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Preface

Are you a software developer? Are you interested in how build systems work? 
You’re reading this book; so there’s a good chance you answered “Yes” to both 
questions. On the other hand, many software developers aren’t interested in 
how their program is compiled. Most people just want to press a button and 
have their source code turned into an executable program. If they need to fix a 
bug, they change the source code and press the same button again. Their joy is 
in seeing their program do all the exciting things it’s supposed to do. The build 
system is just   something that needs to be there in the background. 

Anything more than a small collection of source files requires some type 
of automated build system. This may be a shell script that you run after each 
source code change, a makefile that knows the relationship between the source 
and object files, or a more complex build framework that scales to thousands 
of source files. 

If you’ve developed code in a UNIX or Windows command-line environ-
ment, the following command should look familiar: 

cc -o sorter main.c sort.c files.c tree.c merge.c 

In this example, five C-language files are being compiled and linked to create 
a single executable program, named sorter. This may be unfamiliar to those who 
use an integrated development environment (IDE), but it’s essentially the same 
as creating an IDE project with five source files and then pressing the build
button on the toolbar. 

After you’ve compiled your program a few times, you’ll probably decide to 
store this command in a shell script and rerun it any time you make a code 
change. Alternatively, you can retrieve the command from your command-line 
history and replay the sequence each time you modify the code. 

If you have some basic knowledge of the Make tool, you can create yourself a 
makefile and type make each time you need to rebuild. The advantage of Make 
is that it rebuilds the program only if any of the source files changed since the 
last compilation. Here’s a simple makefile for compiling the sorter example: 

sorter: main.c sort.c files.c tree.c merge.c
        cc –o sorter main.c sort.c files.c tree.c merge.c 
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If you’re familiar with Make, you’ll immediately realize that this isn’t a good 
way to write a makefile. The first mistake is that the source files are listed twice, 
once for the dependency relationship and a second time in the compilation com-
mand. Next, all source files are compiled each time you rebuild the program, 
even if they haven’t all been modified. Finally, there’s no mention of dependen-
cies that a C file may have on header files. 

A better solution is to break up the compilation steps so that each source file 
is compiled, and recompiled, independently of the others. Additionally, there 
should be dependency files (with a suffix of .d) to track header file usage. The 
list goes on, so rather than go into all the technical details, take a look at the 
final makefile that does everything you need: 

SOURCES = main.c sort.c files.c tree.c merge.c

OBJECTS = $(SOURCES:.c=.o)

sorter: $(OBJECTS)
        $(CC) -o $@ $^
-include $(SOURCES:.c=.d)

%.d: %.c
        @$(CC) -MM $(CPPFLAGS) $< | sed ‘s#\(.*\)\.o: #\1.o 
\1.d: #g’ > $@ 

That’s all there is to it—a simple makefile that does the bare-minimum 
amount of work, with the least amount of repetition. Easy, right? 

If you’re a developer and not a build expert, though, do you really under-
stand what’s going on in the previous example? A seasoned Make expert cer-
tainly understands the syntax and would probably suggest a more efficient way 
of achieving the same result. However, most of us who just want a push-button 
build are destined to waste a lot of time getting the makefile correct in the first 
place.

Build systems tend to be complex to implement and maintain. A badly de-
signed build system can waste many hours if a file isn’t recompiled when it 
should have been. When scaled to thousands of source files, a developer can 
literally waste half a day tracking down a problem, only to find that starting the 
build from scratch (removing all the object files) is the only way to make things 
work. So much for a push-button build! 
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Why Do Build Systems Become Complex? 

You might be surprised to read that build systems can be complex and hard 
to maintain. With graphical user interfaces so common these days, you’d ex-
pect build tools to be equally simple to use. Unfortunately, many see creating a 
build system as a black art. Only a few knowledgeable gurus understand the full 
syntax of the build tool or the subtleties in the dependency system. Although 
IDE-based build tools go part of the way toward solving this problem, they can’t 
support the complexities of a large-scale build system. 

In most cases, a software product starts with a small number of source files 
that are compiled and linked into a program. A simple makefile is sufficient in 
this case, and these can be thrown together in a couple hours by copying the 
makefile template from a user manual. For several months, nobody needs to 
change this build system, aside from adding new source files or libraries. 

After a while, people start to see problems in the build process. They notice 
that files aren’t recompiled when they should be, or perhaps that files are incor-
rectly being recompiled when none of the data they depend on has changed. In 
other cases, files may be compiled multiple times in the same build, leading to 
slower build times. It quickly becomes part of the engineering culture to always 
do a “clean build” (removing all object files first) or to modify files for the sole 
purpose of making them recompile. 

When this simple build system becomes painful to use, a makefile expert 
needs to rethink the design. They might create a framework that solves all the 
build problems, while keeping the implementation detail away from the end 
users. For example, software developers want to have visibility into the list of 
source files, libraries, and compilation flags being used, but they aren’t inter-
ested in how the dependencies are managed. For example: 

SOURCES := main.c sort.c files.c tree.c merge.c

PROGRAM := sorter
LIBRARIES := libc libz

include framework.mk 

The end goal is to have a correct and easy-to-use build system, while hiding 
all the complexity inside the framework.mk file. This is an ideal solution for the 
software developer who just wants a push-button build. 
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This framework approach works efficiently for a while, although growing 
pains start some time in the future. This is particularly true for a successful prod-
uct whose software grows over a number of years. The build system that worked 
for a small-to-medium product no longer works when the product scales. 

Consider how you’d integrate a new code module purchased from a third-
party vendor. The new code already has its own build system and uses a differ-
ent build framework than your original product. When developers modify the 
code, they create interdependencies between this newly acquired code and your 
existing code base, requiring the build system to understand the more complex 
file relationships. The end result is that one or both of the build frameworks 
requires significant rework—and possibly a complete rewrite. 

As frameworks grow over time, maintaining them properly becomes chal-
lenging. In some cases, the original author of the framework is no longer avail-
able to make changes, so a nonguru steps in to perform the work. Developers 
who lack sufficient build experience often use quick-and-dirty techniques to get 
the software to build. As discussed later, these techniques include badly written 
shell scripts, copious use of symbolic links, and, worst of all, duplicate copies of 
source files. The build process becomes a rat’s nest of complexity that nobody is 
comfortable maintaining. 

It’s sad that many organizations don’t feel compelled to fix their build system. 
If they’re experts in some other field (such as computer gaming, telecommuni-
cations, or business applications), their enthusiasm is directed toward creating 
their product and adding new features to entice and excite their end customer. 
The build system is viewed as a necessary part of the product life cycle, but 
people don’t see it as their job to fix. The task certainly never appears in a com-
pany’s corporate objectives or quarterly feature plan. 

As you’ll see throughout this book, plenty of issues must be considered when 
designing a build system. It’s not just a matter of having a makefile guru on call 
to help with problems. You should also keep the development environment in 
a maintainable state. The time and money spent cleaning up a build system can 
pay off many times when you consider a software team’s overall productivity. 

The True Cost of a Build System 

If you don’t already believe that a reliable build system is important, think about 
the true cost. That is, what costs will you incur if you don’t have a good build 
system? These aren’t numbers that appear on any accountant’s balance sheet; 
they’re hidden inside the day-to-day productivity of software developers. 
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One industry survey [1] found that developers perceived an average produc-
tivity loss of 12% due to build problems, although some of the respondents felt 
that 20%–30% was not uncommon. It’s worth noting that this survey focused 
on smaller development groups (with less than 20 people), who likely didn’t suf-
fer from the scalability problems encountered with much larger software. 

Let’s start by assuming that all software developers in your team lose 10% 
of their time to problems with the build system. Your reaction to this figure 
will vary, based on your previous experience with software projects. For some 
people, 10% may seem like an exaggerated figure, but for many groups, this is 
on the low side. 

What are the reasons for this 10% loss of productivity? Consider some typi-
cal problems your team has almost certainly experienced in the past: 

• Bad dependencies causing false compile errors: The build system has some-
how acquired incorrect dependency information and is failing to recompile 
parts of the source code correctly. When this happens, the developers focus 
all their time on trying to complete a successful build. They’re faced with 
cryptic error messages completely unrelated to the area of code they’ve 
been changing. Until these are fixed, they’re unable to proceed with pro-
ductive work. 

• Bad dependencies that create failed software images: As in the previous case, 
bad dependencies cause parts of the build to compile incorrectly. However, 
instead of giving a compilation error, the program no longer generates the 
correct output. This simply gives the developer and software testers the im-
pression that the code is buggy, and they often blame themselves instead 
of the build system. Developers waste a day or two trying to debug a test 
failure, only to discover that their private code changes aren’t causing the 
problem. Starting with a fresh build tree makes the problem go away. 

• Slow compilation: This is more of a problem for larger software systems, 
because smaller software can be built in a matter of minutes. If your soft-
ware code base requires many hours to compile, developers waste time 
while they wait for the compilation to complete. This is particularly trou-
blesome for incremental builds in which changing a single source file can 
result in a delay of 5–10 minutes before the program is ready to execute 
again.

You may feel that people can productively do other work while they wait 
for their compilation, but this isn’t always the case. Developers have many 
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types of “waiting” activities, such as reading the latest news headlines, 
updating social networking sites, getting more coffee, or going off to chat 
with a friend. Even if a developer can multitask while the build completes, 
the cost of context switching between the different tasks is a productivity 
loss. Developers can get distracted and completely forget about one of the 
tasks they were working on. 

• Time spent updating build description files: If the software build frame-
work isn’t trivial to understand, developers may need to ask an expert to 
make modifications. For example, if they need to add a new type of source 
file or a new compilation tool, they must first engage in a discussion with 
a build guru. This can take days of waiting while the build guru finds time 
to help. After that, the build guru might need a few weeks to complete the 
job.

If you now believe that a 10% productivity loss is a realistic number, what’s 
the financial cost of this loss? The best way to evaluate this is to determine 
10% of your organization’s salary payment. This clearly doesn’t apply if you’re 
volunteering to write the software (as is commonly the case in the open-source 
world), but the numbers are interesting all the same. 

Assume that you have ten software engineers, each of which is paid $75,000 
per year. This is high for some cities and low for others, so it’s worth evaluating 
the numbers from your own perspective. An accountant would likely double this 
estimate when considering the additional costs of employee medical benefits, 
electricity, rent, parking, and other perks a developer enjoys. Assume, therefore, 
that each developer costs $150,000 per year. 

Thus, the total cost of paying your developers to deal with build 
problems is 
10% x US$150,000 per year x 10 developers = $150,000 per year 

That’s equivalent to having a full-time developer sitting around for a whole 
year without doing any productive work! If you assume 250 working days per 
year, your company is paying $600 every day simply because of build problems! 

If you were a software manager, what would you consider to be more profit-
able? Continuing to pay $600 per day for your team to waste time, or paying 
$600 per day for a few months to hire a new build guru to fix your problems? 
It’s definitely worth considering what your own organization is doing. Remem-
ber, a company can make a profit in two ways: either by increasing revenue by 
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selling more of the product, or by reducing the cost associated with creating the 
product in the first place. 

The Focus of This Book 

You should spend time reading this book for two reasons: 

• To understand the basic principles underlying a build system: This book 
provides an end-to-end survey of build system features and usage scenari-
os, giving you an understanding of how a build tool performs its work. 

• To gather more experience about build systems: This book encapsulates 
years of experience in creating and maintaining build systems, using many 
different build tools. After reading this book, you can avoid making the 
same trial-and-error mistakes that previous build system developers have 
made.

Armed with such knowledge, you can make well-informed choices on which 
build tool to use, how to construct a reliable build system, and how to foresee 
traps and pitfalls before they impact your productivity. The outcome is that 
building software should get faster, easier, and more reliable. 

It’s also important to note what this book does not attempt to address: 

• Not a hands-on tutorial: Except for a few small examples (such as those 
in Chapter 2, “A Make-Based Build System”), this book doesn’t provide 
a hands-on tutorial on any particular build tool or technology. Popular 
build tools already have web sites and books devoted to teaching you every 
syntactic and semantic detail you’ll ever need. Refer to those books for the 
finer details of each tool. 

• Doesn’t show a fully functional build system: Although this book contains 
a number of examples on how to use each build tool, and many supporting 
tools, it doesn’t demonstrate the end-to-end creation of a full build system. 
Again, you should refer to each build tool’s documentation to see fully 
worked-out examples. 

Of course, read this book first so that you understand the pros and cons of 
each build tool and can judge for yourself which features your build system 
should use. 
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Instead of staying specific to a single development environment or program-
ming language, this book offers examples and concepts from a variety of differ-
ent angles: 

• C/C++ builds: This is perhaps the most traditional type of build process. 
This style of building originated in the 1970s and hasn’t changed much 
since then. The only recent challenge is the growth in the number of files 
and third-party libraries that are now used in a typical software product. 

• Java builds: The Java language became popular in the late 1990s and has 
had a considerable impact on the design of build systems. As one example, 
Java source files must be stored in a directory hierarchy that matches the 
software package structure. 

• C# builds: Whereas C, C++, and Java are platform-neutral programming 
languages and can thus be used on any operating system (such as Linux, 
Solaris, Mac OS X, and Windows), the C# build environment is more tai-
lored toward the Microsoft way of doing things. 

In addition to covering multiple programming languages, this book discusses 
two different approaches to constructing large software products: 

• Monolithic builds: In this approach, the entire code base is compiled from 
source code into an executable program in a single build process. This is a 
common approach for small programs, but it doesn’t scale well because it 
leads to large source trees and long compilation times. 

• Component builds: In contrast to monolithic builds, this approach breaks 
the source code into multiple stages, each compiled separately. The final 
step is to integrate the various prebuilt components, to produce the final 
executable program. 

Finally, this book goes beyond the common assumptions that Make is the 
primary tool of choice for C/C++ development and that all Java and C# software 
should be built inside an IDE. 

Who Should Read This Book? 

This book was written with several audiences in mind, although the primary 
focus is software developers: 
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• Developers: If you’re a software developer with years of experience writing 
source code but only minimal experience with build systems, you can learn 
about the issues involved in constructing and maintaining a build system. 
You can also study the different tools that describe the build process. 

• Managers: From this book, you can learn the concepts and tricks-of-the-
trade at a fairly high level instead of seeing too much of the complex detail. 
This enables you to evaluate the work your team is doing, and ask the ap-
propriate “direction-setting” questions. 

• Build gurus: Even with years of experience in constructing build systems, 
you can expect to learn new things. Not only will you be exposed to mod-
ern build tools that you may never have used, but the discussions on scal-
ability and performance of large build systems will make you think twice 
when you start to write your next build framework. 

How This Book Is Organized 

This book is divided into four main parts, each looking at build systems from a 
slightly different angle. Depending on your experience and level of interest, you 
might choose to focus on different parts of the book. Novice developers should 
focus on Parts I and  II, whereas more experienced users should skim through 
Part I but focus their attention on Parts II, III, and IV.

Part I: The Basics 

This first part provides a gentle introduction to build systems, for software de-
velopers who haven’t had much exposure to the topic. Even advanced users 
should skim these chapters to ensure that they have a complete picture of the 
basic concepts. For example, C/C++ developers can learn new things about the 
C# language. 

Chapter 1, “Build System Overview,” provides an introduction to high-level 
build system concepts such as source and object trees, build tools, and compila-
tion tools. Chapter 2, “A Make-Based Build System,” provides a quick tutorial 
on writing a makefile, for those who have never done so. Chapter 3, “The Runtime 
View of a Program,” describes the structure of a program as it executes on a 
computer, with the goal of describing what a build system needs to construct. 
Chapter 4, “File Types and Compilation Tools,” goes into detail on the differ-
ent types of input and output file used in the build   process and uses examples 
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in the C/C++, Java, and C# languages. Chapter 5, “Subtargets and Build Vari-
ants,” describes the basic idea behind build variants, which later chapters cover 
in more detail. 

After reading Part I, you’ll have a good understanding of the basic concepts 
surrounding the design of build systems. 

Part II: The Build Tools 

The second part of this book compares five build tools. Each tool was selected 
both because of its popularity and because it demonstrates a particular way of 
building software. Each chapter starts with an introduction to the syntax of 
the build tool and then describes the tool’s main usage scenarios. To provide a 
meaningful comparison, a standard set of examples is used across all chapters. 

Chapter 6, “Make,” discusses the GNU Make tool, which is the most com-
mon tool for C/C++ development. Chapter 7, “Ant,” examines the Ant build 
tool, which is the de facto standard for compiling Java. Chapter 8, “SCons,” in-
vestigates the more recent SCons build tool, which uses the Python language to 
describe the build process. Chapter 9, “CMake,” shows the CMake tool, which 
generates a native build system (such as a Make-based system) from a high-level 
description of the build process. Finally, Chapter 10, “Eclipse,” describes the 
build-related features of the Eclipse IDE. 

After reading Part II, you’ll have an appreciation for the state of the art in 
build tools and will understand the pros and cons of using each. 

Part III: Advanced Concepts 

The third part discusses more advanced build system concepts, such as depend-
ency analysis, software packaging and installation, version management, and 
the management of build machines and compilation tools. These chapters as-
sume that you’ve had experience working on nontrivial software projects and 
can therefore relate to the issues discussed. 

Chapter 11, “Dependencies,” goes into detail on various dependency-check-
ing techniques that discover whether a file must be recompiled. Chapter 12,
“Building with Metadata,” shows how a build system can generate metadata 
to aid with debugging, profiling, and source code documentation. Chapter 13,
“Software Packaging and Installation,” provides simple examples of packaging 
the software and getting ready to install it on the target machine. Chapter 14,
“Version Management,” surveys version-control issues as they relate to build 
systems. Chapter 15, “Build Machines,” provides best practices for managing 
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the build machine on which the software is compiled. Chapter 16, “Tool Man-
agement,” provides a   similar discussion for compilation tools. 

After reading Part III, you’ll understand many of the advanced topics in-
volved in constructing a build system and a number of best practices. 

Part IV: Scaling Up 

The final part of this book discusses the design of build systems for large soft-
ware products. As a software product grows in size, it faces scalability problems, 
such as an increase in complexity, a dramatic increase in disk usage, and an 
increase in build times. All these problems tend to make software development 
less productive. 

Chapter 17, “Reducing Complexity for End Users,” provides approaches for 
reducing the complexity of a build system, as perceived by the end user. Chap-
ter 18, “Managing Build Size,” describes how a large software product can be 
divided into multiple components to make development more efficient. Finally, 
Chapter 19, “Faster Builds,” discusses techniques for measuring and improving 
the time taken to perform a software build. 

After reading Part IV, you’ll have a better appreciation of how you should 
design your small-scale build system, in case it ends up becoming much larger. 

Summary

A good-quality build system isn’t easy to construct, and failure to do so causes 
significant problems for your software team. If source code isn’t recompiled 
when it should be, your team members will face longer build times or random 
build failures. They may also waste days debugging an invalid software image. 
It’s worth putting in the time to make sure your build system is doing the cor-
rect thing. 

The true cost of using a poor quality build system can be measured in mon-
etary terms. A typical software organization might find that developers waste 
10% of their time with build problems, which translates into large sums of 
money wasted each year. 

This book explains a number of build system concepts, introduces you to a 
range of commonly available build tools, provides a number of best practices, 
and discusses the issues surrounding the construction and maintenance of large 
build systems. 
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The Basics 

Part I provides a gentle introduction to the concepts used in software build 
systems. This part starts with a high-level view of the various stages of 
the build process, describes what a build system aims to create, shows the 
various input and output files used during compilation, and introduces the 
concepts of build targets and variants. You’ll explore these topics: 

• Chapter 1, “Build System Overview”: A brief tour of the major com-
ponents of a build system, including a number of important defini-
tions that you need for later chapters. 

• Chapter 2, “A Make-Based Build System”: A short tutorial on using 
the GNU Make build tool, for those who’ve never been exposed to a 
text-based build system. 

• Chapter 3, “The Runtime View of a Program”: The many ways in 
which a program can be loaded into a computer and executed. A 
software build system must create the executable programs, libraries, 
and data files that are loaded into memory. 

• Chapter 4, “File Types and Compilation Tools”: The tools used to 
compile C/C++, Java, and C# source code. These compilation tools 
are the building blocks of a complete build system. 

• Chapter 5, “Subtargets and Build Variants”: The approach taken 
when building software for multiple target CPUs or creating multiple 
editions of the product. 
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Although Part I provides an introduction to build systems and their purpose, 
this book doesn’t discuss build tools until Part II; there you more deeply im-
merse yourself in studying GNU Make, Ant, SCons, CMake, and the Eclipse 
builders. By the time you finish reading Part I, you’ll be in a good position to 
evaluate each of these build tools. 
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Build System Overview 

This first chapter provides a complete overview of software build systems. Be-
fore diving into the details of how a build system works, it’s important to un-
derstand the high-level process of building software. This chapter also acts as a 
roadmap for the rest of the book. 

The most common goal of a build system is to translate human-readable 
source code into an executable program. In addition, build systems support 
the packaging of web-based applications, the generation of documentation, the 
automatic analysis of source code, and many related activities. Although the 
exact details of this process vary for each programming language and for each 
operating system, the basic concepts are universal. 

This chapter starts with an end-to-end view of a few common build sys-
tem scenarios. You then get an introduction to some of the high-level concepts 
involved; later chapters cover the finer details of each topic. By the end of this 
chapter, you’ll understand each of the main steps in the build process, along 
with the common build-related concepts and terminology. 

What Is a Build System? 

With such a wide range of programming languages and development environ-
ments, no single model can represent all possible build systems. A build system 
can manage any type of activity that involves translating one form of data (the 
input) into another form of data (the output). This discussion focuses on con-
structing software, hence the emphasis on software build systems. 

In any software development environment, you’re likely to encounter the fol-
lowing build-related scenarios: 

3
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• The compilation of software written in traditional compiled languages, 
such as C and C++. This can be extended to include newer languages such 
as Java and C#. 

• The packaging and testing of software written in interpreted languages 
such as Perl and Python. 

• The compilation and packaging of web-based applications. These include 
static HTML pages, source code written in Java or C#, hybrid files writ-
ten using JSP (JavaServer Pages), ASP (Active Server Pages), or PHP (PHP: 
Hypertext Preprocessor) syntax, along with numerous types of configura-
tion file. 

• The execution of unit tests to validate small portions of the software in 
isolation from the rest of the code. 

• The execution of static analysis tools to identify bugs in a program’s source 
code. The output from this build system is a bug report document rather 
than an executable program. 

• The generation of PDF or HTML documentation. This type of build sys-
tem consumes input files in a range of different formats but generates hu-
man-readable documentation as the output. 

Of course, this list isn’t exhaustive, and you can probably think of many 
other uses for a build system. To simplify the discussion, this book focuses pri-
marily on the traditional model of compiled languages. It’s important to note 
that many of the build system concepts are the same, no matter what you’re 
building.

Compiled Languages 

Figure 1.1 depicts the high-level view of a traditional build system for compiled 
languages such as C, C++, Java, and C#. In this model, source files are com-
piled into object files, which are then linked into code libraries or executable 
programs. The resulting files are collected into a release package that can be 
installed on a target machine. This model should be quite familiar to software 
developers.
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Figure 1.1 Overview of a traditional build system for compiled languages. 

The key components of Figure 1.1 are listed here: 

• Version-control tool: A tool that stores the program’s source code and 
enables multiple developers to make concurrent changes to the code base. 
It also facilitates the retrieval of historical versions of the code. Common 
examples of a version-control tool include CVS [2], Subversion [3], Git [4], 
and ClearCase [5]. 

• Source trees and object trees: The set of source files and compiled object 
files that a particular developer works with. Developers can make their 
own private changes in these trees, without impacting other people. 

• Compilation tools: The tools that take input files and generate output files 
(for example, converting source code files into object code and executable 
programs). Common examples of compilation tools include a C or Java 
compiler, but they also include documentation and unit test generators. 

• Build machines: The computing equipment on which the compilation tools 
are executed. 

• Release packaging and target machines: The method by which the soft-
ware is packaged, distributed to end users, and then installed on the target 
machine.

Each of these topics is discussed in more detail, both later in this chapter and 
later in this book. Many of these topics are so detailed that they warrant a full 
chapter of their own. 
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Interpreted Languages 

For interpreted languages, the build system model is slightly different (see 
Figure 1.2).

Version-
Control

Tool

Source 
Tree

Release
Package

Compilation Tools

Build Machine

Target Machine

Figure 1.2 Overview of a build system for interpreted languages. 

Interpreted source code isn’t compiled into object code, so there’s no need 
for an object tree. Instead, the source files themselves are collected into a release 
package, ready to be installed on the target machine. If compilation tools are 
required in this type of build system, which they often are, their focus is on 
transforming source files and storing them in the release package. Compilation 
into machine code is not performed at build time, even though it may happen 
at runtime. 

Web-Based Applications 

The build system for a web-based application is a mix of compiled code, inter-
preted code, and configuration or data files. As Figure 1.3 shows, some files 
(such as HTML files) are copied directly from the source tree to the release 
package, whereas others (such as Java source files) are first compiled into ob-
ject code. In addition, both the web application server and the end user’s web 
browser play a role in interpreting or compiling code, but that’s beyond the 
scope of this build system. 
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Figure 1.3 Overview of a build system for web-based software. 

A typical web application deals with many of the following file types: 

• Static HTML files, containing nothing more than marked-up data to be 
displayed in a web browser. These files are copied directly to the release 
package.

• JavaScript files containing code to be interpreted by an end user’s web 
browser. These files are also copied directly to the release package. 

• JSP, ASP, or PHP pages, containing a mix of HTML and program code. 
These files are compiled and executed by the web application server rather 
than by the build system. These files are also copied to the release package, 
ready for installation on the web server. 

• Java source files to be compiled into object code and packaged as part of 
the web application. The build system performs this transformation before 
packaging the Java class files. The Java classes are executed on the web 
application server or even within the web browser (using a Java applet). 

Of course, there’s no reason that the build system can’t autogenerate some of 
these HTML, JavaScript, or JSP/ASP/PHP files (from other input file formats). 
Many compilation steps might take place before the output is finally copied to 
the release package. 

Unit Testing 

The build system for a unit testing environment is simply an extension of the 
models already discussed. Instead of producing a release package to be installed 
on the target machine, the build system produces a number of smaller unit test 
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suites. Each suite is executed on the target machine and produces a “pass” or 
“fail” result to indicate whether the software behaved as expected. 

Figure 1.4 shows how the traditional compiled language build system (shown 
in Figure 1.1) can be extended to generate unit tests rather than a standard 
release package. 

Version-
Control
Tool

Source 
Tree

Object
Tree

Unit Test
Suites

Compilation Tools

Build Machine

Target Machine

Figure 1.4 Overview of a build system that generates unit tests. 

For interpreted languages (see Figure 1.2) and web-based applications (see 
Figure 1.3), a similar unit test build system can be created. In fact, a unit test 
build system is simply a variant of a standard build system. Chapter 12, “Build-
ing with Metadata,” discusses unit testing in more detail. 

Static Analysis 

Figure 1.5 shows a build system that performs static analysis. A static analy-
sis tool, such as Coverity Prevent [6], Klocwork Insight [7], and FindBugs [8], 
examines a program’s source code with the goal of identifying potential bugs. 
The analysis is done statically (at build time) instead of the more common 
approach of executing the software to see if it behaves correctly. 
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Figure 1.5 Overview of a build system for static analysis. 

The input to a static analysis system is the same source code used in a regular 
build system. However, instead of generating an object tree and release pack-
age, the output is some type of defect report document (often in text or HTML 
format). Chapter 12 discusses static analysis in more detail. 

Documentation Generation 

The final build system scenario considers the generation of human-readable 
documentation, as shown in Figure 1.6.

Version-
Control
Tool

Source 
Tree

Object
Tree

Document

Compilation Tools

Build Machine

Figure 1.6 Overview of a build system for generating documentation. 

The output from this build system is a PDF file, a collection of HTML pages 
and graphic images, or anything else that could be considered documentation. 
Generating documentation might also include a number of intermediate data 
files, so the concept of an object tree still applies. No target machine is men-
tioned in this case, although, technically, the document would need to be viewed 
in some way, whether via a printer, a web browser, or a PDF viewer. 
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In summary, a build system can be used for many different purposes. This 
book focuses more on build systems for traditional compiled languages, although 
the concepts are the same for other scenarios. 

The important point to understand for now is the process by which a build 
system operates. Although Figures 1.1–1.6 don’t show it, a build tool is used to 
orchestrate the entire build process. Common build tools include GNU Make, 
Ant, SCons, CMake, and the Eclipse builders; Part II, “The Build Tools,” dis-
cusses each one. 

Components of a Build System 

Now that you’ve seen the high-level view of a software build system, you can dig 
deeper in each of the main sections. Later chapters cover many of these topics, 
so for now you’ll cover only the basics. 

Version-Control Tools 

Although you won’t explore version-control systems until Chapter 14, “Version 
Management,” a version-control tool is the first component of a build system. 
Before any software can be compiled, the developers must obtain a private copy 
of the source code. As part of their assigned work (fixing a bug or adding a new 
feature), each developer changes the appropriate source files and then triggers 
the build system to compile the software. 

Version-control tools enable you to perform a number of operations: 

• Obtain a copy of the source code, ready for private modifications to be 
made.

• Control check-ins or  commits so that private changes can be made avail-
able for other developers to use. 

• Facilitate the creation of multiple code streams to manage the development 
and maintenance of different versions of the same product. 

• Control access to files so that only authorized developers can change cer-
tain source files. 

• Enable a developer to view older (historical) versions of each source file, 
even if newer revisions have superseded them. 
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This isn’t a book about version control, so it doesn’t discuss specific version-
control tools. However, Chapter 14 focuses extensively on the many ways in 
which the build system must interact with a version-control tool. There you’ll 
consider which files should or shouldn’t be kept under version control, and you 
explore the use and management of version numbers. 

The next section focuses more on the source code stored within the version-
control system. 

Source and Object Trees 

As you might expect, a program’s source code is stored as a number of disk files. 
This arrangement of the files into different directories (or folders, in Windows 
terminology) is known as the source tree. The way in which the source code is 
structured within the source tree has a significant impact on the design of the 
build system. 

The structure of the source tree often reflects the architecture of the software. 
Figure 1.7 illustrates how the source code files for a Microsoft Windows-based 
accounting application can be stored, based on the various major components 
of the system. 

Notice that each directory contains a file named Makefile. The implication 
here is that you use Make to build the software, which is common only for 
older Windows applications. The build description files (known as makefiles) 
are stored in the same directory as the source files they describe. This isn’t the 
only way to store the build description, but it does make it easy to locate the 
parts of the build system that deal with the files in each directory. 

Alongside the source tree is the object tree (see  Figure 1.8). Although it’s 
entirely possible to store object files in the same directory as the source files, it’s 
often considered a messy approach (as you see in later chapters). You should 
instead create a separate tree hierarchy that stores any object files or executable 
programs constructed by the build process. Notice that Figure 1.8 contains not 
only object files, but also the final executable program ( accounting.exe).
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Although a small program such as this accounting application could be stored 
inside a single source code file, this is unrealistic for larger programs. Several 
important considerations call for dividing a program into multiple source files 
and then placing those files into different directories on the disk: 

• Comprehension: Conceptually, people find it easier to think about pro-
grams when they’re divided into logical subsections. This is the basic 
premise of object-oriented programming, in which people can think about 
the program as a collection of different classes. Each class must have both 
an external behavior that programmers can keep fresh in their minds and 
an internal implementation that hides the complexity of the class away 
from view. In a build system, therefore, it’s best to divide the source code 
into multiple sections, each encapsulating a specific area of the program’s 
functionality.

• Source code control: When a program’s source code is spread across mul-
tiple files and directories, it becomes easier to manage them with a source 
code control tool. Conversely, if the entire program was stored inside a 
single disk file, it would be challenging for different developers to submit 
code changes without constantly stepping on each other’s work. 

• Performance: Development tools such as editors and compilers perform 
much more efficiently with smaller units of work. Although these tools are 
capable of dealing with source files that are megabytes in size, they do so 
inefficiently.

Figure 1.8 
Corresponding object 
tree for a small 
Microsoft Windows 
application.

Figure 1.7 Source tree 
for a small Microsoft 
Windows application. 
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Throughout this book, you’ll learn more about the design and construction 
of source and object trees. 

Compilation Tools and Build Tools 

When developers have a source tree to work with, they must have some way to 
translate the human-readable source files into the machine-readable executable 
program. A compilation tool is a program that reads input files and translates 
them into output files. This might sound like a generic statement, but there’s no 
limit to the type of data translation these tools could undertake. 

The following are common examples of compilation tools: 

• C compiler: Reads human-written C language source files and produces 
object files that contain a machine code translation of that same program. 
In this scenario, the output from the compilation tool should be function-
ally equivalent to the input, although closer to what the target machine 
can understand. 

• Linker: Joins a number of different object files to produce a single execut-
able program image. In this case, the object files are the input to the linker 
tool, but in the previous build step, they were the output from a compiler. 
In this example, it makes more sense to talk about input and output files 
than source and object files. 

• UML-based code generator: Reads a UML model file as input and pro-
duces an equivalent program written in a general-purpose programming 
language such as Java, C++, or C#. 

• Documentation generator: Reads a human-written file written in a mark-
up language and generates a PDF file (or similar) as output. 

• Command-line tool for making a new directory: Creates a new directory 
on the file system (for example, using the UNIX mkdir command). In this 
scenario, the name of the new directory is the only input data provided. 

At this point, it’s worth noting the distinction between a compiler and a com-
pilation tool. A compiler typically translates high-level programming language 
source code into object code, which is the first of the previous examples given. 
However, a compilation tool is defined as any tool that translates input data to 
output data. 

In contrast, a build tool is a program that functions at a level above compila-
tion tools. That is, it must have sufficient knowledge of the relationship between 
source files and object files that it can orchestrate the entire build process. The 
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build tool calls upon the necessary compilation tools to produce the final build 
output.

This book takes care to distinguish between compilation tools and build 
tools. Both play a critical role in creating a good build system, but they do so 
in different ways. Chapter 4, “File Types and Compilation Tools,” looks at a 
number of compilation tools (such as gcc and  javac) and explores how they 
manipulate the various types of files in the source and object trees. Chapter 16,
“Tool Management,” discusses some best practices for managing compilation 
tools over the lifetime of the software. Part II looks in more detail at build tools 
(Make, Ant, SCons, CMake, and the Eclipse builders) that orchestrate   the entire 
build process. 

Build Machines 

It may not appear so at first, but the machine on which the compilation and 
build tools execute plays a vital role in the management of a build system. Each 
of the tools must be capable of executing on the build machine, even though the 
underlying machine hardware and operating system might change over time. As 
you’ll learn in Chapter 15, “Build Machines,” numerous issues surround the 
management of build machines, particularly when you need to reproduce older 
versions of software or to provide a uniform environment in which different 
developers can compile the same source code. 

You must also consider whether the software itself is being compiled and exe-
cuted on the same type of machine or whether the software is destined to run in 
a completely different environment (CPU type and operating system). Figure 1.9
illustrates both a native compilation environment and a  cross-compilation envi-
ronment. In the native case, the software is executed on a target machine that’s 
identical to the build machine; the cross-compilation case requires two different 
machines, with a different operating system or CPU on the target machine. 
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Figure 1.9 Native compilation versus cross-compilation. 

You’ll learn more about native and cross-compilation environments in Chap-
ter 15, which studies build machines in more detail. 

Release Packaging and Target Machines 

Although much of a build tool’s work focuses on generating object files and 
executable programs, the final packaging step produces something that you can 
actually install on a user’s machine. It’s not realistic to hand novice users a 
number of executable programs and data files and expect them to install and 
configure them by hand. Instead, you need to provide a single file that they can 
download, or a single CD or DVD that they can insert into their computer’s 
CD-ROM drive. For software written for the home consumer market, the in-
stallation process should involve nothing more than double-clicking an   icon and 
answering a few basic questions. 

The final step of a build process is therefore to extract the relevant files from 
the source and object trees and store them in a release package. If at all possi-
ble, the release package should be a single disk file and should be compressed, 
to reduce the amount of time it takes to download or the number of DVDs 
required. Additionally, any nonessential debug information should be removed 
so that it doesn’t clutter the software’s installation. 

Chapter 13, “Software Packaging and Installation,” examines three common 
ways of packaging and installing software: 
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• Archive files: This is the most straightforward approach, with files com-
pressed and joined into a single disk file. The end user must perform the 
reverse operation to install the software. 

• Package-management tools: These are common in UNIX-like environ-
ments where complete software packages are downloaded from the Inter-
net and installed as an optional part of the operating system. Installation is 
a one-step process, and any prerequisite packages are installed at the same 
time. Common examples include .rpm and .deb package files. 

• Custom-built GUI installation tools: These are familiar to anyone who 
has installed software on the Microsoft Windows operating system. The 
installation process is started by double-clicking an icon, and the end user 
interacts with a custom-built GUI to install the software. 

One final option, which isn’t discussed in detail here, is that the software 
may be partially installed yet partially accessed at runtime. A portion of the 
software is installed on the end user’s computer, but the rest of the code and 
data is accessed when the program is running. Common examples include video 
games in which graphic images, movies, and sound files are loaded off the DVD 
whenever they are required, but are never stored on the target machine’s hard 
disk. Additionally, tools such as Google Earth [9] require that a client program 
be installed, but the rest of the   data is downloaded from the Internet when 
required.

The generation of a release package marks the end of the software build proc-
ess. The next section considers how this process is implemented within a build 
tool.

The Build Process and Build Description 

Now that you’ve covered each part of the build system at a high level, take a 
brief look at a couple of examples. In Figure 1.10, you can see the process by 
which the build tool invokes each of the compilation tools to get the job done 
(using the traditional compiled languages model shown in Figure 1.1). This end-
to-end sequence of events is known as the build process.
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Figure 1.10 Overview of a build system for compiled languages. 

Although it’s easy for humans to visualize this process in the form of a dia-
gram, a build tool needs the build description to be written in a text-based 
format. For example, when using Make, the interfile dependency information 
is specified in the form of rules, which are stored in a file named Makefile. In 
contrast, the SCons build tool uses Python-language functions to describe the 
compilation steps; it keeps this information in a file named SConstruct.

To illustrate, the following SCons build description file states that the stock
program should be generated by compiling the source files, ticker.c and 
currency.c.

Program("stock", ["ticker.c", "currency.c"]) 

In this case, SCons uses the default C compiler to create ticker.o and 
currency.o, even though the build description does not explicitly state that 
step. It then links those object files into the final executable program, stock.
Figure 1.11 shows the equivalent diagram, to help you visualize the individual 
steps in the process: 
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Figure 1.11 Overview of a SCons-based build process. 

Because the example stock program consists of only a small number of source 
files, the build description remains simple and fits nicely into a single text file. 
For larger programs (with thousands of source files in the code base), the build 
description may consist of hundreds of small files that work together to capture 
the build recipe for the entire program. 

From a software developer’s perspective, the text-based build description is 
at the heart of the whole build process. Every build tool has its own syntax for 
describing the build process, including file dependencies and compilation com-
mands. You’ll learn more about these build description languages in Part II.

How a Build System Is Used 

In a software development organization, three different types of software build 
are commonly performed. Each uses the same build system, but the end purpose 
of the build is different: 

• Developer (or private) build: The developer has checked out the source 
code from version control and is building the software in a private work-
space. The resulting release package will be used for the developer’s pri-
vate development instead of being shared with other people. The developer 
makes source code changes many times a day, incrementally recompiling 
the software each time. 

• Release build: One or more people, known as release engineers, are 
assigned to perform release builds. The sole purpose is to provide a com-
plete software package for the test group to validate. When the testers are 
convinced that the software is of high enough quality, that same package 
is made available to customers. The source tree used for a release build is 
compiled only once, and the source tree is never modified. 
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• Sanity build: This is similar to a release build, except that the software 
package isn’t destined for a customer. Instead, the build process deter-
mines whether the current source code in the version-control system is 
“sane”—that is, whether the software build is free of errors and passes a 
basic set of sanity tests. This type of build can occur many times per day 
and tends to be fully automated. Many developers use the terms daily
build or nightly build to describe this scenario. 

As you can see, the key distinction among these three scenarios is how the 
build system is used—how often it’s invoked and how the final program image 
is used. For the purposes of this book, the upcoming chapters don’t discuss these 
topics in much detail, unless there’s a need to distinguish how the build system 
accommodates each type of user. 

Build-Management Tools 

The use of build-management tools has increased in recent years. Given the 
focus of this book, a build-management tool should be viewed as an extra layer 
of management on top of an existing build system rather than as part of the 
build system itself. Figure 1.12 illustrates the distinction. 

Build-Management Tool

Version-
Control

Tool

Source 
Tree

Object
Tree

Release
Package

Compilation Tools

Build Machine

Target Machine

Figure 1.12 The use of a build-management tool, to oversee the use of a build system. 

The build-management tool communicates with the version-control tool to 
check out a build tree, calls upon the build system to compile the software, 
and then informs the developer when the build is complete. Depending on your 
perspective, you may view a build-management tool as just another part of the 
build system, but this book keeps them separate. 
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A good build-management tool provides the following features: 

• Checks out and builds a source tree on a predetermined schedule, or sim-
ply when new code has been committed. 

• Provides a queuing mechanism so that multiple build jobs can share a pool 
of build machines. When a sufficient number of machines are available, 
the next job is started. 

• Sends email notification messages to various groups of users (when the 
build starts, completes, succeeds, or fails). 

• Provides a graphical user interface to show when builds took place and 
whether they failed or succeeded. 

• Manages version numbers, incrementing them after each successful build. 

• Stores the final software package in an archive directory, ready for testers 
to use. 

• Starts executing sanity tests on any successful build. 

• Can identify which developers are on the “guilty list” of people who may 
have recently checked in bad code. 

A build-management tool is vital for any software projects that have more 
than a few developers. A number of tools are available, either commercially 
developed and supported or from the open-source world. Some of these com-
mon tools include Build Forge [10], ElectricCommander [11], CruiseControl 
[12], and Hudson [13]. With the wide range of tools available, you can easily 
find something that meets your needs, and you won’t need to implement your 
own build-management solution. 

Aside from this brief introduction to build-management tools, this book 
doesn’t cover the topic in any detail. Instead, it focuses on all the build system 
functionality below the build-management tool (see Figure 1.12). For a good 
overview of build management and the concepts of continuous integration, refer 
to [14]. 
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Build System Quality 

As with any software-related topic, a number of system attributes define wheth-
er it’s perceived as high quality, low quality, or somewhere in between. Accord-
ing to one build tool expert [15], a good build system should have the following 
characteristics:

• Convenience: The tool and the description files should be easy to use and 
should not place too much burden on the software developers who need to 
use them. The developer should focus on writing source code rather than 
dealing with the complexities of the build tool. 

• Correctness: The build tool should always compile/link the correct files, 
using the correct compiler options. When it matters, the tool should com-
pile the files in the correct order so that the final executable program 
always reflects the content of the source files. 

• Performance: In an ideal world, the build process would complete without 
any noticeable delay. Realistically, though, it must perform as fast as pos-
sible for the computing equipment it’s running on. 

• Scalability: The build tool must be convenient, provide correct release im-
ages, and perform well, even when the tool is building a large program (for 
example, with thousands of source files). Part IV, “Scaling Up,” discusses 
this topic of scalability. 

The rest of this book spends a lot of time examining both good and bad ways 
to create a build process, and the pros and cons of using a range of different 
build tools. The book makes a special effort to consider these four characteris-
tics, because they’re important in the operation of a build system. 

Summary

This chapter offered a high-level overview of a complete build system and 
introduced the terminology for describing the steps in an end-to-end build proc-
ess. Due to the wide range of build-related applications, there is no single type 
of build system. 

The first step in a build system is usually to store and control access to the 
source code using a version-control tool. Next, you make source code changes 
in a source tree and generate the object files into the corresponding  object tree.
This depends on whether you’re compiling source code or working with an 
interpreted language. 
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A build tool handles the end-to-end management of the build process. These 
build tools orchestrate the use of compilation tools to generate object files from 
source files (or whatever makes sense for the file types being used). Each of these 
tools must execute on the build machine.

The end product of the build system is called a release package. This is usu-
ally an archive file or an installation program that’s capable of installing the 
software on the target machine. In some cases, the output of the build system is 
a documentation file rather than an executable file. 

For the build tool to understand the details of the build process, you must cre-
ate a suitable text-based file known as a build description. For example, with the 
SCons tool, the build description must be written in the Python programming 
language and stored in a file named SConstruct.
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A Make-Based Build System 

One of this book’s key assumptions is that you already have experience in de-
veloping software. However, this doesn’t mean that you have experience writ-
ing your own build system, or even understanding an existing system. Many 
developers work on projects in which other people create and maintain the build 
system, or perhaps use an integrated development environment (IDE) to build 
at the push of a button. In either of these cases, you may not see the underlying 
build system. 

This chapter introduces a build system for a small C-language program with 
only five source files. The build system is implemented using GNU Make [16] 
syntax, not only because it’s an extremely popular tool, but also because Make 
syntax helps you understand the fundamental concepts underlying any build 
system.

If you’ve never written a makefile, take the time to study this example before 
moving to the more advanced concepts. Many of this book’s examples use Make 
syntax, so understanding these concepts is important. 

If you’re already experienced with makefile syntax, feel free to skip forward 
to the next chapter. Chapter 6, “Make,” presents more advanced details of the 
GNU Make tool. 

Calculator Example 

This chapter uses a simple calculator program as its running example. You don’t 
need to understand how the program works, other than knowing that it contains 
five C-language source files: Four are .c files ( add.c, calc.c, mult.c, and 
sub.c), and the fifth is a .h file ( numbers.h). In the C language, files with a .c
suffix contain the main body of the source code, whereas files ending with .h
provide type, variable, and function definitions to be shared by all  .c files. Every-
thing is then linked together into a single executable program, named calculator.

23
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Here’s the content of the source code directory, before anything is compiled: 

$ ls
add.c  calc.c  mult.c  numbers.h  sub.c 

Figure 2.1 shows a corresponding source tree diagram, with all files in the 
same directory. Source trees are a fundamental part of a build system, so you’ll 
see many of these diagrams throughout this book. As you can imagine, the build 
system for this program is one of the simplest you can create, other than the 
standard “Hello World” program. 

Figure 2.1 The source tree for a simple calculator example. 

In the C programming language, each .c file is compiled into a single object 
file containing the compiled machine code instructions ( .o suffix in UNIX-like 
systems, or .obj in Window systems). With four different  .c files, you can 
expect four different compilation commands, each producing a unique .o file. 
You’ll use the GNU C Compiler [17], commonly known as GCC, with all exam-
ples performed in a UNIX environment. 

$ gcc -g -c add.c
$ gcc -g -c calc.c
$ gcc -g -c mult.c
$ gcc -g -c sub.c 

In each gcc command, the  –c option requests that an object file be created, 
with the –g option requesting that debugging be enabled. You’ll learn more 
about GCC in Chapter 4, “File Types and Compilation Tools.” 

The source code directory now contains a few more files: 

$ ls
add.c  calc.c  mult.c  numbers.h  sub.o
add.o  calc.o  mult.o  sub.c 

If you look carefully, you see that each .c file has a corresponding  .o file. Note 
that numbers.h doesn’t have an object file; instead, it was included (imported) 
by the add.c, calc.c, mult.c, and sub.c files. In build system terminology, 
each of the .c files is dependent on numbers.h.
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To build the final calculator program, these  .o files are linked together into 
a single executable file. 

$ gcc -g -o calculator add.o calc.o mult.o sub.o
$ ls
add.c  calc.c  calculator  mult.o     sub.c
add.o  calc.o  mult.c      numbers.h  sub.o 

That completes the entire process of building the calculator program. To 
illustrate this graphically, consider the concept of a dependency graph, shown 
in Figure 2.2.

add.c add.o

calc.c calc.o

mult.c mult.o

calculator

sub.c sub.o

numbers.h

Figure 2.2 The dependency graph for the simple calculator example. 

For several reasons, a dependency graph is important in build systems. 
Not only does it list the files involved in the build process, but it also shows 
the dependencies between those files. A build tool such as GNU Make uses a 
dependency graph to determine which files should be compiled, and when they 
should be compiled. 

For example, the arrows originating from add.o toward both  add.c and 
numbers.h state that both these sources files contribute to the compilation of 
add.o. Additionally, if either of these files is edited, add.o must be recompiled 
to include any recent changes. Conversely, if neither add.c nor  numbers.h has 
changed since the last time add.o was compiled, it doesn’t need to be compiled 
again.

With these concepts in mind, you’ll now explore how GNU Make enables you 
to specify the dependency graph for the example program. This book spends a 
lot of time looking at different build tools (such as GNU Make, Ant, SCons, 
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CMake, and the Eclipse builders), to show different ways of specifying a build 
system’s dependency graph. 

Creating a Simple Makefile 

This section examines how the example can be implemented using the GNU 
Make build tool. A dependency graph is a purely mathematical concept, so you 
need some way to express the graph in a source code format. This should use 
plain text to list the files, describe the dependencies between them, and show 
which compiler commands are to be used. The GNU Make tool offers a straight-
forward translation. 

The following text file, called Makefile, is stored in the same directory as the 
source and object files. 

 1  calculator: add.o calc.o mult.o sub.o
 2          gcc -g -o calculator add.o calc.o mult.o sub.o
 3
 4  add.o: add.c numbers.h
 5          gcc -g -c add.c
 6
 7  calc.o: calc.c numbers.h
 8          gcc -g -c calc.c
 9
10  mult.o: mult.c numbers.h
11          gcc -g -c mult.c
12
13  sub.o: sub.c numbers.h
14          gcc -g -c sub.c 

As you’ll see when you study GNU Make in more detail (see Chapter 6), this 
is an inefficient way of implementing a makefile. However, this direct transla-
tion of the dependency graph is easy to understand. 

Each section of the makefile introduces a new rule. Line 1 of the listing states 
that the file named calculator is dependent on all the files,  add.o, calc.o,
mult.o, and  sub.o. Line 2 then provides a UNIX command to generate the 
calculator file from all those object files. 

Line 4 specifies that add.o depends on both add.c and numbers.h, and line 
5 provides the UNIX command for compiling add.o. The rest of the makefile 
provides similar rules for the other source and object files. 

One important warning is that all UNIX commands (lines 2, 5, 8, 11, 14) 
must be preceded by a TAB character instead of spaces. This feature is historic 
and confuses many new makefile developers. If you forget this rule, you see the 
following error: 
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Makefile:2: *** missing separator (did you mean TAB instead of 
8 spaces?). 

Assuming that you’ve created the makefile in the same directory as all the 
source files, you’re ready to build the software. To start, perform a full build by 
executing the gmake command in the UNIX shell. 

$ gmake
gcc -g -c add.c
gcc -g -c calc.c
gcc -g -c mult.c
gcc -g -c sub.c
gcc -g -o calculator add.o calc.o mult.o sub.o 

The GNU Make program examines the makefile, reconstructs the depend-
ency graph in its memory, and then determines which commands to execute. 
GNU Make automatically determines that all object files must exist before the 
calculator program can be created, hence the ordering of the commands in the 
output.

The next important concept in a build tool is that of incremental builds.
Instead of blindly executing commands, GNU Make does some upfront analysis 
to see if files actually need to be compiled or whether they already exist. After 
performing the build for the first time, you can easily invoke GNU Make a sec-
ond time: 

$ gmake
gmake: 'calculator' is up to date. 

In this case, GNU Make determines that all generated files are more recent 
(that is, have a later time stamp) than all the source files, so no additional work 
must be done. As a software developer, you should be familiar with this concept, 
even if you’ve never thought about how it was implemented. 

As you might expect, if you modify a source file (such as add.c), you’ll be 
changing the time stamp of that file. As a result, GNU Make determines that 
add.o is no longer up-to-date and that both  add.o and  calculator should be 
recompiled.

$ gmake
gcc -g -c add.c
gcc -g -o calculator add.o calc.o mult.o sub.o 

The situation changes a little if you modify numbers.h, because every source 
file is dependent on that file. This causes all object files, and the final program, 
to be recompiled: 

$ gmake
gcc -g -c add.c
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gcc -g -c calc.c
gcc -g -c mult.c
gcc -g -c sub.c
gcc -g -o calculator add.o calc.o mult.o sub.o 

As a final note, this type of incremental build isn’t possible in GNU Make if 
you don’t create a separate makefile rule for each object file. If you instead list 
all the source files on the right side of the rule, GNU Make has no choice but to 
recompile all source files each time one of them changes. 

1  calculator: add.c calc.c mult.c sub.c numbers.h
2          gcc -g -o calculator add.c calc.c mult.c sub.c 
numbers.h

Even though line 2 has only a single command to execute, it compiles all the 
source files each time it’s invoked. Compare this with the previous example 
that linked the separate .o files. In this case, you’re compiling all the files from 
source code and then linking them in one command. 

Let’s now consider how you can optimize the example makefile. After all, it 
seems wasteful to provide a separate rule for each source and object file pair. 

Simplifying the Makefile 

Regardless of whether you’ve seen a makefile before, you should be questioning 
the need for so much repetition in the example. Developers know that duplica-
tion is a bad thing, and build systems are no exception. To make it easier to 
construct a makefile, GNU Make provides built-in rules for common opera-
tions, such as a compiling a .c file into a  .o file. Therefore, this example can be 
rewritten in significantly fewer lines: 

1  calculator: add.o calc.o mult.o sub.o
2          gcc -g -o calculator add.o calc.o mult.o sub.o
3
4  add.o calc.o mult.o sub.o: numbers.h 

Lines 1 and 2 are the same as before, but the rest of the makefile has mostly 
been eliminated. GNU Make already knows that any file ending with .o depends 
on the corresponding file with a .c suffix. The only thing you need to state 
explicitly is that all object files depend on numbers.h.

This is a fairly good optimization, although you should probably use sym-
bolic names to make the code more readable. GNU Make provides the famil-
iar concept of variables, similar to other programming languages. Consider the 
revised example: 
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 1  SRCS = add.c calc.c mult.c sub.c
 2  OBJS = $(SRCS:.c=.o)
 3  PROG = calculator
 4  CC = gcc
 5  CFLAGS = -g
 6
 7  $(PROG): $(OBJS)
 8          $(CC) $(CFLAGS) -o $@ $^
 9
10  $(OBJS): numbers.h 

Line 1 defines the SRCS variable to include the full list of source files in the 
program. Line 2 is a clever piece of GNU Make syntax that replaces .c with 
.o in each file’s name in the list of source files.  OBJS is therefore defined as the 
complete list of object files. 

Line 3 defines the name of the executable program, and line 4 defines the 
name of the compilation tool. If these values were referenced multiple times in 
the makefile, defining them in one place makes perfect sense (which is why many 
programming languages allow constant definitions). 

Line 5 sets the CFLAGS variable to enable debugging information. Note that 
the previous example, which used the implicit rule for creating .o files from 
.c files, didn’t have the  CFLAGS variable defined. That example wouldn’t have 
included the –g flag when compiling source code, which isn’t what we wanted. 

Lines 7 and 8 are the same as in previous examples, after having expanded 
the variable definitions. Note that $@ is a syntactical shortcut for the files men-
tioned on the left side of the rule ( calculator), and $^ refers to the files listed 
on the right side (all the object files). These shortcuts are rather cryptic but are 
useful in larger build systems. Chapter 6 offers a more detailed explanation of 
these concepts. 

Now you can consider some other activities the makefile should perform, 
other than simply compiling the software. 

Additional Build Targets 

A build system can do more than just compile a program. As you saw in Chapter
1, “Build System Overview,” you can generate web applications, create PDF 
documentation, perform static analysis, and run unit tests. In fact, a build sys-
tem can handle any activity in which output files are created from input files. 
This also includes removing files and copying of files from one place to another. 

In a C-language build system, two of the most common operations are 
to “clean” the build tree and install the executable program onto the target 
machine. The goal of the clean target is to remove any generated files that were 
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created when compiling the software. For the install target, the goal is to copy 
the final executable program into the target machine’s standard binary path. 

Consider how these build targets are implemented using makefile syntax: 

 1  SRCS = add.c calc.c mult.c sub.c
 2  OBJS = $(SRCS:.c=.o)
 3  PROG = calculator
 4  CC = gcc
 5  CFLAGS = -g
 6  INSTALL_ROOT = /usr/local
 7
 8  $(PROG): $(OBJS)
 9          $(CC) $(CFLAGS) -o $@ $^
10
11  $(OBJS): numbers.h
12
13  clean:
14          rm -f $(OBJS) $(PROG)
15
16  install: $(PROG)
17          cp $(PROG) $(INSTALL_ROOT)/bin 

The clean target has been added on lines 13 and 14. This is a standard GNU 
Make rule, but without any input files listed on the right side. This simply means 
that the target will always be executed, and there’s no need to check the time 
stamp on the input files. The output from invoking this build target is as follows: 

$ gmake clean
rm -f add.o calc.o mult.o sub.o calculator 

You haven’t listed any input files on the right side of the rule, so invoking the 
clean target a second time has the same result: 

$ gmake clean
rm -f add.o calc.o mult.o sub.o calculator 

In this rule, GNU Make has no way to avoid executing the rm command. The 
rule has no file time stamps to check that would stop it from repeating the same 
command each time. This contrasts with the previous rules, which compared 
source and object file time stamps, such as add.c and  add.o. One problem arises 
if a file named clean already exists on the disk, but Chapter 6 discusses that. 

The install target has been added on lines 16 and 17. This time the rule has 
the calculator file listed on the right side, so invoking the install target auto-
matically ensures that the whole calculator program is brought up-to-date. The 
cp command on line 17 copies the executable program into the directory specified 
by the INSTALL_ROOT variable (defined on line 6). 
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$ gmake install
gcc -g   -c -o add.o add.c
gcc -g   -c -o calc.o calc.c
gcc -g   -c -o mult.o mult.c
gcc -g   -c -o sub.o sub.c
gcc -g -o calculator add.o calc.o mult.o sub.o
cp calculator /usr/local/bin 

For the install target, invoking the target for a second time still performs 
some work, but not as much as the first time. 

$ gmake install
cp calculator /usr/local/bin 

GNU Make determines that the calculator file already has a more recent 
time stamp than all the .o files, so it doesn’t attempt to recompile the  calculator
program. However, because there’s no file on the disk named install, GNU 
Make invokes the cp command each time, just as you saw with the clean target. 

Using a Framework 

The example build system is small here, but you can see that it’s starting to 
get more complex. As build systems get larger and more detailed, more expert 
knowledge is required to read and understand the makefile. After you’ve read 
Chapter 6 in detail, you’ll see that a  makefile using GNU Make syntax can be-
come challenging to understand. 

A common practice in most build systems is to create a framework. That is, 
all parts of the build system that a software developer doesn’t care about are 
kept in a separate set of files. In contrast, the interesting parts of the build sys-
tem, such as the list of source files and compiler options, are more visible to the 
developer. Most software developers don’t need to read the complex framework 
and, therefore, don’t bother doing so. 

As an example, the following makefile provides only the information that an 
average software developers needs to understand. 

1  SRCS = add.c calc.c mult.c sub.c
2  PROG = calculator
3  HEADERS = numbers.h
4
5  include framework.mk 

Lines 1–3 provide the most basic information: which source files should be 
compiled, the name of the executable program, and the list of header files. This 
is all the information required to compile a simple program and, therefore, all 
that a software developer typically cares about. 
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Line 5 proceeds to include the framework file, essentially appending 
framework.mk to the end of  Makefile. This file encapsulates the GNU Make 
rules and other advanced definitions: 

 1  OBJS = $(SRCS:.c=.o)
 2  CC = gcc
 3  INSTALL_ROOT = /usr/local
 4
 5  ifdef DEBUG
 6  CFLAGS = -O -g
 7  else
 8  CFLAGS = -O
 9  endif
10
11  $(PROG): $(OBJS)
12          $(CC) $(CFLAGS) -o $@ $^
13
14  $(OBJS) : $(HEADERS)
15
16  clean:
17          rm -f $(OBJS) $(PROG)
18
19  install: $(PROG)
20        cp $(PROG) $(INSTALL_ROOT)/bin 

Most of framework.mk should look familiar, although you don’t see any 
mention of source filenames or executable programs. These are kept out of the 
framework and appear only in the user-facing makefile.

One notable addition in this framework, in lines 5–9, is that you’re testing 
for the existence of the DEBUG symbol. This can be set (or not) by the  makefile
that includes the framework, or even by the user on the UNIX command line. 

For example, a standard build of the calculator program uses the  –O (opti-
mize) compiler flag: 

$ gmake
gcc -O   -c -o add.o add.c
gcc -O   -c -o calc.o calc.c
gcc -O   -c -o mult.o mult.c
gcc -O   -c -o sub.o sub.c
gcc -O -o calculator add.o calc.o mult.o sub.o 

On the other hand, setting the DEBUG variable to  1 on the  gmake command 
line incorporates the –g (debug) flag: 

$ gmake DEBUG=1
gcc -O -g   -c -o add.o add.c
gcc -O -g   -c -o calc.o calc.c
gcc -O -g   -c -o mult.o mult.c
gcc -O -g   -c -o sub.o sub.c
gcc -O -g -o calculator add.o calc.o mult.o sub.o 
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As you’ll see many times throughout this book, using a separate framework 
file centralizes much of this complexity in a single place. The build system can 
contain a large number of Makefile files, each including the same common 
framework.

Summary

A dependency graph is a mathematical structure that shows the relationship 
between files in the build tree. If one file depends on another file (that is, there’s 
an arrow in the dependency graph), any change to the content of the source file 
might require the object file to be regenerated. 

To invoke a software build system, the dependency graph must be encoded 
in a form that a build tool can understand. In the case of the GNU Make tool, 
the dependency graph is expressed in a text-based form known as a makefile.

As a starting point, a build tool performs a full build to generate all the object 
files from the corresponding source files, eventually linking them into an execut-
able program. If object and executable files already exist, the build tool exam-
ines their time stamps to see whether any files have changed since the last time a 
build was invoked. This approach, known as an incremental build, ensures that 
the minimum number of recompilation steps is performed. 

Build tools are more than just a way to represent a dependency graph. They 
include variables, conditional statements, and other syntax tricks to make it 
easier to implement a build system. 

Most build systems include additional build targets, such as clean and 
install, beyond basic compilation of the program. Finally, a framework often 
is used to separate the developer-facing details of the build process (such as 
filenames and options) from the complexity of the underlying build tool. 
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Chapter 3 

The Runtime View of a 
Program

Chapter 1, “Build System Overview,” took a high-level view of the build proc-
ess, originating with an untouched source code tree and ending with a software 
package installed on the target machine. Before looking at each of these build 
steps in detail, you should learn more about what you’re actually building. That 
is, what does a program look like when it runs inside the target machine, and 
what are all the disk files that the target machine needs to load into memory? 

To fully understand the sequence of steps the build system performs, you need 
to visualize the program’s runtime view. Seeing how your program will be loaded 
into memory and executed makes it easier to determine which object files, execut-
able programs, and release packages must be created. Is the program translated 
into pure machine code, or is it partially interpreted by the runtime system? Is it a 
single program, or does it consist of multiple interacting programs? The answers 
to these questions determine what the build system must generate. 

The runtime view of the program also depends on which programming 
language is used and which operating system provides the runtime environment. 
Chapter 4, “File Types and Compilation Tools,” examines the specific details of 
UNIX- and Windows-based programs, but for now, you can focus on the high-
level concepts that are the same on most computing platforms: 

• Executable programs: The sequence of machine-readable instructions that 
the CPU executes, along with associated data values. This is the fully com-
piled program that’s ready to be loaded into the computer’s memory and 
executed.

• Libraries: Collections of commonly used object code that can be reused 
by different programs. Most operating systems include a standard set of 
libraries that developers can reuse, instead of requiring each program to 

35
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provide their own. A library can’t be directly loaded and executed on the 
target machine; it must first be linked with an executable program. 

• Configuration and data files: These are not executable files; they provide 
useful data and configuration information that the program can load from 
disk.

• Distributed programs: This type of software consists of multiple executable 
programs that communicate with each other across a network or simply as 
multiple processes running on the same machine. This contrasts with more 
traditional software that has a single monolithic program image. 

The following sections examine each concept in detail, using diagrams to help 
illustrate the structure of the software. In each case, keep in mind that the build 
system must create each of the build artifacts. In most cases, these artifacts are 
stored in disk files. 

Executable Programs 

An executable program is a sequence of instructions that’s loaded in memory 
and executed by the central processing unit (CPU). Typically, this program is 
started by double-clicking an icon in a windowing environment or typing the 
name of the program into a command shell. In other cases, a program is loaded 
into memory when the computer first boots or is started at a specific time of day 
by a scheduling tool. 

After the program is loaded, several mechanisms exist for executing the soft-
ware, depending on how much compilation took place before the program was 
loaded and how much operating system support the program requires. 

Native Machine Code 

In this scenario, the build system fully converted the executable program into 
the CPU’s native machine code. The CPU simply “jumps” to the program’s 
starting location, and all the execution is performed purely using the CPU’s 
hardware. While it’s executing, the program optionally makes calls into the 
operating system to access files and other system resources (see Figure 3.1).

In modern software systems, native machine code is most commonly used for 
languages such as C or C++, when execution of the program must be as fast as 
possible or when the program requires full access to the CPU’s features. There’s 
no faster way to execute code. 
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Operating System

Machine
Code Program

Figure 3.1 A machine code program interacting with the operating system. 

In the case of a native machine code program, the build system produces an 
executable program file. In common terminology, you might hear these referred 
to as a program, an executable, or a binary. 

Monolithic System Images 

Given that most desktop computers run an operating system such as Linux, 
Mac OS X, or Windows, computer users are familiar with using a mouse and 
keyboard and with viewing a program’s output on their display monitor. How-
ever, for an embedded system that exists inside an automobile, a television, or a 
kitchen appliance, there’s often a much smaller operating system, or no operat-
ing system at all (see Figure 3.2). In many cases, the computer can run only one 
program at a time. 

Monolithic
System Image

(no operating system)

Figure 3.2 A monolithic system image, with no operating controlling the machine. 
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Most embedded systems are designed to be cheap and easy to make, so they 
have limited CPU power and memory. As you might expect, writing software 
for an embedded system can often be trickier than designing code that runs on 
a full-fledged operating system. To make things possible, the build system must 
run on a separate build server, running something like Linux or Windows. After 
the software is compiled, the final release package is transferred to the embed-
ded device for the program to be executed. 

Although interpreters are sometimes used, many embedded systems use the 
native machine code model of execution, with the program itself using the entire 
system memory. From a build system perspective, the final release package is 
simply a large file that’s loaded directly into the computer’s memory. Often you 
hear these programs called an image (short for “memory image” or “system 
image”), because they tend to be the only thing loaded into the computer. 

Full Program Interpretation 

A number of programming languages are never compiled into machine code; 
instead, the runtime system loads the entire source code into memory and inter-
prets it (see Figure 3.3). This was true of early versions of the BASIC language 
and is still the case with UNIX shell scripts. 

Operating System

Source Code
Program

Interpreter

Figure 3.3 Source code being processed by an interpreter. 

Although no compilation of source code to object files occurs, the build sys-
tem still has a lot of work to do. It’s necessary to collect the source files into 
a release package that can be installed on the target machine. Generating unit 
tests, performing static analysis, and generating documentation is also common 
as part of the build system. Finally, some interpreted languages enable integra-
tion with compiled languages, turning the software into a hybrid of compiled 
and interpreted code. 
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Interpreted Byte Codes 

Byte codes are similar to native machine code, except that the CPU doesn’t 
directly understand them. It first translates them into native machine code or 
interprets them as the program executes. A byte code environment therefore 
requires that an additional interpreter or compiler be loaded alongside the 
program.

For example, the Java language is designed to be platform-independent. This 
means that the build system calls upon the Java compiler to create machine-
independent byte-code files instead of generating a CPU’s native machine code. 
When the program is later executed (see Figure 3.4), it starts up within a Java
Virtual Machine (JVM). The virtual machine has the option of interpreting and 
acting upon the byte codes as the program runs, but it more likely uses Just In 
Time (JIT) compilation to translate the program into native machine code as it 
executes.

In common terminology, byte-code programs often are referred to as byte-
code files, class files (in Java terminology), or managed code assemblies (in .NET 
terminology). In most cases, the build system creates a disk file to be loaded by 
the byte-code interpreter. 

Operating System

Precompiled Byte
Codes

Machine
Code

Java VM and JIT
Compiler

Figure 3.4 A Java virtual machine converting byte codes into native machine code. 

Before going any further, contrast the byte-code model with that of languages 
such as Perl and Python. From a build system perspective, Perl and Python lan-
guages are interpreted rather than compiled. That is, the build system collects 
the source files into the release package, ready to be interpreted on the target 
machine. The build process has no explicit compilation phase. 
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However, these interpreted languages use byte codes at runtime, as shown in 
Figure 3.5. The simple act of executing the Perl or Python script automatically 
triggers the generation of byte codes. In this respect, part of the traditional build 
system is embedded into the runtime environment. 

Operating System

Executable
Source Code 

Interpreter Byte Codes

Perl/Python
Compiler

Figure 3.5 Runtime compilation of Perl or Python source code into byte codes. 

The advantage of this approach is that changes to source code will take effect 
the next time the script is executed, removing the compile step from the stand-
ard edit-compile-run cycle. One major downside of this approach is that syntax 
errors in the code might not be found until the program starts executing. 

Libraries

The library file is also an important build artifact. At first glance, you might 
think that a single group of developers wrote a program. This is true in some 
cases, although developers frequently make use of prewritten code libraries de-
veloped by other people or organizations. These libraries, stored in disk files 
of their own, collect a set of code functions that can be reused across a variety 
of programs. Therefore, developers aren’t always building a single executable 
program file; they instead join custom-developed software and prebuilt libraries 
into a single program. 

In many programming languages, a library function can be viewed as an 
extension to the standard language and is used in the same way as functions 
written by the developers. For example, to print a string in the C language, you 
use the printf library function: 

printf("Hello World\n"); 
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In Java, the println method is used: 

System.out.println("Hello World"); 

In both examples, the developer uses a function (or method) that was written 
by somebody else but is conveniently linked into the executable program during 
the build process. Unless you’re familiar with the language, you might not even 
know whether a function or method is from a library or whether it was custom 
written.

Most operating systems have a preinstalled set of libraries for operations such 
as file and network I/O, mathematical functions, user interface manipulation, 
and sometimes database access. A developer can obtain libraries from third-
party sources, such as downloading them from the Internet. Developers can also 
publish their own libraries. 

In the realm of build systems, there are two main operations on libraries: 

• Creating a new library: If you want to create your own library, the first 
step is to compile all the object files you want to store. With this collection 
in hand, you use a special linking or  archiving operation to bundle the 
object files into a single library file, and create a suitable index of all the 
functions that exist. 

• Linking with a library: When an executable program is created, the build 
system must provide a list of libraries to search. If a function is referenced 
in the source code but the developer didn’t explicitly write it, the list of 
libraries is searched to locate the required function. When the function is 
found, the appropriate object file is copied into the executable program. 

In Chapter 4, you’ll see exactly how a library can be created and referenced in 
various programming languages and operating systems. Even before then, you 
still need to understand the two different approaches of integrating a library into 
an executable program. 

Static Linking 

In this first approach, a library is just a collection of individual object files. 
During the build process, when the linker tool determines that a function is 
required, it extracts the appropriate object file from the library and copies it into 
the executable program. In this sense, the library’s object file appears identical 
to any of the object files the developer created on his or her own. 
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Note that the act of linking a library with the developer’s own software hap-
pens during the build process. Therefore, you end up with a single executable 
program to be loaded onto the target machine (see Figure 3.6). In this sense, a 
static library is a build-time concept rather than anything that exists at runtime. 
After the final executable program has been created, it’s impossible to separate 
the program from its libraries. 

Operating System

Single
Executable Program
(with built-in libraries)

Figure 3.6 A program with libraries statically linked into the executable program. 

Dynamic Linking 

In contrast to static linking, the dynamic linking method doesn’t copy the object 
file into the executable image; instead, it notes which libraries are required to 
successfully execute the program. When the program later starts running, the 
libraries are loaded into memory as separate entities and then are connected 
with the main program (see Figure 3.7). A special dynamic linker is required 
to connect the links between the functions that the program requires and the 
libraries that supply those functions. 

From a build system perspective, a dynamic library is a disk file that is con-
structed by joining object files. The library is then collected into the release 
package and installed on the target machine. Only then can it be loaded into the 
machine’s memory. 
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Operating System

Machine
Code Program

Dynamic
Linker

Library

Library

Library

Library

Figure 3.7 A program with libraries dynamically linked at runtime. 

Although this is a more complex approach than static linking, using dynamic 
libraries offers two significant benefits. First, it’s possible to upgrade to a newer 
version of a library (adding features or fixing bugs), without needing to re-create 
the executable program. Second, many operating systems can optimize their 
memory usage by loading only a single copy of the library into memory, yet 
sharing it with other programs that require that same library. These features 
aren’t possible when using the static linking method. 

For more details on how static and dynamic linking work, refer to [18] in 
References.

Configuration and Data Files 

Every computer program in existence uses some type of data, even if it’s just 
adding two numbers. In some cases, the data is directly linked into the execut-
able program, as is the case with an initialized array of numbers. However, any 
program of significant size uses external data sources, such as a file on a disk. 
Your program makes calls into the operating system to request that data be read 
into memory (see Figure 3.8).

There’s no limit to the ways in which data can be used. For example, all these 
are forms of data: 

• A bitmap graphic image displayed onscreen 

• A sound stored as a digitized wave form 

• A configuration file that customizes the behavior of a program 



ptg

Chapter 3 The Runtime View of a Program44

•  A set of documents containing online help text 

•  A database containing names and addresses 

Operating System

Executable
Program

Figure 3.8 Various data files read into the program at runtime. 

From the perspective of a build system, you need to transfer these data files 
into the program’s release package so that they can be installed on the target 
machine. The exception to this is if the data files are stored on an Internet site 
that could be accessed remotely. 

Although data files are often copied into the release package without modifi-
cation, in some scenarios data files must first be modified or created by the build 
process. For example, a configuration file might need to include the software’s 
version number, such as 4.2.3. Furthermore, a database might not have any 
content when the software is first built, so the build process simply creates an 
empty set of database files. 

Distributed Programs 

The final runtime concept to consider is programs distributed around multiple 
parts of the system. Most modern operating systems enable you to have multi-
ple programs running at the same time, so you also have the option of multiple 
programs communicating together as a single piece of software. This concept 
can be extended to have geographically remote computers communicate across 
a network but still behave as if they’re a single program. 

In build systems, the concept of a release package now plays a more impor-
tant role. No longer are you building a single executable program that’s stored 
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in a single disk file. Instead, you must build and package many different execut-
able programs, along with the necessary configuration files and start-up scripts. 

For example, a software system might use the client/server model, with a 
single server program running on one computer and a large number of client 
programs running on many other computers (see Figure 3.9). In this scenario, 
the build system could create two release packages, given that different people 
will be installing the server program versus the client program. Alternatively, the 
same release package could be used to install the two separate programs. 

Operating System

Client
Program

Operating System

Server
Program

Network
Communication

Figure 3.9 A single program divided across two physical machines, using a network to 
communicate.

To support multiple programs, the build system also requires a few addi-
tional features. For example, developers need to specify which executable pro-
gram should be built, rather than attempting to rebuild and repackage all files 
each time they build the software. Given that developers often work on one 
executable program at a time, this can lead to some important productivity 
improvements.

The build system must also support the concept of a shared application pro-
gramming interface (API). That is, the different programs communicate with 
each other by sharing a number of data structures (often by sending those data 
structures across a network). Each program that the build system can construct 
must use the same set of data definitions to avoid consistency problems. 

The key message here is that build systems can be detailed, especially when 
the software becomes larger and more complex because of the distributed 
runtime view. 
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Summary

The way a program is loaded into memory and executed has a significant impact 
on the design of the software build system. An executable program is loaded 
into memory and executed. It can contain native machine code instructions, or 
perhaps byte-code instructions to be interpreted or compiled at runtime. The 
software’s build system needs to do a different amount of work, depending on 
how much upfront compilation is required. 

Code libraries are a convenient way of reusing functionality between differ-
ent programs. Static libraries are linked with custom-written source code as part 
of the build process, whereas dynamic libraries are linked with the program 
after it’s loaded into memory. 

A software release package can contain any number of data files, including 
graphic images, sound files, and database content. In addition, a single piece of 
software can actually consist of multiple executable programs, communicating 
together via a network or as multiple processes on the same machine. 
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File Types and Compilation 
Tools

In contrast to Chapters 1, 2, and 3, which discussed the conceptual view of a 
build system, this chapter takes a more hands-on view of the various files and 
compilation tools that can be used during a build. You’ll examine the tools used 
with several programming languages, including C, C++, Java, and C#, and look 
at command-line examples on both Linux and Windows operating systems. These 
languages and operating systems were chosen solely because of their popularity. 

In addition, this chapter briefly touches on file formats that could appear in 
a build system. For example, any nontrivial program contains graphical images, 
sound waveforms, or database content. This data is important for the success-
ful execution of the program and, therefore, must be constructed and packaged 
appropriately.

In reference to the big picture, this chapter focuses on the compilation tools 
that convert individual files from the source tree into individual files in the 
object tree (see Figure 4.1). As an extension, object files can also be converted 
into other object files, both of which are stored in the object tree. 

Version-
Control

Tool

Source 
Tree

Object
Tree

Release
Package

Compilation Tools

Build Machine

Target Machine

Figure 4.1 Big-picture diagram (for traditional compiled software), showing that 
source files are compiled into object files. 

47
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Recall the distinction between build tools and  compilation tools. This chapter 
focuses only on compilation tools, each of which translates one or more input 
files into an equivalent output file. On the other hand, a build tool such as Make 
or Ant is responsible for the higher-level orchestration of the build process, such 
as deciding which files need to be compiled and which compilation tools to use. 
Part II, “The Build Tools,” focuses more on build tools. 

As you might expect, anyone constructing a build system must be intimately 
familiar with the file types being manipulated and the tools being used. This 
knowledge is used on a regular basis, especially when you need to change the 
build process or find out whether it’s working correctly. If the build tool fails 
to create a valid executable program, you need the skills to determine the root 
cause of the problem. 

This chapter focuses on the following questions: 

• What is the purpose of each source and object file type? 

• What is their basic format? 

• Which compilation tool is used to generate the object files? 

• What are some important options when using the compilation tool? 

• How do you examine the content of the file to see if it looks valid? 

Because of the sheer number and complexity of these tools, this chapter can 
provide only an overview of each type. Additionally, this chapter focuses only 
on the aspects of the language and tools relevant to build systems. To fill in the 
gaps, you’re encouraged to read the reference manual for each of the tools. 

C/C++

The C Programming Language [19] was created in 1969, as the language to be 
used with the UNIX Operating System (from which Linux is derived). Despite 
its age, a significant number of new programs are still written in C, making it 
one of the oldest programming languages in active use. C has been standardized 
by the International Standards Organization (ISO), and a number of versions 
have been defined (most recently, the C99 version [20]). 

Although C can be used for developing all types of computer software, newly 
developed C code is most likely seen when CPU performance and “bare-metal” 
access to the computer’s hardware is important. Compared with most other 
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languages, programming in C is just one step above programming directly in 
assembly language. C doesn’t provide features such as garbage collection or 
multithreading support, and it doesn’t have any complex data types built into 
the language. Therefore, it’s a compact and efficient language, often the choice 
for embedded systems. 

In the early 1980s, the C++ language [21] was created as a means to add 
object-oriented concepts to the basic C language. C++ was designed to be a 
superset of C, so the two languages can be used in the same program—and even 
within the same source file. The language includes concepts such as classes, 
inheritance, and templates, and has complex data structures that aren’t a 
standard part of C. Given the newer features, C++ is more commonly used for 
application programming, although it still can support embedded systems and 
high-performance computing. 

Compilation Tools 

Many C compilers exist, although the most widely used is likely the C compiler 
from the GNU Compiler Collection (GCC) [17]. First released in 1987, GCC 
has become the de facto standard for compiling open-source software and is 
used extensively for commercial development. One of the major strengths of 
GCC is its capability to generate object code for a wide range of CPU types, 
including lesser-known embedded processors (such as in video game consoles 
and kitchen appliances). 

Other popular compilers, which this book doesn’t examine in detail, include 
the Microsoft Visual Studio C++ compiler [22], the Green Hills Compiler [23], 
and the Intel C++ compiler [24]. 

GCC uses the toolchain approach to compiling code. As the name suggests, 
it consists of a chain of tools invoked in the necessary sequence. This consists of 
the following components: 

 1.  The C preprocessor, for expanding macro definitions 

 2.  The C compiler, which translates source code into assembly language 

 3.  The assembler, which translates assembly language into object files 

 4.  The linker, which joins different object files into a single executable 
program

The upcoming examples demonstrate the compilation of C and C++ code, 
using the GCC compiler on Linux. Although the details vary from platform 
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to platform, the same basic concepts apply to most modern systems, includ-
ing Microsoft Windows. Note that many of the commands mentioned actually 
existed long before the introduction of Linux, so the book refers to them as 
UNIX commands. 

If you plan to use GCC in your build system, spend time becoming familiar 
with GCC’s usage and options. The GCC manual is a good starting point [25], 
but you can also find textbooks written on the subject [26]. Although this book 
covers some of the basic options, there are literally hundreds of configuration 
parameters.

Source Files 

The basic units of compilation in the C language are the C source file (with file 
suffix .c) and the C header file (with file suffix  .h). By convention, a source file 
contains the definition of functions and global variables, and this is where most 
of the source code is kept. On the other hand, a header file contains such things 
as type, macro, and constant definitions, and function prototypes that declare 
which parameters and return values each function takes. 

When compiling code, each C source file is compiled into a single object file 
(with file suffix .o in UNIX or  .obj in Windows). However, each source file 
can include header files to obtain all the definitions it needs. When structuring 
software, header files are used for defining macros, constants, types, or function 
prototypes that must be shared between multiple source files. 

In the following example are two source files ( main.c and  hello.c) and a 
single header file ( hello.h). The main.c file is as follows: 

 1  #include "hello.h"
 2
 3  int main(int argc, char *argv[])
 4  {
 5     if (MAX(1,2) == 2){
 6         hello("World");
 7     }
 8
 9     return 0;
10  } 

Line 1 uses the #include directive to state that  hello.h must also be scanned 
for additional definitions. As you’ll see shortly, one of those definitions is the 
MAX macro, which returns the maximum of two numeric input values. This 
macro is used inside the body of the main function, on line 5. 

Next, line 6 calls the hello function, which also happens to be defined in 
another file, hello.c. The capability to call functions defined in other source 
files demonstrates another way in which source files are logically linked. 
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The second source file, hello.c, includes two header files: 

1  #include <stdio.h>
2  #include "hello.h"
3
4  void hello(const char *string)
5  {
6     printf("Hello %s\n", string);
7  } 

The first header file is the built-in stdio.h, providing information about the 
standard printf function, which is used on line 6. The second header file is 
hello.h, which is the same file that was included into main.c. This guarantees 
that both main.c and hello.c have a consistent view of their shared definitions. 

The final file in this example is hello.h, the header file that was referenced 
by both the source files. 

1  extern void hello(const char *string);
2
3  #define MAX(a,b) ((a) > (b) ? (a) : (b)) 

On line 1 is a function prototype that informs the compiler which parameters 
and return value the hello function expects. By including this prototype in each 
of the source files, the compiler can validate that the hello function is defined 
and used consistently in all places. 

Next, line 3 shows the definition of the MAX macro that you’ve used before. 
A macro is different from a function, in that it exists only at compile time and is 
textually replaced wherever it’s used in the source code. You’ll see an example 
of this shortly. 

When you compile the example, you end up with two different object files: 
main.o and  hello.o. Note that the –c option to GCC requests that the source 
files be compiled into object files. 

$ gcc –c hello.c
$ gcc –c main.c
$ ls
hello.c  hello.h  hello.o  main.c  main.o 

No object file is generated for hello.h, because header files can be used only 
by including them in a source file; they can’t be compiled on their own. 

By using the –E option to GCC, you can see the C preprocessor portion of the 
toolchain at work. This option instructs GCC to only process #include direc-
tives and macro expansions instead of actually doing any compilation work (as 
was the case with –c). Note that, in the following example, hello.h has essen-
tially been merged into the same compilation unit as main.c, and the MAX macro 
in the body of the main function has been replaced by its definition. 



ptg

Chapter 4 File Types and Compilation Tools52

$ gcc –E main.c
1 "main.c"
# 1 "hello.h" 1
extern void hello(const char *string);
# 2 "main.c" 2

int main(int argc, char *argv[])
{
    if (((1) > (2) ? (1) : (2)) == 2){
        hello("World");
    }

    return 0;
}

Although GCC implicitly calls the preprocessor, and the developer doesn’t 
normally need to think about it, examining the output of the preprocessor is 
useful in some cases. For example, if your program appears to contain a bug that 
might be caused by a macro, it’s often useful to expand the macro and look at 
the underlying C code that’s being compiled. Second, if a type or constant defini-
tion appears to be missing (causing compile errors), it’s useful to expand the C 
code to determine whether the definition is actually included. 

Assembly Language Files 

With the GCC compiler, creating an object file from a source file is a multistep 
process. You’ve already explored the preprocessing step ( -E option), but it’s also 
interesting to examine the generation of assembly language code ( -S option). 
Keep in mind that GCC uses the toolchain approach, in which the source file is 
first preprocessed, then compiled into assembly language, and then assembled in 
object files that contain machine code instructions. 

The following output shows the result of asking GCC to create an assembler 
file (with file suffix .s). For more details of the file’s format, refer to any book 
that describes your computer’s assembly language. (In this example, it’s Intel 
x86 code, often referred to as i386-series code.) 

$ gcc –S hello.c
$ cat hello.s
    .file   "hello.c"
    .section        .rodata
.LC0:
    .string "Hello %s\n"
    .text
.globl hello
    .type   hello, @function
hello:
    pushl   %ebp
    movl    %esp, %ebp
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    subl    $8, %esp
    movl    8(%ebp), %eax
    movl    %eax, 4(%esp)
    movl    $.LC0, (%esp)
    call    printf
    leave
    ret 

Although this is an intermediate step that’s usually hidden from the devel-
oper, you should care about assembly language files for several reasons. Some 
software is written directly in assembly language, so your build system must 
cater to that need. This is usually in system-level programming where high-
performance is required or special CPU features must be used. Assembly language 
programming isn’t for the faint-of-heart and isn’t the slightest bit portable, so 
try to limit yourself to high-level languages, if you can. 

It’s not unheard of for developers to complain that the compiler is generating 
bad code. Using the –S option in GCC enables you to view the exact sequence 
of instructions the CPU will execute. If the sequence of instructions doesn’t look 
correct when you compare it with the C code, the compiler is probably at fault. 
For popular CPU types such as x86 and PowerPC (used and tested for many 
years), you’re less likely to see this type of compiler error. 

Sometimes, even when you use only C source files, you might see a compile 
error reported at the assembly language level. The message may be reported in 
some obscure temporary file that GCC created internally. In this case, either 
you’ve hit another compiler bug or somebody has inserted bad assembly lan-
guage code into an asm directive in your C source file. 

Object Files 

An object file is a container for machine code instructions. It’s not yet capable 
of being executed by the computer, because it still needs to be linked with other 
object files and all the required libraries. As you saw earlier, to compile a source 
file into object code, you use the –c option for GCC: 

$ gcc –c hello.c
$ file hello.o
hello.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 
(SYSV), not
stripped

An object file isn’t human readable (it’s just a series of numbers), so you use 
the UNIX file command to give you some high-level information on the con-
tent. In this case, file is confirming that you produced the following type of file: 
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• The object file uses the Executable and Linking Format (ELF) structure 
when storing the various components of the program. ELF [27] is a com-
mon object file format that supersedes older formats, such as a.out and 
COFF.

• The file is a 32-bit program, as distinct from newer 64-bit programs or 
older 16-bit programs. 

• The data is stored in least significant byte format (little endian), as opposed 
to most significant byte format (big endian).

• The machine instructions are for the Intel x86 family of processors, as 
opposed to MIPS, PowerPC, or many other CPU types. 

• The file is still relocatable and hasn’t yet been stripped. This means that 
the file contains the information necessary to link it with other object files 
and libraries but doesn’t contain enough information to be loaded into 
memory and executed. 

If your build system produces programs for a single CPU type, this informa-
tion will only be of passing interest. On the other hand, if you’re compiling for 
a multiple CPU–type system, you must pay great attention to get all the file type 
details correct. If your build system accidentally mixed two types of object file, 
you’d end up with a lot of confusing errors in which the files couldn’t be linked. 
Even trying to mix 32-bit and 64-bit object files can cause obscure compilation 
errors, even if the CPU family is the same. 

Another way to examine an object file is to ask which symbols that file 
defines or requires. This is equivalent to asking which functions and variables 
are defined in a C source file, or which functions and variables are used by that 
file but defined in some other file. Recall how you used header files to define the 
function prototypes; now you’re looking at the same mechanism from the object 
file’s perspective. 

Using the UNIX nm command, you can determine that  hello.o defines the 
hello function (with machine code starting at position 0 within the file). It 
also requires that some other object file define the printf function, because it’s 
undefined in hello.o.

$ nm hello.o
00000000 T hello
         U printf 

The nm command is invaluable for resolving  undefined symbol compila-
tion errors, in which a function is required but, for some reason, isn’t being 
linked into the executable program. By running the nm command on all your 
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object files, you can locate where the missing symbol is referenced and where 
it’s defined. 

For power users, the UNIX objdump command can provide even more 
information about your object files. The following example shows how the 
–x option provides summary information about hello.o. It provides exten-
sive information about the file’s type, the list of sections it contains (such as 
program text, data, uninitialized data, and read-only data), where those sec-
tions are located within the file, and where they’ll be loaded into memory. It 
also provides a superset of the information provided by both the file and 
nm commands. 

$ objdump -x hello.o
hello.o:     file format elf32-i386
hello.o
architecture: i386, flags 0x00000011:
HAS_RELOC, HAS_SYMS
start address 0x00000000

Sections:
Idx Name          Size      VMA       LMA       File off  Algn

  0 .text         00000014  00000000  00000000  00000034  2**2
                  CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
  1 .data         00000000  00000000  00000000  00000048  2**2
                  CONTENTS, ALLOC, LOAD, DATA
  2 .bss          00000000  00000000  00000000  00000048  2**2
                  ALLOC
  3 .rodata       0000000a  00000000  00000000  00000048  2**0
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  4 .comment      0000003a  00000000  00000000  00000052  2**0
                  CONTENTS, READONLY
  5 .comment.SUSE.OPTs 00000005 00000000 00000000 0000008c 2**0
                  CONTENTS, READONLY
  6 .note.GNU-stack 00000000  00000000  00000000  00000091  2**0
                  CONTENTS, READONLY
SYMBOL TABLE:
00000000 l    df *ABS*  00000000 hello.c
00000000 l    d  .text    00000000 .text
00000000 l    d  .data  00000000 .data
00000000 l    d  .bss   00000000 .bss
00000000 l    d  .rodata        00000000
.rodata
00000000 l    d  .comment.SUSE.OPTs
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00000000 .comment.SUSE.OPTs
00000000 l    d  .note.GNU-stack
00000000 .note.GNU-stack
00000000 l    d  .comment       00000000
.comment
00000000 g     F .text  00000014 hello
00000000         *UND*  00000000 printf

RELOCATION RECORDS FOR [.text]:
OFFSET   TYPE              VALUE
00000009 R_386_32          .rodata
0000000e R_386_PC32        printf 

The objdump command has many different options that are worth learning 
about [28]. It’s highly recommended you become an expert in using objdump,
especially if you’re doing advanced work with compilers and linkers. This tool 
also provides the capability to disassemble machine code back into assembly 
language, which is important if you suspect that your assembler is generating 
bad machine code instructions. 

As a final resort, you may also consider using the UNIX hexdump command 
to examine the raw bytes in the file. This is a primitive way to examine files, but 
if objdump fails for some reason (such as a corrupt file), it might be your only 
hope.

Executable Programs 

The final step in the C/C++ example is to link the object files into a single execut-
able program. This is done by providing the name of the program (with the –o
option) and listing all the object files that should be linked. 

$ gcc –o hello hello.o main.o 

For the sake of convenience, GCC enables you to execute the whole toolchain 
at once instead of explicitly listing each step (preprocess, compile, assemble, 
link). To use this feature, you specify the source code filenames instead of the 
object filenames. 

$ gcc –o hello hello.c main.c 

Although doing everything in one command is a useful feature for small pro-
grams, a large build system wouldn’t do things this way. Instead, you’d need 
more control over when and how files are compiled and linked, especially if only 
some of the source files have changed. In most build systems, you see the compi-
lation from .c files to  .o files done using the  –c option, followed by a separate 
linking phase that joins all the object files. 
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Finally, to make sure you generated a suitable executable file, use the UNIX 
file command again. 

$ file hello
hello: ELF 32-bit LSB executable, Intel 80386, version 1 
(SYSV), for

GNU/Linux 2.6.4, dynamically linked (uses shared libs), not 
stripped

The file command’s output is similar, except that you’ve now constructed 
an executable program. This file can be loaded into memory and executed. 

Static Libraries 

The Linux operating system supports both statically and dynamically linked 
libraries. As a reminder, static libraries are just an archive of object files that can 
be linked into an executable program (if required), whereas a dynamic library is 
loaded at runtime and the program directly calls the required functions. 

The following example shows how to create a static library containing four 
object files ( sqrt.o, sine.o, cosine.o, and tan.o). Static libraries are also 
known as archives, given that all they’re doing is collecting multiple files into a 
single larger file. The object files aren’t modified in any way and can easily be 
extracted from the archive and returned to their original form. 

$ gcc -c sqrt.c
$ gcc -c sine.c
$ gcc -c cosine.c
$ gcc -c tan.c

$ ar -rs mymath.a sqrt.o sine.o cosine.o tan.o
ar: creating mymath.a

$ ar -t mymath.a
sqrt.o
sine.o
cosine.o
tan.o

The UNIX ar command is responsible for creating the static library archive 
(with the -rs option) and can also be used to examine the content of the archive 
(with the -t option). Options exist for extracting object files and writing their 
content back to disk, but that’s not a common operation for build systems. 

In the final step, you specify both the main.o object file (the main program) 
and the mymath.a archive file on the GCC command line. 

$ gcc –c main.c
$ gcc –o prog main.o mymath.a 
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GCC knows how to manage these archive files and can link them into the 
program, but only if it needs to. If main.o actually requires any of the archive’s 
object files, they’re included in the executable program. Conversely, other object 
files that main.o doesn’t require are not linked. 

Dynamic Libraries 

In the case of dynamically linked libraries, the process is more complex. In par-
ticular, you must allow for the fact that linking happens at runtime rather than 
when the program is compiled. This necessitates a change to the compilation 
sequence.

All object files must now be created using special position-independent code
(PIC) so that they can be loaded at any memory location the program requires. 
The shared library is created as if it were an executable program in its own right, 
except that you use the –shared option to make it a dynamic library (with the 
.so suffix). 

$ gcc -c -fPIC sqrt.c
$ gcc -c -fPIC sine.c
$ gcc -c -fPIC cosine.c
$ gcc -c -fPIC tan.c
$ gcc -shared -o libmymath.so sqrt.o sine.o cosine.o tan.o

$ file libmymath.so
libmymath.so: ELF 32-bit LSB shared object, Intel 80386, 
version 1 (SYSV),
dynamically linked, not stripped 

To make use of the new shared library, you specify the name of that library 
on the standard GCC linker line. The –l option asks the linker to include the 
libmymath.so library. Note that the  –L option informs the linker of the direc-
tory where the library can be found—in this case, that is the current directory. 

$ gcc –c main.c
$ gcc -o prog main.c -L. –lmymath 

To verify that everything works correctly, you use the UNIX ldd command 
to see which dynamic libraries need to be loaded into memory when the main 
program is executed. 

$ ldd prog
        linux-gate.so.1 =>  (0xffffe000)
        libmymath.so => not found
        libc.so.6 => /lib/libc.so.6 (0xb7f3a000)
        /lib/ld-linux.so.2 (0xb80ab000) 
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The first observation is that there are four libraries, with only one being 
yours. GCC implicitly added the remaining three libraries so that the program 
would execute correctly. One of these libraries ( libc.so.6) is the standard C 
language library that provides the implementation of functions such as printf.

The second observation is that the libmymath.so library can’t be found, and 
trying to run the prog executable will therefore fail. Although you used the  –L
option to tell GCC where the library is stored (the current directory), you also 
need to inform the operating system where it can be loaded. Directories such as 
/lib and  /usr/lib are searched automatically, but for nonstandard locations, 
you first must set the LD_LIBRARY_PATH environment variable. 

$ export LD_LIBRARY_PATH=.
$ ldd prog
        linux-gate.so.1 =>  (0xffffe000)
        libmymath.so => ./libmymath.so (0xb80a7000)
        libc.so.6 => /lib/libc.so.6 (0xb7f3a000)
        /lib/ld-linux.so.2 (0xb80ab000) 

This time, the library can be found. Of course, in a real situation, you would 
set LD_LIBRARY_PATH to the absolute pathname where  libmymath.so is installed, 
instead of asking the operating system to find the library in the current directory 
(which would be a major security hole). 

As a reminder, using dynamic libraries enables you to upgrade them without 
recompiling the executable program. Dynamic libraries can also save a lot of the 
computer’s memory, because it’s possible to share a single copy among multiple 
programs instead of requiring each program to have its own copy (as is the case 
with static libraries). 

C++ Compilation 

Given that C++ is a superset of the C language, every effort has been made to 
ensure that the object files are consistent between the two languages. However, 
the file formats are different in a few places. Most notably, C++ is capable of 
performing link-time type checking, whereas C programs must do all their type 
checking at compile time. 

In the previous example, hello.c and  main.c both included the prototype 
definition of the hello function, by including  hello.h. The compiler could 
then ensure that the caller of the function ( main.c) and the definer of the func-
tion ( hello.c) are in total agreement about the type of parameters and return 
value expected. 

On the other hand, if the two files used inconsistent definitions for the hello
function (that is, they didn’t both include hello.h), there would be no way for 
the linker to complain. After all, the object file states only that hello is defined, 
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or required by that file, and never mentions that it has parameters. The linker 
would have no way to identify the parameter type mismatch. 

For C++, the compiler (called g++) gets around this problem by generating 
more detailed object file information. In the following output, notice that the 
hello symbol has been  mangled (yes, that’s the technical term) to include extra 
characters that specify the type information. 

$ g++ -c hello.c
$ nm hello.o
00000000 T _Z5helloPc
         U __gxx_personality_v0
         U printf 

You end up with the symbol name Z5helloPc. If two object files don’t use 
the same type information, the mangled names won’t match when the program 
is linked, and the linking step will fail. 

If you’re observant, you notice that the printf function doesn’t have a man-
gled name. This is because printf is a C-language function (not C++), and the 
compiler is explicitly instructed to treat it as a C function. This is an important 
feature that allows C++ and C object files to be linked correctly without causing 
type mismatch errors in legacy source code. 

That completes the analysis of the files and compilation steps for C and C++ 
software. You haven’t explored any of the language details, but when creating a 
build system, you care only about the sequence of compilation steps required to 
create an executable program, not the content of the software itself. 

Let’s now focus on Java-based software and learn how Java programs are 
compiled into executable form. 

Java

The Java programming language is now one of the most popular systems for 
developing new application code. Sun Microsystems (now Oracle) publicly re-
leased it in 1995, but Java was made famous when it was incorporated into 
the Netscape web browser. Although many people saw Java as a way of creat-
ing cute web page animations, it quickly became a full-fledged general-purpose 
language that could execute programs on a wide range of desktop and server 
machines (including Linux, Mac OS X, Windows, and Solaris). 

Java was derived from a number of earlier languages, with C++ being a key 
contributor. However, many of the quirks in the C++ language were removed 
and replaced by “safer” features. For example, C++ developers can manipulate 
pointers using arithmetic, which is a frequent cause of memory corruption prob-
lems. Additionally, C++ developers often forget to deallocate memory when it’s 
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no longer required, potentially causing memory leaks. Both of these limitations 
have been removed from the Java language and replaced by safer mechanisms 
that enable faster and more accurate software development. 

One big selling point of the Java language has been its “write once, run any-
where” philosophy. That is, it should be possible to compile a Java program 
on a Linux machine, yet run it on a Windows or Solaris machine without any 
modification. This is achieved by using a standard set of byte codes that are 
interpreted by the Java Virtual Machine (JVM) [29]. Also, because of Java’s 
security features, it’s possible to restrict the environment in which a Java pro-
gram executes, therefore allowing untrusted programs to be executed without 
fear of harming the host computer. 

Because of Java’s general-purpose nature, it’s currently used in a wide range 
of applications, including desktop applications, business applications, and web-
based systems. One area in which Java is not so strong is in high-performance 
systems where execution time is highly optimized. 

Compilation Tools 

Sun Microsystems (now a subsidiary of Oracle) maintains the standard Java 
programming environment. The Java Development Kit (JDK) has gone through 
numerous iterations since the inception of Java and is still actively being im-
proved as the Java language grows. The JDK is shipped with both a set of com-
pilation tools (specifically javac) and a number of standard Java libraries. 

The JDK is often viewed as being a reference implementation of the language. 
Other vendors are welcome to create their own Java implementation, as long as 
it conforms to the JDK standard. The advantage of this approach is that each 
vendor is permitted to add platform support and performance optimizations, 
while ensuring that they can still execute programs compiled by other standard 
version of Java. 

Although the JDK is the most popular implementation and can be down-
loaded for free [30], you can consider several other options. The OpenJDK 
implementation [31] is an open-source spinoff from the original JDK product, 
whereas the GNU Java Compiler [32] (from the Free Software Foundation) is a 
completely separate implementation. It’s also worth considering the Eclipse Java 
Compiler (ECJ), which is mostly used within the Eclipse IDE [33]. Finally, ven-
dors such as IBM (the Jikes compiler) and Microsoft (Visual J++) have provided 
Java implementations, although these are no longer actively supported. 

The examples in this book use the JDK system on a Microsoft Windows 
environment. Given Java’s cross-platform nature, the same concepts apply on 
all other operating system types (such as Linux and Solaris). Also, as with the 
discussion of C and C++, this book focuses exclusively on the language and tool 
features that are relevant to build systems. 
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Source Files 

In Java, the basic unit of source code is the .java file. These files contain Java 
class definitions (typically one class per source file), which, in turn, contain the 
definitions of constants, variables, and methods. Unlike C and C++, there’s no 
concept of preprocessing a source file and no capability to include header files. 

Sharing information between classes occurs when one class explicitly imports 
variables and methods that are defined within another class. A developer can 
control when a variable or method is available for export or may decide to keep 
it hidden for private use within a single class definition. 

Consider an example in which the source code is stored in the filecom\arapiki\
examples\Hello.java. Note the Java convention in which files are stored 
within a hierarchy of directories that indicate which package the file belongs to. 
This encourages developers to think hard about the structure of their code (and, 
hence, their source tree) before they start to write their software. 

In Hello.java, you define a new Java class, named Hello:

 1  package com.arapiki.examples;
 2
 3  public class Hello {
 4
 5      private String words;
 6
 7      public Hello(String message) {
 8         words = message;
 9      }
10
11      public void speak() {
12          System.out.println("Hello " + words);
13      }
14  } 

When an object of the Hello class is first created, the  Hello method (lines 
7–9) is implicitly executed (this is known as a constructor). Later, users of the 
Hello class can call the  speak method (lines 11–13) to perform operations on 
the data that Hello encapsulates. Note that, on line 8, the constructor saves a 
string message to be displayed when speak is called. 

The second source file, com\arapiki\examples\Main.java, is the main 
entry point of the program: 

 1  package com.arapiki.examples;
 2
 3  import com.arapiki.examples.Hello;
 4
 5  public class Main {
 6
 7      public static void main(String args[]) {
 8         Hello speaker = new Hello("World");
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 9         speaker.speak();
10      }
11  } 

In the main method (lines 7–10), you create a new object of type  Hello and 
pass in a String-typed message as a parameter. You then ask the newly created 
object to execute its speak method. 

It’s worth noting that, in Main.java, you use an explicit import directive 
(line 3) to ask the Java compiler to look for the definition of the Hello class. 
Using this information, the compiler determines the various types, constants, 
and methods that the Hello class defines. If mismatches arise between the defi-
nition of Hello and the reference to that class, they’re flagged at compile time. 
This is similar to the concept of header files in C, except that there’s no need 
for duplicated code between two different files (such as hello.c and  hello.h).

Note that, on line 12 of Hello.java, you explicitly reference System.out.
println by its fully qualified name instead of using an  import directive. This 
approach has the same effect with respect to gathering type information and 
performing type checking. 

The Java language also supports the concept of an interface, which is essen-
tially a class that doesn’t have any of its methods implemented. These ensure 
type compatibility between objects of different classes. From the perspective of 
the build system, little difference exists between interfaces and a true class, so 
this book doesn’t discuss them further. 

Object Files 

The object file format for a Java class is known as a class file and has the 
suffix of .class. Because of Java’s “run anywhere” approach, a class file uses 
machine-independent byte codes to describe the flow of the program instead of 
compiling directly into native machine code. A Java Virtual Machine (JVM) is 
required to load and interpret these byte codes, although the JVM likely first 
translates them into native machine code before actually executing the program. 

To translate Java source files into class files, you use the javac command. 
Because of Java’s package system, you’re required to invoke the compiler from 
the top of the directory hierarchy instead of starting in the directory containing 
the source files. 

C:\Work> javac com\arapiki\examples\Main.java

C:\Work> dir com\arapiki\examples
Directory of C:\Work

07/24/2009  09:17 AM    <DIR>          .
07/24/2009  09:17 AM    <DIR>          ..
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07/24/2009  09:47 AM               632 Hello.class
07/24/2009  09:17 AM               227 Hello.java
07/24/2009  09:47 AM               391 Main.class
07/24/2009  09:18 AM               210 Main.java
               4 File(s)          1,460 bytes
               2 Dir(s)  17,457,893,376 bytes free 

Note that because the Main class imports definitions from the  Hello class, 
the Java compiler also proceeds to compile Hello.java, even though it wasn’t 
explicitly listed on the javac command line. 

In general, a Java compilation produces one class file for each Java file. The 
exception is if you used Java’s inner class concept, in which multiple classes can 
be defined within a single Java source file. As you’ll see later, this mechanism 
can cause problems for your build system. 

To check that you’ve generated a valid class file, you now use the javap com-
mand. Not many command-line options exist for javap, but it does provide the 
capability to list the methods defined in the file, as well as to view the byte codes 
for each method. 

C:\Work\com\arapiki\examples> javap Hello

Compiled from "Hello.java"
public class com.arapiki.examples.Hello extends java.lang.
Object{

    public com.arapiki.examples.Hello(java.lang.String);
    public void speak();
}

C:\Work\com\arapiki\examples> javap -c Hello

Compiled from "Hello.java"
public class com.arapiki.examples.Hello extends java.lang. 
Object{

public com.arapiki.examples.Hello(java.lang.String); 
  Code:
   0:   aload_0
   1:   invokespecial   #1; //Method java/lang/ 
Object."<init>":()V

   4:   aload_0
   5:   aload_1
   6:   putfield        #2; //Field words:Ljava/lang/String;
   9:   return

public void speak();
  Code:
   0:   getstatic  #3; //Field java/lang/System.out:Ljava/io/ 
PrintStream;

   3:   new     #4;    //class java/lang/StringBuilder
   6:   dup
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   7:   invokespecial   #5; //Method java/lang/ 
StringBuilder."<init>":()V

   10:  ldc     #6;         //String Hello
   12:  invokevirtual #7; //Method java/lang/StringBuilder.
append:

                          // (Ljava/lang/String;)Ljava/lang/
StringBuilder;

   15:  aload_0
   16:  getfield         #2; //Field words:Ljava/lang/String;
   19:  invokevirtual   #7; //Method java/lang/StringBuilder.
append:

                            //(Ljava/lang/String;)Ljava/lang/
StringBuilder;

   22:  invokevirtual   #8; //Method java/lang/StringBuilder.
toString:()

                            // Ljava/lang/String;
   25:  invokevirtual   #9; //Method java/io/PrintStream.
println:

                            //(Ljava/lang/String;)V
   28:  return
}

Examining these byte codes in detail gives you a rough idea of how they relate 
to the original Hello.java file. For more information about Java byte codes, 
refer to [29] in References. 

Executable Programs 

One of the fundamental concepts in the world of Java programming is dynam-
ic class loading. No build-time link step is required to produce an executable 
program. Instead, Java classes are individually loaded into memory when a run-
ning program needs them. Java executable programs are thus quite different in 
nature from C/C++ programs, and there’s no single executable program image 
to be loaded. 

In reality, Java programs are simply a collection of dynamic libraries, 
although individual classes are loaded one at a time instead of as part of much 
larger shared libraries. 

A Java program requires two things to execute: 

• The JVM must be provided with the name of a class that contains a main
method. This is used as the starting point for execution. 

• The JVM must also be provided with a class path, which is used to identify 
where additional classes can be located. 
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Let’s see how the java tool (the JDK’s virtual machine) executes the previous 
“Hello World” example. Note the use of the fully qualified class name (contain-
ing periods) rather than the directory path (containing slashes or backslashes). 

C:\Work> java com.arapiki.examples.Main
Hello World 

If you followed along when looking at the source code in Main.java and 
Hello.java, the program output shouldn’t surprise you. What’s more interest-
ing is the sequence of events taking place under the covers of the JVM inter-
preter. If you run that same java command again, but this time with verbose 
output enabled, you see additional information on which classes are loaded. 

C:\Work> javac –verbose:class com.arapiki.examples.Main
[Loaded java.lang.Object from shared objects file]
[Loaded java.io.Serializable from shared objects file]
[Loaded java.lang.Comparable from shared objects file]
[Loaded java.lang.CharSequence from shared objects file]
[Loaded java.lang.String from shared objects file]
...
[... lots of output removed ...]
...
[Loaded java.security.Principal from shared objects file]
[Loaded java.security.cert.Certificate from shared objects file]
[Loaded com.arapiki.examples.Main from file:/C:/Work/]
[Loaded com.arapiki.examples.Hello from file:/C:/Work/]
Hello World 

The output is quite long because of all the built-in classes used. Toward the 
end of the output, you can see the Main class being loaded, followed shortly by 
Hello. Finally, you see the expected output displayed. 

The remaining question is how the JVM knew where to find the .class
files. In this example, the Hello class was located in a directory that was rela-
tive to the current directory. That is, when the JVM was asked to import the 
class named com.arapiki.examples.Hello, it simply looked for a file named 
com\arapiki\examples\Hello.class relative to the current directory. 

In more complicated programs, you would need to explicitly set the class 
path to indicate where additional classes could be located. The class path can 
be specified either by setting the CLASSPATH environment variable before start-
ing the JVM or by specifying the –cp command-line option. The class path is a 
semicolon-separated list (or colon-separated list, in UNIX) of all the directories 
to search to find class files. 
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Libraries

In addition to specifying a list of directories in which .class files can be found, 
Java classes can be placed into larger archive files, known as JAR files. Most 
Java applications prefer the JAR file format (with a .jar suffix), simply because 
it’s easier to manipulate JAR files than package and distribute a large number 
of .class files. 

JAR files are similar to the archive ( .a) files used with C and C++, because 
they’re simply a container for a number of different .class files. They’re also 
similar to C’s dynamic libraries because they’re loaded at runtime instead of 
being statically linked into the main program (a concept that isn’t normally used 
in Java). 

The following example demonstrates how a JAR file can be created. With 
the –cf option, you create a new  .jar file containing all the  .class files found 
within the com/ directory hierarchy. 

C:\Work> jar -cf example.jar com 

The jar command works silently in this case and doesn’t produce any out-
put. With the –tf option, you can examine the  table of contents to make sure 
the .jar file was created properly. 

C:\Work> jar -tf example.jar
com/
com/arapiki/
com/arapiki/examples/
com/arapiki/examples/Hello.class
com/arapiki/examples/Main.class

To use this JAR file, you provide the –cp option to the JVM and execute the 
program as you did earlier. 

C:\Work> java -cp example.jar com.arapiki.examples.Main
Hello World 

As you’ll see in Part II when you look at Java-based build tools, the JAR file is 
commonly used as a means of distributing programs. Not only do you package 
your own software in JAR files, but you can incorporate third-party packages 
by obtaining other people’s JAR files and adding them to your own class path. 
Because of the dynamic loading system, you can replace and upgrade JAR files 
whenever you want. 

As an added bonus, the Java class loader ensures that a class’s method names, 
parameters, and return types match what the rest of the program expects them 
to be. For example, during the compilation process, the compiler ensures that 
whenever an instance of the Hello class is created, it’s done so by passing a single 
String value into the constructor. At runtime, when the  Hello class is loaded and
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executed, there’s an additional check to ensure that this constructor still exists and 
that the class’s public API hasn’t been modified. Invalid changes to the API cause 
a runtime error. 

C#

The third and final general-purpose programming language examined here is C# 
(pronounced “C Sharp”). This is an object-oriented language that uses the Mi-
crosoft .NET development framework [34]. Although it’s primarily designed for 
use in the Microsoft Windows environment, it’s also possible to compile and ex-
ecute C# programs on UNIX-like environments, such as Linux and Mac OS X. 
C# and the .NET Framework first made their public appearance around 2001. 

From a language design perspective, C# is derived from a number of previ-
ous object-oriented languages, most notably C++ and Java. It provides general-
purpose object-oriented programming facilities, and important concepts such 
as type safety and multithreading support. C# can be used in a wide variety of 
software, ranging from desktop applications to large business systems. How-
ever, it’s not optimized for high-performance computing in the way C and C++ 
are often used. 

One interesting feature of C# is that it uses the same intermediate byte code 
standard as other Microsoft-based languages. In particular, C#, Visual Basic.
NET, Visual C++, and Visual J# are all languages that can be compiled using 
the same set of byte codes (known as the Common Intermediate Language).
Additionally, the Common Language Infrastructure [35] defines a standard set 
of data types and calling conventions that all .NET languages must implement. 
These standards enable source code from each language to be compiled and inte-
grated into the same executable program, clearly benefiting the large number of 
existing users of Visual Basic and   Visual C++. 

Compilation Tools 

Because C# is a Microsoft-designed language, the most commonly used compi-
lation tools are from the Visual Studio development environment. This provides 
both a graphical interface for authoring code and a set of command-line tools 
for each of the supported languages. Microsoft provides an “Express” version 
of these tools [36] that can be downloaded free of charge. All of this book’s 
examples use the C# compiler (called csc), which is bundled with this edition of 
the Visual Studio environment. 

For non-Microsoft environments, such as Linux and Mac OS X, you have the 
option to download the open-source .NET Framework, known as Mono [37]. 
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The goal of this project is to enable users to develop and execute their Windows 
.NET applications on UNIX-like environments, therefore enabling the integra-
tion between Microsoft and UNIX platforms. 

Source Files 

The basic unit of compilation in C# is the .cs file (for example,  main.cs). These 
files store one or more class definitions, each of which is placed into a suitable 
namespace. As with other object-oriented languages, classes and namespaces 
are used to divide a program into logical units of work. Start by looking at an 
extended version of the example used for Java. What’s important to understand 
from the build perspective is how the source code files are compiled and linked 
into a single executable program. 

In the first source code file, hello.cs, you define the Hello class with a con-
structor and a single method: 

 1  using System;
 2
 3  namespace Arapiki.Greeters {
 4
 5      public class Hello {
 6
 7         private string words;
 8
 9          public Hello(string message) {
10              this.words = message;
11          }
12
13          public void speak() {
14              Console.WriteLine("Hello {0}", words);
15          }
16      }
17  } 

The constructor (lines 9–11) takes a string as its only parameter and stores it 
for later use. When the speak method (lines 13–15) is invoked, it displays the 
stored message on the output console. 

An important observation here is the use of a namespace (on line 3). That 
is, the Hello class is encapsulated inside the  Arapiki.Greeters namespace, 
which keeps it separate from other definitions of the Hello class that might be 
defined within other programs or libraries. As you’ll see later, to access this par-
ticular Hello class, a program needs to explicitly mention the class’s namespace. 

When it comes to storing source code on the file system, any C# class can be 
stored in any namespace, without limitations on where on the computer’s disk 
the file is stored. Unlike Java, which requires that source code be stored in a sub-
directory with the same name as its enclosing package, the C# compiler allows 
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an arbitrary layout. Therefore, for the compiler to locate the necessary classes, 
the developer must explicitly state the list of libraries to be searched. 

Note that the previous example uses the System namespace (via the  using
System statement on line 1). When you compile a C# program, you typically 
need to inform the compiler of which library file (with .dll suffix) the desired 
namespace is defined in. Luckily, the System library is automatically added to 
all C# compilations. 

Continue the example by defining two more classes in a new source file,
goodbye.cs. You also add these classes to the sameArapiki.Greeters namespace: 

 1  using System;
 2
 3  namespace Arapiki.Greeters {
 4
 5      public class GoodBye {
 6
 7          private string words;
 8
 9          public GoodBye(string message) {
10              this.words = message;
11          }
12
13          public void speak() {
14              Console.WriteLine("GoodBye {0}", words);
15          }
16      }
17
18      public class Farewell {
19
20          private string words;
21
22          public Farewell(string message) {
23              this.words = message;
24          }
25
26          public void speak() {
27              Console.WriteLine("Farewell {0}", words);
28          }
29      }
30  } 

The implementation of these classes is almost identical to the Hello class, so 
no further explanation is required. Of course, any C# programmer worth his or 
her paycheck would rewrite these classes using inheritance, but this is just an 
example.

Finally, you create the main.cs compilation unit that contains the  GreeterApp
class.
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 1  using Arapiki.Greeters;
 2
 3  public class GreeterApp {
 4
 5      public static void Main() {
 6         Hello h = new Hello("stranger");
 7         GoodBye g = new GoodBye("my friend");
 8         Farewell f = new Farewell("you fool");
 9         h.speak();
10         g.speak();
11         f.speak();
12      }
13  } 

This is the main entry point of the application. It creates an instance of each of 
the newly defined classes and then calls the speak method on each of them. For 
the compiler to locate these classes, you provide the using Arapiki.Greeters
directive on line 1. 

Now look at the different ways to compile this source code into an executable 
program.

Executable Programs 

Compilation of a C# program is not too different from that of a C or C++ 
program. As with these other languages, you provide a complete list of source 
files and libraries to be linked into an executable program. In the .NET environ-
ment, the resulting file is known as an assembly. These files collect various class 
definitions (in byte code format), along with other resources, such as graphic 
images and documentation files. 

The following command line demonstrates the compilation and execution of 
the program. 

C:\Work> csc /target:exe /out:prog.exe main.cs hello.cs 
goodbye.cs

Microsoft (R) Visual C# 2008 Compiler version 3.5.30729.1
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

c:\Work> prog
Hello stranger
GoodBye my friend
Farewell you fool 

One interesting observation is that this example didn’t use intermediate object 
files, as you did for C/C++ compilation. Instead, the C# compiler hides this level 
of detail and converts the entire program into a single assembly file in one step. 
As an optimization, the compiler can skip the recompilation of a .cs file that 
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hasn’t been modified, but only if it can determine that the generated byte codes 
will be exactly the same as the last time they were compiled. The C# compiler 
does permit the generation of netmodule files (equivalent to C’s object files), but 
this technique isn’t commonly used. 

A second observation is that executing a .NET program is done in exactly 
the same way as in a traditional machine code program. That is, a byte-code 
program is invoked by typing the name of the executable program into the com-
mand shell. This contrasts with the approach taken by a Java program, in which 
an external virtual machine must first be started. In the .NET environment, an 
executable program starts by executing native machine code instructions that 
implicitly call upon the .NET virtual machine (conveniently located inside a 
Windows dynamic library). The virtual machine then proceeds by JIT compiling 
the intermediate byte codes into machine code. 

To ensure that you have a valid executable program, you can use the ildasm.
exe tool to disassemble the intermediate language (byte codes). The  ildasm.exe
tool starts a GUI display by default, but it can also display output in a text-only 
format. Figure 4.2 shows the disassembly of prog.exe.

Figure 4.2 The disassembly of the statically linked prog.exe using IL DASM. 

You can see the Arapiki.Greeters namespace and the three classes it con-
tains. You can also see the GreeterApp class that contains the Main method. 

Double-clicking the speak method of the  Hello class obtains a listing of the 
byte codes from that method (see Figure 4.3).
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Figure 4.3 Disassembly of the speak method using IL DASM. 

For more details of the Common Intermediate Language instructions, refer 
to [35] in References. 

As just mentioned, a .NET executable program is also a standard Windows 
program, so it is stored in Portable Executable (PE) format [38]. In this respect, 
you can use the same tools to analyze the content of the PE file as you can 
with any other Windows executable program. In the following example, the 
dumpbin.exe program disassembles the headers of the PE file. The  dumpbin.exe
program has numerous options, and becoming familiar with this tool is worth-
while if you do any type of work with compilers or build systems. 

c:\Work> dumpbin /headers prog.exe
Microsoft (R) COFF/PE Dumper Version 9.00.30729.01
Copyright (C) Microsoft Corporation.  All rights reserved.

Dump of file prog.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
             14C machine (x86)
               3 number of sections
        4A6F1190 time date stamp Tue Jul 28 07:56:16 2009
               0 file pointer to symbol table
               0 number of symbols
              E0 size of optional header
             102 characteristics
                   Executable
                   32 bit word machine

OPTIONAL HEADER VALUES
             10B magic # (PE32)
            8.00 linker version
             600 size of code
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             800 size of initialized data
               0 size of uninitialized data
            253E entry point (0040253E)
            2000 base of code
            4000 base of data
          400000 image   base (00400000 to 00407FFF)
            2000 section alignment
             200 file alignment
            4.00 operating system version
            0.00 image version
            4.00 subsystem version
               0 Win32 version
            8000 size of image
             200 size of headers
 [... output truncated ...] 

Libraries

As you might expect, the .NET Framework also supports the concept of librar-
ies. In the same manner as executable files, the dynamic link library (DLL) file 
can be used for storing either native code or .NET byte codes. This type of file 
also conforms to the Portable Executable format. 

When developing C# code in the Visual Studio environment (the GUI inter-
face that calls upon the .NET compilation tools), it’s common to divide a large 
program into a number of smaller libraries. This contrasts with having all the 
program’s source files compiled into a single executable program in one giant 
step. Many Visual Studio projects are thus made up of a collection of “Library” 
projects, as well as an “Application” project that depends on those libraries. 

Now examine this mechanism by placing the Arapiki.Greeters namespace 
into a separate DLL. Again, the csc compiler is used, but this time you use the
/target option to specify that a DLL be created. 

c:\Work> csc /target:library /out:greeters.dll hello.cs goodbye.cs 

You can now use the ildasm.exe tool to examine the content of the library 
file (see Figure 4.4). In this example, the library contains only the greeter classes 
and doesn’t contain the main application (the GreeterApp class). 
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Figure 4.4 Disassembly of the greeters.dll dynamic library, using IL DASM. 

The next step is to reference this library when you compile main.cs into 
the prog.exe executable program. Note the use of the  /reference option to 
inform the compiler of the additional library. It uses this library, as well as any 
built-in libraries, when searching for namespace and class definitions specified 
in the program’s using directives. 

c:\Work> csc /target:exe /out:prog.exe main.cs /reference:greeters.
dll

Again, you can use ildasm.exe to examine the content of  prog.exe to see 
which namespaces, classes, and methods exist (see Figure 4.5). This time, the 
program contains only the main GreeterApp class and doesn’t contain any of 
the other classes, because they’re now stored in the DLL. 

Figure 4.5 Disassembly of prog.exe, now separate from greeters.dll. 
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To locate the additional classes at runtime, the .NET Framework examines 
the manifest information that exists inside the  prog.exe assembly. Double-
clicking the MANIFEST entry in the  ildasm.exe output informs you that  prog.
exe requires that  greeters.dll also be loaded into memory and made avail-
able to the virtual machine (see Figure 4.6). This concept is identical to what 
you’ve already observed in C and C++ programs. 

Figure 4.6 The manifest for prog.exe, showing that it depends on greeters.dll. 

Luckily for most C# developers, all this compilation process is conveniently 
hidden behind the user-friendly GUI interface. However, larger programs that 
have nontrivial build requirements require you to use a full-fledged build tool to 
automate the compilation of software. Part II briefly looks at the MS Build tool 
specifically designed for compiling .NET programs. 

Other File Types 

Until now, this chapter has focused on the file types normally associated with 
compiled programming languages, including source files, object files, libraries, 
and executable programs. However, most software also includes scripts, docu-
mentation files, graphic images, and configuration files. The build system must 
also process these, even if only to include them in the final release package. 

For example, a software product can include the following file types: 

• Program code, written in scripting languages: This includes UNIX shell 
scripts, Windows batch scripts, and programs written using Perl or 
Python. As discussed in Chapter 3, “The Runtime View of a Program,” 
these scripts don’t require a compilation step, but are instead copied 
directly to the release package. 
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• Web-centric files, including HTML, JavaScript, or PHP: Depending on 
the exact file format, these are either interpreted and displayed by the end 
user’s web browser, or compiled and executed by the web server. In either 
case, the build system is required only to package the files rather than 
compile them into object code. 

• Modeling language files, such as UML models: As you’ll see shortly, these 
are a high-level representation of the program, used to automatically gen-
erate code in more traditional languages such as Java, C++, or C#. 

• Documentation files such as online help or printable user manuals: These
can be in any format, ranging from UNIX-style nroff files, TeX files, or 
GNU info files, all the way through to PDF or HTML. Depending on the 
format used, the build system translates the input files into an output for-
mat suitable for displaying in a PDF viewer, rendering in a web browser, 
or sending to a printer. 

• Graphic image files: These files are used to display anything from a small 
icon on a GUI window, to a program’s splash screen or a full-size picture. 
You’ll learn about these in more detail shortly. 

• Configuration files: These files provide configuration data that controls 
the behavior of the program. These can be in plain text format, can be 
encoded using XML, or can be written in any customized format suitable 
for your program. 

Let’s now examine a few of these additional file formats, namely UML, 
graphic files, XML files, and language bundles. 

UML-Based Code Generation 

The Unified Modeling Language (UML) [39] is a graphical language for de-
scribing the high-level design and flow of a program. It’s considered to be a 
higher level than languages such as Java, C++, or C#, given that it focuses on 
the software’s “big picture” and abstracts out the implementation detail. For 
example, the UML diagram shown in Figure 4.7 states that a program contains 
two classes ( Student and  Course), each having a set of methods that can be 
invoked on objects of that class. It also describes the relationship between the 
two classes. (For example, a student may be enrolled in zero   or more courses.) 
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Student

name
address
grades

getCourses(): List of Course
addCourse(c: Course)
getGrade(c: Course): int
setGrade(c: Course, g: int)

Course

title
instructor

getStudents(): List of Student
addStudent(s: Student)
removeStudent(s: Student)

0..*0..*

Figure 4.7 A Unified Modeling Language diagram. 

After developers create a UML model, they use tools to autogenerate an 
equivalent program in a lower-level language, such as Java, C++, or C#. As 
part of this process, each box in the diagram is translated into a single object-
oriented class. The name of the class (such as Student or  Course) is specified 
in the top third of each UML box, whereas the second section provides a list 
of the fields (such as name and  address) that the class should contain. Finally, 
the third part of the box lists the method names for that class. Some UML tools 
enable the developers to   provide the actual lines of code required to implement 
each of the methods. 

If developers want to update their UML model for any reason, they can easily 
and quickly regenerate the source code by rerunning the code generator. Some 
UML tools enable round-trip engineering so that developers can change either 
the model or the source code, with the two kept synchronized. 

From the perspective of a build system, Figure 4.8 shows the compilation 
steps required to generate source code from a UML model, using Java as the 
output language. 
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Execute
Code Generation
Tool

school.uml

Student.java

Course.java

Student.class

Course.class

01101001110110100
11011010101010101
01011

01101001110110100
11011010101010101
01011

Figure 4.8 Generating Java source files from a UML model. 

In this diagram, the school.uml file is the only true source code, whereas 
the .java files are autogenerated code and should not be hand-modified by 
developers. The translation of Java source files into Java class files is the same 
as discussed earlier. 

A number of development tools can construct and generate code from UML 
models. Common UML tools include Rhapsody (from IBM/Telelogic) and 
Poseidon for UML (from Gentleware). 

Graphic Images 

Unless you’re writing a text-only program, you’ll almost certainly have reason 
to display some type of graphic image. This can be anything from a 320x200-
pixel splash screen or a 16x16-pixel icon on the program’s menu bar. In some 
cases, your program might need to display large multicolored images (see Figure
4.9). Regardless of their purpose, the graphic images must be available to the 
executable program, either as data that’s embedded inside the program or as an 
external file that’s read from disk. 
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Figure 4.9 A graphic image. 

The most popular programs used to create graphic images include The 
GIMP, Adobe Photoshop, Adobe Fireworks, and Windows Paint. Because these 
tools are graphics-oriented, they aren’t run as part of the build process; instead, 
they’re used in a standalone manner to generate GIF, JPEG, or PNG graphic 
files. These are either linked into the executable program or somehow packaged 
into the final release image. 

One interesting alternative is that your build system can generate graphic files 
from other formats. For example, if your build system generates a set of web 
pages containing your software’s online help, it might also generate a number 
of graphic image files, such as a graph or a pie chart. The content of these files 
is generated from raw input data rather than being hand-drawn using an artist’s 
tool.
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XML Configuration Files 

Many programs have some type of configuration file associated with them. 
When a program first starts, the user’s configuration file is parsed to determine 
how the program should behave. If the user changes the configuration, such as 
by using the Tools, Options menu, the configuration is updated and saved 
back to disk. The user is unaware of this process, aside from noticing that the 
user preferences are maintained even when the program is shut down. 

A configuration file can be stored in any format, but XML is becoming a 
common solution because of both standardization and the flexibility it provides 
in storing hierarchical data. The following example shows the type of informa-
tion that can be stored in a configuration file. 

<options>
  <font>
    <size>14<size>
    <family>Times New Roman</family>
  </font>
  <user-email>psmith@arapiki.com</user-email>
  <data-dir>C:\Users\Peter\Data\</data-dir>
</options>

From a build system perspective, you need to worry only about providing an 
initial version of this file. This is provided to each new user upon first executing 
the program because new users won’t have a previous configuration of their 
own. The build process simply copies the default file into the software’s release 
package, most likely without making any customizations. 

Internationalization and Resource Bundles 

A second type of configuration file is known as a resource bundle. In a modern 
software package that is targeted for multiple countries and languages, it’s im-
portant for the software to display content in the user’s preferred language or 
country format. A resource bundle enables a developer to extract text-based 
messages out of the program code and store them in an external disk file. 

For example, a Canadian English language bundle is a small text file that 
contains the following definitions: 

color_choose=Please select the colour.
currency_name=Dollar
currency_code=CAD
flag_image=Canada_flag.gif

An American English bundle, on the other hand, would contain the following: 
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color_choose=Please select the color.
currency_name=Dollar
currency_code=USD
flag_image=USA_flag.gif

For Mexico, the resource bundle file would contain this: 

color_choose=Seleccione por favor el color.
currency_name=Peso
currency_code=MXN
flag_image=Mexico_flag.gif

Selecting the appropriate resource bundle file is typically a runtime decision, 
but the build process needs to package all the bundle files, along with any other 
files they reference (such as Canada_flag.gif). Based on the user’s preferred 
language or country choice, the software loads the appropriate bundle and uses 
the correct messages or graphics on the user interface. 

In the examples, XML-formatted data was not used, even though that’s a 
viable option. The data in our language bundle isn’t hierarchical, so a flat file 
“properties” format is acceptable. 

Summary

This chapter covered an extensive range of file formats and compilation tools 
for a number of popular programming languages (C/C++, Java, and C#), as well 
as for both the Windows and Linux operating systems. It also discussed addi-
tional file formats, such as scripting languages, UML models, graphic images, 
and configuration files. 

The goal of this chapter has been to describe the file formats used in a build 
system and to illustrate how compilation tools transform the input formats 
(such as source files) into output formats (such as object files). The output for-
mat is closer to what the target machine can understand or what is suitable to be 
executed in a virtual machine or rendered by a document viewer. 

Learning these file transformation steps gives you a better idea of how to con-
struct a build system. You also learned how to diagnose build-related problems 
when output files aren’t generated as they should have been. 
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Subtargets and Build Variants 

So far, this book has assumed that each piece of software has its own unique 
build process. That is, it’s assumed that there’s only one way each source file 
is compiled and linked into an executable program and that only one type of 
release package can be generated. In reality, though, any number of variants can 
exist, each using a slightly modified build process and creating a slightly differ-
ent release package. The word slightly indicates that the build process should 
still generate the same general program, but the behavior of that program could 
vary in a few minor ways. 

The big picture (see Figure 5.1) has been drawing a one-to-one mapping 
from the source tree to the object tree. In practice, many mappings could exist, 
depending on which build options the developer selects. Additionally, there may 
be multiple object trees, one per build variant. 

Version-
Control

Tool

Source 
Tree

Object
Tree

Release
Package

Compilation Tools

Build Machine

Target Machine

Figure 5.1 Big-picture diagram, showing multiple ways to create an object tree from a 
source tree. 

This chapter examines three different ways in which the mapping from source 
to object tree can vary: 

83
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 1.  Building subtargets: In a typical build process, you might expect the 
entire object tree to be compiled from source code and a corresponding 
release package to then be produced. This is usually a requirement if 
you intend to install and run the software on the target machine. How-
ever, developers who are making only incremental changes to one part 
of the build tree prefer to rebuild only the portion of the tree they’re 
actively working on. This is known as building a subtarget.

 2.  Building different editions of the software: In this case, you still com-
pile the full set of source files, but the output is customized to vary the 
software’s behavior. These variations might include support for natural 
languages (such as French, German, or Japanese) or support for differ-
ent combinations of product features, such as a Home or Professional 
edition.

 3.  Building different target architectures: To support a software product 
on different target machines, you must compile the same set of source 
files for a variety of different CPU types and operating systems. This 
includes CPUs such as x86, MIPS, and PowerPC, as well as operating 
systems such as Linux, Windows, and Mac OS X. 

Each of these approaches modifies the build process in a different way. In 
the first case, you simply build a portion of the entire software product instead 
of compiling everything. In the second case, you build the entire product but 
selectively include or exclude source files depending on what you need to build. 
In the final case, you build the entire software product but vary the compilation 
tools used, in addition to including or excluding a few files. 

This chapter examines each of these basic types of variation, paying special 
attention to how a build system supports each case. 

Building Subtargets 

Any large piece of software can be divided into a number of subcomponents, 
often in the form of a static or dynamic library. Each component provides only 
a portion of the program’s full functionality and is developed somewhat inde-
pendently from other components. For large systems, the final software can 
contain different executable programs that work in cooperation. In this case, 
each of those programs itself is a subcomponent. 

Figure 5.2 shows how a typical source tree is divided into multiple 
subcomponents.
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Figure 5.2 Dividing a source tree into multiple subcomponents. 

The directory layout of the tree is specifically designed to follow the structure 
of the program. That is, the math and  graphics directories contain source code 
for the math and  graphics libraries. Also, the  calc-app source directory con-
tains the main part of the application to be linked with the libraries to create an 
executable program. 

By default, a developer builds the entire source tree to create the final execut-
able program: 

$ cd src
$ make all
... build output will be shown ...

$ ./calculator
... calculator program output will be shown ... 

If you now imagine that the calculator program has many source files, an 
incremental build of the whole tree might still be time-consuming. Even though 
the build tool should recompile only files that have actually been modified, read-
ing all the build description files (such as makefiles) and determining which 
object files are out of date requires effort. In some cases, an incremental build 
could take 2–3 minutes before it even starts to recompile anything. 

As a tradeoff, developers might choose to limit the number of subcomponents 
they build instead of always rebuilding the whole source tree. To illustrate, if a 
developer made a small code change in the math library, he or she could opti-
mize their build time by limiting their compilation to one directory. 

$ cd src/math
$ make libmath.so
... build output will be shown ...

$ cd ..
$ ./calculator
... calculator program output will be shown ... 
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The important observation here is that the math library ( libmath.so) is dynami-
cally linked into the executable program ( calculator). This enables certain types 
of change to the math library without the need to relink the program again. Simply 
recompiling the library and restarting the calculator program makes the code 
changes automatically take effect. 

For a larger piece of software that contains multiple executable programs, 
you can also optimize the build process by compiling just one of those programs. 
Instead of generating and installing a new release package each time you invoke 
the build tool, you can save several minutes by manually copying the modified 
files directly to the target machine. The other files are already installed on the 
target and, in many cases, are still compatible with the newly added file. 

Building Different Editions of the Software 

When developing software for a global market, it’s important to consider the 
needs of all your end users. Unless you’re writing software specifically for one 
customer, you need to consider factors such as language and culture, hardware 
variations, and differences in what the customers will pay for the software. Let’s 
examine each of these in turn. 

• Language and culture: Not all computer users speak the same language or 
have the same culture. To comfortably use a piece of software, users prefer 
to see the program’s commands, menus, and error messages in their native 
language. They might also prefer to see words displayed in a right-to-left 
or top-to-bottom direction rather than the traditional Western left-to-right 
approach. They certainly expect to see monetary values written in their 
own currency. Even Canadian English speakers prefer to see the word col-
our instead of color.

To enable this type of localization, the software team has additional work. 
Not only must all the text messages be translated into the supported lan-
guages, but also the software’s user interface must be clever enough to 
display words and images in a variety of formats. Finally, the build process 
must select the necessary text strings or graphic images for each language 
and culture. 

• Hardware variations: Software designed to execute on a variety of hard-
ware platforms can be customized at build time to include the required 
functionality. Anyone familiar with the process of building a Linux kernel 
has seen how hardware variations are managed. The first step is to run a 
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configuration tool that gives the user a set of choices. The second step is to 
invoke the build process to generate a customized kernel. The final kernel 
image includes all the selected drivers that the target hardware requires but 
doesn’t include anything the user chose not to compile. 

• Pricing options: Software vendors have learned that different customers 
are willing to pay different amounts of money for the same thing. For ex-
ample, a home user might pay only $200 for a financial accounting pack-
age, whereas an accountant might comfortably pay $2,000 for the same 
package. To address both markets, the software supplier produces a Home 
Edition for the home user and a Professional edition for the accountant. 
The only difference is that some of the advanced features are disabled in 
the Home edition. This combination of price and features make both edi-
tions of the software attractive to each group of end   users. 

With these examples in mind, consider how you can add support for varia-
tion to your build system. 

Specifying the Build Variant 

If you imagine your fictitious accounting package (with Home and Professional 
editions) in three different languages, you’d have the following six build vari-
ants. Note that not all options might be valid: 

Home Professional

English Valid Valid

French Valid Valid

German Valid Not Supported 

When building the software, developers must select both a Language value and 
an Edition value. If they neglect to specify both, the build system either halts with 
an error message or instead defaults to something like English/Professional.

In some cases, supporting all build combinations might not make sense. In 
this example, the Professional edition doesn’t support the German language; the 
fictitious software doesn’t have the advanced features required in the German 
marketplace. The developers would never build that variant, and the testers 
would never test it. In fact, you might want to disallow anybody from building 
this combination and instead give an error message. 
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If you implemented this build system using the Make build tool, the devel-
oper would specify the variant by defining LANGUAGE and EDITION on the com-
mand line: 

$ make all LANGUAGE=French EDITION=Home
... build output will be shown ...

$ make all LANGUAGE=French EDITION=Professional
... build output will be shown ... 

As you might expect, typing the variant names can get tedious and error 
prone. You could write a small shell script or use a command-shell alias to 
repeat the same command, but it’s also possible to store the configuration inside 
your build tree. With this approach, the build system defaults to the same values 
you chose last time, unless you decide to override those values. 

In the following example, the first build command sets the configuration 
parameters, whereas all successive commands automatically use the same 
options.

$ make configure LANGUAGE=French EDITION=Home

$ make all
... build output for French/Home will be shown ...

$ make package
... build output for French/Home will be shown ... 

To implement this feature, the configure target creates a short makefile 
fragment containing the stored definitions. For example, the following Make 
rule defines the configure target: 

configure:
        @echo LANGUAGE=$(LANGUAGE) > .config
        @echo EDITION=$(EDITION) >> .config

This generates a .config file in the following format: 

LANGUAGE=French
EDITION=Home

The main makefile parses this value whenever a build is invoked. If the user 
doesn’t explicitly provide values for LANGUAGE and  EDITION, the values saved in 
the .config file are used instead. 

Incidentally, a similar method is used with great success when building the 
Linux kernel, given that it has hundreds of build-time options. Instead of pro-
viding them on the command line, developers use a separate configuration target 
to select all the build-time options they care about. 
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# gmake config
scripts/kconfig/conf arch/x86/Kconfig
*
* Linux Kernel Configuration
*
*
* General setup
*
Prompt for development and/or incomplete code/drivers 
(EXPERIMENTAL)

[Y/n/?]
Local version - append to kernel release (LOCALVERSION) 
[-0.1-pae]
Automatically append version information to the version
string [N/y/?]

Support for paging of anonymous memory (swap) (SWAP) [Y/n/?]
System V IPC (SYSVIPC) [Y/n/?]
POSIX Message Queues (POSIX_MQUEUE) [Y/n/?]
BSD Process Accounting (BSD_PROCESS_ACCT) [Y/n/?]
BSD Process Accounting version 3 file format [Y/n/?]
Export task/process statistics through netlink (TASKSTATS) [Y/n/?]
  Enable per-task delay accounting (EXPERIMENTAL)
(TASK_DELAY_ACCT) [Y/n/?]

  Enable extended accounting over taskstats (TASK_XACCT)[Y/n/?]
  Enable per-task storage I/O accounting [Y/n/?]
Auditing support (AUDIT) [Y/?] y
  Enable system-call auditing support (AUDITSYSCALL) [Y/n/?]
...
Remainder of output removed
...

After the user runs this command, a special configuration file records the 
user’s options, ready for use by the build system. This cache of information is 
kept for future use, especially if the developers want to modify their previous 
choices.

Now focus on the accounting example again. To ensure that developers select 
a legal variant, you must carefully check the options they’ve entered. For exam-
ple, if Japanese is not a valid language choice, you would expect to see a mean-
ingful error message: 

$ make configure LANGUAGE=Japanese EDITION=Home
Makefile: *** Invalid value for LANGUAGE. Must be one of:
English French German

The following makefile fragment demonstrates the type of safety check to be 
performed.

 1  LANGUAGE := English
 2  EDITION := Professional
 3
 4  VALID_LANGUAGES := English French German
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 5  VALID_EDITIONS := Professional Home
 6
 7  ifeq ($(findstring $(LANGUAGE),$(VALID_LANGUAGES)),)
 8    $(error Invalid value for LANGUAGE. \
 9         Must be one of: $(VALID_LANGUAGES))
10  endif
11
12  ifeq ($(findstring $(EDITION),$(VALID_EDITIONS)),)
13    $(error Invalid value for EDITION. \
14          Must be one of: $(VALID_EDITIONS))
15  endif
16
17  ifeq ($(LANGUAGE)/$(EDITION),German/Professional)
18    $(error German language is not supported by Profession-
al Edition)
19  endif 

If the user doesn’t explicitly override the LANGUAGE and  EDITION variables 
on the command line, the build system defaults to the English Professional ver-
sion of the software. You also must disallow the German Professional version 
because that option doesn’t make sense. 

Varying the Code 

After selecting a build variant, you use it to configure the software’s behavior 
accordingly. This involves selecting the specific directories, files, or lines of code 
that pertain to the variant you’re building. Depending on the magnitude of the 
variation, you can configure the code in a number of ways. 

• Line-by-line variation: This is the most fine-grained approach to introduc-
ing variation into the source code. In languages that allow it, conditionally 
compiling specific lines of code makes it possible to implement different 
behavior for each variant. The first step is for the build system to pass the 
necessary definitions to the compiler. In C/C++, this is done with preproc-
essor definitions. The required makefile fragment is as follows: 

ifeq ($(LANGUAGE),English)
   CFLAGS += -DLANG_EN
endif

ifeq ($(EDITION),Professional)
   CFLAGS += -DEDITION_PROF
endif

Inside the C/C++ source code, you conditionally compile parts of the pro-
gram by testing for those definitions. In the following case, you enable a 
more advanced feature if you’re building the Professional edition. 
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int compute_costs()
{
    int total_costs = 0;
#ifdef EDITION_PROF
    total_costs += capital_cost_allowance();
#else /* not EDITION_PROF */
    total_costs += basic_costs();
#endif /* EDITION_PROF */
    ...
  } 

Because of the simplicity of this method, many C/C++ programmers make 
heavy use of conditional compilation. Be warned that overusing the #ifdef
directive can make the source code hard to follow, especially when multi-
ple variants interact with each other. 

• Per-variant files: If the source code for one variant differs significantly 
from other variants, you might find it simpler and cleaner to separate 
the source code into per-variant files. For example, you might have one 
source file named english.c that contains English-language functions, 
whereas the german.c file might contain similar functions for the German 
language. This approach makes it easier for developers to visualize the 
structure of the source code rather than intermixing variants into the same 
file using #ifdef. To conditionally compile the files, you modify the build 
description as follows: 

SRCS := basic.c costs.c math.c interest.c ui.c
ifeq ($(LANGUAGE),English)
    SRCS += english.c
endif
ifeq ($(LANGUAGE),French)
    SRCS += french_france.c french_canada.c
endif

• Per-variant directories: A similar approach includes whole subdirectories 
rather than individual files. To simplify matters, naming the subdirecto-
ries after the variants keeps the build description compact. The following 
example assumes that you have subdirectories named English, French, and 
German, each containing language-specific source files. 

DIRS := ui graphics math database $(LANGUAGE) 

This approach is far more common in languages such as Java that don’t 
support line-by-line conditional compilation. Instead, each variant has its 
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own subdirectory of classes that are compiled into the program. All subdi-
rectories contain the same list of Java source files, with each implemented 
differently.

English/Menus.java
English/Errors.java
English/Currency.java
French/Menus.java
French/Errors.java
French/Currency.java
German/Menus.java
German/Errors.java
German/Currency.java

In this example, the build system compiles the Java files from either the 
English, French, or  German subdirectory. When the Java code executes, 
it simply references the Menus, Errors, or  Currency class, without car-
ing which source code directory those classes originally came from. 

• Per-variant build description files: When each build variant is associated 
with different compilation flags, you might consider separating the build 
description into different files, with one file used per variant. The top-level 
build description file incorporates one or more of the variant-specific files, 
based on the user’s settings. For example, the main file will contain the 
following include directive: 

include $(LANGUAGE).mk 

Each of the .mk files then provides all the variant-specific definitions. For 
example, English.mk would consist of nothing but definitions relevant 
for the English-language product: 

CFLAGS += -DLANG_EN –DLEFT_TO_RIGHT_TEXT –DUSE_ASCII \
            -DSUPPORT_USA –DSUPPORT_UK –DSUPPORT_CANADA
CURRENCIES := USD CAD AUD GBP
SPLASH_SCREEN := ENGLISH_FLAG.jpg
OPTIONAL_DIRS := src/property_tax src/estate_tax
ERRORS_FILE := english-errors.list
PROPERTIES := english.properties 

Separating the build description into multiple files makes it easy to add 
support for new variants and reduces the complexity of the main build 
description file. These files can become messy when they’re littered with 
if/else statements for all the possible variants. 
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• Packaging-time variation: The next point at which variation can be applied 
is the packaging stage. To package a specific edition of the software, you 
selectively choose which files need to be copied into the final release pack-
age. Following the previous example, selecting a splash screen image for 
the accounting software depends on which language variant was chosen. 
This is the relevant portion of the build description: 

$(COPY) $(SPLASH_SCREEN) splash_screen.jpg 

The $(SPLASH_SCREEN)variable was already defined in the build descrip-
tion file and refers to a suitable graphic image for the chosen language 
variant.

• Installation-time variation: Even if you had only one way to build the 
product—and, therefore, only one variant of the release package—you 
could still customize the behavior of the software at installation time. 
Software commonly identifies the end user’s geographic location before 
installing the relevant files on the target machine. The release package 
contains all files required to support all variants, but only the files for the 
chosen variant are installed. 

Chapter 13, “Software Packaging and Installation,” discusses packaging 
and installation systems in more detail. 

• Runtime variation: The final way to customize software is to do it when 
the program is executing. The build system generates a release package that 
contains all functionality (all languages and all features), and every part of 
that functionality is installed on the target machine. However, when the 
program starts executing, it determines which variation is required and 
modifies its own behavior accordingly. 

One way to control variation is via the familiar Tools, Options menu, 
where end users can select the language or set of features they want to use. 
Alternatively, software that requires a license key can unlock certain fea-
tures only if the appropriate license is available. This approach to custom-
izing software has little to do with build systems, so this chapter doesn’t 
go into further detail. 

Naturally, these methods of implementing software variation (such as per-
line or per-file variation) are not mutually exclusive. A build system is free to use 
any combination of these methods, depending on what makes the most sense. 
Indeed, you might find software that uses every one of these solutions, depend-
ing on which type of feature is impacted by each variant. 
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Building Different Target Architectures 

The third approach to varying the output of the build process is to generate code 
for more than one target architecture. This implies that the software supports 
multiple CPU types or operating systems. In general, the functionality of the 
program is identical in all cases, but the target computer is different. This type 
of variant is relevant only when programming in languages such as C and C++, 
which compile into native code. It’s not relevant for Java and C#, which use 
machine-independent virtual machines. 

Multiple Compilers 

The first important technique for varying the target architecture is to use more 
than one source code compiler. For example, if your product could be target-
ed for both the Linux environment and the Microsoft Windows environment, 
you’d likely use the GNU C Compiler to generate Linux code and then use the 
Visual Studio compiler to generate Windows code. Each compiler would require 
its own set of command-line options, but that could be handled in the same way, 
as follows: 

ifeq ($(TARGET),Linux)
  CC := gcc-4.2
  CFLAGS := -g –O
endif
ifeq ($(TARGET),Windows)
  CC := cl.exe
  CFLAGS := /O2 /Zi
endif

Given that each compiler ( gcc-4.2 and  cl.exe) can be executed on only one 
type of build machine, you might be wondering whether the build system could 
automatically detect which compiler to use. That is, if the developer is building 
on a Linux build machine, you’d automatically use gcc-4.2. If the developer is 
on a Windows machine, cl.exe is used instead. The following example relies 
on the operating system itself to set the $(HOST) variable. 

ifeq ($(HOST),Linux)
  CC := gcc-4.2
  CFLAGS := -g –O
endif
ifeq ($(HOST),Windows)
  CC := cl.exe
  CFLAGS := /O2 /Zi
endif
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This type of autodetection is the correct approach for native compiling 
because the developer doesn’t need to specify the TARGET= value. 

On the other hand, the situation is quite different for cross-compilation. A 
single build machine can be used to generate code for more than one target plat-
form, so developers must state which variant they want. The following example 
uses two variants of the GNU C Compiler: one that generates code for a Linux 
machine with an x86 CPU and a second that generates code for a Windows 
machine.

ifeq ($(TARGET),Linux)
  CC := i386-linux-gcc-4.2
  CFLAGS := -g –O
endif
ifeq ($(TARGET),Windows)
  CC := i386-windows-gcc-4.2
  CFLAGS := -g –O
endif

You no longer use the native Windows compiler because that doesn’t run in 
a Linux-hosted environment. Instead, a purpose-built version of GCC generates 
Windows machine code. 

Platform-Specific Files/Functions 

A second important technique when varying the target architecture is to recog-
nize that not all source code is relevant for all platforms. Although you should 
usually try to write portable source code that executes on all machines, some-
times your code has no choice but to use OS-specific features. For example, the 
following code returns the name of the currently logged-in user, regardless of 
whether you use Linux or the Windows platform. 

char * get_user_name()
{
#ifdef linux
  struct passwd *pwd = getpwuid(getuid());
  return pwd->pw_name;
#endif /* linux */
#ifdef WIN32
  static char name[100];
  DWORD size = sizeof(name);
  GetUserName(name, &size);
  return name;
#endif /* WIN32 */
}

In practice, unless you rely solely on standard libraries that are the same on 
all target machines (such as the POSIX standard), you need to do a fair amount 
of conditional compilation. The following methods are appropriate: 
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• Use line-by-line conditional compilation, such as #ifdef in C/C++. 

• Use per-file variation to select the relevant source code for your specific 
architecture.

• Use per-directory variation to select whole directories of source code for 
your architecture. 

Each of these methods was described earlier when discussing how to create 
different editions of the software. In essence, you’re now creating a Linux edi-
tion and a Windows edition, although, as much as possible, you want to use the 
same source files and keep the same functionality for all platforms. 

Multiple Object Trees 

A topic this book hasn’t yet touched on is multiple object trees. If you’re gen-
erating code for more than one operating system or CPU type, you might want 
to have the object code for different variants available at the same time. This is 
particularly useful when modifying parts of the source code that must be care-
fully tested on more than one target. A change that works for one architecture 
might not work on a second. 

If you have only a single object tree, constantly rebuilding the whole tree 
whenever you needed to test your code for a different variant would be painful. 
If developers get lazy and don’t bother testing on all target machines, there’s a 
good chance that they’ll break the code for somebody else. Making it easy to do 
the right thing is an important goal to aim for, so having multiple object trees is 
often the correct approach. 

Figure 5.3 shows a single source code tree but two object trees. 

Source 
Tree

Linux Object
Tree

Windows Object
Tree

Windows
Build

Linux
Build

Figure 5.3 Compiling the same source code into multiple object trees. 
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The structure of each object tree mirrors the structure of the source tree. 
Viewing this same arrangement as a directory listing produces the following 
layout:

src/math/*.c
src/graphics/*.c
src/calc-app/*.c
obj/Windows/math/*.obj
obj/Windows/graphics/*.obj
obj/Windows/calc-app/*.obj
obj/Linux/math/*.o
obj/Linux/graphics/*.o
obj/Linux/calc-app/*.o

In this example, the source files in the src directory can be compiled either 
into the obj/Windows directory by using the Windows compiler or into the 
obj/Linux directory by using the Linux compiler. Both object trees are kept 
indefinitely, so it’s quick to incrementally compile the code for each platform, 
just to make sure that nothing has broken. 

From the perspective of the build system, setting up multiple object trees is 
trivial. Assuming that all object files are stored into the $OBJDIR directory, you 
can set this directory on a per-variant basis. 

OBJDIR := obj/$(TARGET) 

Although this approach works well, it does limit you to storing object files 
within the top-level obj directory. A second approach is to allow developers 
to arbitrarily choose the location of their object tree. Developers must perform 
a configuration step to designate which variant of code should be built in that 
tree. For example: 

$ mkdir /fast-disk/psmith/my-obj
$ cd /fast-disk/psmith/my-obj
$ configure –-src=/home/psmith/source
$ make
... build output will be shown ... 

In this example, the developer has chosen to store object files on a fast disk 
(/fast-disk/psmith/my-obj) instead of storing them in the same location 
as their source code (/home/psmith/source). The developer might have been 
done this to get better performance when building the software, or perhaps the 
/home disk is running short of free space. In either case, having the flexibility to 
select a location is often useful. 

As a final note, the same benefits can be achieved when using the fixed-path 
approach, although less elegantly. Using symbolic links allows object files to be 
stored on a different disk, although the build system believes they’re in the same 
place as the source code. 
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$ mkdir /fast-disk/psmith/my-obj
$ cd /home/psmith/source
$ ln –s /fask-disk/psmith/my-obj obj
$ make
... build output will be shown ... 

In this example, you replace the fixed-path obj directory with a symbolic 
link to the /fast-disk directory. Symbolic links are great for this type of trick, 
although they can be confusing when overused. 

Summary

This chapter identified three main ways a build process can vary to provide ad-
ditional functionality. These approaches involve building a subset of the whole 
tree (a subtarget), building different editions for different end users, and build-
ing for different CPU types and operating systems. 

In compiling only a subset of the full code base, developers can optimize their 
workflow by reducing compilation time. This is a common approach when the 
program contains a number of shared libraries or a collection of executable 
programs.

Creating different editions of the software enables you to address different 
target markets. Many customers appreciate having software in their own native 
language or using their own cultural symbols. Other customers are willing to 
pay more for additional features that aren’t part of the standard package. Build 
variants of this nature can be introduced on a per-line, per-file, or per-directory 
basis, or at packaging time, installation time, or runtime. 

The need for your product to support multiple CPU types and operating sys-
tems can lead to multiple object trees. Each tree stores the object files for a single 
CPU or OS variant and must be kept and recompiled often. 
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The Build Tools 

Part I was an introduction to software build systems. You learned the 
basics of the GNU Make tool, considered the various components of a 
program, saw the compilation steps for three common programming lan-
guages, and explored subtargets and build variants. 

However, aside from a few examples, you didn’t learn about build
tools. Recall that a build tool orchestrates the use of compilation tools to 
generate a complete software product. A build tool performs the full build
process by reading the build description and acting upon the instructions. 

The second part of this book examines a number of build tools in detail. 
Each tool was chosen because of both its popularity and the fact that it 
represents a particular class of build tools. These tools are discussed: 

• Chapter 6, “Make”: This is widely considered to be the first build tool 
created. GNU Make, a modern version of Make, is still the most com-
mon build tool used for C/C++ software products. If you’re maintaining 
a legacy build system written using a Make-based tool, you should defi-
nitely read this chapter. However, it’s not recommended that you create 
a new build system using GNU Make unless you’re an expert in us-
ing the tool. In addition to GNU Make, this chapter discusses Berkeley 
Make, Microsoft’s NMake, ElectricAccelerator®, and SparkBuild™. 

• Chapter 7, “Ant”: This is the most popular build tool for Java-based 
software products. It contains built-in features to support Java com-
pilation and JAR-file creation. Ant differs from GNU Make in that 
it supports a more sequential task-based model. If you’re creating a 
build system for a Java-based product, this is likely to be your first 
choice of build tool. This chapter also discusses NAnt and MSBuild 
as similar tools. 
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• Chapter 8, “SCons”: This modern build tool uses Python as its build-
description language. Build descriptions contain a sequence of method 
calls to explicitly state which objects must be built and which input files 
to use. SCons is interesting because build-description files are written in 
a general-purpose programming language. If you’re creating a totally new 
build system for the C or C++ languages, consider using SCons instead of 
the older GNU Make tool. You’ll also see examples of the Cons build tool 
(using Perl) and the Rake build tool (using Ruby). 

• Chapter 9, “CMake”: This is one of several tools that enable developers 
to write a high-level description of the build system but have that descrip-
tion translated into something that other build tools (such as Make) are 
capable of executing. You should learn about CMake (instead of using the 
older GNU Make tool) if you’re creating a new build system for C or C++ 
software. This chapter also mentions Automake and Qmake, similar tools. 

• Chapter 10, “Eclipse”: This is one of the most popular graphical inte-
grated development environment (IDE) tools used for editing source code. 
Eclipse contains its own build tool, but it can still interface with other ex-
ternal build systems. This chapter focuses on the JDT builder mechanism 
for Java support, but it briefly studies the CDT builder for C/C++ support. 
If you use Eclipse as your development environment, you should make a 
point of learning how the builder mechanisms work. 

The goal of studying these five systems is to give you an appreciation of the 
variety of build tools available and to help you decide which of them is appro-
priate for your project. None of these tools is suitable for all projects, so under-
standing the advantages and disadvantages of each system is very important. 

Unfortunately, it’s not possible to discuss every build tool in existence; other-
wise, this book would be twice as long. Some tools are very new and haven’t yet 
proven to be successful or reliable. Other tools have been around for longer but 
are not as popular as those listed previously. 

Each chapter in Part II follows a common outline designed to compare the 
five different systems. Each chapter covers these areas: 

• A brief overview of the tool, describing the environment in which it’s best suited 

• A more detailed look at the tool’s programming language (both syntax and 
semantics), showing how a developer can specify the build description 

• A number of examples showing how the build tool can solve common 
build system problems 

• Popular praise and criticism for the tool, taken from Internet web sites, 
other publications, and personal experience 

• A description of other build tools that are similar in design 
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After you read each chapter, you should come away with a good apprecia-
tion of what it takes to use that tool in your own projects. Don’t expect to know 
everything about the tool, but if you like what you see, you’re encouraged to 
read the tool’s user manual or perhaps another book that specifically covers the 
tool in detail. 

Even if you consider yourself a build system expert, you might learn a thing 
or two about a new tool that changes your perspective or encourages you to try 
a new way of building software. 

As a reminder, the following characteristics are important to think about 
when selecting a tool: 

• Convenience: How easy is it for developers or build system maintainers to 
describe the build process using the tool’s description language? 

• Correctness: Will the build tool always generate a correct executable pro-
gram, or will important dependencies be missed by mistake? 

• Performance: Is the build tool efficient, or will the user often wait for slow 
builds to complete? 

• Scalability: How does the tool perform with large-scale software projects 
containing thousands of source files? 

Each software project is different, and every developer places a different level 
of importance on each of these characteristics. If you’re a hobbyist developer 
building a project with fewer than 50 source files, you probably won’t care too 
much about scalability or performance. On the other hand, a large software 
organization with hundreds of developers will care a lot. 

In each chapter, you see a fair amount of discussion on the pros and cons of 
using each build tool. Table PII.1 summarizes the strengths and weaknesses of 
the tools covered. 

Table PII.1 Strengths and Weaknesses of Build Tools 

Tool Convenience Correctness Performance Scalability

GNU Make Poor Poor Excellent Excellent

Ant Good Excellent Good Good

SCons Excellent Excellent Good Good

CMake Good Excellent Excellent Excellent

Eclipse Good Excellent Good Poor

At the end of each chapter, you can read why the tool was assigned a par-
ticular rating. 
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The Real-World Scenarios 

A build tool would be no use if it weren’t capable of supporting real-world 
applications. Most user manuals focus on the syntax and semantics of the tool’s 
programming language, perhaps providing a few idioms for achieving certain 
tasks. However, without backing these up with realistic examples, you can never 
be sure whether the build tool is suitable for the long term. 

To this end, each of the upcoming chapters illustrates how the build tools 
apply to real-world situations. The following scenarios are examined. 

Scenario 1: Source Code in a Single Directory 

In this scenario, you use a small calculator program (see Chapter 2, “A Make-
Based Build System”) in which all source files are stored in the same directory. 
For GNU Make, SCons, and CMake, you use a C program, shown in Figure
PII.1.

Figure PII.1 Single-directory build scenario for the C language. 

For Ant and Eclipse, you use the equivalent Java program, shown in Figure
PII.2.

Figure PII.2 Single-directory build scenario for the Java language. 

You don’t have to understand what this program does, because you’re mainly 
interested in the file types and file system layout. All you actually need to know is 
that the .c files (or  .java files) are combined into a single executable program. 
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Scenario 2: Source Code in Multiple Directories 

Next you use a larger calculator example, with the program’s source code 
spread across multiple directories in a hierarchical build tree. This is common in 
nontrivial software products, so it’s important for the build tool to handle the 
situation properly. 

For GNU Make, SCons, and CMake, you use the C/C++-based tree, shown 
in Figure PII.3.

Figure PII.3 Multidirectory build scenario for the C language. 

For Ant and Eclipse, you use the equivalent Java source tree, shown in Figure
PII.4.

Figure PII.4 Multidirectory build scenario for the Java language. 
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For some of the build tools, you’ll look at several different ways of compiling 
these multidirectory trees. A large tree can contain thousands of directories, and 
a single type of build system might not be suitable for all source trees. 

Scenario 3: Defining New Compilation Tools 

A large software project often incorporates nonstandard compilation tools. You 
must have a way to instruct the build system on how it can use the new tool and 
how it can predict a source file’s set of dependencies. 

The examples use a fictional tool named mathcomp. This tool takes a single
 input file with the suffix  .math and generates either a C file or a Java file, 
depending on which output option you choose. The .math file contains a 
number of simple equations, whereas the output file computes the result of these 
equations and displays them on the program’s output. 

The examples use the following equations.math file as input: 

#
# This test file has a number of equations in it, but
# it also includes some .mathinc files that also contain
# equations
#
1+2
4*5
6/2
import equ1.mathinc
10/2
100/4
import equ2.mathinc
10+20

Note that this example includes two other files, equ1.mathinc and  equ2.
mathinc, which also contain equations but don’t contain further import direc-
tives. Using the mathcomp compiler with the  –j flag to generate Java code cre-
ates the following output file ( equations.java):

/* autogenerated - do not edit! */
public class equations {
    public static void math()
    {
        System.out.println(“1 + 2 = “ + (1 + 2));
        System.out.println(“4 * 5 = “ + (4 * 5));
        System.out.println(“6 / 2 = “ + (6 / 2));
        System.out.println(“4 + 5 = “ + (4 + 5));
        System.out.println(“20 * 300 = “ + (20 * 300));
        System.out.println(“5 / 5 = “ + (5 / 5));
        System.out.println(“10 / 2 = “ + (10 / 2));
        System.out.println(“100 / 4 = “ + (100 / 4));
        System.out.println(“2 + 3 = “ + (2 + 3));
        System.out.println(“10 + 50 =   “ + (10 + 50));
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        System.out.println(“10 + 20 = “ + (10 + 20));
    }
}

The C code generated by the –c option looks similar. Finally, when the  –d
flag is passed to mathcomp, the tool displays the set of input files that were 
scanned, including all the imported files. 

equations.math equ1.mathinc equ2.mathinc 

Each of the build tools uses this dependency information as it constructs the 
software’s dependency graph. 

Scenario 4: Building with Multiple Variants 

Large software products often have multiple variants that need to be supported. 
This includes multiple editions of the software and multiple CPU and operating 
system types. The user must have a means of specifying which variant to build. 

For GNU Make, CMake, and SCons, you see how to generate code for mul-
tiple CPUs (i386, PowerPC, and Alpha); for Ant and Eclipse, you generate both 
Home and Professional editions of the software. 

Scenario 5: Cleaning a Build Tree 

After a build tool has compiled all the software in the build tree, you need a way 
to remove all the generated files while still keeping the source code intact. You’ll 
look at how each build tool approaches this problem. 

Scenario 6: Debugging Incorrect Builds 

When a build tool fails to build (or rebuild) the software image, you need to un-
derstand why. Failure to fix problems causes further broken builds in the future 
or incorrectly compiled software images containing a number of subtle bugs. 
Each build tool must provide a way to trace execution of the build process and 
determine why things are not compiling the way they should. 

Each of the following five chapters discusses how each build tool solves these 
real-world scenarios. 
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Make

The first build tool this book examines in detail is Make [40]. You’ve already 
seen a basic example of using Make in Chapter 2, “A Make-Based Build Sys-
tem,” and many developers are familiar with this popular tool. This chapter 
explores the syntax of Make-based build systems in more detail and presents a 
number of practical use cases. 

Created in 1977, Make has revolutionized the way software is compiled. For 
many years, Make was the only build tool available; new tools created since 
that time (such as Ant, CMake, and SCons) introduced themselves as a “Make 
replacement.” There’s certainly no ignoring the valuable contribution Make has 
provided to the software industry. 

Central to Make’s operation is the concept of a rule, providing all the inter-
file dependency information needed to compile a program. A developer must 
specify the name of a target file to be compiled, as well as all the input files for 
the compilation. In addition, the rule contains one or more shell commands that 
generate the target file from the source files. 

As an example, the following rule indicates that myprog is a generated file 
that is created by running the gcc command with the  prog.c and  lib.c files 
as input. 

myprog: prog.c lib.c
    gcc –o myprog prog.c lib.c 

If either of the last-modified time stamps of prog.c and  lib.c are more 
recent than the time stamp of myprog, Make assumes that the developer has 
modified the source files since myprog was last compiled. As a result, it reruns 
the gcc command to regenerate myprog from the latest source files. 

The developer who writes a build description file (known as a makefile) must 
carefully specify the dependencies among all files in the system, along with all 
the intermediate steps. In a large system with thousands of source files and a 

107
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large array of file types (such as executable programs, data files, and object 
files), the number of rules can be extensive. 

Despite its age, Make is still the most commonly used tool for building soft-
ware. A large percentage of C/C++ projects use Make as their build tool, par-
ticularly for UNIX/Linux environments and older Microsoft Windows systems. 
Because of this popularity, university courses continue to teach the theory and 
practice of Make to prepare students for future employment. In the software 
industry, many developers have heard only about Make, not about the alterna-
tive tools. 

This chapter focuses on the GNU version of Make because of the large 
number of platforms it supports. Before GNU Make became popular, each oper-
ating system vendor provided its own version of the Make tool that accepted a 
slightly different syntax than the other variants. Naturally, this made construct-
ing a multiplatform build system difficult. You’ll take a look at other Make 
implementations at the end of the chapter. 

As a reminder, the goal of this chapter is to give you an appreciation for the 
features and capabilities of the GNU Make tool. You won’t examine the tool in 
too much detail, but by the end of this chapter, you’ll have a better appreciation 
of how to use the GNU Make tool and how a makefile is written. If you plan 
to use GNU Make in your own build system, you should first refer to the tool’s 
own documentation [16]. 

Because of the complexity of GNU Make, you might find some of the discus-
sion challenging to follow if you don’t already have experience writing a make-
file. Make sure you’ve read and understood Chapter 2, or at least be prepared 
to work through the examples in great detail. Make-based build systems can be 
difficult to understand. 

The GNU Make Programming Language 

The GNU Make tool is controlled by a user-written program script, stored in 
a file named Makefile. GNU Make provides a comprehensive programming 
language and gives a makefile developer enough functionality to describe the 
build process. You might find it useful to view the GNU Make language as three 
distinct programming languages integrated into one, each playing a slightly dif-
ferent role. 

The three sublanguages are as follows: 

•  File dependencies: A rule-based syntax for describing the dependency rela-
tionships between files. A Make program is “executed” by matching disk 
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filenames against the rules that generate them. Instead of sequentially exe-
cuting rules, GNU Make performs a pattern-matching operation to decide 
which rule to evaluate next. 

myprog: prog.c lib.c 

• Shell commands: A list of shell commands encapsulated within each rule, 
to be executed if the target of the rule is “out-of-date.” As with any shell 
script, each command invokes a separate program, such as ls, cat, or 
gcc. Commands are executed in the order they’re listed and can use shell 
metacharacters to control sequencing and I/O redirection. 

cp myfile yourfile && cp myfile1 yourfile1
md5 < myfile >>yourfile
touch yourfile.done 

• String processing: A language for manipulating GNU Make variables, such 
as treating them as a list of values. This language uses the functional pro-
gramming paradigm in which each function is passed one or more string 
values as input and returns a single string value as the result. By combining 
different function calls, complex expressions can be evaluated. 

VARS := $(sort $(filter srcs-% cflags-%, $(.VARIABLES))) 

With this combination of programming styles, it’s possible to construct any 
type of build system, no matter how complex. Let’s start by looking at GNU 
Make’s syntax and basic concepts. Later you’ll examine how these can apply to 
real-world build scenarios. 

Makefile Rules to Construct the Dependency Graph 

To reiterate, a makefile consists of a number of rules, each describing how to 
generate a particular target file from one or more prerequisite input files. If the 
target file is out of date with respect to the input files, the sequence of shell com-
mands is executed to bring it up-to-date. “Out-of-date” refers to the time stamp 
on the file being older than the files it was derived from. Therefore, the input 
files must have been changed more recently. 

As you saw in Chapter 2, the following makefile is a simplistic way of trans-
lating the calculator program’s dependency graph into code that GNU Make 
can understand. 

 1  calculator: add.o calc.o mult.o sub.o
 2      gcc -g -o calculator add.o calc.o mult.o sub.o
 3
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 4  add.o: add.c numbers.h
 5      gcc -g -c add.c
 6
 7  calc.o: calc.c numbers.h
 8      gcc -g -c calc.c
 9
10  mult.o: mult.c numbers.h
11      gcc -g -c mult.c
12
13  sub.o: sub.c numbers.h
14      gcc -g -c sub.c 

Keep in mind that GNU Make’s rule-based language doesn’t execute sequen-
tially, as would a program written in a procedural language. Instead, the whole 
mechanism is based on matching target filenames against whichever rule hap-
pens to match the name. As you see later, the target of a rule (the left side) can 
also contain wildcards and variable names, so locating a matching rule is not 
always a simple matter. 

Let’s not go into too much detail quite yet; this chapter later examines GNU 
Make’s pattern-matching and rule-searching algorithm. First you’ll learn about 
the different rules you can create. 

Makefile Rule Types 

In addition to the simple rules you’ve seen so far, you can express dependen-
cies in several other ways, making it easier for makefile developers to get their 
job done. GNU Make is a flexible and powerful language with a number of 
syntactical features for expressing the relationship between files. Consider some 
examples:

• Rules with multiple targets: The previous example had a single target file 
on the left side of the rule. However, the following syntactical shortcut is 
also allowed: 

file1.o file2.o: source1.c source2.c source3.c
        ... commands go here ... 

Of course, this works only if both targets have the same set of prerequisites 
and can be generated by the same list of shell commands. 

• Rules with no prerequisites: Sometimes you want to define a target that 
doesn’t depend on any prerequisites. You can use this approach to define 
pseudotargets that don’t relate to actual disk files. In the following exam-
ple, you’re defining the help target to display a synopsis of the commands 
the developer can use: 
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.PHONY: help
help:
        @echo "Usage: make all ARCH=[i386|mips]"
        @echo "       make clean" 

If the developer types gmake help, no file named help exists on the disk, 
and the shell commands shouldn’t proceed to create that file. Addition-
ally, the shell commands are executed every time the help target is invoked 
because no time stamp checking needs to be performed. Note the use of 
the PHONY directive to indicate that GNU Make should always execute the 
rule, even if somebody accidentally left a file named help sitting in the 
current directory. 

• Rules with patterns in the filename: As you probably noticed, the previ-
ous calculator example contained a lot of repetition. For every object file, 
such as add.o, there was a dependency on the corresponding C file, such 
as add.c. Because there were four different source files, you had four dif-
ferent rules that all looked similar. You can use wildcard characters as a 
shortcut to specify that the target and prerequisite filenames must match. 

%.o: %.c
        ... commands go here ... 

This example matches any pair of files in which the target ends with .o and 
the prerequisite both ends with .c and also starts with the same sequence 
of characters (known as the stem). In other words, a file stem.o can be 
generated from the file stem.c by executing the list of shell commands. 
When first asked to build the calculator target, GNU Make determines 
that calc.o, add.o, mult.o, and sub.o must all be generated and that 
this rule is capable of doing so. 

• Rules that apply only to certain files: To make the pattern matching in rules 
more useful, it’s also possible to state which files the pattern applies to. For 
example:

a.o b.o: %.o: %.c
     echo This rule is for a.o and b.o

c.o d.o: %.o: %.c
     echo This rule is for c.o and d.o 

By being more specific about the list of files, you can create more elabo-
rate build systems. For example, you might want some object files to be 
compiled with an x86-target compiler, whereas other object files must be 
compiled with a MIPS compiler. Although you haven’t explored GNU 
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Make variables in detail, this feature is a lot more useful if you have a list 
of several hundred files stored in a single variable. 

• Multiple rules with the same target: It’s often more useful to split the list 
of prerequisites for a target across multiple rules than to define them all on 
the same line. 

chunk.o: chunk.c
     gcc –c chunk.c

chunk.o: chunk.h list.h data.h 

In this example, the rule states that chunk.o is generated from  chunk.c,
and a separate rule states that chunk.o has dependencies on several other 
C header files. Only one of these rules can contain a set of shell commands; 
the other rule simply contributes to the list of prerequisites. 

If you’re curious about these and other ways of writing makefile rules, study 
the GNU Make reference manual for more examples. 

Makefile Variables 

As with any other language, writing a nontrivial program without using vari-
ables is difficult. The examples seen so far in this chapter have used hard-coded 
file names, but that won’t work in a large build system with hundreds of files. 
Let’s now see how GNU Make variables can simplify a makefile. 

GNU Make variables are similar to those in other programming languages, 
but they have a few unique behaviors of their own. The rules are listed here: 

1. Variables are given a value by an assignment statement, such as X := 5.
As you’ll see shortly, several types of assignment exist, each with their own 
semantics.

2. Variable values are referenced using the syntax $(X).

3. All variables are of string type, with the valuecontaining zero or more 
characters. No mechanism exists for declaring variables before they’re 
used, so assigning to them for the first time creates the variable. 

4. Variables have global scope, which means that all assignments and refer-
ences to the variable X (within a single makefile) refer to the same variable. 

5. Variable names can contain upper- and lowercase letters, numbers, and 
punctuation symbols such as @, ^, <, and >. To make them more visible, 
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this book typically uses uppercase letters in the examples, but that’s not a 
requirement.

To illustrate these rules, consider a simple example. You shouldn’t see any real 
surprises in this code, although an unusual feature is that strings don’t require 
quotation marks around them. Instead, they simply consume the remainder of 
the input line, with the exception of anything after the comment ( #) character. 

1  FIRST := Hello there
2  SECOND := World    # comments go here
3  MESSAGE := $(FIRST) $(SECOND)
4  FILES := add.c sub.c mult.c
5  $(info $(MESSAGE) – The files are $(FILES)) 

The last line, containing the $(info ...) directive, displays the following 
message on the output: 

Hello there World – The files are add.c sub.c mult.c 

Although this example shows only one type of assignment statement, several 
actually exist, each with its own semantics: 

• Immediate evaluation: This is the case you’ve already seen, using the :=
operator. The right side of the assignment is fully evaluated to a constant 
string and then assigned to the variable listed on the left side. Most modern 
programming languages use this type of immediate evaluation in their as-
signment statements. 

• Deferred evaluation: This second type of assignment, using = instead of  :=
enables you to defer the evaluation of variables until they’re actually used 
instead of immediately converting them to a constant string. Now look at 
a case in which a variable is defined in terms of other variables. 

1  CC := gcc
2  CFLAGS := -g
3  CCOMP = $(CC) $(CFLAGS)  # observe the use of =
4  $(info Compiler is $(CCOMP))
5  CC := i386-linux-gcc
6  $(info Compiler is $(CCOMP)) 

Note that line 3 uses deferred assignment (the = sign). When you execute 
this makefile, the right side of line 3 isn’t evaluated until the CCOMP vari-
able is actually used (which, in this case, is on lines 4 and 6). Given that 
the CC variable is modified on line 5, the value of  CCOMP changes when it’s 
used the second time. 
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$ gmake
Compiler is gcc –g
Compiler is i386-linux-gcc -g 

This feature might seem a little awkward, but the capability to define vari-
ables and then modify individual parts of the variable later can be useful. 
You’ll see this again when you look at GNU Make’s built-in rules. 

•  Conditional assignment: In a third situation, you assign a value if the vari-
able doesn’t already have one. 

1  CFLAGS := -g
2  CFLAGS ?= -O
3  $(info CFLAGS is $(CFLAGS)) 

In this case, you supply a default value for CFLAGS (on line 2), which is 
used if the user hasn’t already provided a value earlier in the program (on 
line 1 here). Although this is an oversimplified example, this feature is use-
ful when you include one makefile from within another, where the parent 
makefile might or might not want to explicitly define the CFLAGS variable. 
If it chooses not to, the default value is used. 

Now let’s look at some of the variables and rules built into the tool, making 
it easier to construct a makefile. 

Built-In Variables and Rules 

GNU Make provides built-in rules and variables to address common build sys-
tem requirements. First examine automatic variables, so named because their 
value depends on the context in which they’re used. Unlike many other pro-
gramming languages, GNU Make variable names can contain punctuation sym-
bols such as @, <, and ^.

• $@: Contains the filename of the current rule’s target. Instead of hard-
coding the name of the target into the sequence of shell commands, you 
use $@ to have it automatically inserted. This is handy when the rule uses 
wildcards to match the name of the target file and there’s no specific name 
to be hard-coded. 

• $<: Represents the first prerequisite of a rule. As shown in the following 
example, you use $@ to represent the target of the rule (the object file 
you’re generating), and you use $< to represent the first source file in the 
list. (In this case, only one source file is mentioned in the rule.) 
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%.o: %.c
     gcc –c –o $@ $< 

• $^: Similar to $<, but it evaluates to the complete list of prerequisites in the 
rule, with spaces between them. 

• $(@D): Evaluates to the directory containing the target of the rule. For 
example, if the target is /home/john/work/src.c, then $(@D) evaluates 
to / home/john/work. This is useful when you have a shell command such 
as mkdir that needs to manipulate the target file’s directory. 

• $(@F): Similar to $(@D), but evaluates to the base name of the target file. 
If the target is /home/john/work/src.c, then $(@F) evaluates to src.c.

Of course, many more variables are available in GNU Make, but they aren’t 
all listed here. 

In addition to variables, GNU Make provides built-in rules. These are used 
for compiling C, C++, Yacc, and Fortran code, among others. Invoking GNU 
Make with the –p command-line option ( gmake –p) shows you the rules built 
into the system. Here’s the built-in rule for C compilation. 

1  COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) –c
2  OUTPUT_OPTION = -o $@
3  %.o: %.c
4      $(COMPILE.c) $(OUTPUT_OPTION) $< 

This fragment shows a wildcard rule (lines 3 and 4) for generating .o files 
from the correspondingly named .c files. The automatic variables  $@ and  $<
represent the target and prerequisite of the rule, which could be any matching 
pair of filenames that end in .o or  .c, respectively. Notice also that line 1 of 
this rule uses deferred evaluation (the = sign), permitting developers to add their 
own values for CC, CFLAGS, CPPFLAGS, and TARGET_ARCH later. In theory, each 
time this wildcard rule is used, it could be with a different combination of flags, 
as set by the makefile developer. 

As you saw in Chapter 2, the calculator example can be rewritten to take 
advantage of this built-in C compilation rule. 

1  calculator: add.o calc.o mult.o sub.o
2      gcc -g -o calculator add.o calc.o mult.o sub.o
3
4  add.o calc.o mult.o sub.o: numbers.h 

That is, you can remove all the makefile rules that specify how to compile a 
C source file into an object file, because the implicit rule handles that case. To 
make the code even more readable, you can then define and reference a number 
of variables: 



ptg

Chapter 6 Make116

 1  SRCS = add.c calc.c mult.c sub.c
 2  PROG = calculator
 3  CC = gcc
 4  CFLAGS = -g
 5  OBJS = $(SRCS:.c=.o)
 6
 7  $(PROG): $(OBJS)
 8      $(CC) $(CFLAGS) -o $@ $^
 9
10  $(OBJS): numbers.h 

Note that CC and  CFLAGS (lines 3 and 4) are implicitly inserted into the built-
in C compilation rule that you saw earlier because COMPILE.c used deferred 
evaluation.

Line 5 uses some clever syntax to set OBJS to the same value as the  SRCS
variable (defined on line 1) but with all the .c extensions changed to  .o. As 
you know from programming experience, it’s a bad idea to list all the filenames 
twice, so you instead define one variable in terms of the other. 

Line 7 is still required to link the final executable, but this time you’re mak-
ing use of variables instead of hard-coding filenames. Note that CC and  CFLAGS
are the same variables used when compiling source files into object files. If you 
decide to change to a different compiler or add new compilation flags, only lines 
3 and 4 need to be modified. 

Finally, line 10 states that all object files depend on numbers.h. This is 
shorter than the previous version, in which all the object files had to be listed. 

Data Structures and Functions 

All of GNU Make’s variables are of string type but this needn’t stop you from 
representing other data types, such as numbers, lists, and structures. The key 
to storing complex data is to find a way to represent information as a sequence 
of space-separated words. GNU Make has plenty of features for manipulating 
variables in this form. 

The following are some typical data structures you might find yourself using: 

1 PROG_NAME := my-calculator
2 LIST_OF_SRCS := calc.c main.c math.h lib.c
3 COLORS := red FF0000 green 00FF00 blue 0000FF purple FF00FF
4 ORDERS := 100 green cups 200 blue plates 

Line 1 is a standard variable assignment of a simple string, and you’ll see this 
type of assignment in almost every makefile. Line 2 is a common way of express-
ing lists of things, although, obviously, the elements of the list can’t contain 
spaces. This can be painful if you were planning to store C:\Program Files
in a list. 
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Lines 3 and 4 demonstrate more complex data structures that you probably 
won’t use as often. For the ORDERS variable, element 1 is the quantity, element 
2 is the color, and element 3 is the item to purchase. The pattern repeats itself 
for each additional order item. As long as you have a mechanism for extracting 
specific items out of a list, you can treat this variable like a structured data type. 

Consider some of the most common functions for dealing with strings: 

•  words: Given a list as input, returns the number of space-separated words 
in that list. In this example, $(NUM_FILES) evaluates to 4. 

NUM_FILES := $(words $(LIST_OF_SRCS)) 

•  word: Given a list, extracts the nth word from that list. The list is 1-based, 
so $(SECOND_FILE) evaluates to main.c.

SECOND_FILE := $(word 2, $(LIST_OF_SRCS)) 

• filter: Returns the words from a list, which match a specific pattern. A 
common use is to select a subset of files that match a specific filename pat-
tern (such as all C source files). 

C_SRCS := $(filter %.c, $(LIST_OF_SRCS)) 

• patsubst: For each word in a list, replaces any that match a specific pat-
tern with a replacement pattern. The % character identifies the part of each 
word that remains unchanged (the stem). Note that the first comma must 
not be followed by a space character; otherwise, the replacement list ends 
up with two spaces between each word. 

OBJECTS := $(patsubst %.c,%.o, $(C_SRCS)) 

This example is similar to the $(C_SRCS:.c=.o) syntax you’ve already 
seen, with the resulting list being calc.o math.o lib.o.

• addprefix: For each word in a list, prepends an additional string. In 
the following example, you add the objs/ prefix to each element in the 
$(OBJECTS) list. 

OBJ_LIST := $(addprefix objs/, $(OBJECTS)) 

In this case, $(OBJ_LIST) evaluates to  objs/calc.o objs/main.o 

objs/lib.o.



ptg

Chapter 6 Make118

• foreach: Visits each word in a list and constructs a new list containing 
the “mapped” values. The mapping expression can consist of any combi-
nation of GNU Make function calls. The following example is identical to 
the addprefix case, in that you’re constructing a new list in which all the 
filenames are mapped to the expression obj/$(file).

OBJ_LIST_2 := $(foreach file, $(OBJECTS),objs/$(file)) 

•  dir/notdir: Given a file’s pathname, returns the directory name compo-
nent or the filename component. 

DEFN_PATH := src/headers/idl/interface.idl
DEFN_DIR := $(dir $(DEFN_PATH))
DEFN_BASENAME := $(notdir $(DEFN_PATH)) 

In this case, $(DEFN_DIR) evaluates to src/headers/idl/ (including the 
final /) and $(DEFN_BASENAME) evaluates to interface.idl.

• shell: Executes a shell command and returns the command’s output as a 
string. The following example demonstrates a nonportable way of deter-
mining the owner of the /etc/passwd file. This assumes that the third 
word in the output of the ls –l command is the name of the file’s owner. 

PASSWD_OWNER := $(word 3, $(shell ls -l /etc/passwd)) 

In addition to these functions, and the many other functions listed in the 
GNU Make documentation, certain language features are designed to keep 
GNU Make programs short and concise. 

First, the concept of a macro enables you to associate a name with a complex 
GNU Make expression and to pass arguments into that expression. This enables 
you to write your own GNU Make functions, effectively extending the basic lan-
guage. The following code defines a macro named file_size that returns the 
number of bytes in a file (again, this is nonportable). You use the $(1) syntax to 
reference the first parameter of the $(call) expression. 

file_size = $(word 5, $(shell ls -l $(1)))
PASSWD_SIZE := $(call file_size,/etc/passwd) 

Another shortcut is to define a canned sequence of shell commands by using 
the define directive. When specifying the shell commands to be executed in 
GNU Make rule, you call upon that canned sequence instead of writing it out 
every time. 

define start-banner
    @echo ==============
    @echo Starting build
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    @echo ==============
endef

.PHONY: all
all:
    $(start-banner)
    $(MAKE) -C lib1 

These language features, and many more discussed in the GNU Make docu-
mentation, make it possible to construct powerful makefile-based build systems. 

Understanding Program Flow 

This discussion of the GNU Make programming language finishes with a study 
of how a GNU Make program flows—that is, in which sequence the makefile 
is scanned and interpreted, and in which order the various parts of the program 
are executed. You’ve seen many of GNU Make’s language features, but you also 
need to understand how and when these features are called into action. 

You’ll explore three topics that are somewhat unrelated, except that they all 
deal with the flow of a GNU Make program: 

1. Parsing a makefile: Parsing a makefile involves two main phases: reading 
the makefile to build the dependency graph and then executing the compi-
lation commands. Recall that a makefile is essentially a text-based repre-
sentation of the dependency graph, which itself is a mathematical structure 
showing the relationship between files. 

2. Controlling the parsing process: GNU Make provides a number of features 
for controlling how you include a submakefile, or conditionally compile 
parts of the makefile. 

3. Executing the rules: The rule execution algorithm decides the order in 
which rules are applied and the corresponding shell commands are exe-
cuted.

Parsing a Makefile 
For the first topic, consider what happens when a developer invokes the gmake
command:

1. The makefile parsing phase: The makefile is parsed and validated, and the 
full dependency graph is constructed. All rules are scanned, all variable 
assignments are performed, and all variables and functions are evaluated. 
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Any problems that occur in the definition of rules or the construction of 
the dependency graph are reported at this time. 

2. The rule execution phase: When the entire dependency graph is in mem-
ory, GNU Make examines the time stamps on all the files to determine 
which files (if any) are out of date. If it finds any such targets, the appro-
priate shell commands are executed to bring those targets up-to-date. Any 
problems that occur within the shell commands are reported at this time. 

Although in many cases you don’t need to be aware of these phases, this next 
example illustrates the difference between the two. Again, keep in mind that 
variables are assigned in the first phase and shell commands are executed in the 
second phase. 

1  X := Hello World
2
3  print:
4       echo X is $(X)
5
6  X := Goodbye 

This example should seem straightforward, although you might be surprised 
to see the result of invoking the print target: 

$ gmake print
X is Goodbye 

The reason is that line 4 (a shell command) is simply saved until the second 
phase, and $(X) is not evaluated at all. This means that the second assignment 
on line 6 dictates the value of $(X) to be used when the shell command is finally 
evaluated.

If you’re going to become a makefile expert, it’s important to feel comfortable 
with the operation of these two phases. Much of your build system’s functional-
ity can be implemented either by using GNU Make functions (processed during 
the first phase) or as part of a shell script (processed during the second phase). 
Also, when you need to debug your makefile problems, you must understand 
the distinction between the two phases because different problems arise at each 
point in time. 

Controlling the Parsing Process 
Next, you must consider some additional flow-control features in GNU Make 
that impact the execution of a GNU Make-based program. 

•  File inclusion: Similar to how C and C++ use the #include directive, GNU 
Make enables you to read additional files as if they were part of the main 
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makefile. Any rules and variables defined inside the included file are treat-
ed as if they’re actually written inside the main file. 

FILES := src1.c src2.c

include prog.mk    # content of prog.mk textually
                   # inserted here

src1.o src2.o: src.h 

As you’ve seen, this approach can be used to include a framework file con-
taining reusable sections of code. You’ll see another practical case of file 
inclusion later in this chapter. 

• Conditional compilation: Similar to C/C++’s #ifdef directive, you can 
conditionally include or exclude parts of the makefile. This inclusion is 
done within the first phase of the makefile parsing, so the conditional 
expressions need to be pretty simple (instead of using shell commands). 

CFLAGS := -DPATH="/usr/local"
ifdef DEBUG
   CFLAGS += -g    # debug case if DEBUG is defined
else
   CFLAGS += -O    # non-debug case if DEBUG not defined
endif

Executing the Rules 
Finally, let’s examine the algorithm GNU Make uses to construct a dependency 
graph, and see how the execution of the makefile flows as a result. Consider the 
main steps (with some of the detail left out for convenience). 

1. The developer who invokes GNU Make (with the gmake shell command) 
must specify which target to build. This is typically the name of an execut-
able program, although you can also create pseudotargets such as all or 
install that don’t relate to actual disk files. If the developer doesn’t state 
which target file to build, GNU Make attempts to build the first target 
listed in the makefile (such as calculator).

2. If GNU Make locates a rule to generate the target file, it examines each 
of the prerequisites listed in that rule and treats them recursively as tar-
gets. This ensures that each file used as an input to a compilation tool is 
itself up-to-date. For example, before linking add.o and  calc.o into the 
calculator executable program, GNU Make recursively searches for 
rules that have add.o or calc.o on the left side. 
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3. If a rule is found for the target you’re trying to satisfy (either the user-
specified target or one that was found recursively), you have two options: 

a. If the target file for the rule doesn’t yet exist (there’s currently no disk 
file with that name), the rule’s shell command sequence is executed and 
the file is created for the first time. This is often the case when you’re 
compiling a completely fresh source tree and no object files have yet 
been created. 

b. On the other hand, if the target file already exists on the disk, the time 
stamp on each of the prerequisite files is examined to see if any are 
newer than the target file. If so, you proceed to regenerate the target, 
thereby making it newer than the input files. 

4. If step 3 fails, meaning that the makefile doesn’t contain a suitable rule to 
generate a target file, you also have two options: 

a. If the target file exists on the disk (but there’s no rule to regenerate it), 
GNU Make can only assume that this is a source file that was handwrit-
ten by the developer. This is where the rule recursion stops. 

b. If the target file doesn’t exist on the disk, GNU Make aborts with an 
error and the build fails. GNU Make doesn’t know how to regenerate 
the file, and because it doesn’t already exist on disk, you can’t proceed 
any further. 

Throughout this process, GNU Make doesn’t preserve any state between 
invocations and doesn’t maintain a database of file time stamps. It determines 
whether a file has changed by comparing the time stamps between the target 
and its prerequisites. As you’ll see in later chapters, build tools that record time 
stamps in a database can detect changes only by looking at that one file. 

Further Reading 

Although you’ve explored a number of GNU Make features, you need to learn 
more before you can create your own build system. The ultimate authority on 
GNU Make syntax and semantics is the online reference document [16]; this is 
fairly tough going for beginners, though, so you’ll probably want to start with a 
more introductory guide [41]. For more advanced best practices for using GNU 
Make, refer to [42] in References. 

To simplify the construction of a makefile, consider using the GNU Make 
Standard Library [43] which adds an extra layer of language support for logical 
operators; manipulation of lists, strings, and sets; and basic arithmetic. 
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Now let’s study how to use the GNU Make language to address common 
build system scenarios. 

Real-World Build System Scenarios 

As discussed in the introduction to Part II, “The Build Tools,” it’s important to 
compare how each of the available build tools can be used in realistic scenarios. 
After all, not until you actually solve a technical problem do you get a true sense 
of whether the tool is easy to use. From now on, this chapter focuses less on the 
syntax of GNU Make and more on how everything fits together. 

Scenario 1: Source Code in a Single Directory 

In the simple case in which you have a C program stored entirely within a single 
directory, you have three solutions. The first is a repeat of what you saw earlier 
in the chapter. The second shows how to improve upon that solution, and the 
third uses an external scanner tool to find dependencies. 

Consider the solution you’ve already seen: 

 1  SRCS = add.c calc.c mult.c sub.c
 2  PROG = calculator
 3  CC = gcc
 4  CFLAGS = -g
 5  OBJS = $(SRCS:.c=.o)
 6
 7  $(PROG): $(OBJS)
 8      $(CC) $(CFLAGS) -o $@ $^
 9
10  $(OBJS): numbers.h 

This type of makefile is common for projects that start small. When develop-
ers first write their code, they often don’t put much effort into planning their 
build system, given that a simple makefile will suffice. They can add new source 
files by appending to the SRCS variable, and everything continues to work per-
fectly—at least, for a while. 

Focus on line 10, stating that all source files have a dependency on the 
numbers.h header file. What would happen if a newly added source file didn’t 
actually include numbers.h? What if additional header files were added, but 
you forgot to list them in the makefile? In both cases, a lot of manual work is 
required to keep the makefile consistent with the source files; otherwise, you’d 
end up with an incorrect executable program. 

The second approach is to automate the detection of header files. The follow-
ing solution scans the source files and computes the correct set of dependencies. 
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 1  SRCS = add.c calc.c mult.c sub.c
 2  PROG = calculator
 3  CC = gcc
 4  CFLAGS = -g
 5  OBJS = $(SRCS:.c=.o)
 6
 7  $(PROG): $(OBJS)
 8      $(CC) $(CFLAGS) -o $@ $^
 9
10  -include $(SRCS:.c=.d)
11
12  %.d: %.c
13 @$(CC) -MM $(CPPFLAGS) $< | sed 's#\(.*\)\.o: #\1.o 

\1\.d: #g' > $@ 

This code looks rather complex (and it is), so let’s break it down in detail. 
The approach is to automatically generate a new dependency information file 
(with .d suffix), corresponding to each C source file. In this case, you generate 
add.d, calc.d, mult.d, and sub.d. Here’s what these dependency files look 
like (in this case, it’s add.d):

add.o add.d: add.c numbers.h 

On line 10 of the makefile, you explicitly include all these .d files, ensuring 
that everything is added to the same dependency graph. On line 12, a new rule 
informs GNU Make how to generate these .d files if they’re missing or if the 
corresponding .c or .h files have changed. 

Line 13 works a bit of magic to obtain the dependency information in the 
first place. Most of the work is done by passing the –MM option to the GCC com-
piler. This asks the compiler to generate the list of .c and  .h files that it reads in 
but to stop immediately after doing so (instead of doing any real compile work). 
Finally, the cryptic sed command adds the name of the  .d file on the left side of 
the rule, because GCC won’t put it there by itself. 

To fully understand this example, you need to know that GNU Make deter-
mines when makefile fragments (such as .d files) have changed and restarts the 
entire parsing process as a result. That’s more detail than you’ll want to get into, 
but hopefully you can see what’s involved in automatically detecting header file 
dependencies.

A third solution uses the makedepend command. This tool is similar in nature 
to gcc -MM, although it provides its own scanner for analyzing C source files 
instead of relying on the compiler itself. Chapter 19, “Faster Builds,” discusses 
build system performance and covers makedepend in more detail. 

Let’s continue by addressing scalability and see how to write a makefile for 
multidirectory programs. 



ptg

Real-World Build System Scenarios 125

Scenario 2(a): Source Code in Multiple Directories 

Constructing a multidirectory build system is not as simple as the single direc-
tory case, so next you’ll see three different attempts to achieve what you need. In 
these cases, the source code files are no longer colocated in the same directory, 
but are instead spread across a larger source tree. As a reminder, Figure 6.1
shows the tree for the example software described at the start of Part II.

Figure 6.1 The source tree for the multidirectory calculator example. 

For the first attempt, you use a similar makefile to the single-directory pro-
gram, but the SRCS variable now contains the full path to each file. 

1  SRCS = libmath/clock.c libmath/letter.c libmath/number.c \
2     libprint/banner.c libprint/center.c libprint/normal.c \
3     calc/calc.c
4  ... 

Although this is easy to understand and it works properly for simple pro-
grams, this approach doesn’t work in a large-scale build environment, for sev-
eral reasons: 

1. Harder dependency generation: With automatic generation of  .d files, the 
dependency rules are no longer created properly. Instead, you end up with 
a rule that doesn’t contain the correct pathname on the left side (it’s miss-
ing the directory component). 

clock.o: libmath/clock.c libmath/math.h 

Of course, this can be fixed by adding more complexity to the rule that 
generates .d files, but let’s not look into that approach yet. 
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2. Developer contention on the single makefile: The  SRCS variable is already 
spread over three lines in the makefile. What would happen if you had a 
hundred files or a thousand files? This single makefile would be unman-
ageable, becoming a point of contention when all software engineers (per-
haps hundreds of them) needed to modify the same file at the same time. 

3. Inability to subdivide the program: This makefile solution doesn’t ena-
ble the use of libraries, such as libmath.a or  libprint.a. For large 
programs, it’s convenient to subdivide the code into libraries that help 
delineate areas of code, making it possible to reuse code across different 
executable programs. 

For these reasons, it’s uncommon to find a large build system that uses a sin-
gle makefile. A more common solution is to divide the build description across 
more than one makefile. That leads to the next solution. 

Scenario 2(b): Recursive Make over Multiple Directories 

The second approach, known as recursive Make, is a common solution in the 
software industry. The basic approach is to have a different makefile in each 
source directory, with the high-level makefile (in the high-level directories) re-
cursively invoking each lower-level makefile. Figure 6.2 shows the revised direc-
tory tree, with each directory having its own makefile. 

Figure 6.2 Multidirectory example, showing the location of makefiles and library files. 
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Observe that the build tree now has four different files named Makefile: one 
at the top level and one within each of the libmath, libprint, and calc subdi-
rectories. Going a step further, two static libraries, libmath.a and  libprint.a,
were added, each archiving the object files from their specific directories. 

The advantage of recursive Make is that each makefile needs to list only 
the files in the current source directory. When necessary, a makefile can recur-
sively call upon another makefile if there’s a requirement to build other parts of 
the source tree. Listing long pathnames in the makefile is unnecessary because 
all file references are relative to the directory itself. Less contention also arises 
between different developers who need to make changes to a makefile. The odds 
of two developers changing the same small makefile are significantly less than 
with a single large makefile. 

Now look at the content of each makefile, starting with libmath/Makefile:

 1  SRCS = clock.c letter.c number.c
 2  LIB = libmath.a
 3  CC = gcc
 4  CFLAGS = -g
 5  OBJS = $(SRCS:.c=.o)
 6
 7  $(LIB): $(OBJS)
 8      $(AR) cr $(LIB) $(OBJS)
 9
10  $(OBJS): math.h 

The code looks similar to the makefile used in the single-directory case, 
which, of course, is a major reason for using recursive Make. The files listed in 
the SRCS variable are all relative to the current directory, and you can use GNU 
Make’s built-in rule for compiling C source files. Notice that the code is a bit 
lazy here: Line 10 contains an explicit dependency for the math.h header file 
instead of automatically detecting it. 

The big difference is in lines 7 and 8, where, instead of linking together a 
final executable program, a static library is created by archiving the files listed 
in $(OBJS) into  libmath.a. In another makefile that you’ll see shortly, this 
archive is linked into the executable program. 

The next makefile, in the libprint subdirectory, is essentially the same. 

 1  SRCS = banner.c center.c normal.c
 2  LIB = libprint.a
 3  CC = gcc
 4  CFLAGS = -g
 5  OBJS = $(SRCS:.c=.o)
 6
 7  $(LIB): $(OBJS)
 8      $(AR) cr $(LIB) $(OBJS)
 9
10  $(OBJS): printers.h 
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This makefile is so similar to libmath/Makefile that you might wonder 
whether you could factor out the common code. This is certainly the case, and 
many build systems extract the common code into a framework makefile. Each 
individual makefile uses the include directive to incorporate the shared func-
tionality. For example, you could rewrite libprint/Makefile as follows: 

1  SRCS = banner.c center.c normal.c
2  LIB = libprint.a
3  include lib.mk
4  $(OBJS): printers.h 

The third makefile, in the calc directory, is different from the other two, 
in that it creates the final executable program by combining libprint.a and 
libmath.a, along with a small main program. 

1  SRCS = calc.c
2  PROG = calculator
3  LIBS = ../libmath/libmath.a ../libprint/libprint.a
4  CC = gcc
5  CFLAGS = -g
6  OBJS = $(SRCS:.c=.o)
7
8  $(PROG): $(OBJS) $(LIBS)
9      $(CC) -o $@ $^ 

Note the use of relative paths on line 3 to access the static libraries from 
the libmath and  libprint directories. An assumption is clearly being made 
that calc/Makefile is executed only after the two libraries have already been 
brought up-to-date. If the ordering of the steps was incorrect, you’d end up with 
a broken build, or worse, would build an executable program with outdated 
libraries.

To make sure everything is built properly, the top-level makefile recursively 
calls every other makefile in the correct order. 

1  .PHONY: all
2  all:
3      $(MAKE) -C libmath
4      $(MAKE) -C libprint
5      $(MAKE) -C calc 

This top-level makefile uses only the most basic features of GNU Make 
and doesn’t have much of a dependency graph. Each of the shell commands is 
executed in the specified order, and there’s no choice about whether they’ll be 
executed. The all target has no prerequisites, so each of the recursive calls to 
$(MAKE) happens every time the developer executes the makefile. 

Although recursive Make is simple to understand, it isn’t the most efficient 
solution available. It might be commonly used in the software industry, but it 
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still has a number of flaws that tend to cause slow or incorrect builds. Even 
though recursive Make enables developers to keep each makefile small and self-
contained, with operations being done in an explicit sequence, those are the 
exact reasons the solution sometimes fails. 

The example had only three directories to think about: libmath, libprint,
and calc. The relationship between these directories was clearly defined, so the 
explicit sequence of $(MAKE) calls was easy to determine. On the other hand, 
what if you had a hundred directories with a complex network of dependen-
cies between them? Trying to build everything in the correct order becomes an 
impossible task, especially if developers create more interdirectory dependencies 
as they write new code. After a while, you’d start wishing you’d used GNU 
Make’s dependency-analysis system to figure out the correct ordering for you. 

As an example, what would happen if the source code in the libmath direc-
tory started to use the libprint.a library. In the current system,  libmath is 
compiled first and, therefore, runs the risk of using an outdated version of the 
libprint.a library or simply failing if the library didn’t yet exist. The easi-
est solution is to modify the top-level makefile to build libprint first, but 
that solution doesn’t scale to hundreds of directories with complex ordering 
requirements.

A similar problem occurs if you want to build only part of the program. 
Imagine if you tried to cut corners and not build the calculator example from 
the top-level makefile. If you started in the calc subdirectory and typed gmake,
you’d simply be recompiling the calc.c source file (if required). Because  calc/
Makefile doesn’t know how to build  libprint.a, it doesn’t attempt to rebuild 
any of those files even if they are out-of-date. 

To phrase these problems in more technical terms, each makefile is executed 
by a separate instance of the $(MAKE) process and, therefore, has a completely 
different dependency graph. In no place in the build system is the entire depend-
ency graph available, which, of course, is the root cause of invalid builds. If 
GNU Make isn’t provided with full dependency information, it can’t compile 
the correct set of files in the correct order. 

In most large-scale recursive Make systems, developers end up seeing a lot 
of redundancy. To avoid risking the chance of building an executable program 
using outdated libraries, each makefile rebuilds the same libraries many times, 
just to make sure no dependencies were missed. For example, you might choose 
to build libmath.a, followed by libprint.a, and then repeat the compilation 
of libmath.a, just in case something in the  libprint directory changed since 
the first time it was compiled. This type of paranoia is common when developers 
don’t trust the build system to do the right thing. 

This sequencing technique clearly results in building libmath.a twice, 
although because the library is already up-to-date, there’s probably no extra 
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work to do the second time—well, almost no work. In reality, there’s still the 
overhead of starting a new GNU Make process, parsing the makefile to build the 
dependency graph, and then reading the file time stamps to see if anything has 
changed. Unfortunately, this overhead isn’t free: It could slow the build by any-
thing from a few seconds to a few minutes, depending on the size of libmath.a.

These problems and several others are detailed in a classic research paper 
titled “Recursive Make Considered Harmful” [44]. This paper also discusses 
solutions to the recursive Make problem, including the next solution you’ll 
evaluate.

Scenario 2(c): Inclusive Make over Multiple Directories 

The third multidirectory solution adopts the good practices of the recursive 
Make approach, while ensuring that only one instance of the GNU Make proc-
ess is ever executed. As a result, you benefit from the full power of GNU Make’s 
dependency system so that important dependencies aren’t missed. In contrast to 
the previous method, this new solution is called inclusive Make.

Consider the benefits: 

• Only one instance of GNU Make is running, with a lower start-up time. 
This contrasts with starting hundreds of processes over the lifetime of the 
build.

• You still have a single makefile per directory to describe all the files in 
that directory. This makes it possible to encapsulate each directory’s build 
description, and it reduces contention between developers when they mod-
ify each makefile. 

• All source filenames are specified by their filename component only, so 
there’s no need to include the full path to each file (as in the first example). 

• A single dependency graph contains all dependencies in the entire build 
system, reducing the chance of incorrect builds. 

• Because there’s no recursion, you don’t need to explicitly sequence all the 
recursive $(MAKE) calls and risk possibly getting it wrong. GNU Make 
executes the rules in the correct order. 

Although this sounds like an excellent solution, the major downside is the 
additional complexity. If you’re new to GNU Make, the solution you’re about 
to see will stretch your knowledge of how the tool works. In most production 
build systems, an experienced GNU Make guru would create the inclusive build 
system in the first place, with junior GNU Make programmers scratching their 
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heads to understand how everything works. This example just covers the basic 
framework and doesn’t go into much detail. 

Figure 6.3 illustrates the inclusive Make build tree. This is a larger exam-
ple because a two-level directory structure doesn’t show the full extent of this 
solution.

Figure 6.3 A larger source tree, illustrating the inclusive Make system. 

This example has one main makefile, at the top of the source tree. You can 
also see the make/framework.mk file, which contains most of the complexity 
of the build system. Finally, each source directory contains a short makefile 
fragment, named Files.mk, for describing the source files in that particular 
directory.

Because of the complexity of the inclusive Make framework, this separation 
of files is important. Software developers are only encouraged to view and edit 
Files.mk files where they can find the list of source files, the list of subdirec-
tories to traverse, and the list of compiler flags. On the other hand, the GNU 
Make complexity is deliberately hidden inside the make/framework.mk file so 
that nonguru software engineers don’t attempt to change the build mechanism 
by mistake. 

Start by examining a few of the Files.mk files. These are designed to be read-
able and editable by software developers, and they contain only variables that 
developers care about: 
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•  src/Files.mk:

1  SUBDIRS := libraries application
2  SRC := main.c
3  CFLAGS := -g 

•  src/libraries/Files.mk:

1  SUBDIRS := math protocols sql widgets 

•  src/libraries/math/Files.mk:

1  SRC := add.c mult.c sub.c
2  CFLAGS := -DBIG_MATH 

First consider the SUBDIRS variable definitions. For directories (such as  src
and src/libraries) that contain subdirectories of their own, the SUBDIRS
variable lists the directories to be included in the build process. As you can 
see, src/libraries/Files.mk includes the  math subdirectory, so the inclusive 
framework must incorporate src/libraries/math/Files.mk into the build 
process. On the other hand, src/libraries/math/Files.mk doesn’t contain 
a definition for SUDIRS, so the build system won’t search any lower in the build 
tree.

Next, the SRC variable within each  Files.mk fragment informs the build sys-
tem about the C source files that should be included from that directory. Given 
that src/libraries/Files.mk doesn’t include the  SRC variable, none of the 
source files from that directory (if there were any) would be included. 

Finally, the CFLAGS variable states which C compiler flags should be used for 
all the source files in this directory. Each directory can have a different set of C 
flags instead of using a global set of flags for all files in the build tree. 

In the inclusive Make example, these Files.mk fragments are all that an 
average software developer is interested in seeing. The question remains of how 
GNU make interprets these Files.mk files  and how the  SRC, SUBDIRS, and 
CFLAGS variables are used. 

Continue by examining src/Makefile, which is the main entry point to the 
GNU Make program. As a reminder, only build gurus would be interested in 
reading or modifying this file. 

 1  _subdirs :=
 2  _curdir :=
 3  FRAMEWORK := $(CURDIR)/make/framework.mk
 4  include Files.mk
 5  include $(FRAMEWORK)
 6
 7  VARS := $(sort $(filter srcs-% cflags-%, $(.VARIABLES)))
 8  $(foreach var, $(VARS), $(info $(var) = $($(var))))
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 9
10  .PHONY: all
11  all:
12      @# do nothing 

Again a detailed explanation is in order. The inclusive Make solution is com-
plex, so now examine each line in detail. 

On line 1, the _subdirs variable is initialized to the empty string. This variable 
is used as a space-separated list of subdirectories to be traversed. Within each of 
these directories, you can expect to find a Files.mk file, which itself could poten-
tially include a definition for the SUBDIRS variable. Each time you find another 
SUBDIRS definition, you append the new subdirectories onto  _subdirs, effectively 
creating a queue of directories to visit. 

For example, after you’ve visited src/Files.mk, the _subdirs variable con-
tains the following: 

libraries applications 

In the next step, you pop the libraries path off the front of the queue 
and parse src/libraries/Files.mk. After discovering the new definition for 
SUBDIRS in that file, the _subdirs variable changes to this: 

applications libraries/math libraries/protocols libraries/sql \
    libraries/widgets 

Following this process repeatedly, you end up traversing the entire build tree 
and reading every Files.mk file. Note that the  src directory name isn’t included 
in these pathnames because that’s the current working directory. Everything is 
already relative to the src directory. 

Line 2 of src/Makefile initializes  _curdir to the empty string. This vari-
able represents the current directory you’re traversing. It starts empty because 
you’re at the top level of the build tree (inside the src directory). As you traverse 
the build tree, by popping entries off the start of the _subdirs queue, the value 
of _curdir reflects the current point of traversal. 

Line 3 defines FRAMEWORK to be the path of the framework makefile. You’ll 
be calling upon this makefile often, so it’s convenient to have a variable refer-
ring to it. 

Line 4 starts everything in motion by including the src/Files.mk file. From 
this, you get the top-level definition of SRC, SUBDIRS, and CFLAGS. Note the 
distinction here between including a file with the include directive and calling 
upon another makefile using $(MAKE). Because you’re using include, the same 
Make instance is used, and you’ll be adding to the same dependency graph each 
time (instead of creating a new one). 
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Line 5 calls the inclusive Make framework to process the content of the 
SRC, SUBDIRS, and CFLAGS variables; the framework then continues traversing 
the remainder of the source tree. By the time you return from this particular 
include directive, all the Files.mk files will have been processed. 

Lines 7 and 8 are executed after the entire tree of Files.mk fragments has 
been processed. This code takes the complete list of variables that GNU Make 
knows about (automatically stored in $(.VARIABLES)) and filters all variables 
names that start with srcs- or  cflags-. It then displays each one on the pro-
gram’s output so that you can see the computed values. You haven’t seen it yet, 
but the framework file defines the srcs-* and  cflags-* variables as it traverses 
the build tree. 

This mechanism isn’t normally part of the build system, but it’s used as a 
means of debugging the inclusive Make algorithm to ensure that everything is 
working correctly. You’ll take a look at the output shortly. 

Now examine the content of make/framework.mk, which is the main algo-
rithm for traversing the build tree and collecting the values from each Files.
mk fragment: 

 1  srcs-$(_curdir) := $(addprefix $(_curdir),$(SRC))
 2  cflags-$(_curdir) := $(CFLAGS)
 3  _subdirs := $(_subdirs) $(addprefix $(_curdir), $(SUBDIRS))
 4
 5  ifneq ($(words $(_subdirs)),0)
 6      _curdir := $(firstword $(_subdirs))/
 7 _subdirs := $(wordlist 2, $(words $(_subdirs)), 

$(_subdirs))
 8      SUBDIRS :=
 9      SRC :=
10      CFLAGS :=
11      include $(_curdir)Files.mk
12      include $(FRAMEWORK)
13  endif 

As with the previous file, this makefile framework requires detailed explana-
tion. Recall that this file is included immediately after one of the Files.mk files 
has been parsed. Therefore the SRC, SUBDIRS, and CFLAGS variables have just 
been set to the appropriate value for the directory you’re currently processing. 

Line 1 records the set of source files for the current directory. The variable 
name on the left side of the assignment also contains a variable, so you’ll be 
creating a different GNU Make variable for each directory you visit. This syn-
tax seems odd at first, but having the capability to dynamically construct vari-
able names is equivalent to defining arrays or hashes in other languages. That 
is, the srcs- variable has many subelements, each indexed by the name of the 
directory.
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On the right side of line 1, you take the current definition of the SRC variable 
and add the current directory as a prefix to each element in that list. For exam-
ple, if _curdir is set to  libraries/math/, then you’ve just finished parsing 
the src/libraries/math/Files.mk file. Line 1 of the framework makefile is 
therefore equivalent to this: 

srcs-libraries/math/ := libraries/math/add.c \
   libraries/math/mult.c libraries/math/sub.c 

Although it might seem odd, it’s perfectly acceptable to have punctuation 
within variable names. 

Line 2 is similar and stores the current directory’s CFLAGS definition inside 
a directory-specific cflags-* variable. In the simple inclusive framework, you 
won’t be doing anything with these variables aside from displaying them for 
debugging purposes. 

Line 3 is responsible for queuing up any additional SUBDIRS values that the 
current Files.mk fragment might contain. Again, you prefix the elements in 
SUBDIRS with the current directory, but this time you append these values to the 
end of the existing $(_subdirs) value. 

Lines 5–13 are where the tree traversal takes place. Assuming that there are 
more entries in the queue of pending subdirectories, you’ll extract the first of 
them and visit the Files.mk file in the corresponding source code directory. 

Lines 6 and 7 remove the first queue element. Line 6 sets the first item in the 
_subdirs list as the current directory ( _curdir). Line 7 deletes this first element 
from the queue by reassigning _subdirs with all the words from position 2 to 
the end of the current _subdirs value. 

Line 11 now includes the Files.mk fragment that resides within the current 
directory. Given that Files.mk isn’t required to contain all the variable defini-
tions ( SRC, SUBDIRS, CFLAGS), you first set them to the empty string (lines 8–10) 
to make sure that the values from the previous directory don’t “leak through” 
to the current directory. 

Finally, Line 12 repeats the whole framework file, which stores the values of 
SRC and  CFLAGS and then traverses any additional directories listed in  SUBDIRS.

That’s the end of the example. For completeness, let’s see the output of exe-
cuting the makefile on the example build tree. The values for the srcs- and 
cflags- variable should match the original diagram. 

cflags- = -g
cflags-application/ =
cflags-application/database/ =
cflags-application/database/load/ =
cflags-application/database/save/ =
cflags-application/graphics/ =
cflags-libraries/ =
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cflags-libraries/math/ = -DBIG_MATH
cflags-libraries/protocols/ = -DFAST_SEND
cflags-libraries/sql/ = -O2
cflags-libraries/widgets/ = -DCOLOR="red"
srcs- = main.c
srcs-application/ =
srcs-application/database/ = application/database/
persistence.c

   application/database/backup.c application/database/
optimize.c

srcs-application/database/load/ = application/database/load/
loading.c

srcs-application/database/save/ = application/database/save/
saving.c

srcs-application/graphics/ = application/graphics/line-
drawing.c

   application/graphics/vector-size.c application/
graphics/3d.c
srcs-libraries/ =
srcs-libraries/math/ = libraries/math/add.c libraries/math/
mult.c

   libraries/math/sub.c
srcs-libraries/protocols/ = libraries/protocols/tcp.d
   libraries/protocols/udp.c libraries/protocols/ip.c
srcs-libraries/sql/ = libraries/sql/select.c libraries/sql/
view.c
   libraries/sql/create.c libraries/sql/drop.c
srcs-libraries/widgets/ = libraries/widgets/button.c
   libraries/widgets/list.c libraries/widgets/window.c
   libraries/widgets/tree.c 

At this point, it should be clear that you haven’t built a complete inclusive 
Make system, but you should have a basic idea of how it could be done. The 
important factors are that each directory has its own Files.mk files (with paths 
specified relative to that directory) and that using one instance of the GNU 
Make process enables you to have a single unified dependency graph. 

To make a fully functional build system, you need to add the following 
features:

• GNU Make code to define the dependencies between object files, source 
files, and header files (using automatic dependency analysis). 

• Rules for compiling the code (You’d need to override the built-in rules for 
C compilation.) 

• Code to link object files into static libraries. 

• Code to link together the final executable programs (possibly more than 
one program could be compiled). 
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• The capability to start the GNU Make process from a subdirectory (Cur-
rently, the only makefile is in the top-level src directory.) 

• Support for compiling on multiple CPU architectures. 

• C compiler flags on a per-file basis instead of just on a per-directory basis. 

• Inheritance of compiler flags from parent directories to child directories. 

Certainly, the list goes on. In summary, an inclusive Make build system is not 
an easy system to create. Definitely budget plenty of time if you decide to create 
your own. Luckily, several experts [42][44] have provided systems you can use 
as a starting point. 

Scenario 3: Defining New Compilation Tools 

The next real-world scenario looks at adding a new type of compilation tool 
into the makefile. So far, this chapter has focused exclusively on compiling C-
language source files, but the same concepts extend nicely to other languages. 
In fact, this GNU Make code will appear simple compared to some you’ve seen 
so far. 

To make use of the mathcomp compiler (discussed in the introduction to  Part
II), you need to add the following: 

1. A list of source files that are in .math file format, to be read by the 
mathcomp compiler 

2. A GNU Make rule that describes how to compile .math files into .c files 

3. A new type of dependency file (with .d1 suffix) to record the relationship 
between .math files and the .mathinc files they depend upon 

Now jump right into the final solution, which isn’t too different from what 
you’ve already seen. 

 1  MATHCOMP := /tools/bin/mathcomp
 2  CC := gcc
 3  MATHSRC := equations.math
 4  CSRC := calculator.c
 5  PROG := calculator
 6  OBJS := $(CSRC:.c=.o) $(MATHSRC:.math=.o)
 7
 8  $(PROG): $(OBJS)
 9      $(CC) -o $@ $^
10
11  %.c: %.math
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12      $(MATHCOMP) -c $<
13
14  -include $(CSRC:.c=.d)
15  -include $(MATHSRC:.math=.d1)
16
17  %.d: %.c
18 @$(CC) -MM $(CPPFLAGS) $< | sed 's#\(.*\)\.o: #\1.o 

\1.d: #g' > $@
19
20  %.d1: %.math
21      echo -n "$@ $(*F).c: " > $@; \
22      $(MATHCOMP) -d $< >> $@ 

Here’s a line-by-line explanation, but only for the new portions of the make-
file. Everything else should look familiar. 

Line 1 defines the path of the mathcomp compiler. An absolute path is used 
for the tool here instead of relying on users to have their $PATH variable set 
correctly.

Line 3 defines the list of source files ( MATHSRC) in the .math file format, just 
as line 4 defines the list ( CSRC) of C-language source files. Line 6 forms a list 
of object files by replacing .c and .math file extensions with the .o extension. 

Lines 11 and 12 define a dependency rule to generate .c files from their 
corresponding .math files. For example, to generate  equations.o (required 
by line 8), you first need to generate equations.c (defined by the built-in C 
compilation rule). To do this, GNU Make triggers the rule on line 11 to generate 
equations.c from equations.math.

Lines 15 and 20–22 perform the magic necessary for autodetecting make-
file dependencies. Similarly to the C compiler, you pass the –d option to the 
mathcomp compiler and have it generate the list of source files it includes (namely, 
.mathinc files). The additional  echo command on line 21 adds a small amount 
of extra information that mathcomp doesn’t provide by default. The resulting 
equations.d1 file looks like this: 

equations.d1 equations.c: equations.math equ1.mathinc \
    equ2.mathinc 

With those key points covered and all the previous examples you’ve seen, 
the rest of the makefile should be easy to understand. In summary, adding a 
new compilation tool in GNU Make is not too difficult, except perhaps when it 
comes to automatically detecting dependencies. 

Scenario 4: Building with Multiple Variants 

GNU Make is the most common means of compiling C and C++ code, and both 
of these languages usually compile to native machine code. Clearly, you need a 
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way to select which CPU type to use. This example allows the software devel-
oper to compile for the Intel x86 series, the PowerPC series, or the Alpha CPUs. 
In fact, you allow them to compile for all three architectures within the same 
build tree at the same time. 

To select a target architecture, developers should provide a value for the 
PLATFORM variable. If they don’t provide a value, the compilation defaults to 
using the x86 architecture. For example: 

$ gmake PLATFORM=powerpc      # build for PowerPC CPUs
$ gmake                       # build for i386 CPUs
$ gmake PLATFORM=xbox         # OOPS! Not allowed.
Makefile:8: *** Invalid PLATFORM: xbox. Stop. 

Here’s the necessary GNU Make code for compiling platform-specific code: 

 1  SRCS = add.c calc.c mult.c sub.c
 2  PROG = calculator
 3  CFLAGS = -g
 4  PLATFORM ?= i386
 5  VALID_PLATFORMS = i386 powerpc alpha
 6
 7  ifeq ($(filter $(PLATFORM), $(VALID_PLATFORMS)),)
 8      $(error Invalid PLATFORM: $(PLATFORM))
 9  endif
10
11  OBJDIR=obj/$(PLATFORM)
12  $(shell mkdir -p $(OBJDIR))
13
14  CC := gcc-$(PLATFORM)
15  OBJS = $(addprefix $(OBJDIR)/, $(SRCS:.c=.o))
16
17  $(OBJDIR)/$(PROG): $(OBJS)
18      $(CC) $(CFLAGS) -o $@ $^
19
20  $(OBJDIR)/%.o: %.c
21      $(CC) -c -o $@ $<
22
23  $(OBJS): numbers.h 

This makefile example includes a few new concepts. Line 4 provides the 
default value for the PLATFORM variable. If the user doesn’t set the variable on 
the command line, it defaults to i386. You don’t technically need to use the ?=
operator here; any variable defined on the command line automatically over-
rides the default value provided in the makefile. 

Lines 7–9 tests whether $(PLATFORM) is one of the acceptable values. The 
$(filter) function returns the empty string if it’s unable to find  $(PLATFORM)
in the list of valid platforms. The ifeq directive tests for this empty string and 
displays an appropriate error message. 
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Lines 11 and 12 determine the directory in which the object files will be 
placed. All the examples so far have stored the object files in the same directory 
as the source files because that’s the default behavior. However, with object 
files from three different architectures, you need to explicitly store them in an 
architecture-specific location ( obj/i386, obj/powerpc, or obj/alpha). Line 
12 ensures that the selected object directory already exists. 

Line 14 selects the appropriate C compiler to use and assigns the name to the 
CC variable. Assume that each CPU architecture requires a different version of 
GCC, as opposed to a single compiler instance supporting multiple targets. 

Line 15 computes the list of object files to be compiled. Given that each 
CPU’s object files are stored in a different object directory, you need to explicitly 
state which object files are to be built. In this case, you prefix each element in the 
object file list with $(OBJDIR).

Finally, lines 17–21 rewrite the rules you’ve seen many times before. The only 
difference is that here you’ve added $(OBJDIR) on the left side of each rule, 
whereas in the past you’ve assumed that object files are placed in the source 
directory. This code uses an interesting feature of GNU Make that permits the 
source and object files to be located in different places. 

With this additional functionality, you now can support multiple CPU archi-
tectures. To help clarify how this build system works, examine the output: 

$ gmake
gcc-i386 -c -o obj/i386/add.o add.c
gcc-i386 -c -o obj/i386/calc.o calc.c
gcc-i386 -c -o obj/i386/mult.o mult.c
gcc-i386 -c -o obj/i386/sub.o sub.c
gcc-i386 -g -o obj/i386/calculator obj/i386/add.o obj/i386/
calc.o
      obj/i386/mult.o obj/i386/sub.o

$ gmake PLATFORM=powerpc
gcc-powerpc -c -o obj/powerpc/add.o add.c
gcc-powerpc -c -o obj/powerpc/calc.o calc.c
gcc-powerpc -c -o obj/powerpc/mult.o mult.c
gcc-powerpc -c -o obj/powerpc/sub.o sub.c
gcc-powerpc -g -o obj/powerpc/calculator obj/powerpc/add.o
      obj/powerpc/calc.o obj/powerpc/mult.o obj/powerpc/sub.o 

Of course, in a realistic environment, you’d integrate this code into a recur-
sive Make or inclusive Make solution; otherwise, you’re limited to compiling 
files in a single source directory. 

Scenario 5: Cleaning a Build Tree 

The next real-world scenario involves cleaning a build tree by removing all the 
generated files. Sometimes you want this functionality on a per-directory basis, 
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but in other cases, you’re happy to remove all objects files from the build tree. 
In either case, it’s important that your cleaning operation remove the exact set 
of object files your build process created in the first place. 

The way a build system cleans a build tree depends entirely on how your build 
system was constructed. For recursive Make systems, each makefile is respon-
sible for generating the object files in its own directory; therefore, it should be 
responsible for removing them, too. 

For example, in the top-level makefile, you’d have a rule that recursively 
cleans the subdirectories. 

.PHONY: clean
clean:
      $(MAKE) -C libmath clean
      $(MAKE) -C libprint clean
      $(MAKE) -C calc clean 

And in each of the subdirectories, you’d have a rule to actually remove the 
files.

.PHONY: clean
clean:
     rm -f $(OBJS) $(LIB) 

One advantage of this system is that developers can easily clean the content 
of any subdirectory by simply issuing the gmake clean command at that level. 

For inclusive Make systems, you can take advantage of the fact that the entire 
dependency graph is available within the single GNU Make process. Because 
you have a complete list of source files being compiled, you also know the com-
plete set of object files. Things get a little more complicated when you have 
other generated files (such as equations.c being generated from  equations.
math), but this simply requires additional logic to record the relevant filenames. 
Cleaning specific subdirectories is also possible by filtering each file based on its 
pathname.

The tricky part about cleaning a build tree is that you’re not always aware of 
which files are generated. Sometimes this is a sign that your interfile dependen-
cies are not well understand, but sometimes a compilation tool creates extrane-
ous files that you don’t really care about. Although these files are never used and 
are never included in the dependency graph, they still need to be deleted from 
the build tree. 

One good practice for testing your clean target is to fully build a source tree 
and then fully clean that same tree. Next, compare the list of disk files against 
a completely fresh source tree and see if any discrepancies arise. If any files are 
left over, you can explicitly add them to the clean target to make sure they’re 
properly deleted. On the other hand, you might wonder why those files weren’t 
already accounted for in $(OBJS) and, therefore, already deleted. 
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Finally, one advantage of storing all generated files in a special object direc-
tory instead of the source code tree is that a single delete command (such as rm
–rf in UNIX) is guaranteed to remove all generated files. 

Scenario 6: Debugging Incorrect Builds 

Locating bugs in your GNU Make build system is often challenging. Given the 
nature of the pattern-matching algorithm, GNU Make doesn’t use the line-by-
line sequencing that most programmers are comfortable with. Rules from any 
part of the makefile system can be triggered at any time. 

In a real-world development project, you’ll likely experience the following 
makefile problems: 

• A target file isn’t being generated when it should be. In this case, there’s 
probably a missing link in the dependency graph, and you need to add an 
additional rule. 

• A file is being generated when it shouldn’t be, which makes you wonder if 
an incorrect dependency is causing too much work to be performed. 

• The content of the target file is incorrect, which suggests that a compila-
tion tool is being invoked with the wrong command-line options. 

• GNU Make is reporting that no rule is available to create a specific target. 
You need to add the missing rule or determine why an existing rule isn’t 
triggering when it should. 

• Rules are being triggered in the wrong order, most likely when you’re try-
ing to build multiple jobs in parallel. This is also because you have links 
missing in the dependency graph. 

You can resolve each of these problems by first determining which compila-
tion tool has the incorrect behavior and then working backward to determine 
where the associated rules and variables are defined. The steps are as follows: 

1. Examine the build output log to determine which of the compilation tools 
is doing the wrong thing. This might involve scanning through hundreds 
or thousands of lines of output to find the offending command. 

2. Locate the makefile rule that’s responsible for generating the bad com-
mand line. Given that rules (including the built-in rules) can be spread 
across a number of different makefiles in a build system, finding where 
everything is defined can take time. 
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3. Check that the command-line options in this rule are valid. If necessary, 
double-check the variable definitions used in the rule. This can be chal-
lenging if some of the variables use deferred evaluation, making use of 
subvariables that are defined in other parts of the build system. 

4. Examine the dependencies in the rule to make sure they’re correct. This 
might involve searching for related rules to ensure that prerequisite files 
are also being created. 

To help with this debugging effort, GNU Make provides a number of com-
mand-line options: 

• gmake –n: Displays the list of shell commands to be executed, without 
actually executing them. This saves you a lot of time when trying to find an 
offending compilation tool, without waiting for a long build to complete. 

• gmake –p: Displays the content of GNU Make’s internal database. This 
contains the complete list of rules and variables defined in each make-
file, as well as GNU Make’s built-in rules. Line number information is 
recorded so you can easily track down where something is defined. 

• gmake –d: Displays a trace log of GNU Make’s pattern-matching algo-
rithm as it parses and executes a makefile. The output can be extremely 
verbose, but it provides everything you need to know. 

In addition to these command-line options, you can use the print debug-
ging approach to display useful messages on the program’s output. The exact 
sequence in which these messages appear helps the developer understand how 
the makefile is executing. The $(warning) function displays a text message, 
along with information on where in the makefile the function was called. 

$(warning CFLAGS is set to $(CFLAGS)) 

This function doesn’t return a value, so it can be inserted at any point in the 
makefile where a function is permitted. Another clever trick is to use $(warning)
within the definition of variables. Whenever the variable is accessed, a suitable 
message is displayed. 

CFLAGS = $(warning Accessing CFLAGS) -g 

Also, if you redefine the $(SHELL) variable to include a  $(warning) direc-
tive, you display a message on the program’s output whenever a rule is triggered. 

SHELL = $(warning Target is $@) /bin/sh 
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Now see how all this fits together. Going back to the first calculator pro-
gram, you now get a much better view of when variables are accessed, what 
they’re defined as, and when the rules are being triggered. 

Makefile:8: Accessing CFLAGS
Makefile:8: CFLAGS is set to  -g
Makefile:13: Accessing CFLAGS
Makefile:13: Target is add.o
gcc  -g -c -o add.o add.c
Makefile:13: Accessing CFLAGS
Makefile:13: Target is calc.o
gcc  -g -c -o calc.o calc.c
Makefile:13: Accessing CFLAGS
Makefile:13: Target is mult.o
gcc  -g -c -o mult.o mult.c
Makefile:13: Accessing CFLAGS
Makefile:13: Target is sub.o
gcc  -g -c -o sub.o sub.c
Makefile:16: Accessing CFLAGS
Makefile:16: Target is calculator
gcc  -g -o calculator add.o calc.o mult.o sub.o 

Finally, to make life much easier, the third-party GNU Make debugger tool 
[45] uses these underlying tricks to provide a more traditional debugging envi-
ronment. You can interactively print the value of variables, find out how they’re 
defined, and set breakpoints on specific makefile rules. Consider using this tool 
when debugging a nontrivial makefile. 

Praise and Criticism 

Having been around for more than 30 years, the Make tool (GNU Make being 
a modern version) has had plenty of opportunity to gather praise and criticism. 
Clearly, Make offers many benefits; otherwise, it would no longer be the most 
popular tool for C/C++ development. On the other hand, plenty of empirical 
experience has shown that Make has a number of flaws. 

Let’s now review what users of Make have been saying. The following com-
ments were either found on Internet web sites, published in books, or gathered 
via personal experience. 

Praise

• Wide support: Make (particularly GNU Make) is widely supported on a 
large number of operating systems. Most software engineers have at least 
a passing knowledge of makefile construction, and quite a few people 
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consider themselves to be makefile experts. Part of this widespread knowl-
edge results from universities teaching Make as a standard build tool. The 
significant number of legacy build systems using Make is also a contribut-
ing factor. 

If you were starting a new software project, the fact that so many develop-
ers are already familiar with Make would likely convince you to use the 
same tool again. In addition, numerous Make-related tools (such as auto-
matic makefile generators, automatic parallelization tools, and makefile 
editors) are available either commercially or for free. Make is clearly the 
best-supported build tool, at least for C/C++ development. 

• Very fast tool: Being written in C, GNU Make is fast and highly optimized. 
Compared to other tools, GNU Make is extremely fast for computing and 
traversing the dependency graph. As a side note, some people counter this 
benefit by questioning whether speed is important if accuracy of the tool’s 
dependency information can’t be guaranteed. 

• Portable syntax: GNU Make has a portable syntax and is available on a 
wide range of platforms, including Microsoft Windows. Before the intro-
duction of GNU Make, developers were required to write a makefile that 
was compatible with every operating system’s variant of Make. They 
often were limited to using only the small subset of features that all Make 
implementations had in common. With GNU Make, the syntax is the same 
across all platforms, and you can use the entire set of the GNU Make’s 
features.

• Fully featured programming language: As a general-purpose dependency 
engine, Make can be used for any type of dependency analysis. As long as 
you can write a rule that maps input files to output files, there’s no limit on 
the type of compilation you can perform. Whereas other build tools might 
focus on C, C++, Java, or C# compilation, Make enables you to compile 
any type of file (such as creating PDF files from TeX source). 

It’s worth noting that GNU Make’s language is Turing complete. This 
means that any program written in a general-purpose programming lan-
guage can also be written as a GNU Make program. It would be incorrect 
to claim that “GNU Make can’t do that” because any feature of any other 
build tool can be implemented in GNU Make. (Just ask a Make guru how 
it can be done.) 

• The first tool: Being the first build tool ever invented, Make paved the way 
for automated build systems. Newer tools would never have been able to 
improve on Make if it hadn’t first demonstrated what was possible. 



ptg

Chapter 6 Make146

Criticism

On the flip slide, there are many criticisms of the Make tool to be aware of: 

•  Inconsistent language design: GNU Make’s language has clearly grown 
over time, and the design hasn’t always stayed consistent. Some of the 
language features (such as rules) were part of the original Make design, 
but many other features were added over time as people found a need. In 
addition, the syntax for each of the features isn’t always consistent with 
the syntax of other features. This makes the language difficult for new 
developers to learn. 

Some of the common concerns include the following: 

• When writing a makefile rule, the shell commands must be indented by 
a tab character instead of by spaces. This syntactical rule has impacted 
almost everyone, especially if their editor automatically converts tabs to 
spaces.

• All makefile variables are global, so it can be challenging to determine 
where a variable is defined and whether you’re conflicting with a differ-
ent variable that accidentally has the same name. 

• Some parts of the makefile syntax ignore whitespace; in other parts, 
whitespace must be included. 

• It can be confusing to determine which parts of a makefile enable you 
to write shell commands and which parts enable GNU Make functions. 

• When invoking shell commands within a Make rule, you need to be 
familiar with the syntax of each command being invoked. Often a lot of 
inconsistency arises in the command-line arguments and return values 
each tool provides. 

• For developers familiar with procedural programming (sequencing, 
loops, conditionals, and function calls), it can be challenging to write 
GNU Make code. In particular, it’s difficult to fit together the neces-
sary shell commands, GNU Make functions, and user-defined macros 
to achieve the desired effect. 

As a result of these syntax and semantic issues, a number of additional 
tools such as Automake and CMake (see Chapter 9, “CMake”) automati-
cally generate a makefile from a higher-level description. This alleviates 
the need to learn the GNU Make syntax. 
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•  No standard framework: Although this chapter discussed using inclusive 
Make to solve a number of build system problems, no standard framework 
can be used as a starting point. GNU Make provides a powerful set of 
language features, but it wasn’t designed to work out-of-the-box for large 
software projects. In particular, the following important features must be 
implemented by hand: 

• Automatic dependency analysis for common languages such as C/C++. 
Without a good dependency system, the chance of introducing build 
failures is much higher. 

• Multidirectory support with a single dependency graph for the whole 
build tree. 

• C compiler flags that can be set on a per-directory or per-file basis. 

• A mechanism for rebuilding object files if the C compiler flags are modi-
fied.

• A mechanism for abstracting out values such as SRCS, SUBDIRS, and 
CFLAGS, as was done with the Files.mk fragments. 

Unfortunately, anybody using GNU Make is required to implement these 
features for themselves or perhaps borrow an existing framework from 
some other software project. In reality, it’s common to see each project 
using an entirely different framework that grows over time as new features 
are required. None of this is easy work. 

•  Lack of portability: Although GNU Make provides a consistent syntax 
across all operating systems, it’s unlikely that the syntax of the shell com-
mands will be consistent. Each operating system is free to store its stand-
ard tools (such as ls, cat, sed, and grep) in whichever directory it likes, 
and it’s free to implement whichever optional tool features it desires. Even 
with modern versions of UNIX and Linux, some amount of inconsistency 
always seems to arise between shell commands. 

To make things easier, follow a couple good practices: 

• Use the standard GNU versions of command-line tools instead of the 
operating system’s own version. This at least guarantees that command 
options are consistent. 

• Use makefile conditionals (such as ifdef SOLARIS) to select an appro-
priate tool or tool path that works on each operating system, and then 
use a variable to access the tool instead of hard-coding the name. For 
example, use $(RM) foo.o instead of rm foo.o.
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• Challenging debugging: Many developers find it difficult to follow Make’s 
flow of control when filenames are being pattern-matched against rules. In 
contrast to most other programming languages, the flow of control isn’t 
sequential. This means that the next rule to be triggered could be defined 
at any point within the makefile system, including built-in rules and those 
included in Files.mk fragments. Before the use of the GNU Make debug-
ger (a recent creation), developers were left to interpret confusing errors 
messages or to scan through complex listings of the dependency graph. 

• Language completeness versus ease of use: Even though any general-
purpose program can be implemented within the GNU Make program-
ming environment, the real question is how much work needs to be done 
to make that happen. As you’ve seen already, constructing a complete 
GNU Make framework isn’t trivial and requires the author to have “guru” 
status. The authors must have a perfect understanding of GNU Make’s 
flow of control, as well as an intimate knowledge of GNU Make’s syntax 
and built-in functions. Finally, they need to have a handful of clever tricks 
to convince GNU Make to perform certain operations that aren’t officially 
supported.

If you decide to create an inclusive Make framework for yourself, be pre-
pared to devote a large amount of time (months, not weeks). You need 
to support your development team on an ongoing basis when it requests 
that new functionality be added. After all this work, you’ll end up with a 
solid build system, but be prepared for average software engineers to not 
have any understanding of how it works. After all, many people never get 
beyond the much simpler recursive Make systems, even with all the associ-
ated problems. 

Evaluation

To summarize the GNU Make tool, let’s evaluate it against the build system 
quality measurements discussed in Chapter 1, “Build System Overview.” 

• Convenience: Poor. As you’ve seen, creating a fully functioning build sys-
tem is difficult. This includes the detection of implicit dependencies and 
the traversal of a full build tree. Although a simple makefile is quick and 
easy to construct, the tool is much less convenient for nontrivial build 
systems.

• Correctness: Poor. Because of the poor level of convenience, GNU Make 
is notorious for not producing a correct build image. It’s possible to guar-
antee a correct build, although the effort to do so can be enormous. 
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• Performance: Excellent. GNU Make is written in optimized C code and 
has an efficient algorithm for dependency analysis. Compared to other 
build tools discussed in later chapters, GNU Make is extremely fast. 

• Scalability: Excellent. As with the performance criteria, GNU Make is 
highly scalable. The assumption is that you’ve already created a makefile 
framework that adequately supports multiple directories. 

As a general rule, consider using GNU Make for legacy software that already 
uses a Make-based build system. However, if you’re writing a new build system 
for C/C++ software, first consider using SCons ( Chapter 8) or CMake ( Chapter 9). 
If you’re writing a build system for Java, consider using Ant ( Chapter 7). For 
C# code, use MSBuild (discussed briefly in Chapter 7). If none of these tools 
meets your needs, especially for performance reasons, writing a new build sys-
tem using GNU Make is a possibility. 

Note that these evaluation criteria are subjective in nature, so your value 
judgment could be quite different. 

Similar Tools 

Although this chapter’s focus has been the GNU Make tool, several other tools 
conform to Make’s original premise. Let’s now look briefly at the Berkeley Soft-
ware Distribution’s version of Make, Microsoft’s version of Make, and the more 
recent ElectricAccelerator and SparkBuild tools. 

Berkeley Make 

The Berkeley Software Distribution (BSD) is a version of the UNIX operating 
system first developed at the University of California in the mid-1970s. Although 
other UNIX-like systems, such as Linux and Solaris, tend to get more publicity, 
you’ve likely heard of the NetBSD, FreeBSD, and OpenBSD systems. In fact, 
the Apple Mac OS X operating system is based on BSD technology, making it a 
common version of UNIX. 

In addition to an operating system kernel, the BSD systems include a number 
of user-space utilities, including a variant of the Make tool known as Berkeley 
Make (also known as bmake or  bsdmake) [46]. If you find yourself modify-
ing existing code in a BSD environment, you’ll likely use Berkeley Make, even 
though GNU Make is also available on those platforms. 

Much of Berkeley Make’s syntax is identical to GNU Make’s syntax, espe-
cially for basic features. This includes the definition of makefile rules, the list of 
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shell commands, and the definition and usage of variables. In fact, a number of 
makefile features can be executed by either Berkeley Make or GNU Make. 

One of the most noticeable syntax differences is the way variables are manip-
ulated. The GNU Make system uses the concept of functions that manipulate 
string values. The Berkeley Make system instead uses modifiers. For example: 

•  $(MY_VAR:E): For each space-separated word in $(MY_VAR), returns 
the file name’s suffix, such as .c or  .h. This is similar to GNU Make’s 
$(suffix) function. 

•  $(MY_VAR:H): For each word in $(MY_VAR), returns the pathname com-
ponent of the word. This is similar to the $(dir) function in GNU Make. 

•  $(VAR:M<pattern>): Returns only the list of words that match the speci-
fied pattern. This is similar to GNU Make’s $(filter) function. 

In addition, the Berkeley Make language has syntax to support both condi-
tional execution and looping. The following example demonstrates the use of a 
for loop (line 4) that traverses a list of subdirectories, and an  if statement (line 
6) to test whether a particular file exists. 

 1  SUBDIRS = application database libraries storage
 2  ALLTARGS =
 3
 4  .for SUBDIR in $(SUBDIRS)
 5  SUBMK = $(SUBDIR)/Sub.mk
 6  .if exists($(SUBMK))
 7  .include "$(SUBMK)"
 8  ALLTARGS += make-$(SUBDIR)
 9  .endif
10  .endfor
11
12  all: $(ALLTARGS)
13        @echo All targets up to date 

The net effect of this makefile is that all Sub.mk files residing within any of 
the subdirectories are included in the top-level makefile. 

To effectively use Berkeley Make, you’ll probably find yourself learning a 
few new syntax tricks. You might also find yourself limited by the number of 
features available, especially if you’re used to GNU Make’s wide range of built-
in functions. 

NMake

The NMake tool [47] is another variant of Make, typically used as part of Micro-
soft Visual Studio. Whereas developers use the Visual Studio graphical interface 
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for their day-to-day development, NMake can be used more for batch-oriented 
tasks that are performed from a command line, such as in software packaging. 

NMake provides the same basic syntax as GNU Make and Berkeley Make, 
particularly for the definition of rules and variables. However, any sequences of 
shell commands will obviously be targeted for the Windows command prompt 
and use the Visual Studio compilation tools. 

Users of the GNU Make tool will find NMake’s syntax limiting because it 
contains only a few advanced features. With the introduction of Microsoft’s 
MSBuild tool (discussed briefly in Chapter 7, “Ant”), the use of NMake has 
become less common. 

ElectricAccelerator and SparkBuild 

ElectricAccelerator [48] and SparkBuild [49] are two products created by Elec-
tric Cloud, Inc. ElectricAccelerator is a commercially available tool that acceler-
ates the software build process. It achieves this goal by dispatching jobs onto 
multiple CPUs in a networked cluster and coordinating access to disk files to 
make sure jobs are executed in the correct order. Given that ElectricAccelerator 
can parse GNU Make and NMake syntax, customers with legacy build systems 
see a dramatic increase in performance with little extra work. 

SparkBuild is a feature-limited version of ElectricAccelerator that solves some 
of GNU Make’s basic weaknesses, even though it doesn’t support cluster-based 
builds. Earlier, this chapter identified problems with recursive Make in starting 
a compilation within a subdirectory of the source tree. Given that GNU Make 
doesn’t have a global view of all the dependencies, it’s likely to miss some of the 
important recompilation steps. 

When using SparkBuild, you start by explicitly asking the tool to generate 
a database of dependency information. This knowledge remains even after the 
build completes. 

$ emake --emake-gen-subbuild-db=1
[ ... output hidden ... ] 

When the build is complete, the emake.subbuild.db file contains all the 
dependency information for the whole build tree. 

$ ls
emake.subbuild.db  libmath  libprint  Makefile calc 

If a developer rebuilt the software from within the calc subdirectory, Spark-
Build would have enough intelligence to first rebuild the libmath and  libprint
subdirectories, even though the developer didn’t explicitly request it. 
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$ cd calc
$ emake --emake-subbuild-db=../emake.subbuild.db
emake -C libmath
make[1]: Entering directory '/home/psmith/sparkbuild/libmath'
make[1]: 'libmath.a' is up to date.
make[1]: Leaving directory '/home/psmith/sparkbuild/libmath'
emake -C libprint
make[1]: Entering directory '/home/psmith/sparkbuild/lib-

print'
make[1]: 'libprint.a' is up to date.
make[1]: Leaving directory '/home/psmith/sparkbuild/libprint'

make: 'calculator' is up to date. 

Another nice feature of SparkBuild is that it records useful information for 
later analysis of the build process. For example, it records which commands 
were executed, which makefile each command was listed in, and how long it 
took to execute each of the steps. Feeding this information into the SparkBuild 
Insight graphical interface produced a comprehensive view of the entire build 
process (see Figure 6.4).

Figure 6.4 The SparkBuild Insight GUI, showing the analysis of the build process. 
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The SparkBuild Insight interface also provides the capability to query the 
build steps and to examine the underlying command and path information (see 
Figure 6.5).

Figure 6.5 The SparkBuild Insight GUI, showing the detail of an individual job. 

Although SparkBuild and SparkBuild Insight are relatively new products, 
they’ll likely become a value resource for makefile developers. They’re particu-
larly useful when trying to debug makefile problems such as missing dependen-
cies or slow builds. 

Summary

A Make-based build system is created by defining rules to piece together a pro-
gram’s complete dependency graph. Each rule specifies a target file, a list of 
prerequisite input files, and the necessary shell commands to generate the target 
from the inputs. 

The GNU Make tool is a modern version of Make that supports a wide range 
of features. Among these features is the capability to manipulate string-valued 
variables and treat them as more complex data types. In particular, a variable 
can be treated as a list of filenames, and various functions can manipulate that 
list.

Although GNU Make is a powerful language, you still need to add support 
for automatic dependency analysis and for building software that spans multi-
ple file system directories. Although it’s possible to implement these features by 
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hand, they aren’t built into the basic language, making it challenging for devel-
opers to construct a reliable build system. 

Other Make-based tools include Berkeley Make, NMake for Microsoft envi-
ronments, and the more modern SparkBuild and SparkBuild Insight tools. 
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Ant

The second build tool to examine is Apache Ant [50], maintained by the Apache 
Software Foundation. Ant is one of the most popular build tools for Java-based 
projects and has numerous features for compiling code in that environment. Few 
Java developers would consider using GNU Make for building Java code, even 
though it’s technically possible. 

Ant was originally created as part of Apache Tomcat because existing build 
tools were too hard to use in multiplatform Java projects. Since being released 
as a standalone tool in 2000, Ant now runs on a diverse set of operating systems 
such as UNIX, Windows, OS/2 Warp, OpenVMS, and Mac OS X. 

One of the challenges in writing build systems for multiple operating systems 
(OS) is that each platform has its own peculiar set of commands and services. 
For example, in UNIX-like systems, the shell command for copying files is cp,
whereas in the Windows environment, the command is copy. Naturally, writing 
a makefile rule that works smoothly on both platforms becomes difficult. 

The approach Ant follows is to encapsulate each activity in the build sys-
tem into a high-level task. Instead of specifying the exact shell commands to be 
executed, you use a task to handle interaction with the operating system. Most 
of the time, end users don’t need to know or care which machine their build 
system is running on because an Ant-based build description works cleanly on 
all platforms. 

The following Ant fragment defines a target that contains a list of three tasks 
to be performed: 

...
 3      <target name="all">
 4          <mkdir dir="pkg"/>
 5          <jar basedir="obj" destfile="pkg/prog.jar"/>
 6          <copy file="index.txt" tofile="pkg/index.txt"/>
 7      </target>
...

155
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The first task (line 4) creates a new directory named pkg. The task on line 5 
finds all the files inside the obj directory and packages them into a Java JAR file 
named prog.jar. Finally, line 6 copies the index.txt file into the  pkg direc-
tory. Given that Ant build descriptions are written in a platform-neutral way 
(using XML syntax), each operating system’s implementation of the Ant tool 
knows how to map the high-level task into an underlying shell command (such 
as cp or copy) or the relevant system calls. 

Also note that no mention was made of interfile dependencies, which is a fun-
damental building block of GNU Make. Each task is responsible for knowing 
whether the underlying command actually needs to be executed. For example, 
the <copy> task first checks whether  pkg/index.txt is newer than  index.txt;
if it is, it completes without actually copying any data. 

An attractive quality of the Ant tool is the wide support from Java tool vendors. 
Most vendors supply additional Ant tasks to interact with their tool. Not only 
do these tasks manage the low-level interaction with the operating system, but 
they also perform the necessary dependency analysis. This approach enables 
seamless integration of the vendor’s tool into any existing Ant-based solution. 

Additionally, all popular Java integrated development environments (IDEs) 
have the capability to create and execute Ant scripts, providing a strong integra-
tion into the development process. The breadth and depth of Ant’s support is a 
major reason for using Ant in your build projects. 

This chapter starts by looking at Ant’s programming language and then shows 
how Ant solves a number of common build problems. Finally, it examines the 
pros and cons of using Ant and discusses a few similar build tools. 

The Ant Programming Language 

Using the term programming language might seem a little misleading when com-
paring Ant to general-purpose languages such as C# or Java. The basic Ant 
language doesn’t have many of the standard constructs, such as variables, loops, 
if/then/else statements, or pointers. Luckily, it’s still possible to extend the lan-
guage. You might prefer to think of an Ant script as more of a sequence of build 
tasks than a fully fledged program. 

Ant’s build description is written using an XML-based format, with the 
default filename being build.xml. Although XML is not always the easiest 
format for new developers to learn, and a number of experienced developers 
consider it too verbose, it’s still a well-supported data format. Many tools exist 
for editing XML, including some that were designed specifically for viewing and 
editing Ant description files. This chapter assumes that you at least have a pass-
ing knowledge of XML. 
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As you’ll see in more detail, each of Ant’s XML files contains a project. Each 
project contains one or more targets that represent something the user can build. 
Finally, each target contains an ordered sequence of tasks that perform the real 
work, such as making a directory or compiling a Java source file. 

A Little More Than “Hello World” 

To illustrate how an Ant build description file is structured, consider a simple 
example that does nothing but display messages on the output. Instead of start-
ing with the typical “Hello World” example, skip ahead to see a program that 
has multiple targets, dependencies between those targets, and a few simple con-
stant definitions. 

Here’s the build.xml file for the simple program. 

 1  <project name="ant-project" default="all">
 2
 3      <property name="country" value="New Zealand"/>
 4      <property name="city" value="Christchurch"/>
 5
 6      <target name="print-city">
 7          <echo message="The nicest place in the world is"/>
 8          <echo message="${city}, ${country}"/>
 9      </target>
10
11      <target name="print-math">
12          <echo message="Two plus two equals four"/>
13      </target>
14
15      <target name="all" depends="print-city, print-math">
16          <echo message="Thank you!"/>
17      </target>
18
19  </project> 

Line 1 defines the overall project that’s stored inside the build.xml file. The 
name attribute is useful for identification purposes and is displayed by any of 
Ant’s graphical front-end tools. The default attribute specifies the target to run 
if the user doesn’t specify a target (that is, if the user just types ant by itself on 
the command line). 

Now skip ahead to the default target ( all) on lines 15–17, which is where 
execution actually starts. Line 15 defines the name of the target and lists the 
prerequisite targets that must first be executed. That is, before the tasks listed 
within the all target are executed, Ant must go to the  print-city and  print-
math targets to make sure all those tasks are performed. 

Now jump back to the definition of the print-city target on lines 6–9. 
This time, there are no dependencies on other targets, so Ant immediately starts 
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executing the task on line 7. The first <echo> target is fairly simple: It displays 
only a constant string on the program’s output. The task on line 8 is a little more 
complex because the echoed message refers to a couple of property names, each 
identified by the ${...} syntax. 

Back on lines 3 and 4, you see these Ant properties defined. You should 
consider these properties to be constant because it’s not possible to change their 
values after they’ve been assigned. As you’ll see later, property definitions can be 
quite complex and can contain a lot more than simple string values. 

Lines 11–13 don’t add anything new; the print-math target simply echoes 
a constant string. 

Finally, after the print-city and  print-math targets have been executed, 
the <echo> task on line 16 is the only action performed in the  all target. Now 
finish by reviewing the output of the ant command: 

$ ant
Buildfile: build.xml
print-city:
     [echo] The nicest place in the world is
     [echo] Christchurch, New Zealand
print-math:
     [echo] Two plus two equals four
all:
     [echo] Thank you!
BUILD SUCCESSFUL
Total time: 218 milliseconds 

As you can see, it’s not too hard to determine which target from the build.
xml file is responsible for generating each line of the output, or to figure out 
which task generates each message. In this case, you use only <echo> tasks, but 
in other programs, you’ll see different tasks names displayed. 

By reading through the output, it’s straightforward to understand the order-
ing in which the tasks are executed. For any developer with experience in proce-
dural programming (which is almost everybody), the flow of control within the 
build.xml file should be obvious. 

At this point, you might think that a makefile written in GNU Make syntax 
would look similar to this Ant example, and you’d certainly be right. Given that 
this example contains only <echo> tasks and doesn’t need to deal with interfile 
dependencies, a GNU Make program would be just as easy to follow. 

Now that you’ve seen the basic concepts of targets, properties, and tasks, let’s 
examine each of them in more detail. 

Defining and Using Targets 

In an Ant-based build system, a target is a convenient way to group tasks that 
need to be executed sequentially. To invoke an Ant target, a developer provides 
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the name of that target on the command line. Target names should be designed 
for ease of use and readability, and must describe the operation being performed. 
For example, the following targets are commonly used for building software: 

ant compile: For compiling all the Java source files into class files 

ant jar: For packaging the class files into a single Jar file 

ant package: For creating a full software release package, complete 
with a version number 

ant clean: For removing all generated files from the build tree 

ant javadoc: For generating API documentation using the Javadoc tool 
(Chapter 12, “Building with Metadata,” discusses this more) 

ant: For executing the default target, which is most likely the same as 
the package target 

In contrast to a Make-based build system, the name of an Ant target isn’t 
related to the name of any disk files. An Ant target is similar to a GNU Make 
.PHONY target, where the target’s filename isn’t considered part of the depend-
ency graph. 

In addition to these publicly visible targets, the project can contain a number 
of internal targets. These are never invoked directly from the command line but 
are instead used as dependencies of public targets. For example, when the java
target is invoked, it could have a dependency on the init target that defines a 
number of Ant properties and a make-directories target that creates all the 
necessary build directories. In this case, you would use the following syntax: 

...
 3   <target name="java" depends="init, make-directories">
         ...
12   </target>
...

It might help to think of init and make-directories as function calls exe-
cuted before the tasks in the java target are executed. 

To add more flexibility, you can conditionally choose whether to invoke a list 
of tasks. If you specify the name of an Ant property in the target’s if attribute, 
Ant executes the tasks only if the property has been defined. In the following 
example, the tasks in the append-to-log target are executed only if the  log-
enabled property is set to a value (instead of not being set to anything). 

...
 3      <property name="log-enabled" value="1"/>
 4
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 5      <target name="append-to-log" if="log-enabled">
 6          <echo message="Appending..."/>
 7      </target>
...

This mechanism is somewhat like an if statement in other languages and is 
useful for controlling whether optional parts of the build process are executed. 
As you’ll see later, properties can also store the result of more complex condi-
tions, using features such as string comparison. In the example, the log feature 
is simply enabled or disabled by manually setting the property. 

In addition to invoking a target from the user’s command line or listing a 
target as a dependency of other targets, you can use the <antcall> task. This 
is useful for executing a few tasks before calling upon another target to do the 
rest of the work. 

...
 3   <target name="java" depends="init, make-directories">
      ...
 7       <antcall target="check-rules"/>
         ...
12   </target>
...

This approach can even extend across multiple build files, using the <ant>
task instead of <antcall> (which is limited to calling targets in the same  build.
xml file). 

...
 3   <target name="java" depends="init, make-directories">
      ...
 9      <ant antfile="utilities.xml" target="perform-check-
sum"/>
         ...
12   </target>
...

As you might expect, dividing your Ant targets into separate build files and 
invoking them with the <ant> task allows a fair amount of modularity in your 
build. It’s possible to construct concise build files by factoring out sequences 
that would otherwise be repeated multiple times. As you’ll see later, <antcall>
actually creates a new execution environment with a new set of properties, so 
performance can suffer if this method is used too often. 

In contrast to <ant>, you can also use the <import> task, which is similar 
to the #include directive from C/C++. That is, importing an external build file 
effectively inserts the body of that file into the current file. This technique can 
be used to inherit a set of default targets and override them within the body of 
the main build.xml file. 
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Ant’s Flow of Control 

Before looking at more of Ant’s syntax, stop to reflect on how an Ant program 
executes. From a high-level view, Ant has a sequential flow of control in which 
tasks are executed in the order they’re specified within a target. In addition, 
targets are invoked in the order in which they’re specified on the command line 
or listed in a target’s depends attribute. 

When you stop to consider the GNU Make system, the flow of control is 
based on triggering rules that match the name of a file you’re trying to build. If 
the target name matches, you check the prerequisites and potentially execute a 
sequence of shell commands to bring everything up-to-date. The flow of control 
isn’t sequential because rules can spread across multiple parts of a makefile or 
even across different framework files. Determining which rule will be triggered 
next can sometimes be challenging. 

The key feature behind Ant’s sequential execution is that each task must 
determine whether any work needs to be done. In the case of the <echo> task, 
no files are involved, so the task is always executed. However, in the case of the 
<copy> task, Ant first checks whether the source file is newer than the target file; 
if not, it silently completes without executing any copy operations. As you’ll see 
later, the compilation of Java code using the <javac> task uses a much more 
complicated algorithm for determining whether work needs to be done. 

As an outcome of this approach, Ant developers have much less work to do 
when writing a build.xml file. Instead of focusing on the dependency relation-
ships between source and targets files, they simply list the tasks in the order they 
should be executed. Ant then determines which of those tasks are required and 
which can be skipped. This is another reason Ant discourages the use of ordi-
nary shell commands when writing build.xml files. 

As a final note, a target listed as a dependency of another target is executed, 
at most, once. In Figure 7.1, you can see that target A depends on both targets 
B and C, and target B depends on target C. In this case, Ant executes target C 
only once. 

Target A Target B Target C

Figure 7.1 Ant’s target dependencies, with target C used twice but executed once. 
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The key assumption here is that Ant targets should always produce the same 
output, regardless of how many times they’re executed. Naturally, they need to 
be invoked only a single time. 

Defining Properties 

An earlier example introduced the concept of an Ant property that associates 
a value with a property name. This is similar to a constant definition in other 
programming languages because the value can’t be modified after it’s defined. 
You might consider this a limitation, but because build systems implement a 
consistent and repeatable process, the need to change a value occurs less than 
you might think. 

Ant properties can be defined in a number of different ways: 

1. As a string: These can reference other properties by using the ${...} syn-
tax. For example: 

<property name="wife" value="Grace"/>
<property name="dog" value="Stan"/>
<property name="request"
    value="${wife}, please take ${dog} for a walk"/> 

2. As a file system location: You can set the property to the absolute path of 
the file or directory. This is useful if your build system makes relative paths 
unusable by changing to a different “current” directory. 

<property name="obj-dir" location="obj/i386/debug"/> 

In this example, ${obj-dir} evaluates to 

C:\Users\Peter\workspace\Ant_Builds\properties\obj\i386\debug

which is an absolute path on the Windows system used to test this exam-
ple. To support cross-platform build.xml files, you can use whichever 
path separator you want ( \ or  /). Ant modifies the path to match the 
requirements of your local operating system. 

3. Automatically set by the runtime environment: Both the Ant tool and the 
Java runtime environment define a standard set of properties than can be 
accessed via the familiar ${...} syntax. 

<echo>${os.name}</echo>
<echo>${ant.file}</echo>
<echo>${user.name}</echo>
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Naturally the output of these commands differs on each machine and for 
each user, but here are some typical values: 

[echo] Windows Vista
[echo] C:\Users\Peter\workspace\Ant_Builds\properties\build.
xml
[echo] Peter 

4. As the result of a <condition> task: This evaluates nontrivial decisions. 
In this example, the ${is-windows} property is set if the build machine’s 
operating system is in the Windows family (including Windows Vista and 
Windows 2000). 

<condition property="is-windows">
    <contains string="${os.name}" substring="Windows"/>
</condition>

5. Defined on the user’s command line: This is particularly useful because a 
developer can customize the build process by manually specifying a prop-
erty value instead of hard-coding that property into the build.xml file. 

$ ant -Dname=Jones print-name 

6. Loaded from an external properties file: This is useful when a common set 
of properties is defined in an external file and can read into any Ant build 
file that needs to reference those values. 

<loadproperties srcfile="values.prop"/> 

Although this is a fairly detailed list of ways properties can be defined, it’s 
certainly not a complete list. In addition, each of these approaches comes with a 
number of optional flags to provide even more flexibility. 

The scope of property definitions is important to understand. A property may 
be defined either within the top-level scope of an Ant project or inside a particu-
lar target. Consider some rules regarding scope: 

•  If a property is defined at the top level of a project (not within a target 
definition), the property is available throughout the entire project. 

•  A property defined inside a target definition is also available throughout 
the entire project but only after that target is executed. 

•  Properties can be defined only once in a given project, so the first defini-
tion is used. If there’s a top-level definition (executed before any targets 
are executed), that definition takes precedence. If there’s no top-level 
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definition, the first target that executes the necessary <property> task 
provides the property’s value. 

These rules can be a bit confusing at first, especially if you’re familiar with 
other languages in which scope is based on the lexical structure of the program. 
In Ant’s case, the dynamic order of the program’s execution is important when 
defining properties. 

To make things even more interesting, the <ant> and  <antcall> tasks ena-
ble you to pass property values into the newly invoked target as if they were 
function parameters. These parameters override any previous definition of the 
property, but only during the execution of that target. This is more in line with 
the scope rules you’re familiar with in other languages. 

<antcall target="print-name">
    <param name="name" value="John"/>
</antcall>

You’ll see more examples of passing parameters between targets later in this 
chapter when you look at real-world build scenarios. 

Built-In and Optional Tasks 

One of the most attractive qualities of Ant is the range of tasks either built into 
the standard tool or available for download from third-party sites. Ant wouldn’t 
have become one of the most popular tools if it didn’t support such a wide range 
of compilation tasks. Even the standard set of Ant tasks support the following 
features:

• Basic file operations such as mkdir, copy, move, and delete

• The creation of file archives using an array of different formats (such as 
.tar, .gz, .zip, .jar, and .rpm)

•  The compilation of Java code, including special tools for RMI and JSP 
compilation

• The automatic generation of API documentation, using the Javadoc tool 

•  Direct access to version-control tools such as CVS, Perforce, and Clear-
Case

• Build lifecycle features, such as updating build version numbers, sending 
email messages, and playing sounds to indicate the completion of the build 
process
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And the list goes on. If you created a new compilation tool for the Java envi-
ronment, there’s a good chance that Ant-integration would be on your feature 
checklist.

There’s no way to discuss all of Ant’s features, but let’s now look in more 
detail at three frequently used tasks. It’s interesting to note which optional fea-
tures each task provides and to consider how each solves the dependency analy-
sis problem. 

The <javac> and  <depend> Tasks 
The following example shows how to compile Java source code, using the 
<depend> and <javac> tasks. 

...
 9          <depend srcdir="${src}" destdir="${obj}" />
10          <javac srcdir="${src}" destdir="${obj}"/>
...

For now, ignore the <depend> task and focus on the  <javac> task on line 10. 
This task finds all the Java source files that reside within the ${src} directory 
and generates the corresponding class files ( .class suffix) into the  ${obj} direc-
tory. This process traverses the entire hierarchy of directories beneath ${src}
and creates a corresponding hierarchy within ${obj}. To perform the actual 
compilation, the <javac> task invokes either the  javac compiler or whatever 
compiler you’ve configured. 

The <javac> task uses a familiar algorithm for determining whether any 
work needs to be done. It searches the source tree to find files that don’t yet have 
a corresponding class file, but it also finds cases where the source file is newer 
than the class file, indicating that a recompile is required. 

After the underlying Java compiler is invoked, some further dependency 
work takes place. In the Java language, classes are free to import or  extend
other classes, meaning that the other classes contribute important type informa-
tion, such as method signatures. Before it can finish compiling the current Java 
source file, the compiler must examine the other class files to obtain those type 
definitions. As a result, the compilation of one source file automatically triggers 
the compilation of other source files. 

To clarify, if you’re compiling class A, which imports or extends class B, the 
compiler needs to examine the content of B.class to discover the exported type 
definitions. If no class file is found but the B.java source file is available, the 
compiler proceeds to generate B.class from the source code. The same thing 
happens if the class file can be found but the source code is newer. 

Although this importing/extending algorithm might be repeated recursively, 
the compiler stops the process whenever it locates an up-to-date class file. That 
is, if the B.class file is newer than the corresponding  B.java file, the compiler 
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uses the B.class file without recompiling it. As a result, nothing that  B.java
imports or extends is ever recompiled. 

This algorithm works properly in many cases, but it causes incorrect builds in 
other cases. (And this is where things get complex.) Imagine a case in which class 
A imports class B, which then imports class C (see Figure 7.2). If both A.java
and C.java have been recently modified, the Java compiler is asked to recom-
pile both those files. When compiling class A, the compiler examines B.class
(because B is imported by A), but because B.class is up-to-date with respect 
to B.java, it’s never recompiled. Class A therefore uses the existing version of 
class B. 

A.java B.java C.java

A.class B.class C.class

imports imports

recompiles recompilesexamines

Figure 7.2 The <javac> task doesn’t recompile B.java, even though C.java has 
changed.

In the next step, the Java compiler recompiles C.java, resulting in a change 
to its external interface. Unfortunately, the Java compiler doesn’t notice that 
class B imports class C, so it doesn’t proceed to recompile class B. The glitch 
here is that class B has an outdated view of C’s external interface, which will 
likely cause a runtime error. 

To solve this limitation of the <javac> task, first use the  <depend> task to 
remove any outdated class files. 

9          <depend srcdir="${src}" destdir="${obj}" /> 

The <depend> task has a more extensive knowledge of which classes import 
or extend other classes and is better at determining when a class needs to be 
recompiled because of an external interface change. The <depend> task also 
understands Java’s inner class feature (a single .java file can generate multiple 
.class files) and can handle long chains of import or extends directives. 
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All this complexity can be confusing (you might need to reread this section 
a couple times), so it’s lucky that it’s hidden inside the <javac> and  <depend>
tasks. Ant developers don’t need to worry about specifying the dependencies 
for themselves because the combination of these tasks should do the right thing. 

The <chmod> Task 
The second task to study is <chmod>, which sets the access permissions on a file 
or directory. This task is UNIX-centric and has no effect on Windows systems. 
Anyone with experience of the UNIX chmod command can understand the fol-
lowing:

    ...
4      <chmod dir="pkg" perm="750"/>
5      <chmod file="pkg/data.file" perm="640"/>
       ... 

Note the distinction between the first and second uses of <chmod>, where line 
4 changes the permissions on a directory and line 5 changes the permissions on 
a file. It’s also possible to modify many files at one time, either within a direc-
tory hierarchy or by selecting the list of files using regular expressions. You learn 
more about this technique shortly. 

In the case of <chmod>, the dependency analysis is quite straightforward. 
Given that there’s no input file to compare time stamps against, the chmod oper-
ation is always performed. The only concern is that updating the underlying file 
system takes times, so you don’t want to do it too often. Depending on the build 
machine, it might be an optimization to first read the existing permission bits to 
see if any changes are actually required. 

The <copy> Task 
The third task to examine in detail is <copy>, which is similar to the Windows 
copy command and the UNIX  cp command. This task isn’t too hard to under-
stand, but it does have some optional parameters that change the way it behaves. 

In the following example, the README file is copied from the current working 
directory into the subdirectory named pkg.

<copy file="README" todir="pkg"/> 

This is fairly straightforward, but now see how the <copy> task’s optional 
attributes can change the default behavior. 

• tofile: In the earlier example, the target file will have the same name as 
the original README file but is stored within the  pkg directory; therefore, 
it’ll be copied to pkg/README. If you want to change the name of the file, 
use the tofile attribute instead of the todir attribute. For example: 
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<copy file="README" tofile="pkg/Documentation.txt"/> 

• preservelastmodified: If the copied file will be used as input to some 
other task, you might want the last modified time of the target file to be 
the same as that of the source file. This probably isn’t a common thing 
to do, but you can achieve it by setting the preservelastmodified at-
tribute to true.

• overwrite: By default, the  <copy> task doesn’t perform the action if 
the target file already exists and is newer than the original. However, if 
you set the overwrite attribute to  true, the copy takes place anyway. 
This behavior is useful when your <copy> task also inserts a dynamic 
value into the file, such as the current date or time. If the copy operation 
didn’t happen every time, you’d be left with stale values. 

• flatten: If this attribute is set to  true, the <copy> task discards the 
original file’s pathname when it creates the target file. This is useful when 
you’re copying a number of files that are spread around the source tree, 
but you want them copied to the same target directory. If you don’t set 
flatten to  true, the original directory hierarchy is kept, which you 
don’t want.

The following table demonstrates the two cases: 

Source Filename With flatten=false With flatten=true 

src/europe/england-
flag.jpg

pkg/europe/england-
flag.jpg

pkg/england-flag.
jpg

src/americas/
canada-flag.jpg

pkg/americas/
canada-flag.jpg

pkg/canada-flag.jpg

The <copy> task has several more attributes, but this section doesn’t examine 
them. Refer to the Ant user manual [50] to see the full set of available options. 

In finishing the discussion of the <copy> task, it’s worth pointing out that 
you’ve only seen how to copy a single file at a time. In reality, you often want 
to copy multiple files at once, or perhaps copy an entire directory hierarchy. Ant 
has support for this feature, but it’s worth a whole section of its own. 

Selecting Multiple Files and Directories 

Most Ant tasks focus on creating or manipulating files, processing a file’s con-
tent, or combining files into an archive. Where it makes sense, these same tasks 
can process multiple input files in a single operation. This section covers how to 
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select a large number of files, known as a fileset or a  dirset, and incorporate 
them into a single Ant task. 

Let’s extend the previous case, which talked about copying two files ( england-
flag.jpg and canada-flag.jpg) into a target directory. The following exam-
ple shows how it’s possible to copy multiple files with a single <copy> task. 
You’ll also set the flatten attribute so that all  .jpg files are placed in the same 
target directory. 

...
 5        <copy todir="pkg" flatten="true">
 6            <fileset dir="src">
 7                <include name="**/*.jpg"/>
 8            </fileset>
 9        </copy>
...

This example replaces the <copy> task’s  file attribute with an embedded 
<fileset> directive. You can think of a <fileset> as a collection of files that 
reside within the src directory. To identify exactly which files the set contains, 
the <include> directive provides a regular expression that matches all the 
filenames you care about. 

The syntax of the regular expression is generally what you’d expect, with ?
matching a single character and * matching zero or more characters, but not 
crossing the boundary between directories. That is, the regular expression a/*/b
matches a/x/b and  a/y/b, but it won’t match a/x/y/b because the  * wildcard 
can’t match more than one directory component. 

Given that matching multiple directories is a useful feature in build systems, 
the regular expression can also use the ** pattern. This matches zero or more 
path components. In the example, the regular expression **/*.jpg matches 
both src/file.jpg and much longer paths, such as src/a/b/c/d/e/f/file.
jpg. Of course, if you use a Windows system, it’ll also match src\file.jpg.

In addition to the <include> directive, it’s possible to exclude files that you 
don’t want to have in the set. You first use <include> to select a superset of the 
files, followed by an <exclude> directive to extract the files you don’t want. 

The following example shows how to include all the .jpg and  .png files from 
the src directory and all the  .gif files from within the  lib directory. However, 
you don’t want to include any files that contain the string flag in their name. 

...
14      <copy todir="pkg" flatten="true">
15          <fileset dir="src">
16              <include name="**/*.jpg"/>
17              <include name="**/*.png"/>
18              <exclude name="**/*flag*"/>
19          </fileset>
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20          <fileset dir="lib">
21              <include name="**/*.gif"/>
22              <exclude name="**/*flag*"/>
23          </fileset>
24      </copy>
...

As you can see, it’s possible to include multiple <fileset> directives within 
the same <copy> task, with a new set created by merging the two smaller sets. If 
it made sense, you could also use the <dirset> directive to select a number of 
directories, in contrast to <fileset>, which includes only files. 

The possible combinations are endless, and you might end up with a complex 
set of <include> and  <exclude> directives, making your tasks appear rather 
messy. If that’s the case, you can define a <patternset> in a separate part of 
the build file and reference that set with a user-friendly name. 

...
32    <patternset id="imagefiles-1">
33        <include name="**/*.jpg"/>
34        <include name="**/*.png"/>
35        <exclude name="**/*flag*"/>
36    </patternset>
37
38    <patternset id="imagefiles-2">
39        <include name="**/*.gif"/>
40        <exclude name="**/*flag*"/>
41    </patternset>
42
43    <target name="copy-refid">
44        <copy todir="pkg" flatten="true">
45            <fileset dir="src">
46                <patternset refid="imagefiles-1"/>
47            </fileset>
48            <fileset dir="lib">
49                <patternset refid="imagefiles-2"/>
50            </fileset>
51        </copy>
52    </target>
...

You can specify sets of files or directories in other ways, but they won’t be 
discussed here. The key point is that Ant provides a powerful mechanism for 
stating which files or directories you want your task to act upon. 

Conditions

One class of feature that’s noticeably missing from the basic Ant language is 
control-flow statements, such as if and  while. Most programming languages 
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treat these as a fundamental part of the language, but with Ant they’re signifi-
cantly less important. After all, you usually want your build process to behave 
in a repeatable way, so a linear sequence of tasks is often enough. 

On the other hand, Ant does provide a mechanism for testing basic condi-
tions and setting properties to reflect the result. If the condition is true, the 
property is set to the value true; otherwise, it’s left undefined. When used with 
the if or  unless attributes in a target definition, you can effectively create an 
if statement. 

...
13    <condition property="common-name">
14      <or>
15          <equals arg1="${surname}" arg2="Smith"/>
16          <equals arg1="${surname}" arg2="Brown"/>
17          <equals arg1="${surname}" arg2="Wong"/>
18      </or>
19    </condition>
20
21    <target name="check-name" if="common-name">
22        <fail>You have a common name, you can't proceed!</
fail>
23    </target>
...

Lines 13–19 of this example set the common-name property to  true if 
${surname} is set to either  Smith, Brown, or Wong. On line 21, the target defi-
nition tests ${common-name} and executes the body of the target only if the 
property is defined. In this case, the check-name target causes the build to fail if 
the user has a common surname. 

In addition to using the standard Boolean operations (such as not, and, and 
or), you can interact with the build environment in the following ways: 

Testing whether a specific disk file exists 

Testing whether a particular URL is accessible on the target web server 

Testing whether a string contains a specific substring or matches a regu-
lar expression 

Testing the value of operating system environment variables 

Ant certainly has some powerful ways to test conditions, but the syntax to do 
so is rather cumbersome. As you’ll see in later examples, it’s possible to extend 
the basic Ant language to add new tasks that make your code more readable, 
such as <if>, <then>, and <else>. Let’s now continue by seeing how the basic 
Ant language can be enhanced. 
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Extending the Ant Language 

In addition to the built-in Ant language features you’ve seen so far, you can 
extend the language in a number of ways. This section looks at five different 
mechanisms for adding new language features, ranging from defining new Ant 
tasks to executing scripts written in other languages. 

• The <exec> task: This built-in task enables you to invoke a shell com-
mand, just as you would with GNU Make. The output of the command 
can be stored in an Ant property for further processing by other tasks. The 
following example shows how to execute the Windows dir command by 
explicitly invoking the DOS shell. 

...
15    <target name="dir">
16        <exec executable="cmd">
17            <arg value="/c"/>
18            <arg value="dir"/>
19        </exec>
20    </target>
...

• The <java> task: This approach is similar to the  <exec> method, although 
the purpose is to invoke an arbitrary collection of Java code by specifying 
the class path and class name. This is a common technique in which the 
build process compiles a Java-based program (using <javac>) and the re-
sulting program then acts as a compilation tool in the second phase of the 
build process. 

• The <macrodef> task: In this approach, you create a new type of task, 
with the definition of that task written in Ant syntax. You can customize 
how the task behaves by allowing the user to pass in parameter values. 
The following example defines the <greet> task that simply displays a 
welcome message. 

 1  <project name="macrodefs" default="all">
 2
 3      <macrodef name="greet">
 4          <attribute name="surname"/>
 5          <attribute name="firstname"/>
 6          <sequential>
 7 <echo>Hello @{firstname} @{surname}, how are 

you?</echo>
 8          </sequential>
 9      </macrodef>
10
11      <target name="all">
12          <greet surname="Jones" firstname="Lloyd"/>
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13      </target>
14
15  </project> 

• Lines 3–9 define the new <greet> macro, with lines 4 and 5 providing the 
names of the two attributes that customize the macro’s behavior. Line 7 
invokes the <echo> task and uses the  @{...} syntax to reference the user-
supplied attribute values. Finally, line 12 invokes the <greet> macro as if 
it were a regular Ant task. 

• The <taskdef> task: This is somewhat similar to the  <macrodef> task, 
although it enables you to implement a task using the full power of the 
Java language instead of being limited to using Ant’s built-in syntax. Most 
third-party vendors provide their task definitions in the form of Java .jar
files, which can be plugged into Ant using a simple <taskdef> directive. 
This is also similar to the <java> task you saw earlier, but in this case, you 
invoke the task by defining a new XML tag and set of attributes instead of 
explicitly invoking a standalone Java program. 

You’ll see a detailed example of <taskdef> in a later section. 

• The <script> task: This is a recent addition to the Ant language that 
permits code from other scripting languages (such as JavaScript, Python, 
and Ruby) to be directly embedded inside a build.xml file. The script can 
access and manipulate the Ant program’s properties, thereby creating a 
powerful programming environment. An embedded script can do anything 
a Java-based task can do, so if you’re undertaking a serious Ant-based 
project, you’ll definitely want to learn more about this feature. 

If you think about it, these extension methods make Ant a powerful lan-
guage, in the same way that GNU Make is powerful. The notable difference is 
that Ant tasks are designed to encapsulate complexity. Average developers don’t 
need to worry about the underlying compilation tool or its dependency-analysis 
requirements. On the other hand, anyone who needs to add more functionality 
still can have the full power of general-purpose languages. 

Further Reading 

Although you can find many sources of information about the Ant tool, you’ll 
likely find that the Ant web site [50] contains enough documentation to get 
you started. After all, writing a build.xml file is somewhat similar to writing a 
shell script, with Ant targets acting like shell function definitions and tasks like 
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individual shell commands. You should have no problem constructing a simple 
build.xml file after reading through the examples in the Ant manual. 

On the other hand, if you want to learn more about the best practices of using 
Ant in larger projects, read one of the many books on the topic, including [51] 
in References. 

Real-World Build System Scenarios 

You’ve now seen enough of Ant’s syntax to understand how to apply the tool 
in real-world scenarios. The most common activities, such as compiling Java 
code, tend to be easy to implement in Ant, so this section doesn’t give too much 
explanation. On the other hand, more adventurous activities such as adding new 
compilation tools and supporting multiple variants are much harder than they 
were in the GNU Make examples. 

Scenario 1: Source Code in a Single Directory 

In the first scenario, the goal is to compile a Java program in which the source 
files ( .java suffix) are all stored in the same directory. In this case, you’ll use a 
separate classes directory for storing the  .class files and you’ll package them 
into a single JAR file, called scenario-1.jar. Here’s the complete code: 

 1  <project name="scenario-1" default="package">
 2
 3      <property name="src" location="."/>
 4      <property name="obj" location="../classes"/>
 5 <property name="jarfile" location="../scenario-1.

jar"/>
 6
 7      <target name="compile">
 8          <mkdir dir="${obj}"/>
 9          <depend srcdir="${src}" destdir="${obj}" />
10          <javac srcdir="${src}" destdir="${obj}"/>
11      </target>
12
13      <target name="package" depends="compile">
14          <jar basedir="${obj}" destfile="${jarfile}">
15              <include name="*.class"/>
16          </jar>
17      </target>
18
19  </project> 

Lines 3–5 define each of the important file system locations. ${src} is the 
location of the source code (the current directory), ${obj} is the directory where 
the object files will be stored, and ${jarfile} is the full path of the JAR file 
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you’re going to create. Even though the code uses forward slashes ( /) when 
specifying the paths, these are silently translated to work correctly on Windows 
systems.

Lines 7–11 define an Ant target for compiling the .java files into  .class
files. You first ensure that the object directory already exists and then use the 
familiar <depend> and <javac> sequence to compile the source code. 

Lines 13–17 locate all the .class files within the  ${obj} directory and 
archive them into the single scenario-1.jar file. Note that, on line 1, the 
package target was declared as the default for this Ant project, so the program’s 
execution starts here. However, given that the package target depends on the 
compile target (see line 13), code compilation always occurs before the packag-
ing step. 

Finally, to execute this program, you invoke the java command-line tool: 

$ java -cp scenario-1.jar Calc 

Now consider the case in which the program’s source code is spread across 
multiple directories. 

Scenario 2(a): Source Code in Multiple Directories 

As it turns out, the solution for the first scenario almost works correctly when 
source code is stored in multiple directories. The reason is that <depend>,
<javac>, and <jar> are all designed to support multiple directories by default, 
assuming that you’re happy to store the entire program in a single .jar file. 

In practice, though, one minor change is needed. The <include> directive on 
line 15 must include .class files from anywhere within the hierarchy, not just 
from the top-level directory. The new package target is therefore: 

...
13      <target name="package" depends="compile">
14          <jar basedir="${obj}" destfile="${jarfile}">
15              <include name="**/*.class"/>
16          </jar>
17      </target>
...

Scenario 2(b): Many Directories, with Multiple build.xml Files 

As you saw in Chapter 6, “Make,” in the discussion of recursive Make, it’s often 
nice to have your build description spread across multiple files instead of having 
everything in the same place. Even though Ant is capable of building multidirec-
tory programs with a single build.xml file, larger programs typically split their 
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build description across multiple files. This approach avoids cluttering a single 
build.xml file and provides better modularity by keeping the relevant Ant tar-
gets nearer to the source code. 

Now extend the calculator example to build three JAR files, one each for the 
print and  math libraries, and a third for the main program. As in  Figure 7.3,
the source for each JAR file is stored in a separate directory hierarchy, each of 
which has its own build.xml file. 

Figure 7.3 The multidirectory calculator example, using a different package hierarchy 
for each component. 

Because of the way in which the directory hierarchy must match the Java 
package name, you end up with the com/arapiki structure repeated multiple 
times. This might seem odd for such a small example, but it would make sense 
if each of the libraries contained hundreds of files. A developer working on the 
com/arapiki/print library could have a workspace containing only those files 
instead of a copy of the entire source tree. 

Note also that you aren’t required to have a separate build.xml in every 
directory. Large software systems might have thousands of source code directo-
ries but only five to ten build.xml files total. Each file manages the build proc-
ess for an entire subsystem instead of just a single directory. 

Start the example by looking at the src/build.xml file. This file doesn’t do 
any compilation on its own; instead, it uses the <ant> task to dispatch work to 
the remaining three build.xml files. 
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 1  <project name="scenario-2b" default="package">
 2
 3      <property name="src" location="."/>
 4      <property name="obj" location="../classes"/>
 5      <property name="jars" location="../jars"/>
 6 <property name="math-jar" location="${jars}/math.

jar"/>
 7 <property name="print-jar" location="${jars}/print.

jar"/>
 8 <property name="calc-jar" location="${jars}/calc.

jar"/>
 9
10      <path id="library-classpath">
11          <pathelement path="${math-jar}"/>
12          <pathelement path="${print-jar}"/>
13      </path>
14
15      <target name="package">
16          <mkdir dir="${jars}"/>
17 <ant dir="math" antfile="build.xml" 

target="package"
18                  inheritall="false">
19              <property name="obj" location="${obj}/math"/>
20 <property name="jarfile" location="${math-

jar}"/>
21          </ant>
22 <ant dir="print" antfile="build.xml" 

target="package"
23                  inheritall="false">
24 <property name="obj" location="${obj}/

print"/>
25 <property name="jarfile" location="${print-

jar}"/>
26          </ant>
27 <ant dir="calc" antfile="build.xml" 

target="package"
28                  inheritall="false">
29              <property name="obj" location="${obj}/calc"/>
30 <property name="jarfile" location="${calc-

jar}"/>
31              <reference refid="library-classpath"/>
32          </ant>
33      </target>
34
35  </project> 

Lines 3–8 define the locations of the source tree, the object tree, and the 
JAR files. In this case, you explicitly name the three .jar files you’re going to 
build. In addition, lines 10–13 define a class path for linking against the math
and print libraries. Separating out this path definition and giving it a name 
(library-classpath) makes it easier to reference the path in other parts of the 
build system. 
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The package target on lines 15–33 does little other than invoke the lower-
level build.xml files. On lines 17–21, the  <ant> task calls on the  package target 
defined in the math/build.xml file. Note the use of the  inheritall=“false”
directive to indicate that top-level properties should not automatically be passed 
to the lower-level build.xml file. Limiting the scope of these properties makes 
the build description more modular. 

The <property> task on lines 19 and 20 shows how to explicitly pass prop-
erty values into the lower-level build.xml files. In this case, line 19 informs 
the math/build.xml file that any object files it creates should be stored in the 
${obj}/math subdirectory. Line 20 asks it to store the resulting JAR file in the 
location specified in ${math-jar}.

The remaining two <ant> tasks in the  package target simply repeat the first 
case. The notable difference on line 31 is that you pass a reference to the math
and print libraries (stored within the  library-classpath path) so that the 
main program knows which JAR files to link against. 

The src/math/build.xml file is similar to examples you’ve already seen: 

 1  <project name="scenario-2b-math" default="package">
 2
 3      <property name="src" location="."/>
 4
 5      <target name="compile">
 6          <mkdir dir="${obj}"/>
 7          <depend srcdir="${src}" destdir="${obj}"/>
 8          <javac srcdir="${src}" destdir="${obj}"/>
 9      </target>
10
11      <target name="package" depends="compile">
12          <jar basedir="${obj}" destfile="${jarfile}">
13              <include name="**/*.class"/>
14          </jar>
15      </target>
16
17  </project> 

Note how the code defines the ${src} property to compile the source code in 
the current directory, but uses the ${obj} and  ${jarfile} properties to store 
the object files and .jar file in the location requested by the caller. 

The src/print/build.xml is almost identical; the only change is in the 
project name: 

 1  <project name="scenario-2b-print" default="package">
    ...
17  </project> 

Finally, the src/calc/build.xml file is a little different: It uses the  library-
classpath reference that was passed down by the caller. This class path is 
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required because the Calc.java source file imports code from the  math and 
print libraries. 

...
 9      <javac srcdir="${src}" destdir="${obj}"
10          classpathref="library-classpath"/>
...

To execute this example, you use the java command-line tool, but this time 
with all .jar files listed. 

java -cp jars\calc.jar;jars\math.jar;jars\print.jar com.arapiki.
calc.Calc

It’s interesting to note that Ant also suffers from the subbuild problem you 
saw with recursive Make. If the developer invokes the build process from one of 
the lower-level build.xml files, Ant won’t know how to rebuild the dependent 
JAR files. The developer must instead invoke the top-level build.xml file to 
make sure everything else is up-to-date. 

Even with this same problem, it’s less likely to be a problem than with GNU 
Make. Even the largest software products have only a few build.xml files, so 
the problem of sequencing the build steps in the correct order is significantly 
less.

Scenario 3: Defining New Compilation Tools 

Now consider how to define a task to invoke the mathcomp tool, the custom 
compiler you need to add to the build process. In the same way as most tool 
vendors, you’ll use <taskdef> to declare the new XML tag and you’ll write a 
Java class to implement the task’s functionality. 

Start with a simple build.xml file that shows how the task is defined and 
then used. 

 1  <project name="scenario-3" default="compile">
 2
 3      <taskdef name="mathcomp" classname="MathcompTask"
 4          classpath="mathcomp-task.jar"/>
 5
 6      <target name="compile">
 7          <mathcomp file="equations.math"/>
 8      </target>
 9
10  </project> 

Lines 3–4 use <taskdef> to define the new  <mathcomp> task. All that’s 
required is that you identify the name of the Java class that implements the 
feature and the name of the JAR file containing that class. Line 7 then uses the 
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<mathcomp> task to compile the  equations.math source file into a correspond-
ing equations.java.

Luckily, end users don’t need to specify the output filename or spend any 
time worrying about dependency analysis. Of course, the complexity has to be 
dealt with somewhere, so here’s the Java source code for the Mathcomp class: 

 1  import org.apache.tools.ant.*;
 2  import java.io.*;
 3  import java.util.*;
 4
 5  public class MathcompTask extends Task {
 6
 7      private File srcFile;
 8
 9      public void setFile(File file) {
10          srcFile = file;
11      }
12
13      private String execMathcomp(String flag, File srcFile) {
14          try {
15              Process p = Runtime. getRuntime().exec(
16                  "python.exe mathcomp.py -" + flag +
17                  " \"" + srcFile + "\"");
18 BufferedReader progOutput = new 

BufferedReader(new
19                  InputStreamReader(p.getInputStream()));
20              String resultLine = progOutput.readLine();
21              return resultLine;
22          } catch (IOException ex) {
23              throw new BuildException(
24 "Can't execute the mathcomp compiler. " +

ex);
25          }
26      }
27
28      private File getTargetFile(File file) {
29          String fileName = file.getName();
30          if (!fileName.endsWith(".math")) {
31 throw new BuildException("Input file '" + 

fileName
32                  + "' must end with .math");
33          }
34          String targetFileName =
35              fileName.replaceFirst("\\.math$", ".java");
36 return new File(file.getParentFile(), target-

FileName);
37      }
38
39      private List<File> getAllSourceFiles(File file) {
40          List<File> sources = new ArrayList<File>();
41 String sourceFileString = execMathcomp("d", src-

File);
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42          StringTokenizer tokens =
43              new StringTokenizer(sourceFileString);
44          while (tokens.hasMoreTokens()) {
45                sources.add(new File(tokens.nextToken()));
46          }
47          return sources;
48      }
49
50      public void execute() {
51          if (srcFile == null) {
52              throw new BuildException(
53 "Missing 'file' attribute for <math-

comp>");
54          }
55          if (!srcFile.exists()) {
56 throw new BuildException("Input file '" + 

srcFile
57                  + "' doesn't exist.");
58          }
59
60          File targetFile = getTargetFile(srcFile);
61 List<File> allSources = 

getAllSourceFiles(srcFile);
62          if (allSources == null) {
63              throw   new BuildException(
64 "Unable to determine all source files 

used by '" +
65                  srcFile + "'");
66          }
67
68          boolean targetOutOfDate;
69          if (!targetFile.exists()) {
70              targetOutOfDate = true;
71
72          } else {
73              targetOutOfDate = false;
74 long targetModifiedDate = targetFile.last-

Modified();
75              for (File thisSourceFile : allSources) {
76                  if (thisSourceFile.lastModified() >
77                          targetModifiedDate) {
78                      targetOutOfDate = true;
79                      break;
80                  }
81              }
82          }
83
84          if (targetOutOfDate) {
85              log("Compiling " + srcFile);
86              execMathcomp("j", srcFile);
87          }
88      }
89  } 
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This class is quite complex, so break it down into smaller sections. Lines 7–11 
state that the end user can set the file attribute. The fact that the  setFile
method is defined in this class lets Ant know that it’s a settable field. You store 
the string value in the srcFile field for later use. 

The execute method, defined on lines 50–88, is the main entry point. Ant 
calls this method whenever somebody invokes the <mathcomp> task. 

Lines 51–58 perform error checking to make sure that the file attribute was 
defined and that it refers to a disk file that already exists. If either of these checks 
fails, a BuildException error is thrown and the error message becomes part of 
Ant’s error report. 

Line 60 calls the getTargetFile method to translate the source file’s name 
into the corresponding target filename. For example, if the source file is a/b/c/
equations.math, the corresponding target file will be a/b/c/equations.
java. The getTargetFile method is defined on lines 28–37 and performs a 
significant amount of error checking to make sure the name is valid. 

Line 61 calls the getAllSourceFiles method to determine which additional 
source files will be read during the compilation process. This method is defined 
on lines 39–48 and does its work by calling the mathcomp compiler with the –d
option. The output looks something like this: 

equations.math equ1.mathinc equ2.mathinc 

In this case, the getAllSourceFiles method divides this string into indi-
vidual filenames and returns them in a list. Unfortunately, the simple method 
fails if a filename contains spaces, so a more realistic tool would need to do a 
better job. 

Now that you have the list of source files and you know the name of the 
target file you’re about to create, the rest of this method double-checks whether 
any compilation work is required. Lines 69–70 check whether the target file 
already exists; if not, a compilation is definitely required. 

Lines 73–81 perform the time stamp comparison of each of the source files to 
see whether any are newer than the target file. If so, a recompilation is forced. 

Finally, you reach lines 85–86, but only if you’ve decided to actually invoke 
the mathcomp tool. On line 8, you log a message to inform the end user that 
work is about to take place. On line 86, you call the execMathcomp method 
(defined on lines 13–26) to invoke the mathcomp compiler. This compiler is just 
a Python script, so you first invoke the Python interpreter. 

Note that you’ve already used the execMathcomp method as part of the 
getAllSourceFiles method, but this time you’re passing the  –j option to gen-
erate a .java file instead of returning the list of dependencies. 

That completes the definition of the <mathcomp> task. If you count the 
number of lines of code, this is certainly a much larger solution than the GNU 
Make case—it would be even larger if you included all the possible error cases 
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(some were left out, for the sake of convenience). This is largely because Make is 
proficient at pattern matching and deriving the name of the target files from the 
corresponding source file. Also, the dependency list produced by mathcomp –d
was tailored for Make. Finally, the time stamp comparison is a fundamental part 
of GNU Make’s language, whereas you needed to   hand-code the algorithm in Java. 

Scenario 4: Building with Multiple Variants 

Given that Java class files use CPU-independent byte code, it’s not possible to 
show a multivariant example that compiles for different CPU types. Instead, you 
can consider a program that’s compiled into two different editions: 

1. Professional edition: A software package containing the complete set of 
program functionality 

2. Home edition: A smaller edition of the software, with some of the advanced 
features stubbed out 

In the source tree (see Figure 7.4), you’ll maintain two parallel sets of Java 
source files. The professional directory includes the program’s entire set of 
functionality. The home-stubs directory contains stubbed-out versions of any 
classes that shouldn’t be included in the Home edition. For example purposes, 
Clock.java and Letter.java are stubbed out. 

Figure 7.4 A separate directory hierarchy for each of the professional and Home 
editions.
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To keep things simple, this example uses a single build.xml file to compile 
the entire product. Here’s the complete listing: 

 1  <project name="scenario-4" default="package">
 2
 3 <property name="obj-prof" location="../classes/pro-

fessional"/>
 4 <property name="obj-home" location="../classes/home-

stubs"/>
 5     <property name="src-prof" location="professional"/>
 6     <property name="src-home" location="home-stubs"/>
 7 <property name="jarfile" location="../scenario-4.

jar"/>
 8
 9 <target name="check-edition" depends="check-edition-

helper"
10              unless="edition-ok">
11 <fail message="You must set 'edition' to either 

'home'
12                  or 'professional'"/>
13      </target>
14
15      <target name="check-edition-helper">
16          <condition property="edition-ok">
17              <or>
18                  <equals arg1="${edition}" arg2="home"/>
19 <equals arg1="${edition}" 

arg2="professional"/>
20              </or>
21          </condition>
22          <condition property="edition-home">
23              <equals arg1="${edition}" arg2="home"/>
24          </condition>
25      </target>
26
27      <target name="compile">
28          <mkdir dir="${obj-prof}"/>
29 <depend srcdir="${src-prof}" destdir="${obj-

prof}"/>
30 <javac srcdir="${src-prof}" destdir="${obj-

prof}"/>
31          <mkdir dir="${obj-home}"/>
32 <depend srcdir="${src-home}" destdir="${obj-

home}"/>
33 <javac srcdir="${src-home}" destdir="${obj-

home}"/>
34      </target>
35
36      <target name="jar-prof" unless="edition-home">
37 <echo message="Packaging the Professional edi-

tion."/>
38          <jar basedir="${obj-prof}" destfile="${jarfile}">
39              <include name="**/*.class"/>
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40          </jar>
41      </target>
42
43      <target name="jar-home" if="edition-home">
44          <echo   message="Packaging the Home edition."/>
45          <jar destfile="${jarfile}">
46              <fileset dir="${obj-prof}">
47                  <include name="**/*.class"/>
48 <exclude name="com/arapiki/math/Letter.

class"/>
49 <exclude name="com/arapiki/math/Clock.

class"/>
50              </fileset>
51 <fileset dir="${obj-home}" includes="**/*.

class"/>
52          </jar>
53      </target>
54
55 <target name="package" depends="check-edition,

compile,
56              jar-prof, jar-home">
57          <copy file="run.bat" toFile="../start-calc.bat">
58              <filterset>
59 <filter token="EDITION" 

value="${edition}"/>
60              </filterset>
61          </copy>
62      </target>
63
64  </project> 

Plenty of decision making takes place in this build.xml file, and because 
some of the operations occur twice means the build description is quite long. 

Execution starts with the package target on line 55. The  depends attribute 
asks Ant to first execute the check-edition, compile, jar-prof, and 
jar-home targets, in that order. 

The check-edition target, defined on lines 9–13, immediately calls the 
check-edition-helper target, which is defined on lines 15–25. This helper 
target uses the <condition> task to define two different properties. The first 
property, ${edition-ok}, is set to true if  ${edition} is either  home or 
professional, whereas the ${edition-home} property is set to  true if 
${edition} is equal to home.

For these conditions to make sense, the ${edition} property must have been 
defined on the command line when the build was invoked: 

ant - Dedition=home

The ${edition-ok} value is therefore a true/false indicator of whether 
a valid definition was provided on the command line. On the other hand, 
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${edition-home} is a true/false value to indicate whether the user selected  home
for the edition. With Ant’s limited capability to test conditions, it’s important to 
express these properties as true/false values instead of keeping them as strings. 

Back in the check-edition target (line 9), you use the  unless attribute to 
state that the body of the target should be executed, unless the ${edition-ok}
property was set. This effectively states that unless the user specified the home or 
professional edition properly, you’ll fail with an error message. 

The next top-level target is compile, on lines 27–34. This uses the familiar 
<depend> and  <javac> combination, except that now you’re compiling both 
the home-stubs and  professional source trees while taking care to keep the 
generated class files separate. 

We next execute the jar-prof target on lines 36–41. By using the 
unless="edition-home" attribute, you execute the body of this target only if 
the user elected to build the professional version. In this case, you store all the 
class files into the resulting .jar file. 

In contrast, the jar-home target on lines 43–53 does quite a bit more work 
and is executed only if the user selected the home edition. You first package all 
the professional class files, with the exception of the Letter.class and  Clock.
class files that aren’t shipped in the home edition. Then you add the stubbed-
out version of those class files, which exist solely so you don’t get a runtime 
error when the program executes. As an optimization, the list of excluded classes 
could have been determined by scanning the ${obj-home} directory. 

The final step is to return to the body of the package target, on lines 55–62, 
which prepares the start-calc.bat script. You’ve seen this type of script 
many times already: 

java -cp scenario-4.jar -Dedition=@EDITION@ com.arapiki.calc.Calc 

What’s different in this case is that you customize the –Dedition= portion of 
the command line, to pass either of the values home or  professional into the 
executable program. This allows the program to make an intelligent decision on 
which set of features to provide to the user. 

To make this all work correctly, the <copy> task on line 57 reads the tem-
plate command line (stored in the run.bat file) and creates a new file (named 
start-calc.bat), where the string @EDITION@ is replaced by the value of the 
${edition} property. As a result, the  start-calc.bat file ends up with this 
content:

java -cp scenario-4.jar -Dedition=home com.arapiki.calc.Calc 

for the Home edition or this for the Professional edition: 

java -cp scenario-4.jar -Dedition=professional com.arapiki.
calc.Calc
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Of course, in the Home edition, the real classes would have been replaced by 
the stub versions, so it’s important to pass in the correct value for the edition
property.

Here’s some sample Java code that reads the property value and customizes 
its runtime behavior accordingly. 

String edition = System.getProperty("edition");
if (edition == null){

System.err.println("Error: 'edition' property is not de-
fined");

    System.exit(1);
}
...
if (edition.equals("professional")) {
    /* perform professional features */
    ...
}

As an alternative, instead of defining this property on the command line, you 
could have defined a method in one of the stub classes that records the edition’s 
name. By querying this method at runtime, you could determine which edition 
is being used. 

In summary, you can see that Ant’s capability to support decision making is 
somewhat limited, resulting in substantially longer code than you might expect. 
If you compare the length of code to the similar program in GNU Make syntax, 
you might find the makefile much easier to read. 

On the brighter side, Ant enables you to extend the basic language. One 
third-party package, ant-contrib [52], introduces the  <if> and  <then> tasks: 

...
15      <target name="check-edition">
16          <if>
17              <not>
18                  <or>
19 <equals arg1="${edition}"

arg2="home" />
20 <equals arg1="${edition}" 

arg2="professional" />
21                  </or>
22              </not>
23              <then>
24 <fail message="You must set 'edition' to 

either
25                          'home' or 'professional'" />
26              </then>
27          </if>
28      </target>
...
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Ant’s flexible set of tasks, including a wide range of third-party plug-ins, 
comes to the rescue by making the code much more readable than in the first 
attempt.

Scenario 5: Cleaning a Build Tree 

Removing the object files from a build tree is a matter of defining an additional 
clean target to explicitly remove files or directories: 

...
19      <target name="clean">
20          <delete file="${jarfile}" />
21          <delete dir="${obj}" />
22      </target>
...

It’s common practice in Ant to store all .class files and  .jar files in a special 
object directory, which is separate from the source directory. It’s usually pos-
sible to delete the entire object directory in a single command and be confident 
that all generated files have been removed. Of course, any failure to follow this 
rule means you must explicitly delete the generated files with a <delete> task. 

If you use multiple build.xml files, you need to define a suitable  clean
target in each lower-level file. The top-level clean target invokes each of the 
lower-level targets in turn. 

Scenario 6: Debugging Incorrect Builds 

Although Ant hides all the detail of constructing a dependency graph, errors can 
still creep into a build.xml file. These are some of the most common errors 
you’ll encounter: 

• Missing input files: If a task fails because it can’t locate one of the required 
input files, it’s usually because you’ve invoked the targets or tasks in the 
incorrect order. Just as you’d expect in a shell script, files can’t be used if 
they don’t already exist. This is different from GNU Make, which attempts 
to generate a missing file, assuming that there’s a suitable rule defined. 

• Files not building when they should: Either you’re not invoking the targets 
or tasks in the correct order, or your <fileset> directives aren’t accurate 
enough. All Ant tasks are supposed to check their own dependencies, but 
the tasks can’t do a good job if you haven’t included all the necessary input 
files.
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• Too many files rebuilt: Again, check your <fileset> directives to make 
sure they’re specific enough. If you include too many files in the input, 
you’ll end up building too often. It’s also possible (although unlikely) that 
your Ant tasks aren’t doing a good job of dependency analysis. 

•  Failed compilation or invalid output image: If a task fails to generate a 
valid output file even though the input files are correct, you likely haven’t 
provided the correct task attributes. Many tasks have attributes for con-
trolling their behavior, and finding suitable settings might take time. 

• Incorrect Java classes included: The behavior of a Java program (such as 
Ant) is highly dependent on your CLASSPATH variable settings. If your pro-
gram is behaving badly, that’s always the first thing to check. 

• Missing task definition: If you’re making use of Ant tasks that aren’t built 
into the standard distribution, there’s a chance that they’ll be reported as 
missing. Make sure that the correct third-party JAR files are installed and 
the correct <taskdef> directives are provided. 

If any of these problems cause the build to fail, Ant provides a fully detailed 
stack trace: 

BUILD FAILED
/home/psmith/debugging/build.xml:4: The following error
    occurred while exe cuting this line:
/home/psmith/debugging/src/build.xml:4: The following error 
    occurred while executing this line:
/home/psmith/debugging/src/lib/build.xml:4: Warning: Could 
    not find file
/home/psmith/debugging/src/lib/run.bat to copy. 

It’s easy to identify the exact line number and source file causing the prob-
lem. Often the bug is on the line being reported, but sometimes it’s necessary to 
scan backward through the file to make sure that all your properties are defined 
correctly.

In reality, though, a number of the bugs you encounter don’t cause the build 
to fail. Instead, they generate invalid output files, or things just don’t rebuild 
when they should. In this case, you need to spend more time tracing the flow of 
the program. 

When you use the ant –d command, Ant provides copious amounts of detail 
about what it’s doing: 
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Adding reference: ant.projectHelper
Adding reference: ant.parsing.context
Adding reference: ant.targets
parsing buildfile /home/psmith/debugging/build.xml with URI =
file:///home/psmith/debugging/build.xml
Setting ro project property: ant.project.name -> debug-app
Adding reference: debug-app
Setting ro project property: ant.file.debug-app ->
/home/psmith/debugging/build.xml
Project base dir set to: /home/psmith/debugging
 +Target:
 +Target: package 

The log shows you every time a new build.xml is parsed, a property is 
defined, or a task is executed. If you locate the failed task and then search 
backward through the debug output, you usually can identify the source of the 
problem.

Ant doesn’t show you the underlying shell commands that each task per-
forms, so it isn’t possible to cut and paste a command from the build log and 
run it in isolation. This technique is quite common with GNU Make, where you 
often find a rule that isn’t doing what it should and need to manually rerun the 
shell command to debug the problem. 

In an Ant-based build system, you need to have a lot more faith that the tasks 
will invoke the correct underlying commands (or system calls). If you want to 
narrow your debugging focus, you might need to “touch” specific input files and 
then invoke the required Ant targets. 

If you use an IDE such as Eclipse, you can use the Ant debugger mode. This 
enables you to view the build.xml files, set breakpoints on specific lines, dis-
play the value of properties, and then single-step through the targets and tasks. 
Given the popularity of IDEs, this is probably the best place to start. 

Another debugging technique is to use the ant -v command to understand 
Ant’s decision to rebuild one or more files. The following excerpt shows what 
the <javac> task does in the single-directory calculator example. 

 ...
[javac] Add.java omitted as Add.class is up to date.
[javac] Calc.java added as Calc.class doesn't exist.
[javac] Mult.java omitted as Mult.class is up to date.
[javac] Sub.java omitted as Sub.class is up to date.
[javac] build.xml skipped - don't know how to handle it
...

In summary, debugging Ant-based build problems can be significantly easier 
than dealing with GNU Make problems. This is largely because of Ant’s sequen-
tial programming model, in which it’s easier for a developer to understand 
the program flow. Also, having each task handle its own dependency analysis 
relieves much of the opportunity for making mistakes. 
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Praise and Criticism 

Ant has been around long enough to gather a large group of supporters, as well 
as plenty of people who dislike its programming model. Much of this discrep-
ancy centers on whether they’re trying to use the well-supported Java compila-
tion tasks or whether they’re creating a more complex build system that pushes 
Ant to its limits. Now see what people say about Ant. 

Praise

Praise for Ant includes the following: 

• Cross-platform support:  Because Ant doesn’t use a shell-centric language, 
it has fewer cross-platform issues. By instead using the task abstraction, 
Ant developers no longer need to worry about each build machine’s 
specific commands and behavior. 

• Hidden dependency analysis: Dependency analysis isn’t a key part of the 
language; instead, it’s handled within the implementation of each task. 
The end user doesn’t need to think about the dependency graph or debug 
problems related to missing dependencies. 

• Easy-to-learn the language: Ant has few language constructs to learn, and 
most developers are familiar with the sequential model of execution. A 
clear separation also exists between the use of tasks and their underly-
ing definition. Developers care about only the external behavior of each 
task and the set of configurable attributes. The complex implementation 
of each task is hidden away from view. 

• Extensive third-party support for Java: Ant has the widest range of Java 
compilation tool and plug-in support. Although other Java build tools are 
starting to appear, Ant will likely continue to be the most popular tool in 
the Java world. 

• Important build system features are standard: Build system features such 
as automatic dependency analysis and multidirectory support are a stand-
ard part of the build tool. In contrast to GNU Make, it’s not necessary to 
add an additional framework. 

Criticism

Points of criticism include the following: 
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• Lack of a full programming language: Ant isn’t a scripting language, which 
makes it harder to perform nontrivial activities. Variables, looping, and 
conditionals are limited in support and often need to be emulated using 
confusing control structures. 

• Ugly and verbose XML: Many people don’t like XML and find it hard to 
read or too verbose. This can be a barrier for new developers to adopt the 
tool and is a definite point of resistance for people who prefer the more 
concise syntax of GNU Make. 

• Not a dependency-based language: Many developers prefer to add new 
pattern-based dependencies to trigger a compilation instead of wading 
through the Ant documentation to find a suitable task. If no task is avail-
able, they might waste a full day trying to piece together existing features 
to achieve the same result. In the end, the job could’ve been done in five 
minutes using GNU Make. 

• No visible shell commands: Ant doesn’t show which shell commands the 
tool is executing, so you don’t know exactly what’s happening. Instead, 
you need to trust the task implementation to do the right thing. 

• Nontrivial process of adding new tasks: Adding a new compilation tool is 
much harder than with GNU Make. As you saw earlier, you need to write 
a Java-based plug-in instead of just matching the file extension. This can 
be a significant amount of work if you’re using a nonstandard compilation 
tool.

• Lacking support for other languages: Ant is Java-centric, with minimal 
support for other programming languages. 

• Confusing variable scope: The scoping rules for Ant properties are quite 
different from rules in other programming languages and can therefore be 
confusing for new Ant developers. 

• Undefined variables that aren’t trapped: When accessing an Ant property 
that hasn’t yet been assigned a value, the name of the property is used 
instead of reporting an error. For example, if careless programmers type 
${destfiel} instead of  ${destfile}, they’ll end up with a file in their 
local directory named ${destfiel}. This happens instead of having the 
${destfile} property expanded to whatever value it contained. 

• No persistent state: Ant doesn’t cache any of the dependency information 
between builds, so all dependency analysis must be repeated each time the 
ant tool is invoked. 
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Evaluation

The Ant build tool clearly focuses on supporting build systems for Java-based 
software. The tasks are designed to support common operations such as Java 
compilation and the manipulation of JAR files. Each Ant task contains implicit 
knowledge of how to compute interfile dependency relationships, removing this 
from the developer’s list of things to worry about. 

According to the build system quality metrics discussed in Chapter 1, “Build 
System Overview,” Ant receives the following evaluation: 

• Convenience: Good. Ant simplifies the creation of a build system for Java-
based software. It provides a wide range of tasks for common Java-related 
activities and alleviates the need to specify dependencies. However, Ant 
doesn’t provide a general-purpose programming language, making com-
plex build systems challenging to implement. 

• Correctness: Excellent. Ant’s automatic dependency analysis makes creat-
ing a correct and reliable build system easy. There’s little chance of incor-
rect dependencies being introduced. The only limitation is that tasks can 
be listed in the wrong order, but this problem is easy to detect. 

• Performance: Good. Ant provides adequate performance, although it is 
not known for being exceptionally fast. The fact that each task is responsi-
ble for checking its own set of dependencies makes the invocation of tasks 
slower than GNU Make. 

• Scalability: Excellent. Ant can scale to support large build systems. By 
interconnecting multiple build.xml files, any size of build system can be 
supported.

Ant clearly has a well-established place in the world of build systems, but only 
for Java-based software. If you’re building C/C++ code, consider using SCons 
(Chapter 8) or CMake ( Chapter 9). For small and simple Java projects, consider 
using Eclipse to build your software within the IDE environment. For Microsoft 
languages, such as C#, consider using the MSBuild tool discussed shortly. 

Similar Tools 

The introduction of the Ant tool has clearly made people think differently about 
constructing build systems, with a few newer tools taking a similar approach. 
The first tool, NAnt, is a direct copy of Ant for the .NET environment, whereas 
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the MSBuild tool has taken a slightly different approach with both syntax and 
semantics.

NAnt

The NAnt tool [53] is extremely similar to Ant but focuses on the .NET range of 
languages instead of Java. The following example shows a NAnt.Build file that 
compiles and links a simple C# program: 

 1  <project name="hello" default="compile">
 2
 3      <target name="compile">
 4          <csc target="exe" output="hello.exe">
 5              <sources>
 6                  <include name="*.cs" />
 7              </sources>
 8          </csc>
 9     </target>
10
11  </project> 

The basic language features are mostly the same, and Ant developers won’t 
have trouble reading or writing a NAnt script. Unfortunately, the NAnt tool is 
not as well documented or supported as the original Ant tool. 

MSBuild

The MSBuild tool from Microsoft is most commonly used as part of the Visual 
Studio development environment, replacing the much older NMake tool (see 
Chapter 6). From a syntax perspective, Ant and MSBuild have many similarities, 
along with some interesting differences. The official Microsoft documentation 
for MSBuild [54] provides a fair amount of technical information, although, for 
a gentler introduction, you should refer to [55]. 

Just as Ant uses build.xml files, MSBuild uses  .proj files to store the 
build description. Visual Studio can automatically generate these, or you can 
write them by hand. Here’s a simple example of compiling three C# files into a 
HelloWorld.exe program. 

 1  <Project DefaultTargets="Build"
 2 xmlns="http://schemas.microsoft.com/developer/

msbuild/2003" >
 3
 4     <PropertyGroup>
 5         <ExeFile>HelloWorld.exe</ExeFile>
 6     </PropertyGroup>
 7
 8     <ItemGroup>
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 9         <MySource Include="goodbye.cs;hello.cs;main.cs"/>
10     </ItemGroup>
11
12 <Target Name = "Build" Inputs="@(MySource)" 

Outputs="$(exeFile)">
13 <CSC Sources="@(MySource)" 

OutputAssembly="$(exeFile)"/>
14     </Target>
15
16  </Project> 

Although the syntax is a little different from an Ant program, you should be 
able to get the general idea of what this program does. Looking in detail at each 
part of this file reveals a few differences. 

Lines 4–6 define a new property named ExeFile and assigns it the value 
HelloWorld.exe. This syntax is a bit unusual because the <ExeFile> tag pro-
vides the name of the new property instead of being a tag that’s already built into 
the XML schema. With Ant, you would have used the predefined <property 
name="ExeFile"> sequence. 

Lines 8–10 define the list of source files to be compiled, similar to Ant’s 
<fileset> concept. Note again that the  <MySource> tag defines the name of 
this group of items. 

Lines 12–14 define the Build target that performs the compilation work. 
Line 13 uses the <CSC> task to compile the source files into an executable pro-
gram (assembly). Note the use of @(...) to refer to the group of source files, 
and the $(...) syntax to refer to a property’s value. 

The significant difference between Ant and MSBuild appears on line 12. The 
Inputs and  Output attributes are explicitly listed here because MSBuild doesn’t 
require that each task implement its own dependency checking. The MSBuild 
tool contains a full dependency engine, which is similar to that of GNU Make. 
Failure to supply these attributes causes the <CSC> task to execute every time, 
regardless of whether the source files have changed. 

Although this dependency-analysis technique places a greater burden on the 
developer, MSBuild completely skips targets with up-to-date files. This is in 
contrast to Ant, in which each task must be partially executed each time, even if 
Ant determines there’s no work to be done. The value of this approach depends 
entirely on whether you care about build performance (when you manually pro-
vide the dependencies) or the reduced effort of having each task do its own 
analysis.

MSBuild will clearly continue to be the most popular build tool in the .NET 
development environment, largely because of its integration with Visual Studio 
and support for Microsoft compilers. 
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Summary

Ant build description files are organized around the concept of targets, each 
containing a sequential list of tasks. The flow of control in an Ant program is 
familiar to most developers, making it easy for new users to construct and debug 
build.xml files. 

Ant provides a wide range of built-in and optional tasks to support common 
build system activities, specifically for the Java development environment. These 
include moving and copying files, changing file permissions, creating archives, 
and compiling source code into object code. 

Although Ant provides a number of off-the-shelf tasks, you could also write 
your own plug-in to support additional tools. Writing plug-ins is best done in 
Java, which gives you the expressive power of a full programming language. 
However, the occasional need to write Java code adds to the complexity of cre-
ating an Ant-based build system. 

An interesting feature of Ant is that tasks are required to perform their own 
dependency analysis and to decide whether they need to do any real work. This 
alleviates the need for Ant developers to think about the program’s dependency 
graph. Programs are thus easier to write and debug. 

Unfortunately, Ant’s lack of variables and loops, and its unusual way of 
implement conditions, can make constructing nontrivial programs difficult. This 
can be a deterrent for developers who prefer a more powerful language. 
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SCons

The SCons build tool [56] provides a third approach to compiling software. It 
blends the expressive power of the Python scripting language with some of the 
stronger features of other build tools. SCons uses high-level builder methods to 
describe the work to be performed, just as in Ant tasks. Additionally, it takes 
GNU Make’s approach of generating a dependency graph for the full program. 
The decision to base the SCons tool on the Python language was an important 
choice. Python is a fully featured programming language with expressive power 
equivalent to Java, C++, or C#, making it easy for new users to adopt the lan-
guage. This contrasts with GNU Make and Ant, which use a completely unique 
language. Not only must users learn that new language, but they also need to 
overcome the language limitations. 

The object-oriented features in Python enable SCons to encapsulate data 
types, while providing access to the data via methods, similar to functions in 
nonobject-oriented languages. SCons provides classes for files, directories, and 
environment settings, with each having methods to manipulate the objects of 
that class. For example, the following SCons program compiles the prog.c
source file to create the prog executable program: 

env.Program('prog', ['prog.c']) 

In this case, env is a  build environment object,  Program is a builder meth-
od, 'prog' is the name of the executable program to be constructed, and 
['prog.c'] is a list of source files. 

As you’ll see, a SCons program is usually much shorter and easier to write 
than an equivalent program for GNU Make or Ant. Not only is the SCons lan-
guage relatively concise, but also the built-in methods make it easy to perform 
common operations. If it’s necessary to extend the language, you can do so in 
Python instead of breaking out into a second programming language. 

197
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The SCons tool was designed with a number of principles in mind. Clearly, the 
creators of SCons have learned a lot from the mistakes made by other build 
tools. The guiding principles are listed here: 

• Correctness: SCons focuses on making sure the final build results are cor-
rect, even at the cost of performance. Not only is dependency analysis fully 
automated, but also any change to compiler flags, include paths, or library 
paths cause the impacted object files to be recompiled. In addition, the 
usual time stamp method of detecting file changes is replaced by a more 
accurate MD5 digest comparison. 

• Performance: Although it’s not as fast as GNU Make, SCons does attempt 
to execute as quickly as possible. This sometimes conflicts with the pri-
mary goal of build correctness, but you can speed up the build process in 
a number of ways. 

• Convenience: The SCons language is designed to be easy to use, with mini-
mal effort required to create a build system. As you’ll see in the real-world 
examples, this is certainly true in most cases. 

In addition to these core principles, SCons has been designed to support a wide 
range of compilation tools and build environments. The main focus is clearly C/
C++–based development environments, for a wide range of UNIX-like systems, 
and Microsoft Windows. It offers some support for Java compilation, although 
that’s not yet as powerful as Ant’s support. 

Finally, it’s worth noting that SCons has been under active development since 
the year 2000. Not only are bugs and weaknesses fixed on a regular basis, but 
also a number of new features are currently planned. 

The SCons Programming Language 

This overview of the SCons build tool covers a number of topics to give you 
an appreciation of the basic language. You’ll start with a simple C compilation 
that includes the creation and use of libraries. You’ll then consider compilation 
tools and how other environment settings are managed, as well as how various 
parameters can control the build steps. 

Program flow and dependency analysis are interesting topics, largely because 
they’re a combination of the methods used by GNU Make and Ant. You’ll also 
look at the rather unique way in which SCons decides whether an object file 
is out-of-date. This includes the case in which a change in compiler options or 
include paths is considered. 
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Finally, you’ll touch on a number of the more advanced features in the SCons 
build tool. These include managing the compilation tool options, the cross-
platform support features, and the capability to share object files with other 
developers.

Before diving into the details of the SCons tool, let’s take a quick overview 
of the underlying Python language. You’ve studied the unique GNU Make and 
Ant languages in great detail, so it’s only reasonable to spend time learning the 
basics of Python. 

The Python Programming Language 

The concepts used in the Python language are similar to those in Java, C++, 
and C#, making it easy for developers to adopt the tool. On the other hand, the 
syntax is quite different, which introduces a bit of a learning curve. In this intro-
duction, you’ll learn the language by studying a couple of short programs. Pay 
careful attention to each of these examples, and you’ll learn most of the concepts 
you need in a build system. 

In the first example, you create a Python function that uses a regular expres-
sion to filter the content of a list. The list contains a number of filenames, and 
the regular expression matches only names that end with .c. In addition, the 
function returns the list of matching names in reverse order. 

 1  import re
 2
 3  def extractAndReverse(pattern, inputList):
 4      newList = []
 5      for i in inputList:
 6          if re.match(pattern, i) != None:
 7              newList.insert(0, i)
 8      return newList
 9
10  reversedList = extractAndReverse(r'.*\.c$',
11 ['dog.c', 'cat.h', 'tiger.y', 'cat.c', 'bear.y', 

'wolf.c'])
12
13  for animal in reversedList:
14      print animal 

Now study this example line by line, paying attention to both the syntax and 
semantics of the language: 

Line 1 asks the Python interpreter to import the re (regular expression) mod-
ule. The re.match function will be used on line 6. 

The extractAndReverse function is defined on line 3, using the  def state-
ment. This function has two parameters, pattern and  inputList, which are 
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declared in the function heading. Python uses dynamic typing, so you don’t 
specify the type of these variables. 

Line 4 defines the newList variable and initializes it to an empty list. You use 
this variable to accumulate the names that match the regular expression. 

Line 5 iterates through the content of the inputList variable, with the varia-
ble i being set appropriately for each iteration of the loop. Python uses dynamic 
typing, so an error is reported on this line if the inputList variable doesn’t 
actually contain something you can iterate over. 

An if statement is used on line 6 to determine whether the current element 
of the list matches the regular expression. The re.match function either returns 
a special object to describe the match’s detail or, if there’s no match, returns the 
null value ( None). All you need to care about in this case is whether there’s a 
match.

If the current filename matches the regular expression, you insert the name 
at the start of newList (on line 7). Because you’re prepending the value (instead 
of appending), newList ends up in the reverse order of the original list. This 
line of code also demonstrates how a method ( insert) is invoked on an object 
(newList).

Line 7 introduces the block structure of a Python program. It’s important to 
note that neither the if statement nor the  for statement contains a correspond-
ing end statement to indicate where each block finishes. Python doesn’t use 
curly braces to mark the start and end of a block; instead, the source code must 
be indented to indicate which lines of code belong to each of the blocks. This is 
not just good coding style—it’s mandatory. 

Because of the indentation on line 8, the return statement executes only 
when the entire loop is complete. newList therefore contains all the members of 
the original inputList variable that match the regular expression. This marks 
the end of the extractAndReverse function. 

Lines 10 and 11 are part of the main program instead of a separately defined 
function. The extractAndReverse function is called and the return value is 
assigned to the reversedList variable. (Variables are declared when they’re 
first assigned to.) The first parameter of the function call provides the regular 
expression (you’re searching for any string ending with .c), and the second 
parameter is the list of filenames. 

Finally, lines 13 and 14 traverse the resulting list and display each element 
on the standard output. As before, the indentation on line 14 indicates that it’s 
part of the loop body. 

This completes the first example. Although it might seem rather contrived, 
manipulating a list is an important part of a build system. Python has numerous 
built-in functions and methods (such as re.match and  newList.insert) to 
help make the job easier. 
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Now look at a second example that generates a copyright message file. This 
is definitely something build systems need to do. 

 1  import sys
 2
 3  def makeCopyright(holder, year, filename):
 4      try:
 5          file = open(filename, 'w')
 6      except IOError:
 7 print >> sys.stderr, "Error: Can't open %s" % 

filename
 8         sys.exit(1)
 9
10 print >> file, "This software is Copyright (C) %d by 

%s." % \
11          (year, holder)
12
13      file.close()
14
15 makeCopyright("Arapiki Solutions Inc", 2010, "copyright.

txt")

Let’s examine the interesting parts of the program, without going into too 
much detail on the concepts you’ve already seen. 

Line 3 defines the makeCopyright function, which takes three parameters. 
The holder variable contains the name of the copyright holder,  year contains 
the year of the copyright, and filename is the name of the disk file you’ll cre-
ate. Jump forward to line 15 to see an example of how to invoke this function. 

Line 5 opens the output file in write mode, with the file variable holding the 
file object. You’ll use this object later when you write to the file. 

Lines 4–8 introduce the concept of an exception. Python tries to execute the 
open function on line 5, but if an IOError occurs, the body of the  except block 
handles the error. Line 7 uses formatted printing to display an error message, 
and the program terminates on line 8. 

Line 10–11 write the copyright message to the file you just opened. The con-
cept of formatted printing is familiar to most developers, although the % (year, 
holder) syntax might take a little getting used to. 

Line 13 invokes the close method on the  file object. Because of the change 
in indentation on line 15, this also marks the end of the function. 

At this point, you should be feeling quite comfortable with the basic Python 
concepts and syntax. Reading a SCons script will now be easy, given the syntax 
rules you’ve learned about. When you start writing your own scripts, you might 
still need to refer back to the Python documentation to recall the exact detail. 

In addition to what you’ve seen so far, numerous Python libraries are avail-
able, both packaged with the tool and available from third parties. A Python 
program can do all the following and more: 
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• Create complex data structures, such as dictionaries 

• Define object-oriented classes and create new objects 

• Define code packages to help modularize larger programs 

• Create disk-based databases as a persistent storage mechanism 

• Access any of the underlying operating system services 

• Define strings in Unicode format 

• Interact with other machines over the Internet 

This chapter can’t cover all these topics, so you’re encouraged to refer to the 
Python documentation [57] for more detail. 

Simple Compiling 

Now see how the basic Python concepts are applied to building C programs. This 
section looks at a number of ways to compile the calculator example, includ-
ing using static and dynamic libraries. In each case, you’ll write a SConstruct
file, which is equivalent to the Makefile and  build.xml files in previous 
chapters.

The First Program 
Start with the simplest way of generating the calculator program: 

1 Program('calculator', ['calc.c', 'add.c', 'mult.c', 'sub.c']) 

The Program builder method is passed two different arguments. The first 
provides the name of the executable file, whereas the second lists the source files 
to compile and link together. When you invoke the scons tool in the same direc-
tory as the SConstruct file, you see the following output: 

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
gcc -o add.o -c add.c
gcc -o calc.o -c calc.c
gcc -o mult.o -c mult.c
gcc -o sub.o -c sub.c
gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets. 

The Program builder is obviously doing a lot of work and actually invokes 
a couple of subbuilders to get the whole job done. Each source file is compiled 
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into object code and they’re all linked together to create the executable program. 
Although it’s not clear in this example, the Program builder also detects any 
source code dependencies. Any change to numbers.h triggers all source files to 
be recompiled. 

By default, SCons builds all the files in the current directory. To limit what 
gets built, specify the name of the target file: 

$ scons calc.o
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
gcc -o calc.o -c calc.c
scons: done building targets. 

In this case a target is an actual disk file, which matches GNU Make’s con-
cept of a target instead of Ant’s definition. 

Without going any further, you can see that SCons makes simple build sys-
tems easy to construct. Users just need to say what they want built and which 
source files should be used, and SCons handles all the detail. Contrast this 
with GNU Make, where compiler names need to be hard-coded and automatic 
dependency analysis is challenging to implement. 

Cross-Platform Builds 
With the cross-platform nature of the SCons tools, the program can also be 
compiled on a Microsoft Windows system using the Visual Studio tools. Using 
the exact same SConstruct file as before, we see the following output: 

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Foadd.obj /c add.c /nologo
add.c
cl /Focalc.obj /c calc.c /nologo
calc.c
cl /Fomult.obj /c mult.c /nologo
mult.c
cl /Fosub.obj /c sub.c /nologo
sub.c
link /nologo /OUT:calculator.exe calc.obj add.obj mult.obj 
sub.obj
scons: done building targets. 

SCons automatically detects which compilers are available on the build 
machine and invokes them with suitable command-line options. Note that the 
.exe extension was automatically added to the name of the executable pro-
gram, and .obj was used instead of .o.



ptg

Chapter 8 SCons204

Modifying Compiler Options 
To make the example a little more interesting, modify the C compiler flags to 
override the default settings. Here you use the Program builder again, but you 
pass a third parameter to set the CFLAGS variable: 

1  Program('calculator',
2         ['calc.c', 'add.c', 'mult.c', 'sub.c'],
3         CFLAGS='-g') 

When you invoke the scons build tool, you can see that  –g has been added 
to the appropriate gcc command line: 

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
gcc -o add.o -c -g add.c
gcc -o calc.o -c -g calc.c
gcc -o mult.o -c -g mult.c
gcc -o sub.o -c -g sub.c
gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets. 

As you’ll see shortly, SCons has many settings to control the build process. 
You’ll also look at how these settings can be encapsulated inside a build envi-
ronment object instead of providing the additional CFLAGS argument each time. 

Variations of the Basic Syntax 
In addition to the syntax you’ve seen so far, you can use many variations. First, 
you can specify the list of object files instead of naming the source files. 

1  Program('calculator',
2          ['calc.o', 'add.o', 'mult.o', 'sub.o'],
3          CFLAGS='-g') 

SCons uses built-in rules to figure out that calc.o can be built from  calc.c,
so it already knows how to do that. This approach works fine in a UNIX envi-
ronment but fails on a Windows system that uses .obj files. It’s better to list the 
source files and let SCons determine the intermediate files. 

As you might expect, you can also use a variable to store the list of filenames. 
This is useful if you make reference to the same list more than once. 

1  sources = ['calc.c', 'add.c', 'mult.c', 'sub.c']
2  Program('calculator', sources, CFLAGS='-g') 

It’s even possible to list all the files as a single Python string and then separate 
the filenames using the Split function. 
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1  Program('calculator',
2          Split('calc.c add.c mult.c sub.c'),
3          CFLAGS='-g') 

Finally, you can use Python’s keyword-based argument passing to give mean-
ingful names to each of the arguments. This enables you to state the values in a 
different order, if you prefer. 

1  Program(source = ['calc.c', 'add.c', 'mult.c', 'sub.c'],
2          target = 'calculator',
3          CFLAGS='-g') 

Plenty of variations on this basic SConstruct file exist, with the exact syntax 
you choose depending largely on convenience or personal preference. They all 
produce the same executable program in the end. 

C Compilation with Libraries 
Keeping with our calculator example, let’s consider how to build static and 
dynamic libraries. In this case, you store add.c, mult.c, and sub.c in a library, 
and use calc.c as the main program. Here’s the  SConstruct file that creates 
and uses a static library: 

1 myCalcLib = StaticLibrary('libcalc', ['add.c', 'mult.c', 
'sub.c'])

2 Program('calculator', ['calc.c'], LIBS = [myCalcLib], 
CFLAGS='-g')

Line 1 introduces the StaticLibrary builder method to construct a 
static library, named libcalc.a on UNIX systems. The return value from 
StaticLibrary is an object of type  Node, which refers to the library you just 
built. A Node object can be used anywhere filenames are expected. In the exam-
ple, the myCalcLib variable is a reference to the  libcalc.a file, or whatever it’s 
called on the specific build machine. 

On line 2, you use the Program builder again but this time set the  LIBS
option to link against the library named in the myCalcLib variable. The cor-
responding build output follows: 

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
gcc -o add.o -c add.c
gcc -o calc.o -c -g calc.c
gcc -o mult.o -c mult.c
gcc -o sub.o -c sub.c
ar rc libcalc.a add.o mult.o sub.o
ranlib libcalc.a
gcc -o calculator calc.o libcalc.a
scons: done building targets. 
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As you might expect, the StaticLibrary builder method knows how to 
compile the source files and then uses the ar command to create a static library. 
The Program builder knows how to link against this library. 

The SharedLibrary builder can be used in a similar way to build dynamic 
libraries:

1 myCalcLib = SharedLibrary('libcalc', ['add.c', 'mult.c', 
'sub.c'])

2 Program('calculator', ['calc.c'], LIBS = [myCalcLib], 
CFLAGS='-g')

This time, you see a slightly different set of compilation options used: 

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
gcc -o add.os -c -fPIC add.c
gcc -o calc.o -c -g calc.c
gcc -o mult.os -c -fPIC mult.c
gcc -o sub.os -c -fPIC sub.c
gcc -o libcalc.so -shared add.os mult.os sub.os
gcc -o calculator calc.o libcalc.so
scons: done building targets. 

Observe that the SharedLibrary builder is actually generating object files 
with the .os extension to distinguish them from nonshared object files. This 
is not the case for calc.o file, which the  Program builder generates. Note also 
that the gcc compiler uses the  –fPIC option to generate position-independent 
code.

At this point, you’ve seen enough examples of compiling C code. You’re 
ready to think more about customizing the build environment. 

Managing Build Environments 

Previous examples touched on the idea of setting construction variables such 
as CFLAGS and  LIBS to configure the behavior of the compiler. In each case, 
you explicitly added the CFLAGS or LIBS argument when invoking the Program
builder. Unfortunately, this solution doesn’t scale well for large build systems 
because you’d need to repeat the same variables every time you invoked a build-
er.

SCons uses the concept of an Environment object to encapsulate the list of 
construction variables, making it easier to reuse settings: 

1  env = Environment(CFLAGS = '-g')
2 env.Program('calculator', ['calc.c', 'add.c', 'mult.c', 

'sub.c'])
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The Environment object stores the detail of which compiler should be used, 
which command-line options should be passed to that compiler, and which 
filename extensions should be used on the build machine (such as .o versus 
.obj). This example starts with the default environment that includes most of 
this information but then adds a custom definition for the CFLAGS variable. 
All the default variables are set to whatever makes sense on the user’s build 
machine.

Using Multiple Environments 
You can extend the example by considering how SCons could selectively build 
either a debug version or a production version of our code. You can achieve this 
goal by creating two different environments and then selecting the environment 
needed for your specific purpose. To build a debug version of calculator that 
uses static libraries, you’d use this: 

$ scons 

For the production version that enables optimization and uses shared librar-
ies, invoke the tool as follows: 

$ scons production=1 

Here’s the code to implement this feature: 

 1  env = Environment()
 2
 3  if ARGUMENTS.get('production', 0):
 4     env['CFLAGS'] = '-O'
 5     env['CPPDEFINES'] = '-DPRODUCTION'
 6     myLibraryBuilder = env.SharedLibrary
 7  else:
 8     env['CFLAGS'] = '-g'
 9     env['CPPDEFINES'] = '-DDEBUG'
10     myLibraryBuilder = env.StaticLibrary
11
12  myLib = myLibraryBuilder('libcalc',
13        ['add.c', 'mult.c', 'sub.c'])
14
15  env.Program('calculator', 'calc.c', LIBS = [myLib]) 

Line 3 tests whether the production variable was provided on the command 
line and then chooses the appropriate block of code to execute. The first block 
on lines 4–6 sets the CFLAGS and  CPPDEFINES variables to indicate that code 
optimization should be enabled in the compiler and that the PRODUCTION C pre-
processor symbol must be defined. You also set the myLibraryBuilder variable 
to indicate that you need to build a shared library. 
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The second block of code, lines 8–10, enables the generation of debug sym-
bols and defines the DEBUG preprocessor symbol. You also indicate here that a 
static library should be built, because they’re often easier to use when debugging 
code.

Lines 12–13 use either the StaticLibrary or  SharedLibrary builder meth-
ods, depending on what the user requested. Each of these builders is invoked as 
part of the environment ( env) and thus pick up the necessary values for CFLAGS
and CPPDEFINES.

Finally, you invoke the Program builder and pass in the library you’ve just 
constructed. This builder also uses the same environment and builds the calc.c
source file using the same settings as the other files. 

If you’re observant, you might have realized that the –g and  -O options won’t 
actually work on a Windows system because the Windows cl compiler uses dif-
ferent options for debugging and optimization. Clearly, you still need to do a bit 
more work to make sure you’re passing in the correct flags. 

Construction Variables 
Without going into too much detail, let’s examine some of the commonly used 
construction variables. Literally hundreds of variables exist, so the following are 
just a few of the basics: 

• CC: Provides the path to the C compiler executable on the build system. 
This defaults to gcc on a Linux system or  cl on a Windows system that 
uses Visual Studio. The value can be overridden to use a different C com-
piler.

• CCVERSION: Provides the version of the C compiler. For example, this is 
set to 4.3.2 if the build machine uses GCC version 4.3.2. 

• CFILESUFFIX: C-language source files have this file suffix. The default on 
most machines is .c.

• PROGSUFFIX: Specifies the file suffix to be used for executable programs. 
This variable is empty on UNIX systems and is set to .exe on Windows 
systems.

• CCCOM: Specifies the command-line options to be passed to the C com-
piler. The following default value is used for GCC compilers on Linux. 

'$CC -o $TARGET -c $CFLAGS $CCFLAGS $_CCCOMCOM $SOURCES' 
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When the CCCOM variable is accessed, each of the variables in the definition 
is expanded to its current value (similar to GNU Make’s deferred evalu-
ation). The $TARGET and  $SOURCES variables are set appropriately each 
time the builder invokes the underlying compiler. 

Although each of the construction variables just listed comes with a default 
value, this isn’t true for all of them. The following variables are initially empty 
and can be defined by the user: 

• CCFLAGS: Options that are passed to both C and C++ compilers. 

• CFLAGS: Options that are used only when compiling C code, not for C++ 
code.

• CPPDEFINES: A list of C preprocessor symbols to be passed to the C com-
piler. These are prefixed with –D or  /D, depending on which compiler is 
used.

• CPPPATH: The list of directories to search when an  #include directive is 
used in a C program. 

• LIBPATH: Likewise, the list of directories to search when a library is linked 
against a program. 

Finally, here’s a construction variables that doesn’t impact how the compi-
lation tool is invoked but that does impact what the user sees on the standard 
output:

•  CCCOMSTR: If this variable is defined, display the specified message to the 
user instead of showing the actual compilation command. For example: 

env['CCCOMSTR'] = "Compiling $SOURCES" 

In this case, you’ll see Compiling calc.c in place of  gcc -o calc.o -c 
calc.c when the program is compiled. 

Refer to the SCons user guide or man page for a complete list of supported 
variables.

Construction Variable Defaults 
For any of the construction variables that come with default values, the SCons 
tool does a fair amount of upfront work to decide what those values should 
be. SCons detects which operating system is running on the build machine and 
then searches all the standard file system locations to find out which tools are 
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installed. In many cases, users will be happy with the default set of tools, but each 
time they create a new environment, they’re welcome to override the defaults. 

It’s worth noting that SCons won’t use the developer’s $PATH or  %PATH% envi-
ronment variables when searching for local tools. This is a great example of how 
SCons focuses on the correctness of the build process. It removes any chance 
that the user’s personal search path includes a compilation tool that other devel-
opers don’t have in their path. 

Program Flow and Dependency Analysis 

At first glance, a SCons builder method appears to be similar to an Ant task. 
You provide a high-level directive that lists the inputs and outputs of a particu-
lar build step, and the SCons builder method invokes the necessary compilation 
tool. All the dependency analysis is hidden inside the builder, so the user doesn’t 
need to think about constructing the dependency graph. 

Things start to differ when the actual work is performed. Whereas Ant invokes 
the compilation tools when the task is first invoked, SCons uses the same two-
phase approach you saw with GNU Make. When a builder is invoked, it does 
nothing more than compute the dependency information for that build step. In 
the second phase, SCons traverses the entire dependency graph and invokes the 
compilation tools necessary to bring files up-to-date. 

With this two-phased approach in mind, SCons developers can easily read 
through a program as if it were any other Python program. They can follow 
the sequential flow of execution from top to bottom and can see how values 
returned by one builder method are passed as input into the next. The overall 
construction of the dependency graph is therefore easy to understand, and most 
developers have no problem seeing how the software is constructed. 

Things get a little more complex in the second phase, where the compilation 
tools are actually invoked. Unlike Ant, the compilation tools are invoked in 
whatever order SCons decides, and this can be quite different from the order in 
which the builders were listed in the source file. As you’ll see later, SCons pro-
vides a mechanism for viewing and understanding the dependency graph, so it’s 
still possible to debug a misbehaving SCons program. 

Multiple Directory Support 
To handle SCons programs that are split across multiple directories, you use the 
SConscript function to join multiple files into one. In this case, the build de-
scription files that appear in lower-level directories must be named SConscript,
in contrast to the top-level file, which is called SConstruct:

SConscript('subdir/SConscript')
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Given that SCons was designed with correctness in mind, the builders that 
are invoked from within the subdir/SConscript file contribute to the same 
global dependency graph. You therefore don’t have the problems you saw with 
recursive Make. Any filenames mentioned in the SConscript file are interpreted 
as being relative to the subdir directory, making it unnecessary to list a long 
pathname to each file. Later in this chapter, you’ll see a number of examples that 
use the SConscript function. 

Dependency Analysis 
It’s worth noting that although much of the dependency analysis is done for you, 
SCons provides a few functions for directly manipulating the dependency graph: 

• Depends: If the builder method you’re using doesn’t seem to get the de-
pendencies correct, you can use the Depends function to explicitly add a 
link in the dependency graph. In this example, you want the calculator
program to also depend on the headers.h file (which is different from the 
existing number.h file). 

target = Program('calculator',
                 ['calc.c', 'add.c', 'mult.c', 'sub.c'])
Depends(target, 'headers.h') 

If headers.h changed, even if it’s not included by any of the source files, 
the calculator program will be relinked. Hopefully you won’t need to 
use this function often, but it’s nice to know that it’s available. 

•  Ignore: This is the opposite of  Depends and is used where a link in the 
dependency graph must be explicitly removed. 

Ignore(target, 'calc.o') 

This example causes the calculator program to not recompile, even if 
calc.o changed. Note that  calc.o would still be linked into the execut-
able program, but only if some other file changed, causing the link step to 
be triggered. 

• Default: By default, SCons always builds all the targets within the cur-
rent directory. To override this behavior and have a specific file (or files) 
built by default, use the Default function. 

Default('calculator')
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If the user invokes the scons command-line tool without a target name, 
the calculator program is built. 

• Alias: As we noted earlier, a SCons target is normally the name of a disk 
file that you’re going to build. By using the Alias function, you create a 
named target that resembles a target in the Ant language or one of GNU 
Make’s phony targets that don’t relate to a real disk file. 

Alias('all', 'calculator') 

In this case, you’re defining the all target to be an alias for the 
calculator program. You can also have a list of files as the second 
argument, making it possible to build multiple targets with a single alias 
name.

Now look at the unique ways in which SCons decides whether a file is 
up-to-date.

Deciding When to Rebuild 

Compared to other build tools, SCons places a considerable amount of effort 
into deciding whether a generated file needs to be rebuilt. Instead of using the 
traditional method of comparing time stamps, SCons can use MD5 checksums 
to determine whether a file has changed. It also looks for changes in compila-
tion tool flags and search paths, to predict whether a generated file might end 
up with different content. 

A SCons program can use the Decider function to specify how decisions are 
made, giving a fully customizable process. SCons is shipped with a number of 
built-in deciders, but it’s also possible to create your own, based on whichever 
criteria is important for your code. The following deciders are built into SCons, 
with the first approach being the default: 

• Decider('MD5'): To determine whether a source file has changed, SCons 
computes the MD5 checksum of the file and compares it with the file’s 
checksum from the last time the build was started. If there’s no difference 
in checksum, there’s a high likelihood that the file content hasn’t changed. 
This approach requires that SCons keep a persistent database of MD5 
signatures, which is stored in the .sconsign file. 

• Decider('timestamp-newer'): To determine whether a source file has 
changed, SCons checks whether the time stamp on the source file is newer 
than the time stamp on the object file. If so, it’s quite likely that the source 
file has changed. On the other hand, there’s still a chance that the file 
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was written to, but the content didn’t actually change. This is the same 
approach used by the GNU Make tool. 

• Decider('timestamp-match'): Similar to the previous case, but instead 
of comparing the source file and object file time stamps, SCons remembers 
the source file’s time stamps between consecutive builds. This approach 
doesn’t require you to check as many time stamps, but SCons must record 
time stamp information in a database. 

• Decider('MD5-timestamp'): The default MD5 decider can be rather 
slow, so this approach tests each file’s time stamp before computing the 
MD5 checksum. You’ll learn more about this approach shortly. 

Of course, you can also write your own decider functions. If your build sys-
tem generates web pages containing financial stock information, you could even 
write a decider that checks whether stock prices have changed. It would be 
pointless to regenerate HTML files each time a build was invoked, even if the 
financial data was the same. 

In addition to testing for file changes, SCons checks for environment changes. 
These include the flags that are passed into compilation tools and the file system 
paths that are searched to find libraries or header files. Now consider the cases: 

• CFLAGS: Most C compiler options have some type of impact on the gener-
ated object code. If you compiled a number of object files with the –O flag 
enabled but then you changed it to –O2 to get better optimization, SCons 
must regenerate all the object files. 

• CPPPATH: This variable is used as the search path for locating C header 
files. If the program included numbers.h but you then changed the search 
path, the possibility exists that a different file called numbers.h could be 
used instead. In this case, the object file needs to be regenerated. 

• LIBPATH: Similar to the previous case, except that the search path is used 
to find library files. If this variable changes, there’s a chance of including a 
different library. 

As you might expect, this focus on build correctness reduces the number of 
incorrect builds you’ll see. However, these features don’t come for free and, 
unfortunately, tend to slow the build system. SCons developers need to carefully 
consider whether they care about performance or whether correctness is more 
appealing. Think about these tradeoffs: 
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• Even though MD5 checksum calculations can be time-consuming, it’s pos-
sible to disable this feature by using a time stamp–based decider. On the 
other hand, you might find that time stamp–based methods are less accu-
rate and, therefore, cause a lot more files to rebuild, even when they don’t 
need to. As a compromise, the MD5-timestamp decider combines the best 
of both worlds by performing a fast time stamp comparison and perform-
ing a slower MD5 computation only if the time stamp indicates that the 
file might have changed. 

• Even though MD5 computation is slower than time stamp checking, it 
could save you time. For example, if you modify a comment in the source 
code, the source file’s content changes and the corresponding object file is 
regenerated. However, because the object file content isn’t affected (you 
changed only a comment), the build process can stop at that point. There’s 
no need to relink the executable program because SCons has already deter-
mined that none of the object files have changed. 

• If you’re not too worried about changes in your CPPPATH and  LIBPATH
variables picking up the wrong files, you can disable this feature by using 
the implicit_cache option. This stops SCons from rescanning each of 
the source files when it tries to determine which headers or libraries to 
use. The information is instead cached between consecutive builds, thus 
increasing the overall build performance. 

As you’ll see in Chapter 19, “Faster Builds,” using the MD5-timestamp and 
implicit_cache options makes the SCons build tool almost as fast as a GNU 
Make build system. 

Extending the Language 

As you’ve seen with other build tools, it’s often important for users to extend 
the basic language by adding more features of their own. These can include 
new builder methods or the addition of normal Python functions that make 
the SConstruct file easier to write. SCons offers a number of extension points, 
including the following: 

• Writing normal Python functions 

• Creating a builder method using a shell command 

• Creating a builder method using only Python code 



ptg

The SCons Programming Language 215

•  Directly invoking shell commands 

•  Writing a source code scanner 

In each of these cases, the extension is written in the Python programming 
language; although, you’re free to use shell commands if you need to invoke spe-
cific compilation tools. Unlike many other build tools, there’s no need to break 
out into using a different programming language: The combination of Python 
code and shell commands is powerful enough for most applications. 

Writing Normal Python Functions 
Although writing a SConstruct file is relatively easy in the first place, you 
might need extra helper functions to make it even simpler. For example, the 
extractAndReverse function you looked at earlier could easily be used from 
within a SConstruct file: 

reversedList = extractAndReverse('.*\.c$', fileList) 

In your build system, you might have a similar approach to processing a list 
of source files or deciding which files need to be generated. The more complex 
your build system is, the more likely you are to write this type of function to 
make your build description easier to read. 

Keep in mind that this code is executed during the first phase of parsing the 
SConstruct files, so the goal should be to construct the dependency graph. 
Therefore, you’d use the reversedList variable as input into a builder method 
that could trigger additional work to happen in the second phase. 

If you need to invoke a compilation tool to actually do some work, you 
should create a builder method. 

Creating a Builder Method Using a Shell Command 
When extending the SCons language by adding a new compilation tool, perhaps 
the easiest way is to defer most of the work to a shell command. Even then, you 
need to do some work to build up the dependency graph. Here’s a simple exam-
ple of adding a new builder method. In this case, you use a fictitious rpctool
compiler to generate .c files from higher-level .rpc files. 

1  env = Environment()
2 rpc_builder = Builder(action = '/tools/bin/rpctool -o 

$TARGET $SOURCE',
3                    suffix = '.c', src_suffix='.rpc')
4  env['BUILDERS']['RPC'] = rpc_builder
5
6  env.RPC('fast_messages.rpc') 
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Line 2 does most of the hard work in this example. The Builder function 
takes an action string containing the shell command to be executed. This com-
mand won’t be executed yet, but it will be at a later time when the tool is 
called into action. The $SOURCE and  $TARGET variables will be expanded to their 
appropriate values, and the whole string is passed to the command shell. 

The suffix and  src_suffix parameters are used to build up the depend-
ency graph. This builder can be used on input files with the .rpc extension, and 
the resulting output file will have a .c extension. 

Line 4 adds this new builder to the construction variable environment. By 
adding the RPC builder name, you can invoke the tool using the syntax shown on 
line 6. When you execute this script, you’ll see the following output: 

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
/tools/bin/rpctool -o fast_messages.c fast_messages.rpc
scons: done building targets. 

This approach to adding new builders is similar to the technique used in 
GNU Make. Matching filename patterns is certainly a convenient way to add 
new build tools. 

Creating a Builder Using Only Python Code 
Although the capability to have a builder method invoke a shell command is 
good enough in many situations, you might find that invoking a single com-
mand is rather limiting. If you think about the standard Program builder, a lot 
of work went on behind the scenes to generate all the object files and to process 
all the command-line options. In these complex cases, you might appreciate hav-
ing the full power of the Python language. 

The following example makes use of the makeCopyright function defined 
earlier. In this case, the entire builder method is written in Python, although 
there’s nothing to stop you from invoking one or more shell commands if you 
need to. 

 1  from MakeCopyright import makeCopyright
 2  from time import localtime
 3
 4  def copyright_function(target, source, env):
 5      target_file = str(target[0])
 6      holder_file = source[0]
 7      holder_name = holder_file.get_contents().strip()
 8      year = localtime()[0]
 9      makeCopyright(holder_name, year, target_file)
10
11  env = Environment()
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12  builder = Builder(action = copyright_function)
13  env['BUILDERS']['Copyright'] = builder
14
15  env.Copyright('LICENSE.txt', 'holder.txt') 

Skip over the first part of this file for now and focus on lines 11–13. This 
is similar to the previous example, except that you’re providing the name of 
a Python function instead of a shell command. You’re also not including the 
suffix or src_suffix parameters, although you could if you needed to. 

Looking back at lines 4–9, there you define the copyright_function func-
tion. The three parameters are as follows: 

• target: The list of  Node objects (and special SCons data type) that de-
scribe the files to be generated. Line 5 fetches the first Node object and 
determines the file’s name (using the str function). 

• source: The list of  Node objects describing the input files you should 
read. Lines 6–7 fetch the first source file from the list and then read the 
content of that file into the holder_name variable (taking care to strip the 
trailing newline). 

• env: The  Environment object to be used when building things. You don’t 
use the environment in this case. 

The builder method finishes on line 8 by retrieving the current year (such 
as 2010) and invoking the makeCopyright function that you’ve already seen. 
Finally, line 15 invokes the Copyright builder using the usual syntax, so the file 
is then written to disk. 

Directly Invoking Shell Commands 
In some cases, your build system might invoke a specific compilation tool only 
once, in which case you don’t need to define a new Builder object. Instead, you 
can use the Command method to invoke a one-time shell command on a particu-
lar pair of files: 

env.Command("data.txt.gz", "data.txt", "gzip -c < $SOURCE > 

$TARGET")

In this example, the data.txt.gz file is generated from the  data.txt file by 
running the gzip command. The shell command isn’t executed immediately but 
is added to the dependency graph in case it’s needed later. 

On the other hand, if you really did want the shell command to be executed 
in the first phase of parsing the SConstruct files, you should instead use the 
standard Python os.system function. 
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Writing a Source Code Scanner 
Earlier in this chapter, you touched on the idea that SCons automatically dis-
covers a source file’s dependencies. For example, a C source file can include a 
number of header files by using the #include directive. To complete the RPC 
builder, you’d also need to add a scanner to identify which other files are in-
cluded. You’ll learn more about this technique when you look at adding the 
mathcomp compiler to SCons builds. 

Other Interesting Features 

SCons has a lot of interesting features that this chapter hasn’t discussed but that 
are certainly worth a brief mention. 

• Manipulating compilation tool flags: SCons provides a wide array of func-
tions for manipulating lists of compilation tool options. This includes the 
capability to append and prepend flags to an existing list, overwrite exist-
ing flags with a new value, ensure that there’s no repetition of flags in a 
list, and parse a string of compiler flags and have each of them passed to 
the appropriate compilation tool. 

• Displaying a progress indicator: For large builds, it’s possible to call a user-
defined method to display an update on how the build is progressing. 

• Building code from central code repositories: Instead of each developer 
having a copy of all files, it’s possible to share a common source tree. 
SCons looks for source files in this shared tree if they can’t be found in the 
developer’s own tree. This is similar to GNU Make’s VPATH feature. 

• Caching prebuilt object files: By utilizing MD5 checksums, SCons can 
determine a fingerprint for each object file it compiles. If another devel-
oper has already compiled the exact same source code file using the same 
header files and compilation flags, SCons obtains the object file from a 
shared repository instead of recompiling it again. Chapter 19 covers this 
mechanism in more detail. 

• Probing the build machine: SCons includes a number of functions for an-
alyzing the build machine to ensure that it supports the required build 
environment. A SConstruct program can detect the presence of specific 
library and header files and can compile a small test program to validate 
which features exist in the build environment. 
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The SCons system has plenty more features, and the list is growing over 
time. Although SCons is still relatively young, the growing user base is likely to 
increase the number of available features. 

Further Reading 

The best place to learn more about SCons is the tool’s own user guide and man-
ual page [56]. The user guide provides a gentle introduction for first-time users, 
whereas the manual page is more suitable for experts who need to be reminded 
of the function parameters or construction variables. 

Not much additional documentation exists for the SCons tool, but that’s 
likely because of the high quality of the existing user guide. 

Anybody writing a SConstruct file should also become familiar with the 
Python language, for which numerous books are available [58]. 

Real-World Build System Scenarios 

Now let’s look at our standard collection of real-world build system scenarios. 
As you’ll see, the SCons tool designers have obviously thought about these com-
mon cases, making it easy to implement these examples. These SConstruct files 
are much shorter than the equivalent programs in GNU Make or Ant. 

Scenario 1: Source Code in a Single Directory 

You’ve already seen the solution to the single directory calculator example: 

1  Program('calculator',
2          ['calc.c', 'add.c', 'mult.c', 'sub.c'],
3          CFLAGS='-g') 

As discussed earlier, the Program builder manages all the dependency analy-
sis for you and rebuilds the object files if the numbers.h header file is modified. 
Object files also are recompiled if the CFLAGS variable is changed, ensuring the 
correctness of the resulting object files. 

Scenario 2(a): Source Code in Multiple Directories 

If you spread the source files across multiple directories, the SConstruct file is 
almost the same: 

Program('calculator',
['libmath/clock.c', 'libmath/letter.c', 'libmath/ 
number.c',
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'libprint/banner.c', 'libprint/center.c', 'libprint/
normal.c',

        'calc/calc.c'],
        CFLAGS='-g') 

SCons handles the dependency analysis correctly, and the object files are 
stored in the same hierarchical structure as the source files. 

The obvious downside to this approach is that the SConstruct file can 
become long and hard to maintain, especially when dealing with thousands 
of source files. The contention among developers who need to change this file 
makes it difficult to coordinate changes. 

Scenario 2(b): Multiple SConstruct Files 

To avoid having all source files listed in the same SConstruct file, you can 
divide the build description into multiple files. This approach limits the size 
of each file, reduces the contention when making changes, and keeps the build 
description in the same directory as the source files. 

Here’s the top-level SConstruct file: 

1  env = Environment()
2  env['CFLAGS'] = '-O'
3  Export('env')
4
5  libmath = SConscript('libmath/SConscript')
6  libprint = SConscript('libprint/SConscript')
7  Export('libmath libprint')
8
9  SConscript('calc/SConscript') 

Lines 1–3 create a build environment ( env) that’ll be used across the entire 
system. In this case, you’re changing only the CFLAGS variable, but nothing is 
stopping you from creating an elaborate environment containing a number of 
customizations. The Export function on line 3 states that this environment 
should be made available to any SConscript file that chooses to import it. 

Line 5 includes the libmath/SConscript file, and line 6 does the same for 
the libprint/SConscript file. The content of these files is parsed, and the 
dependencies are all added to the same global dependency graph. On line 7, the 
variables containing the values return from these SConscript calls are both 
exported so that other SConscript files can import them. 

Finally, line 9 includes the calc/SConscript file to link together the final 
calculator executable. In this case, you needn’t care about the return value. 

Now jump to the libmath/SConscript file: 

1  Import('env')
2
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3  lib = env.StaticLibrary('libmath',
4         ['number.c', 'clock.c', 'letter.c'])
5
6  Return('lib') 

This file imports the env variable, containing the environment object, and 
uses it when creating the libmath library. This ensures that all compiler options 
are used consistently throughout the build system. Line 6 returns the resulting 
Node object that stores the name of the library you’ve just created. 

As you’d expect, the libprint/SConscript is similar. 

1  Import('env')
2
3  lib = env.StaticLibrary('libprint',
4         ['normal.c', 'center.c', 'banner.c'])
5
6  Return('lib') 

Finally, the calc/SConscript file imports the  libmath and  libprint
variables (the * wildcard imports everything) and uses them to create the 
calculator executable program: 

1  Import('*')
2
3  env.Program('calculator',
4          ['calc.c'],
5          LIBS=[libmath, libprint]) 

This completes the entire build system, spread across multiple directories. At 
this point, you might be wondering whether SCons is capable of solving the sub-
build problem that both GNU Make and Ant suffer from. Luckily, the SCons 
tool does have a clever way of solving this common dilemma, and it all comes 
down to the choice of filenames: SConstruct versus SConscript.

It’s important to note that SCons accepts only a SConstruct file as input 
and won’t look at SConscript files unless the  SConscript function explicitly 
includes them. If you invoke scons in a lower-level directory, you’ll see the fol-
lowing output: 

$ scons
scons: *** No SConstruct file found. 

You might think it’s impossible to do anything other than top-level software 
builds, but that’s not quite the case. If you invoke scons with the  –u option, 
it searches up through the chain of parent directories to locate the nearest 
SConstruct file. It can therefore parse the entire build description and form a 
complete dependency graph. 
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However, this doesn’t mean that the entire software image will be compiled. 
By default, SCons builds the targets only in the current directory (and below), 
and because you invoked SCons from a subdirectory, you’ll build the content 
of only that directory. The good news is that SCons has a complete copy of the 
dependency graph and proceeds to build the other subdirectories first, but only 
if they’re necessary to compile the files in the current directory. The subbuild 
problem is thus solved. 

Scenario 3: Defining New Compilation Tools 

Our solution for adding the mathcomp tool to the SCons environment is more 
complex than the equivalent GNU Make solution, but definitely simpler than 
the Ant solution. Part of the complexity is that you’ll write your own source 
code scanner to determine the dependencies instead of using the built-in 
mathcomp –d flag. 

Here’s the complete source code: 

 1  import re
 2  reg_exp = re.compile(r'^import\s+(\S+)$', re.M)
 3
 4  def scan_math(node, env, path):
 5      import_nodes = [ node ]
 6      import_list = []
 7
 8      while len(import_nodes) != 0:
 9          this_node = import_nodes.pop()
10
11 new_imports = reg_exp.findall(this_node.get_

contents())
12          for file in new_imports:
13              import_list.append(file)
14              import_nodes.append(File(file))
15
16      return import_list
17
18  env = Environment()
19 math_scanner = Scanner(function = scan_math, skeys = 

['.math'])
20  env.Append(SCANNERS = math_scanner)
21
22 math_builder = Builder(action = '/tools/bin/mathcomp 

$SOURCE',
23                     suffix = '.c', src_suffix='.math')
24  env['BUILDERS']['Math'] = math_builder
25
26  extra_c_src = env.Math('equations')
27  env.Program('calc', ['main.c', extra_c_src]) 
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For convenience, let’s start the discussion at the end of the program and work 
backward. Lines 26–27 show how to use a new builder method, named Math.
You pass in the name of the equations.math file (excluding the suffix), and the 
builder generates a C source file to be passed into the Program builder. 

Back on lines 22–24, the new Math builder was added to the environment, 
using a shell command as the builder’s action. In this case, you need to pass 
only the $SOURCE variable to the  mathcomp tool because the tool automatically 
determines the target file’s name. 

Lines 19–20 define a new source code scanner. This definition informs SCons 
that a source file ending in .math can be scanned for dependencies by calling the 
scan_math function. This function must return the list of  .mathinc files that 
are referenced by import statements. 

Now review the scan_math function on lines 4–16. On line 4,  scan_math
accepts three parameters provided by the SCons dependency-analysis system. 
The first is a Node object that represents the file to be scanned, the second is the 
construction environment, and the third is the search path for finding additional 
include files. The example uses only the first parameter. 

Line 5 creates the import_nodes variable used to track which sources files 
still need to be scanned. Given that .mathinc files can include other  .mathinc
files, you could end up searching a long chain of import statements. 

Line 6 creates the import_list variable to track the list of filenames found 
so far. This is similar to import_nodes, except that the goal is to collect a list 
of filenames to return, whereas the import_nodes list contains  Node object that 
aren’t yet processed. 

The while loop on line 8 continues until you run out of  Node objects still 
to be processed. Each time around the loop, you pop off a single Node object 
(this_node), making the import_nodes list smaller. 

Line 11 is where the magic happens. First you read the content of the file ref-
erenced by the this_node variable and pass it through a regular expression that 
matches lines in the file (see line 2 for the definition). Any lines that start with 
the import statement, followed by a filename, are returned in the  new_imports
list.

For each element of the new_imports list, lines 12–14 add the newly found 
filename to the list of files to be returned and add the corresponding Node object 
to the list of nodes still to be processed. 

When the import_nodes list is empty, you can be sure that you’ve done a 
complete traversal of all the import statements in the  .math and  .mathinc
source files. This solution doesn’t handle the case in which files can’t be found 
or the case in which the import statements create an infinite cycle, but those are 
straightforward to add. 



ptg

Chapter 8 SCons224

Scenario 4: Building with Multiple Variants 

As you did for the corresponding GNU Make example, you’ll now see what it 
takes to generate code for three different CPU variants (i386, PowerPC, and 
Alpha). You’ll store each set of object files in a CPU-specific directory. 

Figure 8.1 shows the build tree layout you’ll be using. 

The SConstruct file in the top-level directory validates the command-line 
arguments and sets up the required environment. It then defers to the lower-level 
src/SConscript file to perform the actual compilation. The user invokes the 
build tool by specifying the CPU type: 

$ scons platform=powerpc 

Start with the top-level SConstruct file: 

 1  vars = Variables()
 2  vars.Add(EnumVariable('PLATFORM', 'CPU type', 'i386',
 3 allowed_values = ('i386', 'powerpc',

'alpha')))
 4
 5  env = Environment(variables = vars, CFLAGS='-g',
 6                    CC='/tools/bin/gcc-${PLATFORM}')
 7  Export('env')
 8
 9  Help(vars.GenerateHelpText(env))
10
11  platform = env['PLATFORM']
12  SConscript('src/SConscript',
13             variant_dir='obj/%s' % platform) 

Figure 8.1 The
build tree for the 
multivariant build 
system, supporting 
three different 
CPU types. 



ptg

Real-World Build System Scenarios 225

Luckily, SCons contains built-in functions for evaluating command-
line options, as well as for compiling into variant-specific directories. Now look 
at each line in detail. Lines 1–2 create a new Variables object and add the 
PLATFORM variable. You also provide some help text ( 'CPU Type'), the default 
value if no platform type is provided ( 'i386'), and the list of legal values. If you 
add this amount of detail, SCons can perform all the input validation for you. 
The build description can therefore reference the PLATFORM variable with full 
confidence that it contains a meaningful value. 

Line 5 creates a new Environment object, using the  vars object to define the 
list of user-supplied input values. Note the use of the ${PLATFORM} variable on 
line 6, which expands to either i386, powerpc, or alpha.

Line 9 is another SCons feature that generates user-friendly help text. If users 
pass in the –help command-line option, they’ll see the following: 

$ scons –-help
scons: Reading SConscript files ...
scons: done reading SConscript files.

PLATFORM: CPU type (i386|powerpc|alpha)
    default: i386
    actual: i386

Use scons -H for help about command-line options. 

Lines 11–13 defer the actual compilation work to the src/SConscript file. 
The only new concept is that you’re using the variant_dir flag to specify where 
the compiled object files should be stored. Typically, they’re stored in the same 
directory as the source code, but in this case, you’re storing them in a platform-
specific location within the obj subdirectory. 

Finish this scenario by looking at the src/SConscript file: 

1  Import('env')
2 env.Program('calculator', ['calc.c', 'add.c', 'mult.c', 

'sub.c'])

As you can see, there’s nothing surprising in how the builder methods are 
invoked. The top-level SConstruct file has handled all the environment set-
tings, as well as decided where object files are stored. The Program builder just 
does the right thing, based on what the env variable contains. 

For the sake of completeness, here’s the output of building the alpha variant: 

$ scons platform=alpha
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
/tools/bin/gcc-alpha -o obj/alpha/add.o -c -g src/add.c
/tools/bin/gcc-alpha -o obj/alpha/calc.o -c -g src/calc.c
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/tools/bin/gcc-alpha -o obj/alpha/mult.o -c -g src/mult.c
/tools/bin/gcc-alpha -o obj/alpha/sub.o -c -g src/sub.c
/tools/bin/gcc-alpha -o obj/alpha/calculator obj/alpha/calc.o
obj/alpha/add.o obj/alpha/mult.o obj/alpha/sub.o
scons: done building targets. 

The other variants provide similar output. 

Scenario 5: Cleaning a Build Tree 

The act of cleaning a build tree is common, and SCons provides an easy way of 
doing so. Given that a builder methods know exactly which files it’s supposed 
to compile, SCons uses that same information to delete all the generated files. 
Cleaning a build tree is done by passing the –c option. 

$ scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed calc/calc.o
Removed libmath/number.o
Removed libmath/clock.o
Removed libmath/letter.o
Removed libmath/libmath.a
Removed libprint/normal.o
Removed libprint/center.o
Removed libprint/banner.o
Removed libprint/libprint.a
Removed calc/calculator
scons: done cleaning targets. 

If SCons doesn’t know about all the files that the build system creates, you 
can explicitly invoke the Clean function to add more files to the list. Although 
it’s not common for C compilation, some tools generate additional files that the 
build process doesn’t know, so additional Clean directives might be required. 
It’s also possible to invoke the NoClean function to ask SCons not to remove a 
particular file from the build tree, just in case it’s important. 

Scenario 6: Debugging Incorrect Builds 

A SCons program is largely just a sequence of builder methods invoked against 
environment objects, so many of the problems you’ll encounter are centered on 
those constructs. As a result, SCons provides a number of built-in features for 
viewing the dependency graph, analyzing the content of environment objects, 
and tracing the sequence of decisions that cause SCons to rebuild a generated 
file.
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Let’s look at a few ways of debugging a SCons program to find out why 
builders might not trigger when they should, why they cause the generated out-
put files to have invalid content, or why they sometimes trigger an unnecessary 
rebuild.

Builders Not Triggering When They Should 
In this scenario, a developer modifies a source file or the build system regener-
ates an object file, but the program’s behavior doesn’t seem to reflect the code 
change. The generated files further downstream in the dependency graph aren’t 
correctly updated. 

The first thing to check is whether the file has really changed or whether the 
same content has been written back without modification. Given that SCons 
uses MD5 checksums by default, simply “touching” the file (a common practice 
with GNU Make) won’t make the content any different and nothing rebuilds. 
Likewise, simply adding a comment to a source file could cause the object file to 
regenerate, but SCons won’t relink the executable program if the machine code 
is exactly the same. 

If you’re confident that your files really have changed, the next step is to 
validate the dependency graph. There’s always a chance that the builder’s argu-
ments were incorrect or that the source code scanner function (for your particu-
lar type of source code) isn’t picking up all the dependencies. You can validate 
the dependency graph with the --tree=all command-line option: 

$ scons --tree=all calc
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: 'calc' is up to date.
+-calc
  +-main.o
  | +-main.c
  | +-/usr/bin/gcc
  +-equations.o
  | +-equations.c
  | | +-equations.math
  | | +-equ1.mathinc
  | | +-equ2.mathinc
  | | +-equ3.mathinc
  | | +-equ4.mathinc
  | | +-/tools/bin/mathcomp
  | +-/usr/bin/gcc
  +-/usr/bin/gcc
scons: done building targets. 

In this example, you need to check that the calc program has a dependency 
on all the necessary object files, which, in turn, depend on the relevant source 
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files. If there’s a discrepancy, it’s possible that the builder method hasn’t been 
given the correct list of input files or that the builder method itself contains 
a bug. If it’s absolutely necessary, use the Depend function to force a missing 
dependency to appear in the graph. 

You can also see that the .math file scanner is detecting a number of  .mathinc
include files, so take care to double-check that list. For scanner problems, you 
need to either fix the scanner (if you have the source code) or perhaps modify 
your source files slightly so that the scanner can locate the include or  import
directives.

Builders Triggering When They Shouldn’t 
The reverse of the previous problem is files being regenerated even though you 
don’t think they’ve changed. The dependency graph is a great place to start, but 
you also have the --debug=explain to tell you why SCons believes a certain 
file is out-of-date. 

$ scons --debug=explain
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: rebuilding 'calc.o' because 'calc.c' changed
gcc -o calc.o -c -g calc.c
scons: rebuilding 'calculator' because 'calc.o' changed
gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets. 

The extra annotation makes it easy to figure out what caused SCons to make 
the wrong decision. You need to revisit your builder’s arguments or check the 
builder or scanner source code to understand where the problem could be. If 
necessary, use the Ignore function to remove a dependency from the graph. 

Failed Compilation Step or Invalid Output Files 
In the final debugging scenario, a file is generated at the correct point in time, 
but the content is incorrect. This is usually because the compilation tool was 
invoked with the wrong arguments. The first step is always to double-check the 
output from the SCons build log and rerun the command line (such as gcc –c)
to make sure it’s doing what you need. 

If you find an incorrect command line, the problem is likely with one or 
more of the construction variables stored in an environment object. By using the 
--debug=presub option, SCons shows exactly which environment variables are 
being expanded to form the command lines: 

$ scons --debug=presub
scons: done reading SConscript files.
scons: Building targets ...
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Building calc.o with action:
  UnlinkFunc(target, source, env)
Building calc.o with action:
  $CC -o $TARGET -c $CFLAGS $CCFLAGS $_CCCOMCOM $SOURCES
gcc -o calc.o -c -g calc.c
Building calculator with action:
  UnlinkFunc(target, source, env)
Building calculator with action:

$LINK -o $TARGET $LINKFLAGS $SOURCES $_LIBDIRFLAGS 
$_LIBFLAGS

gcc -o calculator calc.o add.o mult.o sub.o
scons: done building targets. 

From this output, you can see which of the variables is providing the incor-
rect value. Perhaps it’s even one of the command-line template variables, such 
as $CCCOM, that’s passing an incorrect list of options and arguments to the com-
piler. In either case, use the environment object’s Dump function to check all the 
variables and their values. The full set of variables is enormous, but here are the 
first few: 

{ 'AR': 'ar',
  'ARCOM': '$AR $ARFLAGS $TARGET $SOURCES',
  'ARFLAGS': ['rc'],
  'AS': 'as',
  'ASCOM': '$AS $ASFLAGS -o $TARGET $SOURCES',
  'ASFLAGS': [],
  ... 

One unfortunate limitation of SCons is that it doesn’t appear possible to trace 
a builder output back to the line of source code where the builder method was 
invoked. This makes it difficult to narrow the scope of a problem, when all you 
have is the SCons output log showing the incorrect behavior. The best solution 
might be to search all the SConstruct and  SConscript files to try to identify 
the offending line of code. 

As a final note, it’s always possible to use the standard Python debugging 
tools to trace a SConstruct file. This is another benefit of using a general-
purpose programming language as the basis for a build tool. 

Praise and Criticism 

Although SCons is a relatively young tool, there’s enough of a user base that 
many strengths and weaknesses have been identified. On the other hand, SCons 
is still in active development, so some of the weaknesses have already been re-
solved or will be addressed in upcoming releases of the tool. 
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Praise

The praise includes the following: 

• Uses a general-purpose programming language: Using Python as the basis 
for SCons was a good choice. It enables developers to write code in a fa-
miliar style, using a full-featured programming language. To express the 
nuances of their build description, users aren’t forced to use cryptic syntax 
or to work around the limited language. This is often the case with other 
build tools. 

• Makes constructing a build system simple: Only a couple of minutes are 
needed to construct a fully functional build system for a small project, 
complete with dependency checking and a clean target. Even for larger 
builds, it’s relatively easy to create a hierarchy of SConscript files, with 
the assurance that a single dependency graph will be created. It isn’t neces-
sary to create a complex framework as it is with GNU Make. 

• Uses builder methods to improve portability: Builder methods hide many 
of the underlying compilation tools, making SCons a portable build tool. 
The default construction environment is automatically configured to use 
the build machine’s local toolsets, with the developer focusing on what 
needs to be done, not how it’ll be done on each specific build machine. 

• Uses tool extensions written in Python: When a SCons extension needs to 
be written, Python can also be used instead of breaking out into a shell 
script or writing a Java method. This includes all builders, scanners, and 
other helper functions that make SConstruct files easier to write. Python 
makes it easy to hide a complex piece of code logic inside a function, 
enabling the end user to invoke that function without understanding the 
internal details. 

• Focuses on correctness: One of the most important goals of SCons is that 
the build process must be followed as accurately as possible. It therefore 
uses MD5 checksums to detect file changes, uses scanner functions to 
determine file dependencies, and rebuilds object files if the compilation 
flags have changed. In contrast to other tools, SCons is much less likely to 
build the wrong thing. 

• Still in active development: SCons might be a young tool, but improvements 
are continuously being added, based on a growing amount of experience 
with the tool. Future bugs likely will be fixed quickly and new features will 
be added regularly. 
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• Easy to debug programs: SCons provides a number of debugging options, 
making it straightforward to identify and resolve any problems in the build 
process.

Criticism

The criticism includes the following: 

• Too slow, especially for incremental builds: The focus SCons places on 
build correctness is also responsible for decreasing the performance, espe-
cially for incremental builds in which only a few files have changed. Using 
the default settings, SCons computes the MD5 checksum of each file to see 
if it changed and then scans each source file to identify its header file usage. 
In addition, SCons always builds the full dependency graph before starting 
to compile anything. Even if a single source file has changed, all this extra 
work can take a while. 

• Builders can be too restrictive: The standard builder methods can often 
feel too restrictive. You might need a sequence of build steps that don’t 
appear to be possible using the default builders. In this case, either you end 
up studying the user guide in great detail to figure out the desired behavior, 
or you write your own builder to do the same thing. Sometimes providing 
an explicit list of shell commands is the easiest way to get the job done. 

• Inadequate support for Java and .NET languages: SCons is effective for 
the C and C++ languages in UNIX and Windows environments, but it’s 
not as strong for languages such as Java and C#. In those situations, it cur-
rently makes sense to use Ant or MSBuild. 

• Excessive memory footprint: When compared to approaches such as recur-
sive GNU Make, an equivalent SCons-based build uses considerably more 
memory on the build machine. However, this is not necessary true when 
compared to inclusive Make, which stores the entire dependency graph in 
memory.

Evaluation

To summarize the SCons build tool, let’s evaluate it against the build system 
quality measurements discussed in Chapter 1, “Build System Overview.” 
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• Convenience: Excellent: SCons uses the general-purpose Python program-
ming language as the basis of writing build description files, making it 
easy to configure the build system. In addition, build methods encapsulate 
high-level build operations in a simple function call, without requiring a 
developer to worry about multidirectory support or computing depend-
ency information. 

• Correctness: Excellent: The automatic generation of dependency informa-
tion and the use of MD5 checksums are among the many SCons features 
designed to ensure a correct build process. Compared to other build tools, 
SCons is much less likely to produce a release package that doesn’t match 
the source files. 

• Performance: Good: Although SCons focuses heavily on the correctness of 
the build process and isn’t as fast as GNU Make, it has adequate perform-
ance for most purposes. For developers requiring a faster build system, it’s 
possible to disable some of the correctness features. 

• Scalability: Good: SCons can support large build systems while still guar-
anteeing correctness, although the tool’s memory footprint can be excessive 
for extremely large systems. Some users have replaced their SCons-based 
build system with a GNU Make solution to improve performance and 
scalability. 

SCons is an ideal tool for building C/C++ code and is highly recommended 
for new software products or when replacing troublesome GNU Make build 
systems. However, SCons is not suitable for compiling Java and C# code; Ant 
and MSBuild are the best choices in that situation. 

Similar Tools 

As it turns out, most of the popular build tools have their own special-purpose 
language included, and few are built on top of existing programming languages. 
Two notable exceptions are the Cons tool, upon which SCons is based, and the 
Rake tool, which is based on the general-purpose Ruby language. 

Cons

The Cons build tool [59] is based on the Perl language and provided much of 
the inspiration for the SCons tool. Cons hasn’t been actively developed since 
2001 because SCons superseded it. The Cons web site even encourages people 
to switch to the newer tool. 
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If you decide to use Cons, perhaps if you prefer the Perl language, you’ll 
already be familiar with many of the tool’s concepts. Construction environ-
ments, builders, scanners, and MD5 checksums are among the many concepts 
that were reused in SCons. Here’s the calculator example again: 

 1  @lib_sources = ('add.c', 'sub.c', 'mult.c');
 2  @main_sources = ('calc.c');
 3  $exe_name = 'calculator';
 4
 5  $env = new cons(
 6      CC => 'gcc',
 7      LIBS => 'libmath.a'
 8  );
 9
10  Library $env 'libmath', @lib_sources;
11  Program $env $exe_name, @main_sources; 

You’ll find the syntax to be slightly different, but the ideas are generally the 
same. There’s no need to describe how this program works. 

Rake

The Rake build tool [60] is based on the Ruby scripting language, which pro-
vides a number of interesting language features. These features might not seem 
familiar at first, but they’re not hard to follow when you understand the syntax. 
Now look at an example program and explain it carefully. 

Rake is quite different from SCons and Cons because it doesn’t provide any 
automatic dependency analysis. It instead relies more on the model GNU Make 
uses, in which the developer provides the source and target dependencies, as well 
as the list of commands to be executed. The commands can be written in pure 
Ruby code or can use the sh method to invoke a shell command. 

Here’s the calculator example again, but written in Rake/Ruby syntax: 

 1  require 'rake/clean'
 2
 3  exe_name = 'calculator'
 4  sources = FileList['*.c']
 5  objects = sources.ext('o')
 6
 7  task :default => [exe_name]
 8
 9  rule '.o' => '.c' do |t|
10      sh "gcc -c -o #{t.name} #{t.source}"
11  end
12
13  desc "Build the #{exe_name} program"
14  file exe_name => objects do
15       sh "gcc -o #{exe_name} #{objects}"
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16  end
17
18  objects.each do |object|
19    file "#{object}" => ["numbers.h"]
20  end
21
22  CLEAN.include('*.o')
23  CLOBBER.include(exe_name)
24  verbose(true) 

Spend some time looking through this example, because the syntax needs 
some explanation if you’ve never seen Ruby. 

Lines 3–5 provide a number of useful definitions, using Ruby’s variable 
assignment syntax. The exe_name variable provides the name of the program 
you’re creating, whereas sources is defined to include all the  .c files in the cur-
rent directory (a wildcard operation). The objects variable is derived from the 
sources variable by replacing all the .c extensions with .o.

Line 7 is the first example of Rake’s rule definitions. In this case, you’re stat-
ing that, to build the default target, you first need to build the program whose 
name is stored in the exe_name variable. 

Lines 9–11 provide a suffix rule that states how to generate object files from 
source files. For each .c file, you invoke the  gcc compiler with the  –c flag. If 
you’re not familiar with Ruby, it’s interesting to know that rule is a Ruby 
method that takes two parameters. The first, '.o' => '.c', is actually a hash 
that maps the .o string to the .c string. Likewise, the second parameter takes a 
code block, which appears between the do and  end keywords. There’s nothing 
unusual about this in the Ruby language, where constant hash mappings and 
code blocks can be passed into a method. 

Lines 14–16 are similar and state that the executable program depends on all 
of the object files. Lines 18–20 use a looping construct to state that each of the 
object files has a dependency on the numbers.h header file. Finally, the remain-
ing lines define which files will be cleaned when the user invokes the clean or 
clobber build targets. 

It’s also interesting to note that Rake supports both file-based target names 
(as in GNU Make) and symbolic target names (as with Ant). The example 
mainly uses the file-based approach, with the exception of the :default target. 
The colon prefix indicates that it’s a symbol instead of a filename. Additional 
symbols can be created just as easily. 

Here’s the output from running the rake tool: 

$ rake
(in /home/psmith/Rake)
gcc -c -o calc.o calc.c
gcc -c -o sub.o sub.c
gcc -c -o add.o add.c
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gcc -c -o mult.o mult.c
gcc -o calculator calc.o sub.o add.o mult.o

$ rake -T
(in /home/psmith/Rake)
rake calculator  # Build the calculator program
rake clean       # Remove any temporary products.
rake clobber     # Remove any generated file.

$ rake clean
(in /home/psmith/Rake)
rm -r calc.o
rm -r sub.o
rm -r add.o
rm -r mult.o 

The first case shows the regular build sequence. The second shows how each 
Rake target can be enhanced with useful help text (see line 13). The third case 
shows how the clean target is automatically defined for you when you include 
the appropriate library (see line 1). 

For developers who are familiar with Ruby, Rake is definitely a tool to con-
sider using. 

Summary

The SCons build tool uses a standard Python script to describe a build process 
instead of taking the usual approach of creating a domain-specific language. A 
number of Python functions, known as builder methods, are used to compile 
source code, create libraries, and link together executable programs. Each of 
these builder methods accepts a list of input files and any number of compila-
tion tool flags. 

Given the wide range of construction variables used to configure the build 
process, SCons uses environment objects to encapsulate the detail. You create 
a single environment object and reuse it for each different builder method to 
ensure that a consistent set of compiler flags is used. To support multiple build 
machine types, SCons creates a default environment that references the build 
machine’s locally installed tools. 

SCons uses a two-phased approach to perform the build process. The first 
phase involves executing all the builder methods and constructing a dependency 
graph. In the second phase, SCons invokes the underlying compilation tools 
necessary to bring the generated files up-to-date. By default, SCons calculates 
an MD5 checksum for each file in the build tree and uses that information to 
determine whether a file has changed from one build to the next. 
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A number of mechanisms are available for extending the basic SCons lan-
guage. By writing standard Python code, developers can create their own builder 
methods, as well as source code scanners that automatically determine a source 
file’s dependencies. 

SCons takes the goals of correctness, performance, and convenience seri-
ously, and many of the language features reflect this approach. Unfortunately, 
one of the main criticisms of SCons is that the focus on correctness is responsible 
for the tool’s degraded performance. 
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CMake

The next build tool to discuss is CMake [61]. This tool differs from GNU Make, 
Ant, and SCons because it doesn’t actually execute the build process. Instead, 
it translates a high-level build description into a lower-level format accepted by 
other tools. For example, a CMake generator can translate the high-level build 
description into a makefile, ready for execution by the GNU Make tool. 

The goals of this approach are to simplify the construction of build systems 
and support cross-platform development. As you saw in Chapter 6, “Make,” 
constructing a GNU Make build system is challenging, especially when dealing 
with large code bases. It’s also hard to construct a single build system that works 
across a range of different platforms. 

CMake addresses these problems by providing a high-level language to 
describe the build process. A generator then translates this description into a 
native build tool’s own language, hiding all the complexity from developers. 
Although Ant and SCons also provide a high-level abstraction (using tasks and 
builder methods), those tools execute the build process directly, whereas CMake 
delegates the execution to another tool. 

Several CMake generators are available, running on a wide range of build 
machine types, including Microsoft Windows, Mac OS X, Linux, and numerous 
variants of UNIX. Given that each operating system has different native build 
tools, CMake’s generators support many popular development environments. 
For example, CMake can create a makefile for GNU Make or NMake, as well 
as project descriptions for Microsoft Visual Studio or Eclipse CDT (discussed in 
Chapter 10, “Eclipse”). 

CMake build descriptions are stored in a CMakeLists.txt file, using a 
platform-neutral language. Figure 9.1 shows the overall workflow of using the 
cmake tool to produce a  native build system, which is then invoked by running 
the native build tool.

237
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Figure 9.1 High-level flow of the CMake tool, generating a native build system. 

When executed on a UNIX system, the default behavior is to create a make-
file-based framework (a main makefile and a number of supporting framework 
files). If you override the default and instead generate an Eclipse-based project, 
extra project-related files are added. Finally, when executed on Windows, the 
default behavior is to use Visual Studio’s compilers and the NMake build tool. 

This chapter reviews CMake’s syntax and features. The syntax of the CMake 
language is unique to CMake and is therefore worth some discussion. As usual, 
you’ll also spend time evaluating real-world scenarios. 

The CMake build description provides support for the C and C++ languages, 
with limited support available for Java and various scripting languages. 

The CMake Programming Language 

This section provides an overview of the CMake language syntax and features, 
but it discusses only a few of them in detail. After all, the language might at first 
seem different from GNU Make, Ant, or SCons, but you’ll quickly realize that 
most of the concepts are the same. This section covers the following topics: 

• CMake language basics: The basic syntax of invoking commands, setting 
and accessing variables, and managing source and object file properties 

• Building executable programs and libraries: How to compile C source files 
into libraries or executable programs 
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• Control flow: How to test conditions, repeat operations in a loop, and 
define macros 

• Cross-platform support: Locating tools, libraries, and header files on the 
native build machine 

• Generating a build system: Generating a native build system (such as a 
makefile)

Throughout this discussion, keep in mind that the CMake build description 
must be easy to map into an equivalent description for other build tools. It’s not 
reasonable for CMake to have too many advanced language features of its own. 
For example, if the CMake language provided support for a general-purpose 
scripting language, such as Python, it would be challenging to translate this into 
an equivalent GNU Make build description. 

CMake Language Basics 

The syntax of the CMake build description file ( CMakeLists.txt) isn’t too 
hard to understand, so you can learn the basics by looking at an example. This 
example defines a couple variables, sets a property on two different source files, 
and then displays some messages: 

 1  project (basic-syntax C)
 2
 3  cmake_minimum_required (VERSION 2.6)
 4
 5  set (wife Grace)
 6  set (dog Stan)
 7  message ("${wife}, please take ${dog} for a walk")
 8
 9  set_property (SOURCE add.c PROPERTY Author Peter)
10  set_property (SOURCE mult.c PROPERTY Author John)
11  get_property (author_name SOURCE add.c PROPERTY Author)
12  message("The author of add.c is ${author_name}") 

The first observation is that all commands are invoked using a standard syn-
tax, with arguments separated by spaces. 

command ( arg1 arg2 ... ) 

The arguments can be numbers, filenames, strings, or property names, with 
the exact syntax requirements depending on which command is used. To group 
multiple words into a single argument, place quotation marks around the entire 
string.
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The project command (on line 1) provides a name to uniquely identify the 
build system. This is used by native build tools (such as Eclipse) that require a 
project name. It also states which programming languages (such as C, C++, or 
Java) are to be compiled. 

The cmake_minimum_required command (on line 3) states that the build 
description uses commands supported only by CMake version 2.6 or higher. 
Note that cmake_minimum_required expects two arguments, with the first 
being the VERSION keyword. This informs CMake to interpret the second argu-
ment ( 2.6) as a version number. 

Lines 5 and 6 demonstrate the creation of variables. The first argument is the 
variable’s name, and the second is the value. Line 7 uses the familiar ${...}
syntax to access each variable’s value. 

Line 9 introduces the concept of a property, using the set_property com-
mand. Properties enable you to assign a value within the scope of a specific disk 
file. The build system simply associates the value with that file’s name instead 
of modifying the file content itself. Other commands are free to reference the 
property’s value. 

This example sets the Author property on the  add.c source file. This value 
is limited in scope to add.c, so it’s possible to assign different Author values to 
other source files. Line 10 sets the Author property on  mult.c, but to a differ-
ent value. 

On line 11, the get_property command fetches the  Author property asso-
ciated with the add.c file. The resulting value is assigned to the  author_name
variable and is displayed on line 12. 

Now that you understand the basic syntax, let’s see how libraries and execut-
able programs are created. 

Building Executable Programs and Libraries 

As usual, the most popular operation is to compile source files into libraries 
and executable programs. CMake provides a number of commands that appear 
similar to builder methods in SCons but still have a few interesting features of 
their own. 

Creating Executable Programs and Libraries 
The following line of code shows how the calculator program is compiled 
from the four source files: 

1  add_executable (calculator add sub mult calc) 

This looks simple, but based on past experience with build tools, you can 
imagine that add_executable does a lot of work in the background. This 
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includes constructing a suitable compiler command line, as well as adding the 
filenames into the dependency graph. 

Another observation is that none of the filenames is given a file extension, 
so CMake must know the correct extension to use for each build machine. 
For example, when using Microsoft Windows, the resulting program is named 
calculator.exe.

Creating a new library is also similar to SCons, although with a few syntax 
differences:

1  add_library (math STATIC add sub mult)
2  add_executable (calculator calc)
3  target_link_libraries (calculator math) 

Line 1 produces a static library by compiling add.c, sub.c, and mult.c. The 
resulting library is given a name that makes sense on the build machine, such 
as libmath.a for UNIX systems. Lines 2 and 3 state that the calculator pro-
gram is created by compiling calc.c and then linking it with the math library. 

To assist the add_executable and  add_library commands, you could use 
include_directories and  link_directories. These commands inform the 
C compiler where to find additional header files and tell the linker where it can 
find additional libraries. As you might expect, these directives are translated into 
the appropriate compiler flags (such as -I and -L) in the native build system. 

One topic this chapter hasn’t mentioned is how CMake determines the 
dependencies for each source file. In reality, the native build system and build 
tool do much of this work. If the native build tool already automates the depend-
ency analysis, CMake has nothing to do. On the other hand, for Make-based 
tools that don’t contain this feature, CMake adds the required functionality into 
the auto-generated build framework. 

Setting Compilation Flags 
Varying a compilation tool’s options is also a useful activity. In contrast to build 
tools that are more platform-dependent, CMake discourages the use of hard-
coded compiler flags. Instead, the build description states which type of output 
is required and CMake determines the compiler flags to use. 

For example, to request that CMake produce a “debug” build in which the 
executable program contains source-level debugging information, you add the 
following command to the CMakeLists.txt file. 

set (CMAKE_BUILD_TYPE Debug) 

Even though the platform-specific flags are abstracted away, CMake gener-
ates a native build system with the correct flags for that machine. For example, 
on a UNIX system, the -g flag is added to the C compiler command line. 
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The same approach is used for adding C preprocessor definitions because 
each C compiler has its own set of command-line options. This time, you set a 
property on either the whole directory or an individual file. 

set_property (DIRECTORY
     PROPERTY COMPILE_DEFINITIONS TEST=1)

set_property (SOURCE add.c
     PROPERTY COMPILE_DEFINITIONS QUICKADD=1) 

In the first case, you ask the build system to define the TEST symbol when 
compiling all the C files in the current directory. In the second case, you ask that 
the compilation of add.c also include the  QUICKADD symbol. The native build 
system adds the required command-line options to make this happen. 

Adding Custom Commands and Targets 
For more complex build requirements, you can define new compilation tools 
and have CMake add them to the native build system. Now look at add_
custom_command, which resembles a standard GNU Make rule, and the add_
custom_target command, which is similar to GNU Make’s concept of phony 
targets.

The following example shows how the /tools/bin/make-data-file UNIX 
command translates the data.dat source file into the  data.c output file. In this 
case, data.c is an autogenerated source file. 

 1  project (custom_command)
 2  cmake_minimum_required(VERSION 2.6)
 3
 4  set (input_data_file ${PROJECT_SOURCE_DIR}/data.dat)
 5  set (output_c_file data.c)
 6
 7  add_custom_command (
 8    OUTPUT ${output_c_file}
 9    COMMAND /tools/bin/make-data-file
10               < ${input_data_file}
11               > ${output_c_file}
12    DEPENDS ${input_data_file}
13  )
14
15  add_executable (print-data ${output_c_file}) 

The bulk of the work is done on lines 7–13, where the custom tool is added 
to the dependency graph. The OUTPUT directive (line 8) states which file will be 
created, whereas the DEPENDS directive (line 12) indicates the input for the com-
mand. Lines 9–11 contain the UNIX-dependent shell command to execute. This 
code is thus equivalent to the following GNU Make program: 
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$(output_c_file) : $(input_data_file)
     /tools/bin/make-data-file < $(input_data_file) > 
$(output_c_file)

Line 15 is required to make sure there’s a top-level target that causes the new 
tool to be invoked. If you don’t define an executable program, the dependency 
graph won’t be complete and you’d have no way to request that data.c be cre-
ated. Unlike many other build tools, CMake makes a clear distinction between 
top-level targets and individual files in the build tree. 

To focus more on this top-level target concept, the add_custom_target
command facilitates the creation of new top-level targets and specifies the order 
in which they’ll be executed. These are similar to GNU Make phony targets 
because they’re not dependent on whether files are up-to-date and they don’t 
produce any output. They’re also similar to Ant targets that use the depends
attribute to control the order in which targets are invoked. 

 1  project (custom_target)
 2  cmake_minimum_required(VERSION 2.6)
 3
 4  add_custom_target (print-city ALL
 5        COMMAND echo "Vancouver is a nice city"
 6        COMMAND echo "Even when it rains")
 7
 8  add_custom_target (print-time
 9        COMMAND echo "It is now 2:17pm")
10
11  add_custom_target (print-day
12        COMMAND echo "Today is Monday")
13
14  add_dependencies (print-city print-time print-day) 

An interesting part of this code is that line 4 contains the ALL keyword to 
state that print-city should be invoked as part of the default build (when the 
developer doesn’t explicitly choose a target). Also, line 14 states that print-
city depends on print-time and print-day.

Control Flow 

Control flow (conditions, loops, and macros) is similar to other programming 
languages and doesn’t require much explanation. The distinction with CMake 
is that the CMake generator, not the native build system, evaluates and executes 
control-flow commands. This might seem a little odd at first, but as long as the 
native build system ends up with the same behavior described in CMakeLists.
txt, no problem should occur. 

The syntax of the if command is fairly standard, perhaps with the exception 
that () is required after the else and endif statements. 
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set (my_var 1)
if (${my_var})
   message ("my_var is true")
else ()
   message ("my_var is false")
endif () 

It’s also possible to perform Boolean operations, including NOT, AND, and OR,
which, incidentally, don’t require the standard ${...} syntax around variable 
names.

if (NOT my_var)
...
endif () 

Variables can be tested against other variables or constant values: 

if (${my_age} EQUAL 40)
...
endif () 

The existence of files can be tested, although keep in mind that the test is 
performed at the time the native build system is created; it isn’t performed by 
the native build tool itself. 

if (EXISTS file1.txt)
...
endif () 

Likewise, you can test whether one file is newer than a second file. 

if (file1.txt IS_NEWER_THAN file2.txt)
...
endif () 

Finally, for more complex scenarios, it’s possible to match a variable’s value 
against a regular expression. 

if (${symbol_name} MATCHES "^[a-z][a-z0-9]*$")
...
endif () 

The macro construct is similar to a function or method definition in other 
languages, making it possible to reuse common code. The macro syntax is easy 
to understand: 

 1  project (macro)
 2  cmake_minimum_required (VERSION 2.6)
 3
 4  macro (my_macro ARG1 ARG2 ARG3)
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 5 message ("The my_macro macro was passed the following 
arguments:")

 6    message ("${ARG1}, ${ARG2} and ${ARG3}")
 7  endmacro (my_macro)
 8
 9  my_macro (1 2 3)
10  my_macro (France Germany Russia) 

Finally, the foreach loop iterates through a list of values: 

1  project (foreach)
2  cmake_minimum_required (VERSION 2.6)
3
4  foreach (source_file add.c sub.c mult.c calc.c)
5    message ("Calculating cksum for ${source_file}")
6    add_custom_target (cksum-${source_file} ALL
7        COMMAND cksum ${PROJECT_SOURCE_DIR}/${source_file}
8    )
9  endforeach (source_file) 

This last example requires more explanation. Line 6 adds a new top-level tar-
get for each of the source files in the list. Invoking one of these targets invokes 
the cksum command for the associated source file. Assuming that you gener-
ate a makefile-based build, you can invoke either all targets at once or each 
target individually. (The percentages are part of the autogenerated makefile 
framework.)

$ gmake
615245502 109 /home/psmith/loops/src/add.c
[ 25%] Built target cksum-add.c
2090159248 294 /home/psmith/loops/src/calc.c
[ 50%] Built target cksum-calc.c
4029979682 113 /home/psmith/loops/src/mult.c
[ 75%] Built target cksum-mult.c
3864170835 124 /home/psmith/loops/src/sub.c
[100%] Built target cksum-sub.c

$ gmake cksum-add.c
615245502 109 /home/psmith/loops/src/add.c
[100%] Built target cksum-add.c

$ gmake cksum-calc.c
2090159248 294 /home/psmith/loops/src/calc.c
[100%] Built target cksum-calc.c 

As mentioned earlier, this looping construct isn’t translated into the native 
build tool’s looping construct. Instead, it provides the equivalent functionality 
by adding a number of different rules to the makefile. 



ptg

Chapter 9 CMake246

Cross-Platform Support 

Continuing with the approach that a CMake build description should be plat-
form neutral, consider how to deal with build machine differences. CMake ena-
bles you to locate specific tools and files, and also to identify which features the 
underlying compiler supports. 

Locating Files and Tools on the Build Machine 
To create a build system that works on any type of build machine, you can’t be 
too specific about where tools and files are located. At the very least, the tool or 
file must exist somewhere on the file system, but each machine might store it in 
a different location. 

CMake provides a number of commands to search for files and tools in all the 
standard paths. The following code locates the ls program, the  stdio.h header 
file, and the standard C math library. 

 1  project (finding)
 2  cmake_minimum_required (VERSION 2.6)
 3
 4  find_program (LS_PATH ls)
 5  message ("The path to the ls program is ${LS_PATH}")
 6
 7  find_file (STDIO_H_PATH stdio.h)
 8 message ("The path to the stdio.h file is ${STDIO_H_

PATH}")
 9
10  find_library (LIB_MATH_PATH m /usr/local/lib /usr/lib64)
11 message ("The path to the math library is ${LIB_MATH_

PATH}")

When this build description is translated into the native build system (by run-
ning the cmake tool), you see the following output: 

The path to the ls program is /bin/ls
The path to the stdio.h file is /usr/include/stdio.h
The path to the math library is /usr/lib/libm.so 

Each type of build machine might give different results, so the build descrip-
tion must reference these variables to access the tool instead of using a hard-
coded pathname. 

Note that line 10 explicitly asks the find_library command to search for 
the math library in /usr/local/lib and  /usr/lib64. These paths are searched 
in addition to CMake’s default locations. 

To make it easier to write build description files, CMake provides code mod-
ules for locating popular tools and libraries. As an example, by including the 
FindPerl module, you can easily locate your build machine’s Perl interpreter: 
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 1  project (find-perl)
 2  cmake_minimum_required (VERSION 2.6)
 3
 4  include (FindPerl)
 5  if (PERL_FOUND)
 6    execute_process (
 7 COMMAND ${PERL_EXECUTABLE} ${PROJECT_SOURCE_DIR}/

config.pl
 8    )
 9  else ()
10 message (SEND_ERROR "There is no perl interpreter on 

this system")
11  endif () 

The FindPerl module (on line 4) contains a small amount of CMake build 
description code, which is included by the CMakeLists.txt file. This module 
detects the presence of the Perl interpreter no matter what type of build machine 
you’re executing on (such as Linux or Windows). If Perl can be located, the 
PERL_EXECUTABLE variable contains the absolute path of the program, and the 
PERL_FOUND variable is set to a true value. 

Notice that the execute_process command (on line 6) passes the  config.
pl file into the Perl interpreter. This invocation takes place as part of  generat-
ing the native build system. In contrast, the  add_custom_command directive you 
saw earlier adds references to Perl within the native build system, to be invoked 
when the native build tool is used. 

Testing for Source Code Capabilities 
A second type of cross-platform support is the capability to test the underly-
ing compilers. Before attempting to compile a program, you must determine 
whether the build machine’s compiler provides all the required functions and 
header files. If it doesn’t, you must substitute your own implementation or even 
abort the build process. 

CMake provides the try_compile and  try_run commands, enabling you to 
determine whether a snippet of C/C++ code compiles correctly. If it does com-
pile, you can try to execute the program to see if it provides the correct output. 
To make it easy to use these commands, CMake wraps them in a number of 
prewritten macros. For example: 

 1  project (try-compile)
 2  cmake_minimum_required(VERSION 2.6)
 3
 4  include (CheckFunctionExists)
 5  include (CheckStructHasMember)
 6
 7  CHECK_FUNCTION_EXISTS(vsnprintf VSNPRINTF_EXISTS)
 8  if (NOT VSNPRINTF_EXISTS)
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 9 message (SEND_ERROR "vsnprintf not available on this 
build machine")

10  endif ()
11
12 CHECK_STRUCT_HAS_MEMBER("struct rusage" ru_stime wait.h 

HAS_STIME)
13  if (NOT HAS_STIME)
14 message (SEND_ERROR "ru_stime field not available in 

struct rusage")
15  endif () 

Lines 7–10 demonstrate the use of the CHECK_FUNCTION_EXISTS macro, as 
defined in the CheckFunctionExists module (line 4). By using the  try_compile
command, this macro sets the VSNPRINTF_EXISTS variable to indicate whether 
the vsnprintf function was available to the underlying C compiler or linker. 

Lines 12–15 perform a similar operation, but this time to determine whether 
the definition of struct rusage contains the  ru_stime field. If not, the associ-
ated variable is left undefined and the build system fails with an error message. 

Generating a Native Build System 

As discussed earlier, using CMake involves two main phases. The first is to 
process the CMakeLists.txt file and generate a native build system. The second 
phase is to use a native build tool to actually compile the software. This genera-
tion process is a key part of CMake’s design, providing support for a wide range 
of operating systems and native build tools. 

Generating the Default Build System 
The easiest way to generate a build system is to accept the default configuration. 
The developer simply creates a directory for the object files and then invokes the 
cmake tool within that directory. No file in the source directory is ever modified, 
making it possible to generate more than one object directory from the same 
source tree. 

$ mkdir obj
$ cd obj
$ cmake ../src
-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
-- Check for working C compiler: /usr/bin/gcc
-- Check for working C compiler: /usr/bin/gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
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-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/psmith/obj 

CMake attempts to locate each of the required development tools and deter-
mines which version of each tool is in use. Any try_compile and  try_run com-
mands in your CMakeLists.txt file are also executed at this time. 

Assuming that you generated a Make-based native build system (the default 
for Linux and UNIX), the object directory now contains the following directory 
structure:

Makefile
cmake_install.cmake
CMakeCache.txt
CMakeFiles
CMakeFiles/calculator.dir
CMakeFiles/calculator.dir/cmake_clean.cmake
CMakeFiles/calculator.dir/build.make
CMakeFiles/calculator.dir/depend.make
CMakeFiles/calculator.dir/progress.make
CMakeFiles/calculator.dir/link.txt
CMakeFiles/calculator.dir/flags.make
CMakeFiles/calculator.dir/DependInfo.cmake
...
CMakeFiles/progress.make
CMakeFiles/Makefile.cmake
CMakeFiles/CMakeDetermineCompilerABI_C.bin
CMakeFiles/CMakeOutput.log
CMakeFiles/CMakeCXXCompiler.cmake

This build framework certainly includes a lot of files, but the most important 
files to notice are these: 

• Makefile: The main entry point for the native build system. 

• CMakeCache.txt: A text-based configuration file that contains the auto-
discovered settings for this build machine. (You’ll learn more about this 
shortly.)

• CMakeFiles/: A directory that contains all the autogenerated framework 
files. These are included by the main makefile. 

The final step is to invoke the native build tool; in this case, you use gmake.
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$ gmake
Scanning dependencies of target calculator
[ 25%] Building C object CMakeFiles/calculator.dir/add.c.o
[ 50%] Building C object CMakeFiles/calculator.dir/sub.c.o
[ 75%] Building C object CMakeFiles/calculator.dir/mult.c.o
[100%] Building C object CMakeFiles/calculator.dir/calc.c.o
Linking C executable calculator
[100%] Built target calculator 

Notice how the autogenerated build framework displays a significant amount 
of customized output instead of simply showing the underlying commands as in 
the GNU Make examples. 

Generating a Nondefault Build System 
One of CMake’s strengths is flexibility in selecting the type of native build sys-
tem to be generated. By passing the -G option to the  cmake command, you 
can override the default selection. For example, to generate a Visual Studio 10 
project, enter the following command on your Windows build machine: 

cmake -G "Visual Studio 10" ..\src 

Likewise, to generate a build system for Eclipse CDT version 4 on Linux, use 
the following: 

cmake -G "Eclipse CDT4 - Unix Makefiles" ../src 

Naturally, it’s possible to add more CMake generators if your choice of devel-
opment environment isn’t already supported, but doing so isn’t an easy task. 

Customizing the Generation Step 
Although CMake’s default behavior is to autodetect the build machine’s com-
pilation tools, it often makes sense to overwrite these values. In addition to the 
basic cmake command, you can use the  ccmake command (see  Figure 9.2) to 
interactively configure the native build system. 
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Figure 9.2 Configuration using the ccmake configuration tool. 

The variables in this list are collectively known as the cache and are stored 
in the object directory’s CMakeCache.txt file. Each variable has a default value 
but can easily be modified to customize the build process. The following are 
some of the most commonly used cache variables: 

•  CMAKE_AR, CMAKE_C_COMPILER, and CMAKE_LINKER: The absolute path 
to the library archiver tool, the C compiler, and the object file linker. These 
can be overwritten if your build system uses custom tools in place of the 
build machine’s standard tools. 

•  CMAKE_MAKE_PROGRAM: The absolute path to the native build tool, such as 
/usr/bin/gmake. This can be overwritten to use a nonstandard version of 
the tool. 

•  CMAKE_BUILD_TYPE: The type of the build tree you want to create. Pos-
sible values include these: 

• Debug: The generated object files and executable program will contain 
debugging information. 

• Release: The resulting executable program will be fully optimized and 
won’t contain debug information. 



ptg

Chapter 9 CMake252

• RelWithDebInfo: The executable program will be optimized but will 
also contain debug information. 

• MinSizeRel: The executable program will be optimized to require as 
little memory space as possible 

• CMAKE_C_FLAGS_*: For each of the four build types just listed, these vari-
ables state which C compilation flags should be used. That is, depending 
on the value in the CMAKE_BUILD_TYPE variable, CMake will use the C 
compiler flags listed in the corresponding cache variable. 

• CMAKE_EXE_LINKER_FLAGS_*: Similar, but provides the linker flags for 
each of the four build types. 

As you’ll see later, it’s possible to define your own cache variables and initial-
ize them to a default value. The CMakeLists.txt build description can read all 
cache values as if they were normal variables. The values can also be written to 
using the standard set command. 

Translation from CMakeLists.txt to the Native Build System 
A final consideration in using CMake is to understand when and how each of 
the CMake commands is translated into the native build system. The chapter 
has already touched on this topic briefly, but it’s worth mentioning the detail a 
second time. 

CMake commands can be divided into two main groups: 

1. Commands that take effect immediately when the cmake tool is invoked. 
These include control-flow commands such as if, foreach, and macro, as 
well as commands for setting and displaying variable values. 

2. Commands that are translated into native build system constructs. These 
include add_executable, add_library, add_custom_command, and 
add_custom_target.

As you can imagine, the second category of commands contributes to the 
native build system’s dependency graph. On the other hand, the first set of com-
mands enables you to control what gets added. You can use variables to control 
the filenames that are added, loops to individually add a large number of files, 
and macros to simplify the build description. The important fact is that only 
the commands that impact the dependency graph are directly translated to the 
native build system. 
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Here’s a simple example to illustrate the concept. The following build descrip-
tion compiles two separate programs, calc and  calculator, both using the 
same source files. 

 1  project (generating)
 2  cmake_minimum_required(VERSION 2.6)
 3
 4  set (prog1 calculator)
 5  set (prog2 calc)
 6
 7  execute_process (
 8    COMMAND date
 9    OUTPUT_VARIABLE TIME_NOW
10  )
11
12  foreach (prog_name ${prog1} ${prog2})
13 message ("Constructing program ${prog_name} at ${TIME_

NOW}")
14    add_executable (${prog_name} add sub mult calc)
15  endforeach () 

To make things interesting, the description is more complex than it needs to 
be, although you shouldn’t have trouble following along. When the cmake tool 
is invoked, you’ll see the following output (note the additional messages): 

$ cmake ../src
-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
-- Check for working C compiler: /usr/bin/gcc
-- Check for working C compiler: /usr/bin/gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
Constructing program calculator at Sun Jun  6 16:05:28 PDT 
2010

Constructing program calc at Sun Jun  6 16:05:28 PDT 2010
-- Configuring done
-- Generating done
-- Build files have been written to: /home/psmith/obj 

You can learn from this output that both set commands were executed, the 
execute_process command invoked the  date shell command, the body of the 
foreach loop was executed twice, and the  message command displayed two 
messages on the output. Effectively, the entire program was executed at the 
same time the native build system was generated. 

If you also take the view that add_executable is supposed to do nothing 
more than add information to the native build system, its task is also complete. 
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However, the executable programs (two of them) aren’t actually created until 
you invoke the native build tool. 

$ gmake
Scanning dependencies of target calc
[ 12%] Building C object CMakeFiles/calc.dir/add.c.o
[ 25%] Building C object CMakeFiles/calc.dir/sub.c.o
[ 37%] Building C object CMakeFiles/calc.dir/mult.c.o
[ 50%] Building C object CMakeFiles/calc.dir/calc.c.o
Linking C executable calc
[ 50%] Built target calc
Scanning dependencies of target calculator
[ 62%] Building C object CMakeFiles/calculator.dir/add.c.o
[ 75%] Building C object CMakeFiles/calculator.dir/sub.c.o
[ 87%] Building C object CMakeFiles/calculator.dir/mult.c.o
[100%] Building C object CMakeFiles/calculator.dir/calc.c.o
Linking C executable calculator
[100%] Built target calculator 

It looks odd that all C files are compiled twice, but that’s exactly what 
CMake is asked to do here. This makes sense, given the way the underlying 
makefile framework stores object files in calc.dir or  calculator.dir instead 
of a directory that all programs share. 

In summary, the commands in the CMake build description file aren’t trans-
lated directly into commands in the native build system. (There’s no one-to-
one mapping of commands.) Instead, the native build system provides the same 
behavior, but using a different set of commands. 

Other Interesting Features and Further Reading 

CMake is certainly a complex and powerful tool, although this chapter hasn’t 
gone into too much detail on all the features. This chapter has focused on the 
generation of the native build system instead of everything CMake supports. 
Following are a few other features that the CMake tool supports: 

• String manipulation: The string command provides regular expression 
matching, substring replacement, string comparison, and conversion to 
upper- or lowercase. 

• List manipulation: The list command provides support for inserting, 
removing, searching, and sorting values within a list. 

• File manipulation: The file command enables a CMake build description 
to read or write external data files, as well as to create new directories or 
remove old files. 
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• Mathematical expressions: The math command provides a simple interface 
for computing expressions. Only the basic arithmetic, logical, and bitwise 
operations are supported. 

• Customizing data files: The configure_file command generates a data 
file from a template by replacing all occurrences of ${VAR_NAME} or  @
VAR_NAME@ with the value of that variable. 

• Testing of executable programs: The CTest module is an extension of 
CMake that provides automated testing of executable programs. By add-
ing test information into the CMakeLists.txt file, executable programs 
can be sanity-tested immediately after they’re built. 

• Packaging and installation: The CPack module is another extension that 
supports the creation of software release packages, ready for installation 
on the target machine. Chapter 13, “Software Packaging and Installa-
tion,” discusses packaging and installation in more detail. 

• Platform-neutral shell commands: CMake provides built-in support for 
common shell script operations. In many build tools, a developer is left 
to deal with the difficulties of using shell commands that vary from one 
machine to the next. To solve this problem CMake provides a uniform 
interface for invoking common shell operations. This is particularly im-
portant when compiling software for both Windows and UNIX when the 
shell commands are significantly different. 

If you’re interested in using CMake’s more advanced features, you’re strongly 
encouraged to learn more from the product’s own documentation. The online 
wiki pages are available on the CMake web site [61], although advanced users 
should consider reading a book on the topic [62]. 

Real-World Build System Scenarios 

As with the other build tools described in this book, this section considers how 
CMake can address a number of real-world build system scenarios. CMake’s 
language features are similar to those in other build tools, so this section de-
scribes the detail of these solutions when it’s not already obvious. 

Scenario 1: Source Code in a Single Directory 

The first scenario is extremely simple to implement, making CMake a great tool 
to use for small projects. 
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1  project (scenario-1)
2  add_executable (calculator add sub mult calc) 

Keep in mind that when CMake generates a native build system, it adds a 
number of standard features, such as automatic dependency analysis. 

Scenario 2: Source Code in Multiple Directories 

The second scenario shows how to use CMake for larger projects in which the 
build description is divided across multiple directories. You haven’t yet seen the 
add_subdirectory command, but there should be no surprises in the way it 
works.

The first build description file, src/CMakeLists.txt, appears at the top 
level of the build tree and recursively includes content from the subdirectories. 

1  project (scenario-2)
2
3  cmake_minimum_required(VERSION 2.6)
4
5  add_subdirectory(libmath)
6  add_subdirectory(libprint)
7  add_subdirectory(calc) 

The second build description file, src/libmath/CMakeLists.txt, builds 
the Math library using the add_library command. 

1  add_library(Math clock letter number) 

Next, src/libprint/CMakeLists.txt builds the  Print library in the same 
way.

1  add_library(Print banner.c center.c normal.c) 

Finally, src/calc/CMakeLists.txt pulls everything together by creating an 
executable file and linking it with the Math and Print libraries. 

1  add_executable (calculator calc.c)
2  target_link_libraries (calculator Math Print) 

To make use of this build description, you again execute the cmake tool. This 
step is the same as in previous examples, so the output isn’t interesting to show. 
Finally, you use the native build tool (in this case, GNU Make) to compile the 
finished product. 

$ gmake
Scanning dependencies of target Math
[ 14%] Building C object libmath/CMakeFiles/Math.dir/
clock.c.o
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[ 28%] Building C object libmath/CMakeFiles/Math.dir/
letter.c.o

[ 42%] Building C object libmath/CMakeFiles/Math.dir/
number.c.o

Linking C static library libMath.a
[ 42%] Built target Math
Scanning dependencies of target Print
[ 57%] Building C object libprint/CMakeFiles/Print.dir/

banner.c.o
[ 71%] Building C object libprint/CMakeFiles/Print.dir/

center.c.o
[ 85%] Building C object libprint/CMakeFiles/Print.dir/

normal.c.o
Linking C static library libPrint.a
[ 85%] Built target Print
Scanning dependencies of target calculator
[100%] Building C object calc/CMakeFiles/calculator.dir/

calc.c.o
Linking C executable calculator
[100%] Built target calculator 

One of the many advantages of using a CMake-generated build system is that 
the subbuild problem is solved and dependencies into other subdirectories are 
dealt with correctly. For example, if you build in the libmath directory, only 
that library is rebuilt: 

$ cd obj/libmath
$ gmake
[100%] Built target Math 

However, if you build in the calc directory, both the  Print and  Math librar-
ies are also considered for recompilation: 

$ cd obj/calc
$ gmake
[ 42%] Built target Print
[ 85%] Built target Math
[100%] Built target calculator 

As you can see, CMake generates a fully featured Make-based build system 
without requiring the developer to understand anything about the underlying 
framework.

Scenario 3: Defining New Compilation Tools 

Adding the mathcomp compiler into a CMake-based build system requires using 
the add_custom_command directive. In addition, you use the  execute_process
command to gather the dependencies. Finally, you wrap the whole solution in-
side a macro to make it more convenient to use. 
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 1  project (scenario-3)
 2
 3  cmake_minimum_required(VERSION 2.6)
 4
 5  macro (mathcomp FUNC_NAME INPUT_FILE OUTPUT_FILE)
 6     execute_process(
 7         COMMAND /tools/bin/mathcomp -d ${INPUT_FILE}
 8         OUTPUT_VARIABLE DEPS
 9    )
10    separate_arguments(DEPS)
11
12    add_custom_command(
13        OUTPUT ${OUTPUT_FILE}
14        COMMAND /tools/bin/mathcomp -c -o ${OUTPUT_FILE}
15                -f ${FUNC_NAME} ${INPUT_FILE}
16        DEPENDS ${DEPS}
17    )
18  endmacro (mathcomp)
19
20 mathcomp(equations ${PROJECT_SOURCE_DIR}/equations.math 

equations.c)
21  add_executable (calculator calculator.c equations.c) 

Lines 5–18 define a macro that encapsulates the complexity of this solution. 
Line 20 invokes this macro to generate the equations.c output file from the 
equations.math input file. The build system executes from within the object 
directory, so you use the PROJECT_SOURCE_DIR variable to access the source 
file.

Looking now at the macro definition, lines 6–9 invoke the mathcomp com-
piler with the -d option, to determine the dependencies present in the  .math file. 
The output from this command is placed in the DEPS variable. On line 10, this 
space-separated output is translated into a list of separate filenames. 

The add_custom_command directive on lines 12–17 is now fairly straightfor-
ward. You already know the name of the output file, and you’ve just computed 
the list of dependencies. The /tools/bin/mathcomp compiler is ready to be 
invoked in the same way you did for GNU Make, Ant, and SCons. 

One final observation is that add_custom_command makes the new tool avail-
able for use by the native build system. That is, when the native build system 
needs to create the equations.c file, it directly invokes the  mathcomp compiler. 
However, notice that the execute_process command determines the source 
file dependencies. This command is used only when the cmake tool is initially 
invoked, which is before the native build tool is ever called into action. 

The limitation here is that when source files are modified, the native build 
system won’t notice if any dependencies have changed. Before long, the build 
system starts using outdated information. CMake solves this problem for C 
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and C++ files by requiring the IMPLICIT_DEPENDS keyword for the  add_
custom_command directive. To support this same feature for the  mathcomp
tool, the standard CMake system must be modified. 

Scenario 4: Building with Multiple Variants 

The multivariant scenario takes advantage of the configuration cache, where the 
user can indicate which CPU type to compile for ( i386, powerpc, or alpha).
The build system then validates the selection and chooses a suitable compiler for 
that CPU type. Unlike the GNU Make and SCons solutions, there’s no require-
ment to create a per-CPU build directory. Instead, CMake already requires users 
to create their own directory for object files. 

$ mkdir obj-alpha
$ cd obj-alpha
$ cmake -DPLATFORM=alpha ../src 

Alternatively, the ccmake command (refer to  Figure 9.2) can provide a more 
interactive user experience. The CMake build description is as follows: 

 1  project (scenario-4)
 2
 3 set (PLATFORM i386 CACHE STRING "CPU Type: i386, powerpc 

or alpha")
 4
 5  if (NOT ${PLATFORM} MATCHES "^(i386|powerpc|alpha)$")
 6    message(SEND_ERROR
 7 "Invalid PLATFORM. Must be one of i386, powerpc or 

alpha")
 8  endif ()
 9
10  message("Compiling code for platform ${PLATFORM}")
11
12  set (CMAKE_C_COMPILER /tools/bin/gcc-${PLATFORM})
13
14  add_executable (calculator add sub mult calc) 

Line 3 demonstrates the creation of a new cache variable named PLATFORM.
This command is similar to a standard set command, except that you use the 
CACHE keyword to indicate that the user can configure the value when generat-
ing a new native build system. As usual, the default CPU type is i386; in this 
case, a text string (“ CPU Type: i386, powerpc or alpha”) is provided as a 
prompt to the user. 

The rest of the build description is easy to understand. Lines 5–10 validate 
the user’s input and provide a suitable message. Line 12 selects the compiler to 
be used ( CMAKE_C_COMPILER is another standard cache variable). Finally, line 
14 generates the executable program. 



ptg

Chapter 9 CMake260

Scenario 5: Cleaning a Build Tree 

As you might expect, the native build system created by CMake already sup-
ports a “clean” target for any object files it knows about. If add_executable
or add_library is used to compile source files, CMake already knows the name 
of the executable or library file, as well as any intermediate object files. For 
generated files that aren’t automatically detected, the name can be listed in the 
ADDITIONAL_MAKE_CLEAN_FILES property. This is a per-directory property 
that contains the list of files to be removed from that directory. 

Scenario 6: Debugging Incorrect Builds 

CMake’s two-phase approach to building software makes debugging a little 
more challenging. In some cases, the problem lies in the original CMakeLists.
txt file, but in less common cases, a problem might arise in the native (auto-
generated) build system. Even if the bug was caused by an error in the high-level 
description, you might locate the problem only when running the native build 
tool.

Start by focusing on the debug facilities that the CMake tool provides. These 
are used to analyze CMake’s flow of control as it generates the native build 
system:

• The --system-information flag: Provides an extensive dump of infor-
mation about the build machine as it executes the cmake command. This 
includes the location of compilation tools, the choice of command-line op-
tions to pass to each tool, and various other system-dependent parameters. 
If you suspect that an invalid tool or command-line option is used, start by 
validating this output. 

• The --trace flag: Provides a line-by-line trace of CMake’s execution. 
Every variable assignment, condition, loop, macro, and command is dis-
played in the order in which it’s executed. By following along with the 
trace output, you can validate your expectations on how the program 
should execute. 

If observing the CMake generator in action didn’t solve your problem, try 
using the native build tool’s debugging features. Each build tool, such as GNU 
Make, has its own range of options for tracing the build system’s execution. If 
you manage to locate the source of the problem, you need to work backward 
and identify which lines in the CMakeLists.txt are causing the issue. 

The tricky part is when the native build system contains a complex frame-
work that you had no involvement in writing. You might be able to scour the 
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framework to locate the problem, but executing the build and watching the out-
put is usually much easier. Invoking gmake with the  VERBOSE=1 flag provides a 
nicely formatted output to show each of the compilation commands. 

In the worst case, the native build system might contain a bug, even though 
the CMakeLists.txt file is correct. In this case, you have no choice but to fix 
the CMake tool itself. Some people might find it tempting to fix the bug directly 
in the native build system, but the CMake generator would soon overwrite any 
changes.

Praise and Criticism 

CMake isn’t as well known as other build tools, such as GNU Make and Ant, so 
there isn’t as much feedback on the use of the tool. However, vocal users have 
provided the following opinion. 

Praise

• CMake can use the same description file to generate a build system for a 
range of different platforms. This is particularly important for Microsoft 
Windows systems, which haven’t typically received much support in the 
open-source world. 

• The CMake build description language is simple to use, and creating a new 
build system is trivial. 

• The generation of native build systems is high quality, with a lot of focus 
placed on the correctness of the build process. This contrasts with a stand-
ard GNU Make build system, in which developers must create and debug 
their own framework. 

• CMake is just as easy to use as the SCons build tool, and the resulting 
build system is much faster. 

• The integration of CPack for packaging and installation and CTest for 
testing purposes allows for a complete end-to-end build system. 

• The special-purpose build description language is built into the cmake
tool. Therefore, there’s no need to install an additional language inter-
preter (such as Python) on the build machine. 
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Criticism

In contrast, the following concerns have been raised regarding the CMake tool: 

• Autogenerated build systems don’t give you the complete power you might 
expect. If you’re creating a complex build system, you might feel inclined 
to develop directly with the native build tool. This is also true if the au-
togenerated build system is buggy. 

• The CMake tool introduces yet another language instead of building upon 
the power of an existing language. The learning curve for CMake is quite 
high, especially with all the advanced features that use an unfamiliar syn-
tax.

• The CMake documentation is not as readable as the documentation for 
other build tools. You might find that some of the examples aren’t explicit 
enough to provide the help you need; in some cases, the documentation 
doesn’t match the tool’s behavior. 

• Although CMake does support cross-platform development, in many plac-
es it’s still necessary to write different build description code for a Linux 
environment versus a Windows environment. 

Evaluation

Let’s evaluate CMake against the build system quality measurements discussed 
in Chapter 1, “Build System Overview.” 

• Convenience: Good: CMake wins points for supporting a high-level ab-
straction of the build system, making it easy for developers to describe 
their build process. However, CMake doesn’t provide a general-purpose 
programming language, making it hard to express complex requirements. 
Additionally, the capability to debug build problems largely depends on 
the native build tool (such as GNU Make), as well as an understanding of 
CMake’s autogenerated framework. 

• Correctness: Excellent: Regardless of which native build tool is used, 
CMake ensures that multidirectory support is enabled, along with auto-
matically detecting dependencies. 

• Performance: Excellent: Although it depends entirely on the native build 
tool, CMake has the potential to create a high-performance build system. 
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• Scalability: Excellent: For the same reason, CMake can generate a highly 
scalable build system supporting a large number of source files and file 
system directories. 

CMake is an excellent choice of build tool for C/C++-based projects, and 
directly competes with SCons in this area. CMake however has the added value 
of supporting native build tools, enabling the use of platform or vendor-specific 
optimizations for those tools, some of which we’ll discuss in Chapter 19, “Faster 
Builds.” CMake isn’t a good choice for Java or C# development. 

Similar Build Tools 

CMake isn’t the only build tool that generates a native build system, and it cer-
tainly wasn’t the first. This section briefly discusses the Automake and Qmake 
build tools, which both take a similar approach. 

Automake

The Automake build tool is part of the Autotools suite [63], which is discussed 
in Chapter 15, “Build Machines.” The most common tool from the suite is 
Autoconf, which is responsible for generating the GNU configure script that 
many UNIX developers are familiar with. In contrast, Automake focuses on 
creating a makefile framework based on a high-level description of the build 
process.

The Autotools suite is tightly coupled to the GNU development environ-
ment and is therefore dependent on UNIX-like systems. The build description 
for Automake is simple to understand, at least for small programs. Here’s the 
Makefile.am file for the calculator program: 

1  bin_PROGRAMS = calculator
2  calculator_SOURCES = add.c sub.c mult.c calc.c 

The syntax of each variable name indicates the purpose of the values on the 
right side. For example, bin_PROGRAMS indicates that the  calculator program 
should be installed into the default bin directory whenever the user issues the 
make install command. Also, the  calculator_SOURCES variable provides 
the list of files to be compiled and linked into the calculator program. 

As you might expect, running the automake tool on this build description cre-
ates a makefile that provides all the default targets (including all, clean, and 
install). It also hides the complexities of creating a makefile framework, such 
as automatic dependency analysis. 



ptg

Chapter 9 CMake264

CMake is generally considered as a replacement for the Autotools suite, espe-
cially for software that needs to run on non-UNIX systems. CMake’s capability 
to adapt to different build machines makes it a worthy competitor for Auto-
make. On the other hand, the large amount of legacy software that uses Auto-
tools suggests it’ll continue to be one of the most popular makefile-generation 
systems.

Qmake

The Qmake build tool is part of the Qt development environment [64]. Qt was 
specifically designed for cross-platform application development, providing a 
uniform set of GUI functions across all supported platforms. Naturally, the 
Qmake tool was also designed with this goal in mind. 

The build description file for Qmake is similar to that of other tools, at least 
for simple programs: 

1  TARGET = calculator
2  SOURCES = add.c sub.c mult.c calc.c
3  HEADERS = numbers.h 

Qmake can generate either a makefile framework or a Visual Studio project. 
Because Qmake is targeted at Qt developers, the build system automatically 
includes the necessary C/C++ header file directories and libraries to support a 
Qt-based application. 

If you’re planning to develop a cross-platform application, both Qt and 
Qmake are definitely worth investigating. 

Summary

A key feature of the CMake build tool is that it can generate a native build sys-
tem for a wide range of supported platforms. The software developer can focus 
on creating a single platform-neutral build description ( CMakeLists.txt) and 
rely on CMake to generate the native build system. 

The CMake language provides support for conditions, loops, and macros, 
as well as more advanced commands for compiling executable programs and 
libraries. CMake doesn’t need to map these constructs directly into those sup-
ported by the native build tool, but instead it provides a build system with equiv-
alent functionality. 

CMake variables are similar to those in other programming languages, but 
the use of per-file and per-directory properties is somewhat unique. Among other 
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things, properties control which compilation flags are used when compiling each 
of the source files. 

Support for cross-platform development is also available. A CMake program 
can query the build machine to locate tools, header files, and libraries and can 
test the C/C++ compilers to discover which language features are supported. 

CMake is certainly a build tool to be taken seriously for C/C++ development 
because it removes much of the complexity involved in creating a build frame-
work. CMake’s support for a wide range of operating systems and native build 
tools makes it a strong candidate for developing cross-platform software. 
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Eclipse

The fifth and final build tool this book studies isn’t actually a build tool at all. 
The Eclipse integrated development environment (IDE) [33] provides a complete 
set of development tools for code editing, compilation, version control, testing, 
and tracking of tasks. The build functionality in Eclipse is just one part of the 
wider toolset, and in many cases, the compilation happens behind the scenes; 
you don’t even know it’s taking place. 

Although Eclipse is most well known for its Java support, it also provides 
development tools for C, C++, Python, Perl, PHP, UML, and many other lan-
guages. Eclipse is fully extensible, and any vendor can add support for its own 
tools and languages. Since 2001, Eclipse has been an open-source product, but 
it continues to be sponsored by IBM (the original owner) and a number of other 
industry leaders. 

If you haven’t considered using Eclipse in your own development environ-
ment, you should definitely do so. Even if you’re an expert with editors such 
as vi or  emacs, Eclipse can still increase your productivity. Eclipse can suggest 
what you might want to type next; it can collapse parts of the code you’re not 
interested in seeing; it enables you to browse the classes defined within your 
program; and it can highlight compilation errors a few seconds after you type 
the bad code. Eclipse comes with a learning curve to use these exciting features, 
but most users see their productivity increase in   the long term. 

As you might expect, this chapter focuses exclusively on the compilation 
features built into Eclipse. Although Eclipse can compile a wide range of Java 
programs, including web services and JSF and JSP code, this chapter focuses on 
building standard Java classes and JAR files, using the Java Development Tools 
(JDT) plug-in. As usual, you’ll consider how Eclipse can be used in real-world 
scenarios.

The key observation to make as you study Eclipse is that the edit-compile-run 
cycle is dramatically different. No longer are these phases clearly defined: They 
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don’t have to be, because the Eclipse GUI makes them work together seamlessly. 
You’ll also notice that you don’t write a build description file (such as a make-
file): Eclipse already knows enough about the structure of the software. Relying 
on the GUI to provide the build functionality makes constructing a build system 
easy but also limits the set of available features. 

This chapter follows the same format as for the previous build tools. 

The Eclipse Concepts and GUI 

Eclipse doesn’t provide a programming language to describe the build process, 
so it’s not possible to summarize the syntax of the language. Instead, this section 
looks at the GUI operations that enable the tool to infer which build steps are 
required. For example, if the developer adds a new source file into an Eclipse 
project, the build system automatically compiles that source file and makes it 
part of the application. On the other hand, if the user wants to exclude a source 
file, there’s also a menu item to allow that. 

For more complex build environments, Eclipse provides a number of prefer-
ences to configure the tool. This covers much of the same functionality that a 
text-based tool provides; although, everything is configured by clicking on GUI 
widgets instead of setting variables or writing commands. 

In studying the Eclipse JDT build environment, you’ll follow the workflow of 
a typical programmer: 

•  Creating projects: How a new project is created, and how the source and 
object files are managed within the build tree 

• Building a project: How an Eclipse Java project is compiled, how that 
project can depend on other projects, and how compiler options are speci-
fied

• Running a project: How an Eclipse project can be executed in one of the 
many supported runtime environments 

• Utilizing the internal project model: How Eclipse can improve productivity 
by constantly updating an internal model of the program 

• Other build features: Other interesting Eclipse features related to building 
software

Let’s start with the basics to create a new project and add source files. 
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Creating Projects 

Before you can do any development work in the Eclipse environment, you must 
start a new project. This creates a directory on your file system in which to store 
files, and configures Eclipse to use the appropriate Java runtime environment 
and build options. 

When Eclipse first starts, you’re prompted to select a directory for your work-
space. That is, you must decide which file system directory should contain all 
your source files. A single workspace can contain any number of projects, with 
each project potentially being a different type. Figure 10.1 shows a workspace 
with five Java projects, with only the first project ( Example Project) expanded 
to show the Java source files. 

Figure 10.1 The Project Explorer view, showing the current Eclipse projects and the 
files they contain. 

If you look carefully, you can see that Example Project has a different icon 
from the Scenario projects at the bottom of the listing. This indicates that only 
Example Project is available to be edited; the remaining projects are in the 
closed state. 



ptg

Chapter 10 Eclipse270

Looking at that first project more closely, you can see two top-level directo-
ries named src, for the main application code, and  test-src, for the unit-test-
ing code. It’s useful to keep these separate so you don’t confuse the production 
code with the test code. Note, however, that both sets of source files are stored 
within the com.arapiki.example package, so the test code still has access to 
package-private classes. 

One point that’s not so obvious is that TestOtherStuff.java has been 
excluded from the build process. Even though the file is still in the project’s 
directory, the different icon tells you that it won’t be compiled and linked into 
the final application. In the Eclipse environment, it’s important to notice icons 
because they often provide important detail. 

Finally, you can see that this project uses version 1.6 of the JRE System 
library, as well as version 3 of the JUnit library, for unit-testing purposes. An 
Eclipse project can contain any number of third-party JAR files. 

Selecting a Project Type 
To get this new project started, you use the File, New, Project menu op-
tion and select the type of project you need (see Figure 10.2). Eclipse provides a 
wide array of project types, and you can extend this list by adding third-party 
plug-ins.

Figure 10.2 Selecting the type of a new Eclipse project. 
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Even though all projects contain source code, the project’s type dictates how 
those files can be edited or compiled. As an example, a code editor must know 
how to perform syntax coloring on the source code, as well as how to suggest 
code completion hints. The project must also be aware of how to compile the 
source code into an executable program. 

A regular Java project contains a collection of .java files that are compiled 
and built into a Java application or JAR file. On the other hand, a Java Enter-
prise Edition (JEE) project automatically includes a deployment descriptor, the 
necessary Java EE libraries, and a means to deploy the program on an applica-
tion server. Clearly, it pays to understand what each type of project can offer 
you.

In this case, the example focuses on simple Java applications, so see what 
happens when you create a Java project. The next step in the sequence is to 
provide some high-level detail (see Figure 10.3).

Figure 10.3 Creating a new Java project. 
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This figure shows the basic dialog box where the user can specify the detail of 
the new project. Plenty of options are available for configuring more advanced 
parameters, but let’s focus on the basics: 

• Project name: This is the name of the underlying file system directory 
(within the workspace). It’s also used when changing the project’s con-
figuration options. 

• Contents: In many cases, you’ll start with an empty project directory, 
although it’s also possible to start with source code that’s already on your 
file system. Another option is to populate the project directory from a 
version-control system, such as CVS. 

• JRE: Your source code might depend on a particular version of the Java 
Runtime Environment. You can specify the exact file system path to your 
JRE or simply let Eclipse choose any of the JREs that match your version 
requirements.

• Project layout: You have the option of keeping .java and  .class files in 
the same directory or separating them into two different directories. The 
recommended default is to create a src directory for source code and a 
bin directory for class files. 

You can use several other dialog boxes (by selecting the Next button), but 
when you eventually press the Finish button, the project is created. 

The Eclipse Workbench 
Figure 10.4 shows the new Eclipse project after you have manually added a 
number of Java source files. 
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Figure 10.4 The main Eclipse workbench window. 

The entire Eclipse GUI consists of a number of smaller windows, containing 
both editor windows and  views. The layout of these windows is fully configura-
ble, but this is what a typical Java developer starts with: 

• The package explorer view: On the left side, you see the Package Explorer 
view, which, for Java projects, is similar to the project explorer you saw 
earlier. This is used for navigating around the project’s source tree and 
opening the source files for editing. 

• The editor window: In the center of the GUI is the source code for the 
DataObject.java file. Developers with a large screen space normally 
expand this window to cover most of their desktop. 

• The outline view: On the right side is an overview of the DataObject
class. When you click on the various method names, the editor jumps to 
that part of the source code. This is one of Eclipse’s many productivity 
features.



ptg

Chapter 10 Eclipse274

•  The console view: At the bottom of the screen is the output of the pro-
gram, left over from last time you pressed the Run button. In this case, it’s 
a simple text-based application with only two lines of output. 

To the novice user, the Eclipse interface can be rather overwhelming, espe-
cially with all the menu options and configuration boxes. Starting with this basic 
GUI layout is a good way to get familiar with the tool. 

The Source Tree 
If you’re more comfortable thinking about source files and lines of code, let’s see 
how an Eclipse project is stored. One of the limitations of a GUI is that you’re 
not in control of what’s happening internally, which means it’s harder to under-
stand what’s really going on. 

Now take a quick look at the files in the Example Project subdirectory. Pay 
close attention to the top-level directory name, which indicates the purpose of 
the file. 

src/com/arapiki/example/Application.java
src/com/arapiki/example/WordType.java
src/com/arapiki/example/DataObject.java
bin/com/arapiki/example/WordType.class
bin/com/arapiki/example/DataObject.class
bin/com/arapiki/example/Application.class
test-src/com/arapiki/example/TestDataObject.java
test-src/com/arapiki/example/TestOtherStuff.java
test-src/com/arapiki/example/TestWordType.java
test-bin/com/arapiki/example/TestDataObject.class
test-bin/com/arapiki/example/TestWordType.class
.project
.settings/org.eclipse.jdt.core.prefs
.classpath

The src and test-src directories were visible in the Package Explorer win-
dow, so there’s no surprise there. On the other hand, bin and  test-bin were 
hidden from view. Developers don’t normally need to see the .class files, as 
long as they trust the build system to keep everything up-to-date. 

This approach of having two source directories and two output directories 
is easy enough to configure using the Java Build Path GUI window (see Figure
10.5).
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Figure 10.5 The Java Build Path window. 

In the center of the screen, you see the definition of the two source locations. 
For the src directory, you use the default output location ( Example Project/
bin); for the test-src directory, you explicitly provide the name of the  test-
bin directory. The  Included: and  Excluded: fields, similar to the  <fileset>
task in Ant, enable you to select which source files are included in the build 
process. In this case, TestOtherStuff.java is explicitly not compiled. 

The final three files in the project directory are a text-based view of the GUI 
configuration. You’re discouraged from hand-editing these files, but it doesn’t 
hurt to understand what they’re used for. 

•   .project: This file contains an XML description of how this project 
should be configured. Given that this is a Java project, the javabuilder
feature is used for compiling code and the javanature feature describes 
all the characteristics of the project. 

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
        <name>Example Project</name>
        <comment></comment>
        <projects>
        </projects>
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        <buildSpec>
               <buildCommand>

<name>org.eclipse.jdt.core.javabuilder</
name>

                     <arguments>
                     </arguments>
               </buildCommand>
        </buildSpec>
        <natures>

<nature>org.eclipse.jdt.core.javanature</
nature>

        </natures>
</projectDescription>

•  .settings/: This directory contains a number of files that store the 
project’s configuration. In this case, only the core preferences have been 
modified, so only the org.eclipse.jdt.core.prefs file appears in the 
build tree. 

•  .classpath: An XML version of the Java Build Path GUI you saw in 
Figure 10.5. You should relate the lines of code back to the screenshot. 

<?xml version="1.0" encoding="UTF-8"?>
<classpath>
   <classpathentry kind="src" path="src"/>
   <classpathentry excluding="com/arapiki/example/TestOther-
Stuff.java"

kind="src" output="test-bin" path="test-
src"/>

   <classpathentry kind="con"
path="org.eclipse.jdt.launching.JRE_CONTAINER/org.
eclipse. \
jdt.internal.debug.ui.launcher.StandardVMType/Java-
SE-1.6"/>

   <classpathentry kind="con"
         path="org.eclipse.jdt.junit.JUNIT_CONTAINER/3"/>
   <classpathentry kind="output" path="bin"/>
 </classpath> 

If you look carefully, none of this information describes the build process, 
but it still gives Eclipse enough information to compile the Java classes. Now 
continue by seeing how Eclipse JDT performs a build. 

Building a Project 

Keeping in line with the IDE philosophy, building a project is done directly in 
the GUI environment. Whenever a source file is saved to disk, the Java compiler 
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is invoked and the build results are shown immediately. As any experienced pro-
grammer knows, it’s important to compile your code frequently to make sure 
that errors don’t get out of hand. The Eclipse build process has been optimized 
so that compilation takes only a few seconds. 

If the Java compiler encounters any errors or warnings, they’re reported in 
the Problems window at the bottom of the Eclipse GUI (see Figure 10.6).

Figure 10.6 The Problems window, showing a compilation error. 

When you click on the error report, the Eclipse editor opens the offending 
source file and jumps to the line containing the error. This is another way to 
make sure that errors are resolved quickly. 

Another good practice is to run the software on a regular basis, which is 
also easy in the Eclipse environment. When the Run button is pressed, Eclipse 
saves any modified source files and compiles any recent changes. Assuming that 
no errors arise, the program starts executing and the output is shown in the 
Console window. 

Eclipse is fully configurable, so if you prefer a more traditional build envi-
ronment, you can disable the Build Automatically option. If you do so, you 
need to press the Build All toolbar button every time you want to compile 
your code. 

Dependency Analysis 
As with every other build tool, Eclipse uses dependency analysis to figure out 
which source files have changed and whether they depend on other files that 
have changed. What’s interesting about the Eclipse Java builder is that it uses 
information stored by the IDE framework instead of recalculating the dependen-
cies for itself. This speeds up the compilation process, which is important if you 
compile the program each time you save a file. 

Whereas other build tools use time stamp or MD5 checksum comparison, 
Eclipse already knows which files were edited. After all, the tool itself was 
responsible for saving the file to disk, so it simply keeps track of everything 
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that was modified. If you edit a file using a different editor, Eclipse won’t know 
about the change and, therefore, won’t rebuild that file. 

The next optimization is in the recompilation of source files that depend on 
other source files. For example, if A.java contains an  import directive for class 
B, then you might expect that A.java will be recompiled whenever  B.java is 
changed. However, the Eclipse build tool is smart enough to know whether the 
change in B.java is actually relevant. 

For example, if the developer modified only a comment in B.java or modi-
fied a line of code inside the body of one of B’s methods, it can’t impact the 
compilation of A.java. On the other hand, if one of B’s methods was modified 
to include new parameters or a different return type, A.java is more likely to 
be impacted. 

Given that most code changes impact only a single source file and don’t 
modify a method’s type signature, these are valuable optimizations. It would be 
pointless to check the time stamp on hundreds of files when the user typically 
saves one at a time. It’s also pointless to recompile other files simply because they 
might be impacted by a change, even though they’re usually not affected at all. 
Chapter 19, “Faster Builds,” talks more about these optimization techniques. 

Compiler Options 
Another aspect of Eclipse’s integration is that the Java compiler is actually built 
into the IDE; it’s not a third-party addition. In contrast, build tools such as Ant 
delegate to an external compiler, such as the Sun JDK. Eclipse’s approach might 
seem strange at first, but having the compiler built into the IDE adds significant 
value. You’ll hear more about this shortly. 

Eclipse provides a variety of GUI dialog boxes for modifying the compiler 
settings, similar to an external compiler’s command-line options. For example, 
a developer can change the following things: 

•  JDK compliance level: Specifies the version of the Java Development Kit, 
such as 1.4, 1.5, or 1.6, that the Eclipse compiler should comply with. This 
impacts the Java syntax accepted by the compiler and affects the format of 
the .class files. 

• Java runtime: Enables you to control which Java runtime environment 
(JRE) is used when executing the program. At compile time, it’s important 
to link against this same set of JRE libraries that you’ll use at runtime. 

• Debugging information: Specifies the level of debugging information to be 
inserted into .class files. 
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•  Compiler error/warning handling: The developer can control whether 
each type of compilation problem is reported as an error or a warning, or 
whether it’s ignored completely. 

• Maximum number of errors: Enables you to control the maximum number 
of errors to be reported in each source file. 

• Javadoc tags: Instructs the compiler on how to handle errors in Javadoc 
tags.

Take a look at a couple GUI dialogs. First, Eclipse enables you to select a 
particular instance of the JRE to be used when running the software (see Figure
10.7). Not only does the JRE provide a virtual machine to execute the .class
files, but it also includes a number of standard Java libraries. 

Figure 10.7 The Edit JRE window. 
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In this example, you’re explicitly using the version 1.6.0_18 runtime environ-
ment that was installed into /opt/jdk. Of course, the Eclipse compiler must be 
configured to generate .class files of the correct compliance level for this JVM. 
If for some reason you decide to use a JDK 1.4 virtual machine, you need to ask 
the compiler to generate the older .class file format. 

A second feature of the Eclipse Java compiler is that each compilation mes-
sage can be set as either an error or a warning, or perhaps can just be ignored 
completely (see Figure 10.8). An error message halts the compilation process, 
whereas a warning simply displays the message on the Problems window. Most 
of these warnings encourage good programming style instead of being serious 
errors.

Figure 10.8 The compiler’s Errors/Warnings preference page. 
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When compiling legacy software, or code written by someone else, it may 
be necessary to ignore some of these messages until you get a chance to fix the 
code. On the other hand, your newly written source code should have as many 
of these options enabled as possible, as long as you believe that the errors or 
warnings are worth paying attention to. 

Packaging
The Eclipse incremental build system, which compiles a file when it’s saved, gen-
erates only .class files. When a program is executed, the JVM uses those class 
files to execute the program. At no point in time are the class files packaged into 
a JAR file because this normally isn’t required during development. 

If you want to make your program available outside the Eclipse environment, 
you need to explicitly export the classes into a JAR file. As you might expect, 
the export process requires you to fill out a number of GUI forms. You need to 
specify the files you want to include in the archive (source files or class files), 
and you can optionally include a manifest that contains extra metainformation. 

Depending on the type of Eclipse project you’re using, you might export more 
than just plain JAR files. For example, an Enterprise Java Beans (EJB) project 
can export the project content to an EJB format file. Likewise, a Java Web 
Application project can export to the WAR format file. 

Project Build Paths 
Although you’ve seen only a small example, Eclipse can actually manage thou-
sands of source files. For the sake of productivity, it’s a good idea to break large 
programs into smaller components, using a separate Eclipse project for each 
part of the software. It’s also common to use third-party JAR files downloaded 
from the Internet. 

As an example, a large application could be logically divided into a number 
of libraries, each providing an API to the main application code or to other 
libraries. Each library would be stored in a separate Eclipse project, as would the 
main program. In addition, a project is free to use one or more third-party JAR 
files instead of rewriting that same functionality. 

To make all this happen, the Eclipse build tool must know all the class files 
and JAR files required to run the project. If one project depends on another 
project, the two lists of files must be merged. A project’s build path can be con-
figured to include any combination of the following: 

•  Any directory of class files within the project’s build tree: This is normally 
the bin directory or any other output directory you’ve defined. 

• A JAR file that resides in your project’s build tree: You saw this case ear-
lier, when the JUnit JAR file was added to the project. 
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•  An external class directory or JAR file that isn’t part of your project: You
can use this to access files from anywhere on your build machine instead of 
inside your workspace. Because each machine can store the files in a differ-
ent location, the build path should be accessed via a variable. Developers 
must therefore set the variable appropriately for their own machine. 

When a project is compiled and executed on a virtual machine, Eclipse sets 
the Java class path to include each of the class directories or JAR files. This 
is essentially the same as defining the Java CLASSPATH environment variable, 
except that the GUI manages the content and order of entries. 

For larger programs in which a project might depend on one or more other 
projects, the build paths are combined. That is, if project A depends on both 
projects B and C, the CLASSPATH variable contains all the directories and JAR 
files that all three projects require. 

To make this project dependency system more usable, developers can indi-
cate that only part of a project should be used. By providing Ant-like regular 
expressions, you can state that certain classes from the imported project are 
either discouraged or completely forbidden. Depending on your project settings, 
using any of the discouraged or forbidden classes will result in a build warning 
or error. 

You can see another example of this multiproject approach in the real-world 
build scenarios. For now, let’s examine the final development step, which is to 
actually run the compiled program on a Java Virtual Machine. 

Running a Project 

Running a project in the Eclipse environment can be as simple as pressing the 
Run Application button on the toolbar. This assumes that you’ve already 
configured the project to use a suitable JRE and the correct command-line argu-
ments. Eclipse provides a wide range of configuration parameters for controlling 
how a program should be executed. 

Back when you compiled the project, you needed to state which JRE will 
be used when the program executes. This gives the compiler the knowledge of 
which runtime libraries are available to compile against, as well as which format 
the generated class files should use. Newer class file formats can be read only by 
newer virtual machines, whereas using an older machine gives a runtime error. 

Assuming that you run the program within the Eclipse environment, you can 
be confident that a matching JRE will be used. If you change the JRE configu-
ration, Eclipse prompts you to rebuild all the class files, just to make sure they 
match.



ptg

The Eclipse Concepts and GUI 283

The next step in running a program is to select a run configuration. A Java 
program can execute in many ways, so you first need to select the suitable envi-
ronment. After all, the program is really just a collection of Java classes, so you 
need to decide what should be done with those classes. 

Figure 10.9 shows the Run Configurations window. 

Figure 10.9 The Run Configurations window. 

On the left side is a list of runtime environments, including the following: 

• Java application: The classes are loaded into a Java Virtual Machine, 
with the program’s standard output appearing in the Console window 
(see Figure 10.10). This environment can also be used for GUI-based Java 
code, with new top-level windows popping up on the user’s desktop. 
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Figure 10.10 The Console window, showing the program’s output. 

• JUnit: The classes will be executed within the JUnit test framework. The 
output of running the program is a sequence of pass/fail indicators for each 
of the test cases, as shown in the JUnit window (see Figure 10.11).

Figure 10.11 The JUnit window, with the result of running JUnit tests. 

• Apache Tomcat: A Tomcat application server is started, and the classes are 
loaded as a new web application. The program can be accessed by pointing 
a web browser at the Tomcat server’s HTTP port. 
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• Java applet: A new web browser is started, and the project’s classes are 
treated as a Java web applet. The classes are executed entirely within the 
web browser’s internal JRE. 

•  Eclipse application: The classes implement a new plug-in for Eclipse, so a 
child instance of Eclipse is started in a separate process, with classes being 
loaded as a plug-in. 

In addition to selecting this environment, it’s common to specify the name of 
the main class (where execution starts), provide any command-line arguments 
to the program, provide command-line options for the JVM, or add new entries 
to the CLASSPATH variable. All this is possible in the  Run Configurations GUI. 

For the sake of convenience, you need to set this configuration only when 
the program is first executed. If the user presses the Run Application button 
a second time, the same configuration is used. As you saw earlier, running a 
project also saves and compiles your source files, which reduces the Eclipse edit-
compile-run cycle to a single button press. 

Using the Internal Project Model 

As mentioned earlier, Eclipse contains its own built-in Java compiler instead 
of invoking an external tool. Having an integrated compiler provides signifi-
cant benefit to developers, above and beyond creating class files. Not only does 
Eclipse compile each source file when it’s saved, but it also constantly watches 
what the user is typing to provide feedback on the work. This includes features 
for syntax checking, content assistance, and cross-referencing symbols from 
where they’re used to where they’re defined. 

To enable these features, Eclipse constantly updates its internal model of the 
program. This model is queried whenever the developer needs help. Although 
these productivity features aren’t what you’d normally consider as part of a 
build system, they use the same technology and are interesting to think about. 

Consider some of the features: 

• Reporting of compilation errors: Instead of reporting errors only when 
a source file is saved, Eclipse can provide feedback as soon as the code is 
typed. If the user enters invalid syntax or references a variable that isn’t 
defined, the Java editor highlights the offending code. Underlining the text 
in red (for errors) or yellow (for warnings) informs the user of the mistake. 
If the user hovers the mouse pointer over the underlined code, a more 
detailed error message is provided. 

• Symbol/identifier cross-reference: By clicking on any symbol in the pro-
gram’s source code and then selecting an option from the context menu, 
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a user can find out where the symbol is defined. Eclipse immediately opens 
the relevant source file. For class names, you can examine the inheritance 
hierarchy to learn about the super classes and child classes. Finally, it’s 
also possible to find all the places in the program where a symbol is used. 

• Content assistance: If you press Ctrl-Space while editing code, Eclipse 
provides hints on what you might want to type next. If you’re partway 
through typing a variable name, Eclipse suggests possible completions for 
that name. This is useful if you can’t remember the full spelling of the 
name or for long names that take time to type. 

Additionally, if you’ve just finished typing the name of an object, followed 
by a period character, pressing Ctrl-Space provides a complete list of 
methods that can be invoked. This is extremely useful when navigating the 
extensive range of Java libraries, as opposed to looking up the Java API on 
the Internet. After you’ve selected a method to call, Eclipse prompts you 
with the list of arguments required for that method. 

• Refactoring support: To clean up source code that has become messy over 
time, Eclipse supports a number of refactoring operations. For example, 
the Extract Method operation enables you to highlight a section of code 
within the body of one method and create a totally new method from that 
fragment. During this process, Eclipse identifies where each variable in the 
code fragment is defined and may end up passing it into the new method 
as a parameter. 

It’s interesting to note that each of these productivity improvements relies on 
the internal model of the compiled program. Many of these features wouldn’t be 
available if Eclipse didn’t come with a built-in Java compiler (at least, the syntax 
and semantic portions of the compiler). 

Other Build Features 

Eclipse JDT has a couple of build-related features that are worth mentioning. 

Scrapbook Pages 
In contrast to source files that contain a Java class definition, a scrapbook page 
allows individual statements or expressions to be evaluated. The user can enter 
a Java code fragment into the scrapbook editor, without needing to create a full 
class definition or even a method definition. Next, the user highlights the lines 
of code to execute and then presses the Display button. The code fragment is 
invoked, and the return value is displayed. 
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This scrapbook concept moves Java much closer to interpreted languages 
such as Python and Perl. The user can dynamically create objects, invoke meth-
ods, and study return values without too much overhead. This is somewhat 
like unit testing, although without the repeatability that a unit test framework 
provides.

Using build.xml Files 
Unlike most build tools, the Eclipse build system focuses heavily on interactive 
development. The build description is entirely GUI-based and is derived from 
a user’s operations, such as adding a new source file to the project. Numerous 
GUI dialog pages exist for configuring the exact behavior of the compiler and 
build tool. 

Unfortunately, this approach doesn’t scale well for large and complex build 
systems that require a more detailed sequence of steps. If you’re using a non-
standard build tool or you have specific requirements for packaging your soft-
ware, the Eclipse build system might not support your needs. A better option 
might be to use an external tool such as Ant. 

In the JDT environment, a user is free to create an Ant build.xml file to 
build a project. The Ant plug-in for Eclipse shows a list of build targets (see Fig-
ure 10.12), which can be invoked by double-clicking on the target name. 

Figure 10.12 The Outline window for the autogenerated build.xml file. 
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To make life easier, a build.xml file can be automatically generated from an 
existing Java project. The exported file provides the same features as the Eclipse 
builder, including targets for cleaning a build tree and running JUnit tests. When 
a build.xml file is generated for multiple projects, with one project depending 
on another, the top-level build.xml file uses the  <ant> task to include the child 
project’s build description. 

Although the autogenerated file is a good starting point, you’ll need to mod-
ify it by hand to include your additional build steps. Any project of medium to 
high complexity will almost certainly use a hand-coded Ant build system. 

Further Reading 

As usual, we’ve touched on just the highlights of the Eclipse build system, enough 
to give you an idea of how the tool works and when it should be used. To gain 
a better understanding, you’ll find the online documentation and tutorials [33] 
to be a good starting point. The tool includes a lot of documentation in the help 
pages, along with context-sensitive help for common tasks. 

If you prefer to learn about Eclipse in a more structured style, books are 
available on the topic [65]. If your ambitions go beyond basic usage, you’ll need 
to invest some time in learning about the Plug-in Development Environment 
(PDE) [66], which enables you to create new Eclipse features. 

Real-World Build System Scenarios 

Now that you’ve seen the basic operation of creating an Eclipse project and 
building the software, let’s see how you can use these features in a number of 
realistic situations. Unlike other build tools, the description of the steps relies 
heavily on GUI screenshots. You’ll be provided with a detailed explanation on 
how to enter the information into the GUI forms. 

Scenario 1: Source Code in a Single Directory 

The first scenario fits exactly into the Eclipse project model. Eclipse automati-
cally compiles the .java files into  .class files, and the default run configura-
tion executes the program. The following steps are therefore required to create 
your first build system: 
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1. Create a new Java project with the name Scenario-1. Choose to start 
with an empty project, use the default JRE, and elect to use different direc-
tories for source and class files. This creates an empty src directory and an 
empty (and hidden) bin directory. 

2. Add the Add.java, Mult.java, Sub.java, and Calc.java files to the  src
directory. The files are automatically added to the default Java package 
(see Figure 10.13).

Figure 10.13 The Project Explorer window for the single-directory scenario. 

3. Press the Run button on the toolbar. The  .java files are compiled (if they 
weren’t already), and the application is executed. Eclipse identifies the 
main method inside the  Calc class and starts executing from that point. 
The program’s output appears in the Console window. 

Most Java projects start out small and, therefore, fit into this scenario. You 
really didn’t need to think much about the build system. 
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Scenario 2: Source Code in Multiple Directories 

For the multiple-directory case, you can still use a single Eclipse project, because 
it’s capable of managing thousands of files. Of course, it’s interesting to see 
how to combine multiple projects into a single application. As with the previous 
build tools, you should separate the math and  print libraries into their own 
directories.

Figure 10.14 shows the three new Java projects ( Scenario-2-calc,
Scenario-2-math, and Scenario-2-print). The source files are stored within 
their respective project and Java package (such as com.arapiki.calc).

Figure 10.14 The Project Explorer window for the multidirectory scenario. 

This directory layout looks similar to what you used with the Ant build 
tool. However, you won’t be creating intermediate JAR files, because Eclipse 
doesn’t do that by default. Instead, you’ll configure the Java build path for the 
Scenario-2-calc project to include the build paths for  Scenario-2-math and 
Scenario-2-print (see Figure 10.15).
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Figure 10.15 The Java Build Path window for the multidirectory build tree. 

To configure the build path, you press the Add button and select each of 
the child projects. When compiling Scenario-2-calc, Eclipse ensures that 
the class path includes the bin directories for each of these child projects. This 
means that Calc.java can make use of the  math and  print library methods, 
both at compile time and at runtime. 

Scenario 3: Defining New Compilation Tools 

Defining a new compilation tool in the Eclipse environment is not an easy 
proposition. It’s so complex that this chapter doesn’t attempt to discuss the 
mathcomp compiler. If you’re interested in the topic, you should learn how to 
create your own Eclipse plug-in [66]. 

Due to the nature of Eclipse, you wouldn’t simply be adding the mathcomp
tool into the build system. Instead, you’d want to create a new type of source 
code editor that could handle .math and .mathinc files and then provide some 
amount of added value for editing these files (such as content assistance or cross-
referencing). None of this is easy to implement. 
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Perhaps the best solution is to defer to problem to an external build tool, such 
as Ant, where the problem is much easier to solve. Chapter 7, “Ant,” already 
discussed the Ant solution for using the mathcomp tool. 

Scenario 4: Building with Multiple Variants 

For the multivariant scenario, you’ll revisit the Java application you built with 
the Ant tool. The idea is to have a calculator program with both home and pro-
fessional editions. The two editions are largely the same, except that the home 
edition has a couple of the Java classes ( Clock.java and  Letter.java) stubbed 
out to remove those advanced features. Additionally, you use the edition run-
time property to inform the program which set of features should be available 
to the user. 

The key to implementing this solution using Eclipse is to recognize that each 
edition requires it own Eclipse project, with a slightly different build system. For 
the home edition, you include both src/home-stubs and  src/professional
in the build process, but for the professional edition, you need only src/
professional. Figure 10.16 shows the two projects,  Scenario-4-home and 
Scenario-4-prof.

Figure 10.16 The Project Explorer window for the multivariant scenario. 
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Pay careful attention to how these two projects were configured. If you look 
at the bottom of the Scenario-4-prof project, you’ll see the  src directory 
where all the source code is kept. This includes both the src/home-stubs and 
src/professional directories. 

Near the top of the Scenario-4-prof project, you’ll see an additional direc-
tory labeled src/professional, with a slightly different folder icon. Eclipse 
has chosen to show src/professional at the top of the project, because it 
was marked as a source folder from which you’ll compile .java files. Note that 
src/home-stubs isn’t shown in the same way, because you aren’t building any 
source code from that directory. 

If you now move further up the to the Scenario-4-home project, you’ll see 
a similar set up, although this time you’re building code from both the src/
professional and  src/home-stubs directories. Adding this additional source 
directory can be done via the Java build path GUI. 

Before leaving this particular screenshot, it’s worth noting that the icon next 
to the src directory in the  Scenario-4-home project is slightly different from 
the corresponding icon in the Scenario-4-prof project. In the home edition, 
the src directory is configured to be a link to the  src directory of the profes-
sional edition. This gives you a single source code directory (on the underlying 
file system) and also ensures that it will be compiled and executed via two dif-
ferent projects. As you might expect, editing a source file in one project immedi-
ately changes the file in the other project. 

Moving on to Figure 10.17, you can see how another problem is solved. In 
the home edition, you need to ship your stubbed-out versions of Clock.java
and Letter.java, not the full version from the src/professional directory. 
By modifying the Java build path, we exclude the two files we don’t want (see 
the Excluded field), yet include all the source files from src/home-stubs.
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Figure 10.17 The Java Build Path window for the multivariant scenario. 

In contrast, the Java build path configuration for the Scenario-4-prof
project (not shown) includes the src/professional directory and doesn’t 
exclude any of the source files. 

Finally, think about the runtime settings. In both editions, you need to pass a 
Java property value into the virtual machine so that the program knows which 
set of functionality should be provided to the user. To do this, you add the 
additional –Dedition=home or  –Dedition=professional flag to the JVM 
command-line options. 

Figure 10.18 shows the Run Configurations GUI. 
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Figure 10.18 The Run Configurations window for the multivariant scenario. 

You’ve create two configurations, Calc – Home and  Calc – Professional,
visible at the bottom left of the screen. Both of these configurations set the 
edition property (center of the screen) to an appropriate value. Each of 
the two Java projects now has its own default run configuration for invoking 
the software. 

Before completing this scenario, it’s important to realize that most develop-
ers wouldn’t use this approach to solve this real-world problem. Even though 
it’s possible to build multiple variants within the Eclipse framework, it’s more 
complex than you’d like. In a realistic situation, developers would only edit and 
compile the full professional edition in Eclipse. To create both the home and 
professional editions, they’d instead use a more powerful build tool, such as Ant. 

Scenario 5: Cleaning a Build Tree 

Given that an Eclipse project is responsible for managing the list of source files 
and is able to compile those source files into class files, it should be no surprise 
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that cleaning a build tree is automatic. Selecting the Project, Clean menu item 
removes all the .class files in the project. 

One interesting behavior is that if you have the Build Automatically

option enabled, Eclipse immediately proceeds to rebuild those class files. This 
might seem odd at first, but often the reason you clean the build tree is to gener-
ate completely fresh class files (such as for a JRE version change). If you do only 
want to keep the source files, it’s a simple matter of deselecting the option. 

Scenario 6: Debugging Incorrect Builds 

In many respects, the Eclipse JDT build system is simple. You don’t have much 
control over which source files are compiled, because that’s all managed by the 
Java builder. As discussed earlier, Eclipse knows which source files have been 
modified and which changes in one file might impact other files, so it usually 
does a good job of performing the correct compilation steps. 

On the other hand, you do have a lot of control over the compiler’s con-
figuration, including the Java compliance level and various other compilation 
options. This makes it possible to use the wrong settings or to generate the 
wrong type of output files. If the program doesn’t build correctly, try chang-
ing the available options to see if it makes a difference. You can always use the 
standard Java command-line tools, such as javap, to examine the class files and 
see if they look reasonable. 

In the worst case, you can end up with Eclipse providing a build error that 
doesn’t make any sense. Sometimes you’ll find red error markers in parts of your 
source code that don’t seem to have problems. If you can’t figure out the issue 
within a couple minutes, it might be worth performing a clean build and starting 
again (hopefully your project is small). In these situations, forcing a clean build 
triggers Eclipse to reset its internal project model, which could make the errors 
go away. 

If you’ve tried all these options and you still can’t get Eclipse to build things 
correctly, try using an external build tool such as Ant. Eclipse wasn’t designed 
to be a fully-featured build tool. 

Praise and Criticism 

An IDE-based build tool is certainly an interesting idea and provides a great deal 
of productivity improvement. However, plenty of developers have never consid-
ered using an IDE, for a number of reasons. Let’s now examine some of the pros 
and cons of using the Eclipse JDT build tool. 
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Praise

The praise includes the following: 

•  You don’t need to write a build description file: A large part of what 
makes the Eclipse JDT build system easy to use is that you often don’t 
even know that it exists. Instead of writing a text-based build description, 
as you would for other tools, large parts of the build system are automati-
cally constructed. This is all based on how you’ve configured your source 
code directories. When you do need to configure the build system, it’s done 
via a user-friendly GUI. 

• Compilation is integrated with the full development environment: The
build process is no longer a separate step but is tightly integrated with the 
overall development environment. As a result, Eclipse incrementally com-
piles source files when they’re saved to disk and can provide features such 
as content assistance and symbol cross-referencing. 

• A wide range of project types are supported: Many languages and pro-
gramming frameworks have Eclipse plug-in support. These plug-ins pro-
vide knowledge of how to edit and compile the associated source code, 
as well as how to execute the compiled application. If you want to build 
something such as a web application or an Enterprise Java Bean, it’s trivial 
to create a new project and have it compiling in a few minutes. 

Criticism

The criticism includes the following: 

•  Eclipse is too complex to use: Many developers push back on using Eclipse 
because of its perceived complexity. They feel that there are too many but-
tons and menus to learn, and too many dialog boxes to configure. They’d 
rather continue using vi or  emacs to edit their code. Unless the entire 
development team uses the Eclipse IDE, it’s not possible to rely solely on 
the JDT build tool. 

• Eclipse requires a lot of CPU power and memory: This is certainly true 
for large projects that contain thousands of source files. The problem is 
most noticeable when Eclipse scans the entire source code base to build up 
the symbol cross-referencing database. If a new user chooses to evaluate 
Eclipse by loading a large software project, that user is quite justified in 
feeling that Eclipse is slow. 
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• The build process is limited: As you’ve seen, the Java build tool is limited 
in capability and can’t do much more than create class files for each of the 
Java source files. If you have more complex requirements, use a different 
build tool. 

• You can’t create a repeatable build process: Eclipse JDT uses an incremen-
tal build system in which files are recompiled whenever they’re saved. This 
ties the build process to the developer’s workflow instead of providing a 
clean end-to-end build process. (Although forcing a clean build can some-
what achieve this goal.) 

• You can’t see what’s happening in the build process: For people who like 
to see every compilation command being executed, Eclipse is not an appro-
priate build tool. 

Evaluation

Let’s evaluate the Eclipse JDT builder against the quality measurements dis-
cussed in Chapter 1, “Build System Overview.” 

• Convenience: Good: Creating a build system in the Eclipse JDT environ-
ment is so simple that most people don’t even think about. On the down-
side, it has a limited set of features in this area, forcing the use of external 
build tools (such as Ant) for nontrivial builds. 

• Correctness: Excellent: Eclipse JDT is intimately familiar with the struc-
ture of your Java code and knows exactly which parts of the code have 
changed. Eclipse is unlikely to miss a file dependency or recompile a file 
that wasn’t impacted by a change. 

• Performance: Good: Eclipse uses a “compile on save” approach in which 
a Java file (and dependent files) is recompiled whenever the file is saved. In 
this respect, the program is immediately available for execution, provid-
ing a fast build system. The downside is that performing a fresh build of a 
large program doesn’t offer the same performance. 

•  Scalability: Poor: Eclipse JDT wasn’t designed to support large build sys-
tems, especially those with complex requirements. It’s standard practice to 
delegate to other build tools to support larger build systems. 

The Eclipse environment is far more than a build tool and is the ideal environ-
ment for a wide range of code-development tasks. The build tool within Eclipse 
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JDT is suitable for interactive development but is not suitable for large-scale 
deployments in which other build tools excel. 

Similar Build Tools 

Many software development IDEs are available, and developers choose their fa-
vorite based on usability, supported programming languages, or brand loyalty. 
Some of the simpler IDEs defer to an underlying tool, such as GNU Make or 
Ant, for their build system support. On the other hand, the more advanced IDEs 
are tightly coupled with their compilers and provide integrated build support. 

This section looks at the Eclipse C/C++ Development Tooling (CDT) [33] 
plug-in, which is fairly different from the Eclipse JDT plug-in already discussed. 

CDT for Eclipse, C/C++ Development Tooling 

This section won’t go into exhaustive detail on how Eclipse CDT compiles C 
and C++ code, but let’s look briefly at some of the key differences between CDT 
and JDT, the Java plug-in already discussed. 

Perhaps the most noticeable difference is that CDT delegates the work to 
external tools. Unlike Java, which uses byte codes, C and C++ programs are 
usually compiled into machine code, with developers relying on their target plat-
form’s native compiler. For example, the CDT compiler in a Linux/x86 environ-
ment defaults to using the GNU C Compiler (GCC) for an Intel x86 CPU. In 
addition, CDT defaults to using GNU Make to implement the build system. 

The next section discusses the important steps to create and manage a C or 
C++ project. 

Creating a New C/C++ Project 
The CDT plug-in enables you to create either a C project or a C++ project, 
depending on what type of tool support you need. In both cases, you select a 
project name, specify the type of build artifact you want to create, and choose a 
compiler toolchain to be used by the build system. Finally, you can select one or 
more build configurations. 

When selecting the artifact type, you have a choice of several different vari-
ants. You can choose the Executable option, which produces an executable 
program by linking all the object files. Alternatively, you can choose the Static
Library or  Shared Library option to produce a library archive. As you saw 
with Java-based projects, you can combine a number of these smaller projects 
into a single larger program. 
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The capability to select a compiler toolchain offers a lot of flexibility in com-
piling code. By default, the project uses the standard compiler for the current 
build machine, such as GCC on Linux. However, if you have cross-compilers 
installed, you can elect to generate object code for a different CPU. Even though 
you’re encouraged to select the toolchain when the project is first created, there’s 
nothing stopping you from changing it later. 

Managed Makefiles 
For the Executable, Static Library, and Shared Library project types, 
CDT creates and manages an underlying makefile system, just as you saw with 
CMake. Whenever a developer adds a new source file to the project and se-
lects the Build Project menu item, CDT autogenerates a corresponding GNU 
Make build system. The exact rules and targets added to the makefile depend on 
whether you’re building an executable program or a library. 

If you’re editing a program that already has its own build infrastructure 
(using GNU Make or any other tool), you should instead select the Makefile
project type. In this case, CDT won’t autogenerate the build system; instead, 
it calls upon whichever external build tool you’ve configured for the project (by 
default, this is the make command). 

As with JDT, for large and complex projects, you’ll almost certainly resort 
to creating your own build system instead of using whatever Eclipse generates 
for you. 

Build Configurations 
In a C or C++ project with default settings, all generated files are written into the 
Debug subdirectory. This includes object files, libraries, executable programs, 
and all the autogenerated build system files. 

In addition to the Debug configuration, a project supports a  Release config-
uration. As you’d expect, Debug generates object files with debugging informa-
tion enabled, whereas Release stores the customer-ready version of programs 
and libraries. The generated files for each configuration are placed within their 
own subdirectory, keeping the two variants completely separate. 

Aside from Debug and  Release, a developer can create new configurations 
and are free to customize the behavior. This allows the selection of a different 
compiler toolchain (for different target CPUs), the use of preprocessing symbols 
to modify the software’s behavior, and the use of different compiler flags for 
tighter control over the generated object code. 

Developers can switch between configurations as often as they like, making it 
possible to develop multivariant software. 
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Reporting Errors 
Unlike JDT, the compiler isn’t built into the CDT plug-in, so Eclipse relies on the 
output log of the external compiler to identify errors. By using a special-purpose 
parser to extract the compiler’s error messages, the source code editor can un-
derline the invalid code with a red line for errors or a yellow line for warnings. 
In addition, any error or warning messages are shown in the Problems window. 

In most cases, the error and warning messages are updated only when the 
software is compiled, since the external compilation tools must first be invoked. 
On the other hand, CDT performs a limited amount of syntax checking while 
the user is typing. Unfortunately, anything more than basic syntax problems can 
only be caught be a real compiler, and won’t be reported until the build system 
is next invoked. 

Content Assistance 
Finally, it’s worth noting that CDT can provide content assistance while a de-
veloper edits the source code. Instead of using an external compiler, CDT uses 
a built-in indexer tool to scan each of the source files and learn what they de-
fine. When developers press the Ctrl-Space key combination, they’re presented 
with a list of possible variable and function names that are defined in the same 
source file, in a header file, or in one of the related source files. 

Summary

An integrated development environment (IDE) such as Eclipse provides a range 
of features such as code editing, compilation, version control, unit testing, and 
tracking of tasks. The build tool is just one portion of the IDE, although having 
everything integrated into a single environment can enhance the normal edit–
compile–run cycle. In particular, an IDE provides faster feedback to the devel-
oper when errors appear in the source code. 

Each project has an associated type. Among other things, this controls how 
the various source files in the project are compiled and linked into a program. 
If a new source file is added to a Java project, it’s automatically included in the 
build system. Whenever that source file is saved, it’s automatically compiled into 
a class file. 

In the Eclipse JDT system, a program can be divided into a number of smaller 
projects, each compiling independently. One project can make use of the output 
from other projects, making it possible to generate large programs. All projects 
contain one or more source code directories, each with an associated output 
directory for Java class files. 
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When a project is executed, the developer must first select a suitable runt-
ime environment. For example, a Java project can run on a standalone virtual 
machine, as an application inside a Tomcat server, or as a JUnit test case. 

The Eclipse JDT system contains a fully featured Java compiler and maintains 
an internal model of each project. It has the capability to report compilation 
errors within a few seconds of the user typing the invalid code. It can also pro-
vide content assistance, symbol cross-referencing, and refactoring support. 

Although Eclipse makes it easy to create a Java project and compiles the 
software automatically, the build system is rather limited. For larger projects, 
you’ll likely end up writing your own build system using an external build tool 
such as Ant. 
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Advanced Topics 

Part III focuses on some of the more advanced topics of developing a build 
system. Now that you’ve seen the basic concepts (in Part I) and some of the 
available build tools (in Part II), you can dive deeper into these advanced 
topics.

The upcoming chapters emphasize the experiences you’d have gained if 
you worked with build systems for many years. Instead of inventing your 
own solution to common problems, you can learn from the experience of 
others. Developers have made many mistakes in the past, and it’s pointless 
for you to make them again. 

Some of these chapters introduce additional build and compilation 
tools that Parts I and  II don’t discuss. They’re introduced now because 
they illustrate a way to solve some of these more advanced problems. 

The chapter layout for Part III is as follows: 

• Chapter 11, “Dependencies”: You’ll explore the many ways a build 
tool can determine which files need to be recompiled and in which 
order the compilation tools should be invoked. 

•  Chapter 12, “Building with Metadata”: You’ll examine some addi-
tional build variants that add metadata to the output of the standard 
build process. You consider topics such as debugging and profiling 
support, code documentation, and unit testing. 

•  Chapter 13, “Software Packaging and Installation”: The final step 
of a build system is to package the software ready for installation on 
the target machine. You’ve already explored this at a high level, but 
a release package can be generated in many ways. 
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•  Chapter 14, “Version Management”: Most software products are man-
aged with a version-control tool, to handle multiple code streams and 
reproduce older versions of the software. Version control impacts many 
aspects of a build system. 

• Chapter 15, “Build Machines”: The machine on which you build the soft-
ware plays a critical role in the accuracy of the build process. All changes 
to the build machine must be made in a controlled way. 

• Chapter 16, “Tool Management”: Likewise, all compilation tools must be 
managed in a controlled way to ensure that older versions of software can 
be reproduced. It’s vital that all developers build with a consistent set of 
tools.

When you finish reading these chapters, you’ll have a much better apprecia-
tion of creating and maintaining a reliable build system. 
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Dependencies

Parts I, “The Basics,” and II, “The Build Tools,” discussed the basic concepts 
of a build system and then explored a number of common build tools. You also 
learned about the idea of dependencies, which are fundamentally important in 
any build system. This chapter digs much deeper into how dependency analysis 
works, how a build tool constructs a dependency graph, and how it invokes 
compilation tools in the correct order. 

Even though developers in a small software project can afford to rebuild their 
entire source tree frequently, this is unrealistic with larger projects. If a source 
tree takes longer than 30 seconds to compile, developers expect incremental
compilation to be used. That is, they expect the build system to recompile only 
files that have changed since last time the build tool was invoked. Any files that 
haven’t been modified or don’t make reference to such files, shouldn’t be rec-
ompiled at all. 

A key concept in incremental compilation is that of the dependency. That 
is, you must identify which files in the build tree are dependent on which other 
files. For example, if the content of file A is somehow derived from the content 
of file B, you say that A has a dependency on B. If a developer modified file B, 
the build system must take into account that file A might need to be regenerated. 
On the other hand, if there’s no dependency, file A can’t be any different from 
the last time it was compiled. 

The big-picture diagram in Figure 11.1 now focuses on how the relationship 
between different files in the build tree can be determined. It’s also important to 
determine whether the files are up-to-date with respect to each other. 

305
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Figure 11.1 The focus for this chapter, the dependency between source and object 
files.

In any real project, the dependency relationship among all the files in the 
source tree can be extremely complex. Determining the relationships involves 
prescanning source code, inferring dependencies based on the compilation tool’s 
options, and specifying a bunch of hard-coded dependencies. All this work is 
vital to keep end-to-end build times small yet always ensure that you construct 
a valid software image. 

From a high-level perspective, a build tool must follow three main steps: 

1. Determine all the interfile dependency relationships. The tool creates a 
dependency graph of the entire program to show which files depend on 
which other files. 

2. Using the dependency graph, determine the set of files that have been mod-
ified since the last time the tree was built, and therefore determine which 
files need to be recompiled. 

3. Rebuild the tree by performing the individual compilation steps in a logical 
order, possibly using parallel processing. 

This chapter looks at several topics, including these: 

• The basic theory behind dependency graphs 

• The practical problems you’ll experience if your dependency graph is 
incorrect

• The process by which the dependency graph is constructed 

• The methods you can use to determine which files are out-of-date with 
respect to their dependencies 

• How to schedule the compilation to bring the tree up-to-date 
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The Dependency Graph 

A dependency graph is a structure that defines the relationships between various 
things. In this case, those “things” represent files in the source and object trees, 
and the arrows between them indicate that the content of one file depends on 
the content of the other. To clarify, an object file (with .o or  .obj suffix) can 
have a dependency on a C source file (with .c suffix). Likewise, a Java  .class
file has a dependency on the corresponding .java file. 

Figure 11.2 shows the relationship among four source files and their corre-
sponding object files, a dynamically linked library, and an executable program. 

dog.obj

cat.obj

animals.h

dog.c

cat.c

petstore.c petstore.obj

animals.dll

petstore.exe

Figure 11.2 A pet store application, showing the dependencies among various files. 

Anyone who has used a build system should find few surprises in this dia-
gram. The only unusual concept is that animals.h is listed as a dependency for 
each of the object files, not a dependency for the C source files. Although the C 
files use #include to incorporate the content of animals.h, they don’t need to 
be regenerated if animals.h changes. Instead, the object files would be consid-
ered out-of-date. 

The source files (on the left) do not depend on any other files. That is, they’re 
hand-written by the developer, not generated by a compilation tool. Addition-
ally, the final program, petstore.exe, isn’t the target of any dependencies, so 
it is thus the final ending point of the build process. 

Incremental Compilation 

What’s interesting from a build system perspective is thinking about how an 
incremental compilation would work. If you assume that all object files are up-
to-date and that the developer proceeds to modify cat.c, the build tool’s task 
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is to determine which object files are impacted. The build tool must invoke the 
correct compilation tools to bring things back to a consistent (fully built) state. 

Figure 11.3 focuses on the parts of the dependency graph that require some 
action.

dog.obj

cat.obj

animals.h

cat.c

petstore.obj

animals.dll

petstore.exe

Figure 11.3 The pet store example, showing the impact of modifying cat.c. 

The dashed box indicates the file ( cat.c) that the developer has modified. 
The bolded boxes ( cat.obj, animals.dll, and petstore.exe) are directly 
or indirectly dependent on cat.c and, therefore, require recompilation. The 
remaining boxes ( animals.h, dog.obj, and petstore.obj) are also required 
to successfully build the software, even though they haven’t been modified in 
any way and don’t need to be regenerated. 

When recompiling this tree, the build tool executes the necessary compilation 
commands to bring everything up-to-date. The commands must be executed in 
a particular order (left to right in this diagram) so that any file that uses another 
file as input can be sure that it’s using updated information. For example, you 
must ensure that cat.obj has been regenerated before  animals.dll is regen-
erated; otherwise, the changes that were made to cat.c won’t be propagated 
through to the final executable program. 

Another important observation is that the dependency graph must be acyclic
(with no cycles). That is, there’s no way in which a file can depend (directly or 
indirectly) on itself. This type of arrangement would make it impossible to bring 
the build tree to a consistent state, with all the object files being up-to-date with 
respect to the source files. 

Full, Incremental, and Subtarget Builds 

Before moving on to examine how the dependency graph is created, and the type 
of problems you’ll see if it’s done incorrectly, a couple of important concepts 
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need to be reiterated. First, there’s a distinction between two types of build 
process:

1. Full builds: This scenario assumes that the developer has never compiled 
the build tree. The tree consists of only source files, and none has been 
compiled into an object file. The first time the developer builds the tree 
(known as a fresh or  virgin tree), all the compilation commands must be 
executed to bring the tree up-to-date. 

2. Incremental builds: In this case, the tree has previously gone through a full 
build and contains all the required object files. However, the developer 
has more recently made changes to one or more source files, and the object 
files are no longer consistent. A subset of the object files needs to be rebuilt 
to make them consistent again. In large-scale incremental builds, the build 
tool might spend several minutes analyzing the build tree to determine 
what needs to be done. When the recompilation starts, it can be orders of 
magnitude shorter than a full build (such as 30 seconds versus 30 minutes 
for a full build). 

The second important concept is the subtarget build. That is, instead of 
always generating the final executable program (in this example, petstore.
exe), the developer might choose to build only a portion of the tree. Developers 
typically do this as an optimization to their build process. In some large software 
projects, this approach could save an hour of unnecessary compilation time. 

For example, developers might decide that they need to recompile only the 
animals.dll file instead of the full application. Given that dynamically linked 
libraries can be recompiled and upgraded without changing the final executable 
program, this is a common way to save compilation time. Developers install the 
new library on their system and proceed to test their code. Figure 11.4 shows the 
portion of the dependency graph that requires action. The petstore.obj and 
petstore.exe files are no longer part of the recompilation. 

dog.obj

cat.objcat.c

animals.h

animals.dll

Figure 11.4 The pet store example, building only the animals.dll target. 
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Selectively limiting the dependency graph in this way is a highly desirable 
feature of any build tool. Let’s now look at the benefits of making sure your 
dependency graph is correct. 

The Problem with Bad Dependencies 

As the preface of this book touched upon, a badly constructed build system can 
be expensive, accounting for more than 10% of your development costs. Many 
of these problems are attributed to a poorly constructed dependency graph. 
Let’s now look at some practical case studies in which incorrect dependencies 
cause the build process to fail, generate bad software images, or take much 
longer than necessary. 

Experienced programmers likely can relate to most, if not all, of these prob-
lems. You might have discovered them after hours of retrying failed builds. You 
probably studied the output of your build log to see which compilation com-
mands were executed (or not) and then examined a number of files to see if 
they’d changed. In the end, the root cause of the problem was likely related to 
missing or incorrect dependencies. 

Problem: Missing Dependencies Causing a Runtime Error 

The first and perhaps most common problem you’ll see occurs when dependen-
cies are completely missed. In this case, a file that should have been recompiled 
is left unchanged instead of being updated to match the most recent source code. 
If the code in this file was meant to exchange information with code from other 
files that were updated correctly, the result could be a confusing set of runtime 
problems.

In Figure 11.5, if dog.c and  cat.c both made use of a data structure ( struct
food) defined in animals.h, they must both include that header file. However, 
if the dependency between dog.obj and  animals.h is missing,  dog.obj won’t 
be recompiled when the header file changes. 

struct food {
char *name;
float cost;
float preference;
int quantity;

}

dog.obj

cat.obj

animals.h

dog.c

X
cat.c

Figure 11.5 A missing dependency between dog.obj and animals.h. 
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This problem manifests itself when dog.obj and  cat.obj exchange data 
that uses struct food. Because of the newly added field ( preference), any 
structure exchanged between the two parts of the program will be mismatched. 
Not only is the structure of a different size, but the memory location that cat.
obj uses for the  preference field is the same location that  dog.obj uses for 
the quantity field. 

This problem could cause a sequence of runtime bugs that can be hard to 
detect, potentially wasting hours of development time. The issue will be resolved 
only when dog.c is changed (and, hence,  dog.obj is recompiled) or when the 
build tree is cleaned. With a better set of dependencies, this error would never 
have occurred in the first place. 

Problem: Missing Dependencies Causing a Compile Error 

A similar situation occurs when an automatically generated file isn’t updated 
correctly. Developers might add a new symbol definition to their program, but 
when the software is compiled, they receive a number of undefined symbol
errors. Again, this is the result of invalid or missing dependencies. 

In Figure 11.6, the developer has added a new Bison entry in the  food.
list file and has also modified the cat.c file to use that new definition. Given 
that food.list is a plain text file, it must first be translated into an equivalent 
header file ( food_gen.h) before the C file can use the definition. 

food_gen.h

cat.c

Kibble
Chicken
Beef
Cookies
Lamb
Bison

food.list X

cat.obj

Figure 11.6 A missing dependency between food_gen.h and food.list. 

Because of the missing dependency information, the build tool doesn’t real-
ize that food_gen.h needs to be updated whenever  food.list is modified. As 
a result, the compilation of the C code causes errors such as Bison is not 
defined. From the developers’ perspective, they’ve changed all the necessary 
files and thus are left to wonder why the C compiler isn’t finding the correct 
definition.



ptg

Chapter 11 Dependencies312

This scenario is common when multiple developers share a code base. Devel-
opers can update their existing source tree by obtaining the latest code from the 
version-control system. In doing so, they receive updated copies of cat.c and 
food.list, but the food_gen.h file doesn’t get regenerated when they attempt 
to rebuild the tree. This is especially confusing for them, given that some other 
developer made the offending code change. 

In a real-world development project, you’ll likely find a number of developers 
who hesitate to update their source tree from the version-control system, just in 
case it takes a day or two to resolve this type of problem. 

Problem: Unwanted Dependencies Causing Excess Rebuilding 

Although it’s not as critical as a missing dependency, an extra unwanted de-
pendency can also cause problems. In particular, a file might be recompiled even 
when it doesn’t depend on anything that was changed. This doesn’t cause any 
compile-time or runtime problems, but it does force the developer to wait longer 
for their compilation to complete. For large build systems, there may be 10–20 
minutes of excessive compilation. 

In Figure 11.7, an incorrect dependency exists between dog.obj and cat.h.

dog.obj

cat.obj

cat.h

dog.c

cat.c

Figure 11.7 Incorrect dependency between dog.obj and cat.h. 

Perhaps at one point in time, developers were including cat.h into  dog.c, but 
they’ve since removed it. However, the build system still contains that depend-
ency, thereby causing dog.obj to recompile when it doesn’t need to. 

Problem: Unwanted Dependencies Causing Failed Dependency 
Analysis

Even before the software compilation starts, it’s possible for dependencies to 
cause problems. While the build tool attempts to construct the dependency 
graph, it might get to a point at which it cannot proceed. This usually results in 
a don’t know how to make error message. 
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In Figure 11.8, developers have decided that penguins should no longer be 
sold in the pet store. They’ve removed both the penguin.c and  penguin.obj
files and recompiled the program. However, the build system still contains the 
old dependency information and complains that it doesn’t know how to make 
penguin.obj.

penguin.obj
(DELETED)

penguin.c
(DELETED)

dog.obj

cat.obj

dog.c

cat.c

animals.dll

Figure 11.8 Stale dependency information, causing the build to break. 

If the penguin.c file had not been deleted, the build system could still rebuild 
penguin.obj from source code. In this case, though, it searched for all the pos-
sible ways to regenerate penguin.obj but didn’t find a way of doing so. 

A similar situation can occur when developers relocate their build tree to 
a new disk location (such as from C:\Work to  D:\Work). Even though all the 
files have changed, the dependency information still refers to the old location. 
Naturally, the build tool won’t find the files in their old location and has no 
way of rebuilding them. The only remedy is to remove all the stale dependency 
information and start again. 

Problem: Circular Dependencies 

One of the basic rules of constructing dependency graphs is that they shouldn’t 
contain any cycles. However, that doesn’t stop developers from accidentally 
creating a dependency graph that can never finish its job. One real-life example 
arises when the developer wants to compress a large data file but then reuses the 
original data file’s name. Figure 11.9 is an example using Make syntax. 

data.gz: data
gzip–c data > data.gz 
mv data.gz data

data data.gz

Figure 11.9 A makefile rule that generates its own input files, causing a cycle. 
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In this case, the data.gz file depends on the  data file. If  data is newer than 
data.gz, you would execute the gzip command to compress the file, followed 
by the mv (move) command to rename it. 

The problem is that data (the input to the dependency) ends up being modi-
fied, and data.gz (the target of the dependency) is never actually created. No 
matter how many times you rerun the build tool, it’ll always execute these com-
mands. The end result is wasted compilation steps and a completely meaningless 
data file because it was compressed too many times. 

Problem: Implicit Sequencing As a Substitute for Dependencies 

When developers don’t want to spend the effort getting their dependencies 
correct, they often resort to using the build tool’s implicit sequencing of com-
mands. This sequence gets the job done but almost never results in an optimal 
build system. You saw this situation in Chapter 6, “Make,” in discussing the 
recursive Make technique. 

The following makefile fragment uses sequencing to guide the order in which 
commands are executed: 

.PHONY: program lib1 lib2

program: lib1 lib2
    @echo Linking my program

lib1:
    @echo Building library 1

lib2:
    @echo Building library 2 

The program, lib1, and lib2 targets are labeled as being  phony, informing 
Make that the target name is for human use only instead of having a real disk 
file with that name. The dependency relationship of program: lib1 lib2 thus 
doesn’t correspond to real disk files, but instead describes the sequence of rules 
to be triggered. In this case, lib1 is built first, then  lib2, followed by the crea-
tion of program.

Although this isn’t an optimal method, it’s perhaps one of the common meth-
ods of constructing a build system, especially for small software. It’s often much 
safer to follow an explicit sequence of commands than risk the chance of obscure 
compilation or runtime errors caused by invalid dependencies. 

The unfortunate downside of this approach is that too much compilation 
takes place. Also, the more complex the build system, the more careful the devel-
oper must be to get the sequence of commands correct. Another downside is that 
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parallel build systems rarely work correctly if they don’t have access to a correct 
dependency graph. 

Problem: The Clean Target Doesn’t Clean Everything 

One unfortunate outcome of the dependency problems discussed so far is that 
developers lose faith in the build system. If they can’t identify and resolve a 
build problem within an acceptable period of time, they simply choose to clean 
their build tree and start again. They’re then required to perform a full build of 
their tree, but that could be faster than trying to diagnose and fix the broken 
dependencies.

The first step is to execute the build system’s “clean” operation. This should 
remove all object files, autogenerated files, and stored dependency information, 
leaving only the developer’s source files. These source files will likely have a 
developer’s local changes, which must be preserved at all costs. (After all, the 
developer spent days or weeks making those changes.) 

As you might expect, the clean operation can also suffer from problems. If it 
doesn’t fully clean the tree, you’re left with stale object files or dependency infor-
mation that doesn’t get removed. When the tree is rebuilt, the same dependency 
problems exist, which frustrates developers. Their only option at this point is 
to take a backup of their local changes and then completely “blow away” their 
whole build tree, including source code. This ensures that no stale information 
can possibly remain. This whole operation is clearly a waste of development 
time.

Step 1: Computing the Dependency Graph 

Now that you understand the problems that arise if the dependency graph isn’t 
accurate, think about the methods used to create the graph. This is one of the 
most complex challenges build systems must address, and if it’s not handled cor-
rectly, it will be the root of many problems. The basic approach is to learn how 
each compilation tool accesses files and find some way to predict which files the 
tool will access in the future. In some cases, this ends up being a guessing game. 

But what actually is a dependency? If there’s some way in which file A 
depends on file B, there must be a compilation tool (such as compiler or linker) 
that somehow uses the content of file B when it generates file A. If it’s a direct 
dependency, that compilation tool must directly read file B. For indirect depend-
encies, the dependency graph could have any number of hops between A and B, 
although there must still be a way in which B’s content can potentially impact 
the generation of A. 
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The first step in determining the dependency graph is therefore to understand 
which input and output files each compilation tool uses. This can be done in a 
variety of ways. Specifically, a compilation tool can be asked to access a file in 
three general approaches: 

• Command-line arguments: The compilation tool can be told to read or 
write a file by explicitly mentioning the file on the tool’s command line. 
For example, the C compilation command gcc –c test.c –o program
explicitly asks the compiler to read the test.c file as input and write to 
the program file as output. Some tools enable the use of environment vari-
ables to specify the input and output files; although, these tend not to be 
common.

• Source code directives: Most programming languages have a mechanism 
for importing/including other source files. In this respect, the compilation 
tool must parse the source code to determine which other files it depends 
on. Common examples include C’s #include directive and Java’s import
directive.

• Convention: Some tools have input or output files they use by default. For 
example, the UNIX Lex tool writes its output to the lex.yy.c file, unless 
explicitly asked to use a different filename. 

With these three approaches, you can determine the set of files a compilation 
tool is accessing, at least for any well-behaved tool. The next question is how 
the build tool (such as Make, SCons, or Ant) can determine this information and 
build the full end-to-end dependency graph for the program. 

Gathering Exact Dependencies 

In most cases, the build tool and compilation tools are completely separate pro-
grams, and they don’t share a lot of information. For the build tool to operate 
effectively, it must predict which files a compilation tool will read and/or write. 
This is done before the compilation tool is actually executed, instead of learning 
the dependencies as the compilation progresses. If this weren’t the case, you can 
end up with compilation commands executing in the wrong order. 

In Figure 11.10, the build tool determines that both cat.c and  food.list
have changed. However, until cat.obj is regenerated from  cat.c, the build 
system might not be aware of the dependency that it has on food_gen.h (the 
dashed line). In this scenario, you must somehow determine the dependency in 
advance, therefore making sure that food_gen.h is regenerated from the latest 
copy of food.list before cat.obj is regenerated. 
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food_gen.h

cat.c

food.list

cat.obj

Figure 11.10 A scenario in which rebuilding files in the wrong order can cause 
problems.

A build tool can predict a compilation tool’s dependency information in sev-
eral common ways. 

Hard-Coded Dependencies 
By having the dependencies hard-coded into the build description file (such as 
the Makefile or  SConstruct file), the build system uses the developer’s knowl-
edge of the dependencies. The build tool has little work to do, other than parse 
the build description file and update the dependency graph. For example, using 
the Make tool, you can explicitly state the dependencies that an object file has 
on source files: 

cat.obj: cat.c animals.h 

This is the simplest way to specify dependencies, but it doesn’t work well for 
large programs. The constant maintenance and the chance of introducing errors 
makes this impractical. Regardless, this method is often used when the more 
automated methods (see below) are too hard to implement. 

Dependencies Derived from Command Lines 
Given that the build tool is responsible for constructing the compilation tool’s 
command line, the build tool already has some amount of advance knowledge. 
This information won’t always be complete, but some information is better than 
none. For example, the following SCons directives are used to build the pet store 
example:

lib = SharedLibrary("animals", ["dog.c", "cat.c"])
Program("petstore", [lib, "petstore.c"]) 

Not only are the SharedLibrary and  Program builder methods used to state 
which files should be compiled, but they also participate in the construction of 
the dependency graph. For example, there’s an implicit knowledge in the SCons 
tool that object files are created from source files and that shared libraries are 
created from object files. Almost the entire dependency graph can thus be cre-
ated from these two SCons commands. 
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Dependencies Provided by Scanners 
The last example had no automatic way for the build tool to incorporate 
animals.h into the dependency graph. This is solely because the dependency 
is embedded in the source code instead of being stated in the SConstruct file. 
To resolve this issue, you instead use a scanner tool to examine the source files. 
By searching for the #include or  import directives in a source file, the scanner 
infers which other files are required. 

Chapter 6 briefly mentioned the  makedepend scanner, used in the UNIX 
environment. This isn’t a full-blown compiler, but it knows enough to detect the 
header files included within a source file. For example: 

$ makedepend -f - cat.c
# DO NOT DELETE

cat.o: animals.h 

The output from this command would normally be appended to a makefile, 
hence the DO NOT DELETE comment. Because Make already knows that  cat.o
depends on cat.c, there’s no need to list that dependency. 

Scanners are often fast and efficient at locating dependencies, but their inabil-
ity to understand the full semantics of the language can provide bad informa-
tion. For example, when a scanner examines a C source file, it must be aware of 
preprocessor semantics. 

#ifdef _USE_GOOD_FOOD_
#include "store_food/berries.h"
#else
#include "wild_food/berries.h"
#endif

In this example, a naive scanner could determine that both store_food/
berries.h and  wild_food/berries.h are dependencies, whereas only one of 
them will ever be included at one time. This isn’t a fatal error, but it can result 
in unnecessary recompilation. 

Dependencies Provided by Compilation Tools 
Perhaps the most accurate way to determine which files a compilation tool will 
access is to ask that tool itself. However, as discussed earlier, we need to have 
this information before the tool actually performs its work. As shown in Chap-
ter 6 (which discussed GNU Make), one such tool providing this capability is 
the GNU C Compiler. By providing the –M option, the compiler scans the source 
files and determines the dependencies, but doesn’t actually compile the code. 

C:\work> gcc –M dog.c
dog.obj: dog.c animals.h 
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After the full dependency graph has been computed, the build tool ensures 
that any files that dog.obj depends on are up-to-date. It then calls upon GCC 
for a second time, but this time without the –M option. 

Dependencies Determined by File System Monitoring 
Modern build tools, such ElectricAccelerator [48] and clearmake [5], can go one 
step further by monitoring which files a compilation tool accesses while it’s run-
ning. This is done by observing any interaction the compilation tool has with the 
computer’s file system, accurately determining the inputs and outputs. 

The advantage of these systems is that they’re guaranteed to find the exact 
set of dependencies. Assuming that the compilation tool accesses the same set of 
files in the future that it has in the past, you’ll never suffer from missing or exces-
sive dependency information. This feature is a benefit for compilations with a 
large number of dependencies that could be hard to predict, such as a release 
packaging script. ( Chapter 13, “Software Packaging and Installation,” discusses 
these in more detail.) 

The downside of using monitoring tools is that an additional file system plug-
in must be added to the computer’s operating system, which not everyone feels 
comfortable doing. Also, the monitoring software will record absolutely every 
file access (unless you tell it otherwise), and many files don’t make sense to have 
as dependencies. For example, /usr/include/stdio.h can be accessed, but 
because it’ll never change (unless the operating system is upgraded), there’s no 
point in recording it in the dependency graph. 

Finally, you might be asking how these monitoring systems can determine 
dependency information before the compilation command is executed (per our 
requirement). This is answered later in the chapter. 

Caching the Dependency Graph 

Using the previous techniques, the build tool will have built up a complete de-
pendency graph. As much as possible, you want to store what you’ve learned 
in a cache so that you don’t need to recompute the full graph each time the 
build tool is invoked. Some developers build their software as often as every few 
minutes, so it’s important to reduce the amount of time spent computing the 
dependencies, thereby providing a much faster build experience. 

Each build tool has its own mechanism for caching dependencies. For exam-
ple, a typical Make-based system uses a separate file (with a .d suffix) to store 
dependency information for each of the object files. In contrast, SCons uses a 
single database file to cache dependencies for all files in the build tree. 

When dependencies are hard-coded into the build description files (such as a 
makefile), or when they’re derived from compilation tool command lines, you’d 
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see only a small benefit in storing the information in a cache. The next time the 
build tool is started, it still would need to reread that same description file any-
way, so a cache wouldn’t save much time. 

On the other hand, you can save a significant amount of time by not recom-
puting dependencies that were found by running a compilation tool or a scan-
ner. Executing these additional programs takes a lot of time, so you should use 
precached copies of the graph if possible. 

This idea of caching dependencies isn’t a difficult problem to solve, but it’s 
tricky to know when the cached information becomes stale. Now think about 
how to update the cached dependency graph if the software itself is modified. 

Updating the Cached Dependency Graph 

In a real-world development project, your dependencies change over time. Any 
dependency information that was previously computed and cached could be 
out-of-date and needs to be replaced. Failure to delete old dependency informa-
tion either causes the build system to do too much work or causes it to fail if the 
old source files no longer exist. 

Probably the most common reason for a change in dependencies is developers 
modifying their source code to add new # include or  import directives, thereby 
adding new dependency relationships to the graph. A second scenario occurs 
when a compilation tool’s include path flags are modified by editing the build 
description file. Regardless of the change, the build system must compute the 
new dependency graph and regenerate the object files accordingly. 

Based on the three ways in which a compilation tool is asked to access a file 
(via command-line arguments, via source code directives, or by convention), 
let’s now examine how each change impacts the dependency graph. Keep in 
mind that you’re now operating in a build tree that’s already fully built or per-
haps has a small number of modified source files. You no longer need to be 
concerned with building a completely fresh tree. 

Updating Cached Command-Line Arguments 
Given the variety of compilation tools and command-line options, no single 
solution addresses the problem of argument changes. Here are three different 
scenarios:

1. For command-line options that change the name of the input or output 
files (for example, -o prog), the dependency graph must be modified to 
include the new name of that file, and the old name must be discarded. 
Assuming that the build tool didn’t cache this part of the dependency 
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graph, but instead created it while reading the build description files, no 
additional work is required. Simply invoking the build tool again ensures 
that the correct dependencies will be used. 

2. For compilation tool options that impact the content of the object files 
(instead of their name), you might need to completely rebuild all the exist-
ing object files in the build tree. For example, if the developer added the 
–g option to request that debugging information be generated, all previ-
ous object files would need to be discarded and recompiled. A similar rule 
would apply if the compilation tool was upgraded to a newer version and 
could generate different code than the older tool. From the perspective of 
the dependency graph, you must add a dependency from each object file to 
the set of flags it was compiled with (see Figure 11.11). In this case, there’s 
nothing special about the bear.flags file, but if the command-line flags 
are modified, this file must be “touched” to make it appear newer. As a 
result, bear.obj will be regenerated. 

bear.obj

bear.c

bear.flags

Figure 11.11 An object file that depends on its own compilation flags. 

3. If you modify a command-line argument that changes the tool’s search 
path, you need to recompute each object file’s dependencies. For example, 
if you change the include search path ( -I) or library search path ( -L), it’s 
possible that a different set of files will be included. In the following exam-
ple, bear.c includes a different  berries.h header file, depending on the 
order of the –I directives.

bear.c contained the following directive  If  

 #include "berries.h" 
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then the following two command lines result in different dependencies: 

gcc –Iwild_food –Istore_food –c bear.c
    => includes wild_food/berries.h

gcc –Istore_food –Iwild_food –c bear.c
    => includes store_food/berries.h 

This scenario might seem a little obscure (and it probably is), but failing to 
determine the correct dependencies could waste a lot of development time. 

Updating Cached Source Code Directives 
If a source code file changes, it’s possible for the set of other files it depends on 
(via # include or  import) to now be different. Assuming that you precached the 
file’s dependency information (using a compiler or a scanner), this information 
could now be out-of-date and must be regenerated. 

In the most common situation, a source file (such as bear.c) is modified to 
include a new header file (such as honey.h). In this case, the build system detects 
that bear.c was modified and that  bear.obj is outdated (see  Figure 11.12).
By virtue of this recompilation, all the correct input files are used and you can 
recache the new set of dependencies. 

bear.obj

bear.c

honey.h

Figure 11.12 A new #include directive is added to bear.c. 

The situation becomes a lot more complex when you consider what happens 
if the included header file is itself an autogenerated file. Somehow the build 
system must determine whether that newly included header file is up-to-date. 
It would be a problem if you accidentally included an out-of-date header file in 
bear.obj.

In Figure 11.13, the developer has modified bear.c, so it now includes the 
food_gen.h header file, whereas it didn’t before. The developer has also modi-
fied the food.list source file. For the compilation to succeed, the build system 
must already be aware that food_gen.h is autogenerated from  food.list, and 
this step must be undertaken before bear.obj is regenerated. 
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food_gen.h

bear.c

bear.c
#include “food_gen.h”

food.list

bear.obj

Figure 11.13 bear.c and food.list are both modified, but the autogenerated header file 
must be recompiled before the source file. 

To reiterate, here are the steps for a successful build: 

1. Determine that bear.obj has a new dependency on  food_gen.h. (This 
information could be determined by a scanner.) 

2. Regenerate food_gen.h.

3. Regenerate bear.obj from bear.c and the new version of food_gen.h.

Finally, imagine an even more complex scenario. What would happen if 
food_gen.h included yet another header file (say,  meats_gen.h) that was also 
autogenerated? You might not detect this new dependency until food_gen.h
is regenerated. Therefore, you must regenerate meats_gen.h before compiling 
bear.obj, but only after food_gen.h.

Updating Cached “By Convention” Rules 
A compilation tool won’t suddenly start using a different set of “by convention” 
rules. If it accesses a specific file by default, it’ll continue to always access that 
same file (such as the lex.yy.c case). One possible exception is when a shell 
script is used as a tool and has recently been modified. In this case, the developer 
also needs to modify the build description file so that it hard-codes the new de-
pendency relationship. For build tools that use file system monitoring, the tool 
automatically detects the change in dependencies, with no human intervention. 

At this point, you’ve finished looking at all the approaches to building up the 
dependency graph. Getting the exact list of dependencies correct can be a chal-
lenging problem, especially when parts of the cached dependency information 
must be marked as invalid because dependencies are introduced or removed. 
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Step 2: Determining Which Files Are Out-of-Date 

You’re now ready to look at the second of the three main build tool steps identi-
fied earlier in the chapter. As a reminder, the first step was to create a complete 
dependency graph, possibly with some of it being cached since the last time you 
invoked the build tool. The second step is to figure out exactly which files were 
modified since the last build took place. Files that haven’t changed and that 
don’t depend on other files that have changed don’t need to be recompiled. 

This part of the build process isn’t too complex to understand or implement. 
When compared to creating a dependency graph, significantly fewer opportuni-
ties exist for errors to creep in and cause invalid builds. However, a build can 
take longer than necessary for several reasons, causing some amount of wasted 
development time. 

This section examines different ways to detect whether a file has changed, 
including time stamp comparison, checksum comparison, and flag comparison. 
You’ll also consider some advanced techniques for detecting change. 

Time Stamp-Based Methods 

The classic method of determining whether a file has changed is to examine 
the file’s time stamp. All modern operating systems keep track of when a file 
was last written to, and the build tool can easily query the file system for this 
information. Although it seems simple in theory, consider a few implementation 
methods:

1. In traditional Make-based systems, a file is considered to have been modi-
fied if it has a more recent time stamp than any of its derived files. For exam-
ple, if dog.obj depends on  dog.c, you should assume that dog.c has been 
modified recently if it has a more recent time stamp than dog.obj. This 
method doesn’t particularly care about files having absolute time stamps, 
as long as it can detect a relative ordering of file changes. An interesting 
feature is that a file can be “touched” to modify its time stamp, without 
actually making any real changes to the file. This is useful when forc-
ing a file to be recompiled for some reason (such as recovering from bad 
dependencies). It’s also important to delete the output file if the compila-
tion fails for any reason. Failure to do this causes the half-created output 
file to appear as if it’s newer than the source file. Future invocations of the 
build tool will incorrectly decide that no recompilation is necessary, and 
the broken object file will remain in the object tree. GNU Make and Ant 
commonly use this technique, as do a number of the decider functions in 
the SCons tool. 
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2. In another approach, the build tool has some way of caching each file’s 
time stamp. In this case, you no longer need to compare different files; 
instead, you can detect whether a file has changed by comparing its current 
time stamp against its previous time stamp. This method clearly involves 
the extra overhead of storing time stamps in a cache. An advantage of this 
mechanism, when compared to using relative time stamps, is that it can 
detect changes in source files that have occurred in the past. It’s an incor-
rect assumption that any change made to the content of a file will result 
in using the current time stamp. For example, if a source file has been 
restored from a filesystem backup, the time stamp of that file probably 
reflects the last point in time the file was modified, which was sometime 
before the backup was taken. This may be a much older time stamp than 
when the object file was last compiled. If you incorrectly assumed that the 
source file hadn’t been modified because it’s older than the object file, the 
build tree wouldn’t end up in a consistent state. 

$ ls –l foo.c
-rw-r--r-- psmith 3500 2009-05-17 19:13 foo.c

$ ls -l foo.o
-rw-r--r—— psmith 73923 2009-05-17 19:17 foo.o

$ rm foo.c      # OOOPS! 

Now restore the file from a backup. You’ll restore a version of  foo.c from 
2 days ago. 

$ ls –l foo.c
-rw-r--r-- psmith 3223 2009-05-15 12:22 foo.c

$ ls -l foo.o
-rw-r--r— psmith 73923 2009-05-17 19:17 foo.o 

Unfortunately,  foo.o no longer matches  foo.c, but it won’t rebuild 
because the object file is newer than the source file. If you instead com-
pared the source file’s current time stamp against the time stamp it had 
when the last build was performed, you’d notice that the file was different 
and the object file would correctly be recompiled. This second time stamp 
approach is used by the SCons build tool, but not by GNU Make or Ant. 
Only SCons keeps a database of file time stamps, whereas other tools don’t 
maintain the necessary persistent state. 

3. The third time stamp method is often used when it is too hard to compute 
the correct dependencies in a build tree. Instead, the final step of the build 
is to create a .stamp file that specifically marks the point in time when the 
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last successful build completed. When a developer requests a new build, 
the tool examines all the time stamps on all the files in the build tree, 
without even considering the dependency graph. If any newer files exist, 
the entire tree is cleaned and then rebuilt. Although this method uses a 
brute-force approach to recompilation, it’s still commonly used in build 
systems, especially those that use GNU Make. It trades off recompilation 
time for the extra effort of ensuring correct dependencies. This is a rea-
sonable approach only for small build systems or those that don’t change 
often.

For all three of these time stamp methods, the build tool spends a lot of time 
querying the file system to determine each file’s current time stamp. As you’ll 
see in Part IV, “Scaling Up,” this operation can become expensive, especially for 
large build trees. 

It’s also important for the build tool and the file system to have synchronized 
clocks; otherwise, their ability to compare time stamps will fail. This isn’t usu-
ally a problem on a standalone machine where all files are stored on the same 
disk, but problems can occur in a network file system environment. 

For example, if dog.c is stored on a remote file system that has a slow clock, 
and dog.obj is stored on a local file system, it’s possible that  dog.obj will have 
a newer time stamp, even though dog.c was modified more recently. Here’s the 
sequence of steps: 

1. dog.c was modified and saved to a network file system. (The time on the 
file server is 10:01am.) 

2. dog.c was compiled and  dog.obj was saved to a local disk. (The time on 
the local machine is 10:03am.) 

3. dog.c was modified again and saved to the network file system. (The time 
on the file server is 10:02am.) 

4. The build tool won’t regenerate dog.obj because it’s newer than dog.c.

Checksum-Based Methods 

After observing the problems with time stamp-based detection of whether a file 
has been modified, it seems that a more accurate method might be useful. Using 
checksum (or  hashing) techniques such as MD5 or SHA, it’s possible to obtain 
a numeric fingerprint (such as a 128-bit number) that summarizes the content 
of the entire file. These checksum methods are not guaranteed to uniquely sum-
marize the content of a file, but if two files have the same checksum value, it’s 
extremely likely that the files have the same content. 
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Any build tool that uses a checksum method must have the capability to 
compute and store each file’s checksum whenever the build tool is invoked. 
Computing checksums isn’t a trivial operation, so the build tool’s performance 
can suffer. In large projects with thousands of source files, the time required to 
compute all the checksums might be unacceptable. 

One interesting outcome of using a checksum-based system is that simply 
touching the file won’t make it appear to have changed. If the content is the 
same, the checksum will be the same, and no recompilation takes place. This 
approach leads to a few interesting scenarios: 

• Changes to code comments don’t cause the program to be relinked. Even 
though the C compiler is called into action, a change in a code comment 
won’t cause the output of the C compiler to be any different than last time 
(assuming that no time or date stamps are embedded in the output file). 
Therefore, the build tool deduces that the linking phase can be skipped (see 
Figure 11.14).

/*
* This is my new comment. It
* doesn’t change the code at all
*/

bear.c bear.obj
(unchanged)

bear.exe

Figure 11.14 Adding a source code comment doesn’t impact the object file. No linking 
step is required. 

• Autogenerated source files don’t necessarily cause object files to recompile. 
Build systems that use a large number of autogenerated files might end up 
touching too many files, causing the entire tree to rebuild. With the check-
sum method, only files that actually ended up being different will trigger 
recompilation of other files. 

In Figure 11.15, you can see that animals.list is used as the main source 
code file for autogenerating many C files. Given the way the compilation 
tool works, any change in animals.list causes all the C files to regener-
ate from scratch, thus changing their time stamps. Using a checksum-based 
method, only the files that have actually changed (in this case, cat_gen.c)
cause object files to rebuild. Other object files remain untouched. 
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dog_gen.c
(unchanged)

cat_gen.c 

dog.obj 

cat.obj

pig_gen.c
(unchanged)

pig.obj

animals.list

Figure 11.15 With checksum-based checks, you compile only the autogenerated files 
that have actually changed. 

This technique avoids a large amount of unnecessarily recompilation, thus 
making the developer more productive. 

As a reminder, Chapter 8, “SCons,” discussed the MD5-timestamp decider 
function that optimizes this checksum approach. You can ask the build tool to 
perform the checksum operation only if the time stamp on the file has actually 
changed. That is, if the time stamp has not changed, you know for sure that the 
file content has not changed. However, if the time stamp is different, there’s a 
good possibility that the content will also be different. This then can be con-
firmed or disproved by computing the checksum. This optimization works well 
because reading a file’s time stamp is much faster than   computing the checksum. 

Although SCons is the only build tool that natively supports the checksum 
approach, it’s possible to implement this same feature in other build tools. Using 
the GNU move-if-change script, it’s possible to update the target file’s time 
stamp only if the file content is different from the last build invocation. The trick 
is to generate the new content into a temporary file, but copy that temporary 
file into the target location only if the content has changed. If not, the file isn’t 
copied and the time stamp isn’t updated. 

Flag Comparison 

One concept touched on in an earlier section is that an object file should have 
a dependency on the tool’s command-line options. If the options changed (such 
as by adding a debug flag), the object file would need to be rebuilt with the new 
options enabled. Therefore, you need a third method of determining whether 
a file is up-to-date, but this time the method is not based on the file’s content. 

A build tool that supports this feature must have some mechanism for storing 
each object file’s command-line options. With SCons, this feature is built into 
the basic tool, and the SCons database maintains a list of compilation flags used. 
Any change to these flags causes all object files to be rebuilt. 
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In the case of GNU Make, this feature isn’t a standard part of the tool, but by 
adding a supplementary file (for example, with the .flags suffix), a comparison 
between old and new .flag files is sufficient to detect a change. 

Advanced Methods 

The three change-detection methods discussed so far (time stamps, checksums, 
and flags) are currently used in a number of common build tools. However, if 
you carefully think about how files are actually changed, you have other clever 
ways to optimize this process. After all, the time stamp and checksum methods 
are fairly brute-force approaches that require looking at each file in turn. For 
large build systems, this can take several minutes to complete. 

The following are some advanced methods of solving the file change problem: 

• Ask the version-control tool: One of the main ways the files in a build tree 
are modified is by the version-control tool (such as CVS or Subversion). 
When these tools update the files in your source tree, they can provide the 
build tool with a list of files that have changed. With this list in hand, you 
shouldn’t need to query each file’s time stamp or checksum. 

The ClearCase version-control system [5] is a great example of how this 
works. The clearmake build tool is tightly integrated with the version-
control tool and knows exactly which version of each input file was used 
to generate an object file. It then queries the version-control system to 
determine whether any of those input files have been modified. 

• Ask the integrated development environment (IDE): Users of IDEs, such 
as Eclipse or Visual Studio, can assume that the only way a source file can 
change is if the IDE saved a new version of that file. By asking the IDE for 
a list of files that have changed (since the time of the last build), the build 
tool avoids querying each file to see if it’s different. Clearly, this solution 
assumes that the developer doesn’t change source files using any other tool 
or directly from the operating system’s command line. 

• Ask the file system: Regardless of which development tools are used, the 
file system itself is the ultimate authority on whether a file has changed. 
Using a log-based tracking system, you can ask the file system for the list 
of files that have changed since the last build. Although this would be 
significantly faster than querying each file one by one, most file systems 
don’t support this functionality. In any case, it might not work well in a 
networked environment where files can be modified from many different 
computers.
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Hopefully, future generations of build tools will use these types of optimiza-
tion more often. 

Step 3: Sequencing the Compilation Steps 

Finally, you’ve come to the third step in the build tool’s high-level workflow. As 
a reminder, the first step was to construct the dependency graph, and the second 
was to identify which files have changed since the build tool was last invoked. 
This section discusses the third step, in which the compilation tools are actually 
put into action. For many people, this is where the build tool starts doing useful 
work.

Ironically, the process of creating a dependency graph and then determining 
which files are out-of-date can take longer than executing the compilation steps 
themselves. This is certainly true in large software projects in which only one 
source file has changed. The net effect is that developers perceive that the build 
system is doing nothing, until they start to see the commands being executed. 

The remaining problem is how to invoke each of the compilation tools in the 
correct order so that the final software image is brought completely up-to-date. 
As a general rule, a particular file that is currently out-of-date must be regen-
erated after each of its dependencies has been regenerated (see Figure 11.16).
From a simplistic perspective, the compilations must occur from left to right in 
the diagrams. That is, the object files are compiled first, followed by the libraries 
and then the executable program. 

dog.obj

cat.obj

animals.h

dog.c

cat.c

petstore.c petstore.obj

animals.dll

petstore.exe

Figure 11.16 A change to animals.h causes the files to be recompiled from left to right. 

For a build tool that executes compilation jobs one at a time, the simplistic 
approach is probably the best. However, you have more choice on computers 
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that have enough processing power to execute multiple jobs in parallel. These 
computers include single-CPU systems that have excess capacity, multicore sys-
tems, and distributed clusters of computers that share access to the same build 
tree.

For simplicity, assume in this discussion that each compilation job takes 
exactly the same amount of time. If you execute one compilation after another, 
the following sequence is likely: 

Time CPU 1 

1 dog.obj

2 cat.obj

3 animals.dll

4 petstore.obj

5 petstore.exe

Note that because all three of the .obj files depend only on source files 
instead of anything that needs to be regenerated, they could be compiled in any 
order. However, the build tool will likely handle them in the order in which 
they’re specified in the build description file. This also explains why animals.
dll is built before petstore.obj.

If two jobs are built in parallel, you may see the following sequence of events: 

Time CPU 1 CPU 2 

1 dog.obj cat.obj

2 animals.dll petstore.obj

3 petstore.exe

The build process now takes three time units instead of five units, yet you 
still end up with the same results. Because dog.obj and  cat.obj don’t have 
dependencies on each other, they can compile in parallel. The same is true for 
animals.dll and petstore.obj.

Now examine a scenario with three jobs executing at once: 

Time CPU 1 CPU 2 CPU 3 

1 dog.obj cat.obj petstore.obj

2 animals.dll

3 petstore.exe
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Unfortunately, you’ve now reached the maximum parallelism level for this 
build process. Because animals.dll must wait until  dog.obj and  cat.obj are 
complete, and because petstore.exe can’t start building until  animals.dll is 
complete, you don’t see any further speed-up. In this particular example, there’s 
no benefit to adding the third parallel job. 

What would happen if your build tool lacked sufficient information in the 
dependency graph? After all, this is a fairly common problem, especially when 
building in parallel. Now examine the situation in which the dependency that 
animals.dll has on cat.obj was missing: 

Time Job 1 Job 2 

1 dog.obj petstore.obj

2 cat.obj animals.dll

3 petstore.exe

In this case, animals.dll is incorrectly scheduled at the same time as  cat.
obj, which definitely causes a problem. Most likely, animals.dll will observe 
cat.obj changing as it’s being read, resulting in a build failure. 

Oddly enough, this missing dependency wouldn’t cause problems if only one 
job was executed at a time. The two files would always be executed in the cor-
rect order, and nobody would notice anything wrong. This is simply a side effect 
of the build tool always sequencing the jobs in the same order, regardless of 
dependencies. When building many jobs in parallel, the problems start to show 
up.

As a final example, it’s interesting to understand how the ElectricAccelera-
tor tool can build on massively parallel clusters (with potentially hundreds of 
CPUs). The strength of this tool is that it can still produce a correct software 
image, even if critical dependencies are missing. The key to ElectricAccelerator’s 
success is that it uses the file system monitoring technique to determine each 
compilation tool’s exact set of dependencies. 

In Figure 11.17, each box represents a single compilation job. You have four 
different CPUs executing jobs, with each job taking one time unit (again, a sim-
plification). Everything compiles smoothly until Job B is executed on CPU 2 at 
time 5. At this time, ElectricAccelerator notices that the job has just written to a 
file that was already used by a previous job (Job A). Although no rules explicitly 
informed the tool of this dependency, it discovered this on its own. 
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Time1           2          3 4          5           6          7

A

B

C
A

B

C Job run too 
soon

Job noticed 
the conflict

Rerun of 
Job A

CPU 1

CPU 2

CPU 3

CPU4

Figure 11.17 The ElectricAccelerator conflict-resolution system. 

The next step is for ElectricAccelerator to rerun the job that was performed in 
the wrong order. In the example, Job C is identical to Job A, except that it now 
has access to the necessary output from Job B. ElectricAccelerator also takes 
note of this situation (known as a conflict) and ensures that future invocations 
of the build tool are properly aware of this dependency. 

Summary

A build tool must follow a three-step process. First, it builds up the depend-
ency graph to determine which files are derived from which other files. Next, it 
checks the file system to determine which of those files have been modified since 
you last invoked the build tool. Finally, it calls upon the individual compilation 
tools to bring all the object files, libraries, and executable programs up-to-date. 

Constructing the dependency graph is perhaps the most challenging part of 
creating a build system because you have various ways of gathering the required 
information. The goal is to predict which files a compilation tool will access and 
make sure that all prerequisite files are first brought up-to-date. Although it’s 
possible to cache some of this information, you need to make sure the cache is 
kept up-to-date with ongoing changes to build description files, source files, and 
compilation flags. 

When determining whether files need to be recompiled, you can query each 
file’s time stamps, compute its checksum, or use one of several more advanced 
methods.

Finally, having an accurate dependency graph is important to ensure that 
compilation commands are executed in the correct order, especially when the 
workload is executed in parallel across multiple CPUs. 
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Chapter 12 

Building with Metadata 

Although the primary goal of a build system is to create an executable program 
to deliver to a customer, many build variants are intended only for software 
developers. As you saw in Chapter 5, “Subtargets and Build Variants,” build 
variants enable you to generate a range of release packages, such as for different 
CPU types or different software editions. This chapter discusses another group 
of variants, with the focus on producing metadata. 

The simple definition of metadata is data that describes the structure or 
attributes of data. In the context of a build system, metadata is additional infor-
mation about the structure of an executable program. A developer can use that 
information to study or monitor the program in various ways. 

This chapter discusses the following types of metadata: 

• Debugging support: Enables source-code level debugging of a running pro-
gram, which helps a developer identify the location of bugs. 

• Profiling support: Determines how a program spends its execution time, 
enabling a developer to optimize the most time-critical portions of the 
code.

• Coverage support: Determines which lines of code are being executed. 
This gives developers a better understanding of whether their code has 
been fully tested. 

• Source code documentation: Provides formatted documentation of code 
APIs, in a format such as HTML. Developers can understand the code’s 
main entry points without diving into the detailed code itself. 

• Unit testing: Validates whether the individual units (modules or functions) 
of a program are performing correctly instead of testing the release pack-
age as a whole. 

335
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•  Static analysis: Identifies common programming errors at compilation 
time, in contrast to finding bugs when the program is executing. 

Each of these build variants requires support from the build system, either 
by invoking a special-purpose compilation tool or by passing additional flags to 
the standard compiler. Although these features are optional, a well-maintained 
build system should support them all. 

Now let’s take a brief look at each type of metadata listed to see how it 
can improve software quality. Although this chapter discusses only one way of 
generating each type of metadata, you’ll likely find that your own development 
tools provide similar features. 

Debugging Support 

Debugging support is one of the most common compiler options. Developers 
must have the ability to monitor the progress of their code as it executes. They 
should examine which lines of code are executed and which values are assigned 
to their program variables. Lack of good debugging support makes finding and 
fixing software bugs much harder. 

Even though a program executes as a sequence of machine code (or byte code) 
instructions, developers prefer to think about the lines of source code they wrote 
and the variables they declared. The compiler must generate extra information 
so that a debugger tool can reverse-engineer the execution of the program. It can 
then display the program’s runtime state in developer-centric terms. 

For example, the compiler must record the following: 

• The memory address and data type of each variable in the program 

• The start address of each function within the machine code, along with its 
list of parameters 

• The memory address of each individual line of source code 

Using this information, a debugger can fetch the necessary values from mem-
ory (and the CPU registers) and display the source code relating the current line 
of code being executed. It can also read the value of variables and display them 
in the appropriate data format, such as a character, number, string, or pointer. 

All modern compilers offer debugging support, which is enabled by adding a 
command-line option (such as -g). Because of its importance, many build sys-
tems generate debug information by default. The following example shows how 



ptg

Debugging Support 337

the GNU debugger [67] traces the execution of a program. Entering the list
command shows the first ten lines of the program’s source code. 

$ gcc -g -o prog prog.c
$ gdb prog
...
(gdb) list
1       #include <stdio.h>
2
3       int main(int argc, char *argv[])
4       {
5         int i;
6
7         for (i = 0; i != 100; i++) {
8           printf("The next number is %d\n", i);
9         }
10      return 0; 

Next, a breakpoint is set at line 7 of the code (at the start of the for loop) 
by invoking the break command. The compiler-generated metadata informs the 
debugger that line 7 is at machine code address 0x8048435.

(gdb) break 7
Breakpoint 1 at 0x8048435: file prog.c, line 7. 

When you run the program, execution stops at line 7, and you continue on a 
line-by-line basis (as requested by the next command). 

(gdb) run
Starting program: /home/psmith/Book/examples/debugging-

session/prog

Breakpoint 1, main (argc=<value optimized out>,
   argv=<value optimized out>) at prog.c:7
7         for (i = 0; i != 100; i++) {
(gdb) next
8           printf("The next number is %d\n", i);
(gdb) next
The next number is 0
7         for (i = 0; i != 100; i++) {
(gdb) next
8           printf("The next number is %d\n", i); 

You also have the option to display the value of each program variable. The 
compiler provided enough metadata for the debugger to learn the variable’s 
memory address and data type. 

(gdb) print i
$1 = 1 
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Although this debugging session is entirely text based, many environments 
also support graphical debugging. Developers can set breakpoints directly from 
their editor and see which line of code is currently executing. Some debuggers 
provide a graphical display of data structures, showing each structure or class as 
a box, with references between these structures represented by arrows. 

If you’re using the GNU C compiler, you should investigate the GDB debug-
ger used in our example. Additionally, consider using the DDD [68] front end, 
which provides a more graphical view of the program. 

Passing the –g option to GCC generates debug information, encoded in a for-
mat such as DWARF [69]. When an executable program is created, GCC inserts 
the metadata into a special section within the executable file. GDB extracts this 
information to debug the program. 

For Java development, you might want to look at the jdb command-line tool 
(part of the JDK [30]), although most IDEs provide Java debugging as a built-in 
feature. The same is true for C# and the Microsoft Visual Studio tools. 

Profiling Support 

The act of profiling a program means that you can determine how long the CPU 
spends executing each part of the code, or how much memory is used to store 
each type of data. The goal is to give the developer a view of how the program 
spends its resources and, therefore, how it can be optimized. If you focus your 
optimizations on the most time-consuming portions of the program, you’ll see 
the most dramatic performance improvements. 

For example, the following output shows the CPU profile of the CVS source 
code–management tool at the point it was downloading source code from an 
Internet site. The GNU Profiler tool [70] generated the output; it requires all C 
source files to be compiled with the special -pg flag. In this case, the CVS tool’s 
standard build system was modified to include this additional flag. 

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total
 time   seconds   seconds    calls  ms/call  ms/call  name
 33.33      0.01     0.01     2541     0.00     0.00  buf_
 read_line
 33.33      0.02     0.01     2171     0.00     0.00  getstr
 33.33      0.03     0.01                             find_
 rcs
  0.00      0.03     0.00    76003     0.00     0.00  stdio_
  buffer_input
  0.00      0.03     0.00    16072     0.00     0.00  xmalloc
  0.00      0.03     0.00    15226     0.00     0.00  xstrdup
  0.00      0.03     0.00     3396     0.00     0.00  hashp
  0.00      0.03     0.00     3280     0.00     0.00  getnode
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  0.00      0.03     0.00     2542     0.00     0.00  buf_
  flush
  0.00      0.03     0.00     2542     0.00     0.00  buf_
  send_output
  0.00      0.03     0.00     2542     0.00     0.00  stdio_
  buffer_flush
  0.00      0.03     0.00     2541     0.00     0.00  read_
  line
  0.00        0.03     0.00     2367     0.00     0.00  freen-
  ode_mem
  0.00      0.03     0.00     2171     0.00     0.00  getline
  0.00      0.03     0.00     1950     0.00     0.00  get-
  date_yylex
  0.00      0.03     0.00     1864     0.00     0.01  fgeten-
  tent
  0.00      0.03     0.00     1762     0.00     0.00  fputen-
  tent
  0.00      0.03     0.00     1753     0.00     0.00  Entn-
  ode_Create
  [ output truncated ] 

In this example, you can see the list of functions executed (in the name col-
umn), as well as how many times each was invoked (in the calls column). The 
main observation is that roughly one-third of the CPU time (according to the %
time column) was spent in each of the  buf_read_line, getstr, and find_rcs
functions.

Interestingly, only 0.03 seconds (see the self seconds column) was spent 
executing these three functions, whereas the program itself ran for a total of 15 
seconds. This indicates that the program is I/O bound instead of limited by the 
performance of any functions in the code. Given that the CVS tool was down-
loading code from the Internet, this should hardly be surprising. 

Code profiling can be implemented in several ways. For the previous exam-
ple, the computer’s operating system took periodic snapshots to determine 
which function was executing at each point in time. Only 100 snapshots were 
taken each second, so the measurement isn’t very fine-grained. In the example, 
most of the functions appear not to have been called at all, simply because they 
weren’t executing during any of these snapshots. 

Another implementation method is for the compiler to add machine code 
to count how many times each function is called. This metric (see the calls
column in the example) is guaranteed to be accurate because it’s based on reli-
able counters instead of periodic snapshots. When profiling each function’s use 
of memory (not shown in the example), the same method is used to count the 
number of times memory chunks are allocated or freed. 
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Coverage Support 

Code coverage is similar in nature to profiling, although the focus is more on 
determining which lines of code, or paths within the code, are actually being ex-
ecuted. The goal is to help developers understand which parts of the code might 
need more testing and, therefore, may still contain unfound bugs. 

As an example, the following output shows the annotated source code of 
a simple program. This output was produced by running the GNU gcov tool 
[25] over a program that was compiled with the GCC -fprofile-arcs and 
-ftest-coverage command-line options. 

The number in the first column indicates how many times the line of code 
was executed, with ##### indicating that it was never executed. 

    -:    1:#include <stdio.h>
    -:    2:
    -:    3:void divide(int number)
  100:    4:{
  100:    5:  if (number % 3 == 0){
   34:    6:    printf("This number is divisible by 3\n");
   66:    7:  } else if (number % 200 == 0){
#####:    8:    printf("This number is divisible by 200\n");
    -:    9:  } else {
   66:   10:    printf("Not an interesting number\n");
    -:   11:  }
  100:   12:}
    -:   13:
    -:   14:int main(int argc, char *argv[])
    1:   15:{
    -:   16:  int i;
    -:   17:
  101:   18:  for (i = 0; i != 100; i++){
  100:   19:    divide(i);
    -:   20:  }
    1:   21:  return 0;
    -:   22:} 

As you can see, line 8 is never reached, which offers a clue that additional test 
cases are required to test that branch of code. 

Counting the number of times each code block is executed offers code cov-
erage information. With some coverage tools, it’s also possible to count the 
number of times a decision is made within the program, even down to the level 
of individual Boolean tests. For example, the following simple expression has 
four possible outcomes: 

if (a < 10 && b < 5) {
   ...
} else {
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   ...
}

Although clearly just two code paths can be followed, you can consider each 
part of the Boolean expression individually and, therefore, use four different 
counters. This is especially important if you care about why the code path was 
taken.

Counter Number a < 10 b < 5 a < 10 && b < 5 

1 False False False

2 False True False

3 True False False

4 True True True

As with profiling, additional “counting” instructions are inserted into each 
object file, assuming that the necessary command-line options are passed to the 
C compiler. Naturally, this makes the object code slightly larger and slower than 
a program compiled without the coverage instrumentation. 

Source Code Documentation 

Although the primary goal of a build system is to produce an executable pro-
gram, it can also generate web-based API documentation. This includes the 
high-level detail of functions, methods, classes, variables, and constant defini-
tions, but without going into any of the low-level implementation detail. Having 
this documentation available is a great way for new developers to understand a 
library’s external API. It makes it possible to learn the available definitions with-
out studying the fine detail of source code that might be thousands of lines long. 

Clearly, expecting developers to update an API web page on their own would 
be too time-consuming and error prone. Given that developers are supposed to 
focus on writing code, updating web pages becomes a secondary task that ends 
up being neglected. Instead, you can use automated tools to extract the infor-
mation directly from the source code and then generate the corresponding web 
page.

To illustrate, let’s consider a short Java class and the resulting output of run-
ning the Javadoc tool (part of the Java Development Kit). This particular tool 
is widely used in the industry to describe the APIs provided by Java classes. In 
fact, the entire set of standard Java libraries is described in this format. From 
the build system’s perspective, Javadoc is simply a compiler that generates web 
pages instead of .class files. 
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This Java source code exports a public API. The purpose of this code isn’t 
important, but take careful note of the method names and parameters, as well 
as the code comments. 

/**
 * Manage a time using the 24-hour clock system.
 *
 * @author Peter Smith
 */
public class ClockNumber {

    /** The hour number, from 0 to 23 */
    int time;

    /**
     * Construct a new ClockNumber object, using
     * the provided parameter as the initial value.
     * @param hour The initial value for the hour, from 0 to 
23.
     */
    public ClockNumber(int hour){
        time = hour;
    }

    /**
     * Construct a new ClockNumber, using midnight as
     * the default time.
     */
    public ClockNumber() {
        time = 0;
    }

    /**
     * Add the specified number of hours to the current time.
     * @param hours The number of hours to add to the current 

time.
     * @return The new hour value.
     */
    public int add(int hours) {
        time = (time + hours) % 24;
        return time;
    }
}

Figure 12.1 shows the web-based output generated by running Javadoc. This 
can be done via the standard javadoc command-line tool or from an IDE that 
supports Javadoc (such as Eclipse). 
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Figure 12.1 Output from the Javadoc tool. 

As you can see, this page contains only the high-level information from the 
class, not the actual lines of code. The class constructors are listed first, followed 
by each of the public methods. Note that Javadoc extracts text from the code 
comments and applies special meaning to Javadoc tags such as @param and  @
return.

Although Javadoc is specifically designed for Java code, other tools support 
other languages. These include Doxygen [71] and DOC++ [72] for C/C++, and 
Sandcastle [73] for C#. 
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Unit Testing 

Adding a unit test variant to a build system enables a developer to determine 
exactly which unit of code (module or function) contains a bug. This contrasts 
with the more traditional approach of testing the complete program to see if it 
behaves correctly. Experience shows that a unit-testing approach makes locating 
and fixing a wide range of bugs much easier. 

For a build system to generate unit tests, it creates a variant of the standard 
release package. Instead of producing the default executable program, the build 
system links the program code with a number of test case functions, which are 
grouped into test suites. It also adds a unit-test framework to provide an auto-
mated testing mechanism, as shown in Figure 12.2.

Unit Test Framework  

Functions/Modules
to be tested

Test cases/Suites

Figure 12.2 A set of functions or modules tested within a unit test framework. Every-
thing is linked into a unit-test executable program. 

When the program executes, the unit test framework invokes each of the test 
cases in turn. Each test case calls a particular function or module from the main 
program’s code, to ensure that it works correctly. This is done by invoking each 
function with a predetermined set of input parameters and then checking the 
return value to ensure that it matches what was expected. If a test case fails, an 
error report is provided on the program’s output, producing the metadata you 
need to debug the problem. 

Now look at a simple unit-testing example, using the JUnit test framework 
[74]. It starts with a simple Java class representing a rectangle: 
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 1  public class Rectangle {
 2
 3    private int width;
 4    private int height;
 5
 6 public Rectangle(int w, int h) throws InvalidSizeExcep-

tion {
 7        if ((w <= 0) || (h <= 0)) {
 8            throw new InvalidSizeException();
 9        }
10        width = w;
11        height = h;
12    }
13
14    public int getWidth() {
15        return width;
16    }
17
18    public int getHeight() {
19        return height;
20    }
21
22    public int getArea() {
23        return width / height;
24    }
25  } 

The Rectangle class defines a constructor (in line 6) that requires both a 
width and height value to be provided. These values are recorded within the 
new object’s width and height fields (lines 10–11). However, if either of these 
values would cause the creation of a zero-sized or negative-sized rectangle, an 
InvalidSizeException is thrown (line 8). 

This class also provides accessor methods for retrieving the width (line 14), 
the height (line 18), and the area of the rectangle (line 22). Note that the area 
calculation on line 23 is incorrect, resulting in bad values produced by the 
getArea() method. 

Now examine a second class, TestRectangle, used to test the functionality 
provided by Rectangle. The TestRectangle class is linked into the program 
only for testing purposes and won’t be copied into the default release package. 

 1  import static org.junit.Assert.*;
 2  import org.junit.Test;
 3
 4  public class TestRectangle {
 5
 6    @Test
 7    public void testRectangleValid()
 8            throws InvalidSizeException {
 9        Rectangle r1 = new Rectangle(1, 2);
10        assertEquals(1, r1.getWidth());
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11        assertEquals(2, r1.getHeight());
12
13        Rectangle r2 = new Rectangle(50, 23);
14        assertEquals(50, r2.getWidth());
15        assertEquals(23, r2.getHeight());
16    }
17
18    @Test(expected= InvalidSizeException.class)
19    public void testRectangleInvalidSize()
20            throws InvalidSizeException {
21        Rectangle r3 = new Rectangle(-1, 10);
22    }
23
24    @Test
25    public void testArea() throws InvalidSizeException {
26        Rectangle r4 = new Rectangle(10, 15);
27        assertEquals(150, r4.getArea());
28    }
29
30  } 

The TestRectangle class is an example of a JUnit test suite. It contains three 
different test case methods ( testRectangleValid, testRectangleInvalid-
Size, and testArea), each of which verifies a feature of the Rectangle class. 
Each test can pass or fail independently from the other tests. 

The testRectangleValid method (lines 6–16) validates the basic creation 
of Rectangle objects. It creates two objects (stored in  r1 and  r2), each with 
a specific width and height. It then invokes the getWidth() and  getHeight()
methods to ensure that both the constructor and the accessor methods work as 
expected.

The assertEquals() method is defined within the JUnit framework. If the 
expected value (the first parameter to assertEquals()) differs from the actual 
value seen by calling getWidth() or  getHeight(), the test case is marked as 
having failed. 

The testRectangleInvalidSize method (lines 18–22) ensures that creating 
a zero- or negative-sized rectangle isn’t possible. The directive in line 18 specifies 
that the method is expected to throw an InvalidSizeException when a new 
Rectangle is created. If no exception is thrown, the test case fails. 

Finally, the testArea() method confirms that the  getArea() method 
works as expected. However, there’s a bug in getArea() (the calculation used 
/ instead of *). Figure 12.3 shows the output from the Eclipse JUnit view when 
this particular test case fails. 



ptg

Unit Testing 347

Figure 12.3 The JUnit view from Eclipse, showing results from the TestRectangle 
class.

Although creating a good set of test suites involves significant work, the ben-
efits can be enormous. Running through all the tests might take a few minutes, 
but having a detailed report of exactly where the problem lies is so much easier 
than debugging a full executable program. As an analogy, it’s like being told 
exactly where the needle is within a haystack, instead of trying to find it for 
yourself.

In many development environments, it’s standard practice to consider the 
software build broken if the unit tests don’t pass at 100%. It’s not just a mat-
ter of whether all the code compiles correctly; the software must pass all the 
test cases. If any failures occur, the code isn’t ready to be shared with other 
developers.

This simple JUnit example doesn’t show the full power of unit testing and 
doesn’t even start to uncover the numerous techniques involved in writing good 
tests. For a more complete view of unit testing best practices, refer to [75]. To 
learn how to retrofit legacy software with new unit tests, refer to [76]. 
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Static Analysis 

The final type of metadata discussed in this chapter provides the capability to 
identify software bugs, or at least suggest where potential bugs might turn up 
if you’re not careful. Studying the program’s source code, a static-analysis tool 
can pinpoint lines of source code where a bug might be lurking. The developer 
reviews this information and decides whether there’s a true problem to fix. 

The following example shows a small Java class that contains a few program-
ming errors. 

 1 import java.util.List;
 2
 3 public class Buggy {
 4    int myField;
 5
 6 public void buggyMethod(List list, int number, String 

str) {
 7       int count;
 8
 9        if (list == null) {
10            list.add(Integer.valueOf(number));
11        }
12        myField = number;
13
14        if (str == "Hello"){
15            System.out.println("Hi");
16        }
17    }
18 } 

Running this source code through the FindBugs tool [8], you can automati-
cally identify three different problems. Although the output from FindBugs is 
slightly cryptic, any Java or C# programmer should be able to determine the 
errors.

$ findbugs Buggy.class
H C NP: Null pointer dereference of ? in Buggy.
buggyMethod(List, int,
        String) Dereferenced at Buggy.java:[line 10]
H B ES: Comparison of String parameter using == or != in
        Buggy.buggyMethod(List, int, String)   At Buggy.
java:[line 14]
M P UrF: Unread field: Buggy.myField  At Buggy.java:[line 12]
Warnings generated: 3 

Ironically, these issues often escape the attention of developers, who tend 
to focus more on their program’s logic than mistakes of this nature. A static-
analysis tool is good at finding commonly recurring patterns, identified by a 
brute-force approach. Humans simply aren’t good at brute-force analysis. 
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In addition to FindBugs, consider using tools such as Lint, Coverity Prevent 
[6], or Klocwork Insight [7]. 

Adding Metadata to a Build System 

As you saw in Chapter 5, you can add variants into a build system in several 
ways. In Part II, “The Build Tools,” you also saw how each build tool (GNU 
Make, Ant, SCons, CMake, and Eclipse) facilitates the addition of variants. 
Creating metadata in the build process is handled the same way. 

From a developer’s perspective, several approaches exist for requesting the 
additional metadata. The first approach is to build the standard software release 
package but provide an extra command-line flag to request that metadata be 
added. For example: 

•  gmake DEBUG=1 all: Builds the standard release package, but with ad-
ditional debugging information 

•  ant -Dcoverage=yes: Builds the standard software, with added instru-
mentation for collecting coverage data 

•  scons profiling=on: Builds the standard software, but with code in-
strumented for profiling the program’s execution 

In each of these examples, you build the standard release package, but with 
additional metadata included. As you saw in Part II, the build system can either 
select which compilation tool is used (the GNU Make CC variable) or modify the 
flags passed to the standard compiler (the GNU Make CFLAGS variable). 

For the remaining types of metadata, which produce a different type of build 
output, it’s common to make use of a completely different build target: 

• gmake tests: Builds and executes the unit test suites 

• ant doc: Generates the API documentation using Javadoc 

• scons analyze: Analyzes the code using a static-analysis tool and pro-
duces a bug report 

In these three cases, you would add a completely new section in the build 
description file stating which commands, tasks, or builder methods were used to 
generate the metadata. This contrasts with simply modifying the existing build 
steps.
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Finally, the Eclipse IDE has built-in support for these types of metadata—
or at least the capability to interconnect with third-party tools. Enabling these 
features is a simple matter of opening the correct Eclipse view or selecting a 
configuration check box. 

Summary

In addition to building a customer-ready release package, a build system should 
enable the creation of metadata. This data isn’t visible to the end user; it instead 
offers developer-facing techniques for improving software quality or enabling 
more efficient development. 

A program’s metadata includes debugging support, coverage support, and 
profiling support, which enable developers to view their program’s runtime 
behavior. A document-generation tool summarizes the program’s main func-
tions or methods, making it easier to visualize the program’s structure. Finally, 
unit testing and static analysis provide details on a program’s actual or sus-
pected bugs. 

Adding metadata to a build system is simply a matter of adding build flags, 
alternate compilation tools, or new build targets. The exact technique depends 
on how the particular type of metadata is generated. 
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Software Packaging and 
Installation

The final step in the build process is to create a release package (see  Figure 13.1).
This package contains the complete set of files to be installed on the target ma-
chine. Anyone who has added software to a computer, which is almost anyone 
who owns a computer, will be familiar with the installation process. 

Version-
Control

Tool

Source 
Tree

Object
Tree

Release
Package

Compilation Tools

Build Machine

Target Machine

Figure 13.1 The big picture, with focus on creating a release package. 

Assume here that the end user isn’t a developer and won’t know how to 
compile the program directly from source code. It’s more likely that users will 
download the software from the Internet and double-click on the Setup icon. 
On the other hand, users might insert a CD-ROM and wait until the software 
is automatically installed. This is clearly a place where the Windows and Mac 
OS X operating systems excel, partially explaining their popularity. As you’ll see 
later, UNIX-like systems are also starting to support the same user-friendly ways 
of installing packages. 

351
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The packaging process consists of a number of steps. The main goal is to copy 
the required executable programs, dynamic libraries, and data files out of the 
object tree and place them in a release package. This is also the point at which 
a version number is added. 

Unlike the object tree, the release package contains only files that are required 
to execute the program. It doesn’t contain any of the intermediate object 
files generated by the build process. Also, the layout of the files within the 
release package must match the desired layout on the target machine. This can 
be quite different from how the files are stored in the source or object trees. 

When installing software on the target machine, some systems have all their 
files placed in a single file system directory, whereas other software is spread 
across multiple directories. As an example, Microsoft Windows device drivers 
might need to be copied into the C:\Windows\system32 folder, whereas the 
program itself would go into C:\Program Files .

You may also need to customize some of the target machine’s system configu-
ration, such as adding new user accounts or access groups, all of which could be 
based on input the user provides during the installation process. For software that 
uses interpreted byte-codes, such as Java or C#, the correct version of the virtual 
machine must also be installed. 

This chapter examines three different approaches to packaging a release 
image. Each method has its own set of benefits. 

• Archive files: A simple approach in which the user manually extracts files 

• Package-management tools: A more complex approach in which pre-
requisite packages are identified, files are extracted to specific parts of 
the file system, and a post-installation script can be run. 

• Custom-built GUI installation tools: An advanced approach in which a 
GUI interface enables the end user to customize the way the software is 
installed. 

The chapter now discusses each of these approaches in more detail and gives 
an example of each case. 

Archive Files 

The most basic approach to packaging a software release is to store the files 
inside an archive. A common tool in the Microsoft Windows world is the zip
utility, which compresses each of the input files and joins them into a single large 
file. It also takes note of whether the input files were inside subdirectories so that 
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it can reproduce that same hierarchy on the target machine. In the UNIX world, 
the same effect is achieved by using the tar tool to create an archive and using 
the gzip or bzip2 tools to compress the archive file. 

To implement a packaging system using this approach, you first copy the 
necessary files out of the object tree and place them in a temporary holding 
directory (see Figure 13.2). The files should be arranged in this directory using 
the same layout they’ll have on the target machine. 

When the temporary holding directory is fully populated, you invoke the archiv-
ing tool to package everything into a single file. This file is delivered to the end 
user, who then runs the same archiving tool, but in the reverse mode, to extract the 
files onto the target machine. At that point, the software is ready to be executed. 

Object Tree Archive file

Temporary
Holding

Directory 
Target Machine with
  installed software 

Figure 13.2 Creation of a release package, using a temporary holding directory in the 
creation of a file archive. 

Packaging Scripts 

The temporary holding directory can be created with a simple script that copies 
the required files from the object tree. The following is a small Windows batch 
script (named packager.bat) that creates a .zip file. This example uses the 
7-zip utility [77] to compress the files into an archive. 

 1  @echo off
 2  REM Packaging script for a simple application.
 3 REM This batch script is executed after the full object 

tree has
 4 REM been created. It copies files into a temporary direc-

tory and
 5 REM then creates a zip file of the content. The user must 

provide
 6 REM a version number.
 7
 8  REM Version number of this package (supplied by the user)
 9  set VERSION=%1%
10
11  REM Name of the final software package
12  set APPNAME=myapp
13
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14  REM Path to the fully built object tree.
15  set OBJDIR=obj
16
17  REM Name of the temporary directory (that we'll zip up)
18  set   PKGDIR=myapp.%VERSION%
19
20  REM Create the temporary directory
21  mkdir %PKGDIR%
22
23 REM Now, copy files from the object tree to the package 

directory
24  copy %OBJDIR%\calc.exe                   %PKGDIR%
25  copy %OBJDIR%\libs\libmath.dll           %PKGDIR%
26  copy %OBJDIR%\libs\libgraphics.dll       %PKGDIR%
27  copy %OBJDIR%\images\splash_screen.jpg   %PKGDIR%
28  copy %OBJDIR%\languages\errors.en        %PKGDIR%
29  copy %OBJDIR%\languages\errors.fr        %PKGDIR%
30  copy %OBJDIR%\languages\errors.de        %PKGDIR%
31
32 REM Finally, zip up the temporary directory to produce 

the final
33 REM archive file (called myapp.<version>.zip).
34 7z -tzip a myapp.%VERSION%.zip %PKGDIR% 

By executing this packager.bat script and providing the software’s version 
number as a parameter, you end up with a complete file archive ready to be 
installed on the target machine. In a typical build system, the build tool invokes 
this packaging script, just as if it were an ordinary compilation tool. 

c:\work> packager.bat 3.0.1
        1 file(s) copied.
        1 file(s) copied.
        1 file(s) copied.
        1 file(s) copied.
        1 file(s) copied.
        1 file(s) copied.
        1 file(s) copied.

7-Zip 4.65  Copyright (c) 1999-2009 Igor Pavlov  2009-02-03
Scanning

Creating archive myapp.3.0.1.zip

Compressing  myapp.3.0.1\splash_screen.jpg
Compressing  myapp.3.0.1\errors.de
Compressing  myapp.3.0.1\errors.en
Compressing  myapp.3.0.1\errors.fr
Compressing  myapp.3.0.1\calc.exe
Compressing  myapp.3.0.1\libgraphics.dll
Compressing  myapp.3.0.1\libmath.dll

Everything is Ok
c:\work>
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Assuming that everything worked correctly, you end up with a single archive 
file named myapp.3.0.1.zip.

Now you’re ready to ship the release package to the end users. They receive a 
copy of the file via the Internet or on a CD-ROM and install it on their personal 
machine. They first create a directory in which to install the software, and then 
they execute an unarchive command to retrieve the individual files. Unless the 
user performs some manual customization steps, the files will be in the exact 
state as when they were archived in the first place. 

Although a typical Windows user extracts these files by right-clicking on 
the .zip file icon and selecting  Extract All, it’s also possible to extract the 
archive’s files using the command line: 

c:\work> cd C:\Program Files
c:\Program Files> 7z x myapp.3.0.1.zip

7-Zip 4.65  Copyright (c) 1999-2009 Igor Pavlov  2009-02-03

Processing archive: myapp.3.0.1.zip

Extracting  myapp.3.0.1\splash_screen.jpg
Extracting  myapp.3.0.1\errors.de
Extracting  myapp.3.0.1\errors.en
Extracting  myapp.3.0.1\errors.fr
Extracting  myapp.3.0.1\calc.exe
Extracting  myapp.3.0.1\libgraphics.dll
Extracting  myapp.3.0.1\libmath.dll
Extracting  myapp.3.0.1

Everything is Ok

Folders: 1
Files: 7
Size:       91
Compressed: 1069 

Finally, to execute the program, you use Windows Explorer to browse to the 
C:\Program Files\myapp-3.0.1 directory and then you double-click on the 
calc.exe executable program. 

This example assumes that files are packaged into the file archive in the 
same hierarchy in which they’ll appear on the target machine. This technique is 
acceptable for simple software packages, but it doesn’t allow files to be placed in 
arbitrary locations. It also doesn’t enable files to be modified after they’ve been 
installed on the target machine. 

To overcome this limitation, most archive files contain an installation script 
as one of their included files. The user extracts the archive in the usual way and 
then executes a custom-written installation script to complete the process. For 
example, you could add the install.bat script into the file archive and execute 
it within the myapp.3.0.1 directory: 
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c:\Program Files\myapp.3.0.1> install.bat
Installation Complete 

This installation script can perform an arbitrary set of operations, including 
moving files to a different file system location, changing the ownership of files, 
adding data to the Windows Registry, or adding new user accounts. The instal-
lation script can also interact with the user, to customize the way the software 
is installed. 

Other Archive Formats 
In addition to the basic zip archive format and the equivalent tar/gzip format 
in UNIX, several others are worth mentioning: 

• ISO 9660 images [89]: This is the standard format in which CD/DVD-
ROM images are produced. Instead of creating a zip file, the packaging 
script creates a raw disk image, ready to burn onto a CD or DVD. The disk 
image file is an exact replica of the CD/DVD file system that’ll be mounted 
onto the target machine. The target machine’s operating system loads and 
executes scripts or other programs when the CD/DVD is inserted or when 
the computer first boots. 

• Mac OS X .dmg images: This is similar in nature to the ISO 9660 format, 
although it is used specifically for Mac OS X systems. 

• Self-extracting archives: This type of archive is similar to a ZIP file, ex-
cept that the archive is an executable program in its own right. When the 
archive file is executed, the embedded files are extracted onto the target 
machine and the installation script is run. This provides a single extract/
install process instead of manual installation. 

Let’s now discuss some important improvements to the packager.bat script. 

Improvements

Keep in mind that a simple script (such as packager.bat), for a program of less 
than ten files, won’t suffer from the same scalability problems as a much larger 
system. Here are some improvements to make the packager.bat script more 
scalable, reliable, and user friendly. 

• Validate input parameters: The version number parameter should have 
been validated, at least to make sure it’s not empty. In the script, if 
the user doesn’t provide a command-line parameter, the script silently 
continues with an empty string in the %VERSION% variable. This isn’t 
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too much of a problem here, but in more complex situations, the lack of a 
suitable input value could cause a corrupt release package. 

To solve this problem, the script should at least validate that the user 
has provided a version string. If not, it should display an informative 
message to let the user know what’s expected. You might also want to 
validate that the version string has the correct format (such as 3.0.1). 

• Abort on error: If any of the commands inside the script fail, the entire 
script should terminate and return a suitable exit code. Without this rule 
in place, parts of the packaging script might fail, yet the final release pack-
age would still be constructed. Unless you carefully watch the build log for 
subtle error messages, you might be misled into believing that the packag-
ing step succeeded. The truth is discovered only when the software fails to 
pass sanity testing. 

As an example, if you created a release package from an object tree that 
hadn’t been fully built, the packaging script wouldn’t be able to copy all 
the required object files, yet a release package would still be created. Of 
course, you’d quite rightly expect that the packaging step should never 
have been invoked in the first place, especially if the earlier build steps 
had somehow failed. 

• Provide meaningful error messages: When an error does occur, always 
provide a meaningful error message to let the developer know exactly 
what went wrong. In the simple batch script, missing files cause the copy
command to produce the following cryptic output: The system cannot 
find the file specified. This doesn’t provide any information about 
which file is missing or how the developer should resolve the problem. A 
more meaningful message is required. 

• Avoid unnecessary copying: Support the capability to package files directly 
from the source tree instead of only from the object tree. Adding the %SRCDIR%
definition enables you to copy configuration files, graphic images, and 
other data files that the build process doesn’t modify. For example, given 
that errors.en, errors.fr, and errors.de are plain-text files that are 
never customized by the build process, there was no need to copy them 
into the object tree in the first place. 

• Consider future scalability: The approach of duplicating files from the object 
tree into the temporary holding directory won’t scale for large software 
projects. If the final release package ends up being 100MiB in size (after 
being compressed), it would take several minutes to copy all the files to the 
holding directory—and probably much longer to compress such a large 
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amount of data. Also, you’d need substantially more than 100MiB to store 
the uncompressed temporary files in the holding directory. 

One solution is to use a build tool to perform the copying instead of us-
ing a simple shell script. With dependency analysis, the build tool copies 
files to the holding directory only if they’ve been modified since the last 
time the packaging step was performed. In contrast, the simple script 
blindly copies the files each time, even if they’re unchanged. 

Another approach is to use a symbolic link from the file’s location in 
the holding directory back to the file’s location in the object directory 
instead of making a temporary copy of each file. The packaging script 
takes very little time to set up the links; the archiving tool must follow 
the links and retrieve the true content of the files. Of course, this method 
works only with archiving tools that can follow symbolic links to re-
trieve the original file. Unfortunately this approach doesn’t allow you to 
package the symbolic link itself. 

• Beware of stale files: You might want to delete the entire holding direc-
tory before you start to fill it with files. Although any existing files should 
be overwritten by a newer version of the same file, there’s still a chance 
that a stale file could be included in the release package. That is, when a 
file that was originally listed in the packaging script is removed (the copy
command is removed), the stale version of that file remains in the holding 
directory instead of being overwritten or deleted. Unless the copy com-
mand is replaced by a del command (to explicitly delete the file) or the 
developer removes   the entire holding directory, the file is still packaged 
into the archive. 

• Avoid using a holding directory: Finally, instead of using a packaging 
script to copy files, which doesn’t scale well for large programs, you can 
design the build system to store files in their correct target machine loca-
tion. That is, instead of storing each executable program, dynamic library, 
or data file in an arbitrary location within the object tree, you place them 
in the holding directory in the first place. With this approach, the packag-
ing script performs only the final archiving operation instead of the time-
consuming (and disk-consuming) copying step. 

Unfortunately, this approach requires extra work because most build 
systems store object files in a location that suits them, not the target 
machine. Many systems store generated files in an object tree directory 
that maps directly to the source code’s path within the source tree. This 
approach makes it difficult to arrange files into the locations required 
by the target machine. 
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In closing, the archiving method of creating a release package works well, 
but primarily for target machines that have a predictable file system layout. In 
fact, it works very well for embedded systems that don’t have a lot of software 
running on them and don’t require any end-user customization. On the other 
hand, software packages intended for installation on desktop computers tend 
to require a lot more intelligence from their packaging tools. Let’s now look at 
package-management tools that can handle more complex scenarios. 

Package-Management Tools 

Historically, most software developed for UNIX-like operating systems was pro-
vided in source code format, typically written in C or C++. The user extracted 
the source code from the file archive (usually with a tar.Z or  tar.gz extension) 
and then invoked the build system to produce executable programs. The main 
reason for this approach is there was never a standard version of UNIX or a 
standard type of CPU that UNIX programs executed on. Source code distribu-
tion was the only feasible approach. 

If you try to build UNIX software from source code but you’re not using 
a suitably matching version of the operating system, you’ll most likely see a 
number of compilation errors. The build might fail because of a missing header 
file, a missing dynamic library, or perhaps some symbol definitions that aren’t 
available on your system. Clearly, your operating system is too different or is 
lacking one of the optional packages the software’s author had on his or her 
machine.

After you get some experience installing UNIX software, you can probably 
figure out which optional packages are missing. If you’re lucky, the software’s 
author placed special compile-time checks to determine whether the prerequisite 
packages were already installed. At the very least, the author should have pro-
vided written documentation on which third-party packages the software uses. 
Some of the prerequisite packages might have their own set of dependencies, 
so you can sometimes spend the better part of a day compiling and installing a 
program.

To get around these issues, the approach to distributing software in UNIX-
like systems has changed for the better. One common example is that the Linux 
operating system has become more standardized than ever, and most Linux 
systems run on Intel x86–based hardware. Linux is nowhere near as prevalent 
as Microsoft Windows, but there’s still enough standardization that providing 
binary distributions is common. 
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The RPM Package Manager Format 

One of the most widespread methods for distributing Linux-based software 
is the RPM Package Manager format [78]. Originally created for Red Hat 
Linux, it’s now the standard way of packaging software in a range of Linux 
distributions. The name RPM is a self-referential acronym for RPM Package 
Manager. 

RPM files can contain either source code or executable programs, but the lat-
ter binary RPM is the most common. Using binary RPMs as the primary means 
of distributing packages reduces the task of installing software, including any 
prerequisite packages, to just a few seconds. It’s clearly a benefit to not require 
the end user to perform compilation steps or deal with the possibility of compile 
errors.

From a simplistic view, an RPM file is similar to a UNIX archive, in that it 
contains one or more files to be installed on the target machine. The big differ-
ence is that RPM files come with a great detail of added intelligence, making the 
installation process simpler and more powerful. For example, RPM files have 
the following features: 

• Consistent metainformation: The package’s metainformation is stored in 
a consistent manner. Among other things, each RPM file stores the pack-
age’s name, the version number associated with this particular release of 
the package, the date it was created, the author’s name and email address, 
the URL from which the package can be downloaded, and details of the 
software’s license agreement. Although this information could always be 
stored in a README file (and packaged into the archive), having everything 
in a consistent format makes it possible for external programs to read and 
act upon the various fields. 

• Embedded scripts: Unlike basic .zip or  .tar files, an RPM file contains 
a number of embedded scripts. An arbitrary sequence of shell commands 
can be executed on the target machine, both before or after the files have 
been installed and before or after the files have been uninstalled. Of course, 
there’s no reason you can’t just package a separate post-install.sh
script as one of the archive’s files and ask the user to run that script manu-
ally. It’s just easier to have the correct script execute at the correct time 
without the user worrying about it or forgetting the extra step. 

• Dependency checking: Software packages might need to ensure that 
other packages are first installed on the target computer. This includes 
runtime environments, such as the Java or C# virtual machines. Instead of 
leaving this as a manual exercise for the person installing the software, the 
RPM format enables the author to explicitly list the required packages, as 
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well as the minimum versions. If the required packages are missing or the 
version isn’t acceptable, the system won’t allow the new RPM file to be 
installed.

• Validation of CPU types: The RPM installation mechanism also validates 
the type of CPU required to execute the software. Typically, there’s no 
point in installing software destined for a PowerPC architecture on a 
machine that has an x86 processor. 

• Automatic uninstallation: RPM maintains a database to record which 
packages are currently installed on the target machine, so the RPM tool 
has the means for uninstalling the software, even if the original RPM file is 
no longer available. The only caveat is that RPM gives an error if you try 
to remove a package that’s required by one or more other packages. For 
example, if you tried to remove the standard C library package, you’d find 
that every other package in the system depends on it. 

• Intelligent upgrades: The RPM system enables you to have multiple ver-
sions of the same package installed and can act intelligently when configu-
ration files have been locally modified. For example, the configuration file 
for the Apache web server might be installed as /etc/apache2/default-
server.conf. If you upgrade to a newer version of the server, the RPM 
tool would warn you if you made local customizations and would refrain 
from overwriting it with a new version. It would instead leave both the old 
and new configuration files in the /etc/apache2 directory and request 
that you manually resolve any conflicts or changes. 

These are some of the key benefits of the RPM system, but plenty of other 
useful features make it an ideal system for installing software. To see the wide 
range of features, refer to the excellent documentation on the RPM web site 
[78].

Users of Debian Linux (and other variants, such as Ubuntu) are probably 
more familiar with the deb file format [90], which is similar to the RPM system. 
Deb files use the dpkg and apt commands for manipulating package files. 

Let’s now look at a practical example of using the RPM system. 

The rpmbuild Process 

This example is limited to packaging only four different files, but that’s enough 
to demonstrate many of the basic features of the RPM format. You’ll also see 
how package versioning works, how prerequisite packages are listed, and how 
the post-install and preuninstall scripts are specified. 
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First, examine the high-level flow of creating and installing an RPM file (see 
Figure 13.3).

rpmbuild
Compiler

Target Computer

Binary RPM:
example-2.3.4-1.i586.rpm

Source code archive:
example-2.3.4.tar.gz

example.spec

Figure 13.3 High-level flow of creating the example RPM file. 

The steps are as follows: 

1. The build engineer responsible for maintaining the release package first 
constructs an RPM specification file ( example.spec). This contains the 
list of files that should be packaged, as well as the package’s metainforma-
tion and installation scripts. You’ll examine one of these files in detail. 

2. The second input to the RPM process is the original source code archive, 
often provided as a tar.gz file. The packaging process extracts the source 
files and uses the standard build and installation procedures to create the 
necessary executable files. There’s nothing special about this step because 
you’re simply using the same build instructions the end user would have 
used when manually installing from source code (for example, make all
and make install). The major difference is that because you’re the author 
of the code (not the consumer), you shouldn’t have any trouble getting it to 
compile on your computer. 

3. Next, the rpmbuild tool constructs the RPM file, ready for distribution 
to end users. It reads the directives within example.spec to configure 
the product source code and build the final executable programs. It also 
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embeds the necessary metainformation and installation scripts into the 
RPM file. The output of the build process is the example-2.3.4-1.586.
rpm file, which, as you might expect, is in RPM file format. 

4. The final step is for end users to obtain the RPM file (often downloaded 
from the Internet) and install it on their own computer. As you’ll see 
shortly, the rpm tool is used to install and uninstall RPM packages, and it 
can also be used to query the set of packages currently installed. 

An Example RPM Spec File 

Now examine example.spec, the RPM spec file that packages four different 
files. In the next section, you’ll see how the rpmbuild tool parses this spec file 
and produces a binary RPM file. Let’s start by looking at the entire content of 
example.spec so you can see how everything fits together. Then you can ex-
plore each section of the file. 

 1  Name: example
 2  Version: 2.3.4
 3  Release: 1
 4  Group: Applications/Publishing
 5  Vendor: Arapiki Solutions, Inc.
 6  URL: http://www.arapiki.com
 7  Packager: Peter Smith <psmith@arapiki.com>
 8 Summary: This is an example program to show how RPMs 

work.
 9  License: Exampleware
10
11  # Sources come from /usr/src/packages/SOURCES/...
12  Source: %{name}-%{version}.tar.gz
13
14 # When installing the built software, use this as the 

root.
15  Buildroot: %{_tmppath}/%{name}-%{version}-buildroot
16  Requires: glibc > 2.8
17
18  %description
19 This is an example program that demonstrates how RPMs 

work.
20
21 We show a spec file that is passed into the "rpmbuild" 

program
22 in order to package up the files. In this example, we see 

how
23 to build from source code, how to run a post-installation 

script,
24 and how to ensure that prerequsite packages are already 

installed.
25

http://www.arapiki.com
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26  %prep
27  %setup -q
28
29  %build
30
31 # compile the source code, using the normal build 

procedure.
32  make
33
34  %install
35
36  # install the compiled software to our "fake" root.
37  make install PREFIX=$RPM_BUILD_ROOT
38
39  %files
40
41  # specify which files are to be installed, as well as
42  # their ownership and permission bits.
43  %attr(0750,root,root) /usr/bin/example
44  %attr(0755,root,root) /usr/lib/libexample.so.1
45  %attr(0755,root,root) /usr/lib/libhelper.so.4
46 %attr(0644,root,root) %doc /usr/share/doc/manual/example.

pdf
47
48  %clean
49  rm -r $RPM_BUILD_ROOT
50
51  %post
52  groupadd exgroup
53  chgrp exgroup /usr/bin/example
54
55  %preun
56  groupdel exgroup 

As a starting point for the discussion, consider the directory structure that the 
rpmbuild tool expects to use. If your Linux system is RPM based, you’ll likely 
find a system-level directory dedicated to creating and publishing RPM files. 
You aren’t required to use these directories (you can use your home directory, 
if you want to), but because the standard directories are already created, this 
example will use them. In this case, the Linux system already has the following 
world-writable directories inside /usr/src/packages.

$ ls -l /usr/src/packages/
total 20
drwxrwxrwt 4 root root 4096 2009-09-14 15:30 BUILD
drwxrwxrwt 9 root root 4096 2009-05-16 22:26 RPMS
drwxrwxrwt 2 root root 4096 2009-09-08 19:37 SOURCES
drwxrwxrwt 2 root root 4096 2008-12-02 17:41 SPECS
drwxrwxrwt 2 root root 4096 2008-12-02 17:41 SRPMS 

Each of these directories has a specific purpose: 
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• BUILD: This directory is used by  rpmbuild to store the source code and 
object trees it creates when compiling the original source code archive (in 
our case, example-2.3.4.tar.gz).

• RPMS: This is the output directory where the final  example-2.3.4-1.586.
rpm file will be placed. 

• SOURCES: The original source code archive ( example-2.3.4.tar.gz)
must be stored here for rpmbuild to locate it. 

• SPECS: The  example.spec configuration file will be stored in this 
directory.

• SRPMS: This is similar to the  RPMS directory but is used for storing 
source RPM files instead of binary RPM files. The example doesn’t use 
this directory. 

You now have enough background to start looking at the example.spec file. 
The first part of the file contains various metainformation fields that describe 
the software being packaged. 

 1  Name: example
 2  Version: 2.3.4
 3  Release: 1
 4  Group: Applications/Publishing
 5  Vendor: Arapiki Solutions, Inc.
 6  URL: http://www.arapiki.com
 7  Packager: Peter Smith psmith@arapiki.com
 8 Summary: This is an example program to show how RPMs 

work.
 9 License: Exampleware 

Each of these fields has a specific meaning and is intended to be viewed 
directly by the end user, as well as by special tools that can process RPM files: 

• Name: A short identifier that uniquely describes this package. The name is 
stored in the internal RPM database and is used to identify this package 
in future RPM operations. As an example, you would use this name if you 
later decided to query or uninstall the software. 

• Version: The version number of this software release. Not only is it 
possible to have multiple versions of the same package installed, but 
the RPM system uses this version number when checking for prerequi-
site packages. Although it’s unlikely, some other developer could create 
an RPM package that makes use of the functionality provided in the 
example package. In his own spec file, the user might state that version 
2.0.0 or higher of  example must first be installed before his own RPM 
can be installed. 

http://www.arapiki.com
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• Release: Even though the  Version field uniquely identifies the ver-
sion of software being installed, you can end up producing two differ-
ent RPM files that each contains the exact same version of software. This 
isn’t common, but you might produce a Release 2 of the Version 2.3.4 
software to replace the Release 1 RPM file that was incorrectly packaged. 
Ideally, this should never happen; the RPM build process should be fully 
automated and tested. Mistakes of this nature should never be made in 
production software. 

• Group: When an end user installs software via a GUI tool, the software’s 
group field provides information on which category of applications this 
software should be listed under. In this case, you’re requesting that this 
RPM be categorized as a publishing application. 

• Vendor, URL, Packager: These three fields provide detail on which organ-
ization created the package, where it can be downloaded, and which indi-
vidual person did the packaging. This information is vital if you’re looking 
for information about a package that’s already installed on your system 
(or perhaps you stumbled across an uninstalled RPM file on your disk and 
wondered where it came from). 

• Summary: This field provides a short description of the software in the 
package. This information is commonly used in GUI tools that display 
a short one-line synopsis of the software. If you need to provide further 
information, you also have the %description section (see later), which 
can hold multiple lines of text. 

• License: This field describes the legal implications of installing this 
software. Many software products come with detailed license documents, 
but this field is designed for short license names, such as BSD, GPL, LGPL,
or Apache.

Now that you’ve seen how to describe the high-level details of the package, you 
need to provide further information about how the source code is obtained and 
how it’s to be compiled. The Source directive provides the location of the source 
code’s tar-ball file, which must have been placed within the SOURCES directory. 

12  Source: %{name}-%{version}.tar.gz 

Note the use of variable substitution when forming the name of the tar-ball 
(in this case, it’ll be expanded out to example-2.3.4.tar.gz).

The Buildroot directive informs  rpmbuild where the program’s executable 
files should be installed. This isn’t the same as the BUILD directory you saw ear-
lier, which is where the source code is extracted and compiled. Instead, the build
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root is a temporary holding directory that mirrors the installation directory on 
the target machine. 

15  Buildroot: %{_tmppath}/%{name}-%{version}-buildroot 

Instead of installing the compiled program into /usr/bin on the build 
machine, it’s placed in /tmp/example-2.3.4-buildroot/usr/bin. After all, 
you don’t really want to install this software on the build host; instead, you 
want a convenient place to collect all the files that need to be archived, ready for 
installation on the target machine. 

The next directive, Requires, states that the glibc package must already be 
present before the example package can be installed. In addition, the installed 
glibc package must be newer than version 2.8. 

16  Requires: glibc > 2.8 

If the package is missing or is too old, the rpm tool refuses to install the exam-
ple RPM file. There can be any number of Requires directives, depending on 
how many prerequisite packages are needed. 

Next, the %description area contains an arbitrary text-based description 
of the package. This provides more detail than the Summary directive you saw 
earlier.

18  %description
19 This is an example program that demonstrates how RPMs 

work.
20
21 We show a spec file that is passed into the "rpmbuild" 

program
22 in order to package up the files. In this example, we see 

how
23 to build from source code, how to run a post-installation 

script,
24 and how to ensure that prerequsite packages are already 

installed.

The %prep (prepare) section provides a list of commands for preparing the 
software’s source code tree. Because you’re using the standard behavior of 
extracting source files from a tar-ball and then building them in the BUILD sub-
directory, you can use the built-in %setup –q command to extract the files. 

26  %prep
27  %setup -q 

On the other hand, if you’d rather obtain the source code from a version-
control tool (such as CVS or Subversion), or simply make use of the developer’s 
existing source tree, you’d place the necessary shell commands inside this section. 
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Next, the %build section provides shell commands to compile the source 
code into the resulting executable programs. Instead of cluttering the example.
spec file with many build steps, this example uses the existing makefile. After 
all, it’s pointless to have two different build systems, so having rpmbuild call 
upon your existing system is usually the best approach. 

29  %build
32  make 

Another approach is to let your developers execute the compilation com-
mands by themselves instead of having it done for them. In this case, your build 
system must contain an explicit step to invoke rpmbuild after each of the object 
files is brought up-to-date. With this approach, the %build section is left empty 
because the compilation work is already complete. 

It should be no surprise that the %install section provides commands for 
installing the software. However, instead of installing the executable programs 
onto the build machine, you install them into our temporary holding directory, 
referred to as $RPM_BUILD_ROOT (and previously specified by the  Buildroot
directive).

34  %install
37  make install PREFIX=$RPM_BUILD_ROOT 

By reusing the software’s existing make install build target, you end up 
placing the software in the exact directory structure that’ll be required on the 
target machine. Again, any sequence of shell commands is allowed here, as long 
as they install the necessary output files. 

Now for the part you’ve probably been waiting for. You must list all the 
files that’ll be packaged into the RPM archive and consequently installed on the 
target machine. 

39  %files
43  %attr(0750,root,root) /usr/bin/example
44  %attr(0755,root,root) /usr/lib/libexample.so.1
45  %attr(0755,root,root) /usr/lib/libhelper.so.4
46 %attr(0644,root,root) %doc /usr/share/doc/manual/example.

pdf

You also specify the file’s access-control information (permission bits, file 
owner, and file group), and the rpm tool sets these attributes when the package 
is installed. Also, you use the %doc directive to distinguish which of the installed 
files are just documentation (and can be optionally ignored). 

To keep things tidy, the example.spec file provides information on cleaning 
up after the build process. In this case, you simply remove the content of the 
holding directory after the RPM file has been created. 
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48  %clean
49  rm -r $RPM_BUILD_ROOT 

The last step in the example.spec file is to list the pre- and post-installation 
scripts. These sections provide a list of UNIX shell commands to be executed 
immediately before or after the software has been installed or uninstalled. You 
can therefore have four different sections, each run at a different point in time: 

•   %pre: Shell commands run before installation of the files 

•  %post: Shell commands run after installation of the files 

•  %preun: Shell commands run before the files are removed from the 
system (uninstalled) 

• %postun: Shell commands run after the files are removed from the 
system

This example provides a post-install script that adds a new UNIX group 
(called exgroup) and ensures that only members of this group can run the 
/usr/bin/example program. Note that the permission bits have already been 
set to 0750 in the %files section. 

51  %post
52  groupadd exgroup
53  chgrp exgroup /usr/bin/example
54
55  %preun
56  groupdel exgroup 

Additionally, the preuninstall script removes the group, although, technically, 
you might want to uninstall the files before you delete the group; otherwise, the 
files could be group-less for a short period of time. In that case, you’d simply 
move the groupdel command to the %postun section. 

That completes the RPM spec file example. To summarize, the added meta-
data states the name, version, and contact information for this package; informa-
tion also indicates how to obtain and compile the source code, and the metadata 
includes a list of files to be packaged and a set of pre- and post-installation 
scripts. You can now use the rpmbuild tool to create the RPM file itself. 

Creating the RPM File from the Spec File 

The following output shows the result of executing the rpmbuild command 
using example.spec as input. Although the listing doesn’t show the entire out-
put, you can see some of the basic operations discussed. Most notably, you can 
see the gzip command that extracts the source code into the  BUILD directory. 
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Also, near the bottom of the listing, you’ll see the make command that you told 
rpmbuild to use when compiling the source code. 

$ rpmbuild -bb example.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.68587
+ umask 022
+ cd /usr/src/packages/BUILD
+ cd /usr/src/packages/BUILD
+ rm -rf example-2.3.4
+ /usr/bin/gzip -dc /usr/src/packages/SOURCES/example-
2.3.4.tar.gz
+ tar -xf –
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd example-2.3.4
++ /usr/bin/id –u
+ '[' 1000 = 0 ']'
++ /usr/bin/id –u
+ '[' 1000 = 0 ']'
+ /bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.68587
+ umask 022
+ cd /usr/src/packages/BUILD
+ /bin/rm -rf /var/tmp/example-2.3.4-buildroot
++ dirname /var/tmp/example-2.3.4-buildroot
+ /bin/mkdir -p /var/tmp
+ /bin/mkdir /var/tmp/example-2.3.4-buildroot
+ cd example-2.3.4
+ make
Building all example code.
... Remaining output truncated ... 

Just to double-check that everything worked correctly, you should find an 
RPM file in the RPMS subdirectory. 

$ cd /usr/src/packages/RPMS/i586/
$ ls –l
total 4
-rw-r--r-- 1 psmith users 2706 2009-09-14 15:16 exam-
ple-2.3.4-1.i586.rpm

The naming of this file is important because it tells you the name of the pack-
age, the version number, the architecture on which it’ll run (Intel i586 family), 
and, of course, the file extension to indicate that this is an RPM package file. All 
RPM files should follow the same naming format. 

One additional feature of the rpmbuild tool is that you can detect whether 
files were installed into the build root directory (the temporary holding direc-
tory) that weren’t explicitly listed in the example.spec file. By catching these 
errors, you avoid releasing software that’s missing one or more important files. 
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These files might have been added by a developer who simply forgot to update 
the RPM spec file, even after making the necessary changes to the make install
target.

The following example shows the error message. 

$ rpmbuild -bb example.spec
... lots of output removed ...
Checking for unpackaged file(s): /usr/lib/rpm/check-files /
var/tmp/example-2.3.4-buildroot
error: Installed (but unpackaged) file(s) found:
   /usr/lib/libhelper.so.4

RPM build errors:
    Installed (but unpackaged) file(s) found:
   /usr/lib/libhelper.so.4 

Now that you have a complete RPM file, let’s look at how to install that file 
on the target machine. 

Installing the RPM Example 

Installing an RPM file on the target machine takes relatively little effort, espe-
cially because the RPM file was destined for your specific operating system and 
CPU type, and you don’t need to compile any source code. If all goes well, the 
installation is a silent operation; in the worst case, you might be asked to install 
some prerequisite packages. 

Let’s first explore the content of the RPM package. The rpm command with 
the –q option enables you to query the content of the RPM file. With the  –i
suboption, you can review all the metainformation: 

$ rpm -q -p -i example-2.3.4-1.i586.rpm
Name        : example Relocations: (not relocat-

able)
Version     : 2.3.4               Vendor: Arapiki Solutions, 
Inc.
Release     : 1                   Build Date: Mon 14 Sep 2009 
03:16:06 PM
Install Date: (not installed)          Build Host: linux
Group       : Applications/Publishing Source RPM: exam-

ple-2.3.4-1.src.rpm
Size        : 12                       License: Exampleware
Signature   : (none)
Packager    : Peter Smith psmith@arapiki.com
URL         : http://www.arapiki.com
Summary     : This is an example program to show how RPMs 

work.
Description :
This is an example program that demonstrates how RPMs work.

http://www.arapiki.com
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We show a spec file that is passed into the "rpmbuild" program
in order to package up the files. In this example, we see how
to build from source code, how to   run a post-installation 
script, and how to ensure that prerequsite packages are al-
ready installed.
Distribution: (none) 

With the –l suboption, you can review the list of files in the archive: 

$ rpm -q -p -l example-2.3.4-1.i586.rpm
/usr/bin/example
/usr/lib/libexample.so.1
/usr/lib/libhelper.so.4
/usr/share/doc/manual/example.pdf

If you’re convinced that this is the correct package, you can proceed with instal-
lation. You’re installing files into system-level directories, so you must be logged 
in as the root user. The rpm command with the –i option installs the package. 

$ sudo –s
# rpm -i example-2.3.4-1.i586.rpm 

There’s no output from this command, so you should assume that everything 
went smoothly. Just to be paranoid, use the –q option again to check that the 
package was installed. The –a suboption lists all the packages currently installed 
on the system, but you’re interested in only the example package. 

# rpm -qa | grep example
example-2.3.4-1

As a matter of interest, try running this command without the grep filter, and 
you’ll see all the packages currently installed on your system. 

You can also double-check the installation by validating whether the neces-
sary files are installed where they should be and whether they have the correct 
file permissions. As you might expect, the /usr/bin/example file is group-
owned by exgroup and isn’t accessible to other users. 

# ls -l /usr/bin/example
-rwxr-x--- 1 root exgroup 3 2009-09-14 15:16 /usr/bin/example
# ls -l /usr/lib/libexample.so.1
-rwxr-xr-x 1 root root 3 2009-09-14 15:16 /usr/lib/libexam-
ple.so.1

Removing the package from the system is equally simple. Using the –e (erase) 
option removes all the installed files from the system, and the uninstallation 
script removes the exgroup UNIX group. 

# rpm -e example-2.3.4 
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There’s no output from this command, so you can safely assume that every-
thing went smoothly. 

If you’re wondering what happens when things don’t go well, consider this 
scenario. If you try to install the example package on an older Linux system, you 
might not have the necessary prerequisite packages installed. Here’s the output 
you see if the target machine doesn’t have a new enough version of the standard 
C library: 

# rpm -i example-2.3.4-1
error: Failed dependencies:
        glibc > 2.8 is needed by example-2.3.4-1.i586 

The end user must therefore decide whether to upgrade the C library (and 
potentially the entire operating system) or locate an older version of the example
package that doesn’t need such a new version of the C library. 

As a second example, see what might happen if exgroup already existed 
on the target machine. This would be a common scenario when upgrading to 
a newer version of the package because the group was already created by the 
older version. 

# rpm -i example-2.3.4-1
groupadd: Group 'exgroup' already exists. 

Clearly, you need to add some intelligence to the post-installation script 
so that it knows how to behave correctly when upgrading to newer package 
versions.

In summary, that’s all there is to creating a complete spec file and then install-
ing the RPM file on the target machine. All this is done with minimal interven-
tion from the end user, making it much easier than would be the case with source 
code distributions. As mentioned earlier, the example.spec file is designed to 
give you a taste of what the RPM tools are capable of. An RPM spec file includes 
many other directives and sections, and you’re encouraged to learn about these 
on your own. 

Custom-Built GUI Installation Tools 

The third and final type of installation system to look at is the custom-built
GUI installation tool. As a reminder, the first solution was to package files in a 
file archive, and the second solution was to use a package-management tool. In 
contrast to these two solutions, the third approach allows a much richer user 
experience when installing the software on the target machine. 

Upon running the installer, the user is guided through a set of screens that 
control how the software is installed. This process will be familiar to anyone 



ptg

Chapter 13 Software Packaging and Installation374

who has installed software on a Microsoft Windows system. You’ll typically see 
the following pages of information: 

•  A splash screen or welcome message to announce which software is being 
installed

•  A license agreement that explains the software’s terms of use and seeks the 
user’s approval before installing 

•  A file browser for the user to select the software’s destination directory 

•  A list of optional software components the user can elect to install 

•  Any number of custom pages that allow the user to configure installation 
parameters

• A progress bar to show how the installation is progressing 

In addition to these common pages, the installer might generate an unin-
staller application to remove the software from the target machine. Finally, the 
installer might initiate a system reboot. 

Graphical installers can also run arbitrary code on the target machine, which 
is something that RPM files can do but not something that simpler archive tools 
can do. This enables the installer to modify system configuration files, update 
the Windows Registry, or run any type of external application. This level of 
freedom makes it possible to do practically anything during the install process. 

A few tools are widely available for creating installer applications, and these 
generally focus on the Microsoft Windows environment. Perhaps the most 
famous is InstallShield [79], which can generate native code installers for Win-
dows. The InstallAnywhere tool [79], from the same vendor as InstallShield, 
allows the creation of Java-based installers for a much wider range of target 
machines (including UNIX-like systems). Next, the Windows Installer [80] is 
now a standard part of the Microsoft Windows environment and is thus becom-
ing more popular. Finally, the Nullsoft Scriptable Install System (NSIS) [81] is a 
freely available tool that can be downloaded from   the Internet. 

The rest of this chapter walks through a realistic example using the NSIS tool. 
This tool was chosen because of the simplicity of creating a basic installer, but 
the tool is also freely available and is actively developed and supported. 

The Nullsoft Scriptable Install System (NSIS) 

As the name suggests, NSIS has its own scripting language to describe the full 
workings of the installation process. It contains built-in functions for configuring 
the installer pages, and users can create their own functions. It provides support 
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for arithmetic operations and has advanced features for designing custom dialog 
pages. Finally, it facilitates the creation of third-party libraries (plug-ins) that 
can extend the basic language. 

An NSIS script is stored in a source file that has the .nsi suffix. This file is 
passed into the NSIS compiler, which then creates an executable installer appli-
cation (see Figure 13.4). As part of this process, all the program files (executable 
programs, dynamic libraries, or data files) are first compressed and packaged 
into the installer program. 

NSIS Compiler

Target Computer

installer.exe

GNU Make 
framework

GNU Make 
framework

Arbitrary
Program Files

packager.nsi

Figure 13.4 High-level flow of creating an NSIS-based installer. 

When installer.exe is executed, the program files are decompressed and 
copied to the appropriate place on the target machine. 

To understand better how NSIS operates, let’s look at a small installer appli-
cation. This installer contains a number of standard concepts you’re surely 
familiar with: 

Software version number 

License acceptance page 

Page to choose the installation directory 

List of optional language support choices (you must select at least one) 

Addition of a Start menu item 

Addition of a desktop shortcut (if desired by the user) 

Creation of an uninstaller 
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To give you an idea of how simple NSIS can be to use, this example installer 
was constructed with only five hours of work, after the author read the NSIS 
documentation for the first time. It’s not a difficult system to learn. 

The Installer Script 

Although the installation script is discussed in multiple steps, the entire program 
actually resides in a single script file, called packager.nsi. Start by examining 
the full listing so that you can have an appreciation for what a complete pro-
gram looks like. 

  1  !define VERSION "3.0.1"
  2
  3  ; The Checkbox widget
  4  Var Checkbox
  5
  6  ; The state of the widget (selected or not)
  7  Var Checkbox_State
  8
  9  Name "NSIS Packaging Example - ${VERSION}"
 10  OutFile "packager.exe"
 11  InstallDir $PROGRAMFILES\Packaging-Example
 12
 13  ;--------------------------------
 14  ; Page definitions
 15
 16  Page license
 17  Page directory
 18  Page components "" "" validateComponents
 19  Page custom optionsPage optionsPageLeave
 20  Page instfiles
 21
 22  ; Uninstaller pages
 23  UninstPage uninstConfirm
 24  UninstPage instfiles
 25
 26  ;--------------------------------
 27  ; Handle the license page
 28
 29  LicenseData obj\license.txt
 30  LicenseForceSelection radiobuttons "Yes, I agree" \
 31             "No, I don't agree"
 32
 33  ;--------------------------------
 34  ; Define the main component
 35
 36  Section "-Main Component"
 37
 38    SetOutPath $INSTDIR
 39
 40    ; install mandatory files
 41    File obj\calc.exe
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 42    File obj\libs\libmath.dll
 43    File obj\libs\libgraphics.dll
 44    File obj\images\splash_screen.jpg
 45
 46    ; Create directory for optional files
 47    CreateDirectory $INSTDIR\errors
 48
 49    ; Create the uninstaller application
 50    WriteUninstaller $INSTDIR\uninstaller.exe
 51
 52    ; Create the start menu entries
 53    CreateDirectory "$STARTMENU\My Calculator"
 54 CreateShortCut "$STARTMENU\My Calculator\Calculator.

lnk"
 55         $INSTDIR\calc.exe
 56 CreateShortCut "$STARTMENU\My Calculator\Uninstall.

lnk"
 57         $INSTDIR\uninstaller.exe
 58
 59    ; Possibly create the desktop short cut
 60    ${If} $Checkbox_State == ${BST_CHECKED}
 61 CreateShortCut "$DESKTOP\Calculator.lnk" $INSTDIR\

calc.exe
 62    ${EndIf}
 63
 64  SectionEnd
 65
 66  ;--------------------------------
 67  ; Optional language support
 68
 69  Section "English Language Support" sec_english
 70    SetOutPath $INSTDIR\errors
 71    File obj\languages\errors.en
 72  SectionEnd
 73
 74  Section /o "French Language Support" sec_french
 75    SetOutPath $INSTDIR\errors
 76    File obj\languages\errors.fr
 77  SectionEnd
 78
 79  Section /o "German Language Support" sec_german
 80    SetOutPath $INSTDIR\errors
 81    File obj\languages\errors.de
 82  SectionEnd
 83
 84  ;--------------------------------
 85  ; Validation functions
 86
 87  Function validateComponents
 88
 89    ; determine which components are selected
 90    SectionGetFlags ${sec_english} $0
 91    SectionGetFlags ${sec_french} $1
 92    SectionGetFlags ${sec_german} $2
 93    IntOp $0 $0 &   ${SF_SELECTED}
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 94    IntOp $1 $1 & ${SF_SELECTED}
 95    IntOp $2 $2 & ${SF_SELECTED}
 96
 97    ; $0 = total number of components selected
 98    IntOp $0 $0 + $1
 99    IntOp $0 $0 + $2
100
101    ${If} $0 == 0
102 MessageBox MB_OK "At least one language must be se-

lected"
103      Abort
104    ${EndIf}
105
106  FunctionEnd
107
108  ;--------------------------------
109  ; Custom options page - optionsPage
110
111  Function optionsPage
112
113    ; Create a new dialog page
114    nsDialogs::Create 1018
115    Pop $0
116    ${If} $0 == error
117      Abort
118    ${EndIf}
119
120    ; Create a check box
121 ${NSD_CreateCheckbox} 20% 20% 100% 10u "&Create a 

desktop shortcut"
122    Pop $Checkbox
123
124    ; Select the checkbox, by default
125    ${NSD_Check} $Checkbox
126
127    ; Display the page content
128    nsDialogs::Show
129
130  FunctionEnd
131
132  ;--------------------------------
133  ; Custom options page - optionsPageLeave
134
135  Function optionsPageLeave
136    ${NSD_GetState} $Checkbox $Checkbox_State
137  FunctionEnd
138
139  ;--------------------------------
140  ; Uninstaller information
141
142  Section "Uninstall"
143
144    ; Remove the mandatory and option files
145    Delete $INSTDIR\errors\*
146    RMDir $INSTDIR\errors
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147    Delete $INSTDIR\*
148    RMDir $INSTDIR
149
150    ; Remove the start menu entry
151    Delete "$STARTMENU\My Calculator\*"
152    RMDir "$STARTMENU\My Calculator"
153
154    ; Remove the desktop shortcut
155    Delete "$DESKTOP\Calculator.lnk"
156
157  SectionEnd
158
159  ;-------------------------------- 

This is a long program, but let’s address each feature in detail. To start, the 
script contains a number of basic definitions that any installer requires. 

  1  !define VERSION "3.0.1"

  9  Name "NSIS Packaging Example - ${VERSION}"
 10  OutFile "packager.exe"
 11  InstallDir $PROGRAMFILES\Packaging-Example 

The version number ( 3.0.1) is defined using a compile-time definition 
(similar to C preprocessor definitions). In a real installation system, you would 
provide this version number on the NSIS compiler command line instead of 
hard-coding it into the script. 

Next, you state the name of the installer, which appears in the title bar of 
any of the GUI pages. In the example, this is the only place the version number 
is used. 

The OutFile directive tells NSIS the name of the executable program to cre-
ate. In a real system, you would want to incorporate the version number here, 
too, avoiding conflicts with other versions of the installer. 

Finally, the InstallDir directive provides the default installation path. The 
user can change this path on the installer GUI. Note the use of the $PROGRAM-
FILES variable, which always contains the target machine’s idea of where pro-
grams should be installed (this is typically C:\Program Files).

Defining the Pages 

The next part of the installer script specifies the list of pages you want the in-
staller to present to the end user. Some of these pages are standard across all 
installers (such as the license, directory, and instfiles pages), but it’s also 
possible to create custom pages. 

 16  Page license
 17  Page directory
 18  Page components "" "" validateComponents
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 19  Page custom optionsPage optionsPageLeave
 20  Page instfiles 

In this case, you start with the standard license and  directory selection 
pages. After that, the user is asked to select which optional components to install. 

For this components page, a callback function ( validateComponents) trig-
gers when the user presses the Next button. This enables you to validate the list 
of components that were selected and possibly reject the submission if the user 
didn’t complete the page correctly. (In this case, at least one language must have 
been chosen.) You’ll examine this callback function shortly. 

Following the components page, you create a custom page that’s specific to your 
application (instead of being a standard reusable page). In this case, the optionsPage
callback renders the various parts of the page’s content, whereas the optionsPage-
Leave function validates what the user enters. You’ll also look at these functions later. 

Finally, the instfiles page does the actual work of installing the program’s 
files. It shows a progress bar and enables the user to see a detailed listing of what 
has been installed. 

The License Page 

Now look at the initial license page (see  Figure 13.5). This installer uses the 
default NSIS look and feel, which makes the screens appear as if they’re running 
on an older version of Windows. For the more recent versions of Windows, 
NSIS also supports a more modern window style. 

Figure 13.5 The installer’s license page. 

The license page is fairly standard, but it’s customized in a few simple ways. 

 29  LicenseData obj\license.txt
 30  LicenseForceSelection radiobuttons "Yes, I agree" \
 31              "No, I don't agree" 
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First, the LicenseData directive tells the installer where to find the license 
agreement text (a file somewhere on the build machine). Next, the License-
ForceSelection directive forces the user to explicitly accept or decline the 
license agreement before continuing with the installation. 

Directory Selection 

After agreeing to the license, the user is presented with the directory selection 
page (see Figure 13.6). The installer automatically calculates how much disk 
space is required, based on which additional files were packaged into the installer 
executable. It’s also possible to tell the installer how much additional space is 
required, in case some of the installed content is downloaded or auto-generated 
during the installation process. 

Figure 13.6 The installer’s directory selection page. 

The Main Component 

To specify which content is to be packaged into the installer executable and, 
consequently, installed on the target machine, you must provide a mapping from 
the build machine’s files to the target machine’s files. The full set of files can be 
divided into multiple sections, which can be individually selected or deselected. 
In the example, one section must always be installed, but other sections are 
marked as optional and can be selectively ignored. 

Start by examining the definition of the section called Main Component. This 
section contains all the files that are always installed. (The one exception is the 
desktop shortcut, as you’ll see later.) 
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 36  Section "-Main Component"
 37
 38    SetOutPath $INSTDIR
 39
 40    ; install mandatory files
 41    File obj\calc.exe
 42    File obj\libs\libmath.dll
 43    File obj\libs\libgraphics.dll
 44    File obj\images\splash_screen.jpg
 45
 46    ; Create directory for optional files
 47    CreateDirectory $INSTDIR\errors
 48
 49    ; Create the uninstaller application
 50    WriteUninstaller $INSTDIR\uninstaller.exe
 51
 52    ; Create the start menu entries
 53    CreateDirectory "$STARTMENU\My Calculator"
 54 CreateShortCut "$STARTMENU\My Calculator\Calculator.

lnk"
 55         $INSTDIR\calc.exe
 56 CreateShortCut "$STARTMENU\My Calculator\Uninstall.

lnk"
 57         $INSTDIR\uninstaller.exe
 58
 59    ; Possibly create the desktop short cut
 60    ${If} $Checkbox_State == ${BST_CHECKED}
 61 CreateShortCut "$DESKTOP\Calculator.lnk" $INSTDIR\

calc.exe
 62    ${EndIf}
 63
 64  SectionEnd 

This section has a number of interesting concepts. First, the SetOutPath
directive on line 38 tells the installer which directory the files should be installed 
into. In this case, you want to install them in the $INSTDIR directory on the 
target machine, which is exactly what the user selected on the directory selec-
tion page. If you wanted to install files in some other directory, or even within a 
subdirectory of $INSTDIR, you would need to call SetOutPath again. 

Lines 41–44 call the File command once for every file you want to install 
on the target machine. The File command takes a single argument that states 
where on the build machine (not the target machine) the file should be obtained. 
The NSIS compiler uses the File command to obtain all the input files and com-
press them into the installer executable. This information is later used to extract 
the files onto the target machine. In the extraction phase, the files are all written 
into the directory specified by the SetOutPath directive, and the original file’s 
directory path from the build machine is discarded. Just   to clarify, the command 
File obj\calc.exe obtains the file from the build machine at path  obj\calc.
exe and installs it on the target machine as $INSTDIR\calc.exe.
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The CreateDirectory command on line 47 should be no surprise, in that 
it creates a directory on the target machine. The single argument informs the 
system of which directory should be created. 

The WriteInstaller command on line 50 specifies the name of the unin-
staller program to be created. You store the uninstaller in the same directory as 
the rest of the software so that it can be located easily when the user needs it. 

The next step is to add both the calc.exe program and the  uninstaller.
exe as items in the Windows Start menu. This is a fairly straightforward process, 
on lines 53–57, that involves creating a new subdirectory within the $START-
MENU directory (defined as appropriate for the target machine) and then creating 
two Windows shortcuts. These items automatically appear when the user next 
opens the start menu. 

Finally, lines 60–62 create a shortcut from the user’s desktop to calc.exe.
As you’ll see later, this step is optional and is configured from a custom installer 
page. The shortcut is created only if the user selected the necessary check box. 

The Optional Components 

Now focus on the optional sections. In this application, you want the user to 
install one or more language support packages. To keep things simple, you in-
stall only a single file for each language and place it in $INSTDIR\errors. In a 
real system, these sections could be much larger and could contain multiple files. 

 69  Section "English Language Support" sec_english
 70    SetOutPath $INSTDIR\errors
 71    File obj\languages\errors.en
 72  SectionEnd
 73
 74  Section /o "French Language Support" sec_french
 75    SetOutPath $INSTDIR\errors
 76    File obj\languages\errors.fr
 77  SectionEnd
 78
 79  Section /o "German Language Support" sec_german
 80    SetOutPath $INSTDIR\errors
 81    File obj\languages\errors.de
 82  SectionEnd 

Two new concepts are shown here. First, the name of the section doesn’t 
start with a dash (as the main component did), which means that the user can 
choose to optionally install the component (see Figure 13.7). By default, English 
language support is selected, and French and German are initially deselected 
(because of the /o option). 
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Figure 13.7 The installer’s component selection page. 

The second interesting concept is that the sections have been labeled with 
sec_english, sec_french, and sec_german. These names enable you to refer 
to the sections from within any of the script functions. In this case, a callback 
function confirms that at least one of the languages has been selected. Ear-
lier you saw how the validateComponents function was associated with the 
components page, but now look at the definition of that callback function. 

 87  Function validateComponents
 88
 89    ; determine which components are selected
 90    SectionGetFlags ${sec_english} $0
 91    SectionGetFlags ${sec_french} $1
 92    SectionGetFlags ${sec_german} $2
 93    IntOp $0 $0 & ${SF_SELECTED}
 94    IntOp $1 $1 & ${SF_SELECTED}
 95    IntOp $2 $2 & ${SF_SELECTED}
 96
 97    ; $0 = total number of components selected
 98    IntOp $0 $0 + $1
 99    IntOp $0 $0 + $2
100
101    ${If} $0 == 0
102 MessageBox MB_OK "At least one language must be 

selected"
103      Abort
104    ${EndIf}
105
106  FunctionEnd 

This code looks rather awkward at first but demonstrates the way arithmetic 
is performed in an NSIS installer. Lines 90–95 retrieve the section flags for each 
of the English, French, and German sections. These flags are a binary bitmap of 
true/false values providing information about each section. If the SF_SELECTED
flag is set, this indicates that the user selected the check box for that particular 
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section. Recall that this function is invoked immediately after the user presses 
the Next button on the components page, and you’re now evaluating whether 
the user provided reasonable input values. 

The NSIS scripting language contains a number of built-in variables that 
don’t need to be explicitly declared. You first read the section flags into the 
$0, $1, and $2 variables; then you perform a bitwise  AND operation against 
SF_SELECTED to ignore all the other bits in the value. The next part of the opera-
tion (lines 98–99) sums up $0, $1, and $2 to obtain a zero value if none of the 
languages was selected, or nonzero if at least one of the check boxes was enabled. 

On lines 101–104, if the result of this arithmetic is zero, the submission is 
rejected and the user is asked to select at least one type of language support. The 
MessageBox command pops up a dialog page with an  OK button, and the  Abort
command tells the installer to stay on the components page instead of moving 
on to the next page of the installer’s GUI. 

Defining a Custom Page 

If all is successful, the installer moves ahead to the next page, which in the ex-
ample is a custom page containing whatever content you decide to display (see 
Figure 13.8). As mentioned earlier, you install a desktop shortcut only if the 
user chooses to do so. The custom page has an added check box that users can 
disable if they don’t want the shortcut. 

Figure 13.8 A custom-designed installer page. 

This custom page makes use of two callback functions: optionsPage renders 
the page’s content, and optionsPageLeave is executed when the user presses 
the Next button. 

First, the optionsPage function: 
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  3  ; The Checkbox widget
  4  Var Checkbox
  5
  6  ; The state of the widget (selected or not)
  7  Var Checkbox_State

111  Function optionsPage
112
113    ; Create a new dialog page
114    nsDialogs::Create 1018
115    Pop $0
116    ${If} $0 == error
117      Abort
118    ${EndIf}
119
120    ; Create a check box
121 ${NSD_CreateCheckbox} 20% 20% 100% 10u "&Create a 

desktop shortcut"
122    Pop $Checkbox
123
124    ; Select the checkbox, by default
125    ${NSD_Check} $Checkbox
126
127    ; Display the page content
128    nsDialogs::Show
129
130  FunctionEnd 

Creating this particular custom page involves four main steps. On lines 114–
118, the nsDialogs::Create function creates a new page in the installer GUI. 
The return value from the Create function is implicitly pushed onto a stack and 
then explicitly popped off into variable $0. If an error code was returned, the 
function is aborted. This type of value manipulation will be familiar to users of 
stack-based programming languages. 

The second step, lines 121–122, calls the NSD_CreateCheckbox function to 
add a check box widget onto the page. The numeric parameters provide posi-
tioning information, so the check box and its associated text label are positioned 
near the top of the page. A reference to the check box widget is popped off the 
stack and stored in the $Checkbox variable. 

The third step, line 125, is for the NSD_Check function to enable the check 
box by default. Users explicitly uncheck the check box if they don’t want the 
shortcut to be created. 

The final step, on line 128, is to call the nsDialogs::Show function to render 
the content of the page. 

To make sure you save the value of the check box (selected or unselected), 
an additional callback function executes when the Install button is pushed. 
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135  Function optionsPageLeave
136    ${NSD_GetState} $Checkbox $Checkbox_State
137  FunctionEnd 

There’s nothing on this page to be validated, so you don’t need any logic to 
analyze the content. However, you must call the NSD_GetState function to 
save the check box’s state into the $Checkbox_State variable. If you refer back 
to our original discussion of the installing the desktop shortcut, you’ll see that 
$Checkbox_State was first examined to see whether it was set. 

The Installation Page and the Uninstaller 

The final page of the installer provides a progress bar and a detailed list of the 
files that have been installed (see Figure 13.9). This page is automatically created 
and doesn’t require additional configuration. 

Figure 13.9 The installer’s progress page. 

After the software has been installed, the uninstaller.exe program must 
also be saved to the installation directory. To configure this uninstaller, you 
simply create another section that deletes all the files and directories that you 
created during the install process. 

 22  ; Uninstaller pages
 23  UninstPage uninstConfirm
 24  UninstPage instfiles

142  Section "Uninstall"
143
144    ; Remove the mandatory and option files
145    Delete $INSTDIR\errors\*
146    RMDir $INSTDIR\errors
147    Delete $INSTDIR\*
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148    RMDir $INSTDIR
149
150    ; Remove the start menu entry
151    Delete "$STARTMENU\My Calculator\*"
152    RMDir "$STARTMENU\My Calculator"
153
154    ; Remove the desktop shortcut
155    Delete "$DESKTOP\Calculator.lnk"
156
157  SectionEnd 

The uninstaller doesn’t require much information, other than confirming that 
you really want to remove the files (see Figure 13.10).

Figure 13.10 The uninstaller page, asking the user for confirmation. 

And that’s all there is to it. You can create a fully featured installer applica-
tion in a matter of hours. Some of the language features are a little awkward 
to use at first, but NSIS creates a great user experience when installing your 
software release package. For more information on this tool, refer to the NSIS 
web site [81]. 

Summary

Creating a software release package is usually the final step in the build proc-
ess. An important goal is to make it easy for end users who are not technically 
minded to install the software on their target machine. This must be done with-
out requiring them to compile the software from source code or perform lots of 
manual steps to get the software working. 

To reduce wasted time, it’s important for a packaging script to check for 
invalid user input, report all possible errors (instead of ignoring them), and 
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spend as little time and disk space as possible while copying files. A poor-quality 
packaging script will likely create invalid release packages. 

The first packaging solution is to compress all the target files into a ZIP or 
TAR archive, using a packaging script to store the files in the correct locations. 
This is a simple approach and requires an additional installation script to cus-
tomize the files after they’ve been installed. 

The second solution is to use a package-management tool to install the set 
of target files on the target machine. This approach enables the execution of 
arbitrary code before and after the installation process. By providing version 
dependency information in the release package, you ensure that all required 
prerequisite packages are already installed on the target machine. 

Finally, a custom-built GUI tool facilitates the creation of a user-friendly 
experience, with separate pages for each of the main activities. These include 
selecting the installation directory, agreeing to license information, and selecting 
optional components to be installed. You can execute arbitrary scripts before 
and after the installation takes place. 
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Version Management 

A piece of computer software is unlikely to remain constant. One of the major 
benefits of software is that it can be updated frequently to fix bugs or introduce 
new features. To control these changes, any nontrivial software is managed us-
ing a version-control system (see  Figure 14.1). This enables each of the project’s 
developers to obtain a copy of the source code, make changes to that code, and 
then submit changes to the central repository to be shared with others. 

Version-
Control

Tool

Source 
Tree

Object
Tree

Release
Package

Compilation Tools

Build Machine

Figure 14.1 Big-picture diagram, with a focus on version control of the build system. 

A key feature of a version-control system is that a complete history of the 
source code can be reproduced. This means that different developers can be 
working on different versions of the software, while ensuring the necessary level 
of separation in their work (see Figure 14.2). If a customer reports a bug in an 
old version of code, a developer must reproduce the exact set of source files that 
were used to compile that older version. The developer then can fix the bug and 
release a new version of the software for the customer to use. 

391
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New Development

Old Release
Bug Fixes

Figure 14.2 Use version-control branches to separate code streams. 

This bug-fixing work is done in isolation from new-feature development. If 
this approach isn’t followed, the customers are forced to receive new features 
when all they wanted was a bug fix. On the other hand, the bug fix must be 
forward-ported to the new development branches to ensure that the bug is fixed 
in future releases. 

From the perspective of the build system, the version-control system manages 
all the build description files (such as a Makefile or a  SConstruct file). At any 
point in time, the build description must match the current set of source files and 
must be changed in unison with the source code. The end goal is to build any 
earlier version of the software that needs to be reproduced. If the build system 
and source files don’t match, this isn’t possible. 

This chapter focuses on how the version-control system can impact the design 
and implementation of the build system. However, it doesn’t discuss any of the 
day-to-day operations, such as checking out or submitting code. For more infor-
mation about common version-control tools (such as CVS [2], Subversion [3], 
Git [4], or ClearCase [5]), refer to other books that cover those topics in detail. 

This chapter covers three main topics. This first section describes the type 
of files that should be version-controlled. The second section identifies the files 
that should be managed outside of the source code tree. Finally, the last section 
covers the basic concept of version numbering. 

This discussion of version control covers only a subset of the traditional Soft-
ware Configuration Management (SCM) discipline. SCM focuses on managing 
the change of software over time, which also includes tracking defects and new 
features. This chapter doesn’t discuss those topics. 

What Should Be Version-Controlled 

As a general rule, all human-created source files should be stored in the version-
control system. In addition to source code, this includes the build description 
files that must exactly match the source code being compiled, even when multi-
ple code streams (releases) are being maintained. In contrast, this doesn’t include 
any files that are generated as part of the build process, such as object files or 
executable programs. 
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This section examines four different types of information that should be kept 
in the version-control system. 

•  Build description files: Describe the end-to-end process of compiling the 
source code. 

•  References to tools: Describe which compilation tools should be used. 

•  Large binary files: In the same way that small source files need to be 
version-controlled, large binaries files must be stored somewhere. 

•  Source tree configurations: Describe the way a full source tree is con-
structed.

In each case, keep in mind that a version-control system can contain multi-
ple development streams, some of which contain the source code for software 
releases that have already been sent to customers. Other streams version-control 
new features that are being developed. 

Build Description Files 

The idea that description files must be version-controlled shouldn’t require fur-
ther explanation. However, it’s important to ensure that the automatic build 
process covers the complete set of instructions for building the product. Some-
times a build process can become fragmented into different steps, especially if 
nobody takes ownership of the full end-to-end process. If any of the steps are left 
for the developer to execute manually, the build process becomes error prone 
and is gradually forgotten over time. In the end, it’ll be harder to reliably build 
older software. 

To illustrate, it’s not uncommon for a development organization to have a 
web page stating how to build the product. This information is modified over 
time as the build system grows and always contains the latest information 
needed to start a compilation. Developers add words of wisdom about the build 
process as they get more experience. The following is a typical excerpt: 

Use the following steps to build the product:

To build the prerequisite libraries, do:
        cd src/libs
        make LIBARCH=i386
        make LIBARCH=mips

If you’re using a code base newer than October 17 th, or on 
the Release_2.0
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branch, execute "make LIBARCH=x86_64" instead of the i386 
target.

To build a debug image, instead do "make LIBARCH=<arch> 
DBG=1", but this
doesn’t yet work properly for the MIPS target.

To link everything together, do:
        cd src/target
        make all 

This build process might seem simple enough, but consider what happens 
when it grows over time. Given another year of development, the process might 
be two to three times longer and could contain a lot more references to dates and 
version-control branches. Trying to determine the correct set of build steps then 
becomes a major challenge. 

Experienced developers might memorize the steps and perform them in their 
sleep, but newer developers will likely be overwhelmed by all the different 
options. As a result, you’ll see an increase in the number of broken builds when 
important steps are accidentally missed. Also, developers become frustrated 
when they need to closely track the progress of their build and must be ready 
and waiting to enter the next command in the sequence. 

To solve these problems, you should automate all (not just most) build instruc-
tions and keep them in the version-control system. This provides a standard way 
for developers to see the current set of build steps for the code they’ve checked 
out. These steps might vary across different code branches, but they’ll always be 
accurate because they’re version-controlled along with the source code. 

For example, entering make help (or the equivalent command in another 
build tool) gives developers useful information on how to build their code: 

$ make help
Help information:
  make help          - show this help page
  make libs          - build all the prerequisite libraries
  make libs LIBARCH={x86_64,mips}
                     - build the libraries for one architec-

ture
                       (i386 is no longer supported)
  make link          - perform the final linking phase
  make all           - build the entire program from scratch.

Options:
Add DBG=1 to generate debugging information (mips not sup-
ported)

There’s no mention of dates or branches, given that the documentation is 
relevant to the source code tree currently checked out. If older code is checked 
out, the documentation would be different. 
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The all target is guaranteed to build the full product from beginning to end, 
without requiring the user to execute the steps independently. The detail of the 
build process can change over time, but developers can always rely on the all
target. They still have access to the individual build steps (such as libs and 
link), but they aren’t required to use them. 

References to Tools 

Another key component of a reliable build system is the set of compilation tools 
used. The build tool invokes the compilation tools and passes in the necessary 
command-line parameters, such as source or object filenames. In the following 
makefile fragment, you can see that the GNU C compiler is defined as the com-
piler of choice. 

CC := gcc
prog: main.o helper.o
    $(CC) –o $@ $^ 

The $(CC) variable is used by the explicit rule for  prog and is also used by 
the built-in rule that knows how to compile the C source files ( main.c and 
helper.c).

Unfortunately, this basic approach has several problems. It might work for 
simple projects with a small number of users, but a few problems arise when the 
development environment grows. 

The first issue is that the gcc program is found by searching the user’s shell 
path (the $PATH environment variable in UNIX-like systems). If  gcc is installed 
in a well-known location such as /usr/bin, the correct version of the tool likely 
will be found. However, if gcc is stored in a nonstandard location (such as 
/tools/bin), or if the user has nonstandard directories in their $PATH environ-
ment variable, the wrong version of gcc could be used. 

You might be wondering about the implication of using the wrong compiler. 
The exact problem depends entirely on how different the two compilers are and 
which language features you’re expecting from them. For example, if one devel-
oper writes code that uses newer language features, a second developer who is 
accidentally using the older compiler will likely see build errors. 

Consider some common examples: 

• Older compilers don’t recognize newer commands: For example, the Java 
language concept of generics was introduced with Java 1.5 compilers. Try-
ing to compile a Java 1.5 program with a Java 1.2 compiler results in 
errors.
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Generics.java:5 Identifier expected.
    public List<Integer> myList;
               ^
1 error 

• Older programs cause problems with newer compilers: For example, the 
assert variable is now a reserved word in Java 1.4, whereas older Java 
programs were free to use assert as a normal variable name. To compile 
this older code, either a Java 1.3 compiler must be used or the –source
option must be provided to the Java compiler. 

AssertTest.java:4: as of release 1.4, 'assert' is a keyword, 
and may not be used as an identifier (use -source 1.3 or 
lower to use assert' as an identifier)
int assert = 0;
     ^
1 error 

• Newer compilers report more warnings: Newer versions of the GNU C 
Compiler report more warnings than older versions. For build systems 
that choose to halt if they encounter compiler warnings, using a newer 
compiler causes build failures. 

#ifdef FOO
...
#endif FOO  /* error! */
program.c:27:8: warning: extra tokens at end of #endif direc-
tive

• Bugs were worked around in an older tool: Sometimes developers find a 
bug in a tool (or associated libraries) that requires a workaround in their 
source code. The logic of their program is now tied closely to the version 
of the tool they’re using. Upgrading the tool to fix the bug makes the devel-
oper’s workaround invalid, possibly causing other problems. 

int get_stats(char *name, int size)
{
  int stats[size];
  int rc = process_stats(stats, size);

  /*
   * Because of compiler optimization bug,
   * the following adjustment is necessary.
   * It isn’t supposed to be required.
   */
   if (rc == 1){
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     size += 1;
   }
   send_stats(stats, name, size);
}

• Deprecated command options are removed: Over time, various compila-
tion tools gain new command-line options and the older options are re-
moved. Instead of completely disappearing, however, the old options are 
marked as deprecated for a period of time, which means that they’re still 
accepted for now but will be removed in an upcoming release of the tool. 
As a result, old and new versions of the same compilation tool might not 
be interchangeable. 

The standard way to avoid all these problems is to ensure that the required 
version of each compilation tool is hard-coded into the build description file, 
leaving no room for ambiguity. Even if a newer version of the software adopts 
a newer version of a tool, the version-control system still enables the older soft-
ware to use the older tool. 

A natural assumption is that multiple versions of a compilation tool can be 
installed on the same build machine. This might be true for most tools, but not 
if a new version of the tool overwrites the older version, essentially removing the 
older tool from existence. 

Assuming that you’re allowed multiple versions of the same tool, you can 
specify which tool is required in several ways. 

1. Hard-Coding the Absolute Path 
In this scenario, the build description file contains the full absolute pathname 
of the compilation tool. This path must include some type of version number. 

CC := /tools/bin/gcc-3.3
prog: main.o helper.o
    $(CC) –o $@ $^ 

When using absolute pathnames, the user’s search path ( $PATH) isn’t exam-
ined, which removes the chance of using the wrong compiler. Clearly, this 
method assumes that all build machines have an identical set of tools installed 
and that they’re available in the same file system location. Chapter 15, “Build 
Machines,” discusses the management of build machines in more detail. 

Also notice that the compiler’s version number has been appended to its 
filename, so you can version-control access to the tools. This is important if you 
ever want to upgrade the compiler, which is almost a certainty for projects that 
span many years. Imagine a scenario in which releases 1 and 2 of your software 
both used version GCC 3.3, but the next version is destined to use GCC 4.2. As 
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you saw earlier, having the source code compiled with the wrong version of the 
compiler can be problematic. 

Using the magic of the version-control tool, the code branches for software 
R1 and R2 would be hard-coded to use GCC 3.3, whereas the main trunk of 
development would use GCC 4.2 (see Figure 14.3). Therefore, each code branch 
would use the required version, without any problems. 

R1: CC=/tools/bin/gcc-3.3 R2: CC=/tools/bin/gcc-3.3

CC=/tools/bin/gcc-4.2

Figure 14.3 Hard-coding compilation tool pathnames so that each branch uses the 
correct version of the tool. 

Implement this pattern of versioning tools from the start of your project. If 
you made the mistake of using a nonversioned copy of GCC even for your first 
software release, you’d still find yourself in a predicament (see Figure 14.4).

R1: CC=/usr/bin/gcc R2: CC=/tools/bin/gcc-3.3

CC=/tools/bin/gcc-4.2

Figure 14.4 Problems occur if you fail to version-control the tool. 

In this scenario, the only way to be sure to reproduce the R1 source code 
is to ensure that /usr/bin/gcc is always set to version 3.3. Given that  /usr/
bin is part of the standard operating system image, you might not have much 
control over this version of the compiler. If you started compiling on a newer 
operating system, you’d need to downgrade /usr/bin/gcc to version 3.3. This 
might have unpredictable side effects for other programs running on the build 
machine.

You might be wondering why you can’t change the tool reference in the R1 
branch to /tools/bin/gcc-3.3. That would certainly work for any new bug 
fixes that you placed in the R1 branch, but it wouldn’t help older versions of the 
software that you might need to reproduce. For example, if the current bug-fix 
release of R1 is software version 1.2.3, if you tried to reproduce version 1.2.2 or 
earlier, you’d still use the nonversioned compiler. For better or for worse, using 
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a version-control system makes it impossible to “go back in time” and make 
changes to earlier releases. 

A final observation is that you must be careful about removing old compilers 
from your system. As long as you need to reproduce older versions of software, 
you must keep the necessary compilers around. Some organizations support 
only a couple of old releases, so they might be able to remove old compilers 
after a year or so. Other organizations need to keep compilers for much longer 
periods of time because of their extended software support period. 

2. Hard-Coding the $PATH Environment Variable 
The second method for ensuring that the correct compilers are used is similar to 
the first method. However, in this case, you hard-code the value of the $PATH
environment variable instead of relying on the user to have the correct search 
path already configured. Explicitly storing the path in the build description file 
also enables you to version-control and update the path over time. 

PATH := /usr/bin:/tools/bin:/tools/java-1.5/bin
CC := gcc-3.3
JAVAC := javac 

This example provides an exact sequence of directories in which to find 
compilation tools. When $(CC) and  $(JAVAC) reference these tools, the path 
is searched in left-to-right order, starting with /usr/bin and finishing with 
/tools/java-1.5/bin. You end up using the first executable program that has 
the desired name. 

This method works well, although the search path must be coordinated care-
fully. If the developer expected to use the javac program from the  /tools/
java-1.5/bin directory, but there was also a  javac program in  /usr/bin, the 
incorrect compilation tool would be used. This problem might take a while to 
resolve, but at least the incorrect behavior is consistent for all users (instead of 
only one or two developers suffering from the problem). 

Another limitation of this method is that when the build tool is executing, the 
developer can’t determine exactly which tool is being used. 

$ make all
javac ... 

Given this build log output, you know that javac is being executed, but you 
don’t know which directory that program is from. If you had specified the full 
path to the tool, it would be displayed on the build output log: 

$ make all
/tools/java-1.5/bin/javac ... 
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This distinction is important if developers want to manually cut and paste 
one of the lines from the build log. If they don’t have their $PATH environment 
variable set the same way as in the makefile, a different tool could be used. 

3. Store Tools in a Version Control System 
A third method is to version-control compilation tools in the same way the 
source code is versioned. This provides the capability to associate a tool version 
with the source code that requires it. If you upgrade to a new compiler, you 
simply check in the new tool, and the build process starts using it. If you want 
to reproduce an old version of the source code, the correct (older) version of the 
tool is used. 

The build description files must contain tree-relative paths for each tool, but 
you no longer need to have version numbers in the pathname: 

CC := $(SRC_TREE)/tools/bin/gcc
JAVAC := $(SRC_TREE)/tools/bin/javac 

For this system to work efficiently, you must be using a version-control tool 
that does a good job of storing large binary files. CVS is known for performing 
badly with large files, so it’s not a good choice. In addition, if your version-
control tool requires each developer to have an on-disk copy of every file, you might 
be overwhelmed by the extra disk space required. In contrast, tools such as IBM 
Rational’s ClearCase enable developers to share a single copy of the tools. 

Large Binary Files 

The concepts just discussed on version control of compilation tools also apply to 
other large files. Many programs use data files such as graphic images, sounds 
files, and third-party code libraries. If your version-control tool can handle large 
binary files, you could commit these files and have them checked out as part of 
each developer’s source tree. However, if your version-control tool can’t sup-
port large binary files or you simply want to save disk space, consider creating a 
shared repository of binary large objects   (blobs). 

Just as you did for compilation tools, each version of a blob would be stored 
in a file system path that contains a version number. Multiple versions of each 
blob can exist in parallel, with the build description files (stored under version 
control) referencing the correct version of each file. For example: 

/usr/blobs/images/splash-screen/20100811/image.jpg
/usr/blobs/images/splash-screen/20100715/image.jpg
/usr/blobs/images/splash-screen/20100704/image.jpg
/usr/blobs/images/about-menu/20100728/about.jpg
/usr/blobs/images/about-menu/20100728/help.jpg
/usr/blobs/images/about-menu/20100713/about.jpg
/usr/blobs/images/about-menu/20100713/help.jpg
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Each directory must be uniquely named to describe what the blob is used for 
and must contain a subdirectory for each version of the blob. Using a date stamp 
(such as 20100728) makes it easier to determine when that version of the blob 
was created. In the build description file, you reference the appropriate version: 

BLOBS := /usr/blobs/images
SPLASH_SCREEN := $(BLOBS)/splash-screen/20100811/image.jpg
ABOUT_MENU_DIR := $(BLOBS)/about-menu/20100728
ABOUT_IMAGE := $(ABOUT_MENU_DIR)/about.jpg
HELP_IMAGE := $(ABOUT_MENU_DIR)/help.jpg 

Note that with the about-menu directory, two different files are stored 
(about.jpg and  help.jpg) with each new version of the blob. From a logistics 
perspective, you might find it easier to version-control a large number of files 
in a single group instead of trying to manage a unique version number for each 
individual file. 

Source Tree Configurations 

A final type of information to keep under version control is the source tree con-
figuration. This is the set of source code directories that must be available in a 
developer’s workspace for the software to build correctly. Depending on your 
version-control tool, you refer to this information as a module, a configuration
spec, or a view spec.

For example, your developers might need to check out the following set of 
directories. These are mapped from version-control repository locations (on the 
left) to locations inside the developer’s source tree (on the right). 

/repo/trunk/libraries/graphic/     ->   libraries/graphic
/repo/trunk/libraries/math/        ->   libraries/math
/repo/trunk/programs/calc          ->   source 

In this case, when a developer checks out a source code tree, the latest ver-
sion of the /repo/trunk/libraries/graphic directory is retrieved from the 
repository. These files are stored in the libraries/graphic subdirectory of the 
developer’s build tree. The remaining two lines of the specification file provide 
similar information. The number of entries in this file can be arbitrary, as can 
the mapping from repository to build tree. 

Ironically, not many version-control systems allow this mapping to be ver-
sion-controlled, therefore making it tricky to always reproduce older build 
trees. A developer must somehow know in advance which set of directories are 
required and must have external knowledge of how that mapping has changed 
over time. If developers want to obtain an older version of the source tree, they 
must use an older mapping. 
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One way to work around this limitation is to commit the mapping to a well-
known location in the version-control system. For example, the file /repo/
trunk/view.dat would first be checked out from the repository and used by 
the developer when accessing the remaining directories. If a new directory was 
required in the future, the additional configuration line could be added to view.
dat. Unfortunately, it becomes a two-step process to check out source code, 
although the benefits of having this information under version control can be 
substantial.

What Should Not Be in the Source Tree 

In contrast to the previous section, you need to consider which files should 
not be stored under version-control. In addition, you need to know which files 
should not be stored in the same directories as the source code, even if they’re 
not actually version-controlled. 

This section looks at three categories of information: 

1. Generated files in the source tree 

2. Generated files under version control 

3. Build-management scripts 

Consider each of these categories in turn and understand why you need to be 
careful about storing them in the correct file system location. 

Generated Files in the Source Tree 

By default, most compilation tools generate their output files in the same 
directory as their input files. In a build system, therefore, the default is to have 
the object files spread around the entire source code tree, intermingled with the 
source files. For example, you might see the following directory content: 

$ ls
calc.c  calc.o  Makefile  math.c  math.o  numbers.c
numbers.o

Although it often takes extra work, large projects benefit from storing the 
object files in a separate output directory. If the source code is stored in the 
sources subdirectory, the object files should be stored in the  objects subdirec-
tory. These directories can contain a full hierarchy of subdirectories, so a source 
file such as sources/a/b/file.c would be compiled into an object file called 
objects/a/b/file.o.
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If you decided to cut corners and not to take this approach, you’d likely end 
up with one or more of the following problems: 

• Autogenerated files look like source files: Confusion might arise over 
whether a file is a source file or a generated file. This is not actually a prob-
lem for object files (with a .o suffix), but distinguishing autogenerated 
source files from true source files might be difficult. The usual practice is 
to prepend autogenerated files with a code comment of this form: 

/* Warning – auto-generated file – do no edit */ 

Most version-control tools enable you to identify the files that should be 
committed but haven’t yet been entered into the system. For example, 
many CVS operations provide a log of the files that have been modified, as 
well as a description of what will be done to them. Any files in a version-
controlled directory that haven’t been explicitly committed are marked 
with a ? symbol. 

$ cvs update
? Data.java
U Main.java
U Database.java
U Data.list 

The developer must figure out whether Data.java is a true source file that 
has yet to be committed to the repository or whether it’s an autogenerated 
file that should never be committed. If it had been stored in an object direc-
tory in the first place, there’d be no question what type of file it is. 

• The clean target is harder to implement: Supporting the clean build target 
is much harder if the generated files are interspersed with the source files. 
Whereas having everything in a single object directory makes it easy to 
clean the whole build tree (by simply deleting the directory), it’s more dif-
ficult to delete the files if they’re mixed in with the valuable source code. 

In this case, either you do a lot of work to get the clean target working 
correctly (deleting the correct set of files) or you risk not cleaning out 
everything that was generated. This scenario can be painful for developers 
who resort to a clean build because of dependency problems. They could 
be stuck with a build tree in which files are not being rebuilt when they 
should be, but they also suffer from not being able to delete those files to 
start again with a fresh tree. 
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• Object files for multiple CPU types get mixed together: As discussed in 
Chapter 5, “Subtargets and Build Variants,” some build systems can out-
put code for more than one CPU type (such as i386 or MIPS). If you don’t 
store the object files in two separate output directories, they get mixed 
together, making it difficult to distinguish one CPU’s object files from the 
other.

• Disk storage requirements are harder to meet: Some computing environ-
ments have multiple tiers of disk storage, which are important to use cor-
rectly. Some disks are backed up on a regular basis, whereas others might 
not be backed up at all. If you care about keeping your source code safe 
and secure, you’ll probably store it on the most reliable backed-up disk 
you have. In contrast, object files can easily be regenerated, so you’d in-
stead use the cheaper disk. You clearly need to have source code and gen-
erated code in two different directories if you’re using two different disks. 

Hopefully, each of the previous examples has convinced you that generating 
object files (and autogenerated files) into a separate output directory is worth 
the effort, even if your build tool doesn’t support this by default. 

Generated Files Under Version Control 

If an object file or autogenerated source file has been committed to the version-
control system, this is likely a mistake. A developer might have gotten confused 
and accidentally committed a generated file as if it was source code. As discussed 
earlier, this is an easy mistake to make if the generated files are incorrectly 
stored in the same directory as the source code. 

One side effect of checking in generated files is that after they’ve been com-
mitted by the first developer, all other developers are likely to commit the same 
file by mistake. Because the generated file is automatically written to by the 
build system, the file in question will always be modified when somebody per-
forms a build. The version-control system notices that the file has been modified 
and schedules it to be committed to the repository again. If developers aren’t 
careful, they’ll end up committing the same file over and over again. 

To catch these situations more quickly, consider checking out files in read-
only mode. (Some tools require this by default.) When the source tree is rebuilt, 
the build system fails when it tries to write to the generated file. The developer 
sees that the file was committed by mistake and removes it from the version 
control system before continuing the work. 

Despite being a bad idea in general, in some cases, committing generated 
files actually makes sense. For example, you could speed up the build process 
by pre-compiling part of the build tree that doesn’t change very often, such as 
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a third-party library. By precompiling the library and committing the resultant 
files to the version-control system, developers can avoid compiling the library 
for themselves. A special build target must be used to build the library, so it 
won’t be re-created by default and, therefore, won’t be marked as “modified.” 

To extend this idea further, some version-control tools automatically cache 
generated files to save the developer from rebuilding them. Chapter 19, “Faster 
Builds,” describes this mechanism. 

Build-Management Scripts 

A final scenario in which code shouldn’t be committed to the version-control 
system arises when a script or tool is more dependent on the external environ-
ment (such as build machines or disks) than it is related to the product’s source 
code. Committing a tool of this nature only increases the amount of mainte-
nance work required to fix bugs in the tool. 

For example, a script that advises developers of which build machine is cur-
rently the fastest or which file system currently has the most disk space shouldn’t 
be committed to the version-control system. It doesn’t make any sense to have 
a different version of this tool for release 1 of the software versus release 2. In 
fact, fixing a bug in this script would require that every version-control branch 
of source code be modified. This is certainly not desirable. 

Instead, the script should be kept in a regular disk file, such as /tools/bin/
disk-advisor. Any changes to the script, such as adding the details of a new 
build machine or disk, can be done in a single place. The same script is used for 
all code branches and doesn’t need to behave any differently for one branch of 
the source code versus another. Also, the script cares only about the build envi-
ronment as it exists now, not how it was in the past. 

If some of the script’s behavior depends on a particular branch of code, it’s 
still possible to store the script’s configuration in version control but keep the 
main body of the script in the /tools/bin directory. For example, if the  disk-
advisor script needs to know which output directories are created by the build 
process, you could create a configuration file to list that information. 

# list of output directories
obj
data
mips
powerpc

Each branch in the version-control system could have a different configura-
tion file; thus, the script would behave differently in each case. 

To be technically correct, the complete disk-advisor script must still be 
kept under version control, but not in the same place as the product’s source 
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code. The script has a life cycle of its own, and changes to that script must 
be version-controlled in a completely different version-control system. Changes 
to disk-advisor are therefore made independently of changes to the main 
product.

This completes the discussion of what you should—and shouldn’t—keep 
under version control. Now let’s take a quick look at version numbers and how 
they’re used. 

Version Numbering 

The final topic in the version control area is version numbering. Anyone who 
has downloaded and installed software has at least a passing awareness of the 
version number attached to it. Over time, the version number is incremented as 
new features and bug fixes are added to the software. The exact meaning of the 
version number is specific to each product, but it must somehow be attached to 
the software before it’s sent to the customer. 

This chapter doesn’t spend a lot of time talking about version numbers, but 
it briefly covers the following build-related topics: 

• What a version number looks like and what it means 

• How the version number is managed and updated 

• How the version number is stored inside the software and retrieved by the 
customer

Version-Numbering Systems 

Opinions differ on what a version number should look like, with no clear stand-
ards to follow. The basic rule is that numbers should increase whenever a new 
software release is made available. In some cases, numbers are not used at all, 
but are instead replaced by attractive marketing names. The following version 
sequences probably look familiar: 

• R1, R2, R3 

• 1.2.0, 1.2.1, 1.2.2, 1.3.0 

• 3.1, 95, NT, 98, Me, 2000, XP, Vista, 7 

• 737-300, 737-400, 737-500, 747-300, 747-400 
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The list of possibilities is endless, and it’s up to the product managers to 
determine what makes sense for their product. 

Perhaps the most common version system for software is the three-number 
approach. If in doubt, this is a tried-and-tested solution that won’t get you in 
trouble with copyright lawyers. (Using Vista as a version name might land you 
in hot water). The three-number approach recognizes the difference in large 
feature changes, small feature changes, and bug fixes. 

When using this approach, a version number should follow the format X.Y.Z
(Build B), where 

• X increments when major feature changes are made to the software. This 
often means that configuration and data files that were used in previous 
versions of the software are no longer compatible (and must be upgraded). 

• Y increments when minor feature changes are made. These changes add 
new capabilities to the software but don’t significantly change the way the 
software is used or result in a disruptive upgrade. 

• Z increments for every new bug fix (or set of bug fixes). No new func-
tionality is added to the software, but the user can rest assured that the 
software now has better quality. 

• (Build B) increments with every release build of the software. The cus-
tomer need not be concerned with this number: It simply indicates how 
many times the test group has received a new package to test. It doesn’t 
say anything about the new features or bug fixes that may be present in the 
package. This number is typically large and has no relation to the values of 
X, Y, or Z.

Individual customers use their own personal preference when evaluating ver-
sion numbers. Cautious customers stay away from releases in which Y and  Z are 
both 0, which indicates a totally new release of major features. They’ll likely 
wait until Z has been incremented a few times to indicate that early product bugs 
have been resolved. 

Coordinating and Updating the Version Number 

When implementing a release build system, some mechanism must exist for 
keeping track of the version number and updating it appropriately. Successive 
software releases use successive version numbers, incrementing the individual 
parts of the number as appropriate. The version number must therefore be re-
corded between release builds. 
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Between consecutive builds, the version number could be stored in one of the 
following ways: 

• In an external disk file: The release engineer maintains a disk file contain-
ing the current version number, such as 1.2.3 (Build 832). After each 
successful build, a script increments the build number. Incrementing the 
number after a failed build is pointless, because a complete software pack-
age was never produced. 

• Inside the version-control system: Instead of using an external disk file, 
the version number is committed to the version-control system (again, 
after each successful build). This has the advantage of permanently stor-
ing a version number alongside each build of the software. If developers 
went back to an earlier version of the software, the version-control system 
would show the matching version number. 

• Managed by the build-management tool: One of the main goals of a build-
management tool is to manage versions. The tool (such as Build Forge, 
ElectricCommander, CruiseControl, or Hudson) is responsible for storing 
the current version number in its own internal database and for increment-
ing the number after successful builds. If you’re using a build-management 
tool, this is the easiest way to manage the version number. 

Now that you’ve stored the version number somewhere, the remaining ques-
tion is how to update the number. The build number B is automatically incre-
mented after every successful build, but that is not true for the X, Y, and Z
components. These should always be incremented manually after a conscious 
decision by the product managers. 

The simplest approach for setting X, Y, and Z is for a manual decision to be 
made about the upcoming version number. For example, if the most recent soft-
ware release was 2.3.0, the planned addition of a few bug fixes implies that the 
next release should be 2.3.1. On the other hand, if new features are added to 
the next release, the number would be 2.4.0.

As an example, the release engineering team might produce the follow 
sequence of release builds: 

• 2.3.0 (Build 1623): Released to customers 

• 2.3.1 (Build 1624): Internal only 

• 2.3.1 (Build 1625): Internal only 

• 2.3.1 (Build 1626): Internal only 
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•  2.3.1 (Build 1627): Internal only 

•  2.3.1 (Build 1628): Released to customers 

Customers will be unaware of all packages except the first and last in the 
list. You might want to hide the build number from the customer so that it’s 
available only via a special command or menu option. They shouldn’t care how 
many times the package has been built and sent to the test group. (Although a 
small increment might make them think the product hadn’t been tested much!) 

The test group refers to the packages by their build number, such as 1628.
When issuing bug reports, it relies heavily on build numbers to distinguish the 
different releases. After all, there are many different internal releases of 2.3.1,
and each could contain different bugs. 

The release engineer tags the version-control system to indicate that build 
1628 was the official release of version  2.3.1. If developers wanted to repro-
duce the source code for this version, they’d reference the appropriate tag, 
such as Release_2.3.1. To reproduce internal releases, the tag would be 
Release_2.3.1_Build_1626.

Another common approach to versioning software is to add a release quali-
fier, such as alpha, beta, or rc (release candidate). These tags distinguish the 
pre-release versions of software from the final release. For example: 

• 2.3.0 (Build 1623): Released to customers 

• 2.3.1-alpha (Build 1624): Internal only 

• 2.3.1-alpha (Build 1687): Internal only 

• 2.3.1-beta (Build 1742): Internal only 

• 2.3.1-beta (Build 1786): Internal only 

• 2.3.1-rc1 (Build 1828): Release candidate; still internal 

• 2.3.1-rc2 (Build 1829): Release candidate; still internal 

• 2.3.1 (Build 1830): Released to customers 

This approach keeps a clear separation between internal releases and those 
provided to a customer. The downside is that version 2.3.1-rc2 (in this exam-
ple) must be recompiled to create version 2.3.1 and then retested to ensure that 
it still works perfectly. This extra effort is required even though no differences 
should exist between the two releases. 
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As mentioned earlier, you can implement a version-numbering system in 
many ways, with each product-development team choosing its own way of rep-
resenting the change in software. 

Storing and Retrieving the Version Number 

The last step in the version-numbering process is to store the number in the soft-
ware package. Customers need a way to determine which version of software 
they’re currently using or which version they’re about to install. Additionally, 
a customer support engineer must determine which version a bug was reported 
against.

The version number should be stored in some obvious places, along with one 
that’s not so obvious: 

• In the release package name: The version string should always be embed-
ded in the name of the software package the customer receives (for exam-
ple, package-2.3.1.zip). For internal releases that aren’t delivered to a 
customer, the name should also include the build number. 

• In the software’s About menu: When users select the Help, About menu 
on the GUI or enter some type of version command into a command-line 
tool, they should see the version string. This is an appropriate place to also 
display the build number. 

• In the installation directory name: To support multiple versions of your 
software on the same target machine, always include the version number 
in the product’s installation directory. For example, you could install it in 
C:\Program Files\MySoftware-2.3.1.

• Inside the program’s data segment: This approach is a little less obvious, 
but storing the program’s version string inside the data segment gives you 
access to the version number if the program crashes and creates a core
dump (assuming your programming environment supports core dumps). 
This is particularly useful if the customer sent you a core dump for analysis 
without remembering which version number of the software caused the 
crash. (The customer may have upgraded recently.) 

Because operating systems don’t include the program code (the text seg-
ment) inside a core dump, be careful to store the version string in a well-
known data variable (in the data segment) instead of as a constant string. 
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Without going into too many details, it should now be obvious that some 
amount of work is required for your build system to insert the version number 
into the appropriate parts of the program. Start by adding a version flag to your 
standard software build command: 

$ make all VERSION=2.3.1 BUILDNUM=1628 

The build system inserts the value of VERSION and  BUILDNUM into the 
pathnames, filenames, menu strings, or data segment, as appropriate for your 
product.

As a final note, you might be wondering what would happen if a developer 
did a private build without specifying a version string. In this case, the default 
might be to use the number 0.0.0, indicating to everybody that this isn’t an 
official release build. You could also be more creative and mention the user’s 
name, to indicate who actually built the software: 

Private build by psmith@arapiki.com
Version 0.0.0 (Build private) 

If you choose the approach of committing the release build number in the 
version-control system, you can create more specific version strings. For exam-
ple, you can show which release build this private build was based on. 

Private build by psmith@arapiki.com
Based on Version 2.3.1 (Build private) 

The key point is to ensure that whoever uses the software package can deter-
mine who built the software and roughly what set of functionality to expect 
from it. It’s also important to use version numbers as a means of reporting and 
tracking bug fixes. 

Summary

This chapter touched upon a wide range of topics related to version control of 
the build system. Failing to correctly version-control the build description or the 
compilation tools can result in broken builds or an inability to reproduce older 
versions of the software. 

Various items should always be kept under version control. These include the 
build description files that record the complete end-to-end build process, refer-
ences to each specific version of a compilation tool, large binary files, and the 
configuration of a source code tree that defines the directories to be checked out. 
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In contrast, you need to keep certain files out of the version-control system, 
such as generated source and object files, as well as build-management scripts 
that aren’t directly tied to each version of the software. 

Finally, version numbers are an important way for customers to measure the 
content and stability of the software releases available to them. These numbers 
are also used to track bug reports and corresponding bug fixes. 
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Build Machines 

In contrast to the last chapter’s discussion on keeping the source code and build 
description under version control, this chapter focuses more on the underlying 
build machines (see Figure 15.1). A build machine may be upgraded on a regular 
basis as new versions of the operating system become available. Naturally, some 
amount of management is required to ensure that a change to a build machine 
doesn’t break the build process. 

Version-
Control

Tool

Source 
Tree

Object
Tree

Release
Package

Compilation Tools

Build Machine

Figure 15.1 Big-picture diagram, focusing on the build machine. 

A typical build environment includes many compilation tools. Some are a 
standard part of the operating system, but others probably were acquired from 
third-party vendors (such as being downloaded from a web site). Some tools 
might even have been custom-written for the build environment and supported 
by your own organization. This chapter focuses on features and standard tools 
normally considered part of the basic operating system. Chapter 16, “Tool 
Management,” focuses more on third-party and custom-built tools. 

If you don’t closely manage the build machine, plenty of opportunity for 
failed builds or corrupted software packages will arise. Even if problems are 

413
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encountered only once or twice per week, the work required to diagnose and 
resolve compatibility issues can soon add up. A large development team of hun-
dreds of people can require a full-time engineer to support and resolve build 
failures.

This chapter looks at the issues surrounding the version control of build 
machines. This includes centralized development in a closed and controlled envi-
ronment, as well as in a typical open-source environment that has a wide range 
of end users. 

This chapter also looks at a case study of using GNU Autoconf. This tool 
makes a developer’s life easier when writing software for multiple platforms. 
Before moving to these topics, let’s take a more in-depth look at the concepts 
of native and cross-compilation briefly discussed in Chapter 1, “Build System 
Overview.”

Native and Cross-Compilation 

From a build system perspective, you often care about whether the target ma-
chine that runs the software is the same as the machine that  compiles the soft-
ware or whether it’s a completely different type of machine. Each approach has 
its own set of benefits and challenges, and depending on your build environ-
ment, you might have some flexibility on the approach you choose. Let’s briefly 
examine the two methods. 

Native Compilation 

In a native compilation environment, the build system is free to use any files 
that reside on the build machine. On a UNIX-like system, any of the libraries 
in the /usr/lib directory and any of the header files in  /usr/include can be 
incorporated into the build process. Given that the software executes on the 
build machine, or a similar machine, you need to use libraries and header files 
that match the build machine’s operating system. 

One advantage of native compilation is that it minimizes a developer’s edit–
compile–run cycle. The final program can be executed on the same machine it 
was compiled on, with no additional step to copy the program onto the target 
machine. This makes it easy to execute and debug the program from within the 
developer’s editor or integrated development environment (IDE). 

One point of concern when developing and testing code on a build machine 
is that you’ll likely have additional libraries and tools that end users might not 
have installed. For example, if a Windows developer used Visual Studio to com-
pile code, that developer must ensure that the software still works on a machine 
that doesn’t have Visual Studio installed. Failure to test in a clean environment 
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could result in missing library error messages when the end user runs the 
software. This is less of a problem in a cross-compilation environment where the 
developer has no choice but to test on a   target machine that certainly won’t have 
any development libraries installed. 

Cross-Compilation

In a cross-compilation environment, the program won’t be executed on the same 
machine it was built on. It must not use any of the libraries or header files from 
the build machine because they won’t be relevant to the target machine. Also, 
an additional step is involved to copy the executable program onto the target 
machine before it can be executed. 

The main advantage of using cross-compilation is that not all target machines 
have sufficient processing power to run a full build system. Imagine the CPU 
inside a kitchen appliance: It isn’t fast enough to execute a compiler and cer-
tainly doesn’t have enough memory installed. Similarly, a device such as a gam-
ing console has plenty of CPU power and memory, but it might not have the 
necessary user interface (keyboard and mouse) to develop software. 

To successfully develop code in an embedded environment, you need two 
main things. The first is a set of cross-compilers that execute on the build 
machine but generate code for the target CPU. Some compilers, such as the 
GNU C Compiler, support a variety of target back ends and, therefore, are 
ideal for this environment. For example, a compiler for a gaming console would 
execute on a Linux machine with an Intel CPU but might generate code for an 
embedded MIPS processor. 

The second requirement for an embedded system is a good communications 
link between the build and target machines (see Figure 15.2). The developer 
must download the software package to the target machine, start and stop the 
program remotely, and then use an interactive debugger to query the state of the 
target CPU. 

Target Machine

Communication link for
downloading, debugging,

and crash dumps

IDE

Build Machine

Compiler

Figure 15.2 The separation between the development environment and the target 
machine, using a special-purpose communication link. 
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If all these features are available, there’s no reason developers can’t continue 
to use their standard editor or IDE (on their build machine) to interact with the 
running program, as in native compilation. 

Hybrid Environments 

During a product’s development phase, before the customer uses the product, 
developers might choose a hybrid approach to developing software. They would 
compile their code for the target machine but still test the software on the build 
machine instead of downloading it to the real target hardware. 

One way to achieve this goal is to develop in a language such as Java that uses 
a virtual machine. Because a Java program can run on any machine type, regard-
less of the target architecture, much of the software can be executed and tested 
on the build machine. Obviously, there are limitations when the software needs 
access to physical devices that are available only on the real target, but these can 
often be simulated on the build machine. 

A second approach is to use a CPU emulator. In this case, the build machine 
creates an artificial environment that appears to be exactly the same as the target 
machine, at least from the software’s perspective. When the CPU architecture 
differs from the build machine, the emulator interprets the machine instructions, 
giving the appearance the software is actually being executed. 

In these types of hybrid solution, the developer gains a significant amount of 
productivity by reducing the awkwardness of working with real hardware. 

Centralized Development Environments 

The next major topic related to build machines is centralized development envi-
ronments. With centralized software development, you can use any number of 
build machines to compile the organization’s range of software products. All the 
machines are managed by the same organization (such as a company or founda-
tion) and are used for the same purpose (see Figure 15.3). This environment is 
distinct from the open-source development environment discussed in the next 
section.
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Centralized Network

Figure 15.3 A high-level view of a typical centralized environment with consistent 
toolsets and machine types. 

A centralized software environment might have anywhere from 10 to 10,000 
build machines running a variety of operating systems. The machines could be 
spread across different countries and time zones and could be administrated by 
a range of different people. It’s not uncommon to see build machines from 5 to 8 
years old, even though, after 3 to 5 years, they’re typically too slow to be useful. 

In this type of environment, a lot of management is required to keep the build 
system running smoothly. The sheer number of developers and all their require-
ments can make it challenging to ensure that the build system produces the same 
result for everybody. 

In an idealistic environment, all the build machines would be identical, at 
least from a software perspective. It doesn’t matter whether the hardware is 
identical (in terms of CPU speed and memory capacity), but the operating sys-
tem, CPU architecture, and set of tools must be the same on all machines. Any 
differences from one build machine to the next can cause build failures. 

Imagine a scenario in which the same piece of software can be compiled on 
both Solaris and Linux systems. Although both operating systems are UNIX-
compatible, they still have many differences in the location of the standard 
UNIX programs and in the command-line arguments accepted. Any special-pur-
pose tools that the build system requires, such as compilers or code-generators, 
must be available on both platforms. 

Anyone tasked with maintaining the build system faces an endless struggle to 
keep the build running on both types of machine. If developers prefer to compile 
their code on a Solaris machine, they need to double-check build system changes 
to ensure that they also work on a Linux machine. Most developers don’t have 
the spare time to compile their software twice, so build breakages are more 
common than expected. Machine incompatibilities are a large contributor to 
broken builds. 
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The UNIX system administrators also have twice as much work to do. Not 
only do they need to be fluent in both Solaris and Linux administration, but they 
also end up doing twice as much work to maintain the operating system and tool 
patches for each of the machine types. Most system administrators prefer not to 
do everything twice. 

Why Build Machines Differ 

Although it’s desirable to have only a single type of build machine, for many 
reasons, this isn’t practical. Keep in mind that build systems exist for many 
years, often longer than any particular build machine. Let’s consider some rea-
sons why a software organization might need to support more than one type of 
build machine: 

• Customers use different operating systems: If you need to support one 
set of customers who use Solaris systems and another set who uses Linux 
systems, it might not be possible to support only one type of build ma-
chine. In contrast, you could manage with a single build platform if you 
could cross-compile your source code for each of the target machines. The 
only requirement is that cross-compilers and cross-libraries be available 
for each target platform. 

If you develop software for the home PC market, you have no choice but 
to upgrade to whatever the customers are using. At the time of writing, 
Microsoft has just released the Windows 7 operating system. At this point, 
you’d be foolish to support only Windows XP and Vista. 

• Development tools require specific operating systems: A software devel-
oper might request a specific type of tool, such as a compiler for an unu-
sual CPU type, or a custom code generator for a data-definition language. 
If problems with the tool arise, you can ask the vendor to provide the 
necessary information or software patches. The only caveat is that you 
must run the tool on an approved operating system. A vendor will support 
the latest version of Windows or something like Red Hat Enterprise Linux, 
but it won’t likely support a 5-year-old version of FreeBSD. 

If you don’t use a vendor-approved operating system, you’ll be forced to 
switch to one that is, or perhaps reject the whole idea of using that tool 
in the first place. You might be able to use the tool on an older version of 
the operating system, such as an older version of Red Hat Linux, but you 
have no guarantees that it will work. The tool might fail because of miss-
ing operating system features or might give a missing library error if 
the required dynamic libraries can’t be found. 
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If you have conflicting tool requirements, you could end up with a mul-
timachine build process. To build the full software package, part of your 
build tree must be compiled with one tool (and, hence, one build machine), 
with another part of the tree compiled on a different machine. This clearly 
isn’t desirable, but it might still be your best option if a special set of com-
pilation tools is important for your product. 

• Newer OS versions are released: When you started developing your soft-
ware, you likely settled on a specific operating system as the basis for all 
your build machines. The build system will grow over time to take advan-
tage of the operating system’s features. Given enough time (normally 2 to 
3 years), people will notice that newer versions of that same OS are now 
available and have additional features they’d like to use. 

Meanwhile, the version you’re currently using is no longer supported. 
Most vendors support only the most recent two or three versions of their 
operating system and encourage users to upgrade to their latest release. 
They’ll also stop providing bug fixes and security patches for their older 
versions.

Unless you plan to support your build machine’s operating system by 
yourself, it’s best to upgrade. You’ll need to make some changes to your 
build system, but upgrading is often the cheapest option in the long term. 

• Older operating systems don’t support newer hardware: Build machines 
tend to have a life span of 5–8 years. Even after 3 years, they’ll be much 
slower than any new hardware you can buy. For a period of time, you’ll 
probably purchase new hardware and install the same version of oper-
ating system you’ve used for many years—until you come across a nice 
new 64-bit quad-CPU system with 16GiB of RAM, which, unfortunately, 
won’t be supported by a 5-year-old operating system. You’ll be forced to 
upgrade.

• Operating systems lose popularity: You might have selected your build 
machine’s OS many years ago and are obediently upgrading to the latest 
revision whenever updates are available. Over time, you might realize that 
the operating system is losing popularity in the market and that there’s less 
support among tool vendors. A good example is the growth of Linux over 
the last 10 years and the corresponding decline of Solaris. If you’ve always 
used Solaris build machines, you might want to think about switching to 
a cheaper and faster Linux environment. In some cases, the vendor might 
even go out of business, forcing you to   select a new platform. 
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• Companies merge: A common scenario in the world of high-tech compa-
nies is the familiar merger or acquisition. Two companies come together 
and find synergy by jointly developing their products or sharing develop-
ment resources. In one case, two different product lines merge into a single 
product, requiring the two build systems to merge into one. In other cases, 
developers from one product line might be reassigned to work on the other 
product line, preferably using their existing build machines. Until the build 
machine platform can be standardized, there’s good reason to be working 
with two different types of machine. 

• Developers have their personal favorites: A final reason for having multi-
ple build machines is that everybody has their favorite. Many people prefer 
to work with a certain operating system and sometimes go out of their 
way to make the build system work on their own platform. If the system 
administration group doesn’t control the situation, you can end up with a 
wide array of build machines. 

With all these motivations in mind, do not forget that your software releases 
might have a life span of several years. If you released a version of your product 
2 years ago and are still providing customer support for that release, you need 
some way to compile the software. If your new build machines (with their newer 
operating system) cannot compile the old source code, your only option is to 
maintain two or more distinct types of build machine. 

In Figure 15.4, Solaris versions 8, 9, and 10 have all been used to compile the 
product. The oldest release has reached its end of life (EOL), so you no longer 
need any Solaris 8 build machines. However, you must still maintain a small 
pool of Solaris 9 machines, in case someone needs to check out and recompile 
Release 2. Most developers would now use Solaris 10 as their default build 
machine.

Release 1 built
on Solaris 8

Release 2 built
on Solaris 9

Release 3 built
on Solaris 10

Release 4 will build
on Solaris 10

EOL

Figure 15.4 Each version-control branch might require a different type of build 
machine.
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As you might imagine, it often pays to proactively upgrade your build 
machines instead of waiting for an emergency. Anyone experienced in maintain-
ing build systems has a horror story of how one build machine suddenly died of 
old age and had to be replaced in a hurry. Unfortunately, the necessary operat-
ing system version was no longer available, and none of the newer systems could 
compile the old software. 

If you make a point of explicitly upgrading your build machines and modify-
ing the build system accordingly, you’ll be less likely to face these urgent situa-
tions. Being diligent about moving customers to newer software releases is also 
a good tactic to help with EOL releases. 

Managing Multiple Build Machines 

Hopefully you now believe that having multiple build environments is almost 
a certainty, at least for short periods of time. Now consider what you can do 
to minimize the differences and, therefore, reduce the confusion when multiple 
build machines are used. Certainly no single solution to this problem exists, 
other than hard work by the system administrators and careful planning when-
ever changes are required. 

• Disallow special per-machine software: Each user might have a preferred 
set of applications to install on their own machines, but consider disal-
lowing this. If a software package is to be installed, it should be made 
available on all build machines, not just some. Have a group of reviewers 
evaluate each request for new software and then decide whether it should 
be installed on all machines, if at all. 

People might view custom installations as a superset of the standard build 
machine environment. However, installing extra programs into system di-
rectories (such as C:\Windows or  /usr) can have nasty side effects that 
impact existing tools. For example, a program might decide to install a 
special version of a dynamic library, but the existence of that library could 
cause existing applications to act differently. The same is true for system 
configuration files that the new application decides to modify. 

One acceptable solution is for users to install their custom applications 
in their home directories. Because they don’t have access to write to the 
system directories or configuration files, there’s no way to modify the be-
havior of existing tools. This assumes that the build system rejects user-
specific $PATH values, which it always should. 
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• Disallow administrator access: As much as possible, disallow users from 
having administrator/superuser access to build machines because this 
can add to the temptation for them to make custom modifications. If left 
unchecked, each machine can end up with a slightly different configura-
tion, with the build system behaving differently in each case. Depending 
on the nature of the change, the problem might not be noticed for months 
or years, at which point tracking down what was changed is difficult. 

• Validate build machine changes on a test machine: If you decide to make 
a significant change to your build machines, such as applying patches 
or upgrading the OS, first validate the change on a test machine. This 
involves rehearsing the installation steps and validating the build system 
to ensure that nothing is broken. Build both old and new code branches; in 
case there’s a difference between them. The system administrators should 
work closely with the build maintainers to ensure that everything works 
correctly.

• Use a single operating system image: Instead of manually installing new 
software on each build machine, use some type of automation to do the 
job. Assuming that the installation process has been validated on a test 
machine, you shouldn’t have any problems installing the same software on 
all other machines. Ignoring hardware differences, each machine should 
have started with the same set of software installed and, therefore, should 
end up with the same new set of software. 

If you purchase a completely new computer that doesn’t yet contain any 
software, make sure you have an easy way to install the necessary operat-
ing system and tools. Using a jump-start or  kick-start method can help 
with the deployment of cookie-cutter systems. 

• Say no to personal machines: As mentioned earlier, many developers pre-
fer to use the type of operating system they’re most comfortable with or to 
work on their personal machines. Although it’s a sacrifice for developers, 
disallowing personal choice is a great way to ensure uniformity. You might 
not want to disallow users from plugging their machines into the network, 
but you should at least refuse to support them if they have build problems. 

• Ask tool vendors to support your operating system: Instead of changing 
your build machine’s operating system to support a third-party develop-
ment tool, you could ask whether the vendor can support your existing 
OS. The worst the vendor will do is decline your request, but if you happen 
to be lucky or have a great relationship with the vendor, you could avoid 
a lot of extra migration work. 
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• Make sure your system administrator understands build systems: It can’t 
be stressed enough that you must keep the build machine’s operating sys-
tem and tools under tight control. If system administrators don’t under-
stand these issues, they might be tempted to apply patches and upgrades 
whenever they feel like it. In organizations that don’t specialize in software 
development, the system administration group often has a lot more say in 
how the computers are managed and which versions of software are used. 
This freedom doesn’t transfer well to build systems. 

• Watch closely for “magic” machines: If you’re not careful, you’ll find 
that some part of your build system can be executed only on a custom-
configured build machine. This is common when performing an obscure 
sequence of steps that use special file formats or one-off tools. In many 
cases, the magic machine sits in a dark corner of the server room or per-
haps underneath a developer’s desk. Few people might even be aware that 
the machine exists. 

Because of their obscurity, magic machines are unlikely to be involved in 
the main part of the build process; instead, they’re confined to compiling a 
small or optional part of the software. For example, an embedded system 
might depend on a small bootloader that loads the full operating system 
from disk. The bootloader might be stored in flash memory (which stays 
intact when power is turned off) and doesn’t change often; it might be 
modified only once or twice a year. 

You can now imagine the problem. Six months might pass before anybody 
notices that the magic machine has failed, leaving no way to recompile 
the bootloader software. It’s important to keep track of magic machines 
and ensure that any tools are made available on the more common build 
machines.

• Use virtual machines if you need to: One way to avoid supporting magic 
machines is to instead use a virtual machine. This enables you to run an 
older operating system inside a newer operating system. The OS image is 
simply a large disk file that can be loaded into a virtual machine player at 
any point in time and that can be duplicated and distributed to any devel-
oper who needs access. The VM executes on any modern build machine, 
alleviating the concern about magic machines growing old and failing. 

Managing a set of build machines isn’t trivial; if it’s not done properly, it can 
lead to build failures and inconsistencies between machines. It’s worth creating 
solid and repeatable procedures for managing your build machines instead of 
leaving things to chance. 
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Now let’s continue by looking at open-source environments, where there’s 
much less consistency between the build machines. 

Open-Source Development Environments 

The characteristics of an open-source project are different from centralized soft-
ware development projects. Most projects have fewer than 20 active developers, 
but the software is downloaded and compiled by many thousands of consumers 
(see Figure 15.5). For common platforms such as Linux, the software might be 
available in precompiled form, but in other cases, consumers must compile the 
program for themselves. Each user has his or her own computer and is likely to 
be the administrator. (This is certainly true for home enthusiasts.) Sometimes 
the software is downloaded to corporate machines, but there’s no standard type 
of build machine required. 

Open Source 
Repository

Developers End Users /
Consumers

Figure 15.5 A typical open-source environment with few developers and many con-
sumers, each using their own version of build machine. 

Consider, for example, the Apache web server, which has a small number of 
experts who’ve contributed to the software. On the consumer side, many end 
users will compile the httpd program from source code. These novice end users 
have no idea how the tool works or how the software builds; they are interested 
only in the finished product. Luckily for most people, httpd comes precompiled 
for many operating systems, with no need to compile it from source code. 

The key point here is that maintainers of open-source projects can’t dictate 
exactly which operating system to use to compile the source code. No single 
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company owns the build machines, so the build system must work correctly on 
any reasonable platform. New operating system versions are released frequently, 
and users expect their existing software to compile on each new build machine. 

Anyone who has compiled open-source software, especially on less common 
versions of UNIX, has undoubtedly come across build failures. You’re probably 
in luck if the maintainers of the software tested on the same OS version you’re 
using. In general though, you should expect a few build errors if your operating 
system’s features are slightly different than expected or if your system is missing 
any of the third-party packages this software depends upon. 

Keep in mind that most open-source packages are designed to run on UNIX-
like systems, although some of them support Microsoft Windows. Even then, 
plenty of UNIX-like systems exist, each having slightly different characteristics. 
Without thinking too hard, you’ve probably heard of most of the following: 
Mac OS X, Linux (Debian, SUSE, Ubuntu, Red Hat, and Gentoo, among many 
others), FreeBSD, NetBSD, OpenBSD, Solaris, HP-UX, AIX, Xenix, and Minix. 
Given the variety, your build system would need to be very versatile to work on 
all of them. 

Now look at the common types of build failure you might encounter when 
compiling open-source software. 

• Availability of prerequisite packages: In many cases, an open-source project 
depends on the target machine to already have the prerequisite packages 
installed. For example, if the software uses the MySQL database system, 
MySQL must have already been installed. Alternatively, the package might 
require that a Python or Perl interpreter be available. 

Most open-source projects come with detailed written instructions on 
which packages must be installed. The end user must download and install 
each of the packages, often requiring hours of extra work. 

• Version of tools and packages: Although a prerequisite package might 
already be installed on the target machine, it might not be a recent enough 
version. You could expect the build system to validate the version of all 
required packages and fail with a meaningful error message. Unfortu-
nately, developers don’t always have the foresight to make that happen. 

In some cases, you’re left staring at a confusing error message when the 
older package doesn’t understand a newer command or file format. For 
this reason, some open-source maintainers deliberately avoid relying on 
newer versions of packages, just to ensure that their software still works 
correctly on older build machines. 
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• Path to tools: A big difference between UNIX variants is the location in 
which programs are installed. Most of the standard programs (such as ls,
cat, and more) are installed in /bin or  /usr/bin, but other nonstand-
ard programs can be stored anywhere the OS maintainer chooses (such 
as /opt, /usr/local/bin, or /usr/tools). For a build system to find a 
required tool, it must depend on the user to have the $PATH set correctly or 
otherwise play a guessing game to figure out where each tool is installed. 
This can be a major source of build failures. 

• Availability of command-line options: Even if a UNIX tool is successfully 
located, it might not accept the same command-line options or syntax as 
in other versions of UNIX. This is because each operating system pack-
ages a different version of the tool, sometimes up to a year or two old. In 
other cases, the operating system has its own unique implementation of the 
tool, which has a life of its own for many years. For example, BSD-based 
UNIX systems (NetBSD, FreeBSD, and OpenBSD) use the BSD version of 
the Make tool. This tool accepts a different style of makefile compared to 
GNU Make, which is   the default on Linux systems. 

• Availability of preinstalled libraries: You might find that a software pack-
age relies on a dynamic library that doesn’t exist on your system. This hap-
pens when you attempt to execute a program that was compiled on either 
a much older or much newer version of your operating system. For ex-
ample, the program might depend on /usr/lib/libfoo.so.6, whereas 
your system has only /usr/lib/libfoo.so.5 installed. If you recompile 
the software from source code, there’s a good chance that the problem 
will go away, because it now depends on a library that’s available on your 
system. In the worst case, you might see a build error if the software   uses a 
function that was recently added to libfoo.so.6 but never existed in 
libfoo.so.5.

As you can see, compiling open-source software isn’t always trivial. Some 
packages might work the first time, but others can take several days of tweaking 
before you get a successful build. Everything depends on your operating system, 
the features that the software uses, and how much effort the maintainers spent 
on making the software portable. 

Thankfully, many OS maintainers bypass these problems by packaging soft-
ware in precompiled form, while making source code available to those who 
really need it. Software packaging systems, such as the Red Hat Package Man-
ager (see Chapter 13, “Software Packaging and Installation”), enable a user to 
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install a precompiled software package in a matter of seconds, while also ensur-
ing that all prerequisite packages are first downloaded and installed. In many 
cases, the OS maintainers ensure that their complete collection of packages work 
together in harmony and don’t conflict with each other. Sadly, you don’t have 
the luxury of using precompiled packages   if you don’t use a supported operating 
system or if you’re trying to install less common software. 

In closing, several tricks make software more portable between different 
operating systems: 

• Use platform-independent scripting languages: Instead of writing software 
that depends on an operating system’s native programs (such as those in 
/usr/bin), take advantage of scripting languages such as Perl or Python. 
These languages provide a platform-independent way of accessing the sys-
tem’s functionality. For example, instead of calling the operating system–
specific function for creating a new directory, use the mkdir function in 
Perl that will work the same way on all platforms, including Windows. 

if (mkdir("mydir", 755) == 0){
    print STDERR "Failed to create directory\n";
}

• Use compatibility libraries: These libraries are optionally added on top of 
the standard operating system libraries, to provide a level of compatibil-
ity and make it easier to compile open-source software. One of the most 
famous compatibility libraries is Cygwin [82], which provides a Linux-like 
environment on top of Microsoft Windows. 

• Use the GNU version of tools: Instead of requiring a software package to 
work with every variant of every tool, rely on only GNU versions of the 
basic UNIX tools ( ls, cat, sort, and so on). These are optional tools that 
replace the operating system’s standard set, except that a Linux environ-
ment already uses GNU tools by default. A build system that relies on 
GNU tools is more likely to support multiple platforms. Some experts ad-
vocate never using tools in /bin or  /usr/bin because compatibility across 
different systems is such a problem. 

A final solution is to use the GNU Autoconf tool, allowing the use of oper-
ating system features that have actually been confirmed to exist on a build or 
target machine. This tool has played such an important role in the world of 
open-source software that it demands a section of its own. 
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GNU Autoconf 

The sheer number of UNIX-like operating systems demands a simple way to 
manage the differences. Although each system provides roughly the same func-
tionality, some features will always be implemented differently. The difference 
might be in the set of C header files a program must include, differences in the 
C library functions, or differences in the file system path for standard programs. 
Accommodating these variations makes it challenging to write a single program 
that compiles and executes on all target platforms. 

The GNU Autoconf tool [63] is the most popular way to manage these dif-
ferences for the C and C++ languages, where low-level system programming is 
common. Autoconf inspects the build machine to determine which functions are 
available and how they’re implemented. The software uses this information to 
customize the set of header files or functions used, thereby supporting a wide 
range of build machines. Autoconf comes from the same tool family as Auto-
make, discussed in Chapter 9, “CMake.” 

If you’ve compiled software for a UNIX system in the past, you’ve probably 
used the Autoconf tool, even without realizing it. Most commonly, you’ll see 
instructions to execute a configure script before typing  make. Now let’s look at 
an example of how this configure script is created and how it’s used to custom-
ize the software you need to compile. 

Languages such as Java don’t require the services of Autoconf because they’re 
designed to be platform neutral in the first place. 

The High-Level Workflow 

Before diving into the detail of how Autoconf works, you need to understand 
the high-level flow of information. If you’ve ever used the Autotools system, per-
haps as an end user running the configure script, you’ve seen a number of ad-
ditional files created in your source tree. Many of these files start with the code 
comment autogenerated – do not edit, and the body of the file contains a 
lot of cryptic shell commands and directives. 

The software’s author cares mainly about the file configure.ac. This is the 
master file that describes the various operating system features the software 
needs. The author lists the compilation tools required to compile the software, 
the important C-language header files, and some of the library functions that the 
program uses. The upcoming example looks in detail at configure.ac to see 
how these requirements are stated. 

As shown in Figure 15.6, the configure.ac file is used as input for two of 
the tools in the Autotools family: 
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configure.ac

configure

config.h.in

autoconf

autoheader

Figure 15.6 High-level flow of the Autoconf and Autoheader tools. 

• Autoconf: This tool reads the configure.ac file and generates a corre-
sponding UNIX shell script, named configure. The purpose of this script 
is to detect the location of the required compilers and determine whether 
the necessary header files and library functions are available on the target 
machine. You can think of configure as an executable version of the 
rules that are specified in configure.ac.

• Autoheader: This tool is similar to Autoconf, in that it reads the configure.
ac file. However, the main purpose is to create a template header file called 
config.h.in. As you’ll see shortly, config.h.in is the basis for creating the 
config.h header file and lists all the system features the software intends to 
use. For example, if the build machine supports the memcpy function, this file 
defines the HAVE_MEMCPY symbol. 

The Autotools family has several other programs, such as Automake and 
Autoscan, but this chapter doesn’t discuss those in detail. 

The second part of the Autoconf process takes place on the end user’s build 
machine (see Figure 15.7). To make things easy for end users, the author prob-
ably prepackaged the configure script and the  config.h.in file that were 
both autogenerated in the first step. Additionally, the author likely provided a 
template makefile, called Makefile.in.

Makefile

config.h

configure

Makefile.in

config.h.in

Figure 15.7 Using the configure script to generate a target-specific build system. 
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As you might have learned from your own experience, the end user starts by 
executing the configure script on the local build machine. This script validates 
each of the requirements listed in the original configure.ac file, and an error 
message is provided if the machine isn’t suitable. Although the software usually 
executes on the same machine on which it’s compiled, the configure script is 
capable of handling cross-compilation of software. 

In many cases, configure is run without specifying any command-line 
options, although end users can customize plenty of parameters if they don’t like 
the defaults. They can enable or disable parts of the software, or even specify 
where compiled binaries and libraries should be stored (instead of the default 
/usr/bin and  /usr/lib). This is another way Autoconf enables software 
installation on a wide range of machines. 

After configure finishes, the end user is left with a fully functional  Makefile
and config.h (not just templates anymore). As you’ll see in the example, these 
files have been customized based on the features the build machine does or doesn’t 
have and take into account any of the command-line options the user provided to 
the configure script. 

The only thing left to do is execute the standard Make tool. The software is 
compiled and configured to execute on the target machine, so end users needn’t 
worry if their machines are different from that of the original author. The Auto-
conf tool should have already dealt with those problems. 

Now let’s look at an example of how the build and target machine require-
ments are stated. 

An Autoconf Example 

This simple example demonstrates a few of the features of the Autoconf tool. 
Instead of putting together a fully functional build system, you’ll examine only 
some of the basic features. From the software author’s perspective, two files 
need to be constructed: 

• configure.ac: Describes the build and target machine requirements 

• Makefile.in: Acts as a template for the makefile that will build the 
software

Start by looking at configure.ac. For the sake of convenience, you’ll see the 
full content first and then examine it section by section. 

 1  AC_INIT([Example], [1.0.0])
 2  AC_CONFIG_HEADERS([config.h])
 3  AC_CONFIG_FILES([Makefile])
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 4
 5  AC_PROG_CC
 6  AC_PATH_PROG([JAVA], [java])
 7  if test "x$JAVA" = 'x'; then
 8    AC_MSG_ERROR(Cannot find a usable Java compiler)
 9  fi
10  AC_PROG_LN_S
11
12  AC_CHECK_HEADERS([errno.h fcntl.h limits.h],[],
13 [AC_MSG_ERROR([Missing required header 

file.])])
14  AC_CHECK_HEADERS([asm.h],[],[])
15
16  AC_CHECK_FUNCS([memcpy],[],
17 [AC_MSG_ERROR([Missing required memcpy 

function])])
18  AC_CHECK_FUNCS([strcpy],[],
19 [AC_MSG_ERROR([Missing required strcpy 

function])])
20  AC_REPLACE_FUNCS([megacpy])
21
22  AC_RUN_IFELSE(
23 [AC_LANG_PROGRAM([], [ return !(getpwent() != 

0)])],
24          [AC_MSG_RESULT([getpwent() works correctly])],
25 [AC_MSG_FAILURE([getpwent() function non-func-

tional])])
26
27  AC_OUTPUT 

This file might appear to be written in a special-purpose language, but it’s 
actually a combination of M4 macro instructions and UNIX Bourne shell com-
mands. The Autoconf and Autoheader tools provide the necessary macro defini-
tions to generate the configure and config.h.in files. 

The first three directives provide the meta-information Autoconf uses to start. 

 1  AC_INIT([Example], [1.0.0])
 2  AC_CONFIG_HEADERS([config.h])
 3  AC_CONFIG_FILES([Makefile]) 

AC_INIT is a macro that takes the software package’s name and version 
number as input. The AC_CONFIG_HEADERS macro states which header file 
should be used to record the available system features. That is, you want to 
create a customized config.h by using  config.h.in as a template. Finally, 
the AC_CONFIG_FILES macro specifies that  Makefile should be derived from 
Makefile.in, but with the template’s parameters replaced by their actual val-
ues. You’ll see the content of these files shortly. 

The next portion of the file specifies which compilation tools are required 
when building the software. 
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 5  AC_PROG_CC
 6  AC_PATH_PROG([JAVA], [java])
 7  if test "x$JAVA" = 'x'; then
 8    AC_MSG_ERROR(Cannot find a usable Java compiler)
 9  fi
10  AC_PROG_LN_S 

The AC_PROG_CC macro states that the  configure script must locate a usable 
C compiler, and the variable $CC should be assigned the name of that compiler. 
The $CC variable can be referenced by other parts of the build system whenever 
a C compiler is required. If no compiler is available, the configure script fails 
with an error. 

Because Java is a less common tool, you must use the general-purpose AC_
PATH_PROG macro to locate a suitable executable program (that has the name 
java) within the user’s shell path. If the tool is found, the $JAVA variable is 
assigned the absolute pathname of the java tool. If not, the  $JAVA variable is 
left undefined and the additional Bourne shell code provides a suitable error 
message.

Finally, AC_PROG_LN_S is special-purpose macro that ensures that the target 
machine supports symbolic links on its file system. Autoconf provides a number 
of these special-purpose macros, covering many of the common operating sys-
tem features that vary among UNIX platforms. 

Next, similar checks look for the existence of C-language header files. 

12  AC_CHECK_HEADERS([errno.h fcntl.h limits.h],[],
13 [AC_MSG_ERROR([Missing required header 

file.])])
14  AC_CHECK_HEADERS([asm.h],[],[]) 

The first AC_CHECK_HEADERS macro ensures that each of the  errno.h,
fcntl.h and  limits.h header files are available for use on the build machine. 
If they exist, no further action is taken. (The second argument to this macro is an 
empty pair of [].) However, if any of the files are missing, an error is reported 
to the end user and the configure script aborts. 

The second AC_CHECK_HEADERS is more lenient, in that the program still exe-
cutes correctly if the asm.h file doesn’t exist. Instead of aborting the  configure
script, a C preprocessor symbol ( HAVE_ASM_H) indicates whether the file is avail-
able. The C program can test for this symbol (using #ifdef HAVE_ASM_H) and 
modify its behavior accordingly. 

In a similar way, you can check for the existence of required C functions. 
Depending on the version of UNIX being used, some of these functions might 
not be available. 
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16  AC_CHECK_FUNCS([memcpy],[],
17 [AC_MSG_ERROR([Missing required memcpy 

function])])
18  AC_CHECK_FUNCS([strcpy],[],
19 [AC_MSG_ERROR([Missing required strcpy 

function])])
20  AC_REPLACE_FUNCS([megacpy]) 

The first two uses of AC_CHECK_FUNCS look for the  memcpy and  strcpy func-
tions, respectively. If the functions are defined, Autoconf defines the HAVE_MEMCPY
and HAVE_STRCPY preprocessor symbols. If not, a suitable error message is pro-
vided and the  configure script aborts. 

In the case of AC_REPLACE_FUNCS, this example accepts the fact that megacpy
might not exist on the target machine and instead provides an implementation 
of that function. If this can’t be found in the available system libraries, the build 
process automatically adds the megacpy.o object file containing a custom imple-
mentation of the function. 

The final test in the configure.ac file is to check whether a particular library 
function behaves the way you expect it to. This is useful when a function might 
have a buggy implementation. 

22  AC_RUN_IFELSE(
23 [AC_LANG_PROGRAM([], [ return !(getpwent() != 

0)])],
24          [AC_MSG_RESULT([getpwent() works correctly])],
25 [AC_MSG_FAILURE([getpwent() function non-func-

tional])])

In this case, you test whether the getpwent function correctly returns a 
pointer value or whether it incorrectly returns a NULL pointer the first time you 
use it. The AC_RUN_IFELSE macro uses the  AC_LANG_PROGRAM macro to gener-
ate, compile, and execute a small C program that calls the getpwent function. 
Depending on whether you see the desired result, the test passes or fails with an 
appropriate message. 

Finally, the AC_OUTPUT macro sets everything into action and generates the 
two output files, configure and config.h.in.

27  AC_OUTPUT 

At this point, you’ve completed the review of configure.ac, but the soft-
ware’s author still must provide another file. The Makefile.in file is simply a 
template for the real Makefile, but with a number of template variables (for 
example, @CC@) used in place of the real values. When the configure script 
is run, each of those variables is replaced by a machine-specific value, and the 
resulting makefile is created. 
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In the following example, @CC@ and  @JAVA@ are defined because you used the 
AC_PROG_CC and  AC_PATH_PROG macros, whereas the configure script implicitly 
created other template variables. 

 1  # @configure_input@
 2
 3  JAVA      = @JAVA@
 4  CC        = @CC@
 5  SRCDIR    = @srcdir@
 6  BINDIR    = @bindir@
 7  EXTRADEFS = @DEFS@
... remainder of Makefile.in not shown ... 

Later, this example looks at the resulting makefile that’s automatically gener-
ated when the configure script is executed on the build machine. 

Running autoheader and  autoconf

Now that you understand the content of configure.ac, let’s look in detail to 
see what happens when you run Autoheader and Autoconf with this file as in-
put. First, the Autoheader tool doesn’t produce any output when it runs, but it 
does generate the config.h.in file. 

$ autoheader 

Given all the requirements specified in configure.ac, the Autoheader tool 
determines which features are present on the build machine. For each feature, 
a suitably named C preprocessor symbol indicates whether the feature exists. 
These symbols can be tested by the build system or the C source code. 

In essence, config.h.in is just a template listing all the symbols that could 
potentially be defined. Only after you’ve run the configure script on the build 
machine will some of the symbols actually end up defined. These definitions are 
provided in the machine-specific config.h file, not the  config.h.in template. 

The following output shows a few lines of the config.h.in template file. 
Note that some of the symbols directly relate to the requirements specified in 
configure.ac, whereas Autoheader added a few more that it thought were 
necessary.

/* config.h.in.  Generated from configure.ac by autoheader.
*/

/* Define to 1 if you have the <asm.h> header file. */
   #undef HAVE_ASM_H

/* Define to 1 if you have the <errno.h> header file. */
   #undef HAVE_ERRNO_H
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/* Define to 1 if you have the <fcntl.h> header file. */
   #undef HAVE_FCNTL_H

/* Define to 1 if you have the <inttypes.h> header file. */
   #undef HAVE_INTTYPES_H

/* Define to 1 if you have the <limits.h> header file. */
   #undef HAVE_LIMITS_H

/* Define to 1 if you have the 'memcpy' function. */
   #undef HAVE_MEMCPY

/* Define to 1 if you have the <memory.h> header file. */
   #undef HAVE_MEMORY_H 

In a similar way, the Autoconf tool doesn’t produce any output (unless there’s 
an error), but it does generate the configure script. 

$ autoconf 

Because of the complexity of the configure script, this book doesn’t discuss 
the content. You’re certainly welcome to download any GNU software package 
off the Internet and examine the resulting configure script for yourself. It’s 
likely to be a complex script and not something you’d normally bother looking 
at.

The configure script is purposely written in a platform-neutral way. That 
is, the script should not use any nonstandard shell features, or there’s a good 
chance it won’t execute properly on the target machine. 

Running the configure Script on the Build Machine 

Until now, the steps you’ve seen were executed by the original author of the soft-
ware. To avoid complicating the installation, this author provides pregenerated 
copies of configure and  config.h.in to the end users instead of requiring 
them to install Autoconf and Autoheader on their own machines. 

After users have downloaded the software, they first execute the configure
script on their own build machine. The script probes the machine to see whether 
it meets the requirements; then it autogenerates the Makefile and  config.h
files, as discussed earlier. 

First, look at the output of the configure script. This will be familiar to any-
one who has installed open-source software on a UNIX-like system. If you study 
the output carefully, you can relate many of the test cases back to the appropri-
ate macro in the configure.ac file. 

$ ./configure
checking for gcc... gcc
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checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for java... /usr/java/latest/bin/java
checking whether ln -s works... yes
checking how to run the C preprocessor... gcc –E
checking for grep that handles long lines and -e... /usr/bin/grep
checking for egrep... /usr/bin/grep –E
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for   stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... yes
checking for unistd.h... yes
checking errno.h usability... yes
checking errno.h presence... yes
checking for errno.h... yes
checking fcntl.h usability... yes
checking fcntl.h presence... yes
checking for fcntl.h... yes
checking limits.h usability... yes
checking limits.h presence... yes
checking for limits.h... yes
checking asm.h usability... no
checking asm.h presence... no
checking for asm.h... no
checking for memcpy... yes
checking for strcpy... yes
checking for megacpy... no
getpwent() works correctly
configure: creating ./config.status
config.status: creating Makefile
config.status: creating config.h 

Let’s continue by examining the content of config.h and Makefile. At this 
point, configure now has solid information about the target machine, so it can 
fill in all the gaps in the template files. 

In the case of config.h, you now know for certain which of the features are 
present, so the original #undef directives either have been commented out if the 
feature isn’t present or have been properly defined to a value of 1 if the feature 
exists.
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/* config.h.  Generated from config.h.in by configure.  */
/* config.h.in.  Generated from configure.ac by autoheader.
*/

/* Define to 1 if you have the <asm.h> header file. */
/* #undef HAVE_ASM_H */

/* Define to 1 if you have the <errno.h> header file. */
   #define HAVE_ERRNO_H 1

/* Define to 1 if you have the <fcntl.h> header file. */
   #define HAVE_FCNTL_H 1

/* Define to 1 if you have the <inttypes.h> header file. */
   #define HAVE_INTTYPES_H 1

/* Define to 1 if you have the <limits.h> header file. */
   #define HAVE_LIMITS_H 1

/* Define to 1 if you have the 'memcpy' function. */
   #define HAVE_MEMCPY 1

/* Define to 1 if you have the   <memory.h> header file. */
   #define HAVE_MEMORY_H 1 

In the case of Makefile, all the template variables from Makefile.in have 
been replaced by the machine-specific values. Most notably, JAVA and  CC have 
been given the values that the configure script determined for you. 

# Makefile.  Generated from Makefile.in by configure.
JAVA      = /usr/java/latest/bin/java
CC        = gcc
SRCDIR    = .
BINDIR    = ${exec_prefix}/bin
EXTRADEFS = -DHAVE_CONFIG_H

... remaining of Makefile.in not shown ... 

Although only a small fragment of the overall makefile is shown, you can 
certainly imagine how a full makefile-based build system can be constructed. To 
help, Autoconf enables you to create a hierarchy of directories, each containing 
a customized makefile. 

Using the Configuration Information 

The final step in the Autoconf process is to use the preprocessor definitions. 
Now examine a C-language source file that takes advantage of the configuration 
knowledge you’ve just acquired. 
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 1  #ifdef HAVE_CONFIG_H
 2  #include "config.h"
 3  #endif
 4
 5  #ifdef HAVE_ASM_H
 6  #include <asm.h>
 7  #endif
 8
 9  void example_func()
10  {
11    ...
12  #if HAVE_MEMCPY
13    mempcy(temp_buffer, source, sizeof(temp_buffer));
14  #endif
15    ...
16  } 

The first thing to do is include the config.h file, which enables you to 
make decisions based on whether each feature is enabled. The #ifdef HAVE_
CONFIG_H directive is required because you might have opted to not generate a 
config.h file but instead have all the preprocessor definitions passed in via the 
@DEFS@ makefile variable. 

The next part of the file (lines 5–7) enables you to optionally include the 
asm.h header file, but only if it’s known to exist on the system. Typically, you’d 
also provide a #else clause to make sure that the required definitions are made 
available in some other way. 

Finally, inside the function body (lines 12–14), you test the HAVE_MEMCPY
symbol to see whether it’s safe to call upon the memcpy function. Again, a suit-
able #else clause should provide an alternate way to achieve the same result. 

In summary, you can see how the Autoconf tool can avoid a lot of frustra-
tion from variations in the range of UNIX-like operating systems. No longer do 
end users need to face countless compilation errors because the software wasn’t 
written for their particular machine type. Additionally, the software’s author 
doesn’t need to enumerate each possible operating system; instead, the author 
can focus on whether each specific feature is available. 

Summary

A build machine is a vital part of any software build system. Any changes to the 
machine must be carefully controlled, or you risk breaking the build and making 
it impossible to reproduce older versions of the software. 

In a centralized development environment, it’s desirable to have all build 
machines conform to a standard; otherwise, different developers see different 
build results. Variation will always exist among build machines, especially when 
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customer requirements, compilation tool requirements, and hardware require-
ments force you to upgrade your operating system. In contrast, the need to 
support older versions of software encourages the continued use of older build 
machines.

In open-source development, the software’s author has much less control 
over which build machines will eventually be used, because anybody can down-
load the software and try to compile it. In this case, it’s important for the build 
system to be more lenient and support a wider range of build machines. The 
Autoconf tool is a popular way of constructing a build system that functions on 
a wide range of UNIX-like build machines. 
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Tool Management 

Chapter 15, “Build Machines,” focused on build machines and the need to ef-
fectively control changes made to those machines. In a similar way, this chapter 
focuses on the management of compilation tools. The goal is to provide a reli-
able and repeatable build process, even when tools are upgraded or modified in 
some way. 
Your build system might require that you install optional tools such as these: 

• Cross-compilers: For example, you might need a MIPS compiler that ex-
ecutes on an Intel Linux platform. 

• Interface definition compilers: This might include a CORBA compiler that 
reads high-level interface definitions and generates the appropriate client 
stubs in Java or C++. 

• Custom code generators: You might install a tool that processes a domain-
specific language and generates the corresponding Java code. 

• Build acceleration tools: You might need a parallel-build tool or a build-
avoidance tool, discussed in Chapter 19, “Faster Builds.” 

Assuming that these tools don’t come as part of the standard operating sys-
tem image, you’ll need to install and manage them separately. Many tools are 
vendor supported, requiring payment before the tool is provided for installation. 
Other tools are free to use and are available in either binary or source code form. 
Of course, you can also design and construct your own development tools. 

This chapter discusses some of the basic rules for developing, installing, and 
customizing compilation tools. It also touches briefly on what’s involved in 
building your own tools. 

441
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Rules for Managing Tools 

No matter what the tool is or where it originally comes from, you need to fol-
low some basic rules when managing them and installing them on your build 
machines. Now take a detailed look at each of the rules. 

Tool Rule #1: Take Notes 

When compiling or installing a tool on your build machine, take notes. Take 
copious notes if the tool ends up being nontrivial to compile or requires unex-
pected steps to install. If you don’t take notes, you’ll likely need to rediscover 
the whole process in the future, and next time it could be an emergency (such as 
recovering from a disk crash). If the compile and installation process took you 
half a day of effort in the first place, you’ll certainly be glad you took notes. 

In your notes, record many types of information: 

• From where did you download the software? If you found the tool by 
searching the Internet for an hour or so, make sure you quickly bookmark 
the URL of the web page and document it in your notes. If you don’t, you 
might need an hour to find it next time as well. 

• Write down the exact set of commands you used to compile the software. 
If you followed the software’s README file and it worked the first time, 
you’re lucky. In this case, make a note that you simply followed those 
instructions. If things didn’t go smoothly and you had to perform extra 
steps, make a careful note of what you did. 

• When the software is installed, take note of which file system directory 
it was installed into, as well as which installation options you selected. If 
somebody needs to maintain the software in the future, that person will 
need to know where the program is installed and how to reinstall it. 

• What are the license restrictions for using this tool? Are there limits on 
the number of concurrent users or perhaps the number of machines it can 
be used on? For open-source software, just because the software is free to 
download and compile, doesn’t mean you have unrestricted freedom to 
modify and redistribute the source code. 

• Record all passwords, extra configuration details, and license keys. You’ll 
almost certainly need this information when you next make a change to 
the tool. When it comes time to upgrade to a newer version, you might 
need to reconfigure the software. 



ptg

Rules for Managing Tools 443

• Document all license keys for all tools in a central location. It’s easy to 
forget when your license is due to expire, and if the vendor doesn’t remind 
you in time, the tool might refuse to work. 

• If you stored the tool’s source code somewhere, where did you put it? 
What are the commands for retrieving the source code? 

All this information is important. If you don’t believe this, imagine that one 
of your coworkers installs an important tool before going on vacation for three 
weeks. If an emergency patch needs to be applied, you’ll be thankful your cow-
orker took the extra time to write things down. A wiki page is a great place 
to document everything, especially because it’s widely accessible and can be 
updated if information is missing. 

Based on previous experience, some development tools (both commercial and 
open source) have taken several days of experimentation to get working cor-
rectly. This fact can’t be repeated enough: Take notes! 

Tool Rule #2: Use Version Control for the Source Code 

If you’re managing a tool that you obtained in source code form, store the 
source code in a version-control system. Avoid the temptation of downloading 
the code, compiling and installing the tool, and then throwing away the source 
code. You might think that you can always download the source code again if 
you need to, but you have no guarantee that the same version will be available 
when you next go to look. The web site might be down or completely out of 
business, or the particular version you need might no longer be listed. 

You might never plan to modify the tool, but when the developers are actively 
using it, they’ll likely find bugs that you need to fix. If the tool becomes popular 
they might ask for custom features to be added. Always plan on this happening, 
even if the developers swear that it never will. 

Often a software organization has a separate repository just for storing tool 
source code. Every time you make a local change to the tool (such as a bug fix 
or a new feature), you need to check in and document what you changed. If in 
the future you decide to upgrade to a newer version of the tool (downloading 
it from a web site), you’ll need to reevaluate each of your local changes and 
determine whether it’s still relevant. Reapplying local changes to a new version 
can involve significant effort, so avoid making modifications unless you really 
need to. 

For open-source tools, consider submitting your local changes back to the 
mainstream distribution. If your bug fix or new feature is applicable to other 
users, the tool maintainer is quite likely to accept your changes in the public 
repository. The next time you download a new version, your local changes will 
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already have been incorporated, with no extra work for you to do. In the spirit 
of open-source software, you’ll also get to benefit from other people’s bug fixes 
and new features. 

Finally, in an ideal world, you’d be able to regenerate your entire set of com-
pilation tools from source code simply by checking out all the source code from 
the version-control system and then typing make all. In reality, you should at 
least write a shell script that automates the compilation of each tool, making 
it possible to reinstall the tools whenever you make a change. As mentioned 
before, take copious notes. It’s an extra benefit if these notes are in the form of 
an automated script. 

Tool Rule #3: Periodically Upgrade Tools 

Keep track of all compilation tools your build system uses, and be sure to up-
grade them from time to time. Although it’s obviously not advisable to be up-
grading tools just for the sake of it, you have many good reasons to be proactive 
about adopting newer versions: 

• To take advantage of bug fixes: Clearly, this saves you time and frustration 
by fixing problems you’re hitting in the current tool. In many cases, tool 
bugs manifest themselves as product bugs, and you can waste many days 
before you discover the true cause of the problem. Upgrading regularly 
minimizes this wasted time. 

• To take advantage of newer features in the tool: Vendors spend a lot of 
time and effort researching which new features their customers need. If the 
product doesn’t keep up with market requirements, customers may simply 
stop buying the product. You can expect those new features to be helpful 
when developing your own software. 

• To keep tools up-to-date with newer versions of your operating system: 
If you try to use a five-year-old tool on the latest version of your operat-
ing system, it may no longer work as expected. Problems occur when the 
required dynamic libraries no longer exist or if an old tool no longer sup-
ports realistic memory or file sizes. 

• To continue receiving support for the tool: Vendors would love to reduce 
support costs by having everybody use the latest version of their software. 
A common approach is to support only the most recent releases and refuse 
to support older versions of the tool. If you want to continue receiving 
support, you’ll need to upgrade. 
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Naturally, upgrading tools involves some downsides. If the tool’s behavior 
changes from one version to the next, or if the sets of commands or file formats 
are different, you can expect a nontrivial amount of work when upgrading. For 
example, when using the GNU C Compiler, you’ll find that newer versions of 
the tool produce more compilation warnings than older versions. If you have a 
policy of removing all compiler warnings, you’ll have a considerable amount of 
work to clean up your product’s source code, all thanks to the new compiler. 

Conduct major tool upgrades at an appropriate time in your development 
cycle. You don’t want to treat a compiler upgrade as a minor feature or bug fix; 
instead, schedule it for the next major release of your software. For example, if 
the current release of your software is version 1.2.3, you should schedule the 
upgrade for 2.0.0 but continue using the older compiler for version 1.2.4.

It may be stating the obvious, but don’t forget to test the new tool before 
rolling it out. The output of the tool might be subtly different from that of the 
previous version. Unless you fully verify that your software builds correctly and 
passes all regression tests, you might introduce product bugs. Before declaring 
the upgrade a success, plan on a significant amount of testing, and give all devel-
opers adequate warning. 

You shouldn’t necessarily upgrade to a new version of a tool as soon as it 
becomes available or as soon as the vendor suggests the idea. In practical terms, 
you might shy away from a new release that has a final version digit of .0, such 
as 4.0.0. Instead, you may wait until version 4.0.3 or  4.0.4, to be sure that 
the early customer bugs have been found and fixed. Of course, if you’re inter-
ested in receiving the latest and greatest features, using the 4.0.0 release makes 
perfect sense. 

Tool Rule #4: Use Version Control for the Tool Binaries 

As discussed in the previous rule, only newer branches of your product’s source 
code should use an upgraded tool. This leaves the old branches to use the old 
tool, at least until that branch of code reaches the end of its life. Some mecha-
nism for version control is necessary for each tool’s executable program, not just 
for the source code. 

As mentioned in the previous chapter, you should use version control for any 
references that a build system has to its tools. The build description file (such as 
a makefile) should contain the exact path of the tool, as well as the exact version 
number. Adding a suffix to each tool’s name is one way of meeting this goal. For 
example, to maintain multiple versions of the python tool, you’d install them in 
/usr/local/bin as python2.5, python2.6, and python2.7.

Another outcome of this rule is that you should avoid using the standard 
operating system tools. If your build system depended on /usr/bin/java, you’d 
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have no guarantee that a system administrator wouldn’t update to a newer ver-
sion of the Java language, possibly breaking your builds. This is particularly true 
for tools that automatically check for updates and upgrade themselves whenever 
a new version is available. 

When storing development tools that aren’t part of the basic operating sys-
tem, always create a special file system location. Don’t add any new programs 
into /bin or  /usr/bin, which are reserved for built-in tools. Instead, create a 
totally new directory in a publicly readable place. For example, you could use 
/tools, /usr/tools, or /opt/devtools. No matter what directory you select, 
developers should be aware that these are custom-installed tools rather than 
part of the basic operating system. 

Creating a tool-specific directory comes with important rules about how the 
directory is updated. Because of the importance of these rules, allow only tool 
experts to add new programs to the tools directory. You can do so by using 
a special file system group to limit who has write access to the files. If nonex-
perts were permitted to add new programs, they wouldn’t necessarily follow the 
version-control rules, thereby making it difficult to rebuild old software releases. 

The following file system layout is recommended: 

/tools/pkg/gmake/3.79 /...
/tools/pkg/gmake/3.82/...
/tools/pkg/ant/1.7 /...
/tools/pkg/ant/1.8/...
/tools/pkg/python/2.5/...
/tools/pkg/python/2.6/...
/tools/pkg/python/2.7/...
/tools/pkg/perl/5.10/...
/tools/pkg/perl/5.12/...
/tools/pkg/gcc/i386-linux-gcc-3.4/...
/tools/pkg/gcc/i386-linux-gcc-4.5/...

In this example, each software package is neatly installed inside the /tools/
pkg directory. A unique subdirectory is maintained for each version of each tool 
that’s installed. When a new version is added, no changes are made to exist-
ing versions of the tool; instead, a totally new directory is created. You also 
shouldn’t remove any old tools until all code branches that depend on them have 
reached the end of their life. 

When referencing tools from the build system, always use the absolute 
pathname of the tool: 

CC := /tools/pkg/gcc/i386-linux-gcc-3.4/bin/gcc 

In addition, the /tools/bin is a directory that all developers should add to 
their $PATH variable. It contains programs that they’ll execute from their com-
mand shell (such as gmake or  ant) instead of those accessed by the build system. 
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/tools/bin/...
    gmake -> ../pkg/gmake/3.79/bin/gmake
    ant -> ../pkg/ant/1.7/bin/ant
    ... 

The programs in this directory can be upgraded to a newer version at any 
time simply by changing the symbolic link to point to a newer version of the 
tool. Needless to say, the build system should access tools only via the relevant 
/tools/pkg directory; they shouldn’t depend on the nonversioned tools in 
/tools/bin.

As a convenience for command-line users who need a specific version of the 
tool, it doesn’t hurt to include versioned symbolic links in addition to the non-
versioned links. For example: 

/tools/bin/...
    gmake -> ../pkg/gmake/3.79/bin/gmake
    gmake-3.79 -> ../pkg/gmake/3.79/bin/gmake
    ant -> ../pkg/ant/1.7/bin/ant
    ant-1.7 -> ../pkg/ant/1.7/bin/ant
    ... 

From a system administration perspective, you must ensure that the /tools
directory is available on all build machines. Perhaps the easiest way is to use a 
network file system mount point for /tools so that the same copy of the files is 
available on all machines at the same time. Any additional tools that are added 
will instantly appear on all build machines, with no additional per-machine 
effort required. 

In contrast, if you’re aiming for a high-performance build system, you might 
want to have a local copy of all tools on each build machine. Accessing the 
tools from local disk can be much faster than accessing them across the net-
work, especially at peak times of the day when the file servers are busy. You 
can install the same package across many machines in a number of ways, but it 
usually comes in the form of a software update mechanism (the same way soft-
ware patches are automatically distributed). Unfortunately, this approach can 
be time-consuming if not fully automated, making it   painful to push out small 
configuration changes to existing packages. 

If your organization is distributed across multiple development sites, you also 
need to consider replication. A single network file system containing the /tools
directory won’t scale, so you need to replicate /tools across multiple sites (see 
Figure 16.1).
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Master /tools file
system in Vancouver

Replica /tools file
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Figure 16.1 Replication of the compilation tools to multiple development sites. 

Be careful to replicate the files on a regular basis, or some development sites 
might not see the recently added tools. Before modifying the build system to 
use a new compilation tool, it pays to ensure that the tool has been successfully 
replicated to all sites. 

As a final note, you have another way to ensure that each branch of the prod-
uct’s source code is using the correct version of a tool. In this case, you commit 
the tool’s source code to the same version control repository as the software that 
uses the tool. As part of the product’s build system, you first compile the tool 
from source code into an executable program. The build system then uses the 
tool that it just compiled. 

This technique is useful, for example, when you’ve created a special-purpose 
language for use in your source code. The tool will change regularly as devel-
opers ask for new features to be added to the language, so versioning the tool 
alongside the source code makes a lot of sense. As you might expect, older code 
branches always use older versions of the compilation tool. 

Breaking the Rules 

As with all rules, developers always have incentives to do the wrong thing. This is 
typically because it’s inconvenient to spend the extra time doing what seems like 
unnecessary work. Don’t forget that these rules are designed with the future in mind 
rather than being urgent requirements when the tools are first installed. Imagine 
yourself a year or two from now, needing to upgrade a tool, apply a bug fix, or 
restore a damaged file system. You’ll wish you’d followed the rules in the first place. 

Why are some people tempted to break the rules? Consider these common 
excuses:
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• “I was just playing around with the tool, and I wasn’t sure whether we 
were going to use it. Now that I’ve finally decided to officially start using 
the tool, it’s a nuisance to go back and follow the rules.” 

• “It’s fun to install new tools and play around with them, but documenta-
tion and formality aren’t very interesting.” 

• “Another developer got the tool from somewhere and has been executing 
it from a personal directory for the last few months. We don’t have the 
source code anymore, and they just gave me the executable program to 
install in /tools.”

• “I’m too busy, and my manager is pressuring me to get this installed im-
mediately. I don’t have time for documentation, even though I know it’s 
important.”

Of course, whenever you decide that you don’t want to pay the cost of some-
thing now, you often end up paying significantly higher costs in the future—usu-
ally with even more time pressure. 

Writing Your Own Compilation Tools 

All software developers are familiar with hand-writing their program in a lan-
guage such as C, C++, Java, or C#, because this is the standard way of develop-
ing software. In modern development environments, you also have the option 
of using automatic code generators that take a high-level language as input and 
generate source code as output. The obvious benefit is that writing the same 
functionality in a high-level language can be many times faster than writing in a 
general-purpose language. 

Part II, “The Build Tools,” discussed the mathcomp compiler as an example 
of a custom-built compilation tool. The tool itself is a Python script that takes 
a series of mathematical expressions as input and generates an equivalent C or 
Java file. The output files are then passed through a regular C or Java compiler 
to produce object files. 

It’s not uncommon in a large build system to use custom-built tools to sim-
plify the construction of software. Writing the tool in a scripting language is 
common, especially for line-oriented input that’s easy to scan and process. For 
more complex tools, with structured multiline input, it’s more common to use a 
full-fledged scanner and parser. 

Without diving into too much detail on how compilation tools do their job, 
let’s discuss the basic theory and mechanism behind the scanning and parsing 
of input data. For more details on writing this type of tool, refer to a compiler 
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textbook [83]. Be warned that compilers can be complex to understand, so writ-
ing your own is not an easy task. 

Custom-Written Tools with Lex and Yacc 

The traditional approach to writing compilation tools is to use Lex and Yacc, or 
their more recent equivalents, Flex [91] and Bison [92]. These tools are specifi-
cally designed for creating compilers and have been used since the early days of 
the UNIX operating system. The Lex tool reads a sequence of characters from 
an input stream and converts them into meaningful language tokens or  key-
words, such as if or  then, or the numeral 176. The Yacc tool then ensures that 
these tokens are in a logical order, according to the specific rules of the program-
ming language being defined. 

The output of the Lex and Yacc tools is a set of autogenerated C-language 
files that implement part of your custom language’s compiler. The following 
example demonstrates how patterns (also known as regular expressions) are 
used to match a sequence of input characters. When a complete input token is 
identified, some type of action (written in C code) is performed. 

 1  DIGIT [0-9]
 2  NUMERAL {DIGIT}+
 3  WORD  [a-z]+
 4
 5  %%
 6  {NUMERAL}           { printf("The number %s\n" yytext); }
 7  if|then|else|fi { printf("You've selected a 

keyword\n"); }
 8  {WORD} { printf("You've entered the word: 

%s\n", yytext); 

This code starts by defining the DIGIT class of characters ( 0 through  9), the 
NUMERAL class as a sequence of one or more digits, and the  WORD class as a 
sequence of lowercase letters. 

Next, you define three different rules, used to identify the following: 

1. A whole number, as defined by the NUMERAL class 

2. The name of a reserved word—in this case, if, then, else, or fi

3. An identifier, matching the characters described in the WORD class 

In each case, when the appropriate pattern is matched against the sequence of 
input characters, the C code action on the right side is triggered. 

From the build system perspective, the previous code should be stored in a file 
with the .l suffix. This source file is translated by the  lex tool into a C output 
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file named lex.yy.c. The output file contains all the user-specified action code, 
as well as the additional logic required to pattern-match the regular expressions 
against the input stream. Developers don’t need to understand how the autogen-
erated C code performs its job; instead, they simply call the yylex() function 
whenever they want to receive the next token. 

By executing the program that Lex generates, you can translate a series of 
input characters into a sequence of output messages. The input sequence 

123
if then begin
hello
456

results in the following output being displayed: 

The number 123
You've selected a keyword
You've selected a keyword
You've entered the word: begin
You've entered the word: hello
The number 456 

The Yacc tool works in a similar way, but it ensures that the tokens (identi-
fied by Lex) appear in the correct order. A statement such as 

if (a == 5) then hello(); 

makes perfect sense to most developers, but the statement 

if (== 5) a then hello(); 

gives you a syntax error, simply because the tokens don’t appear in a logical 
order. Although a developer can guess the intention of the code, the compiler 
would have no hope of guessing the true meaning. The code that Yacc generates 
can parse a sequence of input tokens and ensure that they arrive in a logical, 
meaningful order. 

The following example (stored in a file with .y suffix) demonstrates how to 
parse simple arithmetic expressions, by ensuring that numbers, operators, and 
parentheses all match up. 

 expr: '(' expr ')'
     | expr '+' expr    { ... action ... }
     | expr '-' expr    { ... action ... }
     | expr '*' expr    { ... action ... }
     | expr '/' expr    { ... action ... }
     | INTEGER          { ... action ... }
     | FLOAT            { ... action ... }
     ; 
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In this case, you define an expression ( expr) to be either another expression 
inside parentheses; the combination of two subexpressions using addition, sub-
traction, multiplication, or division; or simply a plain integer or floating-point 
number. Note, however, that this example was simplified for demonstration 
purposes and doesn’t take into account the rules of associativity or precedence, 
such as multiplication taking priority over addition. 

As with Lex, you use the Yacc tool to compile this high-level language into 
a lower-level C program that performs the actual work. The tool produces two 
main output files: 

• y.tab.c: A C source file that contains the complete parser for the custom-
defined language. It contains the C action code, as well as the necessary 
parsing logic required to ensure that the input is matched and the correct 
actions are triggered. 

• y.tab.h: A C header file that defines the set of input tokens (such as 
INTEGER or  FLOAT). Both Lex-generated and Yacc-generated programs in-
clude this file to ensure that they have a consistent view of which input 
tokens are expected in the input stream. 

Figure 16.2 summarizes the process of creating a new compilation tool using 
Lex and Yacc. Although Lex and Yacc generate C code, other programming 
languages have their own version of these tools. 

lex.yy.c

y.tab.c

scanner.l

parser.y

Lex Tool

Yacc Tool

y.tab.h C Compiler

New Tool

Figure 16.2 The use of Lex and Yacc to generate a small compiler. 

With this basic set of rules defined, you now have a simple scanner and parser 
that reads and processes input data. From the developer’s perspective, invoking 
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the autogenerated yyparse() function parses the input stream and triggers all 
the action code. Of course, this chapter hasn’t discussed the action code, which 
can be complex in its own right. (Again, refer to a compiler text book for more 
detail.)

Summary

To ensure that software builds are reliable and repeatable, it’s important to 
manage the set of compilation tools used. This is especially true when new ver-
sions of a tool are introduced or a tool bug is fixed. 

Several basic rules aid in the management of compilation tools. Noting how 
a tool was compiled or installed is vital for saving time with future tool changes. 
For tools maintained in source code form, be sure to keep that source code in a 
version-control system. This helps when you need to fix bugs or reapply local 
changes to an upgraded version. Periodically upgrade tools to take advantage of 
bug fixes and new features, as well as to avoid losing support from the vendor. 
Finally, make sure that the tool’s executable programs are version-controlled, 
allowing different versions of the software to   use different versions of the tool. 

If you want to create your own compilation tool, consider using Lex and 
Yacc, or the equivalent tool for your programming language of choice. These 
tools enable you to generate scanners and parsers to deal with nontrivial input 
formats.
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Scaling Up 

Part IV examines what happens when your build system becomes large—
for example, when you deal with software that has more than ten million 
lines of code, with potentially hundreds of developers adding new features. 
You’ll likely have one or more people maintaining the build system on a 
full-time basis. In this scenario, compiling the software becomes a major 
part of each developer’s day. 

It’s an unfortunate reality, but the build system you first created when 
the software was small isn’t likely to scale over time. In the same way that 
your development team grew and changed to more effectively write new 
code, your build system must change. The assumptions you made when 
the software was small no longer make sense with ten million lines of code. 
Part IV covers the following topics: 

• Chapter 17, “Reducing Complexity for End Users”: When a build 
system grows, it can become complex and confusing for software 
developers. You’ll explore techniques for making build systems more 
usable for end users. 

•  Chapter 18, “Managing Build Size”: When the code base grows over 
time, you start to reach the limits of your development tools and 
build machines. You’ll learn how to subdivide a large software prod-
uct into more manageable components. 

• Chapter 19, “Faster Builds”: More lines of code means more compi-
lation work and a slower build process. You’ll examine how you can 
measure the performance of a build system and find the location of 
your performance bottleneck. You also explore how you can avoid 
unnecessary compilation and use multiple build machines to quickly 
complete the work. 
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You might not currently manage a large build system, but it’s still worth 
considering these topics. After all, a large software product starts as a small 
product, so foresight is useful. Some amount of upfront planning can extend the 
life of your build system, even when the source code becomes much larger than 
it is today. 
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Reducing Complexity for End 
Users

For most software developers, a build system is purely a means to compile code. 
They don’t care how the build process works, as long as their program is com-
piled in a reasonable amount of time. To produce a fully compiled software 
package, all they want is a single button to push or a single command to execute. 
In reality, though, a build system requires some amount of maintenance. At the 
least, developers must take the time to list the source files to be compiled and the 
compilation flags to be used. In the worst case, they can find themselves fighting 
against a faulty dependency system or simply waiting too long for their build to 
complete.

These problems become worse as the software grows in size, with more devel-
opers working on the code. The build system becomes cluttered with configu-
ration variants, stale code that’s no longer used, and a number of corner cases 
for handling peculiar source files or compilation tools. All this leads to a build 
system that’s difficult for developers to use. 

If you’re an experienced software engineer, you understand that complexity 
can lead to unexplained failures and difficulties in maintaining the system. For 
example, if a dependency-analysis system is so complex that it takes a guru to 
comprehend, there’s a good chance that errors will be introduced. The net result 
is that developers spend a lot of time blaming themselves for writing code that 
doesn’t compile, at least until they realize that the build system is at fault. 

In terms of support, a complex build system leads to an increased number of 
trouble reports. Developers report problems with missing dependencies, compi-
lation tools that aren’t doing the correct job, or even code that doesn’t seem to 
compile for other people. Each time this happens, a build engineer must look 
into the problem to find out what the developer is doing wrong, or perhaps 
apply a patch to the build system to deal with a newfound corner case. 

457
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For a build system maintainer, a complex system can also be challenging 
to deal with. If the person who originally designed the build system is no long 
available, a new build engineer might struggle to understand everything. This is 
particularly true if a number of different people have modified the build system 
over the years, creating a patchwork solution. 

This chapter focuses on techniques that reduce the complexity of a build sys-
tem, making it simple for developers to use and possible for build engineers to 
maintain. In some respects, this can be conflict of interest: Making a build sys-
tem easier for a developer could make it more complex for the build maintainer 
to work with. Keep in mind that complexity means different things to different 
people.

The chapter starts by discussing the concept of a build system framework 
and then considers the downside of supporting multiple build variants. Next 
it discusses a range of techniques for reducing a build system’s complexity. 
Finally, it covers the importance of scheduling and adequately staffing build 
system changes. 

Build Frameworks 

A large-scale build system will naturally have some amount of complexity. Soft-
ware that uses a range of compilation tools or a number of file formats has 
more complex requirements than a smaller system. As discussed throughout this 
book, you’re doomed to encounter many build failures unless you capture these 
requirements properly. 

Most software developers are concerned with which source files will be com-
piled and which compilation flags will be used, but that’s the extent of their 
involvement. They don’t mind how the build system gets the job done, and it can 
be frustrating if they’re forced to learn too much detail. As you learned in Chap-
ter 2, “A Make-Based Build System,” the concept of the build system framework
is important. That is, you abstract out the build system’s complexity and hide 
it away from the end users. Your build description therefore has two sections: 

• Developer-facing portion of the build description: This part of the build 
description is highly visible to software developers. It lists all source files to 
be compiled and executable programs to be created. Software developers 
can also enable or disable optimization flags, debugging flags, and other 
compilation features. 

• Framework portion of the build description: This part of the build descrip-
tion provides a number of extensions on top of the basic build tool. For 
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example, the framework could support automatic dependency analysis, 
multidirectory compilation, and a number of new compilation tools. 

Let’s consider these two areas in more detail, emphasizing what they contain 
and how they relate to each other. 

Developer-Facing Portion of the Build Description 

Developers want to see only the high-level detail of the build system. They need 
to add new source files, add new executable programs, and configure compiler 
flags, but they don’t want to learn the syntax of the underlying build tool. 

Here’s an example of a GNU Make program that uses a framework: 

 1  EXE_NAME = myapp
 2  C_SRCS := main.c data.c gui.c util.c
 3  LINK_LIBS := z bfd
 4  C_FLAGS := -O -g
 5
 6  include framework.mk 

The first four lines define the name of the executable program, the list of C 
source files, the libraries to link into the executable program, and the compila-
tion flags to use. The final line includes the framework file, which you know 
from experience will be complex. Luckily, the developers can get most of their 
work done without understanding what the framework does. 

Tools such as Ant and SCons typically have less need for an additional frame-
work because these tools already have many of the required features built into 
the language. For example, consider the equivalent program in SCons: 

 1  Program('myapp', ['main.c', 'data.c', 'gui.c', 'util.c'],
 2                  LIBS = ['z', 'bfd'],
 3                  CFLAGS = ['-O', '-g']); 

You might suspect that this requires software developers to understand the 
basics of the SCons tool. This is true, but the SCons language is easier for novice 
users to understand, at least compared to a GNU Make solution. 

Another benefit of abstracting out the high-level detail is that users can sup-
port themselves. They won’t need to consult a build engineer every time they 
want to add a new source file or change a compiler flag. This is a productivity 
improvement for everyone. 

On the other hand, you might find that some build system changes really do 
require that complex code be placed outside the framework. This is usually the 
case for special-purpose source files that don’t fit cleanly into the model pro-
vided by the framework. As usual, make sure this code is adequately commented 
to explain to the end user what it does. 
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Framework Portion of the Build Description 

The goal of a framework is to hide the complexity from software developers. 
The software developer knows that a framework is used but shouldn’t feel com-
pelled to understand how it works. Only a qualified build engineer should care 
about the framework’s build description. 

For example, this is some functionality you’d normally hide inside a 
framework:

• With GNU Make, you’re required to implement your own automatic de-
pendency analysis, your own multidirectory build support, and custom 
rules for each new compilation tool. The user’s makefile simply defines 
a number of high-level variables and then uses the include directive to 
invoke the underlying framework. It’s vital to keep the framework in a 
completely separate makefile. 

• With Ant, any custom tasks should be encapsulated inside the framework 
and then incorporated into the main build.xml file using the  taskdef
directive. You can also choose to create reusable helper targets, to be 
included via the import directive. The software developer can use these 
new tasks and targets as if they were built into the Ant language. 

• With SCons, your framework contains builder methods and scanners for 
each new type of source file, as well as a number of helper functions to 
simplify the main build description. The SConstruct file imports these 
new functions to extend the basic SCons language. 

You might think that because the framework is hidden from software devel-
opers, it can be as complex as you want. In reality, though, a few software 
developers will still poke around inside the framework and might even try to 
extend it for themselves. This is particularly true for engineers who already have 
experience maintaining build systems. 

It’s also good practice to make sure your framework is simple enough for 
an average developer to understand. You wouldn’t encourage them to read the 
framework on a regular basis, but a complex build system is usually hard to 
maintain and often buggy. Keeping the framework as clear and concise as pos-
sible makes it less likely that you’ll introduce bugs. Even build gurus sometimes 
have trouble understanding a complex framework. 

In some cases, you have no choice but to have a complex framework. For 
example, the inclusive Make framework in Chapter 6, “Make,” is by no means 
simple to understand. An average developer would have a hard time compre-
hending how it works, as would many build gurus. At the least, you should pro-
vide a detailed set of comments to explain how everything works. 
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As a final note, if your framework ends up being so complex that few people 
can understand it, perhaps you’re using the wrong build tool. It’s a bad business 
decision to have software that only one person can understand, and this rule 
applies equally to build systems. Make sure that developers cross-train each 
other on how the build system works. 

Convention over Configuration 

One of the interesting design tradeoffs in choosing a build framework is simplic-
ity versus flexibility. On one side, the developer wants to have a simple build 
system without putting in too much effort. On the other end of the scale, the 
developer may be willing to spend more time defining the build description, to 
gain more flexibility. 

The concept of convention over configuration makes it easy to create a build 
system, as long as you’re prepared to structure your software within the confines 
of a standard template. This doesn’t mean that you can’t customize the build 
system to suit your own peculiar needs, but you can get a long way before need-
ing to do that. 

As an example, the Eclipse build system is trivial to use, at least when com-
pared to an Ant-based system. An Eclipse user selects the type of project needed 
and answers a few simple questions; then Eclipse generates the entire build envi-
ronment. Admittedly, it’s a limited build environment, but you can start your 
code development without much upfront work. If you need more power, you 
can switch to the more configurable Ant tool. 

Build system conventions are everywhere. For example, the following con-
ventions are fairly standard: 

• For the C and C++ languages, source files end in .c and  .cc, respectively. 
The filename tells the build system which compilation tool and compiler 
flags to use. Users don’t need to provide this information unless they want 
to override the defaults. 

• A default Eclipse project compiles all source code in the src directory and 
generates the corresponding object files into the bin directory. The build 
system automatically uses these paths, unless you decide to change the 
project settings. 

• Most build systems have targets such as compile, clean, package, test,
and install. Some build tools support these targets by default, but even 
if they don’t, build system designers will probably create them. This makes 
it easy for developers to work with unfamiliar software. 
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Let’s now spend some time looking at the Maven build tool, which follows 
the philosophy of convention over configuration. Maven makes creating a new 
build system extremely easy. 

Maven: An Example Build Tool 

The Maven system [84] is a build tool for Java-based projects and is therefore an 
alternative to using Ant. Maven is a full-fledged build tool, and this book could 
have added a full chapter on it to Part II, “The Build Tools.” Instead, the book 
simply focuses on the ease of creating a Maven-based build system, using the 
approach of convention over configuration. 

To create a new Maven-based build system, the developer selects a project 
template, known as an archetype. This provides a default layout for the project’s 
source and object files, as well as a number of standard build targets. 

Creating a Maven build system is as simple as entering the following 
command:

mvn archetype:generate \
        -DarchetypeArtifactId=maven-archetype-quickstart \
        -DgroupId=com.arapiki.calc \
        -DartifactId=calculator \
        -DinteractiveMode=false 

This command asks Maven to generate a new project (and build system) 
using the quickstart archetype. You request that the source code be stored in 
the com.arapiki.calc Java package and that the project name be  calcula-
tor. You can customize other configuration parameters as well, but interactive 
mode has been turned off in this example to instead use the defaults. 

After the project has been created, the default quickstart project tree is 
placed in the current working directory. 

./calculator/pom.xml

./calculator/src/main/java/com/arapiki/calc/App.java

./calculator/src/test/java/com/arapiki/calc/AppTest.java

This might not look like much, but Maven has automatically generated the 
pom.xml file containing the build description. It doesn’t hold a list of rules or 
tasks; instead, it provides high-level information about where things are stored 
within the project and which targets can be built. 

You’re also provided with the App.java file, which contains a simple main 
program, and the AppTest.java file, which contains a trivial JUnit test suite. 
Obviously, you’d replace these with your own source code, but it’s nice that 
Maven started you off with a working project. 

To compile this example application, run the unit tests, and create a JAR file, 
you issue the following command: 
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mvn package 

Maven created this project from a template, so it already knows how to com-
pile, test, and package the software, without any need for you to configure the 
build system. You can now execute your program: 

$ java -cp target/calculator-1.0-SNAPSHOT.jar com.arapiki.
calc.App

Hello World! 

The project also contains a number of other build targets, including 
compile (which performs only the compile step),  test, install, and clean.
The quickstart archetype was used, so everything that a simple Java project 
needs was created without any extra work. 

For advanced users, it’s possible to link multiple projects and set up depend-
encies among them. You can also ask Maven to download specific versions of 
third-party JAR files from the Internet and make them available for the program 
to use. 

Finally, if the standard archetypes don’t meet your needs, you can create your 
own. You can even distribute them to other people to create similar projects. 

Reasons to Avoid Supporting Multiple Variants 

As you’ve seen throughout this book, a build system should support multiple 
variants for many important reasons. Whether it’s for multiple CPU types, for 
multiple editions, or to add metadata for debugging or profiling, you might end 
up with a multitude of ways to build your software product. 

On the downside, be aware of the problems of having too many choices. 
Each time you add a new way of building the product, you’re taking on extra 
complexity that could end up costing you additional build time, development 
time, and testing time. It’s clearly a business decision as to whether it’s more 
important to support multiple variants or to reduce the cost of using the build 
system. A development organization wouldn’t support the extra variants if it 
didn’t have a good reason to do so. 

This section demonstrates how this new complexity is introduced. 

You’ll Have More Variants to Test 

If you add another variant that’s intended for your end customer, you now have 
an extra variant to test. Developers must validate that any code changes they 
wrote for one variant of the software also work for all other variants. First, 
they must build the software for all possible targets to ensure that there are no 
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compilation errors. Next, the software must pass some basic sanity tests, again 
for all variants. Finally, before handing the software package to the customer, 
the test group must perform a complete test run of each variant. 

In reality, though, developers don’t have time to build and test all possible 
combinations. Often they compile for one target and then hope that it doesn’t 
break for other targets. This is certainly a valid approach if the software is 99% 
the same in all cases. However, if developers are particularly suspicious that 
part of their code might not be portable (the remaining 1%), they’ll need to 
double-check their work for all other variants. This is a common tactic for large 
software products that take many hours to build, and developers are left to use 
their best judgment. 

To reduce the chance of somebody breaking the software when they don’t 
have time to test for all targets, it pays to keep the variants as similar as possi-
ble. In particular, using the same compilation tool for all variants can reduce the 
differences that cause the build system to fail. Of course, this assumes that this 
doesn’t defeat the purpose of having variants in the first place. 

Keep the following guidelines in mind: 

• Use the same version of the same compiler for all target architectures. For 
example, if you’re using GCC version 4.2 for your Intel x86 target, you 
should use that same version for your PowerPC target. Doing this gives 
you more confidence that the two compilers accept the same programming 
language syntax and will issue the same warnings and errors. Unfortu-
nately, a number of errors or warnings are architecture specific, so even 
though using the same compiler means fewer problems, you can’t expect 
to eliminate all differences. 

• Don’t write code that depends on the byte ordering of the CPU. For 
example, code that depends on the CPU having little-endian byte ordering 
won’t work on a big-endian machine. As much as possible, try to write 
code that’s endian-neutral. In other cases, limit the endian-specific code 
to a small number of well-known places. No matter what you do, it’s still 
important to build and test for all platforms. 

• Use consistent CPU word sizes. Code that was written for a 32-bit CPU 
might not work cleanly on a 64-bit machine. Write code that doesn’t make 
assumptions about the size of data types—or at least limit the places where 
you do. 

If you’re an experienced developer, you can probably think of many other 
differences that you typically try to avoid. 
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Source Code Becomes Messy 

A second reason to avoid having too many variants is that your source code can 
end up littered with conditional code. This is less of a problem when using per-
file or per-directory variation (as you would with a Java program), but it can 
be extremely complex in C/C++ programs, where a single function can contain 
numerous #ifdef directives. For example, the following code is particularly 
hard to read, especially if you’re unaware of what all the conditionals variables 
represent.

int init_database(char *db_ref)
{
    int data_index;
#ifdef SUPPORT_BACKUPS
    init_backups(db_ref);
#endif
#if (DB_VERS >= 4)
    db_fixup(db_ref, DB_VERS);
#endif
    data_index = get_index(db_ref, DB_MAX_SIZE);
#ifdef BIG_ENDIAN
    switch_endian(data_index, DB_MAX_SIZE);
#endif
    process_data(data_index, DB_MAX_SIZE);
#ifdef OLD_THREADS
    init_threads(0, 5);
#else
    init_threads(THREAD_START_PRIORITY);
#endif
}

This example illustrates a second problem of overusing conditional compila-
tion. If the build system no longer uses the OLD_THREADS directive, all references 
to the symbol should have already been removed from the code base. However, 
because none of the current developers working on the project has any knowl-
edge of what that directive means, the developers will be hesitant to remove 
the stale code. These unnecessary lines therefore continue to remain in the code 
base, cluttering the program. 

Build Times Can Increase 

If you modify your build system to compile more than one variant by default, 
you might find your build times substantially increasing. Even though you’d 
normally build one variant at a time, there’s no reason you can’t build multiple 
variants in a single build command. 

For example, imagine that you’re building software for a target computer 
that contains both an x86 processor and a MIPS processor. If each processor 
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ran similar software, you might be inclined to compile the same utility library 
for both CPU types. Originally, it might have taken 30 minutes to compile for 
the x86 processor, but after adding the MIPS variant, an additional 30 minutes 
would suddenly be added to the build time. Unfortunately, these increased build 
times are unavoidable, especially if a change to the x86 variant has a habit of 
breaking the MIPS variant. 

Higher Disk Space Requirements 

If you choose to have a different object tree for each build variant, clearly your 
disk space requirements will increase. To counteract this problem, you can al-
ways limit yourself to using a single object tree, although you always face con-
sequences for doing so. Either you’ll spend more time recompiling each of the 
variants to ensure that they all still work correctly or you’ll face an increase in 
the number of broken builds or failed test cases because of a lack of solid testing. 

Various Ways to Reduce Complexity 

Now that you’ve seen how frameworks can make the build system easier to un-
derstand and how supporting multiple variants can cause problems, think about 
other approaches. Unfortunately, no single solution can eliminate the problem 
of complexity. Any build system feature that a build engineer can customize is a 
potential source of problems. What matters is how engineers use those features, 
and whether they follow the standard set of best practices. 

This section examines a range of approaches to reducing complexity. Com-
plexity is a subjective term, so some of these approaches reduce the complexity 
for end users, whereas others reduce the complexity of the underlying build sys-
tem. These techniques aren’t listed in any particular order, and they might apply 
to only certain build tools or programming languages. In each case, the sections 
talk about what could go wrong if you don’t follow the guideline. 

Use a Modern Build Tool 

Since the Make tool was created (in the 1970s), people have been looking for 
ways to improve its usability. Even GNU Make follows the same basic premise 
of defining dependency rules, with each rule providing shell commands to gen-
erate targets from prerequisites. Many users feel that it’s nearly impossible to 
build large and reliable build systems using this approach. 

In contrast, tools such as Ant, SCons, CMake, and Eclipse make every effort 
to reduce the amount of work required. Features such as automatic dependency 
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analysis, multidirectory support, and cross-platform compilation are now stand-
ard features. In addition, these newer tools promote the task or builder model, 
in which developers specify what they want compiled instead of how it should 
be compiled. 

In your own build system, think carefully about what you need. If you’re 
a Java programmer, you’ll most likely aim for an Ant- or Eclipse-based build 
system, or perhaps use a combination of both. For C/C++ developers, SCons or 
CMake is a better choice. Each tool emphasizes making the build description 
less complex, thereby reducing the chance of errors. 

Use the GNU Make tool only if you’re confident of your decision. Refrain 
from using it just because it’s the most common tool. You’ll likely find that you 
don’t want to worry about the complexity of maintaining the dependency graph 
or adding framework support. 

Finally, keep your eyes open for new build tools. Ant, SCons, CMake, and 
Eclipse have many limitations, and newer build tools are likely to supersede 
them in the future. 

Automatically Detect Dependencies 

It should be obvious by now that incorrect dependency information is a lead-
ing source of build system problems. Relying on the developer to compute and 
document the interfile dependencies is simply asking for mistakes. If at all pos-
sible, use a dependency-analysis tool to do the work for you. 

As you saw in Part II, when you studied each of the build tools, automatic 
dependency analysis comes in a number of forms. In some cases, you can ask the 
compilation tool which files it will depend upon. In other cases, the build tool 
uses a special-purpose scanner to identify a source file’s dependencies. Finally, 
it’s also possible to monitor the underlying file system to see exactly which files 
are being accessed. 

Having accurate dependency information is an important way of reducing a 
build system’s complexity and thus increasing a developer’s overall productivity. 
If at all possible, use an automatic method for computing dependencies. 

Keep Generated Files out of the Source Tree 

As discussed in Chapter 14, “Version Management,” it’s important to store all 
generated files in a separate directory from the source code. A clean separation 
makes it easier to distinguish valuable source files from those that can be regen-
erated. Failure to follow this rule increases the complexity of the build system. 

For example, some code generators create files written in a high-level lan-
guage, such as Java or C#. If these output files were incorrectly stored in the 
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source tree, users could get confused and manually edit them by mistake. They 
might also submit the generated file to the version-control system, as if it truly 
was a source file. 

Keeping the generated files in a separate location is therefore a good approach 
to reducing the number of user errors. 

Ensure That Cleaning a Build Tree Works Correctly 

Although you’d like to believe that incremental builds always regenerate the 
correct set of object files, this isn’t always the case. It can be useful to perform a 
clean build just to make sure that all object files are regenerated. In some cases, 
you no longer need the object files; you only want to preserve your source code. 

It’s important that your build system’s clean target works as expected. If 
this target is invoked from the top level of the build tree, it should remove all 
generated files, leaving only the source code. If it’s invoked from a lower-level 
directory, only the objects in that directory should be removed. Under no cir-
cumstances should any source code changes be lost. 

If the clean target doesn’t work correctly, developers might be stuck with a 
build tree they can’t use. No matter how many times they perform the clean
operation, they’ll still have trouble compiling their source tree. The root cause is 
that generated files aren’t being deleted and, therefore, aren’t being regenerated 
correctly. Combining this with a poor-quality dependency system is just asking 
for a high-maintenance build system. 

Abort the Build After the First Error 

It’s generally a good idea for the build system to halt after encountering the first 
error. This provides immediate feedback to developers that something has gone 
wrong and lets them know they should pay attention. In most cases, the last 
10–20 lines of the build log show the exact error message. However, if the build 
tool doesn’t halt until later, or doesn’t halt at all, identifying the root cause of a 
problem could take hours. 

Luckily, the default behavior for build tools is to halt whenever one of the 
compilation tools returns a nonzero exit code. This is also the case for most 
(but not all) compilation tools when they encounter an error in the source code. 
Watch for rogue compilation tools that don’t abort the build process after an 
error.

Perhaps the most common place where this rule is broken is in shell scripts. 
By default, most shells continue executing commands, even if one of the com-
mands returns a nonzero exit code. After the shell script has run to completion, 
nothing indicates that the script failed, other than a few cryptic error messages 
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on the screen. Many scripts still print a Completed Successfully message on 
their output, even if part of the script failed. 

An even worse scenario arises when shell commands are intended to fail but 
developers are too lazy to suppress the error message. They might claim that the 
errors are harmless and can simply be ignored. However, these excessive error 
messages only cover up any real errors that might be reported. If the shell script 
is visible to end users, there’s a good chance that each end user will report the 
same error message, only to be told that it’s harmless. 

To reduce the complexity of your build system, you can follow several 
approaches.

• Use only compilation tools that report nonzero exit codes when an error is 
found. If this isn’t possible, consider wrapping the tool in a shell script that 
explicitly looks for error messages in the tool’s output. For example, if any 
lines in the output log start with the keyword Error, the wrapper should 
return an appropriate error code. 

• In all your scripts, configure the shell to abort if any commands return a 
nonzero exit code. Usually a command-line flag or shell variable controls 
this behavior. 

• If a command is supposed to return a nonzero exit code as part of its nor-
mal behavior, be sure to write extra handler code to deal with that situa-
tion. For example, the UNIX grep command indicates whether it found 
any lines in a file that match a regular expression. The command’s exit 
code can be used to state whether a match was found instead of reporting 
an error situation. In this case, the shell script shouldn’t abort execution. 

• To be extra safe, configure your compilation tools to return a nonzero exit 
code for warnings. This is a good practice because many tools provide a 
warning message that doesn’t technically stop the program from compiling 
but instead indicates where your program could be improved. 

Although the practice of halting on the first error is almost always the best 
approach, it’s sometimes useful to override a tool’s default behavior. For exam-
ple, GNU Make supports the -k option to request that it continue invoking 
compilation tools until it completely runs out of work. Of course, use this fea-
ture only when you truly want to skip the error messages. 
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Provide Meaningful Error Messages 

Software developers are notorious for writing error messages from their own 
perspective instead of from the customer’s point of view. For example, a devel-
oper might write the following error message: 

Error: malloc failed for new data component. 

This means a lot to the developer but isn’t helpful for a novice end user. 
Instead, the developer should have written something like this: 

Error: Your system is running low of memory, please close other 
programs and try again. 

In this case, end users can solve the problem on their own, without contacting 
the software’s support team. 

Although the end user of your build system is likely a developer, users still 
appreciate having meaningful error messages. They won’t want to dig through 
your build description to find out why they’re seeing an obscure Missing File
error.

Of course, it might not be practical to surround every step in your build 
process with an error message, in anticipation of somebody hitting a problem. 
Instead, if you see a number of trouble reports in the same area of your build 
system, either fix the code so that it doesn’t fail, or provide some meaningful 
error messages to explain the problem in more detail. 

Validate Input Parameters 

If the build system’s users have the opportunity to provide command-line input, 
there’s a chance they could provide invalid data. To make sure everything runs 
smoothly, always validate command-line arguments before they’re used. Even if 
there’s no malicious intent, invalid data can cause confusion. 

In the following UNIX shell script, the build engineer was lazy and didn’t 
validate the input parameter. 

 1  #!/bin/sh
 2
 3  my_dir=$1
 4
 5  rm -rf $my_dir/
 6  mkdir $my_dir
 7  cp file.dat $my_dir/file.dat
 8  ... 

The purpose of this script is to package a number of files into a temporary 
holding location, after first removing and re-creating the directory. The problem 
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with this script is that $1 (the first command-line argument) defaults to the 
empty string if the user doesn’t provide any arguments. Here’s what’s actually 
executed in that situation: 

rm -rf /
mkdir
cp file.dat /file.dat 

The first line proceeds to recursively remove all files on your root file system, 
which might not be too bad unless you’re logged in as root. The second line 
fails because it’s an incomplete command, and the third line fails with a permis-
sions error (unless you’re logged in as root).

Most developers who are poking around your build system will invoke this 
script without any arguments, assuming that you’ve provided some meaningful 
help text. Little do they know that their file system is being deleted. 

To reduce complexity for the end user, make sure you always validate user 
input. Check that the number of arguments is correct, and do your best to vali-
date each input value before using it. If any of the user’s values are incorrect, 
display a meaningful error message to explain why. 

Don’t Overengineer Build Scripts 

An age-old principle that so many developers choose to ignore is the concept of 
keeping things simple. Developers are creative people who like to predict the set 
of features their end users will need. They sometimes don’t even ask end users 
what the software should do, because their plan is to make it do everything. 

In the case of build systems, this results in a complex framework and set of 
support scripts. The downside is that it becomes too confusing to use and far too 
hard to maintain. Even the documentation is overwhelmed by all the possible 
corner cases. So much for a simple build system that developers can invoke with 
a single command. 

A best practice is to start simple but be prepared for growth over time. Pro-
vide users with what they need now, but don’t be too surprised if they ask for 
more in the future. Giving them a simple build system to play with after two 
weeks of work is better than surprising them with a full build system after six 
months. You might be surprised that the simple solution is all they need, at least 
for now. 

Avoid Using Cryptic Language Features 

Over the lifetime of the product, several different build engineers could maintain 
a build system. If the original author is unavailable, a new build engineer will be 
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asked to get involved. There’s a good chance that the new engineer will know 
nothing about the build system and must learn on the job. 

Unfortunately, many engineers take pride in knowing all the advanced fea-
tures of their build tool and aren’t afraid to use them. These can involve syntax 
tricks that are unfamiliar to novice users or that require undocumented behavior 
that’s discovered only by trial and error. The engineer’s end goal is to write the 
build description as concisely as possible, no matter how obscure the solution. 

The obvious downside is that the learning curve to understand the build sys-
tem becomes incredibly high. A novice build engineer might inherit a build sys-
tem but might not comprehend how it works or why specific language features 
are used. Although the original author guaranteed his or her own job security, 
that person has since left the team with a confusing build system. 

To reduce complexity, ensure that your build system uses only well-docu-
mented features that novice build engineers can understand. If you find your-
self requiring advanced features, hide the complexity inside the framework and 
make sure all the code you write is well commented. A second pair of eyes should 
review all changes to the build system and reject them if they’re too complex. 

If you find it impossible to implement a build system using well-understood 
features, you’re probably using the wrong build tool. 

Don’t Use Environment Variables to Control the Build Process 

All major operating systems support the concept of environment variables, al-
lowing users to customize their login account. Among other things, these varia-
bles control the way command shells behave, identify the user’s home directory, 
and store the search path for locating an executable program (the familiar PATH
variable). It’s even possible to define your own environment variables. 

The operating system sets some of the variables when a login shell is first 
created, whereas the user’s own start-up script (such as .cshrc or  .bashrc in 
UNIX-like systems) sets others. The important point is that each user can cus-
tomize the environment to suit his or her needs. 

When it comes to writing a build system, relying on the user’s environment 
is a bad idea. Doing so creates a build system that behaves differently for each 
user, requiring a lot of end user support. For example, if the build system relied 
on the user’s PATH variable to locate an appropriate compiler, different users 
could end up with different compilers. 

As a best practice, your build system should fully initialize any variables that 
it depends on instead of inheriting the value from the environment. This is par-
ticularly true for the PATH variable. 

If you need to pass configuration parameters into your build system, you 
have two acceptable approaches: 
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• Provide the variables on the command line: For example, to inform 
the build system which CPU type to compile for, you could pass in the 
PLATFORM variable: 

gmake PLATFORM=i386 build 

• Configure the build tree to store the variables: To save typing, you can 
store the configuration parameters inside the build tree. Every time you 
invoke the build tool, it uses the saved parameters. 

gmake configure PLATFORM=i386
gmake build 

These PLATFORM definitions are explicit, so if two users execute the same 
commands, they’ll see exactly the same results. You’re not relying on the user’s 
implicit environment to perform a build, because this can vary from one user to 
the next. In fact, it’s a good practice for your build system to explicitly ignore 
environment variables that cause differences between two users. 

Unfortunately, this problem isn’t limited to environment variables. Most 
shells start by reading a sequence of commands from their start-up file. In addi-
tion to defining environment variables, these commands can perform an arbi-
trary sequence of operations, such as displaying onscreen messages. If your build 
system invokes a shell script, those commands also might be executed, causing 
no end of confusion. 

The solution is to ensure that each compilation tool is invoked in such a way 
that per-user configuration files aren’t read on start-up. If your tool doesn’t have 
a suitable option, consider using a different tool. 

Ensure That Release and Debug Builds Are Similar 

Many build systems enable developers to create either a debug release or a pro-
duction release. In the debug case, extra information is added to the release 
package, making it possible to debug the software (either at runtime or via a 
post-mortem memory dump). On the other hand, production releases contain 
only the final software, without the extra information. 

It’s important for the debug and production images to be as similar as pos-
sible, except for the additional debug information. It’s not acceptable for the 
customer to use different software from what the developer originally tested. If 
the customer reports a bug, a developer might have a hard time reproducing the 
problem.

As an example, it’s common for developers to add special code that is avail-
able only in the debug image: 
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#ifdef DEBUG
display_record();
#endif /* DEBUG */ 

This adds extra support that the developer requires for testing, but it changes 
the program’s behavior. In addition, this new code could mask bugs that still 
appear in the production release. 

To get around these inconsistencies, consider two approaches: 

• Build the debug image, but strip the debug information: Instead of com-
piling two different versions of the same software, consider building only 
the debug release. It’s then a simple matter of stripping the excess debug 
information to create the production release. The executable code itself 
is guaranteed to be identical in both cases, making it possible to debug a 
memory dump from a production release, using the information from the 
debug release. 

• Add hidden commands to your production software: Instead of adding 
special sections of code to your debug release, consider how you could 
enable these features in the production release without the customer know-
ing about them. This enables developers to use the features in their own 
environment, as well as typing a secret command or editing a configura-
tion file to enable them at the customer’s site. This feature makes it much 
easier to analyze the customer’s bug reports. 

One example is an assert() function compiled into both the debug and 
production software. However, although the same code is present in both 
cases, only the debug version of software reports the errors. The produc-
tion software silently ignores the runtime checks, unless it’s explicitly ena-
bled in some way. 

Display the Exact Command Being Executed 

When it makes sense, your build system should echo the exact compilation com-
mand being invoked. This makes debugging problems easy because you can 
simply copy and paste a command from the build log and run it by hand. You 
can even modify the command-line options if that helps you solve a problem. 

For example, you might see the following output on the build log: 

gcc -o data.o -c -O -g data.c
gcc -o gui.o -c -O -g gui.c
gcc -o main.o -c -O -g main.c
gcc -o util.o -c -O -g util.c
gcc -o myapp main.o data.o gui.o util.o -lz -lbfd 
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If you noticed that main.c wasn’t compiling properly, you might suspect that 
a C preprocessor symbol was missing. In this case, you can copy the line from 
the build log and replace -o main.o -c with the -E option: 

gcc -E -O -g main.c 

This command enables you to see exactly which lines of C code are compiled 
after the preprocessor has run. If the build system didn’t display the command it 
was executing, you’d be left to guess how to invoke the compilation tool. 

Although this is a nice feature, not all build tools support this technique. In 
particular, the Ant build tool doesn’t display the underlying command line, and 
in many cases no command line is used. Instead, Ant directly invokes library 
functions or instantiates special-purpose Java classes to get the job done. 

Version-Control References to Tools 

As discussed in Chapter 14, you need to version-control all references to com-
pilation tools. This can be done by hard-coding the tool’s path in the build de-
scription file and ensuring that each instance of the tool is labeled with a version 
number. Failure to follow these guidelines makes it challenging to upgrade to 
new compilers while still ensuring that older software releases continue to use 
the older tools. 

Version-Control the Build Instructions 

Chapter 14 also introduced the idea that build descriptions should be version-
controlled. As the software changes over time, the build system must also 
change. Failing to keep all the build steps in sync with the software makes it 
hard to reproduce older versions of the code. 

At least make sure the build system’s help text is under version control. If 
developers need to rebuild an old version of the source code, they can always 
read the help text to remind themselves of what needs to be done. 

Automatically Detect Changes in Compilation Flags 

It’s desirable for your build system to consider object files to be out-of-date 
whenever the compilation flags change. For example, if a developer originally 
compiled a program without optimization enabled, adding the new flag should 
cause all existing object files to be removed and regenerated. 

Failure to clean up stale files causes mismatched object files to be linked into 
the same executable program. Whether this causes problems depends entirely on 
the nature of the compilation flags. 
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If possible, use a build tool that automatically supports this feature, such 
as SCons. For other build tools, it’s still possible to implement this feature, 
although perhaps not in a straightforward way. Without any type of automa-
tion, developers must remember to perform a clean build every time they modify 
their flags. 

Don’t Invoke the Version-Control Tool from the Build System 

As a general rule, your build system shouldn’t interact with the version-control 
tool, even though the program’s source is stored within that tool. Unfortunately, 
some build engineers attempt to take advantage of this relationship. 

A clear distinction is made here between a build system (using a tool such 
as Make, Ant, or SCons) and a build-management tool such as Build Forge, 
Hudson, or ElectricCommander (discussed in Chapter 1, “Build System Over-
view”). Build-management tools are supposed to invoke the version-control 
tool, whereas a build system isn’t. 

As a first example, it’s not a good idea for your build system to update the 
source code tree with the latest content from the version-control system. When 
developers are working on a specific set of source files, the last thing they want is 
for the build system to download new versions of the code. Doing so creates an 
unstable environment that developers have no control over. It may also create 
source code conflicts that developers aren’t ready to resolve. 

A second example arises when the build system accesses the version-control 
tool to find out which revision of a file is being used. Good reasons might exist 
for acquiring a unique version number, but this ties the build system closely to 
the underlying version-control tool. If you change to another tool, you can no 
longer build older versions of the software. 

As a final example, you might try to build your software on a standalone 
machine. Many version-control tools require direct access to a centralized 
server, making it impossible to work in a disconnected environment (such as on 
aircraft or at the beach). 

Use Continuous Integration as Often as Possible 

Although this book hasn’t spent much time on the topic of continuous integra-
tion, it’s a good practice to follow when creating a build system. As in any other 
software, changes to a build system can be poorly implemented. You need to 
identify and resolve the problem as quickly as possible. 

By compiling the source code on a regular basis (every hour, every day, or 
whenever the code changes), you also validate that your build system works. 
This is particularly true when incremental builds are used to compile the recent 
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code changes. If your dependency system isn’t high-enough quality, you’ll likely 
see broken builds. To counteract these problems, make sure you regularly per-
form full builds, not just incremental builds. 

Standardize on a Single Type of Build Machine 

As discussed in Chapter 15, “Build Machines,” it’s a good idea to have a single 
type of build machine on which the build system executes. If you support multi-
ple machines, you’ll see added complexity from platform differences. Minimiz-
ing these differences can help reduce support costs. 

Unfortunately, you might still need to support multiple build machines. For 
example, you might be supporting multiple target machines (such as Windows, 
Linux, and Mac OS X), and your build can be executed only on the target 
machine itself (cross-compilation isn’t always possible). You also might depend 
on compilation tools that are supported on only one type of build machine, but 
that machine doesn’t support all your other tools. 

Standardize on a Single Compiler 

Chapter 14 introduced the idea that different versions of a compilation tool 
might accept slightly different syntax. If your build process generates code for 
more than one target platform (CPU or operating system), ensure that the same 
compiler is used in all cases. You might have different instances of the compiler, 
but all of them should accept the same syntax and support the same features. 

If it’s not possible to use the same compiler or compiler family, you’ll see an 
increase in complexity. If developers test their code for only one platform, the 
code might no longer compile on other platforms. To resolve this problem, you 
must test all code changes on all platforms. 

Avoid Littering Code with #ifdefs

As discussed in Chapter 5, “Subtargets and Build Variants,” you can select the 
source code for each build variant in numerous ways. One of the most common 
techniques in C/C++ is to use the #ifdef directive. Unfortunately, overusing this 
approach leads to messy code. 

If your source code starts to become unreadable, consider extracting the parts 
of the code that differ and maintain a copy for each variant. The main body of 
the code is the same for all variants, but the variant-specific code is extracted 
into a separate function. This type of extraction might seem like a lot of work, 
but if handling multiple variants in the same function creates a complex maze 
of #ifdef directives, extracting the differences to separate functions could be a 
better alternative. 
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Use Meaningful Symbol Names 

When your software compiles on a wide range of build machines, be careful to 
name your build system variables appropriately. For example, if your software 
is designed to use a threading model that first appeared in version 3.0 of your 
operating system, you might be tempted to implement the following code: 

if OS_VERSION >= 3.0
   ... use the new threading model ...
endif

Unfortunately, you’re making the assumption that all future versions of the 
operating system will also support this threading model. This might be true for 
several years, but eventually the code will fail to compile. Instead, try the fol-
lowing approach: 

if HAS_THREADS
   ... use the new threading model ...
endif

In this case, your build system must somehow detect whether the operating 
system supports the threading model and must then define the HAS_THREADS
symbol. As you’ve seen, a number of build tools support this type of autodetec-
tion, including Autoconf, SCons, and CMake 

A similar example arises when the source code uses product marketing 
names. For example, if a company’s marketing team declares the next release 
to be known as Aardvark, it’s not advisable to implement the following code: 

if AARDVARK
   ... use the new threading model ...
endif

Although this is a short-term name, future releases would also need to define 
the AARDVARK symbol, or the threading model won’t be used. Again, you should 
instead use a feature name such as HAS_THREADS. In any case, the marketing 
team will probably change the product name several times during development, 
so you’ll be glad you didn’t include it in your code base. 

Finally, try to avoid using the words NEW or  OLD in any of your symbol names. 
If you define the HAS_NEW_THREADS symbol, the feature won’t be new for long, 
and you’ll be inclined to rename it to HAS_OLD_THREADS. Instead, use a version 
number, such as HAS_THREADS_V2.

Remove Stale Code 

When a piece of software grows large, the build system tends to be littered 
with support for build variants and compiler options. In some cases, the feature 
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might no longer be required, but nobody bothered to remove the code. The sim-
ple fact that stale code is kept around increases your maintenance costs. 

Don’t forget that, over the years, many people will view and modify the build 
system. If you don’t delete the stale code when it’s no longer required, people 
will make the obvious assumption that it’s still worth keeping. Nobody removes 
code unless they’re confident it’s no longer used. 

Aside from cluttering up the build system, stale code causes the build engi-
neers to waste their time. If they don’t understand the purpose, they’ll make 
every attempt to keep it working for each new build or target machine. In 
extreme cases, they might even port the functionality to a new build tool. If they 
knew the code was stale, they wouldn’t have wasted their time. 

If you’re resisting the idea of removing stale code, remember that it’s always 
available in the version-control history, so it’s not lost forever. If you’re hesitant, 
try commenting out the code and adding a note to explain that it’s no longer 
used. Anything you can do to show that it’s stale will benefit future maintainers. 

Don’t Duplicate Source Files 

Good developers understand that duplicating source code is a bad idea. How-
ever, many people still do it because of the limitations of their build system. It’s 
unfortunate, but your build framework might limit the locations from which 
your program can obtain source files. You might be required to have all source 
code in the same directory as the build description file, which is often the case 
for recursive Make systems. 

If developers want to save time by reusing an existing code function, they 
have a number of options for including it in their program: 

• Make a duplicate file: In this absolute worst case, the developer makes an 
entirely new copy of the source file and places it in the desired directory. 
This creates a maintenance problem because source code must be updated 
in two locations. 

• Use a symbolic link: On machines that support symbolic links, the build 
system can create a link from the source file’s original location into the 
directory where it’s needed. This eliminates the need to update the file in 
two locations, but because not all tools can handle symbolic links prop-
erly, this sometimes creates support issues. 

• Use a relative pathname: If the build system allows it, you can use a relative 
pathname to access the source file from its original location. For example: 

C_SRCS := main.c data.c gui.c ../../../dispatch/lib/util.c 
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This is a good solution, except that it starts to create a spaghetti-like source 
tree.

• Create reusable libraries: A final solution is to move the shared source files 
into a common location and create a library archive. Each part of the build 
system that needs access to the shared code can link against the common 
library instead of compiling the source code for itself. 

Although this final solution of creating a library is the cleanest approach, it’s 
often hard to implement. Unfortunately, many developers still resort to dupli-
cating files or creating symbolic links. 

Use a Consistent Build System 

A common way for software to grow quickly is by acquisition rather than by 
writing new code. Large amounts of new source code can be taken from open-
source projects, written by third-party vendors, or added after a merger between 
two companies. It’s not unheard of for software to double in size in a matter of 
days.

The fastest way to integrate new software is to use the source code’s original 
build system. The downside is that your build system becomes a patchwork of 
different frameworks glued together. The support costs can be exceeding high if 
there’s no consistent way of building the code. 

If it’s not too much work, consider using a common build system for all parts 
of your software. This involves throwing away the legacy build system, but that 
might be easier than trying to support many different frameworks with their 
own benefits and limitations. 

Aside from the workload, the downside of replacing an existing build system 
is that it’s harder to keep up-to-date with changes in the original code base. 
When you take advantage of open-source software or code from a third-party 
vendor, the original build system constantly changes. Each time you incorporate 
a new version of the software, you need to make corresponding changes to your 
new build system. 

Scheduling and Staffing Build System Changes 

Now that you’ve seen how a build system becomes more complex, consider 
ways to solve the problem. The desired technical solution is usually clear, but 
in a real-world development environment, there’s always too much work to do 
and never enough people to do it. Always consider the human resources aspect. 



ptg

 Scheduling and Staffing Build System Changes 481

In a corporate environment, company leaders are often focused on pleasing 
customers to keep the company afloat. Their attention is on the development 
and release of new product features instead of the underlying infrastructure. It’s 
certainly hard to imagine a customer getting excited about the quality of your 
build system, so managers tend to be equally uninvolved. In some cases, they see 
the build system as a necessary evil. 

If you’re taking care of a build system by yourself or are leading a group of 
build engineers, you must be an advocate for constantly monitoring and improv-
ing the build system. Even if you have tight schedules to deliver product features, 
keep in mind that complexity in the build system is extremely costly. Your lead-
ers won’t pay attention to the build process (other than complaining about it 
from time to time), so you’ll end up carrying the torch in this area. 

Consider some basic management rules when you’re scheduling improve-
ments to your build system. 

• Be realistic with the schedule: Allocate enough time to do a good job with 
the work. Cutting corners on your build system can be disastrous because 
hacking together a quick solution introduces complexity. Choosing a good 
build tool or framework makes your job easier, but you might be confined 
to using a legacy system. Major build system changes can take weeks or 
months to complete. 

• Assign a build guru for new product development: When creating a new 
product or making major changes to an existing product, involve a build 
guru as soon as possible. It should be obvious that you can’t develop soft-
ware without a good build system, but many projects assign one of their 
software developers to do the work. If that developer isn’t experienced in 
this area, it won’t be long before he or she runs into problems. 

• Don’t wait until the build system fails before working on it: For major 
software projects, it’s important to preplan your build system changes. As 
with any other aspect of software design, it’s a mistake to think about the 
work only when the problems show up. Waiting until there’s an immediate 
need for change simply delays your project. After all, build gurus are usu-
ally busy people who might not be available the moment you need them. 

• Constantly monitor build system changes made by nongurus: Software
developers tend to make minor build system changes to suit their immedi-
ate needs. In their defense, they’ve often asked for a guru to do the work, 
but nobody was available at the time. When this happens, it’s important 
to follow up later to ensure that the changes were reasonable. A build guru 
should review changes before they’re committed to the version-control 
system.
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• Think about the target audience: Just as you would for any software prod-
uct, consider your target audience and its usage pattern. For a release en-
gineer, the goal is to build and release fully versioned software packages. 
On the other hand, a software developer expects a quick turnaround time 
for incremental builds. Be sure to consider both of these audiences in the 
design of the build system. Failing to do so leads to either longer compile 
times for software developers (incremental builds would take too long) or 
an overly complex process for building customer releases. 

Finally, you’re likely to face pressure to make the build system changes imme-
diately, especially if software developers didn’t get you involved until the last 
minute. In this case, it’s usually acceptable to give them a hacked-up solution to 
get them beyond their current problem. Making them wait for a final solution is 
unreasonable because that could take months. 

In addition, never leave the hacked-up solution in place for too long. Make 
sure you complete the required changes properly, even if it takes a few months 
longer. This is the only way to ensure that complexity doesn’t become a longer-
term problem. 

Summary

Complexity in a build system is usually bad: It increases the chance of random 
build failure and forces developers to work around each pitfall. In many cases, 
the build system might work differently from one developer to the next, increas-
ing the time taken to develop software. All these problems place an excessive 
load on the build system’s support team. 

Using a build system framework is a good way to hide some of the com-
plexity from end users. In many cases, it’s not possible to completely avoid 
problems, but at least you can limit the scope to specific build description files. 
This includes compilation rules, task definitions, macros, and builder methods, 
which are of interest only to build gurus. On the other hand, the list of files to 
be compiled, the set of compilation flags to use, and other high-level directives 
must be fully visible to software developers. 

Complexity can arise in numerous ways, each with its own solution. For 
example, you could use a modern build tool, keep generated files out of the 
source tree, provide meaningful error messages, or remove stale code from the 
build description. Each of these techniques makes the build system easier to 
use and maintain. 
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Finally, scheduling build system changes can be challenging, especially in a 
team that doesn’t proactively focus on that area. You might need to be an advo-
cate for making improvements and ensuring that all future build changes are 
monitored closely. 
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Chapter 18 

Managing Build Size 

The second major topic in Part IV, “Scaling Up,” is how to more effectively 
manage the size of a build system. Software products start with a single line of 
code but continuously grow as new developers join the project or when third-
party libraries are added to the code base. What starts as a small and manage-
able piece of software eventually becomes a large and complex product. 

A software build system is no exception to this rule. A program with 10 
source files is trivial to manage with a single makefile or Ant script. With 1,000 
files, you can still use the same build system, even if it now takes 15 minutes to 
compile the full product. The real problems start when the build takes 1.5 hours 
or even 15 hours to complete. Expecting each developer to build with make all
is no longer reasonable. 

As a general rule, scalability issues are much like the “frog in the boiling 
pot” problem. The end-to-end build process starts out simple and efficient, with 
everybody happy with the solution. Over a number of years, the build system 
slows and becomes more of a productivity drain, but nobody really notices. 
Just like the frog in the boiling pot, gradually getting hotter and hotter, the 
fact that change occurs slowly makes it less likely that people notice the ever-
increasing problem. New members joining the team are far more likely to notice 
the inefficiencies. 

This chapter focuses on the component model of constructing software, in 
contrast to the monolithic model. In the monolithic case, all source code is 
stored in the same tree and is compiled using a single build system. That build 
system might have multiple parts, but each developer first needs to compile the 
entire program before starting to work. 

In the component model, you break the source code into multiple independent 
components, each with its own build system. Developers are required to obtain 
only the source code they’re planning to modify and need to compile only that 
specific component. All other components are provided in binary form instead 
of compiled from source code. 

485
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This chapter covers the following aspects of component-based software: 

• The problem with monolithic builds: The reasons monolithic builds aren’t 
scalable and, therefore, why component-based builds can be attractive 

• Component-based software: An overview of component-based software, 
including the internal structure of a component and the process for inte-
grating them into a larger program 

• People and process management: How managing and integrating compo-
nent-based software is different from managing a single monolithic code 
base

• Apache Ivy: A brief study of a build tool that supports component-based 
development

Let’s start by investigating why monolithic builds are troublesome and why you 
should instead use components. Other than the brief discussion of Ivy, this chap-
ter is very conceptual. Each development environment must implement these 
features in their own unique way. 

The Problem with Monolithic Builds 

Describing a build system as monolithic implies that the source code base is 
treated as a single entity. It can’t be broken into smaller independent pieces, and 
different parts of the software can’t be managed separately. From a build system 
perspective, you can extend this definition with more detail: 

1. All code is stored in the same source tree, with each developer obtaining a 
complete copy of the source tree before starting to work. It isn’t possible 
to compile the software if some of the files are excluded. 

2. The whole product is built using a single build system. The different parts 
of that build system can be responsible for different parts of the source 
tree, but they can’t operate in isolation. 

3. Any source file can make use of definitions, functions, or classes from any 
other part of the source tree. A change to one source file could impact any 
part of the build system. 

This monolithic approach is certainly common, and most software products 
start their life in this way. There’s a lot of appeal to having all source code 
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managed in a single source tree, with a unified build system to create the final 
release package. It’s easy to understand, implement, and manage a monolithic 
piece of software. 

The monolithic approach fails when the software becomes too large for 
developers to comprehend or too large for the build system to complete in a rea-
sonable amount of time. Now consider some of the reasons monolithic software 
doesn’t scale. 

• Boundaries are poorly defined. When a software engineer is tasked with 
adding a new feature, it’s often challenging to understand where that 
change should be made. Instead of having a clearly defined area for each 
subsystem, the new code could be added anywhere. This possibly dupli-
cates effort and leads to a disorganized code base. In addition, the devel-
oper might not understand the political boundaries within the code and 
might accidentally change source files owned by a different team. 

• Changes have an unpredictable impact. A developer might change a source 
file that could impact the compilation or functionality of other parts of 
the system. All changes should therefore be validated by compiling and 
testing the complete software product. It’s a mistake to focus on only the 
area of code that was modified. Although senior developers understand 
the impact of a code change, a junior developer doesn’t have that luxury 
and is more likely to break some other part of the system. 

• Build time increases. With a monolithic code base, all developers must 
compile the entire source tree for themselves. Even if they’re planning to 
modify only a small number of source files, they’re still required to com-
pile everything before they execute the program. Every developer must 
therefore invoke the entire build system, resulting in excessively long build 
times.

• Build machine memory increases. When a single build system compiles 
many source files, you end up with a large dependency graph. If the number 
of files in the source tree doubled over time, the dependency graph would 
be twice as large and thus would require additional memory on the build 
machine. If the interdependencies between files are complex, doubling the 
number of source files could easily quadruple the number of dependencies, 
requiring even more memory. 

• Disk usage increases. Given that all developers are required to compile the 
entire monolithic source tree, they’ll also have a monolithic object tree. 
Depending on the programming language, a 1GiB source code tree could 
easily result in a 10GiB object tree. This might not seem like a lot of disk, 
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but the space is quickly consumed when hundreds of developers share the 
same file server. 

• Network utilization increases. Many organizations prefer to use central-
ized file servers to ease their administrative overhead and to make file 
sharing between different users possible. High-performance file servers are 
generally fast, except when they’re placed under too much load. If a large 
number of users compile the monolithic code base, any shared resources 
on the network will suffer. This results in build durations that are much 
slower than at off-peak times or when compared to using locally attached 
disk.

• Security is more difficult. For larger companies, it’s desirable to outsource 
some of the product development to third-party vendors. For security pur-
poses, you might not want to expose your entire code base to the vendor, 
but with a monolithic code base, you have no choice. It’s simply not pos-
sible to compile a portion of the source code without having the whole 
source tree available. 

You might wonder whether you can resolve some of these issues by simply 
purchasing faster build machines or file servers. Build servers are constantly 
increasing in performance, as is disk space, so you might find that upgrading 
your build machine every year keeps the end-to-end build time the same. 

This approach might work for some software products, but a successful prod-
uct could double in size each year, far surpassing any improvement in hardware. 
This is especially true if third-party or out-sourced code is added to the existing 
code base, giving an overnight increase in build time or disk usage. Adding a 
new build variant could also double the disk usage, such as when a UNIX-based 
product must also be compiled for Microsoft Windows, resulting in twice as 
much compilation time. 

In summary, if you’re not lucky enough to have a new build machine each 
year, or if your product simply grows too quickly, consider moving away from 
monolithic software. Even if build performance isn’t your main concern, your 
developers will appreciate having smaller chunks of source code to deal with. 

Component-Based Software 

The practice of breaking monolithic software into smaller components is a com-
mon way to improve scalability. In the same way that object-oriented program-
ming divides software into classes and packages, you can break your software 
into high-level components. Developer productivity increases by allowing them 
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to focus on the internals of their own components, without being forced to deal 
with the complexity in other components. 

The source code for each component is independent from others, except 
where specific functions and symbols are exported. Each component defines 
a public API that other components can access, even though the majority of 
source code is kept private. From the perspective of the build process, each com-
ponent has its own isolated build system. 

To reduce compilation time, developers use prebuilt binaries for all compo-
nents they aren’t planning to modify. This concept should be familiar to Java 
and C# developers who frequently make use of third-party libraries. Although 
these are typically downloaded from the Internet, the mechanism is the same as 
if they were written locally by the developer’s own team. 

Figure 18.1 shows an example of an accounting program constructed by inte-
grating multiple components. 

GUICommandsReceivable

Payable

Assets

Database

Logging

Security

Persistence

Upstream Downstream

Figure 18.1 An accounting program constructed from multiple components. 

Each component in this diagram can be thought of as a self-contained piece 
of software, possibly containing hundreds or thousands of source files. They 
each have a separate build system and can share code only via their public APIs. 
In the case of the Database and  Logging components, the source code isn’t 
even available because you obtained these components in binary form (such as 
downloading a Java JAR file). 

To construct the final software product, this collection of components must 
be integrated together. The main program is in the GUI component, providing 
a graphical interface to the end user but delegating most of the work to the 
Commands component. In turn, the  Commands component relies on  Payable,
Receivable, Assets, and Security to do much of the work. The output from 
each component’s build system is linked to form an executable program. 
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To further explain how components are integrated, consider the relation-
ship between the Persistence component and the Payable, Receivable, and 
Assets components. The  Persistence component is upstream and exports a 
public interface to the downstream components. The build system for Persis-
tence must therefore generate output files that can be linked into the down-
stream components. 

For example, an output file could be in any of the following formats: 

• libpersistence.a: For a component written in C or C++, the output is 
often a static or dynamic library that implements the component’s func-
tionality. Other components can link against this library without having 
access to the original source code. 

• persistence.h: A library is usually associated with a header file, with 
each downstream component using #include to import the content. The 
function and type declarations contained within the header file provide 
enough compile-time information to use the library. 

• persistence.jar: For Java-based software, each component is encapsu-
lated inside a single JAR file. Downstream components are free to import 
any of the publicly visible classes. 

• persistence.dll: Similarly, for Windows-based software a dynamic 
(shared) library provides a component’s implementation, with down-
stream components importing that library. 

The key fact is that downstream components aren’t required to access the 
internal source code of an upstream component. All sharing is done via the 
public API, and components are joined by linking against libraries instead of 
compiling the upstream component’s source code. 

Another key observation is that Payable, Receivable, and Assets also 
need to produce libraries and header files of their own. The Commands com-
ponent links against each of these components, in addition to linking against 
the Security library. The process repeats until the  GUI component (the main 
program) is compiled. 

As you’ll see later in this chapter, coordinating changes to each component 
and integrating them into the final program is one of the many challenges in 
using a component-based build system. 
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Advantages of Using Components 

Now that you’ve seen an overview of component-based software, focus on some 
of the advantages. Many of these will be familiar because they were already 
provided as reasons for not using monolithic builds. 

• Developers find it easier to visualize the software: From a developer’s 
perspective, visualizing the component structure makes it easier to make 
changes. You should clearly document both the purpose of each compo-
nent and the API between components. This makes it simpler to identify 
where a bug can be found or where a new feature should be added. 

• Developers can ignore the internal implementation of other components: 
Figure 18.2 illustrates how a developer obtains the  Receivable compo-
nent’s source code but uses prebuilt versions of Payable, Assets, and 
Persistence. The developer needs to understand the internal code within 
the Receivable component, as well as the  Persistence component’s 
public API. However, the rest of the code is considered a black box, with 
no requirement on the developer to understand how it works. 

Receivable

(source code available)

Public API
Payable

Assets

Persistence

Figure 18.2 The relationship between components, with internal detail hidden. 

• Internal code changes can’t break other build systems: Any changes made 
to a component’s internal source code are limited in scope to that compo-
nent. No matter which files are modified, there’s no chance of disrupting 
the compilation of a second component. The build systems are distinct and 
simply can’t share files. Note however, that modifying a component’s pub-
lic API could still cause other components to break, but these API-related 
files should be clearly identified as being public. 
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As you’ll see later, changing an internal source file can potentially change 
a component’s functionality, so other components might experience a dif-
ference in behavior. This however isn’t a build-time concern, but is instead 
a difference in the way that components behave at runtime. 

• Each component has its own build system: Having a self-contained build 
system for each component addresses many of the scalability issues with 
monolithic code. The build system is less complex; it requires a smaller 
dependency graph, uses less memory, requires less disk space, and places 
less strain on the file servers and network. In addition, the obvious advan-
tage is that end-to-end build times are lower, particularly when prebuilt 
components are used. 

• Better source code security: With a component-based system, it’s trivial to 
share components with third-party vendors, without the need to share the 
entire code base. By providing prebuilt versions of all other components, 
the untrusted third-party can still produce a software release package. 

This chapter has mentioned the use of prebuilt components a number of 
times, so let’s now investigate the idea further. A key benefit of component-
based builds is that developers need to compile only a component that they’re 
actually modifying. To make this work, someone must have already compiled 
the other components and made them available for general use. 

Figure 18.3 introduces the idea of a  component cache. When developers make 
changes to a component, they compile, test, and release a new binary version for 
other developers to use. Later in this chapter, you’ll look in more detail at how 
component caches are managed, particularly as components change over time. 

In the example, a developer who modifies the Receivable component would 
need to compile and link against the Persistence libraries and header files. 
These would be imported directly from the cache instead of being generating 
from source code. 
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Prebuilt (binary) component cache

Receivable

Payable

Assets

Persistence

Figure 18.3 Using prebuilt (binary) components from the component cache. 

To be fair, component-based builds aren’t the solution to every problem, 
and they certainly come with overhead. As you’ll see later, extra layers of devel-
opment process must be followed when adding components to the cache. No 
longer can code be added to an arbitrary part of the source code, with the change 
immediately appearing in the final executable program. Each component must 
instead be tested and approved before being released to the component cache. 
Only then is the code change available to other developers. 

Before looking in more detail at these process changes, let’s dig deeper into 
the exact structure of a component. 

What Exactly Is a Component? 

The concept of component-based software is entrenched in the industry, al-
though the exact definition depends on where it’s used. The general theme is 
that components aren’t considered programs in their own right, but must in-
stead be integrated with other components. A number of third-party vendors 
design and develop components with the goal of reuse in mind. 

Unlike executable programs, components don’t always have a graphical user 
interface or even a command-line interface. The goal is to integrate them into a 
larger program, so the interface is often targeted at software developers. For a 
C/C++ component, the interface could be a static or shared library, with a header 
file describing the API functions. For a Java program, the interface could be a 
JAR file containing a number of publicly visible classes. 
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Some components are an interesting mix of graphical interface and API sup-
port. A web-based plug-in provides an API for the downstream components to 
invoke, although the main goal of the plug-in is to render graphic images. Of 
course, the GUI component in the accounting example has only a graphical inter-
face, with the downstream consumer being the end users themselves. 

In a build system, a component is considered to be a collection of source files 
that can be developed and compiled in isolation. This implies that the source 
code for other components doesn’t need to be available on the build machine, 
and the developer clearly isn’t required to compile that code. On the other hand, 
it’s a requirement to have access to the public API provided by each of the 
upstream components. 

Figure 18.4 shows a high-level view of a component. Although the content 
varies from one component to the next, each of the main sections must be 
considered.

Private
source files

Private
generated
files

Public
source
files

Public
generated
files

Component
build
system

Component
tests

Figure 18.4 The constituent parts of a component. 

Private Source Files 
The private source files provide most of the component’s functionality, hidden 
from the view of other components. To build the code, a developer must obtain 
a complete copy of the private source files. This essentially means that each 
component is monolithic in its own right. 

It’s possible to have any number of private source files within the component, 
written in any compiled language such as C, C++, Java, or C#. To make it worth 
structuring your code as a component, you’d need to start with a nontrivial 
number of source files. In contrast, it’s also not practical to have too many 
source files because it negates the benefit of working with smaller components. 

It’s imperative that a component’s private source files be visible only to other 
files within this same component. This again implies that other components 
must be able to compile independently. In addition, this component’s build 
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system can access each of the private source files, but the build system for other 
components must not be aware of their existence. 

Public Source Files 
A component’s public source files provide the external interface instead of pro-
viding the implementation. To minimize the interdependency between compo-
nents, the public source files should contain only information that truly needs 
to be exported. For example, a C/C++ component should provide a header file 
containing a list of functions and types that other components are welcome to 
use. This file should not mention internal functions and data structures. 

A component can contain any number of public source files, although typi-
cally a much smaller number than for private files. After all, a major goal of 
using components is to hide the implementation detail. It’s important that as 
many source files as possible are hidden, instead of exposed in the public API. 

Adistinction is also made between public source files and public generated 
files (the next category discussed). As the name suggests, public source files 
aren’t generated by the build system. They’re instead maintained directly by the 
component developer and presented as part of the component’s API. A typical 
example is a C/C++ header file, but not something like a Java JAR file, which 
the build system must generate. 

In extreme cases, a component might consist solely of public source files. It 
won’t contain any private source files or require a build system. In this scenario, 
the component simply includes a number of header files, data files, or configura-
tion files to be shared across all other components. For example, a C/C++–based 
program might have a common set of type and structure definitions to be used 
by all parts of the program. A change to one of these definitions could impact 
the compilation of any other component, so all definitions must be placed in the 
public API. 

Public Generated Files 
The public generated files are created by the component’s build system and 
exported as part of the public API. When developers think about importing a 
component, they normally refer to one of these generated files. 

Public generated files come in a number of different forms, with each having 
requirements on how it’s imported into the downstream components. Consider 
some common examples: 

• Static libraries: Static libraries are a collection of object files merged into 
a single archive. A library exported by an upstream component can be 
linked into an executable program as part of a downstream component’s 
build system. Static libraries are usually associated with a public header 
file that describes the functions and data types necessary to use the library. 
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• Shared libraries: Shared libraries are similar to static libraries, in that down-
stream components can link against them. However, instead of integrating 
the library into the executable program, a shared library’s file (with .so or 
.dll suffix) must be packaged along with the final software product and then 
installed on the target machine. 

• Java JAR files: In the Java world, JAR files ( .jar suffix) are the universal 
approach to releasing components. An exported JAR file can be imported 
by a downstream component only if it’s included in the Java compiler’s 
class path. The same is true at runtime, when the JAR file is included in 
the virtual machine’s class path. Unlike C/C++, there’s no requirement to 
describe the component’s interface in a separate header file. 

• Executable programs: There’s no reason a component can’t generate an 
executable program. The assumption is that the final software release 
package contains a number of other programs and libraries, all packaged 
together into a single release. In addition, the component can export a 
compilation tool (in the form of an executable program) used to build 
downstream components. 

• Autogenerated header files: Although C/C++ header files often are thought 
of as part of the source code, it’s possible to autogenerate these files and 
make them part of the public API. For example, a component’s build sys-
tem might use a special-purpose interface-definition language to describe 
the internal functions. As a courtesy to downstream components, the 
interface definition is translated into C header files for inclusion with the 
#include directive. 

• Autogenerated source files: Continuing the previous example, a component 
can autogenerate a number of source files, making them part of the public 
API. A downstream component would use those files as input into its own 
build process. For example, a remote procedure call (RPC) component might 
generate Java source files for accessing a remote RPC server. By compiling 
these source files for itself, a downstream component has all the functional-
ity necessary to communicate with the server. 

• Frameworks or runtime systems: It’s increasingly common in modern soft-
ware products to design and implement software that executes within a 
framework or runtime system. For example, most web-based applications 
operate within a web application server, avoiding the need to implement 
the features that all web applications have in common. If you include a 
framework as one of your components, the application developer can fo-
cus on the program’s specific logic and presentation concerns, not on the 
common infrastructure. 
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In conjunction with public source files, each type of public generated file will 
be published to the component cache. From there, they’ll be made available to 
other components and integrated into the program’s final release package. 

Private Generated Files 
A component’s private generated files are simply the build system artifacts that 
aren’t interesting to the end user. These include C/C++ object files ( .o or  .obj),
Java class files ( .class), or any autogenerated source files intended for internal 
use only. A developer who modifies a component needs to create these private 
files simply as a temporary step in creating the final build output. 

A component’s private generated files are never accessed by other compo-
nents and aren’t considered part of the public API. These files aren’t published 
in the component cache. 

The Component Build System 
The build system is a vital part of each component and is responsible for creat-
ing generated files. Some of these files (such as .o files) are for internal use only, 
whereas others are made part of the component’s public API. The only case in 
which a build system isn’t required arises when there aren’t any private source 
files. In this case, the component contains only public source files. 

A component’s build system is like any other build system, except that it 
can’t access the private source and generated files from any other component. 
However, it can access the public source and generate files from any upstream 
components, most likely via the component cache. 

Component-Level Tests 
All pieces of software should be tested, no matter how large or small. The most 
common form of testing involves executing the program to see whether it be-
haves correctly. Testing GUI-based software involves triggering the widgets in 
a predetermined sequence to check that the correct response is provided. The 
same is true for command-line software, where different input values trigger 
different responses. 

To more accurately locate test failures, the practice of unit testing (discussed 
in Chapter 12, “Building with Metadata”) encourages the validation of small 
units of software, in isolation from others. Instead of trying to locate a test 
failure by executing the complete software product, you should explicitly trig-
ger internal APIs to make sure they behave correctly. It’s usually much easier to 
locate the source of a test failure when using a fine-grained approach. 

Each component should have test cases to validate the component’s function-
ality. The tests should be fully automated, making it easy to repeat the validation 
when changes are made. Only fully tested components should be added to the 
component cache, so that downstream components don’t import buggy code. 
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A full discussion of unit testing is outside the scope of this book, but com-
ponent developers should take the practice seriously. One of the main benefits 
of component-based software is the capability to improve quality, but that hap-
pens only if components are fully tested. Of course, it’s still important to test the 
final product as a complete system. 

Integrating Components into a Single Product 

Now that you’ve explored the internal structure of components, as well as the 
concept of a public API, it’s time to focus on component integration. If a change 
is made to one component, you must ensure that all downstream components 
still compile. A careless change in one of the public APIs could easily break other 
components.

As an example, imagine that the Persistence component exports the  save_
database function, which is imported and invoked by the  Payable component. 
The Persistence component exports a static library and an associated header 
file, named persistence.h.

 1  /* persistence.h */
 2
 3  void save_database(char *name);
 4  void load_database(char *name); 

Within the Payable component, the  payable.c file invokes the  save_
database function with a single argument. 

 1  #include "persistence.h"
 2
 ...
56  void save_all()
57  {
58    save_database(my_db_name);
59  } 

If a change is made to the Persistence component so that  save_
database now requires two parameters, the  persistence.h header file is 
modified accordingly. Because of this change to the Persistence public API, 
the private source code in payable.c must also be fixed and the  Payable
component must be recompiled. 

This problem is quite typical in component-based systems, but with a depend-
ency graph in hand, it’s not too hard to decide which other components must be 
recompiled. Now let’s examine some common scenarios. 
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Building All Components in a Single Build 
The simplest approach to solving this problem is to always recompile the com-
plete set of components from source code. This clearly takes a long time and 
defeats the goal of using prebuilt components. On the bright side, the build 
process is always correct, no matter which source files were modified. In many 
cases, there’s a good chance that each downstream component’s build system 
will complete within a few seconds, without the need to do any work. 

Figure 18.5 shows the sequence in which components should be rebuilt. The 
leftmost components are available only in binary form and can’t be recompiled 
from source. 
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31

4

2

Figure 18.5 Building all components in a single build. 

This ordering follows the basic upstream/downstream relationship between 
components. The public files from an upstream component must be fully up-to-
date before a downstream component can import them. Failure to follow the 
correct order simply leads to an invalid build. 

You can definitely do better than this naive approach, especially because the 
developers should know which component they’ve changed and whether they 
modified the private or public source files. Now consider some more efficient 
solutions.

Building the Final Application Using Prebuilt Components 
If you make a code change to the rightmost component (in this example, the GUI
component), there’s no way to impact the compilation of any other parts of the 
software. As Figure 18.6 illustrates, no other components use the public API for 
the GUI component, so there’s nothing left to compile. 
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1

Figure 18.6 Using prebuilt components for everything except the final application. 

Even though all compilation is complete, you should still test the full system’s 
behavior. There’s a chance that your recent code change caused an upstream 
component to be invoked in a new way. For example, the GUI component 
might use a new function from the upstream API or use an existing function 
with different input parameters. Either of these cases could uncover a bug in an 
upstream component. 

If you locate a new bug, be sure to add a test case for the upstream compo-
nent. Future changes to that component shouldn’t reintroduce the same bug. 

Modifying a Component’s Private Source Files 
If you modify a component’s private source files, you cannot impact the compi-
lation of downstream components, but you might change their functionality. As 
discussed before, a downstream component can import only the component’s 
public API, so changes to the private source files won’t have an impact. Figure
18.7 illustrates that only the component you’ve modified needs to be recom-
piled.

On the other hand, changing the private source files most likely change your 
component’s behavior. Therefore, you must relink your component’s public 
generate files into the downstream components or repackage them into the 
final release package. For example, if your component produces a static library, 
you need to relink downstream components for the library to be included. For 
shared libraries or JAR files, simply including the new file in the release package 
should be enough. 
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Figure 18.7 Modifying a component’s private source files. 

Again, don’t forget to unit-test your component changes and perform a full 
system test before declaring the product complete. Software that uses dynamic 
linking can easily break if a public function is removed from a shared library. 
It might have existed when the program was first compiled, but a change to the 
shared library can make it disappear. This mismatch is detected only at runtime. 

Modifying a Component’s API 
As a final case, consider what happens when a component’s public API is 
changed. As shown in Figure 18.8, modifying a component forces you to recom-
pile the downstream components. There’s always a chance they’ll make use of 
the API code you just changed and, therefore, could fail to recompile. 

In this example, it’s clear that the Commands component (number 2) directly 
depends on the Receivable component (number 1). However, there may not 
be a compile-time dependency between the final GUI component (number 3) and 
the public API of Receivable (number 1). In that case, it’s sufficient to relink 
instead of recompile the GUI component. 

321

Figure 18.8 Modifying a component’s public API. 
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In this last scenario, you save compilation time by using the added knowledge 
of which component changed and whether that change impacted public or pri-
vate files. Of course, unit testing and system testing are always important. 

People and Process Management 

To benefit from component-based software, you must maintain component 
boundaries. Software developers must understand and follow the component 
model; otherwise, the software will quickly degrade into a monolithic collection 
of files. Although a good build system can help, most of the responsibility falls 
on developers. 

A development team must have a strong set of processes to manage code 
change. This could involve a bug fix on a single line of code or perhaps a major 
change to a public API. In either case, rules must govern where and when the 
change can be made, how it must be tested, and when the code should be made 
available to other developers. 

This extra management doesn’t come for free, making component-based soft-
ware challenging to implement in practice. If developers assume that each new 
version of an upstream component will fit seamlessly into their existing product, 
they’ll be unpleasantly surprised when the integration effort starts. Integrating 
new component versions is a major challenge that isn’t present when using mon-
olithic software. That is, you trade off the benefits of separating the components 
with the cost of integrating them whenever they change. 

To make life easier, plenty of rules cover the management of APIs. For exam-
ple, ensuring that API functions are always backward compatible with previ-
ous versions results in fewer integration problems. Any new features added to 
the upstream component must involve adding a new API function that doesn’t 
impact the existing functions. Although this discussion is important, it’s out of 
the scope of this book. 

This section discusses some of the process-centric requirements for working 
with component-based software and addresses the following topics: 

• Development team structure: Dividing large software groups into smaller 
component-centric teams 

• Component line-up management: Determining which version of each com-
ponent should be integrated into the final software release 

• Managing the component cache: Managing the cache of prebuilt compo-
nents and expiring old versions that are no longer required 
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•  Coordinating new software features: Ensuring that new software features 
are managed effectively, especially when they involve multiple components 

Note that these topics aren’t directly related to build systems, but they do give 
an idea of how an organization must rethink its development strategy. 

Development Team Structure 

In any large software organization, it’s common to divide the group into smaller 
subteams, with each team owning a portion of the code. Hundreds of developers 
may be working on the product, but each team has a single manager leading a 
small number of developers. Experience shows that the management of subteams 
is far more effective than placing all developers into a single team. 

Although small teams are easier to manage, there’s nothing to stop a devel-
oper from modifying another team’s code, especially in a monolithic code base 
where internal APIs aren’t defined. The boundaries between areas of respon-
sibility can be unclear, making it difficult to change one team’s code without 
impacting others. Even if the dividing line is initially well defined, a developer 
could mistakenly add new interdependencies. Some parts of the code might even 
be considered “common,” giving everybody a free license to make changes. 

This problem justifies your choice of component-based software. Each team 
of developers should be assigned one or more components, making it very clear 
where changes can be made and how those changes are allowed to impact other 
teams. Each team member obtains the source code for their component and 
then compiles, develops and tests that code. Luckily, the team members aren’t 
required to know much about other components. 

Figure 18.9 illustrates this division of responsibility for the example software 
product. Note that some teams own several different components, even though 
each component is managed only by a single team. 

Warren's
teamBob's team

Mike's
team

Joe's team

Figure 18.9 Component ownership, showing which team can modify the component. 
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As a general rule, software usually ends up being structured in the same way 
your teams are structured [93]. If you already have a component-based system, 
you might already have this type of organization. In contrast, if you’re just start-
ing to divide a monolithic code base into components, a good starting point is 
to think carefully about your subteams. 

Now let’s summarize the benefits of having a single team responsible for each 
component:

• Only members of a component’s subteam need to access the private files. 
This limits the number of developers who are required to compile the com-
ponent. All other developers (in other subteams) use prebuilt and pretested 
versions of the component instead of compiling it for themselves. 

• The team can focus its expertise on the internal implementation of its own 
component instead of worrying about other parts of the system. The team 
members still need to understand the public API of any upstream compo-
nents, but these should be well documented and easy to understand. This 
type of focus allows them to be more efficient. 

• Changes to a component are more easily managed, given that only one 
team of developers is permitted to make changes. The team’s manager 
should be aware of all changes (at least at a high level), making it possible 
to control all new features and bug fixes. 

• The team can be more agile in the way it works. All developers can meet in 
the same room and rapidly come to consensus on decisions. New features 
and bug fixes are small, making it possible to implement and test the code 
changes in a limited time frame. 

• The team can specialize in testing its component in isolation from the rest 
of the system. This specialization improves the overall quality of the soft-
ware.

On the downside, structuring teams around components creates territorial 
boundaries. No longer can developers make an arbitrary change in some other 
part of the system. Instead, they’re required to negotiate changes with other 
teams, possibly involving the team manager. Even if a change is agreed upon, it 
may be a few weeks before the new code is published to the prebuilt component 
cache.

In reality, though, the clear division between teams is often violated for prac-
tical reasons. One subteam may allow changes made by another team, as long as 
there’s enough collaboration. Developers from different subteams can share pri-
vate source trees instead of waiting for an official component release. Luckily, 
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these informal team structures still provide the benefits of using components, 
without too much management overhead. 

Component Line-Up Management 

In a monolithic code base, each developer obtains a copy of the source code 
from a shared version-control system. A developer’s code changes are then sub-
mitted back to the same shared repository. In this respect, a monolithic code 
base can be viewed as a single stream of code changes, with all changes being 
visible to all developers. 

To release a monolithic software product to the end user, the full build sys-
tem is invoked. The output is a software release package, ready to be installed 
on a target machine. The release package has a version number (such as 2.0.1)
to distinguish different releases of the software. 

When using component-based software, the same principles are followed, 
although at a different level of granularity. Each component is stored in its own 
source code repository, and changes are shared with other developers in the 
component team (but not with other teams). The component’s build system cre-
ates the public generated files, which are packaged together and placed in the 
prebuilt component cache. A unique version number is required to distinguish 
one component release from the next. 

Although they’re similar, the most notable difference between monolithic and 
component-based software is how the components are integrated. Figure 18.10
illustrates that each component has its own release stream, with each release 
having a unique version number. In the final step, one release from each compo-
nent stream is integrated into the full software release package. 

...

Assets component v1021

Receivable component v683

Commands component v852 Final Software
Release Package

v2.0.1

Figure 18.10 Each component has a stream of releases, with a version of each being 
integrated into the final product. Each component has a unique version number, as 
does the final software release package. 
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For the build system to know which version of each component should be 
integrated, you need to understand the concept of a component line-up. The fol-
lowing listing shows an example line-up for the accounting program. 

Database              5.1.12
Persistence           152
Logging               1.2.14
Payable               762
Receivable            683
Assets                1021
Security              53
Commands              852
GUI                   362 

The exact version numbers are fairly arbitrary, with each component free to 
choose its own numbering scheme. For consistency, the components here use a 
single number that is incremented each time they’re released to the component 
cache. In the case of Database and  Logging, these components were obtained 
from a third-party vendor and simply follow the vendor’s three-number version 
scheme.

Although Figure 18.10 shows integration as a final linking or packaging step, 
that’s not how it usually works in practice. Instead when each downstream 
component is compiled or linked, it requires that upstream components already 
be compiled and published to the component cache. For example, to compile 
version 852 of the Commands component, the compiler or linker makes use of 
Payable version 762,  Receivable version 683,  Assets version 1021, and 
Security version 53. 

As you’ll see later, the exact line-up of version numbers is important to soft-
ware quality. You can’t simply use the latest version of a component from the 
cache, and you can’t arbitrarily select different versions of a component. All 
changes must be carefully managed and validated before the component line-up 
is altered. 

To allow reproducibility of older releases, the line-up file must be stored in 
the version-control system. As the source code changes over time, so must the 
component line-up. For example, if you add new features to the GUI component 
and fix some minor bugs in the Payable component, you would increase those 
component version numbers but leave everything else the same. 

Database          5.1.12
Persistence       152
Logging           1.2.14
Payable           763
Receivable        683
Assets            1021
Security          53
Commands          852
GUI               363 
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To reproduce older versions of the product, a developer obtains an earlier 
version of the source files, along with an earlier version of the line-up file. 

One additional observation is that the final release package has a customer-
facing version number that is separate from any of the component versions. 
Typically, a customer expects a version number to reflect the new content of the 
release. If the major version number has increased, the customer expects new 
features in the software. In contrast, a component’s version number is internal 
to the software product, so simply increasing the number for each release is usu-
ally adequate. 

In summary, a component-based build system requires a lot of extra work to 
manage each component’s release stream. In monolithic software, submitting 
a change to the code base immediately causes the change to be integrated. On 
the other hand, to gain the stability and quality of a component-based product, 
an extra layer of management is required to control the line-up of components. 

Managing the Component Cache 

You’ve already explored the concept of the component cache, used to store 
prebuilt versions of each component. You’ve also learned that multiple copies 
of a component can be placed in the cache, each with a unique version number. 
Finally, you learned that a line-up file specifies which version of each component 
should be integrated into the final release package. 

At this point, two outstanding cache management questions remain to be 
answered. How often should new versions of the component be placed into the 
cache, and when should stale versions be purged? The solution to these ques-
tions depends a lot on your development process. 

Adding New Component Versions 
As a general rule, you should store a component in the cache only when the 
quality is “good enough.” This is a subjective measure that depends on what the 
downstream components expect. With this in mind, consider some guidelines on 
when to publish components into the cache. 

• For a totally new component that’s still under development, you could 
provide partial releases of the unfinished code. These won’t ever appear in 
the component line-up and are solely used by downstream components for 
testing purposes. New versions of this component might be released every 
few months or whenever new functionality is ready to be tested. 
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• When the software is nearing its shipment date, the focus is on fixing bugs 
instead of adding new features. Bug fixes are made on a daily basis, with 
the component tested and published to the cache as often as possible. The 
component line-up is updated each day to incorporate new versions. 

• When a component has reached a high-level of quality, the creation of new 
versions slows or even ceases. Unless new features or bug fixes are being 
added, a component can remain constant for months or years. In this case, 
no new versions are published to the cache. 

• Some software products are built to support multiple variants, so each 
component must also support those variants. For example, a product that 
executes on an Intel platform as well as a MIPS platform must have two 
variants for each component version in the cache. To keep things simple, 
both variants should be published at the same time. 

• In a final scenario, a component might have multiple streams of develop-
ment, each published to the cache at different rates. For example, a com-
ponent that is integrated into version 2.0 of the software might not change 
often, but a more recent version of the component, integrated in release 
3.0, might receive frequent bug fixes. The source code for each component 
would therefore be managed on a different code branch within the version-
control system. 

As you can see, knowing when to publish a component to the cache is a man-
agement problem. Components should be published only when they’re stable 
enough, but downstream components must have access to the code whenever 
possible. Now consider how often these component releases can be removed 
from the cache. 

Expiring Component Versions 
In an ideal world, the component cache would have unlimited size. Developers 
would always have access to each version of a component, no matter when it 
was originally published or how infrequently it’s used. In reality, though, the 
component cache uses a lot of disk space, which must be reclaimed when new 
versions are published. 

Note that even if a component version is removed from the cache, it’s still 
possible to rebuild it from source code. Version-control systems never purge old 
data, so given the component name and desired version number, it’s always pos-
sible to re-create. The whole purpose of using the cache is to eliminate unneces-
sary build time, so it pays to remove only versions that you won’t likely need 
again.



ptg

People and Process Management 509

Without having the foresight of which component versions will be used in the 
future, a heuristic solution is the best approach. You can make decisions either 
based purely on the age of the component version (when it was published in the 
cache) or based on when the component version was last accessed. 

For the first heuristic, you could choose to purge any versions that have been 
in the cache longer than three months (or whatever makes sense for the prod-
uct). After this time period, all users of a component likely will have moved 
on to newer versions. For example, you could remove versions 1–856 of the 
Assets component because they were published more than three months ago. 
It’s assumed that all users of the component are now on version 857 or higher. 

Although this rule seems fairly simple, there are certainly a few corner cases. 
For example, if no new versions were published in the last three months (the 
component is considered stable), you’ll need to keep the most recent version. 
This version is still referenced in the current line-up file, so it must be kept in 
the cache. 

A second heuristic approach involves tracking which component versions are 
actively being used. When the build system is invoked and a prebuilt component 
is retrieved from the cache, a counter should be incremented. After a period of 
time, the cache mechanism has a good idea of which versions of each component 
are still being used and, therefore, which shouldn’t be purged. 

The advantage of this second approach is that when new versions are cre-
ated in quick succession, such as once per day as bugs are being fixed, only the 
final version is kept. Other versions that were useful for only a single day will 
be purged quickly. 

Coordinating New Software Features 

When new features are added to a software product, the starting point is a high-
level natural language description of what the new feature should do and how it 
changes the behavior of the existing product. Later in the process, the software 
developers start to plan which lines of code will actually be modified. For large 
features, any number of developers could get involved, creating the need to co-
ordinate their work. 

With component-based software, there’s a good chance that more than one 
component needs to change. New functionality must be added within each com-
ponent, with the public API providing access to the new code. Figure 18.11
illustrates this concept. 
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Figure 18.11 The introduction of a new product feature requires code changes in 
many components. 

From a management perspective, the addition of this feature requires that 
many different development teams get involved. They each have expert knowl-
edge about their own component and know which lines of code should be modi-
fied. The challenging problem is to decide how each of the changes is to be 
shared with other component teams. In a simplistic world, the upstream team 
would complete its work and then publish it to the prebuilt component cache. 
Only then would the downstream teams start using the new APIs provided by 
the upstream component. 

Obviously, this serial approach isn’t very efficient because it lengthens the 
time required to implement features. In any realistic project, the different teams 
do their best to work in parallel, even if it involves extra management overhead 
to coordinate change. 

Phased Releases 
One technique for working in parallel is to complete the upstream work in phas-
es. After agreeing on the list of code changes required in the upstream compo-
nent, the work is delivered in a sequence of steps instead of waiting until every-
thing is complete and fully tested. Each version of the component is published in 
the cache, even though it’s not fully functional. 

The first release should contain the new public API changes, such as function 
prototypes or constant definitions. Even if the functions are simply stubbed out, 
the downstream component can compile and link against the API. This helps the 
downstream team move ahead with writing the code, preparing it for when the 
upstream component is finally complete. 

Naturally, challenges arise with this approach. The team managers must 
agree on the public API changes, as well as the order in which features are to be 
implemented. It’s frustrating to wait for a feature, only to learn that upstream 
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teams have been working on some other task. In addition, the teams must not 
make changes to the public API that weren’t agreed upon. The downstream 
team expects a certain API and won’t be happy having to rewrite parts of their 
code.

Validating New Releases 
When a new component version is added to the component cache, it might not 
be ready to integrate into the final release package. Even though it was fully 
unit-tested in isolation from other components, the new version might not be 
compatible with its downstream neighbors. Until this problem is fixed, the line-
up file shouldn’t be updated to include the new version. 

To solve this problem, a new component should be released to the compo-
nent cache but used only for testing purposes. Downstream components should 
then be recompiled and tested against the new version, just to make sure they 
still function correctly. If not, a new version of the downstream component 
could be required. Figure 18.12 shows the creation of a new version of the  Per-
sistence component. 

Persistence v152

Payable v762

Receivable v683

Receivable v684

Assets v1022

Assets v1021

Persistence v153

Figure 18.12 When a new component version is released, downstream components 
must be recompiled and tested again. New versions of those downstream components 
might need to be created. 

In this example, the new version of Persistence (version 153) is added to 
the cache. Each of the downstream components must then be recompiled and 
tested against this new version. In the case of the Payable component, no new 
version is required because version 762 continues to work perfectly. However, 
both the Receivable and  Assets components require modification to work 
with the updated Persistence API. New versions must therefore be created 
and added to the component cache. 

After all downstream components have been tested, the component line-up 
file can be updated. In this scenario, all three new components are added to the 
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line-up file at the same time. If this change wasn’t made in unison, an invalid 
release package would be created. 

Obtaining All Source Code 
As a final approach, you can avoid the management overhead of coordinating 
releases by instead reverting to monolithic development. This simply requires 
all downstream developers to obtain their own copy of the upstream compo-
nent’s source code. Instead of waiting for the component to be released to the 
cache (which may take weeks), they have immediate access to all the latest code 
changes.

Naturally, developers must now face the same performance and quality prob-
lems they see with a monolithic build. They must also resist creating dependen-
cies on the upstream component’s private files. In reality, these risks are minimal 
compared to the added efficiency of working in parallel. 

Let’s now finish the discussion of component-based software by looking at a 
build tool that supports this approach. 

Apache Ivy 

The concept of component-based software is rapidly becoming mainstream. 
This is certainly true in the Java world, where it’s common to reuse third-party 
components that were downloaded from the Internet. These components pro-
vide a range of functionality, including database access, GUI management, and 
the implementation of network protocols. 

The Apache Ivy tool [85] provides a mechanism for handling components in 
the form of Java JAR files. Components can be downloaded from Internet-based 
repositories or can be managed within private (company-wide) caches. In either 
case, the build system knows which version of each component is required and 
ensures that the correct version is downloaded. Although Ivy can be used as a 
standalone build tool, it’s often used in conjunction with the more flexible Ant 
tool.

Ivy’s build description captures the relationship between components and is 
essentially a text-based version of a component dependency graph. In addition, 
the version numbers listed in the line-up file must be provided. Ivy’s main pur-
pose is to download the correct version of each component and then include the 
downloaded .jar files into the Java class path. The Java compiler uses this class 
path when building downstream components. 

The following Ant script shows the compilation of the Persistence com-
ponent. Recall that Persistence depends on the  Logger and  Database com-
ponents, which are both third-party products downloaded from the Internet. In 
this example, the Ivy build tool is invoked as an Ant task. 
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 1  <project name="Persistence" default="build"
 2           xmlns:ivy="antlib:org.apache.ivy.ant">
 3
 4    <import file="../template/build.xml"/>
 5
 6    <target name="build" depends="enable-ivy">
 7      <ivy:cachepath
 8         organisation="log4j"
 9         module="log4j"
10         revision="1.2.14"
11         pathid="logger.pathid"
12         inline="true" />
13      <ivy:cachepath
14         organisation="mysql"
15         module="mysql-connector-java"
16         revision="5.1.12"
17         pathid="database.pathid"
18         inline="true" />
19
20      <mkdir dir="${build.dir}"/>
21      <javac srcdir="${src.dir}" destdir="${build.dir}">
22        <classpath refid="logger.pathid"/>
23        <classpath refid="database.pathid"/>
24      </javac>
25    </target>
26
27  </project> 

The interesting portions of this code are on lines 7–12 and 13–18. Although 
these are written in Ant syntax, the details are passed to the underlying Ivy 
tool. The first use of ivy:cachepath states that the build system (for 
Persistence) depends on version 1.2.14 of the  log4j package, which is 
published by the log4j organization. The second instance states that version 
5.1.12 of the mysql-connector-java is also required. 

The rest of the code, lines 20–24, compiles the private source files for the 
Persistence component. The key observation is that compilation is done 
with the log4j and  mysql-connector-java JAR files in the class path. The 
Persistence source code can now import the public API of these upstream 
components.

The Ivy tool does a lot of work to download the third-party components. By 
default, Ivy searches a public repository of prebuilt components, such as http://
repo1.maven.org/maven2. This repository contains hundreds of freely available 
packages, each published by the component’s vendor. The hierarchy of folders 
on this web site allows Ivy to single out a specific version of each component. 

When a component is downloaded, Ivy also takes note of further required 
packages. It’s common for third-party components to have their own dependen-
cies on other packages, which they consider upstream components. Ivy ensures 
that the complete set of upstream components is downloaded and available to 

http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
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the local build system. The first time an Ivy-based build is invoked, it can take 
several minutes to download all the required JAR files. 

In addition to third-party packages, Ivy enables the creation of local compo-
nent caches. The locally written components (such as Persistence, Payable,
and Assets) would be published to this cache (with a version number) and 
made available to downstream components. 

Unfortunately, this brief description of Apache Ivy has barely covered the 
basic features. If you’re interested in developing component-based software, 
you’re encouraged to read more about this tool. The same is true for the Maven 
tool [84], discussed in Chapter 17, “Reducing Complexity for End Users,” 
which has similar features for managing components. 

Summary

Large software products don’t scale well when the software is managed as 
a monolithic set of source files. Instead, there are many benefits to breaking 
the software into smaller components and treating each as a separate prod-
uct. The benefits of this approach include faster compile times, less disk usage, 
more control over the quality of the code, and less stress on the build machine 
infrastructure.

Each component consists of private source and generated files, as well as 
public source and generated files. Only the component’s development team is 
aware of the private files; other developers are interested only in the compo-
nent’s public API. 

Each component must also have its own build system and collection of unit 
tests. The build system compiles the component’s private source files but can’t 
access the internals of any other component. The unit tests must validate the 
component in isolation from other components by exercising the public API. 

For a software team to develop component-based software, a number of 
process-centric issues must be considered. First, the developers should have a 
clear idea of which team owns each component. Next, the exact version of each 
component, to be integrated into the final release package, must be carefully 
coordinated. The cache of prebuilt components must also be managed with care, 
with versions being purged when no longer required. Finally, adding a new fea-
ture to the software requires careful interaction among the development teams. 

The Apache Ivy build tool enables Java developers to specify the dependen-
cies each component has on third-party or locally written packages. The appro-
priate version of each component is either downloaded from the Internet or 
obtained from a company-wide cache. When the component itself is compiled, 
the upstream JAR files are added to the compiler’s class path. 
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Faster Builds 

This final chapter considers how a build system can get its job done faster. It 
should be no surprise that a large program takes a long time to compile. Howev-
er, you have many ways to speed up the end-to-end build process and reduce the 
time spent on incremental rebuilds. Even if you break your software into mul-
tiple components, you want each component to compile as quickly as possible. 
Beyond simply suggesting that you buy a faster build machine (which is often a 
good idea), this chapter covers four main topics: 

• Measuring build system performance: The first step in deciding how to 
speed up the build process is to analyze the various steps the build tool 
takes. When you’ve located the bottleneck, the approach to improving 
performance is often quite obvious. 

• Eliminating unnecessary rebuilds: Invoking a compilation tool is time-
intensive, so you need to recompile files only when they have changed. 

• Parallelism: On a build machine with multiple CPUs, or in a cluster of 
build machines, you can invoke multiple compilation steps in parallel. 

• Reducing disk usage: Reading and writing disk files takes time. If you 
reduce your dependency on disk access, the build process can take signifi-
cantly less time. 

In each of these cases, keep in mind that large build systems have hundreds of 
thousands of source files, can generate gigabytes’ worth of output, and may 
even take a full day to complete. Even a minor improvement in performance can 
reduce the total build time by an hour or more. 

515
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Measuring Build System Performance 

The first step to improving a build system’s performance is to understand how 
its time is spent. Your build system might spend an excessive amount of time 
checking file dependencies, or perhaps it spends too much time compiling source 
code. No matter what the situation, you need to quantify the cost of each part 
of the build process. 

This discussion divides the build process into two main phases, analyzing 
each phase on its own. In the start-up phase, the build tool reads the build 
description files, creates a dependency graph, and determines which files have 
been modified. In the compilation phase, the build tool invokes each of the com-
pilation tools, with the goal of bringing the object files up-to-date. 

As you already know from previous chapters, the work done in each of these 
phases is quite distinct. The focus of the first phase is on the build tool itself, 
whereas the performance of the second phase is related to how efficiently each 
compilation tool does its job. 

Measuring Performance in the Start-Up Phase 

When a build tool is first invoked, it does a considerable amount of upfront 
analysis. This work involves parsing the build description files, constructing a 
dependency graph, and scanning the source files to see which have changed. 
Reading build description files is I/O-intensive, whereas creating a dependency 
graph requires a lot of memory. Checking to see whether files have been modi-
fied also requires an extensive amount of disk I/O. 

To developers, much of this work is considered overhead instead of productive 
work. Not until they see the compilation tools being invoked do they feel that 
the build is progressing. In practice, though, the more time is spent on upfront 
analysis, the more accurate the build tool is at invoking compilation tools. The 
build tool can actually save time by not rebuilding files it doesn’t need to. 

For the purpose of discussion, examine a hypothetical build system that most 
people would consider large: 

• The source tree has 10,000 C/C++ source files, all compiled as a single 
component.

• The source files are spread evenly across a build tree hierarchy of 500 
directories. Therefore, each directory has roughly 20 source files. 

• The system includes 1,000 C/C++ header files that can each be included by 
any of the source files. 

• Each source file includes an average of ten header files. 
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Instead of worrying too much about the actual time taken to perform each 
step in the build process, start by understanding how often each type of oper-
ation is performed—that is, how many files are read or written, how many 
dependency graphs are created, and how many time stamps are checked. The 
actual time depends on your build machine’s CPU, the type of disk you have 
installed, how much memory is available, and whether the machine is busy 
doing other work. 

With this software product in mind, let’s consider four types of build system. 
Each system has a significantly different way of parsing the build description, 
building the dependency graph, and checking for out-of-date files. The scenarios 
are:

• Recursive GNU Make with makedepend: A separate instance of GNU 
Make is used for each source code directory. The makedepend tool pro-
vides the dependency information. 

• Inclusive GNU Make: A single instance of GNU Make traverses the entire 
directory hierarchy. The GNU Make framework automatically computes 
dependencies.

• SCons with default settings: The SCons tool traverses the entire directory 
hierarchy. MD5 checksums are used to determine whether source files 
have been modified. 

• SCons with optimizations: Instead of using the default SCons settings, 
you’ll enable a couple basic optimizations. 

This comparison isn’t trying to prove which build tool is best. The intention 
is to understand where each tool spends most of its time and to learn about 
performance measurement. 

Example: Recursive GNU Make with makedepend
As discussed in Chapter 6, “Make,” a recursive Make system invokes a new 
instance of the GNU Make tool for each source code directory. Our hypotheti-
cal build system invokes 500 separate instances of the GNU Make tool, each 
reading a single makefile and constructing the associated dependency graph. 

If your build system also makes use of a separate framework file, with each 
makefile including that framework, this simply increases the number of files to 
be parsed. It’s common to see the following at the end of a makefile: 

include framework.mk 
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This example reads 1,000 files. Each of the 500 makefiles is parsed once, with 
each makefile including the single framework file. Additionally, if framework.
mk were to include other files, you could end up with 1,500, 2,000, 2,500, or 
more file read operations. 

Although framework files are usually considered an advantage, remember 
that each file requires separate disk access. File system caching makes future 
accesses faster, but there’s still additional work to be done. 

The next step in the build process is to find out which header files each source 
file includes. This scenario uses the makedepend tool instead of the automatic 
dependency system discussed in Chapter 6. Users explicitly invoke this tool 
before building their software, as well as whenever they happen to know the 
dependencies have changed. 

This is the syntax for makedepend:

makedepend -f .depend -- $(CFLAGS) -- $(SRCS) 

This tool acts like a C compiler, but instead of generating object files, it 
simply writes the dependency information to the .depend file. The makefile 
includes the .depend file to learn which header files each C or C++ source file 
uses. A typical .depend file might contain the following: 

dog.o: header1.h header2.h header3.h
cat.o: header2.h
rat.o: header1.h header2.h 

To create a .depend file for each directory in the source tree, you’ll piggyback 
onto the recursive Make system. Computing the implicit dependencies requires 
GNU Make to be invoked 500 times (once per directory), with each invocation 
parsing a separate makefile and creating a separate dependency graph. In addi-
tion, the makedepend command is invoked 500 times, each creating a separate 
.depend file. 

Because makedepend acts like a compiler, it scans each of the C/C++ source 
files to see which header files are included. Across the whole source tree there 
are 10,000 source files to read, each including an average of 10 header files. 
Each of these header files is also scanned to discover nested dependencies. Luck-
ily, each instance of makedepend scans each header file only once, but because 
you have 500 different instances of makedepend, there’ll be a lot of duplicated 
effort.

Now that you’ve computed all the .depend files, it’s time to build the soft-
ware using a second invocation of the recursive Make system. This involves 500 
more invocations of GNU Make, each with its own dependency graph. Each 
directory contains approximately 20 source files and 20 corresponding object 
files. In addition, up to 200 header files could be included, assuming the worst 
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case in which each source file includes its own unique set of 10 header files. Each 
instance of GNU Make therefore checks up to 240 time stamps to determine 
which object files are out-of-date. 

This sounds like a lot of work, so let’s now summarize what the recursive 
Make solution actually does. This analysis assumes that the user issued the fol-
lowing commands: 

make depend
make all 

This gives the statistics shown in Table 19.1.

Table 19.1 Solution Statistics 

Operation Count Justification

Makefile reads/parses 
(including makefile fragments) 

1,500 500 for the make depend
command, 500 for the make
all command, and an ad-
ditional 500 for reading all the 
.depend files. (This can be 
much higher if framework files 
are used.) 

Dependency graphs created 1,000 500 for the make depend
command and 500 for the 
make all command. 

Processes created 1,500 1,000 GNU Make processes 
and 500 makedepend proc-
esses.

Source files read 10,000 500 directories, with an aver-
age of 20 files each scanned by 
makedepend.

Header files read Up to 
100,000

Assuming the worst case of 20 
files per directory, each includ-
ing 10 unique headers. 

Files written 500 A single .depend file per 
directory.

Time stamps checked Up to 
120,000

Assuming the worst case of 240 
files for each of 500 directories. 
(Although this is highly unlikely 
to occur in a real system.) 

Of course, all this happens before any compilation work, but a later sec-
tion looks at those numbers. Now consider a second way of using GNU Make, 
which uses only a single instance of the make command. 
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Example: Inclusive GNU Make 
In contrast to the previous example, an inclusive Make system uses only a single 
instance of the GNU Make tool. Each directory contains a Files.mk file, which 
is parsed by the same GNU Make process. Process start-up time is thus reduced, 
and you’ll see all the benefits of having a single dependency graph instead of 
500 fragments. 

In this example, you also compute the implicit dependency information dif-
ferently. Instead of performing the explicit make depend step before the build is 
performed, you automate the generation of .d files as part of the regular build 
process. If the .d file is out-of-date with respect to a  .c file, it’s autogenerated 
with the latest dependency information. 

To create or update a .d file, you invoke two different processes. Here’s a 
reminder of the GNU Make approach from Chapter 6.

%.d: %.c
@$(CC) -MM $(CPPFLAGS) $< | sed 's#\(.*\)\.o: #\1.o 
\1.d: #g' > $@ 

This solution passes the source file through the gcc -MM command which 
provides a list of source and header file dependencies. The sed command manip-
ulates that output so that .d files also depend on those same source and header 
files. Refer back to Chapter 6 for a more detailed explanation. 

The C compiler itself does the main work in this code, and the sed command 
modifies the compiler’s output. The sed command is much more lightweight 
than the C compiler (which creates subprocesses behind the scenes) and is sig-
nificantly more lightweight than when invoking the GNU Make tool again. 

For each .c file, a separate C compiler process scans for dependencies, so 
different processes don’t share dependency information. This results in 10,000 
source files being read, each including an average of 10 header files. Unlike the 
makedepend situation, the worst case of 100,000 source file reads is also the 
average case because there’s no way to share dependency information between 
files in the same directory. This is another way of saying that a .d file stores 
dependency information on a source file basis, whereas a .depend file works on 
a directory basis. 

After the dependencies have been computed, GNU Make parses all the .d
files, with the goal of creating a single dependency graph. This involves reading 
and parsing 500 Files.mk files and 10,000 smaller  .d files. If framework files 
are used, they also need to be parsed, although only once for the entire build 
process instead of once per directory. 

Clearly, it’s important to optimize this part of the build process. Whenever a 
developer performs an incremental build, 10,500 files are parsed and the entire 
dependency graph is constructed. This can be extremely time-consuming if you 
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have a slow file system to contend with. Of course, a GNU Make guru could 
optimize the inclusive algorithm to parse only the .d files that the current build 
target requires. 

Finally, the single instance of GNU Make checks time stamps on all the 
source, header, and object files. Because you have only a single instance of GNU 
Make, each time stamp is only checked once. You therefore have 10,000 source 
files, 10,000 object files, and 1,000 header files to check to determine whether 
the object files are out-of-date. 

Table 19.2 presents a summary of the operations in the inclusive GNU Make 
solution.

Table 19.2 Statistics for Inclusive GNU Make Solution 

Operation Count Justification

Makefile reads/
parses (including 
makefile fragments) 

10,500 There’s a single File.mk file in each 
directory and a single .d file for each 
source file’s dependencies. 

Dependency graphs 
created

1 A single instance of GNU Make is 
used.

Processes created 20,001 To create each of the 10,000 .d files, 
two processes are created. Only one 
GNU Make process is created; al-
though, it makes extensive use of CPU, 
memory, and I/O. 

Source files read 10,000 Each source file is read once, as the 
dependencies are computed. 

Header files read 100,000 To create a .d file, you invoke the C 
compiler 10,000 times, each reading 10 
header files, on average (with no shar-
ing of results between different C files). 

Files written 10,000 A separate .d file is created for each 
source file. 

Time stamps 
checked

21,000 Each source file, object file, and header 
file is checked once. 

Before leaving the topic of GNU Make performance, you need to realize 
that the first two scenarios differ in a couple ways. The first aspect is how you 
traverse the source tree to build up the dependency graph. The second aspect is 
how you determine a source file’s implicit dependencies. There’s actually no rea-
son to tie these techniques together, but these examples do so for convenience. 
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By looking at the estimated number of I/O operations, you can see that hav-
ing a single GNU Make instance reduces the number of processes created and 
time stamps checked. On the other hand, the use of automatic dependency gen-
eration could be more accurate but places a significant load on the underlying 
file system, at least when compared to the makedepend solution. 

Example: SCons with Default Settings 
The third and fourth build system examples switch to using the SCons build 
tool. As discussed in Chapter 8, “SCons,” SCons can build an entire source 
tree with a single instance of the tool, creating a single dependency graph. This 
makes it similar to the inclusive Make solution. 

In a typical SCons-based build system, you aren’t required to have a differ-
ent SConscript file for each source code directory. It’s often easier to have one 
file for each major portion of the software, regardless of how many directories 
it covers. For example, a single library within the software product could be 
spread across ten different directories. You’d use a single SConscript file at the 
top of the library’s subtree instead of one file in each directory. 

Of course, in a GNU Make–based system there’s also no reason to have a 
single Files.mk file in each directory. To have a fair comparison, assume that 
you have 500 unique SConscript files. When the SCons tool starts up, it parses 
each of these files into a single dependency graph. 

Implicit dependency analysis in SCons is similar to what you’ve seen with 
GNU Make, although it’s built into the tool instead of being a user-supplied fea-
ture. SCons reads each of the 10,000 source files and each of the 1,000 header 
files, storing the dependency information in its internal database. 

Instead of using a time stamp comparison check, SCons uses MD5 check-
sums to detect whether a file has been modified since the last invocation. MD5 
calculations are by no means cheap to perform, especially in comparison to a 
simple time stamp check. In this example, SCons computes the MD5 checksum 
for 10,000 source files, 10,000 object files, and 1,000 header files. With these 
numbers in mind, it’s not surprising that SCons has as reputation for being slow. 

One place where SCons does well is in storing dependency information. 
Unlike GNU Make’s solution of having a .depend file per directory or a  .d
file per source file, SCons uses a single database file to store all persistent state 
between builds. From an operating system perspective, reading and writing a 
single large file is far more efficient than accessing hundreds or thousands of 
small files. 

Table 19.3 summarizes the I/O operations for the first SCons example. 
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Table 19.3 Summary of I/O Operations 

Operation Count Justification

SConscript reads/parses 500 One file per source code directory. 
If framework files are used, they’re 
read once for the entire build proc-
ess.

Dependency graphs created 1 A single instance of SCons is cre-
ated.

Processes created 1 All dependency analysis work is 
done within the SCons tool. 

Source files read 20,000 10,000 reads for computing 
implicit dependencies, and 10,000 
more reads for MD5 checksums. 

Header files read 2,000 Same as for source files. 

Object files read 10,000 Each object file’s checksum is com-
puted, to see if it changed since the 
last build. 

Files written 1 A single database file is used. 

Time stamps checked 0 By default, SCons doesn’t check 
time stamps. 

MD5 checksums 21,000 10,000 source files, 10,000 object 
files, and 1,000 header files. 

At first glance, these numbers appear to be much lower than the correspond-
ing GNU Make numbers. This is largely because SCons is performing all the 
tasks within a single process instead of invoking separate processes to compute 
dependencies. In contrast, the additional work of computing MD5 checksums 
can be excessive, making a SCons-based build unacceptably slow. 

In addition to the numbers in the table, it’s worth mentioning one more 
time-consuming activity. To locate your local machine’s compilation tools, 
SCons searches a range of standard file system directories. When it locates a 
tool, SCons invokes it with the necessary flags to determine the tool’s version 
number. For example, on a Linux system, SCons searches for the gcc program 
in /usr/local/bin, /opt/bin, /bin, and /usr/bin. After finding it, the 
gcc --version command is invoked to learn which version of the tool is avail-
able. This feature can be disabled by explicitly hard-coding the path to each tool. 

Now consider a final build system example, in which you disable some of the 
default SCons features in an effort to gain more performance. 
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Example: SCons with Optimizations 
The previous SCons example used a total of 32,000 file system read operations. 
To make matters worse, the file content is used to compute both MD5 check-
sums and a list of implicit dependencies. This extra overhead might not be no-
ticeable during a full build, but an incremental build takes excessively long. This 
is especially troublesome if none of the source files has actually been modified 
since the last build invocation. The designers of the SCons tool understood this 
bottleneck and created alternate solutions. 

The first optimization requires you to add the following statement to your 
SConstruct file: 

Decider('MD5-timestamp')

This directive requests that SCons perform an MD5 checksum only if the time 
stamp on a file has changed since the last build invocation. It’s logical that if the 
time stamp hasn’t changed, the file’s content hasn’t changed. On the other hand, 
if the time stamp is different from last time, SCons computes the MD5 checksum 
to see if there’s now a difference in content. 

The effect of using the MD5-timestamp decider technique can be dramatic. 
Instead of reading every source file in the whole build tree, SCons performs a 
time stamp check operation on each of them, which is significantly less work 
for both the CPU and the file system. This doesn’t mean no checksums are com-
puted, but the effort is focused on files that are more likely to have changed. 

A second optimization involves caching the implicit dependencies instead of 
recomputing them each time the build tool is invoked. The following directive 
should be added to the SConstruct file. 

SetOption('implicit_cache', 1) 

This forces SCons to reuse the same set of dependencies that were computed in 
the last build invocation, which, in most cases, gives the same build results each 
time. When you add a new dependency and insert a new #include directive into 
a C/C++ file, SCons notices the change anyway. This modification (change to 
time stamp and MD5 checksum) causes the source file to be recompiled, so the 
new dependency information is discovered. There’s certainly no need to rescan 
all the source files to find this one change. 

However, using cached information is a problem in one scenario. Imagine 
that you’re compiling source code with the following command line: 

gcc -o calc/calc.o -IdirA -IdirB -c -O calc/calc.c 

If the calc.c file contains the  #include "config.h" directive, the C com-
piler searches for config.h in the  dirA/ directory, followed by the  dirB/
directory. If the file is found in dirB/, the path dirB/config.h is stored in 



ptg

Measuring Build System Performance 525

the calc.o file’s list of dependencies. With  implicit_cache set to  1, SCons 
assumes that this fact continues to be true for successive builds. 

Imagine now that you add a new file to the source tree, called dirA/config.h.
When you invoke the C compiler, config.h is now found within the  dirA/
directory because dirA/ was earlier in the compiler’s search path. Unfortu-
nately, SCons still believes that you depend on dirB/config.h. Clearly, there’s 
an opportunity for changes to dirA/config.h to not trigger a new build, which 
is obviously a bad thing. 

If this opportunity for error doesn’t seem likely to cause problems, you can 
gain some extra performance by enabling the implicit_cache feature. Let’s 
look at the summary of operations in Table 19.4.

Table 19.4 Summary of Operations 

Operation Count Justification

SConscript reads/parses 500 One file per source code directory. 

Dependency graphs created 1 A single instance of SCons is cre-
ated.

Processes created 1 All dependency analysis work is 
done within the SCons tool. 

Source files read A small 
number

Only files that have different time 
stamps will have their MD5 check-
sum computed. Implicit dependen-
cies are taken from the cache. 

Header files read A small 
number

Same as for source files. 

Object files read A small 
number

Same as for source files. 

Files written 1 A single database file is used. 

Time stamps checked 21,000 Source files, object files, and header 
files all have their time stamps 
checked.

MD5 checksums A small 
number

Only for files in which the time 
stamp changes. 

As a final note, you need to realize that these optimizations have an impact 
on only the second and successive builds. When the build tree is compiled for 
the first time, there’s no content in the cache, so MD5 checksums and implicit 
dependencies must still be calculated. 

Now let’s move on to the second phase of the build process, where the com-
pilation commands are actually invoked. 
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Measuring Performance in the Compilation Phase 

If the build tool has done its job properly, it now has a list of files to be recom-
piled. If no source file changes occurred, the build stops at this point without 
doing any compilation work. In reality, though, the developer wouldn’t have 
invoked the build process if there weren’t any changes, so you should still care 
that each compilation tool does its job as efficiently as possible. This section 
focuses on the performance of these tools. 

Now consider three different aspects that can each be optimized. The first 
concern is how much time it takes to invoke the tool, which is partly related 
to how many times it’s invoked. Next, consider whether the tool itself is highly 
optimized or whether it uses inefficient algorithms. Finally, the number of 
implicit dependencies hidden inside a source file plays a major role in the com-
pilation time. 

Process Start-Up Time 
Invoking a compilation tool takes time, even before it starts doing any meaning-
ful work. Most tools are stored as separate executable programs, so you need 
to focus on how the underlying operating system creates a new process. You 
also need to care about how long the process takes to fully initialize its data 
structures. Think about the work required to start a compilation tool and how 
to reduce the start-up overhead. 

The first step is for the operating system to locate the executable program on 
disk and read it into memory. If the tool uses shared libraries, it dynamically 
loads and links to those libraries before execution proceeds. Most operating sys-
tems cache disk files in memory, so loading the tool for the second or successive 
time is much faster. In addition, the whole purpose behind shared libraries is to 
reuse code that’s already loaded into memory, making it much faster to get the 
tool up and running. 

The next step is for the tool to read its configuration files and initialize inter-
nal data structures. The amount of time required depends on which tool is 
invoked. You might find that tools written in languages such as Perl, Python, or 
Java spend a lot of time reading configuration files, loading code libraries, and 
initializing data structures, even before the tool’s own code is executed. On the 
other hand, a tool that is fully compiled into machine code can avoid much of 
that overhead. 

When you take caching into account, a tool’s start-up time is fairly consist-
ent. A process that takes 0.2 seconds to load and initialize might not seem like 
a problem, at least until your build system grows in size. With 100 tool invo-
cations, you’re now adding a full 20 seconds onto the build time. With 1,000 
invocations, you add more than 3 minutes. Thus, it’s important to reduce the 
start-up time, if at all possible. 
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Consider some ideas on how to reduce the start-up time of your compilation 
tools.

• Always be aware of the number of unique processes your build tool in-
vokes. For GNU Make, each command line in a rule is invoked using a 
separate shell. For example, consider the following fragment: 

.depend:
    rm -f .depend
    touch .depend
    makedepend -f .depend -- $(CFLAGS) -- $(SRCS) 

In this case, GNU Make invokes a total of six processes. Each of the three 
command lines is passed into a shell (by default, /bin/sh), which, in turn, 
invokes either the rm, touch, or makedepend commands. 

In contrast, a build tool such as Ant implements many of the tasks inter-
nally, without invoking an external process. Where possible, an Ant task 
uses direct system calls to achieve the same effect. 

• To take this start-up cost idea one step further, if you choose to implement 
your own compilation tools, it pays to avoid writing shell scripts. With the 
exception of shell built-in functions, each line of the shell script is guaran-
teed to invoke a separate process. In contrast, with a Perl or Python script, 
the program directly invokes system calls without the additional overhead 
of invoking a new process each time. 

• Consider whether some of your tool’s start-up initialization can be cached 
in a binary format. Instead of parsing a text-based configuration file each 
time the tool is invoked, it might be possible to cache the tool’s internal 
data structures in a binary format and save them to disk. On successive 
invocations of the tool, the binary cache is loaded directly into memory 
without a parsing step. In the uncommon event that the original text-based 
configuration file changed, the tool must spend extra time regenerating the 
cached binary data. 

• If your compilation tool supports the feature, pass as many source file 
names to the tool as possible, and have it compile all the files at once. This 
is in contrast to invoking a separate instance of the tool for each individual 
source file. For example, try to avoid compiling all source files with sepa-
rate command lines: 
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cc -c aardvark.c
cc -c bear.c
cc -c camel.c 

Instead, consider combining them into a single command: 

cc -c aardvark.c bear.c camel.c 

Depending on your compiler, you could end up reducing the process start-
up time. If you’re unlucky, your compiler could simply create a separate 
process for each source file anyway. In this case, the capability to list all 
files on a single line is purely a convenience for the developer. 

Now move on and consider how a tool can be made to operate more effi-
ciently when the start-up portion has finished and the real compilation starts. 

Compilation Tool Performance 
As with any piece of software, it’s usually possible to optimize the program so 
that it operates more quickly. In a large build system with thousands of source 
files, even a 10% improvement in performance saves a significant amount of 
time. Let’s touch on a few methods for improving a compilation tool’s perform-
ance, even after the tool has started executing. 

If you wrote the tool yourself or have access to the tool’s source code, con-
sider the following optimizations: 

• As already discussed, make sure your tool can process multiple source files 
in one invocation. 

• When you have a choice, don’t call upon an external program to perform 
a task; instead, use the equivalent system calls or library functions. 

• Use file buffering wherever possible. Instead of reading or writing files on 
a byte-by-byte basis, consider whether it’s faster to access the file in large 
chunks using internal buffers. Many operating systems and programming 
languages implement buffering on your behalf, but it doesn’t hurt to check 
whether it’s being done efficiently. You might be surprised that a small 
change to the way I/O is handled can drastically impact the tool’s perform-
ance.

• Check all your tool’s algorithms to see how they scale in a large build 
system. Tool developers often test their code in a small-scale environment 
(less than 100 source files) but never get the opportunity to test with many 
thousands of files. You might find that a small change to an internal algo-
rithm helps the tool operate more efficiently. 
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• Use code-profiling techniques to see where your tool is spending its time. 
You’ll often find that minor changes to your program can significantly 
improve the performance of your tool. 

• When compiling open-source software from source code, enable as many 
optimizations as possible. Often people download, configure, compile, 
and install a new tool without thinking too much about what they’re do-
ing. Configuration options might make the tool more efficient, perhaps by 
disabling the optional features you never plan to use. 

For closed-source tools, you won’t have access to the source code, but you 
can still benefit from a couple of optimizations. Tool vendors often provide con-
figuration options to control performance. 

• Be careful to disable the tool’s logging or debugging feature, unless you re-
ally need them. Log files are useful for troubleshooting problems, but the 
extra disk I/O might degrade performance. 

• Take the time to learn about optional features, and disable them if they’re 
not required. You can’t stop them from being included in the tool (as you 
can with open-source tools), but the tool vendor might have provided a 
means to disable their use. 

In summary, putting a small amount of effort into optimizing your tool algo-
rithms and optional features can save you a lot of wasted build time. Now let’s 
finish this section by considering how the content of the source code you’re 
compiling impacts the performance of a compilation tool. 

Source Code Size and Implicit Dependencies 
It should be no surprise that compiling a 10,000 line source file takes longer 
than compiling a 100 line file. The compilation tool reads and parses the source 
code, constructs internal data structures, and generates the corresponding object 
code. The larger the source file, the longer it takes. 

To optimize this process, you must determine whether the tool is compiling 
more source code than it really needs to. Given that source code is usually the 
domain of software engineers instead of build engineers, you might find your-
self offering the development team advice on how to optimize the source code 
structure.

For example, in the case of C or C++, each source file uses the #include
directive to incorporate definitions from one or more header files. The compiler 
scans each of the header files to discover the type and structure definitions, 
preprocessor definitions, and function prototypes necessary to compile the main 
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body of the source file. It’s also common for a header file to include nested 
header files, forming a full hierarchy of file inclusion. 

The question to ask is whether the program requires all these header files. 
Here are some cases to consider: 

• The developer might have included them by mistake, even though they 
were never required in the first place. 

• The program did require them at some point in time, but recent changes in 
the source code made the #include directives obsolete. 

• A specific header file was included to make use of a symbol that was de-
fined in that file. As a side effect, you also need to include a number of 
other header files, simply to avoid compilation errors. 

This third case happens more often than you might realize. In many cases, the 
source code needs only a single definition from a header file, but that file con-
tains hundreds of other definitions you’re forced to include. Imagine that you 
have the following header file as part of an application program: 

 1  #include <stdio.h>
 2
 3  /* graphics functions */
 4  extern void draw_line(int x1, int y1, int x2, int y2);
 5  extern void draw_circle(int x1, int y1, int radius);
 6 extern void draw_rectangle(int x1, int y1, int width, int 

height);
 7
 8  /* database functions */
 9  extern FILE *open_data(char *db_name);
10  extern void save_data(FILE *file_h);
11  extern void close_data(FILE *file_h); 

This header file really has two separate purposes. It defines the prototypes for 
a number of graphics-related functions and it also defines a number of database-
access functions. Notice that the stdio.h header file is included so that data-
base functions can make use of the FILE data type. 

At this point, you now have namespace pollution to deal with. A source file 
that performs graphics-related operations is probably not interested in using the 
database functions. However, because all the functions are declared in the same 
file, the developer doesn’t really have a choice but to include everything, as well 
as the stdio.h file. 

For a large piece of software, it’s common for each source file to include liter-
ally hundreds of headers files, many of which aren’t directly related to the source 
file being compiled. As a result, the compilation tool spends an excessive amount 
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of time reading and parsing header files, making the build process longer than 
necessary.

An even worse situation occurs when the build system uses a long search 
path for locating header files. If the C compiler used the command-line options 
-IdirA -IdirB -IdirC, every one of the header files could potentially be 
found in any of the three directories, so each directory must be searched. Imag-
ine what would happen with more than 100 directories in the search path. Dis-
covering that a file isn’t in a particular directory doesn’t usually take long, but 
it’s still unnecessary work. 

Solving the header file inclusion problems takes time, especially when software 
developers are constantly creating new problems. Here are some approaches to 
consider:

• Make use of precompiled header files if your compiler supports them.
These allow the compiler to load a binary-format version of the informa-
tion in the header files instead of parsing the header files each time they’re 
included. If the original text-format header files are modified, the precom-
piled header files must be regenerated. 

• From time to time, check how many header files you’re actually including.
You might be surprised by the number of files, and many of them may no 
longer be required. Keep in mind that the common technique of placing 
an #ifndef _HEADER_H_ directive at the top of a header file only stops it 
from being parsed multiple times; it doesn’t stop the file from being read 
into memory each time. 

• Consider splitting your header files into a number of smaller files. This can 
be a challenging task, but if it’s successful, you can be more selective about 
which parts of the header file are included. As a result, you won’t pull in 
directives you don’t really need and won’t be forced to include additional 
header files. Of course, there’s also a performance tradeoff of including 
multiple small files instead of including a single large file. Use your best 
judgment on which situation is best. 

Clearly, optimizing a build system by rearranging source files isn’t always 
easy, but keep it in mind if you have a slow file system. 

Performance-Measurement Tools 

So far, this chapter has taken an anecdotal approach to discussing performance 
and has avoided the question of how long each operation should actually take. 
Every build machine has its own unique set of timing parameters, so reading 
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or writing a file on one machine could be dramatically faster than on a second 
machine. In addition, CPU, network, and disk performance constantly increase 
over time, so publishing numbers doesn’t make much sense. 

To make effective decisions on improving build performance, you need both 
an understanding of how the build tool works and some real timing numbers to 
back up your expectations. For example, you know that a default SCons build 
performs a large number of MD5 calculations, but you need a way to find out 
how long each operation actually takes. Likewise, a GNU Make system that 
uses .d files to store dependencies spends a lot of time reading and parsing those 
files. How long does each read take? 

Wall Clock Time 
The first approach you should always take is to measure “wall clock” time. That 
is, measure how long the build process actually takes in seconds, minutes, or 
hours. For example, the UNIX time command provides the following output: 

$ time make
...
[ build output will be shown here ]
...
2660.238u 279.513s 49:19.30 99.3% 

In this example, the build system required 49 minutes and 19 seconds to com-
plete, with 2,660 seconds (44 minutes) spent executing the compilation tools 
and 279 seconds (4.5 minutes) executing in the operating system kernel. The 
build system occupied the CPU for 99.3% of the time, indicating that I/O wasn’t 
a bottleneck in this scenario. 

This summary information isn’t necessarily useful, but measuring the wall 
clock time for each portion of the build process enables you to narrow your 
search for the most time-intensive portion of the build. For example, it’s useful 
to measure the following: 

• The time required to read and parse the build description files 

• The time required to determine which source files have been modified 

• The time required to invoke each of the compilation tools 

Depending on your build tool, you might need to insert special code into your 
build description to report the time at which each phase starts or completes. 
When you have the data, you’ll have a fairly good idea of where the time is 
being spent. 
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System Call Tracing 
Modern operating systems provide tools to monitor the interaction between a 
running process and the operating system kernel. In the following example, you 
can see how the Linux strace tool is used to monitor the execution of the GNU 
Make tool. 

$ strace -tt -e trace=file make

9:20:28.867073 open("Makefile", O_RDONLY|O_LARGEFILE) = 3
9:20:28.867890 stat64("RCS", 0xbfa6d4d4) = -1 ENOENT
9:20:28.868048 stat64("SCCS", 0xbfa6d4d4) = -1 ENOENT
9:20:28.868104 stat64("Makefile", {st_mode=S_IFREG|0644, st_
size=98, ...}) = 0

9:20:28.869235 stat64("dog.o", {st_mode=S_IFREG|0644, st_
size=98, ...}) = 0

9:20:28.869339 stat64("dog.c", {st_mode=S_IFREG|0644, st_
size=43, ...}) = 0

9:20:28.869535 stat64("cat.o", {st_mode=S_IFREG|0644, st_
size=79, ...}) = 0

9:20:28.869636 stat64("cat.c", {st_mode=S_IFREG|0644, st_
size=21, ...}) = 0

9:20:28.869813 stat64("rat.o", {st_mode=S_IFREG|0644, st_
size=74, ...}) = 0

9:20:28.869914 stat64("rat.c", {st_mode=S_IFREG|0644, st_
size=21, ...}) = 0 

In this case, you’ve asked the strace tool to report any system calls issued by 
the make program that take a filename as an argument. Additionally, you want 
to see the exact time (to microsecond accuracy) at which each system call was 
issued, to give you an idea of how long each call actually takes. Even though 
some of that time is spent executing the program itself (not in the kernel), this is 
all part of getting the task done. 

Even though you might not know anything about Linux system calls, it should 
be possible to interpret why the make program is invoking those particular calls. 
Given your knowledge of the GNU Make tool, you can guess that the open()
call is where Makefile is opened and parsed. Also, the stat64() calls are used 
to read the time stamp information of each of the source and object files. 

It’s not immediately obvious from this example, but disk I/O generally is a bot-
tleneck for a build tool. (Although compilation tools are often CPU-intensive.) 
The fewer file accesses the build tool performs, the faster the system executes. 
Keep in mind that reading and writing files can take significantly longer than 
simply checking the time stamp on a file. In addition, although CPU operations 
are usually much faster than I/O operations, performing complex calculations 
such as an MD5 checksum can slow the build system. 



ptg

Chapter 19 Faster Builds534

The strace tool in the previous example was for the Linux operating system. 
Similar tools exist for Solaris, BSD, and other flavors of UNIX. Finally, several 
tracing programs are available for the Microsoft Windows environment. 

Fixing the Problem: Improving Performance 

To finish the discussion of measuring build system performance, and to sum-
marize the overall approach you can take to identify and resolve performance 
issues, you should follow three basic steps: 

1. Make sure you understand your build tool’s flow of control. Understand 
how the build description files are parsed, how the source files are checked 
to see if they’re up-to-date, and how the build tool invokes compilation 
tools.

2. Use wall clock time or system call traces to measure how long each phase 
of the build actually takes. Also take note of the number of operations 
being performed. Studying these numbers will help you determine which 
part of the build takes the most time. Often the problem is quite dramatic, 
and you’ll see a surprising number of files being accessed or processes 
being created. 

3. Revisit the design of your build system to eliminate the bottleneck. This 
typically involves changing the build description files, but it could involve 
switching to a more efficient build tool. Making this type of change can be 
time-consuming, especially for a legacy build system that you don’t fully 
understand.

This section also discussed some additional solutions: 

• If you find that many small files are being created or accessed, try moving 
the same information into a single large file. It’s usually more efficient to 
read large files if your build tool enables you to do so. 

• If you see a large number of File not found errors when the compila-
tion tools attempt to open header or library files, consider modifying the 
compiler search paths. Placing the most commonly used directories at the 
start of the search path reduces the number of file operations required. 

• If your compilation tools include an excessive number of header files, ask 
your software developers to break them into smaller, more independent 
chunks. The goal is to reduce the total number of header files included, 
especially because many of them aren’t actually required. 
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• If an excessive number of processes are being created, see if it’s possible 
for each compilation tool to process multiple source files in one invocation 
instead of creating a separate process for each file. 

• If a compilation tool appears to be generating files you don’t need, check 
whether there’s an option to disable the unwanted output. 

• If a compilation tool takes too long to execute, check whether optional 
features can be disabled. 

• If a compilation tool does a lot of work before it even opens the source 
file, consider ways to optimize the start-up process. It might be possible to 
disable the reading of start-up configuration files or to disable automatic 
tool discovery. 

After you’ve tried all these options, you might end up deciding to completely 
rewrite the build system. For example, if your GNU Make–based build system 
is taking too long because of the thousands of small .d files being read from 
disk, it might be easier to move to a SCons-based build system and use a single 
database file to store the dependencies. 

Let’s now take a different approach to improving performance. In contrast 
to the analytical approach you’ve seen so far, you’ll now see how the build tool 
can be more intelligent about avoiding work. 

Build Avoidance: Eliminating Unnecessary Rebuilds 

It’s a little-appreciated fact in life, but the fastest way to complete any job is to 
first decide whether it’s worth doing. With some amount of upfront planning, 
you can avoid performing unnecessary tasks. The same is true for software build 
systems.

Every build tool discussed in this book follows the same approach of testing 
source files to see if they’ve changed. In addition, each build tool discovers the 
dependencies between different files to decide whether a change to one file may 
impact a second file. Without these features, each invocation of the build tool 
would result in a complete rebuild of the software. 

Although most tools rely on a file’s time stamp to see if it changed, some 
tools put more effort into making the decision. The default behavior for SCons 
is to compute an MD5 checksum on each file, giving a more accurate view on 
whether the content really is different from last time. The goal is to reduce the 
number of unnecessary rebuilds, at the cost of the extra upfront analysis. 
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This section examines a couple of advanced methods for more intelligently 
deciding whether recompilation is needed. This is above and beyond the simple 
checking of time stamps or checksums. 

• Object file caching: When a number of software developers work on the 
same code base, there’s a good chance that another developer has already 
compiled the same set of files. Object file caching creates a shared reposi-
tory of object files for reuse by other developers. 

• Smart dependencies: Most build tools assume that if file A depends on 
file B, then file A should be recompiled if file B changes. On the other 
hand, smart dependencies focus on whether the specific lines of code that 
changed in file B actually have an impact on file A. 

This section also discusses a number of less sophisticated approaches to build 
avoidance, which can still save a lot of unnecessary build work. 

Object File Caching 

The basic principle behind object file caching is that it’s often faster to reuse 
another developer’s object file than to compile it again. The obvious challenge 
is for the build tool to identify whether there’s a cached version of the file that’s 
exactly the same as the file you would generate. 

The decision of whether an object file can be reused is challenging to imple-
ment, especially for languages such as C and C++. To ensure that an existing 
object file is compatible, the build tool must make sure that the same source file 
and header files were used and that the same command-line options were passed 
to the compiler. If one of the developers made local changes to a file, the object 
file in question shouldn’t be reused. 

Here’s a more detailed process for determining whether an object file can be 
reused. The details vary from one tool to the next, but the basic process is the 
same.

1. Determine the exact set of source and header files that the compilation tool 
would read. The name of the source file is obvious, but some mechanism 
must exist to determine which header files are included. 

2. For each source or header file, compute a checksum value. This is a sub-
stitute for reading and comparing the complete set of source files. If a 
developer made a local change to one of their files, the checksum would be 
different from that of other developers. 
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3. Determine exactly which compilation flags the compiler would use because 
these can impact the generated object code. For example, a -D definition 
on a C/C++ compiler’s command line can impact which lines of code are 
compiled into the program. Also, the use of -O (optimize) or  -g (debug) 
impacts the generated object file. 

4. Search the object file cache to see if there’s an existing copy of the object 
file compiled by another developer. An object file can be reused if it was 
generated from the same set of source and header files, each with the same 
checksum value and compiled with the same compiler options. 

5. If a cached copy of the file exists, copy that file into the developer’s own 
build tree. If not, invoke the compilation that would have originally taken 
place.

As you can see, a lot of upfront analysis is required before any reuse decisions 
are made. If a lot of files have been locally modified, the build tool does the 
upfront analysis yet is still required to build the object file for itself. This slows 
the build system. 

A best practice is to allow software developers to reuse object files from the 
cache but not to contribute their own. For this to work, a release engineer must 
periodically build an untouched source tree, with the goal of populating the 
cache. Given that none of the files has been locally modified, there’s a much 
higher chance that developers can reuse the cached files. 

Several tools implement the object caching feature: 

• Ccache [86]:  The Ccache tool is an open-source product designed to work 
in conjunction with the GCC compiler. A developer uses Ccache by prefix-
ing their gcc command line with the ccache command: 

ccache gcc -g -c -o add.o add.c 

Ccache is intimately familiar with the GCC command-line options and 
knows which options impact the object code. To identify which header 
files are used, Ccache passes the source file through the C preprocessor to 
effectively merge all source and header files. It uses this combined file to 
compute a hash value for the complete program. 

If a matching object file is available in the shared cache, the file is copied 
into the developer’s build tree. If the cache and the build tree are on the 
same file system, it’s also possible to use a hard link to the cached file. 
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• Clearmake: The Clearmake tool is part of the ClearCase Source Code 
Management system [5]. To take advantage of Clearmake’s “wink-in” 
feature, developers must compile their source code within a dynamic view, 
a special mode that enables the ClearCase server to act as a full-fledged 
file server. This unique feature means that ClearCase knows exactly which 
version of a source file you’re using and whether you’ve made any local 
modifications to that file. 

Given that ClearCase is in full control of all source and object files, the 
developer needs to do little extra work. The ClearCase server acts as a file 
server, so there’s no need to copy or link to the cached file. Instead, the file 
instantly appears at the correct location in the build tree. 

Although Clearmake uses a novel technique for sharing object files, the 
downside is that it’s not fully compatible with GNU Make, and existing 
Make-base build systems might require modification. Additionally, other 
build tools, such as Ant and SCons, can’t take advantage of the wink-in 
feature.

• SCons [56]: The SCons Repository() function informs the build tool 
where it can obtain source files or object files that don’t exist in the current 
build tree. SCons already tracks the MD5 checksum for each file, so there’s 
no extra work to compute checksums. 

The following example shows how the calculator program is built 
by reusing the object files from the repository. Instead of modifying the 
SConstruct file to include the  Repository() method, you use the  -Y
flag to provide the location: 

$ scons -Y /home/psmith/scons-repo
scons: done reading SConscript files.
scons: Building targets ...
gcc -o calculator /home/psmith/scons-repo/calc.o
      /home/psmith/scons-repo/add.o
      /home/psmith/scons-repo/mult.o
      /home/psmith/scons-repo/sub.o
scons: done building targets. 

In this case, SCons didn’t find any object files in the local build directory, 
but it did find them in the repository. Instead of making a copy of the files, 
it simply refers to their repository location. 

As a general rule, use object file caches with care. Although they often improve 
performance, developers can still see performance degradation, especially if too 
many changes are made in the local source tree. In addition, if the build tool 
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doesn’t provide you with an identical object file, you could waste hours debug-
ging a confusing compilation error. 

Smart Dependencies 

The second build-avoidance technique, smart dependencies, avoids an incre-
mental compilation if a change to a file doesn’t really impact other files. In most 
build tools, if one file depends on a second file, any change to that second file 
causes the first file to be recompiled. With smart dependencies, the build tool 
does more than simply check time stamps. 

As an example, a change to a source code comment in a C header file doesn’t 
impact the compilation of related files. Even if the header file is included into 
many different source files, the build output remains unchanged because com-
ments are always thrown away. If the build tool can detect harmless code 
changes like this, it can avoid unnecessary work. 

Note that smart dependencies have an impact only with incremental builds. 
There’s no optimization to be gained for a completely fresh build because the 
object files don’t yet exist and must always be compiled. 

Chapter 10, “Eclipse,” already touched on the idea that Eclipse uses smart 
dependencies, but now examine the concept in more detail. Let’s look at a popu-
lar build tool for the Java language and consider how a C/C++ tool might imple-
ment this technique. 

jmake Example 
The jmake tool [87] is specifically designed for compiling Java code. It’s com-
monly used as a plug-in for Ant, introducing the <jmake> task as a replacement 
for the existing <javac> task. The jmake dependency system uses information 
from the Java .class files to determine whether a code change impacts other 
Java files. 

If a developer changes any publicly visible parts of a class definition, the code 
change could impact the compilation of other classes. This includes any change 
to a public method’s name, parameters, or return type. However, it doesn’t 
include any changes to private methods or the lines of code within a method. By 
scanning the generated .class files, jmake determines the two cases. 

Now illustrate this system with a Java code example. You start with two 
simple Java classes, A and B. Class A displays a short message and then calls the 
hello() method in class B.

A.java contains: 

 1 public class A {
 2
 3    public static void main(String args[]) {
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 4       System.out.println("Hello World");
 5       B.hello();
 6   }
 7 } 

B.java contains: 

 1 public class B {
 2
 3    public static void hello() {
 4       System.out.println("Hello from class B");
 5    }
 6 } 

When you first compile this program, A.class and  B.class don’t yet exist, 
so both source files are compiled for the first time. In addition, jmake stores 
information about class A and class B in a database file named jmake.pdb.

[jmake] Jmake version 1.3.6
[jmake] Compiling 2 source files
[jmake] Writing project database...  Done. 

Make a change to class B by adding a new code comment (see line 3). 

 1 public class B {
 2
 3    /* adding comments doesn't change a .class file */
 4
 5    public static void hello() {
 6       System.out.println("Hello from class B");
 7    }
 8 } 

After this change, the jmake output shows that one file ( B.java) is being 
recompiled. As you might expect, the content of B.class won’t have changed 
because comments don’t affect the compiler output. Also, because you changed 
only a comment, A.java isn’t considered for recompilation. 

[jmake] Jmake version 1.3.6
[jmake] Opening project database...  Done.
[jmake] Compiling 1 source file
[jmake] Writing project database...  Done. 

Now make a more significant change and add a new line of code to B.java
(see line 7). 

 1 public class B {
 2
 3    /* adding comments doesn't change a .class file */
 4
 5    public static void hello() {
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 6       System.out.println("Hello from class B");
 7 System.out.println("This line won't impact A's com-

pilation");
 8    }
 9 } 

Although this new line impacts the functionality of the hello() method—
and, therefore, the behavior of class A’s main() method—there’s still no way for 
A.class to be any different from last time. 

The output from jmake is now slightly different. Given that B.class has 
changed since the last time it was compiled, jmake inspects B.class to see if the 
change was publicly visible. It’s not a public change, so the extra check doesn’t 
result in any further compilation work. 

[jmake] Jmake version 1.3.6
[jmake] Opening project database...  Done.
[jmake] Compiling 1 source file
[jmake] Checking B
[jmake] Writing project database...  Done. 

Next, add a new method to class B (see lines 10–12). 

 1 public class B {
 2
 3    /* adding comments doesn't change a .class file */
 4
 5    public static void hello() {
 6       System.out.println("Hello from class B");
 7 System.out.println("This line won't impact A's com-

pilation");
 8    }
 9
10    public static void newMethod() {
11 System.out.println("newMethod won't cause A to re-

build");
12    }
13 } 

This might be surprising, but the output from jmake is the same as before. 

[jmake] Jmake version 1.3.6
[jmake] Opening project database...  Done.
[jmake] Compiling 1 source file
[jmake] Checking B
[jmake] Writing project database...  Done. 

Even when B.class is inspected, there’s no publicly visible change. Given 
that newMethod() has been recently added, there’s no way that  A.java could 
have called newMethod() in the past, because it didn’t exist. As a result, there’s 
no way for the compilation of A.java to be impacted by this change. 
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Finally, make a change to B.java that definitely impacts the compilation of 
class A.java. In this case, you add a new parameter to the hello() method (see 
line 5). 

 1 public class B {
 2
 3    /* adding comments doesn't change a .class file */
 4
 5    public static void hello(int i) {
 6       System.out.println("Hello from class B");
 7 System.out.println("This line won't impact A's com-

pilation");
 8    }
 9
10    public static void newMethod() {
11 System.out.println("newMethod won't cause A to re-

build");
12    }
13 } 

As you might expect, jmake checks the content of B.class and detects a 
change to the hello() method’s type signature. 

[jmake] Jmake version 1.3.6
[jmake] Opening project database...  Done.
[jmake] Compiling 1 source file
[jmake] Checking B
[jmake] Compiling 1 source file
[jmake] /home/psmith/javamake/src/A.java:5:
        hello(int) in B cannot be applied to ()
[jmake]         B.hello();
[jmake]          ^
[jmake] 1 error
[jmake] Compilation invoked by jmake failed,
        messages should have been provided.
[jmake] Writing project database...  Done. 

Given that A.java uses the  hello() method, jmake recompiles the second 
source file. Unfortunately, A.java wasn’t correctly updated to use the new 
method signature, so the compilation fails. 

If you’re an experienced Java programmer, you’ll realize how much time this 
technique saves. Most code changes fall entirely within the private section of a 
class definition, so often there’s no reason to compile anything other than the 
file you edited. 

Smart dependencies decide only whether the compilation of related source 
files could be impacted. They make no decision about whether the functionality 
of the related classes will actually change. As a result, it’s still useful to run unit 
tests on all classes that your code change might have impacted. 
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Smart Dependencies in C/C++ 
The good thing about the Java language is that it’s easy to distinguish the public 
sections of a class from the private sections. In a language such as C or C++, 
implementing smart dependencies is much harder. Let’s briefly consider how a 
C/C++ build tool might solve this problem. 

Dependencies in C/C++ are usually relationships between source files ( .c,
.C, or .cc suffix) and header files ( .h suffix). When using smart dependencies, 
the build tool computes the list of symbols defined by each header file and then 
discovers where those symbols are referenced in other source and header files. 
If a symbol definition changes, only the source and header files that use that 
definition could be impacted. 

Examine the following header file and associated source files. The first file, 
fruit.h, is a header file that defines a symbol and a new type. 

 1  /* fruit.h */
 2  #define FRUIT_UNITS 10
 3  typedef int ripeness; 

The next file, apple.c, makes use of the FRUIT_UNITS symbols. 

 1  /* apple.c */
 2  #include "fruit.h"
 3  int get_apples_unit()
 4  {
 5    return FRUIT_UNITS;
 6  } 

Finally, the banana.c file uses the ripeness type definition. 

 1  /* banana.c */
 2  #include "fruit.h"
 3  ripeness get_banana_feel()
 4  {
 5    return 0;
 6  } 

In a normal dependency system, both apple.c and banana.c would depend 
on fruit.h. With a smart dependency system, apple.c depends only on the 
definition of FRUIT_UNITS, whereas banana.c depends only on the  ripeness
type. The build system must detect which of the symbols has changed and rec-
ompile the corresponding source file. 

Nontrivial C/C++ programs could have a whole chain of dependencies. One 
header file could define a symbol used in the definition of a second symbol. The 
second symbol then could be referenced by a function defined in a source file. 
Any change to either of the symbol definitions could impact the source file. 
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Implementing a smart dependency system for C/C++ isn’t impossible, but it’s 
a lot more challenging than for a more recent language such as Java or C#. The 
C preprocessor enables you to define and redefine symbols to almost any value, 
enabling the possibility of changing the name of functions and variables without 
the user even knowing. For example, the following code shows how a function 
call can be renamed, depending on the type of the underlying OS. 

The first file, os-header.h defines the  WRITE symbol to refer to an operating 
system–specific function: 

 1  /* os-header.h */
 2  #ifdef linux
 3  #define WRITE write_it
 4  #else
 5  #define WRITE save_data
 6  #endif 

The second file, func.c, includes the header file and invokes the WRITE func-
tion. This code has a different effect, depending on the underlying operating 
system.

 1  /* func.c */
 2  #include "os-header.h"
 3
 4  int write_file(char *data)
 5  {
 6    WRITE(data);
 7  } 

This code isn’t too hard to understand, but it would certainly make a smart 
dependency system a lot more complex. 

Other Build-Avoidance Techniques 

To finish the discussion of build-avoidance techniques, you’ll need to consider a 
few other ideas. These involve a lot more manual work than object file caching 
or smart dependencies, but they’re still valid approaches. 

• Component-based builds: As discussed in Chapter 18, “Managing Build 
Size,” a component-based build system enables you to work with smaller 
source code components. Each component uses a well-defined interface to 
other components. As a result, you avoid the need to compile more code 
than necessary. 

• Plan for finer-grained build targets: Even if you can’t break your source 
code into components, make sure the various pieces of your software can 
be compiled with separate build targets. Developers are smart enough to 
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decide which of the finer-grain targets need to be rebuilt, and doing so 
saves them a lot of time. 

• Manually remove files: As build systems grow in size, there are likely to be 
source files that are no longer required. The build system might still com-
pile those files on a regular basis, but the work is completely unnecessary. 
Performing a regular audit of the source files enables you to remove dead 
files or even a whole subtree that’s no longer required. 

• Fine-tune recursive Make: If you’re using a recursive Make system in 
which the explicit sequencing of directories is hard-coded into the build 
system, you might find that certain directories are visited multiple times 
in the same build process. Fine-tuning the sequence of directories could 
reduce the total build time. 

These methods aren’t glamorous, but they reduce the time it takes to build 
your software, especially when performing incremental builds. 

Parallelism

Perhaps the most popular method for speeding up the build process is to use 
multiple CPUs to compile files in parallel. This is largely a result of the increas-
ing popularity of multicore computers, as well as the ease at which you can clus-
ter build machines on a local network. Up to a limit, doubling the CPU power 
can cut the build duration by almost half. 

As discussed in Chapter 11, “Dependencies,” the most important require-
ment for a parallel build system is to know the correct dependencies. If the build 
tool doesn’t know that one file depends on a second, it might attempt to compile 
the two files at the same time or in the wrong order. This results in either a bro-
ken build or a corrupted software image. 

Unfortunately, not all build systems can easily support parallel compilation. 
A poorly designed nonparallel build system might rely on jobs to always execute 
in the same order. It just happens that the compilation tools are invoked in a 
sequence that correctly builds the software. In reality, the dependency graph is 
incorrect, causing a parallel build to fail. 

Parallel builds aren’t too hard to understand, but let’s look at a few interest-
ing topics, including build clusters, parallel build tools, and the limitations of 
scalability.
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Build Clusters/Clouds 

With some build tools, it’s possible to invoke compilation jobs across differ-
ent build machines, as long as each machine has access to the same set of files. 
Instead of starting a compilation tool locally, there must be a communication 
channel to invoke the tool on a remote machine, the capability to synchronize 
access to the same set of files, and the capability to send the compiler output 
back to the originating machine. 

In a corporate environment, it’s common to have a cluster dedicated for com-
piling code, often known as a cloud. Instead of each developer having his or 
her own local build machine, a central cluster is easier to manage and easier to 
upgrade to new equipment. As build machines fail or simply grow too old to 
be useful, the administrators can shut them down and replace them with new 
equipment. If there’s a need for more CPU power, new machines can be added 
to the cluster. 

Build clusters also provide support for queuing and monitoring of build jobs. 
Instead of forcing all jobs to run on the cluster at the same time, a queuing mech-
anism ensures that jobs receive sufficient CPU time to complete successfully. 
Excess jobs are simply queued until enough CPU power becomes available. The 
monitoring system alerts the administrator that capacity has been reached and 
that additional build machines might be required. 

Unfortunately, fine-tuning a build cluster can be challenging. Access to files 
must be coordinated carefully, and if one machine writes a file, another machine 
might try to read that same file a few seconds later. Unless there’s a guarantee 
that different build machines see a consistent view of the file system (challenging 
in a distributed system), endless reliability problems can result. A clever build 
tool takes care to schedule related jobs on the same machine or simply to wait 
until the new copy of the file is globally available. 

Parallel Build Tools 

A few tools that support parallel builds, both on the same build machine and 
across a cluster of machines are briefly discussed. 

• GNU Make -j option: The standard GNU Make tool can support par-
allel compilation, but only on the same build machine. By passing the 
-j N command-line option, GNU Make invokes up to  N compilation tools 
at the same time. This is primarily useful for multicore build machines or 
machines with a lightly loaded CPU. The dependencies specified in each 
makefile must be accurate, or the build might fail. 
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• The SCons -j option: The SCons tool provides the same type of parallel 
functionality as GNU Make, allowing multiple compilation jobs on a sin-
gle build machine. SCons does a good job of computing dependencies, so 
the likelihood of a successful build is quite high. 

• The distcc compiler [88]: In contrast to GNU Make and SCons, distcc is 
not actually a build tool. Instead, it provides a front-end wrapper around 
the GCC compiler, making it possible to dispatch C compilation to remote 
machines. A standard build tool such as GNU Make or SCons must still be 
used, but instead of directly invoking the gcc executable program, it must 
invoke the distcc command. 

Each build machine in the cluster is required to run a special daemon 
process to receive and process compilation requests. The distcc program 
checks the DISTCC_POTENTIAL_HOSTS environment variable to discover 
which build machines it can dispatch jobs to. 

As usual, the same rules apply regarding the accuracy of build system de-
pendencies.

• ElectricAccelerator [48]: ElectricAccelerator is a commercial product that 
focuses on high-performance compilation in a cluster environment. The 
Electric Make tool is a drop-in replacement for GNU Make and NMake, 
allowing existing build systems to execute seamlessly on the cluster. It also 
provides support for builds using Ant and SCons. 

In contrast to other build tools, ElectricAccelerator uses the file system–
monitoring technique to discover implicit dependencies. It actively watches 
the files that each compilation tool reads or writes instead of relying only 
on the dependencies provided in the build description files. If it ends up ex-
ecuting two jobs in parallel (or in the wrong order) when they should have 
been sequential, ElectricAccelerator detects the conflict and reruns the first 
job. It also makes note of the mistake to ensure that future attempts to 
build the software use the correct set of dependencies. 

Now let’s finish the discussion by showing how the performance of a parallel 
build system eventually reaches a peak, no matter how many CPUs are available. 

Limitations of Scalability 

Although a parallel build system is an excellent way to speed up the build proc-
ess, it’s not a perfect solution. Simply because you can add a new CPU to a clus-
ter doesn’t mean the build system can take advantage of that CPU. 
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To understand this problem, imagine a typical C/C++ build system in which 
a number of object files are compiled into a shared library or an executable 
program. For a large build system, this process repeats hundreds of times to pro-
duce all the shared libraries and executable programs required for the complete 
software package. In essence, the build system alternates between compiling 
object files and then linking those files into a library or executable program. For 
example:

gcc -g -c add.c
gcc -g -c calc.c
gcc -g -c mult.c
gcc -g -c sub.c
gcc -g -o calculator add.o calc.o mult.o sub.o 

Although the object file–generation steps (for add.o, calc.o, mult.o and 
sub.o) can be executed in parallel, the linking phase is purely sequential and can 
be executed only on a single CPU. In this example, you’d be limited to perform-
ing four jobs in parallel, with the final job executing on its own. Adding a fifth 
CPU wouldn’t speed up the build process. 

With a large build system with multiple linking phases, each phase could be 
done in parallel, assuming that all the object files for each library or executable 
already existed. Of course, this assumes that the build tool has a global view of 
the dependency graph and can look ahead for future work. 

A second limitation of build clusters is the result of the shared resources, 
such as network and file system bandwidth. Even if you add new CPUs into a 
cluster, the network link could reach its full capacity, slowing the build system. 
The same is true for the shared file system, which might not keep up with all the 
disk access requests. 

These limitations aside, parallel builds are still an excellent way to speed up 
the build process. 

Reducing Disk Usage 

As a final approach to speeding up the build process, it’s important to consider 
how much data is written to disk. It’s common knowledge that accessing data 
on a traditional hard disk takes several milliseconds, whereas writing the same 
data to main memory is thousands of times faster. By reducing the amount of 
data written into files, you can drastically reduce build times. This is especially 
true in a large build system that generates gigabytes’ worth of output. 

Disk access time isn’t the only contributing factor to worry about. To write 
large amounts of data to disk, that data must first be generated by the CPU 
and stored in main memory. Each of these activities takes away from the build 
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machine’s capability to use that CPU power and memory space for other tasks. 
Simply reducing the amount of data you attempt to write saves on disk access 
time, CPU utilization, and main memory usage. 

Consider a few simple approaches to reducing reliance on disk storage. 

• Limit the size of libraries or executable programs: The larger your librar-
ies or executable programs are, the more time it takes to create them from 
the constituent object files. If the linking process consumes too much CPU 
time or memory, the whole build machine slows down. This is especially 
noticeable when the linking process consumes most of the main memory 
and forces other processes to swap out to secondary storage. This swap-
ping mechanism makes the build machine appear to freeze for the duration 
of the linking operation. 

Obviously, you shouldn’t go to the other extreme and create too many 
small files, but limiting the size of each library or executable program ena-
bles the build machines to more effectively handle object file creation and 
linking.

• Generate debug information only if you need it: For any developer who 
wants to use a source-level debugging tool, it’s mandatory to gener-
ate debugging information. When compiling the software, the compiler 
and linker annotate each object file with a mapping from machine code 
addresses back to the original lines of source code. Unfortunately, adding 
this debug information requires additional CPU time and disk usage. 

To reduce the size of your build output, ensure that your build system 
doesn’t add debug information by default. Developers must still have the 
option to generate the information for specific parts of their code. This 
increases the build time and disk usage but only for the portion of the soft-
ware the developer cares about, not the entire build tree. 

From a release engineering perspective, any software release intended for 
a customer must be built with debugging information. This information 
is never shipped to the customer but is kept available in case a bug is re-
ported and a developer needs to diagnose the problem. 

• Be aware that small files require a lot of disk space: Because of the block-
structured nature of file systems, disk files tend to require more space than 
you often realize. For example, a 1-byte file is stored using an entire disk 
block, which, in many file systems, is 4 or 8KiB. If you have many small 
files in your build system, you might be surprised by the total usage for 
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each build tree. This doesn’t slow your build system, but it’s useful to 
know if you’re concerned about disk usage. 

For example, the GNU Make build scenario that uses a separate .d file 
for each .c file’s dependencies actually requires a full 4–8KiB for each file. 
From the developer’s perspective, each file appears to be only 100–200 
bytes long. 

• Avoid copying files to new locations: If you analyze a build system in 
detail, you might find that it copies files from one part of the build tree 
to another without modifying the content. This seems like wasted effort, 
but it often results from developers trying to use that file within a different 
part of their build system. If the build framework can’t access the file in its 
original location, copying the file is an attractive option. 

For example, if a software product was constructed by merging two differ-
ent products, there’s a good chance that two incompatible build systems 
were joined together. Copying the output from one of the products to the 
build tree for the second product could be the only way for them to con-
veniently share files. This is in contrast to fully rewriting the build system 
so that both products store files in the same build tree. 

If you decide that copying files is necessary, consider instead using sym-
bolic links. This makes the original file appear in the new location without 
requiring the additional CPU time or disk space to make a completely new 
file. Symbolic links are messy if overused, so try to limit their use as much 
as possible. 

• Monitor the growth of your build tree: It’s quite reasonable to expect that 
as your development team writes more code, the size of your build tree 
increases. However, keep in mind that developers can make seemingly 
innocent changes to your build system that cause the build tree to grow in 
unexpected ways. By monitoring the size of your build tree on a regular 
basis, you’ll keep these changes under control. 

For example, developers might download a third-party software package 
and add it to your source code base. They might not realize that adding 
this new software forces all developers to compile 10% more code than 
before. Try to preempt the situation and encourage developers to create a 
separate component that only a few people need to compile. 

• Periodically remove files you don’t need: In a mature software product, 
source and object files often are part of the build process but are no longer 
required in the final release package. To reduce build times, make an effort 
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to identify these files and initiate a project to have them removed. At the 
least, remove them from the build process, even if you don’t want to delete 
the source files. 

• Be cautious of network file systems: Although storing source and object 
files on a network file server often is faster than using local disk, this isn’t 
always true for a large build system. When a nontrivial number of develop-
ers access the same server, you’ll start to see performance issues resulting 
from network and disk congestion. If this is the case, consider using a local 
disk to store build trees. 

You can’t ignore the fact that the worst build performance you’ll ever experi-
ence is when you run out of disk space. The build process halts with an error, 
forcing you to remove unnecessary files before you continue. The situation is 
even worse if you’re sharing a network file system with other users, because 
nobody can get work done until files are removed. Proactively watching your 
disk utilization is important in a healthy build environment. 

Summary

If you have concerns about the performance of your build system, try to un-
derstand how the system operates and then measure the time each phase takes. 
These phases include reading the build description files, creating one or more 
dependency graphs, computing and storing each source file’s implicit depend-
encies, and invoking the compilation tools. By identifying the bottlenecks, it’s 
often possible to rewrite small parts of the build system to gain an increase in 
performance.

Another approach to reducing build times is for the build tool to spend more 
time analyzing whether a file needs to be recompiled. In the case of object file 
caching, the build tool determines whether an object file has already been com-
piled by another developer, using the exact set of source files. If that’s the case, 
the file can be copied to the local build tree instead of compiling it again. 

A build system using smart dependencies spends time analyzing the impact of 
a source code change. The goal is to determine whether the code change is pub-
licly visible and could impact other source files, or whether the change is limited 
in scope to the current file. Spending time on this upfront analysis avoids a lot 
of unnecessary recompilation. 

Perhaps the most popular technique for speeding up the build process is to 
invoke multiple compilation tools in parallel. For this to work, the build sys-
tem’s dependency graph must be correct and the machines in the build cluster 



ptg

Chapter 19 Faster Builds552

must have a globally consistent view of the source and object files. Unfortu-
nately, theoretical and practical limits apply to the number of tasks that can be 
invoked in parallel. 

Finally, reducing the amount of data written to disk files reduces the amount 
of CPU time and memory used to process the data, effectively speeding up the 
build process. 
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JAR files, 281, 496, 514 
packaging, 352-359

arguments
caches, updating, 320-322
command-line, 316

ASP (Active Server Pages), 4, 7
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assembly language files, 52-53
assertEquals() method, 346
assignment, conditional, 114
attributes

file, 182
flatten, 168
overwrite, 168
preservelastmodified, 168
tofile, 167

Autoconf tool 
C source files, 437-438
running, 434-435

autogenerated files 
headers, 496
source files, 327, 486
troubleshooting, 403

Autoheader tool, 429, 434-435
Automake tool, 263-264
automation

detecting
changes in compilation flags, 475
dependencies, 467

testing, 344
uninstallation, 361

availability
of command-line options, 426
of preinstalled libraries, 426
of prerequisite packages, 425

avoiding
build-avoidance techniques, 535-545
copying files, 550
cryptic language features, 471-472

B
behavior, configuring, 90-93
binary files 

large, version management, 400-401
tools, 445-448

Bison tool, 450
Boolean operations 

Ant, 171
expressions, 341

boundaries, defining, 487
brute-force analysis, 348
bugs

See also debugging 
build-management scripts, 405

fixes, 508
version management, 396

Build Forge, 20, 408
Builder function, 215
BuildException error, 182
builds

build-avoidance techniques, 535-545
build-management

scripts, 405-406
tools, 18-20, 408

debugging incorrect builds, 188-190
description files 

framework portion of, 458
per-variant, 92
version management, 393-395
writing, 246

frameworks, 458-463
instructions, version-control, 475
machines, 14-15, 412

centralized development 
environments, 416-424

CMake, 236
See also   CMake 

cross-compilation, 415-416
GNU Autoconf tool, 427-438
hybrid environments, 416
managing multiple, 421-424
native compilation, 414
open-source development 

environments, 424-427
searching files, 246
standardization of, 477
support, 418-421

with metadata, 333
See also   metadata 

with multiple variants, 183-188,
224-226
CMake, 259-262
Eclipse, 292-295

paths
configuration, 291
projects, 281-282

processes, 16-17
projects, Eclipse, 276-282
sizes, management, 483-486
systems

adding metadata, 349-350
applying, 18-20
calculator example, 23-26
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components, 497
consistency of, 480
definition of, 10
make-based, 21
quality, 21
scheduling changes, 480-482

targets, 29-31
times, avoiding multiple variants, 465
tools, 13-14

examples, 462-463
updating, 466-467

trees
cleaning, 188, 226, 260, 468
Eclipse, 295
monitoring growth, 550

variants, 82
build.xml files, 179, 184

directories with multiple, 175-179
Eclipse, 287-288

built-in
rules, 114
tasks, Ant, 164-168
variables, 114

bundles, resources, 81-82
“by convention” rules, updating cached, 

323
byte codes, 39-40

C
C, 4, 48-60

Autoconf tool, 437-438
build systems, 30
compilation

with libraries, 205-206
tools, 49-50

compilers, 13
dynamic libraries, 58-59
executable programs, 56-57
object files, 53-56
smart dependencies, 543-544
source files, 50-52
static libraries, 57-58
target architectures, 94

C#, 4, 68-76
compilation tools, 68
executable programs, 71-74
libraries, 74-76

source files, 69-71
C++, 4, 48-60

compilation, 59-60
dynamic libraries, 58-59
executable programs, 56-57
object files, 53-56
smart dependencies, 543-544
source files, 50-52
static libraries, 57-58
target architectures, 94
tools, 49-50

.c files, 24
caches

command-line arguments, updating, 
320-322

component management, 507-509
dependency graphs, 319-323
object files, 536-539
variables, 251, 259

calculating MD5 checksums, 214
calculator example, 23-26, 240

debugging, 207
multidirectory, 176

cc construction variable, 208
C/C++ Development Tooling ( CDT),

299-301
Ccache tool, 537
CCCOMSTR construction variable, 209
CCFLAGS variable, 209
ccmake tool, 250, 259
CCOM construction variable, 208
CCVERSION construction variable, 208
CDPDEFINES variable, 209
CDT (C/C++ Development Tooling),

299-301
central processing units. See CPUs 
centralized development environments, 

416-424
CFILESUFFIX construction variable, 208
CFLAGs, 114, 209, 213
change-detection methods, 329
CHECK_FUNCTION_EXISTS macro, 

248
checking dependencies, 360
check-ins, 10
checksums

MD5, 278, 535
out-of-date files, 326-328
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<chmod> task, 167
circular dependencies, 313-314
cksum command, 245
classes, TestRectangle, 346
clean target implementation, 403
cleaning

build trees, 188, 226, 468
CMake, 260
Eclipse, 295

targets, 315
ClearCase, 329, 392
Clearmake tool, 538
close method, 201
clouds, 546
clusters, 546
CMake, 10, 98, 236

analyzing, 262-263
build trees, cleaning, 260
compilation tools, 257-259
control flow, 243-245
criticism, 262
cross-platform support, 246-248
executable programs, building,

240-243
incorrect builds, debugging, 260-261
languages, 238-255
libraries, building, 240-243
multiple variants, building with,

259-262
praise, 261
source code 

in multiple directories, 256
in single directories, 255

syntax, 239-240
CMAKE_AR, CMAKE_C_COMPILER 

variable, 251
CMAKE_BUILD_TYPE variable, 251
CMAKE_C_FLAGS_* variable, 252
CMAKE_EXE_LINKER_FLAGS_*

variable, 252
CMAKE_LINKER variable, 251
CMakeLists.txt, native build system 

translation, 252-254
cmake_minimum_required command, 

240
code

byte, 39-40
comments, 327
control, 12

copying, 10
coverage support, 340-341
native machine, 36
nonzero exit, 469
profiling, 339
programs, 7, 76
source, 91

See also   source code 
stale, deleting, 478
storage, 486
stream management, 10
UML (Unified Modeling Language), 

13, 77-79
variations, 90-93
versions, 389

See also   versions 
command-line

arguments, 316, 320-322
coverage support, 340
dependencies derived from, 317
options, availability, 426
tools, 13

commands
add_executable, 241
add_library, 241, 256
add_subdirectory, 256
ccmake, 259
cksum, 245
cmake_minimum_required, 240
copy, 358
CreateDirectory, 383
customization, adding, 242-243
execute_process, 247
File, 382
file, 53
find_library, 246
gcc -MM, 520
get_property, 240
gmake, 27
grep, 469
gzip, 314, 369
hexdump, 56
hiding, adding, 474
if, 243
jar, 67
make, 369
mv, 314
next, 337
nm, 54
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objdump, 55
recognition of, 395
rm, 30
rpmbuild, 369
sed, 520
sequencing, 314
set_property, 240
shell, 109, 118, 156

See also   shell commands 
try_compile, 248
UNIX, 26, 50
WriteInstaller, 383

Commands component, 490
comments

code, 327
DO NOT DELETE, 318

commits, 10
comparisons, flags, 328
compatibility of libraries, 427
compilation

C++, 59-60
C, with libraries, 205-206
.c files, 24
cross-compilation, 95, 415-416
dependencies, 302

See also   dependencies 
errors, 277, 311-312
failures, 228
flags

configuring, 241-242
detecting changes in, 475

incremental, 307-308
JIT, 39
line-by-line conditional, 95
Make tool. See Make tool 
native, 414
optimization, 529
Perl/Python source code into byte 

codes, 40
phases, performance measurements, 

526-531
Python, 202-206
reports, errors, 285
software, 4
steps, sequences, 330-333
time, reducing, 489
tools, 5, 13-14, 46, 49-50

C#, 68
CMake, 257-259

configuring, 469
defining, 179-183
dependencies provided, 318
Eclipse, 291-292
hard-coding absolute paths,

397-399
Java, 61
SCons, 222-223
storage, 400
version management, 395-400
writing, 449-453

compiled languages, 4-5, 17
compilers

builds, modifying, 204
C, 13
debugging support, 336-338
distcc, 547
Eclipse options, 278-281
errors, 279-280
GDB, 338
Green Hills, 49
Microsoft Visual Studio C++, 49
multiple, 94-95
$PATH environment variables, 

hard-coding, 399-400
reports, 396
standardization of, 477
version management, 395-397
warnings, 280

complexity, reducing, 453
components, 10-16

advantages of using, 491-493
build systems, 497
cache management, 507-509
Commands, 490
compiled languages, 5
component-based software, 488-502
Database, 512
defining, 493-498
installers, 383-385
integration, 498-502
line-up management, 505-507
Logger, 512
management, 504
modifying, 504
multiple, integration, 489
Persistence, 498, 512
prebuilt (binary), 492, 499



ptg

Index564

private source files, modifying,
500-501

storage, 507
testing, 497-498
versions

adding, 507
expiration, 508
version-control tools, 10-11

comprehension, 12
computing dependency graphs, 315-323
conditional assignment, 114
conditions

Ant, 170-171
CMake, 243-245

.config files, 88
configuration

behavior, 90-93
build paths, 291
ccmake configuration tool, 250
compilation

flags, 241-242
tools, 469

convention over, 461-462
customization, 352
files, 4, 43-44, 77
libraries, 41
makefiles, 26-28
parameters, 88, 472
Run Configurations window, 283
SCM (Software Configuration 

Management), 392
scripts, 429
source trees, 401-402, 406
subtargets, 84-86
XML, 81

configure scripts, 434-437
conflict-resolution, 332

See also errors; troubleshooting 
Cons tool, 232-233
consistency of build systems, 480
console views, 274
construction variables, 208-209
content assistance, Eclipse, 301
continuous integration, 476
control

flow, CMake, 243-245
source code, 12

convenience, 21
Ant, 193

CMake, 262
Eclipse, 298
SCons, 198, 232

convention over configuration, 461-462
conversions, byte codes, 39
coordinating new software features,

509-512
copy command, 358
<copy> task, 167-168
copying

code, 10
files, 169, 550

correctness, 21
Ant, 193
CMake, 262
Eclipse, 298
SCons, 198, 232

coverage
metadata, 333
support, 340-341

Coverity Prevent, 8, 349
CPPPath variable, 209
CPUs (central processing units), 36

assembly language files, 53
centralized development environments, 

417
cross-compilation, 415
disk usage, reducing, 548-551
hybrid environments, 416
native machine code, 39
parallelism, 545-548
validation, 361

CreateDirectory command, 383
criticism

Ant, 191-192
CMake, 262
Eclipse, 297-298
SCons, 231

cross-compilation, 14, 95, 415-416
cross-platform

builds, 203
support, CMake, 246-248

CruiseControl, 20, 408
cryptic language features, avoiding,

471-472
culture, building different software 

editions for, 86
customization

commands, adding, 242-243
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configuration, 352
custom-built installation GUI tools, 

373-388
generation steps, 250-252
GUI installation tools, 16
SCons, 212-214

CVS tool, 329, 338, 392

D
-d option, 182
data

files, 43-44
segments, 410
structures, 116-119

Database component, 512
DEBUG symbol, 32
debugging

calculator example, 207
incorrect builds, 188-190, 226-229

CMake, 260-261
Eclipse, 296

information, 278, 549
metadata, 333, 336-338
releases, 473-474

Decider
MD5, 212-213
timestamp-match, 213

decider functions, 212-214
Default function, 211
defaults

build systems, generating, 248-250
construction variables, 209
settings, SCons, 522-523

deferred evaluation, 113
define directive, 118
defining

boundaries, 487
compilation tools, 179-183
components, 493-498
NSIS (Nullsoft Scriptable Install Sys-

tem) pages, 379-380, 385-387
properties, Ant, 162-164
targets, 158-160

deleting
files, 550
stale code, 478

.depend files, creating, 518
<depend> task, 165-167

dependencies, 302
analyzing, 156, 167, 210-212, 277-278
Ant, 157
automation, detecting, 467
checking, 360
checksums, 326-328
circular, 313-314
compilation tools, 318
compile errors, 311-312
file systems, 319
files, 108
flags, 321
gathering, 316-319
graphs, 25, 109-110, 307-310

caching, 319-323
computing, 315-323
sequencing compilation steps,

330-333
hard-coded, 317
implicit, 529-531
implicit sequencing, 314-315
missing, 310-311, 332
out-of-date files, 324-330
provided by scanners, 318
smart, 536, 539-544
troubleshooting, 310-315
unwanted, 312

Depends function, 211
deprecated command options, removal 

of, 397
description files 

per-variant, 92
version management, 393-395

detecting
changes in compilation flags, 475
dependencies, 467

developer-facing portion of build 
descriptions, 458-459

developers
build systems, applying, 18
makefile information, 31

development
CDT (C/C++ Development Tooling), 

299-301
centralized environments, 416-424
environments, 10
IDEs. See IDEs (integrated 

development environments) 
open-source environments, 424-427



ptg

Index566

PDEs (Plug-in Development 
Environments), 288

directives
#ifdef, 477
#include, 50, 307
define, 118
<exclude>, 170
hierarchies, 183
<include>, 170
SCons, 317
source code, 316, 322

directly invoking shell commands, 217
directories

See also files 
Ant, 168
command-line tools for making, 13
Eclipse, 269
holding, 353
installation, 410
multiple, support for, 210
with multiple build.xml files, 175-179
$OBJDIR, 97
per-variant, 91
source code 

multiple, 175
single, 174-175

dir/notdir function, 118
disallowing

administrator access, 422
personal machines, 422
special per-machine software, 421

disassemblies, 72-74
disks

disk-advisor script, 406
storage, 549
storage requirements, 404
usage, reducing, 548-551

displaying exact commands executed, 474
distcc compiler, 547
distributed programs, 36, 44-45
dividing

programs, 45
source trees, 84

DLLs (dynamic link libraries), 74
DO NOT DELETE comment, 318
documentation, 4

CMake, 262
files, 77
generation, 9-10

generators, 13
PDFs, 29
source code, 333, 341-343
tools, 442-443

dumpbin.exe program, 73
duplicating source files, 479
dynamic libraries, 58-59
dynamic link libraries ( DLLs), 74
dynamic linking, 42-43, 501

E
Eclipse, 265

analyzing, 298-299
applications, 285
build trees, cleaning, 295
builders, 10
build.xml files, 287-288
compilation tools, 291-292
compiler options, 278-281
content assistance, 301
criticism, 297-298
error reports, 301
frameworks, 461
GUIs (graphical user interfaces),

268-288
incorrect builds, debugging, 296
JUnit windows, 346
multiple variants, building with,

292-295
packaging, 281
praise, 297
projects

applying internal models, 285-286
building, 276-282
creating, 269-276
running, 282-285

scrapbook pages, 286
source code 

in multiple directories, 290-291
in single directories, 288-289

source trees, 274-276
workbench window, 272-274

Edit JRE window, 279
editions, 84

See also versions 
building different, 86-93
localization of, 86

editor windows, 273
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EJBs (Enterprise Java Beans), 281
ElectricAccelerator tool, 332, 547
ElectricCommander, 20, 408
ELF (Executable and Linking Format) 

structure, 54
eliminating rebuilds, 535-545
else statements, 243
email notifications, 20
embedding

dependencies, 318
scripts, 352

encapsulation, 62
end users, reducing complexity, 453
end-to-end sequences, 16
Enterprise Java Beans (EJBs), 281 
env function, 217
Environment object, 207
environments

centralized development, 416-424
development, 10
hybrid, 416
IDEs. See IDEs (integrated 

development environments) 
JRE (Java Runtime Environment),

272, 278
multiple, applying, 207-208
open-source development, 424-427
PDEs (Plug-in Development 

Environments), 288
Python, 206-210
runtime, 283-285
testing, 171
variables, 472-473

errors
BuildException, 182
building after the first, 468-469
compilation, 277, 311-312
compilers, 279-280
Eclipse, 301
incorrect builds, debugging, 188-190
IOError, 201
maximum number of, 279
messages, 470
reports, 285
runtime, 310-311
undefined symbol, 311
version management, 395-397

evaluation, 113

examples
of build tools, 462-463
of calculators, 23-26
of GNU Autoconf tools, 430-433
of RPM spec files, 363-373

exceptions, InvalidSizeException, 346
See also errors 

excess rebuilding, unwanted 
dependencies, 312

<exclude> directive, 170
<exec> task, 172
Executable and Linking Format (ELF) 

structure, 54
executable programs, 33, 496

C#, 71-74
C/C++, 56-57
CMake, 240-243
Java, 65-66
linking, 42

execute method, 182
execute_process command, 247
execution

Ant, 161
rules, 121-122
targets, 158

expiration of component versions, 508
expressions, Boolean operations, 341
extending

algorithms, 165
Ant, 172-173
Python, 214-218

Extensible Markup Language ( XML), 81
external disk files, version number 

storage, 408
extractAndReverse function, 200
extraction, self-extracting archive files, 

356

F
failures

compilation, 228
dependency analysis, 312-313

faster builds, 514-535
features

implicit_cache, 525
SCons, 218-219

File command, 382
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file systems, network, 551
filename rules, 111
files

accessing, 10
archive, 16

formatting, 356
packaging, 352-359

assembly language, 52-53
attribute, 182
autogenerated

headers, 496
source files, 486
troubleshooting, 403

binary tools, 445-448
build description 

version management, 393-395
writing, 246

build machines, searching, 246
build.xml, 179, 184

directories with multiple, 175-179
Eclipse, 287-288

.c, 24
checksums, 326-328
commands, 53
.config, 88
configuration, 4, 43-44, 77
copying, 169, 550
data, 43-44
deleting, 550
.depend, formatting, 518
dependencies, 108
description, per-variant, 92
documentation, 77
file systems 

change-detection methods, 329
dependencies, 319

generating, keeping out of source trees, 
467

graphic image, 77-80
header requirements, 530
HTML, 7
JAR, 281, 496
large binary, version management,

400-401
MakeFile, 11
makefiles, 108, 300
missing input, 188
modeling language, 77
modifying, 324

multiple
SConstruct, 220-222
selecting, 168-170

objects, 53-56
caching, 536-539
dependencies, 321
Java, 63-65

out-of-date, 324-330
per-variant, 91
platform-specific, 95-96
private generated, 497
public generated, 495-497
rebuilding, 316
release packages, 352
RPM, 360-361

examples of spec files, 363-373
installation, 362

rules, 111
SConstruct, 205, 460
source

Autoconf tool, 437-438
autogenerating, 327
C#, 69-71
C/C++, 50-52
dependencies, 307

See also   dependencies 
duplication, 479
Java, 62-63
private, 494
public, 495
recompilation, 278
version management, 392-402

source trees, generating, 402-404
stale, 358
time stamps, 324
types, 7, 46, 76-82
web-centric, 77
XML, 81

filter function, 117
FindBugs tool, 8, 348
finding, 246 
find_library command, 246
fixes, bugs, 508

See also errors; troubleshooting 
flags

comparisons, 328
compilation

configuring, 241-242
detecting changes in, 475
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dependencies, 321
system-information, 260
trace, 260

flatten attribute, 168
Flex tool, 450
flow

of control, Ant, 161-162
programs, 119-122, 210-212

foreach loops, 118, 245
formatting

archive files, 356
.depend files, 518
libraries, 41
makefiles, 26-28
projects, Eclipse, 269-276
reusable libraries, 480
RPM Package Manager format,

360-361
XML, 81-82

fragments
Ant, 154

See also   Ant 
makefiles, 314

frameworks, 458-463, 496
applying, 31-33
Make, 460
portion of build descriptions, 458-461

full builds, 308-310
full program interpretation, 38
functions

See also commands 
addprefix, 117
Alias, 212
Builder, 215
data structures, 116-119
decider, 212-214
Default, 211
Depends, 211
dir/notdir, 118
env, 217
extractAndReverse, 200
filter, 117
foreach, 118
hello, 50
Ignore, 211
normal Python, writing, 215
patsubst, 117
platform-specific, 95-96
printfn, 60

Repository(), 538
SConscript, 210
source, 217
Split, 204
target, 217
vsnprintf, 248
words, 117

G
gathering dependencies, 316-319
GCC (GNU Compiler Collection), 49
gcc -MM command, 520
gcc program, 395
GDB compilers, 338
generating

debug information, 549
default build systems, 248-250
documentation, 9-10
files

keeping out of source trees, 467
source trees, 402-404

generation step customization, 250-252
Java source file from UML models, 78
native build systems, 248-254
nondefault build systems, 250
target-specific build systems, 429

generators, CMake, 236
See also CMake 

getAllSouceFiles method, 182
getArea() method, 346
get_property command, 240
getTargetFile method, 182
Git, 392
gmake command, 27
GNU

Autoconf tool, 427-438
Compiler Collection, 49 
Make, 10, 108-123, 114

Ant, 158
frameworks, 460
inclusive, 520-522
-j option, 546
out-of-date files, 324
programs, 27
recursive, 517-519
tools, 26

Profiler tool, 338
versions of tools, 427
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graphic image files, 77-80
graphs, dependencies, 25, 109-110,

307-310
caching, 319-323
computing, 315-323
sequencing compilation steps, 330-333

Green Hills compiler, 49
<greet> macro, 173
grep command, 469
Group field, 366
growth of build trees, monitoring, 550
GUIs (graphical user interfaces) 

custom-built installation GUI tools, 
373-388

Eclipse, 268-288
installation, customizing tools, 16

gzip command, 314, 369

H
handling

errors. See errors 
warnings, 279

hard disk space requirements, 466
hard-coding

absolute paths, 397-399
dependencies, 317
$PATH environment variable, 399-400

hardware variations, 86
hashing, 326

See also checksums 
headers

autogenerated files, 496
requirements, 530

hello function, 50
Hello method, 62
Hello World, Ant, 157-158
hexdump command, 56
hidden commands, adding, 474
hierarchies

directives, 183
packages, 176

high-level workflow, GNU Autoconf tool, 
428-430

historical versions, viewing, 10
holding directories, populating, 353
Home editions, 84, 87
HTML (Hypertext Markup Language) 

documentation, 4
files, 7

Hudson, 20, 408
hybrid environments, 416

I
identifier cross-references, 285
IDEs (integrated development 

environments), 156, 265
change-detection methods, 329
cross-compilation, 416
native compilation, 414

if command, 243
#ifdef directive, avoiding littering code 

with, 477
if statements, 171, 200
ifelse statements, 243
Ignore function, 211
IL DASM, 72
images, 37-38

debugging, building, 474
Mac OS X .dmg, 356
single operating system, 422

immediate evaluation, 113
implementation

clean targets, 403
OPenJDK, 61
packaging systems, 353

implicit dependencies, 529-531
implicit sequencing, 314-315
implicit_cache feature, 525
IMPLICIT_DEPENDS keyword, 259
importing algorithms, 165
import_nodes variable, 223
#include directive, 50, 307
<include> directive, 170
inclusive GNU Make, 520-522
incorrect builds 

CMake, 260-261
debugging, 188-190, 226-229
Eclipse, 296

incremental builds, 28, 308-310
incremental compilation, 307-308
input parameter validation, 470-471
installation, 350

custom-built GUI tools, 373-388
directories, 410
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GUIs, customizing tools, 16
NSIS (Nullsoft Scriptable Install 

System), 374-375
post-installation scripts, 373
RPM files, 362, 371-373
UNIX software, 359
variants, 93

installers
See also NSIS (Nullsoft Scriptable 

Install System) 
components, 383-385
scripts, 376-379

integrated development environments. See
IDEs

integration
components, 498-502
continuous, 476
multiple components, 489

interfaces, 15 , 19
APIs, 45
custom-built installation GUI tools, 

373-388
Eclipse, 268-288
GUIs. See GUIs (graphical user 

interfaces)
internal implementation of components, 

491
International Standards Organization 

(ISO), 48, 356 
internationalization, 81-82
interpretation

byte codes, 39-40
full program, 38

interpreted languages, 6
interpreters, 38
InvalidSizeException, 346
invoking

shell commands, 217
version-control tools in build systems, 

476
I/O operations, SCons, 522
IOError, 201
ISO (International Standards 

Organization), 48, 356
Ivy (Apache), 512-514

J
-j option 

GNU Make, 546
SCons, 547

jar command, 67
JAR files, 281, 496, 514
Java, 4, 60-68, 265

applets, 285
Build Path window, 274, 290
compilation tools, 61
executable programs, 65-66
libraries, 67-68
object files, 63-65
runtime, 278
source files, 62-63

java command-line tool, 179
Java Development Kit (JDK), 61, 278, 

338
Java Development Tools   (JDTs ), 265
Java Enterprise Edition ( JEE), 271
Java Runtime Environment (JRE), 272, 

278
<java> task, 172
Java Virtual Machine (JVM), 39, 63
javac compilation tool, 61-63
<javac> task, 165-167
Javadoc tool, 279, 341
JavaServer Pages (JSP) 4, 7, 265
JDK (Java Development Kit), 61

compliance levels, 278
debugging support, 338

JDTs (Java Development Tools), 265
JEE (Java Enterprise Edition), 271
JIT (Just In Time) compilation, 39
jmake tool, 539-542
JRE (Java Runtime Environment), 272,

278
JSP (JavaServer Pages), 4, 7, 265
JUnit window, 284, 346
Just In Time (JIT), 39
JVM (Java Virtual Machine), 39, 63

K
keywords

IMPLICIT_DEPENDS, 259
Python, 204

Klockwork Insight, 8, 349
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L
languages

Ant, 156-174
assembly files, 52-53
C, 48-60

See also   C 
C++, 48-60

See also   C++ 
CMake, 236-255

See also   CMake 
compiled, 4-5, 17
cryptic language features, avoiding, 

471-472
Hello World, 157-158
interpreted, 6
libraries, 40

See also   libraries 
SCons, 198-219
UML, 77-79

large binary files, version management, 
400-401

layouts, projects, 272
See also formatting 

Lex tool, 450-453
LIBPATH variable, 209, 213
libraries, 33, 40-43

C#, 74-76
C, compilation with, 205-206
CMake, 240-243
compatibility, 427
DLLs, 74
dynamic, 58-59
dynamic linking, 42-43
Java, 67-68
preinstalled, availability, 426
Python, 201
reusable, formatting, 480
sharing, 496
static, 57-58, 495
static linking, 41

License field, 366
license pages, NSIS (Nullsoft Scriptable 

Install System), 380
limitations

of <javac> tasks, 166
of scalability, 547-548

line-by-line
conditional compilation, 95
variations, 90

line-up management, components,
505-507

Linker, 13
linking

DLLs, 74
dynamic, 42-43, 501
libraries, 41
static, 41
symbolic links, applying, 479

Lint, 349
localization of editions, 86
Logger component, 512
loops

CMake, 243-245
foreach, 245

M
M4 macros, 431
Mac OS X .dmg images, 356
machines, 14-15, 412

See also build machines 
<macrodef> task, 172
macros

CHECK_FUNCTION_EXISTS, 248
CMake, 243-245
<greet>, 173
M4, 431

main method, 63
maintenance, build-management scripts, 

405
make command, 369
Make tool, 87, 98-108

frameworks, 460
GNU Make, 108-123

make-based build systems, 21
calculator example, 23-26
frameworks, applying, 31-33
makefiles

creating, 26-28
optimizing, 28-29

makedepend tool, 318, 517-519
MakeFile file, 11
makefiles, 108

creating, 26-28
fragments, 314
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management, 300
optimizing, 28-29
parsing, 119-120
rules, 109-112
variables, 112-114

management
build machines changes, 422, 480-482
build sizes, 483-486
build-management

scripts, 405-406
tools, 19-20, 408

code streams, 10
components, 504

caches, 507-509
line-up, 505-507

makefiles, 300
multiple build machines, 421-424
package tools, 16, 359-373
people, 502-512
processes, 502-512
RPM Package Manager format,

360-361
rpmbuild process, 361-363
SCM (Software Configuration 

Management), 392
tools, 439

See also   tools 
rules, 442-449
writing compilation tools, 449-453

versions, 20, 389
build description files, 393-395
compilation tools, 395-400
large binary files, 400-401
numbering, 406-411
source code, 443-444
source files, 392-402
source tree configurations, 401-402,

406
storing numbers, 410-411

mapping from source to object trees, 82
mathcomp tool, 179, 222, 291
Maven build tool, 462-463
MD5 checksums, 535

calculations, 214
comparisons, 278

measurements, performance, 516-535
compilation phase, 526-531
start-up phases, 516-525
tools, 531-534

memory, cross-compilation, 415
menus, About, 410
messages, errors, 470
metadata, 333

adding, 349-350
coverage support, 340-341
debugging, 336-338
packaging, 360
profiling support, 338-339
source code documentation, 341-343
static analysis, 348-349
unit testing, 344-347

methods
assertEquals(), 346
change-detection, 329
close, 201
execute, 182
getAllSouceFiles, 182
getArea(), 346
getTargetFile, 182
Hello, 62
main, 63
println, 41
Program builder, 202
setFile, 182
speak, 69, 72
testArea(), 346

Microsoft Visual Studio C++ compiler, 49
Microsoft Windows 

object trees, 11-12
source trees, 11-12

missing
dependencies, 310-311, 332
input files, 188

modeling language files, 77
modifying

APIs (application programming 
interfaces), 501

build machines changes, validation of, 
422

change-detection methods, 329
comments, 327
compiler builds, 204
components, 504
files, 324
private source files, 500-501

monitoring
build system changes, 481
growth of build trees, 550
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monolithic builds, troubleshooting,
486-488

monolithic system images, 37-38
MSBuild tool, 194-195
multidirectory build trees, 290
multiple build machine management, 

421-424
multiple compilers, 94-95
multiple component integration, 489
multiple directories 

source code, 175
CMake, 256
Eclipse, 290-291

support, 210
multiple environments, applying, 207-208
multiple files, selecting, 168-170
multiple object trees, 96-98
multiple program support, 45
multiple SConstruct files, 220-222
multiple subcomponents, 84
multiple targets, 110
multiple variants 

building with, 183-188, 224-226
CMake, building with, 259-262
Eclipse, 292-295
source code, avoiding, 465
support, 463-466
testing, 463-464

mv command, 314

N
Name field, 365
naming

projects, 272
symbols, 478

NAnt tool, 194
native build systems 

CMakeLists.txt, translation, 252-254
generating, 248-254

native compilation, 14, 414
native machine code, 36, 39
.NET Framework, 69
network file systems, 551
new software features, coordinating, 

509-512
next command, 337
nm command, 54

nondefault build systems, generating, 250
nonzero exit codes, 469
normal Python functions, writing, 215
notifications, email, 20
NSIS (Nullsoft Scriptable Install System), 

374-375
components, 383-385
directories, 381
Main Component, 381
pages

defining, 379-380, 385-387
directory selection, 381
license, 380
progress, 387

numbering versions, 406-411

O
$OBJDIR directory, 97
objdump command, 55
objects

Environment, 207
files, 53-56

caching, 536-539
dependencies, 321
Java, 63-65

trees, 5, 11-12, 82, 96-98
obtaining source code, 512
old versions, viewing, 10
OPenJDK implementation, 61
open-source development environments, 

424-427
operating systems 

portability of, 427
single images, 422
support, 422

optimization
archive files, 356-359
compilation, 529
Eclipse, 278
makefiles, 28-29
performance, 534-535
scalability, 489
SCons, 524-525
tools, 529

optional tasks, Ant, 164-168
options

command-line, availability, 426
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components, NSIS (Nullsoft Scriptable 
Install System), 383-385

-d, 182
Eclipse compilers, 278-281
-j

GNU Make, 546
SCons, 547

pricing, 87
outline views, 273
Outline window, 287
out-of-date files, 324-330
overengineering scripts, 471
overwrite attribute, 168

P
Package Explorer view, 273
Packager field, 366
packages, 4, 350

archive files, 352-359
Eclipse, 281
hierarchies, 176
management tools, 16
metadata, 360
package-management tools, 359-373
prerequisite, availability, 425
releases, 15-16
RPM Package Manager format,

360-361
rpmbuild process, 361-363
scripts, 353-356
variants, 92

pages
NSIS (Nullsoft Scriptable Install 

System)
defining, 379-380, 385-387
directory selection, 381
license, 380
progress, 387

parallelism, 545-548
parameters

configuration, 88
input validation, 470-471
passing, 472

parsing
makefiles, 119-120
processes, 120-121

passing configuration parameters, 472
$PATH environment variable, 

hard-coding, 399-400
pathnames, relative, 479
paths

absolute, hard-coding, 397-399
configuration, 291
projects, 281-282
to tools, 426

patsubst function, 117
patterns, rules, 111
PDEs (Plug-in Development 

Environments), 288
PDFs (Portable Document Format), 

documentation, 4, 29
PE (Portable Executable) format, 73
people management, 502-512
per-directory variation, 96
performance, 12, 21

Ant, 193
CMake, 262
Eclipse, 298
measurements, 516-535

compilation phase, 526-531
start-up phases, 516-525
tools, 531-534

SCons, 198, 232
troubleshooting, 534-535

Perl, 4, 39
Persistence component, 498, 512
personal machines, disallowing, 422
per-variant

build description files, 92
directories, 91
files, 91

phases
compilation, performance 

measurements, 526-531
releases, 510
start-up, performance measurements, 

516-525
PHP, 4, 7
PIC (position-independent code), 58
platform-specific

files, 95-96
functions, 95-96

Plug-in Development Environments 
(PDEs), 288
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plug-ins
CDT (C/C++ Development Tooling), 

299-301
NSIS (Nullsoft Scriptable Install 

System), 375
populating directories, holding, 353
portability of operating systems, 427
Portable Executable (PE) format, 73
position-independent code (PIC), 58
post-installation scripts, 373
power, cross-compilation, 415
praise

for Ant, 191
for CMake, 261
for Eclipse, 297
for SCons, 230-231

prebuilt (binary) components, 492, 499
preinstalled libraries, availability, 426
prerequisite packages, availability, 425
preservelastmodified attribute, 168
pricing options, 87
printfn function, 60
println method, 41
private generated files, 497
private source files, 494, 500-501
Problems window, 277
processes

build, 16-17
environment variables, avoiding,

472-473
management, 502-512
parsing, 120-121
rpmbuild, 361-363
SCons, 17-18
start-up, 526-529
strings, 109

Professional editions, 84, 87
profiles

metadata, 333
support, 338-339

Program builder method, 202
programs

Ant, 161
See also   Ant 

byte-code, 39
code, 7, 76
distributed, 36, 44-45
dividing, 45
dumpbin.exe, 73

executable, 33, 56-57, 496
C#, 71-74
CMake, 240-243
Java, 65-66

flow, 119-122, 210-212
full program interpretation, 38
gcc, 395
GNU Make, 27
Python, 200
runtime view of, 33, 36-45
uninstaller.exe, 387

progress pages, NSIS (Nullsoft Scriptable 
Install System), 387

PROGSUFFIX construction variable, 208
Project Explorer view, 269, 289
projects

build paths, 281-282
Eclipse

building, 276-282
creating, 269-276
running, 282-285

types, selecting, 270-272
properties, defining, 162-164
<property> task, 178
public

generated files, 495-497
source files, 495

punctuation symbols, 114
Python, 4, 39, 204-205

code, creating builders using, 216-217
compiling, 202-206
environments, 206-210
extending, 214-218
SCons, 199-202

Q
Qmake tool, 264
quality of build systems, 21
queuing mechanisms, 20
QUICKADD symbol, 242

R
Rake tool, 233-235
rebuilds

eliminating, 535-545
files, 316
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recompiling source files, 278
recursive GNU Make, 517-519
reducing

compilation time, 489
complexity, 453
disk usage, 548-551
size of build outputs, 549

refactoring support, 286
references, versions, 475
relationships

components, 491
dependencies, 306

See also   dependencies 
relative pathnames, 479
Release field, 365
releases

builds, 18
debugging, 473-474
packaging, 15-16, 350
phasing, 510
validation, 511-512

remote procedure calls (RPCs), 496
reports

compilation errors, 285
Eclipse errors, 301
warnings, 396

Repository() function (SCons), 538
requirements

disk storage, 404
file headers, 530
hard disks, 466

resources, bundles, 81-82
return statements, 200
reusable libraries, formatting, 480
rm command, 30
RPCs (remote procedure calls), 496
RPM files 

installation, 362
Package Manager format, 360-361
spec file examples, 363-373

rpmbuild command, 361-363, 369
rules

built-in, 114
“by convention,” updating cached, 323
execution, 121-122
filenames, 111
files, 111
for makefiles, 28, 109-112

management, scheduling 
improvements, 481

with multiple targets, 110
with no prerequisites, 110
patterns, 111
properties, 163
targets, 112
tools

binaries, 445-448
documentation, 442-443
management, 442-449
upgrading, 444-445
version control for source code, 

443-444
Run Configurations window, 283, 294
running

Autoconf tool, 434-435
Autoheader tool, 434-435
configure scripts, 435-437
Eclipse projects, 282-285
JUnit tests, 284

runtime
Ant properties, 162
environments, 283-285
errors, 310-311
Java, 278
JRE (Java Runtime Environment), 272,

278
public generated files, 496
variants, 93

runtime view of programs, 33
configuration files, 43-44
data files, 43-44
distributed programs, 44-45
executable programs, 36-40
libraries, 40-43

S
sanity builds, 19
scalability, 21

archive files, 358
CMake, 263
Eclipse, 298
limitations of, 547-548
optimization, 489
SCons, 232
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scanners
dependencies provided by, 318
makedepend, 318
source code, writing, 218

scheduling build system changes, 480-482
SCM (Software Configuration 

Management), 392
SCons, 10, 17, 98, 196

analyzing, 231-232
compilation tools, 222-223
convenience, 232
correctness, 232
customization, 212-214
defaults

behaviors, 535
settings, 522-523

directives, 317
features, 218-219
frameworks, 459
incorrect builds, debugging, 226-229
-j option, 547
languages, 198-219
multiple SConstruct files, 220-222
optimization, 524-525
out-of-date files, 325
performance, 232
praise, 230-231
processes, 17-18
Python, 199, 202-206
Repository() function, 538
scalability, 232
source code 

in multiple directories, 219
in single directories, 219

SConscript function, 210
SConstruct file, 205, 460
scrapbook pages, Eclipse, 286
scripts

aborting, 469
build-management, 405-406
configuration, 429
configure, 434
disk-advisor, 406
embedding, 352
installers, 376-379
NSIS (Nullsoft Scriptable Install 

System), 374-375
overengineering, 471
packaging, 353-356

post-installation, 373
running, 435-437

searching files, 246
security, 488, 492
sed command, 520
segments, data, 410
selecting

multiple files, 168-170
project types, 270-272

self-extracting archive files, 356
sequences

Ant, 161
See also   Ant 

compilation steps, 330-333
end-to-end, 16
implicit sequencing, 314-315
runtime, troubleshooting, 311

setFile method, 182
set_property command, 240
sharing libraries, 496
shell commands, 109, 118, 156

builder methods, creating, 215
directly invoking, 217

single builds, 499
single directories 

source code 
CMake, 255
Eclipse, 288-289

source code in, 174-175
single operating system images, 422
size

build management, 483-486
source code, 529-531

smart dependencies, 536, 539-544
software

compiling, 4
component-based software, 488-502
disallowing special per-machine, 421
installation, 350

See also   installation 
new features, coordinating, 509-512
packaging, 350

See also   packages 
Software Configuration Management 

(SCM), 392
source code 

access, 528-529
calculator example, 24
control, 12
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directives, 316
documentation, 333, 341-343
interpreters, 38
multiple directories 

CMake, 256
Eclipse, 290-291

in multiple directories, 175
multiple object trees, 96
multiple variants, avoiding, 465
obtaining, 512
scanners, writing, 218
SCons

in multiple directories, 219
in single directories, 219

security, 492
single directories 

CMake, 255
Eclipse, 288-289

in single directories, 174-175
size, 529-531
testing, 247
updating cached, 322
variants, 91
versions, 389, 443-444

See also   versions 
source files 

autogenerating, 327, 486
C#, 69-71
C, Autoconf tool, 437-438
C/C++, 50-52
dependencies, 307

See also   dependencies 
duplication, 479
Java, 62-63
modifying, 500-501
private, 494
public, 495
recompilation, 278
version management, 392-402

source function, 217
source trees, 5, 11-12, 19, 24, 82

configuration, 401-402, 406
dividing, 84
Eclipse, 274-276
files, 402-404, 467

speak method, 69, 72
specifying build variants, 87-90
splash screens, 374
Split function, 204

SRCS variables, 29
staffing, 502-512

build system changes, 480-482
stale code, deleting, 478
stale files, 358
standardization

of build machines, 477
of compilers, 477

start-up
phases, performance measurements, 

516-525
processes, 526-529

statements
else, 243
if, 171, 200
ifelse, 243
return, 200

static analysis tools, 4, 8-9, 29, 336,
348-349

static HTML files, 7
static libraries, 57-58, 495
static linking, 41
StaticLibrary builder, 205
steps, compilation sequences, 330-333
storage

code, 486
compilation tools, 400
components, 507
disks, 404, 549
source files, 174-175
version numbers, 407, 410-411

streams, managing code, 10
strings, processes, 109
subcomponents, multiple, 84
subtargets, 82

builds, 308-310
configuring, 84-86

Subversion, 329, 392
Summary field, 366
support

build machines, 418-421
CMake, 246-248
coverage, 340-341
debugging, 336-338
Eclipse, 265
metadata, 333
multiple

directories, 210
programs, 45
variants, 463-466
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operating systems, 422
profiles, 338-339
refactoring, 286

symbolic links, applying, 479
symbols

Eclipse, 285
naming, 478
punctuation, 114
QUICKADD, 242
TEST, 242

syntax
See also languages 
CMake, 239-240
Python, 204-205

system call tracing, 533
system-information flag, 260

T
tags

Javadoc, 279
version-control systems, 409

targets
adding, 242-243
Ant, 157
architectures, 84, 94-98
build, 29-31
cleaning, 315, 403
defining, 158-160
functions, 217
machines, 15-16
rules, 112
subtargets, 84-86, 308-310

target-specific build systems, generating, 
429

<taskdef> task, 173, 179
tasks

algorithms, 165
Ant, 164-168
<chmod>, 167
<copy>, 167-168
<depend>, 165-167
<exec>, 172
<java>, 172
<javac>, 165-167
<macrodef>, 172
<property>, 178
<taskdef>, 173, 179

teams, developing, 502-512
temporary holding directories, 

populating, 353
TEST symbol, 242
testArea() method, 346
testing, 4

components, 497-498
environments, 171
JUnit, 284
multiple variants, 463-464
source code, 247
units, 4, 7, 344-347, 501

TestRectangle class, 346
time stamps, 30

out-of-date files, 324-326
tofile attribute, 167
tokens, Tacc tool, 451
Tomcat (Apache), 284
toolchains, GCC, 49
tools

Ant, 156, 193-195
See also   Ant  

Apache Ivy, 284
Autoconf

C source files, 437-438
running, 434-435

Autoheader, 429, 434-435
Automake, 263-264
Bison, 450
build, 13-14

examples, 462-463
updating, 466-467

build machines, searching, 246
build-management, 19-20, 408
Ccache, 537
ccmake configuration, 250
CDT (C/C++ Development Tooling), 

299-301
Clearmake, 538
CMake, 236

See also   CMake 
command-line, 13
compilation, 5, 13-14, 46, 49-50

See also   compilation tools 
C#, 68
configuring, 469
defining, 179-183
dependencies provided, 318
Eclipse, 291-292
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hard-coding absolute paths,
397-399

Java, 61
SCons, 222-223
storage, 400
version management, 395-400
writing, 449-453

Cons, 232-233
custom-built GUI installation, 16,

373-388
CVS, 338
Eclipse, 265

See also   Eclipse 
ElectricAccelerator, 332, 547
FindBugs, 348
Flex, 450
GNU

Autoconf, 427-438
Make, 26
Profiler, 338

java command-line, 179
Javadoc, 341
jmake, 539-542
Lex, 450-453
Make, 87, 98-108

See also   Make tool 
makedepend, 517-519
management, 439

rules, 442-449
writing compilation tools, 449-453

mathcomp, 179, 222, 291
MSBuild, 194-195
NAnt, 194
NSIS (Nullsoft Scriptable Install 

System), 374-375
optimization, 529
package-management, 16, 359-373
parallelism, 546-547
paths to, 426
performance measurements, 531-534
Qmake, 264
Rake, 233-235
rules

binaries, 445-448
documentation, 442-443
upgrading, 444-445
version control for source code, 

443-444

SCons, 196
See also   SCons 

static analysis, 4, 8-9, 29, 336, 348
vendor support for operating systems, 

422
versions

GNU, 427
references to, 475
version-control, 5, 10-11, 403
See also   versions 

Yacc, 450-453
zip utilities, 353

toolsets, centralized development 
environments, 416

trace flag, 260
tracing system calls, 533
translation

from CMakeLists.txt to native build 
systems, 252-254

Java source files, 63
trees

build
cleaning, 188, 226, 468
monitoring growth of, 550

objects, 5, 11-12, 82, 96-98
source, 11-12, 19, 24, 82

configuration, 401-402, 406
dividing, 84
Eclipse, 274-276
generating files, 402-404

triggers
builders triggering when they 

shouldn’t, 228
builds not triggering when they should, 

227
troubleshooting

See also errors 
autogenerated files, 403
build machines, 417
compilation, 277, 398
dependencies, 310-315
monolithic builds, 486-488
open-source development 

environments, 425
performance, 534-535

try_compile command, 248
types

of compilation, 14-15
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of CPU (central processing unit) 
validation, 361

of files, 7, 46, 76-82
of makeshift rules, 110-112
of projects, selecting, 270-272

U
UML (Unified Modeling Language),

13, 77
undefined symbol errors, 311
Unified Modeling Language ( UML),

13, 77
uninstallation, automating, 361
uninstaller.exe program, 387
units, testing, 4, 7, 344-347, 501
UNIX, 48, 69

build machines, 417
commands, 26, 50
package-management tools, 359

unwanted dependencies 
excess rebuilding, 312
failed dependency analysis, 312-313

updating
build tools, 466-467
cached command-line arguments,

320-322
version numbers, 407-410

upgrading
RPM Package Manger format, 352
tools, 444-445

URL field, 366
usage, reducing disk, 548-551
users, reducing complexity for, 453
utilities. See tools 

V
validation

build machines changes, 422
CPUs (central processing units), 361
input parameters, 470-471
releases, 511-512

variables
built-in, 114
caches, 259
CMAKE_AR, CMAKE_C_

COMPILER, 251

CMAKE_BUILD_TYPE, 251
CMAKE_C_FLAGS_*, 252
CMAKE_EXE_LINKER_FLAGS_*,

252
CMAKE_LINKER, 251
construction, 208
environments, 472-473
import_nodes, 223
makefiles, 112-114
$PATH environment, hard-coding, 

399-400
SRCS, 29

variants
build, 82, 87-90
installation, 93
multiple

avoiding in source code, 465
building with, 183-188, 224-226
support, 463-466
testing, 463-464

packaging, 93
runtime, 93
target architectures, 94-98

variations
code, 90-93
hardware, 86
line-by-line, 90

Vendor field, 366
vendors, support for operating systems, 

422
Version field, 365
versions

binary files, tools, 445-448
build machines, 421
build-management, scripts, 405-406
components

adding, 507
expiration, 508

management, 20, 389
build description files, 393-395
compilation tools, 395-400
large binary files, 400-401
numbering, 406-411
source files, 392-402
source tree configurations, 401-402,

406
storing numbers, 410-411

reference tools, 475
source code management, 443-444
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tools
GNU, 427
open-source development 

environments, 425
version-control tools, 5, 10-11

viewing
exact commands executed, 474
old versions, 10

views
console, 274
outline, 273
Package Explorer, 273
Project Explorer, 269, 289
runtime view of programs, 33, 36-40

Visual Studio, native compilation, 414
VMs (virtual machines), 423
vsnprintf function, 248

W
wall clock time, 532
warnings

compilers, 280
handling, 279
reports, 396

web-based applications, 6-7
web-centric files, 77
windows

Edit JRE, 279
editor, 273
Java Build Path, 274, 290
JUnit, 284, 346
Outline, 287
Problems, 277
Run Configurations, 283, 294
workbench, Eclipse, 272-274

Windows (Microsoft) 
object trees, 11-12
source trees, 11-12

words function, 117
workbench window, Eclipse, 272-274
workflow, high-level, GNU Autoconf 

tool, 428-430
WriteInstaller command, 383

writing
build description files, 246
compilation tools, 449-453
normal Python functions, 215
source code scanners, 218

X
XML (Extensible Markup Language) 

configuration files, 81

Y
Yacc tool, 450-453

Z
zip utilities, 353
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