
www.allitebooks.com

http://www.allitebooks.org

Source SDK Game
Development Essentials

Develop engaging and immersive mods with
Source SDK

Brett Bernier

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Source SDK Game Development Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1140214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-592-3

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Brett Bernier

Reviewers
Dennis Glowacki

Tim Kitevski

Kyle Langley

Kenny Sperling

Mike Taret

Acquisition Editors
Antony Lowe

Meeta Rajani

Content Development Editor
Madhuja Chaudhari

Technical Editors
Mario D'Souza

Venu Manthena

Shruti Rawool

Nachiket Vartak

Copy Editors
Brandt D'Mello

Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Maria Gould

Indexer
Mariammal Chettiyar

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Brett Bernier has been a creator since he could hold a LEGO brick and a gamer
since he was old enough to hold a controller. After his father introduced him to
First-Person Shooters, it didn't take long for him to want to create his own world.
A lunch time discussion with Chris, his childhood friend and band mate, inspired
him to take action and download Valve's Hammer 3.4 to create a Counter-Strike
map. While looking for mapping tips online, he stumbled across a small, close-knit
community of Half-Life mappers at The Whole Half-Life (TWHL). Brett, also known
as Tetsu0, quickly honed his skills with the help of the community's tutorials and
forums. When the Source SDK launched with Half-Life 2, he was hesitant to make
the jump from GoldSource (Half-Life) to Source (Half-Life 2), but once made, he
did not look back. He is currently employed as a Control System Technician at
ETTER Engineering in Bristol, Connecticut, and is pursuing his Bachelor's Degree
in Electronics Engineering Technology at the University of Hartford. He has been
creating maps for the Half-Life game series since 2002.

I would like to thank my entire family for all their love and support;
I love each and every one of you with all my heart. Court, thank
you for the encouragement and free refills on those Sundays I spent
writing at the coffee shop. I would like to thank the members and
moderators of the Half-Life Mapping forum, twhl.info for creating
a welcoming, supportive community. You all have been a fantastic
source of inspiration, help, and support. Without you folks, this book
would not have been possible.

I'd also like to thank the fine people at Valve Software for supporting
the development community, and for granting permission to use
their materials in this book.

Unfortunately, during the writing of this book, a close member of
my family was taken away. I love and miss you Uncle Lou, this one
is for you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dennis Glowacki is a 3D environment artist at Emotional Robots Inc. and an
avid Source engine mod creator. He has released several projects including Strider
Mountain, The Citizen 2, and Hypercube: Source. He recently worked on another
book called How to Become a Video Game Artist, Sam R. Kennedy, Watson-Guptil,
(ISBN: 978-0-8230-0809-4).

I'd like to thank Phillip from PlanetPhillip.com for being a good friend, especially
during my Source engine development days and for continuing to support the
Source engine modding community. Anyone interested in playing the best Source
mods should check out his new website (RunThinkShootLive.com).

Tim Kitevski has for many years worked as a 3D artist within the video game
industry. Having worked on various titles ranging from First-Person Shooters to
Flight Simulators to Mining Equipment Training, his first steps within this field were
with the first Half-Life and its main editing suite, back then known as WorldCraft.
Since then he has had a keen interest in the ever-evolving Source engine produced by
Valve software. He has spent many years using the Source SDK and its tools for both
individual projects and group modding. In doing so, he gained a solid foundation of
knowledge when developing the Source engine.

Kyle Langley is a self-taught game designer currently working for Emotional
Robots Inc. He has also worked on Free Realms with Sony Online Entertainment
and Transformers: Fall of Cybertron with High Moon Studios. He is the author
of Learn Programming With Unreal Script, CreateSpace Independent Publishing Platform,
which is aimed at teaching beginners the concepts of object-oriented programming
as well as the beginning aspects of programming for the Unreal Development Kit.
You can find more of his work at his website (www.dotvawxgames.com).

www.allitebooks.com

http://www.allitebooks.org

Kenny Sperling is an environmental designer with a passion for interaction
and exploration. With experience in both conventional and contemporary design,
he develops levels for games as well as real-world landscapes. His design process
includes a strong understanding of how people interact with their environments,
a drive to pursue sophisticated technical strategies, and a conviction to seek out
atypical design solutions.

Kenny has designed several award-winning environmental concepts, and has
consistently been active in community content development for numerous games,
including Counter-Strike (CS:S/CS:GO).

Mike Taret is a passionate 3D artist currently residing in Chicago, USA; he also
lived for about 13 years in France. Also known as "Az", he has been modding Source
for seven years now, and is currently working on a mod called SourceForts 2 with
several other people across the world. He considers himself a 3D generalist with
his strongest skills focused around hard-surface modeling, texturing, and problem
solving. He has worked with many software and engines such as Source SDK, UDK,
Autodesk Maya, Autodesk 3ds Max, Photoshop, and a few others. You can find some
of his work at www.az3d.net.

I'd like to thank my parents for supporting me, Felipe G. Silveira for
being a great friend, and Matt Battaglia for pushing me to be what I
am now.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with the Source SDK 7

Installing Steam 7
Getting your tools 8

Instructions for installing Half-Life 2: Episode Two 8
The Source SDK tools overview 10
The Source SDK 10

Installing the Source SDK 10
The Source SDK overview 11

Applications 12
Documentation 12
Utilities 13
Links 13

Creating your own modification (mod) 13
Summary 16

Chapter 2: Grasping Hammer 17
Terminology 17

Brush 17
Entity 19
World 20
Void 20
Settings 20

Loading Hammer for the first time 20
The Hammer overview 22

Viewports 22
The Map toolbar 25

The Selection Tool 25
The Magnify Tool 25
The Camera Tool 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The Entity Tool 25
The Block Tool 26
The Texture Tool 26
The Apply Current Texture Tool 26
The Decal Tool 26
The Overlay Tool 26
The Clipping Tool 26
The Vertex manipulation Tool 26

The selection mode bar 27
The texture bar 27
The filter control bar 27
The object bar 28

Navigating in 3D 29
Looking around 29
Multiple cameras 30
Selecting objects in the 3D viewport 30

Navigating in 2D 31
Moving around 32
Selecting objects in 2D 33
The grid 34

VisGroups 34
Summary 36

Chapter 3: Shaping Your World 37
Creating your first room 37
A crash course on compiling 39
Basic brushwork techniques 42

Cloning brushes 43
Scaling brushes and objects 43
Rotating brushes and objects 44
Skewing brushes and objects 46
Flipping objects 48

The Vertex Tool 48
Splitting faces 50

The Clipping Tool 52
The Carve function 54
Another window method 57
The Object Toolbar 57

Creating cylinders 58
Creating spikes 60
Truncated cones 60

Table of Contents

[iii]

Creating a sphere 61
Creating arches 62

Standard arch 63
Hollow cylinders 64
Spiral staircase 64

Creating a torus 66
Cross Section Preview 67
Top View Preview 67
Springs 67

Creating SkyBoxes 68
2D SkyBox 68

Adding light_environment 70
Changing the SkyBox texture 71
3D Skybox 72

Summary 76
Chapter 4: Textures, Terrain, and Props 77

Using the Texture Application Tool 77
Applying textures 78
Aligning textures 82
Shifting and rotating textures 84

Saving time while aligning textures 86
Using different selection modes 87
Shifting textures 87
Locking textures 87
Locking the texture scale 88

Applying decals 88
Applying overlays 90
Creating terrain with displacements 91

Creating a displacement 92
Using the Paint Geometry tool 94
Using the Smooth tool 96
Modifying the displacement options 97
Using the Raise To option 97
Using the Paint Alpha tool 98
Sewing 99
Subdividing 100
Creating caves quickly 101
Sculpting 102
Carving 105

Creating props 106
Creating static props 106

Table of Contents

[iv]

Creating physics props 108
Creating dynamic props 109

Summary 110
Chapter 5: Importing Custom Content 111

Creating materials 111
Setup 112
Creating a VTF file 112
Creating a VMT file 114

Using VTFEdit 116
Importing other materials 120
Importing models 120
Importing sounds 120
Summary 121

Chapter 6: Lighting and Compiling 123
Using lights 123

Using point lights 124
Using spot lights 128
Using light environments 130
Using dynamic lights 131
Using texture lights 133
Using projected textures 135

Emphasizing lights 137
Placing point light sources 137
Placing spot light sources 139

Modifying Lightmap Grid 140
Assigning Smoothing groups 142
Compiling concepts 143

Checking for problems 144
Running BSP 145
Running VIS 146
RAD 148
Compiling with HDR 150
The Expert mode 151
Checking for and fixing leaks 152

Cubemaps 154
Adding color correction 155
Summary 158

Table of Contents

[v]

Chapter 7: Triggers and the Input/Output System 159
Creating your first trigger 159

Creating a trigger once entity 160
Adding outputs to a trigger once 163
Creating a trigger multiple 164

Input/Output links 165
Cascading triggers 167
Automatic triggers 168
Modifying entity effects 169
Using different flags 171

Using filters 172
The filter activator name 174
The filter multi entity 175

Creating subroutines 175
Summary 176

Chapter 8: Trains and Camera Systems 177
Track trains 177

Player-controlled track trains 178
Creating the func_tracktrain entity 178
Creating the path 179
Tying the track train to the path 180
The controls 181

Adding detail 182
Branch paths 182
Controlling entities with GameUI 183

Point camera 184
Multiple cameras 187
Panning the camera 187

Point_viewcontrol 188
The camera 189
The camera path 191
Tying it all together 192

Summary 193
Chapter 9: NPC Movement Basics 195

Using the Model Viewer 195
Unpacking models 196
Loading a model 197
Model manipulation 198
Viewing animations 200

Table of Contents

[vi]

Making NPCs walk 202
Simple NPC movement 202
Controlled NPC movement 204

The aiscripted_schedule properties 205
Triggering the schedule 206

Scripted sequences 206
Choosing your animation 207
Combining sequences 209

Actbusy 212
Creating the actbusy.txt file 212
Making it work 214

Summary 216
Chapter 10: Advanced NPC Scripting 217

Using nodes 217
Using info nodes 218
Using hint nodes 221

Scripting assaults 224
Setting up an assault 226

Placing the assault point 227
Placing rally points 228
Placing assault goals 229

Creating squads 232
Your first squad 232
Scripting a flank 233

Creating a schedule and a path 234
Math counter 235
Setting up our soldiers 236

Summary 237
Chapter 11: Source Particle Editor 239

Accessing the tools menu 239
Using Particle Editor 240

Creating a fire particle 242
Creating particles 242

Using Emitter 243
Using Renderer 244
Using Initializer 245
Operator 246

Particles manifest 250
Master manifest 250
The map-specific manifest 251
The info particle system 252

Table of Contents

[vii]

Particle children 253
Modifying existing particle systems 253

Making fireworks 255
Creating the explosion 256
Simulating gravity 257
Fading and other properties 258
A parenting example 259

Setting up the shell 260
Launching the shell 260
Stabilizing the shell 261
Setting up the particle 261
Adding sound effects 262
Tying everything together 262

Results 264
Summary 265

Index 267

Preface
Source SDK Development Essentials outlines the essential knowledge one needs to
create maps and scripts for games using Valve's Source Engine. Valve, the videogame
company behind Source, releases a Software Development Kit (SDK) with each game
they produce. Counter-Strike: Source, Counter-Strike: Global Offensive, and Team
Fortress 2 might be household names for some gamers, and the maps in those games
were created with the Source SDK. Valve also released the Source SDK base for free in
2012, so anyone can download it and start creating for free.

This book is a walkthrough of the steps required to start producing professional
environments and scripts. Because it's the same set of tools the professionals use, you
can get the same professional results! This book is meant for gamers who want to get
more out of their game, get their ideas down in 3D, and do it all without the need for
any coding knowledge.

What this book covers
Chapter 1, Getting Started with the Source SDK, serves to get you situated with the tools
and introduces you to Steam, the SDK, and Mod creation.

Chapter 2, Grasping Hammer, is where you will spend most of your development time.
This chapter will introduce you to your new tools, and teach you how to navigate in
2D and 3D spaces.

Chapter 3, Shaping Your World, teaches you how to create and modify brushes while
introducing you to some key terminology. The brush is the basic building block of
any source level.

Chapter 4, Textures, Terrain, and Props, teaches you how to detail your world by
adding textures to brushes, creating flowing terrain, and placing prop models.

Preface

[2]

Chapter 5, Importing Custom Content, teaches you how to create your own textures and
import custom content. Lots of mods and maps have their own custom content.

Chapter 6, Lighting and Compiling, teaches you how to bring light to your creations.
It also covers compiling concepts and error checking.

Chapter 7, Triggers and the Input/Output System, teaches you how to master this
system. The Input/Output system is the heart and soul of Source's scripts.

Chapter 8, Trains and Camera Systems, brings life to stationary objects. It also teaches
you how to use different types of cameras.

Chapter 9, NPC Movement Basics, teaches you what it takes to get Non-Playable
Characters (NPCs) moving in this chapter. NPCs play a huge role in storytelling
and immersion.

Chapter 10, Advanced NPC Scripting, teaches you how to create squads and control
NPCs on a more macroscopic scale.

Chapter 11, Source Particle Editor, teaches you the ins and outs of Source's powerful
particle editor. Particles play a key role making believable special effects.

What you need for this book
You will need Steam, a high speed internet connection, and just some time. In order
to get the most out of this book, you'll want to purchase a copy of one of Valve's
Half-Life 2 games, as this book focuses on scripts and development for Half-Life 2:
Episode Two. It's not necessary to purchase a game; however, you can create a mod
for free with the Source SDK and create your own game from scratch.

Who this book is for
If you are a gamer who wants to make your own games, levels, or mods, for any
game using the Source engine, this book is ideal for you. You do not need to know
any special programming languages in order to jump in and start creating!

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The mapsrc folder is where all your maps should be saved."

A block of code is set as follows:

"LightmappedGeneric"
{
 "$basetexture" "mytextures/texture01"
 "$surfaceprop" "wood"
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "click on
the Install Steam button in the top-right corner of the web page".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/5923OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
the Source SDK

The Source SDK is a collection of software used to create custom content for games
made with Valve's Source engine. Also known as authoring tools, the Source SDK
contains all the tools you need to start creating your own levels. In order to get
started with the Source SDK, you first need to get a hold of Steam. Steam is Valve's
entertainment platform that allows its users to download and play a multitude of
different games.

In this chapter, we will cover the following topics:

• Downloading and installing Steam
• Gaining access to the SDK
• Glancing at the tools
• Creating your own modification (mod) with the Source SDK

So, let's get started!

Installing Steam
You might ask yourself what is Steam, and why do I need it? First and foremost,
the only way to gain access to the Source SDK is by downloading the SDK or a
Valve game that uses the Source engine. All of Valve's Source engine games are
downloaded and managed with a program called Steam. Steam lets you purchase,
organize, and update thousands of games, and it's completely free.

Getting Started with the Source SDK

[8]

In order to download and install Steam, you need to visit store.steampowered.com,
and click on the Install Steam button in the top-right corner of the web page,
as shown in the following screenshot:

This will redirect you to another page where you can download the actual
installation file. After you have downloaded and installed Steam, you need to log in
or create a new user account if you do not already have one. All you need is a valid
e-mail address in order to create a new Steam account.

Getting your tools
Great! You have installed Steam. Now what? There are a multitude of games that run
on the Source engine. There are also many different versions of the Source engine:
2006, 2007, 2013, and multiplayer and single player variants for each. This book will
focus on Half-Life 2: Episode Two (HL2: EP2) since it's the most recent single player
build of the Source engine at the time of writing this book. In order to create content
for HL2: EP2, you just need to own a copy of the game. Steam makes it easy to install
games. So, if you haven't already, purchase and install HL2: EP2.

You don't need HL2: EP2 to follow this book. The principles
taught cover the Source SDK tools, which are applicable to
multiple games.

Instructions for installing Half-Life 2:
Episode Two
Downloading and installing games with Steam is easy! Steam lets you securely
purchase any game and will automatically install them once downloaded. The steps
for installing Half-Life 2: Episode Two are as follows:

1. Open Steam and log in.
2. In Steam, just below the main toolbar, you will see STORE, LIBRARY,

COMMUNITY, and your username in a large white font. Click on STORE.

Chapter 1

[9]

3. Search for Half-Life 2: Episode Two, purchase it, and install it.
4. You can monitor the download progress within the Downloads tab in the

LIBRARY drop-down menu. HL2: EP2 will begin to install automatically
once the download is complete.

The STORE is located in the top-left corner of Steam as shown in the following
screenshot:

Browse for Half-Life 2: Episode Two as shown in the following screenshot. You
can also get any other Source game.

Once the download and install is complete, launch the game and play around with
the engine you will be developing for, as shown in the following screenshot:

Getting Started with the Source SDK

[10]

The Source SDK tools overview
All the SDK tools come with the game, so you don't need to install anything extra.
(This also means you don't need to wait for something else to download!) The tools
are located in the Steam\steamapps\common\Half-Life 2\bin folder. The folder
is packed with applications, batch files, and DLLs, but there are a few key programs
that we're interested in right now. In the bin folder, you will see Hammer, HLMV,
and HLFacePoser. Hammer Editor is the tool you will most likely use; it is the
application that you use to actually create the levels (maps). HLMV or Half-Life
Model Viewer is a tool you can use to inspect game models in detail. HLFacePoser
is used to sync lips to speech, and create custom scenes and NPC interactions.

At the time of writing this book, FacePoser is broken—this will
not be covered.

The Source SDK
Half-Life 2: Episode Two ships with its own set of authoring tools, but if you want to
make your own mod, you need the Source SDK. The Source SDK is a program that
organizes all the authoring tools for specific mods and engine builds and has the
ability to automatically create a mod based on the code from Half-Life 2: Episode Two.
If you want to create your own mod, you will need to grab the Source SDK.

Installing the Source SDK
Installing the Source SDK is just as easy as any regular game. The best part is its
price: free! The steps for installing the Source SDK are as follows:

1. In the top-left corner of the games library, select the dropdown that says All
Games and select Tools.

2. Find the Source SDK in the list of Tools.
3. Right-click on Source SDK and select Install game, or just double-click to

begin the download process.

Chapter 1

[11]

4. You can monitor the download progress within the Downloads tab in the
LIBRARY. The Source SDK will begin to install automatically once the
download is complete.

The Source SDK overview
When you first launch the Source SDK, it will need a minute or so to copy files and
complete the install, but once that is complete, you're ready to go! You will notice
that the Source SDK contains a variety of tools, documents, and links. At the very
bottom are two fields labeled Engine Version and Current Game. Engine Version is
used to select which version of the Source engine you would like to develop for.

Getting Started with the Source SDK

[12]

The later engine versions have more features and graphics upgrades compared
to the earlier versions. There is also the Source Engine MP option, which lets you
create maps for Valve's multiplayer games such as Counter-Strike: Source and Team
Fortress 2.

Applications
In the APPLICATIONS list, you will see Hammer Editor, Model Viewer, Face
Poser, and itemtest. Hey, doesn't this look like the set of authoring tools we had for
HL2: EP2? It is, with the exception of itemtest that allows you to look into details
about specific games items such as the items available in Team Fortress 2.

Documentation
In the DOCUMENTATION list, you will see Release Notes and SDK Reference
Docs. The Release Notes option will link you to the Valve Developer Community
website that describes the changes made to the current version of the Source SDK.
SDK Reference Docs will link you to the Valve Developer Community website's
collection of notes about every aspect of the Source SDK.

Chapter 1

[13]

Utilities
In the UTILITIES list, you will see Create a Mod, Refresh SDK Content, Reset
Game Configurations, and Edit Game Configurations. Create a Mod will open a
wizard that allows you to create your own modification, or mod, for a certain Source
game. Refresh SDK Content will refresh all the game content in the event that the
Source SDK is not functioning properly. Reset Game Configurations will return all
games to their default configurations. Edit Game Configurations will allow you to
modify the path of any game you want.

Links
In the LINKS list, you will see Valve Developer Community and Softimage|XSI
Mod Tool. Valve Developer Community will link you to the main page of Valve
Developer Community. Softimage|XSI Mod Tool will link you to an Autodesk
website where you can download a free version of character modeling and
animation software that is compatible with the Source engine.

Creating your own modification (mod)
So you have this amazing idea for a video game and want to create your own mod.
You want to include lasers and Samurai, and you want to make a fast-paced,
WWII-era, team-based shoot-em-up game called Samurai Laser Paratroopers. Well,
guess what—the Source engine can do this, and the Source SDK makes the mod
setup easy! In this example, we will be creating a multiplayer Mod for the 2007
Source engine from a template:

1. To create your very own Half-Life 2 mod, double-click on the Create a
Mod utility.

2. Select the Start a Multiplayer mod from a Template radio button on the first
prompt of the Create a Mod wizard and then click on Next.

3. In the first entry, specify the drive directory location where you want your
game to be stored. I chose C:\SLP\ for easy access. In the second entry,
specify the name of the mod you want to create, and click on Next to continue.

4. Choose the options you want available in your mod.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with the Source SDK

[14]

5. The wizard will then copy all the necessary files into the directory you
have specified.

The instructions are pretty straightforward. Choose carefully when you select the
options shown in the following screenshot; they're harder to change later on:

Have patience, we're almost done!

Chapter 1

[15]

Now, let's take a look at the folders the wizard has created. There are four folders in
your new mod's folder (shown here as C:\SLP). Three of those folders have suffixes
of "src" as shown in the following screenshot:

The mapsrc folder is where all your maps should be saved (although you can always
save your maps elsewhere). All texture and material files go into the materialsrc
folder, while all models should be saved in the modelsrc folder. The code generated
specifically for your mod is saved in the src folder. Utilizing these folders to store all
your source materials will make your life easier later on.

Restart Steam and check out your library of games. Your new mod is in there!

Getting Started with the Source SDK

[16]

Also take a look at the Source SDK; your mod will be listed as one of the games in
the engine build you selected, as shown in the following screenshot:

When you create a mod with the Source SDK wizard, it creates a barebones game.
You will need to dive into the game code to make your mod what you want it to be.
This book does not cover custom code, but it's still relevant for mapping techniques
for your custom mod.

Summary
Getting your hands on Steam is quick and easy. It is required to use the Source SDK
tools, and it is also useful for keeping your games and tools organized. Once Steam
is installed, downloading and installing Half-Life 2: Episode Two is a snap. Creating a
mod is a great way to begin developing your own game with the source engine base
code, but you still need to code to get what you want out of the game. Let's pick up
the Hammer and see what we can do!

Grasping Hammer
Now that you have everything installed, I bet you're itching to start creating! We're
not there yet because there are still some things to cover. This chapter serves to shed
some light on the mysteries of mapping.

In this chapter, we will cover the following topics:

• Learning some basic terminology
• Opening Hammer for the first time
• Navigating the 2D and 3D viewports
• Customizing your user interface
• Developing some basic organizational skills

Let us begin.

Terminology
In this book, I will be guiding you through many examples using Hammer. There are
a handful of terms that will recur many times that you will need to know. It might be
a good idea to bookmark this page, so you can flip back and refresh your memory.

Brush
A brush is a piece of world geometry created with block tool. Brushes make up the
basic building blocks of a map and must be convex. A convex object's faces cannot
see each other, while a concave object's faces can. Imagine if you're lying on the
pitched roof of a generic house. You wouldn't be able to see the other side of the
roof because the profile of the house is a convex pentagon. If you moved the point of
the roof down inside the house, you would be able to see the other side of the roof
because the profile would then be concave.

Grasping Hammer

[18]

This can be seen in the following screenshot:

Got it? Good. Don't think you're limited by this; you can always create convex shapes
out of more than one brush.

Since we're talking about houses, brushes are used to create the walls, floor, ceiling,
and roof. Brushes are usually geometrically very simple; upon creation, common
brushes have six faces and eight vertices like a cube.

The brushes are outlined in the following screenshot:

Not all brushes have six sides; however, the more advanced brushwork techniques
can create brushes that have (almost) as many sides as you want. You need to be
careful while making complex brushes with the more advanced tools though. This
is because it can be quite easy to make an invalid solid if you're not careful.

Chapter 2

[19]

An invalid solid will cause errors during compilation and will make your map
unplayable. A concave brush is an example of an invalid solid. World brushes are
completely static or unmoving. If you want your brushes to have a special function,
they need to be turned into entities.

Entity
An entity is anything in the game that has a special function. Entities come in two
flavors: brush-based and point-based. A brush-based entity, as you can probably
guess, is created from a brush. A sliding door or a platform lift are examples of
brush-based entities. Point-based entities, on the other hand, are created in a point
in space with the entity tool. Lights, models, sounds, and script events are all
point-based entities. In the following figure, the models or props are highlighted:

Grasping Hammer

[20]

World
The world is everything inside of a map that you create. Brushes, lights, triggers,
sounds, models, and so on are all part of the world. They must all be contained
within a sealed map made out of world brushes.

A map must be completely sealed, but don't just enclose the whole
thing in a hollow box. Putting your map in a box will increase the
compile time and lower game performance because you're rendering
a whole lot of faces you don't need to.

Void
The void is nothing or everything that isn't the world. The world must be sealed off
from the void in order to function correctly when compiled and played in game.
Imagine the void as outer space or a vacuum. World brushes seal off the world
from the void. If there are any gaps in world brushes (or if there are any entities
floating in the void), this will create a leak, and the engine will not be able to discern
what the world is and what the void is. If a leak exists in your map, the engine will
not know what is supposed to be seen during the compile! The map will compile,
but performance-reducing side effects such as bland lighting and excess rendered
polygons will plague your map.

Settings
If at any point in your mapping experience, Hammer doesn't seem to be operating
the way you want it to be, go to Tools | Options, and see if there's any preferences
you would like to change. You can customize general settings or options related to
the 2D and 3D views. If you're coming from another editor, perhaps there's a setting
that will make your Hammer experience similar to what you're used to.

Loading Hammer for the first time
You'll be opening Steam\steamapps\common\Half-Life 2\bin often, so you may
want to create a desktop shortcut for easier access. Run Hammer.bat from the bin
folder to launch Valve Hammer Editor, Valve's map (level) creator, so you can start
creating a map. Hammer will prompt you to choose a game configuration, so choose
which game you want to map for.

Chapter 2

[21]

I will be using Half-Life 2: Episode Two in the following examples:

When you first open up Hammer, you will see a blank gray screen surrounded by a
handful of menus, as shown in the following screenshot:

Like every other Microsoft Windows application, there is a main menu in the
top-left corner of the screen that lets you open, save, or create a document. As far as
Hammer is concerned, our documents are maps, and they are saved with the .vmf
file extension. So let's open the File menu and load an example map so we can poke
around a bit. Load the map titled Chapter2_Example.vmf.

Grasping Hammer

[22]

The Hammer overview
In this section, we will be learning to recognize the different areas of Hammer and
what they do. Being familiar with your environment is important!

Viewports
There are four main windows or viewports in Hammer, as shown in the
following screenshot:

By default, the top-left window is the 3D view or camera view. The top-right
window is the top (x/y) view, the bottom-right window is the side (x/z) view, and
the bottom-left window is the front (y/z) view. If you would like to change the
layout of the windows, simply click on the top-left corner of any window to change
what is displayed.

Chapter 2

[23]

In this book, I will be keeping the default layout but that does not mean you have to!
Set up Hammer any way you'd like. For instance, if you would prefer your 3D view
to be larger, grab the cross at the middle of the four screens and drag to extend
the areas.

www.allitebooks.com

http://www.allitebooks.org

Grasping Hammer

[24]

The 3D window has a few special 3D display types such as Ray-Traced Preview and
Lightmap Grid. We will be learning more about these later, but for now, just know
that 3D Ray-traced Preview simulates the way light is cast. It does not mimic what
you would actually see in-game, but it can be a good first step before compile to see
what your lighting may look like.

The 3D Lighting Preview will open in a new window and will update every time
a camera is moved or a light entity is changed. You cannot navigate directly in the
lighting preview window, so you will need to use the 2D cameras to change the
viewing perspective.

Some of the options might not be functional on certain Source
engine builds.

Chapter 2

[25]

The Map toolbar
Located to the left of the screen, the Map toolbar holds all the mapping tools. You
will probably use this toolbar the most. The tools will each be covered in depth later
on, but here's a basic overview, as shown in the following screenshot, starting from
the first tool:

The Selection Tool
The Selection Tool is pretty self-explanatory; use this tool to select objects. The hot
key for this is Shift + S. This is the tool that you will probably use the most. This tool
selects objects in the 3D and 2D views and also lets you drag selection boxes in the
2D views.

The Magnify Tool
The Magnify Tool will zoom in and out in any view. You could also just use the
mouse wheel if you have one or the + and – keys on the numerical keypad for
the 2D views. The hot key for the magnify tool is Shift + G.

The Camera Tool
The Camera Tool enables 3D view navigation and lets you place multiple different
cameras into the 2D views. Its hot key is Shift + C.

The Entity Tool
The Entity Tool places entities into the map. If clicked on the 3D view, an entity is
placed on the closest brush to the mouse cursor. If used in the 2D view, a crosshair
will appear noting the origin of the entity, and the Enter key will add it to the map
at the origin. The entity placed in the map is specified by the object bar. The hot key
is Shift + E.

Grasping Hammer

[26]

The Block Tool
The Block Tool creates brushes. Drag a box in any 2D view and hit the Enter key to
create a brush within the bounds of the box. The object bar specifies which type of
brush will be created. The default is box and the hot key for this is Shift + B.

The Texture Tool
The Texture Tool allows complete control over how you paint your brushes. For
now, just know where it is and what it does; the hot key is Shift + A.

The Apply Current Texture Tool
Clicking on the Apply Current Texture icon will apply the selected texture to the
selected brush or brushes.

The Decal Tool
The Decal Tool applies decals and little detail textures to brushes and the hot key
is Shift + D.

The Overlay Tool
The Overlay Tool is similar to the decal tool. However, overlays are a bit more
powerful than decals. Shift + O will be the hot key.

The Clipping Tool
The Clipping Tool lets you slice brushes into two or more pieces, and the hot key
is Shift + X.

The Vertex manipulation Tool
The Vertex manipulation Tool, or VM tool, allows you to move the individual
vertices and edges of brushes any way you like. This is one of the most powerful
tools you have in your toolkit! Using this tool improperly, however, is the easiest
way to corrupt your map and ruin your day. Not to worry though, we'll learn about
this in great detail later on. The hot key is Shift + V.

Chapter 2

[27]

The selection mode bar
The selection mode bar (located at the top-right corner by default) lets you choose
what you want to select. If Groups is selected, you will select an entire group of
objects (if they were previously grouped) when you click on something. The Objects
selection mode will only select individual objects within groups. Solids will only
select solid objects.

The texture bar
Located just beneath the selection mode toolbar, the texture bar, as shown, in the
following screenshot, shows a thumbnail preview of your currently selected (active)
texture and has two buttons that let you select or replace a texture. What a nifty
tool, eh?

The filter control bar
The filter control bar controls your VisGroups (short for visual groups). VisGroups
separate your map objects into different categories, similar to layers in the image
editing software.

Grasping Hammer

[28]

To make your mapping life a bit easier, you can toggle visibility of object groups. If,
for example, you're trying to sculpt some terrain but keep getting your view blocked
by tree models, you can just uncheck the Props box, as shown in the following
screenshot, to hide all the trees!

There are multiple automatically generated VisGroups such as entities, displacements,
and nodraws that you can easily filter through. Don't think you're limited to this
though; you can create your own VisGroup with any selection at any time.

The object bar
The object bar lets you control what type of brush you are creating with the brush
tool. This is also where you turn brushes into brush-based entities and create and
place prefabs, as shown in the following screenshot:

Chapter 2

[29]

Navigating in 3D
You will be spending most of your time in the main four windows, so now let's get
comfortable navigating in them, starting with the 3D viewport.

Looking around
Select the camera tool on the map tools bar. It's the third one down on the list and
looks like a red 35 mm camera.

Holding the left mouse button while in the 3D view will allow you to look around
from a stationary point. Holding the right mouse button will allow you to pan left,
right, up, and down in the 3D space. Holding both left and right mouse buttons
down together will allow you to move forward and backwards as well as pan left
and right. Scrolling the mouse wheel will move the camera forward and backwards.

Practice flying down the example map hallway. While looking down the hallway,
hold the right mouse button to rise up through the grate and see the top of the map.

If you would prefer another method of navigating in 3D, you can use the W, S,
A, and D keys to move around while the left mouse button is pressed. Just like
your normal FPS game, W moves forward in the direction of the camera, S moves
backwards, and A and D move left and right, respectively. You can also move the
mouse to look around while moving.

Being comfortable with the 3D view is necessary in order to become proficient in
creating and scripting 3D environments. As with everything, practice makes perfect,
so don't be discouraged if you find yourself hitting the wrong buttons.

Having the camera tool selected is not necessary to navigate in 3D. With any tool
selected, hold Space bar while the cursor is in the 3D window to activate the 3D
navigation mode. While holding Space bar, the navigation functions exactly as it
does as if the camera tool was selected. Releasing Space bar will restore normal
functionality to the currently selected tool. This can be a huge time saver down
the line when you're working on very technical object placements.

Grasping Hammer

[30]

Multiple cameras
If you find yourself bouncing around between different areas of the map, or even
changing angles near the same object, you can create multiple cameras and juggle
between them. With the camera tool selected, hold Shift and drag a line with the left
mouse button in any 2D viewport. The start of the line will be the camera origin, and
the end of the line will be the camera's target.

Whenever you create a new camera, the newly created camera becomes active and
displays its view in the 3D viewport. To cycle between cameras, press the Page Up
and Page Down buttons, or click on a camera in any 2D view. Camera locations are
stored in the map file when you save, so you don't have to worry about losing them
when you exit. Pressing the Delete key with a camera selected will remove the active
camera. If you delete the only camera, your view will snap to the origin (0, 0, 0) but
you will still be able to look around and create other cameras. In essence, you will
always have at least one camera in your map.

Selecting objects in the 3D viewport
To select an object in the 3D viewport, you must have the selection tool active, as
shown in the following screenshot. A quick way to activate the selection tool is
to hit the Esc key while any tool is selected, or use the Shift + S hot key.

Chapter 2

[31]

A selected brush or a group of brushes will be highlighted in red with yellow edges
as shown in the following screenshot:

To deselect anything within the 3D window, click on any other brush, or on the
background (void), or simply hit the Esc key. If you want to select an object behind
another object, press and hold the left mouse button on the front object. This will
cycle through all the objects that are located behind the cursor. You will be able to
see the selected objects changing in the 2D and 3D windows about once per second.
Simply release the mouse button to complete your selection.

To select multiple brushes or objects in the 3D window, hold Ctrl and left-click on
multiple brushes. Clicking on a selected object while Ctrl is held will deselect the
object. If you've made a mistake choosing objects, you can undo your selections
with Ctrl + Z or navigate to Edit | Undo.

Navigating in 2D
Navigating in 2D is a bit different than 3D. Each 2D window has scroll bars like any
webpage or text document, but there are some tips and tricks that can streamline
the process.

Grasping Hammer

[32]

Moving around
You can zoom in a 2D view by scrolling up the scroll wheel. Scrolling the scroll
wheel down will zoom out. If you do not have a scroll wheel on your mouse, the
magnify tool will be your best friend.

The magnify tool works just how you would expect it to: left-click to zoom in and
right-click to zoom out.

The + and – buttons on the keypad will also zoom in and out in
2D views if your cursor is inside one of them.

The minimum zoom (all the way out) is 0.01. The maximum zoom (all the way in) is
256. The current zoom amount is indicated in the bottom-right corner of the status
bar, as shown in the following screenshot:

Panning the view is as easy as holding the Space bar and dragging the screen around
with the left mouse button. You can also pan the view by using the up, down, left,
and right arrows on the keyboard or using the scroll bars located to the right and
bottom of each window.

Chapter 2

[33]

Selecting objects in 2D
Just like the 3D view, selecting a brush in 2D is as easy as left-clicking on the center
X, or one of the brush's edges. A selected object in the 2D view will be highlighted
in red and have a yellow dashed line as a bounding box.

Just like the 3D view, multiple objects can be selected by holding Ctrl and left-
clicking every object you want to select. Thankfully, the 2D view does not fall to
the same selection pitfall as the 3D window, and clicking the void with Ctrl pressed
will not deselect everything! Another way to select an object is to drag a selection
box around it. Left-click and drag a selection box around the brush. Make sure the
selection box surrounds the brush in at least two 2D views, and then hit Enter to
select everything inside of that box. Objects that intersect with the box area will also
be selected.

The bounding box you draw while clicking and dragging will
follow the grid resolution. To get a more accurate bounding box
for selecting objects, try decreasing the grid size with [, or hold Alt
to ignore the grid completely.

www.allitebooks.com

http://www.allitebooks.org

Grasping Hammer

[34]

The grid
The grid helps keep your brushes organized, and by default, objects snap to
it—meaning one or more edges will forced to be aligned to it. The grid size is based
on powers of 2 (1, 2, 4, 8, 16, 32, and so on), and ranges from 1 to 512. The main
gridlines are white, while the origin of the map (the 0, 0, 0 point) is highlighted in
green, and every 1024 units is highlighted in red. The default grid size is 64 units, but
you may change this any time. To increase the grid size, press the] key. To decrease
the grid size, press the [button. The size of the grid is indicated in the status bar at
the bottom-right corner of the screen. Working with a grid will ensure that objects
touch each other. If you're making the map boundaries without a grid and two
objects aren't touching, you could easily create a leak.

It's good practice to stay with a grid size of 4, 8, or 16 for most of your level
development. Only small details should be created with smaller grid sizes; once
you're done, return to a larger grid size.

VisGroups
A VisGroup is a group that contains different objects that can be toggled between
hidden and visible. These are useful for keeping your map organized and reducing
visual clutter.

Chapter 2

[35]

The VisGroups toolbar is located to the right of the four viewport windows. There
are two tabs available for organizing your VisGroups: User and Auto. The User
tab contains all the VisGroups that you create, while the Auto tab organizes all
the individual items into lists so you can activate and deactivate them whenever
you'd like.

With the example map loaded, turn of all VisGroups except for World Geometry
to see what the world is made of.

You should see something similar to the preceding screenshot. Note that on the
left-hand side, you can see the all the entities and special brushes. However,
on the right-hand side, you only see the floor, walls, and ceiling. If your map is
getting cluttered, try turning off some specific VisGroups to make your life easier.
VisGroups will affect the 2D view as well as the 3D view.

Grasping Hammer

[36]

If you would like to create your own VisGroup, select a group of objects and go
to View | Move Selection to Visgroup. Alternatively, you can hit the Move to
VisGroup button on the toolbar at the top of the screen. It looks like a cube with
red dotted lines (outlined in a red box in the following screenshot):

Summary
Navigating in all the viewports is simple once you get the hang of it, and it's vital to
be comfortable with your mapping environment if you want to create spectacular
maps. In the 3D view, you can use only the mouse, the mouse and Space bar, or the
left mouse button and W, S, A, and D controls to get around. The 2D viewports can
be easily navigated using a combination of mouse wheel zoom, Space bar and the
left mouse button panning. Selecting objects is as simple as clicking on them in either
view, and if you want to keep your map organized, VisGroups are the way to do it!
The next chapter puts these tools to use. So now that you know how to get around,
let's start creating!

Shaping Your World
Now that you're comfortable with getting around in Hammer, let's dive into the
actual world creation. In this chapter, you will learn:

• Creating a house with world brushes
• Performing a test compile to view your work in the game
• Using the following tools:

 ° Clipping Tool
 ° Carve
 ° Vertex Tool

• Using the object bar
• Creating a 3D SkyBox

Let us begin.

Creating your first room
The easiest way to get started with mapping is to dive right in and start! We know
now that the most important thing about making a map with the Source engine
is that we must completely seal of the world from the void. The easiest way to
accomplish this is by starting with a hollow cube.

Shaping Your World

[38]

Select the Block Tool, and in the Top 2D viewport, drag out a box that is 1024 x 1024
units. In another 2D viewport (side or front), stretch the box so it is 1024 units tall
and then press Enter to create a brush with those dimensions.

Congratulations! You have made your first brush. It will be textured with the
currently selected texture.

Right now we have a solid cube. Let's make it hollow so that we can build inside it
and use it to seal our map. Select your brush (if it isn't selected already) and navigate
to Tools | Make Hollow.

The Hollow Tool, as you would have guessed already, allows you to hollow out
a brush. The tool will create walls with a specified depth inside the cube. So if you
started with a 1024 x 1024 x 1024 cube and hollowed it out, the internal dimensions
will be less than 1024 x 1024 x 1024. If you make the numbers negative, the internal
dimensions stay the same while the walls expand outside the box. In this example,
let's expand the walls outside so that the inside remains a 1024 unit box. Type in a
negative value, such as -32, and click on OK.

Chapter 3

[39]

We now have a hollow box! Anything we place inside this box is going to be a part of
this world. I know you're probably excited to jump in and play around in your map,
so why don't we do a quick test compilation before we go any further?

A crash course on compiling
Every map needs three things in order to compile and play properly. They are:

• A sealed-off world for the player to move around
• A player start entity that defines where you start
• Light entities so we can see the world

We have already created a hollow cube, so we have the sealed-off world part
covered. Now, we just need a player_start entity and a light entity. Both of these
entities are point entities and are created with the Entity Tool. Grab your Entity Tool
from the Maptools bar (the knob icon between the Camera Tool and Block Tool).

Shaping Your World

[40]

In the 3D view, left-click on any two random spots on the floor. This will create
two copies of the default point entity at those points. With the Selection Tool,
double-click on (or select it and press Alt+Enter) one of the entities you have just
created to access the Object Properties. In the Class field, type info_player_start
and hit the Apply button.

It might be pretty obvious, but the player will spawn at this location when the map
starts. This map still needs a light. With the properties window still open, click on the
other entity you have placed to bring up its properties. Turn this entity into a light
by finding light in the dropdown, or by typing light. Again, hit Apply to save your
changes and then close the Object Properties window. Move the light about 128
units above the middle of the floor in order to adequately light the room. We have
now finished creating everything that a map needs to run! Unfortunately, we can't
just open the map in Half-Life2 and run around, it needs to be compiled first. Hit F9,
or click the compile icon in the top toolbar in order to build the map and prepare it
for in-game use.

If you have not already saved your map, Hammer will prompt you to enter a
filename for the map and a disk location to save your map onto.

Chapter 3

[41]

Do not use spaces in your filenames. We can use the underscore
(_) instead.

After saving (or if you have saved already), the compile window will appear.
Let's just do a quick compile so Run BSP under Normal, and Run VIS and Run
RAD under Fast. Disable HDR if it is enabled and check Don't run the game after
compiling. It's easy to forget if you already have HL2.exe running and you will get
an error if you try to launch the game while it's already running. When you click on
OK, a console window will appear and the build programs will display the current
compilation progress.

Once the compile finishes, launch your game (Half-Life2: Episode 2 in my case)
and open the command console with the tilde (~) key. Type in the command map
mapname and press Enter to run your map. If, for example, your map is called
my_map, type map my_map and then press Enter.

Shaping Your World

[42]

If you can't open the developer console, it hasn't been enabled yet.
To enable it, navigate to Options | Keyboard | Advanced | Enable
Developer Console.

Congratulations! You have built and played around your very first Source map! Six
walls with a simple light source can get boring pretty fast, so let's see what else we
can do.

If you would like to keep Half-Life 2 running while you develop,
you need to at least exit your map. When you're ready to get back to
mapping, type disconnect into the console to exit the map without
closing Half-Life 2. If you compile the map when it's still open in
Half-Life 2, weird things will happen and you will likely need to
restart the game to get things back to normal.

Basic brushwork techniques
You've learned how to hollow out a cube, but that was just to whet your appetite.
Let's create a little building in the center of our cube and learn some basic techniques
along the way.

Chapter 3

[43]

Cloning brushes
Let's make some walls for our building. Instead of using the Block Tool to specify
an area, we can save some time and just copy and scale an existing brush to create
another wall. We're going to select one of the walls of the cube we have just made.
You'll notice that when you select one of the walls, all of them are selected. This
is because when the Hollow Tool is used, it automatically groups the brushes it
creates. To ungroup a group, you can click on the ungroup button in the top toolbar,
or use the keyboard shortcut Ctrl + U.

Conversely, if you would like to group objects, click on the group button located to
the left of the ungroup button, or you can use the keyboard shortcut Ctrl + G.

Now that our six walls are not grouped, you can select any individual wall. Select
a vertical wall and while holding Shift, left-click on the wall and drag it to create a
copy. If you release Shift too soon, the wall will just move and not copy, so make sure
to release Shift only after you let go of the left-click mouse button.

Cloning brushes is the fastest and easiest way to create copies of
objects. The good-old copy paste method works as well, but using
this technique will save you lots of time in the long run.

Scaling brushes and objects
You'll notice that when you have a brush selected, there are eight white boxes next
to the brush. These white boxes are called handles and they allow you to manipulate
the brush based on which selection mode is active. The Scaling mode is the default
manipulation mode when any object is selected. In the Scaling mode, the corner
handles allow you to scale, or stretch, a brush in two dimensions. The handles in
the middle of an edge allow you to scale in one direction, perpendicular to the edge.
So if a handle next to a vertical edge is selected, you will be able to scale a brush
horizontally; and a horizontal edge handle allows vertical Scaling.

Select the brush you just copied, and in the front 2D viewport, scale it down to 128
units high and 8 units wide with the bottom of the brush touching the floor.

Remember to change your grid size. The grid size increases with]
and decreases with [.

www.allitebooks.com

http://www.allitebooks.org

Shaping Your World

[44]

In the Half-Life 2 World, 128 units is the average wall height and 8 units thick is an
acceptable wall thickness.

In the top or side view, stretch the brush so it's 512 units long. This is one of the long
walls in our building. Now in the front viewport, Shift + copy the brush 256 units to
the left to create two parallel walls that are 512 units long and 256 units apart.

Rotating brushes and objects
To make the connecting walls of our building, we could clone and then scale them,
but let's learn how to rotate objects. Make another copy of a brush, and while it is
still selected, left-click on it to change the manipulation mode. The eight box handles
will change to four hollow circle handles located at the corners. This means you are
in the rotate mode.

Chapter 3

[45]

This can be seen in the following screenshot:

In the top view, rotate the brush by 90 degrees.

By default, Hammer is set up to snap up to 15 degree angles. If you
would like more accuracy when rotating, hold the Alt key to disable
the auto-snap function. The auto-snap amount can also be changed in
the Hammer settings.
Keep in mind that the vertices of rotated objects will probably not align
to the grid. You could end up with a leak if you use rotated brushes for
world-sealing brushes.

Shaping Your World

[46]

Now left-click on the brush until you're back in the Scale mode, (left-click twice or
until the eight box handles appear) and scale the brush to fit inside our long walls.
Place one wall at one end of the long walls, and clone that wall to the opposite side.
Voila! You have now created four standard-issue walls. Your viewports should look
something like the following:

Skewing brushes and objects
No building is complete without a functioning roof. We could just throw a flat slab
on top of the four walls and call it a day, but what's the fun in that? Let's create a
classic pitched or slanted roof. In the front view, clone one of the long walls up,
rotate it by 90 degrees, and scale it to make it half the width of the house. Align the
bottom-right corner of the roof segment to the top-right edge of the house as seen in
the following screenshot:

Chapter 3

[47]

Now click on the object until four white handles appear on the sides of the brush.
This brush is now in the Skew mode. Skewing an object moves a face parallel to its
orientation and will turn a rectangle into a parallelogram. In the following example,
the brush on the left was copied to the right and then the top edge was skewed to
the right:

Skew the flat roof segment up from the left handle until the total height is around
100 units.

The skew tool does not always snap the vertices to the current grid
unit. This can cause off-grid vertices and might cause a leak! If this
happens, clean up the corners using the Vertex Tool. Sometimes
it's easier to use the Vertex Tool to save time.

Shaping Your World

[48]

Flipping objects
Now that we have one section of our roof built, we can copy and flip it to create
the other half. Now clone the half roof to the other side of the house and press Ctrl
+ L. This will flip the object about the vertical axis, or left to right. You can also flip
objects by going to Tools | Flip Objects. Once the second half of the roof is flipped,
align it to the first half to complete your roof.

The Vertex Tool
We have created a roof, but there is still a gap that needs to be filled in between two
of our walls. While we're at it, let's fix the ugly gap between the roof segments and
the long walls. We can fix all of these issues easily with the Vertex Tool. This tool
allows you to manipulate the vertices of brushes, and is also known as the Vertex
Manipulation Tool or VM Tool. With the left roof segment selected, grab the VM
Tool from the tools palette. The VM Tool looks like a gray wireframe cube with red
vertices and can also be selected by pressing Ctrl + V. You'll notice that our selected
roof segment now has eight square handles. There is a white handle on each vertex
and a yellow handle on each edge. Clicking on the VM Tool icon (or pressing the
keyboard shortcut Ctrl + V) will cycle through the VM modes. The standard mode
allows both edges and vertices to be selected, but there are modes to manipulate
only vertices and only edges.

Chapter 3

[49]

Let's manipulate some vertices! Moving vertices is as simple as left-clicking on one
and moving it. If you are looking straight down the side of a brush and select a white
handle, you are selecting the entire edge because any vertex directly underneath
your selection will also be selected. So it's not necessary to select both vertices, since
the one beneath it is already selected. The same thing goes for the yellow handles.
Selecting a yellow handle will select the whole face if there is another yellow handle
directly beneath it.

If you want to select only one vertex, you need to drag a selection box
around the target vertex in any two of the 2D viewports.

Shaping Your World

[50]

Move the lowest vertex on the left side to the inside top of the wall beneath it, and
move the vertex above that to the outside edge of the wall.

Now that our roof is aligned with the outside and inside of the house, it not only
looks neater, but this also makes our lives easier when we go to raise the outer wall
to the inside peak of the house. You can repeat this change to the other side of the
house, or delete the other brush and then copy and flip the left brush over to the
right side.

We can raise the outer walls up to the peak in a number of ways, but one of the
quickest ways is to split the top face of the wall and bring the new edge up to
the peak.

Splitting faces
We can split faces easily with the Vertex Manipulation Tool. Select one of the walls
under the peak, and with your VM Tool, select the top face of the brush by clicking
on the yellow handle.

Chapter 3

[51]

Press Ctrl + F to split the top face into two segments. You'll notice that the yellow
handle has now turned into a white handle and two yellow handles have appeared
on either side of the newly created middle white handle.

Shaping Your World

[52]

Select the newly created edge (middle white handle) and drag it up to the bottom of
the roof peak.

Although splitting faces is a great way to give a brush many faces, be
aware that all brushes still need to be convex! Also note that an object
with two faces in a single plane will create an invalid solid.

Once you have mirrored the changes to the other brush, you're finished with your
house! Now would be a good time for a test compilation.

The Clipping Tool
So now we have a house with no doors and no windows. Let's split one of these
brushes and provide an entrance to our lovely home. The Clipping Tool will clip
(cut) parts of a brush off, or split a brush into two sections; the icon resembles a
cube with one of the edges cut or chamfered off. You can also press Shift + X to
select the Clipping Tool. You need to select the brush you want to clip before you
select the Clipping Tool because you cannot select an object with the Clipping Tool
selected! Select one of the long walls in our house and then select the Clipping tool.
Drag a vertical line in the middle of the brush where you want it to be split.

Chapter 3

[53]

The clip line is defined by two white handles connected by a light blue line. The
clip line extends along the entire selection so it's not necessary to perfectly align
the handles with the edges of an object, but it is good practice because it will help
prevent off-grid vertices.

Notice that one half of the brush is red and the other half is white. When you press
Enter, the red half will be deleted and the white half will remain. Since we want to
just split the wall without deleting anything, keep pressing the Clipping Tool icon
(or the keyboard shortcut Shift + X) until both halves of our wall are white. Then
press Enter to cut the wall in half.

A quick way to make a door in a wall is to clip the wall vertically twice, and drag the
bottom of the middle brush up to where you want the top of the door to be.

www.allitebooks.com

http://www.allitebooks.org

Shaping Your World

[54]

Using this method, create a door 64 units wide and 112 units tall. Use the player start
entity as a reference scale. Since the wall height is 128 units, the brush at the top of
the door will be 16 units tall and 64 units wide.

There you go! You now have a way to enter and exit your house. Why don't you give
the map another test compile and check out your handiwork.

The Carve function
Now that we have a house with a door in one wall, let's put up a few windows so
we can see the outside environment without actually walking outside. The Carve
Tool works by overlapping two brushes and hitting the carve button on the toolbar.
The selected brush will delete any sections of any brush it touches and make a group
with the new brushes it has created.

Caution! The carve function should never be used on anything other
than a rectangle. It's known to create sloppy brushwork and create
micro leaks, leaks smaller than one unit wide. Micro leaks are very
hard to find and fix!

We're going to create a new brush to carve with this time around, so grab the Block
Tool and make a 64 x 64 x 64 unit cube. Align the new cube brush with the center
of one of the five sided walls on the short side of the house. With the cube selected,
press the carve button located in the top toolbar.

Chapter 3

[55]

After the carve operation is complete, delete the cube and marvel at the mess you
have made. If you aligned the top of the cube to the top of one of the vertical sides,
you got lucky and your brushwork will be clean. But if you placed the top of the
cube above that threshold, you might have something that looks like the following:

You're probably thinking "this doesn't look like a mess", but if you closely inspect the
brushes that Hammer has automatically created you might think differently. Lower
your grid size to one (the minimum) and check out the intersection of the horizontal
line and the slant of the roof. The vertices are not on grid!

Shaping Your World

[56]

When the map compiles, all the off-grid vertices are rounded to the nearest unit.
This can create some unwanted effects, and if the carved brush is meant to be a
map-sealing brush, you could probably create a leak! It's good practice to only
carve rectangles with rectangles. Carving is okay for windows, doors, and other
rectangular objects, but the results get messy quickly when you have more than four
sides in the equation. Take the following example of a twelve-sided cylinder carved
into a square. Which group of brushes would you rather work with? Which group of
brushes would you trust to be leak free?

The group on the left was carved while the group on the right was vertex
manipulated. Using Vertex Manipulation as we did in the preceding example will
take some time and effort, but if your cylinders have an even number of sides, you
will only have to do half of the work because you can copy half to the other side.
Keeping your brushwork clean and on grid is one of the most important things you
can do. If you spend some time now to keep things clean, you will save time in the
long run, and your 2D views will be a lot less confusing.

Brushes can be used for some larger detail work, but the majority
of fine details come from models. Models are easier for the engine
to handle than standard brushwork, and the vertices don't have to
be constrained to a grid.

Chapter 3

[57]

Another window method
We know we can carve a hole in a wall to make windows, but we can clip windows
in the same manner as the door we created earlier. Follow the same steps as before:

1. Make the brush rectangular if it is not.
2. Make two vertical cuts to the width of the window.
3. Make a horizontal cut into the newly created center brush.
4. Scale the top and bottom halves of the center brush to make the opening for

your window.

The Object Toolbar
So far, when we created brushes, we created blocks defined by an imaginary cube
in 3D space. Hammer's default brush type is the block. But this can be changed by
modifying the Objects property of the Object Toolbar.

Shaping Your World

[58]

Click on the objects drop-down field to select either the arch, block, cylinder, torus
(donut), sphere, spike, or a wedge object.

Creating cylinders
Cylinders are created by selecting cylinder from the Objects drop-down list. They're
created just like boxes are except you specify how many sides you would like the
cylinder to have.

Upon creation, the top of the cylinder will face up, aligned with the z axis. This
means that you will need to rotate the object to be in the final position you wanted.
You can change which direction the object originally faces in the options menu.
Navigate to Tools | Options | 2D Views and select the Reorient primitives on
creation in the active 2D view option.

Chapter 3

[59]

Cylinders, cones, arches, and tori will now face the active 2D view when created.

Creating small cylinders with too many sizes will create invalid
objects. Take care when creating cylinders to avoid causing
coplanar faces. Coplanar faces occur when two faces on one brush
lie on the same plane. This will result in an invalid solid.

Shaping Your World

[60]

Creating spikes
Spikes, or cones, are created with the spike object tool and resemble cylinders with
the top face meeting at a point in the center. Their creation is exactly like that of
cylinders. Select the number of sides you wish your spike to have, drag a creation
box, and press Enter. And this is how the result will look:

Truncated cones
To create a truncated cone, or a cone with the top cut off, you can clip the top off
a cone with the Clipping Tool or you can scale the vertices. To do this, start with
a cylinder and select all the vertices on one end with the Vertex Tool.

Chapter 3

[61]

With the top side's vertices still selected, press Alt + E to bring up the Scale Tool.
Use the up and down arrows to increase or decrease the scaling factor or type in
any number you want.

Creating a sphere
Spheres are created just like cylinders. Drag a creation box with sphere selected in
the Objects toolbar and press Enter. Hammer will create a sphere within the box
that has the number selected squared for faces. If you wanted a six-sided sphere, it
will have 36 faces. If you selected an eight-sided sphere, it will have 64 faces. Keep
in mind that these created primitives might be invalid structures. If so, they will not
render properly in the game.

Shaping Your World

[62]

Make sure to check for problems, Alt + P, before doing a compile to make sure you
are not creating any errors in your geometry. If the sphere is invalid, it will not
render properly in the game and the compile time will increase dramatically.
Check out the following screenshot to see how the sphere looks in the game with
the mat_wireframe 3 command:

Creating arches
The tool used to create arches can be very useful. You can create standard arches,
hollow cylinders, and even spiral staircases!

Chapter 3

[63]

The box that controls the number of sides can be ignored as you will set more
properties later. Select Arch from the drop-down list, drag a box, and press
Enter to bring up the Arch Properties window:

The Arch Properties window gives you five settings to play with as well as a
preview window depicting the final outcome. At any point, click on the Preview
button to update the preview window with your current values. Wall width
controls how thick the arch walls will be upon creation. This value increases from
the outer bounds toward the center of the arch. Number of Sides controls how
many sides the arch has and Arc controls how far the arch spans. The Circle button
will automatically fill the Arc property with a value of 360, creating a closed circle.
The arch's Start Angle defaults to 0 with the zero point facing east. The angle will
increase counter clockwise. The Add Height property will give additional height to
each arch segment starting from the zero point. Manipulating this property will let
you create spiral staircases.

Standard arch
A standard arch is created by setting the Arc field to 180 degrees and Start Angle to
0.. Set Wall width equal to your supported wall height, leave Add Height as 0, and
click on OK to create an arch!

Shaping Your World

[64]

Hollow cylinders
Hollow cylinders are relatively easy to make as they're just closed (circular) arches.
Set the desired values in the Wall width and Number of Sides fields and click on the
Circle button to force a closed arch. Click on OK to marvel at your results!

Spiral staircase
Spiral staircases would take a long time to create without the Arch Properties
window. In this example, I will be creating a 180 degree stone staircase with
96 unit wide stairs and a step height of 12 units.

Chapter 3

[65]

In order for our stairs to be created properly, the bounding box has to be square
with each side at least twice as wide as our desired stair width. Start by creating a
bounding box with the dimensions 256 x 256 x 12. Make sure to set the height of your
bounding box equal to your step distance. Modifying the individual stairs after the
staircase is created can take a long time.

My Arch Properties are as follows: Wall width of 96, Number of Sides set to 12, Arc
set to 180, Start Angle of 0, and Add Height set to 12. Remember, the Add Height
field sets our step distance and not our stair height. The stair height is set by the
original bounding box. Click on OK and check out your beautiful staircase!

The stair height does not have to equal the step distance (the distance
in the Add Height field). For example, if you're making a metal
staircase, the stair height is rather thin compared to the step distance.
Keep this in mind as you create your staircases.

Shaping Your World

[66]

Creating a torus
A torus can be thought of as a donut or inner tube. Source can very rarely create
these objects without creating a slew of invalid solids, but they're a fun shape
to play around with. Let's create a torus tunnel for our player to walk around in.

The Torus Properties window is very similar to the Arch Properties window, yet
there are quite a few more values to edit. This tool can be considered an arch tool
within an arch tool. It might be daunting at first glance, but you can break it down
into two parts: Cross Section Preview and Top View Preview.

Chapter 3

[67]

Cross Section Preview
The Cross Section Preview is laid out almost exactly like the standard Arch
Properties window. You specify the values for the Wall width, Number of Sides,
Arc, and Start Angle fields just like Arch Properties. There is no Add Height option;
however, there is something similar in the Top View Preview portion. Think of it as
the cross section arch being revolved around a center point.

Top View Preview
Again, just like the Cross Section Preview, there are properties for Rotation Sides,
Rotation Arc, and Rotation Start Angle. But these apply to the revolution of the
arch around the center point. If you want an open torus similar to a piece of elbow
macaroni, choose a rotation angle of 180 degrees.

Springs
You can create a spring with the Torus Tool by specifying a value in the Rotation
Height field. This will apply to the end segment's height above the first segment. To
create a coiled spring, simply copy and paste the torus.

Remember that most tori will create many invalid solids. You can fix
them from the Check for problems window, but they will probably
not retain their original shape. Regardless, tori should be tied to
entities such as func_detail to ease the stress on the engine.

Shaping Your World

[68]

Creating SkyBoxes
An important part of any map is the sky. In Source, the sky is called a SkyBox, and
it helps give the illusion that you're standing in a world that is bigger than what is
really there. There are two types of Skyboxes available in Source: the 2D SkyBox
and the 3D SkyBox. Let's have a look at them.

2D SkyBox
The 2D SkyBox is comprised of six images displayed on an infinitely large cube
around the outside of the level. Let's set up a quick 2D SkyBox in our current map and
we will see how it works. Select the four vertical walls of your giant box and using the
Clipping Tool, cut them in half horizontally as shown in the following figure:

Select the ceiling and the top four sections of the walls you just clipped. We're going
to apply a special texture to these brushes in order to form our SkyBox.

Select the texture tool from the tools palette, or hit Shift + A. The texture tool looks
like a green, red, and blue cube.

Chapter 3

[69]

Once the texture tool appears, hit the Browse... button to bring up the texture
browser. Locate the filter entry in the bottom toolbar and type in toolsSkyBox; you'll
see two textures appear. One texture is a 2D SkyBox and the other is a 3D SkyBox.
Left-click on it twice or hit Enter with the 2D SkyBox texture (tools/toolsSkyBox2D)
selected to set it as the current texture. When the texture browser closes, notice that
the 2D Skybox texture is displayed in the texture preview pane.

Click on the Apply button to paint our selected brushes with the 2D SkyBox texture.
The SkyBox texture has a special function that other textures don't have, but it still
seals our world off from the void so there is no need to place other brushes behind
it. Let's do a test compile to see the results of our new 2D SkyBox. When in the game,
you'll notice that there is now a cloudy sky behind our tall walls. Also, notice that the
whole area looks very strange because the sky isn't projecting any light into our map.
SkyBoxes have the ability to cast light but we need to add in a special light entity to
make that happen.

Shaping Your World

[70]

Adding light_environment
With the Entity Tool, place a light_environment class anywhere in the map. Let's
open the properties and take a look:

There are many properties we can edit, but right now we're only concerned about
three: Pitch, Angles, and Brightness.

The Pitch property is the vertical projection of light from the SkyBox texture; -90
will project light straight down, 0 will project light horizontally, and 90 will project
light straight up. Set the Pitch property to something below 0, but greater than -90; I
prefer Pitch values around -70 for a nice midday effect.

The Angles property will control which direction the light will project if you're
looking down on your map. A good way to set your desired angle is to place the
Object Properties window above the top 2D viewport, and set the angle by clicking
inside the black circle. The white line inside the black circle will depict which
direction light will shine out of the 2D SkyBox texture.

Chapter 3

[71]

The Brightness property controls not only the brightness of our light but the color
as well. Since our default SkyBox has a greyish blue hue to it, let's try to match the
projected light color to the SkyBox color for a more realistic scene. You'll notice four
three-digit numbers in the entry field when you select the Brightness property:

The first three numbers control the light color in RGB (Red, Green, and Blue) format.
Thankfully, we don't need to know how to set a color in the RGB format and we can
just click on the Pick Color button to select any color we want. The last number in
the brightness value controls the actual light intensity or brightness. This last number
can be left at 200 as this is a decent starting value.

Compile your map and take a look! You'll notice that the sky is projecting a light
onto your map! Now what if we don't like this depressing cloudy day SkyBox? We
can change it quite easily.

Changing the SkyBox texture
Open up the texture browser and type in SkyBox into the filter. The page should
flood with cloudy sky pictures. You'll notice that there are groups of six images that
all look similar. They all share similar names as well. The naming convention can be
confusing at first glance, but it is really just the sky name with a suffix of which face
it's supposed to be. So let's look at the sky texture called SkyBox/sky_day01_08_hdrlf.

Shaping Your World

[72]

The SkyBox name is sky_day01_08_hdrlf and lf tells us that this image is being
projected onto the left part of the sky. If we would like to use this sky for our map,
we need to set the Skybox Texture Name property in the Map Properties. To get to
the Map Properties, go to Map | Map Properties.

Skybox suffix naming convention: lf projects left, rt projects right,
ft projects forward, bk projects backward, up projects up, and dn
projects down.

With our SkyBox name set, give your map another compile to see what it looks
like. Feel free to change the light_environment color to reflect the new color
of the SkyBox light.

3D Skybox
The 3D SkyBox will project light into our map just like the 2D SkyBox did, but
it also allows us to project objects and models into the scene. The 3D SkyBox is
created around your level, shrunk to a fraction of its normal size, and then blown
up and projected around your map when you run it in the game. This might sound
confusing, but let's just take it one step at a time; we'll get there.

First, shrink the top and bottom sections of your vertical walls to 256 units each, and
then bring the ceiling sky texture down on top of the vertical sky sections. Select
everything in the current map and create a visgroup with it. Name it something
useful such as house in a box. Making this part of the map into a visgroup
is going to make our lives easier in a moment.

Chapter 3

[73]

Now create a 1600 x 1600 x 1056 unit block. Center the new brush on your existing
map but have the bottom of the new brush touch the bottom of the floor. Hollow
the new brush out with a value of -32 so the walls grow outward and we keep our
inner dimensions. We should now have a new box surrounding our old box that is
surrounding a house.

Since we're making a 3D SkyBox now, we need to change the tool texture we're
using. Select the newly hollowed box as well as the 2D SkyBox-textured brushes that
make up the outer enclosing walls. Launch the texture application tool, browse for
textures, and filter for tools/toolsSkyBox. Hit Enter to select the 3D SkyBox texture,
and then hit Apply in the texture application tool to paint all the selected brushes
with the toolsSkyBox texture. The tools/toolsSkyBox texture is the one we need
to create 3D SkyBoxes.

Now we need to populate the 3D SkyBox with some buildings. For simplicity's sake,
let's not get too detailed in the 3D SkyBox just yet. Just make some tall rectangular
brushes and randomly place them around our map in between the outer SkyBox
walls and the house in a box.

Shaping Your World

[74]

Place an entity called sky_camera at the map's origin (0, 0, 0).

The sky_camera entity needs to be placed at the map's origin
before the SkyBox can be moved. The sky_camera entity references
the map's origin and tells the engine where to base the projection
around in the game.

We now have all the items necessary for the SkyBox to project properly, but we're
not done yet; we need to scale the SkyBox down a bit. You'll notice in the Object
Properties of sky_camera, there's a property called 3D Skybox Scale. This is the
number of times that the SkyBox will be blown up and projected around the map. By
default, this value is at 16 and we're going to leave it at that. Now, remove visibility
of the house in a box visgroup by unchecking the box next to it in the visgroup
toolbar. Select everything else (in your SkyBox) and then turn it into a group with
the toolbar button or by pressing Ctrl + G. This group is the SkyBox. Since our
sky_camera scale is 16, we need to scale this SkyBox down by a factor of 16. A quick
calculation tells us that one divided by 16 equals to 0.0625. This is the scale factor
we need to apply to our SkyBox group. Select the SkyBox group and go to Tools |
Transform (or hit Ctrl + M) to pull up the Transform Tool. The Transform Tool lets
us precisely control the object scaling, rotation, or movement. Select the scale radio
button and enter 0.0625 into each of the entry fields to scale the SkyBox evenly on
all three axis. When you hit Enter, the SkyBox will now be 1/16th of its original size.

Make sure to turn on texture scale lock if you want your scaled
brushes to keep their original texturing effects. The texture scale
lock button is located in the middle of the top toolbar and looks like
this: <-tl-> (tl in a box with two arrows coming out of it).

Chapter 3

[75]

Congratulations! You have completed your first 3D SkyBox. Unhide the house in a box
visgroup and place the SkyBox group far beneath the floor of the house in a box. Run a
test compile and check out the results; they should look similar to the following:

Shaping Your World

[76]

Summary
You have learned to create brushes of all shapes and sizes with the box tool and
object properties window, but you have also learned how to make quick copies
of existing brushes with the cloning technique. When an object is selected in a 2D
viewport, you can scale an object when there are eight white handles surrounding
an object, rotate when there are four white circle handles surrounding an object,
and skew when four white boxes surround an object. Flipping objects is a useful
technique that can save time when making symmetrical creations; Ctrl + L flips
horizontally while Ctrl + I flips vertically. The Vertex Tool is useful for making
irregular brush shapes, but it's also useful to create new edges on a brush using the
Ctrl + F command. The Clipping Tool is useful to cut parts of brushes or split brushes
along a line. Remember that when a section of a brush is highlighted in white, it will
be kept after it is clipped. If the section is red, it will be deleted. The carve technique
is useful to put square holes in square objects. You can carve anything with anything
but you're going to get some ugly brushwork as a result. 2D and 3D SkyBoxes are
easy to create, and enhance the atmosphere and immersion in any map.

I bet you're getting tired of looking at this default brick texture. Let's learn how to
use the texturing tool to its full potential.

Textures, Terrain, and Props
I bet you're pretty tired of that generic brick floor texture. Let's change things up a bit
while learning how to navigate the texture tool. We can also bring more detail into
the world with decals, overlays, displacements, and props!

In this chapter, you will be learning the following:

• Texturing techniques
• Placing decals and overlays
• Creating terrain with displacements
• Learning about the different prop types

Let's go!

Using the Texture Application Tool
Using the Texture Application Tool gives you full control over the application of
textures in the Source engine. You can select, apply, scale, rotate, and align textures
all within this easy-to-use tool.

Textures, Terrain, and Props

[78]

Applying textures
There are many ways to apply textures to brushes. Brushes, upon creation, are given
the currently selected texture, but there is still much to learn!

There are two main tabs in the Texture Application Tool. For now, let's focus on the
Material tab. The first thing you'll probably notice about the Texture Application
Tool is that the window title actually says Face Edit Sheet. Since the tool is named
Texture Application Tool, that is what I'll be calling it throughout this chapter. The
second thing you'll notice is the texture preview pane in the bottom-left corner. Just
above this is the Current texture drop-down list that displays the current texture
name and allows you to quickly select the last few textures you have used. Let's get
acquainted with this tool by first selecting a new floor for us to walk on. Click on the
Browse button to bring up the Texture browser.

Chapter 4

[79]

We're looking for a floor texture, so instead of scrolling through hundreds of images,
we can just type in floor in the Filter field. The browser will update automatically
as you type, so there's no need to hit Enter. If you do press Enter, you'll close the
browser without selecting the texture you wanted. You'll notice that the texture
preview size is relatively small. If you want to get a better look at the individual
textures, you can change the display size in the the drop-down menu titled Size at
the bottom-left corner. The checkbox under the size selector, Only used textures, will
allow you to see only the textures currently used in our map; since we're browsing
for a new texture, leave this unchecked. There are various other checkboxes in the
bottom-right corner that filter for special material properties. We're looking for an
opaque floor, so uncheck the rest of the checkboxes to make our search easier.

The Opaque flag displays all nontransparent textures, while the
Translucent flag displays anything with an alpha channel. Selfillum
displays any textures that are self-illuminated or emit light.

Textures, Terrain, and Props

[80]

For the sake of following this tutorial, find the stone/stonefloor_inn01 texture and
press Enter to set it as the current texture and return to the Texture Application Tool.

Just because this texture has the word floor in it doesn't mean we
can't use it anywhere else. There is nothing stopping you from
using a floor texture on a ceiling or a wall. Be creative!

Textures are best applied in the 3D view; so, in the 3D viewport, right-click on the
floor to apply our cobblestone texture to the top face of the floor brush.

Each face can only have one texture applied to it at any time, so if you want another
texture in the floor, we need to create another face to apply the texture to. Brushes
cannot have more than one face on a single plane (or else you will get a nasty
coplanar face error while compiling), so, if we want to detail the floor in the house,
we need to clip the floor into multiple brushes.

Chapter 4

[81]

Using the same technique used to make windows in The Clip Tool section of Chapter 3,
Shaping Your World, clip the floor so that there's a middle section that aligns with the
walls of the house. (You should end up with five brushes in total.)

Return to the Texture Application Tool, open the texture browser and find a tile
texture to apply to the floor; tile/tilefloor011a should do this nicely. Right-click on
the house floor to apply the texture.

We could spend the next couple of minutes texturing each face individually, but
you can also apply a texture to an entire brush or a group of brushes to save time.
Exit the Texture Application Tool and select all the vertical walls of the house. Open
the Texture Application Tool and then click on Browse to search for a wall texture.
Find the texture titled brick/brickwall014l, select it, and press Enter to return to the
Texture Application Tool. Click on the Apply button to apply the current texture to
each face in the selection.

It's generally considered good practice to apply the tools/toolsnodraw texture, also
known as Nodraw, to any brush face that will not be seen in the game. Faces with
Nodraw applied to them will not be rendered in the game and will ease the load on
the engine. To do this quickly, follow these steps:

1. Select a brush.
2. Open the Texture Application Tool.

Textures, Terrain, and Props

[82]

3. Deselect the visible faces.
4. Apply Nodraw to the remaining faces.

Aligning textures
The Justify section of the Texture Application Tool contains a few buttons to quickly
align textures.

Chapter 4

[83]

You'll notice that the textures aren't aligned nicely. That's where the Justify menu
comes into play. With all your walls still selected, press the B button to align the
bottom of the texture with the bottom of the brush.

Take a look at the brush on top of the doorway. Note that the textures are aligned
to the bottom of the individual brushes. To remedy this situation, check the Treat as
one checkbox and align the textures to the bottom again.

The Treat as one option tells Hammer to treat all the faces on the same plane as
one large texture, and it will apply all changes to them as if they were one. You can
probably guess that T aligns textures to the top edge, L aligns textures to the left
edge, R aligns textures to the right edge, and C will center the texture on a face.

Let's check out the Fit functionality by creating a window. Open the texture browser
and find the glass/glasswindow017a texture. Use the block tool to create a brush of
the size and shape of one of the window openings. When you create a new block, the
current texture will automatically be applied to the brush, so we don't have to apply
it manually; we do, however, need to modify its appearance.

Textures, Terrain, and Props

[84]

Open the texture tool and left-click on the outside face of the window to select only
that face. The default texture scale is 0.25, but this doesn't work well for our window.
Press the Fit button to stretch the texture across the entire face of the brush and
calculate the X and Y texture scales.

Fitting a texture to a brush can be a great technique. However, beware of larger
texture values that will start to look stretched and blurry. Try using the Fit function
on the tile floor inside of the house. It doesn't look too great, does it?

Shifting and rotating textures
Let's experiment with the texture shift and rotation tools by texturing our roof. Find
the metal/metalroof006 texture and apply it to the top and sides of the roof brushes.
The new texture will inherit all the attributes of the old texture: scale, rotation, and
alignment. When you apply the texture to the roof, it will be slightly stretched in the
y direction because Hammer defaults to World texture projection. What this means
is that the texture is projected onto the brush from the z axis. Since the roof is sloped
against the z (vertical) axis, the texture will be stretched in one direction. If a face is
parallel to the projection plane, the texture will be projected properly.

Chapter 4

[85]

In the previous example, the projection plane is aligned perfectly on the left half of
the page. But to the right, the texture plane is 20 percent larger than the projection
plane. To eliminate this stretching effect, select the Face checkbox. This mode will
ensure that the texture is always projected perpendicular to the face (as if you're
staring straight at it)! So, after applying the metal roof texture to the roof, select
both roof segments and click on the Face checkbox to ensure that the textures are
projected properly.

Right-click on the sides of the roof brushes to apply the roof texture to them.
Remember, the new texture will inherit all the attributes of the old texture, so
the texture on the side of the roof brush will have vertical stripes.

Textures, Terrain, and Props

[86]

Select the side of the roof texture and keep increasing the Rotation property
until those vertical stripes are aligned with the slope of the roof. If you have been
following my examples closely, a rotation of about 54 degrees should work well.
Once you are satisfied with the rotation angle, left- or right-align the texture to
clean things up.

Saving time while aligning textures
There's a much faster way to align textures between faces. This method does not
have a specific name, but I call it the Alt + right-click method. With the Texture
Application Tool active, select the top of the other roof brush. While holding Alt,
right-click on the side of the roof brush to automatically wrap the texture around
the brush edge onto the new face.

Voilà! This method of texturing is very useful and can save you hours of painstaking
alignment and rotation.

Chapter 4

[87]

Using different selection modes
So far, we have been using the default selection mode called Lift and Select. It's
very useful for the Alt + right-click texturing method, and it's arguably the most
flexible of the texture selection modes. With this tool, left-clicking on a face will set
the face's texture to current as well as select the face. If you right-click on a face, the
current texture will be applied to that face. There are other selection modes called
Lift, Select, and Apply, but the Lift and Select tool contains all their functions. The
Apply (texture only) tool will apply the current texture to the face that is clicked
on, but the new texture will inherit the old texture's values. Conversely, the Apply
(texture and values) tool will apply the current texture, scale, and rotation to the
current face. There is a texture application mode called Align to view, which will
rotate and skew the texture based on the camera's angle relative to the face; however,
be careful with this mode because due to a bug in Hammer, you cannot undo a
texture application.

Shifting textures
If you have already tried all the alignment options, or if you want a bit more control
over the position of the texture, you have the option of shifting a texture on the x or
y axis. Both x and y default to zero, but you can change that in three ways. Use the
ramping arrows next to the numerical entry and type in your own value, or you can
use the arrow keys on your keyboard to shift the texture by an amount equal to the
current grid size.

Locking textures
Texture lock, by default, is enabled. When you move an object with texture lock
enabled, the texture applied to that object will follow it. If texture lock is off, the
texture will stay in place while the brush moves.

Textures, Terrain, and Props

[88]

You can turn the texture lock on and off by clicking on the tl button in the menu bar
on the top.

Locking the texture scale
Texture scale lock is another useful option. Located right next to the texture lock
button, it will scale a texture relative to the brush it is applied to.

With the texture scale lock enabled, any brush you resize will keep the texture
scale intact.

Applying decals
Decals are special textures that are placed on brushes to help break the monotony of
a repeating texture or just to add small details. When you shoot a wall in the game,
decals are applied to the places where the bullets hit. Unlike normal textures, they
don't have to occupy an entire brush face. When a decal is placed in the 3D view, a
point entity infodecal is placed at the mouse cursor's location, and the decal texture
is projected onto all surfaces within 16 units of the infodecal origin.

Chapter 4

[89]

Decals have special render properties that separate them from normal textures.
It's not a good practice to apply a regular texture as a decal because the scaling is
different. When a decal texture is placed with the decal tool, the texture is scaled
down. This scaling is specified when creating the decal texture. When standard
textures are applied, there is no scaling taking place. There's nothing stopping
you from applying a standard texture as a decal or even creating a brush with a
decal texture.

Open the texture browser and type decals/ to filter all the available decal textures.
Choose any decal you like and open the decal tool with Shift + D or by clicking on
the decal tool on the tools palette (a brick cube with a target on one face).

To apply a decal, simply left-click on any face, and an infodecal entity will be created
at that point. To adjust the location of the decal, move it around in the 2D view
with the select tool. The decal texture can also be changed by opening the infodecal
properties and choosing a different decal texture. Be careful when applying decals
near wall intersections; the decals can affect more than one face at a time if placed
within 3 units of an intersection. In the following screenshot, this idea is emphasized
where the metal decals are one unit higher than its neighbor on the left.

Textures, Terrain, and Props

[90]

The leftmost decal is right at the intersection of the two brushes. Once the decals are
more than 3 units away from the nearest wall, the decals are only applied to that
specific face.

This behavior can be used to your advantage if you want to depict, for instance, a
bloodstain in a corner.

Decals can be manually turned on by firing the activate output from a
trigger. This can be useful for dynamically changing the look of a wall
or simulating damage and blood splatter. They cannot be turned off
because the entity is removed from the world once activated.

Applying overlays
Overlays are similar to decals but you can control the scale, rotation, and faces that
they are applied to. With this greater power comes a greater cost; overlays take up
a greater percentage of processing power as compared with a decal. However, they
cannot be toggled on and off, so they will always stay where they are.

Chapter 4

[91]

You place an overlay in the same manner that decals are placed—grab the overlay
tool (a brick cube with grass top), select an overlay texture, and then click on a face
in the 3D view to apply an overlay entity. Once an overlay is created, you can then
modify the scale and rotation just like any normal brush in the 2D view. In the 3D
view, you have control over each corner of the overlay. Move the corners around to
change the shape of the overlay to suit your needs. Again, normal textures can be
applied as overlays, but the end result might not be as expected.

Creating terrain with displacements
Terrain in the Source engine is created with objects known as displacements.
Displacements are tessellated modifications of brush faces and are created
within the texture tool.

Textures, Terrain, and Props

[92]

You've probably been wondering what that second tab in the texture tool is. The
Displacement tab controls all the terrain features of Hammer. A displacement is the
Source's version of terrain, and a displacement surface is created from a four-sided
brush face. Unlike regular brushwork, displacements are sculpted almost entirely in
the 3D viewport, and it does take some getting used to. There are some guidelines
to remember while working with displacements:

• A displacement surface must have four and only four sides
• Displacements cannot be made into entities
• Displacements do not seal the world off from the void

Keeping these things in mind, let's start playing with displacements!

Creating a displacement
In the southeast corner of your map, create a block that spans the gap between
the corner of the wall and the corner of your house that uses the nature/
blenddirtgrass001a texture. Align the bottom of the new brush with the top of
the floor and make the brush 8 units tall. Open the texture tool, and select the
Displacement tab. Select the top face of the new brush, and select Create to make
a new displacement surface.

Chapter 4

[93]

Displacements cut up the selected faces into triangles and discard any brush faces
that are not selected. The number of triangles that are created per brush is controlled
by the Power property. Powers of 2, 3, and 4 can be created, but in this example,
let's keep the power at the default value of 3. The higher the power, the more faces in
the displacement, and the more graphics horsepower you need to render them. Try
to keep the numbers as low as possible while still maintaining the desired level
of detail.

Once the Power field is set and the OK button is pressed, you'll notice that the new
face is selected, the triangles are highlighted in white, and the nondisplacement faces
of the brush have disappeared! Let's start sculpting some terrain.

Textures, Terrain, and Props

[94]

Using the Paint Geometry tool
The Paint Geometry window holds the tools we need to modify the displacement
surfaces.

Click on Paint Geometry in the main displacement tab to open it. By default,
the Effect option of the tool is Raise/Lower. This tool will raise or lower the
displacement geometry by a distance specified with the Distance slider. The axis of
effect can be selected with the Axis drop-down, and the radius of the displacement
modification can be controlled in the Spatial section with the option to have a soft
or hard edge. You might be overwhelmed by the sheer amount of options that you
have, but everything is really quite simple to use. Let's jump in.

Change the Axis to Z so we can move the displacement surface along the vertical
axis. With the Radius set around 140, and the Distance set to 5, left-click once on
the middle of the new displacement surface to raise the surface by 5 units.

Chapter 4

[95]

Note that your cursor turns into a gizmo with a green sphere of influence, a yellow
box, and an arrow. The yellow box is the middle of the displacement area of
effect, and it will snap to the vertices on the displacement mesh. The yellow arrow
designates the axis on which the displacement will move. Left-clicking will move
the vertex in the direction of the arrow, while right-clicking will move the vertex
in the opposite direction. The green sphere designates the area of effect that your
displacement modification will have. Any vertex inside the sphere of influence will
move, while any vertex outside the sphere will remain stationary. If you want to
move a single vertex, change the Radius to 0, or simply uncheck the Spatial checkbox.

The displacement tool can be very sensitive at times. Holding the left or right mouse
button down while moving the mouse over the displacement surface can have
profound effects on your surface even with small distance values. If you would like
to precisely position a point on your displacement surface, hold Shift and then left-
click to drag a vertex along the specified axis. Moving the mouse up will move the
vertex in the positive axis direction, while moving the mouse down will move the
vertex in the negative axis direction.

Using the techniques learned so far, create a mound of dirt in the corner of the wall.
Sink the outside edges of the displacement below the cobblestone brush face so that
it looks like there's a natural transition between the stone and terrain.

Remember, at any time, feel free to do a test compile of your map
to check your progress!

Textures, Terrain, and Props

[96]

We would probably like to walk on this surface when we're in the game. We
can check to see if our displacement will allow movement. Click on the Display
Walkable Mask button in the top toolbar to toggle the visibility of the nonpassable
areas of your displacement.

Any area that cannot be walked on will now be highlighted in yellow:

It looks like I have some nonwalkable areas in my displacement that I want to fix.
There are three ways I can fix this; using the Raise/Lower tool we just learned about,
using the Smooth tool, or changing the displacement scale.

Using the Smooth tool
If you haven't guessed already, the smooth tool smoothens the displacement mesh.
In general, it averages the displacement surfaces within the sphere of influence along
the selected axis. If you want to smooth your mesh out a bit, select the smoothing
tool and click once or twice on the area you wish to smooth. Again, the displacement
tools can be sensitive, so a light touch is recommended.

Chapter 4

[97]

Modifying the displacement options
Exit the paint geometry menu to get back to the displacement tab in the Texture
Application Tool. On the left half of the Attributes section, you will see three
numerical entry fields. The power, elevation, and scale can be changed here. The
Elev property controls the base distance that the displacement surface is raised to in
relation to the original brush face. The default is zero. The Scale property controls
the effect of the displacement on the surface. If you wanted to keep the general shape
of your displacement but change the amplitude of your changes, you can modify the
scale. Scale values lower than 1 will subdue displacement changes, while scale values
greater than 1 will exaggerate changes. In my case, since I have nonpassable parts of
my displacement, I want to reduce the Scale factor of my displacement to 0.5. Click
on the Apply button to apply any changes.

Using the Raise To option
Within the Paint Geometry window, the Raise To option will move all vertices
within the sphere of influence to the distance offset from the original displacement
face. Positive values will move the vertices up. Negative values will move the
vertices below the original brush face. There is no falloff when using this tool,
so the displacement edges are harsh and will probably need smoothing.

Textures, Terrain, and Props

[98]

Using the Paint Alpha tool
Let's exit the Paint Geometry tool and check out the Paint Alpha tool. Blend
textures have an Alpha channel that can be manipulated to fade or blend between
two textures. The texture that we have created our displacement with is called
nature/blenddirtgrass001a. Note that it has blend in the texture name. The Paint
Alpha window allows you to control the blending between the two textures.

There is no sphere of influence in the Paint Alpha window, so the effect radius is
controlled with the Brush dropdown. You can select a range between 1 and 5, and
the alpha will have a falloff effect that starts at the center vertex and ends a number
of vertices away as specified by the brush value. So, if you select 3 for a brush setting,
the effect will be most apparent at the selected vertex and will fade out completely at
the third vertex away in all directions. Left-click to add alpha to your displacement
and right-click to remove alpha from your displacement. The Smooth and Raise To
settings have the same effect as they did in the paint geometry window.

Chapter 4

[99]

You can click on the Invert Alpha button in the main displacement window to flip
the alpha channels of any selected face.

Sewing
Multiple displacements can be modified at once. This can be done with the
following steps:

1. Hold Shift and drag this displacement to make a copy and align the east
side of the copy to the west side of the original. You'll note that the two
displacement edges are drastically different.

2. Select both the displacement surfaces and click on Sew in the main
displacement window. All the vertices on the edges will average out and
move towards each other, snapping or sewing the edges together.

3. You can then use the Smooth tool in the paint geometry window to flatten
everything a bit, and then touch up the blending areas with the Paint
Alpha tool.

When multiple displacement surfaces are selected, the tools and area of influence
will span the surfaces and affect every selected face. Select both the displacements,
and you can smooth them both at the same time.

Textures, Terrain, and Props

[100]

In order to properly sew the two displacements together, their object edges need
to be touching. If one vertex isn't touching the other, the displacements will not
sew. It might be counterintuitive at first, but it is important to remember that the
displacement surface does not dictate the sewing action. In the following image, note
that the displacement surface aligns nicely to the neighboring displacement. They
will not sew together because the brush edges are not aligned.

When using the Paint Geometry tool to manipulate multiple displacement surfaces,
make sure to enable auto-sew to ensure that all edges stay together.

Subdividing
If you have two displacement surfaces that meet at a right angle, smoothing the corner
manually can be a hassle and will be nearly impossible to get it perfect. Thankfully,
Hammer has a Subdivide feature that will automatically smoothen the transitions
between two or more displacement edges. Like the sew function, subdivisions will
only work properly if the edges of the two surfaces are aligned with each other.

Chapter 4

[101]

To see the power of the subdivision function, create a cube of any size with any
texture, create power of three displacements on all sides, and then press the
Subdivide button. You have now just turned a cube into a sphere! While the
subdivision result isn't perfectly spherical, you can see how powerful this function is.

Creating caves quickly
The subdivide function can also be used to quickly make caves. Create a hallway and
displace only the surfaces on the inside. Subdivide the whole thing (this might take a
moment) and marvel at the results!

Textures, Terrain, and Props

[102]

After subdividing, you will probably want to modify the displacement some more to
add in some details. Open up the Paint Geometry tool and change the Axis to face
normal. Click on AutoSew to automatically sew any seams and modify the radius to
an acceptable value. When the face normal mode is selected, it defaults to modifying
the displacement surface on the Z axis. We can change the axis orientation to any
combination of X, Y, and Z by Alt + right-clicking on a displacement face. While
holding Shift, you can now control the height or depth of any angle you like.

Sculpting
If you would like to make larger outdoor areas, it's a bit easier to use the sculpting
tool. It has almost the same functionality as the paint geometry tool, but it's more
suited for long, flowing strokes of mesh deformation.

Chapter 4

[103]

Create a flat, square, grass-textured brush about 512 units long and 512 units wide;
the height doesn't matter. Copy the brush five times to make a 2 x 3 grid of grass
brushes, and then create power 3 displacements on the top faces of the six brushes.
Click on the Sculpt button on the Displacement tab to open the sculpt menu.

There are two usable modes in the Sculpt tool. The first is the Push mode. There are
two push modes: Absolute and Adaptive. Absolute mode will raise or lower the
mesh by the offset distance. You can control the amount of Smoothing and Falloff
parameters as well. The Bounds Limit field can be Additive or Attenuated. If
Attenuated is selected, the offset will not go any further than the offset distance from
the previous location. For example, if a mesh point is at a vertical position of 20 units,
and your offset distance is 10, the point will not reach higher than 30 units if pulled,
and won't dip below 10 units if pushed.

Textures, Terrain, and Props

[104]

It's a good idea to start small with the sculpt tool, so set the Offset Distance field to
2 units with Offset Mode, Bounds Limit, and Normal Direction set to Absolute,
Additive, and Z, respectively.

Your cursor will be shown as two concentric circles with a white line stemming
from the center. The white line shows the direction of the deformation, the outer
green circle shows the final falloff position, and the inner circle shows the start
of the falloff.

Left-clicking will raise the mesh in the direction of the white line, whereas holding
Ctrl while left-clicking will push the mesh in the opposite direction. Holding Shift
while left-clicking will smoothen the mesh by the specified smoothing percentage,
and you can change the size of the sculpting brush by right-clicking and dragging
the mouse to the left to shrink and right to grow.

The cursor will always affect the same screen area; so, if you're zoomed out, you will
affect a larger area than you will if you are zoomed in. This makes it easy to zoom in
on small details but keep the same brush size.

The Adaptive sculpt mode uses the percent scale and can be very sensitive. It's a
good idea to start with a percentage around 1-5 percent and then adjust it from there.

Chapter 4

[105]

Carving
There is another very powerful terrain tool called the Carve tool. You can use it
instead of the other tools or in addition to them.

Textures, Terrain, and Props

[106]

The Carve mode allows you to draw a displacement profile in the black box. The
green portion will be raised up, while the red portion will be pushed in. The Carve
tool works best when the displacement surface is viewed perpendicular to the
surface normal. After drawing your profile, left-click and drag the cursor across the
displacement surface to raise or lower the displacement according to the profile you
have drawn; right-click to reverse the profile.

Creating props
Props help to decorate the world. They take less computer power to render and
simulate than world geometry, but you need third-party software in order to create
them. All props are point entities and are placed into the map with the entity tool.

Creating static props
Most of the props used in a Source map are static props. Static props account for
any nonmoving (static) object. Light posts, wall clocks, trees, and pipes are all
examples of items that can be static props. Let's place a tree on the dirt mound
we have just created.

In the Objects drop-down, select prop_static and then left-click on the dirt mound
in the 3D window to place a prop_static entity. It will be displayed as a red box.
Left-click on it twice or hit Alt + Enter to bring up the object properties. In order to
define which model we want to use for the prop, select the World model property,
and click on browse to bring up the Model Browser window.

Chapter 4

[107]

The model browser allows you to filter and search for all the models you can place
in a map. Below the 3D preview, there are five tabs that give you more information
about the model. The Render tab allows you to view different features of the model
such as the wireframe view and collision mesh. The Sequences tab lists all the
animations for the model, while the Activities tab lists some special model functions
that make use of the animations. Each model has at least one Skin attributed to it
that defines which textures it uses, and the Info tab will list some special properties
of the model and tell you if it can be a static, physics, or a dynamic prop.

Textures, Terrain, and Props

[108]

Type tree into the Filter to search for all the available tree models, and select
models/props_foliage/tree_deciduous_03a.mdl. Check the Info tab to make sure
that the Static tab is checked, which means this model can be used as a static prop.
Click on Ok to close the browser and return to the prop_static properties window.
The only thing left to do now is to fine-tune the entity placement and make sure the
tree is intersecting with the displacement.

Static props greatly increase the look and feel of your maps, but they don't move. If
we want some props we can interact with, we need a physics prop.

Creating physics props
Physics props take advantage of the Source's physics engine. They interact with
the player, world geometry, and other models, and have the ability to break apart
into pieces known as gibs. Physics props are placed into the world just like static
props are, but they use the prop_physics point entity. Let's place a breakable chair
into the map to see what the physics engine can do. Place a prop_physics entity on
the floor inside the house; open its properties and then the model browser via the
world model property. Select the models/props_c17/furniturechair001a.mdl model
and look at the Info tab in the Model Browser window. Note that the physics and
staticstatic boxes are checked. This means that this model can act as a static prop or a
physics prop. If the physics prop box was not checked, the compiler will report that
as an error, and the model will not appear when you go to view it in the game.

Chapter 4

[109]

Place a weapon_crowbar point entity on the ground next to the chair so that we can
test the gib functionality in the game. Compile the map, load it up, and see how the
chair reacts to physics, collisions, and damage.

Creating dynamic props
Dynamic props, like the name suggests, have the ability to move. They do not move
in reaction to physics inputs; rather, their animations are controlled with triggers.
They are placed in the map just like a static or physics prop, the only difference being
the entity they are created with, which is prop_dynamic. You will learn more about
controlling these props in Chapter 7, Triggers and the Input/Output System, when you
get more acquainted with the Input/Output system, but for now, just know that
they exist!

Textures, Terrain, and Props

[110]

Summary
There was a lot covered in this chapter. By now, you know the ins and outs of the
Texture Application Tool. You can save a lot of time by utilizing the align buttons,
and making a terrain is easy with the flexible displacement tool. Decals and overlays
can help break up a stretch of repetitive textures, and since models are simple for
the engine to render, you can pepper a map with detail without stressing the
game engine!

Get your creative juices flowing because importing custom content is next!

Importing Custom Content
The Source SDK tools give access to hundreds of different models, sounds, and
materials. Half-Life 2 is based on a post-war, apocalyptic environment, and most of the
materials include some wear, grunge, and destruction. If your mod does not follow
this theme, you'll probably want to add some of your own content in the maps.

In this chapter, we will be learning the following topics:

• Creating materials
• Importing materials
• Importing models
• Importing sounds

Let's jump in!

Creating materials
Source materials are made up of two files:

• A VTF (Valve Texture Format) file that actually contains the image of how
the VTF is rendered in-game

• A VMT (Valve Material Type) text-based file that defines the material type

You can have multiple VMT files that reference the same VTF file. So, you can have
multiple materials that use the same image differently.

The .bin folder contains the program you need to create your own materials.
All you need is an image editor capable of creating targa (.tga) files and a proper
folder structure.

Importing Custom Content

[112]

Setup
First, let's set up our folders. For vtex.exe, the texture-creating program, to
function properly, you need to create two folders: one to hold the texture source
files and another to hold the compiled materials. The first folder we need to create
in your mod folder will hold all the TGA files. In this example, the mytextures
folder will contain all of our textures. Create the following folders in your Steam
folder as follows:

steamapps\common\<your mod>\materialsrc\mytextures.

Since I'm working with Half-Life 2: Episode Two, my folder location is steamapps\
common\Half-Life 2\ep2\materialsrc\mytextures. It might be a good idea to
create a shortcut to this folder in some place that is easily accessible, because this
folder is located deep within the Steam folder.

Vtex needs to know where to put the converted texture files. Create another
mytextures folder in the materials folder in the ep2 folder. Again, since I am using
Half-Life 2: Episode Two, I have created the following folder:

steamapps\common\Half-Life 2\ep2\materials\mytextures

This folder will contain the VMT and VTF files that Source will actually display in
Hammer and in-game.

All custom textures must be within a subfolder of the materials
folder or else the game will not detect them.

The program used to create the textures is called vtex.exe, and it's located in the
.bin folder. Again, following my Half-Life 2: Episode Two example, vtex.exe will be
available at Steam\steamapps\common\Half-Life 2\bin. In order to make our lives
a bit easier, create a shortcut to vtex.exe in the materialsrc\mytextures folder.

Creating a VTF file
Phew! that was exhausting. Now that we have set up our folders, we can get to the
fun part—creating materials! All texture files that are created with Vtex need to be
targa files and should have dimensions in factors of 2. Height and width values of 2,
4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and so on, are all acceptable, but the default
texture size is 512 x 512 so, that should be a great place to start. Once your targa file
is created and saved in the proper folder (materialsrc\mytextures), drag the targa
file onto the vtex.exe shortcut you previously created to create a VTF.

Chapter 5

[113]

I have included a sample targa file called texture01 for you to play around with, as
shown in the following screenshot:

A command prompt window will appear showing you the input path, output path,
and status of the file conversion as follows:

Importing Custom Content

[114]

If everything is set up properly, you will see a newly created VTF file in the
mytextures folder of your game directory.

Creating a VMT file
Unfortunately, our VTF file is useless by itself. For the engine to recognize that file
as a material, we need to create a VMT file that defines properties such as the render
mode and material type. VTF files are just text files that are saved in the .vmt format.
You can use any simple text editor, such as Notepad, to create them. Open Notepad
and type the following code:

"LightmappedGeneric"
{
 "$basetexture" "mytextures/texture01"
 "$surfaceprop" "wood"
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

Chapter 5

[115]

Let me explain how this all works.

• Lightmappedgeneric: This defines the texture as a normal light mapped
texture. It can receive light information in game; most material files will
begin with this.

• $basetexture: This defines the main VTF to display. The mytextures/
texture01 folder is the location of the VTF relative to the main
materials folder.

• $surfaceprop: This tells the engine the type of surface material. When you
damage this texture in-game, it will create sounds and damage decals based
on the surface properties. In my example, this material is wood, but there are
dozens of other choices. A full list of valid surface properties can be found on
Valve's wiki at https://developer.valvesoftware.com/wiki/Material_
surface_properties.

Save the file as texture01.vmt to complete the material creation. When you browse
for your texture in Hammer, you will be searching for the VMT file and not the
VTF file.

Importing Custom Content

[116]

When you run the map in-game, you'll notice that the decals and sounds that are
produced when the surface is damaged match those of the surface properties. In this
example, the material is wood.

Using VTFEdit
There's an easier way to create materials. VTFEdit is a tool created by Nem (Ryan
Greggs) that puts an easy-to-use GUI over the default SDK texture creation. You can
grab it from http://nemesis.thewavelength.net/index.php?c=238#p238. You'll
need Microsoft's .NET framework to run the program (also available at the previous
web page) as well.

Chapter 5

[117]

Using VTFEdit is much easier than typing your own commands and creating a folder
network. Run VTFEdit and navigate to File | Import to choose an image to import.

A great thing about VTFEdit is its ability to import multiple image types. As long
as you conform to the size constraints, you can import bitmaps, PNGs, JPEGs, and
many more. After choosing your file, you will see a prompt showing a slew of
options. Click on OK to continue, as shown in the following screenshot, since the
defaults will most likely suit your needs:

Importing Custom Content

[118]

Once you have imported an image, navigate to File | Save to create a VTF based
on your imported image, making sure you choose the mod/materials/mytextures
folder. Wasn't that so much easier than before?

Now, we need to create the VMT text file. VTFEdit makes our lives easier once again.
Instead of coding our own file, the program does it for us! To see how easy this is,
navigate to Tools | Create VMT File:

We will be greeted with a window that will let us choose which VTF we want to
create the material with. By default, the VTF we have just created will be at the
top of our list.

Chapter 5

[119]

Have a look at the preceding screenshot. The Base Texture 1 field will be filled
in with the texture you have just created. In my example, this is mytextures/
texture02. If you have a bump map created for your texture, you can add it to
this material by clicking on the ellipsis (…) next to the Bump Map 1 field. Since
this texture is a simple brick wall, we don't need a bump map. Let's move on to the
Options tab to see some other options.

The Options tab gives us more control over the texture. This is where you can select
the surface properties and some other special texture attributes. Again, instead
of typing the code, VTFEdit makes our lives easier by allowing us to simply tick
checkboxes to choose options. Since we are using a brick texture, select Brick for
Surface 1. If you're not using a brick-like texture, select whichever material is closest;
there are many to choose from. This is a standard texture, so we're not going to
need any other special options here. Click on Create to continue and bring up a save
prompt. Name your VMT something along the lines of brick01 or mytexture02 and
save it in your mytextures folder.

That's it, you're done! You will now be able to see your texture in the texture browser
within Hammer and in the game.

Importing Custom Content

[120]

Importing other materials
If you want to import premade materials into your game, just place the VMT and
VTF files into any subfolder within the materials folder of your game folder. The
materials need to be in their own folder. It's also easy to keep them organized if they
are in folders, because you can search for specific folders while using the texture
browser in Hammer.

Importing models
Models need to be created and textured with third-party software, but the materials
and models still need to go into the proper folders in order to be displayed in the
game. If you have a model called mymodel.mdl, this model needs to be placed into
its own folder within a subfolder of the models folder of your game. Wait, what? It's
a common practice for each custom model to be placed within its own folder. If you
had a box model called mybox.mdl, it would be in a folder called mybox within the
mymodels folder within the models folder. For example:

Steam\SteamApps\common\Half-Life 2\ep2\models\mymodels\mybox\

The materials for your custom models go into the materials folder in a similar
manner. The same folder structure exists beneath the models folder and the
materials folder, yet one contains the .mdl files and the other contains the
.vmf and .vmt files.

Steam\SteamApps\common\Half-Life 2\ep2\materials\models\mymodels\mybox

The folders get nested pretty deep and it can be pretty confusing at first glance, but
everything is neatly organized. You will know that everything worked properly
when you open the model browser and your model is there. If you can't see your
model, it was compiled incorrectly or the pieces are in the wrong locations.
Double-check everything!

Importing sounds
Just like models and textures, sounds require their own folder within the
sound folder:

C:\Program Files\Steam\steamapps\username\half-life 2 episode 2\ep2\
sound

Chapter 5

[121]

The source engine supports both MP3 and WAV files. Any .mp3 file can be placed
in the sound folder, and this will be recognized by Source and played in-game.
However, WAV files are a bit trickier. The highest quality WAV file that Source will
play is PCM 16-bit WAV at 44 KHz (refer to https://developer.valvesoftware.
com/wiki/).

Click on the Refresh sounds button in the sound browser within Hammer to reload
the new sounds so that they can be previewed. WAV files are the only files that
can be previewed.

Summary
Creating textures is pretty easy once the proper folder structure is set up, and
importing custom content is as simple as placing the proper files into the correct
folders. Sounds go in the sound folder, models go in the models folder, and materials
go into the materials folder. Custom models are created in third-party modeling
applications such as Blender, 3DSMAX, or Maya. Prepare to bring some light into
your world because next up is lighting!

Lighting and Compiling
Welcome to the world of lighting and compiling! It's generally accepted that lighting
can make or break a map, and this chapter will show you how to avoid some
common pitfalls while utilizing some of Source's most advanced lighting features
to make your environment shine.

This chapter will cover the following topics:

• Using lights
• Emphasizing lights
• Modifying the Lightmap Grid
• Assigning Smoothing groups
• Compiling concepts
• Placing cubemaps
• Adding color correction

The best way to learn is to jump in, so let's get started!

Using lights
There are a multitude of different types of lights available in Source. Learning how to
use each type of light is very important in setting the mood in your maps. Every type
of light entity has its own special properties that help define the look and feel of the
map's lighting. However, most light entities have a common brightness parameter
that controls not only the brightness but also the color.

Lighting and Compiling

[124]

The Brightness parameter contains four three-digit numbers separated by a space.
The first three numbers specify the color in Red, Green, and Blue (RGB) format,
while the last number specifies the light brightness. The default brightness is 255
255 255 200, which is a white light with a brightness of 200. Hammer has a built-in
color picker, so you don't have to mess around with the raw RGB numbers, although
it makes copying and pasting colors from outside applications easy. There is no
specific unit for the brightness number. Higher values are brighter, whereas lower
values are dimmer. Let's take a look at a specific light entities.

Using point lights
Point lights are the simplest of all lights available in the Source engine. Point lights
emit light in all directions from a single point in space. You can think of a point light
as a standard light bulb. However, instead of emitting light from a filament inside
a glass bulb, the light comes from the direct center—just a single, invisible point in
space. You cannot see where the light is coming from, just that there is light being
cast in all directions.

Chapter 6

[125]

The entity that point lights are created from is simply called light. We have used
these before but we just skimmed the surface.

Have a look at the preceding screenshot. You will see a number of different
parameters for light that are explained as follows:

• Name: This parameter gives your light a name if you would like to turn the
light on and off. Lights will work fine without names, and they are set to the
on state by default; however, you won't be able to turn them off.

• Brightness: This parameter controls the color of the light. When you click on
the Pick color button, a color picker will appear, which will automatically fill
in the RGB (Red, Green, and Blue) values when you have chosen the color
you want.

Lighting and Compiling

[126]

Different light colors have implied moods
A warm white/yellow light is familiar and safe, while blue
lights can make an area feel cold and uninviting. Think about
which mood you would like to imply in a given area while
choosing your light colors!

• BrightnessHDR: This setting will control the brightness of the light when
the map is compiled with HDR. This parameter is set just like the regular
brightness setting but will override the standard brightness when compiled
in the HDR mode. A value of -1 -1 -1 1 will not change the light between
modes and is set as default.

• BrightnessScaleHDR: This parameter scales the brightness when in the
HDR mode to give the effect of increased or decreased light. A value of 1
(set as default) will not change the default brightness.

• Appearance: This parameter controls the dynamic brightness of your light.
There are different presets you can choose from, such as fluorescent flicker
or candle effects. The default is none and that should work just fine for
most situations.

Chapter 6

[127]

• Custom Appearance: This parameter allows you to enter a custom
appearance for the light in the form of a string. You can enter the letters a-z
in a long sequence with the letter a representing 100 percent of brightness
and z representing zero percent brightness. Each letter in the string changes
the brightness for one-tenth of a second.

• Constant: Set this parameter to 1 to force the light to have a constant
brightness along the reach of the light.

• Linear: Set this parameter to 1 to force the light to have a linear falloff. The
brightness decreases linearly with respect to the distance away from the light
origin. The light is 1/64 times the brightness of the origin, which is 64 units
away from the light.

• Quadratic: Set this parameter to 1 (default) to force the light to have a
quadratic falloff. The brightness decrease is equal to the square of the
distance away from the light origin. If you're 64 units away from the light,
the brightness is 1/4096 (64*64) of the original. Unless you want some special
lighting, keep this setting.

• 50 percent falloff distance: This parameter sets the distance you want to one
half of the light's brightness.

• 0 percent falloff distance: This parameter sets the distance you want to
1/256th of the light's brightness.

• Hard Falloff: This parameter forces the 0 percent falloff distance to have
0 percent light.

• Entity to Point At: This parameter has no effect on point lights.
• Maximum Distance: This parameter has no effect on point lights.

The following image gives some examples of the different light styles that all
have the same brightness. Check out the CH6_falloff example map for even
more examples.

Lighting and Compiling

[128]

Using spot lights
Spot lights emit light from a central point, but their light emission is focused in a
single direction controlled by two cones. There is a bright inner cone and a fading
outer cone that control the angle of reach and the focus of the light. Spot lights are
useful for ceiling lights, light posts, desk lamps, or any light source that will cast
light in a specific direction.

Chapter 6

[129]

The properties of light_spot are very similar to the standard light; the only
difference is an addition of Outer (fading) angle and Inner (bright) angle. Changing
these angles allow you to control the width and brightness of the light. As you can
see from the preceding image, the light is cast downward only because the pitch, or
vertical angle, is set to -90. A value of 0 or 180 will cast light horizontally, while 90 or
-90 will cast light vertically. There is no light emission outside the cone, so spotlights
are often combined with dull point lights to convey a more realistic light emission
around the source of the light_spot entity.

In-game, you'll be able to see the effectiveness of the combination of light_spot and
light as shown in the preceding image. The following image shows the effect of
combining spot lights and point lights:

Lighting and Compiling

[130]

Using light environments
The light_env emits light from the skybox texture. The brightness and angles are set
just like a light_spot entity but there are no cone angles to specify. Light will always
be cast at the same angle unless sun spread angle is specified to break up the light
direction, as shown in the following screenshot:

Brightness and BrightnessHDR are set like normal lights but there is also an
ambient setting that defines the brightness of the darker areas of the map.
Wherever a shadow is cast, the ambient light will be applied in that area.

Chapter 6

[131]

Using dynamic lights
Dynamic lights and light_dynamic act similar to spot lights, but they are calculated
in real time. The word dynamic means changing; dynamic lights can change color,
brightness, and angle and can be used in a variety of situations. For example,
you can parent a light_dynamic to a hanging light, and when shot, the light will
move around with the swinging fixture. However, you should use dynamic lights
sparingly in your maps because they take a lot of processing power to display due
to the real-time light calculations.

Lighting and Compiling

[132]

You'll notice that the parameters are nearly the same as the light_spot entity. There
are some key differences, however. The inner (bright) angle and outer (fading)
angle parameters only affect models such as props, NPCs, and your weapon. The
spotlight end radius entity affects how the world (brushes and displacements) is lit
by making a circle of light on the ground with that radius. The Brightness parameter
is not tied into the color setting like other lights, and it doesn't follow the same scale
either. A brightness value of 5 is a good place to start with a light_dynamic entity.
The Brightness parameter also doesn't affect how far the light is cast either; this is
directly controlled with the maximum distance parameter, which needs to be set
equal to or greater than the surfaces or models you want to light.

Chapter 6

[133]

Using texture lights
There's a way to light your map without the need of entities! Texture lights emit
light from the surface of a material. The color and brightness of the emitted light are
specified within the lights.rad file, which is located in your game folder. In the
texture browser, you can't tell if a material will emit light, so you should check the
lights.rad file before you compile.

The lights.rad file is a simple text file that is saved with a .rad extension. All it
contains is a list of texture names and their associated brightness values with each
texture residing on a separate line. For example, I want the metal/metalwall013a
texture to emit a reddish-brown light with a brightness of 1500. My lights.rad file
would look like the following:

metal/metalwall013a 153 69 13 1500

Simple enough, right? Now just save it in the base game folder. So, since I'm using
Half-Life 2: Episode Two, I will save it at Steam\SteamApps\common\Half-Life 2.
Make sure to select All Files next to the Save as Type description so it will save as a
.rad file and not a .txt file.

Lighting and Compiling

[134]

When I compile my map, the log will show that it is using a texture from the
lights.rad file by displaying [Reading texlights from 'lights.rad'][1 texlights
parsed from 'lights.rad']. In-game, the texture will emit light from the surface!
Texture lights tend to be pretty dull, so don't be afraid to crank your brightness
values past 1500.

Texture lights are often used to emit light from light textures. Combining a texture
light with a sprite (mentioned later in this chapter) provides a very convincing
lighting effect.

Chapter 6

[135]

Using projected textures
Projected textures are not exactly lights but they cast a colored texture in a specific
direction similar to light_spot, but instead of a cone-shaped emission, the project
texture had a pyramid-shaped emission. Projected textures have the unique ability
to cast shadows through alpha channels in textures. They're very useful for giving a
dramatic back-lit effect through a grate or fence, but like dynamic lights, they take a
lot of processing power to display.

Lighting and Compiling

[136]

The entity used is env_projectedtexture, and the light color is set just like the
Brightness parameter in any other light. However, Shadows have to be enabled
manually. In this example, this projected texture is shining through a grate across
a hallway. Shadows are enabled and the light color is left at the default white with
a brightness value of 200. There is a dull point light in the nook with the projected
texture just to give the illusion that there is light coming from behind the grate. I also
placed the same grate with just a point light inside to show the difference in effect.

The light entity casts a standard light cone out from the inset in the hallway.

The env_projectedtexture entity casts shadows created with the texture's
alpha channel.

Chapter 6

[137]

Projected textures will also cast shadows of NPCs and models, but they will not cast
shadows of the player because there is no player model in Half-Life 2.

Only one projected texture can be rendered at any time.
Keep this in mind because your flashlight counts as a
projected texture and render errors will occur if you use
both simultaneously!

Emphasizing lights
We all know that light doesn't radiate without a source. Lights in your map should
have a place of origin. Thankfully, there's a collection of models available to use as
light sources. Let's start with a simple point light source.

Placing point light sources
This is a concrete hallway with a simple point light in the middle of it. The light
comes from nowhere, and the overall effect is boring and unrealistic. Let's put
some light fixtures in the hallway to add some realism.

Lighting and Compiling

[138]

Add a prop_static entity using the light_cagelight02_on.mdl model to the map,
and align it to the wall, as shown in the following image. Make sure to choose the
correct skin entity for the light, as some light models can have an on skin and an
off skin. Move the light entity a few units out in front of the model and reduce the
brightness parameter to 80.

Give the map a quick test-compile to check the results. If the lighting on the model is
looking a bit off, set the disable shadows property in the prop_static entity to yes to
clean up the results.

Even though the map is darker, and the lighting isn't perfect, you still get the idea
that the light is being emitted from the cage light model mounted on the wall.

Chapter 6

[139]

We can even add a bit more realism by using a glowing effect that will fade as the
player approaches the light. Place an env_sprite point entity inside the light model. In
this case, the only two parameters we need to change are the render mode parameter
and the Size of Glow Proxy Geometry parameter. Change render mode to glow so
that the sprite scales it relative to our position, and change the Size of Glow Proxy
Geometry parameter to 5 to make sure the sprite will render properly when the origin
is inside a model. Give the map another compile to check out your results.

Placing spot light sources
Spot lights can also use a model and glow effect to increase their realism. A fluorescent
light model can benefit from an entity called env_lightglow. The env_lightglow entity
allows you to specify the width and height of a glow effect as well as the distances they
start to fade at. The settings are set just like a regular sprite entity.

Lighting and Compiling

[140]

Modifying Lightmap Grid
Lightmap Grid controls the level of shadow detail on any brush face. By default,
the Lightmap Grid size is 16, which means lighting is calculated every 16 units on
a specific brush face. By decreasing the size of Lightmap Grid, you can get sharper
shadows at the expense of compile time and memory. Increasing Lightmap Grid
removes the shadow detail, but it will speed up your compile time and decrease the
size of the compiled map. Let's learn more about these useful settings.

In order to see Lightmap Grid on your brush faces, left-click on the top-left corner of
the 3D view and select 3D Lightmap Grid, as shown in the following screenshot:

Once you select this View mode, you will see a grid on each brush instead of a
texture or flat color. As previously mentioned, the default Lightmap Grid size is 16
units. This default color scheme is a dark blue grid overlaid on top of a solid, light-
blue background. If the grid size is below 16 units, the background color changes to
yellow indicating that the face contains a higher than normal Lightmap Grid density.
If the grid size is above 16 units, the background changes to a darker blue indicating
that the face contains a lower than normal Lightmap Grid density.

Chapter 6

[141]

The Lightmap Grid scale property is located in the top-right corner of Texture
Application Tool.

To make a Lightmap scale change, select a brush face, change the Lightmap scale
value, and click on Apply. In the following figure, you can see how drastic the effect
Lightmap Grid size has on your map's shadows. The smaller the Lightmap Grid size,
the sharper your shadows will be. If you want to accent the shadows in a particular
area, shrink Lightmap Grid before you try anything else!

Lighting and Compiling

[142]

Assigning Smoothing groups
Smoothing groups are used to smoothen the transition between faces on curved
brushes. In order to apply a smoothing group to a brush, you first need to open
Texture Application Tool and click on the Smoothing Groups button located in the
bottom-right corner. A dialog box will open displaying 24 Smooth group buttons
and eight Hard group buttons, as shown in the following screenshot:

Select the desired faces to be smoothed and click on a Smooth number button to
assign those faces a smoothing group. Shadows cast on the object will be blended
around the brush faces based on the density of the face Lightmap Grid. Like before,
the smaller the Lightmap Grid size, the more lighting detail the brush contains, and
the smoother the transition between the faces will be. However, keep in mind that
Lightmap Grid needs to be equal to or smaller than the width of the brush face in
order to smoothen it properly. So, if you have a brush face that is 16 units wide,
your Lightmap Grid can be a maximum of 16 units to achieve any smoothing effect.

Chapter 6

[143]

You can see that the transitions between faces on rounded surfaces get smoother
when you assign smoothing groups and decrease the Lightmap Grid size! Use this to
your advantage when placing pillars, columns, and rounded corners in your maps!

In the CH6_smoothing example map, you can see that each of the individual
cylinders have the same smoothing group assigned to them. Since the faces between
cylinders do not touch each other, it's fine to leave them as the same smoothing
group. Make sure to only use one smoothing group on any specific group of
touching brushes. Faces can also be assigned more than one smoothing group to
blend multiple brush faces together.

You can force objects to have a hard shadow between them
by assigning a Hard group number instead of a Smooth
group number.

Compiling concepts
Up until now, we have just been doing normal compiles during our tests, and we
haven't really paid much attention to any of the advanced features or what each
specific option controls. Doing normal compiles is just fine for testing, but let's
explore the different stages of the compile process and how to tweak the settings
to our liking.

Lighting and Compiling

[144]

Checking for problems
Before you even think about compiling a map, you should always check it for
problems. In Hammer, press Alt + P to check the map for problems. If you're neat,
organized, or just plain lucky, you will not have any problems, and a happy dialog
box will appear as follows:

If you don't have any errors, great! You can go ahead and compile. However, if you
do have errors, you will see a list of everything that's wrong in your map, as shown
in the following screenshot:

A few common errors and their solutions are:

• Invalid solid structure
 ° Solution: Concave or other type of brush. Click on Fix to resolve or

recreate the object.

• There is no player start
 ° Solution: Add an info_player_start entity.

Chapter 6

[145]

• Entity (entity_type) has unused keyvalue "angles"
 ° Solution: Always appears with some entities. It can usually be

ignored, but the Fix button will resolve it.

• Entity (entity_type) has bad I/O connections
 ° Solution: There is a bad reference in an I/O connection. Fixing it will

delete the I/O reference.

Most of the time, the Fix button will resolve the error. If it doesn't, you can check the
VDC website at https://developer.valvesoftware.com/wiki/Compile_Errors,
and do a web search, or check a mapping community website such as twhl.info.
Someone must have probably run into the same problem before, and most people
would be glad to help you resolve it.

After checking your map for problems, press F9 to bring up the Run Map dialog box
as follows:

Running BSP
Without going into too much detail, the Binary Space Partition (BSP) part of the
compile process takes all the world brushes, displacements, and models, and creates
a playable .bsp (map) file with them. It is this process that actually creates the world
out of the .vmf (map) file that you create with Hammer.

Lighting and Compiling

[146]

Other than the Normal option, there are two other selections for BSP: No and Only
entities, as shown in the following screenshot:

No will not run the BSP program meaning that all changes to your brushwork or
displacements will not be updated when you compile. In order for your map to
function properly, a previous compilation using BSP must have been made. The
VIS and RAD programs will still run with BSP disabled, so this can shave off a few
seconds your compile time if you want to just do a lighting check.

Only entities will update the location and function of any brush-based entities that
were changed after the last compile. This setting is useful when used in conjunction
with disabling VIS and RAD to check complex entity setups and scripts.

Running VIS
VIS tells the game engine which parts of your map are visible from any other point.
The following screenshot shows the VIS portion of the compile prompt:

It does this by slicing empty space into areas known as visleafs. Without diving
too deep into the actual function of a visleaf, just know that any object's visibility is
controlled by the visleaf it occupies and any surrounding neighbors. If you can see a
visleaf, everything inside it and any of its neighbors is rendered. VIS will create one
or more visleafs between each brush, and it mostly prefers cubic shapes over angled
geometry. In general, the lesser visleafs, the better.

Chapter 6

[147]

To see the visleafs created during the compile process, navigate to Map | Load
Portal File after you have compiled one of your maps.

Angled world brushes cut square visleafs into wedge pieces, which can drastically
increase the amount of visleafs in a map. The lesser the visleafs in a map, the faster
the map compiles, and the faster it runs in-game. So, it's a good mapping practice
to turn angled and complex geometry into func_detail entities because they do not
cut visleafs!

If your map is taking a while to compile, load the portal file and see if you
can trim it down a bit.

Lighting and Compiling

[148]

Note the difference when the angled wall sections are turned into func_detail
entities. Even in such a small, simple map, the percentage of leaves was reduced by
around 27 percent (from 93 to 73)!

Don't go too crazy turning every piece of curved geometry into the func_detail
entities; only world brushes seal the map from the void, and you may create a leak
if you turn an exterior brush into func_detail!

If VIS is not calculated, the entire map will be visible at all times. If you have a beefy
gaming rig, this won't be too much of a problem, but on larger maps, rendering
everything at once will bring even the best machine to its knees. No map should ever
be released or considered final without running VIS in the compile. Disabling VIS
can be handy at times if you make good use of the cordon tool to limit your compile
bounds, and you want to check out some entity setups.

RAD
RAD is short for radiosity, and it calculates lighting in your map. Each light source
in the map gets analyzed to see how far the light is cast, and how many times the
light bounces off each surface. Lights that turn on and off or have a flicker will have
a separate RAD calculation for each brightness value. So, a light that can be turned
on and off will have two RAD calculations, and a light that stays on all the time will
have one RAD calculation. Lights, for example, that have a custom appearance of
aaahhhmmmzzzz, will have four RAD calculations (one for each letter). So, if you're
using a lot of flickering lights in your map, expect to wait a little bit for RAD to do
its duty. The lighting calculations make up the majority of your compile time and
will eat most of your computer's resources. If you're compiling a large or complex-lit
map, it's best to leave your computer alone while the map compiles because it can
take hours to complete.

Chapter 6

[149]

If you try to multitask while compiling, you might freeze the process,
and VIS or RAD might not respond. It's highly recommended to
leave your computer alone while compiling a large map; especially,
during a final compile. Take a nap, take a break, maybe get a cup of
tea, and sit outside! Patience is the key.

If you disable RAD while compiling, your map will become what's known as full
bright. There will be no lighting information in your map, and all the textures will be
rendered at their native (100 percent bright) color.

The sprite on the light fixture is still visible, but it isn't emitting
any light.

Full bright maps are very unattractive, but compiling without RAD can save a lot of
time even over fast compiles. Running a map without RAD is very useful for testing
entity setups because you're cutting over 50 percent of your compile time out.

Fast RAD compiles are quicker than normal RAD compiles. They don't look pretty,
but running with fast RAD during the bulk of the development process will save you
hours in the long run. Usually, while creating maps, lighting is tweaked in the end or
else normal RAD compiles will eat your precious time for no reason.

Lighting and Compiling

[150]

Compiling with HDR
HDR stands for High Dynamic Range. HDR makes a map's visuals more attractive
by mimicking the way a human's eye reacts to differences in brightness. HDR makes
bright lights whiter, dark corners blacker, and simulates the glow or bloom of light
oversaturation. If you then walk between different areas of brightness, your view
will take a few seconds to adjust to the new area. As we can see in the following
image, compiling with HDR when it is enabled will nearly double your compile
time, but it's well worth it for the added effect:

Chapter 6

[151]

The Expert mode
You can turn on the expert compiling mode by clicking on the Expert button from
the standard compiling menu.

The expert mode allows you more control over the BSP, VIS, RAD, and other settings
in your compile. When you enter the expert mode, you might be overwhelmed, but
this just exposes the parameters that are passed to the individual compile programs.
Have a look at the preceding screenshot. Source has a few precanned expert compile
modes that are quite useful. The easiest way to do a final HDR compile is to pull
down the Configurations selection box and select HDR Full compile –final. This will
run BSP, VIS, and RAD at their maximum settings. This will take a very, very long
time if your map is complex (a few hours). The results will be worth it though.

If you wish to modify any specific command parameters, select it from the Compile/
run commands: area, and add other compile parameters in the right-hand side.
The most useful parameters are -both and -final for the RAD program. The -both
parameter compiles LDR (regular lighting) and HDR. The -final parameter should
be used on the last compile of the map to make the lighting look the best it can.

Lighting and Compiling

[152]

Checking for and fixing leaks
During the compile process, the map is also checked for leaks. If your map does not
look correct in-game, or if it's taking a dreadfully long time to compile, you can check
the compile log to see if you have a leak anywhere. An easy way to tell if your map
has a leak is to look at water while you're in-game. You should be able to see right
through it.

The compile log will be displayed at the end of a compile, but if you have closed it,
a copy of the log is stored as <yourmapname>.txt inside the folder where your .vmf
file is saved. Instead of reading through the entire log, search for the LEAK string.

Chapter 6

[153]

You will see ****leaked**** wherever the compile tools detected a leak, as shown in
the following screenshot:

It can be a pain to track down the origin of a leak, but the compile tools make it a
bit easier by creating a pointfile whenever it detects a leak. The pointfile traces the
lighting path starting at a source entity and ending in the void. If your map has a
leak, you can load the pointfile by navigating to Map | Load Pointfile. Look at the
compile log to see where the source entity is, and trace the red pointfile entity line
to the source of the leak. In this example, the info_target entity shows us the leak is
coming from an unsealed skybox.

The compile log is useful for more than just leak checking; it will list other errors as
well with hints on how to resolve them. Also listed in the compile log is the time it
takes for each step to complete (BSP, VIS, and RAD), and based on what you would
like to watch, the compile window will show you which step of the process it's on.
The log also shows how full the map is. Since this is a computer game, and not real
life, you have to work within limits. Check out the compile log to see how much
space you have left for light data, entities, brush faces, and more.

Lighting and Compiling

[154]

Cubemaps
Cubemaps allow all the normal and bump-mapped materials in your maps to reflect
light properly. They are also necessary for proper water rendering and making sure
your weapons reflect the proper parts of the world. To see the effects of a cubemap
in the best possible way, let's check out some before and after pictures in the
following image:

In the before shot, the water looks pretty, and it is reflecting the wall. However,
overall the wall looks flat and dark. Once a cubemap is placed into a map, you can
immediately tell the difference. In the circle on the left, you can see the reflection of
the sky in the wall. In the center circle, there is a reflection of a green light located
behind the player. In the right circle, you can see the reflected upper wall and the
refracted bottom wall beneath the water's surface.

Cubemaps are placed into the world with the env_cubemap entity. A good rule of
thumb is to place one cube map in each room, one cubemap in each hallway, and to
keep the cubemaps about 64 units off the ground (that is, the eye level). Cubemaps
also need to be at least 16 units away from any brushes and can also be put in
differing areas of color or brightness.

Chapter 6

[155]

Larger rooms or open areas should have multiple cubemaps. Once the cubemaps are
placed in the map, you need to run the buildcubemaps console command while in-
game to calculate all the reflections. After sending the command, you will see your
screen flash with the views of each cubemap. Once this is complete, the map will
restart and you will see all your changes.

Adding color correction
Games using the Source 2009 engine and newer have color correction capabilities.
This allows you to adjust color, contrast, and shadow depth in real time in the game.
This means no compiling in between tweaks! If you think your lighting looks pretty
good, but there's something missing, then place a color_correction entity into your
map so you can fine tune it in the game.

Lighting and Compiling

[156]

Like other triggerable entities, the color correction entity doesn't need a name unless
you want to trigger it on or off. For now, set both of the falloff parameters to -1 so
that the color correction spans the map, compiles your map, and loads it. Once you
have your map loaded, walk into the radius of your color correction entity, and
enter colorcorrectionui in the console to bring up the Color Correction tools.

Have a look at the preceding image. Clicking on New will give you a new color-
balancing effect. Curves lets you set the RGB luminosity curves. Balance lets you
balance the colors in the mids, highs, and lows. There are many other tools available,
but the best thing to do is play with them all to get a certain effect. The simplest tool
to use is the balance tool because you can see the effect very easily.

Chapter 6

[157]

Move the sliders around to view the corrected scene in real time. When you're happy
with the result, save the RAW file into your base folder and go back to Hammer.
Open the color_correction properties and type the name of the raw file you just
created in the Lookup Table Filename property. When you run the game, the colors
will be shifted to get you the perfect lighting you wanted!

Feel free to adjust the falloff radii to the desired distances to fade in and out of the
color correction effect.

Lighting and Compiling

[158]

Summary
Lighting is pretty simple once you break down the individual entities into their
specific uses. Point lights are great for adding little details or filling up the whole
room with light. Spot lights can be used for a variety of things such as fluorescent
lights or prop flood lights. Props and sprites can enhance your lighting and help
to provide some added realism. You also now know the difference between LDR
and HDR lighting and how to fix leaks or problems, if any, that arise during
development. Cubemaps are necessary for having proper reflections, and color
correction helps to add that last bit of detail while tweaking the final stages of your
maps. One of the best ways you improve the lighting in your maps is to tweak it
until you get pretty close, and then add some color correction in the final stages.

Let's move on to the input/output system. Things are just starting to get interesting.

Triggers and the
Input/Output System

The Input/Output system is the heart and soul of any scripting event created with
Hammer. An entity is activated or triggered with an input. An input tells the target
entity what to do; if the target entity is a light, an input could turn the light on or off.
Entities have outputs as well. If a button is pressed, one of its outputs can tell the
light to turn on or off. Inputs trigger outputs. Each entity also has a subroutine-like
function that can trigger a sequence of events when told to do so.

In this chapter, we will cover:

• Creating your first triggers
 ° Using trigger once
 ° Using Trigger multiple

• Using logic triggers
• Using filters
• Using subroutines

Mastering the Input/Output system takes no time at all. Let's jump in.

Creating your first trigger
A trigger, vaguely, is any external input that causes an event or a series of events to
start. Walking into a pre-defined area can cause a door to open. Using a button can
turn on a light. Shooting at an enemy soldier can cause more soldiers to shoot back
at you. All these situations are examples of triggers, and these triggers are handled
with Source's Input/Output system. One of the simplest things we can do with the
Input/Output (I/O) system is open a door with a trigger_once entity.

Triggers and the Input/Output System

[160]

Creating a trigger once entity
A trigger_once entity is a brush-based entity that will initiate a sequence of events
(fire outputs), when it collides with the player. So our trigger's input will be the
player colliding with the brush, and our trigger's output will be opening a door.

Chapter 7

[161]

Create two rooms with a door-textured brush separating them. Turn the
door-textured brush into func_door entity and then let's take a quick look
at the func_door properties.

Giving an entity a Name allows the I/O system to reference it and control it, so the
first thing we should do is call this door door01. The func_door entity is a sliding
door, and it will move in a direction that is set by the Angles Property.

Triggers and the Input/Output System

[162]

In this example, the Angles are set properly by default. Door01 will move into the
wall allowing you to walk through the doorway, but we got lucky. The black circle
directly corresponds to the direction of movement in top (x/y) window. Drag your
cursor around the black circle to set the door opening angle you desire.

Let's move on to creating the trigger brush.

Create a brush in front of the door that the player has to walk through in order to get
to the door. Texture the brush with the tools/trigger texture and press the toEntity
button to make it to a trigger_once. You have just created a trigger brush!

A trigger brush is simply a brush textured with the tools/toolstrigger texture that is
tied to a trigger entity. An object, player, NPC, or physics object that collides with
the trigger will activate one of the trigger's outputs.

Chapter 7

[163]

The tools/toolstrigger texture, as well as any other tools/* texture
will not render in-game, so don't worry about seeing it once the
map is compiled.

Open the properties of this trigger_once entity so we can tell it to open our func_
door entity. We don't need to give this trigger_once entity a name, so we can move
straight into the Outputs tab.

Adding outputs to a trigger once
When triggred, we want our trigger_once entity to tell door01 to open. Sounds
simple enough right? It is almost that simple! Here's what we need to do:

1. Choose how this output is activated.
2. Choose the affected entity.
3. Choose the affected entity's action.
4. Specify a time to wait before performing the action.

Our first step is to add an output to the trigger with the Add button. The My Output
Named parameter specifies what type of action will trigger the event. Since this is just
a simple trigger, choose OnTrigger to fire the output when the trigger is activated.

The My Output Named list is entity specific so it will not be
consistent across entities.

The second step is choosing which entity we want to affect with this trigger. You
can manually type the entity name, select it from the drop-down list, or use the
eye-dropper tool to select the entity the 3D viewport. Whichever way you choose to
select the door, set door01 as the Target Entity.

Once we have a target entity, our third step is to choose an input, or action, we want
the entity to perform. Just like outputs, inputs are entity specific too, and in the case
of our func_door entity, we want it to Open.

Triggers and the Input/Output System

[164]

All triggers can have a Time Delay before the action is initiated. We want to open
this door immediately, so keep the After delay in seconds of field at 0.

Click on Apply to save the changes and take a look at your output you have
just created:

On Trigger, Door01, Open, 0.00s delay

That's almost plain English! As you can see, the output system is pretty easy to use
and understand. Compile and run the map to see the door open as you walk up to it.
If your func_door entity is the same width as your door frame, your will get a render
glitch when the door face is on the same plane as the door frame plane. Change the
Lip parameter in the func_door properties to fix this.

Creating a trigger multiple
You'll notice that when triggered, the door will open. The door will automatically
close as well. If you didn't' make it through the doorway before the door closed,
you're out of luck because you can only open the door once. If we want to be able
to open the door multiple times, we need a trigger_multiple. If we want the door to
stay open indefinitely after triggering, set the Delay before close property to -1.

Trigger_multiple acts almost the same as trigger_once, but it can be activated
multiple times. Turn the trigger_once into a trigger_multiple so we can how
this all works.

Chapter 7

[165]

Again, the main difference between a trigger_once and a trigger_multiple is the fact
that a trigger_multiple can be activated more than once. Trigger_multiples have a
field called Delay Before Reset that controls how often the trigger can be activated.
Compile and run your map with the trigger_multiple and you will see that you can
open the door in intervals specified by the Delay Before Reset property.

Input/Output links
If you open any entity that has an output assigned to it, you will see that there is
now an icon containing a dot with an arrow coming out of it located in the bottom
left corner of the properties window.

Triggers and the Input/Output System

[166]

This icon tells us that this entity has an output assigned to it. You can double-click on
any specific output to jump to the target entity's Inputs tab.

In bottom-left corner of the func_door's properties, you can see that there is a picture
of an arrow pointing to a dot. This signifies that this entity has an input. Again,
double-clicking on the input will jump to the triggering entities' properties. Every
entity's output creates an input somewhere else. And you can easily see if an entity
has an input or output based on these icons.

Chapter 7

[167]

Cascading triggers
Outputs have time delays built into them. While it is possible to have one entity
control a whole series of events with set time delays, it is often cumbersome to
perfectly time everything. Let's say we want a light to turn on in the second room
two seconds after the func_door entity is open. We could tell the trigger_once entity
to have a second output that tells the light to turn on in about 2.5 seconds, (adding
half a second for door travel time), or we can simply have the func_door entity turn
on the light once it is fully open. A cascade occurs when an entity receives an input
and triggers another entity via an output when its input action is complete.

Create a light in the second room and name it room02_light01. In the Flags tab of
the light, select initially dark so it starts off and we need to tell the light to turn on.

Now open the Outputs tab of the func_door entity and add a new output. When the
door is fully open, turn on the light in the next room after two seconds. Your output
should look like the following:

OnFullyOpen, room02_light01, TurnOn, 2.00s delay

Triggers and the Input/Output System

[168]

Hit Apply to save the changes, then give the map a test compile to check the results.

Our func_door entity has both the input and output icons in the bottom-left corner
which means this entity has both inputs and outputs.

Automatic triggers
If you want something to happen as soon as you start a map, or as soon as you load
from a save file, there is an entity for that. The logic_auto entity fires an output based
on level start conditions.

Chapter 7

[169]

In this case, I have surrounded the player start with a func_door entity in the shape
of a cage. I have set an output in the logic_auto to open the door (lower the cage into
the floor) after the map has been loaded for five seconds. The output is as follows:

OnMapSpawn, cage01, Open, 5.00s delay

Modifying entity effects
A great feature of the Source engine is the ability to control special entity properties
such as render modes. We can dynamically change parameters such as the alpha, or
transparency of entities. We can manipulate two overlapping light model's alpha to
trick the player into believing a light model is actually casting light when the point
light beneath it turns on. If a model has a skin, it can easily be changed by sending a
skin = number input, but some entities don't have different skins so we need to play
some tricks with the render modes.

Place a prop_dymanic entity on the ceiling above the light in the second room
and name it room02_light01_mdl_off. Assign the prop_dynamic entity the
light_domelight02_off.mdl model and change its render mode to solid.

The entity name might seem long, but following a consistent naming convention
will help you will stay organized, and it could make your life much easier when
your maps have lots of entities. Assigning the prop a render mode of solid will let us
change the alpha property with triggers. Make a copy of the prop_dynamic entity by
holding Shift and dragging it and rename it to room02_light01_mdl_on.

Assign the copied prop_dynamic the light_domelight02_on.mdl model and set the FX
amount to 0. When FX amount of a solid-rendered model is 0, it will be invisible when
the map is first loaded. When FX amount is 255, the model will be 100 percent opaque.
Any value between these two values will render the model as semi-transparent.

Triggers and the Input/Output System

[170]

Rendering artifacts occur when multiple objects occupy the same planes. The
preceding screenshot was taken within Hammer, but the same effect occurs within
the game. We don't have to worry about this artifact occurring in game because our
triggers prevent both models from rendering at the same time.

When the light is off, we want the on model to have an alpha target of 0, and we
want the off model to have an alpha of 255.

When the light is on, we want the on model to have an alpha of 255, and the off
model to have an alpha of 0.

We can remove the off model from the world by passing the
Kill input. Because this light is triggered via a trigger_once
entity, the light will remain on permanently, and there is no
reason to keep the off model anymore. Since prop_dynamic
entities require a relatively large amount of resources, killing
them can help the game run smoother. Passing the alpha
parameter will keep the model in the map, and we will retain
the ability to change the render states in the future.

Thus, we have not been using the Parameter Override field in our outputs because
we have not triggered anything that required a parameter setting. When we send
the alpha command to an entity, we need to specify the amount of alpha we want
the model to render with. Placing a number between 0 and 255 into the parameter
override field will control the render amount.

Chapter 7

[171]

Using different flags
Triggers have flags that can be set to specify what entity type can trigger them.
Check the box to select which entity type can activate the trigger. Any trigger
defaults to allowing only clients (players) to activate them, but this can easily be
changed to allow or forbid multiple activator types.

Triggers and the Input/Output System

[172]

As an example, if you want a window to break if you throw a rock at it, put a
trigger_once entity in front of a func_breakable entity (named window01) and
set the flags of the trigger_once entity to Physics Objects only.

The output obtained for the trigger_once entity would be as follows:

OnTrigger, window01, Break, 0.00s delay

The window will break if any physics object, such as a rock, touches the trigger, but
it will not break if the player touches the trigger.

Using filters
We can provide even more control over which objects or NPCs trigger which event
using filters. Filters help to tell a trigger which entities can or cannot affect them. The
filter_activator_class entity, for instance, will check the activator's class name against
its setting and will only let the trigger fire if the class names match.

An activator is anything that activates a trigger and the class
is the type of entity, not the name.

Chapter 7

[173]

The following flowchart will explain the logic of the sequence:

Yes

No

Break Window

Does physics object
match filter criteria?

Is activator a
physics object?

Something Touches
trigger_once

Yes

Do
Nothing

No

Using the previous example of throwing a rock at a window, create a brush with a
window texture and tie it to a func_breakable entity. Name it window01 and in the
Flags tab, check the only break on trigger box to ensure that only a triggered input
can make it break. Create a trigger brush in front of the window that the rock must
pass through. Check only the Physics Objects box in the Flags tab and then create
the following output:

OnTrigger, window01, Break, 0.00s delay

Create the filter_activator_class point entity and name it rock_filter. In the Filter
Classname property, type prop_physics to allow only prop_physics entities to
break the window.

Triggers and the Input/Output System

[174]

In the trigger_once properties, set the filter parameter to rock_filter to allow the
trigger to look for the prop_physics trigger.

Now, we need to create the two different types of physics objects so that we can
see the filter in action. You already know about prop_physics entities, but there
is another physics object known as a func_physbox entity. A func_physbox or a
physbox entity is a brush or group of brushes tied to a func_physbox entity that
will respond to the physics engine in the game. Create a prop_physics entity using
the rock_forest01b.mdl model, and then create a sphere brush and tie it to a
func_physbox entity.

Our trigger_once brush will use this filter to determine which entity name or entity
type is allowed to trigger an input. In the trigger_once properties, assign Filter
Name to rock_filter.

Our entity setup is now complete and we can test it in-game! You can throw the
func_physbox entity at the window until your finger gets a cramp, but it will never
break the window because the filter tells the trigger to ignore the incorrect activator.
Toss the prop_physics entity at the window; however, the window will break
immediately, allowing the rock to pass through to the other side.

The filter activator name
Activator_name filters act just like the Activator_class filters except that the filter_
activator_name filter looks for a specific entity name instead of a generic entity class.
Using the filter_activator_name entity, you can set a trigger's flag to everything to
allow all types of entities to activate the trigger. The filter_activator_name entity will
only allow entities of a certain name to actually have any effect on the trigger. Look
at the example map to see this in action.

Chapter 7

[175]

The filter multi entity
Filter_multi entities have the ability to perform logic operations with existing filters.
A filter_multi entity will compare up to five existing filters and then decide what the
outcome should be. There are four different logic operations that can be performed:

• And (Logic type: And, Negate outcome: No): An And operation will
compare two or more inputs and only trigger an output if all inputs
are satisfied.

• Nand (Logic type: And, Negate outcome: Yes): A Nand operation will
negate the And operation; the output will always trigger unless all the inputs
are satisfied.

• Or (Logic type: Or – Negate outcome: No): An Or operation will trigger an
output if any one of the inputs are satisfied.

• Nor (Logic type: Or – Negate outcome: Yes): A Nor operation will only
trigger an output if all inputs are not satisfied.

Filter_multi entities are implemented just like the other filter entities such that you
enter the filter name into a trigger's filter property.

Creating subroutines
Every entity, regardless if it possesses specific outputs, can be used to fire a sequence
of events via the FireUser input. The FireUser input can be related to a subroutine.
FireUser inputs are useful for complex entity setups that can be triggered multiple
times in a cascading fashion.

Triggers and the Input/Output System

[176]

In the example map provided, there is a env_explosion entity parented (attached)
to a prop_physics garden gnome. There is a point_teleport entity that teleports the
garden gnome on the pedestal behind the glass. There is a trigger_multiple entity
behind the button that controls and teleports the gnome to the pedestal and fires a
series of explosions to bounce the gnome around the room. Since the env_explosion
entity is parented to the gnome, wherever the gnome is, the env_explosion entity is
in the same relative position. The button on the post tells the trigger to use FireUser1,
and the trigger_multiple entity activates all the outputs relative to the User1 input.

Now, any other entity can tell the trigger_multiple entity to trigger FireUser1 and
instead of triggering six separate events, only one event needs to be triggered.

Summary
Hammer's Input/Output system is an incredibly versatile tool that is very simple to
use and understand. Each entity class has a multitude of different inputs and outputs
that can be activated with simple trigger entities. Trigger_once entities fire outputs
once while trigger_multiple entities trigger some things as many times as you want.
Filters are powerful tools that let you control exactly which events are triggered by
which entities. Now that you know how to harness the power of the input/output
system, let's have some fun with cameras and track trains!

Trains and Camera Systems
The Half-Life series of games have a strange affinity for trains. There was an entire
chapter devoted to them in Half-Life. Half-Life 2 starts you out on one train, almost
kills you on another, and the player is on the same train in between Half-Life 2
episodes 1 and 2. The Source SDK contains a powerful set of tools devoted to make
objects move. If you want full control over that movement, you'll want to use a train.
Half-Life focuses on first-person story development, but it still has moments where
the view is taken over by a secondary camera. Combining trains and cameras can
make for powerful storytelling cutscenes.

In this chapter, we will learn:

• Creating and controlling track trains
• Creating a security system using cameras
• Combining trains and cameras to make cut scenes

There are some exciting topics to be covered in this chapter, so let's jump in!

Track trains
Track trains are brush-based entities that move forward and backward along a
path. The path that track trains follow is made up of linked point-based path_track
entities. Track trains come in two main varieties: player-controlled and automatic.
Player controlled track trains, when used, override the player's forward and
backward movement keys to control the train movement. These trains can be ridden
and have the ability to switch the path they take with external triggers. Automatic
track trains are controlled with external triggers and have no direct player control.
An example of an automatic track train could be a platform with more than one
movement direction or, as we'll soon see, an invisible box acting as a camera's target.

Trains and Camera Systems

[178]

Player-controlled track trains
Func_tracktrain entities have the ability to be player controlled. These are brush-
based entities that the player must be standing on in order to be controlled. There
are three main parts to a player-controlled func_tracktrain:

• Func_tracktrain: This is the moving object made of world brushes.
• Func_traincontrols: This is the trigger brush that controls the forward and

backward movement of the train. The player must stand on the train and be
inside this brush.

• Path_track: This defines the path that the train will follow.

Creating the func_tracktrain entity
Create a brush and tie it to a func_tracktrain entity. The train brush can be of any
shape or size so long as the player can stand on it. When creating the func_tracktrain
entity, the front of the train must face east (facing to the right if looked at from the
top 2D viewport). Name it func_tracktrain01 and set the Is Unblockable by
Player flag to true so the train won't stop if it runs into the player. (This flag can
cause some buggy behaviour if not checked.) When the train is spawned in the game,
the train origin will be located at the start pointpath_track entity and the front of the
train will be facing the second path_track entity. Change the Render Mode option to
Not Rendered so the train will be invisible in the game.

Chapter 8

[179]

Instead of playing with render modes, you can also texture the track
train with the tools/toolsinvisible texture to achieve the same effect.

Creating the path
Now, let's create a path with two nodes for our train to travel between. Place two
path_track point entities in the map. Name one path_tracktrain01_start and
name the other train01_end. In the properties of train01_start, set the Next Stop
Target field to train01_end. When the train is told to move forward, it will move
in a straight line towards the train01_end entity.

If you copy a path_track entity (by holding Shift and dragging it) that already has a
name, the new path_track entity will inherit the original name but have a number
appended to it. The original will have the Next Stop Target field set as the new
path_track entity. The technique of holding Shift and dragging it to make a copy of
path_tracks is a quick and easy way to create a path with any number of nodes. Since
trains move in a straight line between path_tracks, it's easy to use this technique
to create smooth corners by following the edge of a cylinder; the more sides on the
cylinder, the smoother the corner will be.

Trains and Camera Systems

[180]

When you give a path_track entity a Next Stop Target, an orange line will be
drawn between the two entities to show you the path of travel as shown in the
following figure:

We didn't give train01_end a Next Stop Target so when the train arrives at this
path_track, the train will stop moving. If the train is told to move in reverse, it will
move toward train01_start.

Tying the track train to the path
Open the properties of your func_tracktrain entity and set the First Stop Target field
to train01_start so the train's origin will be at train01_start when the map spawns.

Normally, the origin of any brush-based entity is located in the centre of the brush
(or group of brushes if your entity is made up of multiple brushes). You can change
the location of a brush-based entity's origin by moving the white origin circle when
the Toggle helpers button in the top toolbar is clicked.

Chapter 8

[181]

In the 3D viewport, an object's origin is indicated by a purple sphere.

An object's origin controls many things. In the case of a track train, the origin
controls the pivot, and the track train will move along its path based on its origin.

The controls
So far we have a train and a path but we do not have any means of controlling the
train. We need to place the train controls now. Create a trigger brush above the
func_tracktrain entity and tie it to the func_traincontrols entity. Parent it to the
func_tracktrain entity (so it always moves with it) and set the train name property to
the train as well (train01).

Trains and Camera Systems

[182]

Now you can run the map to test your train. Press the use button while standing on
the train to activate the controls. When the controls are activated, press the forward
and backward movement keys to control the train. The maximum forward speed is
specified by the Max Speed property, while the maximum reverse speed will be one
quarter of the Max Speed value.

Adding detail
Right now, the train is boring and plain. You can create a more visually interesting
train with brushes, or you can parent models to the train for added detail. In the
example map (ch8_tracktrain), there is a train cart and a combine control panel
parented to a func_tracktrain entity. The player still stands on the func_tracktrain
entity (so the train controls will work) but it is not rendered, giving the illusion that
the player is actually standing on the model.

Branch paths
A branch path is the secondary Next Stop Target that is enabled or disabled with
an external trigger (explained later). A branch path will allow the train to go to an
alternate path_track that leads to another direction. This can be useful to control
which direction the train will turn at an intersection.

Chapter 8

[183]

The connections between branch paths are not shown in 2D or 3D views as regular
next_stop_targets are. If you have a lot of branch paths in your map, this could get
quite confusing.

Controlling entities with GameUI
A player does not need to be standing on a train to control it. You can give button
outputs to tell the train to startforward, startbackward, or stop, or we can mimic
the func_traincontrols functionality with a gameui without a complicated array of
buttons. A gameui directly reads keyboard and mouse inputs, and fires outputs
based on the keys pressed.

Trains and Camera Systems

[184]

A func_button entity can activate a gameui, and then the gameui compares the
forward and backward movement keys. When the forward key is pressed, the train
moves forward and when it stops being pressed, the train stops. When the backward
key is pressed, the train moves backwards and the train stops when the key is
released. Trains aren't the only entity that can be controlled this way; experiment!

Trains are one of the more useful brush entities in the game. They can move in
any direction, rotate to face the direction of movement, or simply maintain a fixed
orientation. They can be player-controlled or trigger-controlled and the player can
even ride on them. The next section describes cameras and we'll see how trains and
cameras can be combined to create a cutscene.

Point camera
Point_camera entities project an image onto a monitor. These can be useful to
simulate a TV broadcast, video call, or security camera system. There are three
main parts to a point_camera system:

• Camera (point_camera)
• Monitor (any brush-based entity)
• Camera link (info_camera_link)

The point_camera entity is the actual camera. You simply give it a name and aim it
at whatever target you want it to look at. The monitor is a special texture that will
display the point_camera's image, and the info_camera_link entity specifies which
camera is displayed onto the monitor texture. Let's walk through creating a simple
security system.

Create a two-room map with a light in each room. In one room, place a point_camera
entity and something for it to look at. Name the point_camera entity sec_cam01 and
click on the look at button to easily set the camera's target. In my example, I have the
camera looking at an npc_antlion.

Chapter 8

[185]

In the other room, place an info_player_start entity and a television-sized brush.
Texture the brush with the halflife/black texture and tie it to a func_detail entity.
In front of the black brush, place another brush with a monitor texture on the front,
such as dev_tvmonitor1a. Fit the monitor texture to the front of the brush, and
texture every other side with the nodraw texture so the image appears only on the
front. Tie this monitor brush to a func_brush entity and name it monitor_screen.

Unlike a func_detail entity, a func_brush entity allows us to assign a
name, which we require in order to link the camera to the monitor.

Your television should look somewhat similar to a modern flat screen television:

Trains and Camera Systems

[186]

Now to tie everything together, place an info_camera_link point entity in the room.
Set the Entity Whose Material Uses_rt_camera field to the func_brush entity name
(monitor_screen in this case) and set the camera name field to the name of the
camera, sec_cam01. Name the info_camera_link entity camera_link.

You're all set! Now, when you compile and run the map, you will see an image of an
ant lion on the wall.

A one-camera security system isn't that impressive. How about we add another?

Chapter 8

[187]

Multiple cameras
The info_camera_link entity has the ability to change which camera is forwarded to
a monitor by passing the setcamera input. Create another room with a second point_
camera entity in it. Name the second camera sec_cam02. Create a func_button entity
in the control room (the room with the monitor in it). Set the button's delay before
reset field to -1, and set the toggle flag so the button needs to be pressed in, and then
manually "pulled" out. Give the func_button entity the following outputs:

OnIn > camera_link > SetCamera > sec_cam02 > 0.00s Delay
OnOut > camera_link > SetCamera > sec_cam01 > 0.00s Delay

When the button is pushed in, the camera link uses sec_cam02 as the display
camera, and when the button is pulled out, the camera link uses sec_cam01 as
the display camera.

Panning the camera
We can get even fancier with our security camera by parenting a point_camera entity
to a func_door_rotating entity to make our camera pan across a room. Create a small
brush behind the point_camera sec_cam02 entity and tie it to a func_door_rotating
entity. Name the func_door_rotating entity sec_cam02_pan and assign it the
following outputs:

OnFullyOpen > sec_cam02_pan > Close > 2.00s Delay
OnFullyClosed > sec_cam02_pan > Open > 2.00s Delay

So when the door is fully open, it will wait for two seconds and then close. Likewise,
when the door is fully closed, two seconds will pass and it will open again. Because
the point_camera entity is parented to the func_door_rotating entity, the camera will
rotate with it, and look across the room.

Trains and Camera Systems

[188]

By controlling the speed (in degrees per second) and distance (in degrees)
parameters of the func_door_rotating entity, you can fine-tune the coverage
characteristics of your security camera.

The outputs we just noted will fire continuously for as long as the map is loaded.
However, when the map spawns, the door is in a dormant, closed state and will
not fire the OnFullyClosed output. We need to manually set things in motion,
so place a logic_auto entity next to the func_door_rotating entity and give it the
following output:

OnMapSpawn > sec_cam02_pan > Open > 0.00s Delay

Now that the door is being initialized, it can rely on the outputs to pan indefinitely.

Using these techniques, you can even parent a point_camera entity to an NPC
for a simulated first person view of whatever that NPC sees. The possibilities are
nearly endless.

Point_viewcontrol
Point_camera entities display a camera view on a screen like a television. You, the
player, can still walk around and interact with the world while a point_camera
entity is active. Point_viewcontrol entities, by contrast, take over the player's view.
The player can still walk around with a point_viewcontrol entity active, but there is
always the option (flag) to freeze the player so they can't walk or look around. These
cameras can be told to always look at a specific entity or even the player. Point_
viewcontrols entities can even move along a path like a train. Point_viewcontrol
entities are perfect for cutscenes, so let's make one!

Chapter 8

[189]

The example map ch8_viewcontrol has a prebuilt and prescripted entity setup for
your reference in this section. In the example map, the level fades in as the camera
moves towards a house. When the camera nears the door, it opens to reveal a dead
zombie. After scoping out the room, the camera stops at our players' view and we
attain control.

The camera
After we create our environment, the first order of business is to place a
point_viewcontrol and set it up to follow a target. After that's done, we can
work on tweaking camera movement and creating our other triggers.

We're first going to create a track train, so make an 8 x 8 x 8 func_tracktrain and
name it camera_target. The camera is going to be pointing at this train, but we
don't want it to be visible, so set its Render Mode to don't render. The next thing we
need to do is create a path for our camera to look at; basically a sequence of points of
interest where our train will travel to.

Create a path_track entity and name it camera_target_path01. Copy the
path_track entity twice (by holding Shift and dragging it) to create camera_target_
path02 and camera_target_path03. Set the func_tracktrain's first_stop_target to
camera_target_path01.

Now that our camera target and path are set up, let's move on to the camera itself.
Place a point_viewcontrol entity in the map and name it camera01. In the entity
to look at field, type in camera_target so our camera will always look at the
func_tracktrain entity we have just created.

Trains and Camera Systems

[190]

In the point_viewcontrol properties, set the flags Freeze Player and Infinite Hold
Time to make sure the player cannot move when the camera is activated and that the
camera will stay on until triggered off. Keep all other flags off. Compile the map, run
it, and then open the console.

Since we haven't set up any triggers yet, nothing is going to happen, but we can use
a console command to control entities as a test. The ent_fire command can fire any
input of any entity. It can also change render modes, kill entities, and much more. It's
a powerful tool that you should spend some time playing with. In this example, we
will see how our train functions without the need to interact with triggers.

Type the following commands into the console:

Ent_fire camera01 enable
Ent_fire camera_target startforward

The first command activates the camera and the second command makes the
train move forward. Once the camera is activated, you have no control over your
movement or view. This is why we're using the ent_fire command to test our entity
setup. When the second command is sent, the view will change because an active
point_viewcontrol entity is pointed to a moving func_tracktrain entity.

You'll notice that after you type ent_fire, a list of entities in the
map appears in the drop-down list. After you select an entity, all
commands related to that entity appear in the drop-down list. If
you place a named entity in a map, you can fire different outputs
from the console to see what will happen. It's a great learning and
troubleshooting tool.

Now that we have the camera activated properly and we are looking at the track
train, let's create a path for our camera to travel along.

Chapter 8

[191]

The camera path
Unlike func_tracktrains, point_viewcontrols do not follow path_track entities; they
follow path_corners. Thankfully, the path_corners function is the same as path_
tracks, so you already know how to create and link them together.

Create a series of path_corners entities that will snake around your map and end at
an info_player_start entity. Place the last path_corner entity inside the middle of
an info_player_start entity, 64 units off the ground. Our goal is to blend the camera
movement into the player view as though the camera is moving through the back of
the player's head. We want no noticeable difference between the camera view and
the player view once the sequence is complete.

Trains and Camera Systems

[192]

Open the properties of the last path_corner entity. Create the following output:

OnPass > camera01 > disable > 0.50s Delay

Each path_corner (and path_track) entity will fire the OnPass output when an
object reaches it. In this case, we want to disable the camera for half a second after it
reaches the last path_corner entity. With some tweaking, there should be no notable
difference in view when the point_camera entity turns off.

The speed at which the point_viewcontrol entity travels is specified by the
initial speed parameter in the properties. You can control the speed of the point_
viewcontrol entity by putting a non-zero value into the new train speed parameter
in any path_corner. The camera will start moving as soon as it's activated; 50 (units
per second) is a good starting value.

Tying it all together
So now we have a camera that moves along a path while looking at a target that is
also moving along a path. Syncing the two train timings can prove difficult, so to
save time and possible frustration, we're going to cheat. We're not really cheating,
but since there are multiple ways of accomplishing the same task, the easiest way is
usually the best.

Instead of playing with track_train speeds, we're going to make the track train jump,
or teleport, from focus point to focus point. We'll do this by firing outputs at certain
points in the camera's path. Check the teleport to this path_track flag for each node
in the camera_target's path in order to make that teleport happen. Add the following
output to each path_track so the track train doesn't keep teleporting away:

OnPass > camera_target > Stop > 0.00s delay

When the camera target entity reaches this point, it will stop moving.

Whenever you want the viewcontrol entity to focus on something else, fire an output
from one of the path_corners that will start the camera_target tracktrain entity.

Select a path_corner entity on the camera's path, and add the following output:

OnPass > camera_target > StartForward > 0.00s delay

Because each path_track tells the camera_target entity to teleport, you will instantly
change the camera's target to the next path_track entity.The camera will pan
smoothly between path_tracks. Compile the map to check out the results!

Chapter 8

[193]

Summary
The examples in this chapter were just the tip of the iceberg. There's so much you can
do with func_tracktrain and point_camera entities. Func_tracktrains can be ridden,
hidden, and targeted by other entities. Point_cameras and point_viewcontrols
entities can add another dimension of depth and immersion to your worlds. Making
blocks and models move is fun, but the real magic starts to happen when you add
NPCs into the mix. NPC movement is next; buckle up!.

NPC Movement Basics
Non-playable characters or NPCs play vital roles in any video game. Whether they
are enemies, allies, bullet fodder, or plot devices, the world would be boring without
them. The Half-Life series focuses on story-driven gameplay with the help of NPC
interaction. This chapter will provide you with a solid foundation for controlling
NPC movement.

In this chapter, we will cover the following topics:

• Familiarizing yourself with the Model Viewer
• Making NPCs follow paths
• Controlling NPC animations
• Keeping NPCs busy with minimal scripting

This chapter will take you through some of the different types of NPC movement.
For a more detailed look, refer to the example map: ch9_example.vmf. The
possibilities are endless, but let's see what we can do!

Using the Model Viewer
One of the many useful tools at your disposal is the Model Viewer. It, like other
tools, is located in the bin folder. Because Valve packages all their game files into
ZIP-like files called Valve Pack Files (VPK), we need to unpack the models before
we can view them.

NPC Movement Basics

[196]

Unpacking models
There is a program called GCFScape available at http://nemesis.thewavelength.
net/index.php?p=26 that can browse the packed game files and extract them to
proper folders. Run GCFScape and open the hl2_misc_dir.vpk file in the h12
folder located at common/Half-Life 2.

Inside the VPK file, you will see a list of folders that mimic the Steam folder's
structure. We want to access the models so we can check out their animations. For
this, browse to the models folder, and extract the models folder to your common/
Half-Life2/hl2/models folder by right-clicking on it and selecting Extract.

Chapter 9

[197]

Extract the models folder into the common/Half-Life 2/ep2 folder. A dialog box
will appear showing the status of the extraction. Once the extraction is complete,
you can close GCFScape.

Loading a model
Double-click on the HLMV.bat file in the common\Half-Life 2\bin folder to
launch the Half-Life Model Viewer. Go to File | Load Model to browse for a model.
Browse to the common\Half-Life 2\hl2\models\humans\group01 folder and
select male01.mdl.

NPC Movement Basics

[198]

Model manipulation
When the model is loaded, you can rotate, pan, zoom, and adjust the lighting to get
whatever view you would like. To rotate the model along the z and y axis, left-click
on the inside of the circle (not visible at first) and move the mouse around. (The
dashed circle will turn green when your mouse is clicked inside the circle.)

To rotate the model along the x axis, left-click on the outside of the circle (the dashed
outline will now be yellow, signifying that your mouse is outside the circle).

Chapter 9

[199]

To pan the model around, hold the Shift key while left-clicking anywhere on
the screen.

Right-click and move the mouse up to zoom in and down to zoom out.

Pressing the Ctrl key while left-clicking will move the light source around.

Once you're comfortable with manipulating the view, click on the Sequence tab
to view a set of animations for that model.

NPC Movement Basics

[200]

Viewing animations
One of the great things about the Model Viewer is its ability to play models'
animations. The Sequence tab is where you control the animations you'll see.

Chapter 9

[201]

Select an animation from the top drop-down menu to watch the model act it out.
There is a slider to the right of each animation selection; manipulating these will
blend each selected animation. The slider beneath the drop-down menus controls
the speed of the animations.

The sliders to the right control other parts of the body not associated with the
animations. You can, for example, make the NPC look in a certain direction or
change the direction of his torso.

That's all we need to know about the Model Viewer right now. Let's get these NPCs
moving, shall we?

NPC Movement Basics

[202]

Making NPCs walk
NPC movement and reactions are governed by a set of rules known as Artificial
Intelligence or AI. A NPC will walk, run, shoot, or find cover based on a multitude
of external stimuli. Each NPC has different AI associated with it.

You could place a generic NPC in your map to add some more immersion, yet
without scripts, they won't do too much. As an example, combine soldiers and
headcrabs will attack if they see you, but citizens will look at you and acknowledge
your presence. These are just default behaviors, but thankfully, we don't have to
fully rely on plain NPC AI. We can create scripts to get the NPCs to walk, talk more,
and interact with the world. Making NPCs walk is quite easy. The path_corners
entity can be used as navigation points for NPCs. There are two main ways to get
an NPC to follow a path: with spawn activity and with an aiscripted_schedule.

Simple NPC movement
NPCs can be told to follow a set of path_corners, similar to a train, when they
spawn. This is useful for populating, say, a busy city street; to add ambience; and
simple, simulated random player movement. Controlling NPCs on path_corners is
quite limited; however, you cannot control the speed of the NPC other than telling
them to walk or run.

Chapter 9

[203]

Place a citizen NPC (npc_citizen) in a room along with a path_corner entity. Name
the path_corner path01 and copy it by holding Shift, clicking on it, and dragging
the copy somewhere else three times to create a four node path.

Assign the fourth path_corner a Next Stop Target of path01 so it makes a complete
loop. The npc_citizen entity has a target path corner property that will specify where
it will move to after being spawned. Once the NPC reaches the first path_corner,
it will continue to follow the path until it is told to do something else. Because this
behavior is automatic, it requires no triggering! As mentioned previously, NPCs
follow path_corners similar to how a train does. The more path_corners you place
in a turn, the smoother the movement will be. There are only four path_corners in
this example, so the npc_citizen entity will reach a node, turn 90 degrees, and then
continue on towards the next corner.

So we just set up a never-ending loop of mindless NPC movement. What if you
want to specifically tell your NPC to move to a point based on a certain set of
circumstances? There is no command in an npc_citizen input list that will ask
it to walk to a specific area. In order to do this, we need to use an entity called
aiscripted_schedule.

NPC Movement Basics

[204]

Controlled NPC movement
Aiscripted_schedules can be used for far more than just making NPCs walk. For the
time being however, let's experiment with the link between an aiscripted_schedule
and a set of path_corners. Create an npc_citizen and a loop of path_corner entities.
Place a func_button on the wall and an aiscripted_schedule above the button. This
is what we want: when the player uses the button, the NPC will start to walk along
the path until it reaches the end. When the NPC reaches the last path_corner and
finishes walking, the sequence can be restarted.

Since we want full control over the NPC, we should disable some of its AI control
before we continue. Open the npc_citizen properties and check the following flags:
Ignore Player Push and Not Commandable. Checking Not Commandable makes it
so the NPC cannot be distracted by using it. Ignore Player Push tells the NPC not to
move out of the way if you bump into it; the NPC will navigate around you to reach
its goal.

Chapter 9

[205]

The aiscripted_schedule properties
The aiscripted_schedule entity assigns goals to NPCs. You can assign enemies as
goals, set entity locations as goals, and also set a path as a goal. Since we want our
NPC to walk along a path, we set the Schedule to Run property to Walk Goal Path.
This will make the NPC walk towards the path_corner specified in the Goal entity
field and follow the path to the end. The NPC I have created for this script is an
npc_citizen named meaghan and the path starts at meg_path_01. When activated,
this aiscripted_schedule will make meaghan walk along the goal path starting with
meg_path_01. The Repeatable flag is checked so the schedule can be activated
multiple times.

There are a few other parameters we can play with. The Search Radius is set to the
default value of 0, which will ensure that it searches the entire map for the target
NPC. If the NPC is not found, the script will not run. You can set an AI state for the
NPC when the script runs. Leaving the AI state to set value at its default, None, will
not change the current AI; however, you could force a Combat, Alert, or Idle state
if you wish. The Interruptability controls how this script will stop running. In this
case, only the death of meaghan will stop the script, but you can also stop the script
if she takes any damage.

NPC Movement Basics

[206]

Triggering the schedule
In the example map, meaghan is locked in a cell. When the button is clicked, the
following actions take place:

OnPressed > switch03_active > HideSprite > 0.00s Delay
OnPressed > switch03_not_active > ShowSprite > 0.00s Delay
OnPressed > meg_walk > StartSchedule > 0.00s Delay
OnPressed > button03 > Lock > 0.00s Delay
OnPressed > cell_door > Open > 0.00s Delay

There's a lot going on in that button's output, but from top to bottom, here's what's
going on and why: there are two env_sprites (sprites) next to the button that will
tell the player whether the button can be used or not. The first two outputs hide
the green sprite and show the red sprite to let the user know that the button is not
usable. The third output is the important one; it activates the aiscripted_schedule
and sets the NPC on the path. The fourth output locks the button so it cannot be
used, and the last output opens the cell door so meaghan can leave.

The sequence is complete when the door closes with meaghan in the cell. So this
is the perfect place to enable it to be activated again. The very last path_corner
tells the cell's door to close itself, and when the cell door is closed, the following
events happen:

OnFullyClosed > button03 > Unlock > 0.00s Delay
OnFullyClosed > switch03_not_active > HideSprite > 0.00s Delay
OnFullyClosed > switch03_active > ShowSprite > 0.00s Delay

When the door closes, the button is unlocked, allowing the player to use it again.
The red sprite is hidden in the second output, and the green sprite is displayed
in the third output letting the player know that the button can be used.

Scripted sequences
Scripted sequences provide more advanced control over NPCs than path_corners.
They are created with the scripted_sequence entity. You can use these for many
different actions such as controlling NPC movement and interactions, and for
specifying animations. Unlike aiscripted_schedules, scripted_sequences are
location-based entities. NPCs who play a role in the scripted sequence will act out
a series of events based on the scripted_sequence entity's location. In this example,
we're going to make an npc_citizen named ben walk across a room and sit in a
corner. Place an npc_citizen in one corner of a room and a scripted_sequence in the
opposite corner. Name the NPC ben and name the scriped_sequence sequence01.

Chapter 9

[207]

The scripted_sequence controls NPC animations and movement. The NPC will
face the same direction the scripted sequence is facing, so if we want ben to look
towards the inside of the room, rotate the scripted_sequence so the yellow line
points inside (alternatively, use the angles property to do this). We want to make
ben sit down and then stay there, so we need to control two animations: the
animation that transitions from standing to sitting and the actual sitting animation.
Inside the scripted_sequence properties, you will see Action Animation and Post
Action Idle Animation fields. The Action Animation plays after the NPC arrives
at the scripted_sequence location, and the Post Action Idle Animation plays when
the sequence is complete. We can tick the loop in post idle flag to make the Post
Action Idle Animation play forever. So once ben sits down, he will remain seated
forever (playing the sitting animation) until the sequence is cancelled. So our Action
Animation will be ben transitioning from standing to sitting, and the Post Action
Idle Animation will be ben sitting on the floor. Let's pick the animations.

Choosing your animation
If you don't know which animations are available or simply don't know the
animation name, you can look at each animation in the Model Viewer or the Model
tab in the Properties panel. The quickest and simplest way to choose an animation
is to open the npc_citizen properties and move to the Model tab. In the Sequence
property, you can select different animations that the NPC will play in the 3D view.

NPC Movement Basics

[208]

We want ben to sit down, so select the Sequence drop-down menu and type in sit
to filter the animations so they contain the word sit. In the 3D viewport, the NPC
will play the sequence animation so you can exactly see what the NPC will do.

Our Action Animation will be idle_to_sit_ground and our Post-Action Idle
Animation will be sit_ground.

Open the properties of the scripted_sequence to apply the following attributes:

• Name: ben_sequence01
• Target NPC: ben
• Action Animation: idle_to_sit_ground
• Post Action Idle Animation: sit_ground
• Move to position: walk

In the Flags tab, check the following:

• No Interruptions
• Override AI
• Loop in Post Idle

Lastly, create a func_button to start the sequence with the following output:

OnPressed > ben_sequence01 > beginsequence > 0.00s Delay

Compile and run the map to watch ben walk across the room, turn to face the center
of the room, and then sit in the corner.

Chapter 9

[209]

Combining sequences
The scripted_sequence entity has special outputs that can fire in certain parts of
the sequence. Open the Outputs tab of a scripted_sequence to view all the options
available. In this example, we will be linking some scripted_sequences together in
two ways: Outputs and the Next Script property. The series of events is as follows:
when triggered, Pat (our NPC) will walk to a podium, sit down for 3 seconds, stand
up, and walk to a keypad and use it. This sequence will also be repeatable.

Place two func_buttons, an npc_citizen, and three scripted_sequences in a room.
Name the npc_citizen Pat (or whatever name you prefer) and name the three
scripted sequences Pat_sequence01, Pat_sequence02, and Pat_sequence03. Place
Pat_sequence01 at the top of the podium, and place Pat_sequence02 adjacent to it.
Place Pat_sequence03 in front of a func_button on the wall. Since this is a repeatable
sequence, set the repeatable flag on each of the scripted_sequence entities.

In my example, I'm setting the NPCs up to spawn with weapons
via the Weapons property because the sitting and standing
animations look odd when the npc_citizen does not have
anything in their hands.

Name one of the buttons button01 and leave the other without a name.

NPC Movement Basics

[210]

The button01 button will set all of our events in motion. Set the don't move flag (for
aesthetics) and then enter the following output:

OnPressed > Pat_sequence01 > BeginSequence > 0.00s delay
OnPressed > button01 > lock > 0.00s delay

The first output will activate the first sequence. The other two sequences will be
activated by other means. The second output locks the button so we don't have to
time the delay before reset property. Once the sequences are complete, we will
unlock the button so it can be reused.

The scripted_sequence Pat_sequence01 will be similar to ben from the previous
example. Enter the following properties to have Pat walk to the pedestal, sit down,
and wait:

• Name: Pat_sequence01
• Target NPC: Pat
• Action Animation: idle_to_sit_ground
• Post-Action Idle Animation: sit_ground
• Move to Position: walk

Since we want Pat to remain seated once the sequence is complete, check the loop
in post-idle flag. If this flag is not checked, Pat will stand up and return to her
default idle stance once the sequence is complete; it won't look pretty either. When
the loop in post idle flag is checked, the sequence will loop forever until the
sequence is canceled. We need to manually cancel the sequence and begin the next
sequence after three seconds. Create the following outputs for Pat_sequence01
to accomplish this:

OnEndSequence > Pat_sequence01 > CancelSequence > 3.00s Delay
OnEndSequence > Pat_sequence02 > BeginSequence > 3.00s Delay

The second scripted sequence instructs Pat to stand up. It has the following properties:

• Name: Pat_sequence02
• Target NPC: Pat
• Action Animation: sit_ground_to_idle
• Move to Position: No - Turn to Face
• Next Script: Pat_sequence03

Chapter 9

[211]

Since we don't want Pat to actually move before she stands up, we want to set the
Move to Position property to No – Turn to Face. This will ensure that Pat will
look in the direction of the scripted_sequence angles. In this case, I have set Angles
to 180 because Pat will be facing that direction when she's sitting.

Using the No – Turn to Face setting can be useful for activating a series of
animations for a single NPC without the need for the scripted_sequence to be
at the desired NPC position.

The Next Script property specifies which scripted_sequence to play after this
one is complete. The next script will be fired immediately. We have the next
script set to Pat_sequence03, so as soon as Pat stands up, she will begin with
the third sequence.

The third sequence tells Pat to walk to it and then play the door open towards left
animation to simulate a button press. The sequence will then fire an output to toggle
a light in the player's area and reset button01.

• Name: Pat_sequence03
• Target NPC: Pat
• Action Animation: open_door_towards_left
• Move to Position: walk

NPC Movement Basics

[212]

Add the following output to Pat_sequence03:

OnEndSequence > light01 > toggle > 0.00s Delay
OnEndSequence > button01 > unlock > 0.00s Delay

The first output toggles the light. Multiple run-throughs of this sequence of events
will turn on and then turn off the light. The second output unlocks the button so it
can be used again. Since the firing of this output marks the end of our sequence, we
can restart everything.

Actbusy
NPCs have the ability to keep themselves busy without the need for multiple,
complex, scripted sequences. The Ai_goal_actbusy entity tells an NPC or group of
NPCs to keep themselves busy by acting out certain sequences and animations with
the help of info_node_hint entities. Basically, the info_node_hint entity depicts
which animations to play, and the ai_goal_actbusy entity picks a random node for
the NPC to walk to.

In order for the info_node_hint to tell an NPC what to do, you need to write a set of
instructions that are located in a text file called actbusy.txt. This file is located in
your scripts folder. For example, I'm using Half-Life 2: Episode Two, so my scripts
folder is located at Steam\steamapps\half life 2. If you navigate to this folder
right now, there might not be anything in it. Again, we'll need to use GCFScape to
extract proper files. Extracting files will let us use Valve's actbusy.txt file, but we
could always create our own. If you create your own actbusy.txt file and place it
in the scripts folder, it will override the packed file and there would be no need
to extract the original. For the scope of this tutorial, we will be creating our own
actbusy.txt file that will instruct our NPCs about actbusy sequences.

Creating the actbusy.txt file
The actbusy.txt file contains all the sequences that an info_node_hint can
reference. It's very simple to create and modify this file once you understand
a few basic ideas.

To start, open Notepad (or any other basic text editor) and type the following code:

"Actbusy.txt"
{
// SCRIPTS GO HERE
}

Chapter 9

[213]

The very first line defines this text file as the proper actbusy.txt. Everything after
the first opening curly brace will be an individual script. Comments can be placed
in the file to make it easier to read. Any line beginning with a double backslash (//)
defines a comment. The closing curly brace completes the document.

Since we've been making our NPCs sit on the floor and are familiar with that set of
animations, let's create an actbusy script that will make an NPC sit on the floor for
an arbitrary amount of time.

Your first actbusy script
An actbusy sequence is defined in the code like this:

"Actbusy.txt"
{
//SEQUENCE ONE
"sequence name"
{
"busy_sequence" "<busy animation>"
"entry_sequence" "<entry animation>"
"exit_sequence" "<exit animation>"
"min_time" "##.##"
"max_time" "##.##"
"interrupts" "<interrupt type>"
}
}

The sequence name is almost self-explanatory, but it's the string that references the
info_node_hint. The busy sequence can be compared with the Action Animation
of a scripted_sequence; however, the busy sequence will be looped for a random
period of time between min_time and max_time. The minimum and maximum
time settings are in seconds. The entry sequence is the animation to play before the
busy sequence, and the exit animation is played after maximum time has elapsed
or the sequence is canceled. You can specify how the sequence is interrupted with
the interrupts parameter. You can only specify one out of five interrupts for your
actbusy sequence:

• BA_INT_NONE: This will stop the sequence only when the time runs out
• BA_INT_DANGER: This stops the sequence if NPC senses danger
• BA_INT_PLAYER: This stops the sequence if NPC sees a player or

senses danger

NPC Movement Basics

[214]

• BA_INT_AMBUSH: Although EP2's actbusy.txt says someone please
define this - I have no idea what it does, it will interrupt the
sequence if the NPC sees an enemy

• BA_INT_COMBAT: This stops the sequence if NPC sees an enemy or signs
of combat such as bullet holes

So if we want to create a script that will make an NPC sit on the floor for 5 to 10
seconds and only lets it get up when the time runs out, the actbusy.txt file will
look like this:

"ActBusy.txt"
{
"sit_on_floor01"
{
"busy_sequence" "sit_ground"
"entry_sequence" "idle_to_sit_ground"
"exit_sequence" "sit_ground_to_idle"
"min_time" "5.00"
"max_time" "10.00"
"interrupts" "BA_INT_NONE"
}
}

Save that in your mod's scripts folder as actbusy.txt.

Making it work
Create a room with an npc_citizen, info_node_hint, and ai_goal_actbusy.

Chapter 9

[215]

Name the npc_citizen Archie, give him a weapon (again, purely aesthetic), and set
his not commandable flag.

Open ai_goal_actbusy and modify the following properties:

• Actors to affect: Archie
• Start Active: yes
• Search type: Entity name
• Search radius: 2048

The preceding settings tell only NPCs with the name Archie to act busy, and the
search radius is a decently large 2048 units.

The info_node_hint is the last entity we need to modify. Set its properties to
the following:

• Hint: world: act busy hint
• Hint Activity: sit_on_floor01
• Node FOV: 360 degrees
• Start Disabled: no

The Hint type specifies the action for this node. There are a multitude of choices,
each with their own function; however, in order for the actbusy routines to function
properly, we need to choose world: act busy hint. This will make the hint
reference the actbusy.txt file we have created. Hint activity specifies which
actbusy sequence we want to play as specified in the actbusy.txt file. Since we only
have one possible actbusy sequence, enter sit_on_floor01. The node FOV can be
used to specify which angle an NPC can use it from.

NPC Movement Basics

[216]

If the Frame of View (FOV) is set to 90 degrees, the lower NPC can use the node
while the upper NPC cannot. Since we would like Archie to be able to sit on any
node from any angle, we want to set this to 360 degrees. The last parameter, Start
Disabled, is set to no because we want it to be active all the time.

Compile and then run the map to watch Archie sit on the floor for random periods
of time.

Actbusy routines can be vastly more complex, but for simple things like this, they
don't need to be. If you want to create a slew of random acts for an NPC to carry out
in the background, this is the script for you.

Summary
Thus far, you have learned how to control one NPC at a time using path_corners,
scripted_sequences, and actbusy routines. Path_corner NPC commands can be
controlled with the NPC spawn behavior or with aiscripted_schedule entities.
Scripted_sequences are a fantastic way to bring some more life into NPCs. The next
chapter focuses on NPC interaction and squad commands. We'll also be diving into
other uses of hint nodes and aiscripted_schedules. What are you waiting for?

Advanced NPC Scripting
In the previous chapter, we learned how easy it was to give some life to the NPCs
in our levels. The Half-Life series of games are classified as First-Person Shooters;
what's the fun if we can't get some bullets flying? This chapter will guide you
through setting up scripted battles with your NPCs. We could script nearly every
footstep of every NPC if we wanted to, but that would take a long time, and the
results wouldn't be great unless we spent even more time tweaking every detail. The
Source engine has a fantastic AI system that we can manipulate through the use of
assaults, squads, and hint nodes. Let's begin.

In this chapter, we will cover the following topics:

• Using hint nodes to guide battles
• Using assaults to assign battle goals
• Using squads
• Setting up lines of defense

Using nodes
The AI (Artificial Intelligence) is clever, but it frequently needs some coercing to
really do what we want it to do. That's where the nodes come into play. Nodes come
in many varieties, but we'll be focusing on two nodes in this chapter: info nodes
define the basic nav-mesh that the NPCs use to get around and hint nodes give
additional meaning to the nav-mesh and help with NPC battles.

Advanced NPC Scripting

[218]

Using info nodes
Info nodes, when placed, are short yellow boxes and have Ground Node written on
them, as shown in the following image:

The info_node entity is the most basic piece that makes up the navigation mesh, but
they have a significant impact on how the AI works. To really see how necessary
these are, let's start by making a simple map where we can see the difference
between having them and not having them. Make a 1024 x 1024 room, place some
combine soldiers in it, give yourself a gun, and place some boxes for cover. I have
included an example map, that is, ch10_example01 that you can refer to if needs be.

Chapter 10

[219]

Place a light, compile, then run the map, and fight the combine. Try the map a
few times changing tactics every time. You'll notice that the soldiers are pretty
static; they don't find cover, they don't chase after you, and they generally seem
pretty disorganized.

The battle is easy. You can peek out and shoot them one at a time. The soldiers rarely
move, and if they do, it's straight at you, making it easier to pick them off. Go back
into the map and, with your entity tool, place some info_node entities on the ground
at strategic locations. Place them near cover, behind walls, and spread them out in
open areas to help guide the soldiers between cover.

Advanced NPC Scripting

[220]

The soldiers will use the nodes to navigate around the map. They will travel in a
straight line between each node in order to get around. The more info_node entities
you place, the more options the soldiers have to walk around.

Open the ch10_example02 example map to check out one way to position the nodes.
Compile again and then run the map to check out the soldier's new behavior.

Chapter 10

[221]

This map just got a bit harder, didn't it? The soldiers are now more aggressive. They
don't really give you a chance to breathe, and they're always moving. Not only
do they always move around, but also they now take cover behind boxes while
reloading and will chase you around a corner if you try to hide.

All we did was place some info_nodes entities; how about that? The AI knows to
take cover while reloading, and it knows when it can't see you; so, it will try to chase
you down. The info_node entity gives information about the map to the soldiers,
and they allow the AI to really live up to its potential.

Using hint nodes
We can further enhance the effectiveness of the AI by using hint nodes. Hint nodes
give some sort of meaning to the area around an NPC and make battles a bit
more realistic.

Hint nodes come in two varieties:

• info_node_hint: This is a ground node that acts like a regular node but with
special properties. An NPC can navigate to this node and will act a certain
way once there.

• info_hint: This is not a navigation node, so NPCs won't move to their
location, but they can be used to draw attention to certain areas of the map.

Advanced NPC Scripting

[222]

The ch10_example03 example map is just like the previous map; only this one has
hint nodes stationed behind boxes. These hint nodes will tell the soldiers to crouch
behind boxes to take cover.

We've used the same hint nodes for the ActBusy scripts in the previous chapter, but
here we're using them a bit differently. Place one down and open the properties, as
shown in the following screenshot:

Chapter 10

[223]

Set the Hint parameter to Crouch Cover Medium. Any NPC using this node will
know that this location is an ideal place to crouch. The Node FOV property is a
useful property as well. NPCs in the area surrounding this node will only use it
if the node can see the target NPC. Take the following image as an example:

This info_node_hint property has an FOV of 180 degrees (90 degrees on either
side of the angle it's facing). The NPC will only use this node if it's within the
shaded cone.

The MaximumState property and MinimumState property helps define whether or
not an NPC can use a specific node. In this context, a state is defined as Idle, Alert,
or Combat. Here, Idle is normal behavior; an idle NPC will stand around. An Alert
NPC has either just exited combat or sensed combat nearby. A Combat state is set
when there are bullets flying.

Advanced NPC Scripting

[224]

For instance, if the minimum state is combat, and an NPC is not in combat, the
NPC will ignore the node. Once we compile and play the game, we can see the
effectiveness of the hint nodes. The soldiers will actively seek cover if you're
shooting at them, making them harder to hit.

That just covers info nodes and hint nodes. We have proven how useful they are
for player versus AI battles. But what about AI versus AI battles? We can do this
in AI versus AI battles too.

Scripting assaults
Assaults give the AI a goal. In our last example, the soldiers in the map had one
goal—to hunt the player. The nodes we placed in the level helped to guide the AI in
both navigation and for seeking defense. We can use the same process to script AI
versus AI battles. Load the ch10_example04 example map to see a house held by
citizens and an outside area filled with combine soldiers. You can also create your
own scenario if you wish.

Chapter 10

[225]

The map is littered with info nodes and hint nodes. There are also hint_nodes in the
windows. These are set to be visually interesting but only for NPCs outside of the
house. The FOV is 180 degrees with the hint angle pointing outside the house. We
want only the soldiers to focus on the windows so that they will be ready when the
citizens appear in them. Run the map and see what happens.

Advanced NPC Scripting

[226]

Have a look at the preceding image. You'll notice that the soldiers aren't storming the
house, and the citizens aren't going outdoors to meet them. The combine standing
outside will move to the closest cover and try to survive while trying to defeat the
citizens. The citizens are nice and protected inside the house, so they have no reason
to go anywhere. The NPCs can see each other but they have no goals other than
killing their visible enemies. The goal we want is for the combine to gain entry
to the house. Let's set up what's known as an assault.

Setting up an assault
An assault needs at least four entities that are mentioned as follows:

• NPC
• ai_goal_assault
• assault_rallypoint
• assault_assaultpoint

Chapter 10

[227]

The assault_assaultpoint entity is the end destination; it's the point where the
assault NPCs will try to reach. The assault_rallypoint entity is the area where an
NPC will gather before beginning the assault. Once a rally point and an assault point
are defined, the rally point entity will draw a purple line towards the assault point
it's attached to. The ai_goal_assault entity is the master controller; this entity starts
and stops the assault. It also gives you control over how aggressive the NPCs are in
pursuing their goals. Let's set up our assault so that the NPC soldiers storm the house.

Placing the assault point
The first thing you want to do is place your assault_assaultpoint entity. Since we
want the soldiers to gain entry to the house, place the assault_assaultpoint entity
on the floor in the middle of the house, as shown in the following image:

Give it a name such as assault_here and change the allow diversion property to
yes. This setting will still have the soldiers storm the house, but they will do so in a
safe manner. They will seek cover and advance only when they can't see an enemy. If
the allow diversion property is set to no, all the 12 soldiers will storm into the house
at once. It's funny to watch, and useful in certain scenarios, but it's not exactly what
we want to do here.

Advanced NPC Scripting

[228]

Placing rally points
An assault can have any number of rally points because each NPC involved in the
assault needs its own specific rally point. Place one rally point for each NPC you
would like to have. In the ch10_example05 example map, there are 12 soldiers
mounting an assault on the house, so place 12 assault_rally points down behind
the cover. Name them Gather_here01 - Gather_here12.

Like all other entities, there are certain properties associated with rally points, which
can drastically change how they function. The most important ones are:

• The name property
• The assault point property
• The assault delay property
• The urgent property

The assault point specifies the assault point we want our NPC to eventually go to.
The assault delay specifies a time, in seconds, to wait before assaulting. The urgent
property will force the NPC to move to this point, ignoring his/her surroundings.
Set the assault point property to assault_here, set the assault delay to 3, and set the
urgent property to yes. Copy those properties to the other rally points.

Chapter 10

[229]

Placing assault goals
The last entity we need to make this assault work is the ai_goal_assault entity. This
entity will kick the whole assault into motion. By default, this entity is disabled. Once
activated, each NPC involved in the assault will move to its rally point and wait for
the signal to begin the assault. Once that signal is received, the NPC will wait the
specified amount of time and then begin the assault.

Place an ai_goal_assault entity anywhere in your map. Name it assault and change
the properties, detailed in the following sections:

Advanced NPC Scripting

[230]

Actors to affect
Set actors to affect to npc_combine_s. When used in conjunction with search type
set to classname, this will involve all of the combine soldiers in the map in the
assault. You can also search for a specific entity name as well. If you wanted a soldier
named Richard to assault a different area, you would set search type to entity name
and the actors to affect field to Richard.

Setting rally points
The rally point set property tells the NPCs where to position themselves before they
get the assault command. Typing gather_here* will set all rally points that start
with gather_here to be proper rally points.

You could also have each rally point have the same name, and
only put one entity name in for the rally point set parameter.

Search type
Change search type to look for either entity names or entity class types. In our case,
we want to search for a specific class. The class we're searching for is specified in the
actors to affect property, which we have already set to npc_combine_s.

Start active
If start active is set to yes, the NPCs involved will move to their rally points as soon
as the map is loaded. If this is set to no, we would have to fire an activate input to
move the NPCs into position. In this case, set this to yes.

Rally Point Selection Method
Each rally point can have a priority with the lowest number being the most
important. Since we have 12 rally points and 12 NPCs, it really doesn't matter
which point has the highest priority because every rally point will be filled. Change
this to random so that each NPC will pick whichever rally point they want. When
everything is set up, place a button on the inside wall of the house that will begin
the assault:

Chapter 10

[231]

You need to create the following output:

OnIn > assault > beginassault > 0.00s delay

Compile and play the map to see the results!

Advanced NPC Scripting

[232]

During combat, the soldiers will assault the house, moving towards the assault point
whenever they can, as shown in the following image:

Creating squads
You'll probably notice that the NPCs fend for themselves. There's no communication,
there's no guarding one another, they run as individuals, and they die alone. Squads
can be used to change battle behavior and amplify the effect of a group in combat.

Your first squad
The only way to create a squad is to give a group of NPCs the same squad name. In
fact, that's really all the work you have to do! NPCs within the same squad will call
out enemies, cover each other, inform squad mates of enemy locations, and call for
help when they need it. So long as you have a decent array of navigation and hint
nodes, simply assigning NPCs to a squad is all the work needed to increase their
effectiveness in the battle.

Chapter 10

[233]

Scripting a flank
Using some entities we've learned about already, we can script a flank on the
citizens inside the house. Select six of the combine soldiers and assign them the names
alpha_soldier01-alpha_soldier06. Put them in a squad called alpha. We will be
using a math_counter entity to initiate the flank. When three members of the alpha
squad are killed, the other three will run around the side of the house to try to flank
the citizens. We'll be using an aiscripted_schedule entity that tells the remaining
members of the alpha squad to initiate the flanking maneuvre.

Advanced NPC Scripting

[234]

Creating a schedule and a path
Place an aiscripted_schedule entity near the side entrance of the house, along with
a path of about 4 to 5 path_corners leading from the front corner, around the house,
and inside the house. Name the path_corners alpha_flank01-alpha_flank05. You
already have some experience with aiscripted schedules, but we're going to override
the AI and force them to complete this schedule in the middle of a battle.

Aiscripted schedules
Here is how you can set up this schedule:

Name: alpha_start_flank
Target NPC: alpha_soldier*
All in Radius: Yes
Schedule to run: Run Goal Path
Interruptability: Death
Goal Entity: alpha_path01

Remember that an asterisk after a name will find all entities matching the base name.
Setting the target NPC entity to alpha_soldier* will find alpha_soldier01-06. When
you see All in radius = yes, this means it will find all matching NPCs instead of
stopping the moment any one is found. Schedule to run is self-explanatory; run
along the goal path. Interruptability set to death means so long as the NPC is alive,
it will complete the script—nothing can stop the soldiers except a few well-placed
bullets. Goal entity is the start of our path; in this case, alpha_path01. The soldiers
will automatically follow the other path_corners entity until the end and resume
their normal AI behavior once there.

Chapter 10

[235]

Aiscripted schedule flags
There are a few flags we want to set as well that are mentioned as follows:

Repeatable: No
Search Cyclically: Yes
Don't Complain: Yes

We only want this script to run once, so there's no reason for it to be repeatable.
Search cyclically will ensure that each NPC found will run the schedule. Don't
complain will prevent any navigation errors from being displayed on the console.

Math counter
The math counter entity will trigger an output when its internal counter reaches
a certain value. For us, we want it to trigger an output when the counter reaches 3.
Place a math_counter entity and check out the properties, as shown in the
following image:

Advanced NPC Scripting

[236]

Let's examine some of the math_counter properties:

An output can trigger when the counter value reaches either minimum or maximum
legal value. In our case, we want to fire an output when Maximum Legal Value
reaches 3. The output will look like this:

OnHitMax > alpha_start_flank > StartSchedule > 0.00ms Delay

Setting up our soldiers
The math_counter property needs inputs before it can start counting. The soldiers
(npc_combine_s) have outputs that are triggered to death. So, when a soldier in
alpha squad is killed, we want to increase our math_counter by 1.

OnDeath > alpha_killed > add > 1 > 0.00s Delay

Any input over 3 will have no effect.

That's it, we're all set up. You'll see the soldiers run to flank the citizens inside the
house once enough of them have gotten shot down. The citizens, although fewer in
number, are pretty well-guarded and will probably win the fight. Try changing the
soldier weapon types, aggression (the Tactical variant property), and grenade count
to sway the battle outcome.

Chapter 10

[237]

Summary
Info node entities are a necessary addition to any map containing NPC combat.
They guide the NPC movements, and hint nodes can control special NPC behaviors
at certain points. Controlling groups of NPCs is easy with assaults, and creating
squads can further increase the effectiveness of a group combat.

Source Particle Editor
One of the many great things offered in the Source authoring tools is Particle Editor.
Waterfalls, fire effects, weapon effects, explosions, and more can all be created with
particles. A particle system is a group of particles—2D sprites—with different rules
applied to them. You can apply forces, transparency, and even parent particles to
other entities.

In this chapter you will learn the following:

• Booting HL2 into tools mode
• Creating particle systems
• Importing particle systems into maps
• Creating the particle manifest file
• Having some fun with fireworks

The particle effects are created and edited within the game HalfLife 2: Episode Two,
but you first need to gain access to the tools menu. Let's get started!

Accessing the tools menu
The tools menu needs to be enabled with a special launch option, -tools. It may also
benefit you to run the game with the -novid option so the Valve intro movie does not
play. To set launch options, open the Steam Library, right-click on your Source game
and select Properties. In the GENERAL tab, click on SET LAUNCH OPTIONS... and
enter –novid –console –tools, as shown in the following screenshot.

Source Particle Editor

[240]

This will cause the game to quickly boot into tools mode and you can then load
the console.

Using Particle Editor
When you load the game you won't see the standard splash screen or background
screen. Instead, you'll be greeted by a 3D window and a toolbar. Under the Tools
tab, select Particle Editor to load Particle Editor tools:

Chapter 11

[241]

Create a new particle system by clicking on File | New. You will see the view has
now changed dramatically.

Welcome to Particle Editor! The top-left window lists all the particles within
*.pcffile (the file that contains the particle scripts) and it also lets you create, copy,
and delete particle systems. The top-right window is an engine preview. If you don't
have a map loaded, you will not see anything. Press the F10 key to switch to the
engine view, and then press F11 to make it full screen. You can now load any map
you want. At any time, you can press F11 to minimize the window and then press
F10 to go back into tools mode. The bottom-left window is where we'll be spending
most of our time; it's where all the particle properties are set and tweaked. The
bottom-right window will display a preview of the particle effect you're working on.
Left-clicking in the preview window will rotate the view, while right-clicking will
zoom in and out. Holding Shift and left-clicking will pan the view.

There are many options available to you in Particle Editor, but we'll get to see how
each one works in the examples to come. Innumerable particle effects can be created
with Particle Editor, but the first step towards the path of enlightenment starts
with fire.

Source Particle Editor

[242]

Creating a fire particle
Click on Create and name the particle system myfire01. This is the name that
Hammer will reference when compiling a map.

Before we continue, let's save the system. Name it my_particles and place it in the
SteamApps\common\Mod\particles folder. For EP2, it would go here: SteamApps\
common\Half-Life 2\ep2\particles. The *.pcf file we just saved contains
multiple different types of particles. Again, when referenced, Hammer will look for
the particle system name, not the PCF filename, so keep this in mind while naming
any future particles.

The first thing you will see upon creation of the particle is the Properties list. The
default material applied to any new particle is vgui/white with a render color of
white and a radius of five units. Let's leave this as default for now because it's much
easier to simply get something rendered before we start tweaking our settings.

Creating particles
It's helpful to have an idea of what you want to create before you start. If you
imagine how fire acts, the flames begin within a small area, rise up, and then fade
out. New flames constantly take the place of the old ones. With this in mind, we
can work on the initial creation of the particles.

Chapter 11

[243]

Using Emitter
In the Properties dropdown, select Emitter as shown in the following screenshot:

.

The Emitter tab controls how your particles are created or emitted. The two main
options here are emit_continuously and emit_instantaneously. As you have
probably guessed, emit_continuously will constantly emit particles and emit_
instantaneously will emit a lot of particles all at once. Since we're making fire and
fire constantly creates new flames, we want to use emit_continuously. Right-click in
the blank list beneath the drop-down list and select Add... | emit_continuously.

Source Particle Editor

[244]

We can now see the data list that is attributed to the emit_continuously property.
Our main concern right now is the emission rate, which is quantified in particles per
second. The default value is 100, which will mean an emission rate of 100 particles
per second. Our future changes will be easier to see if we slow this down to about 20,
so change emission_rate to 20 to spawn 20 particles per second.

We can't see anything in the particle preview yet, but we're only on step one.

Using Renderer
The next step is to select how we want our particles rendered. The default fire sprites
have the ability to animate themselves. Therefore, we will select render_animated_
sprites. This can also be used for particles without animations and is usually the
default particle renderer.

Chapter 11

[245]

Now that we have told the particle system how to display the sprite, we can see a
preview! It's nothing special right now, just a white box, but it's a start! This white
box is actually a collection of hundreds of sprites all rendered on top of one another.
There's a default maximum particle amount of 1000, so older particles will be culled
when the count reaches 1000. Fire doesn't start from a single point; it's usually spread
across an area, so let's make that happen.

Using Initializer
Each particle that is created has a multitude of different properties associated with
it. Some examples of these properties are: alpha (transparency), lifetime, speed, and
color. Each of these properties can be modified during or after particle creation. The
properties that are set during creation are called initializers. Let's spread out the fire
particles' origin to a set area. We can randomize the initial position of each particle
within a certain area by adding the Position Within Box Random property under
the Initializer tab:

The two properties we want to change here are the min and max values. They hold
values in an X Y Z format and by default are set to 0 0 0. Set min to -10 -10 0 and
max to 10 10 0 to have the particles spawn within a 20 x 20 box centered about the
origin. You can see the bounds of the spawn area depicted by a yellow outline and
you will also see the particles randomly spawn within that area.

Source Particle Editor

[246]

The next logical step is to give our particles some initial velocity so we can simulate
the rise of the flames. Let's create a Velocity Random initializer so we can give some
life to our white box flames. Again, we're dealing with random values, so we have
to set minimum and maximum values. The values are named: speed_in_local_
coordinate_system_min and speed_in_local_coordinate_system_max. Set them to
0 0 30 and 0 0 90 respectively; this will set a random vertical speed between 30
to 90 for each particle. The properties have long names but they do describe their
functions clearly. As an example, if you rotate the particle system in Hammer by 45
degrees, the flames will travel at a 45 degree angle. The local direction of the particles
is still set to a positive Z direction (straight up), but since the particle system itself
has been rotated, the direction will change.

Operator
The properties in the operator give us control over the particles after they've been
created. We gave our particles a random initial velocity but they're not moving yet.
We need to actually enable movement in the operator group before the particles will
move. In the operator tab, add a movement basic property. Once that's done, you
will see the white boxes rise up.

Chapter 11

[247]

Awesome! We have hundreds of little white boxes rising into the air. Now is a great
time to choose our fire material. In the main drop-down menu, go to the Properties
tab and find the material property. Click on the box with the ellipsis (...) to open the
material browser.

Source Particle Editor

[248]

Filter for fire_particle and fire_particle_2 and click on Open. You should
now see an orange puff of fire replace the white boxes in the preview window. The
fire doesn't seem animated because the default animation rate is quite low. Go into
the Renderer tab and change animation rate to 1. Your fire sprites are now animated
as they rise up—neat!

Our particle system is starting to take shape, but our effect isn't really convincing
as our particles are rather thin now. We need to give it some more volume. It's hard
to gauge the scale of the effect without anything else in the preview window, but
remember that the default radius is five units and our particles are spawning in a 20
x 20 box. We can beef up the flames a bit with an initialization property called radius
random. You can experiment with the radius_max and radius_min values to get the
effect you want, but I've found that the effect produced by a minimum radius of 10
and a maximum radius of 30 looks quite nice.

Chapter 11

[249]

Hey, it's actually starting to look like a fire! Note two things: the flames rise forever
and never fade out, and all the fire particles are facing the same direction. This kills
some of the realism but it's easily fixed with a few more properties.

In real life, flames have both a random transparency and a random lifetime. We
have options for both of these in the Initializer group. Add a lifetime_random
property with a minimum value of 0.5 (seconds) and a maximum value of 1. If you
haven't guessed already, this will randomize the lifetime of each particle between
the minimum and maximum values. However, the addition of the property won't
do anything until we add in a lifespan decay operator property.

We have the flames lasting for random amounts of time, but to add another ounce of
realism, we should be able to see through the fire. Remember, the alpha of an entity,
(particle in this case) is the transparency ranging from 0 to 255. An alpha value of 0
is fully transparent and a value of 255 will render an entirely opaque entity. Add an
alpha random initializer with a minimum value of 10 and a maximum value of 180.
We can also make the flames fade out before they finally disappear. The alpha fade
and decay operator properties will lower the alpha based off the time the particle
exits. If we start the fadeout at 0.5 and end it at 1, the particle will begin fading out
when half of its life has passed. It will be fully transparent when it is removed from
the particle system.

Source Particle Editor

[250]

There's one final property we can add to this fire to finish the effect. Add a rotation
random initializer, keeping the default values to give the particles a random rotation
upon spawning. In the end, we have a very neat-looking fire effect. Let's put it inside
a level!

Particles manifest
In order for us to put the particles in a level, we need to create what is called a
particles_manifest.txt file. The particles manifest tells the engine where to locate
our particle systems and when to load them into a map. You need to create one
manifest file for each map in which you have particles in addition to the master.

Master manifest
The master particles manifest file needs to contain all the custom .pcf files you have
created with Particle Editor. Browse to your mod's particles folder and create a
new .txt file called particles_manifest.txt. Type the following and then save
the file:

particles_manifest
{
 file "particles/my_particles.pcf"
}

Chapter 11

[251]

I have included a sample particles_manifest.txt file along with the my_
particles.pcf file so that you can refer to them.

The map-specific manifest
As previously noted, each map needs its own manifest file in order to load the
correct particles. The per-map manifest goes into the maps folder and contains
the map name *_particles. In my example, mapch12_example.bsp will need a
manifest file titled ch12_example_particles.txt. It follows the same format as the
master manifest file located in the particles folder but you only need to include the
.pcf files that will be used in that map.

Source Particle Editor

[252]

The info particle system
Let's insert our new fire particle into Hammer. If our particles_manifest.txt
file is coded properly and is in the correct locations, all we need to do is place an
entity and reference the file. Then, create or load a map and place the point entity
info_particle_system.

Open the properties for info_particle_system and type myfire01 in the Particle
System Name field. This is not the name of the .pcf file; it's the name of the particle
system within the .pcf file! Set Start Active? to yes and we're done!

Compile and load the map to check our results in game.

Chapter 11

[253]

Particle systems cannot emit light! In the preceding example, I used a separate
orange light entity to simulate the fire's light output.

Particle children
Particle systems, just like other entities, can have parent-child relationships. The
entity info_particle_system can be parented to any entity, but particle systems
within a .pcf file can also be parented to each other. To demonstrate this, let's create
a quick smoke effect to add to the fire.

Modifying existing particle systems
Instead of creating a whole other smoke effect from scratch, we can just copy and
modify the fire particle. In Particle Editor, select the particle system myfire01, and
click on the Copy button. Type mysmoke01 for the new particle name and click
on OK.

Now we have an exact copy of our fire particle system with a new name. Select the
new particle system and let's turn it into a smoke system.

The first thing we want to change is the material. In the main properties, browse for
the material particle | smoke1 | smoke1_additive.vmt. You'll see the fire change
to smoke. But we're not done quite yet. When there is a fire, smoke doesn't appear
immediately; it forms gradually and fades out slowly. Let's recreate that.

Source Particle Editor

[254]

In the operator tab, remove the alpha fade and decay operator properties, and add
alpha fade in random and alpha fade out random. Set both the minimum values to
0.2, and set the maximum values to 0.5. Leave the rest of the settings at default.
You should see the smoke fade in and out.

We also know that smoke has the tendency to expand as it fades out. We can add a
property that will dynamically change the radius of the particle. Add a radius scale
property in the Operator tab, and change the following properties:

• Start_time: 0.5
• End_time: 1
• Radius_start_scale: 1
• Radius_end_scale: 2
• Scale_bias: 0

The very last thing to do to our smoke sprite is to change the lifetime. The smoke
will linger longer than the flames. So in the lifetime_random initializer, change
lifetime_min to 2.75 and lifetime_max to 3. We now have a pretty good-looking
smoke effect. Let's combine it with the fire.

Chapter 11

[255]

Create a new particle system called myfire_and_smoke01. In the Children tab, add
myfire01 and mysmoke01 to the list—that's it! You're done. Check the preview tab
to see both your particle effects overlaid in a pretty convincing smoky fire.

Making fireworks
We can make a firework effect just as easily as fire and smoke. Let's first think about
how fireworks act. They fly into the air and instantly explode into hundreds of
balls of light. Gravity takes over after the initial explosion, and as the balls of light
fall back to earth, they fade out. We're going to make our particle system create
hundreds of particles instantly, have those particles fly out from the center, be
affected by gravity, and fade out. As for the flying into the air part, we will parent
the particle system to a func_physbox entity and launch it into the air.

In Particle Editor, create a new particle system called firework01.

Source Particle Editor

[256]

Creating the explosion
When creating particles, it's good practice to start with an emitter like we have
done with the fire effect. Unlike the fire, however, we're going to use an emit_
instantaneously property to create a bunch of particles at the same time. Change
the num_to_emit value to 250 to create 250 particles instantaneously.

Just like before, the next step is to set up the renderer. Add a render_animated_
sprites renderer and we can see that we have the familiar white square in our
preview window. Also note that the particle count is 250/1004.

We haven't set up a decay yet, so everything is looking good so far with 250
live particles.

The next step is creating the explosion. We'll need an initializer property to create
the initial movement, so in the Initializer tab, add a Velocity Random property. Set
speed_in_local_coordinate_system_min to -250 -250 -250 and speed_in_local_
coordinate_system_max to 250 250 250. This will create a random velocity between
0 and 250 units per second in every direction.

Chapter 11

[257]

Our 3D preview isn't showing anything yet, because we still need a movement_basic
operator to enable motion. Add one in to watch your little white boxes fly away.

Simulating gravity
We know that the pieces of fireworks fall because of gravity, so let's simulate that
effect. While you still have the movement_basic property open, change gravity to
0 0 -100 and give the system a drag value of 0.05 to slow everything down. You
should see the particles fire out from the center, slow to a crawl, and be pulled back
down due to gravity.

Source Particle Editor

[258]

Fading and other properties
While we're in the Operator tab, add in the alpha fade and decay properties. Leave
everything to its default value, but set start_fade_out_time to 0.5 so that the
particles begin fading out when they've lived 50 percent of their lives.

At this point, you will see the particles fade out predictably, but real fireworks
don't do that; the sparks die out randomly. Add a lifetime random property in
the Initializer tab and set the lifetime_min and lifetime_max fields to 1 and 2
respectively. Now it looks like we have the basics of a decent firework. Note the
different alpha values of the particles.

Fireworks don't look like white boxes, so let's change the white box into a nice glow
sprite and give the effect a burst of color. While we're still in the Initializer tab, add
a color random property and pick two colors of your choice for color1 and color2.
Each spawned particle will have a color somewhere between the two colors. Also
add a Position Within a Sphere Random property with a radius_max value of 2. If
this isn't done, the particle will always be created at the map's origin!

Chapter 11

[259]

In the Properties tab of the particle effect, assign particle | particle_glow_10.vmt in
the material field to get rid of that unsightly square.

Since we've already created a manifest file, we can call our firework particle complete.

A parenting example
We're going to create a firework entity set up using Hammer that will launch
a Shell into the air, explode, and display our firework effect. We'll need the
following entities:

• Func_physbox
• Phys_thruster
• Phys_keepupright
• Info_particle_system
• Ambient_generic x 2

Source Particle Editor

[260]

And, of course, we'll need func_button to set everything in motion.

Here's how it's going to work: the func_physbox entity will act as our firework Shell.
It will be thrust into the air by a phys_thruster entity. Since we want a controlled
ascent, we will use phys_keepupright to keep the Shell pointed straight up. The
info_particle_system will display the firework effect in air, and the sounds will
give us the launch and explosion ambience. Let's get to work!

Setting up the shell
The Shell is a func_physbox which is a brush entity. Create an eight-sided cylinder
that has the dimensions 6 x 6 x 6 units. Tie it to a func_physbox entity and name it
Shell. Nothing else needs to be done for the func_physbox entity.

Launching the shell
Create a phys_thruster point entity below the Shell and set the following properties:

• Name: Shell_Thruster
• Attached Object: Shell
• Time of Force: 2
• Force: 1000

Set angles to Up and make sure you check the Ignore Mass flag. The phys_thruster
will apply an upwards force on the Shell for two seconds, thus launching it into
the air.

Chapter 11

[261]

Stabilizing the shell
Since the phys_thruster entity can be a bit unpredictable at times, we should stabilize
the shell with phys_keepupright. Place one in the map near the shell and give it the
following properties:

• Target Entity: Shell
• Angular Limit: 60

The Target Entity is the affected physics object; in our case, that would be the Shell.
The Angular Limit specifies the maximum number of degrees per second that the
phys_keepupright can correct the orientation of the shell by. We don't need to
change the value of Angles for the phys_keepupright entity, because we never
changed this for the shell. Since a value of 0 0 0 is considered to be upright, the
phys_keepupright entity will try to maintain these angles.

Sixty degrees per second is a very safe Angular Limit value; this
guarantees that our shell will stay vertical. Try experimenting
with lower values to give your shell an unexpected wobble on the
way up.

Setting up the particle
Place an info_particle_system entity on top of the shell.

Source Particle Editor

[262]

Give it the following properties:

• Name: Shell_particle
• Parent: Shell
• Particle System Name: firework01
• Start Active: No

Since we've parented the particle system to the shell, wherever the shell goes, the
particle system goes.

Adding sound effects
What's the fun of fireworks if they don't make any noise? Place two ambient_generic
entities so we can emulate the launch and explosion sounds of a firework. Set the
following properties for the first one:

• Name: Shell_thrust_sound
• Sound Name: rocketfire1.wav
• SourceEntityName: Shell

This first ambient_generic entity is the sound we want to use when the shell is first
launched; it's the same sound the Rocket Launcher weapon makes in Half-Life 2.
The SourceEntityName will cause a sound to be emitted from the shell, making it
more convincing.

The second ambient_generic entity should be set up as follows:

• Name: Shell_explode_sound
• Sound Name: explode4.wav
• SourceEntityName: Shell

Tying everything together
In your func_button entity, add the following outputs:

OnIn, Shell_Thruster, Activate, 0.00s Delay
OnIn, Shell_Thrust_sound, PlaySound, 0.00s Delay
OnIn, Shell_Particle, Start, 2.50s Delay
OnIn, Shell_explode_sound, PlaySound, 2.50s Delay
OnIn, Shell_particle, ClearParent, 2.50s Delay
OnIn, Shell, Kill, 2.51s Delay
OnIn, Shell_Particle, Stop, 5.51s Delay

Chapter 11

[263]

The first two outputs activate the thruster and the sound effect as soon as the button
is pushed. The third and fourth outputs will display the firework effect and play the
sound. The fifth output clears the parent of the particle system, and the sixth output
destroys the shell.

We clear the particle system's parent before killing the shell because if the parent
dies, all its children die as well. If we didn't do this, the particle system would not
display properly because its parent would be dead. The last output stops the particle
effect after its maximum possible duration of three seconds.

Source Particle Editor

[264]

Results
The following is what the setup looks like:

The following is what the launch looks like:

Chapter 11

[265]

And the finale is shown as follows:

We could have spent a few more minutes adding more fire effects to the rocket,
tweaking the timings, and perfecting the particle systems, but this is a good start.

Summary
Particles are a worthy addition to any map or mod. Particle Editor has a pretty tough
to pick up, but I hope that with this chapter as a foundation, and some extra time
spent using the editor, you will perfect it. Particles can be used for fire, fireworks,
waterfalls, or any other effect you can dream of. Their ability to be parented to other
entities can greatly increase the visual effects of any entity set up.

I want to thank you for reading this book. Creating maps for Half-Life 1 and Half-
Life 2 has been my passion for over a decade. It gives me great pleasure to share my
knowledge and experience with you. By now, you should have the tools you need to
unleash your imagination within the Source engine. Get out there and start creating!
Good luck and goodbye.

Index
Symbols
2D SkyBox

about 68, 69
light_environment, adding 70, 71

2D viewport
grid 34
navigating 32
objects, selecting 33

3D SkyBox 68-75
3D viewport

navigating, camera tool used 29
navigating, with multiple cameras 30
objects, selecting 30, 31

.bin folder 111

A
Actbusy

about 212
actbusy.txt file, creating 212, 213
scripting 213, 214
working on 214-216

actbusy.txt file
creating 212, 213

aiscripted_schedule property 205
Alpha channel 98
alpha fade property 258
Angles property 70
Applications, Source SDK 12
apply current texture tool 26
arches

creating 62, 63
hollow cylinders, creating 64
spiral staircases, creating 64, 65
standard arch, creating 63

Artificial Intelligence (AI) 202, 217
assault goals

actors to affect, setting 230
placing 229
rally point selection method 230-232
rally point set property 230
search type 230
start active 230

assault point
placing 227

assaults
about 224
assault goals, placing 229
assault point, placing 227
rally points, placing 228
scripting 224-226
setting up 226, 227

automatic track trains 177

B
Binary Space Partition. See BSP
Blend textures 98
Block tool 26, 38, 83
branch path 182
Brightness property 71
brush

about 17-19
compiling 39-42
creating 37, 38
rotating 44-46
scaling 43
skewing 46, 47

brushwork techniques
brush, rotating 44-46
brush, scaling 43

[268]

brush, skewing 46, 47
object, flipping 48
Shift + copy 43

BSP
about 145
executing 146

C
camera 189, 190
camera path 191, 192
Camera Tool

about 25, 39
used, for navigating in 3D viewport 29

carve function 54-56
Carve tool

about 54
using 105, 106

caves
creating 101, 102

Clipping Tool 26, 52-54
color correction

adding 155-157
color random property 258
compile process 143

BSP, executing 145, 146
expert compiling mode 151
leaks, checking 152, 153
leaks, fixing 152, 153
problem, checking 144, 145
RAD 148, 149
VIS, executing 146-148
with HDR 150

controlled NPC movement
about 204
aiscripted_schedule property 205
schedule, triggering 206

cubemap 154
cylinders

creating 58, 59

D
decals

applying 88-90
Decal tool 26
decay property 258

displacement
about 91, 92
carving 105, 106
caves, creating 101, 102
creating 92, 93
creating, with Paint Alpha tool 98, 99
creating, with Paint Geometry tool 94-96
creating, with Raise To option 97
creating, with Smooth tool 96
sculpting 102-104
sewing 99, 100
subdividing 100, 101

displacement options
modifying 97

Documentation, Source SDK 12
dynamic lights

using 131, 132
dynamic props

creating 109

E
Emitter

using 243, 244
ent_fire command 190
entities, track trains

controlling, with GameUI 183, 184
entity 19
entity effects

modifying 169, 170
entity tool 25, 39
Expert mode 151
explosion, fireworks

creating 256

F
falloff effect 98
filter activator name 174
Filter Control Bar 27, 28
filter multi entity 175
filters

about 172
filter activator name 174
filter multi entity 175
using 172-174

[269]

fire particle
creating 242
modifying 253-255

fireworks
creating 255
explosion, creating 256
final outcomes 264, 265
gravity, simulating 257
properties, adding 258, 259
setting up 261, 262
shell, launching 260
shell, setting up 260
shell, stabilizing 261
sound effects, adding 262

flags
about 171
filters, using 172, 174
using 171, 172

flank
math counter 235, 236
path, creating 234
schedule, creating 234
scripting 233
soldiers, setting up 236

full bright 149
func_tracktrain entity

creating 178
Func_traincontrols 178, 181
FX amount 169

G
GameUI

used, for controlling track trains entities
183, 184

GCFScape
about 196
URL 196

gibs 108
gravity, fireworks

simulating 257
grid 34

H
Half-Life 2: Episode Two. See HL2: EP2
Hammer

about 10

filter control bar 27, 28
loading 20, 21
Map toolbar 25
object bar 28
selection mode bar 27
texture bar 27
viewports 22-24

Hammer, basic terminology
brush 17-19
entity 19
settings 20
void 20
world 20

handles 43
High Dynamic Range (HDR) 150
hint nodes

info_hint 221
info_node_hint 221
using 221-224

HL2: EP2 8, 9
HLFacePoser 10
HLMV 10
hollow cylinder

creating 64
Hollow Tool 38, 43

I
info nodes

using 218-221
info particle system 252
Initializer

using 245, 246
Input/Output links 165, 166
Input/Output system 159
installation, HL2 8, 9
installation, Source SDK 10
installation, Steam 7, 8

L
lifetime random property 258
light environments

using 130
Lightmap Grid

about 24, 140
modifying 140, 141

[270]

lights
about 123
dynamic lights, using 131, 132
light environments, using 130
parameters 125-127
point lights, using 124-127
projected textures, using 135-137
spot lights, using 128, 129
texture lights, using 133, 134
using 123, 124

Links, Source SDK 13
logic operations

And 175
Nand 175
Nor 175
Or 175

M
magnify tool 25
map-specific particle manifest 251
Map toolbar

about 25
Apply Current Texture Tool 26
Block Tool 26
Camera Tool 25
Clipping Tool 26
Decal Tool 26
Entity Tool 25
Magnify Tool 25
Overlay Tool 26
Selection Tool 25
Texture Tool 26
Vertex manipulation Tool 26

master particle manifest 250, 251
materials

creating 111
importing 120
setup 112
VMT file 111
VMT file, creating 114, 115
VTF file 111
VTF file, creating 112, 113

math counter 235, 236
models

importing 120
loading 197

manipulating 198, 199
unpacking 196, 197

models animations
viewing 200, 201

Model Viewer
about 195
model manipulation 198, 199
models animations, viewing 200, 201
models, loading 197
models, unpacking 196, 197
using 195

modification (mod)
creating, with Source SDK 13-16

multiple cameras
about 187
used, for navigating in 3D viewport 30

N
nodes

hint nodes 217-224
info nodes 217-221
using 217

Nodraw 81
non-playable characters (NPC)

about 195
scripting 217

NPC movement
controlled NPC movement 204
creating 202
simple NPC movement 202, 203

O
object bar 28
objects

flipping 48
selecting, in 2D viewport 33
selecting, in 3D viewport 30, 31

Object Toolbar
about 57, 58
arches, creating 62, 63
cylinders, creating 58, 59
sphere, creating 61, 62
spikes, creating 60
torus, creating 66
truncated cone, creating 60, 61

[271]

operator 246-250
outputs, trigger once entity

adding 163, 164
overlays

about 26
applying 90

P
Paint Alpha tool

used, for creating displacement 98, 99
Paint Geometry tool

used, for creating displacement 94-96
panning camera 187, 188
particle children 253
Particle Editor

about 239
fire particle, creating 242
particles, creating 242
using 240, 241

particles
about 239
creating 242
creating, Emitter used 243, 244
creating, Initializer used 245, 246
creating, Renderer used 244, 245
creating, with operator 246-250
particle children 253

particles manifest
about 250
info particle system 252
map-specific manifest 251
master manifest 250, 251

path 177
Path_track 178
physics props

creating 108, 109
Pitch property 70
player-controlled track trains

about 177, 178
controlling 181
func_tracktrain entity, creating 178
Func_traincontrols 178
path, creating 179, 180
Path_track 178
tying, to path 180, 181

point camera
about 184-186
multiple camera 187
panning camera 187, 188

pointfile entity 153
point lights

using 124-127
point light source

placing 137-139
point viewcontrol

about 188
camera 189, 190
camera path 191, 192

projected textures
using 135-137

props
creating 106
dynamic props, creating 109
physics props, creating 108, 109
static props, creating 106-108

R
RAD 148, 149
Raise To option

used, for creating displacement 97
rally points

placing 228
Ray-Traced Preview 24
Renderer

using 244, 245

S
Scaling mode 43, 46
schedule

triggering 206
schedule, flank

aiscripted schedule flags 235
aiscripted schedules 234

scripted sequences
about 206, 207
animation, selecting 207, 208
combining 209, 211

sculpting tool
using 102-104

[272]

selection mode bar 27
selection tool 25, 40
settings 20
sewing 99, 100
Shift + copy 43
simple NPC movement 202, 203
Skew mode 47
SkyBox

2D SkyBox 68
3D SkyBox 68-75
about 68
creating 68

SkyBox texture
changing 71, 72

Smoothing groups 142, 143
smooth tool

used, for creating displacement 96
sounds

importing 120
Source 2009 155
Source engine 37
Source SDK

about 7, 10
Applications 12
color correction, adding 155-157
compile process 143
Documentation 12
installing 10
lights 123, 124
Links 13
modification (mod), creating 13-16
overview 11
tools menu, accessing 239
Utilities 13

Source SDK tools 10
sphere

creating 61, 62
Sphere Random property 258
spikes

creating 60
spiral staircases

creating 64, 65
spot lights

using 128, 129
spot light source

placing 139

spring
creating 67

squads
creating 232
flank, scripting 233

standard arch
creating 63

static props
creating 106-108

Steam
about 7
installing 7, 8
URL 8

subdividing 100, 101
subroutines

about 175
creating 175, 176

T
terrain

creating, with displacement 91, 92
Texture Application Tool

about 77
different selection mode, using 87
used, for aligning textures 82-84
used, for applying textures 78-81
used, for locking textures 87, 88
used, for locking texture scale 88
used, for rotating textures 84, 85
used, for shifting textures 87

texture bar 27
Texture browser 78
texture lights

using 133, 134
textures

aligning, with Alt + right-click method 86
aligning, with Texture Application Tool 82,

83
applying, with Texture Application Tool

78-81
locking, with Texture Application Tool 87,

88
rotating, with Texture Application Tool 84,

85
shifting, with Texture Application Tool 87

[273]

texture scale
locking, with Texture Application Tool 88

Texture Tool 26, 68
tools menu, Source SDK

accessing 239
torus

creating 66
Cross Section Preview 67
spring, creating 67
Top View Preview 67

track trains
about 177
automatic 177
branch path 182
detail, adding 182
entities, controlling with GameUI 183, 184
player-controlled 177, 178

Transform Tool 74
trigger

about 159
automating 168, 169
cascading 167, 168
creating 159
trigger multiple, creating 164, 165
trigger once entity, creating 160-163

trigger brush 162
trigger multiple

creating 164, 165
trigger once entity

creating 160-163
outputs, adding 163, 164

truncated cone
creating 60, 61

U
Utilities, Source SDK 13

V
Valve Hammer Editor 20
Valve Material Type file. See VMT file
Valve Pack Files (VPK) 195
Valve Texture Format file. See VTF file
Vertex Manipulation Tool (Vertex Tool)

about 26, 48-50
used, for splitting brush faces 50-52

viewports 22-24
VIS

executing 146-148
VisGroup 34, 35
visleafs 146
VMT file

about 111
creating 114, 115

VM Tool. See Vertex Tool
void 20
VTFEdit

using 116-119
VTF file

about 111
creating 112, 113

W
window method 57
world 20

Thank you for buying
Source SDK Game Development
Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3.x Game Development
Essentials
ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects, and
more!

1. Kick start your game development, and build
ready-to-play 3D games with ease.

2. Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more.

3. Test and optimize your game to perfection with
essential tips and tricks.

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1. Build fun games using the free Unity 3D game
engine even if you've never coded before.

2. Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3. Deploy your games to the Internet so that your
friends and family can play them.

4. Packed with ideas, inspiration, and advice for
your own game design and development.

Please check www.PacktPub.com for information on our titles

XNA 4.0 Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-066-9 Paperback: 428 pages

Create exciting games with Microsoft XNA 4.0

1. Dive headfirst into game creation with XNA.

2. Four different styles of games comprising a
puzzler, a space shooter, a multi-axis shoot 'em
up, and a jump-and-run platformer.

3. Games that gradually increase in complexity
to cover a wide variety of game development
techniques.

4. Focuses entirely on developing games with the
free version of XNA.

Starling Game Development
Essentials
ISBN: 978-1-78398-354-4 Paperback: 116 pages

Develop and deploy isometric turn-based games
using Starling

1. Create a cross-platform Starling Isometric
game.

2. Add enemy AI and multiplayer capability.

3. Explore the complete source code for the Web
and cross-platform game develpment.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
the Source SDK
	Installing Steam
	Getting your tools
	Instructions for installing Half-Life 2:
Episode Two

	The Source SDK tools overview
	The Source SDK
	Installing the Source SDK
	The Source SDK overview
	Applications
	Documentation
	Utilities
	Links

	Creating your own modification (mod)
	Summary

	Chapter 2: Grasping Hammer
	Terminology
	Brush
	Entity
	World
	Void
	Settings

	Loading Hammer for the first time
	The Hammer overview
	Viewports
	The Map toolbar
	The Selection Tool
	The Magnify Tool
	The Camera Tool
	The Entity Tool
	The Block Tool
	The Texture Tool
	The Apply Current Texture Tool
	The Decal Tool
	The Overlay Tool
	The Clipping Tool
	The Vertex manipulation Tool

	The selection mode bar
	The texture bar
	The filter control bar
	The object bar

	Navigating in 3D
	Looking around
	Multiple cameras
	Selecting objects in the 3D viewport

	Navigating in 2D
	Moving around
	Selecting objects in 2D
	The grid

	VisGroups
	Summary

	Chapter 3: Shaping Your World
	Creating your first room
	A crash course on compiling
	Basic brushwork techniques
	Cloning brushes
	Scaling brushes and objects
	Rotating brushes and objects
	Skewing brushes and objects
	Flipping objects

	The Vertex Tool
	Splitting faces

	The Clipping Tool
	The Carve function
	Another window method
	The Object Toolbar
	Creating cylinders
	Creating spikes
	Truncated cones
	Creating a sphere
	Creating arches
	Standard arch
	Hollow cylinders
	Spiral staircase

	Creating a torus
	Cross Section Preview
	Top View Preview
	Springs

	Creating SkyBoxes
	2D SkyBox
	Adding light_environment

	Changing the SkyBox texture
	3D Skybox

	Summary

	Chapter 4: Textures, Terrain, and Props
	Using the Texture Application Tool
	Applying textures
	Aligning textures
	Shifting and rotating textures
	Saving time while aligning textures

	Using different selection modes
	Shifting textures
	Locking textures
	Locking the texture scale

	Applying decals
	Applying overlays
	Creating terrain with displacements
	Creating a displacement
	Using the Paint Geometry tool
	Using the Smooth tool
	Modifying the displacement options
	Using the Raise To option
	Using the Paint Alpha tool
	Sewing
	Subdividing
	Creating caves quickly
	Sculpting
	Carving

	Creating props
	Creating static props
	Creating physics props
	Creating dynamic props

	Summary

	Chapter 5: Importing Custom Content
	Creating materials
	Setup
	Creating a VTF file
	Creating a VMT file

	Using VTFEdit
	Importing other materials
	Importing models
	Importing sounds
	Summary

	Chapter 6: Lighting and Compiling
	Using lights
	Using point lights
	Using spot lights
	Using light environments
	Using dynamic lights
	Using texture lights
	Using projected textures

	Emphasizing lights
	Placing point light sources
	Placing spot light sources

	Modifying Lightmap Grid
	Assigning Smoothing groups
	Compiling concepts
	Checking for problems
	Running BSP
	Running VIS
	RAD
	Compiling with HDR
	The Expert mode
	Checking for and fixing leaks

	Cubemaps
	Adding color correction
	Summary

	Chapter 7: Triggers and the
Input/Output System
	Creating your first trigger
	Creating a trigger once entity
	Adding outputs to a trigger once
	Creating a trigger multiple

	Input/Output links
	Cascading triggers
	Automatic triggers
	Modifying entity effects
	Using different flags
	Using filters
	The filter activator name
	The filter multi entity

	Creating subroutines
	Summary

	Chapter 8: Trains and Camera Systems
	Track trains
	Player-controlled track trains
	Creating the func_tracktrain entity
	Creating the path
	Tying the track train to the path
	The controls

	Adding detail
	Branch paths
	Controlling entities with GameUI

	Point camera
	Multiple cameras
	Panning the camera

	Point_viewcontrol
	The camera
	The camera path
	Tying it all together

	Summary

	Chapter 9: NPC Movement Basics
	Using the Model Viewer
	Unpacking models
	Loading a model
	Model manipulation
	Viewing animations

	Making NPCs walk
	Simple NPC movement
	Controlled NPC movement
	The aiscripted_schedule properties
	Triggering the schedule

	Scripted sequences
	Choosing your animation
	Combining sequences

	Actbusy
	Creating the actbusy.txt file
	Making it work

	Summary

	Chapter 10: Advanced NPC Scripting
	Using nodes
	Using info nodes
	Using hint nodes

	Scripting assaults
	Setting up an assault
	Placing the assault point
	Placing rally points
	Placing assault goals

	Creating squads
	Your first squad
	Scripting a flank
	Creating a schedule and a path
	Math counter
	Setting up our soldiers

	Summary

	Chapter 11: Source Particle Editor
	Accessing the tools menu
	Using Particle Editor
	Creating a fire particle
	Creating particles
	Using Emitter
	Using Renderer
	Using Initializer
	Operator

	Particles manifest
	Master manifest
	The map-specific manifest
	The info particle system

	Particle children
	Modifying existing particle systems

	Making fireworks
	Creating the explosion
	Simulating gravity
	Fading and other properties
	A parenting example
	Setting up the shell
	Launching the shell
	Stabilizing the shell
	Setting up the particle
	Adding sound effects
	Tying everything together

	Results

	Summary

	Index

