, Visual C++, and Visual J# are all languages that can be compiled using
the same set of byte codes (known as the Common Intermediate Language).
Additionally, the Common Language Infrastructure [35] defines a standard set
of data types and calling conventions that all .NET languages must implement.
These standards enable source code from each language to be compiled and inte-
grated into the same executable program, clearly benefiting the large number of
existing users of Visual Basic and Visual C++.

Compilation Tools

Because C# is a Microsoft-designed language, the most commonly used compi-
lation tools are from the Visual Studio development environment. This provides
both a graphical interface for authoring code and a set of command-line tools
for each of the supported languages. Microsoft provides an “Express” version
of these tools [36] that can be downloaded free of charge. All of this book’s
examples use the C# compiler (called csc), which is bundled with this edition of
the Visual Studio environment.

For non-Microsoft environments, such as Linux and Mac OS X, you have the
option to download the open-source .NET Framework, known as Mono [37].
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The goal of this project is to enable users to develop and execute their Windows
.NET applications on UNIX-like environments, therefore enabling the integra-
tion between Microsoft and UNIX platforms.

Source Files

The basic unit of compilation in C# is the . cs file (for example, main.cs). These
files store one or more class definitions, each of which is placed into a suitable
namespace. As with other object-oriented languages, classes and namespaces
are used to divide a program into logical units of work. Start by looking at an
extended version of the example used for Java. What’s important to understand
from the build perspective is how the source code files are compiled and linked
into a single executable program.

In the first source code file, hello.cs, you define the Hello class with a con-
structor and a single method:

1 wusing System;

2

3 namespace Arapiki.Greeters ({

4

5 public class Hello {

6

7 private string words;

8

9 public Hello(string message)
10 this.words = message;
11 }
12
13 public void speak () {
14 Console.WriteLine ("Hello {0}", words);
15 }
16 }
17}

The constructor (lines 9-11) takes a string as its only parameter and stores it
for later use. When the speak method (lines 13-15) is invoked, it displays the
stored message on the output console.

An important observation here is the use of a namespace (on line 3). That
is, the Hello class is encapsulated inside the Arapiki.Greeters namespace,
which keeps it separate from other definitions of the Hello class that might be
defined within other programs or libraries. As you’ll see later, to access this par-
ticular Hello class, a program needs to explicitly mention the class’s namespace.

When it comes to storing source code on the file system, any C# class can be
stored in any namespace, without limitations on where on the computer’s disk
the file is stored. Unlike Java, which requires that source code be stored in a sub-
directory with the same name as its enclosing package, the C# compiler allows
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an arbitrary layout. Therefore, for the compiler to locate the necessary classes,
the developer must explicitly state the list of libraries to be searched.

Note that the previous example uses the System namespace (via the using
System statement on line 1). When you compile a C# program, you typically
need to inform the compiler of which library file (with .d11 suffix) the desired
namespace is defined in. Luckily, the system library is automatically added to
all C# compilations.

Continue the example by defining two more classes in a new source file,
goodbye . cs. Youalso add these classes to the same Arapiki . Greeters namespace:

1 wusing System;

2

3 namespace Arapiki.Greeters ({

4

5 public class GoodBye {

6

7 private string words;

8

9 public GoodBye (string message) {
10 this.words = message;

11 }

12

13 public void speak () {

14 Console.WriteLine ("GoodBye {0}", words) ;
15 }

16 }

17

18 public class Farewell {

19

20 private string words;

21

22 public Farewell (string message) {
23 this.words = message;

24 }

25

26 public void speak() {

27 Console.WriteLine ("Farewell {0}", words);
28 }

29 }

30 }

The implementation of these classes is almost identical to the Hello class, so
no further explanation is required. Of course, any C# programmer worth his or
her paycheck would rewrite these classes using inheritance, but this is just an
example.

Finally, you create the main.cs compilation unit that contains the Greeterapp
class.
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1 using Arapiki.Greeters;

2

3 public class GreeterApp {

4

5 public static void Main() ({

6 Hello h = new Hello("stranger") ;

7 GoodBye g = new GoodBye ("my friend") ;
8 Farewell f = new Farewell ("you fool");
9 h.speak() ;
10 g.speak () ;
11 f.speak () ;
12 }
13}

This is the main entry point of the application. It creates an instance of each of
the newly defined classes and then calls the speak method on each of them. For
the compiler to locate these classes, you provide the using Arapiki.Greeters
directive on line 1.

Now look at the different ways to compile this source code into an executable
program.

Executable Programs

Compilation of a C# program is not too different from that of a C or C++
program. As with these other languages, you provide a complete list of source
files and libraries to be linked into an executable program. In the .NET environ-
ment, the resulting file is known as an assembly. These files collect various class
definitions (in byte code format), along with other resources, such as graphic
images and documentation files.

The following command line demonstrates the compilation and execution of
the program.

C:\Work> csc /target:exe /out:prog.exe main.cs hello.cs
= goodbye.cs

Microsoft (R) Visual C# 2008 Compiler version 3.5.30729.1
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

c:\Work> prog
Hello stranger
GoodBye my friend
Farewell you fool

One interesting observation is that this example didn’t use intermediate object
files, as you did for C/C++ compilation. Instead, the C# compiler hides this level
of detail and converts the entire program into a single assembly file in one step.
As an optimization, the compiler can skip the recompilation of a .cs file that
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hasn’t been modified, but only if it can determine that the generated byte codes
will be exactly the same as the last time they were compiled. The C# compiler
does permit the generation of netmodule files (equivalent to C’s object files), but
this technique isn’t commonly used.

A second observation is that executing a .NET program is done in exactly
the same way as in a traditional machine code program. That is, a byte-code
program is invoked by typing the name of the executable program into the com-
mand shell. This contrasts with the approach taken by a Java program, in which
an external virtual machine must first be started. In the .NET environment, an
executable program starts by executing native machine code instructions that
implicitly call upon the .NET virtual machine (conveniently located inside a
Windows dynamic library). The virtual machine then proceeds by JIT compiling
the intermediate byte codes into machine code.

To ensure that you have a valid executable program, you can use the ildasm.
exe tool to disassemble the intermediate language (byte codes). The 11dasm.exe
tool starts a GUI display by default, but it can also display output in a text-only
format. Figure 4.2 shows the disassembly of prog. exe.

7 prog.exe - IL DASM =3 =mt<|
File View Help

54 prog.exe
P MANIFEST
=W arapikiGresters
& [JE Arapiki.Gresters Farewell
& E Arapili.Gresters, GoodBye
=-[JE Arapiki.Gresters.Helo
» .class public auto ansi beforefisldinit
« words ; private string
B .ctor : void{string)
& Gresterapp

ascembly prog
.{

Figure 4.2 The disassembly of the statically linked prog.exe using IL DASM.

You can see the Arapiki.Greeters namespace and the three classes it con-
tains. You can also see the Greeterapp class that contains the Main method.

Double-clicking the speak method of the Hello class obtains a listing of the
byte codes from that method (see Figure 4.3).



‘VAmpiki.GrEEtErs.HeIIu::speak:vnid[) =0 '@
Find Find Mext
.method public hidebusig instance veoid speak{) cil managed -
{

/7 Code size 19 (8x13)

.maxstack 8
IL_0888: nop

IL_8881: 1dstr “Hello {@}"

IL_wuu6: ldarg.y £
IL_0007: 1dfld string Arapikl.Greeters.Hello::words

IL_@8dc: udll vuid [mscurlib]Syslen.Cunsvle: Wrileline(sLlring,

object)
IL_88i11: nop
IL_Bei12: ret
} /7 end of method Hello::speak

Figure 4.3 Disassembly of the speak method using IL DASM.

C#

For more details of the Common Intermediate Language instructions, refer

to [35] in References.

As just mentioned, a .NET executable program is also a standard Windows
program, so it is stored in Portable Executable (PE) format [38]. In this respect,
you can use the same tools to analyze the content of the PE file as you can
with any other Windows executable program. In the following example, the
dumpbin.exe program disassembles the headers of the PE file. The dumpbin.exe
program has numerous options, and becoming familiar with this tool is worth-

while if you do any type of work with compilers or build systems.

c:\Work> dumpbin /headers prog.exe
Microsoft (R) COFF/PE Dumper Version 9.00.30729.01
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file prog.exe
PE signature found
File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
14C machine (x86)
3 number of sections
4A6F1190 time date stamp Tue Jul 28 07:56:16 2009
0 file pointer to symbol table
0 number of symbols
EO size of optional header
102 characteristics
Executable
32 bit word machine

OPTIONAL HEADER VALUES
10B magic # (PE32)
8.00 linker version
600 size of code
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800 size of initialized data
0 size of uninitialized data
253E entry point (0040253E)
2000 base of code
4000 base of data
400000 image base (00400000 to 00407FFF)
2000 section alignment
200 file alignment
4.00 operating system version
0.00 image version
4.00 subsystem version
0 Win32 version
8000 size of image
200 size of headers
[... output truncated ...]

Libraries

As you might expect, the NET Framework also supports the concept of librar-
ies. In the same manner as executable files, the dynamic link library (DLL) file
can be used for storing either native code or .NET byte codes. This type of file
also conforms to the Portable Executable format.

When developing C# code in the Visual Studio environment (the GUI inter-
face that calls upon the .NET compilation tools), it’s common to divide a large
program into a number of smaller libraries. This contrasts with having all the
program’s source files compiled into a single executable program in one giant
step. Many Visual Studio projects are thus made up of a collection of “Library”
projects, as well as an “Application” project that depends on those libraries.

Now examine this mechanism by placing the Arapiki.Greeters namespace
into a separate DLL. Again, the csc compiler is used, but this time you use the
/target option to specify that a DLL be created.

c:\Work> csc /target:library /out:greeters.dll hello.cs goodbye.cs

You can now use the il1dasm.exe tool to examine the content of the library
file (see Figure 4.4). In this example, the library contains only the greeter classes
and doesn’t contain the main application (the Greeterapp class).



C#

7 greeters.dil - I DASM =[S0

File View Help

b MANIFEST
=W arapikiGresters
= JE Arapiki.Gresters Farewel
& E Arapiki.Gresters, GoodBye
& [JE Arapiki.Gresters.Hello

.assembly gresters -

Figure 4.4 Disassembly of the greeters.dll dynamic library, using IL. DASM.

The next step is to reference this library when you compile main.cs into
the prog.exe executable program. Note the use of the /reference option to
inform the compiler of the additional library. It uses this library, as well as any
built-in libraries, when searching for namespace and class definitions specified
in the program’s using directives.

c:\Works>csc /target:exe /out :prog.exemain.cs /reference:greeters.
dll

Again, you can use ildasm.exe to examine the content of prog.exe to see
which namespaces, classes, and methods exist (see Figure 4.5). This time, the
program contains only the main Greeterapp class and doesn’t contain any of
the other classes, because they’re now stored in the DLL.

/7 prog.exe - IL DASM = [ -
File View Help

b MAMNIFEST
& JJE Gresterapp

.ascembly prog
.{

Figure 4.5 Disassembly of prog.exe, now separate from greeters.dll.
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To locate the additional classes at runtime, the NET Framework examines
the manifest information that exists inside the prog.exe assembly. Double-
clicking the MANIFEST entry in the ildasm.exe output informs you that prog.
exe requires that greeters.dll also be loaded into memory and made avail-
able to the virtual machine (see Figure 4.6). This concept is identical to what
you’ve already observed in C and C++ programs.

#7 MANIFEST ==
Find  Find Next
/7 Hetadata version: v2.0.50727 -

.assenbly extern mscorlib

-publickeytoken = {B7 7A 5C 56 19 34 E@ 89 )
-ver 2:8:0:0 =S

-assenbly extern greeters
{

-uer B:0:0:0
b
.assenbly prog

.custom instance void [mscorlib]System.Runtime.CompilerService
.custom instance void [mscorlib]System.Runtime.CompilerService _

P 1 3

Figure 4.6 The manifest for prog.exe, showing that it depends on greeters.dll.

Luckily for most C# developers, all this compilation process is conveniently
hidden behind the user-friendly GUI interface. However, larger programs that
have nontrivial build requirements require you to use a full-fledged build tool to
automate the compilation of software. Part II briefly looks at the MS Build tool
specifically designed for compiling .NET programs.

Other File Types

Until now, this chapter has focused on the file types normally associated with
compiled programming languages, including source files, object files, libraries,
and executable programs. However, most software also includes scripts, docu-
mentation files, graphic images, and configuration files. The build system must
also process these, even if only to include them in the final release package.

For example, a software product can include the following file types:

¢ Program code, written in scripting languages: This includes UNIX shell
scripts, Windows batch scripts, and programs written using Perl or
Python. As discussed in Chapter 3, “The Runtime View of a Program,”
these scripts don’t require a compilation step, but are instead copied
directly to the release package.
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e Web-centric files, including HTML, JavaScript, or PHP: Depending on
the exact file format, these are either interpreted and displayed by the end
user’s web browser, or compiled and executed by the web server. In either
case, the build system is required only to package the files rather than
compile them into object code.

e Modeling language files, such as UML models: As you’ll see shortly, these
are a high-level representation of the program, used to automatically gen-
erate code in more traditional languages such as Java, C++, or C#.

¢ Documentation files such as online help or printable user manuals: These
can be in any format, ranging from UNIX-style nroff files, TeX files, or
GNU info files, all the way through to PDF or HTML. Depending on the
format used, the build system translates the input files into an output for-
mat suitable for displaying in a PDF viewer, rendering in a web browser,
or sending to a printer.

¢ Graphic image files: These files are used to display anything from a small
icon on a GUI window, to a program’s splash screen or a full-size picture.
You’ll learn about these in more detail shortly.

¢ Configuration files: These files provide configuration data that controls
the behavior of the program. These can be in plain text format, can be
encoded using XML, or can be written in any customized format suitable
for your program.

Let’s now examine a few of these additional file formats, namely UML,
graphic files, XML files, and language bundles.

UML-Based Code Generation

The Unified Modeling Language (UML) [39] is a graphical language for de-
scribing the high-level design and flow of a program. It’s considered to be a
higher level than languages such as Java, C++, or C#, given that it focuses on
the software’s “big picture” and abstracts out the implementation detail. For
example, the UML diagram shown in Figure 4.7 states that a program contains
two classes (Student and Course), each having a set of methods that can be
invoked on objects of that class. It also describes the relationship between the
two classes. (For example, a student may be enrolled in zero or more courses.)
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Student

name
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grades

Course

title
instructor

addCourse(c
getGrade(c

getCourses():
: Course)
: Course): int

List of Course

getStudents():
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removeStudent(s:

List of Student
tudent)
Student)

setGrade(c: Course, g: int)

Figure 4.7 A Unified Modeling Language diagram.

After developers create a UML model, they use tools to autogenerate an
equivalent program in a lower-level language, such as Java, C++, or C#. As
part of this process, each box in the diagram is translated into a single object-
oriented class. The name of the class (such as Student or Course) is specified
in the top third of each UML box, whereas the second section provides a list
of the fields (such as name and address) that the class should contain. Finally,
the third part of the box lists the method names for that class. Some UML tools
enable the developers to provide the actual lines of code required to implement
each of the methods.

If developers want to update their UML model for any reason, they can easily
and quickly regenerate the source code by rerunning the code generator. Some
UML tools enable round-trip engineering so that developers can change either
the model or the source code, with the two kept synchronized.

From the perspective of a build system, Figure 4.8 shows the compilation
steps required to generate source code from a UML model, using Java as the
output language.
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Execute
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Course.java Course.class

Figure 4.8 Generating Java source files from a UML model.

In this diagram, the school.uml file is the only true source code, whereas
the .java files are autogenerated code and should not be hand-modified by
developers. The translation of Java source files into Java class files is the same
as discussed earlier.

A number of development tools can construct and generate code from UML
models. Common UML tools include Rhapsody (from IBM/Telelogic) and
Poseidon for UML (from Gentleware).

Graphic Images

Unless you’re writing a text-only program, you’ll almost certainly have reason
to display some type of graphic image. This can be anything from a 320x200-
pixel splash screen or a 16x16-pixel icon on the program’s menu bar. In some
cases, your program might need to display large multicolored images (see Figure
4.9). Regardless of their purpose, the graphic images must be available to the
executable program, either as data that’s embedded inside the program or as an
external file that’s read from disk.
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Figure 4.9 A graphic image.

The most popular programs used to create graphic images include The
GIMP, Adobe Photoshop, Adobe Fireworks, and Windows Paint. Because these
tools are graphics-oriented, they aren’t run as part of the build process; instead,
they’re used in a standalone manner to generate GIF, JPEG, or PNG graphic
files. These are either linked into the executable program or somehow packaged
into the final release image.

One interesting alternative is that your build system can generate graphic files
from other formats. For example, if your build system generates a set of web
pages containing your software’s online help, it might also generate a number
of graphic image files, such as a graph or a pie chart. The content of these files
is generated from raw input data rather than being hand-drawn using an artist’s
tool.
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XML Configuration Files

Many programs have some type of configuration file associated with them.
When a program first starts, the user’s configuration file is parsed to determine
how the program should behave. If the user changes the configuration, such as
by using the Tools, Options menu, the configuration is updated and saved
back to disk. The user is unaware of this process, aside from noticing that the
user preferences are maintained even when the program is shut down.

A configuration file can be stored in any format, but XML is becoming a
common solution because of both standardization and the flexibility it provides
in storing hierarchical data. The following example shows the type of informa-
tion that can be stored in a configuration file.

<options>
<font>
<size>l4<size>
<family>Times New Roman</family>
</font>
<user-emails>psmith@arapiki.com</user-emails>
<data-dir>C:\Users\Peter\Data\</data-dir>
</options>

From a build system perspective, you need to worry only about providing an
initial version of this file. This is provided to each new user upon first executing
the program because new users won’t have a previous configuration of their
own. The build process simply copies the default file into the software’s release
package, most likely without making any customizations.

Internationalization and Resource Bundles

A second type of configuration file is known as a resource bundle. In a modern
software package that is targeted for multiple countries and languages, it’s im-
portant for the software to display content in the user’s preferred language or
country format. A resource bundle enables a developer to extract text-based
messages out of the program code and store them in an external disk file.

For example, a Canadian English language bundle is a small text file that
contains the following definitions:

color choose=Please select the colour.
currency name=Dollar

currency code=CAD

flag image=Canada flag.gif

An American English bundle, on the other hand, would contain the following:
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color_ choose=Please select the color.
currency name=Dollar

currency_ code=USD

flag image=USA flag.gif

For Mexico, the resource bundle file would contain this:

color choose=Seleccione por favor el color.
currency name=Peso

currency code=MXN

flag_image=Mexico_flag.gif

Selecting the appropriate resource bundle file is typically a runtime decision,
but the build process needs to package all the bundle files, along with any other
files they reference (such as Canada flag.gif). Based on the user’s preferred
language or country choice, the software loads the appropriate bundle and uses
the correct messages or graphics on the user interface.

In the examples, XML-formatted data was not used, even though that’s a
viable option. The data in our language bundle isn’t hierarchical, so a flat file
“properties” format is acceptable.

Summary

This chapter covered an extensive range of file formats and compilation tools
for a number of popular programming languages (C/C++, Java, and C#), as well
as for both the Windows and Linux operating systems. It also discussed addi-
tional file formats, such as scripting languages, UML models, graphic images,
and configuration files.

The goal of this chapter has been to describe the file formats used in a build
system and to illustrate how compilation tools transform the input formats
(such as source files) into output formats (such as object files). The output for-
mat is closer to what the target machine can understand or what is suitable to be
executed in a virtual machine or rendered by a document viewer.

Learning these file transformation steps gives you a better idea of how to con-
struct a build system. You also learned how to diagnose build-related problems
when output files aren’t generated as they should have been.



Chapter 5

Subtargets and Build Variants

So far, this book has assumed that each piece of software has its own unique
build process. That is, it’s assumed that there’s only one way each source file
is compiled and linked into an executable program and that only one type of
release package can be generated. In reality, though, any number of variants can
exist, each using a slightly modified build process and creating a slightly differ-
ent release package. The word slightly indicates that the build process should
still generate the same general program, but the behavior of that program could
vary in a few minor ways.

The big picture (see Figure 5.1) has been drawing a one-to-one mapping
from the source tree to the object tree. In practice, many mappings could exist,
depending on which build options the developer selects. Additionally, there may
be multiple object trees, one per build variant.

- 4/<>\-& :: k- 1

Source Object Rel

Tree Tree Package
P w—y E

| Compilation Tools

Version-
Control
Tool

Target Machine

| Build Machine |

Figure 5.1 Big-picture diagram, showing multiple ways to create an object tree from a
source tree.

This chapter examines three different ways in which the mapping from source
to object tree can vary:
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1. Building subtargets: In a typical build process, you might expect the
entire object tree to be compiled from source code and a corresponding
release package to then be produced. This is usually a requirement if
you intend to install and run the software on the target machine. How-
ever, developers who are making only incremental changes to one part
of the build tree prefer to rebuild only the portion of the tree they’re
actively working on. This is known as building a subtarget.

2. Building different editions of the software: In this case, you still com-
pile the full set of source files, but the output is customized to vary the
software’s behavior. These variations might include support for natural
languages (such as French, German, or Japanese) or support for differ-
ent combinations of product features, such as a Home or Professional
edition.

3. Building different target architectures: To support a software product
on different target machines, you must compile the same set of source
files for a variety of different CPU types and operating systems. This
includes CPUs such as x86, MIPS, and PowerPC, as well as operating
systems such as Linux, Windows, and Mac OS X.

Each of these approaches modifies the build process in a different way. In
the first case, you simply build a portion of the entire software product instead
of compiling everything. In the second case, you build the entire product but
selectively include or exclude source files depending on what you need to build.
In the final case, you build the entire software product but vary the compilation
tools used, in addition to including or excluding a few files.

This chapter examines each of these basic types of variation, paying special
attention to how a build system supports each case.

Building Subtargets

Any large piece of software can be divided into a number of subcomponents,
often in the form of a static or dynamic library. Each component provides only
a portion of the program’s full functionality and is developed somewhat inde-
pendently from other components. For large systems, the final software can
contain different executable programs that work in cooperation. In this case,
each of those programs itself is a subcomponent.

Figure 5.2 shows how a typical source tree is divided into multiple
subcomponents.
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Csre
[ calc-app
3 graphics
COmath

Figure 5.2 Dividing a source tree into multiple subcomponents.

The directory layout of the tree is specifically designed to follow the structure
of the program. That is, the math and graphics directories contain source code
for the math and graphics libraries. Also, the calc-app source directory con-
tains the main part of the application to be linked with the libraries to create an
executable program.

By default, a developer builds the entire source tree to create the final execut-
able program:

$ cd src
$ make all
build output will be shown

$ ./calculator
calculator program output will be shown

If you now imagine that the calculator program has many source files, an
incremental build of the whole tree might still be time-consuming. Even though
the build tool should recompile only files that have actually been modified, read-
ing all the build description files (such as makefiles) and determining which
object files are out of date requires effort. In some cases, an incremental build
could take 2-3 minutes before it even starts to recompile anything.

As a tradeoff, developers might choose to limit the number of subcomponents
they build instead of always rebuilding the whole source tree. To illustrate, if a
developer made a small code change in the math library, he or she could opti-
mize their build time by limiting their compilation to one directory.

$ cd src/math
$ make libmath.so
build output will be shown

S cd
$ ./calculator
calculator program output will be shown
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The important observation here is that the math library (1ibmath. so) is dynami-
cally linked into the executable program (calculator). This enables certain types
of change to the math library without the need to relink the program again. Simply
recompiling the library and restarting the calculator program makes the code
changes automatically take effect.

For a larger piece of software that contains multiple executable programs,
you can also optimize the build process by compiling just one of those programs.
Instead of generating and installing a new release package each time you invoke
the build tool, you can save several minutes by manually copying the modified
files directly to the target machine. The other files are already installed on the
target and, in many cases, are still compatible with the newly added file.

Building Different Editions of the Software

When developing software for a global market, it’s important to consider the
needs of all your end users. Unless you’re writing software specifically for one
customer, you need to consider factors such as language and culture, hardware
variations, and differences in what the customers will pay for the software. Let’s
examine each of these in turn.

e Language and culture: Not all computer users speak the same language or
have the same culture. To comfortably use a piece of software, users prefer
to see the program’s commands, menus, and error messages in their native
language. They might also prefer to see words displayed in a right-to-left
or top-to-bottom direction rather than the traditional Western left-to-right
approach. They certainly expect to see monetary values written in their
own currency. Even Canadian English speakers prefer to see the word col-
our instead of color.

To enable this type of localization, the software team has additional work.
Not only must all the text messages be translated into the supported lan-
guages, but also the software’s user interface must be clever enough to
display words and images in a variety of formats. Finally, the build process
must select the necessary text strings or graphic images for each language
and culture.

e Hardware variations: Software designed to execute on a variety of hard-
ware platforms can be customized at build time to include the required
functionality. Anyone familiar with the process of building a Linux kernel
has seen how hardware variations are managed. The first step is to run a
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configuration tool that gives the user a set of choices. The second step is to
invoke the build process to generate a customized kernel. The final kernel
image includes all the selected drivers that the target hardware requires but
doesn’t include anything the user chose not to compile.

¢ Pricing options: Software vendors have learned that different customers
are willing to pay different amounts of money for the same thing. For ex-
ample, a home user might pay only $200 for a financial accounting pack-
age, whereas an accountant might comfortably pay $2,000 for the same
package. To address both markets, the software supplier produces a Home
Edition for the home user and a Professional edition for the accountant.
The only difference is that some of the advanced features are disabled in
the Home edition. This combination of price and features make both edi-
tions of the software attractive to each group of end users.

With these examples in mind, consider how you can add support for varia-
tion to your build system.

Specifying the Build Variant

If you imagine your fictitious accounting package (with Home and Professional
editions) in three different languages, you’d have the following six build vari-
ants. Note that not all options might be valid:

Home Professional
English Valid Valid
French Valid Valid
German Valid Not Supported

When building the software, developers must select both a Language value and
an Edition value. If they neglect to specify both, the build system either halts with
an error message or instead defaults to something like English/Professional.

In some cases, supporting all build combinations might not make sense. In
this example, the Professional edition doesn’t support the German language; the
fictitious software doesn’t have the advanced features required in the German
marketplace. The developers would never build that variant, and the testers
would never test it. In fact, you might want to disallow anybody from building
this combination and instead give an error message.
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If you implemented this build system using the Make build tool, the devel-
oper would specify the variant by defining LANGUAGE and EDITION on the com-
mand line:

S make all LANGUAGE=French EDITION=Home
build output will be shown

S make all LANGUAGE=French EDITION=Professional
build output will be shown

As you might expect, typing the variant names can get tedious and error
prone. You could write a small shell script or use a command-shell alias to
repeat the same command, but it’s also possible to store the configuration inside
your build tree. With this approach, the build system defaults to the same values
you chose last time, unless you decide to override those values.

In the following example, the first build command sets the configuration
parameters, whereas all successive commands automatically use the same
options.

$ make configure LANGUAGE=French EDITION=Home

S make all
build output for French/Home will be shown

S make package
build output for French/Home will be shown

To implement this feature, the configure target creates a short makefile
fragment containing the stored definitions. For example, the following Make
rule defines the configure target:

configure:
@echo LANGUAGE=$ (LANGUAGE) > .config
@echo EDITION=$ (EDITION) >> .config

This generates a .config file in the following format:

LANGUAGE=French
EDITION=Home

The main makefile parses this value whenever a build is invoked. If the user
doesn’t explicitly provide values for LANGUAGE and EDITION, the values saved in
the .config file are used instead.

Incidentally, a similar method is used with great success when building the
Linux kernel, given that it has hundreds of build-time options. Instead of pro-
viding them on the command line, developers use a separate configuration target
to select all the build-time options they care about.
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# gmake config

scripts/kconfig/conf arch/x86/Kconfig
*

* Linux Kernel Configuration

*

*

* General setup

Prompt for development and/or incomplete code/drivers

w (EXPERIMENTAL)

[Y/n/?]

Local version - append to kernel release (LOCALVERSION)

[-0.1-pael

Automatically append version information to the version

wstring [N/y/?]

Support for paging of anonymous memory (swap) (SWAP) [Y/n/?]

System V IPC (SYSVIPC) [Y/n/?]

POSIX Message Queues (POSIX MQUEUE) [Y/n/?]

BSD Process Accounting (BSD PROCESS ACCT) [Y/n/?]

BSD Process Accounting version 3 file format [Y/n/?]

Export task/process statistics through netlink (TASKSTATS) [Y/n/?]
Enable per-task delay accounting (EXPERIMENTAL)

w (TASK _DELAY ACCT) [Y/n/?]
Enable extended accounting over taskstats (TASK XACCT) [Y/n/?]
Enable per-task storage I/0 accounting [Y/n/?]

Auditing support (AUDIT) [Y/?] vy
Enable system-call auditing support (AUDITSYSCALL) [Y/n/?]

Remainder of output removed

After the user runs this command, a special configuration file records the
user’s options, ready for use by the build system. This cache of information is
kept for future use, especially if the developers want to modify their previous
choices.

Now focus on the accounting example again. To ensure that developers select
a legal variant, you must carefully check the options they’ve entered. For exam-
ple, if Japanese is not a valid language choice, you would expect to see a mean-
ingful error message:

$ make configure LANGUAGE=Japanese EDITION=Home
Makefile: *** Invalid value for LANGUAGE. Must be one of:
wEnglish French German

The following makefile fragment demonstrates the type of safety check to be
performed.

LANGUAGE := English

1
2 EDITION := Professional

3

4 VALID LANGUAGES := English French German
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5 VALID EDITIONS := Professional Home
6
7 ifeq ($(findstring $ (LANGUAGE),$ (VALID LANGUAGES)),)
8 $(error Invalid value for LANGUAGE. \
9 Must be one of: $(VALID LANGUAGES))
10 endif
11
12 ifeqg ($(findstring $ (EDITION),S$ (VALID EDITIONS)),)
13 $ (error Invalid value for EDITION. \
14 Must be one of: $(VALID EDITIONS))
15 endif
16
17 ifeq (3 (LANGUAGE) /S (EDITION) ,b German/Professional)
18 $ (error German language is not supported by Profession-
al Edition)
19 endif

If the user doesn’t explicitly override the LANGUAGE and EDITION variables
on the command line, the build system defaults to the English Professional ver-
sion of the software. You also must disallow the German Professional version
because that option doesn’t make sense.

Varying the Code

After selecting a build variant, you use it to configure the software’s behavior
accordingly. This involves selecting the specific directories, files, or lines of code
that pertain to the variant you’re building. Depending on the magnitude of the
variation, you can configure the code in a number of ways.

¢ Line-by-line variation: This is the most fine-grained approach to introduc-
ing variation into the source code. In languages that allow it, conditionally
compiling specific lines of code makes it possible to implement different
behavior for each variant. The first step is for the build system to pass the
necessary definitions to the compiler. In C/C++, this is done with preproc-
essor definitions. The required makefile fragment is as follows:

ifeq ($(LANGUAGE) ,English)
CFLAGS += -DLANG EN
endif

ifeq ($(EDITION), Professional)
CFLAGS += -DEDITION_PROF
endif

Inside the C/C++ source code, you conditionally compile parts of the pro-
gram by testing for those definitions. In the following case, you enable a
more advanced feature if you’re building the Professional edition.
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int compute costs()

{
int total costs = 0;
#ifdef EDITION PROF
total costs += capital cost_allowance() ;
#else /* not EDITION_ PROF */
total costs += basic costs();
#endif /* EDITION PROF */

}

Because of the simplicity of this method, many C/C++ programmers make
heavy use of conditional compilation. Be warned that overusing the #ifdef
directive can make the source code hard to follow, especially when multi-
ple variants interact with each other.

e Per-variant files: If the source code for one variant differs significantly
from other variants, you might find it simpler and cleaner to separate
the source code into per-variant files. For example, you might have one
source file named english.c that contains English-language functions,
whereas the german. c file might contain similar functions for the German
language. This approach makes it easier for developers to visualize the
structure of the source code rather than intermixing variants into the same
file using #ifdef. To conditionally compile the files, you modify the build
description as follows:

SRCS := basic.c costs.c math.c interest.c ui.c
ifeq ($(LANGUAGE) ,English)

SRCS += english.c
endif
ifeq ($(LANGUAGE) , French)

SRCS += french france.c french canada.c
endif

¢ Per-variant directories: A similar approach includes whole subdirectories
rather than individual files. To simplify matters, naming the subdirecto-
ries after the variants keeps the build description compact. The following
example assumes that you have subdirectories named English, French, and
German, each containing language-specific source files.

DIRS := uil graphics math database $(LANGUAGE)

This approach is far more common in languages such as Java that don’t
support line-by-line conditional compilation. Instead, each variant has its
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own subdirectory of classes that are compiled into the program. All subdi-
rectories contain the same list of Java source files, with each implemented
differently.

English/Menus.java
English/Errors.java
English/Currency.java
French/Menus.java
French/Errors.java
French/Currency.java
German/Menus. java
German/Errors.java
German/Currency.java

In this example, the build system compiles the Java files from either the
English, French, or German subdirectory. When the Java code executes,
it simply references the Menus, Errors, or Currency class, without car-
ing which source code directory those classes originally came from.

e Per-variant build description files: When each build variant is associated
with different compilation flags, you might consider separating the build
description into different files, with one file used per variant. The top-level
build description file incorporates one or more of the variant-specific files,
based on the user’s settings. For example, the main file will contain the
following include directive:

include $ (LANGUAGE) .mk

Each of the .mk files then provides all the variant-specific definitions. For
example, English.mk would consist of nothing but definitions relevant
for the English-language product:

CFLAGS += -DLANG EN -DLEFT TO RIGHT TEXT -DUSE_ASCII \
-DSUPPORT_USA -DSUPPORT_UK -DSUPPORT_ CANADA

CURRENCIES := USD CAD AUD GBP

SPLASH SCREEN := ENGLISH FLAG.Jjpg

OPTIONAL DIRS := src/property tax src/estate tax

ERRORS_FILE := english-errors.list

PROPERTIES := english.properties

Separating the build description into multiple files makes it easy to add
support for new variants and reduces the complexity of the main build
description file. These files can become messy when they’re littered with
if/else statements for all the possible variants.
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¢ Packaging-time variation: The next point at which variation can be applied
is the packaging stage. To package a specific edition of the software, you
selectively choose which files need to be copied into the final release pack-
age. Following the previous example, selecting a splash screen image for
the accounting software depends on which language variant was chosen.
This is the relevant portion of the build description:

$ (COPY) s (SPLASH SCREEN) splash screen.jpg

The $ (SPLASH SCREEN) variable was already defined in the build descrip-
tion file and refers to a suitable graphic image for the chosen language
variant.

¢ Installation-time variation: Even if you had only one way to build the
product—and, therefore, only one variant of the release package—you
could still customize the behavior of the software at installation time.
Software commonly identifies the end user’s geographic location before
installing the relevant files on the target machine. The release package
contains all files required to support all variants, but only the files for the
chosen variant are installed.

Chapter 13, “Software Packaging and Installation,” discusses packaging
and installation systems in more detail.

¢ Runtime variation: The final way to customize software is to do it when
the program is executing. The build system generates a release package that
contains all functionality (all languages and all features), and every part of
that functionality is installed on the target machine. However, when the
program starts executing, it determines which variation is required and
modifies its own behavior accordingly.

One way to control variation is via the familiar Tools, Options menu,
where end users can select the language or set of features they want to use.
Alternatively, software that requires a license key can unlock certain fea-
tures only if the appropriate license is available. This approach to custom-
izing software has little to do with build systems, so this chapter doesn’t
go into further detail.

Naturally, these methods of implementing software variation (such as per-
line or per-file variation) are not mutually exclusive. A build system is free to use
any combination of these methods, depending on what makes the most sense.
Indeed, you might find software that uses every one of these solutions, depend-
ing on which type of feature is impacted by each variant.
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Building Different Target Architectures

The third approach to varying the output of the build process is to generate code
for more than one target architecture. This implies that the software supports
multiple CPU types or operating systems. In general, the functionality of the
program is identical in all cases, but the target computer is different. This type
of variant is relevant only when programming in languages such as C and C++,
which compile into native code. It’s not relevant for Java and C#, which use
machine-independent virtual machines.

Multiple Compilers

The first important technique for varying the target architecture is to use more
than one source code compiler. For example, if your product could be target-
ed for both the Linux environment and the Microsoft Windows environment,
you’d likely use the GNU C Compiler to generate Linux code and then use the
Visual Studio compiler to generate Windows code. Each compiler would require
its own set of command-line options, but that could be handled in the same way,
as follows:

ifeq ($(TARGET), Linux)

CC := gcc-4.2
CFLAGS := -g -0
endif
ifeq ($(TARGET),Windows)
CC := cl.exe
CFLAGS := /02 /Zi
endif

Given that each compiler (gcc-4.2 and c1.exe) can be executed on only one
type of build machine, you might be wondering whether the build system could
automatically detect which compiler to use. That is, if the developer is building
on a Linux build machine, you’d automatically use gcc-4. 2. If the developer is
on a Windows machine, c1.exe is used instead. The following example relies
on the operating system itself to set the $ (HOST) variable.

ifeq ($(HOST),Linux)

CC := gcc-4.2
CFLAGS := -g -0
endif
ifeq ($(HOST), Windows)
CC := cl.exe
CFLAGS := /02 /Zi

endif
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This type of autodetection is the correct approach for native compiling
because the developer doesn’t need to specify the TARGET= value.

On the other hand, the situation is quite different for cross-compilation. A
single build machine can be used to generate code for more than one target plat-
form, so developers must state which variant they want. The following example
uses two variants of the GNU C Compiler: one that generates code for a Linux
machine with an x86 CPU and a second that generates code for a Windows
machine.

ifeq ($(TARGET),Linux)

CC := i386-linux-gcc-4.2
CFLAGS := -g -O

endif

ifeq ($(TARGET),Windows)
CC := i386-windows-gcc-4.2
CFLAGS := -g -0

endif

You no longer use the native Windows compiler because that doesn’t run in
a Linux-hosted environment. Instead, a purpose-built version of GCC generates
Windows machine code.

Platform-Specific Files/Functions

A second important technique when varying the target architecture is to recog-
nize that not all source code is relevant for all platforms. Although you should
usually try to write portable source code that executes on all machines, some-
times your code has no choice but to use OS-specific features. For example, the
following code returns the name of the currently logged-in user, regardless of
whether you use Linux or the Windows platform.

char * get user name()

#ifdef linux
struct passwd *pwd = getpwuid(getuid()) ;
return pwd->pw_name;
#endif /* linux */
#ifdef WIN32
static char name[100] ;
DWORD size = sizeof (name) ;
GetUserName (name, &size) ;
return name;
#endif /* WIN32 */

}

In practice, unless you rely solely on standard libraries that are the same on
all target machines (such as the POSIX standard), you need to do a fair amount
of conditional compilation. The following methods are appropriate:
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e Use line-by-line conditional compilation, such as #ifdef in C/C++.

e Use per-file variation to select the relevant source code for your specific
architecture.

e Use per-directory variation to select whole directories of source code for
your architecture.

Each of these methods was described earlier when discussing how to create
different editions of the software. In essence, you’re now creating a Linux edi-
tion and a Windows edition, although, as much as possible, you want to use the
same source files and keep the same functionality for all platforms.

Multiple Object Trees

A topic this book hasn’t yet touched on is multiple object trees. If you’re gen-
erating code for more than one operating system or CPU type, you might want
to have the object code for different variants available at the same time. This is
particularly useful when modifying parts of the source code that must be care-
fully tested on more than one target. A change that works for one architecture
might not work on a second.

If you have only a single object tree, constantly rebuilding the whole tree
whenever you needed to test your code for a different variant would be painful.
If developers get lazy and don’t bother testing on all target machines, there’s a
good chance that they’ll break the code for somebody else. Making it easy to do
the right thing is an important goal to aim for, so having multiple object trees is
often the correct approach.

Figure 5.3 shows a single source code tree but two object trees.

Linux
Build
Linux Object
Tree
Source Windows
Tree Build
Windows Object
Tree

Figure 5.3 Compiling the same source code into multiple object trees.
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The structure of each object tree mirrors the structure of the source tree.
Viewing this same arrangement as a directory listing produces the following
layout:

src/math/* . c
src/graphics/*.c
src/calc-app/*.c
obj/Windows/math/* .obj
obj/Windows/graphics/*.obj
obj/Windows/calc-app/*.obj
obj/Linux/math/*.o
obj/Linux/graphics/*.o
obj/Linux/calc-app/*.o

In this example, the source files in the src directory can be compiled either
into the obj/Windows directory by using the Windows compiler or into the
obj/Linux directory by using the Linux compiler. Both object trees are kept
indefinitely, so it’s quick to incrementally compile the code for each platform,
just to make sure that nothing has broken.

From the perspective of the build system, setting up multiple object trees is
trivial. Assuming that all object files are stored into the $0BIDIR directory, you
can set this directory on a per-variant basis.

OBJDIR := obj/$ (TARGET)

Although this approach works well, it does limit you to storing object files
within the top-level obj directory. A second approach is to allow developers
to arbitrarily choose the location of their object tree. Developers must perform
a configuration step to designate which variant of code should be built in that
tree. For example:

mkdir /fast-disk/psmith/my-obj
cd /fast-disk/psmith/my-obj
configure --src=/home/psmith/source
make

build output will be shown

Uy Uy Ur Ur

In this example, the developer has chosen to store object files on a fast disk
(/fast-disk/psmith/my-obj) instead of storing them in the same location
as their source code (/home/psmith/source). The developer might have been
done this to get better performance when building the software, or perhaps the
/home disk is running short of free space. In either case, having the flexibility to
select a location is often useful.

As a final note, the same benefits can be achieved when using the fixed-path
approach, although less elegantly. Using symbolic links allows object files to be
stored on a different disk, although the build system believes they’re in the same
place as the source code.
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mkdir /fast-disk/psmith/my-obj

cd /home/psmith/source

ln -s /fask-disk/psmith/my-obj obj
make

. build output will be shown ...

o Uy U Ur

In this example, you replace the fixed-path obj directory with a symbolic
link to the /fast-disk directory. Symbolic links are great for this type of trick,
although they can be confusing when overused.

Summary

This chapter identified three main ways a build process can vary to provide ad-
ditional functionality. These approaches involve building a subset of the whole
tree (a subtarget), building different editions for different end users, and build-
ing for different CPU types and operating systems.

In compiling only a subset of the full code base, developers can optimize their
workflow by reducing compilation time. This is a common approach when the
program contains a number of shared libraries or a collection of executable
programs.

Creating different editions of the software enables you to address different
target markets. Many customers appreciate having software in their own native
language or using their own cultural symbols. Other customers are willing to
pay more for additional features that aren’t part of the standard package. Build
variants of this nature can be introduced on a per-line, per-file, or per-directory
basis, or at packaging time, installation time, or runtime.

The need for your product to support multiple CPU types and operating sys-
tems can lead to multiple object trees. Each tree stores the object files for a single
CPU or OS variant and must be kept and recompiled often.



PART II

The Build Tools

Part I was an introduction to software build systems. You learned the
basics of the GNU Make tool, considered the various components of a
program, saw the compilation steps for three common programming lan-
guages, and explored subtargets and build variants.

However, aside from a few examples, you didn’t learn about build
tools. Recall that a build tool orchestrates the use of compilation tools to
generate a complete software product. A build tool performs the full build
process by reading the build description and acting upon the instructions.

The second part of this book examines a number of build tools in detail.
Each tool was chosen because of both its popularity and the fact that it
represents a particular class of build tools. These tools are discussed:

¢ Chapter 6, “Make”: This is widely considered to be the first build tool
created. GNU Make, a modern version of Make, is still the most com-
mon build tool used for C/C++ software products. If you’re maintaining
a legacy build system written using a Make-based tool, you should defi-
nitely read this chapter. However, it’s not recommended that you create
a new build system using GNU Make unless you’re an expert in us-
ing the tool. In addition to GNU Make, this chapter discusses Berkeley
Make, Microsoft’s NMake, ElectricAccelerator®, and SparkBuild™.

¢ Chapter 7, “Ant”: This is the most popular build tool for Java-based
software products. It contains built-in features to support Java com-
pilation and JAR-file creation. Ant differs from GNU Make in that
it supports a more sequential task-based model. If you’re creating a
build system for a Java-based product, this is likely to be your first
choice of build tool. This chapter also discusses NAnt and MSBuild
as similar tools.
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Chapter 8, “SCons”: This modern build tool uses Python as its build-
description language. Build descriptions contain a sequence of method
calls to explicitly state which objects must be built and which input files
to use. SCons is interesting because build-description files are written in
a general-purpose programming language. If you’re creating a totally new
build system for the C or C++ languages, consider using SCons instead of
the older GNU Make tool. You’ll also see examples of the Cons build tool
(using Perl) and the Rake build tool (using Ruby).

Chapter 9, “CMake”: This is one of several tools that enable developers
to write a high-level description of the build system but have that descrip-
tion translated into something that other build tools (such as Make) are
capable of executing. You should learn about CMake (instead of using the
older GNU Make tool) if you’re creating a new build system for C or C++
software. This chapter also mentions Automake and Qmake, similar tools.

Chapter 10, “Eclipse”: This is one of the most popular graphical inte-
grated development environment (IDE) tools used for editing source code.
Eclipse contains its own build tool, but it can still interface with other ex-
ternal build systems. This chapter focuses on the JDT builder mechanism
for Java support, but it briefly studies the CDT builder for C/C++ support.
If you use Eclipse as your development environment, you should make a
point of learning how the builder mechanisms work.

The goal of studying these five systems is to give you an appreciation of the
variety of build tools available and to help you decide which of them is appro-
priate for your project. None of these tools is suitable for all projects, so under-
standing the advantages and disadvantages of each system is very important.

Unfortunately, it’s not possible to discuss every build tool in existence; other-
wise, this book would be twice as long. Some tools are very new and haven’t yet
proven to be successful or reliable. Other tools have been around for longer but
are not as popular as those listed previously.

Each chapter in Part II follows a common outline designed to compare the
five different systems. Each chapter covers these areas:

A brief overview of the tool, describing the environment in which it’s best suited

A more detailed look at the tool’s programming language (both syntax and
semantics), showing how a developer can specify the build description

A number of examples showing how the build tool can solve common
build system problems

Popular praise and criticism for the tool, taken from Internet web sites,
other publications, and personal experience

A description of other build tools that are similar in design
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After you read each chapter, you should come away with a good apprecia-
tion of what it takes to use that tool in your own projects. Don’t expect to know
everything about the tool, but if you like what you see, you’re encouraged to
read the tool’s user manual or perhaps another book that specifically covers the
tool in detail.

Even if you consider yourself a build system expert, you might learn a thing
or two about a new tool that changes your perspective or encourages you to try
a new way of building software.

As a reminder, the following characteristics are important to think about
when selecting a tool:

¢ Convenience: How easy is it for developers or build system maintainers to
describe the build process using the tool’s description language?

¢ Correctness: Will the build tool always generate a correct executable pro-
gram, or will important dependencies be missed by mistake?

e Performance: Is the build tool efficient, or will the user often wait for slow
builds to complete?

¢ Scalability: How does the tool perform with large-scale software projects
containing thousands of source files?

Each software project is different, and every developer places a different level
of importance on each of these characteristics. If you’re a hobbyist developer
building a project with fewer than 50 source files, you probably won’t care too
much about scalability or performance. On the other hand, a large software
organization with hundreds of developers will care a lot.

In each chapter, you see a fair amount of discussion on the pros and cons of
using each build tool. Table PII.1 summarizes the strengths and weaknesses of
the tools covered.

Table PIl.1  Strengths and Weaknesses of Build Tools

Tool Convenience Correctness Performance Scalability
GNU Make Poor Poor Excellent Excellent
Ant Good Excellent Good Good
SCons Excellent Excellent Good Good
CMake Good Excellent Excellent Excellent
Eclipse Good Excellent Good Poor

At the end of each chapter, you can read why the tool was

ticular rating.

assigned a par-
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The Real-World Scenarios

A build tool would be no use if it weren’t capable of supporting real-world
applications. Most user manuals focus on the syntax and semantics of the tool’s
programming language, perhaps providing a few idioms for achieving certain
tasks. However, without backing these up with realistic examples, you can never
be sure whether the build tool is suitable for the long term.

To this end, each of the upcoming chapters illustrates how the build tools
apply to real-world situations. The following scenarios are examined.

Scenario 1: Source Code in a Single Directory

In this scenario, you use a small calculator program (see Chapter 2, “A Make-
Based Build System™) in which all source files are stored in the same directory.
For GNU Make, SCons, and CMake, you use a C program, shown in Figure
PIL.1.

Bsre
[l add e
Bl cate e
Bl rowate
Bl mumbsers b
Bl aubs e

Figure PIL.1 Single-directory build scenario for the C language.

For Ant and Eclipse, you use the equivalent Java program, shown in Figure
PIL.2.

DSIL‘
[ add java
& cale java
[ Wt java
[ Sub java

Figure PIL.2 Single-directory build scenario for the Java language.

You don’t have to understand what this program does, because you’re mainly
interested in the file types and file system layout. All you actually need to know is
that the .c files (or .java files) are combined into a single executable program.
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Scenario 2: Source Code in Multiple Directories

Next you use a larger calculator example, with the program’s source code
spread across multiple directories in a hierarchical build tree. This is common in
nontrivial software products, so it’s important for the build tool to handle the
situation properly.

For GNU Make, SCons, and CMake, you use the C/C++-based tree, shown
in Figure PIL.3.

s

P cale
 cale

[Mlibmath
B clock.c
B retter
[ sunber

[ tibprine
banner.c
center.c
[ sormal ¢

Figure PI.3 Multidirectory build scenario for the C language.

For Ant and Eclipse, you use the equivalent Java source tree, shown in Figure
PIL4.

e
Meom
M arapiki

Mcale
Calc java

Cmath
IE Clock java
IE Letter java
IE Num.java

Tl prime
@ Banner java
Bl Center java
B Normal java

Figure PIl.4 Multidirectory build scenario for the Java language.
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For some of the build tools, you’ll look at several different ways of compiling
these multidirectory trees. A large tree can contain thousands of directories, and
a single type of build system might not be suitable for all source trees.

Scenario 3: Defining New Compilation Tools

A large software project often incorporates nonstandard compilation tools. You
must have a way to instruct the build system on how it can use the new tool and
how it can predict a source file’s set of dependencies.

The examples use a fictional tool named mathcomp. This tool takes a single

input file with the suffix .math and generates either a C file or a Java file,

depending on which output option you choose. The .math file contains a
number of simple equations, whereas the output file computes the result of these
equations and displays them on the program’s output.

The examples use the following equations.math file as input:

#

# This test file has a number of equations in it, but
# it also includes some .mathinc files that also contain
# equations

#

1+2

4*5

6/2

import equl.mathinc

10/2

100/4

import equ2.mathinc

10+20

Note that this example includes two other files, equl.mathinc and equ2.
mathinc, which also contain equations but don’t contain further import direc-
tives. Using the mathcomp compiler with the -5 flag to generate Java code cre-
ates the following output file (equations.java):

/* autogenerated - do not edit! */
public class equations {
public static void math()
{
System.out.println(
System.out.println ("
System.out.println ("
System.out.println ("
System.out.println(
System.out.println ("
(
(
(
(

2

w
o
o
—

System.out.println ("
System.out.println ("
System.out.println ("
System.out.println(“10 + 50 = "

WwWo~utoul Ul N
B —

— N — % — — — —
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System.out.println (10 + 20 = “ + (10 + 20));

}

The C code generated by the -c option looks similar. Finally, when the -d
flag is passed to mathcomp, the tool displays the set of input files that were
scanned, including all the imported files.

equations.math equl.mathinc equ2.mathinc

Each of the build tools uses this dependency information as it constructs the
software’s dependency graph.

Scenario 4: Building with Multiple Variants

Large software products often have multiple variants that need to be supported.
This includes multiple editions of the software and multiple CPU and operating
system types. The user must have a means of specifying which variant to build.

For GNU Make, CMake, and SCons, you see how to generate code for mul-
tiple CPUs (1386, PowerPC, and Alpha); for Ant and Eclipse, you generate both
Home and Professional editions of the software.

Scenario 5: Cleaning a Build Tree

After a build tool has compiled all the software in the build tree, you need a way
to remove all the generated files while still keeping the source code intact. You’ll
look at how each build tool approaches this problem.

Scenario 6: Debugging Incorrect Builds

When a build tool fails to build (or rebuild) the software image, you need to un-
derstand why. Failure to fix problems causes further broken builds in the future
or incorrectly compiled software images containing a number of subtle bugs.
Each build tool must provide a way to trace execution of the build process and
determine why things are not compiling the way they should.

Each of the following five chapters discusses how each build tool solves these
real-world scenarios.
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Chapter 6

Make

The first build tool this book examines in detail is Make [40]. You’ve already
seen a basic example of using Make in Chapter 2, “A Make-Based Build Sys-
tem,” and many developers are familiar with this popular tool. This chapter
explores the syntax of Make-based build systems in more detail and presents a
number of practical use cases.

Created in 1977, Make has revolutionized the way software is compiled. For
many years, Make was the only build tool available; new tools created since
that time (such as Ant, CMake, and SCons) introduced themselves as a “Make
replacement.” There’s certainly no ignoring the valuable contribution Make has
provided to the software industry.

Central to Make’s operation is the concept of a rule, providing all the inter-
file dependency information needed to compile a program. A developer must
specify the name of a target file to be compiled, as well as all the input files for
the compilation. In addition, the rule contains one or more shell commands that
generate the target file from the source files.

As an example, the following rule indicates that myprog is a generated file
that is created by running the gcc command with the prog.c and 1ib.c files
as input.

myprog: prog.c lib.c
gcc -o myprog prog.c lib.c

If either of the last-modified time stamps of prog.c and 1ib.c are more
recent than the time stamp of myprog, Make assumes that the developer has
modified the source files since myprog was last compiled. As a result, it reruns
the gcc command to regenerate myprog from the latest source files.

The developer who writes a build description file (known as a makefile) must
carefully specify the dependencies among all files in the system, along with all
the intermediate steps. In a large system with thousands of source files and a
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large array of file types (such as executable programs, data files, and object
files), the number of rules can be extensive.

Despite its age, Make is still the most commonly used tool for building soft-
ware. A large percentage of C/C++ projects use Make as their build tool, par-
ticularly for UNIX/Linux environments and older Microsoft Windows systems.
Because of this popularity, university courses continue to teach the theory and
practice of Make to prepare students for future employment. In the software
industry, many developers have heard only about Make, not about the alterna-
tive tools.

This chapter focuses on the GNU version of Make because of the large
number of platforms it supports. Before GNU Make became popular, each oper-
ating system vendor provided its own version of the Make tool that accepted a
slightly different syntax than the other variants. Naturally, this made construct-
ing a multiplatform build system difficult. Youw’ll take a look at other Make
implementations at the end of the chapter.

As a reminder, the goal of this chapter is to give you an appreciation for the
features and capabilities of the GNU Make tool. You won’t examine the tool in
too much detail, but by the end of this chapter, you’ll have a better appreciation
of how to use the GNU Make tool and how a makefile is written. If you plan
to use GNU Make in your own build system, you should first refer to the tool’s
own documentation [16].

Because of the complexity of GNU Make, you might find some of the discus-
sion challenging to follow if you don’t already have experience writing a make-
file. Make sure you’ve read and understood Chapter 2, or at least be prepared
to work through the examples in great detail. Make-based build systems can be
difficult to understand.

The GNU Make Programming Language

The GNU Make tool is controlled by a user-written program script, stored in
a file named Makefile. GNU Make provides a comprehensive programming
language and gives a makefile developer enough functionality to describe the
build process. You might find it useful to view the GNU Make language as three
distinct programming languages integrated into one, each playing a slightly dif-
ferent role.

The three sublanguages are as follows:

¢ File dependencies: A rule-based syntax for describing the dependency rela-
tionships between files. A Make program is “executed” by matching disk
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filenames against the rules that generate them. Instead of sequentially exe-
cuting rules, GNU Make performs a pattern-matching operation to decide
which rule to evaluate next.

myprog: prog.c lib.c

¢ Shell commands: A list of shell commands encapsulated within each rule,
to be executed if the target of the rule is “out-of-date.” As with any shell
script, each command invokes a separate program, such as 1s, cat, or
gcc. Commands are executed in the order they’re listed and can use shell
metacharacters to control sequencing and I/O redirection.

cp myfile yourfile && cp myfilel yourfilel
md5 < myfile s>>yourfile
touch yourfile.done

¢ String processing: A language for manipulating GNU Make variables, such
as treating them as a list of values. This language uses the functional pro-
gramming paradigm in which each function is passed one or more string
values as input and returns a single string value as the result. By combining
different function calls, complex expressions can be evaluated.

VARS := $(sort S (filter srcs-% cflags-%, $(.VARIABLES)))

With this combination of programming styles, it’s possible to construct any
type of build system, no matter how complex. Let’s start by looking at GNU
Make’s syntax and basic concepts. Later you’ll examine how these can apply to
real-world build scenarios.

Makefile Rules to Construct the Dependency Graph

To reiterate, a makefile consists of a number of rules, each describing how to
generate a particular target file from one or more prerequisite input files. If the
target file is out of date with respect to the input files, the sequence of shell com-
mands is executed to bring it up-to-date. “Out-of-date” refers to the time stamp
on the file being older than the files it was derived from. Therefore, the input
files must have been changed more recently.

As you saw in Chapter 2, the following makefile is a simplistic way of trans-
lating the calculator program’s dependency graph into code that GNU Make
can understand.

1 calculator: add.o calc.o mult.o sub.o
2 gcc -g -o calculator add.o calc.o mult.o sub.o
3
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4 add.o: add.c numbers.h

5 gcc -g -c add.c

6

7 calc.o: calc.c numbers.h
8 gcc -g -c calc.c

9

10 mult.o: mult.c numbers.h
11 gcc -g -c mult.c

12

13 sub.o: sub.c numbers.h
14 gcc -g -c sub.c

Keep in mind that GNU Make’s rule-based language doesn’t execute sequen-
tially, as would a program written in a procedural language. Instead, the whole
mechanism is based on matching target filenames against whichever rule hap-
pens to match the name. As you see later, the target of a rule (the left side) can
also contain wildcards and variable names, so locating a matching rule is not
always a simple matter.

Let’s not go into too much detail quite yet; this chapter later examines GNU
Make’s pattern-matching and rule-searching algorithm. First you’ll learn about
the different rules you can create.

Makefile Rule Types

In addition to the simple rules you’ve seen so far, you can express dependen-
cies in several other ways, making it easier for makefile developers to get their
job done. GNU Make is a flexible and powerful language with a number of
syntactical features for expressing the relationship between files. Consider some
examples:

¢ Rules with multiple targets: The previous example had a single target file
on the left side of the rule. However, the following syntactical shortcut is
also allowed:

filel.o file2.0: sourcel.c source2.c source3.c
commands go here

Of course, this works only if both targets have the same set of prerequisites
and can be generated by the same list of shell commands.

¢ Rules with no prerequisites: Sometimes you want to define a target that
doesn’t depend on any prerequisites. You can use this approach to define
pseudotargets that don’t relate to actual disk files. In the following exam-
ple, you’re defining the help target to display a synopsis of the commands
the developer can use:
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.PHONY: help
help:

@echo "Usage: make all ARCH=[1386|mips]"
@echo " make clean"

If the developer types gmake help, no file named help exists on the disk,
and the shell commands shouldn’t proceed to create that file. Addition-
ally, the shell commands are executed every time the help target is invoked
because no time stamp checking needs to be performed. Note the use of
the pHONY directive to indicate that GNU Make should always execute the
rule, even if somebody accidentally left a file named help sitting in the
current directory.

Rules with patterns in the filename: As you probably noticed, the previ-
ous calculator example contained a lot of repetition. For every object file,
such as add. o, there was a dependency on the corresponding C file, such
as add. c. Because there were four different source files, you had four dif-
ferent rules that all looked similar. You can use wildcard characters as a
shortcut to specify that the target and prerequisite filenames must match.

.0: %.C

commands go here

This example matches any pair of files in which the target ends with .o and
the prerequisite both ends with .c and also starts with the same sequence
of characters (known as the stem). In other words, a file stem.o can be
generated from the file stem.c by executing the list of shell commands.
When first asked to build the calculator target, GNU Make determines
that calc.o, add.o, mult.o, and sub.o must all be generated and that
this rule is capable of doing so.

Rules that apply only to certain files: To make the pattern matching in rules
more useful, it’s also possible to state which files the pattern applies to. For
example:

) °

.0 b.o: %.0: %.cC

echo This rule is for a.o and b.o

) °

.0 d.o: %.0: %.cC

echo This rule is for c.o and d.o

By being more specific about the list of files, you can create more elabo-
rate build systems. For example, you might want some object files to be
compiled with an x86-target compiler, whereas other object files must be
compiled with a MIPS compiler. Although you haven’t explored GNU
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Make variables in detail, this feature is a lot more useful if you have a list
of several hundred files stored in a single variable.

e Multiple rules with the same target: It’s often more useful to split the list
of prerequisites for a target across multiple rules than to define them all on
the same line.

chunk.o: chunk.c
gcc -c chunk.c

chunk.o: chunk.h list.h data.h

In this example, the rule states that chunk.o is generated from chunk.c,
and a separate rule states that chunk. o has dependencies on several other
C header files. Only one of these rules can contain a set of shell commands;
the other rule simply contributes to the list of prerequisites.

If you’re curious about these and other ways of writing makefile rules, study
the GNU Make reference manual for more examples.

Makefile Variables

As with any other language, writing a nontrivial program without using vari-
ables is difficult. The examples seen so far in this chapter have used hard-coded
file names, but that won’t work in a large build system with hundreds of files.
Let’s now see how GNU Make variables can simplify a makefile.

GNU Make variables are similar to those in other programming languages,
but they have a few unique behaviors of their own. The rules are listed here:

1. Variables are given a value by an assignment statement, such as x := 5.
As you’ll see shortly, several types of assignment exist, each with their own
semantics.

2. Variable values are referenced using the syntax $ (x).

3. All variables are of string type, with the valuecontaining zero or more
characters. No mechanism exists for declaring variables before they’re
used, so assigning to them for the first time creates the variable.

4. Variables have global scope, which means that all assignments and refer-
ences to the variable x (within a single makefile) refer to the same variable.

5. Variable names can contain upper- and lowercase letters, numbers, and
punctuation symbols such as @, *, <, and >. To make them more visible,
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this book typically uses uppercase letters in the examples, but that’s not a
requirement.

To illustrate these rules, consider a simple example. You shouldn’t see any real
surprises in this code, although an unusual feature is that strings don’t require
quotation marks around them. Instead, they simply consume the remainder of

the input line, with the exception of anything after the comment (#) character.

1 FIRST := Hello there

2 SECOND := World # comments go here

3 MESSAGE := $(FIRST) $(SECOND)

4 FILES := add.c sub.c mult.c

5 $(info $(MESSAGE) - The files are $(FILES))

The last line, containing the $ (info ...) directive, displays the following

message on the output:

Hello there World - The files are add.c sub.c mult.c

Although this example shows only one type of assignment statement, several
actually exist, each with its own semantics:

O Ul WN R

Immediate evaluation: This is the case you’ve already seen, using the :=
operator. The right side of the assignment is fully evaluated to a constant
string and then assigned to the variable listed on the left side. Most modern
programming languages use this type of immediate evaluation in their as-
signment statements.

Deferred evaluation: This second type of assignment, using = instead of : =
enables you to defer the evaluation of variables until they’re actually used
instead of immediately converting them to a constant string. Now look at
a case in which a variable is defined in terms of other variables.

CC := gcc

CFLAGS := -g

CCOMP = $(CC) S(CFLAGS) # observe the use of =
$(info Compiler is $ (CCOMP))

CC := 1i386-linux-gcc

$(info Compiler is $ (CCOMP) )

Note that line 3 uses deferred assignment (the = sign). When you execute
this makefile, the right side of line 3 isn’t evaluated until the ccomp vari-
able is actually used (which, in this case, is on lines 4 and 6). Given that
the cc variable is modified on line 5, the value of ccomp changes when it’s
used the second time.
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$ gmake
Compiler is gcc -g
Compiler is i386-linux-gcc -g

1

w N

This feature might seem a little awkward, but the capability to define vari-
ables and then modify individual parts of the variable later can be useful.
You’ll see this again when you look at GNU Make’s built-in rules.

Conditional assignment: In a third situation, you assign a value if the vari-
able doesn’t already have one.

CFLAGS := -g
CFLAGS ?= -0
$ (info CFLAGS is $(CFLAGS))

In this case, you supply a default value for cFLAGS (on line 2), which is
used if the user hasn’t already provided a value earlier in the program (on
line 1 here). Although this is an oversimplified example, this feature is use-
ful when you include one makefile from within another, where the parent
makefile might or might not want to explicitly define the cFLAGS variable.
If it chooses not to, the default value is used.

Now let’s look at some of the variables and rules built into the tool, making
it easier to construct a makefile.

Built-In Variables and Rules

GNU Make provides built-in rules and variables to address common build sys-
tem requirements. First examine automatic variables, so named because their
value depends on the context in which they’re used. Unlike many other pro-
gramming languages, GNU Make variable names can contain punctuation sym-
bols such as @, <, and *.

$@: Contains the filename of the current rule’s target. Instead of hard-
coding the name of the target into the sequence of shell commands, you
use $e to have it automatically inserted. This is handy when the rule uses

wildcards to match the name of the target file and there’s no specific name
to be hard-coded.

$<: Represents the first prerequisite of a rule. As shown in the following
example, you use $@ to represent the target of the rule (the object file
you’re generating), and you use $< to represent the first source file in the
list. (In this case, only one source file is mentioned in the rule.)
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)

%.0: %.cC
gcc -c -0 S@ S$<

e $*:Similar to $<, but it evaluates to the complete list of prerequisites in the
rule, with spaces between them.

e ¢$(@D): Evaluates to the directory containing the target of the rule. For
example, if the target is /home/john/work/src.c, then $ (eD) evaluates
to /home/john/work. This is useful when you have a shell command such
as mkdir that needs to manipulate the target file’s directory.

® $(@F): Similar to $ (@D), but evaluates to the base name of the target file.
Ifthetargetis/home/john/work/src.c,then.$(@F) evaluates to src.c.

Of course, many more variables are available in GNU Make, but they aren’t
all listed here.

In addition to variables, GNU Make provides built-in rules. These are used
for compiling C, C++, Yacc, and Fortran code, among others. Invoking GNU
Make with the -p command-line option (gmake -p) shows you the rules built
into the system. Here’s the built-in rule for C compilation.

1 COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET ARCH) -c
2 OUTPUT_OPTION = -o s@

3 %.0: %.C

4 $ (COMPILE.c) $(OUTPUT OPTION) $<

This fragment shows a wildcard rule (lines 3 and 4) for generating .o files
from the correspondingly named .c files. The automatic variables $@ and $<
represent the target and prerequisite of the rule, which could be any matching
pair of filenames that end in .o or .c, respectively. Notice also that line 1 of
this rule uses deferred evaluation (the = sign), permitting developers to add their
own values for cc, CFLAGS, CPPFLAGS, and TARGET ARCH later. In theory, each
time this wildcard rule is used, it could be with a different combination of flags,
as set by the makefile developer.

As you saw in Chapter 2, the calculator example can be rewritten to take
advantage of this built-in C compilation rule.

1 calculator: add.o calc.o mult.o sub.o
2 gcc -g -o calculator add.o calc.o mult.o sub.o
3
4 add.o calc.o mult.o sub.o: numbers.h

That is, you can remove all the makefile rules that specify how to compile a
C source file into an object file, because the implicit rule handles that case. To
make the code even more readable, you can then define and reference a number
of variables:
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1 SRCS = add.c calc.c mult.c sub.c
2 PROG = calculator

3 CC = gcc

4 CFLAGS = -g

5 OBJS = $(SRCS:.c=.0)

6

7 $(PROG) : $(OBJS)

8 $(CC) $(CFLAGS) -o se@ $°

9

10 $(OBJS): numbers.h

Note that cc and cFLaGs (lines 3 and 4) are implicitly inserted into the built-
in C compilation rule that you saw earlier because COMPILE.c used deferred
evaluation.

Line 5 uses some clever syntax to set OBJS to the same value as the Srcs
variable (defined on line 1) but with all the .c extensions changed to .o. As
you know from programming experience, it’s a bad idea to list all the filenames
twice, so you instead define one variable in terms of the other.

Line 7 is still required to link the final executable, but this time you’re mak-
ing use of variables instead of hard-coding filenames. Note that cc and cFLAGS
are the same variables used when compiling source files into object files. If you
decide to change to a different compiler or add new compilation flags, only lines
3 and 4 need to be modified.

Finally, line 10 states that all object files depend on numbers.h. This is
shorter than the previous version, in which all the object files had to be listed.

Data Structures and Functions

All of GNU Make’s variables are of string type but this needn’t stop you from
representing other data types, such as numbers, lists, and structures. The key
to storing complex data is to find a way to represent information as a sequence
of space-separated words. GNU Make has plenty of features for manipulating
variables in this form.

The following are some typical data structures you might find yourself using;:

PROG_NAME := my-calculator

LIST OF SRCS := calc.c main.c math.h lib.c

COLORS := red FF0000 green OOFF00 blue 0000FF purple FFOOFF
ORDERS := 100 green cups 200 blue plates

W N R

Line 1 is a standard variable assignment of a simple string, and you’ll see this
type of assignment in almost every makefile. Line 2 is a common way of express-
ing lists of things, although, obviously, the elements of the list can’t contain
spaces. This can be painful if you were planning to store C:\Program Files
in a list.
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Lines 3 and 4 demonstrate more complex data structures that you probably
won’t use as often. For the ORDERS variable, element 1 is the quantity, element
2 is the color, and element 3 is the item to purchase. The pattern repeats itself
for each additional order item. As long as you have a mechanism for extracting
specific items out of a list, you can treat this variable like a structured data type.

Consider some of the most common functions for dealing with strings:

¢ words: Given a list as input, returns the number of space-separated words
in that list. In this example, $ (NUM_FILES) evaluates to 4.

NUM FILES := $(words $(LIST OF SRCS))

¢ word: Given a list, extracts the nth word from that list. The list is 1-based,
SO $ (SECOND_FILE) evaluates to main.c.

SECOND_FILE := $(word 2, $(LIST OF_SRCS))

e filter: Returns the words from a list, which match a specific pattern. A

common use is to select a subset of files that match a specific filename pat-
tern (such as all C source files).

C SRCS := $(filter %.c, $(LIST OF SRCS))

® patsubst: For each word in a list, replaces any that match a specific pat-
tern with a replacement pattern. The $ character identifies the part of each
word that remains unchanged (the stem). Note that the first comma must
not be followed by a space character; otherwise, the replacement list ends
up with two spaces between each word.

OBJECTS := $(patsubst %.c,%.0, $(C_SRCS))
This example is similar to the $(C_SRCS:.c=.0) syntax you’ve already
seen, with the resulting list being calc.o math.o lib.o.

® addprefix: For each word in a list, prepends an additional string. In
the following example, you add the objs/ prefix to each element in the
$ (OBJECTS) list.

OBJ _LIST := $(addprefix objs/, $(OBJECTS))

In this case, $(0BJ LIST) evaluates to objs/calc.o objs/main.o
objs/lib.o.
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e foreach: Visits each word in a list and constructs a new list containing
the “mapped” values. The mapping expression can consist of any combi-
nation of GNU Make function calls. The following example is identical to
the addprefix case, in that you’re constructing a new list in which all the
filenames are mapped to the expression obj/$ (file).

OBJ _LIST 2 := $(foreach file, $(OBJECTS),objs/$(file))

® dir/notdir: Given a file’s pathname, returns the directory name compo-
nent or the filename component.

DEFN_PATH := src/headers/idl/interface.idl
DEFN_DIR := S (dir $(DEFN_PATH))
DEFN_BASENAME := $ (notdir $(DEFN_PATH))

In this case, $ (DEFN_DIR) evaluates to src/headers/idl/ (including the
final /) and $ (DEFN_BASENAME) evaluates to interface.idl.

¢ shell: Executes a shell command and returns the command’s output as a
string. The following example demonstrates a nonportable way of deter-
mining the owner of the /etc/passwd file. This assumes that the third
word in the output of the 1s -1 command is the name of the file’s owner.

PASSWD OWNER := $(word 3, $(shell 1ls -1 /etc/passwd))

In addition to these functions, and the many other functions listed in the
GNU Make documentation, certain language features are designed to keep
GNU Make programs short and concise.

First, the concept of a macro enables you to associate a name with a complex
GNU Make expression and to pass arguments into that expression. This enables
you to write your own GNU Make functions, effectively extending the basic lan-
guage. The following code defines a macro named file size that returns the
number of bytes in a file (again, this is nonportable). You use the $ (1) syntax to
reference the first parameter of the $ (call) expression.

file size = $(word 5, $(shell 1s -1 $(1)))
PASSWD SIZE := $(call file size,/etc/passwd)

Another shortcut is to define a canned sequence of shell commands by using
the define directive. When specifying the shell commands to be executed in
GNU Make rule, you call upon that canned sequence instead of writing it out
every time.

define start-banner
@echo ==============
@echo Starting build
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@echo ==============
endef
.PHONY: all
all

$ (start-banner)
$ (MAKE) -C libl

These language features, and many more discussed in the GNU Make docu-
mentation, make it possible to construct powerful makefile-based build systems.

Understanding Program Flow

This discussion of the GNU Make programming language finishes with a study
of how a GNU Make program flows—that is, in which sequence the makefile
is scanned and interpreted, and in which order the various parts of the program
are executed. You’ve seen many of GNU Make’s language features, but you also
need to understand how and when these features are called into action.

You’ll explore three topics that are somewhat unrelated, except that they all
deal with the flow of a GNU Make program:

1. Parsing a makefile: Parsing a makefile involves two main phases: reading
the makefile to build the dependency graph and then executing the compi-
lation commands. Recall that a makefile is essentially a text-based repre-
sentation of the dependency graph, which itself is a mathematical structure
showing the relationship between files.

2. Controlling the parsing process: GNU Make provides a number of features
for controlling how you include a submakefile, or conditionally compile
parts of the makefile.

3. Executing the rules: The rule execution algorithm decides the order in
which rules are applied and the corresponding shell commands are exe-
cuted.

Parsing a Makefile
For the first topic, consider what happens when a developer invokes the gmake
command:

1. The makefile parsing phase: The makefile is parsed and validated, and the
full dependency graph is constructed. All rules are scanned, all variable
assignments are performed, and all variables and functions are evaluated.
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Any problems that occur in the definition of rules or the construction of
the dependency graph are reported at this time.

2. The rule execution phase: When the entire dependency graph is in mem-
ory, GNU Make examines the time stamps on all the files to determine
which files (if any) are out of date. If it finds any such targets, the appro-
priate shell commands are executed to bring those targets up-to-date. Any
problems that occur within the shell commands are reported at this time.

Although in many cases you don’t need to be aware of these phases, this next
example illustrates the difference between the two. Again, keep in mind that
variables are assigned in the first phase and shell commands are executed in the
second phase.

1 X := Hello World

2

3 print

4 echo X is $(X)
5

6 X := Goodbye

This example should seem straightforward, although you might be surprised
to see the result of invoking the print target:

$ gmake print
X is Goodbye

The reason is that line 4 (a shell command) is simply saved until the second
phase, and ¢ (X) is not evaluated at all. This means that the second assignment
on line 6 dictates the value of $ (x) to be used when the shell command is finally
evaluated.

If you’re going to become a makefile expert, it’s important to feel comfortable
with the operation of these two phases. Much of your build system’s functional-
ity can be implemented either by using GNU Make functions (processed during
the first phase) or as part of a shell script (processed during the second phase).
Also, when you need to debug your makefile problems, you must understand
the distinction between the two phases because different problems arise at each
point in time.

Controlling the Parsing Process
Next, you must consider some additional flow-control features in GNU Make
that impact the execution of a GNU Make-based program.

¢ File inclusion: Similar to how C and C++ use the #include directive, GNU
Make enables you to read additional files as if they were part of the main
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makefile. Any rules and variables defined inside the included file are treat-
ed as if they’re actually written inside the main file.

FILES := srcl.c src2.c

include prog.mk # content of prog.mk textually
# inserted here

srcl.o src2.0: src.h

As you’ve seen, this approach can be used to include a framework file con-
taining reusable sections of code. You’ll see another practical case of file
inclusion later in this chapter.

¢ Conditional compilation: Similar to C/C++’s #ifdef directive, you can
conditionally include or exclude parts of the makefile. This inclusion is
done within the first phase of the makefile parsing, so the conditional
expressions need to be pretty simple (instead of using shell commands).

CFLAGS := -DPATH="/usr/local"
ifdef DEBUG
CFLAGS += -g # debug case if DEBUG is defined
else
CFLAGS += -0 # non-debug case if DEBUG not defined
endif

Executing the Rules

Finally, let’s examine the algorithm GNU Make uses to construct a dependency
graph, and see how the execution of the makefile flows as a result. Consider the
main steps (with some of the detail left out for convenience).

1. The developer who invokes GNU Make (with the gmake shell command)
must specify which target to build. This is typically the name of an execut-
able program, although you can also create pseudotargets such as all or
install that don’t relate to actual disk files. If the developer doesn’t state
which target file to build, GNU Make attempts to build the first target
listed in the makefile (such as calculator).

2. If GNU Make locates a rule to generate the target file, it examines each
of the prerequisites listed in that rule and treats them recursively as tar-
gets. This ensures that each file used as an input to a compilation tool is
itself up-to-date. For example, before linking add.o and calc.o into the
calculator executable program, GNU Make recursively searches for
rules that have add.o or calc.o on the left side.
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3. If a rule is found for the target you’re trying to satisfy (either the user-
specified target or one that was found recursively), you have two options:

a. If the target file for the rule doesn’t yet exist (there’s currently no disk
file with that name), the rule’s shell command sequence is executed and
the file is created for the first time. This is often the case when you’re
compiling a completely fresh source tree and no object files have yet
been created.

b. On the other hand, if the target file already exists on the disk, the time
stamp on each of the prerequisite files is examined to see if any are
newer than the target file. If so, you proceed to regenerate the target,
thereby making it newer than the input files.

4. If step 3 fails, meaning that the makefile doesn’t contain a suitable rule to
generate a target file, you also have two options:

a. If the target file exists on the disk (but there’s no rule to regenerate it),
GNU Make can only assume that this is a source file that was handwrit-
ten by the developer. This is where the rule recursion stops.

b. If the target file doesn’t exist on the disk, GNU Make aborts with an
error and the build fails. GNU Make doesn’t know how to regenerate
the file, and because it doesn’t already exist on disk, you can’t proceed
any further.

Throughout this process, GNU Make doesn’t preserve any state between
invocations and doesn’t maintain a database of file time stamps. It determines
whether a file has changed by comparing the time stamps between the target
and its prerequisites. As you’ll see in later chapters, build tools that record time
stamps in a database can detect changes only by looking at that one file.

Further Reading

Although you’ve explored a number of GNU Make features, you need to learn
more before you can create your own build system. The ultimate authority on
GNU Make syntax and semantics is the online reference document [16]; this is
fairly tough going for beginners, though, so you’ll probably want to start with a
more introductory guide [41]. For more advanced best practices for using GNU
Make, refer to [42] in References.

To simplify the construction of a makefile, consider using the GNU Make
Standard Library [43] which adds an extra layer of language support for logical
operators; manipulation of lists, strings, and sets; and basic arithmetic.
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Now let’s study how to use the GNU Make language to address common
build system scenarios.

Real-World Build System Scenarios

As discussed in the introduction to Part II, “The Build Tools,” it’s important to
compare how each of the available build tools can be used in realistic scenarios.
After all, not until you actually solve a technical problem do you get a true sense
of whether the tool is easy to use. From now on, this chapter focuses less on the
syntax of GNU Make and more on how everything fits together.

Scenario 1: Source Code in a Single Directory

In the simple case in which you have a C program stored entirely within a single
directory, you have three solutions. The first is a repeat of what you saw earlier
in the chapter. The second shows how to improve upon that solution, and the
third uses an external scanner tool to find dependencies.

Consider the solution you’ve already seen:

SRCS = add.c calc.c mult.c sub.c
PROG = calculator

CC = gcc

CFLAGS = -g

$(SRCS:.c=.0)

$ (PROG) : $(OBJS)

1
2
3
4
5 OBJS
6
7
8 $(CC) $(CFLAGS) -o $e@ $*
9
0

1 $ (OBJS) : numbers.h

This type of makefile is common for projects that start small. When develop-
ers first write their code, they often don’t put much effort into planning their
build system, given that a simple makefile will suffice. They can add new source
files by appending to the srRcs variable, and everything continues to work per-
fectly—at least, for a while.

Focus on line 10, stating that all source files have a dependency on the
numbers . h header file. What would happen if a newly added source file didn’t
actually include numbers.h? What if additional header files were added, but
you forgot to list them in the makefile? In both cases, a lot of manual work is
required to keep the makefile consistent with the source files; otherwise, you’d
end up with an incorrect executable program.

The second approach is to automate the detection of header files. The follow-
ing solution scans the source files and computes the correct set of dependencies.
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1 SRCS = add.c calc.c mult.c sub.c
2 PROG = calculator

3 CC = gcc

4 CFLAGS = -g

5 OBJS = $(SRCS:.c=.0)

6

7 $(PROG): $(OBJS)

8 $(CC) $(CFLAGS) -o se@ $°
9

10 -include $(SRCS:.c=.d)

11

12 %.d: %.c

13 @$(CC) -MM $(CPPFLAGS) S$< | sed 's#\(.*\)\.o: #\1l.0
\1\.d: #g' > Se

This code looks rather complex (and it is), so let’s break it down in detail.
The approach is to automatically generate a new dependency information file
(with .d suffix), corresponding to each C source file. In this case, you generate
add.d, calc.d, mult.d, and sub.d. Here’s what these dependency files look
like (in this case, it’s add.d):

add.o add.d: add.c numbers.h

On line 10 of the makefile, you explicitly include all these .d files, ensuring
that everything is added to the same dependency graph. On line 12, a new rule
informs GNU Make how to generate these .d files if they’re missing or if the
corresponding .c or .h files have changed.

Line 13 works a bit of magic to obtain the dependency information in the
first place. Most of the work is done by passing the -MM option to the GCC com-
piler. This asks the compiler to generate the list of . c and .h files that it reads in
but to stop immediately after doing so (instead of doing any real compile work).
Finally, the cryptic sed command adds the name of the .4 file on the left side of
the rule, because GCC won’t put it there by itself.

To fully understand this example, you need to know that GNU Make deter-
mines when makefile fragments (such as .d files) have changed and restarts the
entire parsing process as a result. That’s more detail than you’ll want to get into,
but hopefully you can see what’s involved in automatically detecting header file
dependencies.

A third solution uses the makedepend command. This tool is similar in nature
to gcc -MM, although it provides its own scanner for analyzing C source files
instead of relying on the compiler itself. Chapter 19, “Faster Builds,” discusses
build system performance and covers makedepend in more detail.

Let’s continue by addressing scalability and see how to write a makefile for
multidirectory programs.
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Scenario 2(a): Source Code in Multiple Directories

Constructing a multidirectory build system is not as simple as the single direc-
tory case, so next you’ll see three different attempts to achieve what you need. In
these cases, the source code files are no longer colocated in the same directory,
but are instead spread across a larger source tree. As a reminder, Figure 6.1
shows the tree for the example software described at the start of Part II.

s

P cale
 cale

[Mlibmath
B clock.c
B retter
[ sunber

[ tibpring
banner.c
Fﬂ center.c
B normal ¢

Figure 6.1 The source tree for the multidirectory calculator example.

For the first attempt, you use a similar makefile to the single-directory pro-
gram, but the SrRCS variable now contains the full path to each file.

1 SRCS = libmath/clock.c libmath/letter.c libmath/number.c \
2 libprint/banner.c libprint/center.c libprint/normal.c \
3 calc/calc.c
4

Although this is easy to understand and it works properly for simple pro-
grams, this approach doesn’t work in a large-scale build environment, for sev-
eral reasons:

1. Harder dependency generation: With automatic generation of .4 files, the
dependency rules are no longer created properly. Instead, you end up with
a rule that doesn’t contain the correct pathname on the left side (it’s miss-
ing the directory component).

clock.o: libmath/clock.c libmath/math.h

Of course, this can be fixed by adding more complexity to the rule that
generates .d files, but let’s not look into that approach yet.
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2. Developer contention on the single makefile: The Srcs variable is already
spread over three lines in the makefile. What would happen if you had a
hundred files or a thousand files? This single makefile would be unman-
ageable, becoming a point of contention when all software engineers (per-
haps hundreds of them) needed to modify the same file at the same time.

3. Inability to subdivide the program: This makefile solution doesn’t ena-
ble the use of libraries, such as libmath.a or libprint.a. For large
programs, it’s convenient to subdivide the code into libraries that help
delineate areas of code, making it possible to reuse code across different
executable programs.

For these reasons, it’s uncommon to find a large build system that uses a sin-
gle makefile. A more common solution is to divide the build description across
more than one makefile. That leads to the next solution.

Scenario 2(b): Recursive Make over Multiple Directories

The second approach, known as recursive Make, is a common solution in the
software industry. The basic approach is to have a different makefile in each
source directory, with the high-level makefile (in the high-level directories) re-
cursively invoking each lower-level makefile. Figure 6.2 shows the revised direc-
tory tree, with each directory having its own makefile.

s

B Makesile

[ cale
) Maketile
B cakc.c

L ibmath
Makkefle
[ ctock
[ terter
[ tibmath 2
[ mumbrer o

[ ibprint
B Makesile
[ERE—

center.c

libprinta
B normal ¢

Figure 6.2 Multidirectory example, showing the location of makefiles and library files.
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Observe that the build tree now has four different files named Makefile: one
at the top level and one within each of the 1ibmath, 1ibprint, and calc subdi-
rectories. Going a step further, two static libraries, 1ibmath.a and 1ibprint.a,
were added, each archiving the object files from their specific directories.

The advantage of recursive Make is that each makefile needs to list only
the files in the current source directory. When necessary, a makefile can recur-
sively call upon another makefile if there’s a requirement to build other parts of
the source tree. Listing long pathnames in the makefile is unnecessary because
all file references are relative to the directory itself. Less contention also arises
between different developers who need to make changes to a makefile. The odds
of two developers changing the same small makefile are significantly less than
with a single large makefile.

Now look at the content of each makefile, starting with 1ibmath/Makefile:

1 SRCS = clock.c letter.c number.c
2 LIB = libmath.a

3 CC = gcc

4 CFLAGS = -g

5 OBJS = $(SRCS:.c=.0)

6

7 S$(LIB): $(OBJS)

8 S (AR) cr $S(LIB) $(OBJS)

9
10 $(OBJS): math.h

The code looks similar to the makefile used in the single-directory case,
which, of course, is a major reason for using recursive Make. The files listed in
the SrRcs variable are all relative to the current directory, and you can use GNU
Make’s built-in rule for compiling C source files. Notice that the code is a bit
lazy here: Line 10 contains an explicit dependency for the math.h header file
instead of automatically detecting it.

The big difference is in lines 7 and 8, where, instead of linking together a
final executable program, a static library is created by archiving the files listed
in $(OBJS) into libmath.a. In another makefile that you’ll see shortly, this
archive is linked into the executable program.

The next makefile, in the 1ibprint subdirectory, is essentially the same.

1 SRCS = banner.c center.c normal.c
2 LIB = libprint.a

3 CC = gcc

4 CFLAGS = -g

5 OBJS = $(SRCS:.c=.0)

6

7 $(LIB): $(OBJS)

8 $(AR) cr $S(LIB) $(OBJS)

9
10 $(OBJS): printers.h
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This makefile is so similar to 1ibmath/Makefile that you might wonder
whether you could factor out the common code. This is certainly the case, and
many build systems extract the common code into a framework makefile. Each
individual makefile uses the include directive to incorporate the shared func-
tionality. For example, you could rewrite libprint/Makefile as follows:

SRCS = banner.c center.c normal.c
LIB = libprint.a

include 1lib.mk

$(OBJS) : printers.h

W N R

The third makefile, in the calc directory, is different from the other two,
in that it creates the final executable program by combining 1ibprint.a and
libmath.a, along with a small main program.

SRCS = calc.c

PROG = calculator

LIBS = ../libmath/libmath.a ../libprint/libprint.a
CC = gcc

CFLAGS = -g

OBJS = $(SRCS:.c=.0)

S (PROG) : $(OBJS) $(LIBS)
$(cc) -o se s*

O oW J0 Ul WNPR

Note the use of relative paths on line 3 to access the static libraries from
the libmath and libprint directories. An assumption is clearly being made
that calc/Makefile is executed only after the two libraries have already been
brought up-to-date. If the ordering of the steps was incorrect, you’d end up with
a broken build, or worse, would build an executable program with outdated
libraries.

To make sure everything is built properly, the top-level makefile recursively
calls every other makefile in the correct order.

1 .PHONY: all
2 all:
3 S (MAKE) -C libmath
4 $ (MAKE) -C libprint
5 $ (MAKE) -C calc

This top-level makefile uses only the most basic features of GNU Make
and doesn’t have much of a dependency graph. Each of the shell commands is
executed in the specified order, and there’s no choice about whether they’ll be
executed. The all target has no prerequisites, so each of the recursive calls to
$ (MAKE) happens every time the developer executes the makefile.

Although recursive Make is simple to understand, it isn’t the most efficient
solution available. It might be commonly used in the software industry, but it
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still has a number of flaws that tend to cause slow or incorrect builds. Even
though recursive Make enables developers to keep each makefile small and self-
contained, with operations being done in an explicit sequence, those are the
exact reasons the solution sometimes fails.

The example had only three directories to think about: 1ibmath, 1ibprint,
and calc. The relationship between these directories was clearly defined, so the
explicit sequence of $ (MAKE) calls was easy to determine. On the other hand,
what if you had a hundred directories with a complex network of dependen-
cies between them? Trying to build everything in the correct order becomes an
impossible task, especially if developers create more interdirectory dependencies
as they write new code. After a while, you’d start wishing you’d used GNU
Make’s dependency-analysis system to figure out the correct ordering for you.

As an example, what would happen if the source code in the 1ibmath direc-
tory started to use the libprint.a library. In the current system, libmath is
compiled first and, therefore, runs the risk of using an outdated version of the
libprint.a library or simply failing if the library didn’t yet exist. The easi-
est solution is to modify the top-level makefile to build 1ibprint first, but
that solution doesn’t scale to hundreds of directories with complex ordering
requirements.

A similar problem occurs if you want to build only part of the program.
Imagine if you tried to cut corners and not build the calculator example from
the top-level makefile. If you started in the calc subdirectory and typed gmake,
you’d simply be recompiling the calc.c source file (if required). Because calc/
Makefile doesn’t know how to build 1ibprint.a, it doesn’t attempt to rebuild
any of those files even if they are out-of-date.

To phrase these problems in more technical terms, each makefile is executed
by a separate instance of the $ (MAKE) process and, therefore, has a completely
different dependency graph. In no place in the build system is the entire depend-
ency graph available, which, of course, is the root cause of invalid builds. If
GNU Make isn’t provided with full dependency information, it can’t compile
the correct set of files in the correct order.

In most large-scale recursive Make systems, developers end up seeing a lot
of redundancy. To avoid risking the chance of building an executable program
using outdated libraries, each makefile rebuilds the same libraries many times,
just to make sure no dependencies were missed. For example, you might choose
to build 1ibmath.a, followed by 1ibprint.a, and then repeat the compilation
of 1ibmath.a, just in case something in the 1ibprint directory changed since
the first time it was compiled. This type of paranoia is common when developers
don’t trust the build system to do the right thing.

This sequencing technique clearly results in building libmath.a twice,
although because the library is already up-to-date, there’s probably no extra
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work to do the second time—well, almost no work. In reality, there’s still the
overhead of starting a new GNU Make process, parsing the makefile to build the
dependency graph, and then reading the file time stamps to see if anything has
changed. Unfortunately, this overhead isn’t free: It could slow the build by any-
thing from a few seconds to a few minutes, depending on the size of 1ibmath.a.

These problems and several others are detailed in a classic research paper
titled “Recursive Make Considered Harmful” [44]. This paper also discusses
solutions to the recursive Make problem, including the next solution you’ll
evaluate.

Scenario 2(c): Inclusive Make over Multiple Directories

The third multidirectory solution adopts the good practices of the recursive
Make approach, while ensuring that only one instance of the GNU Make proc-
ess is ever executed. As a result, you benefit from the full power of GNU Make’s
dependency system so that important dependencies aren’t missed. In contrast to
the previous method, this new solution is called inclusive Make.

Consider the benefits:

¢ Only one instance of GNU Make is running, with a lower start-up time.
This contrasts with starting hundreds of processes over the lifetime of the

build.

® You still have a single makefile per directory to describe all the files in
that directory. This makes it possible to encapsulate each directory’s build
description, and it reduces contention between developers when they mod-
ify each makefile.

e All source filenames are specified by their filename component only, so
there’s no need to include the full path to each file (as in the first example).

* A single dependency graph contains all dependencies in the entire build
system, reducing the chance of incorrect builds.

e Because there’s no recursion, you don’t need to explicitly sequence all the
recursive $ (MAKE) calls and risk possibly getting it wrong. GNU Make
executes the rules in the correct order.

Although this sounds like an excellent solution, the major downside is the
additional complexity. If you’re new to GNU Make, the solution you’re about
to see will stretch your knowledge of how the tool works. In most production
build systems, an experienced GNU Make guru would create the inclusive build
system in the first place, with junior GNU Make programmers scratching their
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heads to understand how everything works. This example just covers the basic
framework and doesn’t go into much detail.

Figure 6.3 illustrates the inclusive Make build tree. This is a larger exam-
ple because a two-level directory structure doesn’t show the full extent of this
solution.

D sre
B Files msc
B Maketite
3 application
Eﬂ Files.mk
L darabase
B Files mkc
Cltoad
Bl Files mic
Msane
B Fites mic
3 waplucs
[iﬂ Files.mk
Clibraries
Eﬂ Files.mk
Cimath
B Files mkc
Epratacals
Bl Fites i
Mgl
Files mk
2 widgets
[iﬂ Files.mk
Climake
B framework mk

Figure 6.3 A larger source tree, illustrating the inclusive Make system.

This example has one main makefile, at the top of the source tree. You can
also see the make/framework.mk file, which contains most of the complexity
of the build system. Finally, each source directory contains a short makefile
fragment, named Files.mk, for describing the source files in that particular
directory.

Because of the complexity of the inclusive Make framework, this separation
of files is important. Software developers are only encouraged to view and edit
Files.mk files where they can find the list of source files, the list of subdirec-
tories to traverse, and the list of compiler flags. On the other hand, the GNU
Make complexity is deliberately hidden inside the make/framework.mk file so
that nonguru software engineers don’t attempt to change the build mechanism
by mistake.

Start by examining a few of the Files.mk files. These are designed to be read-
able and editable by software developers, and they contain only variables that
developers care about:
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® src/Files.mk:

1 SUBDIRS := libraries application
2 SRC := main.c
3 CFLAGS := -g

src/libraries/Files.mk:

1 SUBDIRS := math protocols sgl widgets

® src/libraries/math/Files.mk:

1 SRC := add.c mult.c sub.c
2 CFLAGS := -DBIG_MATH

First consider the SUBDIRS variable definitions. For directories (such as src
and src/libraries) that contain subdirectories of their own, the SUBDIRS
variable lists the directories to be included in the build process. As you can
see, src/libraries/Files.mk includes the math subdirectory, so the inclusive
framework must incorporate src/libraries/math/Files.mk into the build
fmoce%.()nthE(nherhand,src/libraries/math/Files.mk.doeﬂftconnﬂn
a definition for SUDIRS, so the build system won’t search any lower in the build
tree.

Next, the SRC variable within each Files.mk fragment informs the build sys-
tem about the C source files that should be included from that directory. Given
that src/libraries/Files.mk doesn’t include the SRc variable, none of the
source files from that directory (if there were any) would be included.

Finally, the cFLAGS variable states which C compiler flags should be used for
all the source files in this directory. Each directory can have a different set of C
flags instead of using a global set of flags for all files in the build tree.

In the inclusive Make example, these Files.mk fragments are all that an
average software developer is interested in seeing. The question remains of how
GNU make interprets these Files.mk files and how the sSrc, SUBDIRS, and
CFLAGS variables are used.

Continue by examining src/Makefile, which is the main entry point to the
GNU Make program. As a reminder, only build gurus would be interested in
reading or modifying this file.

1 subdirs :=

2 _curdir :=

3 FRAMEWORK := $(CURDIR)/make/framework.mk
4 include Files.mk

5 include $ (FRAMEWORK)

6

7

8

VARS := $(sort $(filter srcs-% cflags-%, $(.VARIABLES)))
$ (foreach var, $(VARS), $(info $(var) = $(S(var))))
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9
10 .PHONY: all
11 all:
12 @# do nothing

Again a detailed explanation is in order. The inclusive Make solution is com-
plex, so now examine each line in detail.

On line 1, the subdirs variable is initialized to the empty string. This variable
is used as a space-separated list of subdirectories to be traversed. Within each of
these directories, you can expect to find a Files.mk file, which itself could poten-
tially include a definition for the SUBDIRS variable. Each time you find another
SUBDIRS definition, you append the new subdirectories onto _subdirs, effectively
creating a queue of directories to visit.

For example, after you’ve visited src/Files.mk, the subdirs variable con-
tains the following:

libraries applications

In the next step, you pop the libraries path off the front of the queue
and parse src/libraries/Files.mk. After discovering the new definition for
SUBDIRS in that file, the subdirs variable changes to this:

applications libraries/math libraries/protocols libraries/sqgl \
libraries/widgets

Following this process repeatedly, you end up traversing the entire build tree
and reading every Files .mk file. Note that the src directory name isn’t included
in these pathnames because that’s the current working directory. Everything is
already relative to the src directory.

Line 2 of src/Makefile initializes curdir to the empty string. This vari-
able represents the current directory you’re traversing. It starts empty because
you’re at the top level of the build tree (inside the src directory). As you traverse
the build tree, by popping entries off the start of the subdirs queue, the value
of curdir reflects the current point of traversal.

Line 3 defines FRAMEWORK to be the path of the framework makefile. You’ll
be calling upon this makefile often, so it’s convenient to have a variable refer-
ring to it.

Line 4 starts everything in motion by including the src/Files.mk file. From
this, you get the top-level definition of Src, SUBDIRS, and cFLAGS. Note the
distinction here between including a file with the include directive and calling
upon another makefile using $ (MAKE) . Because you’re using include, the same
Make instance is used, and you’ll be adding to the same dependency graph each
time (instead of creating a new one).
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Line 5 calls the inclusive Make framework to process the content of the
SRC, SUBDIRS, and CFLAGS variables; the framework then continues traversing
the remainder of the source tree. By the time you return from this particular
include directive, all the Files.mk files will have been processed.

Lines 7 and 8 are executed after the entire tree of Files.mk fragments has
been processed. This code takes the complete list of variables that GNU Make
knows about (automatically stored in $ (. VARIABLES) ) and filters all variables
names that start with srcs- or cflags-. It then displays each one on the pro-
gram’s output so that you can see the computed values. You haven’t seen it yet,
but the framework file defines the srcs-* and cflags-* variables as it traverses
the build tree.

This mechanism isn’t normally part of the build system, but it’s used as a
means of debugging the inclusive Make algorithm to ensure that everything is
working correctly. You’ll take a look at the output shortly.

Now examine the content of make/framework.mk, which is the main algo-
rithm for traversing the build tree and collecting the values from each Files.
mk fragment:

srcs-$(_curdir) := $(addprefix $( curdir),$(SRC))
cflags-$(_curdir) := $(CFLAGS)
_subdirs := $( subdirs) $(addprefix $( curdir), $(SUBDIRS))

ifneqg ($(words $(_ subdirs)),0)
(

N o0 WN

_curdir := firstword $( subdirs))/
_subdirs := $(wordlist 2, $(words $( subdirs)),
$(_subdirs))

8 SUBDIRS :=

9 SRC :=

10 CFLAGS :=

11 include $( curdir)Files.mk

12 include $ (FRAMEWORK)

13 endif

As with the previous file, this makefile framework requires detailed explana-
tion. Recall that this file is included immediately after one of the Files.mk files
has been parsed. Therefore the SRC, SUBDIRS, and CFLAGS variables have just
been set to the appropriate value for the directory you’re currently processing.

Line 1 records the set of source files for the current directory. The variable
name on the left side of the assignment also contains a variable, so you’ll be
creating a different GNU Make variable for each directory you visit. This syn-
tax seems odd at first, but having the capability to dynamically construct vari-
able names is equivalent to defining arrays or hashes in other languages. That
is, the srcs- variable has many subelements, each indexed by the name of the
directory.
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On the right side of line 1, you take the current definition of the SR variable
and add the current directory as a prefix to each element in that list. For exam-
ple, if curdir is set to libraries/math/, then you’ve just finished parsing
the src/libraries/math/Files.mk file. Line 1 of the framework makefile is
therefore equivalent to this:

srcs-libraries/math/ := libraries/math/add.c \
libraries/math/mult.c libraries/math/sub.c

Although it might seem odd, it’s perfectly acceptable to have punctuation
within variable names.

Line 2 is similar and stores the current directory’s CFLAGS definition inside
a directory-specific c£lags-* variable. In the simple inclusive framework, you
won’t be doing anything with these variables aside from displaying them for
debugging purposes.

Line 3 is responsible for queuing up any additional SUBDIRS values that the
current Files.mk fragment might contain. Again, you prefix the elements in
SUBDIRS with the current directory, but this time you append these values to the
end of the existing $ (_subdirs) value.

Lines 5-13 are where the tree traversal takes place. Assuming that there are
more entries in the queue of pending subdirectories, you’ll extract the first of
them and visit the Files.mk file in the corresponding source code directory.

Lines 6 and 7 remove the first queue element. Line 6 sets the first item in the
_subdirs list as the current directory (_curdir). Line 7 deletes this first element
from the queue by reassigning subdirs with all the words from position 2 to
the end of the current _subdirs value.

Line 11 now includes the Files.mk fragment that resides within the current
directory. Given that Files.mk isn’t required to contain all the variable defini-
tions (SRC, SUBDIRS, CFLAGS), you first set them to the empty string (lines 8-10)
to make sure that the values from the previous directory don’t “leak through”
to the current directory.

Finally, Line 12 repeats the whole framework file, which stores the values of
SRC and CFLAGS and then traverses any additional directories listed in SUBDIRS.

That’s the end of the example. For completeness, let’s see the output of exe-
cuting the makefile on the example build tree. The values for the srcs- and
cflags- variable should match the original diagram.

cflags- = -g

cflags-application/ =
cflags-application/database/ =
cflags-application/database/load/
cflags-application/database/save/
cflags-application/graphics/ =
cflags-libraries/ =
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cflags-libraries/math/ = -DBIG MATH
cflags-libraries/protocols/ = -DFAST SEND
cflags-libraries/sqgl/ = -02
cflags-libraries/widgets/ = -DCOLOR="red"

srcs- = main.c

srcs-application/ =

srcs-application/database/ = application/database/

wpersistence.c

application/database/backup.c application/database/
woptimize.c
srcs-application/database/load/ = application/database/load/
=] oading.c

srcs-application/database/save/ = application/database/save/
wcsaving.c
srcs-application/graphics/ = application/graphics/line-

wdrawing.c
application/graphics/vector-size.c application/
graphics/3d.c
srcs-libraries/ =
srcs-libraries/math/ = libraries/math/add.c libraries/math/
wnult.c
libraries/math/sub.c
srcs-libraries/protocols/ = libraries/protocols/tcp.d
libraries/protocols/udp.c libraries/protocols/ip.c
srcs-libraries/sqgl/ = libraries/sqgl/select.c libraries/sql/
view.c
libraries/sqgl/create.c libraries/sqgl/drop.c
srcs-libraries/widgets/ = libraries/widgets/button.c
libraries/widgets/list.c libraries/widgets/window.c
libraries/widgets/tree.c

At this point, it should be clear that you haven’t built a complete inclusive
Make system, but you should have a basic idea of how it could be done. The
important factors are that each directory has its own Files.mk files (with paths
specified relative to that directory) and that using one instance of the GNU
Make process enables you to have a single unified dependency graph.

To make a fully functional build system, you need to add the following
features:

e GNU Make code to define the dependencies between object files, source
files, and header files (using automatic dependency analysis).

e Rules for compiling the code (You’d need to override the built-in rules for
C compilation.)

¢ Code to link object files into static libraries.

* Code to link together the final executable programs (possibly more than
one program could be compiled).
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e The capability to start the GNU Make process from a subdirectory (Cur-
rently, the only makefile is in the top-level src directory.)

¢ Support for compiling on multiple CPU architectures.
¢ C compiler flags on a per-file basis instead of just on a per-directory basis.

¢ Inheritance of compiler flags from parent directories to child directories.

Certainly, the list goes on. In summary, an inclusive Make build system is not
an easy system to create. Definitely budget plenty of time if you decide to create
your own. Luckily, several experts [42][44] have provided systems you can use
as a starting point.

Scenario 3: Defining New Compilation Tools

The next real-world scenario looks at adding a new type of compilation tool
into the makefile. So far, this chapter has focused exclusively on compiling C-
language source files, but the same concepts extend nicely to other languages.
In fact, this GNU Make code will appear simple compared to some you’ve seen
so far.

To make use of the mathcomp compiler (discussed in the introduction to Part
II), you need to add the following:

1. A list of source files that are in .math file format, to be read by the
mathcomp compiler

2. A GNU Make rule that describes how to compile .math files into .c files

3. A new type of dependency file (with .d1 suffix) to record the relationship

between .math files and the .mathinc files they depend upon

Now jump right into the final solution, which isn’t too different from what
you’ve already seen.

1 MATHCOMP := /tools/bin/mathcomp
2 CC := gcc

3 MATHSRC := equations.math

4 CSRC := calculator.c

5 PROG := calculator

6 OBJS := $(CSRC:.c=.0) $(MATHSRC:.math=.0)
7

8 $(PROG) : $(OBJS)

9 $(cc) -o se $*

10

11 %.c: %.math
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12 $ (MATHCOMP) -c $<

13

14 -include $(CSRC:.c=.d)

15 -include $(MATHSRC:.math=.d1l)

16

17 %.d: %.c

18 @$(CC) -MM $(CPPFLAGS) 3< | sed 's#\(.*\)\.o: #\1l.o
\1.d: #g' > Se@

19

20 %.dl: %.math

21 echo -n "$@ $(*F).c: " > se@; \

22 $ (MATHCOMP) -d $< >> se@

Here’s a line-by-line explanation, but only for the new portions of the make-
file. Everything else should look familiar.

Line 1 defines the path of the mathcomp compiler. An absolute path is used
for the tool here instead of relying on users to have their $PATH variable set
correctly.

Line 3 defines the list of source files (MATHSRC) in the .math file format, just
as line 4 defines the list (csrc) of C-language source files. Line 6 forms a list
of object files by replacing .c and .math file extensions with the .o extension.

Lines 11 and 12 define a dependency rule to generate .c files from their
corresponding .math files. For example, to generate equations.o (required
by line 8), you first need to generate equations.c (defined by the built-in C
compilation rule). To do this, GNU Make triggers the rule on line 11 to generate
equations.c from equations.math.

Lines 15 and 20-22 perform the magic necessary for autodetecting make-
file dependencies. Similarly to the C compiler, you pass the -d option to the
mathcomp compiler and have it generate the list of source files it includes (namely,
.mathinc files). The additional echo command on line 21 adds a small amount
of extra information that mathcomp doesn’t provide by default. The resulting
equations.d1 file looks like this:

equations.dl equations.c: equations.math equl.mathinc \
equ2.mathinc

With those key points covered and all the previous examples you’ve seen,
the rest of the makefile should be easy to understand. In summary, adding a
new compilation tool in GNU Make is not too difficult, except perhaps when it
comes to automatically detecting dependencies.

Scenario 4: Building with Multiple Variants

GNU Make is the most common means of compiling C and C++ code, and both
of these languages usually compile to native machine code. Clearly, you need a



REAL-WORLD BUILD SYSTEM SCENARIOS

way to select which CPU type to use. This example allows the software devel-
oper to compile for the Intel x86 series, the PowerPC series, or the Alpha CPUs.
In fact, you allow them to compile for all three architectures within the same
build tree at the same time.

To select a target architecture, developers should provide a value for the
PLATFORM variable. If they don’t provide a value, the compilation defaults to
using the x86 architecture. For example:

$ gmake PLATFORM=powerpc # build for PowerPC CPUs
S gmake # build for 1386 CPUs
$ gmake PLATFORM=xbox # OOPS! Not allowed.

Makefile:8: *** Invalid PLATFORM: xbox. Stop.

Here’s the necessary GNU Make code for compiling platform-specific code:

1 SRCS = add.c calc.c mult.c sub.c

2 PROG = calculator

3 CFLAGS = -g

4 PLATFORM ?= i386

5 VALID PLATFORMS = 1386 powerpc alpha

6

7 ifeq ($(filter $(PLATFORM), $(VALID PLATFORMS)),)
8 S (error Invalid PLATFORM: $ (PLATFORM) )

9 endif

10

11 OBJDIR:obj/$(PLATFORM)

12 $(shell mkdir -p $(OBJDIR))

13

14 CC := gcc-$ (PLATFORM)

15 OBJS = $(addprefix $(OBJDIR)/, $(SRCS:.c=.0))
16

17 $(OBJDIR) /S (PROG): S (OBJS)

18 $(CC) $(CFLAGS) -o $e@ $*
19

20 $(OBJDIR)/%.0: $.c

21 $(CC) -c -o s@ S<

22

23 $(OBJS) : numbers.h

This makefile example includes a few new concepts. Line 4 provides the
default value for the PLATFORM variable. If the user doesn’t set the variable on
the command line, it defaults to i386. You don’t technically need to use the 2=
operator here; any variable defined on the command line automatically over-
rides the default value provided in the makefile.

Lines 7-9 tests whether $ (PLATFORM) is one of the acceptable values. The
$ (filter) function returns the empty string if it’s unable to find $ (PLATFORM)
in the list of valid platforms. The ifeq directive tests for this empty string and
displays an appropriate error message.
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Lines 11 and 12 determine the directory in which the object files will be
placed. All the examples so far have stored the object files in the same directory
as the source files because that’s the default behavior. However, with object
files from three different architectures, you need to explicitly store them in an
architecture-specific location (obj/i386, obj/powerpc, or obj/alpha). Line
12 ensures that the selected object directory already exists.

Line 14 selects the appropriate C compiler to use and assigns the name to the
cc variable. Assume that each CPU architecture requires a different version of
GCC, as opposed to a single compiler instance supporting multiple targets.

Line 15 computes the list of object files to be compiled. Given that each
CPU’s object files are stored in a different object directory, you need to explicitly
state which object files are to be built. In this case, you prefix each element in the
object file list with $ (OBIDIR).

Finally, lines 17-21 rewrite the rules you’ve seen many times before. The only
difference is that here you’ve added $ (0BJDIR) on the left side of each rule,
whereas in the past you’ve assumed that object files are placed in the source
directory. This code uses an interesting feature of GNU Make that permits the
source and object files to be located in different places.

With this additional functionality, you now can support multiple CPU archi-
tectures. To help clarify how this build system works, examine the output:

$ gmake
gcc-1386 -c -o obj/i386/add.o add.c
gcc-1386 -c¢ -o obj/i386/calc.o calc.c
gcc-1386 -c -o obj/i386/mult.o mult.c
gcc-1386 -c -o obj/i386/sub.o sub.c
gcc-1386 -g -o obj/i386/calculator obj/i386/add.o obj/i386/
calc.o
obj/i386/mult.o obj/i386/sub.o

$ gmake PLATFORM=powerpc

gcc-powerpc -c¢ -0 obj/powerpc/add.o add.c

gcc-powerpc -c¢ -o obj/powerpc/calc.o calc.c

gcc-powerpc -c¢ -o obj/powerpc/mult.o mult.c

gcc-powerpc -c¢ -0 obj/powerpc/sub.o sub.c

gcc-powerpc -g -o obj/powerpc/calculator obj/powerpc/add.o
obj/powerpc/calc.o obj/powerpc/mult.o obj/powerpc/sub.o

Of course, in a realistic environment, you’d integrate this code into a recur-
sive Make or inclusive Make solution; otherwise, you’re limited to compiling
files in a single source directory.

Scenario 5: Cleaning a Build Tree

The next real-world scenario involves cleaning a build tree by removing all the
generated files. Sometimes you want this functionality on a per-directory basis,
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but in other cases, you’re happy to remove all objects files from the build tree.
In either case, it’s important that your cleaning operation remove the exact set
of object files your build process created in the first place.

The way a build system cleans a build tree depends entirely on how your build
system was constructed. For recursive Make systems, each makefile is respon-
sible for generating the object files in its own directory; therefore, it should be
responsible for removing them, too.

For example, in the top-level makefile, you’d have a rule that recursively
cleans the subdirectories.

.PHONY: clean

clean:
$(MAKE) -C libmath clean
$ (MAKE) -C libprint clean
$(MAKE) -C calc clean

And in each of the subdirectories, you’d have a rule to actually remove the
files.

.PHONY: clean
clean:
rm -f $(OBJS) $(LIB)

One advantage of this system is that developers can easily clean the content
of any subdirectory by simply issuing the gmake clean command at that level.

For inclusive Make systems, you can take advantage of the fact that the entire
dependency graph is available within the single GNU Make process. Because
you have a complete list of source files being compiled, you also know the com-
plete set of object files. Things get a little more complicated when you have
other generated files (such as equations.c being generated from equations.
math), but this simply requires additional logic to record the relevant filenames.
Cleaning specific subdirectories is also possible by filtering each file based on its
pathname.

The tricky part about cleaning a build tree is that you’re not always aware of
which files are generated. Sometimes this is a sign that your interfile dependen-
cies are not well understand, but sometimes a compilation tool creates extrane-
ous files that you don’t really care about. Although these files are never used and
are never included in the dependency graph, they still need to be deleted from
the build tree.

One good practice for testing your clean target is to fully build a source tree
and then fully clean that same tree. Next, compare the list of disk files against
a completely fresh source tree and see if any discrepancies arise. If any files are
left over, you can explicitly add them to the clean target to make sure they’re
properly deleted. On the other hand, you might wonder why those files weren’t
already accounted for in $ (0BJS) and, therefore, already deleted.
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Finally, one advantage of storing all generated files in a special object direc-
tory instead of the source code tree is that a single delete command (such as rm
-rf in UNIX) is guaranteed to remove all generated files.

Scenario 6: Debugging Incorrect Builds

Locating bugs in your GNU Make build system is often challenging. Given the
nature of the pattern-matching algorithm, GNU Make doesn’t use the line-by-
line sequencing that most programmers are comfortable with. Rules from any
part of the makefile system can be triggered at any time.

In a real-world development project, you’ll likely experience the following
makefile problems:

e A target file isn’t being generated when it should be. In this case, there’s
probably a missing link in the dependency graph, and you need to add an
additional rule.

¢ A file is being generated when it shouldn’t be, which makes you wonder if
an incorrect dependency is causing too much work to be performed.

¢ The content of the target file is incorrect, which suggests that a compila-
tion tool is being invoked with the wrong command-line options.

¢ GNU Make is reporting that no rule is available to create a specific target.
You need to add the missing rule or determine why an existing rule isn’t
triggering when it should.

e Rules are being triggered in the wrong order, most likely when you’re try-
ing to build multiple jobs in parallel. This is also because you have links
missing in the dependency graph.

You can resolve each of these problems by first determining which compila-
tion tool has the incorrect behavior and then working backward to determine
where the associated rules and variables are defined. The steps are as follows:

1. Examine the build output log to determine which of the compilation tools
is doing the wrong thing. This might involve scanning through hundreds
or thousands of lines of output to find the offending command.

2. Locate the makefile rule that’s responsible for generating the bad com-
mand line. Given that rules (including the built-in rules) can be spread
across a number of different makefiles in a build system, finding where
everything is defined can take time.
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3. Check that the command-line options in this rule are valid. If necessary,
double-check the variable definitions used in the rule. This can be chal-
lenging if some of the variables use deferred evaluation, making use of
subvariables that are defined in other parts of the build system.

4. Examine the dependencies in the rule to make sure they’re correct. This
might involve searching for related rules to ensure that prerequisite files
are also being created.

To help with this debugging effort, GNU Make provides a number of com-
mand-line options:

® gmake -n: Displays the list of shell commands to be executed, without
actually executing them. This saves you a lot of time when trying to find an
offending compilation tool, without waiting for a long build to complete.

® gmake -p: Displays the content of GNU Make’s internal database. This
contains the complete list of rules and variables defined in each make-
file, as well as GNU Make’s built-in rules. Line number information is
recorded so you can easily track down where something is defined.

® gmake -d: Displays a trace log of GNU Make’s pattern-matching algo-
rithm as it parses and executes a makefile. The output can be extremely
verbose, but it provides everything you need to know.

In addition to these command-line options, you can use the print debug-
ging approach to display useful messages on the program’s output. The exact
sequence in which these messages appear helps the developer understand how
the makefile is executing. The $ (warning) function displays a text message,
along with information on where in the makefile the function was called.

$ (warning CFLAGS is set to $(CFLAGS))

This function doesn’t return a value, so it can be inserted at any point in the
makefile where a function is permitted. Another clever trick is to use $ (warning)
within the definition of variables. Whenever the variable is accessed, a suitable
message is displayed.

CFLAGS = $(warning Accessing CFLAGS) -g

Also, if you redefine the $ (SHELL) variable to include a $ (warning) direc-
tive, you display a message on the program’s output whenever a rule is triggered.

SHELL = $(warning Target is $@) /bin/sh

143



144

CHAPTER 6 MAKE

Now see how all this fits together. Going back to the first calculator pro-
gram, you now get a much better view of when variables are accessed, what
they’re defined as, and when the rules are being triggered.

Makefile:8: Accessing CFLAGS
Makefile:8: CFLAGS is set to -g
Makefile:13: Accessing CFLAGS
Makefile:13: Target is add.o

gce -g -c¢ -o add.o add.c
Makefile:13: Accessing CFLAGS
Makefile:13: Target is calc.o

gce -g -c¢ -o calc.o calc.c
Makefile:13: Accessing CFLAGS
Makefile:13: Target is mult.o

gce -g -c¢ -o mult.o mult.c
Makefile:13: Accessing CFLAGS
Makefile:13: Target is sub.o

gcc -g -c -o sub.o sub.c
Makefile:16: Accessing CFLAGS
Makefile:16: Target is calculator
gcc -g -o calculator add.o calc.o mult.o sub.o

Finally, to make life much easier, the third-party GNU Make debugger tool
[45] uses these underlying tricks to provide a more traditional debugging envi-
ronment. You can interactively print the value of variables, find out how they’re
defined, and set breakpoints on specific makefile rules. Consider using this tool
when debugging a nontrivial makefile.

Praise and Criticism

Having been around for more than 30 years, the Make tool (GNU Make being
a modern version) has had plenty of opportunity to gather praise and criticism.
Clearly, Make offers many benefits; otherwise, it would no longer be the most
popular tool for C/C++ development. On the other hand, plenty of empirical
experience has shown that Make has a number of flaws.

Let’s now review what users of Make have been saying. The following com-
ments were either found on Internet web sites, published in books, or gathered
via personal experience.

Praise

¢ Wide support: Make (particularly GNU Make) is widely supported on a
large number of operating systems. Most software engineers have at least
a passing knowledge of makefile construction, and quite a few people
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consider themselves to be makefile experts. Part of this widespread knowl-
edge results from universities teaching Make as a standard build tool. The
significant number of legacy build systems using Make is also a contribut-
ing factor.

If you were starting a new software project, the fact that so many develop-
ers are already familiar with Make would likely convince you to use the
same tool again. In addition, numerous Make-related tools (such as auto-
matic makefile generators, automatic parallelization tools, and makefile
editors) are available either commercially or for free. Make is clearly the
best-supported build tool, at least for C/C++ development.

Very fast tool: Being written in C, GNU Make is fast and highly optimized.
Compared to other tools, GNU Make is extremely fast for computing and
traversing the dependency graph. As a side note, some people counter this
benefit by questioning whether speed is important if accuracy of the tool’s
dependency information can’t be guaranteed.

Portable syntax: GNU Make has a portable syntax and is available on a
wide range of platforms, including Microsoft Windows. Before the intro-
duction of GNU Make, developers were required to write a makefile that
was compatible with every operating system’s variant of Make. They
often were limited to using only the small subset of features that all Make
implementations had in common. With GNU Make, the syntax is the same
across all platforms, and you can use the entire set of the GNU Make’s
features.

Fully featured programming language: As a general-purpose dependency
engine, Make can be used for any type of dependency analysis. As long as
you can write a rule that maps input files to output files, there’s no limit on
the type of compilation you can perform. Whereas other build tools might
focus on C, C++, Java, or C# compilation, Make enables you to compile
any type of file (such as creating PDF files from TeX source).

It’s worth noting that GNU Make’s language is Turing complete. This
means that any program written in a general-purpose programming lan-
guage can also be written as a GNU Make program. It would be incorrect
to claim that “GNU Make can’t do that” because any feature of any other
build tool can be implemented in GNU Make. (Just ask a Make guru how
it can be done.)

The first tool: Being the first build tool ever invented, Make paved the way
for automated build systems. Newer tools would never have been able to
improve on Make if it hadn’t first demonstrated what was possible.

145



146

CHAPTER 6 MAKE

Criticism

On the flip slide, there are many criticisms of the Make tool to be aware of:

¢ Inconsistent language design: GNU Make’s language has clearly grown
over time, and the design hasn’t always stayed consistent. Some of the
language features (such as rules) were part of the original Make design,
but many other features were added over time as people found a need. In
addition, the syntax for each of the features isn’t always consistent with
the syntax of other features. This makes the language difficult for new
developers to learn.

Some of the common concerns include the following:

When writing a makefile rule, the shell commands must be indented by
a tab character instead of by spaces. This syntactical rule has impacted
almost everyone, especially if their editor automatically converts tabs to
spaces.

All makefile variables are global, so it can be challenging to determine
where a variable is defined and whether you’re conflicting with a differ-
ent variable that accidentally has the same name.

Some parts of the makefile syntax ignore whitespace; in other parts,
whitespace must be included.

It can be confusing to determine which parts of a makefile enable you
to write shell commands and which parts enable GNU Make functions.

When invoking shell commands within a Make rule, you need to be
familiar with the syntax of each command being invoked. Often a lot of
inconsistency arises in the command-line arguments and return values
each tool provides.

For developers familiar with procedural programming (sequencing,
loops, conditionals, and function calls), it can be challenging to write
GNU Make code. In particular, it’s difficult to fit together the neces-
sary shell commands, GNU Make functions, and user-defined macros
to achieve the desired effect.

As a result of these syntax and semantic issues, a number of additional
tools such as Automake and CMake (see Chapter 9, “CMake”) automati-
cally generate a makefile from a higher-level description. This alleviates
the need to learn the GNU Make syntax.
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¢ No standard framework: Although this chapter discussed using inclusive
Make to solve a number of build system problems, no standard framework
can be used as a starting point. GNU Make provides a powerful set of
language features, but it wasn’t designed to work out-of-the-box for large
software projects. In particular, the following important features must be
implemented by hand:

¢ Automatic dependency analysis for common languages such as C/C++.
Without a good dependency system, the chance of introducing build
failures is much higher.

¢ Multidirectory support with a single dependency graph for the whole
build tree.

e C compiler flags that can be set on a per-directory or per-file basis.

¢ A mechanism for rebuilding object files if the C compiler flags are modi-

fied.

¢ A mechanism for abstracting out values such as srcs, SUBDIRS, and
CFLAGS, as was done with the Files.mk fragments.

Unfortunately, anybody using GNU Make is required to implement these
features for themselves or perhaps borrow an existing framework from
some other software project. In reality, it’s common to see each project
using an entirely different framework that grows over time as new features
are required. None of this is easy work.

¢ Lack of portability: Although GNU Make provides a consistent syntax
across all operating systems, it’s unlikely that the syntax of the shell com-
mands will be consistent. Each operating system is free to store its stand-
ard tools (such as 1s, cat, sed, and grep) in whichever directory it likes,
and it’s free to implement whichever optional tool features it desires. Even
with modern versions of UNIX and Linux, some amount of inconsistency
always seems to arise between shell commands.

To make things easier, follow a couple good practices:

e Use the standard GNU versions of command-line tools instead of the
operating system’s own version. This at least guarantees that command
options are consistent.

e Use makefile conditionals (such as ifdef SOLARIS) to select an appro-
priate tool or tool path that works on each operating system, and then
use a variable to access the tool instead of hard-coding the name. For
example, use $ (RM) foo.o instead of rm foo.o.
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¢ Challenging debugging: Many developers find it difficult to follow Make’s

flow of control when filenames are being pattern-matched against rules. In
contrast to most other programming languages, the flow of control isn’t
sequential. This means that the next rule to be triggered could be defined
at any point within the makefile system, including built-in rules and those
included in Files.mk fragments. Before the use of the GNU Make debug-
ger (a recent creation), developers were left to interpret confusing errors
messages or to scan through complex listings of the dependency graph.

Language completeness versus ease of use: Even though any general-
purpose program can be implemented within the GNU Make program-
ming environment, the real question is how much work needs to be done
to make that happen. As you’ve seen already, constructing a complete
GNU Make framework isn’t trivial and requires the author to have “guru”
status. The authors must have a perfect understanding of GNU Make’s
flow of control, as well as an intimate knowledge of GNU Make’s syntax
and built-in functions. Finally, they need to have a handful of clever tricks
to convince GNU Make to perform certain operations that aren’t officially
supported.

If you decide to create an inclusive Make framework for yourself, be pre-
pared to devote a large amount of time (months, not weeks). You need
to support your development team on an ongoing basis when it requests
that new functionality be added. After all this work, you’ll end up with a
solid build system, but be prepared for average software engineers to not
have any understanding of how it works. After all, many people never get
beyond the much simpler recursive Make systems, even with all the associ-
ated problems.

Evaluation

To summarize the GNU Make tool, let’s evaluate it against the build system
quality measurements discussed in Chapter 1, “Build System Overview.”

e Convenience: Poor. As you’ve seen, creating a fully functioning build sys-

tem is difficult. This includes the detection of implicit dependencies and
the traversal of a full build tree. Although a simple makefile is quick and
easy to construct, the tool is much less convenient for nontrivial build
systems.

Correctness: Poor. Because of the poor level of convenience, GNU Make
is notorious for not producing a correct build image. It’s possible to guar-
antee a correct build, although the effort to do so can be enormous.
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e Performance: Excellent. GNU Make is written in optimized C code and
has an efficient algorithm for dependency analysis. Compared to other
build tools discussed in later chapters, GNU Make is extremely fast.

e Scalability: Excellent. As with the performance criteria, GNU Make is
highly scalable. The assumption is that you’ve already created a makefile
framework that adequately supports multiple directories.

As a general rule, consider using GNU Make for legacy software that already
uses a Make-based build system. However, if you’re writing a new build system
for C/C++ software, first consider using SCons (Chapter 8) or CMake (Chapter 9).
If you’re writing a build system for Java, consider using Ant (Chapter 7). For
C# code, use MSBuild (discussed briefly in Chapter 7). If none of these tools
meets your needs, especially for performance reasons, writing a new build sys-
tem using GNU Make is a possibility.

Note that these evaluation criteria are subjective in nature, so your value
judgment could be quite different.

Similar Tools

Although this chapter’s focus has been the GNU Make tool, several other tools
conform to Make’s original premise. Let’s now look briefly at the Berkeley Soft-
ware Distribution’s version of Make, Microsoft’s version of Make, and the more
recent ElectricAccelerator and SparkBuild tools.

Berkeley Make

The Berkeley Software Distribution (BSD) is a version of the UNIX operating
system first developed at the University of California in the mid-1970s. Although
other UNIX-like systems, such as Linux and Solaris, tend to get more publicity,
you’ve likely heard of the NetBSD, FreeBSD, and OpenBSD systems. In fact,
the Apple Mac OS X operating system is based on BSD technology, making it a
common version of UNIX.

In addition to an operating system kernel, the BSD systems include a number
of user-space utilities, including a variant of the Make tool known as Berkeley
Make (also known as bmake or bsdmake) [46]. If you find yourself modify-
ing existing code in a BSD environment, you’ll likely use Berkeley Make, even
though GNU Make is also available on those platforms.

Much of Berkeley Make’s syntax is identical to GNU Make’s syntax, espe-
cially for basic features. This includes the definition of makefile rules, the list of
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shell commands, and the definition and usage of variables. In fact, a number of
makefile features can be executed by either Berkeley Make or GNU Make.

One of the most noticeable syntax differences is the way variables are manip-
ulated. The GNU Make system uses the concept of functions that manipulate
string values. The Berkeley Make system instead uses modifiers. For example:

® $(MY VAR:E): For each space-separated word in ¢ (MY VAR), returns
the file name’s suffix, such as .c or .nh. This is similar to GNU Make’s
$ (suffix) function.

e $(MY VAR:H): For each word in $ (MY _VAR), returns the pathname com-
ponent of the word. This is similar to the $ (dir) function in GNU Make.

® $(VAR:M<pattern>): Returns only the list of words that match the speci-
fied pattern. This is similar to GNU Make’s $ (filter) function.

In addition, the Berkeley Make language has syntax to support both condi-
tional execution and looping. The following example demonstrates the use of a
for loop (line 4) that traverses a list of subdirectories, and an if statement (line
6) to test whether a particular file exists.

SUBDIRS = application database libraries storage
ALLTARGS =

1
2
3
4 .for SUBDIR in $ (SUBDIRS)
5 SUBMK = $(SUBDIR)/Sub.mk
6 .if exists (S (SUBMK))

7 .include "$ (SUBMK)™"

8 ALLTARGS += make-$ (SUBDIR)

9 .endif

10 .endfor

11

12 all: $(ALLTARGS)

13 @echo All targets up to date

The net effect of this makefile is that all sub.mk files residing within any of
the subdirectories are included in the top-level makefile.

To effectively use Berkeley Make, you’ll probably find yourself learning a
few new syntax tricks. You might also find yourself limited by the number of
features available, especially if you’re used to GNU Make’s wide range of built-
in functions.

NMake

The NMake tool [47] is another variant of Make, typically used as part of Micro-
soft Visual Studio. Whereas developers use the Visual Studio graphical interface
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for their day-to-day development, NMake can be used more for batch-oriented
tasks that are performed from a command line, such as in software packaging.

NMake provides the same basic syntax as GNU Make and Berkeley Make,
particularly for the definition of rules and variables. However, any sequences of
shell commands will obviously be targeted for the Windows command prompt
and use the Visual Studio compilation tools.

Users of the GNU Make tool will find NMake’s syntax limiting because it
contains only a few advanced features. With the introduction of Microsoft’s
MSBuild tool (discussed briefly in Chapter 7, “Ant”), the use of NMake has
become less common.

ElectricAccelerator and SparkBuild

ElectricAccelerator [48] and SparkBuild [49] are two products created by Elec-
tric Cloud, Inc. ElectricAccelerator is a commercially available tool that acceler-
ates the software build process. It achieves this goal by dispatching jobs onto
multiple CPUs in a networked cluster and coordinating access to disk files to
make sure jobs are executed in the correct order. Given that ElectricAccelerator
can parse GNU Make and NMake syntax, customers with legacy build systems
see a dramatic increase in performance with little extra work.

SparkBuild is a feature-limited version of ElectricAccelerator that solves some
of GNU Make’s basic weaknesses, even though it doesn’t support cluster-based
builds. Earlier, this chapter identified problems with recursive Make in starting
a compilation within a subdirectory of the source tree. Given that GNU Make
doesn’t have a global view of all the dependencies, it’s likely to miss some of the
important recompilation steps.

When using SparkBuild, you start by explicitly asking the tool to generate
a database of dependency information. This knowledge remains even after the
build completes.

S emake --emake-gen-subbuild-db=1
[ ... output hidden ... ]

When the build is complete, the emake.subbuild.db file contains all the
dependency information for the whole build tree.

S 1s
emake.subbuild.db libmath libprint Makefile calc

If a developer rebuilt the software from within the calc subdirectory, Spark-
Build would have enough intelligence to first rebuild the 1ibmath and 1ibprint
subdirectories, even though the developer didn’t explicitly request it.
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$ cd calc
S emake -
emake -C
make [1] :
make [1] :
make [1] :
emake -C
make [1] :

make [1] :
make [1] :

-emake-subbuild-db=. ./emake.subbuild.db

libmath

Entering directory '/home/psmith/sparkbuild/libmath’
'libmath.a' is up to date.

Leaving directory '/home/psmith/sparkbuild/libmath'
libprint

Entering directory '/home/psmith/sparkbuild/lib-
print!

'libprint.a' is up to date.

Leaving directory '/home/psmith/sparkbuild/libprint’
make: 'calculator' is up to date.

Another nice feature of SparkBuild is that it records useful information for

later analysis

of the build process. For example, it records which commands

were executed, which makefile each command was listed in, and how long it
took to execute each of the steps. Feeding this information into the SparkBuild
Insight graphical interface produced a comprehensive view of the entire build
process (see Figure 6.4).
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Figure 6.4 The SparkBuild Insight GUI, showing the analysis of the build process.




SUMMARY

The SparkBuild Insight interface also provides the capability to query the
build steps and to examine the underlying command and path information (see
Figure 6.5).
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Figure 6.5 The SparkBuild Insight GUI, showing the detail of an individual job.

Although SparkBuild and SparkBuild Insight are relatively new products,
they’ll likely become a value resource for makefile developers. They’re particu-
larly useful when trying to debug makefile problems such as missing dependen-
cies or slow builds.

Summary

A Make-based build system is created by defining rules to piece together a pro-
gram’s complete dependency graph. Each rule specifies a target file, a list of
prerequisite input files, and the necessary shell commands to generate the target
from the inputs.

The GNU Make tool is a modern version of Make that supports a wide range
of features. Among these features is the capability to manipulate string-valued
variables and treat them as more complex data types. In particular, a variable
can be treated as a list of filenames, and various functions can manipulate that
list.

Although GNU Make is a powerful language, you still need to add support
for automatic dependency analysis and for building software that spans multi-
ple file system directories. Although it’s possible to implement these features by

Close |
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hand, they aren’t built into the basic language, making it challenging for devel-
opers to construct a reliable build system.

Other Make-based tools include Berkeley Make, NMake for Microsoft envi-
ronments, and the more modern SparkBuild and SparkBuild Insight tools.



Chapter 7

Ant

The second build tool to examine is Apache Ant [50], maintained by the Apache
Software Foundation. Ant is one of the most popular build tools for Java-based
projects and has numerous features for compiling code in that environment. Few
Java developers would consider using GNU Make for building Java code, even
though it’s technically possible.

Ant was originally created as part of Apache Tomcat because existing build
tools were too hard to use in multiplatform Java projects. Since being released
as a standalone tool in 2000, Ant now runs on a diverse set of operating systems
such as UNIX, Windows, OS/2 Warp, OpenVMS, and Mac OS X.

One of the challenges in writing build systems for multiple operating systems
(OS) is that each platform has its own peculiar set of commands and services.
For example, in UNIX-like systems, the shell command for copying files is cp,
whereas in the Windows environment, the command is copy. Naturally, writing
a makefile rule that works smoothly on both platforms becomes difficult.

The approach Ant follows is to encapsulate each activity in the build sys-
tem into a high-level task. Instead of specifying the exact shell commands to be
executed, you use a task to handle interaction with the operating system. Most
of the time, end users don’t need to know or care which machine their build
system is running on because an Ant-based build description works cleanly on
all platforms.

The following Ant fragment defines a target that contains a list of three tasks
to be performed:

<target name="all">
<mkdir dir="pkg"/>
<jar basedir="obj" destfile="pkg/prog.jar"/>
<copy file="index.txt" tofile="pkg/index.txt"/>
</target>

N o0 W
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The first task (line 4) creates a new directory named pkg. The task on line §
finds all the files inside the obj directory and packages them into a Java JAR file
named prog.jar. Finally, line 6 copies the index. txt file into the pkg direc-
tory. Given that Ant build descriptions are written in a platform-neutral way
(using XML syntax), each operating system’s implementation of the Ant tool
knows how to map the high-level task into an underlying shell command (such
as cp or copy) or the relevant system calls.

Also note that no mention was made of interfile dependencies, which is a fun-
damental building block of GNU Make. Each task is responsible for knowing
whether the underlying command actually needs to be executed. For example,
the <copy> task first checks whether pkg/index. txt is newer than index. txt;
if it is, it completes without actually copying any data.

An attractive quality of the Ant tool is the wide support from Java tool vendors.
Most vendors supply additional Ant tasks to interact with their tool. Not only
do these tasks manage the low-level interaction with the operating system, but
they also perform the necessary dependency analysis. This approach enables
seamless integration of the vendor’s tool into any existing Ant-based solution.

Additionally, all popular Java integrated development environments (IDEs)
have the capability to create and execute Ant scripts, providing a strong integra-
tion into the development process. The breadth and depth of Ant’s support is a
major reason for using Ant in your build projects.

This chapter starts by looking at Ant’s programming language and then shows
how Ant solves a number of common build problems. Finally, it examines the
pros and cons of using Ant and discusses a few similar build tools.

The Ant Programming Language

Using the term programming language might seem a little misleading when com-
paring Ant to general-purpose languages such as C# or Java. The basic Ant
language doesn’t have many of the standard constructs, such as variables, loops,
if/then/else statements, or pointers. Luckily, it’s still possible to extend the lan-
guage. You might prefer to think of an Ant script as more of a sequence of build
tasks than a fully fledged program.

Ant’s build description is written using an XML-based format, with the
default filename being build.xml. Although XML is not always the easiest
format for new developers to learn, and a number of experienced developers
consider it too verbose, it’s still a well-supported data format. Many tools exist
for editing XML, including some that were designed specifically for viewing and
editing Ant description files. This chapter assumes that you at least have a pass-
ing knowledge of XML.
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As you’ll see in more detail, each of Ant’s XML files contains a project. Each
project contains one or more targets that represent something the user can build.
Finally, each target contains an ordered sequence of tasks that perform the real
work, such as making a directory or compiling a Java source file.

A Little More Than “Hello World”

To illustrate how an Ant build description file is structured, consider a simple
example that does nothing but display messages on the output. Instead of start-
ing with the typical “Hello World” example, skip ahead to see a program that
has multiple targets, dependencies between those targets, and a few simple con-
stant definitions.

Here’s the build.xml file for the simple program.

1 <project name="ant-project" default="all">

2

3 <property name="country" value="New Zealand"/>

4 <property name="city" value="Christchurch"/>

5

6 <target name="print-city"s>

7 <echo message="The nicest place in the world is"/>
8 <echo message="${city}, ${country}"/>

9 </target>

10

11 <target name="print-math"s

12 <echo message="Two plus two equals four"/>

13 </target>

14

15 <target name="all" depends="print-city, print-math"s>
16 <echo message="Thank you!"/>

17 </target>

18

19 </projects>

Line 1 defines the overall project that’s stored inside the build.xm1 file. The
name attribute is useful for identification purposes and is displayed by any of
Ant’s graphical front-end tools. The default attribute specifies the target to run
if the user doesn’t specify a target (that is, if the user just types ant by itself on
the command line).

Now skip ahead to the default target (a11) on lines 15-17, which is where
execution actually starts. Line 15 defines the name of the target and lists the
prerequisite targets that must first be executed. That is, before the tasks listed
within the all target are executed, Ant must go to the print-city and print-
math targets to make sure all those tasks are performed.

Now jump back to the definition of the print-city target on lines 6-9.
This time, there are no dependencies on other targets, so Ant immediately starts
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executing the task on line 7. The first <echo> target is fairly simple: It displays
only a constant string on the program’s output. The task on line 8 is a little more
complex because the echoed message refers to a couple of property names, each
identified by the ${. ..} syntax.

Back on lines 3 and 4, you see these Ant properties defined. You should
consider these properties to be constant because it’s not possible to change their
values after they’ve been assigned. As you’ll see later, property definitions can be
quite complex and can contain a lot more than simple string values.

Lines 11-13 don’t add anything new; the print-math target simply echoes
a constant string.

Finally, after the print-city and print-math targets have been executed,
the <echo> task on line 16 is the only action performed in the a1l target. Now
finish by reviewing the output of the ant command:

$ ant
Buildfile: build.xml
print-city:
[echo] The nicest place in the world is
[echo] Christchurch, New Zealand
print-math:
[echo] Two plus two equals four
all:
[echo] Thank you!
BUILD SUCCESSFUL
Total time: 218 milliseconds

As you can see, it’s not too hard to determine which target from the build.
xml file is responsible for generating each line of the output, or to figure out
which task generates each message. In this case, you use only <echo> tasks, but
in other programs, you’ll see different tasks names displayed.

By reading through the output, it’s straightforward to understand the order-
ing in which the tasks are executed. For any developer with experience in proce-
dural programming (which is almost everybody), the flow of control within the
build.xml file should be obvious.

At this point, you might think that a makefile written in GNU Make syntax
would look similar to this Ant example, and you’d certainly be right. Given that
this example contains only <echo> tasks and doesn’t need to deal with interfile
dependencies, a GNU Make program would be just as easy to follow.

Now that you’ve seen the basic concepts of targets, properties, and tasks, let’s
examine each of them in more detail.

Defining and Using Targets

In an Ant-based build system, a target is a convenient way to group tasks that
need to be executed sequentially. To invoke an Ant target, a developer provides
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the name of that target on the command line. Target names should be designed
for ease of use and readability, and must describe the operation being performed.
For example, the following targets are commonly used for building software:

ant compile: For compiling all the Java source files into class files
ant jar: For packaging the class files into a single Jar file

ant package: For creating a full software release package, complete
with a version number

ant clean: For removing all generated files from the build tree

ant javadoc: For generating API documentation using the Javadoc tool
(Chapter 12, “Building with Metadata,” discusses this more)

ant: For executing the default target, which is most likely the same as
the package target

In contrast to a Make-based build system, the name of an Ant target isn’t
related to the name of any disk files. An Ant target is similar to a GNU Make
.PHONY target, where the target’s filename isn’t considered part of the depend-
ency graph.

In addition to these publicly visible targets, the project can contain a number
of internal targets. These are never invoked directly from the command line but
are instead used as dependencies of public targets. For example, when the java
target is invoked, it could have a dependency on the init target that defines a
number of Ant properties and a make-directories target that creates all the
necessary build directories. In this case, you would use the following syntax:

3 <target name="java" depends="init, make-directories">
12 </target>

It might help to think of init and make-directories as function calls exe-
cuted before the tasks in the java target are executed.

To add more flexibility, you can conditionally choose whether to invoke a list
of tasks. If you specify the name of an Ant property in the target’s if attribute,
Ant executes the tasks only if the property has been defined. In the following
example, the tasks in the append-to-1log target are executed only if the 1log-
enabled property is set to a value (instead of not being set to anything).

3 <property name="log-enabled" value="1"/>
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5 <target name="append-to-log" if="log-enabled"s>
6 <echo message="Appending..."/>
7 </target>

This mechanism is somewhat like an if statement in other languages and is
useful for controlling whether optional parts of the build process are executed.
As you’ll see later, properties can also store the result of more complex condi-
tions, using features such as string comparison. In the example, the log feature
is simply enabled or disabled by manually setting the property.

In addition to invoking a target from the user’s command line or listing a
target as a dependency of other targets, you can use the <antcalls task. This
is useful for executing a few tasks before calling upon another target to do the
rest of the work.

3 <target name="java" depends="init, make-directories">
7 <antcall target="check-rules"/>

12 </target>

This approach can even extend across multiple build files, using the <ant>
task instead of <antcalls (which is limited to calling targets in the same build.
xml file).

3 <target name="java" depends="init, make-directories">
9 <ant antfile="utilities.xml" target="perform-check-
sum" />

12 </target>

As you might expect, dividing your Ant targets into separate build files and
invoking them with the <ant> task allows a fair amount of modularity in your
build. It’s possible to construct concise build files by factoring out sequences
that would otherwise be repeated multiple times. As you’ll see later, <antcalls>
actually creates a new execution environment with a new set of properties, so
performance can suffer if this method is used too often.

In contrast to <ant>, you can also use the <imports> task, which is similar
to the #include directive from C/C++. That is, importing an external build file
effectively inserts the body of that file into the current file. This technique can
be used to inherit a set of default targets and override them within the body of
the main build.xml file.
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Ant’s Flow of Control

Before looking at more of Ant’s syntax, stop to reflect on how an Ant program
executes. From a high-level view, Ant has a sequential flow of control in which
tasks are executed in the order they’re specified within a target. In addition,
targets are invoked in the order in which they’re specified on the command line
or listed in a target’s depends attribute.

When you stop to consider the GNU Make system, the flow of control is
based on triggering rules that match the name of a file you’re trying to build. If
the target name matches, you check the prerequisites and potentially execute a
sequence of shell commands to bring everything up-to-date. The flow of control
isn’t sequential because rules can spread across multiple parts of a makefile or
even across different framework files. Determining which rule will be triggered
next can sometimes be challenging.

The key feature behind Ant’s sequential execution is that each task must
determine whether any work needs to be done. In the case of the <echo> task,
no files are involved, so the task is always executed. However, in the case of the
<copy> task, Ant first checks whether the source file is newer than the target file;
if not, it silently completes without executing any copy operations. As you’ll see
later, the compilation of Java code using the <javacs task uses a much more
complicated algorithm for determining whether work needs to be done.

As an outcome of this approach, Ant developers have much less work to do
when writing a build.xml file. Instead of focusing on the dependency relation-
ships between source and targets files, they simply list the tasks in the order they
should be executed. Ant then determines which of those tasks are required and
which can be skipped. This is another reason Ant discourages the use of ordi-
nary shell commands when writing build.xml files.

As a final note, a target listed as a dependency of another target is executed,
at most, once. In Figure 7.1, you can see that target A depends on both targets
B and C, and target B depends on target C. In this case, Ant executes target C
only once.

Target A p———>| Target B ———>»| Target C

|

Figure 7.1 Ant’s target dependencies, with target C used twice but executed once.
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The key assumption here is that Ant targets should always produce the same
output, regardless of how many times they’re executed. Naturally, they need to
be invoked only a single time.

Defining Properties

An earlier example introduced the concept of an Ant property that associates
a value with a property name. This is similar to a constant definition in other
programming languages because the value can’t be modified after it’s defined.
You might consider this a limitation, but because build systems implement a
consistent and repeatable process, the need to change a value occurs less than
you might think.

Ant properties can be defined in a number of different ways:

1. As a string: These can reference other properties by using the ${. ..} syn-
tax. For example:

<property name="wife" value="Grace"/>
<property name="dog" value="Stan"/>
<property name="request"
value="${wife}, please take ${dog} for a walk"/>

2. As a file system location: You can set the property to the absolute path of
the file or directory. This is useful if your build system makes relative paths
unusable by changing to a different “current” directory.

<property name="obj-dir" location="obj/i386/debug"/>

In this example, ${obj-dir} evaluates to

C:\Users\Peter\workspace\Ant Builds\properties\obj\i386\debug

which is an absolute path on the Windows system used to test this exam-
ple. To support cross-platform build.xml files, you can use whichever
path separator you want (\ or /). Ant modifies the path to match the
requirements of your local operating system.

3. Automatically set by the runtime environment: Both the Ant tool and the
Java runtime environment define a standard set of properties than can be
accessed via the familiar ${. ..} syntax.

<echo>${os.name}</echo>
<echo>${ant.file}</echo>
<echo>${user.name}</echo>
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Naturally the output of these commands differs on each machine and for
each user, but here are some typical values:

[echo] Windows Vista

[echo] C:\Users\Peter\workspace\Ant Builds\properties\build.
xml

[echo] Peter

4. As the result of a <conditions task: This evaluates nontrivial decisions.
In this example, the ${is-windows} property is set if the build machine’s
operating system is in the Windows family (including Windows Vista and
Windows 2000).

<condition property="is-windows">
<contains string="${os.name}" substring="Windows"/>
</conditions>

5. Defined on the user’s command line: This is particularly useful because a
developer can customize the build process by manually specifying a prop-
erty value instead of hard-coding that property into the build.xml file.

$ ant -Dname=Jones print-name

6. Loaded from an external properties file: This is useful when a common set
of properties is defined in an external file and can read into any Ant build
file that needs to reference those values.

<loadproperties srcfile="values.prop"/>

Although this is a fairly detailed list of ways properties can be defined, it’s
certainly not a complete list. In addition, each of these approaches comes with a
number of optional flags to provide even more flexibility.

The scope of property definitions is important to understand. A property may
be defined either within the top-level scope of an Ant project or inside a particu-
lar target. Consider some rules regarding scope:

e If a property is defined at the top level of a project (not within a target
definition), the property is available throughout the entire project.

¢ A property defined inside a target definition is also available throughout
the entire project but only after that target is executed.

¢ Properties can be defined only once in a given project, so the first defini-
tion is used. If there’s a top-level definition (executed before any targets
are executed), that definition takes precedence. If there’s no top-level
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definition, the first target that executes the necessary <propertys task
provides the property’s value.

These rules can be a bit confusing at first, especially if you’re familiar with
other languages in which scope is based on the lexical structure of the program.
In Ant’s case, the dynamic order of the program’s execution is important when
defining properties.

To make things even more interesting, the <ant> and <antcalls tasks ena-
ble you to pass property values into the newly invoked target as if they were
function parameters. These parameters override any previous definition of the
property, but only during the execution of that target. This is more in line with
the scope rules you’re familiar with in other languages.

<antcall target="print-name">
<param name="name" value="John"/>
</antcalls>

You’ll see more examples of passing parameters between targets later in this
chapter when you look at real-world build scenarios.

Built-In and Optional Tasks

One of the most attractive qualities of Ant is the range of tasks either built into
the standard tool or available for download from third-party sites. Ant wouldn’t
have become one of the most popular tools if it didn’t support such a wide range
of compilation tasks. Even the standard set of Ant tasks support the following
features:

¢ Basic file operations such as mkdir, copy, move, and delete

e The creation of file archives using an array of different formats (such as
.tar, .gz, .zip, .jar, and .rpm)

¢ The compilation of Java code, including special tools for RMI and JSP
compilation

¢ The automatic generation of API documentation, using the Javadoc tool

¢ Direct access to version-control tools such as CVS, Perforce, and Clear-
Case

e Build lifecycle features, such as updating build version numbers, sending
email messages, and playing sounds to indicate the completion of the build
process
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And the list goes on. If you created a new compilation tool for the Java envi-
ronment, there’s a good chance that Ant-integration would be on your feature
checklist.

There’s no way to discuss all of Ant’s features, but let’s now look in more
detail at three frequently used tasks. It’s interesting to note which optional fea-
tures each task provides and to consider how each solves the dependency analy-
sis problem.

The <javacs> and <depend> Tasks
The following example shows how to compile Java source code, using the
<depend> and <javacs> tasks.

9 <depend srcdir="${src}" destdir="${obj}" />
10 <javac srcdir="${src}" destdir="${obj}"/>

For now, ignore the <depends task and focus on the <javacs task on line 10.
This task finds all the Java source files that reside within the ${src} directory
and generates the corresponding class files (. class suffix) into the ${ob7j } direc-
tory. This process traverses the entire hierarchy of directories beneath ${src}
and creates a corresponding hierarchy within ${obj}. To perform the actual
compilation, the <javac> task invokes either the javac compiler or whatever
compiler you’ve configured.

The <javac> task uses a familiar algorithm for determining whether any
work needs to be done. It searches the source tree to find files that don’t yet have
a corresponding class file, but it also finds cases where the source file is newer
than the class file, indicating that a recompile is required.

After the underlying Java compiler is invoked, some further dependency
work takes place. In the Java language, classes are free to import or extend
other classes, meaning that the other classes contribute important type informa-
tion, such as method signatures. Before it can finish compiling the current Java
source file, the compiler must examine the other class files to obtain those type
definitions. As a result, the compilation of one source file automatically triggers
the compilation of other source files.

To clarify, if you’re compiling class A, which imports or extends class B, the
compiler needs to examine the content of B. class to discover the exported type
definitions. If no class file is found but the B.java source file is available, the
compiler proceeds to generate B.class from the source code. The same thing
happens if the class file can be found but the source code is newer.

Although this importing/extending algorithm might be repeated recursively,
the compiler stops the process whenever it locates an up-to-date class file. That
is, if the B. class file is newer than the corresponding B. java file, the compiler
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uses the B.class file without recompiling it. As a result, nothing that B.java
imports or extends is ever recompiled.

This algorithm works properly in many cases, but it causes incorrect builds in
other cases. (And this is where things get complex.) Imagine a case in which class
A imports class B, which then imports class C (see Figure 7.2). If both A.java
and c.java have been recently modified, the Java compiler is asked to recom-
pile both those files. When compiling class A, the compiler examines B.class
(because B is imported by A), but because B.class is up-to-date with respect
to B.java, it’s never recompiled. Class A therefore uses the existing version of
class B.

: imports : imports ;
A.java >»| B.java »| C.java
. ~\~ . .
recompiles . gxamines recompiles
N
N
\ 4 S \ 4
A.class B.class C.class

Figure 7.2 The <javac> task doesn’t recompile B.java, even though C.java has
changed.

In the next step, the Java compiler recompiles c.java, resulting in a change
to its external interface. Unfortunately, the Java compiler doesn’t notice that
class B imports class C, so it doesn’t proceed to recompile class B. The glitch
here is that class B has an outdated view of C’s external interface, which will
likely cause a runtime error.

To solve this limitation of the <javacs task, first use the <depend> task to
remove any outdated class files.

9 <depend srcdir="${src}" destdir="${obj}" />

The <depend> task has a more extensive knowledge of which classes import
or extend other classes and is better at determining when a class needs to be
recompiled because of an external interface change. The <depend> task also
understands Java’s inner class feature (a single .java file can generate multiple
.class files) and can handle long chains of import or extends directives.
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All this complexity can be confusing (you might need to reread this section
a couple times), so it’s lucky that it’s hidden inside the <javac> and <depend>
tasks. Ant developers don’t need to worry about specifying the dependencies
for themselves because the combination of these tasks should do the right thing.

The <chmod> Task

The second task to study is <chmod>, which sets the access permissions on a file
or directory. This task is UNIX-centric and has no effect on Windows systems.
Anyone with experience of the UNIX chmod command can understand the fol-
lowing:

<chmod dir="pkg" perm="750"/>
5 <chmod file="pkg/data.file" perm="640"/>

N

Note the distinction between the first and second uses of <chmod>, where line
4 changes the permissions on a directory and line 5 changes the permissions on
a file. It’s also possible to modify many files at one time, either within a direc-
tory hierarchy or by selecting the list of files using regular expressions. You learn
more about this technique shortly.

In the case of <chmod>, the dependency analysis is quite straightforward.
Given that there’s no input file to compare time stamps against, the chmod oper-
ation is always performed. The only concern is that updating the underlying file
system takes times, so you don’t want to do it too often. Depending on the build
machine, it might be an optimization to first read the existing permission bits to
see if any changes are actually required.

The <copy> Task

The third task to examine in detail is <copy>, which is similar to the Windows

copy command and the UNIX cp command. This task isn’t too hard to under-

stand, but it does have some optional parameters that change the way it behaves.
In the following example, the README file is copied from the current working

directory into the subdirectory named pkg.

<copy file="README" todir="pkg"/>

This is fairly straightforward, but now see how the <copy> task’s optional
attributes can change the default behavior.

® tofile: In the earlier example, the target file will have the same name as
the original README file but is stored within the pkg directory; therefore,
it’ll be copied to pkg/README. If you want to change the name of the file,
use the tofile attribute instead of the todir attribute. For example:
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<copy file="README" tofile="pkg/Documentation.txt"/>

* preservelastmodified: If the copied file will be used as input to some
other task, you might want the last modified time of the target file to be
the same as that of the source file. This probably isn’t a common thing
to do, but you can achieve it by setting the preservelastmodified at-
tribute to true.

* overwrite: By default, the <copy> task doesn’t perform the action if
the target file already exists and is newer than the original. However, if
you set the overwrite attribute to true, the copy takes place anyway.
This behavior is useful when your <copys task also inserts a dynamic
value into the file, such as the current date or time. If the copy operation
didn’t happen every time, you’d be left with stale values.

e flatten: If this attribute is set to true, the <copy> task discards the
original file’s pathname when it creates the target file. This is useful when
you’re copying a number of files that are spread around the source tree,
but you want them copied to the same target directory. If you don’t set
flatten to true, the original directory hierarchy is kept, which you
don’t want.

The following table demonstrates the two cases:

Source Filename With flatten=false With flatten=true
src/europe/england- pkg/europe/england- pkg/england-flag.
flag.jpg flag.jpg jpg

src/americas/ pkg/americas/ pkg/canada-flag.jpg
canada-flag.jpg canada-flag.jpg

The <copy> task has several more attributes, but this section doesn’t examine
them. Refer to the Ant user manual [50] to see the full set of available options.

In finishing the discussion of the <copy> task, it’s worth pointing out that
you’ve only seen how to copy a single file at a time. In reality, you often want
to copy multiple files at once, or perhaps copy an entire directory hierarchy. Ant
has support for this feature, but it’s worth a whole section of its own.

Selecting Multiple Files and Directories

Most Ant tasks focus on creating or manipulating files, processing a file’s con-
tent, or combining files into an archive. Where it makes sense, these same tasks
can process multiple input files in a single operation. This section covers how to
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select a large number of files, known as a fileset or a dirset, and incorporate
them into a single Ant task.

Let’s extend the previous case, which talked about copying two files (england-
flag.jpg and canada-flag.jpg) into a target directory. The following exam-
ple shows how it’s possible to copy multiple files with a single <copy> task.
You’ll also set the flatten attribute so that all . jpg files are placed in the same
target directory.

5 <copy todir="pkg" flatten="true">
6 <fileset dir="src">

7 <include name="**/* _ jpg"/>
8 </fileset>

9 </copy>

This example replaces the <copy> task’s £ile attribute with an embedded
<fileset> directive. You can think of a <fileset> as a collection of files that
reside within the src directory. To identify exactly which files the set contains,
the <includes directive provides a regular expression that matches all the
filenames you care about.

The syntax of the regular expression is generally what you’d expect, with ?
matching a single character and * matching zero or more characters, but not
crossing the boundary between directories. That is, the regular expression a/* /b
matches a/x/b and a/y/b, but it won’t match a/x/y/b because the * wildcard
can’t match more than one directory component.

Given that matching multiple directories is a useful feature in build systems,
the regular expression can also use the ** pattern. This matches zero or more
path components. In the example, the regular expression **/*.3jpg matches
both src/file.jpg and much longer paths, such as src/a/b/c/d/e/f/file.
jpg. Of course, if you use a Windows system, it’ll also match src\file.jpg.

In addition to the <includes> directive, it’s possible to exclude files that you
don’t want to have in the set. You first use <include> to select a superset of the
files, followed by an <exclude> directive to extract the files you don’t want.

The following example shows how to include all the . jpg and . png files from
the src directory and all the .gif files from within the 1ib directory. However,
you don’t want to include any files that contain the string £1ag in their name.

14 <copy todir="pkg" flatten="true">

15 <fileset dir="src">

16 <include name="**/* jpg"/>
17 <include name="**/* png"/>
18 <exclude name="**/*flag*"/>

19 </fileset>
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20 <fileset dir="1lib">

21 <include name="**/* gif"/>
22 <exclude name="**/*flag*"/>
23 </fileset>

24 </copy>

As you can see, it’s possible to include multiple <fileset> directives within
the same <copy> task, with a new set created by merging the two smaller sets. If
it made sense, you could also use the <dirset> directive to select a number of
directories, in contrast to <filesets, which includes only files.

The possible combinations are endless, and you might end up with a complex
set of <include> and <exclude> directives, making your tasks appear rather
messy. If that’s the case, you can define a <patternset> in a separate part of
the build file and reference that set with a user-friendly name.

32 <patternset id="imagefiles-1">

33 <include name="**/* jpg"/>

34 <include name="**/* png"/>

35 <exclude name="**/*flag*"/>

36 </patternset>

37

38 <patternset id="imagefiles-2">

39 <include name="**/* gif"/>

40 <exclude name="**/*flag*"/>

41 </patternset>

42

43 <target name="copy-refid"s>

44 <copy todir="pkg" flatten="true">

45 <fileset dir="src">

46 <patternset refid="imagefiles-1"/>
47 </fileset>

48 <fileset dir="1ib">

49 <patternset refid="imagefiles-2"/>
50 </fileset>

51 </copy>

52 </target>

You can specify sets of files or directories in other ways, but they won’t be
discussed here. The key point is that Ant provides a powerful mechanism for
stating which files or directories you want your task to act upon.

Conditions

One class of feature that’s noticeably missing from the basic Ant language is
control-flow statements, such as if and while. Most programming languages
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treat these as a fundamental part of the language, but with Ant they’re signifi-
cantly less important. After all, you usually want your build process to behave
in a repeatable way, so a linear sequence of tasks is often enough.

On the other hand, Ant does provide a mechanism for testing basic condi-
tions and setting properties to reflect the result. If the condition is true, the
property is set to the value true; otherwise, it’s left undefined. When used with
the if or unless attributes in a target definition, you can effectively create an
if statement.

13 <condition property="common-name">

14 <or>

15 <equals argl="${surname}" arg2="Smith"/>
16 <equals argl="${surname}" arg2="Brown"/>
17 <equals argl="${surname}" arg2="Wong"/>
18 </or>

19 </condition>

20

21 <target name="check-name" if="common-name">

22 <fail>You have a common name, you can't proceed!</
fails>

23 </target>

Lines 13-19 of this example set the common-name property to true if
${surname} is set to either Smith, Brown, or Wong. On line 21, the target defi-
nition tests ${common-name} and executes the body of the target only if the
property is defined. In this case, the check-name target causes the build to fail if
the user has a common surname.

In addition to using the standard Boolean operations (such as not, and, and
or), you can interact with the build environment in the following ways:

Testing whether a specific disk file exists
Testing whether a particular URL is accessible on the target web server

Testing whether a string contains a specific substring or matches a regu-
lar expression

Testing the value of operating system environment variables

Ant certainly has some powerful ways to test conditions, but the syntax to do
s0 is rather cumbersome. As you’ll see in later examples, it’s possible to extend
the basic Ant language to add new tasks that make your code more readable,
such as <if>, <thens>, and <else>. Let’s now continue by seeing how the basic
Ant language can be enhanced.
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Extending the Ant Language

In addition to the built-in Ant language features you’ve seen so far, you can
extend the language in a number of ways. This section looks at five different
mechanisms for adding new language features, ranging from defining new Ant

tasks

15
16
17
18
19
20

1
2
3
4
5
6
7

10
11
12

to executing scripts written in other languages.

The <exec> task: This built-in task enables you to invoke a shell com-
mand, just as you would with GNU Make. The output of the command
can be stored in an Ant property for further processing by other tasks. The
following example shows how to execute the Windows dir command by
explicitly invoking the DOS shell.

<target name="dir">
<exec executable="cmd">

<arg value="/c"/>
<arg value="dir"/>
</execs>
</target>

The <javas task: This approach is similar to the <exec> method, although
the purpose is to invoke an arbitrary collection of Java code by specifying
the class path and class name. This is a common technique in which the
build process compiles a Java-based program (using <javacs) and the re-
sulting program then acts as a compilation tool in the second phase of the
build process.

The <macrodefs task: In this approach, you create a new type of task,
with the definition of that task written in Ant syntax. You can customize
how the task behaves by allowing the user to pass in parameter values.
The following example defines the <greets> task that simply displays a
welcome message.

<project name="macrodefs" default="all">
<macrodef name="greet'"s>
<attribute name="surname"/>
<attribute name="firstname"/>
<sequentials>
<echo>Hello e{firstname} @{surname}, how are
you?</echo>
</sequential>
</macrodef >

<target name="all">
<greet surname="Jones" firstname="Lloyd"/>
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13 </target>
14
15 </projects>

e Lines 3-9 define the new <greet> macro, with lines 4 and 5 providing the
names of the two attributes that customize the macro’s behavior. Line 7
invokes the <echo> task and uses the @{ . . . } syntax to reference the user-
supplied attribute values. Finally, line 12 invokes the <greet> macro as if
it were a regular Ant task.

e The <taskdef> task: This is somewhat similar to the <macrodef> task,
although it enables you to implement a task using the full power of the
Java language instead of being limited to using Ant’s built-in syntax. Most
third-party vendors provide their task definitions in the form of Java .jar
files, which can be plugged into Ant using a simple <taskdef> directive.
This is also similar to the <javas> task you saw earlier, but in this case, you
invoke the task by defining a new XML tag and set of attributes instead of
explicitly invoking a standalone Java program.

You’ll see a detailed example of <taskdef> in a later section.

¢ The <scripts> task: This is a recent addition to the Ant language that
permits code from other scripting languages (such as JavaScript, Python,
and Ruby) to be directly embedded inside a build.xm1l file. The script can
access and manipulate the Ant program’s properties, thereby creating a
powerful programming environment. An embedded script can do anything
a Java-based task can do, so if you’re undertaking a serious Ant-based
project, you’ll definitely want to learn more about this feature.

If you think about it, these extension methods make Ant a powerful lan-
guage, in the same way that GNU Make is powerful. The notable difference is
that Ant tasks are designed to encapsulate complexity. Average developers don’t
need to worry about the underlying compilation tool or its dependency-analysis
requirements. On the other hand, anyone who needs to add more functionality
still can have the full power of general-purpose languages.

Further Reading

Although you can find many sources of information about the Ant tool, you’ll
likely find that the Ant web site [50] contains enough documentation to get
you started. After all, writing a build.xm1 file is somewhat similar to writing a
shell script, with Ant targets acting like shell function definitions and tasks like
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individual shell commands. You should have no problem constructing a simple
build.xml file after reading through the examples in the Ant manual.

On the other hand, if you want to learn more about the best practices of using
Ant in larger projects, read one of the many books on the topic, including [51]
in References.

Real-World Build System Scenarios

You’ve now seen enough of Ant’s syntax to understand how to apply the tool
in real-world scenarios. The most common activities, such as compiling Java
code, tend to be easy to implement in Ant, so this section doesn’t give too much
explanation. On the other hand, more adventurous activities such as adding new
compilation tools and supporting multiple variants are much harder than they
were in the GNU Make examples.

Scenario 1: Source Code in a Single Directory

In the first scenario, the goal is to compile a Java program in which the source
files (.java suffix) are all stored in the same directory. In this case, you’ll use a
separate classes directory for storing the . class files and you’ll package them
into a single JAR file, called scenario-1.jar. Here’s the complete code:

1 <project name="scenario-1" default="package">

2

3 <property name="src" location="."/>

4 <property name="obj" location="../classes"/>

5 <property name="jarfile" location="../scenario-1.
jar"/>

6

7 <target name="compile"s>

8 <mkdir dir="${obj}"/>

9 <depend srcdir="${src}" destdir="${obj}" />

10 <javac srcdir="${src}" destdir="${cbj}"/>

11 </target>

12

13 <target name="package" depends="compile">

14 <jar basedir="${obj}" destfile="${jarfile}">

15 <include name="*.class"/>

16 </jars>

17 </target>

18

19 </projects>

Lines 3-5 define each of the important file system locations. ${src} is the
location of the source code (the current directory), ${obj } is the directory where
the object files will be stored, and ${jarfile} is the full path of the JAR file
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you’re going to create. Even though the code uses forward slashes (/) when
specifying the paths, these are silently translated to work correctly on Windows
systems.

Lines 7-11 define an Ant target for compiling the .java files into .class
files. You first ensure that the object directory already exists and then use the
familiar <depend> and <javacs> sequence to compile the source code.

Lines 13-17 locate all the .class files within the ${obj} directory and
archive them into the single scenario-1.jar file. Note that, on line 1, the
package target was declared as the default for this Ant project, so the program’s
execution starts here. However, given that the package target depends on the
compile target (see line 13), code compilation always occurs before the packag-
ing step.

Finally, to execute this program, you invoke the java command-line tool:

$ java -cp scenario-1l.jar Calc

Now consider the case in which the program’s source code is spread across
multiple directories.

Scenario 2(a): Source Code in Multiple Directories

As it turns out, the solution for the first scenario almost works correctly when
source code is stored in multiple directories. The reason is that <depend>,
<javacs, and <jars> are all designed to support multiple directories by default,
assuming that you’re happy to store the entire program in a single . jar file.

In practice, though, one minor change is needed. The <include> directive on
line 15 must include .class files from anywhere within the hierarchy, not just
from the top-level directory. The new package target is therefore:

13 <target name="package" depends="compile">

14 <jar basedir="${obj}" destfile="${jarfile}">
15 <include name="**/* class"/>

16 </jars>

17 </target>

Scenario 2(b): Many Directories, with Multiple bui1d.xm1 Files

As you saw in Chapter 6, “Make,” in the discussion of recursive Make, it’s often
nice to have your build description spread across multiple files instead of having
everything in the same place. Even though Ant is capable of building multidirec-
tory programs with a single build.xml file, larger programs typically split their
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build description across multiple files. This approach avoids cluttering a single
build.xml file and provides better modularity by keeping the relevant Ant tar-
gets nearer to the source code.

Now extend the calculator example to build three JAR files, one each for the
print and math libraries, and a third for the main program. As in Figure 7.3,
the source for each JAR file is stored in a separate directory hierarchy, each of
which has its own build.xml file.

D s
B buitd ot
[ cale
B buidd st
D com
[ arapiki
Ecale
Bl Cate java
Clmarh
B buitd ot
ecom
Claapiki
D math
B clock java
B Lenter java
B wum java
[ prine
B buitd ot
ecom
Claapiki
] print
] Banner java
B Center java
Bl Normal java

Figure 7.3 The multidirectory calculator example, using a different package hierarchy
for each component.

Because of the way in which the directory hierarchy must match the Java
package name, you end up with the com/arapiki structure repeated multiple
times. This might seem odd for such a small example, but it would make sense
if each of the libraries contained hundreds of files. A developer working on the
com/arapiki/print library could have a workspace containing only those files
instead of a copy of the entire source tree.

Note also that you aren’t required to have a separate build.xml in every
directory. Large software systems might have thousands of source code directo-
ries but only five to ten build.xm1l files total. Each file manages the build proc-
ess for an entire subsystem instead of just a single directory.

Start the example by looking at the src/build.xml file. This file doesn’t do
any compilation on its own; instead, it uses the <ant > task to dispatch work to
the remaining three build.xml files.
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<project name="scenario-2b" default="package">

<property
<property
<property
<property
jar"/>
<property
jar"/>
<property
jar"/>

name="src" location="."/>

name="obj" location="../classes"/>
name="jars" location="../jars"/>
name="math-jar" location="${jars}/math.

name="print-jar" location="${jars}/print.

name="calc-jar" location="${jars}/calc.

<path id="library-classpath">
<pathelement path="${math-jar}"/>
<pathelement path="${print-jar}"/>

</path>

<target name="package">
<mkdir dir="${jars}"/>
<ant dir="math" antfile="build.xml"
target="package"

inheritall="false">

<property name="obj" location="${obj}/math"/>
<property name="jarfile" location="${math-
jar}"/>
</ant>
<ant dir="print" antfile="build.xml"
target="package"
inheritall="false">
<property name="obj" location="${obj}/
print"/>
<property name="jarfile" location="${print-
jar}"/>
</ant>
<ant dir="calc" antfile="build.xml"
target="package"
inheritall="false">
<property name="obj" location="${obj}/calc"/>
<property name="jarfile" location="${calc-
jar}"/>
<reference refid="library-classpath"/>
</ant>

</targets>

</project>

Lines 3-8 define the locations of the source tree, the object tree, and the
JAR files. In this case, you explicitly name the three .jar files you’re going to
build. In addition, lines 1013 define a class path for linking against the math
and print libraries. Separating out this path definition and giving it a name
(library-classpath) makes it easier to reference the path in other parts of the

build system.
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The package target on lines 15-33 does little other than invoke the lower-
level build.xml files. On lines 17-21, the <ant > task calls on the package target
defined in the math/build.xml file. Note the use of the inheritall=“false”
directive to indicate that top-level properties should not automatically be passed
to the lower-level build.xml file. Limiting the scope of these properties makes
the build description more modular.

The <property> task on lines 19 and 20 shows how to explicitly pass prop-
erty values into the lower-level build.xml files. In this case, line 19 informs
the math/build.xml file that any object files it creates should be stored in the
${obj} /math subdirectory. Line 20 asks it to store the resulting JAR file in the
location specified in ${math-jar}.

The remaining two <ant> tasks in the package target simply repeat the first
case. The notable difference on line 31 is that you pass a reference to the math
and print libraries (stored within the 1ibrary-classpath path) so that the
main program knows which JAR files to link against.

The src/math/build.xml file is similar to examples you’ve already seen:

1 <project name="scenario-2b-math" default="package">
2

3 <property name="src" location="."/>

4

5 <target name="compile">

6 <mkdir dir="${obj}"/>

7 <depend srcdir="${src}" destdir="${obj}"/>
8 <javac srcdir="${src}" destdir="${obj}"/>

9 </target>

10

11 <target name="package" depends="compile">

12 <jar basedir="${obj}" destfile="${jarfile}">
13 <include name="**/* class"/>

14 </jar>

15 </target>

16

17 </projects>

Note how the code defines the ${src} property to compile the source code in
the current directory, but uses the ${obj} and ${jarfile} properties to store
the object files and . jar file in the location requested by the caller.

The src/print/build.xml is almost identical; the only change is in the
project name:

1 <project name="scenario-2b-print" default="package">
17 </projects>

Finally, the src/calc/build.xml file is a little different: It uses the 1ibrary-
classpath reference that was passed down by the caller. This class path is
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required because the calc.java source file imports code from the math and
print libraries.

9 <javac srcdir="${src}" destdir="${obj}"
10 classpathref="library-classpath"/>

To execute this example, you use the java command-line tool, but this time
with all . jar files listed.

java -cp jars\calc.jar;jars\math.jar;jars\print.jar com.arapiki.
wcalc.Calc

It’s interesting to note that Ant also suffers from the subbuild problem you
saw with recursive Make. If the developer invokes the build process from one of
the lower-level build.xml files, Ant won’t know how to rebuild the dependent
JAR files. The developer must instead invoke the top-level build.xml file to
make sure everything else is up-to-date.

Even with this same problem, it’s less likely to be a problem than with GNU
Make. Even the largest software products have only a few build.xml files, so
the problem of sequencing the build steps in the correct order is significantly
less.

Scenario 3: Defining New Compilation Tools

Now consider how to define a task to invoke the mathcomp tool, the custom
compiler you need to add to the build process. In the same way as most tool
vendors, you’ll use <taskdef> to declare the new XML tag and you’ll write a
Java class to implement the task’s functionality.

Start with a simple build.xml file that shows how the task is defined and
then used.

1 <project name="scenario-3" default="compile">

2

3 <taskdef name="mathcomp" classname="MathcompTask"
4 classpath="mathcomp-task.jar"/>

5

6 <target name="compile">

7 <mathcomp file="equations.math"/>

8 </target>

9

10 </projects

Lines 3—4 use <taskdefs> to define the new <mathcomps task. All that’s
required is that you identify the name of the Java class that implements the
feature and the name of the JAR file containing that class. Line 7 then uses the
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<mathcomp> task to compile the equations.math source file into a correspond-
Ing equations.java.

Luckily, end users don’t need to specify the output filename or spend any
time worrying about dependency analysis. Of course, the complexity has to be
dealt with somewhere, so here’s the Java source code for the Mathcomp class:

1 import org.apache.tools.ant.*;

2 import java.io.*;

3 import java.util.*;

4

5 public class MathcompTask extends Task {

6

7 private File srcFile;

8

9 public void setFile(File file) {

10 srcFile = file;

11 }

12

13 private String execMathcomp (String flag, File srcFile) {
14 try {

15 Process p = Runtime.getRuntime () .exec (

16 "python.exe mathcomp.py -" + flag +

17 n \nu + srcFile + u\un)’.

18 BufferedReader progOutput = new

BufferedReader (new

19 InputStreamReader (p.getInputStream())) ;
20 String resultLine = progOutput.readLine () ;
21 return resultLine;
22 } catch (IOException ex) {

23 throw new BuildException (

24 "Can't execute the mathcomp compiler. " +

ex) ;

25 }

26 }

27

28 private File getTargetFile(File file) {

29 String fileName = file.getName() ;

30 if (!fileName.endsWith(".math")) {

31 throw new BuildException("Input file '" +

fileName

32 + "' must end with .math");

33 }

34 String targetFileName =

35 fileName.replaceFirst ("\\.maths$", ".java");
36 return new File(file.getParentFile (), target-

FileName) ;

37 }

38

39 private List<File> getAllSourceFiles(File file) {
40 List<File> sources = new ArraylList<File>();
41 String sourceFileString = execMathcomp ("d", src-

File) ;
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}
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StringTokenizer tokens =
new StringTokenizer (sourceFileString) ;
while (tokens.hasMoreTokens())
sources.add (new File (tokens.nextToken())) ;
}

return sources;

public void execute() {

if (srcFile == null) {
throw new BuildException (
"Missing 'file' attribute for <math-
comp>") ;
}

if (!srcFile.exists()) {

throw new BuildException ("Input file '" +
srcFile
+ "' doesn't exist.");

}

File targetFile = getTargetFile(srcFile);

List<File> allSources =

getAllSourceFiles (srcFile) ;

if (allSources == null)

throw new BuildException (

"Unable to determine all source files
used by '" +
srcFile + "'");

}

boolean targetOutOfDate;
if (!targetFile.exists()) {
targetOutOfDate = true;

} else {

targetOutOfDate = false;

long targetModifiedDate = targetFile.last-

Modified() ;

for (File thisSourceFile : allSources)

if (thisSourceFile.lastModified() »>
targetModifiedDate)

targetOutOfDate = true;
break;

}

if (targetOutOfDate)
log("Compiling " + srcFile);
execMathcomp ("j", srcFile);
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This class is quite complex, so break it down into smaller sections. Lines 7-11
state that the end user can set the file attribute. The fact that the setFile
method is defined in this class lets Ant know that it’s a settable field. You store
the string value in the srcFile field for later use.

The execute method, defined on lines 50-88, is the main entry point. Ant
calls this method whenever somebody invokes the <mathcomps task.

Lines 51-58 perform error checking to make sure that the £ile attribute was
defined and that it refers to a disk file that already exists. If either of these checks
fails, a BuildException error is thrown and the error message becomes part of
Ant’s error report.

Line 60 calls the getTargetFile method to translate the source file’s name
into the corresponding target filename. For example, if the source file is a/b/c/
equations.math, the corresponding target file will be a/b/c/equations.
java. The getTargetFile method is defined on lines 28-37 and performs a
significant amount of error checking to make sure the name is valid.

Line 61 calls the getAllSourceFiles method to determine which additional
source files will be read during the compilation process. This method is defined
on lines 39—48 and does its work by calling the mathcomp compiler with the -d
option. The output looks something like this:

equations.math equl.mathinc equ2.mathinc

In this case, the getAllSourceFiles method divides this string into indi-
vidual filenames and returns them in a list. Unfortunately, the simple method
fails if a filename contains spaces, so a more realistic tool would need to do a
better job.

Now that you have the list of source files and you know the name of the
target file you’re about to create, the rest of this method double-checks whether
any compilation work is required. Lines 69-70 check whether the target file
already exists; if not, a compilation is definitely required.

Lines 73-81 perform the time stamp comparison of each of the source files to
see whether any are newer than the target file. If so, a recompilation is forced.

Finally, you reach lines 85-86, but only if you’ve decided to actually invoke
the mathcomp tool. On line 8, you log a message to inform the end user that
work is about to take place. On line 86, you call the execMathcomp method
(defined on lines 13-26) to invoke the mathcomp compiler. This compiler is just
a Python script, so you first invoke the Python interpreter.

Note that you’ve already used the execMathcomp method as part of the
getAllSourceFiles method, but this time you’re passing the -3 option to gen-
erate a .java file instead of returning the list of dependencies.

That completes the definition of the <mathcomp> task. If you count the
number of lines of code, this is certainly a much larger solution than the GNU
Make case—it would be even larger if you included all the possible error cases
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(some were left out, for the sake of convenience). This is largely because Make is
proficient at pattern matching and deriving the name of the target files from the
corresponding source file. Also, the dependency list produced by mathcomp -d
was tailored for Make. Finally, the time stamp comparison is a fundamental part
of GNU Make’s language, whereas you needed to hand-code the algorithm in Java.

Scenario 4: Building with Multiple Variants

Given that Java class files use CPU-independent byte code, it’s not possible to
show a multivariant example that compiles for different CPU types. Instead, you
can consider a program that’s compiled into two different editions:

1. Professional edition: A software package containing the complete set of
program functionality

2. Home edition: A smaller edition of the software, with some of the advanced
features stubbed out

In the source tree (see Figure 7.4), you’ll maintain two parallel sets of Java
source files. The professional directory includes the program’s entire set of
functionality. The home-stubs directory contains stubbed-out versions of any
classes that shouldn’t be included in the Home edition. For example purposes,
Clock.java and Letter.java are stubbed out.

e
B bitd ot
[ home-stubs
Flcom
M arapid
D math
IE Clock java
Letter java
o professional
Eeom
M arapiki
Eeale
Bl Cate java
Mmath
Iﬁl Clock java
IE Letter java
IE Num java
Tl prime
IE Bamner java
Center. java
Nommal java

Figure 7.4 A separate directory hierarchy for each of the professional and Home
editions.
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To keep things simple, this example uses a single build.xml file to compile
the entire product. Here’s the complete listing:

1 <project name="scenario-4" default="package">

2
3 <property name="obj-prof" location="../classes/pro-
fessional"/>
4 <property name="obj-home" location="../classes/home-
stubs"/>
5 <property name="src-prof" location="professional"/>
6 <property name="src-home" location="home-stubs"/>
7 <property name="jarfile" location="../scenario-4.
jar"/>
8
9 <target name="check-edition" depends="check-edition-
helper"
10 unless="edition-ok">
11 <fail message="You must set 'edition' to either
"home'
12 or 'professional'"/>
13 </target>
14
15 <target name="check-edition-helper">
16 <condition property="edition-ok">
17 <or>
18 <equals argl="${edition}" arg2="home"/>
19 <equals argl="${edition}"
arg2="professional"/>
20 </or>
21 </conditions>
22 <condition property="edition-home">
23 <equals argl="${edition}" arg2="home"/>
24 </condition>
25 </target>
26
27 <target name="compile">
28 <mkdir dir="${obj-prof}"/>
29 <depend srcdir="${src-prof}" destdir="${obj-
prof}"/>
30 <javac srcdir="${src-prof}" destdir="${obj-
prof}"/>
31 <mkdir dir="${obj-home}"/>
32 <depend srcdir="${src-home}" destdir="${obj-
home}"/>
33 <javac srcdir="${src-home}" destdir="${obj-
home}"/>
34 </target>
35
36 <target name="jar-prof" unless="edition-home">
37 <echo message="Packaging the Professional edi-
tion."/>
38 <jar basedir="${obj-prof}" destfile="${jarfile}">

39 <include name="**/* class"/>
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40 </jar>

41 </target>

42

43 <target name="jar-home" if="edition-home">

44 <echo message="Packaging the Home edition."/>

45 <jar destfile="${jarfile}">

46 <fileset dir="${obj-prof}">

47 <include name="**/*_ class"/>

48 <exclude name="com/arapiki/math/Letter.
class"/>

49 <exclude name="com/arapiki/math/Clock.
class"/>

50 </fileset>

51 <fileset dir="${obj-home}" includes="**/*.

class"/>

52 </jars>

53 </target>

54

55 <target name="package" depends="check-edition,

compile,

56 jar-prof, jar-home"s>

57 <copy file="run.bat" toFile="../start-calc.bat">

58 <filterset>

59 <filter token="EDITION"

value="${edition}"/>

60 </filterset>

61 </copy>

62 </target>

63

64 </project>

Plenty of decision making takes place in this build.xml file, and because
some of the operations occur twice means the build description is quite long.

Execution starts with the package target on line 55. The depends attribute
asks Ant to first execute the check-edition, compile, jar-prof, and
jar-home targets, in that order.

The check-edition target, defined on lines 9-13, immediately calls the
check-edition-helper target, which is defined on lines 15-25. This helper
target uses the <conditions> task to define two different properties. The first
property, ${edition-ok}, is set to true if ${edition} is either home or
professional, whereas the ${edition-home} property is set to true if
${edition} is equal to home.

For these conditions to make sense, the ${edition} property must have been
defined on the command line when the build was invoked:

ant -Dedition=home

The ${edition-ok} value is therefore a true/false indicator of whether
a valid definition was provided on the command line. On the other hand,
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${edition-home} is a true/false value to indicate whether the user selected home
for the edition. With Ant’s limited capability to test conditions, it’s important to
express these properties as true/false values instead of keeping them as strings.

Back in the check-edition target (line 9), you use the unless attribute to
state that the body of the target should be executed, unless the ${edition-ok}
property was set. This effectively states that unless the user specified the home or
professional edition properly, you’ll fail with an error message.

The next top-level target is compile, on lines 27-34. This uses the familiar
<depend> and <javac> combination, except that now you’re compiling both
the home-stubs and professional source trees while taking care to keep the
generated class files separate.

We next execute the jar-prof target on lines 36-41. By using the
unless="edition-home" attribute, you execute the body of this target only if
the user elected to build the professional version. In this case, you store all the
class files into the resulting . jar file.

In contrast, the jar-home target on lines 43-53 does quite a bit more work
and is executed only if the user selected the home edition. You first package all
the professional class files, with the exception of the Letter.class and clock.
class files that aren’t shipped in the home edition. Then you add the stubbed-
out version of those class files, which exist solely so you don’t get a runtime
error when the program executes. As an optimization, the list of excluded classes
could have been determined by scanning the ${obj-home} directory.

The final step is to return to the body of the package target, on lines 55-62,
which prepares the start-calc.bat script. You've seen this type of script
many times already:

java -cp scenario-4.jar -Dedition=@EDITION@ com.arapiki.calc.Calc

What’s different in this case is that you customize the -Dedition= portion of
the command line, to pass either of the values home or professional into the
executable program. This allows the program to make an intelligent decision on
which set of features to provide to the user.

To make this all work correctly, the <copy> task on line 57 reads the tem-
plate command line (stored in the run.bat file) and creates a new file (named
start-calc.bat), where the string @EDITIONe is replaced by the value of the
${edition} property. As a result, the start-calc.bat file ends up with this
content:

java -cp scenario-4.jar -Dedition=home com.arapiki.calc.Calc
for the Home edition or this for the Professional edition:

java -cp scenario-4.jar -Dedition=professional com.arapiki.
wcalc.Calc
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Of course, in the Home edition, the real classes would have been replaced by

the stub versions, so it’s important to pass in the correct value for the edition
property.

Here’s some sample Java code that reads the property value and customizes

its runtime behavior accordingly.

String edition = System.getProperty("edition") ;

if (edition == null)
System.err.println("Error: 'edition' property is not de-
fined") ;

System.exit (1) ;

}

if (edition.equals ("professional")) {
/* perform professional features */

}

As an alternative, instead of defining this property on the command line, you
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could have defined a method in one of the stub classes that records the edition’s
name. By querying this method at runtime, you could determine which edition
is being used.

In summary, you can see that Ant’s capability to support decision making is
somewhat limited, resulting in substantially longer code than you might expect.
If you compare the length of code to the similar program in GNU Make syntax,
you might find the makefile much easier to read.

On the brighter side, Ant enables you to extend the basic language. One
third-party package, ant-contrib [52], introduces the <if> and <then> tasks:

15 <target name="check-edition">

16 <if>

17 <not>

18 <or>

19 <equals argl="${edition}"
arg2="home" />

20 <equals argl="${edition}"
arg2="professional" />

21 </or>

22 </not>

23 <then>

24 <fail message="You must set 'edition' to

either

25 'home' or 'professional'" />

26 </thens>

27 </if>

28 </target>



188

CHAPTER 7 ANT

Ant’s flexible set of tasks, including a wide range of third-party plug-ins,
comes to the rescue by making the code much more readable than in the first
attempt.

Scenario 5: Cleaning a Build Tree

Removing the object files from a build tree is a matter of defining an additional
clean target to explicitly remove files or directories:

19 <target name="clean">

20 <delete file="${jarfile}" />
21 <delete dir="${obj}" />
22 </target>

It’s common practice in Ant to store all . class files and . jar files in a special
object directory, which is separate from the source directory. It’s usually pos-
sible to delete the entire object directory in a single command and be confident
that all generated files have been removed. Of course, any failure to follow this
rule means you must explicitly delete the generated files with a <delete> task.

If you use multiple build.xml files, you need to define a suitable clean
target in each lower-level file. The top-level clean target invokes each of the
lower-level targets in turn.

Scenario 6: Debugging Incorrect Builds

Although Ant hides all the detail of constructing a dependency graph, errors can
still creep into a build.xml file. These are some of the most common errors
you’ll encounter:

e Missing input files: If a task fails because it can’t locate one of the required
input files, it’s usually because you’ve invoked the targets or tasks in the
incorrect order. Just as you’d expect in a shell script, files can’t be used if
they don’t already exist. This is different from GNU Make, which attempts
to generate a missing file, assuming that there’s a suitable rule defined.

¢ Files not building when they should: Either you’re not invoking the targets
or tasks in the correct order, or your <fileset> directives aren’t accurate
enough. All Ant tasks are supposed to check their own dependencies, but
the tasks can’t do a good job if you haven’t included all the necessary input
files.
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e Too many files rebuilt: Again, check your <fileset> directives to make
sure they’re specific enough. If you include too many files in the input,
you’ll end up building too often. It’s also possible (although unlikely) that
your Ant tasks aren’t doing a good job of dependency analysis.

¢ Failed compilation or invalid output image: If a task fails to generate a
valid output file even though the input files are correct, you likely haven’t
provided the correct task attributes. Many tasks have attributes for con-
trolling their behavior, and finding suitable settings might take time.

¢ Incorrect Java classes included: The behavior of a Java program (such as
Ant) is highly dependent on your CLASSPATH variable settings. If your pro-
gram is behaving badly, that’s always the first thing to check.

¢ Missing task definition: If you’re making use of Ant tasks that aren’t built
into the standard distribution, there’s a chance that they’ll be reported as
missing. Make sure that the correct third-party JAR files are installed and
the correct <taskdef> directives are provided.

If any of these problems cause the build to fail, Ant provides a fully detailed
stack trace:

BUILD FAILED

/home/psmith/debugging/build.xml:4: The following error
occurred while executing this line:

/home/psmith/debugging/src/build.xml:4: The following error
occurred while executing this line:

/home/psmith/debugging/src/lib/build.xml:4: Warning: Could
not find file

/home/psmith/debugging/src/lib/run.bat to copy.

It’s easy to identify the exact line number and source file causing the prob-
lem. Often the bug is on the line being reported, but sometimes it’s necessary to
scan backward through the file to make sure that all your properties are defined
correctly.

In reality, though, a number of the bugs you encounter don’t cause the build
to fail. Instead, they generate invalid output files, or things just don’t rebuild
when they should. In this case, you need to spend more time tracing the flow of
the program.

When you use the ant -d command, Ant provides copious amounts of detail
about what it’s doing:
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Adding reference: ant.projectHelper
Adding reference: ant.parsing.context
Adding reference: ant.targets
parsing buildfile /home/psmith/debugging/build.xml with URI =
file:///home/psmith/debugging/build.xml
Setting ro project property: ant.project.name -> debug-app
Adding reference: debug-app
Setting ro project property: ant.file.debug-app ->
/home/psmith/debugging/build.xml
Project base dir set to: /home/psmith/debugging
+Target:
+Target: package

The log shows you every time a new build.xml is parsed, a property is
defined, or a task is executed. If you locate the failed task and then search
backward through the debug output, you usually can identify the source of the
problem.

Ant doesn’t show you the underlying shell commands that each task per-
forms, so it isn’t possible to cut and paste a command from the build log and
run it in isolation. This technique is quite common with GNU Make, where you
often find a rule that isn’t doing what it should and need to manually rerun the
shell command to debug the problem.

In an Ant-based build system, you need to have a lot more faith that the tasks
will invoke the correct underlying commands (or system calls). If you want to
narrow your debugging focus, you might need to “touch” specific input files and
then invoke the required Ant targets.

If you use an IDE such as Eclipse, you can use the Ant debugger mode. This
enables you to view the build.xml files, set breakpoints on specific lines, dis-
play the value of properties, and then single-step through the targets and tasks.
Given the popularity of IDEs, this is probably the best place to start.

Another debugging technique is to use the ant -v command to understand
Ant’s decision to rebuild one or more files. The following excerpt shows what
the <javac> task does in the single-directory calculator example.

[javac] Add.java omitted as Add.class is up to date.
[javac] Calc.java added as Calc.class doesn't exist.
[javac] Mult.java omitted as Mult.class is up to date.
[javac] Sub.java omitted as Sub.class is up to date.
[javac] build.xml skipped - don't know how to handle it

In summary, debugging Ant-based build problems can be significantly easier
than dealing with GNU Make problems. This is largely because of Ant’s sequen-
tial programming model, in which it’s easier for a developer to understand
the program flow. Also, having each task handle its own dependency analysis
relieves much of the opportunity for making mistakes.



PRAISE AND CRITICISM

Praise and Criticism

Ant has been around long enough to gather a large group of supporters, as well
as plenty of people who dislike its programming model. Much of this discrep-
ancy centers on whether they’re trying to use the well-supported Java compila-
tion tasks or whether they’re creating a more complex build system that pushes
Ant to its limits. Now see what people say about Ant.

Praise

Praise for Ant includes the following;:

Cross-platform support: Because Ant doesn’t use a shell-centric language,
it has fewer cross-platform issues. By instead using the task abstraction,
Ant developers no longer need to worry about each build machine’s
specific commands and behavior.

Hidden dependency analysis: Dependency analysis isn’t a key part of the
language; instead, it’s handled within the implementation of each task.
The end user doesn’t need to think about the dependency graph or debug
problems related to missing dependencies.

Easy-to-learn the language: Ant has few language constructs to learn, and
most developers are familiar with the sequential model of execution. A
clear separation also exists between the use of tasks and their underly-
ing definition. Developers care about only the external behavior of each
task and the set of configurable attributes. The complex implementation
of each task is hidden away from view.

Extensive third-party support for Java: Ant has the widest range of Java
compilation tool and plug-in support. Although other Java build tools are
starting to appear, Ant will likely continue to be the most popular tool in
the Java world.

Important build system features are standard: Build system features such
as automatic dependency analysis and multidirectory support are a stand-
ard part of the build tool. In contrast to GNU Make, it’s not necessary to
add an additional framework.

Criticism

Points of criticism include the following;:
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Lack of a full programming language: Ant isn’t a scripting language, which
makes it harder to perform nontrivial activities. Variables, looping, and
conditionals are limited in support and often need to be emulated using
confusing control structures.

Ugly and verbose XML: Many people don’t like XML and find it hard to
read or too verbose. This can be a barrier for new developers to adopt the
tool and is a definite point of resistance for people who prefer the more
concise syntax of GNU Make.

Not a dependency-based language: Many developers prefer to add new
pattern-based dependencies to trigger a compilation instead of wading
through the Ant documentation to find a suitable task. If no task is avail-
able, they might waste a full day trying to piece together existing features
to achieve the same result. In the end, the job could’ve been done in five
minutes using GNU Make.

No visible shell commands: Ant doesn’t show which shell commands the
tool is executing, so you don’t know exactly what’s happening. Instead,
you need to trust the task implementation to do the right thing.

Nontrivial process of adding new tasks: Adding a new compilation tool is
much harder than with GNU Make. As you saw earlier, you need to write
a Java-based plug-in instead of just matching the file extension. This can
be a significant amount of work if you’re using a nonstandard compilation
tool.

Lacking support for other languages: Ant is Java-centric, with minimal
support for other programming languages.

Confusing variable scope: The scoping rules for Ant properties are quite
different from rules in other programming languages and can therefore be
confusing for new Ant developers.

Undefined variables that aren’t trapped: When accessing an Ant property
that hasn’t yet been assigned a value, the name of the property is used
instead of reporting an error. For example, if careless programmers type
${destfiel} instead of ${destfile}, they’ll end up with a file in their
local directory named ${destfiel}. This happens instead of having the
${destfile} property expanded to whatever value it contained.

No persistent state: Ant doesn’t cache any of the dependency information
between builds, so all dependency analysis must be repeated each time the
ant tool is invoked.
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Evaluation

The Ant build tool clearly focuses on supporting build systems for Java-based
software. The tasks are designed to support common operations such as Java
compilation and the manipulation of JAR files. Each Ant task contains implicit
knowledge of how to compute interfile dependency relationships, removing this
from the developer’s list of things to worry about.

According to the build system quality metrics discussed in Chapter 1, “Build
System Overview,” Ant receives the following evaluation:

e Convenience: Good. Ant simplifies the creation of a build system for Java-
based software. It provides a wide range of tasks for common Java-related
activities and alleviates the need to specify dependencies. However, Ant
doesn’t provide a general-purpose programming language, making com-
plex build systems challenging to implement.

e Correctness: Excellent. Ant’s automatic dependency analysis makes creat-
ing a correct and reliable build system easy. There’s little chance of incor-
rect dependencies being introduced. The only limitation is that tasks can
be listed in the wrong order, but this problem is easy to detect.

¢ Performance: Good. Ant provides adequate performance, although it is
not known for being exceptionally fast. The fact that each task is responsi-
ble for checking its own set of dependencies makes the invocation of tasks
slower than GNU Make.

e Scalability: Excellent. Ant can scale to support large build systems. By
interconnecting multiple build.xml files, any size of build system can be
supported.

Ant clearly has a well-established place in the world of build systems, but only
for Java-based software. If you’re building C/C++ code, consider using SCons
(Chapter 8) or CMake (Chapter 9). For small and simple Java projects, consider
using Eclipse to build your software within the IDE environment. For Microsoft
languages, such as C#, consider using the MSBuild tool discussed shortly.

Similar Tools

The introduction of the Ant tool has clearly made people think differently about
constructing build systems, with a few newer tools taking a similar approach.
The first tool, NAnt, is a direct copy of Ant for the .NET environment, whereas
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the MSBuild tool has taken a slightly different approach with both syntax and
semantics.

NAnt

The NAnt tool [53] is extremely similar to Ant but focuses on the .NET range of
languages instead of Java. The following example shows a Nant . Build file that
compiles and links a simple C# program:

1 <project name="hello" default="compile">
2

3 <target name="compile"s>

4 <csc target="exe" output="hello.exe">
5 <sources>

6 <include name="*.cs" />
7 </sources>

8 </csc>

9 </target>

10

11 </projects>

The basic language features are mostly the same, and Ant developers won’t
have trouble reading or writing a NAnt script. Unfortunately, the NAnt tool is
not as well documented or supported as the original Ant tool.

MSBuild

The MSBuild tool from Microsoft is most commonly used as part of the Visual
Studio development environment, replacing the much older NMake tool (see
Chapter 6). From a syntax perspective, Ant and MSBuild have many similarities,
along with some interesting differences. The official Microsoft documentation
for MSBuild [54] provides a fair amount of technical information, although, for
a gentler introduction, you should refer to [55].

Just as Ant uses build.xml files, MSBuild uses .proj files to store the
build description. Visual Studio can automatically generate these, or you can
write them by hand. Here’s a simple example of compiling three C# files into a
HelloWorld.exe program.

1 <Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/
msbuild/2003" >

N

<PropertyGroup>
<ExeFile>HelloWorld.exe</ExeFile>
</PropertyGroup>

O J 0 U W

<ItemGroup>
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9 <MySource Include="goodbye.cs;hello.cs;main.cs"/>
10 </ItemGroup>
11
12 <Target Name = "Build" Inputs="@ (MySource)"
Outputs="$ (exeFile) ">
13 <CSC Sources="@ (MySource) "
OutputAssembly="3 (exeFile)"/>
14 </Target>
15

16 </Projects>

Although the syntax is a little different from an Ant program, you should be
able to get the general idea of what this program does. Looking in detail at each
part of this file reveals a few differences.

Lines 4-6 define a new property named ExeFile and assigns it the value
HelloWorld.exe. This syntax is a bit unusual because the <ExeFiles tag pro-
vides the name of the new property instead of being a tag that’s already built into
the XML schema. With Ant, you would have used the predefined <property
name="ExeFile"> sequence.

Lines 8-10 define the list of source files to be compiled, similar to Ant’s
<fileset> concept. Note again that the <MySource> tag defines the name of
this group of items.

Lines 12-14 define the Build target that performs the compilation work.
Line 13 uses the <csc> task to compile the source files into an executable pro-
gram (assembly). Note the use of @(...) to refer to the group of source files,
and the $ (. ..) syntax to refer to a property’s value.

The significant difference between Ant and MSBuild appears on line 12. The
Inputs and output attributes are explicitly listed here because MSBuild doesn’t
require that each task implement its own dependency checking. The MSBuild
tool contains a full dependency engine, which is similar to that of GNU Make.
Failure to supply these attributes causes the <cscs task to execute every time,
regardless of whether the source files have changed.

Although this dependency-analysis technique places a greater burden on the
developer, MSBuild completely skips targets with up-to-date files. This is in
contrast to Ant, in which each task must be partially executed each time, even if
Ant determines there’s no work to be done. The value of this approach depends
entirely on whether you care about build performance (when you manually pro-
vide the dependencies) or the reduced effort of having each task do its own
analysis.

MSBuild will clearly continue to be the most popular build tool in the NET
development environment, largely because of its integration with Visual Studio
and support for Microsoft compilers.
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Summary

Ant build description files are organized around the concept of targets, each
containing a sequential list of tasks. The flow of control in an Ant program is
familiar to most developers, making it easy for new users to construct and debug
build.xml files.

Ant provides a wide range of built-in and optional tasks to support common
build system activities, specifically for the Java development environment. These
include moving and copying files, changing file permissions, creating archives,
and compiling source code into object code.

Although Ant provides a number of off-the-shelf tasks, you could also write
your own plug-in to support additional tools. Writing plug-ins is best done in
Java, which gives you the expressive power of a full programming language.
However, the occasional need to write Java code adds to the complexity of cre-
ating an Ant-based build system.

An interesting feature of Ant is that tasks are required to perform their own
dependency analysis and to decide whether they need to do any real work. This
alleviates the need for Ant developers to think about the program’s dependency
graph. Programs are thus easier to write and debug.

Unfortunately, Ant’s lack of variables and loops, and its unusual way of
implement conditions, can make constructing nontrivial programs difficult. This
can be a deterrent for developers who prefer a more powerful language.



Chapter 8

SCons

The SCons build tool [56] provides a third approach to compiling software. It
blends the expressive power of the Python scripting language with some of the
stronger features of other build tools. SCons uses high-level builder methods to
describe the work to be performed, just as in Ant tasks. Additionally, it takes
GNU Make’s approach of generating a dependency graph for the full program.
The decision to base the SCons tool on the Python language was an important
choice. Python is a fully featured programming language with expressive power
equivalent to Java, C++, or C#, making it easy for new users to adopt the lan-
guage. This contrasts with GNU Make and Ant, which use a completely unique
language. Not only must users learn that new language, but they also need to
overcome the language limitations.

The object-oriented features in Python enable SCons to encapsulate data
types, while providing access to the data via methods, similar to functions in
nonobject-oriented languages. SCons provides classes for files, directories, and
environment settings, with each having methods to manipulate the objects of
that class. For example, the following SCons program compiles the prog.c
source file to create the prog executable program:

env.Program('prog', ['prog.c'])

In this case, env is a build environment object, Program is a builder meth-
od, 'prog' is the name of the executable program to be constructed, and
['prog.c'] is a list of source files.

As you’ll see, a SCons program is usually much shorter and easier to write
than an equivalent program for GNU Make or Ant. Not only is the SCons lan-
guage relatively concise, but also the built-in methods make it easy to perform
common operations. If it’s necessary to extend the language, you can do so in
Python instead of breaking out into a second programming language.
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The SCons tool was designed with a number of principles in mind. Clearly, the
creators of SCons have learned a lot from the mistakes made by other build
tools. The guiding principles are listed here:

e Correctness: SCons focuses on making sure the final build results are cor-
rect, even at the cost of performance. Not only is dependency analysis fully
automated, but also any change to compiler flags, include paths, or library
paths cause the impacted object files to be recompiled. In addition, the
usual time stamp method of detecting file changes is replaced by a more
accurate MDS3 digest comparison.

¢ Performance: Although it’s not as fast as GNU Make, SCons does attempt
to execute as quickly as possible. This sometimes conflicts with the pri-
mary goal of build correctness, but you can speed up the build process in
a number of ways.

e Convenience: The SCons language is designed to be easy to use, with mini-
mal effort required to create a build system. As you’ll see in the real-world
examples, this is certainly true in most cases.

In addition to these core principles, SCons has been designed to support a wide
range of compilation tools and build environments. The main focus is clearly C/
C++-based development environments, for a wide range of UNIX-like systems,
and Microsoft Windows. It offers some support for Java compilation, although
that’s not yet as powerful as Ant’s support.

Finally, it’s worth noting that SCons has been under active development since
the year 2000. Not only are bugs and weaknesses fixed on a regular basis, but
also a number of new features are currently planned.

The SCons Programming Language

This overview of the SCons build tool covers a number of topics to give you
an appreciation of the basic language. Youw’ll start with a simple C compilation
that includes the creation and use of libraries. You’ll then consider compilation
tools and how other environment settings are managed, as well as how various
parameters can control the build steps.

Program flow and dependency analysis are interesting topics, largely because
they’re a combination of the methods used by GNU Make and Ant. You’ll also
look at the rather unique way in which SCons decides whether an object file
is out-of-date. This includes the case in which a change in compiler options or
include paths is considered.
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Finally, you’ll touch on a number of the more advanced features in the SCons
build tool. These include managing the compilation tool options, the cross-
platform support features, and the capability to share object files with other
developers.

Before diving into the details of the SCons tool, let’s take a quick overview
of the underlying Python language. You’ve studied the unique GNU Make and
Ant languages in great detail, so it’s only reasonable to spend time learning the
basics of Python.

The Python Programming Language

The concepts used in the Python language are similar to those in Java, C++,
and C#, making it easy for developers to adopt the tool. On the other hand, the
syntax is quite different, which introduces a bit of a learning curve. In this intro-
duction, you’ll learn the language by studying a couple of short programs. Pay
careful attention to each of these examples, and you’ll learn most of the concepts
you need in a build system.

In the first example, you create a Python function that uses a regular expres-
sion to filter the content of a list. The list contains a number of filenames, and
the regular expression matches only names that end with .c. In addition, the
function returns the list of matching names in reverse order.

1 import re

2

3 def extractAndReverse (pattern, inputList):

4 newList = []

5 for i in inputlList:

6 if re.match(pattern, i) != None:

7 newlList.insert (0, 1)

8 return newList

9

10 reversedList = extractAndReverse(r'.*\.c$',

11 ['dog.c', 'cat.h', 'tiger.y', 'cat.c', 'bear.y',
'wolf.c'])

12

13 for animal in reversedList:

14 print animal

Now study this example line by line, paying attention to both the syntax and
semantics of the language:

Line 1 asks the Python interpreter to import the re (regular expression) mod-
ule. The re.match function will be used on line 6.

The extractandReverse function is defined on line 3, using the def state-
ment. This function has two parameters, pattern and inputList, which are

199



200

CHAPTER 8§ SCoONS

declared in the function heading. Python uses dynamic typing, so you don’t
specify the type of these variables.

Line 4 defines the newList variable and initializes it to an empty list. You use
this variable to accumulate the names that match the regular expression.

Line 5 iterates through the content of the inputList variable, with the varia-
ble i being set appropriately for each iteration of the loop. Python uses dynamic
typing, so an error is reported on this line if the inputList variable doesn’t
actually contain something you can iterate over.

An if statement is used on line 6 to determine whether the current element
of the list matches the regular expression. The re.match function either returns
a special object to describe the match’s detail or, if there’s no match, returns the
null value (None). All you need to care about in this case is whether there’s a
match.

If the current filename matches the regular expression, you insert the name
at the start of newList (on line 7). Because you’re prepending the value (instead
of appending), newList ends up in the reverse order of the original list. This
line of code also demonstrates how a method (insert) is invoked on an object
(newList).

Line 7 introduces the block structure of a Python program. It’s important to
note that neither the if statement nor the for statement contains a correspond-
ing end statement to indicate where each block finishes. Python doesn’t use
curly braces to mark the start and end of a block; instead, the source code must
be indented to indicate which lines of code belong to each of the blocks. This is
not just good coding style—it’s mandatory.

Because of the indentation on line 8, the return statement executes only
when the entire loop is complete. newList therefore contains all the members of
the original inputList variable that match the regular expression. This marks
the end of the extractandReverse function.

Lines 10 and 11 are part of the main program instead of a separately defined
function. The extractaAndReverse function is called and the return value is
assigned to the reversedList variable. (Variables are declared when they’re
first assigned to.) The first parameter of the function call provides the regular
expression (you’re searching for any string ending with .c), and the second
parameter is the list of filenames.

Finally, lines 13 and 14 traverse the resulting list and display each element
on the standard output. As before, the indentation on line 14 indicates that it’s
part of the loop body.

This completes the first example. Although it might seem rather contrived,
manipulating a list is an important part of a build system. Python has numerous
built-in functions and methods (such as re.match and newList.insert) to
help make the job easier.
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Now look at a second example that generates a copyright message file. This
is definitely something build systems need to do.

1 import sys

2

3 def makeCopyright (holder, year, filename) :

4 try:

5 file = open(filename, 'w')

6 except IOError:

7 print >> sys.stderr, "Error: Can't open %s" %
filename

8 sys.exit (1)

9

10 print >> file, "This software is Copyright (C) %d by

$s." %\

11 (year, holder)

12

13 file.close()

14

15 makeCopyright ("Arapiki Solutions Inc", 2010, "copyright.

txt")

Let’s examine the interesting parts of the program, without going into too
much detail on the concepts you’ve already seen.

Line 3 defines the makeCopyright function, which takes three parameters.
The holder variable contains the name of the copyright holder, year contains
the year of the copyright, and filename is the name of the disk file you’ll cre-
ate. Jump forward to line 15 to see an example of how to invoke this function.

Line 5 opens the output file in write mode, with the £ile variable holding the
file object. You’ll use this object later when you write to the file.

Lines 4-8 introduce the concept of an exception. Python tries to execute the
open function on line 5, but if an T0Error occurs, the body of the except block
handles the error. Line 7 uses formatted printing to display an error message,
and the program terminates on line 8.

Line 10-11 write the copyright message to the file you just opened. The con-
cept of formatted printing is familiar to most developers, although the $ (year,
holder) syntax might take a little getting used to.

Line 13 invokes the close method on the £ile object. Because of the change
in indentation on line 15, this also marks the end of the function.

At this point, you should be feeling quite comfortable with the basic Python
concepts and syntax. Reading a SCons script will now be easy, given the syntax
rules you’ve learned about. When you start writing your own scripts, you might
still need to refer back to the Python documentation to recall the exact detail.

In addition to what you’ve seen so far, numerous Python libraries are avail-
able, both packaged with the tool and available from third parties. A Python
program can do all the following and more:
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¢ Create complex data structures, such as dictionaries

¢ Define object-oriented classes and create new objects

¢ Define code packages to help modularize larger programs

¢ Create disk-based databases as a persistent storage mechanism
¢ Access any of the underlying operating system services

¢ Define strings in Unicode format

o Interact with other machines over the Internet

This chapter can’t cover all these topics, so you’re encouraged to refer to the
Python documentation [57] for more detail.

Simple Compiling

Now see how the basic Python concepts are applied to building C programs. This
section looks at a number of ways to compile the calculator example, includ-
ing using static and dynamic libraries. In each case, you’ll write a SConstruct
file, which is equivalent to the Makefile and build.xml files in previous
chapters.

The First Program

Start with the simplest way of generating the calculator program:
1 Program('calculator', ['calc.c', 'add.c', 'mult.c', 'sub.c'])

The Program builder method is passed two different arguments. The first
provides the name of the executable file, whereas the second lists the source files
to compile and link together. When you invoke the scons tool in the same direc-
tory as the sconstruct file, you see the following output:

$ scons

scons: Reading SConscript files

scons: done reading SConscript files.
scons: Building targets

gcc -o add.o -c add.c

gcc -o calc.o -c calc.c

gcc -o mult.o -c mult.c

gcc -o sub.o -c¢ sub.c

gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets.

The Program builder is obviously doing a lot of work and actually invokes
a couple of subbuilders to get the whole job done. Each source file is compiled
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into object code and they’re all linked together to create the executable program.
Although it’s not clear in this example, the Program builder also detects any
source code dependencies. Any change to numbers . h triggers all source files to
be recompiled.

By default, SCons builds all the files in the current directory. To limit what
gets built, specify the name of the target file:

$ scons calc.o

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

gcc -o calc.o -c calc.c

scons: done building targets.

In this case a target is an actual disk file, which matches GNU Make’s con-
cept of a target instead of Ant’s definition.

Without going any further, you can see that SCons makes simple build sys-
tems easy to construct. Users just need to say what they want built and which
source files should be used, and SCons handles all the detail. Contrast this
with GNU Make, where compiler names need to be hard-coded and automatic
dependency analysis is challenging to implement.

Cross-Platform Builds

With the cross-platform nature of the SCons tools, the program can also be
compiled on a Microsoft Windows system using the Visual Studio tools. Using
the exact same sconstruct file as before, we see the following output:

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cl /Foadd.obj /c add.c /nologo

add.c

cl /Focalc.obj /c calc.c /nologo
calc.c

¢l /Fomult.obj /¢ mult.c /nologo
mult.c

cl /Fosub.obj /c sub.c /nologo

sub.c

link /nologo /OUT:calculator.exe calc.obj add.obj mult.obj
sub.obj

scons: done building targets.

SCons automatically detects which compilers are available on the build
machine and invokes them with suitable command-line options. Note that the
.exe extension was automatically added to the name of the executable pro-
gram, and .obj was used instead of .o.
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Modifying Compiler Options

To make the example a little more interesting, modify the C compiler flags to
override the default settings. Here you use the Program builder again, but you
pass a third parameter to set the CFLAGS variable:

1 Program('calculator',
2 ['calc.c', 'add.c', 'mult.c', 'sub.c'],
3 CFLAGS='-g')

When you invoke the scons build tool, you can see that -g has been added
to the appropriate gcc command line:

$ scons

scons: Reading SConscript files

scons: done reading SConscript files.
scons: Building targets

gcc -o add.o -c¢ -g add.c

gcc -o calc.o -c -g calc.c

gcc -o mult.o -c¢ -g mult.c

gcc -o sub.o -c¢ -g sub.c

gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets.

As you’ll see shortly, SCons has many settings to control the build process.
You’ll also look at how these settings can be encapsulated inside a build envi-
ronment object instead of providing the additional cFLAGS argument each time.

Variations of the Basic Syntax
In addition to the syntax you’ve seen so far, you can use many variations. First,
you can specify the list of object files instead of naming the source files.

1 Program('calculator',
2 ['calc.0', 'add.o', 'mult.o', 'sub.o'],
3 CFLAGS="'-g"')

SCons uses built-in rules to figure out that calc.o can be built from calc.c,
so it already knows how to do that. This approach works fine in a UNIX envi-
ronment but fails on a Windows system that uses . obj files. It’s better to list the
source files and let SCons determine the intermediate files.

As you might expect, you can also use a variable to store the list of filenames.
This is useful if you make reference to the same list more than once.

1 sources = ['calc.c', 'add.c', 'mult.c', 'sub.c']
2 Program('calculator', sources, CFLAGS='-g')

It’s even possible to list all the files as a single Python string and then separate
the filenames using the split function.
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1 Program('calculator',
2 Split('calc.c add.c mult.c sub.c'),
3 CFLAGS="'-g"')

Finally, you can use Python’s keyword-based argument passing to give mean-
ingful names to each of the arguments. This enables you to state the values in a
different order, if you prefer.

1 Program(source = ['calc.c', 'add.c', 'mult.c', 'sub.c'],
2 target = 'calculator',
3 CFLAGS='-g"')

Plenty of variations on this basic sconstruct file exist, with the exact syntax
you choose depending largely on convenience or personal preference. They all
produce the same executable program in the end.

C Compilation with Libraries

Keeping with our calculator example, let’s consider how to build static and
dynamic libraries. In this case, you store add.c, mult.c, and sub.c in a library,
and use calc.c as the main program. Here’s the sconstruct file that creates
and uses a static library:

1 myCalcLib = StaticLibrary('libcalc', ['add.c', 'mult.c',
'sub.c'])

2 Program('calculator', ['calc.c'], LIBS = [myCalcLib],
CFLAGS='-g'")

Line 1 introduces the staticLibrary builder method to construct a
static library, named libcalc.a on UNIX systems. The return value from
StaticLibrary is an object of type Node, which refers to the library you just
built. A Node object can be used anywhere filenames are expected. In the exam-
ple, the myCalcLib variable is a reference to the 1ibcalc.a file, or whatever it’s
called on the specific build machine.

On line 2, you use the Program builder again but this time set the LIBS
option to link against the library named in the myCalcLib variable. The cor-
responding build output follows:

$ scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

gcc -o add.o -c¢ add.c

gcc -o calc.o -c¢ -g calc.c

gcc -o mult.o -c mult.c

gcc -o sub.o -c¢ sub.c

ar rc libcalc.a add.o mult.o sub.o
ranlib libcalc.a

gcc -o calculator calc.o libcalc.a
scons: done building targets.
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As you might expect, the StaticLibrary builder method knows how to
compile the source files and then uses the ar command to create a static library.
The Program builder knows how to link against this library.

The SharedLibrary builder can be used in a similar way to build dynamic
libraries:

1 myCalcLib = SharedLibrary('libcalc', ['add.c', 'mult.c',
'sub.c'])

2 Program('calculator', ['calc.c'], LIBS = [myCalcLib],
CFLAGS='-g"'")

This time, you see a slightly different set of compilation options used:

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

gcc -o add.os -c -fPIC add.c

gcc -o calc.o -c¢ -g calc.c

gcc -o mult.os -c¢ -fPIC mult.c

gcc -o sub.os -c -fPIC sub.c

gcc -o libcalc.so -shared add.os mult.os sub.os
gcc -o calculator calc.o libcalc.so

scons: done building targets.

Observe that the SharedLibrary builder is actually generating object files
with the .os extension to distinguish them from nonshared object files. This
is not the case for calc.o file, which the Program builder generates. Note also
that the gcc compiler uses the ~£PIC option to generate position-independent
code.

At this point, you’ve seen enough examples of compiling C code. You’re
ready to think more about customizing the build environment.

Managing Build Environments

Previous examples touched on the idea of setting construction variables such
as CFLAGS and LIBS to configure the behavior of the compiler. In each case,
you explicitly added the cFLAGS or LIBS argument when invoking the Program
builder. Unfortunately, this solution doesn’t scale well for large build systems
because you’d need to repeat the same variables every time you invoked a build-
er.

SCons uses the concept of an Environment object to encapsulate the list of
construction variables, making it easier to reuse settings:

1 env = Environment (CFLAGS = '-g')
2 env.Program('calculator', ['calc.c', 'add.c', 'mult.c',
'sub.c'])
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The Environment object stores the detail of which compiler should be used,
which command-line options should be passed to that compiler, and which
filename extensions should be used on the build machine (such as .o versus
.ob3j). This example starts with the default environment that includes most of
this information but then adds a custom definition for the CFLAGS variable.
All the default variables are set to whatever makes sense on the user’s build
machine.

Using Multiple Environments

You can extend the example by considering how SCons could selectively build
either a debug version or a production version of our code. You can achieve this
goal by creating two different environments and then selecting the environment
needed for your specific purpose. To build a debug version of calculator that
uses static libraries, you’d use this:

$ scons

For the production version that enables optimization and uses shared librar-
ies, invoke the tool as follows:

$ scons production=1

Here’s the code to implement this feature:

1 env = Environment ()

2

3 if ARGUMENTS.get ('production', 0):

4 env ['CFLAGS'] = '-0'

5 env ['CPPDEFINES'] = '-DPRODUCTION'

6 myLibraryBuilder = env.SharedLibrary
7 else:

8 env ['CFLAGS'] = '-g'

9 env ['CPPDEFINES'] = '-DDEBUG'

10 myLibraryBuilder = env.StaticLibrary
11

12 myLib = myLibraryBuilder ('libcalc',

13 ['add.c', 'mult.c', 'sub.c']l)

14

15 env.Program('calculator', 'calc.c', LIBS = [myLib])

Line 3 tests whether the production variable was provided on the command
line and then chooses the appropriate block of code to execute. The first block
on lines 4-6 sets the CFLAGS and CPPDEFINES variables to indicate that code
optimization should be enabled in the compiler and that the PrRopUCTION C pre-
processor symbol must be defined. You also set the myLibraryBuilder variable
to indicate that you need to build a shared library.
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The second block of code, lines 8-10, enables the generation of debug sym-
bols and defines the DEBUG preprocessor symbol. You also indicate here that a
static library should be built, because they’re often easier to use when debugging
code.

Lines 12-13 use either the StaticLibrary or SharedLibrary builder meth-
ods, depending on what the user requested. Each of these builders is invoked as
part of the environment (env) and thus pick up the necessary values for CFLAGS
and CPPDEFINES.

Finally, you invoke the Program builder and pass in the library you’ve just
constructed. This builder also uses the same environment and builds the calc.c
source file using the same settings as the other files.

If you’re observant, you might have realized that the ~g and -0 options won’t
actually work on a Windows system because the Windows c1 compiler uses dif-
ferent options for debugging and optimization. Clearly, you still need to do a bit
more work to make sure you’re passing in the correct flags.

Construction Variables

Without going into too much detail, let’s examine some of the commonly used
construction variables. Literally hundreds of variables exist, so the following are
just a few of the basics:

e cc: Provides the path to the C compiler executable on the build system.
This defaults to gcc on a Linux system or c1 on a Windows system that
uses Visual Studio. The value can be overridden to use a different C com-
piler.

® CCVERSION: Provides the version of the C compiler. For example, this is
set to 4.3 .2 if the build machine uses GCC version 4.3.2.

e CFILESUFFIX: C-language source files have this file suffix. The default on
most machines is . c.

® DPROGSUFFIX: Specifies the file suffix to be used for executable programs.
This variable is empty on UNIX systems and is set to .exe on Windows
systems.

e cccoM: Specifies the command-line options to be passed to the C com-
piler. The following default value is used for GCC compilers on Linux.

'$CC -o S$TARGET -c $SCFLAGS $CCFLAGS $ CCCOMCOM $SOURCES'
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When the cccom variable is accessed, each of the variables in the definition
is expanded to its current value (similar to GNU Make’s deferred evalu-
ation). The $TARGET and $SOURCES variables are set appropriately each
time the builder invokes the underlying compiler.

Although each of the construction variables just listed comes with a default
value, this isn’t true for all of them. The following variables are initially empty
and can be defined by the user:

e ccrLaGS: Options that are passed to both C and C++ compilers.

e CFLAGS: Options that are used only when compiling C code, not for C++
code.

¢ CPPDEFINES: A list of C preprocessor symbols to be passed to the C com-
piler. These are prefixed with -D or /D, depending on which compiler is
used.

o cpppATH: The list of directories to search when an #include directive is
used in a C program.

e 1IBPATH: Likewise, the list of directories to search when a library is linked
against a program.

Finally, here’s a construction variables that doesn’t impact how the compi-
lation tool is invoked but that does impact what the user sees on the standard
output:

e cccoMsTR: If this variable is defined, display the specified message to the
user instead of showing the actual compilation command. For example:

env ['CCCOMSTR'] = "Compiling $SOURCES"

In this case, you’ll see Compiling calc.c in place of gcc -o calc.o -c
calc.c when the program is compiled.

Refer to the SCons user guide or man page for a complete list of supported
variables.

Construction Variable Defaults

For any of the construction variables that come with default values, the SCons
tool does a fair amount of upfront work to decide what those values should
be. SCons detects which operating system is running on the build machine and
then searches all the standard file system locations to find out which tools are
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installed. In many cases, users will be happy with the default set of tools, but each
time they create a new environment, they’re welcome to override the defaults.

It’s worth noting that SCons won’t use the developer’s $PATH or $PATHS envi-
ronment variables when searching for local tools. This is a great example of how
SCons focuses on the correctness of the build process. It removes any chance
that the user’s personal search path includes a compilation tool that other devel-
opers don’t have in their path.

Program Flow and Dependency Analysis

At first glance, a SCons builder method appears to be similar to an Ant task.
You provide a high-level directive that lists the inputs and outputs of a particu-
lar build step, and the SCons builder method invokes the necessary compilation
tool. All the dependency analysis is hidden inside the builder, so the user doesn’t
need to think about constructing the dependency graph.

Things start to differ when the actual work is performed. Whereas Ant invokes
the compilation tools when the task is first invoked, SCons uses the same two-
phase approach you saw with GNU Make. When a builder is invoked, it does
nothing more than compute the dependency information for that build step. In
the second phase, SCons traverses the entire dependency graph and invokes the
compilation tools necessary to bring files up-to-date.

With this two-phased approach in mind, SCons developers can easily read
through a program as if it were any other Python program. They can follow
the sequential flow of execution from top to bottom and can see how values
returned by one builder method are passed as input into the next. The overall
construction of the dependency graph is therefore easy to understand, and most
developers have no problem seeing how the software is constructed.

Things get a little more complex in the second phase, where the compilation
tools are actually invoked. Unlike Ant, the compilation tools are invoked in
whatever order SCons decides, and this can be quite different from the order in
which the builders were listed in the source file. As you’ll see later, SCons pro-
vides a mechanism for viewing and understanding the dependency graph, so it’s
still possible to debug a misbehaving SCons program.

Multiple Directory Support

To handle SCons programs that are split across multiple directories, you use the
SConscript function to join multiple files into one. In this case, the build de-
scription files that appear in lower-level directories must be named sconscript,
in contrast to the top-level file, which is called sconstruct:

SConscript ('subdir/SConscript')
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Given that SCons was designed with correctness in mind, the builders that
are invoked from within the subdir/Sconscript file contribute to the same
global dependency graph. You therefore don’t have the problems you saw with
recursive Make. Any filenames mentioned in the sConscript file are interpreted
as being relative to the subdir directory, making it unnecessary to list a long
pathname to each file. Later in this chapter, you’ll see a number of examples that
use the sconscript function.

Dependency Analysis
It’s worth noting that although much of the dependency analysis is done for you,
SCons provides a few functions for directly manipulating the dependency graph:

¢ Depends: If the builder method you’re using doesn’t seem to get the de-
pendencies correct, you can use the Depends function to explicitly add a
link in the dependency graph. In this example, you want the calculator
program to also depend on the headers . h file (which is different from the
eXiSting number.h file).

target = Program('calculator',
['calc.c', 'add.c', 'mult.c', 'sub.c']l)
Depends (target, 'headers.h')

If headers.h changed, even if it’s not included by any of the source files,
the calculator program will be relinked. Hopefully you won’t need to
use this function often, but it’s nice to know that it’s available.

e Ignore: This is the opposite of Depends and is used where a link in the
dependency graph must be explicitly removed.

Ignore (target, 'calc.o')

This example causes the calculator program to not recompile, even if
calc.o changed. Note that calc.o would still be linked into the execut-
able program, but only if some other file changed, causing the link step to
be triggered.

e Default: By default, SCons always builds all the targets within the cur-
rent directory. To override this behavior and have a specific file (or files)
built by default, use the pefault function.

Default ('calculator')
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If the user invokes the scons command-line tool without a target name,
the calculator program is built.

® Alias: As we noted earlier, a SCons target is normally the name of a disk
file that you’re going to build. By using the Alias function, you create a
named target that resembles a target in the Ant language or one of GNU
Make’s phony targets that don’t relate to a real disk file.

Alias('all', 'calculator')

In this case, you’re defining the all target to be an alias for the
calculator program. You can also have a list of files as the second
argument, making it possible to build multiple targets with a single alias
name.

Now look at the unique ways in which SCons decides whether a file is
up-to-date.

Deciding When to Rebuild

Compared to other build tools, SCons places a considerable amount of effort
into deciding whether a generated file needs to be rebuilt. Instead of using the
traditional method of comparing time stamps, SCons can use MDS5 checksums
to determine whether a file has changed. It also looks for changes in compila-
tion tool flags and search paths, to predict whether a generated file might end
up with different content.

A SCons program can use the Decider function to specify how decisions are
made, giving a fully customizable process. SCons is shipped with a number of
built-in deciders, but it’s also possible to create your own, based on whichever
criteria is important for your code. The following deciders are built into SCons,
with the first approach being the default:

® Decider ('MD5') : To determine whether a source file has changed, SCons
computes the MDS5 checksum of the file and compares it with the file’s
checksum from the last time the build was started. If there’s no difference
in checksum, there’s a high likelihood that the file content hasn’t changed.
This approach requires that SCons keep a persistent database of MDS5
signatures, which is stored in the .sconsign file.

® Decider ('timestamp-newer') : To determine whether a source file has
changed, SCons checks whether the time stamp on the source file is newer
than the time stamp on the object file. If so, it’s quite likely that the source
file has changed. On the other hand, there’s still a chance that the file
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was written to, but the content didn’t actually change. This is the same
approach used by the GNU Make tool.

® Decider ('timestamp-match') : Similar to the previous case, but instead
of comparing the source file and object file time stamps, SCons remembers
the source file’s time stamps between consecutive builds. This approach
doesn’t require you to check as many time stamps, but SCons must record
time stamp information in a database.

® Decider ('MD5-timestamp') : The default MD35 decider can be rather
slow, so this approach tests each file’s time stamp before computing the
MDS5 checksum. You’ll learn more about this approach shortly.

Of course, you can also write your own decider functions. If your build sys-
tem generates web pages containing financial stock information, you could even
write a decider that checks whether stock prices have changed. It would be
pointless to regenerate HTML files each time a build was invoked, even if the
financial data was the same.

In addition to testing for file changes, SCons checks for environment changes.
These include the flags that are passed into compilation tools and the file system
paths that are searched to find libraries or header files. Now consider the cases:

® CFLAGS: Most C compiler options have some type of impact on the gener-
ated object code. If you compiled a number of object files with the -o flag
enabled but then you changed it to -02 to get better optimization, SCons
must regenerate all the object files.

e cpppaTH: This variable is used as the search path for locating C header
files. If the program included numbers.h but you then changed the search
path, the possibility exists that a different file called numbers.h could be
used instead. In this case, the object file needs to be regenerated.

e LIBPATH: Similar to the previous case, except that the search path is used
to find library files. If this variable changes, there’s a chance of including a
different library.

As you might expect, this focus on build correctness reduces the number of
incorrect builds you’ll see. However, these features don’t come for free and,
unfortunately, tend to slow the build system. SCons developers need to carefully
consider whether they care about performance or whether correctness is more
appealing. Think about these tradeoffs:
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¢ Even though MDS35 checksum calculations can be time-consuming, it’s pos-
sible to disable this feature by using a time stamp-based decider. On the
other hand, you might find that time stamp—based methods are less accu-
rate and, therefore, cause a lot more files to rebuild, even when they don’t
need to. As a compromise, the MD5 -t imestamp decider combines the best
of both worlds by performing a fast time stamp comparison and perform-
ing a slower MDS computation only if the time stamp indicates that the
file might have changed.

¢ Even though MDS5 computation is slower than time stamp checking, it
could save you time. For example, if you modify a comment in the source
code, the source file’s content changes and the corresponding object file is
regenerated. However, because the object file content isn’t affected (you
changed only a comment), the build process can stop at that point. There’s
no need to relink the executable program because SCons has already deter-
mined that none of the object files have changed.

¢ If you’re not too worried about changes in your CPPPATH and LIBPATH
variables picking up the wrong files, you can disable this feature by using
the implicit cache option. This stops SCons from rescanning each of
the source files when it tries to determine which headers or libraries to
use. The information is instead cached between consecutive builds, thus
increasing the overall build performance.

As you’ll see in Chapter 19, “Faster Builds,” using the MD5-timestamp and
implicit cache options makes the SCons build tool almost as fast as a GNU
Make build system.

Extending the Language

As you’ve seen with other build tools, it’s often important for users to extend
the basic language by adding more features of their own. These can include
new builder methods or the addition of normal Python functions that make
the sconstruct file easier to write. SCons offers a number of extension points,
including the following;:

¢ Writing normal Python functions
¢ Creating a builder method using a shell command

e Creating a builder method using only Python code
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¢ Directly invoking shell commands

e Writing a source code scanner

In each of these cases, the extension is written in the Python programming
language; although, you’re free to use shell commands if you need to invoke spe-
cific compilation tools. Unlike many other build tools, there’s no need to break
out into using a different programming language: The combination of Python
code and shell commands is powerful enough for most applications.

Writing Normal Python Functions

Although writing a sconstruct file is relatively easy in the first place, you
might need extra helper functions to make it even simpler. For example, the
extractAndReverse function you looked at earlier could easily be used from
within a sconstruct file:

reversedList = extractAndReverse('.*\.c$', filelList)

In your build system, you might have a similar approach to processing a list
of source files or deciding which files need to be generated. The more complex
your build system is, the more likely you are to write this type of function to
make your build description easier to read.

Keep in mind that this code is executed during the first phase of parsing the
Sconstruct files, so the goal should be to construct the dependency graph.
Therefore, you’d use the reversedList variable as input into a builder method
that could trigger additional work to happen in the second phase.

If you need to invoke a compilation tool to actually do some work, you
should create a builder method.

Creating a Builder Method Using a Shell Command

When extending the SCons language by adding a new compilation tool, perhaps
the easiest way is to defer most of the work to a shell command. Even then, you
need to do some work to build up the dependency graph. Here’s a simple exam-
ple of adding a new builder method. In this case, you use a fictitious rpctool
compiler to generate .c files from higher-level . rpc files.

1 env = Environment ()
2 rpc_builder = Builder (action = '/tools/bin/rpctool -o
STARGET S$SOURCE',

suffix = '.c', src_suffix='.rpc')
env ['BUILDERS'] ['RPC'] = rpc_builder

o Ul B W

env.RPC('fast messages.rpc')

215



216

CHAPTER 8§ SCoONS

Line 2 does most of the hard work in this example. The Builder function
takes an action string containing the shell command to be executed. This com-
mand won’t be executed yet, but it will be at a later time when the tool is
called into action. The $SOURCE and $TARGET variables will be expanded to their
appropriate values, and the whole string is passed to the command shell.

The suffix and src_suffix parameters are used to build up the depend-
ency graph. This builder can be used on input files with the . rpc extension, and
the resulting output file will have a . c extension.

Line 4 adds this new builder to the construction variable environment. By
adding the rRpC builder name, you can invoke the tool using the syntax shown on
line 6. When you execute this script, you’ll see the following output:

$ scons

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

/tools/bin/rpctool -o fast messages.c fast messages.rpc
scons: done building targets.

This approach to adding new builders is similar to the technique used in
GNU Make. Matching filename patterns is certainly a convenient way to add
new build tools.

Creating a Builder Using Only Python Code

Although the capability to have a builder method invoke a shell command is
good enough in many situations, you might find that invoking a single com-
mand is rather limiting. If you think about the standard Program builder, a lot
of work went on behind the scenes to generate all the object files and to process
all the command-line options. In these complex cases, you might appreciate hav-
ing the full power of the Python language.

The following example makes use of the makeCopyright function defined
earlier. In this case, the entire builder method is written in Python, although
there’s nothing to stop you from invoking one or more shell commands if you
need to.

from MakeCopyright import makeCopyright
from time import localtime

1

2

3

4 def copyright function(target, source, env):

5 target file = str(target[0])

6 holder file = sourcel[0]

7 holder name = holder file.get contents().strip()
8 year = localtime () [0]

9 makeCopyright (holder name, year, target file)

0
1

env = Environment ()



THE SCoNs PROGRAMMING LANGUAGE

12 builder = Builder(action = copyright function)
13 env['BUILDERS'] ['Copyright'] = builder

14

15 env.Copyright ('LICENSE.txt', 'holder.txt')

Skip over the first part of this file for now and focus on lines 11-13. This
is similar to the previous example, except that you’re providing the name of
a Python function instead of a shell command. You’re also not including the
suffix or src_suffix parameters, although you could if you needed to.

Looking back at lines 4-9, there you define the copyright function func-
tion. The three parameters are as follows:

e target: The list of Node objects (and special SCons data type) that de-
scribe the files to be generated. Line 5 fetches the first Node object and
determines the file’s name (using the str function).

¢ source: The list of Node objects describing the input files you should
read. Lines 6-7 fetch the first source file from the list and then read the
content of that file into the holder name variable (taking care to strip the
trailing newline).

¢ env: The Environment object to be used when building things. You don’t
use the environment in this case.

The builder method finishes on line 8 by retrieving the current year (such
as 2010) and invoking the makeCopyright function that you’ve already seen.
Finally, line 15 invokes the Copyright builder using the usual syntax, so the file
is then written to disk.

Directly Invoking Shell Commands

In some cases, your build system might invoke a specific compilation tool only
once, in which case you don’t need to define a new Builder object. Instead, you
can use the Command method to invoke a one-time shell command on a particu-
lar pair of files:

env.Command ("data.txt.gz", "data.txt", "gzip -c < S$SOURCE >
= STARGET")

In this example, the data.txt .gz file is generated from the data.txt file by
running the gzip command. The shell command isn’t executed immediately but
is added to the dependency graph in case it’s needed later.

On the other hand, if you really did want the shell command to be executed
in the first phase of parsing the sconstruct files, you should instead use the
standard Python os. system function.
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Writing a Source Code Scanner

Earlier in this chapter, you touched on the idea that SCons automatically dis-
covers a source file’s dependencies. For example, a C source file can include a
number of header files by using the #include directive. To complete the RPC
builder, you’d also need to add a scanner to identify which other files are in-
cluded. You’ll learn more about this technique when you look at adding the
mathcomp compiler to SCons builds.

Other Interesting Features

SCons has a lot of interesting features that this chapter hasn’t discussed but that
are certainly worth a brief mention.

¢ Manipulating compilation tool flags: SCons provides a wide array of func-
tions for manipulating lists of compilation tool options. This includes the
capability to append and prepend flags to an existing list, overwrite exist-
ing flags with a new value, ensure that there’s no repetition of flags in a
list, and parse a string of compiler flags and have each of them passed to
the appropriate compilation tool.

¢ Displaying a progress indicator: For large builds, it’s possible to call a user-
defined method to display an update on how the build is progressing.

¢ Building code from central code repositories: Instead of each developer
having a copy of all files, it’s possible to share a common source tree.
SCons looks for source files in this shared tree if they can’t be found in the
developer’s own tree. This is similar to GNU Make’s VPATH feature.

¢ Caching prebuilt object files: By utilizing MDS5 checksums, SCons can
determine a fingerprint for each object file it compiles. If another devel-
oper has already compiled the exact same source code file using the same
header files and compilation flags, SCons obtains the object file from a
shared repository instead of recompiling it again. Chapter 19 covers this
mechanism in more detail.

® Probing the build machine: SCons includes a number of functions for an-
alyzing the build machine to ensure that it supports the required build
environment. A SConstruct program can detect the presence of specific
library and header files and can compile a small test program to validate
which features exist in the build environment.
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The SCons system has plenty more features, and the list is growing over
time. Although SCons is still relatively young, the growing user base is likely to
increase the number of available features.

Further Reading

The best place to learn more about SCons is the tool’s own user guide and man-
ual page [56]. The user guide provides a gentle introduction for first-time users,
whereas the manual page is more suitable for experts who need to be reminded
of the function parameters or construction variables.

Not much additional documentation exists for the SCons tool, but that’s
likely because of the high quality of the existing user guide.

Anybody writing a sconstruct file should also become familiar with the
Python language, for which numerous books are available [58].

Real-World Build System Scenarios

Now let’s look at our standard collection of real-world build system scenarios.
As you’ll see, the SCons tool designers have obviously thought about these com-
mon cases, making it easy to implement these examples. These SConstruct files
are much shorter than the equivalent programs in GNU Make or Ant.

Scenario 1: Source Code in a Single Directory

You’ve already seen the solution to the single directory calculator example:

1 Program('calculator',
2 ['calc.c', 'add.c', 'mult.c', 'sub.c'],
3 CFLAGS="'-g"')

As discussed earlier, the Program builder manages all the dependency analy-
sis for you and rebuilds the object files if the numbers.h header file is modified.
Object files also are recompiled if the cFLAGS variable is changed, ensuring the
correctness of the resulting object files.

Scenario 2(a): Source Code in Multiple Directories

If you spread the source files across multiple directories, the sconstruct file is
almost the same:

Program('calculator',
['libmath/clock.c', 'libmath/letter.c', 'libmath/
number.c',
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'libprint/banner.c', 'libprint/center.c', 'libprint/
normal.c',

'calc/calc.c'],

CFLAGS='-g"'")

SCons handles the dependency analysis correctly, and the object files are
stored in the same hierarchical structure as the source files.

The obvious downside to this approach is that the sconstruct file can
become long and hard to maintain, especially when dealing with thousands
of source files. The contention among developers who need to change this file
makes it difficult to coordinate changes.

Scenario 2(b): Multiple SConstruct Files

To avoid having all source files listed in the same sconstruct file, you can
divide the build description into multiple files. This approach limits the size
of each file, reduces the contention when making changes, and keeps the build
description in the same directory as the source files.

Here’s the top-level sconstruct file:

env = Environment ()
env['CFLAGS'] = '-0'
Export ('env')

libmath = SConscript ('libmath/SConscript')
libprint = SConscript ('libprint/SConscript')
Export ('libmath libprint')

W owJo Ul whPr

SConscript ('calc/SConscript')

Lines 1-3 create a build environment (env) that’ll be used across the entire
system. In this case, you’re changing only the CFLAGS variable, but nothing is
stopping you from creating an elaborate environment containing a number of
customizations. The Export function on line 3 states that this environment
should be made available to any sconscript file that chooses to import it.

Line 5 includes the 1ibmath/Sconscript file, and line 6 does the same for
the 1ibprint/sconscript file. The content of these files is parsed, and the
dependencies are all added to the same global dependency graph. On line 7, the
variables containing the values return from these Sconscript calls are both
exported so that other Sconscript files can import them.

Finally, line 9 includes the calc/Sconscript file to link together the final
calculator executable. In this case, you needn’t care about the return value.

Now jump to the 1ibmath/SConscript file:

1 Import('env')
2
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3 1lib = env.StaticLibrary('libmath',

4 ['number.c', 'clock.c', 'letter.c'])
5

6

Return('lib')

This file imports the env variable, containing the environment object, and
uses it when creating the 1ibmath library. This ensures that all compiler options
are used consistently throughout the build system. Line 6 returns the resulting
Node object that stores the name of the library you’ve just created.

As you’d expect, the 1ibprint /SConscript is similar.

Import ('env')

1
2
3 1lib = env.StaticLibrary('libprint',

4 ['normal.c', 'center.c', 'banner.c'])
5

6

Return('lib')

Finally, the calc/sconscript file imports the libmath and libprint
variables (the * wildcard imports everything) and uses them to create the
calculator executable program:

Import ('*"')

['calc.c'],

1

2

3 env.Program('calculator',

4

5 LIBS=[libmath, libprint])

This completes the entire build system, spread across multiple directories. At
this point, you might be wondering whether SCons is capable of solving the sub-
build problem that both GNU Make and Ant suffer from. Luckily, the SCons
tool does have a clever way of solving this common dilemma, and it all comes
down to the choice of filenames: SConstruct versus SConscript.

It’s important to note that SCons accepts only a SConstruct file as input
and won’t look at Sconscript files unless the sconscript function explicitly
includes them. If you invoke scons in a lower-level directory, you’ll see the fol-
lowing output:

S scons
scons: *** No SConstruct file found.

You might think it’s impossible to do anything other than top-level software
builds, but that’s not quite the case. If you invoke scons with the -u option,
it searches up through the chain of parent directories to locate the nearest
sconstruct file. It can therefore parse the entire build description and form a
complete dependency graph.
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However, this doesn’t mean that the entire software image will be compiled.
By default, SCons builds the targets only in the current directory (and below),
and because you invoked SCons from a subdirectory, you’ll build the content
of only that directory. The good news is that SCons has a complete copy of the
dependency graph and proceeds to build the other subdirectories first, but only
if they’re necessary to compile the files in the current directory. The subbuild
problem is thus solved.

Scenario 3: Defining New Compilation Tools

Our solution for adding the mathcomp tool to the SCons environment is more
complex than the equivalent GNU Make solution, but definitely simpler than
the Ant solution. Part of the complexity is that you’ll write your own source
code scanner to determine the dependencies instead of using the built-in
mathcomp -d flag.

Here’s the complete source code:

1 import re
2 reg exp = re.compile(r'*import\s+(\S+)$', re.M)
3
4 def scan math(node, env, path):
5 import nodes = [ node ]
6 import list = []
7
8 while len(import nodes) != 0:
9 this node = import nodes.pop ()
10
11 new_imports = reg exp.findall (this node.get_
contents () )
12 for file in new imports:
13 import list.append(file)
14 import nodes.append(File(file))
15
16 return import list
17
18 env = Environment ()
19 math scanner = Scanner (function = scan_math, skeys =
['.math'])
20 env.Append (SCANNERS = math scanner)
21
22 math builder = Builder(action = '/tools/bin/mathcomp
SSOURCE ',
23 suffix = '.c¢', src_suffix='.math')
24 env['BUILDERS'] ['Math'] = math builder
25
26 extra c src = env.Math('equations')

27 env.Program('calc', ['main.c', extra c_src])
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For convenience, let’s start the discussion at the end of the program and work
backward. Lines 26-27 show how to use a new builder method, named Math.
You pass in the name of the equations.math file (excluding the suffix), and the
builder generates a C source file to be passed into the Program builder.

Back on lines 22-24, the new Math builder was added to the environment,
using a shell command as the builder’s action. In this case, you need to pass
only the $SOURCE variable to the mathcomp tool because the tool automatically
determines the target file’s name.

Lines 19-20 define a new source code scanner. This definition informs SCons
that a source file ending in .math can be scanned for dependencies by calling the
scan_math function. This function must return the list of .mathinc files that
are referenced by import statements.

Now review the scan math function on lines 4-16. On line 4, scan math
accepts three parameters provided by the SCons dependency-analysis system.
The first is a Node object that represents the file to be scanned, the second is the
construction environment, and the third is the search path for finding additional
include files. The example uses only the first parameter.

Line 5 creates the import nodes variable used to track which sources files
still need to be scanned. Given that .mathinc files can include other .mathinc
files, you could end up searching a long chain of import statements.

Line 6 creates the import 1ist variable to track the list of filenames found
so far. This is similar to import nodes, except that the goal is to collect a list
of filenames to return, whereas the import nodes list contains Node object that
aren’t yet processed.

The while loop on line 8 continues until you run out of Node objects still
to be processed. Each time around the loop, you pop off a single Node object
(this node), making the import nodes list smaller.

Line 11 is where the magic happens. First you read the content of the file ref-
erenced by the this node variable and pass it through a regular expression that
matches lines in the file (see line 2 for the definition). Any lines that start with
the import statement, followed by a filename, are returned in the new_imports
list.

For each element of the new imports list, lines 12-14 add the newly found
filename to the list of files to be returned and add the corresponding Node object
to the list of nodes still to be processed.

When the import nodes list is empty, you can be sure that you’ve done a
complete traversal of all the import statements in the .math and .mathinc
source files. This solution doesn’t handle the case in which files can’t be found
or the case in which the import statements create an infinite cycle, but those are
straightforward to add.
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Scenario 4: Building with Multiple Variants

As you did for the corresponding GNU Make example, you’ll now see what it
takes to generate code for three different CPU variants (1386, PowerPC, and
Alpha). You’ll store each set of object files in a CPU-specific directory.

Figure 8.1 shows the build tree layout you’ll be using.

Figure 8.1 The B SConsmer
build tree for the Elob;
multivariant build S apha
system, supporting B addo
three different B caco

B catculator
CPU types. B o
sub.o
Caizse
[
Epowerpe
]
[ sre
EE' SConscript
B aadc
B cakcc
B ot
B mumbers
sub.c

The sconstruct file in the top-level directory validates the command-line
arguments and sets up the required environment. It then defers to the lower-level
src/SConscript file to perform the actual compilation. The user invokes the
build tool by specifying the CPU type:

$ scons platform=powerpc
Start with the top-level sconstruct file:

1 wvars = Variables()

2 vars.Add (EnumVariable ('PLATFORM', 'CPU type', 'i386"',

3 allowed values = ('i386', 'powerpc',
'alpha')))

4

5 env = Environment (variables = vars, CFLAGS='-g',

6 CC="'/tools/bin/gcc-${PLATFORM} ')

7 Export('env')

8

9 Help(vars.GenerateHelpText (env))

11 platform = env['PLATFORM']
12 SConscript ('src/SConscript',
13 variant dir='obj/%s' % platform)
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Luckily, SCons contains built-in functions for evaluating command-
line options, as well as for compiling into variant-specific directories. Now look
at each line in detail. Lines 1-2 create a new Variables object and add the
PLATFORM variable. You also provide some help text ('CPU Type'), the default
value if no platform type is provided ('1386'), and the list of legal values. If you
add this amount of detail, SCons can perform all the input validation for you.
The build description can therefore reference the PLATFORM variable with full
confidence that it contains a meaningful value.

Line 5 creates a new Environment object, using the vars object to define the
list of user-supplied input values. Note the use of the ${PLATFORM} variable on
line 6, which expands to either 1386, powerpc, or alpha.

Line 9 is another SCons feature that generates user-friendly help text. If users
pass in the ~help command-line option, they’ll see the following:

$ scons --help
scons: Reading SConscript files
scons: done reading SConscript files.

PLATFORM: CPU type (1386 |powerpc|alpha)
default: 1386
actual: 1386

Use scons -H for help about command-line options.

Lines 11-13 defer the actual compilation work to the src/Sconscript file.
The only new concept is that you’re using the variant dir flag to specify where
the compiled object files should be stored. Typically, they’re stored in the same
directory as the source code, but in this case, you’re storing them in a platform-
specific location within the obj subdirectory.

Finish this scenario by looking at the src/sconscript file:

1 Import('env')
2 env.Program('calculator', ['calc.c', 'add.c', 'mult.c',
'sub.c'])

As you can see, there’s nothing surprising in how the builder methods are
invoked. The top-level sconstruct file has handled all the environment set-
tings, as well as decided where object files are stored. The Program builder just
does the right thing, based on what the env variable contains.

For the sake of completeness, here’s the output of building the alpha variant:

$ scons platform=alpha

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

/tools/bin/gcc-alpha -o obj/alpha/add.o -c¢ -g src/add.c
/tools/bin/gcc-alpha -o obj/alpha/calc.o -c¢ -g src/calc.c
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/tools/bin/gcc-alpha -o obj/alpha/mult.o -c¢ -g src/mult.c
/tools/bin/gcc-alpha -o obj/alpha/sub.o -c -g src/sub.c
/tools/bin/gcc-alpha -o obj/alpha/calculator obj/alpha/calc.o
obj/alpha/add.o obj/alpha/mult.o obj/alpha/sub.o

scons: done building targets.

The other variants provide similar output.

Scenario 5: Cleaning a Build Tree

The act of cleaning a build tree is common, and SCons provides an easy way of
doing so. Given that a builder methods know exactly which files it’s supposed
to compile, SCons uses that same information to delete all the generated files.
Cleaning a build tree is done by passing the -c option.

$ scons -c

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Cleaning targets

Removed calc/calc.o

Removed libmath/number.o
Removed libmath/clock.o

Removed libmath/letter.o
Removed libmath/libmath.a
Removed libprint/normal.o
Removed libprint/center.o
Removed libprint/banner.o
Removed libprint/libprint.a
Removed calc/calculator

scons: done cleaning targets.

If SCons doesn’t know about all the files that the build system creates, you
can explicitly invoke the clean function to add more files to the list. Although
it’s not common for C compilation, some tools generate additional files that the
build process doesn’t know, so additional clean directives might be required.
It’s also possible to invoke the NoCclean function to ask SCons not to remove a
particular file from the build tree, just in case it’s important.

Scenario 6: Debugging Incorrect Builds

A SCons program is largely just a sequence of builder methods invoked against
environment objects, so many of the problems you’ll encounter are centered on
those constructs. As a result, SCons provides a number of built-in features for
viewing the dependency graph, analyzing the content of environment objects,
and tracing the sequence of decisions that cause SCons to rebuild a generated

file.
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Let’s look at a few ways of debugging a SCons program to find out why
builders might not trigger when they should, why they cause the generated out-
put files to have invalid content, or why they sometimes trigger an unnecessary

rebuild.

Builders Not Triggering When They Should

In this scenario, a developer modifies a source file or the build system regener-
ates an object file, but the program’s behavior doesn’t seem to reflect the code
change. The generated files further downstream in the dependency graph aren’t
correctly updated.

The first thing to check is whether the file has really changed or whether the
same content has been written back without modification. Given that SCons
uses MDS5 checksums by default, simply “touching” the file (a common practice
with GNU Make) won’t make the content any different and nothing rebuilds.
Likewise, simply adding a comment to a source file could cause the object file to
regenerate, but SCons won’t relink the executable program if the machine code
is exactly the same.

If you’re confident that your files really have changed, the next step is to
validate the dependency graph. There’s always a chance that the builder’s argu-
ments were incorrect or that the source code scanner function (for your particu-
lar type of source code) isn’t picking up all the dependencies. You can validate
the dependency graph with the --tree=all command-line option:

$ scons --tree=all calc
scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets
scons: 'calc' is up to date.
+-calc
+-main.o
+-main.c
+-/usr/bin/gcc
+-equations.o
+-equations.c
| +-equations.math
| +-equl.mathinc
| +-equ2.mathinc
| +-equ3.mathinc
| +-equ4.mathinc
| +-/tools/bin/mathcomp
+-/usr/bin/gcc
+-/usr/bin/gcc
scons: done building targets.

In this example, you need to check that the calc program has a dependency
on all the necessary object files, which, in turn, depend on the relevant source
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files. If there’s a discrepancy, it’s possible that the builder method hasn’t been
given the correct list of input files or that the builder method itself contains
a bug. If it’s absolutely necessary, use the Depend function to force a missing
dependency to appear in the graph.

You can also see that the .math file scanner is detecting a number of .mathinc
include files, so take care to double-check that list. For scanner problems, you
need to either fix the scanner (if you have the source code) or perhaps modify
your source files slightly so that the scanner can locate the include or import
directives.

Builders Triggering When They Shouldn’t

The reverse of the previous problem is files being regenerated even though you
don’t think they’ve changed. The dependency graph is a great place to start, but
you also have the --debug=explain to tell you why SCons believes a certain
file is out-of-date.

$ scons --debug=explain

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

scons: rebuilding 'calc.o' because 'calc.c' changed

gcc -o calc.o -c¢ -g calc.c

scons: rebuilding 'calculator' because 'calc.o' changed
gcc -o calculator calc.o add.o mult.o sub.o

scons: done building targets.

The extra annotation makes it easy to figure out what caused SCons to make
the wrong decision. You need to revisit your builder’s arguments or check the
builder or scanner source code to understand where the problem could be. If
necessary, use the Ignore function to remove a dependency from the graph.

Failed Compilation Step or Invalid Output Files

In the final debugging scenario, a file is generated at the correct point in time,
but the content is incorrect. This is usually because the compilation tool was
invoked with the wrong arguments. The first step is always to double-check the
output from the SCons build log and rerun the command line (such as gcc -c)
to make sure it’s doing what you need.

If you find an incorrect command line, the problem is likely with one or
more of the construction variables stored in an environment object. By using the
- -debug=presub option, SCons shows exactly which environment variables are
being expanded to form the command lines:

$ scons --debug=presub
scons: done reading SConscript files.
scons: Building targets
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Building calc.o with action:
UnlinkFunc (target, source, env)
Building calc.o with action:
$CC -o S$TARGET -c $CFLAGS $CCFLAGS $ CCCOMCOM $SOURCES
gcc -o calc.o -c¢ -g calc.c
Building calculator with action:
UnlinkFunc (target, source, env)
Building calculator with action:
SLINK -o $TARGET SLINKFLAGS $SOURCES $ LIBDIRFLAGS
$ LIBFLAGS
gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets.

From this output, you can see which of the variables is providing the incor-
rect value. Perhaps it’s even one of the command-line template variables, such
as $cccoM, that’s passing an incorrect list of options and arguments to the com-
piler. In either case, use the environment object’s Dump function to check all the
variables and their values. The full set of variables is enormous, but here are the
first few:

{ 'ar': rar',
'"ARCOM': 'SAR SARFLAGS S$STARGET $SOURCES',
'"ARFLAGS': ['rc'],
'AS': 'as',
'"ASCOM': 'SAS SASFLAGS -o STARGET $SOURCES',

'"ASFLAGS': [1,

One unfortunate limitation of SCons is that it doesn’t appear possible to trace
a builder output back to the line of source code where the builder method was
invoked. This makes it difficult to narrow the scope of a problem, when all you
have is the SCons output log showing the incorrect behavior. The best solution
might be to search all the sconstruct and sconscript files to try to identify
the offending line of code.

As a final note, it’s always possible to use the standard Python debugging
tools to trace a Sconstruct file. This is another benefit of using a general-
purpose programming language as the basis for a build tool.

Praise and Criticism

Although SCons is a relatively young tool, there’s enough of a user base that
many strengths and weaknesses have been identified. On the other hand, SCons
is still in active development, so some of the weaknesses have already been re-
solved or will be addressed in upcoming releases of the tool.
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Praise

The praise includes the following:

Uses a general-purpose programming language: Using Python as the basis
for SCons was a good choice. It enables developers to write code in a fa-
miliar style, using a full-featured programming language. To express the
nuances of their build description, users aren’t forced to use cryptic syntax
or to work around the limited language. This is often the case with other
build tools.

Makes constructing a build system simple: Only a couple of minutes are
needed to construct a fully functional build system for a small project,
complete with dependency checking and a clean target. Even for larger
builds, it’s relatively easy to create a hierarchy of sConscript files, with
the assurance that a single dependency graph will be created. It isn’t neces-
sary to create a complex framework as it is with GNU Make.

Uses builder methods to improve portability: Builder methods hide many
of the underlying compilation tools, making SCons a portable build tool.
The default construction environment is automatically configured to use
the build machine’s local toolsets, with the developer focusing on what
needs to be done, not how it’ll be done on each specific build machine.

Uses tool extensions written in Python: When a SCons extension needs to
be written, Python can also be used instead of breaking out into a shell
script or writing a Java method. This includes all builders, scanners, and
other helper functions that make sconstruct files easier to write. Python
makes it easy to hide a complex piece of code logic inside a function,
enabling the end user to invoke that function without understanding the
internal details.

Focuses on correctness: One of the most important goals of SCons is that
the build process must be followed as accurately as possible. It therefore
uses MDS5 checksums to detect file changes, uses scanner functions to
determine file dependencies, and rebuilds object files if the compilation
flags have changed. In contrast to other tools, SCons is much less likely to
build the wrong thing.

Still in active development: SCons might be a young tool, but improvements
are continuously being added, based on a growing amount of experience
with the tool. Future bugs likely will be fixed quickly and new features will
be added regularly.
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¢ FEasy to debug programs: SCons provides a number of debugging options,
making it straightforward to identify and resolve any problems in the build
process.

Criticism

The criticism includes the following:

® Too slow, especially for incremental builds: The focus SCons places on
build correctness is also responsible for decreasing the performance, espe-
cially for incremental builds in which only a few files have changed. Using
the default settings, SCons computes the MDS5 checksum of each file to see
if it changed and then scans each source file to identify its header file usage.
In addition, SCons always builds the full dependency graph before starting
to compile anything. Even if a single source file has changed, all this extra
work can take a while.

¢ Builders can be too restrictive: The standard builder methods can often
feel too restrictive. You might need a sequence of build steps that don’t
appear to be possible using the default builders. In this case, either you end
up studying the user guide in great detail to figure out the desired behavior,
or you write your own builder to do the same thing. Sometimes providing
an explicit list of shell commands is the easiest way to get the job done.

¢ Inadequate support for Java and .NET languages: SCons is effective for
the C and C++ languages in UNIX and Windows environments, but it’s
not as strong for languages such as Java and C#. In those situations, it cur-
rently makes sense to use Ant or MSBuild.

¢ Excessive memory footprint: When compared to approaches such as recur-
sive GNU Make, an equivalent SCons-based build uses considerably more
memory on the build machine. However, this is not necessary true when
compared to inclusive Make, which stores the entire dependency graph in
memory.

Evaluation

To summarize the SCons build tool, let’s evaluate it against the build system
quality measurements discussed in Chapter 1, “Build System Overview.”
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e Convenience: Excellent: SCons uses the general-purpose Python program-
ming language as the basis of writing build description files, making it
easy to configure the build system. In addition, build methods encapsulate
high-level build operations in a simple function call, without requiring a
developer to worry about multidirectory support or computing depend-
ency information.

e Correctness: Excellent: The automatic generation of dependency informa-
tion and the use of MDS5 checksums are among the many SCons features
designed to ensure a correct build process. Compared to other build tools,
SCons is much less likely to produce a release package that doesn’t match
the source files.

¢ Performance: Good: Although SCons focuses heavily on the correctness of
the build process and isn’t as fast as GNU Make, it has adequate perform-
ance for most purposes. For developers requiring a faster build system, it’s
possible to disable some of the correctness features.

e Scalability: Good: SCons can support large build systems while still guar-
anteeing correctness, although the tool’s memory footprint can be excessive
for extremely large systems. Some users have replaced their SCons-based
build system with a GNU Make solution to improve performance and
scalability.

SCons is an ideal tool for building C/C++ code and is highly recommended
for new software products or when replacing troublesome GNU Make build
systems. However, SCons is not suitable for compiling Java and C# code; Ant
and MSBuild are the best choices in that situation.

Similar Tools

As it turns out, most of the popular build tools have their own special-purpose
language included, and few are built on top of existing programming languages.
Two notable exceptions are the Cons tool, upon which SCons is based, and the
Rake tool, which is based on the general-purpose Ruby language.

Cons

The Cons build tool [59] is based on the Perl language and provided much of
the inspiration for the SCons tool. Cons hasn’t been actively developed since
2001 because SCons superseded it. The Cons web site even encourages people
to switch to the newer tool.
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If you decide to use Cons, perhaps if you prefer the Perl language, you’ll
already be familiar with many of the tool’s concepts. Construction environ-
ments, builders, scanners, and MDS5 checksums are among the many concepts
that were reused in SCons. Here’s the calculator example again:

1 @lib_sources = ('add.c', 'sub.c', 'mult.c');
2 e@main sources = ('calc.c');

3 S$exe name = 'calculator';

4

5 S$env = new cons (

6 CC => 'gce!',

7 LIBS => 'libmath.a'

8 );

9

10 Library $env 'libmath', @lib_ sources;
11 Program $env S$exe name, @main sources;

You’ll find the syntax to be slightly different, but the ideas are generally the
same. There’s no need to describe how this program works.

Rake

The Rake build tool [60] is based on the Ruby scripting language, which pro-
vides a number of interesting language features. These features might not seem
familiar at first, but they’re not hard to follow when you understand the syntax.
Now look at an example program and explain it carefully.

Rake is quite different from SCons and Cons because it doesn’t provide any
automatic dependency analysis. It instead relies more on the model GNU Make
uses, in which the developer provides the source and target dependencies, as well
as the list of commands to be executed. The commands can be written in pure
Ruby code or can use the sh method to invoke a shell command.

Here’s the calculator example again, but written in Rake/Ruby syntax:

1 require 'rake/clean'’

2

3 exe name = 'calculator'

4 sources = FileList['*.c']

5 objects = sources.ext('o')
6

7 task :default => [exe name]
8

9 rule '.o' => '.c' do |t]

10 sh "gcec -c -o #{t.name} #{t.source}"
11 end

12

13 desc "Build the #{exe name} program"
14 file exe name => objects do
15 sh "gcc -o #{exe name} #{objects}"
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16 end

17

18 objects.each do |object|

19 file "#{object}" => ["numbers.h"]
20 end

21

22 CLEAN.include('*.o0"')
23 CLOBBER.include (exe name)
24 verbose (true)

Spend some time looking through this example, because the syntax needs
some explanation if you’ve never seen Ruby.

Lines 3-5 provide a number of useful definitions, using Ruby’s variable
assignment syntax. The exe name variable provides the name of the program
you’re creating, whereas sources is defined to include all the . c files in the cur-
rent directory (a wildcard operation). The objects variable is derived from the
sources variable by replacing all the . c extensions with .o.

Line 7 is the first example of Rake’s rule definitions. In this case, you’re stat-
ing that, to build the default target, you first need to build the program whose
name is stored in the exe name variable.

Lines 9-11 provide a suffix rule that states how to generate object files from
source files. For each .c file, you invoke the gcc compiler with the -c flag. If
you’re not familiar with Ruby, it’s interesting to know that rule is a Ruby
method that takes two parameters. The first, ' .o’ => '.c',is actually a hash
that maps the .o string to the .c string. Likewise, the second parameter takes a
code block, which appears between the do and end keywords. There’s nothing
unusual about this in the Ruby language, where constant hash mappings and
code blocks can be passed into a method.

Lines 14-16 are similar and state that the executable program depends on all
of the object files. Lines 18-20 use a looping construct to state that each of the
object files has a dependency on the numbers . h header file. Finally, the remain-
ing lines define which files will be cleaned when the user invokes the clean or
clobber build targets.

It’s also interesting to note that Rake supports both file-based target names
(as in GNU Make) and symbolic target names (as with Ant). The example
mainly uses the file-based approach, with the exception of the :default target.
The colon prefix indicates that it’s a symbol instead of a filename. Additional
symbols can be created just as easily.

Here’s the output from running the rake tool:

S rake

(in /home/psmith/Rake)
gcc -c¢ -o calc.o calc.c
gcc -c -o sub.o sub.c
gcc -c -o add.o add.c
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gcc -c¢ -o mult.o mult.c
gcc -o calculator calc.o sub.o add.o mult.o

S rake -T

(in /home/psmith/Rake)

rake calculator # Build the calculator program
rake clean # Remove any temporary products.
rake clobber # Remove any generated file.

S rake clean
(in /home/psmith/Rake)
rm -r calc.o
rm -r sub.o
rm -r add.o
rm -r mult.o

The first case shows the regular build sequence. The second shows how each
Rake target can be enhanced with useful help text (see line 13). The third case
shows how the clean target is automatically defined for you when you include
the appropriate library (see line 1).

For developers who are familiar with Ruby, Rake is definitely a tool to con-
sider using.

Summary

The SCons build tool uses a standard Python script to describe a build process
instead of taking the usual approach of creating a domain-specific language. A
number of Python functions, known as builder methods, are used to compile
source code, create libraries, and link together executable programs. Each of
these builder methods accepts a list of input files and any number of compila-
tion tool flags.

Given the wide range of construction variables used to configure the build
process, SCons uses environment objects to encapsulate the detail. You create
a single environment object and reuse it for each different builder method to
ensure that a consistent set of compiler flags is used. To support multiple build
machine types, SCons creates a default environment that references the build
machine’s locally installed tools.

SCons uses a two-phased approach to perform the build process. The first
phase involves executing all the builder methods and constructing a dependency
graph. In the second phase, SCons invokes the underlying compilation tools
necessary to bring the generated files up-to-date. By default, SCons calculates
an MDS5 checksum for each file in the build tree and uses that information to
determine whether a file has changed from one build to the next.
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A number of mechanisms are available for extending the basic SCons lan-
guage. By writing standard Python code, developers can create their own builder
methods, as well as source code scanners that automatically determine a source
file’s dependencies.

SCons takes the goals of correctness, performance, and convenience seri-
ously, and many of the language features reflect this approach. Unfortunately,
one of the main criticisms of SCons is that the focus on correctness is responsible
for the tool’s degraded performance.
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CMake

The next build tool to discuss is CMake [61]. This tool differs from GNU Make,
Ant, and SCons because it doesn’t actually execute the build process. Instead,
it translates a high-level build description into a lower-level format accepted by
other tools. For example, a CMake generator can translate the high-level build
description into a makefile, ready for execution by the GNU Make tool.

The goals of this approach are to simplify the construction of build systems
and support cross-platform development. As you saw in Chapter 6, “Make,”
constructing a GNU Make build system is challenging, especially when dealing
with large code bases. It’s also hard to construct a single build system that works
across a range of different platforms.

CMake addresses these problems by providing a high-level language to
describe the build process. A generator then translates this description into a
native build tool’s own language, hiding all the complexity from developers.
Although Ant and SCons also provide a high-level abstraction (using tasks and
builder methods), those tools execute the build process directly, whereas CMake
delegates the execution to another tool.

Several CMake generators are available, running on a wide range of build
machine types, including Microsoft Windows, Mac OS X, Linux, and numerous
variants of UNIX. Given that each operating system has different native build
tools, CMake’s generators support many popular development environments.
For example, CMake can create a makefile for GNU Make or NMake, as well
as project descriptions for Microsoft Visual Studio or Eclipse CDT (discussed in
Chapter 10, “Eclipse”).

CMake build descriptions are stored in a CMakeLists.txt file, using a
platform-neutral language. Figure 9.1 shows the overall workflow of using the
cmake tool to produce a native build system, which is then invoked by running
the native build tool.
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CMakeLists.txt

Native build system Native build tool

cmake GNU Make
on Linux framework

p—

cmake Eclipse
for Eclipse project
p—
cmake NMake
on Windows framework
p—

Figure 9.1 High-level flow of the CMake tool, generating a native build system.

When executed on a UNIX system, the default behavior is to create a make-
file-based framework (a main makefile and a number of supporting framework
files). If you override the default and instead generate an Eclipse-based project,
extra project-related files are added. Finally, when executed on Windows, the
default behavior is to use Visual Studio’s compilers and the NMake build tool.

This chapter reviews CMake’s syntax and features. The syntax of the CMake
language is unique to CMake and is therefore worth some discussion. As usual,
youw’ll also spend time evaluating real-world scenarios.

The CMake build description provides support for the C and C++ languages,
with limited support available for Java and various scripting languages.

The CMake Programming Language

This section provides an overview of the CMake language syntax and features,
but it discusses only a few of them in detail. After all, the language might at first
seem different from GNU Make, Ant, or SCons, but you’ll quickly realize that
most of the concepts are the same. This section covers the following topics:

¢ CMake language basics: The basic syntax of invoking commands, setting
and accessing variables, and managing source and object file properties

¢ Building executable programs and libraries: How to compile C source files
into libraries or executable programs
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e Control flow: How to test conditions, repeat operations in a loop, and
define macros

¢ Cross-platform support: Locating tools, libraries, and header files on the
native build machine

¢ Generating a build system: Generating a native build system (such as a
mabkefile)

Throughout this discussion, keep in mind that the CMake build description
must be easy to map into an equivalent description for other build tools. It’s not
reasonable for CMake to have too many advanced language features of its own.
For example, if the CMake language provided support for a general-purpose
scripting language, such as Python, it would be challenging to translate this into
an equivalent GNU Make build description.

CMake Language Basics

The syntax of the CMake build description file (CMakeLists.txt) isn’t too
hard to understand, so you can learn the basics by looking at an example. This
example defines a couple variables, sets a property on two different source files,
and then displays some messages:

1 project (basic-syntax C)

2

3 cmake minimum required (VERSION 2.6)

4

5 set (wife Grace)

6 set (dog Stan)

7 message ("${wife}, please take ${dog} for a walk")
8

9 set property (SOURCE add.c PROPERTY Author Peter)

10 set property (SOURCE mult.c PROPERTY Author John)
11 get property (author name SOURCE add.c PROPERTY Author)
12 message ("The author of add.c is ${author name}")

The first observation is that all commands are invoked using a standard syn-
tax, with arguments separated by spaces.

command ( argl arg2 ... )

The arguments can be numbers, filenames, strings, or property names, with
the exact syntax requirements depending on which command is used. To group
multiple words into a single argument, place quotation marks around the entire
string.
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The project command (on line 1) provides a name to uniquely identify the
build system. This is used by native build tools (such as Eclipse) that require a
project name. It also states which programming languages (such as C, C++, or
Java) are to be compiled.

The cmake minimum required command (on line 3) states that the build
description uses commands supported only by CMake version 2.6 or higher.
Note that cmake minimum required expects two arguments, with the first
being the VERSION keyword. This informs CMake to interpret the second argu-
ment (2.6) as a version number.

Lines 5 and 6 demonstrate the creation of variables. The first argument is the
variable’s name, and the second is the value. Line 7 uses the familiar ${...}
syntax to access each variable’s value.

Line 9 introduces the concept of a property, using the set property com-
mand. Properties enable you to assign a value within the scope of a specific disk
file. The build system simply associates the value with that file’s name instead
of modifying the file content itself. Other commands are free to reference the
property’s value.

This example sets the Author property on the add.c source file. This value
is limited in scope to add. c, so it’s possible to assign different Author values to
other source files. Line 10 sets the Author property on mult.c, but to a differ-
ent value.

On line 11, the get_property command fetches the Author property asso-
ciated with the add.c file. The resulting value is assigned to the author name
variable and is displayed on line 12.

Now that you understand the basic syntax, let’s see how libraries and execut-
able programs are created.

Building Executable Programs and Libraries

As usual, the most popular operation is to compile source files into libraries
and executable programs. CMake provides a number of commands that appear
similar to builder methods in SCons but still have a few interesting features of
their own.

Creating Executable Programs and Libraries
The following line of code shows how the calculator program is compiled
from the four source files:

1 add executable (calculator add sub mult calc)

This looks simple, but based on past experience with build tools, you can
imagine that add executable does a lot of work in the background. This
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includes constructing a suitable compiler command line, as well as adding the
filenames into the dependency graph.

Another observation is that none of the filenames is given a file extension,
so CMake must know the correct extension to use for each build machine.
For example, when using Microsoft Windows, the resulting program is named
calculator.exe.

Creating a new library is also similar to SCons, although with a few syntax
differences:

1 add library (math STATIC add sub mult)
2 add_executable (calculator calc)
3 target link libraries (calculator math)

Line 1 produces a static library by compiling add. c, sub.c, and mult.c. The
resulting library is given a name that makes sense on the build machine, such
as libmath.a for UNIX systems. Lines 2 and 3 state that the calculator pro-
gram is created by compiling calc.c and then linking it with the math library.

To assist the add_executable and add_library commands, you could use
include directories and link directories. These commands inform the
C compiler where to find additional header files and tell the linker where it can
find additional libraries. As you might expect, these directives are translated into
the appropriate compiler flags (such as -1 and -1) in the native build system.

One topic this chapter hasn’t mentioned is how CMake determines the
dependencies for each source file. In reality, the native build system and build
tool do much of this work. If the native build tool already automates the depend-
ency analysis, CMake has nothing to do. On the other hand, for Make-based
tools that don’t contain this feature, CMake adds the required functionality into
the auto-generated build framework.

Setting Compilation Flags
Varying a compilation tool’s options is also a useful activity. In contrast to build
tools that are more platform-dependent, CMake discourages the use of hard-
coded compiler flags. Instead, the build description states which type of output
is required and CMake determines the compiler flags to use.

For example, to request that CMake produce a “debug” build in which the
executable program contains source-level debugging information, you add the
following command to the cMakeLists. txt file.

set (CMAKE BUILD TYPE Debug)

Even though the platform-specific flags are abstracted away, CMake gener-
ates a native build system with the correct flags for that machine. For example,
on a UNIX system, the -g flag is added to the C compiler command line.
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The same approach is used for adding C preprocessor definitions because
each C compiler has its own set of command-line options. This time, you set a
property on either the whole directory or an individual file.

set_property (DIRECTORY
PROPERTY COMPILE DEFINITIONS TEST=1)

set _property (SOURCE add.c
PROPERTY COMPILE DEFINITIONS QUICKADD=1)

In the first case, you ask the build system to define the TEST symbol when
compiling all the C files in the current directory. In the second case, you ask that
the compilation of add.c also include the QuICcKaDD symbol. The native build
system adds the required command-line options to make this happen.

Adding Custom Commands and Targets
For more complex build requirements, you can define new compilation tools
and have CMake add them to the native build system. Now look at add_
custom_command, which resembles a standard GNU Make rule, and the add_
custom_target command, which is similar to GNU Make’s concept of phony
targets.

The following example shows how the /tools/bin/make-data-file UNIX
command translates the data.dat source file into the data.c output file. In this
case, data.c is an autogenerated source file.

1 project (custom command)

2 cmake minimum required(VERSION 2.6)

3

4 set (input data file ${PROJECT SOURCE DIR}/data.dat)

5 set (output c file data.c)

6

7 add_custom command (

8 OUTPUT ${output_c file}

9 COMMAND /tools/bin/make-data-file
10 < ${input_data file}
11 > ${output_c file}

12 DEPENDS ${input data file}
13 )
14

15 add executable (print-data ${output_c_file})

The bulk of the work is done on lines 7-13, where the custom tool is added
to the dependency graph. The ouTPUT directive (line 8) states which file will be
created, whereas the DEPENDS directive (line 12) indicates the input for the com-
mand. Lines 9-11 contain the UNIX-dependent shell command to execute. This
code is thus equivalent to the following GNU Make program:
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$(output c file) : $(input data file)
/tools/bin/make-data-file < $(input data file) >
$(output _c file)

Line 15 is required to make sure there’s a top-level target that causes the new
tool to be invoked. If you don’t define an executable program, the dependency
graph won’t be complete and you’d have no way to request that data.c be cre-
ated. Unlike many other build tools, CMake makes a clear distinction between
top-level targets and individual files in the build tree.

To focus more on this top-level target concept, the add custom target
command facilitates the creation of new top-level targets and specifies the order
in which they’ll be executed. These are similar to GNU Make phony targets
because they’re not dependent on whether files are up-to-date and they don’t
produce any output. They’re also similar to Ant targets that use the depends
attribute to control the order in which targets are invoked.

1 project (custom target)

2 cmake minimum required(VERSION 2.6)

3

4 add_custom_target (print-city ALL

5 COMMAND echo "Vancouver is a nice city"
6 COMMAND echo "Even when it rains")
7

8 add custom target (print-time

9 COMMAND echo "It is now 2:17pm")
10
11 add custom target (print-day
12 COMMAND echo "Today is Monday")
13

14 add dependencies (print-city print-time print-day)

An interesting part of this code is that line 4 contains the ALL keyword to
state that print-city should be invoked as part of the default build (when the
developer doesn’t explicitly choose a target). Also, line 14 states that print-
city depends on print-time and print-day.

Control Flow

Control flow (conditions, loops, and macros) is similar to other programming
languages and doesn’t require much explanation. The distinction with CMake
is that the CMake generator, not the native build system, evaluates and executes
control-flow commands. This might seem a little odd at first, but as long as the
native build system ends up with the same behavior described in cMakeLists.
txt, no problem should occur.

The syntax of the i £ command is fairly standard, perhaps with the exception
that () is required after the else and endif statements.
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set (my var 1)
if (${my_var})

message ("my var is true")
else ()

message ("my var is false")
endif ()

It’s also possible to perform Boolean operations, including NOT, AND, and OR,

which, incidentally, don’t require the standard ${. ..} syntax around variable
names.

if (NOT my var)

éﬁaif ()

Variables can be tested against other variables or constant values:
if (${my age} EQUAL 40)

éﬁaif ()

The existence of files can be tested, although keep in mind that the test is

performed at the time the native build system is created; it isn’t performed by
the native build tool itself.

if (EXISTS filel.txt)

endif ()

Likewise, you can test whether one file is newer than a second file.
if (filel.txt IS_NEWER THAN file2.txt)

endif ()

Finally, for more complex scenarios, it’s possible to match a variable’s value

against a regular expression.

if (${symbol name} MATCHES ""[a-z] [a-z0-9]*3")
éﬁaif ()

The macro construct is similar to a function or method definition in other

languages, making it possible to reuse common code. The macro syntax is easy
to understand:

1 project (macro)

2 cmake_minimum required (VERSION 2.6)
3

4 macro (my macro ARGl ARG2 ARG3)
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5 message ("The my macro macro was passed the following
arguments: ")
6 message ("${ARG1l}, ${ARG2} and ${ARG3}")
7 endmacro (my macro)
8
9 my macro (1 2 3)
10 my macro (France Germany Russia)

Finally, the foreach loop iterates through a list of values:

project (foreach)
cmake minimum required (VERSION 2.6)

foreach (source file add.c sub.c mult.c calc.c)
message ("Calculating cksum for ${source file}")
add_custom target (cksum-${source file} ALL
COMMAND cksum ${PROJECT SOURCE DIR}/${source file}
)

endforeach (source file)

O owJo Ul whr

This last example requires more explanation. Line 6 adds a new top-level tar-
get for each of the source files in the list. Invoking one of these targets invokes
the cksum command for the associated source file. Assuming that you gener-
ate a makefile-based build, you can invoke either all targets at once or each
target individually. (The percentages are part of the autogenerated makefile
framework.)

$ gmake

615245502 109 /home/psmith/loops/src/add.c

[ 25%] Built target cksum-add.c

2090159248 294 /home/psmith/loops/src/calc.c
[ 50%] Built target cksum-calc.c

4029979682 113 /home/psmith/loops/src/mult.c
[ 75%] Built target cksum-mult.c

3864170835 124 /home/psmith/loops/src/sub.c
[100%] Built target cksum-sub.c

$ gmake cksum-add.c
615245502 109 /home/psmith/loops/src/add.c
[100%] Built target cksum-add.c

$ gmake cksum-calc.c
2090159248 294 /home/psmith/loops/src/calc.c
[100%] Built target cksum-calc.c

As mentioned earlier, this looping construct isn’t translated into the native
build tool’s looping construct. Instead, it provides the equivalent functionality
by adding a number of different rules to the makefile.
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Cross-Platform Support

Continuing with the approach that a CMake build description should be plat-
form neutral, consider how to deal with build machine differences. CMake ena-
bles you to locate specific tools and files, and also to identify which features the
underlying compiler supports.

Locating Files and Tools on the Build Machine
To create a build system that works on any type of build machine, you can’t be
too specific about where tools and files are located. At the very least, the tool or
file must exist somewhere on the file system, but each machine might store it in
a different location.

CMake provides a number of commands to search for files and tools in all the
standard paths. The following code locates the 1s program, the stdio.h header
file, and the standard C math library.

1 project (finding)

2 cmake minimum required (VERSION 2.6)

3

4 find program (LS PATH ls)

5 message ("The path to the ls program is ${LS_PATH}")

6

7 find file (STDIO H PATH stdio.h)

8 message ("The path to the stdio.h file is ${STDIO H
PATH}")

9

10 find library (LIB _MATH PATH m /usr/local/lib /usr/1libé4)
11 message ("The path to the math library is ${LIB MATH
PATH} ")

When this build description is translated into the native build system (by run-
ning the cmake tool), you see the following output:

The path to the ls program is /bin/ls
The path to the stdio.h file is /usr/include/stdio.h
The path to the math library is /usr/lib/libm.so

Each type of build machine might give different results, so the build descrip-
tion must reference these variables to access the tool instead of using a hard-
coded pathname.

Note that line 10 explicitly asks the find library command to search for
the math library in /usr/local/lib and /usr/1ibé4. These paths are searched
in addition to CMake’s default locations.

To make it easier to write build description files, CMake provides code mod-
ules for locating popular tools and libraries. As an example, by including the
FindPerl module, you can easily locate your build machine’s Perl interpreter:
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1 project (find-perl)

2 cmake minimum required (VERSION 2.6)

3

4 include (FindPerl)

5 1if (PERL_FOUND)

6 execute process (

7 COMMAND ${PERL_EXECUTABLE} ${PROJECT SOURCE DIR}/
config.pl

8 )

9 else ()

10 message (SEND ERROR "There is no perl interpreter on

this system")
11 endif ()

The FindPerl module (on line 4) contains a small amount of CMake build
description code, which is included by the cMakeLists.txt file. This module
detects the presence of the Perl interpreter no matter what type of build machine
you’re executing on (such as Linux or Windows). If Perl can be located, the
PERL_EXECUTABLE variable contains the absolute path of the program, and the
PERL_FOUND variable is set to a true value.

Notice that the execute process command (on line 6) passes the config.
pl file into the Perl interpreter. This invocation takes place as part of generat-
ing the native build system. In contrast, the add_custom command directive you
saw earlier adds references to Perl within the native build system, to be invoked
when the native build tool is used.

Testing for Source Code Capabilities

A second type of cross-platform support is the capability to test the underly-
ing compilers. Before attempting to compile a program, you must determine
whether the build machine’s compiler provides all the required functions and
header files. If it doesn’t, you must substitute your own implementation or even
abort the build process.

CMake provides the try compile and try run commands, enabling you to
determine whether a snippet of C/C++ code compiles correctly. If it does com-
pile, you can try to execute the program to see if it provides the correct output.
To make it easy to use these commands, CMake wraps them in a number of
prewritten macros. For example:

project (try-compile)
cmake minimum required (VERSION 2.6)

include (CheckFunctionExists)
include (CheckStructHasMember)

CHECK_ FUNCTION EXISTS (vsnprintf VSNPRINTF EXISTS)
if (NOT VSNPRINTF EXISTS)

W JO0 Ul b WwWwN K
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9 message (SEND ERROR "vsnprintf not available on this
build machine")
10 endif ()

11

12 CHECK STRUCT HAS MEMBER ("struct rusage" ru_stime wait.h
HAS STIME)

13 if (NOT HAS_ STIME)

14 message (SEND ERROR "ru stime field not available in

struct rusage")
15 endif ()

Lines 7-10 demonstrate the use of the CHECK FUNCTION EXISTS macro, as
defined in the CheckFunctionExists module (line 4). By using the try compile
command, this macro sets the VSNPRINTF_EXISTS variable to indicate whether
the vsnprintf function was available to the underlying C compiler or linker.

Lines 12-15 perform a similar operation, but this time to determine whether
the definition of struct rusage contains the ru_stime field. If not, the associ-
ated variable is left undefined and the build system fails with an error message.

Generating a Native Build System

As discussed earlier, using CMake involves two main phases. The first is to
process the CMakeLists. txt file and generate a native build system. The second
phase is to use a native build tool to actually compile the software. This genera-
tion process is a key part of CMake’s design, providing support for a wide range
of operating systems and native build tools.

Generating the Default Build System

The easiest way to generate a build system is to accept the default configuration.
The developer simply creates a directory for the object files and then invokes the
cmake tool within that directory. No file in the source directory is ever modified,
making it possible to generate more than one object directory from the same
source tree.

$ mkdir obj

$ cd obj

$ cmake ../src

-- The C compiler identification is GNU

-- The CXX compiler identification is GNU

-- Check for working C compiler: /usr/bin/gcc

-- Check for working C compiler: /usr/bin/gcc -- works
-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++
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-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done

-- Configuring done
-- Generating done

-- Build files have been written to: /home/psmith/obj

CMake attempts to locate each of the required development tools and deter-
mines which version of each tool is in use. Any try compile and try run com-
mands in your CMakeLists. txt file are also executed at this time.

Assuming that you generated a Make-based native build system (the default
for Linux and UNIX), the object directory now contains the following directory

structure:

Makefile

cmake install.cmake
CMakeCache. txt
CMakeFiles
CMakeFiles/calculator
CMakeFiles/calculator

CMakeFiles/calculator
CMakeFiles/calculator

CMakeFiles/calculator.
.dir/flags.make
.dir/DependInfo.cmake

CMakeFiles/calculator
CMakeFiles/calculator

.dir
.dir/cmake_clean.cmake
CMakeFiles/calculator.
.dir/depend.make
.dir/progress.make

dir/build.make

dir/link.txt

CMakeFiles/progress.make
CMakeFiles/Makefile.cmake
CMakeFiles/CMakeDetermineCompilerABI C.bin
CMakeFiles/CMakeOutput.log
CMakeFiles/CMakeCXXCompiler.cmake

This build framework certainly includes a lot of files, but the most important

files to notice are these:

® Makefile: The main entry point for the native build system.

® CMakeCache.txt: A text-based configuration file that contains the auto-
discovered settings for this build machine. (You’ll learn more about this

shortly.)

® CMakeFiles/: A directory that contains all the autogenerated framework
files. These are included by the main makefile.

The final step is to invoke the native build tool; in this case, you use gmake.
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$ gmake

Scanning dependencies of target calculator

[ 25%] Building C object CMakeFiles/calculator.dir/add.c.o
[ 50%] Building C object CMakeFiles/calculator.dir/sub.c.o
[ 75%] Building C object CMakeFiles/calculator.dir/mult.c.o
[100%] Building C object CMakeFiles/calculator.dir/calc.c.o
Linking C executable calculator

[100%] Built target calculator

Notice how the autogenerated build framework displays a significant amount
of customized output instead of simply showing the underlying commands as in
the GNU Make examples.

Generating a Nondefault Build System

One of CMake’s strengths is flexibility in selecting the type of native build sys-
tem to be generated. By passing the -G option to the cmake command, you
can override the default selection. For example, to generate a Visual Studio 10
project, enter the following command on your Windows build machine:

cmake -G "Visual Studio 10" ..\src

Likewise, to generate a build system for Eclipse CDT version 4 on Linux, use
the following:

cmake -G "Eclipse CDT4 - Unix Makefiles" ../src

Naturally, it’s possible to add more CMake generators if your choice of devel-
opment environment isn’t already supported, but doing so isn’t an easy task.

Customizing the Generation Step

Although CMake’s default behavior is to autodetect the build machine’s com-
pilation tools, it often makes sense to overwrite these values. In addition to the
basic cmake command, you can use the ccmake command (see Figure 9.2) to
interactively configure the native build system.
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Figure 9.2 Configuration using the ccmake configuration tool.

The variables in this list are collectively known as the cache and are stored
in the object directory’s cMakeCache. txt file. Each variable has a default value
but can easily be modified to customize the build process. The following are
some of the most commonly used cache variables:

® CMAKE AR, CMAKE C COMPILER, and CMAKE LINKER: The absolute path
to the library archiver tool, the C compiler, and the object file linker. These
can be overwritten if your build system uses custom tools in place of the
build machine’s standard tools.

® CMAKE MAKE PROGRAM: The absolute path to the native build tool, such as
/usr/bin/gmake. This can be overwritten to use a nonstandard version of
the tool.

® CMAKE BUILD TYPE: The type of the build tree you want to create. Pos-
sible values include these:

¢ Debug: The generated object files and executable program will contain
debugging information.

® Release: The resulting executable program will be fully optimized and
won’t contain debug information.
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e RelWithDebInfo: The executable program will be optimized but will
also contain debug information.

® MinSizeRel: The executable program will be optimized to require as
little memory space as possible

® CMAKE C_FLAGS_*: For each of the four build types just listed, these vari-
ables state which C compilation flags should be used. That is, depending
on the value in the CMAKE BUILD TYPE variable, CMake will use the C
compiler flags listed in the corresponding cache variable.

® CMAKE EXE LINKER FLAGS *: Similar, but provides the linker flags for
each of the four build types.

As you’ll see later, it’s possible to define your own cache variables and initial-
ize them to a default value. The cMakeLists.txt build description can read all
cache values as if they were normal variables. The values can also be written to
using the standard set command.

Translation from cMakeLists.txt to the Native Build System
A final consideration in using CMake is to understand when and how each of
the CMake commands is translated into the native build system. The chapter
has already touched on this topic briefly, but it’s worth mentioning the detail a
second time.

CMake commands can be divided into two main groups:

1. Commands that take effect immediately when the cmake tool is invoked.
These include control-flow commands such as if, foreach, and macro, as
well as commands for setting and displaying variable values.

2. Commands that are translated into native build system constructs. These
include add executable, add library, add custom command, and

add custom target.

As you can imagine, the second category of commands contributes to the
native build system’s dependency graph. On the other hand, the first set of com-
mands enables you to control what gets added. You can use variables to control
the filenames that are added, loops to individually add a large number of files,
and macros to simplify the build description. The important fact is that only
the commands that impact the dependency graph are directly translated to the
native build system.
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Here’s a simple example to illustrate the concept. The following build descrip-
tion compiles two separate programs, calc and calculator, both using the
same source files.
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project (generating)
cmake minimum required (VERSION 2.6)

set (progl calculator)
set (prog2 calc)

execute_ process (
COMMAND date
OUTPUT_VARIABLE TIME_ NOW
)

foreach (prog name ${progl} ${prog2})
message ("Constructing program ${prog name} at ${TIME
NOW}™")
add_executable (${prog name} add sub mult calc)
endforeach ()

To make things interesting, the description is more complex than it needs to
be, although you shouldn’t have trouble following along. When the cmake tool
is invoked, you’ll see the following output (note the additional messages):

$ cmake ../src

The C compiler identification is GNU

The CXX compiler identification is GNU

Check for working C compiler: /usr/bin/gcc

Check for working C compiler: /usr/bin/gcc -- works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working CXX compiler: /usr/bin/c++

Check for working CXX compiler: /usr/bin/c++ -- works
Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Constructing program calculator at Sun Jun 6 16:05:28 PDT
=2010
Constructing program calc at Sun Jun 6 16:05:28 PDT 2010

Configuring done
Generating done
Build files have been written to: /home/psmith/obj

You can learn from this output that both set commands were executed, the
execute process command invoked the date shell command, the body of the

foreach loop was executed twice, and the message command displayed two
messages on the output. Effectively, the entire program was executed at the
same time the native build system was generated.

If you also take the view that add_executable is supposed to do nothing
more than add information to the native build system, its task is also complete.
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However, the executable programs (two of them) aren’t actually created until
you invoke the native build tool.

$ gmake

Scanning dependencies of target calc

[ 12%] Building C object CMakeFiles/calc.dir/add.c.o

[ 25%] Building C object CMakeFiles/calc.dir/sub.c.o

[ 37%] Building C object CMakeFiles/calc.dir/mult.c.o

[ 50%] Building C object CMakeFiles/calc.dir/calc.c.o
Linking C executable calc

[ 50%] Built target calc

Scanning dependencies of target calculator

[ 62%] Building C object CMakeFiles/calculator.dir/add.c.o
[ 75%] Building C object CMakeFiles/calculator.dir/sub.c.o
[ 87%] Building C object CMakeFiles/calculator.dir/mult.c.o
[100%] Building C object CMakeFiles/calculator.dir/calc.c.o
Linking C executable calculator

[100%] Built target calculator

It looks odd that all C files are compiled twice, but that’s exactly what
CMake is asked to do here. This makes sense, given the way the underlying
makefile framework stores object files in calc.dir or calculator.dir instead
of a directory that all programs share.

In summary, the commands in the CMake build description file aren’t trans-
lated directly into commands in the native build system. (There’s no one-to-
one mapping of commands.) Instead, the native build system provides the same
behavior, but using a different set of commands.

Other Interesting Features and Further Reading

CMake is certainly a complex and powerful tool, although this chapter hasn’t
gone into too much detail on all the features. This chapter has focused on the
generation of the native build system instead of everything CMake supports.
Following are a few other features that the CMake tool supports:

¢ String manipulation: The string command provides regular expression
matching, substring replacement, string comparison, and conversion to
upper- or lowercase.

¢ List manipulation: The 1ist command provides support for inserting,
removing, searching, and sorting values within a list.

¢ File manipulation: The £ile command enables a CMake build description
to read or write external data files, as well as to create new directories or
remove old files.
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e Mathematical expressions: The math command provides a simple interface
for computing expressions. Only the basic arithmetic, logical, and bitwise
operations are supported.

¢ Customizing data files: The configure file command generates a data
file from a template by replacing all occurrences of ${VAR NAME} or e
VAR_NaMEe with the value of that variable.

¢ Testing of executable programs: The CTest module is an extension of
CMake that provides automated testing of executable programs. By add-
ing test information into the CMakeLists.txt file, executable programs
can be sanity-tested immediately after they’re built.

¢ Packaging and installation: The CPack module is another extension that
supports the creation of software release packages, ready for installation
on the target machine. Chapter 13, “Software Packaging and Installa-
tion,” discusses packaging and installation in more detail.

¢ Platform-neutral shell commands: CMake provides built-in support for
common shell script operations. In many build tools, a developer is left
to deal with the difficulties of using shell commands that vary from one
machine to the next. To solve this problem CMake provides a uniform
interface for invoking common shell operations. This is particularly im-
portant when compiling software for both Windows and UNIX when the
shell commands are significantly different.

If you’re interested in using CMake’s more advanced features, you’re strongly
encouraged to learn more from the product’s own documentation. The online
wiki pages are available on the CMake web site [61], although advanced users
should consider reading a book on the topic [62].

Real-World Build System Scenarios

As with the other build tools described in this book, this section considers how
CMake can address a number of real-world build system scenarios. CMake’s
language features are similar to those in other build tools, so this section de-
scribes the detail of these solutions when it’s not already obvious.

Scenario 1: Source Code in a Single Directory

The first scenario is extremely simple to implement, making CMake a great tool
to use for small projects.
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1 project (scenario-1)
2 add_executable (calculator add sub mult calc)

Keep in mind that when CMake generates a native build system, it adds a
number of standard features, such as automatic dependency analysis.

Scenario 2: Source Code in Multiple Directories

The second scenario shows how to use CMake for larger projects in which the
build description is divided across multiple directories. You haven’t yet seen the
add_subdirectory command, but there should be no surprises in the way it
works.

The first build description file, src/CMakeLists.txt, appears at the top
level of the build tree and recursively includes content from the subdirectories.

project (scenario-2)
cmake minimum required (VERSION 2.6)

1
2
3
4
5 add_subdirectory (libmath)
6 add subdirectory (libprint)
7 add _subdirectory (calc)

The second build description file, src/libmath/CMakeLists.txt, builds
the Math library using the add_1ibrary command.

1 add library(Math clock letter number)

Next, src/libprint/CMakeLists.txt builds the Print library in the same
way.

1 add library(Print banner.c center.c normal.c)

Finally, src/calc/CMakeLists. txt pulls everything together by creating an
executable file and linking it with the Math and Print libraries.

1 add executable (calculator calc.c)
2 target link libraries (calculator Math Print)

To make use of this build description, you again execute the cmake tool. This
step is the same as in previous examples, so the output isn’t interesting to show.
Finally, you use the native build tool (in this case, GNU Make) to compile the
finished product.

$ gmake

Scanning dependencies of target Math

[ 14%] Building C object libmath/CMakeFiles/Math.dir/
clock.c.o
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[ 28%] Building C object libmath/CMakeFiles/Math.dir/
letter.c.o

[ 42%] Building C object libmath/CMakeFiles/Math.dir/
number.c.o

Linking C static library libMath.a

[ 42%] Built target Math

Scanning dependencies of target Print

[ 57%] Building C object libprint/CMakeFiles/Print.dir/
banner.c.o

[ 71%] Building C object libprint/CMakeFiles/Print.dir/
center.c.o

[ 85%] Building C object libprint/CMakeFiles/Print.dir/
normal.c.o

Linking C static library libPrint.a

[ 85%] Built target Print

Scanning dependencies of target calculator

[100%] Building C object calc/CMakeFiles/calculator.dir/
calc.c.o

Linking C executable calculator

[100%] Built target calculator

One of the many advantages of using a CMake-generated build system is that
the subbuild problem is solved and dependencies into other subdirectories are
dealt with correctly. For example, if you build in the 1ibmath directory, only
that library is rebuilt:

$ cd obj/libmath
S gmake
[100%] Built target Math

However, if you build in the calc directory, both the Print and Math librar-
ies are also considered for recompilation:

$ cd obj/calc

$ gmake

[ 42%] Built target Print

[ 85%] Built target Math
[100%] Built target calculator

As you can see, CMake generates a fully featured Make-based build system
without requiring the developer to understand anything about the underlying
framework.

Scenario 3: Defining New Compilation Tools

Adding the mathcomp compiler into a CMake-based build system requires using
the add_custom command directive. In addition, you use the execute process
command to gather the dependencies. Finally, you wrap the whole solution in-
side a macro to make it more convenient to use.
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1 project (scenario-3)

2

3 cmake minimum required(VERSION 2.6)

4

5 macro (mathcomp FUNC NAME INPUT FILE OUTPUT FILE)

6 execute process (

7 COMMAND /tools/bin/mathcomp -d ${INPUT FILE}

8 OUTPUT VARIABLE DEPS

9 )

10 separate arguments (DEPS)

11

12 add_custom_command (

13 OUTPUT ${OUTPUT FILE}

14 COMMAND /tools/bin/mathcomp -c¢ -o ${OUTPUT FILE}
15 -f ${FUNC NAME} ${INPUT FILE}

16 DEPENDS ${DEPS}

17 )

18 endmacro (mathcomp)

19

20 mathcomp (equations ${PROJECT SOURCE DIR}/equations.math

equations.c)
21 add_executable (calculator calculator.c equations.c)

Lines 5-18 define a macro that encapsulates the complexity of this solution.
Line 20 invokes this macro to generate the equations.c output file from the
equations.math input file. The build system executes from within the object
directory, so you use the PROJECT SOURCE DIR variable to access the source
file.

Looking now at the macro definition, lines 6-9 invoke the mathcomp com-
piler with the -d option, to determine the dependencies present in the .math file.
The output from this command is placed in the DEPS variable. On line 10, this
space-separated output is translated into a list of separate filenames.

The add_custom command directive on lines 12-17 is now fairly straightfor-
ward. You already know the name of the output file, and you’ve just computed
the list of dependencies. The /tools/bin/mathcomp compiler is ready to be
invoked in the same way you did for GNU Make, Ant, and SCons.

One final observation is that add_custom command makes the new tool avail-
able for use by the native build system. That is, when the native build system
needs to create the equations. c file, it directly invokes the mathcomp compiler.
However, notice that the execute process command determines the source
file dependencies. This command is used only when the cmake tool is initially
invoked, which is before the native build tool is ever called into action.

The limitation here is that when source files are modified, the native build
system won’t notice if any dependencies have changed. Before long, the build
system starts using outdated information. CMake solves this problem for C
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and C++ files by requiring the IMpPLICIT DEPENDS keyword for the add
custom command directive. To support this same feature for the mathcomp
tool, the standard CMake system must be modified.

Scenario 4: Building with Multiple Variants

The multivariant scenario takes advantage of the configuration cache, where the
user can indicate which CPU type to compile for (i386, powerpc, or alpha).
The build system then validates the selection and chooses a suitable compiler for
that CPU type. Unlike the GNU Make and SCons solutions, there’s no require-
ment to create a per-CPU build directory. Instead, CMake already requires users
to create their own directory for object files.

$ mkdir obj-alpha

$ cd obj-alpha

$ cmake -DPLATFORM=alpha ../src

Alternatively, the ccmake command (refer to Figure 9.2) can provide a more
interactive user experience. The CMake build description is as follows:

1 project (scenario-4)

2

3 set (PLATFORM 1386 CACHE STRING "CPU Type: 1386, powerpc
or alpha")

4

5 if (NOT ${PLATFORM} MATCHES "” (1386 |powerpc|alpha)$")

6 message (SEND_ERROR

7 "Invalid PLATFORM. Must be one of i386, powerpc or

alpha")
8 endif ()
9

10 message("Compiling code for platform ${PLATFORM}")
11

12 set (CMAKE C COMPILER /tools/bin/gcc-${PLATFORM})
13

14 add_executable (calculator add sub mult calc)

Line 3 demonstrates the creation of a new cache variable named PLATFORM.
This command is similar to a standard set command, except that you use the
cacHE keyword to indicate that the user can configure the value when generat-
ing a new native build system. As usual, the default CPU type is i386; in this
case, a text string (“CPU Type: 1386, powerpc or alpha”)is provided as a
prompt to the user.

The rest of the build description is easy to understand. Lines 5-10 validate
the user’s input and provide a suitable message. Line 12 selects the compiler to
be used (CMAKE _C_COMPILER is another standard cache variable). Finally, line
14 generates the executable program.
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Scenario 5: Cleaning a Build Tree

As you might expect, the native build system created by CMake already sup-
ports a “clean” target for any object files it knows about. If add_executable
or add_library is used to compile source files, CMake already knows the name
of the executable or library file, as well as any intermediate object files. For
generated files that aren’t automatically detected, the name can be listed in the
ADDITIONAL MAKE CLEAN FILES property. This is a per-directory property
that contains the list of files to be removed from that directory.

Scenario 6: Debugging Incorrect Builds

CMake’s two-phase approach to building software makes debugging a little
more challenging. In some cases, the problem lies in the original cMakeLists.
txt file, but in less common cases, a problem might arise in the native (auto-
generated) build system. Even if the bug was caused by an error in the high-level
description, you might locate the problem only when running the native build
tool.

Start by focusing on the debug facilities that the CMake tool provides. These
are used to analyze CMake’s flow of control as it generates the native build
system:

¢ The --system-information flag: Provides an extensive dump of infor-
mation about the build machine as it executes the cmake command. This
includes the location of compilation tools, the choice of command-line op-
tions to pass to each tool, and various other system-dependent parameters.
If you suspect that an invalid tool or command-line option is used, start by
validating this output.

e The --trace flag: Provides a line-by-line trace of CMake’s execution.
Every variable assignment, condition, loop, macro, and command is dis-
played in the order in which it’s executed. By following along with the
trace output, you can validate your expectations on how the program
should execute.

If observing the CMake generator in action didn’t solve your problem, try
using the native build tool’s debugging features. Each build tool, such as GNU
Make, has its own range of options for tracing the build system’s execution. If
you manage to locate the source of the problem, you need to work backward
and identify which lines in the CMakeLists. txt are causing the issue.

The tricky part is when the native build system contains a complex frame-
work that you had no involvement in writing. You might be able to scour the
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framework to locate the problem, but executing the build and watching the out-
put is usually much easier. Invoking gmake with the VERBOSE=1 flag provides a
nicely formatted output to show each of the compilation commands.

In the worst case, the native build system might contain a bug, even though
the cMakeLists. txt file is correct. In this case, you have no choice but to fix
the CMake tool itself. Some people might find it tempting to fix the bug directly
in the native build system, but the CMake generator would soon overwrite any
changes.

Praise and Criticism

CMake isn’t as well known as other build tools, such as GNU Make and Ant, so
there isn’t as much feedback on the use of the tool. However, vocal users have
provided the following opinion.

Praise

¢ CMake can use the same description file to generate a build system for a
range of different platforms. This is particularly important for Microsoft
Windows systems, which haven’t typically received much support in the
open-source world.

e The CMake build description language is simple to use, and creating a new
build system is trivial.

¢ The generation of native build systems is high quality, with a lot of focus
placed on the correctness of the build process. This contrasts with a stand-
ard GNU Make build system, in which developers must create and debug
their own framework.

e CMake is just as easy to use as the SCons build tool, and the resulting
build system is much faster.

e The integration of CPack for packaging and installation and CTest for
testing purposes allows for a complete end-to-end build system.

¢ The special-purpose build description language is built into the cmake
tool. Therefore, there’s no need to install an additional language inter-
preter (such as Python) on the build machine.
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Criticism

In contrast, the following concerns have been raised regarding the CMake tool:

Autogenerated build systems don’t give you the complete power you might
expect. If you’re creating a complex build system, you might feel inclined
to develop directly with the native build tool. This is also true if the au-
togenerated build system is buggy.

The CMake tool introduces yet another language instead of building upon
the power of an existing language. The learning curve for CMake is quite
high, especially with all the advanced features that use an unfamiliar syn-
tax.

The CMake documentation is not as readable as the documentation for
other build tools. You might find that some of the examples aren’t explicit
enough to provide the help you need; in some cases, the documentation
doesn’t match the tool’s behavior.

Although CMake does support cross-platform development, in many plac-
es it’s still necessary to write different build description code for a Linux
environment versus a Windows environment.

Evaluation

Let’s evaluate CMake against the build system quality measurements discussed
in Chapter 1, “Build System Overview.”

e Convenience: Good: CMake wins points for supporting a high-level ab-

straction of the build system, making it easy for developers to describe
their build process. However, CMake doesn’t provide a general-purpose
programming language, making it hard to express complex requirements.
Additionally, the capability to debug build problems largely depends on
the native build tool (such as GNU Make), as well as an understanding of
CMake’s autogenerated framework.

Correctness: Excellent: Regardless of which native build tool is used,
CMake ensures that multidirectory support is enabled, along with auto-
matically detecting dependencies.

Performance: Excellent: Although it depends entirely on the native build
tool, CMake has the potential to create a high-performance build system.
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e Scalability: Excellent: For the same reason, CMake can generate a highly
scalable build system supporting a large number of source files and file
system directories.

CMake is an excellent choice of build tool for C/C++-based projects, and
directly competes with SCons in this area. CMake however has the added value
of supporting native build tools, enabling the use of platform or vendor-specific
optimizations for those tools, some of which we’ll discuss in Chapter 19, “Faster
Builds.” CMake isn’t a good choice for Java or C# development.

Similar Build Tools

CMake isn’t the only build tool that generates a native build system, and it cer-
tainly wasn’t the first. This section briefly discusses the Automake and Qmake
build tools, which both take a similar approach.

Automake

The Automake build tool is part of the Autotools suite [63], which is discussed
in Chapter 15, “Build Machines.” The most common tool from the suite is
Autoconf, which is responsible for generating the GNU configure script that
many UNIX developers are familiar with. In contrast, Automake focuses on
creating a makefile framework based on a high-level description of the build
process.

The Autotools suite is tightly coupled to the GNU development environ-
ment and is therefore dependent on UNIX-like systems. The build description
for Automake is simple to understand, at least for small programs. Here’s the
Makefile.am file for the calculator program:

1 bin PROGRAMS = calculator
2 calculator SOURCES = add.c sub.c mult.c calc.c

The syntax of each variable name indicates the purpose of the values on the
right side. For example, bin PROGRAMS indicates that the calculator program
should be installed into the default bin directory whenever the user issues the
make install command. Also, the calculator SOURCES variable provides
the list of files to be compiled and linked into the calculator program.

As you might expect, running the automake tool on this build description cre-
ates a makefile that provides all the default targets (including a11, clean, and
install). It also hides the complexities of creating a makefile framework, such
as automatic dependency analysis.
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CMake is generally considered as a replacement for the Autotools suite, espe-
cially for software that needs to run on non-UNIX systems. CMake’s capability
to adapt to different build machines makes it a worthy competitor for Auto-
make. On the other hand, the large amount of legacy software that uses Auto-
tools suggests it’ll continue to be one of the most popular makefile-generation
systems.

Qmake

The Qmake build tool is part of the Qt development environment [64]. Qt was
specifically designed for cross-platform application development, providing a
uniform set of GUI functions across all supported platforms. Naturally, the
Qmake tool was also designed with this goal in mind.

The build description file for Qmake is similar to that of other tools, at least
for simple programs:

1 TARGET = calculator
2 SOURCES add.c sub.c mult.c calc.c
3 HEADERS numbers.h

Qmake can generate either a makefile framework or a Visual Studio project.
Because Qmake is targeted at Qt developers, the build system automatically
includes the necessary C/C++ header file directories and libraries to support a
Qt-based application.

If you’re planning to develop a cross-platform application, both Qt and
Qmake are definitely worth investigating.

Summary

A key feature of the CMake build tool is that it can generate a native build sys-
tem for a wide range of supported platforms. The software developer can focus
on creating a single platform-neutral build description (CMakeLists.txt) and
rely on CMake to generate the native build system.

The CMake language provides support for conditions, loops, and macros,
as well as more advanced commands for compiling executable programs and
libraries. CMake doesn’t need to map these constructs directly into those sup-
ported by the native build tool, but instead it provides a build system with equiv-
alent functionality.

CMake variables are similar to those in other programming languages, but
the use of per-file and per-directory properties is somewhat unique. Among other
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things, properties control which compilation flags are used when compiling each
of the source files.

Support for cross-platform development is also available. A CMake program
can query the build machine to locate tools, header files, and libraries and can
test the C/C++ compilers to discover which language features are supported.

CMake is certainly a build tool to be taken seriously for C/C++ development
because it removes much of the complexity involved in creating a build frame-
work. CMake’s support for a wide range of operating systems and native build
tools makes it a strong candidate for developing cross-platform software.
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Chapter 10

Eclipse

The fifth and final build tool this book studies isn’t actually a build tool at all.
The Eclipse integrated development environment (IDE) [33] provides a complete
set of development tools for code editing, compilation, version control, testing,
and tracking of tasks. The build functionality in Eclipse is just one part of the
wider toolset, and in many cases, the compilation happens behind the scenes;
you don’t even know it’s taking place.

Although Eclipse is most well known for its Java support, it also provides
development tools for C, C++, Python, Perl, PHP, UML, and many other lan-
guages. Eclipse is fully extensible, and any vendor can add support for its own
tools and languages. Since 2001, Eclipse has been an open-source product, but
it continues to be sponsored by IBM (the original owner) and a number of other
industry leaders.

If you haven’t considered using Eclipse in your own development environ-
ment, you should definitely do so. Even if you’re an expert with editors such
as vi or emacs, Eclipse can still increase your productivity. Eclipse can suggest
what you might want to type next; it can collapse parts of the code you’re not
interested in seeing; it enables you to browse the classes defined within your
program; and it can highlight compilation errors a few seconds after you type
the bad code. Eclipse comes with a learning curve to use these exciting features,
but most users see their productivity increase in the long term.

As you might expect, this chapter focuses exclusively on the compilation
features built into Eclipse. Although Eclipse can compile a wide range of Java
programs, including web services and JSF and JSP code, this chapter focuses on
building standard Java classes and JAR files, using the Java Development Tools
(JDT) plug-in. As usual, you’ll consider how Eclipse can be used in real-world
scenarios.

The key observation to make as you study Eclipse is that the edit-compile-run
cycle is dramatically different. No longer are these phases clearly defined: They
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don’t have to be, because the Eclipse GUI makes them work together seamlessly.
You’ll also notice that you don’t write a build description file (such as a make-
file): Eclipse already knows enough about the structure of the software. Relying
on the GUI to provide the build functionality makes constructing a build system
easy but also limits the set of available features.

This chapter follows the same format as for the previous build tools.

The Eclipse Concepts and GUI

Eclipse doesn’t provide a programming language to describe the build process,
so it’s not possible to summarize the syntax of the language. Instead, this section
looks at the GUI operations that enable the tool to infer which build steps are
required. For example, if the developer adds a new source file into an Eclipse
project, the build system automatically compiles that source file and makes it
part of the application. On the other hand, if the user wants to exclude a source
file, there’s also a menu item to allow that.

For more complex build environments, Eclipse provides a number of prefer-
ences to configure the tool. This covers much of the same functionality that a
text-based tool provides; although, everything is configured by clicking on GUI
widgets instead of setting variables or writing commands.

In studying the Eclipse JDT build environment, you’ll follow the workflow of
a typical programmer:

¢ Creating projects: How a new project is created, and how the source and
object files are managed within the build tree

¢ Building a project: How an Eclipse Java project is compiled, how that
project can depend on other projects, and how compiler options are speci-

fied

¢ Running a project: How an Eclipse project can be executed in one of the
many supported runtime environments

¢ Utilizing the internal project model: How Eclipse can improve productivity
by constantly updating an internal model of the program

¢ Other build features: Other interesting Eclipse features related to building
software

Let’s start with the basics to create a new project and add source files.
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Creating Projects

Before you can do any development work in the Eclipse environment, you must
start a new project. This creates a directory on your file system in which to store
files, and configures Eclipse to use the appropriate Java runtime environment
and build options.

When Eclipse first starts, you’re prompted to select a directory for your work-
space. That is, you must decide which file system directory should contain all
your source files. A single workspace can contain any number of projects, with
each project potentially being a different type. Figure 10.1 shows a workspace
with five Java projects, with only the first project (Example Project)expanded
to show the Java source files.

.-:DProjec &3 T Hierar gt ounit = 8
0 & =
~ =) Example Project
¥ @Esrc
¥ 1 com.arapiki.example
b [5] application.java
b I Datanhject java
b [J] WordType.java
¥ [#test-src
< i com.arapiki.example
b [J] TestDataobject.java
b [J] TestWordType.java
] TestotherStuff.java
P =) IRE System Library [JavaSE-1.6]
= =4 JUnit 3
b junit.jar - /home/psmith/Downl
CIScenario 1
I Scenario-2-calc
I Scenario-2-math

I Scenario-2-print

| [0 | 2]

Figure 10.1 The Project Explorer view, showing the current Eclipse projects and the
files they contain.

If you look carefully, you can see that Example Project has a different icon
from the Scenario projects at the bottom of the listing. This indicates that only
Example Project is available to be edited; the remaining projects are in the
closed state.
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Looking at that first project more closely, you can see two top-level directo-
ries named src, for the main application code, and test-src, for the unit-test-
ing code. It’s useful to keep these separate so you don’t confuse the production
code with the test code. Note, however, that both sets of source files are stored
within the com.arapiki.example package, so the test code still has access to
package-private classes.

One point that’s not so obvious is that TestOtherStuff.java has been
excluded from the build process. Even though the file is still in the project’s
directory, the different icon tells you that it won’t be compiled and linked into
the final application. In the Eclipse environment, it’s important to notice icons
because they often provide important detail.

Finally, you can see that this project uses version 1.6 of the JRE System
library, as well as version 3 of the JUnit library, for unit-testing purposes. An
Eclipse project can contain any number of third-party JAR files.

Selecting a Project Type

To get this new project started, you use the File, New, Project menu op-
tion and select the type of project you need (see Figure 10.2). Eclipse provides a
wide array of project types, and you can extend this list by adding third-party
plug-ins.

MWl Rroja st

Select a wizard —>

Wizards:

B

b = Eclipse Modeling Framework
b =EB
¥ = Java
22 Java Project
# Java Project from Cxisting Ant Buildfile
¥ [&Java EE
X Application Client Project
&Y Connector Project
(T Enterprise Application Project
B Utility Project
b (= Javascripl

@

® Canue| |

Figure 10.2 Selecting the type of a new Eclipse project.
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Even though all projects contain source code, the project’s type dictates how
those files can be edited or compiled. As an example, a code editor must know
how to perform syntax coloring on the source code, as well as how to suggest
code completion hints. The project must also be aware of how to compile the
source code into an executable program.

A regular Java project contains a collection of .java files that are compiled
and built into a Java application or JAR file. On the other hand, a Java Enter-
prise Edition (JEE) project automatically includes a deployment descriptor, the
necessary Java EE libraries, and a means to deploy the program on an applica-
tion server. Clearly, it pays to understand what each type of project can offer
you.

In this case, the example focuses on simple Java applications, so see what
happens when you create a Java project. The next step in the sequence is to
provide some high-level detail (see Figure 10.3).

Mew JavaRroject

Create a Java Project o
Create a Java project in the workspace or in an external location. S

Project name: [Example Projec:t| l

Contents
® Create new project in workspace

2 Craate project from egisting source

JRE

<»

9 Use an execution environment JRE: JavaSE-1.6

_) Use a project specific JRE:

) Use default JRE (currently 'jdk1.6.0_18") Configure JRFs...

Project layout

7) Use project folder as root for sources and class files

9 Create separate folders for sources and class files Canfigure default...
@ Nexl > | Canuel Einish

Figure 10.3 Creating a new Java project.
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This figure shows the basic dialog box where the user can specify the detail of
the new project. Plenty of options are available for configuring more advanced
parameters, but let’s focus on the basics:

¢ Project name: This is the name of the underlying file system directory
(within the workspace). It’s also used when changing the project’s con-
figuration options.

¢ Contents: In many cases, yow’ll start with an empty project directory,
although it’s also possible to start with source code that’s already on your
file system. Another option is to populate the project directory from a
version-control system, such as CVS.

¢ JRE: Your source code might depend on a particular version of the Java
Runtime Environment. You can specify the exact file system path to your
JRE or simply let Eclipse choose any of the JREs that match your version
requirements.

¢ Project layout: You have the option of keeping .java and .class files in
the same directory or separating them into two different directories. The
recommended default is to create a src directory for source code and a
bin directory for class files.

You can use several other dialog boxes (by selecting the Next button), but
when you eventually press the Finish button, the project is created.

The Eclipse Workbench
Figure 10.4 shows the new Eclipse project after you have manually added a
number of Java source files.
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Figure 10.4 The main Eclipse workbench window.

The entire Eclipse GUI consists of a number of smaller windows, containing
both editor windows and views. The layout of these windows is fully configura-
ble, but this is what a typical Java developer starts with:

¢ The package explorer view: On the left side, you see the Package Explorer
view, which, for Java projects, is similar to the project explorer you saw
earlier. This is used for navigating around the project’s source tree and
opening the source files for editing.

¢ The editor window: In the center of the GUI is the source code for the
DataObject.java file. Developers with a large screen space normally
expand this window to cover most of their desktop.

¢ The outline view: On the right side is an overview of the Dataobject
class. When you click on the various method names, the editor jumps to
that part of the source code. This is one of Eclipse’s many productivity
features.
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e The console view: At the bottom of the screen is the output of the pro-
gram, left over from last time you pressed the Run button. In this case, it’s
a simple text-based application with only two lines of output.

To the novice user, the Eclipse interface can be rather overwhelming, espe-
cially with all the menu options and configuration boxes. Starting with this basic
GUI layout is a good way to get familiar with the tool.

The Source Tree
If you’re more comfortable thinking about source files and lines of code, let’s see
how an Eclipse project is stored. One of the limitations of a GUI is that you’re
not in control of what’s happening internally, which means it’s harder to under-
stand what’s really going on.

Now take a quick look at the files in the Example Project subdirectory. Pay
close attention to the top-level directory name, which indicates the purpose of

the file.

src/com/arapiki/example/Application.java
src/com/arapiki/example/WordType. java
src/com/arapiki/example/DataObject.java
bin/com/arapiki/example/WordType.class
bin/com/arapiki/example/DataObject.class
bin/com/arapiki/example/Application.class
test-src/com/arapiki/example/TestDataObject.java
test-src/com/arapiki/example/TestOtherStuff.java
test-src/com/arapiki/example/TestWordType.java
test-bin/com/arapiki/example/TestDataObject.class
test-bin/com/arapiki/example/TestWordType.class
.project

.settings/org.eclipse.jdt.core.prefs

.classpath

The src and test-src directories were visible in the Package Explorer win-
dow, so there’s no surprise there. On the other hand, bin and test-bin were
hidden from view. Developers don’t normally need to see the .class files, as
long as they trust the build system to keep everything up-to-date.

This approach of having two source directories and two output directories
is easy enough to configure using the Java Build Path GUI window (see Figure
10.5).
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P penliEs i ERdmp R EEL

Java Build Path

Rasource
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Source tolders on buld path:

& Allow output falders for source folders

Default output folder:

b Java Coda Style ¥ [ Example Project/src Add Folder...
b Java Compiler fi Output folder: (Default output folder) W
b Java Editar = Included: (Al _
Javadoc Location ¥ Excluded: (None)
Project References &7 Native library location: (None) ——————————
. Remove
Refactoring History ¥ [ Example Project/test-src —— e —
Run/Nehug Sattings (5 output folder: Example Project/test-bin
P Task Repnsitary # Included: (All)
Task Tags & excluded: com/arapiki/example/ lestOtherstuif.java
b wvalidatian & Mative library location: (None)
WikiText

Cxample Project/bin Crowse...

® Cancel ’ oK

Figure 10.5 The Java Build Path window.

In the center of the screen, you see the definition of the two source locations.
For the src directory, you use the default output location (Example Project/
bin); for the test-src directory, you explicitly provide the name of the test-
bin directory. The Included: and Excluded: fields, similar to the <fileset>
task in Ant, enable you to select which source files are included in the build
process. In this case, TestOtherstuff.java is explicitly not compiled.

The final three files in the project directory are a text-based view of the GUI
configuration. You’re discouraged from hand-editing these files, but it doesn’t
hurt to understand what they’re used for.

® _.project: This file contains an XML description of how this project
should be configured. Given that this is a Java project, the javabuilder
feature is used for compiling code and the javanature feature describes
all the characteristics of the project.

<?xml version="1.0" encoding="UTF-8"?>
<projectDescriptions
<name>Example Project</names
<comment ></comment >
<projectss>
</projects>

275



276

CHAPTER 10 EcCLIPSE

<buildSpec>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</
name>
<arguments>
</arguments>
</buildCommands>
</buildSpec>
<natures>
<natures>org.eclipse.jdt.core.javanature</
nature>
</natures>
</projectDescriptions>

® _settings/: This directory contains a number of files that store the
project’s configuration. In this case, only the core preferences have been
modified, so only the org.eclipse.jdt.core.prefs file appears in the
build tree.

® _classpath: An XML version of the Java Build Path GUI you saw in
Figure 10.5. You should relate the lines of code back to the screenshot.

<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="src" path="src"/>
<classpathentry excluding="com/arapiki/example/TestOther-
Stuff.java"
kind="src" output="test-bin" path="test-
src"/>
<classpathentry kind="con"
path="org.eclipse.jdt.launching.JRE CONTAINER/org.
eclipse. \
jdt.internal.debug.ui.launcher.StandardVMType/Java-
SE-1.6"/>
<classpathentry kind="con"
path="org.eclipse.jdt.junit.JUNIT CONTAINER/3"/>
<classpathentry kind="output" path="bin"/>
</classpath>

If you look carefully, none of this information describes the build process,
but it still gives Eclipse enough information to compile the Java classes. Now
continue by seeing how Eclipse JDT performs a build.

Building a Project

Keeping in line with the IDE philosophy, building a project is done directly in
the GUI environment. Whenever a source file is saved to disk, the Java compiler
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is invoked and the build results are shown immediately. As any experienced pro-
grammer knows, it’s important to compile your code frequently to make sure
that errors don’t get out of hand. The Eclipse build process has been optimized
so that compilation takes only a few seconds.

If the Java compiler encounters any errors or warnings, they’re reported in
the Problems window at the bottom of the Eclipse GUI (see Figure 10.6).

1 . .. ; )
{2 Problems &2 @ Javadoc [ Declaration| 3= call llierarchy 4" Search| & consale

2 errors, 0 warnings, 0 others

Description

The method setValua(int) from the type DataObject refers to the missing type viod

(x]
& viod cannot be resolved to a type

| 1 | |>

Figure 10.6 The Problems window, showing a compilation error.

When you click on the error report, the Eclipse editor opens the offending
source file and jumps to the line containing the error. This is another way to
make sure that errors are resolved quickly.

Another good practice is to run the software on a regular basis, which is
also easy in the Eclipse environment. When the Run button is pressed, Eclipse
saves any modified source files and compiles any recent changes. Assuming that
no errors arise, the program starts executing and the output is shown in the
Console window.

Eclipse is fully configurable, so if you prefer a more traditional build envi-
ronment, you can disable the Build Automatically option. If you do so, you
need to press the Build A1l toolbar button every time you want to compile
your code.

Dependency Analysis
As with every other build tool, Eclipse uses dependency analysis to figure out
which source files have changed and whether they depend on other files that
have changed. What’s interesting about the Eclipse Java builder is that it uses
information stored by the IDE framework instead of recalculating the dependen-
cies for itself. This speeds up the compilation process, which is important if you
compile the program each time you save a file.

Whereas other build tools use time stamp or MDS checksum comparison,
Eclipse already knows which files were edited. After all, the tool itself was
responsible for saving the file to disk, so it simply keeps track of everything
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that was modified. If you edit a file using a different editor, Eclipse won’t know
about the change and, therefore, won’t rebuild that file.

The next optimization is in the recompilation of source files that depend on
other source files. For example, if A.java contains an import directive for class
B, then you might expect that A.java will be recompiled whenever B.java is
changed. However, the Eclipse build tool is smart enough to know whether the
change in B. java is actually relevant.

For example, if the developer modified only a comment in B.java or modi-
fied a line of code inside the body of one of B’s methods, it can’t impact the
compilation of A.java. On the other hand, if one of B’s methods was modified
to include new parameters or a different return type, A.java is more likely to
be impacted.

Given that most code changes impact only a single source file and don’t
modify a method’s type signature, these are valuable optimizations. It would be
pointless to check the time stamp on hundreds of files when the user typically
saves one at a time. It’s also pointless to recompile other files simply because they
might be impacted by a change, even though they’re usually not affected at all.
Chapter 19, “Faster Builds,” talks more about these optimization techniques.

Compiler Options
Another aspect of Eclipse’s integration is that the Java compiler is actually built
into the IDE; it’s not a third-party addition. In contrast, build tools such as Ant
delegate to an external compiler, such as the Sun JDK. Eclipse’s approach might
seem strange at first, but having the compiler built into the IDE adds significant
value. You’ll hear more about this shortly.

Eclipse provides a variety of GUI dialog boxes for modifying the compiler
settings, similar to an external compiler’s command-line options. For example,
a developer can change the following things:

¢ JDK compliance level: Specifies the version of the Java Development Kit,
such as 1.4, 1.5, or 1.6, that the Eclipse compiler should comply with. This
impacts the Java syntax accepted by the compiler and affects the format of
the .class files.

¢ Java runtime: Enables you to control which Java runtime environment
(JRE) is used when executing the program. At compile time, it’s important
to link against this same set of JRE libraries that you’ll use at runtime.

¢ Debugging information: Specifies the level of debugging information to be
inserted into .class files.
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e Compiler error/warning handling: The developer can control whether
each type of compilation problem is reported as an error or a warning, or
whether it’s ignored completely.

¢ Maximum number of errors: Enables you to control the maximum number
of errors to be reported in each source file.

¢ Javadoc tags: Instructs the compiler on how to handle errors in Javadoc
tags.

Take a look at a couple GUI dialogs. First, Eclipse enables you to select a
particular instance of the JRE to be used when running the software (see Figure
10.7). Not only does the JRE provide a virtual machine to execute the .class
files, but it also includes a number of standard Java libraries.

|::; Edlit JRE "|
JRE Definition \
Specity attnbutes for a JRE 5
JRE home: [If’opt_.-’jdl:_;jdl:l.ﬁ.0_18 ] Directory... |
IJRE name: [jdic1.6.0_18 |

Default VM Arguments: l ]

JRE syslem libraries:

i Jopt/dl/jdicl.e.0_18/re/lib/resources jar Add External JARs... |
8 Jopt /jdi/jdic1.6.0_18/jre/lib/rt.jar -
& Jopt/jdle/jdl:1.6.0_18/jra/lib/jece.jar

&4 Jopt/jdi/jdk1.6.0_18/jre/lib/jce jar

r_-‘?i Jopt/dlk/jdkl.6.0_18/jre/lib/charsets.jar

[ /o pt/jdl/jdk1.6.0_18/jre/lib/ext/sunjce_provider.jar

'; JoptAgdli/jdkl.6.0_18/re/lib/ext/dnsns.jar

=] Jopt/jdl/jdk1.6.0 18/jre/lib/ext/localedata.jar

L S S

o Jopt/jdlk/jdkl.e.0_l8/jre/lib/ext/sunpkcs 1L, jar Restore Default

@ Canuel Einish

Figure 10.7 The Edit JRE window.
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In this example, you’re explicitly using the version 1.6.0_18 runtime environ-
ment that was installed into /opt/jdk. Of course, the Eclipse compiler must be
configured to generate .class files of the correct compliance level for this JVM.
If for some reason you decide to use a JDK 1.4 virtual machine, you need to ask
the compiler to generate the older .class file format.

A second feature of the Eclipse Java compiler is that each compilation mes-
sage can be set as either an error or a warning, or perhaps can just be ignored
completely (see Figure 10.8). An error message halts the compilation process,
whereas a warning simply displays the message on the Problems window. Most
of these warnings encourage good programming style instead of being serious

€rrors.

FrrorsWarnings S -
P General I Configure Project Specific Setting:[~]
b ant Select the severity level for the following optional Java compiler problems:
P /s ¥~ Code style
P Data Management Non-static access to static member: | wamning < |
b Help . . ——
Indirect access to static member: | Ignore 2 |
P Install/Update -
< Java L Unqualified access to instance field: | 1gnore < |
P Appearance Undocumented empty block: | Ignore T | H|
P Build Path . . )
e Fa Access to a non-accessible member of an enclosing type: | Ignore < |
P Code Style —
; Method with a constructor name: |Warning < |
~ Compiler _
Ruilding Parameter assignment: | Ignore < |
Mon-externalized strings (missing/unused $NON-NLS$E tag): | Ignore  © |
Javadoc i . " 5 .
* Potential programming problems
Task Tags S
b Serializable class without serialVersionUID: |Warning < |
Dcbug e S M
b Editor Assignment has no effect (e.g. " = x'): |Warning < |
P Installed JREs Possible accidental boolean assignment (e.g. 'if (a = b)'): | 1gnore < |
Junit . ]
) ) 'finally' does not complete normally: |Warn|ng < |
Properties Files Ec ————
lava FE || Empty statement: | Ignore % | i
. I~ =
s ) (< —— > )
@ Cancel | | oK l

Figure 10.8 The compiler’s Errors/Warnings preference page.
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When compiling legacy software, or code written by someone else, it may
be necessary to ignore some of these messages until you get a chance to fix the
code. On the other hand, your newly written source code should have as many
of these options enabled as possible, as long as you believe that the errors or
warnings are worth paying attention to.

Packaging

The Eclipse incremental build system, which compiles a file when it’s saved, gen-
erates only .class files. When a program is executed, the JVM uses those class
files to execute the program. At no point in time are the class files packaged into
a JAR file because this normally isn’t required during development.

If you want to make your program available outside the Eclipse environment,
you need to explicitly export the classes into a JAR file. As you might expect,
the export process requires you to fill out a number of GUI forms. You need to
specify the files you want to include in the archive (source files or class files),
and you can optionally include a manifest that contains extra metainformation.

Depending on the type of Eclipse project you’re using, you might export more
than just plain JAR files. For example, an Enterprise Java Beans (E]JB) project
can export the project content to an EJB format file. Likewise, a Java Web
Application project can export to the WAR format file.

Project Build Paths

Although you’ve seen only a small example, Eclipse can actually manage thou-
sands of source files. For the sake of productivity, it’s a good idea to break large
programs into smaller components, using a separate Eclipse project for each
part of the software. It’s also common to use third-party JAR files downloaded
from the Internet.

As an example, a large application could be logically divided into a number
of libraries, each providing an API to the main application code or to other
libraries. Each library would be stored in a separate Eclipse project, as would the
main program. In addition, a project is free to use one or more third-party JAR
files instead of rewriting that same functionality.

To make all this happen, the Eclipse build tool must know all the class files
and JAR files required to run the project. If one project depends on another
project, the two lists of files must be merged. A project’s build path can be con-
figured to include any combination of the following:

¢ Any directory of class files within the project’s build tree: This is normally
the bin directory or any other output directory you’ve defined.

¢ A JAR file that resides in your project’s build tree: You saw this case ear-
lier, when the JUnit JAR file was added to the project.
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* An external class directory or JAR file that isn’t part of your project: You
can use this to access files from anywhere on your build machine instead of
inside your workspace. Because each machine can store the files in a differ-
ent location, the build path should be accessed via a variable. Developers
must therefore set the variable appropriately for their own machine.

When a project is compiled and executed on a virtual machine, Eclipse sets
the Java class path to include each of the class directories or JAR files. This
is essentially the same as defining the Java CLASSPATH environment variable,
except that the GUI manages the content and order of entries.

For larger programs in which a project might depend on one or more other
projects, the build paths are combined. That is, if project A depends on both
projects B and C, the cLASSPATH variable contains all the directories and JAR
files that all three projects require.

To make this project dependency system more usable, developers can indi-
cate that only part of a project should be used. By providing Ant-like regular
expressions, you can state that certain classes from the imported project are
either discouraged or completely forbidden. Depending on your project settings,
using any of the discouraged or forbidden classes will result in a build warning
or error.

You can see another example of this multiproject approach in the real-world
build scenarios. For now, let’s examine the final development step, which is to
actually run the compiled program on a Java Virtual Machine.

Running a Project

Running a project in the Eclipse environment can be as simple as pressing the
Run Application button on the toolbar. This assumes that you’ve already
configured the project to use a suitable JRE and the correct command-line argu-
ments. Eclipse provides a wide range of configuration parameters for controlling
how a program should be executed.

Back when you compiled the project, you needed to state which JRE will
be used when the program executes. This gives the compiler the knowledge of
which runtime libraries are available to compile against, as well as which format
the generated class files should use. Newer class file formats can be read only by
newer virtual machines, whereas using an older machine gives a runtime error.

Assuming that you run the program within the Eclipse environment, you can
be confident that a matching JRE will be used. If you change the JRE configu-
ration, Eclipse prompts you to rebuild all the class files, just to make sure they
match.
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The next step in running a program is to select a run configuration. A Java
program can execute in many ways, so you first need to select the suitable envi-
ronment. After all, the program is really just a collection of Java classes, so you
need to decide what should be done with those classes.

Figure 10.9 shows the Run Configurations window.

Eln Configurations

Create, manage, and run configurations
Kun a Java application @
OB % B3 Name: [Application ]
® Main - Arguments | B4 IRE | % Classpath| 52 Source | P8 Environment | 1
g Apache Tomecat Project:
[E] c/C++ Application |Example Froject l Lrowse. .. |
[E] ¢/Cc++ nemote Applic
@ DSF PDA Application | | | M8in class:
@ Cclipse Application |com.arapiki.example.Application ‘ Search... |
B Eclipse Data Toals [ Include system libraries when searching for a main class
ﬁ Generic Server [ Include inherited mains when searching for a main class
 Generic Server(Exter [ Stop in main
8 HTTP Preview
H J2EE Preview
ET Java applet
= 31 1ava application
b Ju JUnit
Ju JUnit Plug-in Test
B 1 aunch Groun
g B
Filler matched 21 ol 23 ile
@ Cluse | [ Bun

Figure 10.9 The Run Configurations window.

On the left side is a list of runtime environments, including the following;:

¢ Java application: The classes are loaded into a Java Virtual Machine,
with the program’s standard output appearing in the Console window
(see Figure 10.10). This environment can also be used for GUI-based Java
code, with new top-level windows popping up on the user’s desktop.
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[l Problems @ Javadoc [ Declaration |23 call lierarchy 4 Search B console £2 =0
<terminated> Application [Java Application] /opt/jdk/jdk1.6.0_18/bin/jav: X % B Q—E[E r@| 7 By 5

The value Trom the data store 1s 3
The value ol Lhe word Lype is @

|' m e )

Figure 10.10 The Console window, showing the program’s output.

¢ JUnit: The classes will be executed within the JUnit test framework. The
output of running the program is a sequence of pass/fail indicators for each
of the test cases, as shown in the Junit window (see Figure 10.11).

= Hierar i Junit 82 _\-DPrDjec =8

Finished after 0.005 seconds
a2 B @ B~

Runs: 4/4 B Crrors: 0 Brailures: 0

-

- %@ com.arapiki.example. TestWor
fEl testBleep (0.000 5)
t£] testBloop (0.001 s)
~ Hilcom.arapili.example. TestDataObject
=l testGetvalue (0,000 s)
= testSatvValue (0.000 )

a0 B

= Failure Trace 45

Figure 10.11 The JUnit window, with the result of running JUnit tests.

¢ Apache Tomcat: A Tomcat application server is started, and the classes are
loaded as a new web application. The program can be accessed by pointing

a web browser at the Tomcat server’s HTTP port.



THE EcLirsE CoNCEPTS AND GUI

e Java applet: A new web browser is started, and the project’s classes are
treated as a Java web applet. The classes are executed entirely within the
web browser’s internal JRE.

¢ Eclipse application: The classes implement a new plug-in for Eclipse, so a
child instance of Eclipse is started in a separate process, with classes being
loaded as a plug-in.

In addition to selecting this environment, it’s common to specify the name of
the main class (where execution starts), provide any command-line arguments
to the program, provide command-line options for the JVM, or add new entries
to the CLASSPATH variable. All this is possible in the Run configurations GUL

For the sake of convenience, you need to set this configuration only when
the program is first executed. If the user presses the Run Application button
a second time, the same configuration is used. As you saw earlier, running a
project also saves and compiles your source files, which reduces the Eclipse edit-
compile-run cycle to a single button press.

Using the Internal Project Model

As mentioned earlier, Eclipse contains its own built-in Java compiler instead
of invoking an external tool. Having an integrated compiler provides signifi-
cant benefit to developers, above and beyond creating class files. Not only does
Eclipse compile each source file when it’s saved, but it also constantly watches
what the user is typing to provide feedback on the work. This includes features
for syntax checking, content assistance, and cross-referencing symbols from
where they’re used to where they’re defined.

To enable these features, Eclipse constantly updates its internal model of the
program. This model is queried whenever the developer needs help. Although
these productivity features aren’t what you’d normally consider as part of a
build system, they use the same technology and are interesting to think about.

Consider some of the features:

¢ Reporting of compilation errors: Instead of reporting errors only when
a source file is saved, Eclipse can provide feedback as soon as the code is
typed. If the user enters invalid syntax or references a variable that isn’t
defined, the Java editor highlights the offending code. Underlining the text
in red (for errors) or yellow (for warnings) informs the user of the mistake.
If the user hovers the mouse pointer over the underlined code, a more
detailed error message is provided.

¢ Symbol/identifier cross-reference: By clicking on any symbol in the pro-
gram’s source code and then selecting an option from the context menu,
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a user can find out where the symbol is defined. Eclipse immediately opens
the relevant source file. For class names, you can examine the inheritance
hierarchy to learn about the super classes and child classes. Finally, it’s
also possible to find all the places in the program where a symbol is used.

¢ Content assistance: If you press ctrl-Space while editing code, Eclipse
provides hints on what you might want to type next. If you’re partway
through typing a variable name, Eclipse suggests possible completions for
that name. This is useful if you can’t remember the full spelling of the
name or for long names that take time to type.

Additionally, if you’ve just finished typing the name of an object, followed
by a period character, pressing ctrl-Space provides a complete list of
methods that can be invoked. This is extremely useful when navigating the
extensive range of Java libraries, as opposed to looking up the Java API on
the Internet. After you’ve selected a method to call, Eclipse prompts you
with the list of arguments required for that method.

e Refactoring support: To clean up source code that has become messy over
time, Eclipse supports a number of refactoring operations. For example,
the Extract Method operation enables you to highlight a section of code
within the body of one method and create a totally new method from that
fragment. During this process, Eclipse identifies where each variable in the
code fragment is defined and may end up passing it into the new method
as a parameter.

It’s interesting to note that each of these productivity improvements relies on
the internal model of the compiled program. Many of these features wouldn’t be
available if Eclipse didn’t come with a built-in Java compiler (at least, the syntax
and semantic portions of the compiler).

Other Build Features

Eclipse JDT has a couple of build-related features that are worth mentioning.

Scrapbook Pages

In contrast to source files that contain a Java class definition, a scrapbook page
allows individual statements or expressions to be evaluated. The user can enter
a Java code fragment into the scrapbook editor, without needing to create a full
class definition or even a method definition. Next, the user highlights the lines
of code to execute and then presses the Display button. The code fragment is
invoked, and the return value is displayed.
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This scrapbook concept moves Java much closer to interpreted languages
such as Python and Perl. The user can dynamically create objects, invoke meth-
ods, and study return values without too much overhead. This is somewhat
like unit testing, although without the repeatability that a unit test framework
provides.

Using build.xml Files

Unlike most build tools, the Eclipse build system focuses heavily on interactive
development. The build description is entirely GUI-based and is derived from
a user’s operations, such as adding a new source file to the project. Numerous
GUI dialog pages exist for configuring the exact behavior of the compiler and
build tool.

Unfortunately, this approach doesn’t scale well for large and complex build
systems that require a more detailed sequence of steps. If you’re using a non-
standard build tool or you have specific requirements for packaging your soft-
ware, the Eclipse build system might not support your needs. A better option
might be to use an external tool such as Ant.

In the JDT environment, a user is free to create an Ant build.xml file to
build a project. The Ant plug-in for Eclipse shows a list of build targets (see Fig-
ure 10.12), which can be invoked by double-clicking on the target name.

2= gutline &2 Bl Task List =8
ICBCER - U

wlargel [~]

@ source

<I¥ Junit 3.libraryclasspath

<> Example Project.classpath

T v v v

(%) cleanall
@& build [default]

@ build-subprojects

-

& build-project
@ huild-refprojects =
@ init-eclipse-compiler
@ build-eclipse-compilar
(® TestDataObject

& application

Example Project

v v v v v v

& junitrepurt

Figure 10.12 The Outline window for the autogenerated build.xml file.
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To make life easier, a build.xml file can be automatically generated from an
existing Java project. The exported file provides the same features as the Eclipse
builder, including targets for cleaning a build tree and running JUnit tests. When
a build.xml file is generated for multiple projects, with one project depending
on another, the top-level build.xml file uses the <ant > task to include the child
project’s build description.

Although the autogenerated file is a good starting point, you’ll need to mod-
ify it by hand to include your additional build steps. Any project of medium to
high complexity will almost certainly use a hand-coded Ant build system.

Further Reading

As usual, we’ve touched on just the highlights of the Eclipse build system, enough
to give you an idea of how the tool works and when it should be used. To gain
a better understanding, you’ll find the online documentation and tutorials [33]
to be a good starting point. The tool includes a lot of documentation in the help
pages, along with context-sensitive help for common tasks.

If you prefer to learn about Eclipse in a more structured style, books are
available on the topic [65]. If your ambitions go beyond basic usage, you’ll need
to invest some time in learning about the Plug-in Development Environment
(PDE) [66], which enables you to create new Eclipse features.

Real-World Build System Scenarios

Now that you’ve seen the basic operation of creating an Eclipse project and
building the software, let’s see how you can use these features in a number of
realistic situations. Unlike other build tools, the description of the steps relies
heavily on GUI screenshots. You’ll be provided with a detailed explanation on
how to enter the information into the GUI forms.

Scenario 1: Source Code in a Single Directory

The first scenario fits exactly into the Eclipse project model. Eclipse automati-
cally compiles the .java files into .class files, and the default run configura-
tion executes the program. The following steps are therefore required to create
your first build system:
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1. Create a new Java project with the name Scenario-1. Choose to start
with an empty project, use the default JRE, and elect to use different direc-
tories for source and class files. This creates an empty src directory and an
empty (and hidden) bin directory.

2. Add the 2dd. java, Mult .java, Sub.java, and Calc.java files to the src
directory. The files are automatically added to the default Java package
(see Figure 10.13).

:‘:;Projec 3 'E: Hierar JﬁJUnit =8

= & £
=

LI Example Project

¥ [Esrc
~  (default package)
b 1 Add java
P[] Calc.java
b1 Mult java
b [J] Sub.java
b = IRE System Library [JavaSE-1.6]
LI Scenario-2-calc
I Scenario-2-math

I Scenario-2-print

n | 2]

Figure 10.13 The Project Explorer window for the single-directory scenario.

3. Press the Run button on the toolbar. The .java files are compiled (if they
weren’t already), and the application is executed. Eclipse identifies the
main method inside the calc class and starts executing from that point.
The program’s output appears in the Console window.

Most Java projects start out small and, therefore, fit into this scenario. You
really didn’t need to think much about the build system.
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Scenario 2: Source Code in Multiple Directories

For the multiple-directory case, you can still use a single Eclipse project, because
it’s capable of managing thousands of files. Of course, it’s interesting to see
how to combine multiple projects into a single application. As with the previous
build tools, you should separate the math and print libraries into their own
directories.

Figure 10.14 shows the three new Java projects (Scenario-2-calc,
Scenario-2-math, and Scenario-2-print). The source files are stored within
their respective project and Java package (such as com.arapiki.calc).
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Figure 10.14 The Project Explorer window for the multidirectory scenario.

This directory layout looks similar to what you used with the Ant build
tool. However, you won’t be creating intermediate JAR files, because Eclipse
doesn’t do that by default. Instead, you’ll configure the Java build path for the
Scenario-2-calc project to include the build paths for Scenario-2-math and
Scenario-2-print (see Figure 10.15).
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Figure 10.15 The Java Build Path window for the multidirectory build tree.

To configure the build path, you press the add button and select each of
the child projects. When compiling Scenario-2-calc, Eclipse ensures that
the class path includes the bin directories for each of these child projects. This
means that Calc.java can make use of the math and print library methods,
both at compile time and at runtime.

Scenario 3: Defining New Compilation Tools

Defining a new compilation tool in the Eclipse environment is not an easy
proposition. It’s so complex that this chapter doesn’t attempt to discuss the
mathcomp compiler. If you’re interested in the topic, you should learn how to
create your own Eclipse plug-in [66].

Due to the nature of Eclipse, you wouldn’t simply be adding the mathcomp
tool into the build system. Instead, you’d want to create a new type of source
code editor that could handle .math and .mathinc files and then provide some
amount of added value for editing these files (such as content assistance or cross-
referencing). None of this is easy to implement.
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Perhaps the best solution is to defer to problem to an external build tool, such
as Ant, where the problem is much easier to solve. Chapter 7, “Ant,” already
discussed the Ant solution for using the mathcomp tool.

Scenario 4: Building with Multiple Variants

For the multivariant scenario, you’ll revisit the Java application you built with
the Ant tool. The idea is to have a calculator program with both home and pro-
fessional editions. The two editions are largely the same, except that the home
edition has a couple of the Java classes (Clock.java and Letter.java) stubbed
out to remove those advanced features. Additionally, you use the edition run-
time property to inform the program which set of features should be available
to the user.

The key to implementing this solution using Eclipse is to recognize that each
edition requires it own Eclipse project, with a slightly different build system. For
the home edition, you include both src/home-stubs and src/professional
in the build process, but for the professional edition, you need only src/
professional. Figure 10.16 shows the two projects, Scenario-4-home and

Scenario-4-prof.
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Figure 10.16 The Project Explorer window for the multivariant scenario.
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Pay careful attention to how these two projects were configured. If you look
at the bottom of the Scenario-4-prof project, you’ll see the src directory
where all the source code is kept. This includes both the src/home-stubs and
src/professional directories.

Near the top of the Scenario-4-prof project, you’ll see an additional direc-
tory labeled src/professional, with a slightly different folder icon. Eclipse
has chosen to show src/professional at the top of the project, because it
was marked as a source folder from which you’ll compile . java files. Note that
src/home-stubs isn’t shown in the same way, because you aren’t building any
source code from that directory.

If you now move further up the to the Scenario-4-home project, you’ll see
a similar set up, although this time you’re building code from both the src/
professional and src/home-stubs directories. Adding this additional source
directory can be done via the Java build path GUI.

Before leaving this particular screenshot, it’s worth noting that the icon next
to the src directory in the Scenario-4-home project is slightly different from
the corresponding icon in the Scenario-4-prof project. In the home edition,
the src directory is configured to be a link to the src directory of the profes-
sional edition. This gives you a single source code directory (on the underlying
file system) and also ensures that it will be compiled and executed via two dif-
ferent projects. As you might expect, editing a source file in one project immedi-
ately changes the file in the other project.

Moving on to Figure 10.17, you can see how another problem is solved. In
the home edition, you need to ship your stubbed-out versions of clock.java
and Letter.java, not the full version from the src/professional directory.
By modifying the Java build path, we exclude the two files we don’t want (see
the Excluded field), yet include all the source files from src/home-stubs.
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Figure 10.17 The Java Build Path window for the multivariant scenario.

In contrast, the Java build path configuration for the Scenario-4-prof
project (not shown) includes the src/professional directory and doesn’t
exclude any of the source files.

Finally, think about the runtime settings. In both editions, you need to pass a
Java property value into the virtual machine so that the program knows which
set of functionality should be provided to the user. To do this, you add the
additional -Dedition=home or -Dedition=professional flag to the JVM
command-line options.

Figure 10.18 shows the Run Configurations GUIL



REAL-WORLD BUILD SYSTEM SCENARIOS

RUm Comfigunations

Create, ge, and run conflguratl
Rurn d Jdva applicalion @

- Name: |(.'a|c - Home

— ® Main 6= Arguments - =\ JRE & Classpath .f-y Source P8 Environment | 7

& Apache Tumcal M Program arguments:

Elc/ci 1 Application

£ Generic server

—_ . =

£ C/C++ Remota Applicat [~

@ nsF pna Application e

@ Eclipse Application

. VM arguments:

£ Eclipse Data Tools 3 g =
-Dedition=home =

5 Generic Server(Externa ——
Variables...

& HTTP Preview
& 12EE preview Working directory:

E Java Applet @ Default:
= [1 Java Application O other:
1 Calc - Home -
& calc - professional
Ju Junit E
[ T [7]

Filter matched 20 of 25 items

@ Clnse Run

Figure 10.18 The Run Configurations window for the multivariant scenario.

You’ve create two configurations, Calc - Home and Calc - Professional,
visible at the bottom left of the screen. Both of these configurations set the
edition property (center of the screen) to an appropriate value. Each of
the two Java projects now has its own default run configuration for invoking
the software.

Before completing this scenario, it’s important to realize that most develop-
ers wouldn’t use this approach to solve this real-world problem. Even though
it’s possible to build multiple variants within the Eclipse framework, it’s more
complex than you’d like. In a realistic situation, developers would only edit and
compile the full professional edition in Eclipse. To create both the home and
professional editions, they’d instead use a more powerful build tool, such as Ant.

Scenario 5: Cleaning a Build Tree

Given that an Eclipse project is responsible for managing the list of source files
and is able to compile those source files into class files, it should be no surprise
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that cleaning a build tree is automatic. Selecting the Project, Clean menu item
removes all the .class files in the project.

One interesting behavior is that if you have the Build Automatically
option enabled, Eclipse immediately proceeds to rebuild those class files. This
might seem odd at first, but often the reason you clean the build tree is to gener-
ate completely fresh class files (such as for a JRE version change). If you do only
want to keep the source files, it’s a simple matter of deselecting the option.

Scenario 6: Debugging Incorrect Builds

In many respects, the Eclipse JDT build system is simple. You don’t have much
control over which source files are compiled, because that’s all managed by the
Java builder. As discussed earlier, Eclipse knows which source files have been
modified and which changes in one file might impact other files, so it usually
does a good job of performing the correct compilation steps.

On the other hand, you do have a lot of control over the compiler’s con-
figuration, including the Java compliance level and various other compilation
options. This makes it possible to use the wrong settings or to generate the
wrong type of output files. If the program doesn’t build correctly, try chang-
ing the available options to see if it makes a difference. You can always use the
standard Java command-line tools, such as javap, to examine the class files and
see if they look reasonable.

In the worst case, you can end up with Eclipse providing a build error that
doesn’t make any sense. Sometimes you’ll find red error markers in parts of your
source code that don’t seem to have problems. If you can’t figure out the issue
within a couple minutes, it might be worth performing a clean build and starting
again (hopefully your project is small). In these situations, forcing a clean build
triggers Eclipse to reset its internal project model, which could make the errors
go away.

If you’ve tried all these options and you still can’t get Eclipse to build things
correctly, try using an external build tool such as Ant. Eclipse wasn’t designed
to be a fully-featured build tool.

Praise and Criticism

An IDE-based build tool is certainly an interesting idea and provides a great deal
of productivity improvement. However, plenty of developers have never consid-
ered using an IDE, for a number of reasons. Let’s now examine some of the pros
and cons of using the Eclipse JDT build tool.
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Praise
The praise includes the following;:

* You don’t need to write a build description file: A large part of what
makes the Eclipse JDT build system easy to use is that you often don’t
even know that it exists. Instead of writing a text-based build description,
as you would for other tools, large parts of the build system are automati-
cally constructed. This is all based on how you’ve configured your source
code directories. When you do need to configure the build system, it’s done
via a user-friendly GUI.

¢ Compilation is integrated with the full development environment: The
build process is no longer a separate step but is tightly integrated with the
overall development environment. As a result, Eclipse incrementally com-
piles source files when they’re saved to disk and can provide features such
as content assistance and symbol cross-referencing.

¢ A wide range of project types are supported: Many languages and pro-
gramming frameworks have Eclipse plug-in support. These plug-ins pro-
vide knowledge of how to edit and compile the associated source code,
as well as how to execute the compiled application. If you want to build
something such as a web application or an Enterprise Java Bean, it’s trivial
to create a new project and have it compiling in a few minutes.

Criticism
The criticism includes the following;:

¢ Eclipse is too complex to use: Many developers push back on using Eclipse
because of its perceived complexity. They feel that there are too many but-
tons and menus to learn, and too many dialog boxes to configure. They’d
rather continue using vi or emacs to edit their code. Unless the entire

development team uses the Eclipse IDE, it’s not possible to rely solely on
the JDT build tool.

¢ Eclipse requires a lot of CPU power and memory: This is certainly true
for large projects that contain thousands of source files. The problem is
most noticeable when Eclipse scans the entire source code base to build up
the symbol cross-referencing database. If a new user chooses to evaluate
Eclipse by loading a large software project, that user is quite justified in
feeling that Eclipse is slow.
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¢ The build process is limited: As you’ve seen, the Java build tool is limited

in capability and can’t do much more than create class files for each of the
Java source files. If you have more complex requirements, use a different

build tool.

You can’t create a repeatable build process: Eclipse JDT uses an incremen-
tal build system in which files are recompiled whenever they’re saved. This
ties the build process to the developer’s workflow instead of providing a
clean end-to-end build process. (Although forcing a clean build can some-
what achieve this goal.)

You can’t see what’s happening in the build process: For people who like
to see every compilation command being executed, Eclipse is not an appro-
priate build tool.

Evaluation

Let’s evaluate the Eclipse JDT builder against the quality measurements dis-
cussed in Chapter 1, “Build System Overview.”

¢ Convenience: Good: Creating a build system in the Eclipse JDT environ-

ment is so simple that most people don’t even think about. On the down-
side, it has a limited set of features in this area, forcing the use of external
build tools (such as Ant) for nontrivial builds.

Correctness: Excellent: Eclipse JDT is intimately familiar with the struc-
ture of your Java code and knows exactly which parts of the code have
changed. Eclipse is unlikely to miss a file dependency or recompile a file
that wasn’t impacted by a change.

Performance: Good: Eclipse uses a “compile on save” approach in which
a Java file (and dependent files) is recompiled whenever the file is saved. In
this respect, the program is immediately available for execution, provid-
ing a fast build system. The downside is that performing a fresh build of a
large program doesn’t offer the same performance.

Scalability: Poor: Eclipse JDT wasn’t designed to support large build sys-
tems, especially those with complex requirements. It’s standard practice to
delegate to other build tools to support larger build systems.

The Eclipse environment is far more than a build tool and is the ideal environ-
ment for a wide range of code-development tasks. The build tool within Eclipse
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JDT is suitable for interactive development but is not suitable for large-scale
deployments in which other build tools excel.

Similar Build Tools

Many software development IDEs are available, and developers choose their fa-
vorite based on usability, supported programming languages, or brand loyalty.
Some of the simpler IDEs defer to an underlying tool, such as GNU Make or
Ant, for their build system support. On the other hand, the more advanced IDEs
are tightly coupled with their compilers and provide integrated build support.
This section looks at the Eclipse C/C++ Development Tooling (CDT) [33]
plug-in, which is fairly different from the Eclipse JDT plug-in already discussed.

CDT for Eclipse, C/C++ Development Tooling

This section won’t go into exhaustive detail on how Eclipse CDT compiles C
and C++ code, but let’s look briefly at some of the key differences between CDT
and JDT, the Java plug-in already discussed.

Perhaps the most noticeable difference is that CDT delegates the work to
external tools. Unlike Java, which uses byte codes, C and C++ programs are
usually compiled into machine code, with developers relying on their target plat-
form’s native compiler. For example, the CDT compiler in a Linux/x86 environ-
ment defaults to using the GNU C Compiler (GCC) for an Intel x86 CPU. In
addition, CDT defaults to using GNU Make to implement the build system.

The next section discusses the important steps to create and manage a C or
C++ project.

Creating a New C/C++ Project

The CDT plug-in enables you to create either a C project or a C++ project,
depending on what type of tool support you need. In both cases, you select a
project name, specify the type of build artifact you want to create, and choose a
compiler toolchain to be used by the build system. Finally, you can select one or
more build configurations.

When selecting the artifact type, you have a choice of several different vari-
ants. You can choose the Executable option, which produces an executable
program by linking all the object files. Alternatively, you can choose the static
Library or Shared Library option to produce a library archive. As you saw
with Java-based projects, you can combine a number of these smaller projects
into a single larger program.
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The capability to select a compiler toolchain offers a lot of flexibility in com-
piling code. By default, the project uses the standard compiler for the current
build machine, such as GCC on Linux. However, if you have cross-compilers
installed, you can elect to generate object code for a different CPU. Even though
you’re encouraged to select the toolchain when the project is first created, there’s
nothing stopping you from changing it later.

Managed Makefiles

For the Executable, Static Library, and Shared Library project types,
CDT creates and manages an underlying makefile system, just as you saw with
CMake. Whenever a developer adds a new source file to the project and se-
lects the Build Project menu item, CDT autogenerates a corresponding GNU
Make build system. The exact rules and targets added to the makefile depend on
whether you’re building an executable program or a library.

If you’re editing a program that already has its own build infrastructure
(using GNU Make or any other tool), you should instead select the Makefile
project type. In this case, CDT won’t autogenerate the build system; instead,
it calls upon whichever external build tool you’ve configured for the project (by
default, this is the make command).

As with JDT, for large and complex projects, you’ll almost certainly resort
to creating your own build system instead of using whatever Eclipse generates
for you.

Build Configurations

In a C or C++ project with default settings, all generated files are written into the
Debug subdirectory. This includes object files, libraries, executable programs,
and all the autogenerated build system files.

In addition to the Debug configuration, a project supports a Release config-
uration. As you’d expect, Debug generates object files with debugging informa-
tion enabled, whereas Release stores the customer-ready version of programs
and libraries. The generated files for each configuration are placed within their
own subdirectory, keeping the two variants completely separate.

Aside from Debug and Release, a developer can create new configurations
and are free to customize the behavior. This allows the selection of a different
compiler toolchain (for different target CPUs), the use of preprocessing symbols
to modify the software’s behavior, and the use of different compiler flags for
tighter control over the generated object code.

Developers can switch between configurations as often as they like, making it
possible to develop multivariant software.
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Reporting Errors
Unlike JDT, the compiler isn’t built into the CDT plug-in, so Eclipse relies on the
output log of the external compiler to identify errors. By using a special-purpose
parser to extract the compiler’s error messages, the source code editor can un-
derline the invalid code with a red line for errors or a yellow line for warnings.
In addition, any error or warning messages are shown in the Problems window.
In most cases, the error and warning messages are updated only when the
software is compiled, since the external compilation tools must first be invoked.
On the other hand, CDT performs a limited amount of syntax checking while
the user is typing. Unfortunately, anything more than basic syntax problems can
only be caught be a real compiler, and won’t be reported until the build system
is next invoked.

Content Assistance

Finally, it’s worth noting that CDT can provide content assistance while a de-
veloper edits the source code. Instead of using an external compiler, CDT uses
a built-in indexer tool to scan each of the source files and learn what they de-
fine. When developers press the ctrl-Space key combination, they’re presented
with a list of possible variable and function names that are defined in the same
source file, in a header file, or in one of the related source files.

Summary

An integrated development environment (IDE) such as Eclipse provides a range
of features such as code editing, compilation, version control, unit testing, and
tracking of tasks. The build tool is just one portion of the IDE, although having
everything integrated into a single environment can enhance the normal edit—
compile-run cycle. In particular, an IDE provides faster feedback to the devel-
oper when errors appear in the source code.

Each project has an associated type. Among other things, this controls how
the various source files in the project are compiled and linked into a program.
If a new source file is added to a Java project, it’s automatically included in the
build system. Whenever that source file is saved, it’s automatically compiled into
a class file.

In the Eclipse JDT system, a program can be divided into a number of smaller
projects, each compiling independently. One project can make use of the output
from other projects, making it possible to generate large programs. All projects
contain one or more source code directories, each with an associated output
directory for Java class files.
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When a project is executed, the developer must first select a suitable runt-
ime environment. For example, a Java project can run on a standalone virtual
machine, as an application inside a Tomcat server, or as a JUnit test case.

The Eclipse JDT system contains a fully featured Java compiler and maintains
an internal model of each project. It has the capability to report compilation
errors within a few seconds of the user typing the invalid code. It can also pro-
vide content assistance, symbol cross-referencing, and refactoring support.

Although Eclipse makes it easy to create a Java project and compiles the
software automatically, the build system is rather limited. For larger projects,
you’ll likely end up writing your own build system using an external build tool
such as Ant.



PART III

Advanced Topics

Part III focuses on some of the more advanced topics of developing a build
system. Now that you’ve seen the basic concepts (in Part I) and some of the
available build tools (in Part II), you can dive deeper into these advanced
topics.

The upcoming chapters emphasize the experiences you’d have gained if
you worked with build systems for many years. Instead of inventing your
own solution to common problems, you can learn from the experience of
others. Developers have made many mistakes in the past, and it’s pointless
for you to make them again.

Some of these chapters introduce additional build and compilation
tools that Parts I and II don’t discuss. They’re introduced now because
they illustrate a way to solve some of these more advanced problems.

The chapter layout for Part III is as follows:

¢ Chapter 11, “Dependencies”: You’ll explore the many ways a build
tool can determine which files need to be recompiled and in which
order the compilation tools should be invoked.

¢ Chapter 12, “Building with Metadata”: You’ll examine some addi-
tional build variants that add metadata to the output of the standard
build process. You consider topics such as debugging and profiling
support, code documentation, and unit testing.

e Chapter 13, “Software Packaging and Installation”: The final step
of a build system is to package the software ready for installation on
the target machine. You’ve already explored this at a high level, but
a release package can be generated in many ways.
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e Chapter 14, “Version Management”: Most software products are man-
aged with a version-control tool, to handle multiple code streams and
reproduce older versions of the software. Version control impacts many
aspects of a build system.

e Chapter 15, “Build Machines”: The machine on which you build the soft-
ware plays a critical role in the accuracy of the build process. All changes
to the build machine must be made in a controlled way.

¢ Chapter 16, “Tool Management”: Likewise, all compilation tools must be
managed in a controlled way to ensure that older versions of software can
be reproduced. It’s vital that all developers build with a consistent set of
tools.

When you finish reading these chapters, you’ll have a much better apprecia-
tion of creating and maintaining a reliable build system.



Chapter 11

Dependencies

Parts I, “The Basics,” and II, “The Build Tools,” discussed the basic concepts
of a build system and then explored a number of common build tools. You also
learned about the idea of dependencies, which are fundamentally important in
any build system. This chapter digs much deeper into how dependency analysis
works, how a build tool constructs a dependency graph, and how it invokes
compilation tools in the correct order.

Even though developers in a small software project can afford to rebuild their
entire source tree frequently, this is unrealistic with larger projects. If a source
tree takes longer than 30 seconds to compile, developers expect incremental
compilation to be used. That is, they expect the build system to recompile only
files that have changed since last time the build tool was invoked. Any files that
haven’t been modified or don’t make reference to such files, shouldn’t be rec-
ompiled at all.

A key concept in incremental compilation is that of the dependency. That
is, you must identify which files in the build tree are dependent on which other
files. For example, if the content of file A is somehow derived from the content
of file B, you say that A has a dependency on B. If a developer modified file B,
the build system must take into account that file A might need to be regenerated.
On the other hand, if there’s no dependency, file A can’t be any different from
the last time it was compiled.

The big-picture diagram in Figure 11.1 now focuses on how the relationship
between different files in the build tree can be determined. It’s also important to
determine whether the files are up-to-date with respect to each other.
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Figure 11.1 The focus for this chapter, the dependency between source and object

files.

In any real project, the dependency relationship among all the files in the
source tree can be extremely complex. Determining the relationships involves
prescanning source code, inferring dependencies based on the compilation tool’s
options, and specifying a bunch of hard-coded dependencies. All this work is
vital to keep end-to-end build times small yet always ensure that you construct
a valid software image.

From a high-level perspective, a build tool must follow three main steps:

1. Determine all the interfile dependency relationships. The tool creates a

dependency graph of the entire program to show which files depend on
which other files.

. Using the dependency graph, determine the set of files that have been mod-

ified since the last time the tree was built, and therefore determine which
files need to be recompiled.

. Rebuild the tree by performing the individual compilation steps in a logical

order, possibly using parallel processing.

This chapter looks at several topics, including these:

The basic theory behind dependency graphs

The practical problems you’ll experience if your dependency graph is
incorrect

The process by which the dependency graph is constructed

The methods you can use to determine which files are out-of-date with
respect to their dependencies

How to schedule the compilation to bring the tree up-to-date
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The Dependency Graph

A dependency graph is a structure that defines the relationships between various
things. In this case, those “things” represent files in the source and object trees,
and the arrows between them indicate that the content of one file depends on
the content of the other. To clarify, an object file (with .o or .obj suffix) can
have a dependency on a C source file (with .c suffix). Likewise, a Java .class
file has a dependency on the corresponding . java file.

Figure 11.2 shows the relationship among four source files and their corre-
sponding object files, a dynamically linked library, and an executable program.

dog.c > dog.obj
\ animals.dll

cat.c < cat.obj / \
petstore.exe

animals.h

petstore.c |« petstore.obj

Figure 11.2 A pet store application, showing the dependencies among various files.

Anyone who has used a build system should find few surprises in this dia-
gram. The only unusual concept is that animals.h is listed as a dependency for
each of the object files, not a dependency for the C source files. Although the C
files use #include to incorporate the content of animals.h, they don’t need to
be regenerated if animals.h changes. Instead, the object files would be consid-
ered out-of-date.

The source files (on the left) do not depend on any other files. That is, they’re
hand-written by the developer, not generated by a compilation tool. Addition-
ally, the final program, petstore.exe, isn’t the target of any dependencies, so
it is thus the final ending point of the build process.

Incremental Compilation

What’s interesting from a build system perspective is thinking about how an
incremental compilation would work. If you assume that all object files are up-
to-date and that the developer proceeds to modify cat . c, the build tool’s task
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is to determine which object files are impacted. The build tool must invoke the
correct compilation tools to bring things back to a consistent (fully built) state.

Figure 11.3 focuses on the parts of the dependency graph that require some
action.

dog.obj
\ animals.dll
| ] /

|
: cat.c <«—— cat.obj

Lemsmmmmmen

petstore.exe

animals.h

petstore.obj

Figure 11.3 The pet store example, showing the impact of modifying cat.c.

The dashed box indicates the file (cat.c) that the developer has modified.
The bolded boxes (cat.obj, animals.dll, and petstore.exe) are directly
or indirectly dependent on cat.c and, therefore, require recompilation. The
remaining boxes (animals.h, dog.obj, and petstore.obj) are also required
to successfully build the software, even though they haven’t been modified in
any way and don’t need to be regenerated.

When recompiling this tree, the build tool executes the necessary compilation
commands to bring everything up-to-date. The commands must be executed in
a particular order (left to right in this diagram) so that any file that uses another
file as input can be sure that it’s using updated information. For example, you
must ensure that cat.obj has been regenerated before animals.d11 is regen-
erated; otherwise, the changes that were made to cat.c won’t be propagated
through to the final executable program.

Another important observation is that the dependency graph must be acyclic
(with no cycles). That is, there’s no way in which a file can depend (directly or
indirectly) on itself. This type of arrangement would make it impossible to bring
the build tree to a consistent state, with all the object files being up-to-date with
respect to the source files.

Full, Incremental, and Subtarget Builds

Before moving on to examine how the dependency graph is created, and the type
of problems you’ll see if it’s done incorrectly, a couple of important concepts
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need to be reiterated. First, there’s a distinction between two types of build
process:

1. Full builds: This scenario assumes that the developer has never compiled
the build tree. The tree consists of only source files, and none has been
compiled into an object file. The first time the developer builds the tree
(known as a fresh or virgin tree), all the compilation commands must be
executed to bring the tree up-to-date.

2. Incremental builds: In this case, the tree has previously gone through a full
build and contains all the required object files. However, the developer
has more recently made changes to one or more source files, and the object
files are no longer consistent. A subset of the object files needs to be rebuilt
to make them consistent again.In large-scale incremental builds, the build
tool might spend several minutes analyzing the build tree to determine
what needs to be done. When the recompilation starts, it can be orders of
magnitude shorter than a full build (such as 30 seconds versus 30 minutes

for a full build).

The second important concept is the subtarget build. That is, instead of
always generating the final executable program (in this example, petstore.
exe), the developer might choose to build only a portion of the tree. Developers
typically do this as an optimization to their build process. In some large software
projects, this approach could save an hour of unnecessary compilation time.

For example, developers might decide that they need to recompile only the
animals.dll file instead of the full application. Given that dynamically linked
libraries can be recompiled and upgraded without changing the final executable
program, this is a common way to save compilation time. Developers install the
new library on their system and proceed to test their code. Figure 11.4 shows the
portion of the dependency graph that requires action. The petstore.obj and
petstore.exe files are no longer part of the recompilation.

dog.obj

remsmmame. /
| |
' cat.c " cat.obj

| ]

animals.dll

Lessssomnn

animals.h

Figure 11.4 The pet store example, building only the animals.dll target.
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Selectively limiting the dependency graph in this way is a highly desirable
feature of any build tool. Let’s now look at the benefits of making sure your
dependency graph is correct.

The Problem with Bad Dependencies

As the preface of this book touched upon, a badly constructed build system can
be expensive, accounting for more than 10% of your development costs. Many
of these problems are attributed to a poorly constructed dependency graph.
Let’s now look at some practical case studies in which incorrect dependencies
cause the build process to fail, generate bad software images, or take much
longer than necessary.

Experienced programmers likely can relate to most, if not all, of these prob-
lems. You might have discovered them after hours of retrying failed builds. You
probably studied the output of your build log to see which compilation com-
mands were executed (or not) and then examined a number of files to see if
they’d changed. In the end, the root cause of the problem was likely related to
missing or incorrect dependencies.

Problem: Missing Dependencies Causing a Runtime Error

The first and perhaps most common problem you’ll see occurs when dependen-
cies are completely missed. In this case, a file that should have been recompiled
is left unchanged instead of being updated to match the most recent source code.
If the code in this file was meant to exchange information with code from other
files that were updated correctly, the result could be a confusing set of runtime
problems.

In Figure 11.5, if dog . c and cat . ¢ both made use of a data structure (struct
food) defined in animals.h, they must both include that header file. However,
if the dependency between dog.obj and animals.h is missing, dog.obj won’t
be recompiled when the header file changes.

! truct f
dog.c < dog.obj s rlcj:ﬁaro*%c;%e'
float cost;
float preference;
X . i ity;
cat.c < cat.obj } int quantity

-
n
animals.h :
n

Figure 11.5 A missing dependency between dog.obj and animals.h.
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This problem manifests itself when dog.obj and cat.obj exchange data
that uses struct food. Because of the newly added field (preference), any
structure exchanged between the two parts of the program will be mismatched.
Not only is the structure of a different size, but the memory location that cat.
obj uses for the preference field is the same location that dog.ob7 uses for
the quantity field.

This problem could cause a sequence of runtime bugs that can be hard to
detect, potentially wasting hours of development time. The issue will be resolved
only when dog. c is changed (and, hence, dog.obj is recompiled) or when the
build tree is cleaned. With a better set of dependencies, this error would never
have occurred in the first place.

Problem: Missing Dependencies Causing a Compile Error

A similar situation occurs when an automatically generated file isn’t updated
correctly. Developers might add a new symbol definition to their program, but
when the software is compiled, they receive a number of undefined symbol
errors. Again, this is the result of invalid or missing dependencies.

In Figure 11.6, the developer has added a new Bison entry in the food.
list file and has also modified the cat . c file to use that new definition. Given
that food.1list is a plain text file, it must first be translated into an equivalent
header file (food gen.h) before the C file can use the definition.

pmEEEEEEsEsE
] cat.c ‘e cat.obj
e ccccceeendt
Kibble
Chicken
Beef
:"""""-'- Cookies
i food.list ! X<«— food_gen.h Lamb
- Bison

Figure 11.6 A missing dependency between food_gen.h and food.list.

Because of the missing dependency information, the build tool doesn’t real-
ize that food gen.h needs to be updated whenever food.1list is modified. As
a result, the compilation of the C code causes errors such as Bison is not
defined. From the developers’ perspective, they’ve changed all the necessary
files and thus are left to wonder why the C compiler isn’t finding the correct
definition.
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This scenario is common when multiple developers share a code base. Devel-
opers can update their existing source tree by obtaining the latest code from the
version-control system. In doing so, they receive updated copies of cat.c and
food.list, but the food gen.n file doesn’t get regenerated when they attempt
to rebuild the tree. This is especially confusing for them, given that some other
developer made the offending code change.

In a real-world development project, you’ll likely find a number of developers
who hesitate to update their source tree from the version-control system, just in
case it takes a day or two to resolve this type of problem.

Problem: Unwanted Dependencies Causing Excess Rebuilding

Although it’s not as critical as a missing dependency, an extra unwanted de-
pendency can also cause problems. In particular, a file might be recompiled even
when it doesn’t depend on anything that was changed. This doesn’t cause any
compile-time or runtime problems, but it does force the developer to wait longer
for their compilation to complete. For large build systems, there may be 10-20
minutes of excessive compilation.

In Figure 11.7, an incorrect dependency exists between dog.obj and cat .h.

dog.c < dog.obj
//
/
/
/
cat.c < -~ cat.obj
//
/
e/
[ ] n/
cat.h

Figure 11.7 Incorrect dependency between dog.obj and cat.h.

Perhaps at one point in time, developers were including cat . h into dog .. ¢, but
they’ve since removed it. However, the build system still contains that depend-
ency, thereby causing dog. obj to recompile when it doesn’t need to.

Problem: Unwanted Dependencies Causing Failed Dependency
Analysis

Even before the software compilation starts, it’s possible for dependencies to
cause problems. While the build tool attempts to construct the dependency
graph, it might get to a point at which it cannot proceed. This usually results in
adon’t know how to make error message.
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In Figure 11.8, developers have decided that penguins should no longer be
sold in the pet store. They’ve removed both the penguin.c and penguin.obj
files and recompiled the program. However, the build system still contains the
old dependency information and complains that it doesn’t know how to make
penguin.obj.

dog.c < dog.obj
\ animals.dll
cat.c < cat.obj /
penguin.c penguin.obj
(DELETED) (DELETED)

Figure 11.8 Stale dependency information, causing the build to break.

If the penguin. ¢ file had not been deleted, the build system could still rebuild
penguin.obj from source code. In this case, though, it searched for all the pos-
sible ways to regenerate penguin.obj but didn’t find a way of doing so.

A similar situation can occur when developers relocate their build tree to
a new disk location (such as from c:\Work to D:\Work). Even though all the
files have changed, the dependency information still refers to the old location.
Naturally, the build tool won’t find the files in their old location and has no
way of rebuilding them. The only remedy is to remove all the stale dependency
information and start again.

Problem: Circular Dependencies

One of the basic rules of constructing dependency graphs is that they shouldn’t
contain any cycles. However, that doesn’t stop developers from accidentally
creating a dependency graph that can never finish its job. One real-life example
arises when the developer wants to compress a large data file but then reuses the
original data file’s name. Figure 11.9 is an example using Make syntax.

data.gz: data
gzip-c data > data.gz data [« data.gz

mv data.gz data \\_/

Figure 11.9 A makefile rule that generates its own input files, causing a cycle.
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In this case, the data.gz file depends on the data file. If data is newer than
data.gz, you would execute the gzip command to compress the file, followed
by the mv (move) command to rename it.

The problem is that data (the input to the dependency) ends up being modi-
fied, and data.gz (the target of the dependency) is never actually created. No
matter how many times you rerun the build tool, it’ll always execute these com-
mands. The end result is wasted compilation steps and a completely meaningless
data file because it was compressed too many times.

Problem: Implicit Sequencing As a Substitute for Dependencies

When developers don’t want to spend the effort getting their dependencies
correct, they often resort to using the build tool’s implicit sequencing of com-
mands. This sequence gets the job done but almost never results in an optimal
build system. You saw this situation in Chapter 6, “Make,” in discussing the
recursive Make technique.

The following makefile fragment uses sequencing to guide the order in which
commands are executed:

.PHONY: program 1libl 1lib2

program: 1libl 1ib2
@echo Linking my program

libl:
@echo Building library 1

lib2:
@echo Building library 2

The program, 1ib1, and 1ib2 targets are labeled as being phony, informing
Make that the target name is for human use only instead of having a real disk
file with that name. The dependency relationship of program: 1ibl 1ib2 thus
doesn’t correspond to real disk files, but instead describes the sequence of rules
to be triggered. In this case, 1ib1 is built first, then 1ib2, followed by the crea-
tion of program.

Although this isn’t an optimal method, it’s perhaps one of the common meth-
ods of constructing a build system, especially for small software. It’s often much
safer to follow an explicit sequence of commands than risk the chance of obscure
compilation or runtime errors caused by invalid dependencies.

The unfortunate downside of this approach is that too much compilation
takes place. Also, the more complex the build system, the more careful the devel-
oper must be to get the sequence of commands correct. Another downside is that
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parallel build systems rarely work correctly if they don’t have access to a correct
dependency graph.

Problem: The Clean Target Doesn’t Clean Everything

One unfortunate outcome of the dependency problems discussed so far is that
developers lose faith in the build system. If they can’t identify and resolve a
build problem within an acceptable period of time, they simply choose to clean
their build tree and start again. They’re then required to perform a full build of
their tree, but that could be faster than trying to diagnose and fix the broken
dependencies.

The first step is to execute the build system’s “clean” operation. This should
remove all object files, autogenerated files, and stored dependency information,
leaving only the developer’s source files. These source files will likely have a
developer’s local changes, which must be preserved at all costs. (After all, the
developer spent days or weeks making those changes.)

As you might expect, the clean operation can also suffer from problems. If it
doesn’t fully clean the tree, you’re left with stale object files or dependency infor-
mation that doesn’t get removed. When the tree is rebuilt, the same dependency
problems exist, which frustrates developers. Their only option at this point is
to take a backup of their local changes and then completely “blow away” their
whole build tree, including source code. This ensures that no stale information
can possibly remain. This whole operation is clearly a waste of development
time.

Step 1: Computing the Dependency Graph

Now that you understand the problems that arise if the dependency graph isn’t
accurate, think about the methods used to create the graph. This is one of the
most complex challenges build systems must address, and if it’s not handled cor-
rectly, it will be the root of many problems. The basic approach is to learn how
each compilation tool accesses files and find some way to predict which files the
tool will access in the future. In some cases, this ends up being a guessing game.

But what actually is a dependency? If there’s some way in which file A
depends on file B, there must be a compilation tool (such as compiler or linker)
that somehow uses the content of file B when it generates file A. If it’s a direct
dependency, that compilation tool must directly read file B. For indirect depend-
encies, the dependency graph could have any number of hops between A and B,
although there must still be a way in which B’s content can potentially impact
the generation of A.
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The first step in determining the dependency graph is therefore to understand
which input and output files each compilation tool uses. This can be done in a
variety of ways. Specifically, a compilation tool can be asked to access a file in
three general approaches:

¢ Command-line arguments: The compilation tool can be told to read or
write a file by explicitly mentioning the file on the tool’s command line.
For example, the C compilation command gcc -c test.c -o program
explicitly asks the compiler to read the test.c file as input and write to
the progranm file as output. Some tools enable the use of environment vari-
ables to specify the input and output files; although, these tend not to be
common.

¢ Source code directives: Most programming languages have a mechanism
for importing/including other source files. In this respect, the compilation
tool must parse the source code to determine which other files it depends
on. Common examples include C’s #include directive and Java’s import
directive.

¢ Convention: Some tools have input or output files they use by default. For
example, the UNIX Lex tool writes its output to the 1lex.yy.c file, unless
explicitly asked to use a different filename.

With these three approaches, you can determine the set of files a compilation
tool is accessing, at least for any well-behaved tool. The next question is how
the build tool (such as Make, SCons, or Ant) can determine this information and
build the full end-to-end dependency graph for the program.

Gathering Exact Dependencies

In most cases, the build tool and compilation tools are completely separate pro-
grams, and they don’t share a lot of information. For the build tool to operate
effectively, it must predict which files a compilation tool will read and/or write.
This is done before the compilation tool is actually executed, instead of learning
the dependencies as the compilation progresses. If this weren’t the case, you can
end up with compilation commands executing in the wrong order.

In Figure 11.10, the build tool determines that both cat.c and food.list
have changed. However, until cat.obj is regenerated from cat.c, the build
system might not be aware of the dependency that it has on food gen.h (the
dashed line). In this scenario, you must somehow determine the dependency in
advance, therefore making sure that food gen.h is regenerated from the latest
copy of food.list before cat.obj is regenerated.
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|
] PEed :\
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| ] cat.obj
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1 food.list ;e«———Jfood_gen.h |«

Figure 11.10 A scenario in which rebuilding files in the wrong order can cause
problems.

A build tool can predict a compilation tool’s dependency information in sev-
eral common ways.

Hard-Coded Dependencies

By having the dependencies hard-coded into the build description file (such as
the Makefile or SConstruct file), the build system uses the developer’s knowl-
edge of the dependencies. The build tool has little work to do, other than parse
the build description file and update the dependency graph. For example, using
the Make tool, you can explicitly state the dependencies that an object file has
on source files:

cat.obj: cat.c animals.h

This is the simplest way to specify dependencies, but it doesn’t work well for
large programs. The constant maintenance and the chance of introducing errors
makes this impractical. Regardless, this method is often used when the more
automated methods (see below) are too hard to implement.

Dependencies Derived from Command Lines

Given that the build tool is responsible for constructing the compilation tool’s
command line, the build tool already has some amount of advance knowledge.
This information won’t always be complete, but some information is better than
none. For example, the following SCons directives are used to build the pet store
example:

lib = SharedLibrary("animalg", ["dog.c", "cat.c"])
Program("petstore", [lib, "petstore.c"])

Not only are the SharedLibrary and Program builder methods used to state
which files should be compiled, but they also participate in the construction of
the dependency graph. For example, there’s an implicit knowledge in the SCons
tool that object files are created from source files and that shared libraries are
created from object files. Almost the entire dependency graph can thus be cre-
ated from these two SCons commands.
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Dependencies Provided by Scanners
The last example had no automatic way for the build tool to incorporate
animals.h into the dependency graph. This is solely because the dependency
is embedded in the source code instead of being stated in the sconstruct file.
To resolve this issue, you instead use a scanner tool to examine the source files.
By searching for the #include or import directives in a source file, the scanner
infers which other files are required.

Chapter 6 briefly mentioned the makedepend scanner, used in the UNIX
environment. This isn’t a full-blown compiler, but it knows enough to detect the
header files included within a source file. For example:

$ makedepend -f - cat.c
# DO NOT DELETE

cat.o: animals.h

The output from this command would normally be appended to a makefile,
hence the Do NOT DELETE comment. Because Make already knows that cat .o
depends on cat . c, there’s no need to list that dependency.

Scanners are often fast and efficient at locating dependencies, but their inabil-
ity to understand the full semantics of the language can provide bad informa-
tion. For example, when a scanner examines a C source file, it must be aware of
preprocessor semantics.

#ifdef USE_GOOD_FOOD_

#include "store food/berries.h"
#else

#include "wild food/berries.h"
#endif

In this example, a naive scanner could determine that both store food/
berries.h and wild_food/berries.h are dependencies, whereas only one of
them will ever be included at one time. This isn’t a fatal error, but it can result
in unnecessary recompilation.

Dependencies Provided by Compilation Tools

Perhaps the most accurate way to determine which files a compilation tool will
access is to ask that tool itself. However, as discussed earlier, we need to have
this information before the tool actually performs its work. As shown in Chap-
ter 6 (which discussed GNU Make), one such tool providing this capability is
the GNU C Compiler. By providing the -M option, the compiler scans the source
files and determines the dependencies, but doesn’t actually compile the code.

C:\work> gcc -M dog.c
dog.obj: dog.c animals.h
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After the full dependency graph has been computed, the build tool ensures
that any files that dog.obj depends on are up-to-date. It then calls upon GCC
for a second time, but this time without the -M option.

Dependencies Determined by File System Monitoring

Modern build tools, such ElectricAccelerator [48] and clearmake [5], can go one
step further by monitoring which files a compilation tool accesses while it’s run-
ning. This is done by observing any interaction the compilation tool has with the
computer’s file system, accurately determining the inputs and outputs.

The advantage of these systems is that they’re guaranteed to find the exact
set of dependencies. Assuming that the compilation tool accesses the same set of
files in the future that it has in the past, you’ll never suffer from missing or exces-
sive dependency information. This feature is a benefit for compilations with a
large number of dependencies that could be hard to predict, such as a release
packaging script. (Chapter 13, “Software Packaging and Installation,” discusses
these in more detail.)

The downside of using monitoring tools is that an additional file system plug-
in must be added to the computer’s operating system, which not everyone feels
comfortable doing. Also, the monitoring software will record absolutely every
file access (unless you tell it otherwise), and many files don’t make sense to have
as dependencies. For example, /usr/include/stdio.h can be accessed, but
because it’ll never change (unless the operating system is upgraded), there’s no
point in recording it in the dependency graph.

Finally, you might be asking how these monitoring systems can determine
dependency information before the compilation command is executed (per our
requirement). This is answered later in the chapter.

Caching the Dependency Graph

Using the previous techniques, the build tool will have built up a complete de-
pendency graph. As much as possible, you want to store what you’ve learned
in a cache so that you don’t need to recompute the full graph each time the
build tool is invoked. Some developers build their software as often as every few
minutes, so it’s important to reduce the amount of time spent computing the
dependencies, thereby providing a much faster build experience.

Each build tool has its own mechanism for caching dependencies. For exam-
ple, a typical Make-based system uses a separate file (with a .d suffix) to store
dependency information for each of the object files. In contrast, SCons uses a
single database file to cache dependencies for all files in the build tree.

When dependencies are hard-coded into the build description files (such as a
makefile), or when they’re derived from compilation tool command lines, you’d
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see only a small benefit in storing the information in a cache. The next time the
build tool is started, it still would need to reread that same description file any-
way, so a cache wouldn’t save much time.

On the other hand, you can save a significant amount of time by not recom-
puting dependencies that were found by running a compilation tool or a scan-
ner. Executing these additional programs takes a lot of time, so you should use
precached copies of the graph if possible.

This idea of caching dependencies isn’t a difficult problem to solve, but it’s
tricky to know when the cached information becomes stale. Now think about
how to update the cached dependency graph if the software itself is modified.

Updating the Cached Dependency Graph

In a real-world development project, your dependencies change over time. Any
dependency information that was previously computed and cached could be
out-of-date and needs to be replaced. Failure to delete old dependency informa-
tion either causes the build system to do too much work or causes it to fail if the
old source files no longer exist.

Probably the most common reason for a change in dependencies is developers
modifying their source code to add new #include or import directives, thereby
adding new dependency relationships to the graph. A second scenario occurs
when a compilation tool’s include path flags are modified by editing the build
description file. Regardless of the change, the build system must compute the
new dependency graph and regenerate the object files accordingly.

Based on the three ways in which a compilation tool is asked to access a file
(via command-line arguments, via source code directives, or by convention),
let’s now examine how each change impacts the dependency graph. Keep in
mind that you’re now operating in a build tree that’s already fully built or per-
haps has a small number of modified source files. You no longer need to be
concerned with building a completely fresh tree.

Updating Cached Command-Line Arguments

Given the variety of compilation tools and command-line options, no single
solution addresses the problem of argument changes. Here are three different
scenarios:

1. For command-line options that change the name of the input or output
files (for example, -o prog), the dependency graph must be modified to
include the new name of that file, and the old name must be discarded.
Assuming that the build tool didn’t cache this part of the dependency
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graph, but instead created it while reading the build description files, no
additional work is required. Simply invoking the build tool again ensures
that the correct dependencies will be used.

2. For compilation tool options that impact the content of the object files
(instead of their name), you might need to completely rebuild all the exist-
ing object files in the build tree. For example, if the developer added the
-g option to request that debugging information be generated, all previ-
ous object files would need to be discarded and recompiled. A similar rule
would apply if the compilation tool was upgraded to a newer version and
could generate different code than the older tool.From the perspective of
the dependency graph, you must add a dependency from each object file to
the set of flags it was compiled with (see Figure 11.11). In this case, there’s
nothing special about the bear. flags file, but if the command-line flags
are modified, this file must be “touched” to make it appear newer. As a
result, bear.obj will be regenerated.

bear.c

mmmmmmmemaas
bear.flags /

bear.obj

Figure 11.11 An object file that depends on its own compilation flags.

3. If you modify a command-line argument that changes the tool’s search
path, you need to recompute each object file’s dependencies. For example,
if you change the include search path (-1) or library search path (-1), it’s
possible that a different set of files will be included. In the following exam-
ple, bear.c includes a different berries.h header file, depending on the
order of the -1 directives.

If bear. c contained the following directive

#include "berries.h"
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then the following two command lines result in different dependencies:

gcc -Iwild food -Istore food -c bear.c
=> includes wild food/berries.h

gcc -Istore food -Iwild food -c bear.c
=> includes store food/berries.h

This scenario might seem a little obscure (and it probably is), but failing to
determine the correct dependencies could waste a lot of development time.

Updating Cached Source Code Directives

If a source code file changes, it’s possible for the set of other files it depends on
(via #include or import) to now be different. Assuming that you precached the
file’s dependency information (using a compiler or a scanner), this information
could now be out-of-date and must be regenerated.

In the most common situation, a source file (such as bear.c) is modified to
include a new header file (such as honey . h). In this case, the build system detects
that bear.c was modified and that bear.obj is outdated (see Figure 11.12).
By virtue of this recompilation, all the correct input files are used and you can
recache the new set of dependencies.

bear.c

bear.obj

honey.h

Figure 11.12 A new #include directive is added to bear.c.

The situation becomes a lot more complex when you consider what happens
if the included header file is itself an autogenerated file. Somehow the build
system must determine whether that newly included header file is up-to-date.
It would be a problem if you accidentally included an out-of-date header file in
bear.obj.

In Figure 11.13, the developer has modified bear.c, so it now includes the
food _gen.h header file, whereas it didn’t before. The developer has also modi-
fied the food.1ist source file. For the compilation to succeed, the build system
must already be aware that food gen.h is autogenerated from food.list, and
this step must be undertaken before bear.obj is regenerated.
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bear.c bear.obj

A

bear.c
#include “food_gen.h”

| ]
food.list 1«— food_gen.h

Figure 11.13 bear.c and food.list are both modified, but the autogenerated header file
must be recompiled before the source file.

To reiterate, here are the steps for a successful build:

1. Determine that bear.obj has a new dependency on food gen.h. (This
information could be determined by a scanner.)

2. Regenerate food _gen.h.

3. Regenerate bear.obj from bear.c and the new version of food gen.h.

Finally, imagine an even more complex scenario. What would happen if
food gen.h included yet another header file (say, meats_gen.h) that was also
autogenerated? You might not detect this new dependency until food gen.h
is regenerated. Therefore, you must regenerate meats_gen.h before compiling
bear.obj, but Only after food gen.h.

Updating Cached “By Convention” Rules
A compilation tool won’t suddenly start using a different set of “by convention”
rules. If it accesses a specific file by default, it’ll continue to always access that
same file (such as the lex.yy.c case). One possible exception is when a shell
script is used as a tool and has recently been modified. In this case, the developer
also needs to modify the build description file so that it hard-codes the new de-
pendency relationship. For build tools that use file system monitoring, the tool
automatically detects the change in dependencies, with no human intervention.
At this point, you’ve finished looking at all the approaches to building up the
dependency graph. Getting the exact list of dependencies correct can be a chal-
lenging problem, especially when parts of the cached dependency information
must be marked as invalid because dependencies are introduced or removed.
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Step 2: Determining Which Files Are Out-of-Date

You’re now ready to look at the second of the three main build tool steps identi-
fied earlier in the chapter. As a reminder, the first step was to create a complete
dependency graph, possibly with some of it being cached since the last time you
invoked the build tool. The second step is to figure out exactly which files were
modified since the last build took place. Files that haven’t changed and that
don’t depend on other files that have changed don’t need to be recompiled.

This part of the build process isn’t too complex to understand or implement.
When compared to creating a dependency graph, significantly fewer opportuni-
ties exist for errors to creep in and cause invalid builds. However, a build can
take longer than necessary for several reasons, causing some amount of wasted
development time.

This section examines different ways to detect whether a file has changed,
including time stamp comparison, checksum comparison, and flag comparison.
You’ll also consider some advanced techniques for detecting change.

Time Stamp-Based Methods

The classic method of determining whether a file has changed is to examine
the file’s time stamp. All modern operating systems keep track of when a file
was last written to, and the build tool can easily query the file system for this
information. Although it seems simple in theory, consider a few implementation
methods:

1. In traditional Make-based systems, a file is considered to have been modi-
fied if it has a more recent time stamp than any of its derived files. For exam-
ple, if dog.obj depends on dog. c, you should assume that dog. ¢ has been
modified recently if it has a more recent time stamp than dog.obj. This
method doesn’t particularly care about files having absolute time stamps,
as long as it can detect a relative ordering of file changes. An interesting
feature is that a file can be “touched” to modify its time stamp, without
actually making any real changes to the file. This is useful when forc-
ing a file to be recompiled for some reason (such as recovering from bad
dependencies). It’s also important to delete the output file if the compila-
tion fails for any reason. Failure to do this causes the half-created output
file to appear as if it’s newer than the source file. Future invocations of the
build tool will incorrectly decide that no recompilation is necessary, and
the broken object file will remain in the object tree. GNU Make and Ant
commonly use this technique, as do a number of the decider functions in
the SCons tool.
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2. In another approach, the build tool has some way of caching each file’s
time stamp. In this case, you no longer need to compare different files;
instead, you can detect whether a file has changed by comparing its current
time stamp against its previous time stamp. This method clearly involves
the extra overhead of storing time stamps in a cache. An advantage of this
mechanism, when compared to using relative time stamps, is that it can
detect changes in source files that have occurred in the past. It’s an incor-
rect assumption that any change made to the content of a file will result
in using the current time stamp. For example, if a source file has been
restored from a filesystem backup, the time stamp of that file probably
reflects the last point in time the file was modified, which was sometime
before the backup was taken. This may be a much older time stamp than
when the object file was last compiled. If you incorrectly assumed that the
source file hadn’t been modified because it’s older than the object file, the
build tree wouldn’t end up in a consistent state.

$ 1s -1 foo.c
-rw-r--r-- psmith 3500 2009-05-17 19:13 foo.c

$ 1ls -1 foo.o
-rw-r--r— psmith 73923 2009-05-17 19:17 foo.o

$ rm foo.c # OOOPS!

Now restore the file from a backup. You’ll restore a version of foo. c from
2 days ago.

$ 1ls -1 foo.c
-rw-r--r-- psmith 3223 2009-05-15 12:22 foo.c

$ 1ls -1 foo.o
-rw-r--r— psmith 73923 2009-05-17 19:17 foo.o

Unfortunately, foo.o no longer matches foo.c, but it won’t rebuild
because the object file is newer than the source file. If you instead com-
pared the source file’s current time stamp against the time stamp it had
when the last build was performed, you’d notice that the file was different
and the object file would correctly be recompiled.This second time stamp
approach is used by the SCons build tool, but not by GNU Make or Ant.
Only SCons keeps a database of file time stamps, whereas other tools don’t
maintain the necessary persistent state.

3. The third time stamp method is often used when it is too hard to compute
the correct dependencies in a build tree. Instead, the final step of the build
is to create a . stamp file that specifically marks the point in time when the
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last successful build completed. When a developer requests a new build,
the tool examines all the time stamps on all the files in the build tree,
without even considering the dependency graph. If any newer files exist,
the entire tree is cleaned and then rebuilt.Although this method uses a
brute-force approach to recompilation, it’s still commonly used in build
systems, especially those that use GNU Make. It trades off recompilation
time for the extra effort of ensuring correct dependencies. This is a rea-
sonable approach only for small build systems or those that don’t change
often.

For all three of these time stamp methods, the build tool spends a lot of time
querying the file system to determine each file’s current time stamp. As you’ll
see in Part IV, “Scaling Up,” this operation can become expensive, especially for
large build trees.

It’s also important for the build tool and the file system to have synchronized
clocks; otherwise, their ability to compare time stamps will fail. This isn’t usu-
ally a problem on a standalone machine where all files are stored on the same
disk, but problems can occur in a network file system environment.

For example, if dog. c is stored on a remote file system that has a slow clock,
and dog.obj is stored on a local file system, it’s possible that dog. obj will have
a newer time stamp, even though dog. c was modified more recently. Here’s the
sequence of steps:

1. dog.c was modified and saved to a network file system. (The time on the
file server is 10:01am.)

2. dog.c was compiled and dog.obj was saved to a local disk. (The time on
the local machine is 10:03am.)

3. dog.c was modified again and saved to the network file system. (The time
on the file server is 10:02am.)

4. The build tool won’t regenerate dog.obj because it’s newer than dog. c.

Checksum-Based Methods

After observing the problems with time stamp-based detection of whether a file
has been modified, it seems that a more accurate method might be useful. Using
checksum (or hashing) techniques such as MD5 or SHA, it’s possible to obtain
a numeric fingerprint (such as a 128-bit number) that summarizes the content
of the entire file. These checksum methods are not guaranteed to uniquely sum-
marize the content of a file, but if two files have the same checksum value, it’s
extremely likely that the files have the same content.
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Any build tool that uses a checksum method must have the capability to
compute and store each file’s checksum whenever the build tool is invoked.
Computing checksums isn’t a trivial operation, so the build tool’s performance
can suffer. In large projects with thousands of source files, the time required to
compute all the checksums might be unacceptable.

One interesting outcome of using a checksum-based system is that simply
touching the file won’t make it appear to have changed. If the content is the
same, the checksum will be the same, and no recompilation takes place. This
approach leads to a few interesting scenarios:

e Changes to code comments don’t cause the program to be relinked. Even
though the C compiler is called into action, a change in a code comment
won’t cause the output of the C compiler to be any different than last time
(assuming that no time or date stamps are embedded in the output file).
Therefore, the build tool deduces that the linking phase can be skipped (see
Figure 11.14).

bear.c P
n

bear.obj

(unchanged) bear.exe

A

/*
* This is my new comment. It
* doesn’t change the code at all
*/

Figure 11.14 Adding a source code comment doesn’t impact the object file. No linking
step is required.

¢ Autogenerated source files don’t necessarily cause object files to recompile.
Build systems that use a large number of autogenerated files might end up
touching too many files, causing the entire tree to rebuild. With the check-
sum method, only files that actually ended up being different will trigger
recompilation of other files.

In Figure 11.15, you can see that animals. list is used as the main source
code file for autogenerating many C files. Given the way the compilation
tool works, any change in animals.1list causes all the C files to regener-
ate from scratch, thus changing their time stamps. Using a checksum-based
method, only the files that have actually changed (in this case, cat_gen.c)
cause object files to rebuild. Other object files remain untouched.
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dog_genCc |_ d bi
(unchanged) [~ ©09-00)
gmmmmmmmeaaas
| | . . .
1 animals.list & cat_gen.c < cat.obj
'.-----------'\
pig_gen.c - . .
(unchanged) [~ pig.obj

Figure 11.15 With checksum-based checks, you compile only the autogenerated files
that have actually changed.

This technique avoids a large amount of unnecessarily recompilation, thus
making the developer more productive.

As a reminder, Chapter 8, “SCons,” discussed the MD5-timestamp decider
function that optimizes this checksum approach. You can ask the build tool to
perform the checksum operation only if the time stamp on the file has actually
changed. That is, if the time stamp has not changed, you know for sure that the
file content has not changed. However, if the time stamp is different, there’s a
good possibility that the content will also be different. This then can be con-
firmed or disproved by computing the checksum. This optimization works well
because reading a file’s time stamp is much faster than computing the checksum.

Although SCons is the only build tool that natively supports the checksum
approach, it’s possible to implement this same feature in other build tools. Using
the GNU move-if-change script, it’s possible to update the target file’s time
stamp only if the file content is different from the last build invocation. The trick
is to generate the new content into a temporary file, but copy that temporary
file into the target location only if the content has changed. If not, the file isn’t
copied and the time stamp isn’t updated.

Flag Comparison

One concept touched on in an earlier section is that an object file should have
a dependency on the tool’s command-line options. If the options changed (such
as by adding a debug flag), the object file would need to be rebuilt with the new
options enabled. Therefore, you need a third method of determining whether
a file is up-to-date, but this time the method is not based on the file’s content.

A build tool that supports this feature must have some mechanism for storing
each object file’s command-line options. With SCons, this feature is built into
the basic tool, and the SCons database maintains a list of compilation flags used.
Any change to these flags causes all object files to be rebuilt.



STEP 2: DETERMINING WHICH FILES ARE OUT-OF-DATE

In the case of GNU Make, this feature isn’t a standard part of the tool, but by
adding a supplementary file (for example, with the . f1ags suffix), a comparison
between old and new . f1ag files is sufficient to detect a change.

Advanced Methods

The three change-detection methods discussed so far (time stamps, checksums,
and flags) are currently used in a number of common build tools. However, if
you carefully think about how files are actually changed, you have other clever
ways to optimize this process. After all, the time stamp and checksum methods
are fairly brute-force approaches that require looking at each file in turn. For
large build systems, this can take several minutes to complete.

The following are some advanced methods of solving the file change problem:

® Ask the version-control tool: One of the main ways the files in a build tree
are modified is by the version-control tool (such as CVS or Subversion).
When these tools update the files in your source tree, they can provide the
build tool with a list of files that have changed. With this list in hand, you
shouldn’t need to query each file’s time stamp or checksum.

The ClearCase version-control system [5] is a great example of how this
works. The clearmake build tool is tightly integrated with the version-
control tool and knows exactly which version of each input file was used
to generate an object file. It then queries the version-control system to
determine whether any of those input files have been modified.

® Ask the integrated development environment (IDE): Users of IDEs, such
as Eclipse or Visual Studio, can assume that the only way a source file can
change is if the IDE saved a new version of that file. By asking the IDE for
a list of files that have changed (since the time of the last build), the build
tool avoids querying each file to see if it’s different. Clearly, this solution
assumes that the developer doesn’t change source files using any other tool
or directly from the operating system’s command line.

o Ask the file system: Regardless of which development tools are used, the
file system itself is the ultimate authority on whether a file has changed.
Using a log-based tracking system, you can ask the file system for the list
of files that have changed since the last build. Although this would be
significantly faster than querying each file one by one, most file systems
don’t support this functionality. In any case, it might not work well in a
networked environment where files can be modified from many different
computers.
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Hopefully, future generations of build tools will use these types of optimiza-
tion more often.

Step 3: Sequencing the Compilation Steps

Finally, you’ve come to the third step in the build tool’s high-level workflow. As
a reminder, the first step was to construct the dependency graph, and the second
was to identify which files have changed since the build tool was last invoked.
This section discusses the third step, in which the compilation tools are actually
put into action. For many people, this is where the build tool starts doing useful
work.

Ironically, the process of creating a dependency graph and then determining
which files are out-of-date can take longer than executing the compilation steps
themselves. This is certainly true in large software projects in which only one
source file has changed. The net effect is that developers perceive that the build
system is doing nothing, until they start to see the commands being executed.

The remaining problem is how to invoke each of the compilation tools in the
correct order so that the final software image is brought completely up-to-date.
As a general rule, a particular file that is currently out-of-date must be regen-
erated after each of its dependencies has been regenerated (see Figure 11.16).
From a simplistic perspective, the compilations must occur from left to right in
the diagrams. That is, the object files are compiled first, followed by the libraries
and then the executable program.

dog.c

A

dog.obj

cat.c < cat.obj /

animals.dll

........----./ petstore.exe

animals.h %

petstore.c |« petstore.obj

Figure 11.16 A change to animals.h causes the files to be recompiled from left to right.

For a build tool that executes compilation jobs one at a time, the simplistic
approach is probably the best. However, you have more choice on computers
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that have enough processing power to execute multiple jobs in parallel. These
computers include single-CPU systems that have excess capacity, multicore sys-
tems, and distributed clusters of computers that share access to the same build

tree.

For simplicity, assume in this discussion that each compilation job takes
exactly the same amount of time. If you execute one compilation after another,
the following sequence is likely:

Time CPU 1

1 dog.obj

2 cat.obj

3 animals.dll
4 petstore.obj
S petstore.exe

Note that because all three of the .obj files depend only on source files
instead of anything that needs to be regenerated, they could be compiled in any
order. However, the build tool will likely handle them in the order in which
they’re specified in the build description file. This also explains why animals.
d11 is built before petstore.obj.

If two jobs are built in parallel, you may see the following sequence of events:

Time CrU 1 CPU 2

1 dog.obj cat.obj

2 animals.dll petstore.obj
3 petstore.exe

The build process now takes three time units instead of five units, yet you
still end up with the same results. Because dog.obj and cat.obj don’t have
dependencies on each other, they can compile in parallel. The same is true for

animals.dll and petstore.obj.

Now examine a scenario with three jobs executing at once:

Time CrU 1 CPU 2 CPU 3

1 dog.obj cat.obj petstore.obj
2 animals.dll

3 petstore.exe
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Unfortunately, you’ve now reached the maximum parallelism level for this
build process. Because animals.d11l must wait until dog.obj and cat.obj are
complete, and because petstore.exe can’t start building until animals.d11 is
complete, you don’t see any further speed-up. In this particular example, there’s
no benefit to adding the third parallel job.

What would happen if your build tool lacked sufficient information in the
dependency graph? After all, this is a fairly common problem, especially when
building in parallel. Now examine the situation in which the dependency that
animals.dll has on cat.obj was missing:

Time Job 1 Job 2

1 dog.obj petstore.obj
2 cat.obj animals.dll
3 petstore.exe

In this case, animals.d11 is incorrectly scheduled at the same time as cat.
obj, which definitely causes a problem. Most likely, animals.d11 will observe
cat.obj changing as it’s being read, resulting in a build failure.

Oddly enough, this missing dependency wouldn’t cause problems if only one
job was executed at a time. The two files would always be executed in the cor-
rect order, and nobody would notice anything wrong. This is simply a side effect
of the build tool always sequencing the jobs in the same order, regardless of
dependencies. When building many jobs in parallel, the problems start to show
up.

As a final example, it’s interesting to understand how the ElectricAccelera-
tor tool can build on massively parallel clusters (with potentially hundreds of
CPUs). The strength of this tool is that it can still produce a correct software
image, even if critical dependencies are missing. The key to ElectricAccelerator’s
success is that it uses the file system monitoring technique to determine each
compilation tool’s exact set of dependencies.

In Figure 11.17, each box represents a single compilation job. You have four
different CPUs executing jobs, with each job taking one time unit (again, a sim-
plification). Everything compiles smoothly until Job B is executed on CPU 2 at
time 5. At this time, ElectricAccelerator notices that the job has just written to a
file that was already used by a previous job (Job A). Although no rules explicitly
informed the tool of this dependency, it discovered this on its own.
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Figure 11.17 The ElectricAccelerator conflict-resolution system.

The next step is for ElectricAccelerator to rerun the job that was performed in
the wrong order. In the example, Job C is identical to Job A, except that it now
has access to the necessary output from Job B. ElectricAccelerator also takes
note of this situation (known as a conflict) and ensures that future invocations
of the build tool are properly aware of this dependency.

Summary

A build tool must follow a three-step process. First, it builds up the depend-
ency graph to determine which files are derived from which other files. Next, it
checks the file system to determine which of those files have been modified since
you last invoked the build tool. Finally, it calls upon the individual compilation
tools to bring all the object files, libraries, and executable programs up-to-date.

Constructing the dependency graph is perhaps the most challenging part of
creating a build system because you have various ways of gathering the required
information. The goal is to predict which files a compilation tool will access and
make sure that all prerequisite files are first brought up-to-date. Although it’s
possible to cache some of this information, you need to make sure the cache is
kept up-to-date with ongoing changes to build description files, source files, and
compilation flags.

When determining whether files need to be recompiled, you can query each
file’s time stamps, compute its checksum, or use one of several more advanced
methods.

Finally, having an accurate dependency graph is important to ensure that
compilation commands are executed in the correct order, especially when the
workload is executed in parallel across multiple CPUs.
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Chapter 12

Building with Metadata

Although the primary goal of a build system is to create an executable program
to deliver to a customer, many build variants are intended only for software
developers. As you saw in Chapter 5, “Subtargets and Build Variants,” build
variants enable you to generate a range of release packages, such as for different
CPU types or different software editions. This chapter discusses another group
of variants, with the focus on producing metadata.

The simple definition of metadata is data that describes the structure or
attributes of data. In the context of a build system, metadata is additional infor-
mation about the structure of an executable program. A developer can use that
information to study or monitor the program in various ways.

This chapter discusses the following types of metadata:

¢ Debugging support: Enables source-code level debugging of a running pro-
gram, which helps a developer identify the location of bugs.

¢ Profiling support: Determines how a program spends its execution time,
enabling a developer to optimize the most time-critical portions of the
code.

e Coverage support: Determines which lines of code are being executed.
This gives developers a better understanding of whether their code has
been fully tested.

¢ Source code documentation: Provides formatted documentation of code
APIs, in a format such as HTML. Developers can understand the code’s
main entry points without diving into the detailed code itself.

¢ Unit testing: Validates whether the individual units (modules or functions)
of a program are performing correctly instead of testing the release pack-
age as a whole.
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e Static analysis: Identifies common programming errors at compilation
time, in contrast to finding bugs when the program is executing.

Each of these build variants requires support from the build system, either
by invoking a special-purpose compilation tool or by passing additional flags to
the standard compiler. Although these features are optional, a well-maintained
build system should support them all.

Now let’s take a brief look at each type of metadata listed to see how it
can improve software quality. Although this chapter discusses only one way of
generating each type of metadata, you’ll likely find that your own development
tools provide similar features.

Debugging Support

Debugging support is one of the most common compiler options. Developers
must have the ability to monitor the progress of their code as it executes. They
should examine which lines of code are executed and which values are assigned
to their program variables. Lack of good debugging support makes finding and
fixing software bugs much harder.

Even though a program executes as a sequence of machine code (or byte code)
instructions, developers prefer to think about the lines of source code they wrote
and the variables they declared. The compiler must generate extra information
so that a debugger tool can reverse-engineer the execution of the program. It can
then display the program’s runtime state in developer-centric terms.

For example, the compiler must record the following:

¢ The memory address and data type of each variable in the program

¢ The start address of each function within the machine code, along with its
list of parameters

¢ The memory address of each individual line of source code

Using this information, a debugger can fetch the necessary values from mem-
ory (and the CPU registers) and display the source code relating the current line
of code being executed. It can also read the value of variables and display them
in the appropriate data format, such as a character, number, string, or pointer.

All modern compilers offer debugging support, which is enabled by adding a
command-line option (such as -g). Because of its importance, many build sys-
tems generate debug information by default. The following example shows how
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the GNU debugger [67] traces the execution of a program. Entering the 1ist
command shows the first ten lines of the program’s source code.

$ gcc -g -0 prog prog.c

$ gdb prog

(gdb) 1list

1 #include <stdio.h>

2

3 int main(int argc, char *argv([])
4 {

5 int i;

6

7 for (i = 0; i !'= 100; i++) {

8 printf ("The next number is %d\n", 1i);
9 }

10 return O;

Next, a breakpoint is set at line 7 of the code (at the start of the for loop)
by invoking the break command. The compiler-generated metadata informs the
debugger that line 7 is at machine code address 0x8048435.

(gdb) break 7
Breakpoint 1 at 0x8048435: file prog.c, line 7.

When you run the program, execution stops at line 7, and you continue on a
line-by-line basis (as requested by the next command).

(gdb) run
Starting program: /home/psmith/Book/examples/debugging-
= session/prog

Breakpoint 1, main (argc=<value optimized outs,
argv=<value optimized outs>) at prog.c:7

7 for (i = 0; i != 100; i++) {

(gdb) next

8 printf ("The next number is %d\n", 1i);
(gdb) next

The next number is 0

7 for (i = 0; i != 100; i++) {

(gdb) next

8 printf ("The next number is %d\n", 1i);

You also have the option to display the value of each program variable. The
compiler provided enough metadata for the debugger to learn the variable’s
memory address and data type.

(gdb) print i
$1 =1
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Although this debugging session is entirely text based, many environments
also support graphical debugging. Developers can set breakpoints directly from
their editor and see which line of code is currently executing. Some debuggers
provide a graphical display of data structures, showing each structure or class as
a box, with references between these structures represented by arrows.

If you’re using the GNU C compiler, you should investigate the GDB debug-
ger used in our example. Additionally, consider using the DDD [68] front end,
which provides a more graphical view of the program.

Passing the —-g option to GCC generates debug information, encoded in a for-
mat such as DWARF [69]. When an executable program is created, GCC inserts
the metadata into a special section within the executable file. GDB extracts this
information to debug the program.

For Java development, you might want to look at the jdb command-line tool
(part of the JDK [30]), although most IDEs provide Java debugging as a built-in
feature. The same is true for C# and the Microsoft Visual Studio tools.

Profiling Support

The act of profiling a program means that you can determine how long the CPU
spends executing each part of the code, or how much memory is used to store
each type of data. The goal is to give the developer a view of how the program
spends its resources and, therefore, how it can be optimized. If you focus your
optimizations on the most time-consuming portions of the program, you’ll see
the most dramatic performance improvements.

For example, the following output shows the CPU profile of the CVS source
code-management tool at the point it was downloading source code from an
Internet site. The GNU Profiler tool [70] generated the output; it requires all C
source files to be compiled with the special -pg flag. In this case, the CVS tool’s
standard build system was modified to include this additional flag.

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.33 0.01 0.01 2541 0.00 0.00 buf
read line
33.33 0.02 0.01 2171 0.00 0.00 getstr
33.33 0.03 0.01 find_
rcs
0.00 0.03 0.00 76003 0.00 0.00 stdio_
buffer input
0.00 0.03 0.00 16072 0.00 0.00 xmalloc
0.00 0.03 0.00 15226 0.00 0.00 xstrdup
0.00 0.03 0.00 3396 0.00 0.00 hashp
0.00 0.03 0.00 3280 0.00 0.00 getnode
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0.00 0.03 0.00 2542 0.00 0.00 buf_
flush

0.00 0.03 0.00 2542 0.00 0.00 buf
send_output

0.00 0.03 0.00 2542 0.00 0.00 stdio_
buffer flush

0.00 0.03 0.00 2541 0.00 0.00 read_
line

0.00 0.03 0.00 2367 0.00 0.00 freen-
ode_mem

0.00 0.03 0.00 2171 0.00 0.00 getline
0.00 0.03 0.00 1950 0.00 0.00 get-
date yylex

0.00 0.03 0.00 1864 0.00 0.01 fgeten-
tent

0.00 0.03 0.00 1762 0.00 0.00 fputen-
tent

0.00 0.03 0.00 1753 0.00 0.00 Entn-

ode_Create
[ output truncated ]

In this example, you can see the list of functions executed (in the name col-
umn), as well as how many times each was invoked (in the calls column). The
main observation is that roughly one-third of the CPU time (according to the %
time column) was spent in each of the buf _read line, getstr, and find rcs
functions.

Interestingly, only 0.03 seconds (see the self seconds column) was spent
executing these three functions, whereas the program itself ran for a total of 15
seconds. This indicates that the program is I/O bound instead of limited by the
performance of any functions in the code. Given that the CVS tool was down-
loading code from the Internet, this should hardly be surprising.

Code profiling can be implemented in several ways. For the previous exam-
ple, the computer’s operating system took periodic snapshots to determine
which function was executing at each point in time. Only 100 snapshots were
taken each second, so the measurement isn’t very fine-grained. In the example,
most of the functions appear not to have been called at all, simply because they
weren’t executing during any of these snapshots.

Another implementation method is for the compiler to add machine code
to count how many times each function is called. This metric (see the calls
column in the example) is guaranteed to be accurate because it’s based on reli-
able counters instead of periodic snapshots. When profiling each function’s use
of memory (not shown in the example), the same method is used to count the
number of times memory chunks are allocated or freed.
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Coverage Support

Code coverage is similar in nature to profiling, although the focus is more on
determining which lines of code, or paths within the code, are actually being ex-
ecuted. The goal is to help developers understand which parts of the code might
need more testing and, therefore, may still contain unfound bugs.

As an example, the following output shows the annotated source code of
a simple program. This output was produced by running the GNU gcov tool
[25] over a program that was compiled with the GCC -fprofile-arcs and
-ftest-coverage command-line options.

The number in the first column indicates how many times the line of code
was executed, with ##### indicating that it was never executed.

- l:#include <stdio.h>
- 2:
- 3:void divide (int number)

100: 4:
100: 5: if (number % 3 == 0){
34: 6: printf ("This number is divisible by 3\n");
66: 7: } else if (number % 200 == 0){
HHtH#EH 8: printf ("This number is divisible by 200\n") ;
- 9: } else {
66: 10: printf ("Not an interesting number\n") ;
- 11: }
100: 12:}
_— 13
- 14:int main(int argc, char *argvl([])
1: 15:{
-: 16: int i;
- 17:
101: 18: for (i = 0; i != 100; i++){
100: 19: divide (1) ;
- 20: }
1: 21: return 0;
- 22:}

As you can see, line 8 is never reached, which offers a clue that additional test
cases are required to test that branch of code.

Counting the number of times each code block is executed offers code cov-
erage information. With some coverage tools, it’s also possible to count the
number of times a decision is made within the program, even down to the level
of individual Boolean tests. For example, the following simple expression has
four possible outcomes:

if (a < 10 && b < 5) {

} else {



SourcE CODE DOCUMENTATION

}

Although clearly just two code paths can be followed, you can consider each
part of the Boolean expression individually and, therefore, use four different
counters. This is especially important if you care about why the code path was
taken.

Counter Number a<10 b<5s a<10&&b<5
1 False False False
2 False True False
3 True False False
4 True True True

As with profiling, additional “counting” instructions are inserted into each
object file, assuming that the necessary command-line options are passed to the
C compiler. Naturally, this makes the object code slightly larger and slower than
a program compiled without the coverage instrumentation.

Source Code Documentation

Although the primary goal of a build system is to produce an executable pro-
gram, it can also generate web-based API documentation. This includes the
high-level detail of functions, methods, classes, variables, and constant defini-
tions, but without going into any of the low-level implementation detail. Having
this documentation available is a great way for new developers to understand a
library’s external AP It makes it possible to learn the available definitions with-
out studying the fine detail of source code that might be thousands of lines long.

Clearly, expecting developers to update an API web page on their own would
be too time-consuming and error prone. Given that developers are supposed to
focus on writing code, updating web pages becomes a secondary task that ends
up being neglected. Instead, you can use automated tools to extract the infor-
mation directly from the source code and then generate the corresponding web
page.

To illustrate, let’s consider a short Java class and the resulting output of run-
ning the Javadoc tool (part of the Java Development Kit). This particular tool
is widely used in the industry to describe the APIs provided by Java classes. In
fact, the entire set of standard Java libraries is described in this format. From
the build system’s perspective, Javadoc is simply a compiler that generates web
pages instead of .class files.
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This Java source code exports a public API. The purpose of this code isn’t
important, but take careful note of the method names and parameters, as well
as the code comments.

/**
* Manage a time using the 24-hour clock system.
*
* @author Peter Smith
*/
public class ClockNumber {

/** The hour number, from 0 to 23 */
int time;

/**
* Construct a new ClockNumber object, using
* the provided parameter as the initial wvalue.
* @param hour The initial value for the hour, from 0 to
23.
*/
public ClockNumber (int hour){
time = hour;
}

/**
* Construct a new ClockNumber, using midnight as
* the default time.

*/
public ClockNumber () {
time = 0;
}
/**

* Add the specified number of hours to the current time.
* @param hours The number of hours to add to the current

time.
* @return The new hour value.
*/
public int add(int hours) {
time = (time + hours) % 24;

return time;

}

Figure 12.1 shows the web-based output generated by running Javadoc. This
can be done via the standard javadoc command-line tool or from an IDE that
supports Javadoc (such as Eclipse).
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Class ClockNumber

java.lang.Object
L clockNumber

public class ClockNumber b
extends java.lang.Object

Manage a time using the 24-hour clock system.

Constructor Summary

ClockNumber()
Construct a new ClockNumber, using midnight as the default time.

LlockHumberiint hour)
Construct a new ClockMNumber object, using the provided parameter as the initial value.

Method Summary

int|gdd(int hours)
Add the specified number of hours to the current time.

Methods inherited from class java.lang.Object

clone, eguals, Tinalize, gelClass, hashCode, nolify, nolilTyAll, loSlring, wail, wail, wail

Constructor Detail

ClockNumber
public ClockNumber{int hour)
Construct a new ClockNumber object, using the provided parameter as the initial value.

Parameters:
hour - The inilial value for the hour, from 0 /lo 23

Figure 12.1 Output from the Javadoc tool.

As you can see, this page contains only the high-level information from the
class, not the actual lines of code. The class constructors are listed first, followed
by each of the public methods. Note that Javadoc extracts text from the code
comments and applies special meaning to Javadoc tags such as eparam and e
return.

Although Javadoc is specifically designed for Java code, other tools support
other languages. These include Doxygen [71] and DOC++ [72] for C/C++, and
Sandcastle [73] for C#.
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Unit Testing

Adding a unit test variant to a build system enables a developer to determine
exactly which unit of code (module or function) contains a bug. This contrasts
with the more traditional approach of testing the complete program to see if it
behaves correctly. Experience shows that a unit-testing approach makes locating
and fixing a wide range of bugs much easier.

For a build system to generate unit tests, it creates a variant of the standard
release package. Instead of producing the default executable program, the build
system links the program code with a number of test case functions, which are
grouped into test suites. It also adds a unit-test framework to provide an auto-
mated testing mechanism, as shown in Figure 12.2.

Functions/Modules Test cases/Suites
to be tested

O~ 00 O O |l ©
0%00Q%0 | }o|lo] o
O O O O O

O o0 -
900 9091 I'6 [0 |[o
OO0 ~A00«<

o O 00= O @) O
0¥ 00 O0¢—+o|lo]|lo

1O O O

Unit Test Framework

Figure 12.2 A set of functions or modules tested within a unit test framework. Every-
thing is linked into a unit-test executable program.

When the program executes, the unit test framework invokes each of the test
cases in turn. Each test case calls a particular function or module from the main
program’s code, to ensure that it works correctly. This is done by invoking each
function with a predetermined set of input parameters and then checking the
return value to ensure that it matches what was expected. If a test case fails, an
error report is provided on the program’s output, producing the metadata you
need to debug the problem.

Now look at a simple unit-testing example, using the JUnit test framework
[74]. It starts with a simple Java class representing a rectangle:
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1 public class Rectangle {

2

3 private int width;

4 private int height;

5

6 public Rectangle (int w, int h) throws InvalidSizeExcep-
tion {

7 if ((w <= 0) || (h <= 0)) {

8 throw new InvalidSizeException() ;

9 }

10 width = w;

11 height = h;

12 }

13

14 public int getWidth() {

15 return width;

16 }

17

18 public int getHeight () {

19 return height;

20 }

21

22 public int getArea()

23 return width / height;

24 }

25}

The Rectangle class defines a constructor (in line 6) that requires both a
width and height value to be provided. These values are recorded within the
new object’s width and height fields (lines 10-11). However, if either of these
values would cause the creation of a zero-sized or negative-sized rectangle, an
InvalidSizeException is thrown (line 8).

This class also provides accessor methods for retrieving the width (line 14),
the height (line 18), and the area of the rectangle (line 22). Note that the area
calculation on line 23 is incorrect, resulting in bad values produced by the
getArea()nuxhod.

Now examine a second class, TestRectangle, used to test the functionality
provided by Rectangle. The TestRectangle class is linked into the program
only for testing purposes and won’t be copied into the default release package.

import static org.junit.Assert.*;
import org.junit.Test;

public class TestRectangle

@Test
public void testRectangleValid()
throws InvalidSizeException {
Rectangle rl = new Rectangle(l, 2);
assertEquals (1, rl.getWidth()) ;
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11 assertEquals (2, rl.getHeight());

12

13 Rectangle r2 = new Rectangle (50, 23);
14 assertEquals (50, r2.getWidth()) ;

15 assertEquals (23, r2.getHeight());

16 }

17

18 @Test (expected= InvalidSizeException.class)
19 public void testRectangleInvalidSize ()

20 throws InvalidSizeException {

21 Rectangle r3 = new Rectangle(-1, 10);
22 }

23

24 @Test

25 public void testArea() throws InvalidSizeException ({
26 Rectangle r4 = new Rectangle (10, 15);
27 assertEquals (150, r4.getAreal());

28 }

29

30 }

The TestRectangle class is an example of a JUnit test suite. It contains three
different test case methods (testRectanglevalid, testRectangleInvalid-
Size, and testArea), each of which verifies a feature of the Rectangle class.
Each test can pass or fail independently from the other tests.

The testRectanglevalid method (lines 6-16) validates the basic creation
of Rectangle objects. It creates two objects (stored in r1 and r2), each with
a specific width and height. It then invokes the getwidth () and getHeight ()
methods to ensure that both the constructor and the accessor methods work as
expected.

The assertEquals () method is defined within the JUnit framework. If the
expected value (the first parameter to assertEquals ()) differs from the actual
value seen by calling getWwidth () or getHeight (), the test case is marked as
having failed.

The testRectangleInvalidsize method (lines 18-22) ensures that creating
a zero- or negative-sized rectangle isn’t possible. The directive in line 18 specifies
that the method is expected to throw an InvalidsSizeException when a new
Rectangle is created. If no exception is thrown, the test case fails.

Finally, the testArea() method confirms that the getaArea() method
works as expected. However, there’s a bug in getaArea () (the calculation used
/ instead of *). Figure 12.3 shows the output from the Eclipse JUnit view when
this particular test case fails.
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AU Junit &2 4 ¢ e BB Q Ho &

Finished after 0.035 seconds

Runs: 3/3 BErrors: 0 B Failures; 1
= EE,TestRectangle [Runner: JUnit 4] (0.014 s)

¢l testRectangleVvalid (0.007 s)
ﬁ&testRel:tangleInualidSize (0.000 5)

= testArea (0.007 s)

|
=7

= Failure Trace |

o Java.lang.AsserlionEnor: expecled: <1502 bul was:<0>

at TestRectangle.testArea(TestRectangle.java:27)

[ [

Figure 12.3 The JUnit view from Eclipse, showing results from the TestRectangle
class.

Although creating a good set of test suites involves significant work, the ben-
efits can be enormous. Running through all the tests might take a few minutes,
but having a detailed report of exactly where the problem lies is so much easier
than debugging a full executable program. As an analogy, it’s like being told
exactly where the needle is within a haystack, instead of trying to find it for
yourself.

In many development environments, it’s standard practice to consider the
software build broken if the unit tests don’t pass at 100%. It’s not just a mat-
ter of whether all the code compiles correctly; the software must pass all the
test cases. If any failures occur, the code isn’t ready to be shared with other
developers.

This simple JUnit example doesn’t show the full power of unit testing and
doesn’t even start to uncover the numerous techniques involved in writing good
tests. For a more complete view of unit testing best practices, refer to [75]. To
learn how to retrofit legacy software with new unit tests, refer to [76].
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Static Analysis

The final type of metadata discussed in this chapter provides the capability to
identify software bugs, or at least suggest where potential bugs might turn up
if you’re not careful. Studying the program’s source code, a static-analysis tool
can pinpoint lines of source code where a bug might be lurking. The developer
reviews this information and decides whether there’s a true problem to fix.

The following example shows a small Java class that contains a few program-
ming errors.

1 import java.util.List;

2

3 public class Buggy {

4 int myField;

5

6 public void buggyMethod (List list, int number, String
str)

7 int count;

8

9 if (list == null) {

10 list.add (Integer.valueOf (number)) ;

11 }

12 myField = number;

13

14 if (str == "Hello"){

15 System.out.println ("Hi") ;

16 }

17

18 }

Running this source code through the FindBugs tool [8], you can automati-
cally identify three different problems. Although the output from FindBugs is
slightly cryptic, any Java or C# programmer should be able to determine the
errors.

$ findbugs Buggy.class
H C NP: Null pointer dereference of ? in Buggy.
buggyMethod (List, int,
String) Dereferenced at Buggy.java:[line 10]
H B ES: Comparison of String parameter using == or != in
Buggy.buggyMethod (List, int, String) At Buggy.
java: [line 14]
M P UrF: Unread field: Buggy.myField At Buggy.java:[line 12]
Warnings generated: 3

Ironically, these issues often escape the attention of developers, who tend
to focus more on their program’s logic than mistakes of this nature. A static-
analysis tool is good at finding commonly recurring patterns, identified by a
brute-force approach. Humans simply aren’t good at brute-force analysis.
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In addition to FindBugs, consider using tools such as Lint, Coverity Prevent
[6], or Klocwork Insight [7].

Adding Metadata to a Build System

As you saw in Chapter 5, you can add variants into a build system in several
ways. In Part II, “The Build Tools,” you also saw how each build tool (GNU
Make, Ant, SCons, CMake, and Eclipse) facilitates the addition of variants.
Creating metadata in the build process is handled the same way.

From a developer’s perspective, several approaches exist for requesting the
additional metadata. The first approach is to build the standard software release
package but provide an extra command-line flag to request that metadata be
added. For example:

® gmake DEBUG=1 all: Builds the standard release package, but with ad-
ditional debugging information

® ant -Dcoverage=yes: Builds the standard software, with added instru-
mentation for collecting coverage data

® scons profiling=on: Builds the standard software, but with code in-
strumented for profiling the program’s execution

In each of these examples, you build the standard release package, but with
additional metadata included. As you saw in Part II, the build system can either
select which compilation tool is used (the GNU Make cc variable) or modify the
flags passed to the standard compiler (the GNU Make CFLAGS variable).

For the remaining types of metadata, which produce a different type of build
output, it’s common to make use of a completely different build target:

® gmake tests: Builds and executes the unit test suites
® ant doc: Generates the API documentation using Javadoc
® scons analyze: Analyzes the code using a static-analysis tool and pro-

duces a bug report

In these three cases, you would add a completely new section in the build
description file stating which commands, tasks, or builder methods were used to
generate the metadata. This contrasts with simply modifying the existing build
steps.
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Finally, the Eclipse IDE has built-in support for these types of metadata—
or at least the capability to interconnect with third-party tools. Enabling these
features is a simple matter of opening the correct Eclipse view or selecting a
configuration check box.

Summary

In addition to building a customer-ready release package, a build system should
enable the creation of metadata. This data isn’t visible to the end user; it instead
offers developer-facing techniques for improving software quality or enabling
more efficient development.

A program’s metadata includes debugging support, coverage support, and
profiling support, which enable developers to view their program’s runtime
behavior. A document-generation tool summarizes the program’s main func-
tions or methods, making it easier to visualize the program’s structure. Finally,
unit testing and static analysis provide details on a program’s actual or sus-
pected bugs.

Adding metadata to a build system is simply a matter of adding build flags,
alternate compilation tools, or new build targets. The exact technique depends
on how the particular type of metadata is generated.



Chapter 13

Software Packaging and
Installation

The final step in the build process is to create a release package (see Figure 13.1).
This package contains the complete set of files to be installed on the target ma-
chine. Anyone who has added software to a computer, which is almost anyone
who owns a computer, will be familiar with the installation process.

A

Source Object Rel E
Tree Tree Package
| u_ |
Target Machine

Version-
Control
Tool

| Compilation Tools

| Build Machine |

Figure 13.1 The big picture, with focus on creating a release package.

Assume here that the end user isn’t a developer and won’t know how to
compile the program directly from source code. It’s more likely that users will
download the software from the Internet and double-click on the Setup icon.
On the other hand, users might insert a CD-ROM and wait until the software
is automatically installed. This is clearly a place where the Windows and Mac
OS X operating systems excel, partially explaining their popularity. As you’ll see
later, UNIX-like systems are also starting to support the same user-friendly ways
of installing packages.
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The packaging process consists of a number of steps. The main goal is to copy
the required executable programs, dynamic libraries, and data files out of the
object tree and place them in a release package. This is also the point at which
a version number is added.

Unlike the object tree, the release package contains only files that are required
to execute the program. It doesn’t contain any of the intermediate object
files generated by the build process. Also, the layout of the files within the
release package must match the desired layout on the target machine. This can
be quite different from how the files are stored in the source or object trees.

When installing software on the target machine, some systems have all their
files placed in a single file system directory, whereas other software is spread
across multiple directories. As an example, Microsoft Windows device drivers
might need to be copied into the C:\Windows\system32 folder, whereas the
program itself would go into C:\Program Files.

You may also need to customize some of the target machine’s system configu-
ration, such as adding new user accounts or access groups, all of which could be
based on input the user provides during the installation process. For software that
uses interpreted byte-codes, such as Java or C#, the correct version of the virtual
machine must also be installed.

This chapter examines three different approaches to packaging a release
image. Each method has its own set of benefits.

e Archive files: A simple approach in which the user manually extracts files

e Package-management tools: A more complex approach in which pre-
requisite packages are identified, files are extracted to specific parts of
the file system, and a post-installation script can be run.

e Custom-built GUI installation tools: An advanced approach in which a
GUI interface enables the end user to customize the way the software is
installed.
The chapter now discusses each of these approaches in more detail and gives
an example of each case.

Archive Files

The most basic approach to packaging a software release is to store the files
inside an archive. A common tool in the Microsoft Windows world is the zip
utility, which compresses each of the input files and joins them into a single large
file. It also takes note of whether the input files were inside subdirectories so that
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it can reproduce that same hierarchy on the target machine. In the UNIX world,
the same effect is achieved by using the tar tool to create an archive and using
the gzip or bzip2 tools to compress the archive file.

To implement a packaging system using this approach, you first copy the
necessary files out of the object tree and place them in a temporary holding
directory (see Figure 13.2). The files should be arranged in this directory using
the same layout they’ll have on the target machine.

When the temporary holding directory is fully populated, you invoke the archiv-
ing tool to package everything into a single file. This file is delivered to the end
user, who then runs the same archiving tool, but in the reverse mode, to extract the
files onto the target machine. At that point, the software is ready to be executed.

- A= (J-mia

Temporary
Holding
Directory

Object Tree Archive file Target Machine with

installed software

Figure 13.2 Creation of a release package, using a temporary holding directory in the
creation of a file archive.

Packaging Scripts

The temporary holding directory can be created with a simple script that copies
the required files from the object tree. The following is a small Windows batch
script (named packager.bat) that creates a .zip file. This example uses the
7-zip utility [77] to compress the files into an archive.

1 @echo off
2 REM Packaging script for a simple application.
3 REM This batch script is executed after the full object

tree has

4 REM been created. It copies files into a temporary direc-
tory and

5 REM then creates a zip file of the content. The user must
provide

REM a version number.

REM Version number of this package (supplied by the user)
9 set VERSION=%1%

11 REM Name of the final software package
12 set APPNAME=myapp
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14 REM Path to the fully built object tree.

15 set OBJDIR=0Dbj

16

17 REM Name of the temporary directory (that we'll zip up)
18 set PKGDIR=myapp.%VERSION%

19

20 REM Create the temporary directory

21 mkdir %PKGDIR%

22

23 REM Now, copy files from the object tree to the package
directory

24 copy %OBJDIR%\calc.exe %$PKGDIR%

25 copy %OBJDIR%\libs\libmath.dll $PKGDIR%

26 copy $%$0BJDIR%\libs\libgraphics.dll $PKGDIR%

27 copy %OBJDIR%\images\splash screen.jpg $PKGDIR%

28 copy $O0BJDIR%\languages\errors.en $PKGDIR%

29 copy %O0OBJDIR%\languages\errors.fr $PKGDIR%

30 copy %0BJDIR%\languages\errors.de $PKGDIR%

31

32 REM Finally, zip up the temporary directory to produce
the final

33 REM archive file (called myapp.<versions.zip) .
34 7z -tzip a myapp.%VERSION%.zip $PKGDIRS%

By executing this packager.bat script and providing the software’s version
number as a parameter, you end up with a complete file archive ready to be
installed on the target machine. In a typical build system, the build tool invokes
this packaging script, just as if it were an ordinary compilation tool.

c:\work> packager.bat 3.0.1

1 file(s) copied.
1 file(s) copied.
1 file(s) copied.
1 file(s) copied.
1 file(s) copied.
1 file(s) copied.
1 file(s) copied.

7-Zip 4.65 Copyright (c) 1999-2009 Igor Pavlov 2009-02-03
Scanning

Creating archive myapp.3.0.1.zip

Compressing myapp.
Compressing myapp.
Compressing myapp.
Compressing myapp.
Compressing myapp.
Compressing myapp.
Compressing myapp.

.1\splash_screen.jpg
.1\errors.de
.1l\errors.en
.1\errors.fr
.1\calc.exe
.1\libgraphics.dll
.1\libmath.dl1l

wwwwwww
O O O OO oo

Everything is Ok
c:\work>
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Assuming that everything worked correctly, you end up with a single archive
file named myapp.3.0.1.zip.

Now you’re ready to ship the release package to the end users. They receive a
copy of the file via the Internet or on a CD-ROM and install it on their personal
machine. They first create a directory in which to install the software, and then
they execute an unarchive command to retrieve the individual files. Unless the
user performs some manual customization steps, the files will be in the exact
state as when they were archived in the first place.

Although a typical Windows user extracts these files by right-clicking on
the .zip file icon and selecting Extract All, it’s also possible to extract the
archive’s files using the command line:

c:\work> cd C:\Program Files
c:\Program Files> 7z x myapp.3.0.1.zip

7-Zip 4.65 Copyright (c) 1999-2009 Igor Pavlov 2009-02-03

Processing archive: myapp.3.0.1.zip

Extracting myapp.3.0.1\splash screen.jpg
Extracting myapp.3.0.1l\errors.de
Extracting myapp.3.0.l\errors.en
Extracting myapp.3.0.1l\errors.fr
Extracting myapp.3.0.1\calc.exe
Extracting myapp.3.0.1\libgraphics.dll
Extracting myapp.3.0.1\libmath.dll
Extracting myapp.3.0.1

Everything is Ok

Folders: 1
Files: 7

Size: 91
Compressed: 1069

Finally, to execute the program, you use Windows Explorer to browse to the
C:\Program Files\myapp-3.0.1 directory and then you double-click on the
calc.exe executable program.

This example assumes that files are packaged into the file archive in the
same hierarchy in which they’ll appear on the target machine. This technique is
acceptable for simple software packages, but it doesn’t allow files to be placed in
arbitrary locations. It also doesn’t enable files to be modified after they’ve been
installed on the target machine.

To overcome this limitation, most archive files contain an installation script
as one of their included files. The user extracts the archive in the usual way and
then executes a custom-written installation script to complete the process. For
example, you could add the install.bat script into the file archive and execute
it within the myapp.3.0.1 directory:
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c:\Program Files\myapp.3.0.1> install.bat
Installation Complete

This installation script can perform an arbitrary set of operations, including
moving files to a different file system location, changing the ownership of files,
adding data to the Windows Registry, or adding new user accounts. The instal-
lation script can also interact with the user, to customize the way the software
is installed.

Other Archive Formats

In addition to the basic zip archive format and the equivalent tar/gzip format
in UNIX, several others are worth mentioning;:

¢ ISO 9660 images [89]: This is the standard format in which CD/DVD-
ROM images are produced. Instead of creating a zip file, the packaging
script creates a raw disk image, ready to burn onto a CD or DVD. The disk
image file is an exact replica of the CD/DVD file system that’ll be mounted
onto the target machine. The target machine’s operating system loads and
executes scripts or other programs when the CD/DVD is inserted or when
the computer first boots.

¢ Mac OS X .dmg images: This is similar in nature to the ISO 9660 format,
although it is used specifically for Mac OS X systems.

o Self-extracting archives: This type of archive is similar to a ZIP file, ex-
cept that the archive is an executable program in its own right. When the
archive file is executed, the embedded files are extracted onto the target
machine and the installation script is run. This provides a single extract/
install process instead of manual installation.

Let’s now discuss some important improvements to the packager . bat script.

Improvements

Keep in mind that a simple script (such as packager.bat), for a program of less
than ten files, won’t suffer from the same scalability problems as a much larger
system. Here are some improvements to make the packager.bat script more
scalable, reliable, and user friendly.

¢ Validate input parameters: The version number parameter should have
been validated, at least to make sure it’s not empty. In the script, if
the user doesn’t provide a command-line parameter, the script silently
continues with an empty string in the $VERSIONS variable. This isn’t
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too much of a problem here, but in more complex situations, the lack of a
suitable input value could cause a corrupt release package.

To solve this problem, the script should at least validate that the user
has provided a version string. If not, it should display an informative
message to let the user know what’s expected. You might also want to
validate that the version string has the correct format (such as 3.0.1).

Abort on error: If any of the commands inside the script fail, the entire
script should terminate and return a suitable exit code. Without this rule
in place, parts of the packaging script might fail, yet the final release pack-
age would still be constructed. Unless you carefully watch the build log for
subtle error messages, you might be misled into believing that the packag-
ing step succeeded. The truth is discovered only when the software fails to
pass sanity testing.

As an example, if you created a release package from an object tree that
hadn’t been fully built, the packaging script wouldn’t be able to copy all
the required object files, yet a release package would still be created. Of
course, you’d quite rightly expect that the packaging step should never
have been invoked in the first place, especially if the earlier build steps
had somehow failed.

Provide meaningful error messages: When an error does occur, always
provide a meaningful error message to let the developer know exactly
what went wrong. In the simple batch script, missing files cause the copy
command to produce the following cryptic output: The system cannot
find the file specified. This doesn’t provide any information about
which file is missing or how the developer should resolve the problem. A
more meaningful message is required.

Avoid unnecessary copying: Support the capability to package files directly
from the source tree instead of only from the object tree. Adding the $SRCDIRS
definition enables you to copy configuration files, graphic images, and
other data files that the build process doesn’t modify. For example, given
that errors.en, errors.fr, and errors.de are plain-text files that are
never customized by the build process, there was no need to copy them
into the object tree in the first place.

Consider future scalability: The approach of duplicating files from the object
tree into the temporary holding directory won’t scale for large software
projects. If the final release package ends up being 100MiB in size (after
being compressed), it would take several minutes to copy all the files to the
holding directory—and probably much longer to compress such a large
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amount of data. Also, you’d need substantially more than 100MiB to store
the uncompressed temporary files in the holding directory.

One solution is to use a build tool to perform the copying instead of us-
ing a simple shell script. With dependency analysis, the build tool copies
files to the holding directory only if they’ve been modified since the last
time the packaging step was performed. In contrast, the simple script
blindly copies the files each time, even if they’re unchanged.

Another approach is to use a symbolic link from the file’s location in
the holding directory back to the file’s location in the object directory
instead of making a temporary copy of each file. The packaging script
takes very little time to set up the links; the archiving tool must follow
the links and retrieve the true content of the files. Of course, this method
works only with archiving tools that can follow symbolic links to re-
trieve the original file. Unfortunately this approach doesn’t allow you to
package the symbolic link itself.

Beware of stale files: You might want to delete the entire holding direc-
tory before you start to fill it with files. Although any existing files should
be overwritten by a newer version of the same file, there’s still a chance
that a stale file could be included in the release package. That is, when a
file that was originally listed in the packaging script is removed (the copy
command is removed), the stale version of that file remains in the holding
directory instead of being overwritten or deleted. Unless the copy com-
mand is replaced by a del command (to explicitly delete the file) or the
developer removes the entire holding directory, the file is still packaged
into the archive.

Avoid using a holding directory: Finally, instead of using a packaging
script to copy files, which doesn’t scale well for large programs, you can
design the build system to store files in their correct target machine loca-
tion. That is, instead of storing each executable program, dynamic library,
or data file in an arbitrary location within the object tree, you place them
in the holding directory in the first place. With this approach, the packag-
ing script performs only the final archiving operation instead of the time-
consuming (and disk-consuming) copying step.

Unfortunately, this approach requires extra work because most build
systems store object files in a location that suits them, not the target
machine. Many systems store generated files in an object tree directory
that maps directly to the source code’s path within the source tree. This
approach makes it difficult to arrange files into the locations required
by the target machine.
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In closing, the archiving method of creating a release package works well,
but primarily for target machines that have a predictable file system layout. In
fact, it works very well for embedded systems that don’t have a lot of software
running on them and don’t require any end-user customization. On the other
hand, software packages intended for installation on desktop computers tend
to require a lot more intelligence from their packaging tools. Let’s now look at
package-management tools that can handle more complex scenarios.

Package-Management Tools

Historically, most software developed for UNIX-like operating systems was pro-
vided in source code format, typically written in C or C++. The user extracted
the source code from the file archive (usually with a tar.z or tar.gz extension)
and then invoked the build system to produce executable programs. The main
reason for this approach is there was never a standard version of UNIX or a
standard type of CPU that UNIX programs executed on. Source code distribu-
tion was the only feasible approach.

If you try to build UNIX software from source code but you’re not using
a suitably matching version of the operating system, you’ll most likely see a
number of compilation errors. The build might fail because of a missing header
file, a missing dynamic library, or perhaps some symbol definitions that aren’t
available on your system. Clearly, your operating system is too different or is
lacking one of the optional packages the software’s author had on his or her
machine.

After you get some experience installing UNIX software, you can probably
figure out which optional packages are missing. If you’re lucky, the software’s
author placed special compile-time checks to determine whether the prerequisite
packages were already installed. At the very least, the author should have pro-
vided written documentation on which third-party packages the software uses.
Some of the prerequisite packages might have their own set of dependencies,
so you can sometimes spend the better part of a day compiling and installing a
program.

To get around these issues, the approach to distributing software in UNIX-
like systems has changed for the better. One common example is that the Linux
operating system has become more standardized than ever, and most Linux
systems run on Intel x86-based hardware. Linux is nowhere near as prevalent
as Microsoft Windows, but there’s still enough standardization that providing
binary distributions is common.

359



360

CHAPTER 13 SOFTWARE PACKAGING AND INSTALLATION

The RPM Package Manager Format

One of the most widespread methods for distributing Linux-based software
is the RPM Package Manager format [78]. Originally created for Red Hat
Linux, it’s now the standard way of packaging software in a range of Linux
distributions. The name RPM is a self-referential acronym for RPM Package
Manager.

RPM files can contain either source code or executable programs, but the lat-
ter binary RPM is the most common. Using binary RPMs as the primary means
of distributing packages reduces the task of installing software, including any
prerequisite packages, to just a few seconds. It’s clearly a benefit to not require
the end user to perform compilation steps or deal with the possibility of compile
errors.

From a simplistic view, an RPM file is similar to a UNIX archive, in that it
contains one or more files to be installed on the target machine. The big differ-
ence is that RPM files come with a great detail of added intelligence, making the
installation process simpler and more powerful. For example, RPM files have
the following features:

¢ Consistent metainformation: The package’s metainformation is stored in
a consistent manner. Among other things, each RPM file stores the pack-
age’s name, the version number associated with this particular release of
the package, the date it was created, the author’s name and email address,
the URL from which the package can be downloaded, and details of the
software’s license agreement. Although this information could always be
stored in a README file (and packaged into the archive), having everything
in a consistent format makes it possible for external programs to read and
act upon the various fields.

¢ Embedded scripts: Unlike basic .zip or .tar files, an RPM file contains
a number of embedded scripts. An arbitrary sequence of shell commands
can be executed on the target machine, both before or after the files have
been installed and before or after the files have been uninstalled. Of course,
there’s no reason you can’t just package a separate post-install.sh
script as one of the archive’s files and ask the user to run that script manu-
ally. It’s just easier to have the correct script execute at the correct time
without the user worrying about it or forgetting the extra step.

¢ Dependency checking: Software packages might need to ensure that
other packages are first installed on the target computer. This includes
runtime environments, such as the Java or C# virtual machines. Instead of
leaving this as a manual exercise for the person installing the software, the
RPM format enables the author to explicitly list the required packages, as
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well as the minimum versions. If the required packages are missing or the
version isn’t acceptable, the system won’t allow the new RPM file to be
installed.

¢ Validation of CPU types: The RPM installation mechanism also validates
the type of CPU required to execute the software. Typically, there’s no
point in installing software destined for a PowerPC architecture on a
machine that has an x86 processor.

¢ Automatic uninstallation: RPM maintains a database to record which
packages are currently installed on the target machine, so the RPM tool
has the means for uninstalling the software, even if the original RPM file is
no longer available. The only caveat is that RPM gives an error if you try
to remove a package that’s required by one or more other packages. For
example, if you tried to remove the standard C library package, you’d find
that every other package in the system depends on it.

¢ Intelligent upgrades: The RPM system enables you to have multiple ver-
sions of the same package installed and can act intelligently when configu-
ration files have been locally modified. For example, the configuration file
for the Apache web server might be installed as /etc/apache2/default-
server.conf. If you upgrade to a newer version of the server, the RPM
tool would warn you if you made local customizations and would refrain
from overwriting it with a new version. It would instead leave both the old
and new configuration files in the /etc/apache2 directory and request
that you manually resolve any conflicts or changes.

These are some of the key benefits of the RPM system, but plenty of other
useful features make it an ideal system for installing software. To see the wide
range of features, refer to the excellent documentation on the RPM web site
[78].

Users of Debian Linux (and other variants, such as Ubuntu) are probably
more familiar with the deb file format [90], which is similar to the RPM system.
Deb files use the dpkg and apt commands for manipulating package files.

Let’s now look at a practical example of using the RPM system.

The rpmbuilda Process

This example is limited to packaging only four different files, but that’s enough
to demonstrate many of the basic features of the RPM format. You’ll also see
how package versioning works, how prerequisite packages are listed, and how
the post-install and preuninstall scripts are specified.
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First, examine the high-level flow of creating and installing an RPM file (see
Figure 13.3).

example.spec \
rpmbuild

Source code archive: Compiler
example-2.3.4.tar.gz

Binary RPM:
example-2.3.4-1.1i586.rpm

Target Computer

Figure 13.3 High-level flow of creating the example RPM file.

The steps are as follows:

1. The build engineer responsible for maintaining the release package first
constructs an RPM specification file (example.spec). This contains the
list of files that should be packaged, as well as the package’s metainforma-
tion and installation scripts. You’ll examine one of these files in detail.

2. The second input to the RPM process is the original source code archive,
often provided as a tar.gz file. The packaging process extracts the source
files and uses the standard build and installation procedures to create the
necessary executable files. There’s nothing special about this step because
you’re simply using the same build instructions the end user would have
used when manually installing from source code (for example, make all
and make install). The major difference is that because you’re the author
of the code (not the consumer), you shouldn’t have any trouble getting it to
compile on your computer.

3. Next, the rpmbuild tool constructs the RPM file, ready for distribution
to end users. It reads the directives within example.spec to configure
the product source code and build the final executable programs. It also
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embeds the necessary metainformation and installation scripts into the
RPM file. The output of the build process is the example-2.3.4-1.586.
rpm file, which, as you might expect, is in RPM file format.

. The final step is for end users to obtain the RPM file (often downloaded
from the Internet) and install it on their own computer. As you’ll see
shortly, the rpm tool is used to install and uninstall RPM packages, and it
can also be used to query the set of packages currently installed.

An Example RPM Spec File

Now examine example.spec, the RPM spec file that packages four different
files. In the next section, you’ll see how the rpmbuild tool parses this spec file
and produces a binary RPM file. Let’s start by looking at the entire content of
example.spec so you can see how everything fits together. Then you can ex-
plore each section of the file.

W JO0 Ul WhN

10
11
12
13
14

15
16
17
18
19

20
21

22

23

24

25

Name: example

Version: 2.3.4

Release: 1

Group: Applications/Publishing

Vendor: Arapiki Solutions, Inc.

URL: http://www.arapiki.com

Packager: Peter Smith <psmithe@arapiki.com>

Summary: This is an example program to show how RPMs
work.

License: Exampleware

# Sources come from /usr/src/packages/SOURCES/...
Source: %${name}-%{version}.tar.gz

# When installing the built software, use this as the
root.

Buildroot: %{ tmppath}/%{name}-%{version}-buildroot
Requires: glibc > 2.8

$description
This is an example program that demonstrates how RPMs
work.

We show a spec file that is passed into the "rpmbuild"
program

in order to package up the files. In this example, we see
how

to build from source code, how to run a post-installation
script,

and how to ensure that prerequsite packages are already
installed.
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26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56

¥prep
¥setup -g

$build

# compile the source code, using the normal build
procedure.
make

%$install

# install the compiled software to our "fake" root.
make install PREFIX:$RPM_BUILD_ROOT

$files

# specify which files are to be installed, as well as

# their ownership and permission bits.

%attr (0750, root,root) /usr/bin/example

%attr (0755, root,root) /usr/lib/libexample.so.l

%attr (0755, root, root) /usr/lib/libhelper.so.4

%attr (0644, root,root) %doc /usr/share/doc/manual/example.
pdf

%clean
rm -r $RPM BUILD ROOT

¥post
groupadd exgroup
chgrp exgroup /usr/bin/example

¥preun
groupdel exgroup

As a starting point for the discussion, consider the directory structure that the
rpmbuild tool expects to use. If your Linux system is RPM based, you’ll likely
find a system-level directory dedicated to creating and publishing RPM files.
You aren’t required to use these directories (you can use your home directory,
if you want to), but because the standard directories are already created, this
example will use them. In this case, the Linux system already has the following
world-writable directories inside /usr/src/packages.

$ 1ls -1 /usr/src/packages/

total 20

drwxrwxrwt 4 root root 4096 2009-09-14 15:30 BUILD
drwxrwxrwt 9 root root 4096 2009-05-16 22:26 RPMS
drwxrwxrwt 2 root root 4096 2009-09-08 19:37 SOURCES
drwxrwxrwt 2 root root 4096 2008-12-02 17:41 SPECS
drwxrwxrwt 2 root root 4096 2008-12-02 17:41 SRPMS

Each of these directories has a specific purpose:
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BUILD: This directory is used by rpmbuild to store the source code and
object trees it creates when compiling the original source code archive (in
our case, example-2.3.4.tar.gz).

RPMS : This is the output directory where the final example-2.3.4-1.586.
rpm file will be placed.

SOURCES: The original source code archive (example-2.3.4.tar.gz)
must be stored here for rpmbuild to locate it.

SPECS: The example.spec configuration file will be stored in this
directory.

SsrRPMS: This is similar to the RPMS directory but is used for storing
source RPM files instead of binary RPM files. The example doesn’t use
this directory.

You now have enough background to start looking at the example. spec file.
The first part of the file contains various metainformation fields that describe
the software being packaged.

W JO0 Ul WN K

9

Name: example

Version: 2.3.4

Release: 1

Group: Applications/Publishing

Vendor: Arapiki Solutions, Inc.

URL: http://www.arapiki.com

Packager: Peter Smith psmithe@arapiki.com

Summary: This is an example program to show how RPMs
work.

License: Exampleware

Each of these fields has a specific meaning and is intended to be viewed
directly by the end user, as well as by special tools that can process RPM files:

Name: A short identifier that uniquely describes this package. The name is
stored in the internal RPM database and is used to identify this package
in future RPM operations. As an example, you would use this name if you
later decided to query or uninstall the software.

Version: The version number of this software release. Not only is it
possible to have multiple versions of the same package installed, but
the RPM system uses this version number when checking for prerequi-
site packages. Although it’s unlikely, some other developer could create
an RPM package that makes use of the functionality provided in the
example package. In his own spec file, the user might state that version
2.0.0 or higher of example must first be installed before his own RPM
can be installed.
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e Release: Even though the Version field uniquely identifies the ver-
sion of software being installed, you can end up producing two differ-
ent RPM files that each contains the exact same version of software. This
isn’t common, but you might produce a Release 2 of the Version 2.3.4
software to replace the Release 1 RPM file that was incorrectly packaged.
Ideally, this should never happen; the RPM build process should be fully
automated and tested. Mistakes of this nature should never be made in
production software.

® Group: When an end user installs software via a GUI tool, the software’s
group field provides information on which category of applications this
software should be listed under. In this case, you’re requesting that this
RPM be categorized as a publishing application.

® Vendor, URL, Packager: These three fields provide detail on which organ-
ization created the package, where it can be downloaded, and which indi-
vidual person did the packaging. This information is vital if you’re looking
for information about a package that’s already installed on your system
(or perhaps you stumbled across an uninstalled RPM file on your disk and
wondered where it came from).

e Summary: This field provides a short description of the software in the
package. This information is commonly used in GUI tools that display
a short one-line synopsis of the software. If you need to provide further
information, you also have the $description section (see later), which
can hold multiple lines of text.

¢ License: This field describes the legal implications of installing this
software. Many software products come with detailed license documents,
but this field is designed for short license names, such as Bsp, cpL, LGPL,
or Apache.

Now that you’ve seen how to describe the high-level details of the package, you
need to provide further information about how the source code is obtained and
how it’s to be compiled. The Source directive provides the location of the source
code’s tar-ball file, which must have been placed within the SOURCES directory.

12 Source: %{name}-%{version}.tar.gz

Note the use of variable substitution when forming the name of the tar-ball
(in this case, it’ll be expanded out to example-2.3.4.tar.gz).

The Buildroot directive informs rpmbuild where the program’s executable
files should be installed. This isn’t the same as the BUTLD directory you saw ear-
lier, which is where the source code is extracted and compiled. Instead, the build
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root is a temporary holding directory that mirrors the installation directory on
the target machine.

15 Buildroot: %{ tmppath}/%{name}-%{version}-buildroot

Instead of installing the compiled program into /usr/bin on the build
machine, it’s placed in /tmp/example-2.3.4-buildroot/usr/bin. After all,
you don’t really want to install this software on the build host; instead, you
want a convenient place to collect all the files that need to be archived, ready for
installation on the target machine.

The next directive, Requires, states that the glibc package must already be
present before the example package can be installed. In addition, the installed
glibc package must be newer than version 2.8.

16 Requires: glibc > 2.8

If the package is missing or is too old, the rpm tool refuses to install the exam-
ple RPM file. There can be any number of Requires directives, depending on
how many prerequisite packages are needed.

Next, the $description area contains an arbitrary text-based description
of the package. This provides more detail than the Summary directive you saw
earlier.

18 %description
19 This is an example program that demonstrates how RPMs

work.

20

21 We show a spec file that is passed into the "rpmbuild"
program

22 1in order to package up the files. In this example, we see
how

23 to build from source code, how to run a post-installation
script,

24 and how to ensure that prerequsite packages are already
installed.

The $prep (prepare) section provides a list of commands for preparing the
software’s source code tree. Because you’re using the standard behavior of
extracting source files from a tar-ball and then building them in the BUILD sub-
directory, you can use the built-in $setup -gq command to extract the files.

26 %prep
27 %setup -g

On the other hand, if you’d rather obtain the source code from a version-
control tool (such as CVS or Subversion), or simply make use of the developer’s
existing source tree, you’d place the necessary shell commands inside this section.
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Next, the sbuild section provides shell commands to compile the source
code into the resulting executable programs. Instead of cluttering the example.
spec file with many build steps, this example uses the existing makefile. After
all, it’s pointless to have two different build systems, so having rpmbuild call
upon your existing system is usually the best approach.

29 $build
32 make

Another approach is to let your developers execute the compilation com-
mands by themselves instead of having it done for them. In this case, your build
system must contain an explicit step to invoke rpmbuild after each of the object
files is brought up-to-date. With this approach, the $build section is left empty
because the compilation work is already complete.

It should be no surprise that the $install section provides commands for
installing the software. However, instead of installing the executable programs
onto the build machine, you install them into our temporary holding directory,
referred to as $RPM_BUILD ROOT (and previously specified by the Buildroot
directive).

34 $%install
37 make install PREFIX:$RPM_BUILD_ROOT

By reusing the software’s existing make install build target, you end up
placing the software in the exact directory structure that’ll be required on the
target machine. Again, any sequence of shell commands is allowed here, as long
as they install the necessary output files.

Now for the part you’ve probably been waiting for. You must list all the
files that’ll be packaged into the RPM archive and consequently installed on the
target machine.

39 %files

43 %attr (0750, root, root

44 %attr (0755, root, root

45 %attr (0755, root, root

46 %attr(0644,root,root
pdf

/usr/bin/example
/usr/lib/libexample.so.1l
/usr/lib/libhelper.so.4

$doc /usr/share/doc/manual/example.

)
)
)
)

You also specify the file’s access-control information (permission bits, file
owner, and file group), and the rpm tool sets these attributes when the package
is installed. Also, you use the %doc directive to distinguish which of the installed
files are just documentation (and can be optionally ignored).

To keep things tidy, the example. spec file provides information on cleaning
up after the build process. In this case, you simply remove the content of the
holding directory after the RPM file has been created.
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48 %clean
49 rm -r $RPM BUILD ROOT

The last step in the example. spec file is to list the pre- and post-installation
scripts. These sections provide a list of UNIX shell commands to be executed
immediately before or after the software has been installed or uninstalled. You
can therefore have four different sections, each run at a different point in time:

e spre: Shell commands run before installation of the files
e spost: Shell commands run after installation of the files

e spreun: Shell commands run before the files are removed from the
system (uninstalled)

e spostun: Shell commands run after the files are removed from the
system

This example provides a post-install script that adds a new UNIX group
(called exgroup) and ensures that only members of this group can run the
/usr/bin/example program. Note that the permission bits have already been
set to 0750 in the $files section.

51 %post

52 groupadd exgroup

53 chgrp exgroup /usr/bin/example
54

55 S%preun

56 groupdel exgroup

Additionally, the preuninstall script removes the group, although, technically,
you might want to uninstall the files before you delete the group; otherwise, the
files could be group-less for a short period of time. In that case, you’d simply
move the groupdel command to the $postun section.

That completes the RPM spec file example. To summarize, the added meta-
data states the name, version, and contact information for this package; informa-
tion also indicates how to obtain and compile the source code, and the metadata
includes a list of files to be packaged and a set of pre- and post-installation
scripts. You can now use the rpmbuild tool to create the RPM file itself.

Creating the RPM File from the Spec File

The following output shows the result of executing the rpmbuild command
using example. spec as input. Although the listing doesn’t show the entire out-
put, you can see some of the basic operations discussed. Most notably, you can
see the gzip command that extracts the source code into the BUILD directory.
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Also, near the bottom of the listing, you’ll see the make command that you told
rpmbuild to use when compiling the source code.

$ rpmbuild -bb example.spec
Executing (%prep): /bin/sh -e /var/tmp/rpm-tmp.68587
+ umask 022

|[| O_neo |]|

cd example-2.3.4

++ /usr/bin/id -u

+ '['" 1000 = 0 ']"

++ /usr/bin/id -u

+ '"['" 1000 = 0 ']"

+ /bin/chmod -Rf a+rX,u+w,g-w,o-w

+ exit 0

Executing(%build) : /bin/sh -e /var/tmp/rpm-tmp.68587
+ umask 022

+ cd /usr/src/packages/BUILD

+ /bin/rm -rf /var/tmp/example-2.3.4-buildroot
++ dirname /var/tmp/example-2.3.4-buildroot

+ /bin/mkdir -p /var/tmp

+ /bin/mkdir /var/tmp/example-2.3.4-buildroot
+ cd example-2.3.4

+ make

Building all example code.

Remaining output truncated

+ cd /usr/src/packages/BUILD

+ cd /usr/src/packages/BUILD

+ rm -rf example-2.3.4

+ /usr/bin/gzip -dc /usr/src/packages/SOURCES/example-
2.3.4.tar.gz

+ tar -xf -

+ STATUS=0

+

+

Just to double-check that everything worked correctly, you should find an
RPM file in the RPMS subdirectory.

$ cd /usr/src/packages/RPMS/1586/

S 1ls -1

total 4

-rw-r--r-- 1 psmith users 2706 2009-09-14 15:16 exam-
ple-2.3.4-1.1i586.rpm

The naming of this file is important because it tells you the name of the pack-
age, the version number, the architecture on which it’ll run (Intel 1586 family),
and, of course, the file extension to indicate that this is an RPM package file. All
RPM files should follow the same naming format.

One additional feature of the rpmbuild tool is that you can detect whether
files were installed into the build root directory (the temporary holding direc-
tory) that weren’t explicitly listed in the example.spec file. By catching these
errors, you avoid releasing software that’s missing one or more important files.
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These files might have been added by a developer who simply forgot to update
the RPM spec file, even after making the necessary changes to the make install
target.

The following example shows the error message.

$ rpmbuild -bb example.spec
lots of output removed
Checking for unpackaged file(s): /usr/lib/rpm/check-files /
var/tmp/example-2.3.4-buildroot
error: Installed (but unpackaged) file(s) found:
/usr/lib/libhelper.so.4

RPM build errors:
Installed (but unpackaged) file(s) found:
/usr/lib/libhelper.so.4

Now that you have a complete RPM file, let’s look at how to install that file
on the target machine.

Installing the RPM Example

Installing an RPM file on the target machine takes relatively little effort, espe-
cially because the RPM file was destined for your specific operating system and
CPU type, and you don’t need to compile any source code. If all goes well, the
installation is a silent operation; in the worst case, you might be asked to install
some prerequisite packages.

Let’s first explore the content of the RPM package. The rpm command with
the -g option enables you to query the content of the RPM file. With the -i
suboption, you can review all the metainformation:

$ rpm -q -p -1 example-2.3.4-1.1i586.rpm

Name : example Relocations: (not relocat-
able)

Version : 2.3.4 Vendor: Arapiki Solutions,

Inc.

Release 1 Build Date: Mon 14 Sep 2009

03:16:06 PM

Install Date: (not installed) Build Host: linux

Group : Applications/Publishing Source RPM: exam-

ple-2.3.4-1.src.rpm

Size : 12 License: Exampleware

Signature : (none)

Packager : Peter Smith psmith@arapiki.com

URL : http://www.arapiki.com

Summary : This is an example program to show how RPMs
work.

Description

This is an example program that demonstrates how RPMs work.
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We show a spec file that is passed into the "rpmbuild" program
in order to package up the files. In this example, we see how
to build from source code, how to run a post-installation
script, and how to ensure that prerequsite packages are al-
ready installed.

Distribution: (none)

With the -1 suboption, you can review the list of files in the archive:

S rpm -q -p -1 example-2.3.4-1.i586.rpm
/usr/bin/example
/usr/lib/libexample.so.1
/usr/lib/libhelper.so.4
/usr/share/doc/manual /example.pdf

If you’re convinced that this is the correct package, you can proceed with instal-
lation. You’re installing files into system-level directories, so you must be logged
in as the root user. The rpm command with the -i option installs the package.

$ sudo -s
# rpm -i example-2.3.4-1.1i586.rpm

There’s no output from this command, so you should assume that everything
went smoothly. Just to be paranoid, use the -g option again to check that the
package was installed. The -a suboption lists all the packages currently installed
on the system, but you’re interested in only the example package.

# rpm -ga | grep example
example-2.3.4-1

As a matter of interest, try running this command without the grep filter, and
you’ll see all the packages currently installed on your system.

You can also double-check the installation by validating whether the neces-
sary files are installed where they should be and whether they have the correct
file permissions. As you might expect, the /usr/bin/example file is group-
owned by exgroup and isn’t accessible to other users.

# 1s -1 /usr/bin/example

-rwxXr-x--- 1 root exgroup 3 2009-09-14 15:16 /usr/bin/example
# 1s -1 /usr/lib/libexample.so.1

-rwxXr-xr-x 1 root root 3 2009-09-14 15:16 /usr/lib/libexam-
wple.so.1l

Removing the package from the system is equally simple. Using the -e (erase)
option removes all the installed files from the system, and the uninstallation
script removes the exgroup UNIX group.

# rpm -e example-2.3.4



CustoM-BuiLt GUI INSTALLATION TOOLS

There’s no output from this command, so you can safely assume that every-
thing went smoothly.

If you’re wondering what happens when things don’t go well, consider this
scenario. If you try to install the example package on an older Linux system, you
might not have the necessary prerequisite packages installed. Here’s the output
you see if the target machine doesn’t have a new enough version of the standard
C library:

# rpm -i example-2.3.4-1
error: Failed dependencies:
glibc > 2.8 is needed by example-2.3.4-1.i586

The end user must therefore decide whether to upgrade the C library (and
potentially the entire operating system) or locate an older version of the example
package that doesn’t need such a new version of the C library.

As a second example, see what might happen if exgroup already existed
on the target machine. This would be a common scenario when upgrading to
a newer version of the package because the group was already created by the
older version.

# rpm -i example-2.3.4-1
groupadd: Group 'exgroup' already exists.

Clearly, you need to add some intelligence to the post-installation script
so that it knows how to behave correctly when upgrading to newer package
versions.

In summary, that’s all there is to creating a complete spec file and then install-
ing the RPM file on the target machine. All this is done with minimal interven-
tion from the end user, making it much easier than would be the case with source
code distributions. As mentioned earlier, the example.spec file is designed to
give you a taste of what the RPM tools are capable of. An RPM spec file includes
many other directives and sections, and you’re encouraged to learn about these
on your own.

Custom-Built GUI Installation Tools

The third and final type of installation system to look at is the custom-built
GUI installation tool. As a reminder, the first solution was to package files in a
file archive, and the second solution was to use a package-management tool. In
contrast to these two solutions, the third approach allows a much richer user
experience when installing the software on the target machine.

Upon running the installer, the user is guided through a set of screens that
control how the software is installed. This process will be familiar to anyone

373



374 CHAPTER 13 SOFTWARE PACKAGING AND INSTALLATION

who has installed software on a Microsoft Windows system. You’ll typically see
the following pages of information:

¢ A splash screen or welcome message to announce which software is being
installed

¢ A license agreement that explains the software’s terms of use and seeks the
user’s approval before installing

o A file browser for the user to select the software’s destination directory
e A list of optional software components the user can elect to install

¢ Any number of custom pages that allow the user to configure installation
parameters

* A progress bar to show how the installation is progressing

In addition to these common pages, the installer might generate an unin-
staller application to remove the software from the target machine. Finally, the
installer might initiate a system reboot.

Graphical installers can also run arbitrary code on the target machine, which
is something that RPM files can do but not something that simpler archive tools
can do. This enables the installer to modify system configuration files, update
the Windows Registry, or run any type of external application. This level of
freedom makes it possible to do practically anything during the install process.

A few tools are widely available for creating installer applications, and these
generally focus on the Microsoft Windows environment. Perhaps the most
famous is InstallShield [79], which can generate native code installers for Win-
dows. The InstallAnywhere tool [79], from the same vendor as InstallShield,
allows the creation of Java-based installers for a much wider range of target
machines (including UNIX-like systems). Next, the Windows Installer [80] is
now a standard part of the Microsoft Windows environment and is thus becom-
ing more popular. Finally, the Nullsoft Scriptable Install System (NSIS) [81] is a
freely available tool that can be downloaded from the Internet.

The rest of this chapter walks through a realistic example using the NSIS tool.
This tool was chosen because of the simplicity of creating a basic installer, but
the tool is also freely available and is actively developed and supported.

The Nullsoft Scriptable Install System (NSIS)

As the name suggests, NSIS has its own scripting language to describe the full
workings of the installation process. It contains built-in functions for configuring
the installer pages, and users can create their own functions. It provides support
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for arithmetic operations and has advanced features for designing custom dialog
pages. Finally, it facilitates the creation of third-party libraries (plug-ins) that
can extend the basic language.

An NSIS script is stored in a source file that has the .nsi suffix. This file is
passed into the NSIS compiler, which then creates an executable installer appli-
cation (see Figure 13.4). As part of this process, all the program files (executable
programs, dynamic libraries, or data files) are first compressed and packaged
into the installer program.

packager.nsi \

Arbitrary
Program Files

NSIS Compiler

installer.exe

!

=/
Target Computer

Figure 13.4 High-level flow of creating an NSIS-based installer.

When installer.exe is executed, the program files are decompressed and
copied to the appropriate place on the target machine.

To understand better how NSIS operates, let’s look at a small installer appli-
cation. This installer contains a number of standard concepts you’re surely
familiar with:

Software version number

License acceptance page

Page to choose the installation directory

List of optional language support choices (you must select at least one)
Addition of a Start menu item

Addition of a desktop shortcut (if desired by the user)

Creation of an uninstaller
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To give you an idea of how simple NSIS can be to use, this example installer
was constructed with only five hours of work, after the author read the NSIS
documentation for the first time. It’s not a difficult system to learn.

The Installer Script

Although the installation script is discussed in multiple steps, the entire program
actually resides in a single script file, called packager.nsi. Start by examining
the full listing so that you can have an appreciation for what a complete pro-
gram looks like.

!define VERSION "3.0.1"

; The Checkbox widget
Var Checkbox

; The state of the widget (selected or not)
Var Checkbox State

9 Name "NSIS Packaging Example - ${VERSION}"
10 OutFile "packager.exe"
11 1InstallDir S$SPROGRAMFILES\Packaging-Example

14 ; Page definitions

16 Page license

17 Page directory

18 Page components "" "" validateComponents
19 Page custom optionsPage optionsPageLeave
20 Page instfiles

22 ; Uninstaller pages
23 UninstPage uninstConfirm
24 UninstPage instfiles

27 ; Handle the license page

29 LicenseData obj\license.txt
30 LicenseForceSelection radiobuttons "Yes, I agree" \

31 "No, I don't agree"

32

33 L e L L
34 ; Define the main component

35

36 Section "-Main Component"

37

38 SetOutPath $INSTDIR

39

40 ; install mandatory files

41 File obj\calc.exe



42
43
44
45
46
47
48
49
50
51
52
53
54

55
56

57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
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File obj\libs\libmath.dll
File obj\libs\libgraphics.dll
File obj\images\splash screen.jpg

; Create directory for optional files

CreateDirectory SINSTDIR\errors

; Create the uninstaller application
WriteUninstaller SINSTDIR\uninstaller.exe

; Create the start menu entries

CreateDirectory "SSTARTMENU\My Calculator"
CreateShortCut "S$SSTARTMENU\My Calculator\Calculator.

Ink™"
SINSTDIR\calc.exe

CreateShortCut "S$SSTARTMENU\My Calculator\Uninstall.

Ink™"
SINSTDIR\uninstaller.exe

; Possibly create the desktop short cut
${If} $Checkbox State == ${BST CHECKED}
CreateShortCut "S$DESKTOP\Calculator.lnk" $INSTDIR\

calc.exe
${EndIf}

SectionEnd

; Optional language support

Section "English Language Support" sec english

SetOutPath S$INSTDIR\errors
File obj\languages\errors.en
SectionEnd

Section /o "French Language Support"
SetOutPath $INSTDIR\errors
File obj\languages\errors.fr
SectionEnd

Section /o "German Language Support"
SetOutPath S$INSTDIR\errors
File obj\languages\errors.de
SectionEnd

; Validation functions

Function validateComponents

sec_french

sec_german

; determine which components are selected

SectionGetFlags ${sec_english} $0
SectionGetFlags ${sec_ french} $1
SectionGetFlags ${sec_german} $2
IntOp $0 $0 & ${SF_SELECTED}
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94 IntOp $1 $1 & ${SF_SELECTED}
95 IntOp $2 $2 & ${SF _SELECTED}
96
97 ; $0 = total number of components selected
98 IntOp SO0 SO + S1
99 IntOp $0 SO + S$2
100
101 ${If} %0 == 0
102 MessageBox MB OK "At least one language must be se-
lected"
103 Abort
104 ${EndIf}
105
106 FunctionEnd
107
108 e e
109 ; Custom options page - optionsPage
110
111 Function optionsPage
112
113 ; Create a new dialog page
114 nsDialogs: :Create 1018
115 Pop $0
116 ${1f} $0 == error
117 Abort
118 ${EndIf}
119
120 ; Create a check box
121 ${NSD CreateCheckbox} 20% 20% 100% 10u "&Create a
desktop shortcut"
122 Pop $Checkbox
123
124 ; Select the checkbox, by default
125 ${NSD_Check} $Checkbox
126
127 ; Display the page content
128 nsDialogs: : Show
129
130 FunctionEnd
131
132 T T e e e e oo
133 ; Custom options page - optionsPagelLeave
134
135 Function optionsPageleave
136 ${NSD _GetState} $Checkbox S$Checkbox State
137 FunctionEnd
138
N
140 ; Uninstaller information
141
142 Section "Uninstall"
143
144 ; Remove the mandatory and option files
145 Delete $INSTDIR\errors\*

146 RMDir S$INSTDIR\errors
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147 Delete $INSTDIR\*

148 RMDir S$SINSTDIR

149

150 ; Remove the start menu entry
151 Delete "SSTARTMENU\My Calculator\*"
152 RMDir "$STARTMENU\My Calculator"
153

154 ; Remove the desktop shortcut
155 Delete "$DESKTOP\Calculator.lnk"
156

157 SectionEnd

158

159 e e e

This is a long program, but let’s address each feature in detail. To start, the
script contains a number of basic definitions that any installer requires.

1 !define VERSION "3.0.1"

9 Name "NSIS Packaging Example - ${VERSION}"
10 OutFile "packager.exe"
11 InstallDir $PROGRAMFILES\Packaging-Example

The version number (3.0.1) is defined using a compile-time definition
(similar to C preprocessor definitions). In a real installation system, you would
provide this version number on the NSIS compiler command line instead of
hard-coding it into the script.

Next, you state the name of the installer, which appears in the title bar of
any of the GUI pages. In the example, this is the only place the version number
is used.

The outFile directive tells NSIS the name of the executable program to cre-
ate. In a real system, you would want to incorporate the version number here,
too, avoiding conflicts with other versions of the installer.

Finally, the InstallDir directive provides the default installation path. The
user can change this path on the installer GUI. Note the use of the $PROGRAM-
FILES variable, which always contains the target machine’s idea of where pro-
grams should be installed (this is typically c:\Program Files).

Defining the Pages

The next part of the installer script specifies the list of pages you want the in-
staller to present to the end user. Some of these pages are standard across all
installers (such as the 1icense, directory, and instfiles pages), but it’s also
possible to create custom pages.

16 Page license
17 Page directory
18 Page components "" "" validateComponents
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19 Page custom optionsPage optionsPageLeave
20 Page instfiles

In this case, you start with the standard 1icense and directory selection
pages. After that, the user is asked to select which optional components to install.

For this components page, a callback function (validateComponents) trig-
gers when the user presses the Next button. This enables you to validate the list
of components that were selected and possibly reject the submission if the user
didn’t complete the page correctly. (In this case, at least one language must have
been chosen.) You’ll examine this callback function shortly.

Following the components page, you create a custom page that’s specific to your
application (instead of being a standard reusable page). In this case, the optionsPage
callback renders the various parts of the page’s content, whereas the optionsPage-
Leave function validates what the user enters. You’ll also look at these functions later.

Finally, the instfiles page does the actual work of installing the program’s
files. It shows a progress bar and enables the user to see a detailed listing of what
has been installed.

The License Page

Now look at the initial 1icense page (see Figure 13.5). This installer uses the
default NSIS look and feel, which makes the screens appear as if they’re running
on an older version of Windows. For the more recent versions of Windows,
NSIS also supports a more modern window style.

j‘g MSIS Packaging Example - 201 Setup: License Agreement | = || = @

. Please review the icense agreement before instaling NSIS Packagng
o7 Bample 1. i you accept all terms of the agreement, select the first
— _ootion below. Click Next to continue.
This software can be used by anybody, for any reason.

Niant ask for sippod thagh!

" Yes, lag=e
{¥ Mo, |dont agree

Cancel Rullsaft T ; 4 l:l

Figure 13.5 The installer’s license page.

The 1icense page is fairly standard, but it’s customized in a few simple ways.

29 LicenseData obj\license.txt
30 LicenseForceSelection radiobuttons "Yes, I agree" \
31 "No, I don't agree"
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First, the LicenseData directive tells the installer where to find the license
agreement text (a file somewhere on the build machine). Next, the License-
ForceSelection directive forces the user to explicitly accept or decline the
license agreement before continuing with the installation.

Directory Selection

After agreeing to the license, the user is presented with the directory selection
page (see Figure 13.6). The installer automatically calculates how much disk
space is required, based on which additional files were packaged into the installer
executable. It’s also possible to tell the installer how much additional space is
required, in case some of the installed content is downloaded or auto-generated
during the installation process.

#EJ NSIS Packaging Example - 201 Setup: Installation Folder | — || = |[&5)

Setup will install NSIS Packaging Example - 3.0 1in the following folder. To
oy install in a different folder, dick Browse and select another folder. Click
=" Next to contnue,

Destination Folder

Browse...

Space required: 176.0KB
Space availzble: 18,163

Cancel HNullsaft I (= 1 < Back

Figure 13.6 The installer’s directory selection page.

The Main Component

To specify which content is to be packaged into the installer executable and,
consequently, installed on the target machine, you must provide a mapping from
the build machine’s files to the target machine’s files. The full set of files can be
divided into multiple sections, which can be individually selected or deselected.
In the example, one section must always be installed, but other sections are
marked as optional and can be selectively ignored.

Start by examining the definition of the section called Main Component. This
section contains all the files that are always installed. (The one exception is the
desktop shortcut, as you’ll see later.)
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36 Section "-Main Component"

37

38 SetOutPath S$SINSTDIR

39

40 ; install mandatory files

41 File obj\calc.exe

42 File obj\libs\libmath.dll

43 File obj\libs\libgraphics.dll

44 File obj\images\splash screen.jpg

45

46 ; Create directory for optional files

47 CreateDirectory SINSTDIR\errors

48

49 ; Create the uninstaller application

50 WriteUninstaller SINSTDIR\uninstaller.exe

51

52 ; Create the start menu entries

53 CreateDirectory "SSTARTMENU\My Calculator"

54 CreateShortCut "S$SSTARTMENU\My Calculator\Calculator.
Ink"

55 SINSTDIR\calc.exe

56 CreateShortCut "S$SSTARTMENU\My Calculator\Uninstall.
Ink"

57 SINSTDIR\uninstaller.exe

58

59 ; Possibly create the desktop short cut

60 ${If} $Checkbox State == ${BST CHECKED}

61 CreateShortCut "S$DESKTOP\Calculator.lnk" $INSTDIR\

calc.exe
62 ${EndIf}
63

64 SectionEnd

This section has a number of interesting concepts. First, the SetoutPath
directive on line 38 tells the installer which directory the files should be installed
into. In this case, you want to install them in the $INSTDIR directory on the
target machine, which is exactly what the user selected on the directory selec-
tion page. If you wanted to install files in some other directory, or even within a
subdirectory of $INSTDIR, you would need to call setoutpath again.

Lines 41-44 call the File command once for every file you want to install
on the target machine. The File command takes a single argument that states
where on the build machine (not the target machine) the file should be obtained.
The NSIS compiler uses the File command to obtain all the input files and com-
press them into the installer executable. This information is later used to extract
the files onto the target machine. In the extraction phase, the files are all written
into the directory specified by the setoutPath directive, and the original file’s
directory path from the build machine is discarded. Just to clarify, the command
File obj\calc.exe obtains the file from the build machine at path obj\calc.
exe and installs it on the target machine as $INSTDIR\calc.exe.
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The createDirectory command on line 47 should be no surprise, in that
it creates a directory on the target machine. The single argument informs the
system of which directory should be created.

The WriteInstaller command on line 50 specifies the name of the unin-
staller program to be created. You store the uninstaller in the same directory as
the rest of the software so that it can be located easily when the user needs it.

The next step is to add both the calc.exe program and the uninstaller.
exe as items in the Windows Start menu. This is a fairly straightforward process,
on lines 53-57, that involves creating a new subdirectory within the $START-
MENU directory (defined as appropriate for the target machine) and then creating
two Windows shortcuts. These items automatically appear when the user next
opens the start menu.

Finally, lines 60-62 create a shortcut from the user’s desktop to calc.exe.
As you’ll see later, this step is optional and is configured from a custom installer
page. The shortcut is created only if the user selected the necessary check box.

The Optional Components

Now focus on the optional sections. In this application, you want the user to
install one or more language support packages. To keep things simple, you in-
stall only a single file for each language and place it in $INSTDIR\errors. In a
real system, these sections could be much larger and could contain multiple files.

69 Section "English Language Support" sec_english

70 SetOutPath $INSTDIR\errors

71 File obj\languages\errors.en

72 SectionEnd

73

74 Section /o "French Language Support" sec_french
75 SetOutPath $INSTDIR\errors

76 File obj\languages\errors.fr

77 SectionEnd

78

79 Section /o "German Language Support" sec german
80 SetOutPath $INSTDIR\errors

81 File obj\languages\errors.de

82 SectionEnd

Two new concepts are shown here. First, the name of the section doesn’t
start with a dash (as the main component did), which means that the user can
choose to optionally install the component (see Figure 13.7). By default, English
language support is selected, and French and German are initially deselected
(because of the /o option).
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#EJ NSIS Packaging Example - 201 Setup: Installation Optio... | — || = |[&5)

Check the components you want to install and uncheck the components
% you don't want to install. Click Next to continue,

[T French Lanquage Suoport
[ German Languace Suppart

Select components to install:

Space required: 176.06B

Cancel Nullsaft Ins 4 < Back

Figure 13.7 The installer’s component selection page.

The second interesting concept is that the sections have been labeled with
sec_english, sec_french, and sec_german. These names enable you to refer
to the sections from within any of the script functions. In this case, a callback
function confirms that at least one of the languages has been selected. Ear-
lier you saw how the validateComponents function was associated with the
components page, but now look at the definition of that callback function.

87 Function validateComponents

88

89 ; determine which components are selected

90 SectionGetFlags ${sec_english} $0

91 SectionGetFlags ${sec_french} $1

92 SectionGetFlags ${sec_german} $2

93 IntOp $0 $0 & ${SF_SELECTED}

94 IntOp $1 $1 & ${SF SELECTED}

95 IntOp $2 $2 & ${SF_SELECTED}

96

97 ; S0 = total number of components selected

98 IntOp $0 $O + S$1

99 IntOp $0 $O + S$2

100

101 ${1f} %0 == 0

102 MessageBox MB OK "At least one language must be
selected"

103 Abort

104 ${EndIf}

105

106 FunctionEnd

This code looks rather awkward at first but demonstrates the way arithmetic
is performed in an NSIS installer. Lines 90-95 retrieve the section flags for each
of the English, French, and German sections. These flags are a binary bitmap of
true/false values providing information about each section. If the SF_SELECTED
flag is set, this indicates that the user selected the check box for that particular
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section. Recall that this function is invoked immediately after the user presses
the Next button on the components page, and you’re now evaluating whether
the user provided reasonable input values.

The NSIS scripting language contains a number of built-in variables that
don’t need to be explicitly declared. You first read the section flags into the
$0, $1, and $2 variables; then you perform a bitwise AND operation against
SF_SELECTED to ignore all the other bits in the value. The next part of the opera-
tion (lines 98-99) sums up $0, $1, and $2 to obtain a zero value if none of the
languages was selected, or nonzero if at least one of the check boxes was enabled.

On lines 101-104, if the result of this arithmetic is zero, the submission is
rejected and the user is asked to select at least one type of language support. The
MessageBox command pops up a dialog page with an ox button, and the abort
command tells the installer to stay on the components page instead of moving
on to the next page of the installer’s GUI.

Defining a Custom Page

If all is successful, the installer moves ahead to the next page, which in the ex-
ample is a custom page containing whatever content you decide to display (see
Figure 13.8). As mentioned earlier, you install a desktop shortcut only if the
user chooses to do so. The custom page has an added check box that users can
disable if they don’t want the shortcut.

5] NSIS Packaging Example - 201 Setup = = 5]

¥ Create & desktop shortcut

Cancel Nullsaf 1 < Back

Figure 13.8 A custom-designed installer page.

This custom page makes use of two callback functions: opt ionsPage renders
the page’s content, and optionsPageLeave is executed when the user presses
the Next button.

First, the optionsPage function:
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; The Checkbox widget
Var Checkbox

; The state of the widget (selected or not)

3
4
5
6
7 Var Checkbox State

111 Function optionsPage

112

113 ; Create a new dialog page

114 nsDialogs: :Create 1018

115 Pop $0

116 ${1f} $0 == error

117 Abort

118 ${EndIf}

119

120 ; Create a check box

121 ${NSD CreateCheckbox} 20% 20% 100% 10u "&Create a
desktop shortcut"

122 Pop $Checkbox

123

124 ; Select the checkbox, by default

125 ${NSD_Check} $Checkbox

126

127 ; Display the page content

128 nsDialogs: : Show

129

130 FunctionEnd

Creating this particular custom page involves four main steps. On lines 114-
118, the nsDialogs: : Create function creates a new page in the installer GUI.
The return value from the create function is implicitly pushed onto a stack and
then explicitly popped off into variable $o. If an error code was returned, the
function is aborted. This type of value manipulation will be familiar to users of
stack-based programming languages.

The second step, lines 121-122, calls the NSD_CreateCheckbox function to
add a check box widget onto the page. The numeric parameters provide posi-
tioning information, so the check box and its associated text label are positioned
near the top of the page. A reference to the check box widget is popped off the
stack and stored in the $Checkbox variable.

The third step, line 1235, is for the NSD_Check function to enable the check
box by default. Users explicitly uncheck the check box if they don’t want the
shortcut to be created.

The final step, on line 128, is to call the nsbialogs: : Show function to render
the content of the page.

To make sure you save the value of the check box (selected or unselected),
an additional callback function executes when the Install button is pushed.
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135 Function optionsPagelLeave
136 ${NSD GetState} $Checkbox $Checkbox State
137 FunctionEnd

There’s nothing on this page to be validated, so you don’t need any logic to
analyze the content. However, you must call the NSD_GetsState function to
save the check box’s state into the $Checkbox_State variable. If you refer back
to our original discussion of the installing the desktop shortcut, you’ll see that
$Checkbox State was first examined to see whether it was set.

The Installation Page and the Uninstaller

The final page of the installer provides a progress bar and a detailed list of the
files that have been installed (see Figure 13.9). This page is automatically created
and doesn’t require additional configuration.

ﬂ MSIS Packaging Example - 201 Setup: Completed =) =] 22

. Completed
ms EENNEENENENNNNENNNN NN NEEEEEEE

m

- -

Figure 13.9 The installer’s progress page.

After the software has been installed, the uninstaller.exe program must
also be saved to the installation directory. To configure this uninstaller, you
simply create another section that deletes all the files and directories that you
created during the install process.

22 ; Uninstaller pages
23 UninstPage uninstConfirm

24 UninstPage instfiles

142 Section "Uninstall"

143

144 ; Remove the mandatory and option files
145 Delete $INSTDIR\errors\*

146 RMDir S$INSTDIR\errors

147 Delete $INSTDIR\*
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148 RMDir S$INSTDIR

149

150 ; Remove the start menu entry

151 Delete "S$STARTMENU\My Calculator\*"
152 RMDir "$STARTMENU\My Calculator"
153

154 ; Remove the desktop shortcut

155 Delete "S$DESKTOP\Calculator.lnk"
156

157 SectionEnd

The uninstaller doesn’t require much information, other than confirming that
you really want to remove the files (see Figure 13.10).

&7 NSIS Packaging Example - 201 Uninstall: Confirmation | — | = [ma]

This wizard will uninstall NSIS Packaging Example - 3.0, 1 from your

@ computer. Click Uninstall to start the uninstallation.

Uniirslallig ’rurl:] C:WProyram Filkes Padkayny-Example,

Cancel

Figure 13.10 The uninstaller page, asking the user for confirmation.

And that’s all there is to it. You can create a fully featured installer applica-
tion in a matter of hours. Some of the language features are a little awkward
to use at first, but NSIS creates a great user experience when installing your
software release package. For more information on this tool, refer to the NSIS
web site [81].

Summary

Creating a software release package is usually the final step in the build proc-
ess. An important goal is to make it easy for end users who are not technically
minded to install the software on their target machine. This must be done with-
out requiring them to compile the software from source code or perform lots of
manual steps to get the software working.

To reduce wasted time, it’s important for a packaging script to check for
invalid user input, report all possible errors (instead of ignoring them), and
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spend as little time and disk space as possible while copying files. A poor-quality
packaging script will likely create invalid release packages.

The first packaging solution is to compress all the target files into a ZIP or
TAR archive, using a packaging script to store the files in the correct locations.
This is a simple approach and requires an additional installation script to cus-
tomize the files after they’ve been installed.

The second solution is to use a package-management tool to install the set
of target files on the target machine. This approach enables the execution of
arbitrary code before and after the installation process. By providing version
dependency information in the release package, you ensure that all required
prerequisite packages are already installed on the target machine.

Finally, a custom-built GUI tool facilitates the creation of a user-friendly
experience, with separate pages for each of the main activities. These include
selecting the installation directory, agreeing to license information, and selecting
optional components to be installed. You can execute arbitrary scripts before
and after the installation takes place.
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Chapter 14

Version Management

A piece of computer software is unlikely to remain constant. One of the major
benefits of software is that it can be updated frequently to fix bugs or introduce
new features. To control these changes, any nontrivial software is managed us-
ing a version-control system (see Figure 14.1). This enables each of the project’s
developers to obtain a copy of the source code, make changes to that code, and
then submit changes to the central repository to be shared with others.

Version-
Control —) —)
Tool 1

Source Object Release

Tree Tree Package E
* E

| Compilation Tools |

| Build Machine |

Figure 14.1 Big-picture diagram, with a focus on version control of the build system.

A key feature of a version-control system is that a complete history of the
source code can be reproduced. This means that different developers can be
working on different versions of the software, while ensuring the necessary level
of separation in their work (see Figure 14.2). If a customer reports a bug in an
old version of code, a developer must reproduce the exact set of source files that
were used to compile that older version. The developer then can fix the bug and
release a new version of the software for the customer to use.
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Old Release

/—> Bug Fixes

New Development

Figure 14.2 Use version-control branches to separate code streams.

This bug-fixing work is done in isolation from new-feature development. If
this approach isn’t followed, the customers are forced to receive new features
when all they wanted was a bug fix. On the other hand, the bug fix must be
forward-ported to the new development branches to ensure that the bug is fixed
in future releases.

From the perspective of the build system, the version-control system manages
all the build description files (such as a Makefile or a SConstruct file). At any
point in time, the build description must match the current set of source files and
must be changed in unison with the source code. The end goal is to build any
earlier version of the software that needs to be reproduced. If the build system
and source files don’t match, this isn’t possible.

This chapter focuses on how the version-control system can impact the design
and implementation of the build system. However, it doesn’t discuss any of the
day-to-day operations, such as checking out or submitting code. For more infor-
mation about common version-control tools (such as CVS [2], Subversion [3],
Git [4], or ClearCase [5]), refer to other books that cover those topics in detail.

This chapter covers three main topics. This first section describes the type
of files that should be version-controlled. The second section identifies the files
that should be managed outside of the source code tree. Finally, the last section
covers the basic concept of version numbering.

This discussion of version control covers only a subset of the traditional Soft-
ware Configuration Management (SCM) discipline. SCM focuses on managing
the change of software over time, which also includes tracking defects and new
features. This chapter doesn’t discuss those topics.

What Should Be Version-Controlled

As a general rule, all human-created source files should be stored in the version-
control system. In addition to source code, this includes the build description
files that must exactly match the source code being compiled, even when multi-
ple code streams (releases) are being maintained. In contrast, this doesn’t include
any files that are generated as part of the build process, such as object files or
executable programs.
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This section examines four different types of information that should be kept
in the version-control system.

¢ Build description files: Describe the end-to-end process of compiling the
source code.

¢ References to tools: Describe which compilation tools should be used.

e Large binary files: In the same way that small source files need to be
version-controlled, large binaries files must be stored somewhere.

e Source tree configurations: Describe the way a full source tree is con-
structed.

In each case, keep in mind that a version-control system can contain multi-
ple development streams, some of which contain the source code for software
releases that have already been sent to customers. Other streams version-control
new features that are being developed.

Build Description Files

The idea that description files must be version-controlled shouldn’t require fur-
ther explanation. However, it’s important to ensure that the automatic build
process covers the complete set of instructions for building the product. Some-
times a build process can become fragmented into different steps, especially if
nobody takes ownership of the full end-to-end process. If any of the steps are left
for the developer to execute manually, the build process becomes error prone
and is gradually forgotten over time. In the end, it’ll be harder to reliably build
older software.

To illustrate, it’s not uncommon for a development organization to have a
web page stating how to build the product. This information is modified over
time as the build system grows and always contains the latest information
needed to start a compilation. Developers add words of wisdom about the build
process as they get more experience. The following is a typical excerpt:

Use the following steps to build the product:

To build the prerequisite libraries, do:
cd src/libs
make LIBARCH=i386
make LIBARCH=mips

If you’re using a code base newer than October 17", or on
the Release 2.0
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branch, execute "make LIBARCH=x86 64" instead of the 1386
target.

To build a debug image, instead do "make LIBARCH=<arch>
DBG=1", but this
doesn’t yet work properly for the MIPS target.

To link everything together, do:
cd src/target
make all

This build process might seem simple enough, but consider what happens
when it grows over time. Given another year of development, the process might
be two to three times longer and could contain a lot more references to dates and
version-control branches. Trying to determine the correct set of build steps then
becomes a major challenge.

Experienced developers might memorize the steps and perform them in their
sleep, but newer developers will likely be overwhelmed by all the different
options. As a result, you’ll see an increase in the number of broken builds when
important steps are accidentally missed. Also, developers become frustrated
when they need to closely track the progress of their build and must be ready
and waiting to enter the next command in the sequence.

To solve these problems, you should automate all (not just most) build instruc-
tions and keep them in the version-control system. This provides a standard way
for developers to see the current set of build steps for the code they’ve checked
out. These steps might vary across different code branches, but they’ll always be
accurate because they’re version-controlled along with the source code.

For example, entering make help (or the equivalent command in another
build tool) gives developers useful information on how to build their code:

$ make help
Help information:
make help - show this help page
make libs - build all the prerequisite libraries
make libs LIBARCH={x86 64,mips}
- build the libraries for one architec-

ture
(1386 is no longer supported)
make link - perform the final linking phase
make all - build the entire program from scratch.
Options:
Add DBG=1 to generate debugging information (mips not sup-
ported)

There’s no mention of dates or branches, given that the documentation is
relevant to the source code tree currently checked out. If older code is checked
out, the documentation would be different.
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The a1l target is guaranteed to build the full product from beginning to end,
without requiring the user to execute the steps independently. The detail of the
build process can change over time, but developers can always rely on the a1l
target. They still have access to the individual build steps (such as 1ibs and
1ink), but they aren’t required to use them.

References to Tools

Another key component of a reliable build system is the set of compilation tools
used. The build tool invokes the compilation tools and passes in the necessary
command-line parameters, such as source or object filenames. In the following
makefile fragment, you can see that the GNU C compiler is defined as the com-
piler of choice.

CC := gcc
prog: main.o helper.o
$(cc) -o se $*

The ¢ (cc) variable is used by the explicit rule for prog and is also used by
the built-in rule that knows how to compile the C source files (main.c and
helper.c).

Unfortunately, this basic approach has several problems. It might work for
simple projects with a small number of users, but a few problems arise when the
development environment grows.

The first issue is that the gcc program is found by searching the user’s shell
path (the $PATH environment variable in UNIX-like systems). If gcc is installed
in a well-known location such as /usr/bin, the correct version of the tool likely
will be found. However, if gcc is stored in a nonstandard location (such as
/tools/bin), or if the user has nonstandard directories in their $PATH environ-
ment variable, the wrong version of gcc could be used.

You might be wondering about the implication of using the wrong compiler.
The exact problem depends entirely on how different the two compilers are and
which language features you’re expecting from them. For example, if one devel-
oper writes code that uses newer language features, a second developer who is
accidentally using the older compiler will likely see build errors.

Consider some common examples:

¢ Older compilers don’t recognize newer commands: For example, the Java
language concept of generics was introduced with Java 1.5 compilers. Try-
ing to compile a Java 1.5 program with a Java 1.2 compiler results in
errors.
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Generics.java:5 Identifier expected.
public List<Integer> myList;

1l error

¢ Older programs cause problems with newer compilers: For example, the
assert variable is now a reserved word in Java 1.4, whereas older Java
programs were free to use assert as a normal variable name. To compile
this older code, either a Java 1.3 compiler must be used or the -source
option must be provided to the Java compiler.

AssertTest.java:4: as of release 1.4, 'assert' is a keyword,
and may not be used as an identifier (use -source 1.3 or
lower to use assert' as an identifier)

int assert = 0;

1l error

e Newer compilers report more warnings: Newer versions of the GNU C
Compiler report more warnings than older versions. For build systems
that choose to halt if they encounter compiler warnings, using a newer
compiler causes build failures.

#ifdef FOO

#endif FOO /* error! */
program.c:27:8: warning: extra tokens at end of #endif direc-
tive

* Bugs were worked around in an older tool: Sometimes developers find a
bug in a tool (or associated libraries) that requires a workaround in their
source code. The logic of their program is now tied closely to the version
of the tool they’re using. Upgrading the tool to fix the bug makes the devel-
oper’s workaround invalid, possibly causing other problems.

int get stats(char *name, int size)
int stats[size];
int rc = process_stats(stats, size);

/*

* Because of compiler optimization bug,
* the following adjustment is necessary.
* Tt isn’t supposed to be required.

*/

if (rc == 1){
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size += 1;

}

send_stats(stats, name, size);

¢ Deprecated command options are removed: Over time, various compila-
tion tools gain new command-line options and the older options are re-
moved. Instead of completely disappearing, however, the old options are
marked as deprecated for a period of time, which means that they’re still
accepted for now but will be removed in an upcoming release of the tool.
As a result, old and new versions of the same compilation tool might not
be interchangeable.

The standard way to avoid all these problems is to ensure that the required
version of each compilation tool is hard-coded into the build description file,
leaving no room for ambiguity. Even if a newer version of the software adopts
a newer version of a tool, the version-control system still enables the older soft-
ware to use the older tool.

A natural assumption is that multiple versions of a compilation tool can be
installed on the same build machine. This might be true for most tools, but not
if a new version of the tool overwrites the older version, essentially removing the
older tool from existence.

Assuming that you’re allowed multiple versions of the same tool, you can
specify which tool is required in several ways.

1. Hard-Coding the Absolute Path
In this scenario, the build description file contains the full absolute pathname
of the compilation tool. This path must include some type of version number.

CC := /tools/bin/gcc-3.3
prog: main.o helper.o
$(cc) -o se $*

When using absolute pathnames, the user’s search path ($pATH) isn’t exam-
ined, which removes the chance of using the wrong compiler. Clearly, this
method assumes that all build machines have an identical set of tools installed
and that they’re available in the same file system location. Chapter 15, “Build
Machines,” discusses the management of build machines in more detail.

Also notice that the compiler’s version number has been appended to its
filename, so you can version-control access to the tools. This is important if you
ever want to upgrade the compiler, which is almost a certainty for projects that
span many years. Imagine a scenario in which releases 1 and 2 of your software
both used version GCC 3.3, but the next version is destined to use GCC 4.2. As
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you saw earlier, having the source code compiled with the wrong version of the
compiler can be problematic.

Using the magic of the version-control tool, the code branches for software
R1 and R2 would be hard-coded to use GCC 3.3, whereas the main trunk of
development would use GCC 4.2 (see Figure 14.3). Therefore, each code branch
would use the required version, without any problems.

R1: CC=/tools/bin/gcc-3.3 R2: CC=/tools/bin/gcc-3.3

[ S

CC=/tools/bin/gcc-4.2

Figure 14.3 Hard-coding compilation tool pathnames so that each branch uses the
correct version of the tool.

Implement this pattern of versioning tools from the start of your project. If
you made the mistake of using a nonversioned copy of GCC even for your first
software release, you’d still find yourself in a predicament (see Figure 14.4).

R1: CC=/usr/bin/gcc R2: CC=/tools/bin/gcc-3.3

S

CC=/tools/bin/gcc-4.2

Figure 14.4 Problems occur if you fail to version-control the tool.

In this scenario, the only way to be sure to reproduce the R1 source code
is to ensure that /usr/bin/gcc is always set to version 3.3. Given that /usr/
bin is part of the standard operating system image, you might not have much
control over this version of the compiler. If you started compiling on a newer
operating system, you’d need to downgrade /usr/bin/gcc to version 3.3. This
might have unpredictable side effects for other programs running on the build
machine.

You might be wondering why you can’t change the tool reference in the R1
branch to /tools/bin/gcc-3.3. That would certainly work for any new bug
fixes that you placed in the R1 branch, but it wouldn’t help older versions of the
software that you might need to reproduce. For example, if the current bug-fix
release of R1 is software version 1.2.3, if you tried to reproduce version 1.2.2 or
earlier, you’d still use the nonversioned compiler. For better or for worse, using
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a version-control system makes it impossible to “go back in time” and make
changes to earlier releases.

A final observation is that you must be careful about removing old compilers
from your system. As long as you need to reproduce older versions of software,
you must keep the necessary compilers around. Some organizations support
only a couple of old releases, so they might be able to remove old compilers
after a year or so. Other organizations need to keep compilers for much longer
periods of time because of their extended software support period.

2. Hard-Coding the spatu Environment Variable

The second method for ensuring that the correct compilers are used is similar to
the first method. However, in this case, you hard-code the value of the spaTH
environment variable instead of relying on the user to have the correct search
path already configured. Explicitly storing the path in the build description file
also enables you to version-control and update the path over time.

PATH := /usr/bin:/tools/bin:/tools/java-1.5/bin
CC := gcc-3.3
JAVAC := javac

This example provides an exact sequence of directories in which to find
compilation tools. When $ (cc) and $ (JAVAC) reference these tools, the path
is searched in left-to-right order, starting with /usr/bin and finishing with
/tools/java-1.5/bin. You end up using the first executable program that has
the desired name.

This method works well, although the search path must be coordinated care-
fully. If the developer expected to use the javac program from the /tools/
java-1.5/bin directory, but there was also a javac program in /usr/bin, the
incorrect compilation tool would be used. This problem might take a while to
resolve, but at least the incorrect behavior is consistent for all users (instead of
only one or two developers suffering from the problem).

Another limitation of this method is that when the build tool is executing, the
developer can’t determine exactly which tool is being used.

S make all
javac

Given this build log output, you know that javac is being executed, but you
don’t know which directory that program is from. If you had specified the full
path to the tool, it would be displayed on the build output log:

S make all
/tools/java-1.5/bin/javac
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This distinction is important if developers want to manually cut and paste
one of the lines from the build log. If they don’t have their $PATH environment
variable set the same way as in the makefile, a different tool could be used.

3. Store Tools in a Version Control System
A third method is to version-control compilation tools in the same way the
source code is versioned. This provides the capability to associate a tool version
with the source code that requires it. If you upgrade to a new compiler, you
simply check in the new tool, and the build process starts using it. If you want
to reproduce an old version of the source code, the correct (older) version of the
tool is used.

The build description files must contain tree-relative paths for each tool, but
you no longer need to have version numbers in the pathname:

CC := $(SRC_TREE) /tools/bin/gcc
JAVAC := $(SRC_TREE) /tools/bin/javac

For this system to work efficiently, you must be using a version-control tool
that does a good job of storing large binary files. CVS is known for performing
badly with large files, so it’s not a good choice. In addition, if your version-
control tool requires each developer to have an on-disk copy of every file, you might
be overwhelmed by the extra disk space required. In contrast, tools such as IBM
Rational’s ClearCase enable developers to share a single copy of the tools.

Large Binary Files

The concepts just discussed on version control of compilation tools also apply to
other large files. Many programs use data files such as graphic images, sounds
files, and third-party code libraries. If your version-control tool can handle large
binary files, you could commit these files and have them checked out as part of
each developer’s source tree. However, if your version-control tool can’t sup-
port large binary files or you simply want to save disk space, consider creating a
shared repository of binary large objects (blobs).

Just as you did for compilation tools, each version of a blob would be stored
in a file system path that contains a version number. Multiple versions of each
blob can exist in parallel, with the build description files (stored under version
control) referencing the correct version of each file. For example:

/usr/blobs/images/splash-screen/20100811/image. jpg
/usr/blobs/images/splash-screen/20100715/image. jpg
/usr/blobs/images/splash-screen/20100704/image. jpg
/usr/blobs/images/about-menu/20100728/about . jpg
/usr/blobs/images/about-menu/20100728/help.jpg
/usr/blobs/images/about-menu/20100713/about . jpg
/usr/blobs/images/about-menu/20100713/help.jpg
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Each directory must be uniquely named to describe what the blob is used for
and must contain a subdirectory for each version of the blob. Using a date stamp
(such as 20100728) makes it easier to determine when that version of the blob
was created. In the build description file, you reference the appropriate version:

BLOBS := /usr/blobs/images

SPLASH SCREEN := $(BLOBS)/splash-screen/20100811/image.Jjpg
ABOUT MENU DIR := $ (BLOBS) /about-menu,/20100728

ABOUT IMAGE := $(ABOUT MENU DIR)/about.jpg

HELP IMAGE := $(ABOUT MENU DIR) /help.jpg

Note that with the about-menu directory, two different files are stored
(about . jpg and help.jpg) with each new version of the blob. From a logistics
perspective, you might find it easier to version-control a large number of files
in a single group instead of trying to manage a unique version number for each
individual file.

Source Tree Configurations

A final type of information to keep under version control is the source tree con-
figuration. This is the set of source code directories that must be available in a
developer’s workspace for the software to build correctly. Depending on your
version-control tool, you refer to this information as a module, a configuration
spec, or a view spec.

For example, your developers might need to check out the following set of
directories. These are mapped from version-control repository locations (on the
left) to locations inside the developer’s source tree (on the right).

/repo/trunk/libraries/graphic/ -> libraries/graphic
/repo/trunk/libraries/math/ -> libraries/math
/repo/trunk/programs/calc -> source

In this case, when a developer checks out a source code tree, the latest ver-
sion of the /repo/trunk/libraries/graphic directory is retrieved from the
repository. These files are stored in the 1ibraries/graphic subdirectory of the
developer’s build tree. The remaining two lines of the specification file provide
similar information. The number of entries in this file can be arbitrary, as can
the mapping from repository to build tree.

Ironically, not many version-control systems allow this mapping to be ver-
sion-controlled, therefore making it tricky to always reproduce older build
trees. A developer must somehow know in advance which set of directories are
required and must have external knowledge of how that mapping has changed
over time. If developers want to obtain an older version of the source tree, they
must use an older mapping.
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One way to work around this limitation is to commit the mapping to a well-
known location in the version-control system. For example, the file /repo/
trunk/view.dat would first be checked out from the repository and used by
the developer when accessing the remaining directories. If a new directory was
required in the future, the additional configuration line could be added to view.
dat. Unfortunately, it becomes a two-step process to check out source code,
although the benefits of having this information under version control can be
substantial.

What Should Not Be in the Source Tree

In contrast to the previous section, you need to consider which files should
not be stored under version-control. In addition, you need to know which files
should not be stored in the same directories as the source code, even if they’re
not actually version-controlled.

This section looks at three categories of information:

1. Generated files in the source tree
2. Generated files under version control

3. Build-management scripts

Consider each of these categories in turn and understand why you need to be
careful about storing them in the correct file system location.

Generated Files in the Source Tree

By default, most compilation tools generate their output files in the same
directory as their input files. In a build system, therefore, the default is to have
the object files spread around the entire source code tree, intermingled with the
source files. For example, you might see the following directory content:

S 1s
calc.c calc.o Makefile math.c math.o numbers.c
numbers.o

Although it often takes extra work, large projects benefit from storing the
object files in a separate output directory. If the source code is stored in the
sources subdirectory, the object files should be stored in the objects subdirec-
tory. These directories can contain a full hierarchy of subdirectories, so a source
file such as sources/a/b/file.c would be compiled into an object file called
objects/a/b/file.o.
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If you decided to cut corners and not to take this approach, you’d likely end
up with one or more of the following problems:

¢ Autogenerated files look like source files: Confusion might arise over
whether a file is a source file or a generated file. This is not actually a prob-
lem for object files (with a .o suffix), but distinguishing autogenerated
source files from true source files might be difficult. The usual practice is
to prepend autogenerated files with a code comment of this form:

/* Warning - auto-generated file - do no edit */

Most version-control tools enable you to identify the files that should be
committed but haven’t yet been entered into the system. For example,
many CVS operations provide a log of the files that have been modified, as
well as a description of what will be done to them. Any files in a version-
controlled directory that haven’t been explicitly committed are marked
with a ? symbol.

cvs update
Data.java
Main.java
Database.java
Data.list

aacgww

The developer must figure out whether Data. java is a true source file that
has yet to be committed to the repository or whether it’s an autogenerated
file that should never be committed. If it had been stored in an object direc-
tory in the first place, there’d be no question what type of file it is.

The clean target is harder to implement: Supporting the clean build target
is much harder if the generated files are interspersed with the source files.
Whereas having everything in a single object directory makes it easy to
clean the whole build tree (by simply deleting the directory), it’s more dif-
ficult to delete the files if they’re mixed in with the valuable source code.

In this case, either you do a lot of work to get the clean target working
correctly (deleting the correct set of files) or you risk not cleaning out
everything that was generated. This scenario can be painful for developers
who resort to a clean build because of dependency problems. They could
be stuck with a build tree in which files are not being rebuilt when they
should be, but they also suffer from not being able to delete those files to
start again with a fresh tree.
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¢ Object files for multiple CPU types get mixed together: As discussed in
Chapter 5, “Subtargets and Build Variants,” some build systems can out-
put code for more than one CPU type (such as i386 or MIPS). If you don’t
store the object files in two separate output directories, they get mixed
together, making it difficult to distinguish one CPU’s object files from the
other.

¢ Disk storage requirements are harder to meet: Some computing environ-
ments have multiple tiers of disk storage, which are important to use cor-
rectly. Some disks are backed up on a regular basis, whereas others might
not be backed up at all. If you care about keeping your source code safe
and secure, you’ll probably store it on the most reliable backed-up disk
you have. In contrast, object files can easily be regenerated, so you’d in-
stead use the cheaper disk. You clearly need to have source code and gen-
erated code in two different directories if you’re using two different disks.

Hopefully, each of the previous examples has convinced you that generating
object files (and autogenerated files) into a separate output directory is worth
the effort, even if your build tool doesn’t support this by default.

Generated Files Under Version Control

If an object file or autogenerated source file has been committed to the version-
control system, this is likely a mistake. A developer might have gotten confused
and accidentally committed a generated file as if it was source code. As discussed
earlier, this is an easy mistake to make if the generated files are incorrectly
stored in the same directory as the source code.

One side effect of checking in generated files is that after they’ve been com-
mitted by the first developer, all other developers are likely to commit the same
file by mistake. Because the generated file is automatically written to by the
build system, the file in question will always be modified when somebody per-
forms a build. The version-control system notices that the file has been modified
and schedules it to be committed to the repository again. If developers aren’t
careful, they’ll end up committing the same file over and over again.

To catch these situations more quickly, consider checking out files in read-
only mode. (Some tools require this by default.) When the source tree is rebuilt,
the build system fails when it tries to write to the generated file. The developer
sees that the file was committed by mistake and removes it from the version
control system before continuing the work.

Despite being a bad idea in general, in some cases, committing generated
files actually makes sense. For example, you could speed up the build process
by pre-compiling part of the build tree that doesn’t change very often, such as
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a third-party library. By precompiling the library and committing the resultant
files to the version-control system, developers can avoid compiling the library
for themselves. A special build target must be used to build the library, so it
won’t be re-created by default and, therefore, won’t be marked as “modified.”

To extend this idea further, some version-control tools automatically cache
generated files to save the developer from rebuilding them. Chapter 19, “Faster
Builds,” describes this mechanism.

Build-Management Scripts

A final scenario in which code shouldn’t be committed to the version-control
system arises when a script or tool is more dependent on the external environ-
ment (such as build machines or disks) than it is related to the product’s source
code. Committing a tool of this nature only increases the amount of mainte-
nance work required to fix bugs in the tool.

For example, a script that advises developers of which build machine is cur-
rently the fastest or which file system currently has the most disk space shouldn’t
be committed to the version-control system. It doesn’t make any sense to have
a different version of this tool for release 1 of the software versus release 2. In
fact, fixing a bug in this script would require that every version-control branch
of source code be modified. This is certainly not desirable.

Instead, the script should be kept in a regular disk file, such as /tools/bin/
disk-advisor. Any changes to the script, such as adding the details of a new
build machine or disk, can be done in a single place. The same script is used for
all code branches and doesn’t need to behave any differently for one branch of
the source code versus another. Also, the script cares only about the build envi-
ronment as it exists now, not how it was in the past.

If some of the script’s behavior depends on a particular branch of code, it’s
still possible to store the script’s configuration in version control but keep the
main body of the script in the /tools/bin directory. For example, if the disk-
advisor script needs to know which output directories are created by the build
process, you could create a configuration file to list that information.

# list of output directories
obj

data

mips

powerpc

Each branch in the version-control system could have a different configura-
tion file; thus, the script would behave differently in each case.

To be technically correct, the complete disk-advisor script must still be
kept under version control, but not in the same place as the product’s source
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code. The script has a life cycle of its own, and changes to that script must
be version-controlled in a completely different version-control system. Changes
to disk-advisor are therefore made independently of changes to the main
product.

This completes the discussion of what you should—and shouldn’t—keep
under version control. Now let’s take a quick look at version numbers and how
they’re used.

Version Numbering

The final topic in the version control area is version numbering. Anyone who
has downloaded and installed software has at least a passing awareness of the
version number attached to it. Over time, the version number is incremented as
new features and bug fixes are added to the software. The exact meaning of the
version number is specific to each product, but it must somehow be attached to
the software before it’s sent to the customer.

This chapter doesn’t spend a lot of time talking about version numbers, but
it briefly covers the following build-related topics:

e What a version number looks like and what it means
¢ How the version number is managed and updated

¢ How the version number is stored inside the software and retrieved by the
customer

Version-Numbering Systems

Opinions differ on what a version number should look like, with no clear stand-
ards to follow. The basic rule is that numbers should increase whenever a new
software release is made available. In some cases, numbers are not used at all,
but are instead replaced by attractive marketing names. The following version
sequences probably look familiar:

R1,R2,R3

1.2.0,1.2.1,1.2.2,1.3.0

3.1, 95, NT, 98, Me, 2000, XP, Vista, 7

737-300, 737-400, 737-500, 747-300, 747-400
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The list of possibilities is endless, and it’s up to the product managers to
determine what makes sense for their product.

Perhaps the most common version system for software is the three-number
approach. If in doubt, this is a tried-and-tested solution that won’t get you in
trouble with copyright lawyers. (Using vista as a version name might land you
in hot water). The three-number approach recognizes the difference in large
feature changes, small feature changes, and bug fixes.

When using this approach, a version number should follow the format x.v.z
(Build B), where

e X increments when major feature changes are made to the software. This
often means that configuration and data files that were used in previous
versions of the software are no longer compatible (and must be upgraded).

¢ v increments when minor feature changes are made. These changes add
new capabilities to the software but don’t significantly change the way the
software is used or result in a disruptive upgrade.

¢ 7 increments for every new bug fix (or set of bug fixes). No new func-
tionality is added to the software, but the user can rest assured that the
software now has better quality.

e (Build B) increments with every release build of the software. The cus-
tomer need not be concerned with this number: It simply indicates how
many times the test group has received a new package to test. It doesn’t
say anything about the new features or bug fixes that may be present in the
package. This number is typically large and has no relation to the values of
X, Y, or Z.

Individual customers use their own personal preference when evaluating ver-
sion numbers. Cautious customers stay away from releases in which v and z are
both o, which indicates a totally new release of major features. They’ll likely
wait until z has been incremented a few times to indicate that early product bugs
have been resolved.

Coordinating and Updating the Version Number

When implementing a release build system, some mechanism must exist for
keeping track of the version number and updating it appropriately. Successive
software releases use successive version numbers, incrementing the individual
parts of the number as appropriate. The version number must therefore be re-
corded between release builds.
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Between consecutive builds, the version number could be stored in one of the
following ways:

¢ In an external disk file: The release engineer maintains a disk file contain-
ing the current version number, such as 1.2.3 (Build 832). After each
successful build, a script increments the build number. Incrementing the
number after a failed build is pointless, because a complete software pack-
age was never produced.

¢ Inside the version-control system: Instead of using an external disk file,
the version number is committed to the version-control system (again,
after each successful build). This has the advantage of permanently stor-
ing a version number alongside each build of the software. If developers
went back to an earlier version of the software, the version-control system
would show the matching version number.

¢ Managed by the build-management tool: One of the main goals of a build-
management tool is to manage versions. The tool (such as Build Forge,
ElectricCommander, CruiseControl, or Hudson) is responsible for storing
the current version number in its own internal database and for increment-
ing the number after successful builds. If you’re using a build-management
tool, this is the easiest way to manage the version number.

Now that you’ve stored the version number somewhere, the remaining ques-
tion is how to update the number. The build number B is automatically incre-
mented after every successful build, but that is not true for the x, v, and z
components. These should always be incremented manually after a conscious
decision by the product managers.

The simplest approach for setting X, v, and z is for a manual decision to be
made about the upcoming version number. For example, if the most recent soft-
ware release was 2. 3. 0, the planned addition of a few bug fixes implies that the
next release should be 2.3.1. On the other hand, if new features are added to
the next release, the number would be 2.4 . 0.

As an example, the release engineering team might produce the follow
sequence of release builds:

e 2.3.0 (Build 1623): Released to customers
® 2.3.1 (Build 1624) : Internal only

e 2.3.1 (Build 1625): Internal only

e 2.3.1 (Build 1626) : Internal only
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e 2.3.1 (Build 1627): Internal only

e 2.3.1 (Build 1628): Released to customers

Customers will be unaware of all packages except the first and last in the
list. You might want to hide the build number from the customer so that it’s
available only via a special command or menu option. They shouldn’t care how
many times the package has been built and sent to the test group. (Although a
small increment might make them think the product hadn’t been tested much!)

The test group refers to the packages by their build number, such as 1628.
When issuing bug reports, it relies heavily on build numbers to distinguish the
different releases. After all, there are many different internal releases of 2.3.1,
and each could contain different bugs.

The release engineer tags the version-control system to indicate that build
1628 was the official release of version 2.3.1. If developers wanted to repro-
duce the source code for this version, they’d reference the appropriate tag,
such as Release 2.3.1. To reproduce internal releases, the tag would be
Release 2.3.1 Build 1626.

Another common approach to versioning software is to add a release quali-
fier, such as alpha, beta, or rc (release candidate). These tags distinguish the
pre-release versions of software from the final release. For example:

® 2.3.0 (Build 1623): Released to customers

® 2.3.1-alpha (Build 1624) : Internal only

e 2.3.1-alpha (Build 1687) : Internal only

® 2.3.1-beta (Build 1742) : Internal only

® 2.3.1-beta (Build 1786) : Internal only

® 2.3.1-rcl (Build 1828): Release candidate; still internal

® 2.3.1-rc2 (Build 1829): Release candidate; still internal

e 2.3.1 (Build 1830): Released to customers

This approach keeps a clear separation between internal releases and those
provided to a customer. The downside is that version 2.3.1-rc2 (in this exam-
ple) must be recompiled to create version 2.3 .1 and then retested to ensure that

it still works perfectly. This extra effort is required even though no differences
should exist between the two releases.
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As mentioned earlier, you can implement a version-numbering system in
many ways, with each product-development team choosing its own way of rep-
resenting the change in software.

Storing and Retrieving the Version Number

The last step in the version-numbering process is to store the number in the soft-
ware package. Customers need a way to determine which version of software
they’re currently using or which version they’re about to install. Additionally,
a customer support engineer must determine which version a bug was reported
against.

The version number should be stored in some obvious places, along with one
that’s not so obvious:

¢ In the release package name: The version string should always be embed-
ded in the name of the software package the customer receives (for exam-
ple, package-2.3.1.zip). For internal releases that aren’t delivered to a
customer, the name should also include the build number.

¢ In the software’s About menu: When users select the Help, About menu
on the GUI or enter some type of version command into a command-line
tool, they should see the version string. This is an appropriate place to also
display the build number.

¢ In the installation directory name: To support multiple versions of your
software on the same target machine, always include the version number
in the product’s installation directory. For example, you could install it in
C:\Program Files\MySoftware-2.3.1.

¢ Inside the program’s data segment: This approach is a little less obvious,
but storing the program’s version string inside the data segment gives you
access to the version number if the program crashes and creates a core
dump (assuming your programming environment supports core dumps).
This is particularly useful if the customer sent you a core dump for analysis
without remembering which version number of the software caused the
crash. (The customer may have upgraded recently.)

Because operating systems don’t include the program code (the text seg-
ment) inside a core dump, be careful to store the version string in a well-
known data variable (in the data segment) instead of as a constant string.
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Without going into too many details, it should now be obvious that some
amount of work is required for your build system to insert the version number
into the appropriate parts of the program. Start by adding a version flag to your
standard software build command:

$ make all VERSION=2.3.1 BUILDNUM=1628

The build system inserts the value of VERSION and BUILDNUM into the
pathnames, filenames, menu strings, or data segment, as appropriate for your
product.

As a final note, you might be wondering what would happen if a developer
did a private build without specifying a version string. In this case, the default
might be to use the number 0.0.0, indicating to everybody that this isn’t an
official release build. You could also be more creative and mention the user’s
name, to indicate who actually built the software:

Private build by psmith@arapiki.com
Version 0.0.0 (Build private)

If you choose the approach of committing the release build number in the
version-control system, you can create more specific version strings. For exam-
ple, you can show which release build this private build was based on.

Private build by psmith@arapiki.com
Based on Version 2.3.1 (Build private)

The key point is to ensure that whoever uses the software package can deter-
mine who built the software and roughly what set of functionality to expect
from it. It’s also important to use version numbers as a means of reporting and
tracking bug fixes.

Summary

This chapter touched upon a wide range of topics related to version control of
the build system. Failing to correctly version-control the build description or the
compilation tools can result in broken builds or an inability to reproduce older
versions of the software.

Various items should always be kept under version control. These include the
build description files that record the complete end-to-end build process, refer-
ences to each specific version of a compilation tool, large binary files, and the
configuration of a source code tree that defines the directories to be checked out.
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In contrast, you need to keep certain files out of the version-control system,
such as generated source and object files, as well as build-management scripts
that aren’t directly tied to each version of the software.

Finally, version numbers are an important way for customers to measure the
content and stability of the software releases available to them. These numbers
are also used to track bug reports and corresponding bug fixes.



Chapter 15

Build Machines

In contrast to the last chapter’s discussion on keeping the source code and build
description under version control, this chapter focuses more on the underlying
build machines (see Figure 15.1). A build machine may be upgraded on a regular
basis as new versions of the operating system become available. Naturally, some
amount of management is required to ensure that a change to a build machine
doesn’t break the build process.

~ Ah= A h—

Source Object Release
Tree Tree Package

Version-
Control
Tool

| Compilation Tools

Build Machine

Figure 15.1 Big-picture diagram, focusing on the build machine.

A typical build environment includes many compilation tools. Some are a
standard part of the operating system, but others probably were acquired from
third-party vendors (such as being downloaded from a web site). Some tools
might even have been custom-written for the build environment and supported
by your own organization. This chapter focuses on features and standard tools
normally considered part of the basic operating system. Chapter 16, “Tool
Management,” focuses more on third-party and custom-built tools.

If you don’t closely manage the build machine, plenty of opportunity for
failed builds or corrupted software packages will arise. Even if problems are
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encountered only once or twice per week, the work required to diagnose and
resolve compatibility issues can soon add up. A large development team of hun-
dreds of people can require a full-time engineer to support and resolve build
failures.

This chapter looks at the issues surrounding the version control of build
machines. This includes centralized development in a closed and controlled envi-
ronment, as well as in a typical open-source environment that has a wide range
of end users.

This chapter also looks at a case study of using GNU Autoconf. This tool
makes a developer’s life easier when writing software for multiple platforms.
Before moving to these topics, let’s take a more in-depth look at the concepts
of native and cross-compilation briefly discussed in Chapter 1, “Build System
Overview.”

Native and Cross-Compilation

From a build system perspective, you often care about whether the target ma-
chine that runs the software is the same as the machine that compiles the soft-
ware or whether it’s a completely different type of machine. Each approach has
its own set of benefits and challenges, and depending on your build environ-
ment, you might have some flexibility on the approach you choose. Let’s briefly
examine the two methods.

Native Compilation

In a native compilation environment, the build system is free to use any files
that reside on the build machine. On a UNIX-like system, any of the libraries
in the /usr/1ib directory and any of the header files in /usr/include can be
incorporated into the build process. Given that the software executes on the
build machine, or a similar machine, you need to use libraries and header files
that match the build machine’s operating system.

One advantage of native compilation is that it minimizes a developer’s edit—
compile-run cycle. The final program can be executed on the same machine it
was compiled on, with no additional step to copy the program onto the target
machine. This makes it easy to execute and debug the program from within the
developer’s editor or integrated development environment (IDE).

One point of concern when developing and testing code on a build machine
is that you’ll likely have additional libraries and tools that end users might not
have installed. For example, if a Windows developer used Visual Studio to com-
pile code, that developer must ensure that the software still works on a machine
that doesn’t have Visual Studio installed. Failure to test in a clean environment
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could result in missing library error messages when the end user runs the
software. This is less of a problem in a cross-compilation environment where the
developer has no choice but to test on a target machine that certainly won’t have
any development libraries installed.

Cross-Compilation

In a cross-compilation environment, the program won’t be executed on the same
machine it was built on. It must not use any of the libraries or header files from
the build machine because they won’t be relevant to the target machine. Also,
an additional step is involved to copy the executable program onto the target
machine before it can be executed.

The main advantage of using cross-compilation is that not all target machines
have sufficient processing power to run a full build system. Imagine the CPU
inside a kitchen appliance: It isn’t fast enough to execute a compiler and cer-
tainly doesn’t have enough memory installed. Similarly, a device such as a gam-
ing console has plenty of CPU power and memory, but it might not have the
necessary user interface (keyboard and mouse) to develop software.

To successfully develop code in an embedded environment, you need two
main things. The first is a set of cross-compilers that execute on the build
machine but generate code for the target CPU. Some compilers, such as the
GNU C Compiler, support a variety of target back ends and, therefore, are
ideal for this environment. For example, a compiler for a gaming console would
execute on a Linux machine with an Intel CPU but might generate code for an
embedded MIPS processor.

The second requirement for an embedded system is a good communications
link between the build and target machines (see Figure 15.2). The developer
must download the software package to the target machine, start and stop the
program remotely, and then use an interactive debugger to query the state of the
target CPU.

" Communication link for
downloading, debugging,
Compiler and crash dumps

Target Machine

Build Machine

Figure 15.2 The separation between the development environment and the target
machine, using a special-purpose communication link.
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If all these features are available, there’s no reason developers can’t continue
to use their standard editor or IDE (on their build machine) to interact with the
running program, as in native compilation.

Hybrid Environments

During a product’s development phase, before the customer uses the product,
developers might choose a hybrid approach to developing software. They would
compile their code for the target machine but still test the software on the build
machine instead of downloading it to the real target hardware.

One way to achieve this goal is to develop in a language such as Java that uses
a virtual machine. Because a Java program can run on any machine type, regard-
less of the target architecture, much of the software can be executed and tested
on the build machine. Obviously, there are limitations when the software needs
access to physical devices that are available only on the real target, but these can
often be simulated on the build machine.

A second approach is to use a CPU emulator. In this case, the build machine
creates an artificial environment that appears to be exactly the same as the target
machine, at least from the software’s perspective. When the CPU architecture
differs from the build machine, the emulator interprets the machine instructions,
giving the appearance the software is actually being executed.

In these types of hybrid solution, the developer gains a significant amount of
productivity by reducing the awkwardness of working with real hardware.

Centralized Development Environments

The next major topic related to build machines is centralized development envi-
ronments. With centralized software development, you can use any number of
build machines to compile the organization’s range of software products. All the
machines are managed by the same organization (such as a company or founda-
tion) and are used for the same purpose (see Figure 15.3). This environment is
distinct from the open-source development environment discussed in the next
section.
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Centralized Network

Figure 15.3 A high-level view of a typical centralized environment with consistent
toolsets and machine types.

A centralized software environment might have anywhere from 10 to 10,000
build machines running a variety of operating systems. The machines could be
spread across different countries and time zones and could be administrated by
a range of different people. It’s not uncommon to see build machines from 5 to 8
years old, even though, after 3 to 5 years, they’re typically too slow to be useful.

In this type of environment, a lot of management is required to keep the build
system running smoothly. The sheer number of developers and all their require-
ments can make it challenging to ensure that the build system produces the same
result for everybody.

In an idealistic environment, all the build machines would be identical, at
least from a software perspective. It doesn’t matter whether the hardware is
identical (in terms of CPU speed and memory capacity), but the operating sys-
tem, CPU architecture, and set of tools must be the same on all machines. Any
differences from one build machine to the next can cause build failures.

Imagine a scenario in which the same piece of software can be compiled on
both Solaris and Linux systems. Although both operating systems are UNIX-
compatible, they still have many differences in the location of the standard
UNIX programs and in the command-line arguments accepted. Any special-pur-
pose tools that the build system requires, such as compilers or code-generators,
must be available on both platforms.

Anyone tasked with maintaining the build system faces an endless struggle to
keep the build running on both types of machine. If developers prefer to compile
their code on a Solaris machine, they need to double-check build system changes
to ensure that they also work on a Linux machine. Most developers don’t have
the spare time to compile their software twice, so build breakages are more
common than expected. Machine incompatibilities are a large contributor to

broken builds.
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The UNIX system administrators also have twice as much work to do. Not
only do they need to be fluent in both Solaris and Linux administration, but they
also end up doing twice as much work to maintain the operating system and tool
patches for each of the machine types. Most system administrators prefer not to
do everything twice.

Why Build Machines Differ

Although it’s desirable to have only a single type of build machine, for many
reasons, this isn’t practical. Keep in mind that build systems exist for many
years, often longer than any particular build machine. Let’s consider some rea-
sons why a software organization might need to support more than one type of
build machine:

¢ Customers use different operating systems: If you need to support one
set of customers who use Solaris systems and another set who uses Linux
systems, it might not be possible to support only one type of build ma-
chine. In contrast, you could manage with a single build platform if you
could cross-compile your source code for each of the target machines. The
only requirement is that cross-compilers and cross-libraries be available
for each target platform.

If you develop software for the home PC market, you have no choice but
to upgrade to whatever the customers are using. At the time of writing,
Microsoft has just released the Windows 7 operating system. At this point,
you’d be foolish to support only Windows XP and Vista.

¢ Development tools require specific operating systems: A software devel-
oper might request a specific type of tool, such as a compiler for an unu-
sual CPU type, or a custom code generator for a data-definition language.
If problems with the tool arise, you can ask the vendor to provide the
necessary information or software patches. The only caveat is that you
must run the tool on an approved operating system. A vendor will support
the latest version of Windows or something like Red Hat Enterprise Linux,
but it won’t likely support a 5-year-old version of FreeBSD.

If you don’t use a vendor-approved operating system, you’ll be forced to
switch to one that is, or perhaps reject the whole idea of using that tool
in the first place. You might be able to use the tool on an older version of
the operating system, such as an older version of Red Hat Linux, but you
have no guarantees that it will work. The tool might fail because of miss-
ing operating system features or might give a missing library error if
the required dynamic libraries can’t be found.
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If you have conflicting tool requirements, you could end up with a mul-
timachine build process. To build the full software package, part of your
build tree must be compiled with one tool (and, hence, one build machine),
with another part of the tree compiled on a different machine. This clearly
isn’t desirable, but it might still be your best option if a special set of com-
pilation tools is important for your product.

Newer OS versions are released: When you started developing your soft-
ware, you likely settled on a specific operating system as the basis for all
your build machines. The build system will grow over time to take advan-
tage of the operating system’s features. Given enough time (normally 2 to
3 years), people will notice that newer versions of that same OS are now
available and have additional features they’d like to use.

Meanwhile, the version you’re currently using is no longer supported.
Most vendors support only the most recent two or three versions of their
operating system and encourage users to upgrade to their latest release.
They’ll also stop providing bug fixes and security patches for their older
versions.

Unless you plan to support your build machine’s operating system by
yourself, it’s best to upgrade. You’ll need to make some changes to your
build system, but upgrading is often the cheapest option in the long term.

Older operating systems don’t support newer hardware: Build machines
tend to have a life span of 5-8 years. Even after 3 years, they’ll be much
slower than any new hardware you can buy. For a period of time, you’ll
probably purchase new hardware and install the same version of oper-
ating system you’ve used for many years—until you come across a nice
new 64-bit quad-CPU system with 16GiB of RAM, which, unfortunately,
won’t be supported by a 5-year-old operating system. You’ll be forced to
upgrade.

Operating systems lose popularity: You might have selected your build
machine’s OS many years ago and are obediently upgrading to the latest
revision whenever updates are available. Over time, you might realize that
the operating system is losing popularity in the market and that there’s less
support among tool vendors. A good example is the growth of Linux over
the last 10 years and the corresponding decline of Solaris. If you’ve always
used Solaris build machines, you might want to think about switching to
a cheaper and faster Linux environment. In some cases, the vendor might
even go out of business, forcing you to select a new platform.
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e Companies merge: A common scenario in the world of high-tech compa-
nies is the familiar merger or acquisition. Two companies come together
and find synergy by jointly developing their products or sharing develop-
ment resources. In one case, two different product lines merge into a single
product, requiring the two build systems to merge into one. In other cases,
developers from one product line might be reassigned to work on the other
product line, preferably using their existing build machines. Until the build
machine platform can be standardized, there’s good reason to be working
with two different types of machine.

¢ Developers have their personal favorites: A final reason for having multi-
ple build machines is that everybody has their favorite. Many people prefer
to work with a certain operating system and sometimes go out of their
way to make the build system work on their own platform. If the system
administration group doesn’t control the situation, you can end up with a
wide array of build machines.

With all these motivations in mind, do not forget that your software releases
might have a life span of several years. If you released a version of your product
2 years ago and are still providing customer support for that release, you need
some way to compile the software. If your new build machines (with their newer
operating system) cannot compile the old source code, your only option is to
maintain two or more distinct types of build machine.

In Figure 15.4, Solaris versions 8, 9, and 10 have all been used to compile the
product. The oldest release has reached its end of life (EOL), so you no longer
need any Solaris 8 build machines. However, you must still maintain a small
pool of Solaris 9 machines, in case someone needs to check out and recompile
Release 2. Most developers would now use Solaris 10 as their default build
machine.

Release 1 built Release 2 built Release 3 built
on Solaris 8 on Solaris 9 on Solaris 10
> > 3>
EOL

>
>

Release 4 will build
on Solaris 10

Figure 15.4 Each version-control branch might require a different type of build
machine.
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As you might imagine, it often pays to proactively upgrade your build
machines instead of waiting for an emergency. Anyone experienced in maintain-
ing build systems has a horror story of how one build machine suddenly died of
old age and had to be replaced in a hurry. Unfortunately, the necessary operat-
ing system version was no longer available, and none of the newer systems could
compile the old software.

If you make a point of explicitly upgrading your build machines and modify-
ing the build system accordingly, you’ll be less likely to face these urgent situa-
tions. Being diligent about moving customers to newer software releases is also
a good tactic to help with EOL releases.

Managing Multiple Build Machines

Hopefully you now believe that having multiple build environments is almost
a certainty, at least for short periods of time. Now consider what you can do
to minimize the differences and, therefore, reduce the confusion when multiple
build machines are used. Certainly no single solution to this problem exists,
other than hard work by the system administrators and careful planning when-
ever changes are required.

¢ Disallow special per-machine software: Each user might have a preferred
set of applications to install on their own machines, but consider disal-
lowing this. If a software package is to be installed, it should be made
available on all build machines, not just some. Have a group of reviewers
evaluate each request for new software and then decide whether it should
be installed on all machines, if at all.

People might view custom installations as a superset of the standard build
machine environment. However, installing extra programs into system di-
rectories (such as C:\Windows or /usr) can have nasty side effects that
impact existing tools. For example, a program might decide to install a
special version of a dynamic library, but the existence of that library could
cause existing applications to act differently. The same is true for system
configuration files that the new application decides to modify.

One acceptable solution is for users to install their custom applications
in their home directories. Because they don’t have access to write to the
system directories or configuration files, there’s no way to modify the be-
havior of existing tools. This assumes that the build system rejects user-
specific $PATH values, which it always should.
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Disallow administrator access: As much as possible, disallow users from
having administrator/superuser access to build machines because this
can add to the temptation for them to make custom modifications. If left
unchecked, each machine can end up with a slightly different configura-
tion, with the build system behaving differently in each case. Depending
on the nature of the change, the problem might not be noticed for months
or years, at which point tracking down what was changed is difficult.

Validate build machine changes on a test machine: If you decide to make
a significant change to your build machines, such as applying patches
or upgrading the OS, first validate the change on a test machine. This
involves rehearsing the installation steps and validating the build system
to ensure that nothing is broken. Build both old and new code branches; in
case there’s a difference between them. The system administrators should
work closely with the build maintainers to ensure that everything works
correctly.

Use a single operating system image: Instead of manually installing new
software on each build machine, use some type of automation to do the
job. Assuming that the installation process has been validated on a test
machine, you shouldn’t have any problems installing the same software on
all other machines. Ignoring hardware differences, each machine should
have started with the same set of software installed and, therefore, should
end up with the same new set of software.

If you purchase a completely new computer that doesn’t yet contain any
software, make sure you have an easy way to install the necessary operat-
ing system and tools. Using a jump-start or kick-start method can help
with the deployment of cookie-cutter systems.

Say no to personal machines: As mentioned earlier, many developers pre-
fer to use the type of operating system they’re most comfortable with or to
work on their personal machines. Although it’s a sacrifice for developers,
disallowing personal choice is a great way to ensure uniformity. You might
not want to disallow users from plugging their machines into the network,
but you should at least refuse to support them if they have build problems.

Ask tool vendors to support your operating system: Instead of changing
your build machine’s operating system to support a third-party develop-
ment tool, you could ask whether the vendor can support your existing
OS. The worst the vendor will do is decline your request, but if you happen
to be lucky or have a great relationship with the vendor, you could avoid
a lot of extra migration work.
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e Make sure your system administrator understands build systems: It can’t
be stressed enough that you must keep the build machine’s operating sys-
tem and tools under tight control. If system administrators don’t under-
stand these issues, they might be tempted to apply patches and upgrades
whenever they feel like it. In organizations that don’t specialize in software
development, the system administration group often has a lot more say in
how the computers are managed and which versions of software are used.
This freedom doesn’t transfer well to build systems.

e Watch closely for “magic” machines: If you’re not careful, you’ll find
that some part of your build system can be executed only on a custom-
configured build machine. This is common when performing an obscure
sequence of steps that use special file formats or one-off tools. In many
cases, the magic machine sits in a dark corner of the server room or per-
haps underneath a developer’s desk. Few people might even be aware that
the machine exists.

Because of their obscurity, magic machines are unlikely to be involved in
the main part of the build process; instead, they’re confined to compiling a
small or optional part of the software. For example, an embedded system
might depend on a small bootloader that loads the full operating system
from disk. The bootloader might be stored in flash memory (which stays
intact when power is turned off) and doesn’t change often; it might be
modified only once or twice a year.

You can now imagine the problem. Six months might pass before anybody
notices that the magic machine has failed, leaving no way to recompile
the bootloader software. It’s important to keep track of magic machines
and ensure that any tools are made available on the more common build
machines.

e Use virtual machines if you need to: One way to avoid supporting magic
machines is to instead use a virtual machine. This enables you to run an
older operating system inside a newer operating system. The OS image is
simply a large disk file that can be loaded into a virtual machine player at
any point in time and that can be duplicated and distributed to any devel-
oper who needs access. The VM executes on any modern build machine,
alleviating the concern about magic machines growing old and failing.

Managing a set of build machines isn’t trivial; if it’s not done properly, it can
lead to build failures and inconsistencies between machines. It’s worth creating
solid and repeatable procedures for managing your build machines instead of
leaving things to chance.
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Now let’s continue by looking at open-source environments, where there’s
much less consistency between the build machines.

Open-Source Development Environments

The characteristics of an open-source project are different from centralized soft-
ware development projects. Most projects have fewer than 20 active developers,
but the software is downloaded and compiled by many thousands of consumers
(see Figure 15.5). For common platforms such as Linux, the software might be
available in precompiled form, but in other cases, consumers must compile the
program for themselves. Each user has his or her own computer and is likely to
be the administrator. (This is certainly true for home enthusiasts.) Sometimes
the software is downloaded to corporate machines, but there’s no standard type
of build machine required.

Open Source
Repository

2

Developers End Users /
Consumers

Figure 15.5 A typical open-source environment with few developers and many con-
sumers, each using their own version of build machine.

Consider, for example, the Apache web server, which has a small number of
experts who’ve contributed to the software. On the consumer side, many end
users will compile the httpd program from source code. These novice end users
have no idea how the tool works or how the software builds; they are interested
only in the finished product. Luckily for most people, ht tpd comes precompiled
for many operating systems, with no need to compile it from source code.

The key point here is that maintainers of open-source projects can’t dictate
exactly which operating system to use to compile the source code. No single
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company owns the build machines, so the build system must work correctly on
any reasonable platform. New operating system versions are released frequently,
and users expect their existing software to compile on each new build machine.

Anyone who has compiled open-source software, especially on less common
versions of UNIX, has undoubtedly come across build failures. You’re probably
in luck if the maintainers of the software tested on the same OS version you’re
using. In general though, you should expect a few build errors if your operating
system’s features are slightly different than expected or if your system is missing
any of the third-party packages this software depends upon.

Keep in mind that most open-source packages are designed to run on UNIX-
like systems, although some of them support Microsoft Windows. Even then,
plenty of UNIX-like systems exist, each having slightly different characteristics.
Without thinking too hard, you’ve probably heard of most of the following:
Mac OS X, Linux (Debian, SUSE, Ubuntu, Red Hat, and Gentoo, among many
others), FreeBSD, NetBSD, OpenBSD, Solaris, HP-UX, AIX, Xenix, and Minix.
Given the variety, your build system would need to be very versatile to work on
all of them.

Now look at the common types of build failure you might encounter when
compiling open-source software.

¢ Availability of prerequisite packages: In many cases, an open-source project
depends on the target machine to already have the prerequisite packages
installed. For example, if the software uses the MySQL database system,
MySQL must have already been installed. Alternatively, the package might
require that a Python or Perl interpreter be available.

Most open-source projects come with detailed written instructions on
which packages must be installed. The end user must download and install
each of the packages, often requiring hours of extra work.

¢ Version of tools and packages: Although a prerequisite package might
already be installed on the target machine, it might not be a recent enough
version. You could expect the build system to validate the version of all
required packages and fail with a meaningful error message. Unfortu-
nately, developers don’t always have the foresight to make that happen.

In some cases, you’re left staring at a confusing error message when the
older package doesn’t understand a newer command or file format. For
this reason, some open-source maintainers deliberately avoid relying on
newer versions of packages, just to ensure that their software still works
correctly on older build machines.
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e Path to tools: A big difference between UNIX variants is the location in
which programs are installed. Most of the standard programs (such as 1s,
cat, and more) are installed in /bin or /usr/bin, but other nonstand-
ard programs can be stored anywhere the OS maintainer chooses (such
as /opt, /usr/local/bin, or /usr/tools). For a build system to find a
required tool, it must depend on the user to have the $PATH set correctly or
otherwise play a guessing game to figure out where each tool is installed.
This can be a major source of build failures.

¢ Availability of command-line options: Even if a UNIX tool is successfully
located, it might not accept the same command-line options or syntax as
in other versions of UNIX. This is because each operating system pack-
ages a different version of the tool, sometimes up to a year or two old. In
other cases, the operating system has its own unique implementation of the
tool, which has a life of its own for many years. For example, BSD-based
UNIX systems (NetBSD, FreeBSD, and OpenBSD) use the BSD version of
the Make tool. This tool accepts a different style of makefile compared to
GNU Make, which is the default on Linux systems.

¢ Availability of preinstalled libraries: You might find that a software pack-
age relies on a dynamic library that doesn’t exist on your system. This hap-
pens when you attempt to execute a program that was compiled on either
a much older or much newer version of your operating system. For ex-
ample, the program might depend on /usr/lib/libfoo.so.6, whereas
your system has only /usr/1ib/libfoo.so.5 installed. If you recompile
the software from source code, there’s a good chance that the problem
will go away, because it now depends on a library that’s available on your
system. In the worst case, you might see a build error if the software uses a
function that was recently added to 1ibfoo.so.6 but never existed in
libfoo.so.5.

As you can see, compiling open-source software isn’t always trivial. Some
packages might work the first time, but others can take several days of tweaking
before you get a successful build. Everything depends on your operating system,
the features that the software uses, and how much effort the maintainers spent
on making the software portable.

Thankfully, many OS maintainers bypass these problems by packaging soft-
ware in precompiled form, while making source code available to those who
really need it. Software packaging systems, such as the Red Hat Package Man-
ager (see Chapter 13, “Software Packaging and Installation”), enable a user to
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install a precompiled software package in a matter of seconds, while also ensur-
ing that all prerequisite packages are first downloaded and installed. In many
cases, the OS maintainers ensure that their complete collection of packages work
together in harmony and don’t conflict with each other. Sadly, you don’t have
the luxury of using precompiled packages if you don’t use a supported operating
system or if you’re trying to install less common software.

In closing, several tricks make software more portable between different
operating systems:

¢ Use platform-independent scripting languages: Instead of writing software
that depends on an operating system’s native programs (such as those in
/usr/bin), take advantage of scripting languages such as Perl or Python.
These languages provide a platform-independent way of accessing the sys-
tem’s functionality. For example, instead of calling the operating system—
specific function for creating a new directory, use the mkdir function in
Perl that will work the same way on all platforms, including Windows.

if (mkdir ("mydir", 755) == 0){
print STDERR "Failed to create directory\n";
}

¢ Use compatibility libraries: These libraries are optionally added on top of
the standard operating system libraries, to provide a level of compatibil-
ity and make it easier to compile open-source software. One of the most
famous compatibility libraries is Cygwin [82], which provides a Linux-like
environment on top of Microsoft Windows.

¢ Use the GNU version of tools: Instead of requiring a software package to
work with every variant of every tool, rely on only GNU versions of the
basic UNIX tools (1s, cat, sort, and so on). These are optional tools that
replace the operating system’s standard set, except that a Linux environ-
ment already uses GNU tools by default. A build system that relies on
GNU tools is more likely to support multiple platforms. Some experts ad-
vocate never using tools in /bin or /usr/bin because compatibility across
different systems is such a problem.

A final solution is to use the GNU Autoconf tool, allowing the use of oper-
ating system features that have actually been confirmed to exist on a build or
target machine. This tool has played such an important role in the world of
open-source software that it demands a section of its own.
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GNU Autoconf

The sheer number of UNIX-like operating systems demands a simple way to
manage the differences. Although each system provides roughly the same func-
tionality, some features will always be implemented differently. The difference
might be in the set of C header files a program must include, differences in the
C library functions, or differences in the file system path for standard programs.
Accommodating these variations makes it challenging to write a single program
that compiles and executes on all target platforms.

The GNU Autoconf tool [63] is the most popular way to manage these dif-
ferences for the C and C++ languages, where low-level system programming is
common. Autoconf inspects the build machine to determine which functions are
available and how they’re implemented. The software uses this information to
customize the set of header files or functions used, thereby supporting a wide
range of build machines. Autoconf comes from the same tool family as Auto-
make, discussed in Chapter 9, “CMake.”

If you’ve compiled software for a UNIX system in the past, you’ve probably
used the Autoconf tool, even without realizing it. Most commonly, you’ll see
instructions to execute a configure script before typing make. Now let’s look at
an example of how this configure script is created and how it’s used to custom-
ize the software you need to compile.

Languages such as Java don’t require the services of Autoconf because they’re
designed to be platform neutral in the first place.

The High-Level Workflow

Before diving into the detail of how Autoconf works, you need to understand
the high-level flow of information. If you’ve ever used the Autotools system, per-
haps as an end user running the configure script, you’ve seen a number of ad-
ditional files created in your source tree. Many of these files start with the code
comment autogenerated - do not edit, and the body of the file contains a
lot of cryptic shell commands and directives.

The software’s author cares mainly about the file configure.ac. This is the
master file that describes the various operating system features the software
needs. The author lists the compilation tools required to compile the software,
the important C-language header files, and some of the library functions that the
program uses. The upcoming example looks in detail at configure.ac to see
how these requirements are stated.

As shown in Figure 15.6, the configure.ac file is used as input for two of
the tools in the Autotools family:
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config.h.in

Figure 15.6 High-level flow of the Autoconf and Autoheader tools.

configure.ac

¢ Autoconf: This tool reads the configure.ac file and generates a corre-
sponding UNIX shell script, named configure. The purpose of this script
is to detect the location of the required compilers and determine whether
the necessary header files and library functions are available on the target
machine. You can think of configure as an executable version of the
rules that are specified in configure.ac.

¢ Autoheader: This tool is similar to Autoconf, in that it reads the configure.
ac file. However, the main purpose is to create a template header file called
config.h.in. As you’ll see shortly, config.h. in is the basis for creating the
config.h header file and lists all the system features the software intends to
use. For example, if the build machine supports the memcpy function, this file
defines the HAVE MEMCPY symbol.

The Autotools family has several other programs, such as Automake and
Autoscan, but this chapter doesn’t discuss those in detail.

The second part of the Autoconf process takes place on the end user’s build
machine (see Figure 15.7). To make things easy for end users, the author prob-
ably prepackaged the configure script and the config.h.in file that were
both autogenerated in the first step. Additionally, the author likely provided a
template makefile, called Makefile.in.

Makefile.in \ Makefile
config.h.in/ config.h

Figure 15.7 Using the configure script to generate a target-specific build system.
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As you might have learned from your own experience, the end user starts by
executing the configure script on the local build machine. This script validates
each of the requirements listed in the original configure.ac file, and an error
message is provided if the machine isn’t suitable. Although the software usually
executes on the same machine on which it’s compiled, the configure script is
capable of handling cross-compilation of software.

In many cases, configure is run without specifying any command-line
options, although end users can customize plenty of parameters if they don’t like
the defaults. They can enable or disable parts of the software, or even specify
where compiled binaries and libraries should be stored (instead of the default
/usr/bin and /usr/1ib). This is another way Autoconf enables software
installation on a wide range of machines.

After configure finishes, the end user is left with a fully functional Makefile
and config.h (not just templates anymore). As you’ll see in the example, these
files have been customized based on the features the build machine does or doesn’t
have and take into account any of the command-line options the user provided to
the configure script.

The only thing left to do is execute the standard Make tool. The software is
compiled and configured to execute on the target machine, so end users needn’t
worry if their machines are different from that of the original author. The Auto-
conf tool should have already dealt with those problems.

Now let’s look at an example of how the build and target machine require-
ments are stated.

An Autoconf Example

This simple example demonstrates a few of the features of the Autoconf tool.
Instead of putting together a fully functional build system, you’ll examine only
some of the basic features. From the software author’s perspective, two files
need to be constructed:

® configure.ac: Describes the build and target machine requirements

® Makefile.in: Acts as a template for the makefile that will build the
software

Start by looking at configure.ac. For the sake of convenience, you’ll see the
full content first and then examine it section by section.

1 AC_INIT([Example], [1.0.0])
2 AC CONFIG HEADERS ([config.h])
3 AC _CONFIG FILES([Makefile])
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AC_PROG_CC
AC_PATH_PROG ( [JAVA], [javal)
if test "xSJAVA" = 'x'; then

AC_MSG_ERROR (Cannot find a usable Java compiler)
fi
AC_PROG LN S

AC_CHECK HEADERS ([errno.h fentl.h limits.h], [],
[AC_MSG_ERROR ( [Missing required header
file.1)1)

AC_CHECK_HEADERS ( [asm.h], [1, [1)

AC_CHECK_FUNCS ( [memcpy], [1,
[AC_MSG_ERROR( [Missing required memcpy
function])])

AC_CHECK_FUNCS ( [strcpyl, [1,
[AC_MSG_ERROR( [Missing required strcpy
functionl])])

AC REPLACE_ FUNCS ( [megacpy] )

AC_RUN IFELSE (
[AC_LANG PROGRAM([], [ return ! (getpwent() !=
011,
[AC_MSG RESULT ( [getpwent () works correctly])],
[AC_MSG_FAILURE ( [getpwent () function non-func-
tionall)])

AC_OUTPUT

This file might appear to be written in a special-purpose language, but it’s
actually a combination of M4 macro instructions and UNIX Bourne shell com-
mands. The Autoconf and Autoheader tools provide the necessary macro defini-
tions to generate the configure and config.h. in files.

The first three directives provide the meta-information Autoconf uses to start.

1
2
3

AC_INIT([Example], [1.0.0])
AC_CONFIG_HEADERS ([config.h])
AC CONFIG FILES([Makefile])

AC_INIT is a macro that takes the software package’s name and version
number as input. The AC_CONFIG HEADERS macro states which header file
should be used to record the available system features. That is, you want to
create a customized config.h by using config.h.in as a template. Finally,
the Ac_CONFIG FILES macro specifies that Makefile should be derived from
Makefile.in, but with the template’s parameters replaced by their actual val-
ues. You'll see the content of these files shortly.

The next portion of the file specifies which compilation tools are required
when building the software.
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5 AC_PROG CC
6 AC _PATH PROG ([JAVA], [javal)
7 if test "xXSJAVA" = 'x'; then
8 AC_MSG_ERROR (Cannot find a usable Java compiler)
9 fi
10 AC_PROG LN S

The Ac_PROG_cC macro states that the configure script must locate a usable
C compiler, and the variable $cc should be assigned the name of that compiler.
The $cc variable can be referenced by other parts of the build system whenever
a C compiler is required. If no compiler is available, the configure script fails
with an error.

Because Java is a less common tool, you must use the general-purpose AC_
PATH_PROG macro to locate a suitable executable program (that has the name
java) within the user’s shell path. If the tool is found, the $Java variable is
assigned the absolute pathname of the java tool. If not, the $JavA variable is
left undefined and the additional Bourne shell code provides a suitable error
message.

Finally, Ac_PROG LN_g is special-purpose macro that ensures that the target
machine supports symbolic links on its file system. Autoconf provides a number
of these special-purpose macros, covering many of the common operating sys-
tem features that vary among UNIX platforms.

Next, similar checks look for the existence of C-language header files.

12 AC CHECK HEADERS([errno.h fcntl.h limits.h], [],

13 [AC_MSG_ERROR( [Missing required header
file.1)1)

14 AC_CHECK HEADERS ([asm.h], [],[])

The first AC_CHECK HEADERS macro ensures that each of the errno.h,
fentl.h and 1imits.h header files are available for use on the build machine.
If they exist, no further action is taken. (The second argument to this macro is an
empty pair of [].) However, if any of the files are missing, an error is reported
to the end user and the configure script aborts.

The second AC_CHECK HEADERS is more lenient, in that the program still exe-
cutes correctly if the asm. h file doesn’t exist. Instead of aborting the configure
script, a C preprocessor symbol (HAVE _AsSM_H) indicates whether the file is avail-
able. The C program can test for this symbol (using #ifdef HAVE ASM H) and
modify its behavior accordingly.

In a similar way, you can check for the existence of required C functions.
Depending on the version of UNIX being used, some of these functions might
not be available.
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16 AC CHECK FUNCS ([memcpyl, [1,
17 [AC_MSG_ERROR( [Missing required memcpy
functionl])])
18 AC_CHECK FUNCS([strcpyl, [,
19 [AC_MSG_ERROR( [Missing required strcpy
functionl])])

20 AC_REPLACE_ FUNCS ( [megacpy])

The first two uses of AC_CHECK FUNCS look for the memcpy and strcpy func-
tions, respectively. If the functions are defined, Autoconf defines the HAVE MEMCPY
and HAVE_STRCPY preprocessor symbols. If not, a suitable error message is pro-
vided and the configure script aborts.

In the case of AC_REPLACE_FUNCS, this example accepts the fact that megacpy
might not exist on the target machine and instead provides an implementation
of that function. If this can’t be found in the available system libraries, the build
process automatically adds the megacpy .o object file containing a custom imple-
mentation of the function.

The final test in the configure. ac file is to check whether a particular library
function behaves the way you expect it to. This is useful when a function might
have a buggy implementation.

22 AC_RUN IFELSE (

23 [AC_LANG PROGRAM([], [ return ! (getpwent() !=
017,

24 [AC_MSG RESULT( [getpwent () works correctlyl)l],

25 [AC_MSG_FAILURE ( [getpwent () function non-func-

tionall)l)

In this case, you test whether the getpwent function correctly returns a
pointer value or whether it incorrectly returns a NULL pointer the first time you
use it. The AC_RUN IFELSE macro uses the AC LANG PROGRAM macro to gener-
ate, compile, and execute a small C program that calls the getpwent function.
Depending on whether you see the desired result, the test passes or fails with an
appropriate message.

Finally, the AC_oUTPUT macro sets everything into action and generates the
two output files, configure and config.h.in.

27 AC OUTPUT

At this point, you’ve completed the review of configure.ac, but the soft-
ware’s author still must provide another file. The Makefile.in file is simply a
template for the real Makefile, but with a number of template variables (for
example, @cce) used in place of the real values. When the configure script
is run, each of those variables is replaced by a machine-specific value, and the
resulting makefile is created.
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In the following example, @cce and egavae are defined because you used the
AC_PROG_CC and AC_PATH PROG macros, whereas the configure script implicitly
created other template variables.

1 # econfigure inpute
2

3 JAVA = @JAVA@

4 CC = @CCe

5 SRCDIR = @srcdire
6 BINDIR = @bindire
7 EXTRADEFS = @DEFS@

remainder of Makefile.in not shown

Later, this example looks at the resulting makefile that’s automatically gener-
ated when the configure script is executed on the build machine.

Running autoheader and autoconf

Now that you understand the content of configure.ac, let’s look in detail to
see what happens when you run Autoheader and Autoconf with this file as in-
put. First, the Autoheader tool doesn’t produce any output when it runs, but it
does generate the config.h.in file.

$ autoheader

Given all the requirements specified in configure.ac, the Autoheader tool
determines which features are present on the build machine. For each feature,
a suitably named C preprocessor symbol indicates whether the feature exists.
These symbols can be tested by the build system or the C source code.

In essence, config.h.in is just a template listing all the symbols that could
potentially be defined. Only after you’ve run the configure script on the build
machine will some of the symbols actually end up defined. These definitions are
provided in the machine-specific config.h file, not the config.h.in template.

The following output shows a few lines of the config.h.in template file.
Note that some of the symbols directly relate to the requirements specified in
configure.ac, whereas Autoheader added a few more that it thought were
necessary.

/* config.h.in. Generated from configure.ac by autoheader.

*/

/* Define to 1 if you have the <asm.h> header file. */
#undef HAVE ASM H

/* Define to 1 if you have the <errno.h> header file. */
#undef HAVE_ ERRNO_H
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/* Define to 1 if you have the <fcntl.h> header file. */
#undef HAVE FCNTL H

/* Define to 1 if you have the <inttypes.h> header file. */
#undef HAVE INTTYPES H

/* Define to 1 if you have the <limits.h> header file. */
#undef HAVE LIMITS H

/* Define to 1 if you have the 'memcpy' function. */
#undef HAVE MEMCPY

/* Define to 1 if you have the <memory.h> header file. */
#undef HAVE MEMORY H

In a similar way, the Autoconf tool doesn’t produce any output (unless there’s
an error), but it does generate the configure script.

$ autoconf

Because of the complexity of the configure script, this book doesn’t discuss
the content. You’re certainly welcome to download any GNU software package
off the Internet and examine the resulting configure script for yourself. It’s
likely to be a complex script and not something you’d normally bother looking
at.

The configure script is purposely written in a platform-neutral way. That
is, the script should not use any nonstandard shell features, or there’s a good
chance it won’t execute properly on the target machine.

Running the configure Script on the Build Machine

Until now, the steps you’ve seen were executed by the original author of the soft-
ware. To avoid complicating the installation, this author provides pregenerated
copies of configure and config.h.in to the end users instead of requiring
them to install Autoconf and Autoheader on their own machines.

After users have downloaded the software, they first execute the configure
script on their own build machine. The script probes the machine to see whether
it meets the requirements; then it autogenerates the Makefile and config.h
files, as discussed earlier.

First, look at the output of the configure script. This will be familiar to any-
one who has installed open-source software on a UNIX-like system. If you study
the output carefully, you can relate many of the test cases back to the appropri-
ate macro in the configure.ac file.

$ ./configure
checking for gcc... gcc
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checking for C compiler default output file name... a.out
checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes

checking for gcc option to accept ISO C89... none needed
checking for java... /usr/java/latest/bin/java

checking whether 1n -s works... yes

checking how to run the C preprocessor... gcc -E
checking for grep that handles long lines and -e... /usr/bin/grep
checking for egrep... /usr/bin/grep -E

checking for ANSI C header files... yes

checking for sys/types.h... yes

checking for sys/stat.h... yes

checking for stdlib.h... yes

checking for string.h... yes

checking for memory.h... yes

checking for strings.h... yes

checking for inttypes.h... yes

checking for stdint.h... yes

checking for unistd.h... yes

checking errno.h usability... yes

checking errno.h presence... yes

checking for errno.h... yes

checking fcntl.h usability... yes

checking fcntl.h presence... yes

checking for fentl.h... yes

checking limits.h usability... yes

checking limits.h presence... yes

checking for limits.h... yes

checking asm.h usability... no

checking asm.h presence... no

checking for asm.h... no

checking for memcpy... yes

checking for strcpy... yes

checking for megacpy... no

getpwent () works correctly
configure: creating ./config.status
config.status: creating Makefile
config.status: creating config.h

Let’s continue by examining the content of config.h and Makefile. At this
point, configure now has solid information about the target machine, so it can
fill in all the gaps in the template files.

In the case of config.h, you now know for certain which of the features are
present, so the original #undef directives either have been commented out if the
feature isn’t present or have been properly defined to a value of 1 if the feature
exists.
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/* config.h. Generated from config.h.in by configure. */
/* config.h.in. Generated from configure.ac by autoheader.

*/

/* Define to 1 if you have the <asm.h> header file. */
/* #undef HAVE ASM H */

/* Define to 1 if you have the <errno.h> header file. */
#define HAVE ERRNO H 1

/* Define to 1 if you have the <fcntl.h> header file. */
#define HAVE FCNTL H 1

/* Define to 1 if you have the <inttypes.h> header file. */
#define HAVE INTTYPES H 1

/* Define to 1 if you have the <limits.h> header file. */
#define HAVE LIMITS H 1

/* Define to 1 if you have the 'memcpy' function. */
#define HAVE MEMCPY 1

/* Define to 1 if you have the <memory.h> header file. */
#define HAVE MEMORY H 1

In the case of Makefile, all the template variables from Makefile.in have
been replaced by the machine-specific values. Most notably, Java and cc have
been given the values that the configure script determined for you.

# Makefile. Generated from Makefile.in by configure.

JAVA = /usr/java/latest/bin/java
cc = gcc

SRCDIR = .

BINDIR = ${exec_prefix}/bin
EXTRADEFS = —DHAVE_CONFIG_H

remaining of Makefile.in not shown

Although only a small fragment of the overall makefile is shown, you can
certainly imagine how a full makefile-based build system can be constructed. To
help, Autoconf enables you to create a hierarchy of directories, each containing
a customized makefile.

Using the Configuration Information

The final step in the Autoconf process is to use the preprocessor definitions.
Now examine a C-language source file that takes advantage of the configuration
knowledge you’ve just acquired.
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1 #ifdef HAVE CONFIG H
2 #include "config.h"
3  #endif

4

5 #ifdef HAVE ASM H

6 #include <asm.h>

7 #endif

8

9 void example func()
10

11 R

12 #if HAVE MEMCPY

13 mempcy (temp buffer, source, sizeof (temp buffer));
14 #endif

15

16 }

The first thing to do is include the config.h file, which enables you to
make decisions based on whether each feature is enabled. The #ifdef HAVE
CONFIG_H directive is required because you might have opted to not generate a
config.h file but instead have all the preprocessor definitions passed in via the
@DEFSe makefile variable.

The next part of the file (lines 5-7) enables you to optionally include the
asm.h header file, but only if it’s known to exist on the system. Typically, you’d
also provide a #else clause to make sure that the required definitions are made
available in some other way.

Finally, inside the function body (lines 12-14), you test the HAVE MEMCPY
symbol to see whether it’s safe to call upon the memcpy function. Again, a suit-
able #else clause should provide an alternate way to achieve the same result.

In summary, you can see how the Autoconf tool can avoid a lot of frustra-
tion from variations in the range of UNIX-like operating systems. No longer do
end users need to face countless compilation errors because the software wasn’t
written for their particular machine type. Additionally, the software’s author
doesn’t need to enumerate each possible operating system; instead, the author
can focus on whether each specific feature is available.

Summary

A build machine is a vital part of any software build system. Any changes to the
machine must be carefully controlled, or you risk breaking the build and making
it impossible to reproduce older versions of the software.

In a centralized development environment, it’s desirable to have all build
machines conform to a standard; otherwise, different developers see different
build results. Variation will always exist among build machines, especially when



SUMMARY

customer requirements, compilation tool requirements, and hardware require-
ments force you to upgrade your operating system. In contrast, the need to
support older versions of software encourages the continued use of older build
machines.

In open-source development, the software’s author has much less control
over which build machines will eventually be used, because anybody can down-
load the software and try to compile it. In this case, it’s important for the build
system to be more lenient and support a wider range of build machines. The
Autoconf tool is a popular way of constructing a build system that functions on
a wide range of UNIX-like build machines.
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Chapter 16

Tool Management

Chapter 15, “Build Machines,” focused on build machines and the need to ef-
fectively control changes made to those machines. In a similar way, this chapter
focuses on the management of compilation tools. The goal is to provide a reli-
able and repeatable build process, even when tools are upgraded or modified in
some way.

Your build system might require that you install optional tools such as these:

¢ Cross-compilers: For example, you might need a MIPS compiler that ex-
ecutes on an Intel Linux platform.

¢ Interface definition compilers: This might include a CORBA compiler that
reads high-level interface definitions and generates the appropriate client
stubs in Java or C++.

¢ Custom code generators: You might install a tool that processes a domain-
specific language and generates the corresponding Java code.

¢ Build acceleration tools: You might need a parallel-build tool or a build-
avoidance tool, discussed in Chapter 19, “Faster Builds.”

Assuming that these tools don’t come as part of the standard operating sys-
tem image, you’ll need to install and manage them separately. Many tools are
vendor supported, requiring payment before the tool is provided for installation.
Other tools are free to use and are available in either binary or source code form.
Of course, you can also design and construct your own development tools.

This chapter discusses some of the basic rules for developing, installing, and
customizing compilation tools. It also touches briefly on what’s involved in
building your own tools.
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Rules for Managing Tools

No matter what the tool is or where it originally comes from, you need to fol-
low some basic rules when managing them and installing them on your build
machines. Now take a detailed look at each of the rules.

Tool Rule #1: Take Notes

When compiling or installing a tool on your build machine, take notes. Take
copious notes if the tool ends up being nontrivial to compile or requires unex-
pected steps to install. If you don’t take notes, you’ll likely need to rediscover
the whole process in the future, and next time it could be an emergency (such as
recovering from a disk crash). If the compile and installation process took you
half a day of effort in the first place, you’ll certainly be glad you took notes.

In your notes, record many types of information:

¢ From where did you download the software? If you found the tool by
searching the Internet for an hour or so, make sure you quickly bookmark
the URL of the web page and document it in your notes. If you don’t, you
might need an hour to find it next time as well.

¢ Write down the exact set of commands you used to compile the software.
If you followed the software’s README file and it worked the first time,
you’re lucky. In this case, make a note that you simply followed those
instructions. If things didn’t go smoothly and you had to perform extra
steps, make a careful note of what you did.

e When the software is installed, take note of which file system directory
it was installed into, as well as which installation options you selected. If
somebody needs to maintain the software in the future, that person will
need to know where the program is installed and how to reinstall it.

e What are the license restrictions for using this tool? Are there limits on
the number of concurrent users or perhaps the number of machines it can
be used on? For open-source software, just because the software is free to
download and compile, doesn’t mean you have unrestricted freedom to
modify and redistribute the source code.

e Record all passwords, extra configuration details, and license keys. You’ll
almost certainly need this information when you next make a change to
the tool. When it comes time to upgrade to a newer version, you might
need to reconfigure the software.
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e Document all license keys for all tools in a central location. It’s easy to
forget when your license is due to expire, and if the vendor doesn’t remind
you in time, the tool might refuse to work.

e If you stored the tool’s source code somewhere, where did you put it?
What are the commands for retrieving the source code?

All this information is important. If you don’t believe this, imagine that one
of your coworkers installs an important tool before going on vacation for three
weeks. If an emergency patch needs to be applied, you’ll be thankful your cow-
orker took the extra time to write things down. A wiki page is a great place
to document everything, especially because it’s widely accessible and can be
updated if information is missing.

Based on previous experience, some development tools (both commercial and
open source) have taken several days of experimentation to get working cor-
rectly. This fact can’t be repeated enough: Take notes!

Tool Rule #2: Use Version Control for the Source Code

If you’re managing a tool that you obtained in source code form, store the
source code in a version-control system. Avoid the temptation of downloading
the code, compiling and installing the tool, and then throwing away the source
code. You might think that you can always download the source code again if
you need to, but you have no guarantee that the same version will be available
when you next go to look. The web site might be down or completely out of
business, or the particular version you need might no longer be listed.

You might never plan to modify the tool, but when the developers are actively
using it, they’ll likely find bugs that you need to fix. If the tool becomes popular
they might ask for custom features to be added. Always plan on this happening,
even if the developers swear that it never will.

Often a software organization has a separate repository just for storing tool
source code. Every time you make a local change to the tool (such as a bug fix
or a new feature), you need to check in and document what you changed. If in
the future you decide to upgrade to a newer version of the tool (downloading
it from a web site), you’ll need to reevaluate each of your local changes and
determine whether it’s still relevant. Reapplying local changes to a new version
can involve significant effort, so avoid making modifications unless you really
need to.

For open-source tools, consider submitting your local changes back to the
mainstream distribution. If your bug fix or new feature is applicable to other
users, the tool maintainer is quite likely to accept your changes in the public
repository. The next time you download a new version, your local changes will
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already have been incorporated, with no extra work for you to do. In the spirit
of open-source software, you’ll also get to benefit from other people’s bug fixes
and new features.

Finally, in an ideal world, you’d be able to regenerate your entire set of com-
pilation tools from source code simply by checking out all the source code from
the version-control system and then typing make all. In reality, you should at
least write a shell script that automates the compilation of each tool, making
it possible to reinstall the tools whenever you make a change. As mentioned
before, take copious notes. It’s an extra benefit if these notes are in the form of
an automated script.

Tool Rule #3: Periodically Upgrade Tools

Keep track of all compilation tools your build system uses, and be sure to up-
grade them from time to time. Although it’s obviously not advisable to be up-
grading tools just for the sake of it, you have many good reasons to be proactive
about adopting newer versions:

¢ To take advantage of bug fixes: Clearly, this saves you time and frustration
by fixing problems you’re hitting in the current tool. In many cases, tool
bugs manifest themselves as product bugs, and you can waste many days
before you discover the true cause of the problem. Upgrading regularly
minimizes this wasted time.

¢ To take advantage of newer features in the tool: Vendors spend a lot of
time and effort researching which new features their customers need. If the
product doesn’t keep up with market requirements, customers may simply
stop buying the product. You can expect those new features to be helpful
when developing your own software.

® To keep tools up-to-date with newer versions of your operating system:
If you try to use a five-year-old tool on the latest version of your operat-
ing system, it may no longer work as expected. Problems occur when the
required dynamic libraries no longer exist or if an old tool no longer sup-
ports realistic memory or file sizes.

¢ To continue receiving support for the tool: Vendors would love to reduce
support costs by having everybody use the latest version of their software.
A common approach is to support only the most recent releases and refuse
to support older versions of the tool. If you want to continue receiving
support, you’ll need to upgrade.
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Naturally, upgrading tools involves some downsides. If the tool’s behavior
changes from one version to the next, or if the sets of commands or file formats
are different, you can expect a nontrivial amount of work when upgrading. For
example, when using the GNU C Compiler, you’ll find that newer versions of
the tool produce more compilation warnings than older versions. If you have a
policy of removing all compiler warnings, you’ll have a considerable amount of
work to clean up your product’s source code, all thanks to the new compiler.

Conduct major tool upgrades at an appropriate time in your development
cycle. You don’t want to treat a compiler upgrade as a minor feature or bug fix;
instead, schedule it for the next major release of your software. For example, if
the current release of your software is version 1.2.3, you should schedule the
upgrade for 2. 0.0 but continue using the older compiler for version 1.2.4.

It may be stating the obvious, but don’t forget to test the new tool before
rolling it out. The output of the tool might be subtly different from that of the
previous version. Unless you fully verify that your software builds correctly and
passes all regression tests, you might introduce product bugs. Before declaring
the upgrade a success, plan on a significant amount of testing, and give all devel-
opers adequate warning.

You shouldn’t necessarily upgrade to a new version of a tool as soon as it
becomes available or as soon as the vendor suggests the idea. In practical terms,
you might shy away from a new release that has a final version digit of .0, such
as 4.0.0. Instead, you may wait until version 4.0.3 or 4.0.4, to be sure that
the early customer bugs have been found and fixed. Of course, if you’re inter-
ested in receiving the latest and greatest features, using the 4.0. 0 release makes
perfect sense.

Tool Rule #4: Use Version Control for the Tool Binaries

As discussed in the previous rule, only newer branches of your product’s source
code should use an upgraded tool. This leaves the old branches to use the old
tool, at least until that branch of code reaches the end of its life. Some mecha-
nism for version control is necessary for each tool’s executable program, not just
for the source code.

As mentioned in the previous chapter, you should use version control for any
references that a build system has to its tools. The build description file (such as
a makefile) should contain the exact path of the tool, as well as the exact version
number. Adding a suffix to each tool’s name is one way of meeting this goal. For
example, to maintain multiple versions of the python tool, you’d install them in
/usr/local/bin as python2.5, python2.6, and python2.7.

Another outcome of this rule is that you should avoid using the standard
operating system tools. If your build system depended on /usr/bin/java, you’d
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have no guarantee that a system administrator wouldn’t update to a newer ver-
sion of the Java language, possibly breaking your builds. This is particularly true
for tools that automatically check for updates and upgrade themselves whenever
a new version is available.

When storing development tools that aren’t part of the basic operating sys-
tem, always create a special file system location. Don’t add any new programs
into /bin or /usr/bin, which are reserved for built-in tools. Instead, create a
totally new directory in a publicly readable place. For example, you could use
/tools, /usr/tools, or /opt /devtools. No matter what directory you select,
developers should be aware that these are custom-installed tools rather than
part of the basic operating system.

Creating a tool-specific directory comes with important rules about how the
directory is updated. Because of the importance of these rules, allow only tool
experts to add new programs to the tools directory. You can do so by using
a special file system group to limit who has write access to the files. If nonex-
perts were permitted to add new programs, they wouldn’t necessarily follow the
version-control rules, thereby making it difficult to rebuild old software releases.

The following file system layout is recommended:

/tools/pkg/gmake/3.79 /...
/tools/pkg/gmake/3.82/. ..
/tools/pkg/ant/1.7 /...
/tools/pkg/ant/1.8/...
/tools/pkg/python/2.5/...
/tools/pkg/python/2.6/. ..
/tools/pkg/python/2.7/...
/tools/pkg/perl/5.10/. ..
/tools/pkg/perl/5.12/...
/tools/pkg/gcc/i386-1linux-gcc-3.4/. ..
/tools/pkg/gcc/i386-1inux-gcc-4.5/. ..

In this example, each software package is neatly installed inside the /tools/
pkg directory. A unique subdirectory is maintained for each version of each tool
that’s installed. When a new version is added, no changes are made to exist-
ing versions of the tool; instead, a totally new directory is created. You also
shouldn’t remove any old tools until all code branches that depend on them have
reached the end of their life.

When referencing tools from the build system, always use the absolute
pathname of the tool:

CC := /tools/pkg/gcc/i386-linux-gcc-3.4/bin/gcc

In addition, the /tools/bin is a directory that all developers should add to
their $pPATH variable. It contains programs that they’ll execute from their com-
mand shell (such as gmake or ant) instead of those accessed by the build system.
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/tools/bin/. ..
gmake -> ../pkg/gmake/3.79/bin/gmake
ant -> ../pkg/ant/1.7/bin/ant

The programs in this directory can be upgraded to a newer version at any
time simply by changing the symbolic link to point to a newer version of the
tool. Needless to say, the build system should access tools only via the relevant
/tools/pkg directory; they shouldn’t depend on the nonversioned tools in
/tools/bin.

As a convenience for command-line users who need a specific version of the
tool, it doesn’t hurt to include versioned symbolic links in addition to the non-
versioned links. For example:

/tools/bin/. ..
gmake -> ../pkg/gmake/3.79/bin/gmake
gmake-3.79 -> ../pkg/gmake/3.79/bin/gmake
ant -> ../pkg/ant/1.7/bin/ant
ant-1.7 -> ../pkg/ant/1.7/bin/ant

From a system administration perspective, you must ensure that the /tools
directory is available on all build machines. Perhaps the easiest way is to use a
network file system mount point for /tools so that the same copy of the files is
available on all machines at the same time. Any additional tools that are added
will instantly appear on all build machines, with no additional per-machine
effort required.

In contrast, if you’re aiming for a high-performance build system, you might
want to have a local copy of all tools on each build machine. Accessing the
tools from local disk can be much faster than accessing them across the net-
work, especially at peak times of the day when the file servers are busy. You
can install the same package across many machines in a number of ways, but it
usually comes in the form of a software update mechanism (the same way soft-
ware patches are automatically distributed). Unfortunately, this approach can
be time-consuming if not fully automated, making it painful to push out small
configuration changes to existing packages.

If your organization is distributed across multiple development sites, you also
need to consider replication. A single network file system containing the /tools
directory won’t scale, so you need to replicate /tools across multiple sites (see
Figure 16.1).
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Figure 16.1 Replication of the compilation tools to multiple development sites.

Be careful to replicate the files on a regular basis, or some development sites
might not see the recently added tools. Before modifying the build system to
use a new compilation tool, it pays to ensure that the tool has been successfully
replicated to all sites.

As a final note, you have another way to ensure that each branch of the prod-
uct’s source code is using the correct version of a tool. In this case, you commit
the tool’s source code to the same version control repository as the software that
uses the tool. As part of the product’s build system, you first compile the tool
from source code into an executable program. The build system then uses the
tool that it just compiled.

This technique is useful, for example, when you’ve created a special-purpose
language for use in your source code. The tool will change regularly as devel-
opers ask for new features to be added to the language, so versioning the tool
alongside the source code makes a lot of sense. As you might expect, older code
branches always use older versions of the compilation tool.

Breaking the Rules

As with all rules, developers always have incentives to do the wrong thing. This is
typically because it’s inconvenient to spend the extra time doing what seems like
unnecessary work. Don’t forget that these rules are designed with the future in mind
rather than being urgent requirements when the tools are first installed. Imagine
yourself a year or two from now, needing to upgrade a tool, apply a bug fix, or
restore a damaged file system. Youw’ll wish you’d followed the rules in the first place.

Why are some people tempted to break the rules? Consider these common
excuses:
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e “I was just playing around with the tool, and I wasn’t sure whether we
were going to use it. Now that Ive finally decided to officially start using
the tool, it’s a nuisance to go back and follow the rules.”

e “It’s fun to install new tools and play around with them, but documenta-
tion and formality aren’t very interesting.”

e “Another developer got the tool from somewhere and has been executing
it from a personal directory for the last few months. We don’t have the
source code anymore, and they just gave me the executable program to
install in /tools.”

e “I’m too busy, and my manager is pressuring me to get this installed im-
mediately. I don’t have time for documentation, even though I know it’s
important.”

Of course, whenever you decide that you don’t want to pay the cost of some-
thing now, you often end up paying significantly higher costs in the future—usu-
ally with even more time pressure.

Writing Your Own Compilation Tools

All software developers are familiar with hand-writing their program in a lan-
guage such as C, C++, Java, or C#, because this is the standard way of develop-
ing software. In modern development environments, you also have the option
of using automatic code generators that take a high-level language as input and
generate source code as output. The obvious benefit is that writing the same
functionality in a high-level language can be many times faster than writing in a
general-purpose language.

Part II, “The Build Tools,” discussed the mathcomp compiler as an example
of a custom-built compilation tool. The tool itself is a Python script that takes
a series of mathematical expressions as input and generates an equivalent C or
Java file. The output files are then passed through a regular C or Java compiler
to produce object files.

It’s not uncommon in a large build system to use custom-built tools to sim-
plify the construction of software. Writing the tool in a scripting language is
common, especially for line-oriented input that’s easy to scan and process. For
more complex tools, with structured multiline input, it’s more common to use a
full-fledged scanner and parser.

Without diving into too much detail on how compilation tools do their job,
let’s discuss the basic theory and mechanism behind the scanning and parsing
of input data. For more details on writing this type of tool, refer to a compiler
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textbook [83]. Be warned that compilers can be complex to understand, so writ-
ing your own is not an easy task.

Custom-Written Tools with Lex and Yacc

The traditional approach to writing compilation tools is to use Lex and Yacc, or
their more recent equivalents, Flex [91] and Bison [92]. These tools are specifi-
cally designed for creating compilers and have been used since the early days of
the UNIX operating system. The Lex tool reads a sequence of characters from
an input stream and converts them into meaningful language tokens or key-
words, such as if or then, or the numeral 176. The Yacc tool then ensures that
these tokens are in a logical order, according to the specific rules of the program-
ming language being defined.

The output of the Lex and Yacc tools is a set of autogenerated C-language
files that implement part of your custom language’s compiler. The following
example demonstrates how patterns (also known as regular expressions) are
used to match a sequence of input characters. When a complete input token is
identified, some type of action (written in C code) is performed.

1 DIGIT [0-9]

2 NUMERAL {DIGIT}+

3  WORD [a-z] +

4

5 %%

6 {NUMERAL} { printf ("The number %s\n" yytext); }

7 if|then|else|fi { printf ("You've selected a
keyword\n") ; }

8 {WORD} { printf ("You've entered the word:

$s\n", yytext);

This code starts by defining the DIGIT class of characters (0 through 9), the
NUMERAL class as a sequence of one or more digits, and the WORD class as a
sequence of lowercase letters.

Next, you define three different rules, used to identify the following:

1. A whole number, as defined by the NUMERAL class

2. The name of a reserved word—in this case, if, then, else, or £i

3. An identifier, matching the characters described in the WORD class

In each case, when the appropriate pattern is matched against the sequence of
input characters, the C code action on the right side is triggered.

From the build system perspective, the previous code should be stored in a file
with the .1 suffix. This source file is translated by the 1ex tool into a C output
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file named lex.yy.c. The output file contains all the user-specified action code,
as well as the additional logic required to pattern-match the regular expressions
against the input stream. Developers don’t need to understand how the autogen-
erated C code performs its job; instead, they simply call the yylex () function
whenever they want to receive the next token.

By executing the program that Lex generates, you can translate a series of
input characters into a sequence of output messages. The input sequence

123

if then begin
hello

456

results in the following output being displayed:

The number 123

You've selected a keyword
You've selected a keyword
You've entered the word: begin
You've entered the word: hello
The number 456

The Yacc tool works in a similar way, but it ensures that the tokens (identi-
fied by Lex) appear in the correct order. A statement such as

if (a == 5) then hello();
makes perfect sense to most developers, but the statement
if (== 5) a then hello();

gives you a syntax error, simply because the tokens don’t appear in a logical
order. Although a developer can guess the intention of the code, the compiler
would have no hope of guessing the true meaning. The code that Yacc generates
can parse a sequence of input tokens and ensure that they arrive in a logical,
meaningful order.

The following example (stored in a file with .y suffix) demonstrates how to
parse simple arithmetic expressions, by ensuring that numbers, operators, and
parentheses all match up.

expr: '(' expr ')'
| expr '+' expr { action }
| expr '-' expr { action }
| expr '*' expr { action }
| expr '/' expr { action }
| INTEGER { action }
| FLOAT { action }
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In this case, you define an expression (expr) to be either another expression
inside parentheses; the combination of two subexpressions using addition, sub-
traction, multiplication, or division; or simply a plain integer or floating-point
number. Note, however, that this example was simplified for demonstration
purposes and doesn’t take into account the rules of associativity or precedence,
such as multiplication taking priority over addition.

As with Lex, you use the Yacc tool to compile this high-level language into
a lower-level C program that performs the actual work. The tool produces two
main output files:

e y.tab.c: A Csource file that contains the complete parser for the custom-
defined language. It contains the C action code, as well as the necessary
parsing logic required to ensure that the input is matched and the correct
actions are triggered.

e y.tab.h: A C header file that defines the set of input tokens (such as
INTEGER or FLOAT). Both Lex-generated and Yacc-generated programs in-
clude this file to ensure that they have a consistent view of which input
tokens are expected in the input stream.

Figure 16.2 summarizes the process of creating a new compilation tool using
Lex and Yacc. Although Lex and Yacc generate C code, other programming
languages have their own version of these tools.

scanner.1l lex.yy.c

y.tab.h

parser.y y.tab.c

New Tool

Figure 16.2 The use of Lex and Yacc to generate a small compiler.

With this basic set of rules defined, you now have a simple scanner and parser
that reads and processes input data. From the developer’s perspective, invoking
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the autogenerated yyparse () function parses the input stream and triggers all
the action code. Of course, this chapter hasn’t discussed the action code, which
can be complex in its own right. (Again, refer to a compiler text book for more

detail.)

Summary

To ensure that software builds are reliable and repeatable, it’s important to
manage the set of compilation tools used. This is especially true when new ver-
sions of a tool are introduced or a tool bug is fixed.

Several basic rules aid in the management of compilation tools. Noting how
a tool was compiled or installed is vital for saving time with future tool changes.
For tools maintained in source code form, be sure to keep that source code in a
version-control system. This helps when you need to fix bugs or reapply local
changes to an upgraded version. Periodically upgrade tools to take advantage of
bug fixes and new features, as well as to avoid losing support from the vendor.
Finally, make sure that the tool’s executable programs are version-controlled,
allowing different versions of the software to use different versions of the tool.

If you want to create your own compilation tool, consider using Lex and
Yacc, or the equivalent tool for your programming language of choice. These
tools enable you to generate scanners and parsers to deal with nontrivial input
formats.
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PART IV

Scaling Up

Part IV examines what happens when your build system becomes large—
for example, when you deal with software that has more than ten million
lines of code, with potentially hundreds of developers adding new features.
You’ll likely have one or more people maintaining the build system on a
full-time basis. In this scenario, compiling the software becomes a major
part of each developer’s day.

It’s an unfortunate reality, but the build system you first created when
the software was small isn’t likely to scale over time. In the same way that
your development team grew and changed to more effectively write new
code, your build system must change. The assumptions you made when
the software was small no longer make sense with ten million lines of code.
Part IV covers the following topics:

e Chapter 17, “Reducing Complexity for End Users”: When a build
system grows, it can become complex and confusing for software
developers. You’ll explore techniques for making build systems more
usable for end users.

¢ Chapter 18, “Managing Build Size”: When the code base grows over
time, you start to reach the limits of your development tools and
build machines. You’ll learn how to subdivide a large software prod-
uct into more manageable components.

e Chapter 19, “Faster Builds”: More lines of code means more compi-
lation work and a slower build process. You’ll examine how you can
measure the performance of a build system and find the location of
your performance bottleneck. You also explore how you can avoid
unnecessary compilation and use multiple build machines to quickly
complete the work.
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You might not currently manage a large build system, but it’s still worth
considering these topics. After all, a large software product starts as a small
product, so foresight is useful. Some amount of upfront planning can extend the

life of your build system, even when the source code becomes much larger than
it is today.



Chapter 17

Reducing Complexity for End
Users

For most software developers, a build system is purely a means to compile code.
They don’t care how the build process works, as long as their program is com-
piled in a reasonable amount of time. To produce a fully compiled software
package, all they want is a single button to push or a single command to execute.
In reality, though, a build system requires some amount of maintenance. At the
least, developers must take the time to list the source files to be compiled and the
compilation flags to be used. In the worst case, they can find themselves fighting
against a faulty dependency system or simply waiting too long for their build to
complete.

These problems become worse as the software grows in size, with more devel-
opers working on the code. The build system becomes cluttered with configu-
ration variants, stale code that’s no longer used, and a number of corner cases
for handling peculiar source files or compilation tools. All this leads to a build
system that’s difficult for developers to use.

If you’re an experienced software engineer, you understand that complexity
can lead to unexplained failures and difficulties in maintaining the system. For
example, if a dependency-analysis system is so complex that it takes a guru to
comprehend, there’s a good chance that errors will be introduced. The net result
is that developers spend a lot of time blaming themselves for writing code that
doesn’t compile, at least until they realize that the build system is at fault.

In terms of support, a complex build system leads to an increased number of
trouble reports. Developers report problems with missing dependencies, compi-
lation tools that aren’t doing the correct job, or even code that doesn’t seem to
compile for other people. Each time this happens, a build engineer must look
into the problem to find out what the developer is doing wrong, or perhaps
apply a patch to the build system to deal with a newfound corner case.

457



458

CHAPTER 17 REDUCING COMPLEXITY FOR END USERS

For a build system maintainer, a complex system can also be challenging
to deal with. If the person who originally designed the build system is no long
available, a new build engineer might struggle to understand everything. This is
particularly true if a number of different people have modified the build system
over the years, creating a patchwork solution.

This chapter focuses on techniques that reduce the complexity of a build sys-
tem, making it simple for developers to use and possible for build engineers to
maintain. In some respects, this can be conflict of interest: Making a build sys-
tem easier for a developer could make it more complex for the build maintainer
to work with. Keep in mind that complexity means different things to different
people.

The chapter starts by discussing the concept of a build system framework
and then considers the downside of supporting multiple build variants. Next
it discusses a range of techniques for reducing a build system’s complexity.
Finally, it covers the importance of scheduling and adequately staffing build
system changes.

Build Frameworks

A large-scale build system will naturally have some amount of complexity. Soft-
ware that uses a range of compilation tools or a number of file formats has
more complex requirements than a smaller system. As discussed throughout this
book, you’re doomed to encounter many build failures unless you capture these
requirements properly.

Most software developers are concerned with which source files will be com-
piled and which compilation flags will be used, but that’s the extent of their
involvement. They don’t mind how the build system gets the job done, and it can
be frustrating if they’re forced to learn too much detail. As you learned in Chap-
ter 2, “A Make-Based Build System,” the concept of the build system framework
is important. That is, you abstract out the build system’s complexity and hide
it away from the end users. Your build description therefore has two sections:

¢ Developer-facing portion of the build description: This part of the build
description is highly visible to software developers. It lists all source files to
be compiled and executable programs to be created. Software developers
can also enable or disable optimization flags, debugging flags, and other
compilation features.

e Framework portion of the build description: This part of the build descrip-
tion provides a number of extensions on top of the basic build tool. For



BuiLbD FRAMEWORKS

example, the framework could support automatic dependency analysis,
multidirectory compilation, and a number of new compilation tools.

Let’s consider these two areas in more detail, emphasizing what they contain
and how they relate to each other.

Developer-Facing Portion of the Build Description

Developers want to see only the high-level detail of the build system. They need

to add new source files, add new executable programs, and configure compiler

flags, but they don’t want to learn the syntax of the underlying build tool.
Here’s an example of a GNU Make program that uses a framework:

1 EXE NAME = myapp

2 C_SRCS := main.c data.c gui.c util.c
3 LINK LIBS := z bfd

4 C_FLAGS := -0 -g

5

6

include framework.mk

The first four lines define the name of the executable program, the list of C
source files, the libraries to link into the executable program, and the compila-
tion flags to use. The final line includes the framework file, which you know
from experience will be complex. Luckily, the developers can get most of their
work done without understanding what the framework does.

Tools such as Ant and SCons typically have less need for an additional frame-
work because these tools already have many of the required features built into
the language. For example, consider the equivalent program in SCons:

1 Program('myapp', ['main.c', 'data.c', 'gui.c',6 ‘'util.c'],
2 LIBS = ['z', 'bfd'],
3 CFLAGS = ['-0', '-g']);

You might suspect that this requires software developers to understand the
basics of the SCons tool. This is true, but the SCons language is easier for novice
users to understand, at least compared to a GNU Make solution.

Another benefit of abstracting out the high-level detail is that users can sup-
port themselves. They won’t need to consult a build engineer every time they
want to add a new source file or change a compiler flag. This is a productivity
improvement for everyone.

On the other hand, you might find that some build system changes really do
require that complex code be placed outside the framework. This is usually the
case for special-purpose source files that don’t fit cleanly into the model pro-
vided by the framework. As usual, make sure this code is adequately commented
to explain to the end user what it does.
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Framework Portion of the Build Description

The goal of a framework is to hide the complexity from software developers.
The software developer knows that a framework is used but shouldn’t feel com-
pelled to understand how it works. Only a qualified build engineer should care
about the framework’s build description.

For example, this is some functionality you’d normally hide inside a
framework:

e With GNU Make, you’re required to implement your own automatic de-
pendency analysis, your own multidirectory build support, and custom
rules for each new compilation tool. The user’s makefile simply defines
a number of high-level variables and then uses the include directive to
invoke the underlying framework. It’s vital to keep the framework in a
completely separate makefile.

e With Ant, any custom tasks should be encapsulated inside the framework
and then incorporated into the main build.xml file using the taskdef
directive. You can also choose to create reusable helper targets, to be
included via the import directive. The software developer can use these
new tasks and targets as if they were built into the Ant language.

e With SCons, your framework contains builder methods and scanners for
each new type of source file, as well as a number of helper functions to
simplify the main build description. The sconstruct file imports these
new functions to extend the basic SCons language.

You might think that because the framework is hidden from software devel-
opers, it can be as complex as you want. In reality, though, a few software
developers will still poke around inside the framework and might even try to
extend it for themselves. This is particularly true for engineers who already have
experience maintaining build systems.

It’s also good practice to make sure your framework is simple enough for
an average developer to understand. You wouldn’t encourage them to read the
framework on a regular basis, but a complex build system is usually hard to
maintain and often buggy. Keeping the framework as clear and concise as pos-
sible makes it less likely that you’ll introduce bugs. Even build gurus sometimes
have trouble understanding a complex framework.

In some cases, you have no choice but to have a complex framework. For
example, the inclusive Make framework in Chapter 6, “Make,” is by no means
simple to understand. An average developer would have a hard time compre-
hending how it works, as would many build gurus. At the least, you should pro-
vide a detailed set of comments to explain how everything works.
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As a final note, if your framework ends up being so complex that few people
can understand it, perhaps you’re using the wrong build tool. It’s a bad business
decision to have software that only one person can understand, and this rule
applies equally to build systems. Make sure that developers cross-train each
other on how the build system works.

Convention over Configuration

One of the interesting design tradeoffs in choosing a build framework is simplic-
ity versus flexibility. On one side, the developer wants to have a simple build
system without putting in too much effort. On the other end of the scale, the
developer may be willing to spend more time defining the build description, to
gain more flexibility.

The concept of convention over configuration makes it easy to create a build
system, as long as you’re prepared to structure your software within the confines
of a standard template. This doesn’t mean that you can’t customize the build
system to suit your own peculiar needs, but you can get a long way before need-
ing to do that.

As an example, the Eclipse build system is trivial to use, at least when com-
pared to an Ant-based system. An Eclipse user selects the type of project needed
and answers a few simple questions; then Eclipse generates the entire build envi-
ronment. Admittedly, it’s a limited build environment, but you can start your
code development without much upfront work. If you need more power, you
can switch to the more configurable Ant tool.

Build system conventions are everywhere. For example, the following con-
ventions are fairly standard:

¢ For the C and C++ languages, source files end in .c and . cc, respectively.
The filename tells the build system which compilation tool and compiler
flags to use. Users don’t need to provide this information unless they want
to override the defaults.

¢ A default Eclipse project compiles all source code in the src directory and
generates the corresponding object files into the bin directory. The build
system automatically uses these paths, unless you decide to change the
project settings.

¢ Most build systems have targets such as compile, clean, package, test,
and install. Some build tools support these targets by default, but even
if they don’t, build system designers will probably create them. This makes
it easy for developers to work with unfamiliar software.
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Let’s now spend some time looking at the Maven build tool, which follows
the philosophy of convention over configuration. Maven makes creating a new
build system extremely easy.

Maven: An Example Build Tool

The Maven system [84] is a build tool for Java-based projects and is therefore an
alternative to using Ant. Maven is a full-fledged build tool, and this book could
have added a full chapter on it to Part II, “The Build Tools.” Instead, the book
simply focuses on the ease of creating a Maven-based build system, using the
approach of convention over configuration.

To create a new Maven-based build system, the developer selects a project
template, known as an archetype. This provides a default layout for the project’s
source and object files, as well as a number of standard build targets.

Creating a Maven build system is as simple as entering the following
command:

mvn archetype:generate \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DgroupId=com.arapiki.calc \
-DartifactId=calculator \
-DinteractiveMode=false

This command asks Maven to generate a new project (and build system)
using the quickstart archetype. You request that the source code be stored in
the com.arapiki.calc Java package and that the project name be calcula-
tor. You can customize other configuration parameters as well, but interactive
mode has been turned off in this example to instead use the defaults.

After the project has been created, the default quickstart project tree is
placed in the current working directory.

./calculator/pom.xml
./calculator/src/main/java/com/arapiki/calc/App.java
./calculator/src/test/java/com/arapiki/calc/AppTest.java

This might not look like much, but Maven has automatically generated the
pom.xml file containing the build description. It doesn’t hold a list of rules or
tasks; instead, it provides high-level information about where things are stored
within the project and which targets can be built.

You’re also provided with the App.java file, which contains a simple main
program, and the AppTest .java file, which contains a trivial JUnit test suite.
Obviously, you’d replace these with your own source code, but it’s nice that
Maven started you off with a working project.

To compile this example application, run the unit tests, and create a JAR file,
you issue the following command:
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mvn package

Maven created this project from a template, so it already knows how to com-
pile, test, and package the software, without any need for you to configure the
build system. You can now execute your program:

$ java -cp target/calculator-1.0-SNAPSHOT.jar com.arapiki.
wcalc.App
Hello World!

The project also contains a number of other build targets, including
compile (which performs only the compile step), test, install, and clean.
The quickstart archetype was used, so everything that a simple Java project
needs was created without any extra work.

For advanced users, it’s possible to link multiple projects and set up depend-
encies among them. You can also ask Maven to download specific versions of
third-party JAR files from the Internet and make them available for the program
to use.

Finally, if the standard archetypes don’t meet your needs, you can create your
own. You can even distribute them to other people to create similar projects.

Reasons to Avoid Supporting Multiple Variants

As you’ve seen throughout this book, a build system should support multiple
variants for many important reasons. Whether it’s for multiple CPU types, for
multiple editions, or to add metadata for debugging or profiling, you might end
up with a multitude of ways to build your software product.

On the downside, be aware of the problems of having too many choices.
Each time you add a new way of building the product, you’re taking on extra
complexity that could end up costing you additional build time, development
time, and testing time. It’s clearly a business decision as to whether it’s more
important to support multiple variants or to reduce the cost of using the build
system. A development organization wouldn’t support the extra variants if it
didn’t have a good reason to do so.

This section demonstrates how this new complexity is introduced.

You’ll Have More Variants to Test

If you add another variant that’s intended for your end customer, you now have
an extra variant to test. Developers must validate that any code changes they
wrote for one variant of the software also work for all other variants. First,
they must build the software for all possible targets to ensure that there are no
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compilation errors. Next, the software must pass some basic sanity tests, again
for all variants. Finally, before handing the software package to the customer,
the test group must perform a complete test run of each variant.

In reality, though, developers don’t have time to build and test all possible
combinations. Often they compile for one target and then hope that it doesn’t
break for other targets. This is certainly a valid approach if the software is 99%
the same in all cases. However, if developers are particularly suspicious that
part of their code might not be portable (the remaining 1%), they’ll need to
double-check their work for all other variants. This is a common tactic for large
software products that take many hours to build, and developers are left to use
their best judgment.

To reduce the chance of somebody breaking the software when they don’t
have time to test for all targets, it pays to keep the variants as similar as possi-
ble. In particular, using the same compilation tool for all variants can reduce the
differences that cause the build system to fail. Of course, this assumes that this
doesn’t defeat the purpose of having variants in the first place.

Keep the following guidelines in mind:

¢ Use the same version of the same compiler for all target architectures. For
example, if you’re using GCC version 4.2 for your Intel x86 target, you
should use that same version for your PowerPC target. Doing this gives
you more confidence that the two compilers accept the same programming
language syntax and will issue the same warnings and errors. Unfortu-
nately, a number of errors or warnings are architecture specific, so even
though using the same compiler means fewer problems, you can’t expect
to eliminate all differences.

¢ Don’t write code that depends on the byte ordering of the CPU. For
example, code that depends on the CPU having little-endian byte ordering
won’t work on a big-endian machine. As much as possible, try to write
code that’s endian-neutral. In other cases, limit the endian-specific code
to a small number of well-known places. No matter what you do, it’s still
important to build and test for all platforms.

e Use consistent CPU word sizes. Code that was written for a 32-bit CPU
might not work cleanly on a 64-bit machine. Write code that doesn’t make
assumptions about the s